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1. Introduction 

Nanofluids-colloids obtained by mixing nanoparticles with a base fluid-have attracted 

wide attention since Choi coined the term in 1995 and observed that they have much 

higher thermal conductivity than anticipated from the effective medium theories [1–7].  

In fact, adding particles into a liquid to improve its thermal conductivity is an old idea.  

Researchers have tried to add micron sized or larger solid particles into liquids to 

increase their thermal conductivity, as solids usually have much higher thermal 

conductivity than liquids [8]. The thermal conductivity of these suspensions can be 

predicted by the effective medium theory which was originated from Maxwell [9] and 

continuously improved by many researchers to include factors such as interfacial 
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thermal resistance between the particles and the base fluid, and shape of the particulates 

[10–13]. However, large particles are prone to settling out of the suspensions. There are 

also some other drawbacks that limit the applications of fluids loaded with large 

particles [8,14,15], as the particles are likely to: 1) clog the flow channel, 2) abrade the 

surface of fluid channel, and 3) increase the pressure drop. As an alternative, 

researchers drew the attention from using large particles to dispersing nanoparticles into 

the liquids. In fact, Masuda et al. [16] investigated the thermal conductivity and 

viscosity of suspensions containing alumina, silica, and titanium dioxide nanoparticles 

before Choi et al.’s studies [1]. Current interest towards nanofluids is fueled by both 

fundamental science and applications. On the fundamental side, mechanisms of heat 

conduction and enhanced thermal conductivity in nanofluids are of great interest [17–20]. 

On the application side, the enhanced thermal conductivity of nanofluids promises 

applications in thermal systems [21–23].   

Since its interception, nanofluids have been a controversial topic. First, some 

previously reported high thermal conductivity cannot be repeated by others [24–27]. 

This has raised questions on the accuracy of the experimental method. However, a 

world-wide round-robin involving 33 laboratories has shown reasonable consistency in 

thermal conductivity measurement methods, especially the widely used transient 

hot-wire method, despite the fact that nanofluids studied by the round-robin groups did 

not show anomalous increase in thermal conductivity [28]. Second, many potential 

mechanisms have been proposed on why thermal conductivity can be increased beyond 

the effective medium theories, although careful reasoning can rule out most of them 

[18,29,30]. Fueled by these controversies, publications on nanofluids continue to 

increase, and many reviews are written. 

The purposes of this article are to summarize our understanding of heat conduction 
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mechanisms in nanofluids, arising from our past work in this area [19,31–39] and our 

knowledge of other studies in this field. Due to the large number of existing reviews 

[3–7,40–43], we do not intend to give a systematic summary of past work in the literature. 

We will first discuss potential mechanisms that can affect heat conduction in nanofluids. 

Most of these mechanisms have already been discussed in literatures, but we bring in 

additional insights from our understanding of heat conduction in solids and liquids, and 

Brownian motion. Like several previous theoretical analysis [44–48], we believe 

clustering is the key mechanism for thermal conductivity enhancement. Our conclusion 

is mostly based on our own experimental observations. This understanding led us to 

develop graphite-flake based suspensions. The graphite flakes have several tens of 

nanometers in thickness, but several microns in lateral size. These suspensions fall in 

between nanofluids and microfluids, and can be made stable in oil as well as in water. 

Although there have already been reports that such suspensions can have much 

enhanced thermal conductivity [49–51], we will show new experimental observations, 

such as thermal percolation, and demonstrate reversible regulation of electrical and 

thermal conductivity of such suspensions going through liquid-solid phase change 

process in addition to achieving very high thermal conductivity values.  We will 

conclude this paper by proposing a few interesting research directions arising from past 

work. 

 

2. Heat conduction mechanisms in nanofluids 

We will first summarize heat conduction mechanisms in solid, liquid, and 

solid-liquid interface, then move on to elaborate on potential mechanisms that can 

affect heat conduction in nanofluids. 



 4

 

2.1 Heat conduction mechanisms in solids, liquids, and liquid-solid interfaces   

2.1.1 Heat conduction in solids.  Most heat in crystalline dielectric and 

semiconductors is carried by phonons which are quantized lattice vibrations [52]. At or 

above room temperature, the thermal conductivity of bulk crystalline solids usually 

decreases with increasing temperature. Phonons in crystalline solids have a wide range 

of mean free paths. According to kinetic theory, the thermal conductivity can be 

expressed as 

      CvΛ
3

1
dωωΛωvωC

3

1
k    (1) 

where C is the specific heat per unit volume, v the phonon group velocity, and  the 

mean free path. The first equality emphasizes that these quantities all depend on the 

frequency of the phonon vibration in the solid, while the second equality is often used 

to estimate the phonon mean free path based on measured thermal conductivity values, 

specific heat and the speed of sound. Due to the neglect of the frequency dependence, 

the latter equality can cause large errors. In Si, for example, phonons with a mean free 

path less than 10 nm, 100 nm, and 1 m contribute about 1%, 30%, and 60% 

respectively to the total thermal conductivity of 136 W/mK, according to first principle 

simulations at room temperature [53,54], while the second equality will give a phonon 

mean free path of only 40 nm. At or above room temperature, the thermal conductivity 

of bulk crystalline solids usually decreases with increasing temperature, because at high 

temperatures, the mean free path decreases with increasing temperatures due to 

phonon-phonon scatterings. In amorphous solids, the phonon picture is less valid due to 

lack of periodicity in the arrangement of atoms. Thermal conductivity near room 

temperature in amorphous solids roughly follow the trend of specific heat (i.e., slowly 
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increases with temperature to saturation), due to the short lifetime of vibrational modes. 

Roughly, the phonon mean free path in Eq. (1) is the same order as atomic separations. 

In metals, electrons dominate the heat conduction, and Eq. (1) applies if each quantity 

represents that of electrons. The mean free paths of electrons in metals are usually very 

short, on the order of a few nanometers [55]. The thermal conductivity of metals 

typically decreases with increasing temperature due to increased scattering of electrons 

at higher temperatures. 

The thermal conductivity of individual nanoparticles is difficult to measure.  

However, it is anticipated that as the diameter of nanoparticles becomes comparable to 

the phonon or electron’s mean free path in bulk materials, the distance that these 

carriers can travel are limited to roughly the diameter of the nanoparticle. Hence, the 

temperature dependence of thermal conductivity of very small nanoparticles should be 

similar to that of their specific heat, i.e., slowly increases with increasing temperature 

and eventually saturates at higher temperatures. As the nanoparticle diameter decreases, 

their thermal conductivity can either increase with increasing temperature or still 

decrease with increasing temperature as in bulk crystalline solids. Other nanostructures 

such as carbon nanotubes and graphenes can have higher thermal conductivity than 

bulk graphite because they are closer to one-dimensional or two-dimensional systems, 

which can have less scattering than bulk structures [56–58].  However, it is not clear 

how the liquid environment would affect the scattering within graphenes or carbon 

nanotubes. Past experimental data show that isolated carbon nanotubes or graphenes 

can have thermal conductivity either increasing or decreasing with increasing 

temperature near room temperature [56,59].  This signifies the competition between 

boundary scattering (some from surface defects and others from the end effects) and 

internal phonon-phonon scattering.   
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2.1.2 Heat conduction in liquids.  The picture of heat conduction mechanisms in 

liquids is more complicated than that in solids. Heat conduction can be mediated by 

translational, vibrational, and rotational modes of the molecules composing the liquid 

and conduction within the molecules themselves, especially in organic liquids with long 

molecular chains [60]. In most liquids, thermal conductivity increases as temperature 

decreases, while the opposite trend is observed in water [61,62]. 

 

2.1.3 Heat transfer through liquid-solid interface.  Thermal boundary resistance 

exists at solid-solid and solid-liquid interfaces even if they are in perfect contact [52].  

Although most studies on thermal boundary resistance is focused on solid-solid 

interfaces, thermal boundary resistance [63,64], also called Kapitza resistance, was 

actually first observed between liquid helium and a solid [65]. Mechanisms for the 

additional resistance at the interfaces are mismatch in the characteristics of the heat 

carriers on the two sides [66,67]. In the case of dielectric-dielectric interfaces, the 

mismatch in the atomic potential and mass leads to reflection of phonons. Transmission 

of energy modes across interfaces, however, depends on details of interfacial structures. 

Even to now, there exists no good model that can accurately predict thermal interfacial 

resistance. There are less liquid-solid interfacial resistance data [68–71], especially the 

temperature dependence of liquid-solid interfacial resistance. Cahill et al. [70] measured 

interfacial thermal conductance of carbon nanotubes suspended in surfactant micelles in 

water to be around 12 2 1MW m K  . Schmidt et al. [34] also measured the effect of 

surfactants on the interfacial thermal conductance. These measurements show that the 

typical values of interfacial thermal conductance vary from several tens to several 

hundreds 2 1MW m K  . Such thermal conductance value is equivalent to a several tens 
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to several hundreds nanometers layer of solid with a thermal conductivity of 10 W/m-K. 

Despite the lack of experimental data, we expect that interfacial thermal resistance 

between liquid and solid will decrease with increasing temperature, similar to the 

specific heat behavior. 

 

2.2  Potential mechanisms affecting heat conduction in nanofluids 

Possible heat conduction mechanisms in nanofluids have been discussed in different 

literatures [3,5,18,40]. These include (1) Brownian motion of nanoparticles, (2) 

clustering of nanoparticles, (3) nanolayering of the liquid at the liquid/nanoparticle 

interface, (4) ballistic transport and nonlocal effect, (5) thermophoretic effect, and (6) 

near-field radiation. Many models have been developed for each or combinations of 

these mechanisms. In numerous publications, these models were shown to be capable 

of fitting experimental data. Although the ability to fit experimental data enhances 

credibility of models, the fact that models based on different mechanisms can explain 

same or similar data do not help understand the mechanisms. Detailed investigations 

would reveal that fitting parameters are often not physical.  

 

2.2.1 Brownian motion.  Different views on the importance of Brownian motion 

for thermal conductivity enhancement has been discussed in many literatures 

[18],[72,73]. Einstein developed basic theory for Brownian motion [74] and arrived at the 

basic relationship between diffusivity a of a particle in a fluid of viscosity  

3
Bk T

a
d 

  (2) 

where d is the particle diameter, and kB the Boltzmann constant.   
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A formal theory for Brownian motion usually starts from the Langevin equation that 

governs the instantaneous velocity of the Brownian particle and can be written as 

 ( )
d

m m t
dt

  
v

v R    (3) 

where m is the Brownian particle, R(t) is the random driving force, and  is the friction 

coefficient. For a spherical Brownian particle in a fluid, the Stokes law gives =3d/m.  

Solution of the Langevin equation shows that the velocity of the Brownian particle 

decays exponentially with a time constant, 

 






183

1 2d

d

m
  (4) 

The average velocity of the Brownian particle is given by  

 
3

v Bk T

m
  (5) 

Using the above relations, one can quickly estimate the maximum potential 

contribution from the Brownian motion. Under the kinetic expression of Eq.(1), despite 

its inadequacy for liquid environment, the thermal conductivity contribution of 

Brownian particles is proportional to  

2
Brownian

1 1
k CvΛ Cv

3 3 3
Bk TC

d


 
      (6) 

By the same argument, one can also apply the above expression for the liquid itself, and 

the ratio of the Brownian particles’ contribution to thermal conductivity to the thermal 

conductivity of base fluid is 

 
 npBrownian

bf bf

/k

k ( / )

C d

C d
  (7) 

where the subscripts bf and np are base fluid and nanoparticles, respectively. As the 
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base fluid molecular diameter is usually two orders of magnitude smaller than that of 

the nanoparticle, the above expression shows that Brownian motion contribution to the 

thermal conductivity is at least two orders of magnitude smaller than that of the base 

fluid, even if we take the specific heat per unit volume of the nanoparticles equal to that  

of the base fluid, assuming that the Brownian motion of nanoparticles causes the 

surrounding fluid molecules to move at the same pace. If only the specific heat of the 

nanoparticles is used, the thermal conductivity ratio in Eq.(7) is further reduced by the 

volume fraction of the nanoparticles. Thus, existing models based on the pure motion of 

the nanoparticles are questionable. Keblinski and Cahill [75] pointed this out early in 

the debate on the role of Brownian motion. 

Another opposite argument supporting the importance of Brownian motion is the 

microconvection argument. Convective heat transfer coefficient expressions between a 

heated sphere and cold surrounding fluid have been used to explain nanofluid’s thermal 

conductivity enhancements with reasonable fit to experimental data [72,73], assuming 

surrounding fluid velocity equal the average thermal velocity of the Brownian particles. 

These models lack a physical picture to connect heat conduction through liquids and 

nanoparticles to that of heat transfer away from a heated nanoparticle maintained at a 

constant temperature.   

Pure kinetic motion based models neglected potential interactions among 

nanoparticles. Bhattacharya et al. [76] considered potential interactions of nanoparticles, 

starting from the Langevin equation and using the Green-Kubo formulation.  Although 

this is an interesting theoretical approach, careful examination of the parameters used in 

the potential suggests that these parameters are way too strong than in any nanofluids. 

The senior author of this paper had considered an electrothermal effect that includes the 

long range energy exchange between nanoparticles through electrical double layer 
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surrounding nanoparticles and random Brownian motion of the nanoparticles [77].  

Although the theoretically treatment was interesting and expressions were correct, an 

error occurred in numerical substitution that leads to wrong the conclusion that 

electrothermal effect was important. Correct numerical calculations show that this 

effect is too weak to explain experimental data. We conclude that potential interactions 

among Brownian motion of nanoparticles are unable to explain the experimental 

observations.  

There remains one important point in the Brownian motion picture that has not been 

fully understood. Langevin equation as given by Eq. (3) assumes steady state motion of 

the nanoparticle and hence the drag on the nanoparticle. Including the transient effect of 

the Stokes flow will lead to a memory effect – an integral Langevin equation.  The 

solution of such an equation shows that velocity decay follows a power law rather than 

exponential function, as originally discovered by computational simulation [78]. The 

power law decay is much slower than the exponential decay, and this fact has been used 

as the basis to develop a kinetic argument by Xuan Yimin [79] and Bao Yang [80]. 

However, rigorous solutions of the retarded Langevin equation shows that the Einstein 

relation, Eq.(2), although obtained under the exponential decay solution of velocity, still 

holds true. This fact casts doubts on the power-law based kinetic picture. Molecular 

dynamics simulation further shows that the hydrodynamic effect caused by Brownian 

motion cannot provide an answer for the increased thermal conductivity [26,81].  

Some experimentally reported temperature dependence of the thermal conductivity 

shows faster increase with increasing temperature than that of the base fluids [82], 

although opposite behavior or no change have also been reported in other nanofluids 

[27,83]. The former behavior is often used to support the claim on the importance of 

Brownian motion. However, as discussed before, size effects on the thermal 
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conductivity of crystalline nanoparticles, as well as the thermal boundary resistances all 

can contribute to increasing thermal conductivity with increasing temperature.  

 

2.2.2 Clustering.  Although the simplest picture of nanofluids is that nanoparticles 

are isolated and uniformly dispersed in the liquid, real suspensions of nanoparticles in 

liquids are more complicated. Nanoparticles themselves can interact, aggregate, and 

form internal structures [84–86]. The study of the states of the nanoparticles in a liquid 

falls into the realm of soft materials, which is a big branch of condensed matter physics.  

The internal structures of nanofluids can potentially explain the experimental results.  

In fact, our own experiments convinced us that the experimentally observed heat 

conduction behavior is mainly due to different states of the nanoparticles in the liquid, 

as we will discuss in detail later. The idea that nanoparticles form clusters and the 

formation of these clusters can explain the experimental results was discussed in a few 

papers [44–48]. Prasher et al. [44] started with the idea that clustered nanoparticles, 

which has a larger effective volume, together with their Brownian motion, can explain 

the experimental data, and then moved on to develop a three level homogenization 

model based on the effective media theory not involving Brownian motion, and 

suggested that such models can explain the experimental data.   

 

2.2.3 Liquid layering.  Near a solid surface, liquids are structured due to the 

influence of the potential of the solids, creating a crystalline layer typically 1-5 atomic 

layers (~1 nm) [43]. Crystal structures should have higher thermal conductivity than 

liquids. This mechanism is sometimes cited as potentially responsible for the increased 

thermal conductivity of nanofluids. However, as analyzed by Keblinski et al. [30], the 

liquid layering unlikely will be able to explain experimental observations. Furthermore, 
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due to phonon size effects in solids, 1-5 atomic layer crystal films will have 

significantly reduced thermal conductivity compared to their crystalline bulk materials, 

which further diminishes the likelihood that liquid layering can be a plausible cause. 

 

2.2.4 Ballistic transport and nonlocal effects.  Ballistic transport happens when 

internal scattering mechanisms are not strong enough, such that boundary and 

interfacial scattering becomes dominant [52]. Nonlocal heat conduction happens when 

ballistic transport occurs. Examples of ballistic transport are reduced thermal 

conductivity in solid nanostructures as we discussed before. Another example is 

nonlocal transport outside a nanostructure, which happens when the heat carrier mean 

free path in the surrounding media is much longer than the characteristic length of the 

nanostructure itself [87,88]. For both ballistic and nonlocal transport processes, the 

expectation is that heat transfer will be less than that predicted by the diffusion theory 

based on properties of bulk materials. Hence, it is unlikely that these effects have 

anything to do with experimental observation of anomalous thermal conductivity 

enhancements in nanofluids. A kinetic theory type model considering ballistic transport 

of nanoparticles in the liquid was proposed by Das [89]. However, to explain the 

experimental data, the mean free path of the solid nanoparticles in liquid would have to 

be in the range of centimeter, which is clearly out of the question [75].  

 

2.2.5 Thermophoresis. Thermophoresis describes the movement of nanoparticles 

under a temperature gradient. On the higher temperature side, particles are subject to 

the bombardment of higher energy molecules, experiences higher force, and hence will 

be driven to the lower temperature side.  This effect may affect the thermal 

conductivity measurements [90]. However, when we change the hot-wire temperature in 
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the experiment, and hence the temperature gradient, we did not observe any appreciable 

change in measured thermal conductivity, suggesting thermophoresis is not important. 

Analysis by Koo and Kleinstreuer also showed thermophoresis is not important to the 

thermal conductivity enhancements [91].  

2.2.6 Near-field Radiation.  Molecular dynamics simulation by Volz and 

co-authors showed that heat transfer between two nanoparticles increases rapidly as 

they get together [92]. Hence, it was suggested that near-field radiation may be a cause 

for increased thermal conductivity. Even though experiments have demonstrated that 

near-field radiation can be significantly higher than maximum radiation exchange 

described by blackbodies [93], radiation effect is always much smaller than heat 

conduction through a medium. Of course, as two surfaces are nearly in contact, the 

distinction between radiation and conduction diminishes.  In the case of completely 

touching surfaces, our previous discussion on thermal boundary resistance between 

surfaces should apply.  Hence, we do not believe that near-field radiation can explain 

the experimental data. 

 

3. Summary of our experimental work 

The senior author’s group has been working on nanofluids over the past few years, 

mostly based on experiments [19,32,33,36,94]. We first verified that the transient 

hot-wire method and an optical technique give consistent results on thermal 

conductivity of nanofluids [36], establishing confidence on the hot-wire method.  We 

started with 2 3Al O  nanoparticles dispersed in various fluids, including studying the 

effects of surfactants [34,37]. Experimental results, however, did not lead to anomalous 

thermal conductivity enhancements, although experimental data could be slightly above 

the model predictions based on isolated spherical particles. Copper nanoparticle based 
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nanofludis were also studied, with similar results [32]. In several nanofluids, a reduction 

in thermal conductivity was also observed. 

Our revelation of potential heat conduction mechanisms came from freezing 

experiments. If Brownian motion is the culprit for enhanced thermal conductivity, we 

expect to see that the same suspension, when freezes, should have a lower thermal 

conductivity enhancement. Gao et al. [19] carried out freezing experiments on alumina 

nanofluids using two different host materials: animal oil and hexadecane. For the 

animal oil based nanofluids, the thermal conductivity enhancement was slightly lower 

in the solid state than the liquid state. For the hexadecane based nanofluids, however, 

the solid state had an even higher thermal conductivity enhancement than the liquid 

state. Transmission electron microscope (TEM) images (Fig.1) show that 2 3Al O  

nanoparticles chain up when hexadecane freezes and forms crystals, but this 

phenomenon does not happen when the animal oil freezes. This is because when 

hexadecane freezes, it forms crystals and 2 3Al O  nanoparticles are pushed into the 

grain boundaries between the crystallites. This experiment suggests that nanoparticle 

clustering into chains and forming a percolation network will help improve the thermal 

conductivity because in this case, heat prefers to conduct along the clusters that are 

composed of higher thermal conductivity nanoparticles.  
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Figure 1: TEM image of alumina (a) in hog fat suspension before freezing, (b) in hog fat composite 

after freezing, (c) in hexadecane suspension before freezing, (d) in hexadecane composite after 

freezing.  

From [19]. 

 

If conduction along the backbones of nanoparticles is responsible for thermal 

conductivity improvements, then nanoparticles are not the best choices because 1) 

nanoparticles usually have low thermal conductivity due to size effects discussed before, 

and 2) interfacial resistance between nanoparticles limit heat conduction along the 

nanoparticle chains. Large anisotropic particulates such as graphite flakes or carbon 

nanotubes are better choices. We choose graphite flakes as additives because graphite 

flakes have very high in-plane thermal conductivity, are low cost, and may form 

clusters. It is envisioned that the thermal boundary resistance between graphite flakes is 

likely to be bad for heat conduction along the clusters. To reduce the thermal boundary 
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resistance, graphite flakes should be made into larger particles as long as stable 

suspensions can be formed. There may also be an optimal thickness as thermal 

conductivity of too thin flakes may be low due to phonon scattering by the surrounding 

fluid molecules, and too thick flakes will require large amount of materials for the 

percolation network to form and also the suspension may have stability problem.  

However, the optimal thickness is still under study  

 

The greatest challenge of making nanofluids is stability. When the nanoparticles are 

lyophobic to the base fluids, it is very hard to prepare stable nanofluids since the 

particles “hate” to contact with the liquid and try to separate from it. In this case, 

surfactants (molecules usually consisting of a long lyophobic “tail” and a lyophilic 

“head”) are frequently used to wrap the nanoparticles to improve the lyophilicity of the 

particle phase and consequently increase the stability. However, the presence of 

surfactants increases the interfacial resistance between the nanoparticles and base fluids, 

and therefore will reduce the thermal conductivity enhancement of nanofluids if the 

heat conduction is primarily along the nanoparticles.  

 

The preparation of our graphite suspensions is a two-step process. The first step is to 

produce graphite particles. Natural graphite particles are large-sized and too thick, 

which cannot be directly mixed with the base fluid, as large particles will settle out very 

quickly. To avoid this, we use chemical intercalation [95–99] and microwave expansion 

to obtain exfoliated graphite flakes, followed by an ultrasonic process to disperse the 

flakes into the liquid. For example, 85 ml of H2SO4 (96%) and 15 ml of hydrogen 

peroxide (30%) were mixed to form an oxidative agent that was used for the 

intercalation. For the intercalation process, 2.2 g of natural graphite was reacted with 
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100 ml of the oxidative agent at room temperature for 60 min. The slurries were rinsed 

with distilled water to remove residual salts and acids, followed by filtering and baking 

on a hotplate at 110ºC for 24 hours. The expanded graphite was obtained by thermal 

expansion of as-prepared graphite intercalation compounds in a 1100W commercial 

microwave oven for 5~30s. The expanded graphite was then dispersed in ethylene 

glycol and other liquids to create graphite suspension using a high intensity ultrasonic 

probe. The samples were sonicated from 3-30 minutes, depends on the volume fraction 

of graphite flakes. 

 

The microwave expansion is a rapid heating process which creates pressure between 

graphite layers and thus significantly expands the interlayer spacing. However, too long 

microwave time (e.g. longer than 30 seconds) should be avoided since heating will 

anneal most of the surface functional groups introduced during the chemical 

intercalation process. Natural graphite is lyophilic to ethylene glycol and PAO but 

lyophobic to DI water. However, because of the introduction of surface functional 

groups, the wettability of the graphite flake changes. We carried out C1s X-ray 

photoelectron spectra on the exfoliated graphite flakes and found C=C, C−OH, C=O 

and O=C−OH species [33]. The polar groups increase hydrophilicity of the flakes. We 

were able to create stable suspensions using de-ionized water (DI water), ethylene 

glycol, and poly-alpha-olefin (PAO), and hexadecane. To make the expanded graphite 

disperse uniformly in the base fluids, we must use an ultrasonic probe to sonicate the 

mixture. The sonication time varies as the graphite volume fraction increases. We 

observed that too short sonication time will make the samples too viscous, especially at 

high volume fractions, while too long sonication time can substantially reduce the 

viscousity but lessen the thermal conductivity enhancement of suspensions. Therefore, 
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there is a tradeoff between high thermal conductivity and low viscosity. Figures 2(a) 

and (b) show the SEM and TEM images of graphite flakes after sonication. The 

graphite flakes have an average diameter of several microns and thickness from several 

to several tens of nanometers. Figure 2(c) shows measured thermal conductivity of PAO 

based graphite suspensions at three different microwave times.   
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Figure 2: (a) SEM image of graphite flakes after sonication. (b) TEM image of graphite flakes after 

sonication. From [33]. (c) Thermal conductivity of PAO/graphite suspension (1% volume fraction) 

at three different microwave times (5 seconds, 60 seconds, 120 seconds). 

 

Figure 3 shows the thermal conductivity enhancement as a function of graphite volume 
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fraction in three different base fluids (DI water, ethylene glycol, PAO) [100]. The 

addition of graphite particles to the base fluid increases the fluid’s thermal conductivity 

dramatically and the enhancement increases as the graphite volume fraction increases. 

Shikh et al. [49] reported a 161% thermal conductivity enhancement of graphite 

nanofluids based on PAO at a volume fraction of 1%. Choi et al. [101] reported the same 

thermal conductivity enhancement while using carbon nanotubes in oil. For water-base 

graphite nanofluids, Zhu et al. [102] reported only a 12% thermal conductivity 

enhancement at a volume fraction of 1%, and Assael et al. [50] reported a 38% thermal 

conductivity enhancement. The thermal conductivity enhancements of the three kinds 

of graphite suspensions we made (201% for PAO, 153% for ethylene glycol, 113% for 

water) all exceed the maximum values reported in the literatures.   
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Figure 3: The thermal conductivity enhancement of three kinds of graphite suspensions as a function 

of volume fraction. 

 

As stated before, the sonication time for different volume fractions is different. The 

higher the volume fraction, the longer the sonication time required. To investigate the 

effect of sonication time on the thermal conductivity enhancement, we test the thermal 
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conductivity enhancement of three kinds of graphite suspensions at the same volume 

fraction (1%), but prepared using different sonication times. Figure 4 shows the 

measurement results. It is obvious that too long sonication time will significantly 

reduce the thermal conductivity enhancement. This is because the high power of 

ultrasonication can break large particles into small pieces, which will generate more 

particle contacts, and thus increase the thermal contact resistance and decrease the 

thermal conductivity enhancement (see insets of figure 4). On the other hand, smaller 

particles do not settle out easily, which is help form stable suspensions. Since the 

sonication time has substantial effect on the suspension thermal conductivity, it is 

necessary to measure several sets of samples using the same sonication time. We 

sonicate at the highest volume fraction and dilute the sample to get lower volume 

fraction samples.  
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Figure 4: Thermal conductivity enhancement as a function of sonication time. All three kinds of 

graphite suspensions are 1% volume fraction. The insets are three SEM images of graphite flakes 

after sonicating 20 mins, 60 mins, and 120 mins with average flake diameter 7.3 m , 4.1 m , and 

1.9 m , respectively, based on the statistics from SEM image. 
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Graphite suspensions at low volume fractions (lower than 0.2%), especially for the 

water-based graphite suspensions, are less stable than that at high volume fractions 

(higher than 0.2%). At low volume fractions, graphite particles can only form isolated 

clusters. At high volume fractions, the previously isolated clusters can connect with 

each other to form percolated structure. This percolated structure provides a strong 

support for the graphite flakes so that they will not settle out for a long time.  

 

For ethylene glycol and PAO curves (Fig. 3), we see two extraordinary features in the 

volume fraction dependence of thermal conductivity enhancement. First, there is a 

sharp kink in the thermal conductivity dependence on the volume fraction. At the kink 

point, the thermal conductivity value is continuous but the slope changes sharply. 

Second, below the kink point, thermal conductivity increases more rapidly with volume 

fraction than above the kink point. This is opposite from the electrical conductivity, 

which increases rapidly after the electrical percolation. The kink in thermal 

conductivity may be related to percolation. However, it is well-known that percolation 

does not lead to sharp transitions in the thermal conductivity because heat conduction 

can occur in both liquid phase and solid phase, which smoothes out the thermal 

percolation transition [103,104]. Further more, it is generally expected that after the 

onset of percolation, the thermal conductivity increase rate will be much higher, which 

contradicts our experimental observations.  

 

 



 22

  

0 0.2 0.4 0.6 0.8 1
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

Volume fraction %

E
le

ct
ric

al
 c

on
du

ct
an

ce
 (

S
)

d

10
-1

10
0

10
-6

10
-5

10
-4

10
-3

-
c
   (

c
=0.07%)

C
on

du
ct

an
ce

 (
S

)

c

0 0.5 1 1.5 2 2.5

x 10
6

0

4

8

12
x 10

5

Z'

-Z
"

a

0.1%
0.15%

0.07%

0.05%

d

 

0 0.1 0.2 0.3 0.4 0.5 0.6
10

-5

10
-4

10
-3

In
tr

a-
cl

us
te

r 
co

nd
uc

ta
nc

e 
(S

)

Volume fraction %
0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-9

In
tr

a-
cl

us
te

r 
ca

pa
ci

ta
nc

e 
(F

)

be

0 0.1 0.2 0.3 0.4 0.5 0.6
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

In
te

r-
cl

us
te

r 
co

nd
uc

ta
nc

e 
(S

)

Volume fraction %

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-8

In
te

r-
cl

us
te

r 
ca

pa
ci

ta
nc

e 
(F

)

cf

 

Figure 5: Optical images of the microstructures of EG-based graphite suspensions at different 

volume fractions: (a) 0.03% and (b) 0.1% . (c) Electrical conductance shows a percolation behavior 

at 0.07% for 25 minutes ultrasonic time. (d) Nyquist plots of AC impedance of EG/graphite 

suspensions at different volume loadings. (e) Intra-cluster and (f) inter-cluster resistance and 

capacitance as a function of graphite volume fraction. 

From [100]. 

 

We combined optical microscopy with AC impedance spectroscopy to understand the 

extraordinary features observed [100]. Optical images of graphite suspensions show that 
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at low volume fractions, the graphite flakes form isolated clusters and the suspension is 

more solution-like. At high volume fractions, the graphite clusters merge into 

percolation structures and the suspension is more gel-like. Electrical conductance 

measurements show a percolation threshold at 0.07% volume fraction, consistent with 

the kink location in the thermal conductivity.  

 

Based on the microstructural evolution (Fig. 5a and 5b) and AC impedance 

spectroscopy (Fig. 5c-5f) studies, the sharp inflection in thermal conductivity can be 

explained as follows. Below the percolation threshold, graphite flakes form clusters.  

These clusters tend to minimize the surface energy via tighter binding among the 

graphite flakes. As the clusters merge to form a percolation network, the driving force 

to minimize surface energy becomes smaller, and the binding between graphite flakes 

becomes weaker and graphite flake separation increases, which leads to decreased 

flake-to-flake (intra-cluster) conductance and decreased capacitance (Fig. 5e) but an 

increased inter-cluster conductance (Fig.5f). As the flake-flake separation increases 

within the cluster, thermal interface resistance between graphite flakes increases, 

leading to a slower rate of increase at high volume fractions.  

 

Our experiments also provide insights into the conflicting experimental results in the 

nanofluids field [18,28,105]. Most previous experimental data on spherical nanoparticles 

have not reached the percolation phase transition point and transport lies in either the 

isolated particle or the isolated cluster regime. A similar kink behavior can be seen in 

the thermal conductivity data of CuO nanofluids, although the paper does not discuss 

this behavior [45]. High aspect ratio nanoparticles, such as carbon nanotubes based 

nanofluids, have lower percolation thresholds, and past experiments were already in the 
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percolated regime. We should emphasize that thermal conductivity depends strongly on 

how the suspensions are prepared, reflecting the fact that states of the particulates in 

liquids are very complicated [84–86]. In Fig. 6, we show thermal conductivity of 

suspensions of graphite in ethylene glycol, prepared using various sonication times. The 

complex trend of thermal conductivity testifies to the difficulties in repeating data from 

different groups, as varying the sonication time not only changes the mixing but also 

the size of the graphite flakes. For this reason, we spent a long time repeating data 

presented in Fig. 3, and obtained consistency by first preparing samples at higher 

volume concentration, followed by dilution with magnetic stirring. 
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Figure 6: Several sets of data on the thermal conductivity enhancement of ethylene glycol based 

graphite suspensions. These sets of suspensions samples were prepared by the same method but 

using different sonication times. Generally, higher volume fraction samples were prepared using 

longer sonication time; lower volume fraction samples were prepared using shorter sonication time. 

For the same volume fraction samples, we adjusted the sonication time to control the thermal 

conductivity to be a little higher or lower. 
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Our understanding is also instructive for achieving high thermal conductivities in dilute 

suspensions. First, thermal conductivity enhancement is due to heat conduction within 

the solid, and hence high thermal conductivity additives should be used. Second, high 

thermal conductivity additives that easily form clusters will not only help to stabilize 

suspensions, but also enhance the thermal conductivity at low volume fractions. Third, 

high interface density in the suspensions will effectively suppress the thermal 

conductivity enhancement because the interface thermal resistance is detrimental to 

thermal transport. Hence, particulates with high aspect ratios (such as carbon nanotubes 

and graphite flakes), by forming tightly-bonded clusters and suppressing the interface 

resistance, can become excellent additives to achieve high thermal conductivity. 

 

4. Reversible temperature regulation of suspension properties 

Our freezing experiment on 2 3Al O  nanoparticles in crystalline forming liquid led us to 

perform similar experiments on graphite suspensions [33]. We choose to use hexadecane 

as the matrix. This is because the phase transition temperature of hexadecane is around 

18 C , which is convenient for experimentation. We prepared the hexadecane based 

graphite composites and measured both electrical conductivity and thermal conductivity 

in the solid state and the liquid state. Cyclic measurements on the electrical 

conductivity and the thermal conductivity were performed to test their reversibility. 

Figure 7(a) shows the cyclic behavior of the electrical conductivity as the suspension 

goes through repeated melting and freezing processes. The first freezing cycle shows 

the largest electrical conductivity contrast because it contains more loose clusters in the 

liquid state. In the first remelting process, contacts between graphite flakes degrade 

dramatically, leading to a sharp reduction in electrical conductivity. However, many 

graphite flakes will be trapped in the percolation network and so the electrical 



 26

conductivity in the liquid state increases from its original synthesized state. After the 

first cycle, the percolation structure becomes stable and the electrical conductivity 

contrast of graphite composites approaches a constant. Figure 7(b) shows the cyclic 

behavior of the thermal conductivity as the suspension goes through repeated melting 

and freezing processes. 
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Figure 7: (a) Electrical conductivity contrast after different cycles. Blue lines indicate the electrical 

conductivity of 0.8% hexadecane based graphite composites in the course of freezing, while red 

lines indicate that in the course of melting. (b) Thermal conductivity contrast after different cycles. 

Blue lines indicate the thermal conductivity of 0.8% hexadecane based graphite composites at 3°C 
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during different cycles, while red lines indicate that at 25°C during different cycles. 

From [33]. 

 

The significant electrical and thermal conductivity contrast between solid state and 

liquid state can be explained as follows. During freezing, the graphite particles are 

squeezed to the grain boundaries [106–108]. The internal stress generated during 

freezing regulates contacts among particles, increasing the thermal conductivity of the 

sample. In the liquid state, the contact among graphite particles is loose and weak. 

Hence the interfacial thermal resistance between two flakes is high, and the total 

thermal conductivity of the suspension is small. During the freezing of the hexadecane, 

needle-like structures are formed. The anisotropic growth of the hexadecane crystals 

generates pressure, rapidly increasing the contact area of graphite flakes, reducing the 

thickness of low conductivity hexadecane, and making the contact tighter. When the 

hexadecane remelts, the pressure on the graphite flakes is released and the contact area 

is reduced due to the elastic recovery of graphite flakes and inter-particle repulsion. 

Therefore, the stress generation during the phase change process is the key reason for 

the large difference between thermal conductivity at different states.  

 

Although it is well-known that electrical conductivity can be tuned via temperature 

using the metal-insulator transition [109], temperature regulation of thermal 

conductivity is not that easy. Our demonstration of reversible regulation in thermal and 

electrical properties may lead to practical applications of the composites in energy 

systems.  

 

5. Summary 
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We have reviewed potential heat conduction mechanisms in nanofluids. Our own 

experimental studies support cluster formation and percolation as the key factor for the 

thermal conductivity enhancements. Brownian motion, although cannot be completely 

ruled out theoretically due to power-law decay, rather than the exponential decay, of the 

Brownian particle dynamics, is unlikely to make much contribution to thermal 

conductivity enhancement. Guided by the understanding in heat conduction 

mechanisms, we have achieved record high thermal conductivity values in graphite 

suspensions in both oil and water.  

 

The clustering and percolation picture suggests that below the percolation threshold, 

one may explore the enhanced thermal conductivity of our suspensions in flow systems.  

Above percolation, viscosity of the fluid will increase rapidly, and the application of 

our suspensions in fluid situations will be limited. In this regime, stationary 

applications are more promising. Using phase change to reversibly regulate properties 

of the suspensions opens up other application possibilities. 

 

Although one should be able to explain the enhanced thermal conductivity of 

nanofluids by using the clustering and percolation picture, there are also other surprises 

such as our observation of thermal percolation feature. More fundamentally, the 

structures of nanoparticle-fluid suspensions are complex, and our understanding of 

thermal transport in such structures are limited, as the past debate on the thermal 

conductivity enhancement mechanisms suggests. One can make many substitutions to 

both the base fluids and the nanoparticles, from inorganic to organic. There is plenty of 

room to improve the understanding of heat conduction mechanisms in soft materials. 
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