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 Abstract—The utilization of solar energy by photovoltaic (PV) 
systems have received much research and development (R&D) 
attention across the globe. In the past decades, a large number of 
PV array have been installed. Since the installed PV arrays often 
operate in harsh environments, non-uniform aging can occur and 
impact adversely on the performance of PV systems, especially in 
the middle and late periods of their service life. Due to the high 
cost of replacing aged PV modules by new modules, it is 
appealing to improve energy efficiency of aged PV systems. For 
this purpose, this paper presents a PV module reconfiguration 
strategy to achieve the maximum power generation from 
non-uniformly aged PV arrays without significant investment. 
The proposed reconfiguration strategy is based on the cell-unit 
structure of PV modules, the operating voltage limit of 
gird-connected converter, and the resulted bucket-effect of the 
maximum short circuit current. The objectives are to analyze all 
the potential reorganization options of the PV modules, find the 
maximum power point and express it in a proposition. This 
proposition is further developed into a novel implementable 
algorithm to calculate the maximum power generation and the 
corresponding reconfiguration of the PV modules. The 
immediate benefits from this reconfiguration are the increased 
total power output and maximum power point voltage 
information for global maximum power point tracking (MPPT). 
A PV array simulation model is used to illustrate the proposed 
method under three different cases. Furthermore, an 
experimental rig is built to verify the effectiveness of the 
proposed method. The proposed method will open an effective 
approach for condition-based maintenance of emerging aging PV 
arrays. 

 
Index Terms—Maximum power tracking, non-uniform aging, 
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offline reconfiguration, output characteristics, photovoltaics 
(PVs), solar energy. 

I. INTRODUCTION 
Solar energy utilization has received much attention across 

the globe over the last decades [1]-[6]. Currently, photovoltaic 
(PV) power devices are gaining in popularity in the global 
renewable energy market, primarily owing to the reducing 
manufacture costs of PV panels and continuous improvement 
in power conversion technologies [7]-[8]. In practice, high 
energy conversion efficiency and long effective service time 
can help reducing capital and operating costs and thus are 
highly desired. 

With the improvement of materials technologies, 
monocrystalline silicon and multicrystalline silicon now can 
be economically produced in large quantities. However, their 
energy conversion efficiency from solar to electricity is still 
low. Typical efficiency for monocrystalline silicon solar cells 
is around 20% while it is 18% for multicrystalline silicon solar 
cells [9]. On the power electronics side, high-performance 
switching devices (e.g. silicon carbon (SiC), super junction 
MOSFETs) and new converter topologies (e.g. multi-level 
DC-AC and resonant DC-DC converters) can improve energy 
conversion efficiency [10]-[12]. This part of energy 
conversion efficiency can reach as high as 95% [12]. However, 
these figures are typically for nominal and healthy operation 
of PV cells while in reality they are subject to various faults 
and aging conditions, which reduce the lifetime of the PV cells 
and their operational efficiency. For these faulted or aged PV 
systems, an easy approach to improve energy efficiency is to 
replace aged PV modules by brand new ones. However, this is 
not economically acceptable to most of the PV system owners. 
This paper aims to propose a reconfiguration strategy for 
faulted or aged PV systems so that the maximum power 
generation can be improved by simply rearranging the 
positions of the PV modules. This reconfiguration strategy is 
derived from the bucket effect of the maximum short circuit 
current of PV strings, therefore, the basic structure and 
working principles of a PV system need to be introduced. 

There are four levels of components to form a PV system. 
Namely, PV cell-unit, PV module, PV string and PV array, as 
illustrated in Fig. 1. In order to restrict hotspots in the PV 
module, a bypass diode is connected in parallel with PV cells; 
such a structure is named a cell-unit (including m PV cells). In 
the PV system considered, assume that n cell-units are 
connected in series to form a PV module to raise the output 
voltage, and s PV modules are connected in series to construct 
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a PV string. A number of PV strings are connected with 
diodes and then in parallel to become a PV array. The diodes 
can stop the current flow between strings, which is harmful.  

 
Fig. 1 Componential structure of the PV array. 
 

In order to increase the PV device’s effective service time, 
fault diagnosis and remedial measures are two important 
approaches. Since PV panels often operate in outdoor harsh 
environments, potential hazards from dust, bird-dropping, 
partial shading and cell aging will affect the power generation 
performance [13]-[15]. Therefore, detection techniques such 
as thermal cameras [16]-[21], earth-capacitance measurement 
(ECM) [22], time-domain reflectomery (TDR) [23], and 
voltage/current sensors are widely applied to identify the 
irregularity of PV cells. Upon a fault, a non-uniform 
temperature distribution can build up on the PV array and a 
thermal camera can help to locate the faulty PV module. The 
ECM can locate the disconnection of any PV modules and the 
TDR can estimate the degradation of PV arrays. Nonetheless, 
both ECM and TDR are expensive and only be employed as 
offline fault diagnosis tools [22][23]. References [24] and [25] 
propose a PV array fault detection method by comparing 
simulated and measured output powers of PV arrays based on 
the environment data. Paper [26] analyzes the dynamic 
current-voltage characteristics to achieve fault diagnosis. In 
paper [27], machine learning techniques are employed for PV 
fault detection by measuring PV array voltage, current, 
irradiance and temperature. 

After a fault is diagnosed, certain remedial measures need 
to take place. In-situ reconfiguration is an effective solution 
[28]-[34]. But this can only work if a large number of relays 
are used and the state of health (SoH) information of every PV 
module is available all the time. These two conditions cause 
higher system costs and also make the system controls 

complicated. In-situ reconfiguration also needs powerful 
CPUs to calculate optimal solutions quickly enough, which 
increases system costs. Paper [34] proposes a diffusion charge 
redistribution method to achieve the maximum power. By 
taking advantage of the intrinsic diffusion capacitance of the 
solar cells, the number of power devices used is reduced to 
simplify the system. Nonetheless, the majority of PV arrays 
are not equipped with online reconfiguration equipment due to 
the high cost. 

So far the PV fault diagnosis and online reconfiguration 
technology are still under development. In the middle and late 
lifetime of the PV arrays, aging, especially non-uniform aging, 
is a severe phenomenon that significantly decreases PV 
system efficiency [35]-[37]. In the literature, a cost effective 
technique to improve the energy efficiency of the aged PV 
arrays is still lacking. This paper attempts to fill the gap by 
developing an offline reconfiguration strategy for the 
“middle-aged and elderly” PV arrays so as to maximize the 
solar power generation.  

The paper is organized as follows. Section II introduces 
mathematical modeling of non-uniform aging PV array. 
Section III illustrates the detection of aging PV. According to 
aging information, section IV introduces the optimal PV 
module reconfiguration algorithm. Section V illustrates the 
proposed method by analytical study. Section VI presents 
simulation and experimental results to verify the proposed 
method, followed by a short conclusion in Section VII. 

II. MATHEMATICAL MODELING 
A new fault tolerance topology is developed to improve the 

system performance that also can improve SRM driving 
system fault tolerance ability.  

Non-uniform aging is a common problem in PVs which 
can be caused by lasting dust, shading, or water corrosion over 
a long period of time [13][14].  Usually, there are many 
reasons to cause aging differences. Due to the harsh operating 
environments, hail or stone can break the glass of some PV 
modules. New modules are usually needed to replace broken 
modules so that the aging difference between new and old 
modules is high. Modules in the same locations can also suffer 
differently from aging influences depending on the relative 
positions they are in. The modules at front and sides may be 
subjected to worse conditions such as duct and abrasion. 
Furthermore, modules in the same batch can also have aging 
differences due to product quality variations. This is 
particularly true when they work towards the end of their 
service life. This paper addresses these aging differences and 
attempts to increase their overall output and lifetime 
expansion of PV array by offline reconfiguration. 

A. Model of Healthy PV Cells 
The electrical characteristics of PVs are influenced by both 

temperature and illumination. The electrical model of the PV 
cell is expressed by [2]. 
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where I is the PV module output current, IL is the photon 
current, q is the quantity of electric charge, A is the diode 
characteristic factor, K is the Boltzmann constant, Io is the 
saturated current, Tm is the PV module temperature, G is the 
irradiance, V is the output voltage, Gref is the reference 
irradiance level (1000 W/m²), ILref, Ioref are the reference values 
for IL and Io. ki is the current-temperature coefficient provided 
by the PV manufacturer. Tref is the reference temperature, Ns is 
the number of series-connected cells, Tm is the PV module 
temperature. ε is a constant depending on q, Ns, K, A, and is 
calculated by the following equation:   
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where Impp_ref, Isc_ref, Vmpp_ref and Voc_ref are the maximum power 
point (MPP) current, short-circuit current, MPP voltage and 
open-circuit voltage at a reference condition defined by the 
relevant standard. 

B. Terminal Characteristics of Aged Cells 
When a PV cell is subject to aging, a direct indication is its 

lower output power than normal. Due to the p-n junction 
characteristics of the PV cell, its open-circuit voltage only 
changes slightly while the short-circuit current changes 
dramatically. According to references [38][39], the 
degradation of short-circuit current is about 10%, while the 
degradation open-circuit voltage is 2% in average after one 
year operation, which means the short circuit has a dominated 
influence. From [36], the short current has close change rate 
with power loss. Reference [40] also gives the conclusion that 
short current has dominated influence while the open circuit 
voltage with negligible change after a 1.5 year aging 
experiment. Therefore, in this paper, we take use of the 
short-circuit current to evaluate the aging condition of PV 
cells; and use the same open circuit voltage to approximate 
aging conditions of PV cells.  

Fig. 2 presents a cell unit with m non-uniformly aged PV 
cells, where Isc1, Isc2, Isc3 … Iscm are the short-circuit current for 
cells 1, 2, 3 … m, respectively. There are three ranges in the 
current-voltage output characteristics. In Range 1, the 
maximum current is the minimum of all cells current (Isc1, Isc2, 
Isc3… Iscm) and all the cells generate electricity. Range 2 is a 
transitional interval. Its equivalent circuit is presented in Fig. 3 
and its terminal output voltage is given in Eq. (6). Due to a 
voltage drop on Re, the output voltage of the cell-unit is lower 
than a healthy cell-unit.  
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where Vcell is the output voltage of the PV cell, Re is the 
equivalent resistance of aged PV cell, and Vcu is the output 
voltage of the cell-unit.  
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Fig. 2 Non-uniformly aged cells in the cell-unit. 

 

 
Fig. 3 Equivalent circuit for the cell-unit in range 2. 

 
As i12 increases, Vcu decreases to zero. The current switches 

from Range 2 to Range 3. In Range 3, the cell-unit is bypassed 
by a diode, and the corresponding terminal voltage is -0.5 V 
(i.e. diode voltage drop). In Ranges 1 and 2, the current 
passing the cell-unit is i12, = im, where im is the PV module 
current.  In Range 3, the current passing the bypass diode is i3, 
which is equal to im.  

From the analysis of Range 1-3, it can be found that the 
non-uniform aging of PV cells limits the power generation 
capacity of cell-units. This is termed the “bucket effect”.  

C.  Model of Non-Uniformly Aged Cells 
A PV array can age differently at the cell-unit, module and 

string levels. 
For a cell-unit with m series-connected PV cells, the 

relationship between the output current icu and the terminal 
output voltage Vcu depends on the PV’s operating points. To 
facilitate discussion on the three ranges, it is assumed that the 
magnitude of the short-circuit currents for m cells is 

                                        Isci1≤  Isci2 …≤ Iscim                   (8) 
Define  icell  as the actual current passing the PV cells. When 

the current  icell   starts to increase from 0 to  Isci1, all the cells 
generate electricity. When icell exceeds   Isci1 but less than  Isci2 , 
cell i1  cannot generate electricity: it is either bypassed or 
turned into a resistor because of the bucket effect. As a result, 
the relationship of icu  and Vcu  is summarized as follows. 
1) If icell≤Isci1, the unit-cell operates in Range 1. 

icu= icell≤Isci1                               (9) 
Vcu=mVcell                               (10) 

Where Vcell  is equal to the voltage of every cell. 
2) If icell>Isci1, the cell-unit operates in Range 3. 

                        Vcu=-0.5V                                 (11) 
                       icell=0                                 (12) 

  icu=idiode                            (13) 
                                    

where idiode is the bypass current flowing through the diode.  
The PV cells can work in Range 2 if there exists an integer 

k<m satisfying the conditions: 
                        Iscik<icell≤Iscik+1        
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where Rej is the equivalent resistance of the jth cell. 
Usually, Ranges 1 and 3 are the steady-state operational 

conditions while Range 2 is a short transitional range between 
the two and can often be ignored. 

A PV string consists of s PV modules, with the terminal 
voltage Vstring and current istring. Let the terminal voltage, 
current and maximum current from the kth PV module be 
Vmodule,k, imodule,k, and , 

max
module ki , respectively. The following 

relationship can be established. 
,1 ,2 ,  string module module module si i i i= = =…=      (16) 

,1 ,2 , string module module module sV V V V= + +…+    (17) 
Similarly, the bucket effect indicates that the maximum 

current in the PV string is limited by the minimum , 
max
module ki  of 

those non-bypassed modules. That is, ,   max
string module ki i≤ ,1 k s≤ ≤ , 

and the kth module is not bypassed. 
In practice, the cell-units within a PV module may be aged 

differently and thus have different maximum short-circuit 
currents. This case is called the “general non-uniform aging” 
in the paper. A simpler case for non-uniformly aged PV 
modules is that all cell-units in the same PV module are aged 
uniformly so that the whole PV module can be characterized 
with a single maximum short-circuit current of any cell-unit. 
This is termed the simplified non-uniform aging in this paper. 

A PV array consists of p parallel-connected PV strings; its 
terminal voltage and current are denoted by Varray and iarray, 
respectively. Let the terminal voltage and current for the jth 
PV string be Vstring,j and istring,j, respectively. Therefore: 

                                    iarray=istring,1+istring,2+…+istring,p          
(18) 

         Varray = Vstring,1 = Vstring,2 = …=Vstring,p    (19)                                     
The power output from the PV array is the sum of  strings, 

and is also limited by the bucket effect. That is, the maximum 
power output from the simplified non-uniform aging PV array 

can be written as ,
1

min :{ 1
p

max
j k

j

P k s
=

≤ ≤∑  ,and the (j, k)th 

module is un-bypassed}, where max
,j kP  is the maximum power 

output from the un-bypassed PV module at the position(j,k)  
(kth module in the jth string) of the PV array. Define imodule,j,k  
as the maximum short-circuit current in the (j,k) module; and  
q as the number of PV modules which generate electricity in 
the jth string. Thus, (s-q) PV modules are bypassed by diodes 
in the th string. Then the maximum power max

,j kP  is calculated 
as  

       max
,

q
j k module jP qV i=                                       (20) 

where  Vmodule is the MPP voltage supplied by a PV module, 
and q

ji  is the qth largest short-circuit current within the set 
{ imodule,j,1, imodule,j,2,…, imodule,j,s}. For a normal PV module 

consisting of 3 cell-units, Vmodule=3Vcu, and Vcu is the MPP 
voltage a PV cell-unit can provide. 

 

III. DETECTION OF PV AGING 
Aged modules have two typical characteristics: abnormal 

temperature and terminal electricity characteristics [3]. 
Accordingly, the detection of PV aging relies on the effective 
identification of one of the two characteristics.  

A.  Thermal Cameras    
When the PV array is operational, a part of effective solar 

energy on the PV panel is transferred into electricity while the 
rest is transferred into heat. Assume that the temperature 
difference between PV cells and cover glass is neglected; cell 
temperature is uniform in a healthy module; and there is no 
thermal propagation across PV cells. Then the energy balance 
can be established as [5]: 

= + ( )⋅ pv m m aS V I H A T -T                  (21)                                 

= mS G A⋅                                 (22) 
where S is the effective solar absorbed flux, Ta is the ambient 
temperature, Hpv is an overall heat exchange coefficient in 
relation to the total surface area of the module, Am is the PV 
module area.   

Eqs. (1) and (21) form a parameter-based model with key 
parameters I, V, Tm, S, Hpv and Ta. Fig. 4 illustrates a 
multi-physical link of the PV array in the parameter-based 
model, where E represents the electrical output power of the 
PV cell. The electrical model is mainly influenced by effective 
solar energy S and module temperature Tm, as illustrated in 
Eqs. (3) and (22). The thermal characteristic is mainly 
influenced by electrical power and effective solar energy, as 
shown in Eq. (21). The temperature Tm and the total effective 
solar energy S are linked by the electro-thermal characteristics. 
For a given S, the module temperature depends on the 
electrical power of the PV module. The parameters Tm, I and V 
can be retrieved using thermography, current, and voltage 
sensors, respectively.  
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Fig. 4 Energy conversion within the PV array [3]. 

 
When operating in Range 1, all the cells contribute to 

electricity generation and it is impossible to distinguish an 
aged module from the PV string. When operating at range 3, 
the most aged cells cannot generate electricity at the string 
current working point so that a short circuit occurs at the 
cell-unit by its bypass diode. Therefore, At Range 3, the aged 
cell-unit is open-circuited and there is no solar energy 
transferred into electricity. This leads to a higher temperature 
in the aged cell-unit than the healthy ones. By changing the 



 

working points of PV array, all aged cell-units can be located 
from their thermal images. 

B. Time Domain Reflectomery (TDR) 
TDR is  another aging detection method. In TDR, a signal is 

injected into the transmission line, and the signal will be 
distorted when mismatch occurs [22, 23]. Like a radar, the 
TDR method analyzes the input signal and output signal, as 
shown in Fig.5; the aging condition can be estimated 
according to the signal degradation. Note that illumination can 
influence the impedance of PV cell; therefore, TDR can only 
be used in the night. 

Signal processing 
And fault diagnosis

Input signal

Reflect signal Transition 
signal 

PV array

                          
Fig. 5 Theory of TDR. 

Both of the thermal camera and TDR equipment can be 
used temporarily to obtain the aging information of PV array. 
This is to say, there is no need to permanently install the 
reconfiguration equipment while temporary renting will be 
sufficient to obtain the PV aging information. This saves 
hardware investment. 

IV. OPTIMAL PV MODULE CONFIGURATION   
In addition to three-phase 12/8 SRM driving systems, 

four-phase 8-slot/6-pole (8/6) SRM driving systems are also 
widely used. The proposed fault tolerance also can be used in 
four phase 8/6 SRM. 

After an aged module is detected, a remedial measure can 
be employed to rearrange the faulted PV modules, prior to the 
replacement of the faulted modules which increases capital 
costs. 

A. Theoretical Analysis  
From Eq. (20), it is noted that the maximum power output 

of a PV array depends on the maximum short-circuit current 
of each PV modules. Therefore, it is possible to rearrange 
aged PV modules in a PV array in order to maximize the 
power output. Now, reorganizing all the maximum short 
circuit current values from the highest to the lowest: 

  1 2 psβ β β> >…>                                         (23) 
where 1β  is the highest current and psβ  the lowest from 
maximum short circuit currents 

 
When the PV array power generation is maximal, the 

number of working PV modules should be equal to that of 
un-bypassed modules in all strings. This number (denoted by 
α) may vary between 1 and s. Thus the output voltage of the 
PV string equalizes this number multiplied by Vmodule .  

Proposition: The maximum power output from a 
simplified non-uniform aging PV array is 

, 
where  are determined by: 

( )
max
1 1 2 3 1( )p modulepP Vβ β β β β−= + + +…+ +    (24)                                

( )max
2 2 4 6 2( 1) 22 p p moduleP Vβ β β β β−= + + +…+ +

  (25)  
                           

 
( ) ( ) ( ) ( )( ) ( )( )max

1 1 2 1 3 1 1 1 11s s modules s p s p sP s Vβ β β β β− − − − − − −= − + + +…+ +               

(26) 

( )( )max
2 3 .1s s s s ps modulep sP s Vβ β β β β−= + + +…+ +

    (27)                          
Consider a 2×3 PV array for example. This array has two 

strings and each string has 3 PV modules (p=2, s=3). The 
module maximum short-circuit currents are 0.9 pu, 0.8 pu, 0.2 
pu; 0.4 pu, 0.5 pu, 0.7 pu, respectively. If each string has only 
one operational module, the maximum powers from the first 
and second strings are 0.9Vmodule and 0.7 Vmodule , respectively. 
The total power output is 1.6  Vmodule  If each string has two 
operational modules, the maximum power is (0.8+0.8) Vmodule 
=1.6 Vmodule  from the first string and (0.5+0.5) Vmodule  =1 
Vmodule from the second string due to the bucket effect. The 
total power output is 2.6 Vmodule  If all modules are operational, 
the maximum power is (0.2+0.2+0.2) Vmodule =0.6 Vmodule  for 
the first string, and (0.4+0.4+0.4) Vmodule =1.2 Vmodule  for the 
second string. The total maximum power output is 1.8 Vmodule . 
From this analysis, the maximum possible power generation is 
equal to the max{1.6 Vmodule ,2.6 Vmodule ,1.8 Vmodule }=2.6 
Vmodule   Now re-arrange these maximum short-circuit currents 
as follows:  

1 2 3 4 5 60.9 0.8 0.7 0.5 0.4 0.2β β β β β β= > = > = > = > = > =
The power generation of the rearranged PV modules can be 
maximized when there are 1, 2 or 3 modules generating 
electricity in each string (α is unknown).   

If α =1, there is one module generating electricity in a 
string, then the rearrangement (0.9 pu, 0.7 pu, 0.4 pu; 0.8 pu, 
0.5 pu, 0.2 pu) can ensure the maximum power generation. 
The corresponding maximum power is  from the 
first string and  from the second string, thus the 
total power output is ( . 
This explains Eq. (24).  

If α =2, there are two modules generating electricity in 
each string, the rearrangement (0.9 pu, 0.8 pu, 0.4 pu; 0.7 pu, 
0.5 pu, 0.2 pu) will produce the maximum power. The 
maximum power is calculated by 

 for the first string and 
 for the second string. 

The total power is  
This explains Eq. (25). 

If α =3, all the three modules in a string generate electricity, 
and the rearrangement (0.9 pu, 0.8 pu, 0.7 pu; 0.5 pu, 0.4 pu, 
0.2 pu) will generate the maximum power. The maximum 
power is calculated by 
(  for the first 
string and ( . The 



 

total maximum power is 3 63( ) moduleVβ β+ =2.7 Vmodule . This 
explains Eq. (27). Clearly, this maximum power is greater 
than that for the unarranged arrays (2.6 Vmodule ). 

Now the general proposition can be proved by applying 
mathematical induction to α. The proof for α=1 is easy and 
now consider the case to deduce the statement for α=2 from 
α=1, while the general proof is omitted as it is a simple 
repetition of this proof for α=2. In fact, for 2α = , we can 
assume the maximum short-circuit currents of the two 
un-bypassed PV modules in the -th string are 1

1γ  and 1
2γ , l 

=1,2,…p. Without loss of generality, we can further assume 
that 1 1 2 2

1 2 1 2 1 2  p pγ γ γ γ γ γ> > > >…> > . Then the maximum 
power generated, denoted by 2

maxP , is  

( )1 2 3
2 2 2 2 22max p

moduleP Vγ γ γ γ= + + +…+    (28)                                       

By definition of β1, β2,…, and βps   in (23), 2β  is the 
second largest maximum short-circuit current within these ps 
modules. while 1

2γ  is not the largest PV module maximum 
short-circuit current as there is 1

1γ  which is greater than 1
2γ . 

Therefore, 1
2 2β γ≥ Similar reasoning deduces that 

2
4 2 2 2, , p

pβ γ β γ≥ … ≥ , 

( )( ) ( )max 1 2 3
2 2 4 6 2 2 2 2 22 12  2 p

p module modulepP V Vβ β β β β γ γ γ γ−= + + +…+ + ≥ + + +…+
. Then, max

2P  is the maximum possible power output for  
2α = . 

B. PV Module Rearrangement Algorithm 
Assume the maximum short-circuit currents of all the PV 

modules are given by {imodule,j,k:j=1,…,p; k=1,…,s}, and it is 
re-arranged from the highest to lowest as in Eq. (23) through 
four steps. 
Step 1:  
Calculate max

1P , max
2P , max

3P ,… , max
sP  from Eq. (25). 

Step 2.           
Find the maximum from { max

1P , max
2P , max

3P ,… , max
sP } and 

define the maximum as max
*sP  where s* is an integer from 

{1,2,3,…,s} so that 
max
*sP =max{ max

1P , max
2P , max

3P , … , max
sP }.This implies that 

each PV string has s* non-bypassed modules (generating 
electricity) when the maximum power output of the PV array 
is achieved. 
Step 3.  
Rearrange the PV modules as follows: 
3.1) Group the modules with maximum short-circuit currents 
β1, β2,…βs* in the first PV string. 
3.2) Group the modules with maximum short-circuit currents 
βs*+1, βs*+2,…, β2s* in the second PV string. 
3.3) Group the modules with maximum short-circuit currents 
β2s*+1, β2s*+2,…, β3s* in the third PV string which is different to 
3.1 and 3.2. 
3.4) Repeat the above procedure to place modules with 
maximum short-circuit currents  
( 3 * 1sβ + , 3 * 2sβ + ,…, 4 *sβ ), ( 4 * 1sβ + , 4 * 2sβ + ,…, 5 *sβ ),…,( ( 1) * 1p sβ − + , 

( 1) * 2p sβ − + ,…, *psβ ), and ensure that each of these 

( * 1jsβ + , * 2jsβ + , …, ( 1) *j sβ + ), 3 1j p≤ ≤ − , must occupy a 
different string.  
3.4) Place the remaining (ps-ps*) PV modules arbitrarily in 
the remaining places of the p strings. Note that each string has 
(s-s*) unoccupied places to accommodate PV modules. 
Therefore, there are (ps-ps*) remaining places in these p 
strings. 

This algorithm can be illustrated by the following flow 
chart. 

Fig. 6 Flow chart of the PV module reconfiguration strategy. 

V. ANALYTICAL STUDIES 

A. Simplified Non-Uniform Aging Cases 
A 2×2 PV array is employed in case studies where the 

maximum short-circuit current of each PV module is given in 
per unit (pu). The specifications of the PV modules are 
tabulated in Table I. The healthy PV module has the maximum 
short current, which is marked as 1 pu. The PV array aging 
condition can be expressed as 1 pu, 0.5 pu; 0.2 pu, 0.1pu to 
represent the conditions from healthy to aged. When PV array 
connected as (1 pu, 0.1 pu; 0.5 pu, 0.2 pu), their output curve 
is shown in Fig. 7.  

TABLE I SPECIFICATIONS OF THE PV MODULE 

 



 

 
Fig. 7 The output characteristics without the rearrangement (1 pu, 0.1 pu; 0.5 
pu, 0.2 pu). 

Following Step 1 of the reconfiguration algorithm, p=s=2 
these the maximum short-circuit currents can be re-ordered as: 
β1=1>β2=0.5>β3=0.2>β4=0.1. Therefore, the maximum power 
output is max{(1+0.5)Vmodule(pu), 2(0.5+0.1) Vmodule(pu)} =1.5 
Vmodule(pu). This maximum power is achieved by choosing 
only one module from each string for electricity generation, 
i.e., * =1. The existing sequence of the in Fig. 7, PV modules 
in this PV can generate this maximum power. Therefore, there 
is no need for rearrangement.    

Note that there are only three options for rearrangement: (1 
pu, 0.1 pu; 0.5 pu, 0.2 pu), (1 pu, 0.5 pu; 0.1 pu, 0.2 pu) and (1 
pu, 0.2 pu; 0.1 pu, 0.5 pu) where the notation (a, b; c, d) 
indicates that the two modules (a and b) with the maximum 
short-circuit currents are placed in one string, and the other 
two modules (c and d) are in another string. These are 
simulated in Fig. 10(a) and (b). It is clear that the 
arrangements (1 pu, 0.1 pu; 0.5 pu, 0.2 pu) and (1 pu, 0.2 pu; 
0.1 pu, 0.5 pu) provide the identical maximum power (224 W) 
while the arrangement (1 pu, 0.5 pu; 0.1 pu, 0.2 pu) has the 
maximum power of 207 W. The arrangement (1 pu, 0.2 pu; 
0.1 pu, 0.5 pu) has also the maximum power 1.5puVmodule. 
Obviously, the output powers in Fig. 7 and Fig. 8(b) are both 
224 W, suggesting a good agreement between the analytical 
and simulation results.  

 

 
(a) Option (1 pu, 0.5 pu; 0.1 pu, 0.2 pu) 

 

(b) Option (1 pu, 0.2 pu; 0.1 pu, 0.5 pu) 
Fig. 8 Output characteristics with two arrangement options (case 1). 
 

The second case is for the 2×2 PV array with the aging 
parameters of (1 pu, 0.3 pu; 0.5 pu, 0.4 pu). The output power 
is obtained by simulation and presented in Fig. 9. 

 
Fig. 9 Output characteristics without the rearrangement (1 pu, 0.3 pu; 0.5 pu, 
0.4 pu). 
 

From Step 1 of the reconfiguration algorithm, p=s=2, these 
maximum short-circuit currents can be re-ordered as: 
1β =1> 2β =0.5> 3β =0.4> 4β =0.3. The maximum power is 

given by max
*sP =max{(1+0.5)Vmodule(pu),      

2(0.5+0.3)Vmodule(pu)}=1.6Vmodule(pu). That is, s*=2 and all the 
modules must generate electricity. From Step 3.1, the two 
modules with maximum short-circuit currents 1β =1 and 

2β =0.5 are placed in one string while the other two modules 
with 3β =0.4 and 4β =0.3 are in another string. Therefore, the 
maximum power output can be achieved by the arrangement 
option (1 pu, 0.5 pu; 0.4 pu, 0.3 pu).   

Similar to case 1, there are three possible options in case 2: 
(1 pu, 0.3 pu; 0.5 pu, 0.4 pu), (1 pu, 0.4 pu; 0.5 pu, 0.3 pu), 
and (1 pu, 0.5 pu; 0.4 pu, 0.3 pu). It can be seen from Figs. 9 
and 10 that the maximum power output from the three 
rearrangements are 238 W, 244 W, and 273 W, respectively. 
Therefore, the re-arranged PV array can gain 35 W more 
power than the original PV array configuration.  

From the two case studies, the proposed rearrangement 
strategy can effectively improve the output power of 
non-uniformly aged PV arrays. Furthermore, in the process of 
the rearrangement, the MPP voltage area can be located which 
assists in the online maximum power point tracking (MPPT). 
Taking case 1 for example, the global MPP is located in the 
MPP area of one module. In case 2, the global MPP is located 
in the MPP area of two modules while the exact global MPP 
voltage is determined by the module temperature. 

 



 

(a) Option (1 pu, 0.4 pu; 0.5 pu, 0.3 pu).    

 
         (b) Option (1 pu, 0.5 pu; 0.4 pu, 0.3 pu) 
Fig. 10 Output characteristics with two arrangement options (case 2). 

B. General Non-Uniform Aging Cases 
For general non-uniform aging modules, it is very difficult 

to obtain any results similar to the obtained proposition. 
Consider a  PV array with 3 cell-units in each PV 
module. The total number of possible arrangements of the PV 
modules is , 
which is a huge number when  or  is big. For example, 
when p=5, s=10, this number equals 294.0279 10× . Therefore, 
it is very difficult to calculate the maximum power for all the 
possible PV module arrangements for large  p or s by 
enumerative search. Algorithms from combinatorial 
optimization (e.g. branch and bound methods) can be applied 
to search for the optimal maximal power when the number of 
possible rearrangements is huge. 

Table II presents an example of a 3×3 array with the 
general non-uniform aging PV array with 3 cell-units in each 
PV module. For this PV array, there are 9 6 3

3 3 3( )( )( ) /3! =280 
possible rearrangement options. Assume the PV modules are 
arranged as in Table II where the maximum short-circuit 
currents of 3 cell-units in a PV module are put in a pair of 

parentheses. For instance, the option (0.9 pu, 0.8 pu, 0.7 pu) 
indicates the maximum short-circuit currents of the 3 
cell-units in the first PV module. 

Assuming the output voltage to be fixed at α Vcu , α=1, 2, 
…, 9. In this case, the maximum power output can be 
calculated by rating the maximum power output of all possible 
α. By doing so, the maximum power is found to be 10.5pu Vcu 
at α=7.  

Table III illustrates alternative PV module rearrangements 
for the maximum power output out of possible 280 options. 
The global maximum power is 12 Vcu (pu) when the voltage is 
8 Vcu . Compared to the original maximum power (10.5 Vcu 
(pu)), this arrangement has improved by 12.5% in power 
output.   

C. Optimal PV Rearrangement under Converter Input Voltage 
Limit  

Due to the limitation of inverter operations while PV 
arrays are connected to the grid, the minimum bus voltage of a 
single phase inverter should be higher than 311V 
(220V/50Hz); and the minimum bus voltage of three phase 
inverter should be higher than 538V (380V/50Hz). The 
corresponding PV array operation points must be higher than 
the minimum bus voltage in a single stage converter. 
Therefore, the working voltage limit is introduced to the PV 
module reconfiguration strategy. The Proposition and 
algorithm in Section IV.B can be revised as follows to cater 
for this voltage limit. In fact, assume that a converter input 
voltage limit requires the input voltage to be moduleVθ  at least. 
Then it is straightforward that the maximum possible power 
output is:   max{ max :iP s i θ≥ ≥  }. 

And the searching algorithm in Section IV.B only needs to 
search for those max

iP  with  i θ≥  .  

TABLE II THE 3×3 ARRAY BEFORE REARRANGEMENT 

 

Row 

(string) 

Column (module) 

[0.9 pu, 0.8 pu, 0.7 pu] [0.9 pu, 0.9 pu, 0.6 pu] [0.8pu, 0.5pu, 0.4pu] 

[0.7 pu, 0.6 pu, 0.6 pu] [0.9 pu, 0.5 pu, 0.4 pu] [0.6 pu, 0.4 pu, 0.3 pu] 

[0.8 pu, 0.7 pu, 0.5 pu] [0.9 pu, 0.5 pu, 0.4 pu] [0.7 pu, 0.6 pu, 0.3 pu] 

TABLE III THE 3×3 ARRAY AFTER REARRANGEMENT 

 

Row 

(string) 

Column (module) 

[0.9 pu, 0.8 pu, 0.7 pu] [0.8 pu, 0.7 pu, 0.5 pu] [0.9 pu, 0.5 pu, 0.4 pu] 

[0.9 pu, 0.9 pu, 0.6 pu] [0.7 pu, 0.6 pu, 0.6 pu] [0.7 pu, 0.6 pu, 0.3 pu] 

[0.8 pu, 0.5 pu, 0.4 pu] [0.9 pu, 0.5 pu, 0.4 pu] [0.6 pu, 0.4 pu, 0.3 pu] 

 

VI. IMPLEMENTATION AND EXPERIMENTAL VALIDATION 
In order to validate the proposed strategy, a 9 kW array 

under a non-uniform aging condition is used for simulation 
and experimental tests. Three cases representing PV array 
without rearrangement, rearrangement without considering 
working voltage limit and rearrangement with considering 
working voltage limit are investigated below. 

A. Simulation  
Case 1: 
A PV array model is built in Matlab. The per-unit maximum 

short-circuit current for each PV module in the 5×10 PV 
array (p=5, s=10) is tabulated in Table IV. The corresponding 
output characteristics are calculated and presented in Fig. 11. 
Without a rearrangement, the maximum output power is 4587 
W.  



 

In this PV array, there are α modules generating electricity 
in each string, while the rest (10-α) modules are bypassed by 
diodes. α is between 1 and 10. It suffices to calculate the 
maximum power for each α and then find the greatest power 
from the 10 calculations. Firstly, let us sort the maximum 
short-circuit currents for PV strings from largest to smallest, 
as in Table V.  

 
Fig. 11 Output characteristics of the 5×10 array without the rearrangement 
(case 1). 

For α=1, the maximum power is given by 
Vmodule*(0.9+0.9+0.8+0.9+0.9) pu =4.4 Vmodule (pu)               
(29) 
For α=2, the maximum power is  
 Vmodule *2*(0.9+0.9+0.8+0.8+0.9) pu =8.6 Vmodule (pu)        
(30)   Similarly, for α=3,4,…,10, the maximum powers are 
calculated as: 12.3 Vmodule (pu), 15.6 Vmodule (pu), 19.5 Vmodule 
(pu), 22.8 Vmodule (pu), 25.9 Vmodule (pu), 26.4 Vmodule (pu), 24.3 
Vmodule (pu), 20 Vmodule (pu). Therefore, the maximum power 
output is 26.4 pu Vmodule when there are 7 PV modules in each 
PV string generating electricity.   

Now consider the optimal PV module rearrangement. The 
maximum short-circuit currents are re-organized from the 
highest to lowest as follows:  
0.9 pu 0.9 pu 0.9 pu 0.9 pu 0.9 pu 0.9 pu 0.9 pu 0.9 pu 0.8 pu 0.8 pu; 
0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu; 
0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.7 pu 0.7 pu; 
0.7 pu 0.7 pu 0.7 pu 0.7 pu 0.7 pu 0.7 pu 0.7 pu 0.7 pu 0.7 pu 0.6 pu; 
0.6 pu 0.6 pu 0.5 pu 0.5 pu 0.5 pu 0.4 pu 0.4 pu 0.4 pu 0.4 pu 0.3 pu. 

According to Eq. (23),  β1=0.9, β2=0.9,…, β50=0.3. 
Following Steps 1 and 2 in the reconfiguration algorithm, 

the maximum power is now calculated by: 
 Vmodule *max{4.5pu, 8.8pu, 12.6pu, 16.8pu, 20.5 pu, 24pu, 28 
pu, 30.4, 32.4, 32}=32.4 Vmodule (pu). This corresponds to the 
case that the output voltage is 9 Vmodule , s*=9. There are 9 PV 
modules in each string which generate electricity. Given that 
the original maximum power output is only 26.4 Vmodule (pu), 
this re-arranged PV array can generate 32.4 Vmodule (pu). This 
is because those six modules are brought back to the 
generation side by the reorganization (see Table VI). The 
corresponding output characteristics are illustrated in Fig. 12. 
As can be seen that the maximum output power is 5242 W 
with the rearrangement, which is 655 W more than that 
without the rearrangement (4587 W). Obviously, its energy 
efficiency is improved by increasing 14.28% power 
generation. 

Table VI is constructed by the rearrangement algorithm as 
follows. From Step 3.1, 9 modules with the maximum 
short-circuit currents (0.9 pu 0.9 pu 0.9 pu 0.9 pu 0.9 pu 0.9 pu 

0.9 pu 0.9 pu 0.8 pu) are grouped in the first string. From Step 
3.2, further 9 modules with the current of (0.8 pu 0.8 pu 0.8 pu 
0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu) are placed in the 
second string. When j = 2, 3, 4, 27, their respective modules 
are put in the third, fourth and fifth strings following Step 3.4. 
Now, 45 PV modules are reorganized in the PV array, leaving 
5 modules un-sorted. These 5 modules have the maximum 
short-circuit currents of 0.4 pu, 0.4 pu, 0.4 pu, 0.4 pu and 0.3 
pu. Since each string has only one unoccupied place, the 5 
modules can be arbitrarily placed to fill the gap, as instructed 
in Step 3.5. The remaining modules in each of the 5 strings is 
bypassed and become idle; they are not in operation. The 
bucket effect determines that all first 9 PV modules in each 
string with higher maximum short circuit currents are 
operational to generate power.  
 
 

 
Fig. 12 Output characteristics of the 5×10 array with the rearrangement (case 
1). 

Case 2: 
For a middle aged PV array, some modules are broken in 

the array; usually, the faulty modules are replaced by new 
modules. In this scenario, the typical 5×10 PV array is 
presented in Table VII, in which there are new modules with 
high performance scattered in the array. Due to the 
non-uniform of aging, the corresponding output characteristics 
are calculated and presented in Fig. 13; the maximum output 
power is 1661W.  

 
Fig. 13 Output characteristics of the 5×10 array without the rearrangement 
(case 2). 



 

 
Fig. 14 Output characteristics of the 5×10 array with the rearrangement (case 

2). 

Following a similar procedure as the previous example, the 
maximum power output equals 10 Vmodule , which is achieved 
when all the 50 modules are activated to generate electricity. 
Now consider the optimal rearrangement. From the algorithm 
in Section IV-B, it is easy to find that the maximum power is 
11.4  Vmodule (pu), which can be achieved by allowing 6 
modules generating electricity in each PV string, and the 
corresponding I-V curves are presented in Fig. 14.  

 
 
 

TABLE IV THE 5×10 PV ARRAY WITHOUT REARRANGEMENT IN CASE 1 

 

 

Row 

(string) 

 

 

Column (module) 

0.8 pu 0.8 pu 0.3 pu 0.6 pu 0.8 pu 0.9 pu 0.8 pu 0.9 pu 0.6 pu 0.9 pu 

0.8 pu 0.8 pu 0.4 pu 0.7 pu 0.9 pu 0.7 pu 0.8 pu 0.8 pu 0.8 pu 0.9 pu 

0.8 pu 0.8 pu 0.8 pu 0.7 pu 0.6 pu 0.5 pu 0.5 pu 0.7 pu 0.7 pu 0.7 pu 

0.8 pu 0.8 pu 0.7 pu 0.7 pu 0.9 pu 0.4 pu 0.4 pu 0.7 pu 0.8 pu 0.8 pu 

0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.7 pu 0.7 pu 0.9 pu 0.5 pu 0.4 pu 0.9 pu 

TABLE V REARRANGED STRINGS IN CASE 1 

Row 

(string) 

 

Column (module) 

0.9 pu 0.9 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.6 pu 0.6 pu 0.3 pu 

0.9 pu 0.9 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.7 pu 0.7 pu 0.4 pu 

0.8 pu 0.8 pu 0.8 pu 0.7 pu 0.7 pu 0.7 pu 0.7 pu 0.6 pu 0.5 pu 0.5 pu 

0.9 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.7 pu 0.7 pu 0.7 pu 0.4 pu 0.4 pu 

0.9 pu 0.9 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.7 pu 0.7 pu 0.5 pu 0.4 pu 

TABLE VI REARRANGEMENT OF THE 5×10 ARRAY IN CASE 1 

 

 

Row 

(string) 

 

Column (module) 

0.9 pu 0.9 pu 0.9 pu 0.9 pu 0.9 pu 0.9 pu 0.9 pu 0.9 pu 0.8 pu 0.4 pu 

0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.4 pu 

0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.8 pu 0.4 pu 

0.8 pu 0.7 pu 0.7 pu 0.7 pu 0.7 pu 0.7 pu 0.7 pu 0.7 pu 0.7 pu 0.4 pu 

0.7 pu 0.7 pu 0.7 pu 0.6 pu 0.6 pu 0.6 pu 0.5 pu 0.5 pu 0.5 pu 0.3 pu 

TABLE VII THE 5×10 PV ARRAY WITHOUT REARRANGEMENT FOR CASE 2 

 

 

Row 

(string) 

 

 

Column (module) 

1 pu 0.7 pu 1 pu 0.2 pu 0.3 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 

1 pu 0.2 pu 0.2 pu 0.3 pu 0.4 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 

1 pu 0.3 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 

0.2 pu 0.2 pu 1 pu 0.3 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 

0.3pu 1 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 

TABLE VIII THE 5×10 PV ARRAY WITH REARRANGEMENT IN CASE 2 

 

 

Row 

(string) 

 

 

Column (module) 

1 pu 1 pu 1 pu 1 pu 1 pu 1 pu 0.7 pu 0.4 pu 0.3 pu 0.3 pu 

0.3 pu 0.3 pu 0.3 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 

0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 

0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 

0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 0.2 pu 

 



 

B. Experimental Tests  
In the experiment, a 1620 W 3×3 array is employed to 

verify the proposed technique based on the availability. The 
PV module parameters are identical to those in Table I. The 
aging condition is realized by covering the two modules 
(PV21 and PV31) with plastic membrane. The test results are 
given in Fig. 15. The array output characteristics are obtained 
and presented in Table IX and Fig. 15 before and after the 
rearrangement. For the PV array without the reconfiguration 
presented in Fig. 15(a), its maximum output power is 520 W, 
shown in Fig. 15(b). After applying the proposed strategy to 
the PV array, the PV array is rearranged (by swapping PV21 
and PV32 positions), as shown in Fig. 15(c). Experimental 
results show that the maximum output power in the rearranged 
array is 590 W, illustrated in Fig. 15(d), which increases 
13.5%. Furthermore, because of this rearrangement, the global 
MPP shifts from a two-module MPP area to a three-module 
MPP area, which can be directly used for the online global 
MPPT.  

 
TABLE IX COMPARISON OF PERFORMANCE BEFORE AND AFTER THE 

REARRANGEMENT 

 

    
(a) PV array without the rearrangement             

 
    (b) Output characteristics without the arrangement 

   
(c) PV array with the rearrangement                                                      

             
      (d) Output characteristics with the arrangement 
Fig. 15 Experimental results for the 3×3 array. 

Table X presents a comparison of the proposed 
reconfiguration strategy and existing online reconfiguration 
strategies in the literature [27][32][33][41]. For condition 
monitoring, the online reconfiguration methods require 
continuous monitoring that increases the system cost and 
computational burden while the proposed method only needs 
periodic monitoring (e.g. during maintenance). For PV cell 
reconfiguration, existing online reconfigurations strategies 
need a large number of relays (e.g. high costs and high-end 
controllers). For example, for a 10×10 array, in order to have a 
complete flexible reconfiguration, a relay between any two 
modules is needed, which is 100

   2( ) 100 99 / 2 4950= × = . In case 
any one of 4950 relays is faulted or malfunctions, 
conventional online reconfiguration would not be realized and 
the PV array output power would decrease dramatically. More 
importantly, the number of relays used by existing online 
reconfiguration methods increases exponentially with the PV 
array size, limiting their widespread in real applications. On 
the contrary, the proposed offline reconfiguration algorithm is 
simpler, more cost-effective and more practical to implement, 
and it can be applied to any array sizes without significant 
investment in hardware. 

VII. CONCLUSION 
	Non-uniform aging of PV modules is a common 

phenomenon in the PV power plants since they often operate a 
long time in harsh environmental conditions. The non-uniform 
aging decreases the PV array maximum output power and can 
damage the PV modules if left untreated. Without rearranging 
non-uniformly aged PV arrays, typical online global-MPPT 
schemes can only track a compromised maximum rather than 
its potential maximum power.  

This paper has presented a new PV array reconfiguration 
strategy to maximize the power generation of 
non-uniformly-aged PV arrays	 without replacing aged PV 



 

modules. It is found that the bucket effect is the key factor 
affecting the operating mechanisms of PV arrays under 
non-uniform aging conditions. The cell-unit structure of PV 
module is investigated to study the aging characteristics of PV 
modules. The mathematical models for non-uniformly aged 
PV arrays are built. An optimized reconfiguration algorithm is 
developed to take the full use of aged PV array for maximum 
power output. The proposed strategy has been tested by 
simulated on three cases and validated by experiments on a 
1620-W PV array.  

While the existing online reconfiguration methods may 
provide online reconfiguration in real time for small PV arrays 

but require large amount of relays, auxiliary power supply and 
high-end controllers. As PV cell aging is a slow process, the 
feature of online measurement in real time may not be useful 
to justify the exponential increase in material and 
computational costs. In contrast, the proposed offline method 
only needs inexpensive equipment to perform periodic 
inspections of PV cells (during maintenance). Therefore, the 
developed technique can significantly improve energy 
efficiency and cost efficiency of PV systems of any size. It 
opens one effective approach for condition based maintenance 
in conjunction with in-situ smart monitoring [17, 21], which is 
important for large scale aged PV arrays. 

TABLE X COMPARISON OF THE PROPOSED RECONFIGURATION WITH ONLINE RECONFIGURATION 
Item Online reconfiguration 

[27][32][33] [41] 
Proposed reconfiguration 

Hardware for Reconfiguration 
 

Number of relays needed for a  p×s 
array is: 

 2
( 1)( )

2
ps ps ps −=  

Manual work, no hardware investment 

Hardware for Sensor (a) PV module conditions (e.g. current 
and voltage) should be monitored on 
site  
(b) Powerful controllers are needed 
for  online sensor signal collection 
and processing   
 

(a) No sensors installed on site 
(b)   The PV module’s healthy 
conditions can be monitored by 
thermal camera when the PV array 
needs to be maintained. The thermal 
camera can be rented for short time 
usage. 

Auxiliary facilities (a) Power supply for sensors 
(b) Power supply for relays 
(c) Signal transmitters 

Not needed 

Software 
(Algorithm differences) 

(a)Do not consider cell-unit structure 
yet 
(b) Need strong controller to support 
online computing 

(a) Consider cell-unit structure of PV 
modules 
(b) Offline computing, no need for 
high performance controllers 

Recommended PV array size Small scale PV arrays 
 

Large and small scale PV arrays 

Recommended application 
scenarios  

Small-scale array regularly affected 
by shadows 

Efficiency improvement for 
non-uniform aging PV arrays  
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