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Abstract A game with a finite (more than three) number of players on a polyhedron
of connected player strategies is studied. This game describes the interaction among
(a) the base load power plant (the generator), (b) all the large customers of a regional
electrical grid that receive electric energy from the generator, as well as from the avail-
able renewable sources of energy, both directly and via electricity storing facilities,
and (c) the transmission company. An auxiliary three-person game on polyhedra of
disjoint player strategies that is associated with the initial game is also considered. It
is shown that an equilibrium point in the auxiliary game is an equilibrium point in the
above game with connected player strategies. Verifiable necessary and sufficient con-
ditions of an equilibrium in the auxiliary three-person game are proposed, and these
conditions allow one to find equilibria in (the auxiliary) solvable game by solving
three linear programming problems two of which form a dual pair.
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292 A. S. Belenky

1 Introduction

In [1], the functioning of a part of a country’s electrical grid (called a regional electrical
grid in [1] and further in this paper) in which

m is the number of industrial customers within the grid,
n is the number of utility companies that have access to the (low voltage) dis-

tribution lines via which individual end users of the grid receive electricity,
r is the number of groups of advanced customers that have licences to operate
the existing (low voltage) distribution lines directly, rather than via utility
companies,

Y g(l) is the volume of electric energy produced by the generator in the period of
time from hour l − 1 to hour l, l ∈ 1, 24,

ygi (l) is the volume of electric energy produced by the generator that is bought by
industrial customer i, i ∈ 1,m in the period of time from hour l − 1 to hour
l, l ∈ 1, 24,

zgj (l) is the volume of electric energy produced by the generator that is bought by

utility company j, j ∈ 1, n in the period of time from hour l − 1 to hour l,
l ∈ 1, 24,

ugk (l) is the volume of electric energy produced by the generator that is bought by
group of advanced customers k, k ∈ 1, r in the period of time from hour l −1
to hour l, l ∈ 1, 24,
was considered within a 24h period of time.

It was shown that the interaction among (a) the generator, (b) all the above large
customers that receive electric energy from the generator (i.e., with utility companies,
industrial customers, and groups of advanced customers), as well as from the available
renewable sources of energy both directly and via electricity storing facilities, and (c)
the transmission company can be described in the formof a (m+n+r+2)-person game
[1] with connected player strategies. Finding Nash equilibria in this game presents
considerable difficulties due to the structure of both the set of player strategies (since
they are connected) and the size of the mathematical problems to be solved to this end.
So developing methods for effectively finding Nash equilibrium strategies (in solvable
games) presents both theoretical and practical interest.

An approach to analyzing and solving the above (m+n+r+2)-person game that is
based on establishing verifiable sufficient conditions forNash equilibriumpoints in this
game is proposed in the present paper. These sufficient conditions allow one to reduce
finding Nash equilibrium points (in solvable games) to solving three auxiliary linear
programming problems, two of which form a dual pair. The established possibility of
finding equilibrium strategies in the game under consideration by linear programming
techniques, which have high computational potential, makes the (proposed in [1])
game-theoretic approach to estimating the scale of incorporating renewable sources
of energy and electricity storing systems in a regional electrical grid of any country
an effective quantitative analysis means for studying large-scale electrical grids.
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2 The problem statement and mathematical formulation

Let us consider the (m + n + r + 2)-person game from [1]

m∑

i=1

〈 p̃y, ỹ〉i +
n∑

j=1

〈 p̃z, z̃〉 j +
r∑

k=1

〈 p̃u, ũ〉k (Game 1)

− θ

24∑

l=1

max
λl∈1,�l

(
aλl + bλl Y

g(l)
) −

24∑

l=1

max
μl∈1,�l

(
cμl + dμl Y

g(l)
)

−
( m∑

i=1

〈ε̃ y, ỹ〉iθ y
i +

n∑

j=1

〈ε̃z, z̃〉 jθ zj +
r∑

k=1

〈ε̃u, ũ〉kθuk
)

→ max
( p̃y , p̃z , p̃u )

,

( m∑

i=1

〈ε̃ y, ỹ〉iθ y
i +

n∑

j=1

〈ε̃z, z̃〉 jθ zj +
r∑

k=1

〈ε̃u, ũ〉kθuk
)

+ θ

24∑

l=1

max
λl∈1,�l

(
aλl + bλl Y

g(l)
)

+
( m∑

i=1

〈ε̃ y, ỹ〉i s yi +
n∑

j=1

〈ε̃z, z̃〉 j szj +
r∑

k=1

〈ε̃u, ũ〉ksuk
)

→ max
(θ y , θ z , θu , s̃ y ,s̃z ,s̃u)

,

〈 p̃y, ỹ〉i + 〈ε̃ y, ỹ〉i s yi + 〈q̃ y, ỹ〉i → min
(ỹ)i

, i ∈ 1,m,

〈 p̃z, z̃〉 j + 〈ε̃z, z̃〉 j szj + 〈q̃ z, z̃〉 j → min
(z̃) j

, j ∈ 1, n,

〈 p̃u, ũ〉k + 〈ε̃u, ũ〉ksuk + 〈q̃u, ũ〉k → min
(ũ)k

, k ∈ 1, r ,

(ỹ, z̃, ũ, Y g) ∈ �, ( p̃y, p̃z, p̃u) ∈ M, (θ
y
1 , . . . , θ

y
m, θ z1 , . . . , θ

z
n , θu1 , . . . , θur ) ∈ T,

(sy1 , . . . , sym, sz1, . . . , s
z
n, su1 , . . . , sur ) ∈ S,

where [1]

ỹ is the vector of volumes of electric energy bought by all the industrial cus-
tomers from the generator and those received from both the renewable sources
of energy and storage facilities,

z̃ is the vector of volumes of electric energy bought by all the utility companies
from the generator and those received from both the renewable sources of
energy and storage facilities,

ũ is the vector of volumes of electric energy bought by all the groups of advanced
customers from the generator and those received from both the renewable
sources of energy and storage facilities,

p̃y is the vector of prices whose non-zero component pyi (l) is the price at which
a unit volume of electric energy is sold by the generator to industrial customer
i, i ∈ 1,m in the period of time from hour l − 1 to hour l, l ∈ 1, 24,

p̃z is the vector of prices whose non-zero component pzj (l) is the price at which
a unit volume of electric energy is sold by the generator to utility company
j, j ∈ 1, n in the period of time from hour l − 1 to hour l, l ∈ 1, 24,

p̃u is the vector of prices whose non-zero component puk (l) is the price at which
a unit volume of electric energy is sold by the generator to group of advanced
customers k, k ∈ 1, r in the period of time from hour l−1 to hour l, l ∈ 1, 24,
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294 A. S. Belenky

θ
y
i is the hourly price for a unit volume of electric energy that the transmission

company charges the generator for transmitting electricity to industrial cus-
tomer i, i ∈ 1,m,

θ zj is the hourly price for a unit volume of electric energy that the transmission
company charges the generator for transmitting electricity to utility company
j, j ∈ 1, n,

θuk is the hourly price for a unit volume of electric energy that the transmis-
sion company charges the generator for transmitting electricity to group of
advanced customers k, k ∈ 1, r ,

θ be the hourly price for a unit volume of the electric energy lost in transmitting
electricity to the large grid customers via the (high voltage) transmission line
that the transmission company charges the generator,

syi is the hourly price that industrial customer i of the electrical grid pays the
transmission company for a unit volume of electric energy transmitted to this
industrial customer from the generator, i ∈ 1,m,

szj is the hourly price that utility company j pays the transmission company for
a unit volume of electric energy transmitted to this utility company from the
generator, j ∈ 1, n,

suk is the hourly price that group of advanced customers k of the electrical grid
pays the transmission company for a unit volume of electric energy transmitted
to this group of advanced customers from the generator, k ∈ 1, r .

As in [1], here

ỹ = (
yg; yw

1 , yw
2 , . . . , yw

m ; ys1, ys2, . . . , ysm; yst1 , yst2 , . . . , ystm
)
,

z̃ = (
zg; zw1 , zw2 , . . . , zwn ; zs1, zs2, . . . , zsn; zst1 , zst2 , . . . , zstn

)
,

ũ = (
ug; uw

1 , uw
2 , . . . , uw

r ; us1, us2, . . . , usr ; ust1 , ust2 , . . . , ustr
)
,

ε̃ y = (ε y; 0, . . . , 0), ε̃z = (εz; 0, . . . , 0), ε̃u = (εu; 0, . . . , 0),

where 〈ε̃ y, ỹ〉i , 〈ε̃z, z̃〉 j and 〈ε̃u, ũ〉k are parts of the scalar products 〈ε̃ y, ỹ〉, 〈ε̃z, z̃〉,
and 〈ε̃u, ũ〉, respectively, relating to industrial customer i , utility company j , and
group of advanced customers k, i ∈ 1,m, j ∈ 1, n, k ∈ 1, r , respectively, whereas,
as before, ε y, εz , and εuare vectors of corresponding dimensions with all the compo-
nents equalling 1. (See the description of all the parameters of Game 1 in [1].) The
polyhedron � is a set of feasible volumes of electricity produced by the generator
and those received by all the large customers of the grid from both the generator and
the renewable sources of energy (wind and solar) within the grid (directly and via the
electricity storage systems). The polyhedron M is a set of feasible prices for electric-
ity sold by the generator to all the large customers of the grid, whereas the polyhedra
T and S are sets of feasible prices for transmitting electricity to the customers that
are to be paid to the transmission company by the generator and by the customers,
respectively. Also, it is assumed that the prices for electricity received from renewable
sources of energy (wind and solar) supplied by producers of electric energy from these
sources and the prices for storing electricity for each of the large customers are known
real numbers, reflecting some average values of these prices. All the above polyhedra
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are formed by linear inequalities that include two-sided constraints on each variable,
along with linear constraints on sums of subsets of these variables and/or on the sum
of all the variables relating to each legal entity being a player in the game. The con-
straints reflect, in particular, certain “caps” on the consumption volumes and on the
electricity prices that may be in force within the grid. Also, constraints on particular
sums of weighted variables can be present in the systems of constraints describing the
polyhedra.

Let us consider an auxiliary three-person gamewith the following payoff functions:

m∑

i=1

〈 p̃y, ỹ〉i +
n∑

j=1

〈 p̃z, z̃〉 j +
r∑

k=1

〈 p̃u, ũ〉k (Game 2)

− θ

24∑

l=1

max
λl∈1,�l

(
aλl + bλl Y

g(l)
) −

24∑

l=1

max
μl∈1,�l

(
cμl + dμl Y

g(l)
)

−
( m∑

i=1

〈ε̃ y, ỹ〉iθ y
i +

n∑

j=1

〈ε̃z, z̃〉 jθ zj +
r∑

k=1

〈ε̃u, ũ〉kθuk
)

→ max
( p̃y , p̃z , p̃u)

,

( m∑

i=1

〈ε̃ y, ỹ〉iθ y
i +

n∑

j=1

〈ε̃z, z̃〉 jθ zj +
r∑

k=1

〈ε̃u, ũ〉kθuk
)

+ θ

24∑

l=1

max
λl∈1,�l

(
aλl + bλl Y

g(l)
)

+
( m∑

i=1

〈ε̃ y, ỹ〉i s yi +
n∑

j=1

〈ε̃z, z̃〉 j szj +
r∑

k=1

〈ε̃u, ũ〉ksuk
)

→ max
(θ y , θ z , θu , s̃ y ,s̃z ,s̃u)

,

( m∑

i=1

〈 p̃y, ỹ〉i +
n∑

j=1

〈 p̃z, z̃〉 j +
r∑

k=1

〈 p̃u, ũ〉k
)

+
( m∑

i=1

〈q̃ y, ỹ〉i +
n∑

j=1

〈q̃ z, z̃〉 j

+
r∑

k=1

〈q̃u, ũ〉k
)

+
( m∑

i=1

〈ε̃ y, ỹ〉i s yi +
n∑

j=1

〈ε̃z, z̃〉 j szj +
r∑

k=1

〈ε̃u, ũ〉ksuk
)

→ min
(ỹ,z̃,ũ)

,

for which the inclusions from Game 1

(ỹ, z̃, ũ, Y g) ∈ �, ( p̃y, p̃z, p̃u) ∈ M, (θ y, θ z, θu) ∈ T, (s̃ y, s̃ z, s̃u) ∈ S,

where θ y = (θ
y
1 , . . . , θ

y
m), θ z = (θ z1 , . . . , θ

z
n ), θu = (θu1 , . . . , θur ), s̃ y =

(sy1 , . . . , sym), s̃z = (sz1, . . . , s
z
n), s̃

u = (su1 , . . . , sur ), also hold.
As in [1], let the equalities

q̃ y = (
0; λ

yw
1 (av), . . . , λ

yw
m (av); λ

ys
1 (av), . . . , λ

ys
m (av), π

y
1 , . . . , π

y
m
)
,

q̃ z = (
0; λzw

1 (av), . . . , λzw
n (av); λzs

1 (av), . . . , λzs
n (av), π z

1 , . . . , π
z
n

)
,

q̃u = (
0; λuw

1 (av), . . . , λuw
r (av); λus1 (av), . . . , λusr (av), πu

1 , . . . , πu
r

)
,

hold. Here

λ
yw
i means the (average hourly) expenses of industrial customer i, i ∈ 1,m that are

associated with receiving a unit volume of electric energy from wind energy,
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λ
ys
i means the (average hourly) expenses of industrial customer i, i ∈ 1,m that are

associated with receiving a unit volume of electric energy from solar energy,
and

π
y
i means the (average hourly) expenses of industrial customer i, i ∈ 1,m that

are associated with operating its storage system per unit volume of electricity
available to this customer,
and λzw

j (av), λuw
k (av), λzs

j (av), λusk (av), and π z
j , πu

k , j ∈ 1, n, k ∈ 1, r

have the same meaning that do λ
yw
i , λys

i , and π
y
i , respectively [1].

In both Games 1 and 2, the polyhedra �, M, T and S are sets of the player strate-
gies, and it is assumed that these polyhedra are described by compatible systems of
linear inequalities (see Concluding Remark 3) so that both games are those on poly-
hedra of player strategies.

One should notice that Game 1 is a (m+n+r+2)-person game in which strategies
of m + n + r + 1 players are connected in virtue of constraints from the system that
models the functioning of the generator [1]

〈ε,Y g〉 − (〈ε y, yg〉 + 〈εz, zg〉 + 〈εu, ug〉) − 〈ε, MAXloss(Y
g)〉 = 0,

Hmin ≤ 〈ε,Y g〉 ≤ Hmax ,

〈yg, py〉 + 〈zg, pz〉 + 〈ug, pu〉 − 〈ε, MAXexpen(Y
g)〉

− 	(Y g, yg, zg, ug) → max
(py ,pz ,pu)

, (1)

where Y g = (Y g(1), . . . ,Y g(24)), ε, ε y, εz, εu are vectors of corresponding dimen-
sions whose all components equal 1, Hmin and Hmax are the minimal and the maximal
technologically possible production capacities of the generator within 24h, respec-
tively, and

yg = (
yg1 (1), . . . , yg1 (24); yg2 (1), . . . , yg2 (24); . . . ; ygm(1), . . . , ygm(24)

)
,

zg = (
zg1(1), . . . , z

g
1(24); zg2(1), . . . , zg2(24); . . . ; zgn(1), . . . , zgn(24)

)
,

ug = (
ug1(1), . . . , u

g
1(24); ug2(1), . . . , ug2(24); . . . ; ugr (1), . . . , ugr (24)

)
,

and the function 	(Y g, yg, zg, ug) describes the generator expenses associated with
transmitting electric energy to the grid customers [1]

	(Y g, yg, zg, ug) = 	(Y g, ỹ, z̃, ũ)) = θ

24∑

l=1

max
λl∈1,�l

(
alλl + blλl Y

g(l)
)

+
( m∑

i=1

〈ε̃ y, ỹ〉iθ y
i +

n∑

j=1

〈ε̃z, z̃〉 jθ zj +
r∑

k=1

〈ε̃u, ũ〉kθuk
)

,

which are present in the description of the polyhedron �.
However, Game 2 is a three-person game on polyhedra of disjoint player strategies,

since (a) the vectors ỹ, z̃, ũ “compete” neither with each other nor with the vector
Y g within any quadruple of vectors (ỹ, z̃, ũ, Y g) from the polyhedron �, (b) the

123



Renewable sources of energy and electricity storages in a regional electrical grid 297

polyhedron � does not intersect with the polyhedra M, T and S, and (c) player 1 (the
generator) chooses only the prices p̃y, p̃z, p̃u , whereas the vector Y g is completely
determined by the vectors ỹ, z̃, ũ in virtue of the first two relations from system (1).

Let us show that Nash equilibria in the auxiliary gamewith disjoint player strategies
determine Nash equilibria in the initial game with connected player strategies.

Let

˜̃y = (ỹ, z̃, ũ), ˜̃x = ( p̃y, p̃z, p̃u), δ = (q̃ y, q̃ z, q̃u),

and let

˜̃t = (
θ y; 0, 0, . . . , 0, θ z; 0, 0, . . . , 0, θu; 0, 0, . . . , 0),

˜̃s = (
sy; 0, 0, . . . , 0, sz; 0, 0, . . . , 0, su; 0, 0, . . . , 0),

where all the zero components of the vectors ˜̃t and ˜̃s correspond to the following
components of the vectors ỹ, z̃, and ũ:

(
yw
1 , yw

2 , . . . , yw
m ; ys1, ys2, . . . , ysm; yst1 , yst2 , . . . , ystm

)
,

(
zw1 , zw2 , . . . , zwn ; zs1, zs2, . . . , zsn, zst1 , zst2 , . . . , zstn

)
,

(
uw
1 , uw

2 , . . . , uw
r ; us1, us2, . . . , usr ; ust1 , ust2 , . . . , ustr

)
,

respectively. Further, let

ŷ =
( ˜̃y,Y g

)
, x̂ =

( ˜̃x, 0x
)

, t̂ =
( ˜̃t, 0t

)
, ŝ =

( ˜̃s, 0s
)

, � = (δ, 0),

where 0x , 0t , 0s , and 0 are zero vectors of the same dimension as that of the vector
Y g .

Then Game 2 can be rewritten as

〈ŷ, x̂〉 − 〈ŷ, t̂〉 − f1(ŷ) − f2(ŷ) → max
x̂∈M̂

(Game 3)

〈ŷ, t̂〉 + 〈ŷ, ŝ〉 + f1(ŷ) → max
(t̂,ŝ)∈T̂×Ŝ,

〈ŷ, x̂〉 + 〈ŷ, ŝ〉 + 〈�, ŷ〉 → min
ŷ∈�̂

,

where the sets M̂, T̂ , Ŝ, �̂ are formed by the same kind of constraints that form
the sets M, T, S, �, respectively (though the constraints describing the polyhedra
M̂, T̂ , Ŝ, �̂ bind the variables x̂, t̂, ŝ and ŷ, respectively),

f1(ŷ) = 〈θε, MAXloss(ŷ)〉, f2(ŷ) = 〈ε, MAXexpen(ŷ)〉,

where [1]

MAXloss(Y
g) =

(
max

λ1∈1,�1

(
aλ1 + bλ1Y

g(1)
)
, . . . , max

λ24∈1,�24

(
aλ24 + bλ24Y

g(24)
)
)

,
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MAXexpen(Y
g) =

(
max

μ1∈1,�1

(
cμ1 + bμ1Y

g(1)
)
, . . . , max

μ24∈1,�24

(
cμ24 + bμ24Y

g(24)
)
)

,

and, as before, ε ∈ R24+ is the vector with all the components equalling 1, whereas
MAXloss(Y g) and MAXexpen(Y g) can be viewed as the vector functions whose com-
ponents depend on the vector ŷ due to the above relations between the vectors ŷ and
Y g .

Finally, let us consider an auxiliary two-person game on the polyhedra �̂ and M̂× Ŝ
of the player strategies

(ŷ∗, (x̂∗, ŝ∗)) ∈ Sp
(ŷ, (x̂, ŝ))∈�̂×(M̂×Ŝ)

(〈ŷ, x̂ + ŝ〉 + 〈�, ŷ〉), (Game 4)

which is a gamewith disjoint player strategies, where the payoff function is minimized
with respect to ŷ and is maximized with respect to (x̂, ŝ).

3 Basic assertions

Assertion 1 A quadruple of the vectors (ŷ∗, x̂∗, t̂∗, ŝ∗) forms a Nash equilibrium
point in Game 3 if and only if the triple of the vectors (ŷ∗, x̂∗, ŝ∗) forms the saddle
point

(
ŷ∗, (x̂∗, ŝ∗)

)
in Game 4, and the inclusion t̂∗ ∈ Argmaxt̂∈T̂ 〈ŷ∗, t̂〉 holds.

Proof To simplify the notation, in the reasoning associated with the proof of Asser-
tion 1, variables y, x, t, s are considered instead of the variables ŷ, x̂, t̂, ŝ, and the
polyhedra �, M, T, S are considered instead of the polyhedra �̂, M̂, T̂ , Ŝ, respec-
tively.

1. Necessity.Let the quadruple of the vectors (y∗, x∗, t∗, s∗) formaNash equilibrium
point in Game 3. Then the following inequalities

〈y∗, x〉 − 〈y∗, t∗〉 − f1(y
∗) − f2(y

∗)

≤ 〈y∗, x∗〉 − 〈y∗, t∗〉 − f1(y
∗) − f2(y

∗), ∀x ∈ M, s = s∗,

〈y∗, t〉 + 〈y∗, s〉 + f1(y
∗) ≤ 〈y∗, t∗〉 + 〈y∗, s∗〉 + f1(y

∗), ∀(t, s) ∈ T × S, x = x∗,

〈y∗, x∗〉 + 〈y∗, s∗〉 + 〈�, y∗〉 ≤ 〈y, x∗〉 + 〈y, s∗〉 + 〈�, y〉, ∀y ∈ �, t = t∗ (2)

hold. Since the polyhedra � and T are disjoint, holding the third inequality from
(2) means that the right part of the pair of inequalities

〈y∗, x + s〉 + 〈�, y∗〉 ≤ 〈y∗, x∗ + s∗〉 + 〈�, y∗〉 ≤ 〈y, x∗ + s∗〉 + 〈�, y〉

holds ∀y ∈ �.
Holding the first inequality from (2) means that the inequality

〈y∗, x〉 ≤ 〈y∗, x∗〉, ∀x ∈ M, s = s∗

holds, and since the polyhedra M and S are disjoint, one can conclude that the
inequality
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〈y∗, x〉 ≤ 〈y∗, x∗〉, ∀x ∈ M

also holds.
Since the second inequality from (2) holds for any pair of the vectors (t, s), t ∈
T, s ∈ S, in particular, for the pairs (t∗, s) when x = x∗, and since the polyhedra
S, T and M are disjoint, one can conclude that the inequality

〈y∗, s〉 ≤ 〈y∗, s∗〉, ∀s ∈ S

also holds. Holding the inequalities

〈y∗, x〉 ≤ 〈y∗, x∗〉, ∀x ∈ M, 〈y∗, s〉 ≤ 〈y∗, s∗〉, ∀s ∈ S

means that the left inequality from the above pair of the inequalities

〈y∗, x + s〉 + 〈�, y∗〉 ≤ 〈y∗, x∗ + s∗〉 + 〈�, y∗〉 ≤ 〈y, x∗ + s∗〉 + 〈�, y〉

holds ∀x ∈ M, ∀s ∈ S and, consequently, ∀(x, s) ∈ M × S. Thus, the triple of the
vectors (y∗, x∗, s∗) forms the saddle point

(
y∗, (x∗, s∗)

)
in Game 4.

Since the second inequality from (2) holds for any pair of the vectors (t, s), t ∈
T, s ∈ S, in particular, for the pairs (t, s∗) when x = x∗, and since the polyhedra
T, S and M are disjoint, one can conclude that the inequality

〈y∗, t〉 ≤ 〈y∗, t∗〉, ∀t ∈ T

also holds, which means that the inclusion

t∗ ∈ Argmaxt∈T 〈y∗, t〉

holds.
2. Sufficiency. Let the pair of inequalities

〈y∗, x + s〉 + 〈�, y∗〉 ≤ 〈y∗, x∗ + s∗〉 + 〈�, y∗〉 ≤ 〈y, x∗ + s∗〉 + 〈�, y〉

hold ∀y ∈ �, ∀(x, s) ∈ M × S, along with the inclusion t∗ ∈ Argmaxt∈T 〈y∗, t〉.
The right part of this pair of inequalities means that the inequality

〈y∗, x∗〉 + 〈y∗, s∗〉 + 〈�, y∗〉 ≤ 〈y, x∗〉 + 〈y, s∗〉 + 〈�, y〉

holds ∀y ∈ � and, consequently, ∀y ∈ �, t = t∗ (since the polyhedra � and T
are disjoint).
From the left part of the above pair of inequalities, it follows that the inequality

〈y∗, x〉 ≤ 〈y∗, x∗〉
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holds ∀x ∈ M, s = s∗, and, consequently, the inequality

〈y∗, x〉 − 〈y∗, t∗〉 − f1(y
∗) − f2(y

∗)
≤ 〈y∗, x∗〉 − 〈y∗, t∗〉 − f1(y

∗) − f2(y
∗), ∀x ∈ M, s = s∗

also holds, whereas the inequality

〈y∗, s〉 ≤ 〈y∗, s∗〉

holds ∀s ∈ S, x = x∗. So, since the polyhedra S and T are disjoint, from the
inclusion

t∗ ∈ Argmaxt∈T 〈y∗, t〉,

it follows that the inequality

〈y∗, t〉 + 〈y∗, s〉 ≤ 〈y∗, t∗〉 + 〈y∗, s∗〉,

holds ∀t ∈ T, ∀s ∈ S, x = x∗ and, consequently, ∀(t, s) ∈ T × S, x = x∗.
Thus, the three inequalities

〈y∗, x〉 − 〈y∗, t∗〉 − f1(y
∗) − f2(y

∗)
≤ 〈y∗, x∗〉 − 〈y∗, t∗〉 − f1(y

∗) − f2(y
∗), ∀x ∈ M, s = s∗,

〈y∗, t〉 + 〈y∗, s〉 + f1(y
∗) ≤ 〈y∗, t∗〉 + 〈y∗, s∗〉 + f1(y

∗), ∀(t, s) ∈ T × S, x = x∗,
〈y∗, x∗〉 + 〈y∗, s∗〉 + 〈�, y∗〉 ≤ 〈y, x∗〉 + 〈y, s∗〉 + 〈�, y〉, ∀y ∈ �, t = t∗

hold, which means that the quadruple of the vectors (y∗, x∗, t∗, s∗) forms a Nash
equilibrium point in Game 3.

Assertion 1 is proved. 	

Assertion 2 Any Nash equilibrium point

(
(ỹ∗, z̃∗, ũ∗, (Y g)∗), (( p̃y)∗, ( p̃z)∗, ( p̃u)∗), ((θ̃ y)∗, (θ̃ z)∗,

(θ̃u)∗), ((s̃ y)∗, (s̃z)∗, (s̃u)∗)
)

in Game 2 is a Nash equilibrium point in Game 1.

Proof Let

(
(ỹ∗, z̃∗, ũ∗, (Y g)∗), (( p̃y)∗, ( p̃z)∗, ( p̃u)∗), ((θ̃ y)∗, (θ̃ z)∗,

(θ̃u)∗) (s̃ y)∗, (s̃ z)∗, (s̃u)∗)
)
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be a Nash equilibrium point in Game 2. To show that this point is an equilibrium point
in Game 1, it is sufficient to show that all the inequalities

〈( p̃y)∗, ỹ〉i + 〈ε̃ y, ỹ〉i (syi )∗ + 〈q̃ y, ỹ〉i ≥ 〈( p̃y)∗, ỹ∗〉i + 〈ε̃ y, ỹ∗〉i (syi )∗

+ 〈q̃ y, ỹ∗〉i , ∀i ∈ 1,m, ∀(ỹ, z̃∗, ũ∗) : (ỹ, z̃∗, ũ∗, (Y g)∗) ∈ �,

〈( p̃z)∗, z̃〉 j + 〈ε̃z, z̃〉 j (szj )∗ + 〈q̃ z, z̃〉 j ≥ 〈( p̃z)∗, z̃∗〉 j + 〈ε̃z, z̃∗〉 j (szj )∗
+ 〈q̃ z, z̃∗〉 j , ∀ j ∈ 1, n, ∀(ỹ∗, z̃, ũ∗) : (ỹ∗, z̃, ũ∗, (Y g)∗) ∈ �,

〈( p̃u)∗, ũ〉k + 〈ε̃u, ũ〉k(suk )∗ + 〈q̃u, ũ〉k ≥ 〈( p̃u)∗, ũ∗〉k + 〈ε̃u, ũ∗〉k(suk )∗

+ 〈q̃u, ũ∗〉k, ∀k ∈ 1, r , ∀(ỹ∗, z̃∗, ũ) : (ỹ∗, z̃∗, ũ, (Y g)∗) ∈ �, (3)

hold.
Let us assume that, for instance, the inequality

〈( p̃y)∗, ỹ0〉i0 + 〈ε̃ y, ỹ0〉i0(s̃ yi0)∗ + 〈q̃ y, ỹ0〉i0
< 〈( p̃y)∗, ỹ∗〉i0 + 〈ε̃ y, ỹ∗〉i0(s̃ yi0)∗ + 〈q̃ y, ỹ∗〉i0

holds for i0 ∈ 1,m, alongwith the rest of the inequalities from system (3) and from the
system of constraints of Game 1, where (ỹ0, z̃∗, ũ∗, (Y g)∗) ∈ �, and the vector ỹ0,
differs from the vector ỹ∗ only by the group of coordinates corresponding to number
i0. Since all the inequalities from system (3), except for the inequality corresponding
to number i0, hold as equalities, the inequality

m∑

i=1,i �=i0

〈( p̃y)∗, ỹ0〉i +
n∑

j=1

〈( p̃z)∗, z̃∗〉 j +
r∑

k=1

〈( p̃u)∗, ũ∗〉k

+
m∑

i=1,i �=i0

〈q̃ y, ỹ∗〉i +
n∑

j=1

〈q̃ z, z̃∗〉 j +
r∑

k=1

〈q̃u, ũ∗〉k

+
⎛

⎝
m∑

i=1,i �=i0

〈ε̃ y, ỹ∗〉i (syi )∗ +
n∑

j=1

〈ε̃z, z̃∗〉 j (szj )∗ +
r∑

k=1

〈ε̃u, ũ∗〉k(suk )∗
⎞

⎠

+〈( p̃y)∗, ỹ0〉i0 + 〈ε̃ y, ỹ0〉i0(syi0)∗ + 〈q̃ y, ỹ0〉i0

<

m∑

i=1

〈( p̃y)∗, ỹ∗〉i +
n∑

j=1

〈( p̃z)∗, z̃∗〉 j +
r∑

k=1

〈( p̃u)∗, ũ∗〉k

+
m∑

i=1

〈q̃ y, ỹ∗〉i +
n∑

j=1

〈q̃ z, z̃∗〉 j +
r∑

k=1

〈q̃u, ũ∗〉k

+
⎛

⎝
m∑

i=1

〈ε̃ y, ỹ∗〉i (syi )∗ +
n∑

j=1

〈ε̃z, z̃∗〉 j (szj )∗ +
r∑

k=1

〈ε̃u, ũ∗〉k(suk )∗
⎞

⎠
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must hold. This means that there exist a vector from the set � for which the value of
the payoff function of the third player in Game 2 turns out to be smaller than that for
the vector

(
(ỹ∗, z̃∗, ũ∗, (Y g)∗), (( p̃y)∗, ( p̃z)∗, ( p̃u)∗), ((θ̃ y)∗, (θ̃ z)∗,

(θ̃u)∗), (s̃ y)∗, (s̃ z)∗, (s̃u)∗)
)

,

which is a Nash equilibrium point in Game 2, and this contradicts the definition of a
Nash equilibrium point. Assertion 2 is proved. 	

Remark As one can see from the description of Games 2 and 3, any particular forms of
the functions describing the loss of electricity in the transmission lines and expenses
of the generator associated with producing electricity do not affect the fact that each
equilibrium point in Game 2 is an equilibrium in Game 1. One should, however, bear
in mind that Assertion 2 suggests that, generally, the set of equilibrium points in
Game 2 is only a subset of the set of equilibrium points in Game 1, and the whole
set of equilibrium points in Game 1 certainly depends on particular forms of both
above-mentioned functions.

4 On calculating equilibrium points in Game 2

Game 4 is a particular case of the two-person game with the payoff function

〈p1, x1〉 + 〈x1, D1y1〉 + 〈q1, y1〉 (4)

on (generally unbounded) polyhedral sets M1, �1, where M1 and �1 are described
by compatible systems of linear inequalities

M1 = {x1 ∈ Rm+ : A1x1 ≥ b1}, �1 = {y1 ∈ Rn+ : B1y1 ≥ d1}, (5)

A1, B1, D1 are matrices, b1, d1, p1, q1, x1, y1 are vectors of corresponding
dimensions, and function (4) is maximized with respect to y1 and is minimized with
respect to x1. One can easily be certain about this by considering

p1 = �, x1 = ŷ, y1 = (x̂, ŝ), q1 = (0, 0),

by choosing the matrix (Em |Em) as the matrix D1, where Em is anm×m unit matrix,
i.e., the matrix whose non-zero elements equal 1 and occupy the main diagonal of Em ,
and by setting 2m = n.

Theorem [2] The solvability of game (4), (5) is equivalent to that of two linear pro-
gramming problems

〈b1, z1〉 + 〈q1, y1〉 → max
(z1,y1)∈Q1

,
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and

〈−d1, t1〉 + 〈p1, x1〉 → min
(t1,x1)∈P1

forming a dual pair, where

Q1 = {(z1, y1) ≥ 0 : z1A1 ≤ p1 + D1y1, B1y1 ≥ d1},
P1 = {(t1, x1) ≥ 0 : t1B1 ≤ −q1 − x1D1, A1x1 ≥ b1},

and t1, z1 are vectors of corresponding dimensions.

This theorem allows one to find equilibrium points in solvable Game 1 by finite
methods of linear programming for any imaginable numbers of constraints and vari-
ables that may appear in practical problems.

5 Concluding remarks

1. Asmentioned in [1], components of a Nash equilibrium point that can be calculated
for solvable Games 1 and 2, allow one to determine (corresponding to this equilib-
rium point) (a) the optimal hourly volumes of electricity to be bought by each of
the large grid customers from both the generator and the suppliers (i.e., from the
companies who transform wind and solar energy into electric energy [1]), (b) the
optimal hourly prices to be paid by the large grid customers to the generator, to the
suppliers, and to the transmission company, and (c) the optimal hourly prices to be
paid by the generator to the transmission company.

2. The proposed gamemodel describes the interaction among the generator, the (large)
grid customers, and the transmission company in a regional electrical grid, being
part of a country’s electrical grid. However, the description of the functioning of a
country’s electrical grid as a whole usually presents a challenge, first of all, from
the viewpoint of the model size. Nevertheless, the proposed approach to modeling
seems to be promising, since it allows one to remain within linear programming in
calculating optimal values of the above volumes of electricity and the prices. As is
known, linear programming techniques have a high computational potential, so the
number of customers can substantially be increased in considering the interaction
of several parts of a country’s electrical grid.
At the same time, one should bear in mind that in the proposed (regional) model,
it is assumed that neither the generating facilities nor the transmission company (if
both consist of several legal entities) compete for the regional customers. However,
within the whole country’s grid, both the generators and the transmission com-
panies serving customers from a particular part of the grid may compete at least
for supplying electricity to other parts of the grid. So one should expect that the
games describing the interaction of the generating facilities, the large customers
of the whole grid, and the transmission companies are likely to be those in which
strategies of all the players are connected [3–5].
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In the framework of the description of the above interaction (within the whole grid),
by solving corresponding games with connected player strategies, one may receive
answers to the following two basic questions:
(a) What are the chances of renewable sources of energy to be incorporated in the

currently existing grid, as well as in the one that is likely to function in the
future, and

(b) under which economic conditions can renewable sources of energy success-
fully compete with traditional electricity generating facilities or at least suc-
cessfully supplement them within a country’s electrical grid?
(Certainly, in analyzing any answers to the above questions, one should bear
in mind that the configuration of a country’s electrical grid in general much
depends on the corresponding government regulations, the market structure,
and the availability of the transmission lines between separate parts of the
grid.)

The proposed approach to modeling the interaction among a generating company, a
transmission company, and a set of large customers of a regional electrical grid can,
however, be extended to cover the cases in which there are either several separate
generating companies (acting as different legal entities) or several transmission
companies (acting as different legal entities), as well as the cases in which both
several separate generating companies and several separate transmission companies
compete though only for the customers of the (regional) grid. If this is the case,
Game 1 will become an (m + n + r + 
 + η)-person game on polyhedra of player
strategies some of which are connected, where 
 and η are the numbers of the
generating companies and the transmission companies, respectively. However, one
can easily be certain that a mathematical model for this problemmay be designed in
such a form that the corresponding auxiliary game (similar to Game 2) will remain
a three-person game on disjoint player strategies for which assertions similar to
Assertions 1 and 2 will hold.

3. It is substantial to notice that the auxiliary three-persongameconsidered in the paper
is always (in applied problems) solved on bounded polyhedral sets [6] (which is
the case in the game problem that is the subject of study in this paper, as long as the
systems of constraints in the model of the grid describing the polyhedra �̂, M̂, T̂ ,

and Ŝ are compatible).A simple technique that allows one to “correct” the right hand
sides of the above systems of (linear) constraints to make these systems compatible
while keeping them “close” to the initial ones is proposed in [7].

4. One should bear in mind that the model proposed in [1] reflects mostly economic
and technological restrictions imposed on the interaction among the generator,
the transmission company, and the (large) customers of a regional electrical grid.
However, consumer rights of all the groups of the customers, especially those of
the households that receive electricity from the utility companies, must be observed
under any solutions (including equilibrium ones) that the electric energy providers
may agree upon [8,9]. For instance, in describing the interaction among all the
customers of the grid, the generator, and the transmission company in the form of
an (m+n+r+2)-person game, it was assumed that the revenue of the transmission
company comes from both the (large) grid customers and the generator. This means
that if certain financial restrictions, mentioned in [1], are eventually imposed on
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both the generator and the transmission company, a different description of this
interaction in the framework ofwhich, for instance, either only the generator or only
the customers of the grid are charged for the electricity transmission should be used.
However, a detailed discussion of such matters lies beyond the scope of this paper.

5. Calculating the value of an optimal hourly electricity supply for each large customer
by the generator, along with the optimal prices per unit volume for produced and
transmitted electricity, by solving Game 2 presents interest under (mentioned in
[1]) two approaches to operating the generating facilities. (These approaches con-
sist of selling asmuch electricity produced as possible via auctions (approach 1) and
of selling as much electricity produced as possible via direct long-term contracts
with the grid customers while selling via auctions only the remaining part of the
electricity produced (approach 2) [1].) Moreover, the description of the interaction
among the generator, a transmission company, and all the (large) customers within
a regional electrical grid, proposed in the present paper, allows one (a) to calculate
the optimal (equilibrium) prices per unit volume of electricity produced by the
generator in the framework of the double-sided agreements with these customers
on any time basis (hourly, weekly, monthly, yearly) by solving Game 2, and (b) to
compare these prices with the market prices in the electricity auctions. However,
while it would be interesting to compare the expenses that all the parties involved
are to bear, under both approaches, such a comparison would require data some of
which is not public, and acquiring this data may present certain difficulties.
Since (as mentioned earlier) the proposed model allows one to analyze equilibria
under various scenarios of the functioning of a regional electrical grid, one may
be interested, for instance, in finding (a) what equilibrium hourly prices for each
customer should be, provided these prices are the same for each customer (though
different for different customers) or are the same for certain hours during 24h (e.g.,
from 5 p.m. to 11 p.m.), (b) what electricity prices for each customer should be in
the absence of electricity storage systems at customers’ disposal, etc.

6. Solutions to Game 1 (which is formulated on the basis of the model proposed in
[1]) allow one to quantitatively evaluate the economic expediency of the use of
renewable sources of energy and electricity storage systems in any part of the grid
under any particular electricity prices associated with the use of these sources of
energy and under those for storing electricity and determined by components of the
vectors q̃ y, q̃ z, q̃u . In particular, the components yst1 , . . . , ystm , zst1 , . . . , zstn , and
ust1 , . . . , ustr of the vectors ŷ, ẑ, and û in solutions to Game 3, respectively, deter-
mine the optimal strategy of using the storage systems by the grid customers. These
strategies are determined for each large customer of the grid under any particular
sets of (average) prices for receiving a unit volume of electricity from renewable
sources of energy and under any particular sets of (average) prices for operating the
storage system per unit volume of electricity available to each large customer of
the grid. The other components of the last three vectors determine, in particular, the
volumes of electricity consumed by the large grid customers from the renewable
sources of energy that are optimal for each large customer of the grid. However,
finding the minimum prices at which the use of renewable sources of energy in a
particular part of the grid becomes profitable for a particular customer of the part
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of the grid leads to studying games that are more complicated than Game 1 (if one
uses the model proposed in [1]).

7. Though the proposed model is designed to describe the interaction among all the
customers of a regional electrical grid, the existing base load power plants, picking
power plants, transmission companies, and available renewable sources of energy
and storage facilities, one can show that the idea underlying this model can be
extended to incorporate the option of developing or acquiring all types of new
generating facilities (base load power plants, picking power plants, wind and solar
power stations and devices). In this case, in fact, one can use the model for calcu-
lating investment strategies that, in particular, all the groups of the customers and
the generator may eventually be interested in considering.
An approach to developing optimal investment strategies for all the players with
the use of the (appropriately extended) model consists of (a) considering a month
or a year as the length of the time intervals (instead of hour-length intervals in the
model considered in this paper and in [1]), (b) choosing the horizon of the analysis
that is not smaller than the period of time in which the investment is expected to
be recuperated (under a certain rate of the return on investment), and (c) choosing
the manner of incorporating an additional (fixed) cost in the electricity prices to be
paid by the customers. The solution to the corresponding game problem will allow
one to determine at which prices (a) for the equipment needed to operate facilities
transforming wind and solar energy into electricity, and (b) for electricity storages
the incorporation of both renewable sources of energy and electricity storage sys-
tems in the grid is economically justifiable. One should, however, bear in mind
that developing facilities, for instance, for transforming wind and solar energy into
electricity is costly so that it is likely to require some government participation
in financing the project, for instance, in the form of a public-private partnership
between the government and the private sector [5,10].

8. Themodel used for describing the interaction among the generator, the transmission
company, and all the customers of a part of a country’s electrical grid is the one with
continuous variables, which allows one to remain within the realm of continuous
optimization in calculating Nash equilibrium points in Game 1. This is a result of
the assumption that the expenses associated with the operation of electricity storage
facilities and those associatedwith transformingwind and solar energy into electric-
ity are linear functions of volumes of the electricity available from them, and the pro-
portionality coefficients determineparticular formsof these functions.This assump-
tion should be acceptable as long as these proportionality coefficients are some aver-
age expenses per unit volume of electricity received from each of the devices of
the same type to be operated within these facilities. Though in the proposed model,
these expenses are considered to be constant during each hour within 24h, one can
modify the model to cover the other cases, for instance, the one in which these
expenses while being constant during each hour, are different for different hours.

9. Though both the public sector and the private sector of economy in every developed
country considers wind and solar energy as alternative sources of energy that could
be part of the country’s electrical grid, at least under the current technology, trans-
forming these types of energy into electric energy looks quite expensive [11–14].
Nevertheless, numerous businesses develop power stations for transforming wind
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and solar energy into electric energy. The proposed approach to modeling the inter-
action among the generator, the transmission company, and the large grid customers
of a regional electrical grid allows one to estimate at which prices for a unit volume
of electric energy from wind and solar energy produced by the already functioning
stations receiving electricity from these stations is financially reasonable. Themov-
ing forces behind a great deal of public interest to both (wind and solar) sources
of energy are (a) an attempt to reach a higher degree of independence from the
generator than currently exists for the large grid customers, (b) the unwillingness
to overpay the utility companies for their services, and (c) the existing incentives
to reduce the CO2 emission, which are financially supported by governments in
some countries. The use of devices like energy boxes [15], advising about expected
electricity prices in the framework of a “smart” grid [16], can substantially affect
decisions on incorporating renewable sources of energy in any part of the grid.

10. The piece-wise linear form of the regularities describing losses of energy in trans-
mission lines reflects further simplifications of the above-mentioned grid regu-
larities, in addition to those made in [1] in developing the mathematical model
underlying the structure of Game 1 (see Assumptions 4, 6 in [1]). The same is true
for the description of the functioning of a storage facility in the proposed model
in the form of a system of linear equations and inequalities, which is a particular
simplification of the reality [1].
At the same time, as it usually takes place in modeling phenomena in nature and in
society, one should proceed from the goal that a particularmodel is expected to serve
[17–19]. From this viewpoint, the use of the proposed model of storage facilities
looks justifiable, since it does not affect either the form or the features of the game
underlying the approach to analyzing a part of a country’s electrical grid while
allowing one to remain within linear programming in calculating Nash equilibrium
points in the “interaction” game under consideration for any estimating purposes.
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