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Abstract

In this thesis a computational method for predicting the effects of viscosity on the
global features of three-dimensional lifting surface flows such as lift, drag, and separa-
tion is presented. A simultaneous viscous/inviscid interaction algorithm is developed
using a low order potential based panel method and the three-dimensional integral
boundary layer equations, The viscous influence on the outer inviscid flow is modecled
with source distributions superimposed on the lifting surface and potential flow wake,
Equations for the boundary layer edge velocities, expressed as the sum of the inviscid
edge velocity and a correction which depends only on the boundary layer variables,
are developed from the panel method calculation, The boundary layer equations are
discretized using finite elements and solved by a full Newton method. By introducing
the influence of the potential flow solution into the Newton method Jacobian matrix,
the global elliptic interaction of the inner and outer flows at separation is captured.

Numerical predictions are presented for a finite swept wing, an annular wing,
and a two-dimensional hydrofoil section to validate the method, Predicted forces,
pressure distributions, and boundary layer integral thicknesses are shown to be in
good agreement with experimental data for flows with three-dimensional effects and
separation,
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Chapter 1

Introduction

Inviscid-flow calculation techniques, such as panel methods, are well-developed and
routinely used in the design and analysis of ships and their components. While these
methods are robust and can provide reasonable answers quickly, they are incapable
of predicting viscous effects such as separation. Viscous three-dimensional flows are
presently computed with Navier-Stokes solvers. Although the numerical solution of
the Navier-Stokes equations has become more practical in recent years, it still requires
considerable computational effort. Viscous flows can be computed more efficiently
using viscous/inviscid interaction (VII) methods. These methods are less general
than Navier-Stokes solvers and can fail in some separated flows, yet have been used
with as much success as Navier-Stokes solvers by the aeronautical research comrmunity.
A computational method based on VII is presented here to analyze three-dimensional
lifting surface flows with separation. Whereas existing VII methods have been devel-
oped specifically for compressible flows which preclude the use of panel methods, the
current method is designed for hydrodynamic flows. The model couples a low order
panel method with the three-dimensional integral boundary-layer equations using a

ully simultaneous coupling scheme.

1.1 Viscous/Inviscid Interaction

Prandtl’s boundary-layer concept provides the important link between a real fluid and
an ideal fluid. In high Reynolds number external flows, viscous effects are confined
to thin boundary layers which form along the body. Outside of these regions the flow
is essentially inviscid and irrotational, With the assumption that the boundary layer

is thin compared to the characteristic body length, Prandtl showed that the pressure
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can be assumed constant through the boundary layer and diffusion neglected, except
in the direction normal to the wall. When these simplifications are applied to the
Navier-Stokes equations, the first order boundary-layer equations are obtained,

VII methods separate the flow field into distinct viscous and inviscid regions. Indi-
vidual calculations are made for the two regions and combined with a coupling scheme
to obtain a composite solution. Because each part of the flow field is represented with
a simplified model, the overall computational cost is less than solving the complete
problem directly.

Efficient solutions to the outer inviscid flow in hydrodynamic applications can
be computed using boundary integral element (panel) methods [21, 36] becanse the
region is incompressible and irrotational. Not only do panel methods reduce the
size of the numerical problem, but they eliminate such issues as three-dimensional
gridding of the flowfield and farfield boundary conditions altogether. Solutions for
the viscous region are approximated using the boundary-layer equations, The inviscid
and viscous flows are coupled through the boundary conditions for each problem, The
inviscid flow provides the pressure field that is impressed upon the boundary layer

while the boundary-layer solution displaces the outer flow away from the body.

1.2 Research History

Three-dimensional boundary-layer methods have been used previously to analyze flow
over marine propellers and ship hulls, However, none of the methods included inter-
action with the outer inviscid flow. Groves [13] developed a prediction method for
propeller blades using the integral boundary-layer equations, Groves and Chang [14]
and Oshima [42] presented methods based on the differential equations for the anal-
ysis of the boundary layers on propeller blades. The feature common to all of these
methods is that the outer flow edge velocities are not updated. After the completion
of one sweep, or if separation is encountered, the boundary-layer calculations stop.
In interacting boundary-layer calculations, a transpiration boundary condition on
the body surface provides the coupling mechanism for the inviscid and viscous regions,
The boundary condition is implemented by applying a source distribution along the
body in the inviscid model, simulating the displacement effect of the boundary layer,

Source strengths are set by the rate of growth of the boundary layer, The solutions
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to the inner and outer problems are recomputed, and the source strengths updated,
until the normal and tangential velocity components for the potential flow and the
boundary layer are equal. The procedure which is used to combine the individual
solutions is known as the coupling algorithm.

The coupling algorithms which have been used in two dimensions include direct,
inverse, semi-inverse, quasi-simultaneous, and simultaneous coupling. The first three
are examples of weak coupling schemes that combine the solutions to the viscous
and inviscid regions of the flow iteratively. Quasi-simultaneous and simultaneous
coupling solve the two regions of the flow together, making them more reliable for
flows with strong interaction. Additional information on the various schemes, as well
as references for two-dimensional VII applications, is presented in the review paper
by Lock and Williams [33]. More recent references to two-dimensional calculations
are given in [1].

Weak coupling methods are typically used for three-dimensional interacted flows,
In a direct scheme, the outer flow is computed with the transpiration source strengths
prescribed, followed by the solution of the boundary-layer equations with the edge
velocities prescribed. The iteration cycle is repeated until the solution converges,
The direct method converges for attached flows, but fails when the wall shear stress
vanishes in 2-D and at separation lines in 3-D, Coney [5] calculated propeller blade
flows using a 2-D strip integral boundary-layer solver directly coupled with a three-
dimensional panel method. Full three-dimensional methods using direct coupling
have been developed by Lazareff and Le Balleur [30] for predicting transonic flow
over finite wings.

Separated flows can be calculated by solving the boundary-layer equations in in-
verse mode with the displacement thickness or skin friction prescribed [3]. Three-
dimensional VII methods based on the inverse boundary layer equations generally
use semi-inverse coupling to avoid convergence problems encountered with full inverse
coupling [33]. The seii-inverse procedure uses a direct calculation of the inviscid flow
and an inverse calculation of the visccus flow to provide two estimates of the edge
velocities, The edge velocities are combined in a correction formula that provides
the source strengths for the transpiration boundary conditions, Each flow is recom-
puted until the edge velocities agree, Methods based on this approach have been

developed by Wigton and Yoshihara [56] and Kovalev [27] for transonic flows, The
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scheme should converge for separated flows, but Wai and Yoshihara [53] encountered
numerical problems for wing calculations with trailing edge separation.

The fully simultaneous coupling scheme has proved to be the most robust for
two-dimensional separated flows. This scheme solves the inner and outer flows simul-
taneously, rather than iteratively, to determine the transpiration source strength and
edge velocity.

Two simultaneous coupling algorithms have been presented by Drela for two-
dimensional flows. The first combines the integral boundary-layer equations with the
Euler equations [9]. The second method couples the integral boundary-layer equa-
tions with a linear-vorticity streamfunction panel method [10] and was introduced to
improve the speed of the algorithm,

Hufford [20] replaced the panel method in Drela’s algorithm with a low order per-
turbation potential panel method. The procedure was subsequently extended to per-
mit coupling of the two-dimensional boundary-layer method with a three-dimensional
panel method and used to analyze viscous flow over propeller blades along constant
radius strips. The method is stable in separated flows, but requires an assumption
about the marching direction and is invalid for boundary layers with significant cross-
flow.

Nishida [41] recently developed a VII method to analyze three-dimensional com-
pressible flow over wing geometries with separation. The outer flow is modeled using
the full potential equation and the viscous flow is modeled using the three-dimensional
integral boundary layer equations. Equations for the edge velocities are derived from a
wall transpiration condition. The full potential equation is solved on a 3-D grid in the
flow field surrounding the wing to permit prediction of transonic flows, Fully simulta-
neous coupling is implemented by solving the full potential, boundary-layer, and edge
velocity equations together by Newton’s method. Nishida’s method is conceptually
similar to the one developed here, however, the implementation of the coupling pro-
cedure and associated strengths and weaknesses of the two methods are significantly
different. Some of the differences include; the method of discretization, the represen-
tation of edge velocities, and the size and properties of the system of equations that

is solved.
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1.3 Overview of Method

Geometry
- Solve Inviscid Base Flow
—_— = Vi$=0
Operating
Condition \L
Assemble Edge
Velocity Equations
U, =uL+Au
W, =W+ AW,
Seed Solution
— Integral Boundary -
Newton Solver
- Layer Equations
Viscous
Operating Condition
: Solution :
| BL Integral Parameters !
: ue' We :
Lo o e et e 4

Figure 1-1: Flow Diagram for VII Solver

An overview of the simultaneous coupling algorithm described in this thesis is pre-
sented in Figure 1-1. First, the outer flow is solved by a low order panel method with
a set of initially unknown transpiration sources, The calculation requires a descrip-
tion of the body and wake surfaces and definition of the operating condition as input
parameters, and supplies the inviscid edge velocities as an output. The edge velocity
in the VII calculation is equal to the inviscid edge velocity plus a correction due to the
displacement effect of the boundary layer. Equations relating the edge velocity to the
boundary-layer variables are developed from the transpiration source influence coef-
ficients. Finally, the three-dimensional integral boundary-layer equations are solved
by Newton’s method, with the edge velocity equations supplying the outer boundary
conditions. By introducing the edge velocity equations, the system of boundary layer

equations is made elliptic. An initial guess at the boundary-layer solution is required
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and provided by a 2-D strip solution or a previous 3-D solution. The location of the
laminar-to-turbulent transition line and the Reynolds number are also required as
input parameters. The solution to the boundary-layer problem provides the integral
thicknesses and the viscous edge velocities.

The computational procedure is intended to be a design tool that is capable of
predicting the overall features of three-dimensional viscous flows including lift, drag,
and separation. In part, this requires an accurate and efficient means of modeling
the body and wake geometries. They are represented parametrically by tensor prod-
uct B-splines surfaces here, making the geometric modeling compatible with existing
computer aided design (CAD) packages. Furthermore, the edge velocity equations
are constructed by numerically evaluating the surface gradient of the potential in
B-spline parametric space. The grid metrics are calculated analytically using the
B-spline expansion,

The method presented here may be used to predict the three-dimensional, incom-
pressible, viscous flow over wings, hydrofoils, and annular wings and can be extended
to predict flow over marine propeller blades. Some of the current limitations of the
method are: it is incapable of predicting flow over non-lifting bodies with open sep-
aration, secondary flows at wing tips and wing/body junctions are not yet modeled,

and only linearized wake geometries are assumed at this time,
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Chapter 2

Inviscid Flow

The flow outside the boundary layer is modeled as an incompressible, potential flow,
This chapter presents a boundary integral equation for the perturbation potential
without considering the displacement effect of the boundary layer. A discrete form

of the boundary integral equation is developed using a low order panel method,

2.1 Formulation of the Integral Equation

Figure 2-1: Section of the Potential Flow Domain for a 3-D Lifting Surface and Wake

Consider a three-dimensional lifting body immersed in an unbounded fluid and subject

to an inflow velocity U, as shown in Figure 2-1, The body is defined by the surface
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S, with a unit normal vector n, pointing into the fluid volume V, V is enclosed by
the surface S, with unit normal vector ny, also pointing into the volume.

The fluid inside V is assumed to be inviscid and incompressible, Furthermore, it
is assumed to be irrotational, except possibly for a thin wake S,, which is shed from
the trailing edge of the body, With these assumptions, the velocity may be defined

as the gradient of a scalar potential ®.
U=Vo (2.1)

Substituting (2.1) into the continuity equation gives Laplace’s equation which is the

governing equation for an incompressible potential flow.
V20 =0 (2.2)

The potential ® may be decomposed into a component due to the free stream, ¢,

and a perturbation potential, ¢, due to the body.

® = Goo + (2.3)

With ¢ given, Laplace’s equation can be recast as an integral equation for the

perturbation potential by applying Green's third identity.

4nTo(x) = [, (#€)ne VG(xi )~ Glx; hne VO(EO)e+ [[, Ap(E)ne VG(x; £)de
S, S.

(2.4)
where the Greens function, G, and the velocity potential, ¢, are solutions of the
Laplace equation and T = 0, 1/2, or 1 for points outside, on the boundary, or inside
V. G is the Greens function for an unbounded fluid

1 1
G(x;€) = = (2.5)
Rx8)  J(z -2+ -2+ (2-¢)?)

where x is a fixed point which may be located anywhere in space and € is the variable

point in the integration.

The first integral on the right hand side of (2.4) is the induced potential at point,
x due to a continuous source distribution of strength n;, - V¢ and a continuous dipole
distribution of strength ¢ on the body surface, The second integral is the induced
potential at point x due to a continuous dipole distribution over the inviscid wake

sheet S,, with a strength equal to the jump in potential across it.
Ap=¢" — ¢ (2.6)
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The details of this derivation may be found in [29] and [40] for non-lifting bodies
and [31], [17], and [36] for lifting bodies.

2.1.1 Boundary Conditions

Equation (2.4) defines a boundary value problem for the perturbation potential,

Boundary conditions are required on all surfaces enclosing V to determine a unique

solution.
Body Conditions

The body is initially assumed to be impermeable, The kinematic boundary condition
requires that the normal components of the fluid and body velocities be equal at a
point on the surface.

n, Vo=-Uy n (2.7)

Outer Surface Conditions

The perturbation velocity due to the body should vanish on the outer control surface,

S, in the limit that the surface is an infinite distance from the body.
Vo =0, as S, — o (2.8)
Wake Conditions

The wake surface represents a surface of discontinuity in a three-dimensional lifting
flow that must be excluded from the fluid volume because it contains the vorticity
shed by the body. By applying conservation of mass and momentum to the interface,
we can show that S, is a force-free, material surface [36]. The pressure jump and

jump in normal velocity are zero across the interface.

Ap =10 (2.9)
A(ny, - Ve¢) =0

A Kutta condition is required to uniquely specify the circulation that will make

the flow velocity finite at the trailing edge.

Ve, < 00 (2.10)

19



The shed vorticity is convected away from the trailing edge along S,,. This implies
that the potential jump across the wake is constant along streamlines for a steady

flow and equal to the jump in potential across the trailing edge of the lifting surface.
Ay = Agye (2.11)

For a steady flow, the potential jump across the wake is the same as the circulation

around the body.

2.2 Numerical Solution by Panel Method

This section presents a numerical method to calculate the inviscid flow without in-
cluding the effects of the boundary layer. A solution to the coupled outer flow problem
is obtained by combining this inviscid solution with a perturbation term due to the

boundary layer, and is addressed in chapter 4,

2.2.1 Representation of the Body and Wake Geometries

The discrete boundary integral equation is solved on the “exact” body surface in our
panel-method calculations; however, the wake geometry is linearized, Calculation of
a force-free wake geometry, including roll-up of the free edge of the vortex sheet, can
be treated using panel methods [44] [46], but requires significant computational effort
and is beyond the scope of this thesis.

The wake is approximated as a flat sheet for wing calculations and a constant
radius tube for circular duct calculations, It is assumed to follow the nose-tail line of
the airfoil section, extending several chord lengths downstream of the body trailing
edge where it is truncated.

The body and wake surfaces are represented parametrically using tensor product
B-spline expansions of the form

Ns N
X(s,t) = Z Z Xi.jsi'j(s’ ) (2.12)

i=1 j=1
where X(s,t) is a point on the surface, X;; are known control net vertices, S“(s, t)
are the rational surface B-spline basis functions in the parametric variables s and ¢,
N, and N, are the number of vertices in s and ¢ directions respectively, Each surface

spline is referred to as a patch,
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The coordinates of the control net vertices can be calculated by surface interpo-
lation or constructed by a geometric modeling package. The geometries analyzed in
this research were topologically simple and could be formed by stacking spanwise two-
dimensional B-spline polygons that were calculated using a fitting routine developed
by Kerwin [23]. The vertices are specified in the body-fixed, X,, coordinate system.

Figure 2-2 shows the body-fixed and parametric coordinates for a section of a wing,
The origin of the chordwise spline is at the trailing edge on the lower surface of the
wing. Note that s and ¢ do not necessarily define directions which are orthogonal in

physical space.

by

s=0

T x

Figure 2-2: Body-fixed and parametric coordinate systems for a section of a 3-D wing. The grid
lines are evaluated along s=const and t=const

A local orthogonal, curvilinear coordinate system, x, is constructed on each body
and wake surface using the B-spline expansion as described in Appendix A, On body
patches, the origin is located at the junction of the image plane and trailing edge on
the lower surface of the airfoil section. The x coordinate, which is taken tangent to
chordwise grid lines, wraps around the airfoil section contour, ending at the trailing
edge on the upper surface. The remaining coordinates are given by the local outward
normal, y, and second surface tangent vector, z. The surface coordinate system is

shown in Figure 2-3.

2.2.2 Discrete Integral Equation

A discrete representation of the boundary value problem is obtained by applying
a low order panel method to the integral equation (2.4). The panel method is a

technique for solving boundary integral equations where the body and wake surfaces
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by

i/

Figure 2-3: Body-fixed and local surface coordinate systems for a section of a 3-D wing, The
body-fixed coordinates are denoted by (X,Y,Z) and the local surface coordinates by (x,y,z).

are described by a finite number of flat, quadrilateral panels (see Figure 2-4), and the
integral equation is enforced at a similar number of collocation points. The surface
integrals are replaced by a summation of integrals over the individual panels. In a
low order scheme, the singularity distribution is assumed to be uniform over each
panel, therefore ¢ and g;"f may be moved outside of the integrals and set equal to the
value at the collocation point, taken at the panel centroid in our method. The source
strength of the j** panel, ( =);, is set by enforcing the kinematic boundary condition

(2.7) at the collocation point.

Wake Sheet

7 7 m=M
//// / /S /S S /
/ / /
/ / /
/ / /
/ /
/ /
/ / m=1.

Figure 2-4: Discretized wing and wake for combined panel method/boundary layer calculation, A
system of images is used to represent the geometry on the other side of the centerline,

22



With these assumptions, the discrete integral equation defines a system of linear
equations for the unknown values of the perturbation potential on each body panel.
Np M Np 6¢
S Dijdi+ S Wim (A(I)) =3 Bij(af) fori=1,N,  (213)
j=1 m=1 mo =l n/j
where M is the number of spanwise panels and N, is the total number of panels on the

body. Since the strength of the m'*

streamwise dipole strip, (A®),,, can be related
to the potential values on the body, (2.13) is sufficient to determine the unknown
potential values.

The influence coefficients are defined as

D = 4—1-177 (]6{9 n - VG (x;€)d€ - 27{'(51’_1') (2.14)
1

By = o [f. Gl (2.15)
1

Wim = E//sm ne - VG(x; €)d€ (2.16)

where D;; is the induced potential at panel ¢ due to a unit strength, uniform dipole
distribution on the j** body panel, B;j is the induced potential at panel i due to a
unit strength, uniform source distribution, and Wy, is the induced potential at panel
i due to the m* streamwise dipole strip in the wake. dij is equal to 1 for i=j and 0
otherwise. The influence coefficients, which depend only on the geometry of the body

and wake panels, are evaluated analytically using RPAN [39],

2.2.3 Numerical Kutta Condition

In the absence of viscosity a Kutta condition fixes the circulation distribution which
will keep the velocity finite at the trailing edge. The numerical implementation of
three-dimensional Kutta conditions for potential-based panel methods has been con-
sidered extensively for steady flow (24, 18, 26, 44]. It is reviewed here because the
Kutta condition must be applied to the outer flow in the coupled potential/boundary
layer calculation.

An approximate Kutta condition, developed by Morino and Kuo for 2-D potential-
based panel methods [37], requires the strength of the wake dipole sheet to be equal
to the difference of the dipole panel strengths located on either side of the foil trailing
cdge. Recalling that the potential induced by a constant strength dipole panel is

equivalent to that induced by a vortex loop along the panel boundary of the same
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strength [21], the Morino condition implies that the net vortex strength at, the trailing
edge is zero.

The strength of the trailing edge dipole panel is evaluated at the panel centroid,
not at the trailing edge itself. If the trailing edge has finite thickness, the free-stream
potential at the control points on opposite sides of the trailing edge may be different,
Lee [31] applied a correction to the Morino condition accounting for this possibility;

the modified condition, known as the modified Morino condition, is
A® =" — &' = ¢* — ¢! + Uy - 1y, (2.17)

where r, ., is the radius vector between collocation point of the trailing edge panels
of strip m. The radius vector originates at the lower panel,

The strengths of the wake dipole strips are related to the potential values at the
trailing edge (TE) by (2.17). The Kutta condition is incorporated into the system of
equations by combining the wake and body influence coefficients.

D;; — Wi, if j corresponds to lower TE panel in strip m
Ay =4 Dij + Wy, if j corresponds to upper TE panel in strip m (2.18)

Dj; otherwise

The remaining term, W;,(Ug * Tre.)m, is included as a correction on the right hand
side of the system of equations,

In a steady two-dimensional flow, the modified Morino condition is sufficient to
ensure pressure equality at the trailing edge. However, its use may lead to pressure
mismatches at the trailing edge in three-dimensional flow, especially near the tip.
This is generally attributed to the spanwise component of flow along the trailing
edge.

Kerwin et al [24] developed an iterative pressure Kutta (IPK) condition which
explicitly set the pressure jump across the trailing edge panels to zero, The method
solves (2.13) with the wake strength initially set using the modified Morino condition,
The wake dipole strength is then adjusted iteratively until the pressure jump across
the trailing edge panels is zero. This is equivalent to changing the spanwise circulation
distribution.

Use of the IPK condition can result in large changes in the spanwise circulation

distribution, or possibly cause the solution to diverge, near the tips of some geometries
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[24]. Hsin et al [18] and Kinnas et al [26] have examined the effect of alternate gridding
arrangements on the tip solution. The flow adapted grid, introduced by Kinnas et al
[26], improved the convergence of the IPK condition and the behavior of the solution
near the tip [45]. Pyo [44] latter included wake sheet roll-up with the flow adapted
grid and found that the circulation distributions obtained with the modified Morino
and iterative pressure Kutta conditions were very similar, His results suggest that
proper grid alignment may eliminate the need for the iterative pressure condition
altogether.

Only the modified Morino Kutta condition (2.17) is implemented in the present
method for the following reasons. First, the IPK condition affects the base inviscid
solution by modifying the spanwise circulation distribution, The dipole influence
coefficient matrix A, which enforces the Kutta condition, is unchanged, Therefore,
the IPK will not affect the viscous correction to the outer flow. Second, velocitics
are calculated at the trailing edge nodes in the present method, but the IPIK ensures
pressure equality at the trailing edge panel centroids. It is likely that a solution
obtained with the IPK condition would exhibit a pressure mismatch at the trailing

edge itself.

2.3 Calculation of Surface Velocities

The potential is defined pointwise at the centroid of each panel by the solution of
(2.13). If the potential is assumed continuous, with continuous first order partial
derivatives, it may be differentiated to obtain the perturbation velocities tangent to
the surface. The algorithm outlined next makes use of the B-spline expansion to

compute the surface velocities at the panel nodes,

2.3.1 Formulation

Numerical differentiation of the potential is carried out in the B-spline parametric

space. The gradient of ¢ in the s direction is given by the divergence theorem

_ O o
2 odt = —-//5 —3;(15’ (2.19)

where C is a closed curve joining the centroids of the four panels, traversed in the

counter clockwise direction as shown in Figure 2-5, S is the area contained within
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(N-1,M) (NvM)

(N-1,M-1) (N,M-1)

x - Panel Centroid \—Node (N,M)

Figure 2-5: Definition of the contour in the B-spline parametric domain for surface derivative cal-
culations, Double indices are used to specify the panels and nodes.

C. Rearranging (2.19), with the assumption that the derivative is constant inside the

contour,
o
ds
The discrete form of (2.20) is equivalent to a central difference first derivative on

--;; st (2.20)

a uniform grid (in the parametric space) provided that the average values of the

o1 IN- LMo FON— M ONM-1F+ON M
potential 5 and 5

are used. An equivalent expression for %2 B
is

at =3 fqbd (2.21)

The derivatives %‘;"3 and %? do not represent the surface velocities directly because

the B-spline transformation includes a scaling factor that varies with position, The

scaling factor is properly accounted for if the derivatives are transformed back into

global coordinates. The perturbation velocity in body-fixed coordinates is:

0¢ .
u= ﬁ (2,22)

which may be expanded in terms of QQ and 2¢ 5 by the chain rule,
0¢ 0¢ Js 8(/) ot
- 2.23
oX ~ 950X T Bt oX (2.23)
where 2 ax and 30)‘( are the first two columns of the transformation matrix derived in

Appendix A. Finally, the perturbation velocities in surface coordinates are found by
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projecting u into the directions defined by the two unit tangent vectors, ez and e;.

U =U-€; (2,24)

We =10"E€;

The total velocity is found by combining the perturbation velocities with the inflow
velocity after it has been projected into surface coordinates.
The pressure is calculated from the total velocity using Bernoulli’s equation and

expressed as a non-dimensional pressure coefficient

P — Poo

P= 0L, (2.25)

2.3.2 Treatment of Boundary Nodes

Ghost field points are introduced outside the edges of the grid, except at the wing
and wake tip boundaries, to close the contour around boundary nodes. Figure 2-6
presents a computational grid for a wing, with the positions of the ghost field points

marked.

X |m=M X

X X

X X

x |n=1 n=N| X
m=1

X X X X X X X X X X X

X - Ghost Field Point Location

Figure 2-6: Computational grid showing ghost field point locations for a wing, n is the chordwise
panel index and m is the spanwise panel index,

The boundaries along n=1 and n=N represent the trailing edge on the lower and
upper surfaces of the wing respectively. Ghost field points are placed at the centroids

of the first streamwise wake panels along these edges. The potential assigned to each
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field point is given by (2.4) with T = 1 ana also includes the potential jump duc
to the wake dipole sheet, Half of the potential jump (A®),, is subtracted from the
mean potential at ghost points along n=1 and added at ghost points along n=N. The
potential is continuous across the trailing edge (along a streamline) because the Kutta
condition removes the singularity, Therefore, it can be differentiated numerically to
calculate the perturbation velocities at trailing edge nodes,

The boundary along m=1 lies on an image plane for the cases in this thesis. The
potential assigned to ghost points along this boundary satisfy a Neumann condition
to ensure the flow is parallel to the boundary.

d¢
=0 2.2
The reasons for introducing additional field points instead of using a one-sided

difference formula are discussed in §4.3.

2.4 Numerical Validation of the Panel Method

Computational results obtained for an annular wing are presented here to demonstrate
that our panel method and the algorithm used to compute surface velocities are
implemented correctly. Our calculations are compared with results presented by
Kerwin et al [24] who used a similar low order potential-based panel method developed
by Lee [31]. The results which follow show that predictions made with the two codes
agree well,

The test geometry is a long duct, formed by revolving a NACA 0010 section set
at zero angle of attack at a mean radius of 0.1 chords, Predicting the pressure
distribution for this geometry is a demanding test of the panel code because the mass
flow through the duct, which is set by the Kutta condition, is extremely high,

A paneled representation of the duct is shown in Figure 2-7. The grid is cosine-
spaced in the chordwise direction, with clustering at the nose and tail, and equally-
spaced around the circumference of the duct. Calculations were made for discretiza-
tions with 36 panels around the airfoil section and 9, 18, 36, and 60 panels around
the circumference. The entire duct was paneled instead of exploiting symmetry in the
circumferential direction. All calculations were made for a unit inflow aligned with

the duct centerline.
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PFigure 2-7; Panel arrangement for an annular wing formed from a NACA 0010 section with a
chord/mean radius ratio of ten, The discretization shown has 36 panels around the airfoil section
and 18 panels around the circumference

Pressure distributions computed with the current method are shown in Figure 2-8
and results from Kerwin et al [24] are shown in Figure 2-9. The pressure distribu-
tions computed with the current method are in good agreement with the published
results for each discretization. The minimum pressure coefficient of -11,3, computed
for the 36x60 grid, is identical to the value published by Kerwin, but higher than the
converged numerical solution of -13.8 which was computed with a high order axisym-
metric panel method [24]. Note that the finest discretization shown in Figure 2-9 was
not analyzed with the current method,

Valentine [51] used the VSAERO/EO panel code to analyze this duct and reported
a minimum pressure coefficient of -15,2, This is about 10% lower than the converged
value.

The panel distribution obtained by cosine-spacing panels around the airfoil sec-
tion has large gradients near the leading and trailing edges. Uniform grids are more
suitable for boundary layer calculations [11]. Three additional calculations were
made with a panel distribution more typical of one used for a coupled potential
flow/boundary layer calculation. Each grid contained 91 panels around the airfoil
section, spaced using a linear blending algorithm [25]. The number of circumferential

panels was varied from J to 36.
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Pressure distributions are shown in Figure 2-10 for these computations, The dis-
tributions are similar to those obtained for the cosine-spaced grid. The minimum
pressure coefficient is closer to the converged value since the grid has been refined in

the chordwise direction, but none have converged to the proper value,
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Figure 2-8: Computed pressure distributions for the nacelle obtained with the current panel method
for various paneling arrangements
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Figure 2-9: Pressure distributions for the nacelle published by Kerwin et al [24]

31



14

)

PG N o ——— 919
/‘ Ny
g a_ '8 —--a--- 9118
g ——o——- 91x36

12

10

-Cp

TTTTTT T T T T T Y

0.0 0.2 0.4 0.6 08 1.0
Chordwise Position, x/c

Figure 2-10: Computed pressure distributions for the nacelle with panels distributed around the
airfoil section using a linear blending algorithm

32



Chapter 3

Three-Dimensional Integral
Boundary-Layer Equations

3.1 Overview

Boundary

- Boundary

Figure 3-1: Boundary Layer Domain

The viscous flow in the boundary layer and wake is modeled using the three-dimensional
integral boundary-layer equations. The purpose of this chapter is to present the
mathematical and numerical formulations used in the current work. The following
presentation is based on Nishida's formulation [41] with the essential difference being
in the treatment of the velocities at the outer edge of the boundary layer,

Figure 3-1 shows a typical boundary-layer domain. The integral boundary layer

equations are applied on the upper and lower surfaces of wing and along the wake,
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The hyperbolic nature of the boundary-layer equations imposes requirements on the
numerical method used to solve the equations, on the boundary conditions that are
applied along the edges of the domain, and on the initial conditions that are specified

along the attachment and transition lines.

3.2 Mathematical Formulation

The boundary layers that form around lifting surfaces at high Reynolds numbers
are generally thin compared to the chord length, even when a modest amount of flow
separation is present. To leading order, the pressure is constant through the boundary
layer, and shear stresses normal to the wall and the effects of velocities normal to the
wall on the shear stresses are inconsequential, With these assumptions, the Navier-
Stokes equations simplify to the thin shear layer equations [55].

The three-dimensional integral boundary layer equations are derived by integrat-
ing linear combinations of the continuity and thin shear layer equations across the
boundary layer in the direction normal to the wall. Details of this derivation are
presented in [38] for compressible flow. For incompressible flow these equations, in
terms of Cartesian coordinates, are;

x Momentum equation

) o O, O,
%(pqﬁﬂm) 5 —(pq20z.) + PUBL 5= + PUed; 5 = Taw (3.1)

z Momentum equation
0 0 Ow, ow,

5z (P4e0z0) + 5-(P0c0:2) + paedy 7= + paed; 7= = Tuu (3.2)

Kinetic energy equation
So(pa205) + =-(ped0?) = 2D (3.3)

Shear stress lag equation
-C‘%-aaif = K. (C}/* - C)1%) (3.4)

Equations (3.1) and (3.2) are the extension of the von Kérman momentum equation
for a two-dimensional boundary layer [55] to three-dimensions, u, and w, are the edge
velocities in the z and z directions, g, is the magnitude of the edge velocity, and 7,

and 7,, are the components of the wall shear stress, Definitions of the momentum
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thicknesses, (0zz, 02z, 02z, 0:2), and displacement thicknesses, (83,d7), are presented in
Appendix B. The density at the edge of the boundary layer, p, is included in the
formulation for dimensional consistency. Since the fluid is incompressible and the
equations are solved in non-dimensional form, the density can be set to unity and
dropped from the formulation, The momentum equations express a balance between
momentum flux deficit, pressure forces, and surface shear stresses in the shear layer,

An additional equation is used with the momentum equations to permit calculation
of non-equilibrium boundary layers. In a non-equilibrium boundary layer, the shape
parameter and the boundary layer shear-stress profile are a function of position due
to pressure gradient variations in the external flow. The kinetic energy equation (3.3),
which expresses conservation of energy in the boundary layer, is used as the auxiliary
equation for the calculations described in this thesis, The definitions of the kinetic
energy thicknesses, 8; and 0, and dissipation integral, D, are given in Appendix B,
The entrainment equation is sometimes used as the auxiliary equation [49] [13], but
is not considered here.

The transport equation (3.4) for the maximum shear stress coefficient completes
the system of equations. This equation accounts for history effects in the outer layer
of a non-equilibrium turbulent boundary layer. C; is the shear stress coefficient, C,,
is the equilibrium shear stress coefficient, and € is the lag direction which is taken in
the chordwise direction. K, is an empirical coefficient equal to 5.6 as suggested by
Green [12]. The equation is a correction to the boundary-layer formulation which has

been found to improve the agreement between prediction and experiment,

3.3 Coordinate Systems

The three-dimensional integral boundary-layer equations are generally solved in a
curvilinear surface coordinate system, The formulations presented by Groves [13]
and Cousteix 7] use an orthogonal, curvilinear coordinate system based on the local
streamline direction. One coordinate is defined by the projection of the outer stream-
line onto the surface; the second is taken orthogonal to it and tangent to the surface,
This coordinate system is introduced because the empirical correlations that are re-
quired in a three-dimensional integral boundary-layer formulation are defined in this

system. The coordinate system is called the streamwise-crossflow, or 1-2, coordinate
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system here.

Equations (3.1)-(3.4) are written for a Cartesian coordinate system, Metric terins
that account for the curvature of the grid are required if the equations are formulated
in curvilinear coordinates. For a general surface, the metrics must be evaluated
numerically, imposing the condition that the surface is discretized using smooth grid
lines. The metrics must also be recomputed if the direction of the outer streamline
is permitted to change.

The boundary-layer formulation presented here uses the approach developed by
Mughal [38] to account for the curvature of the grid lines, A local Cartesian coordinate
system is introduced at each panel. After the boundary-layer variables are evaluated
in streamwise-crossflow coordinates at the four corner nodes, they are rotated into
the common local Cartesian coordinates before the equations are assemiled. The
rotation terms introduced in going from the 1-2 to the z-z systems in effect replace
the coordinate metric terms which appear in the 1-2 equations, Working with the z-z

coordinates has the great advantage that the surface grid is fixed and arbitrary,

Node 4

Node 3
dal n
L
Node 1 Node 2 X

Figure 3-2; Local panel x-z coordinates,

The local panel coordinate system is shown in Figure 3-2, =z is parallel to the
chordwise edge of the panel, n is normal to the surface pointing into the flowfield,
and z lies in the surface, orthogonal to the other two directions, The panel coordinate
system is constructed by projecting the 3-D surface onto the plane defined by the unit,
vectors &; and €, which are the direction cosines between the local 2-D and the glohal
body-fixed coordinate systems. &, is directed along the chordwise panel edge and &,

is orthogonal to €, and the panel unit normal, &,.
é, =&, xé, (3.5)
The normal vector is calculated by the cross product of the diagonals connecting
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opposite corners of the panel. The nodes are numbered so the normal always points
out into the flow.
A doy x d
g, = -3 (3.6)
|d24 X d31|
Choosing x to be parallel to one edge of the panel is done for convenience. The
boundary-layer equations are rotationally invariant, and any other orientation of the

z-z axes would be adequate.

3.4 Primary Variables

The boundary-layer variables expressed in local panel coordinates are not suitable
for use as primary variables because each panel surrounding a node may have a
different coordinate system. Primary variables are selected from variables defined in
the streamline coordinate system since they are uniquely defined at each node, In
addition, secondary variables which are derived from primary variables are always
defined in the streamwise coordinates.

Four independent primary variables must be selected because there are four boundary-
layer equations. In the current formulation the primary boundary-layer variables are
chosen as C}2,6,1,mi,ma. C!/? is the square root of the shear stress coefficient,
01, is the streamwise component of the momentum thickness, and m, and m, are
the streamwise and crossflow components of the mass defect respectively, The mass

defects are defined as;
my = pgedy ma = pqed;, (3.7)

where ¢. is the magnitude of the edge velocity, 47 is the streamwise component of
displacement thickness, and 43 is the crossflow component of displacement, thickness,
The two components of mass defect are selected as primary variables to reduce the
number of unknowns at each node,

7, 03, ue, and w, are not primary variables in the present formulation and must,
be related to the mass defect. Expressions for the displacement thicknesses follow
directly from (3.7). Equations for the edge velocities are derived in Chapter 4,

The remaining variables in the boundary-layer equations are expressed in terms
of C}%,0,,,6;, and & by the closure relations listed in Appendix B. The streamwise
closure relations are developed from assumed forms of two-dimensional velocity pro-

files and empirical skin-friction and dissipation relations. Crossflow thicknesses are
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related to the streamwise thicknesses using the outer part of the Johnston triangular
crossflow velocity profile [38].

Boundary layer quantities are rotated from streamline coordinates into the panel
coordinate system using a 2-D rotation about the panel normal. The transformations

from 1-2 coordinates to local Cartesian coordinates are listed in Appendix B,

3.5 Numerical Implementation

A system of discrete equations is derived by applying a Petrov-Galerkin Finite El-
ement Method (FEM) to (3.1)-(3.4), following standard procedures that are found
in references on the FEM [15] [19]. The Petrov-Galerkin formulation, which selects
different weighting and shape, or basis, functions, is used to introduce upwinding into
the numerical formulation, This section briefly describes the shape functions and

presents a derivation of discrete equations using the method of weighted residuals,

3.5.1 Element Description

In a finite element calculation the continuous surface is replaced by a collection of dis-
crete elements. For the calculations described here, the elements are the quadrilateral
panels used in the panel method calculation described in §2.2,2, A computational co-
ordinate system is introduced on each panel to facilitate calculations at the elemental
level. Figure 3-3 shows a quadrilateral element, in the local panel and natural coordi-
nate systems. The element maps to a square in natural coordinates with corners at
£ = %1, n = %1 although it may be distorted in physical coordinates,

The mapping function for an isoparametric element is the shape function. A point

(€,7n) is mapped to physical coordinates by:

x(€,1) = ;N;«, mx; (3.8)

where the x; are the local 2-D Cartesian coordinates and Ny is the shape function
associated with the j** vertex of the element, Bilinear shape functions are used in
the current boundary-layer FEM formulation,

1
Ni(€,m) = 7(1+€6) (1 + ;) (3.9)

&; and n; are the natural coordinates of the j** vertex of the element,
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Figure 3-3: Quadrilateral isoparametric element in local and natural coordinate systems,

Nodal values of the boundary-layer variables vary linearly over an element, At the

point (§,7) on the element, the variable is approximated as
4
=Y N;(&n)e; (3.10)
Jj=1

where ¢ is one of the terms in (3.1)-(3.4), e.g. (pgedste).

The boundary-layer equations include terms which require the evaluation of the
gradient in the local Cartesian coordinate system. Since the boundary layer variables
are linear functions within an element, their derivatives can be calculated, For exam-
ple, the x derivative of ¢ is determined from the nodal values of ¢ and the derivatives
of the element shape functions.

~ 1 ON¢
Z—Z(E n) = Z_Z

(& n)e (3.11)

The gradient of a shape function in physical coordinates is calculated by expanding
derivatives of the shape function in natural coordinates by the chain rule and solving

the following system of equations for 4% and 9%,

oz 0: | [ on aN

o o¢ Oz — L3 (3 12)
oz 0z || en N '
on On a9z an

The elements of the Jacobian matrix are calculated by differentiating (3.8) with re-
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spect to £ and 7.

TN ox & ONS
ubedi . = = y 1
E-LED o 2 (3.13)
Oz 4 0N; 0z 1 81\7]‘-3
—_—I= VA _—= 2
3 fz ot ™ on ; on ™
with
ONe 1 ,
% 71+ &)L+ m5) (3.14)
ON¢ 1
617]" = Z(l +&6)(1 + ;)

3.5.2 Weighting Function

The current method uses the weighting scheme proposed by Nishida [l] to provide
an upwind discretization of the equations.
1 1

We=0,  Wi=s(i-m), Wi=z(+m, Wi=0  (315)
This choice of weighting function provides upwinding in the £ direction and central
differencing in the spanwise direction. Upwinding is required to prevent the oscil-
lations which arise in the solution of hyperbolic equations when central difference
discretizations are used [16]. Neither Mughal [38] or Nishida required crosswind dis-

sipation with this weighting function.

3.5.3 Discrete Equations

Discrete equations are derived at each node using the method of weighted residuals,

The procedure consists of the following steps.

1. Approximate the continuous distribution of boundary-layer variables in (3.1)-
(3.4) using the nodal values and the shape functions described in the §3.5.1.
Nodal values of the variables in the panel z-z coordinate system are calculated

from the streamline-crossflow variables using the identities listed in §B.2.

2. Substitute the approximations into the continuous equations, Since the approx-
imations will generally not satisfy the continuous equations, a residual is formed

by taking the difference between the two sides of the equation,
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3. Integrate the residual equations over the body and wake surfaces after multiply-

ing by the weighting function described in §3.5.2.

4, A solution to the boundary layer equations is found by driving the weighted

residuals to zero using Newton’s method as will be described in Chapter 5.

The elemental weighted residual equations are:
Shear Stress Lag Equation
ON;

; e 1/2 -
L W{?ZN, (8); Z % (logC’ )] (3.16)
-K, YNP( C,}/Qe,l) (ﬂl/z) )} dS = RCl/z
Kinetic Energy Equation

/L W{ S (pa20) Z pud0) =2 2 N (P }dS = Re..  (3.17)
x Momentum Equation

/ /an { eramm +Z pqeam

+ 3 N-"(pqcé‘)iij 8,0 (ue)' (3.18)
5 NE(00e82)i S5 % (ug); — 54 NE(T2)s }ds = Rym.

z Momentum Equation

//an { f’qeazw +Z pqe(?zz

+ 3 N:’(pqu;)iZ,- o U (we); (3.19)
+ 2 Ni(pged3)i T %lti(weh - X Nie('rzm)i}ds = R.m.

The integral over each element is calculated numerically using 2x2 Gauss quadrature,
In (3.16), C, is replaced with C}/? using the relation:

10C, 0 8 0 1
- = [ /2 ¢
AT Bf(lOgC ;) = 35 ( log C, ) 235 (logC’T ) (3,20)
and the gradient of the shape function in the £ direction is calculated as:
ON; ON; Ay, ONy
—a—g— —5.’—1;( + € ) + '5;(82 . eE) (3.21)

The £ direction is approximated as the chordwise direction.
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3.6 Boundary Conditions

The three-dimensional integral boundary-layer equations (3.1)-(3.3) are a set of cou-
pled first order hyperbolic partial differential equations, and therefore, admit solutions
that are wave-like. The direction of propagation of the solution is determined by the
characteristic roots of the equations, There are three characteristic directions associ-
ated with the integral boundary layer equations: one is in the direction of the limiting
wall streamline, one is approximately in the direction of the outer streamline, and
the third lies in between the two [7]. Conditions must be specified at locations where
the characteristics enter the boundary-layer computational domain. This includes the
attachment line, where the outer flow dividing streamline is assumed to attach the
airfoil section, and the wing tip. A Neumann boundary condition is also required at

image planes to enforce the symmetry condition.

3.6.1 Attachment Line

For the examples considered in this thesis, the flow at the attachment line is approx-
imated as the flow along the attachment line of an infinite swept wing. If n is the
coordinate parallel to the leading edge and £ the coordinate normal to it, the edge

velocities at the leading edge of an infinite swept wing are [7]:
ue = k& We = Wee = CONSE (3.22)

In this coordinate system the continuity and £ momentum equations decouple from
the » momentum equation [55]. The problem can be solved by treating the flow in
the £ direction as an equivalent 2-D flow, which for an infinite swept wing, is simply
the solution for a 2-D stagnation flow.

Values of the streamwise displacement and momentum thicknesses are set at nodes

on either side of the attachment line using the 2-D Falkner-Skan similarity solution,

O = Cpy| == 5;:0‘,{ ; (3.23)

Reooug Reoug
€ is the distance from the attachment line to the node, in the direction normal to the
leading edge, u¢ is the component of the edge velocity in this direction, and Req, is
the Reynolds number based on the freestream velocity., The crossflow mass defect,
hence the crossflow displacement thickness, is assumed to be zero, approximating

two-dimensional flow. C/2 is set to zero because the flow is laminar,
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The coefficients in (3.23) depend on the local pressure gradient in the £ direction
and in theory can be determined as part of the solution. In the present imple-
mentation, the coefficients Cp and Cj. are assigned values of 0.38574 and (.90649
respectively, which corresponds to a flow with a shape factor, H, of 2.35. Stagnation
flow conditions (H=2.21,Cy=0.29234, Cs.=0.64791) were used originally, but some-
times prevented the boundary-layer equations from converging at nodes immediately
downstream of the similarity region, especially if this short region was not resolved
adequately. The pressure gradient implied by the similarity solution was incompatible
with the one obtained from the approximate solution of the integral boundary-layer
equations on the coarse grid. When the coefficients were increased, the convergence
problems were alleviated, The boundary-layer solution for most of the wing is insen-
sitive to the initial conditions in any event.

The surface coordinate system defined in Figure 2-3 wraps around the airfoil sec-
tion. When the chordwise chordwise edge velocity is transformed to this coordinate
system, it is negative on the pressure side of the attachment line and positive on the
suction side of the attachment line. The attachment point for each spanwise section

is found from the zero crossing of the edge velocity in this coordinate system,

3.6.2 Transition Line

A starting solution for C}/? is required at the transition line and is set using the

two-dimensional empirical relation derived by Drela [41].

-3.3 ‘
C}M? = 1.8exp ( . 1) Cl2,, (3.24)

The location of the transition line is specified for all calculations presented in this

thesis. Transition is assumed to take place at the first node downstream of the

specified location,

3.6.3 Image Plane Boundary Conditions

The flow along an image plane must be parallel to the plane, leading to a symmetry

2
) 0'"'
is a natural boundary condition in the FEM discretization and is implemented by

condition = 0, where 7 is the direction normal to the plane. This condition

multiplying the residual equations by two for nodes located on a symmetry boundary,
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3.6.4 Tip Boundary Conditions

One way to set boundary conditions for hyperbolic equations is to write the equations
in characteristic form and solve for the characteristic roots, One boundary condition
must be specified for each characteristic entering the domain, However, determining
the characteristic roots of the systemn of 3-D integral boundary-layer equations is
complicated by the empirical closure relations. A more practical approach is generally
taken, setting the boundary conditions based on the results of numerical experiments,

Mughal [38] investigated wing tip boundary conditions by calculating a direct mode
marching solution to the 3-D integral boundary-layer equations over the surface of
a finite wing. The solution at boundary nodes was set, or extrapolated from the
interior part of the grid using a zero-gradient or zero-curvature condition, Mughal
found that Dirichlet and zero-gradient conditions excited spanwise sawtooth mode,
but reasonable results were obtained using the zero-curvature extrapolation scheme,

Nishida [41] examined the problem of boundary conditions using a direct marching,
wake calculation. The external flow over the trailing wake of a wing was approximated
as the irrotational flow near a stagnation point. Dirichlet, zero-gradient, and an
approximate form of characteristic boundary conditions were applied along the side
boundaries for the calculations. The last condition assumed that one characteristic
pointed out of the domain; 65 was permitted to float while the other boundary-
layer variables (47, 61,) were specified. Since the results obtained using this boundary
condition were smoother than results obtained with the other conditions, Nishida
concluded that this type of boundary condition should be applied at boundary along
the suction side of the wing and wake tips.

A condition similar to the one proposed by Nishida was applied in the initial cal-
culations made with the current method. The crossflow component of mass defect,
mg, was allowed to float while the remaining variables were specified, The stream-
wise components of mass defect and momentum thickness were estimated with a two
dimensional boundary-layer solver, using the 3-D inviscid chordwise velocity distri-
bution at the tip as the outer flow. Because solutions obtained with this boundary
condition tended to converge slowly and exhibited a non-physical behavior at the
tip, the boundary condition was subsequently replaced with a condition that let all

of the wing tip variables float. When this boundary condition was used in com-
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bination with spanwise numerical smoothing (§5.5), the solution near the tip was
found to be reasonable. By allowing the solution to float, the variables associated
with outwardly-directed characteristics are not constrained while smoothing prevents
variables associated with characteristics entering the domain from growing without
bound.

An accurate treatment of the boundary conditions is not essential for the geome-
tries that are analyzed in this thesis because the region of error is limited to the
immediate tip area. The region of error is defined by the domain of influence of the
nodes along the tip on the suction side, The issue of boundary conditions is more
important at the junction of a hull and aft swept keel, If the ﬂow'contains a large
spanwise component outward from the hull, the boundary condition can affect the
entire solution. Computing this would require knowledge of the viscous flow on the
hull, and how this viscous flow would influence the corner flow at the keel root, This

is beyond the scope of this thesis.
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Chapter 4

Edge Velocity Equations

The leading order effect of the boundary layer is to displace the potential flow away
from the body by an amount equal to the displacement thickness. In addition to
inducing an outward velocity, the boundary layer introduces perturbations in the
velocity components parallel to the wall. Early two-dimensional viscous/inviscid in-
teraction (VII) methods approximated the tangential velocity perturbation using an
simplified interaction law based on thin airfoil theory [52]. Cebeci et al [4] incorpo-
rated an interaction law of this type in their quasi-three-dimensional boundary layer
calculations for swept wings.

While the aforementioned interaction law models the local interaction between
the boundary layer and potential lows adequately, it does not satisfy the Kutta con-
dition or capture global elliptic interaction. A more accurate representation of the
outer flow, one that takes into account the global influence of the inviscid solution
and the boundary layer, is obtained by adding blowing sources to an exact model
of the inviscid flow. Starting with a two-dimensional linear-vorticity streamfunction
panel method, Drela [10] derived an expression for the tangential velocity at the edge
of the boundary layer in terms of the known inviscid component and a correction that
depends only on the mass defect. Since the potential and boundary layer equations
are coupled through the edge velocity, this equation provides the outer boundary
condition in the coupled potential flow/boundary-layer calculation. Hufford [20] de-
rived an equivalent expression from the two-dimensional Green’s Theorem integral
equation for the perturbation potential,

This thesis extends the approach developed by Hufford to three dimensions, Ex-

pressions for the edge velocities, u. and w,, are derived in terms of the mass defect hy:
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adding a transpiration source distribution to the body and mean wake surfaces, dis-
cretizing the integral equation for the perturbation potential with a low-order panel

method, and numerically differentiating the discrete equations.

4.1 Induced Potential with Wall Transpiration

The edge of the boundary layer forms a stream surface in a steady, three-dimensional
viscous flow, outside of which the flow is essentially inviscid and irrotational [32]. The
presence of the boundary layer displaces the potential flow away from the physical
body and is simulated in the VII calculation by adding transpiration sources to the
body and wake surfaces.

The integral equation for the perturbation potential with blowing sources is
4nT(x) = ffg (9Ene- VO(66) ~ Glxi&)ne - V(€) de (41)
+ [fs. Ad©One Vo Qe+ [[ o " (OC M€

where both the potential, ¢, and the transpiration source strength, o, are unknown.
(4.1) is the governing equation for an Equivalent Inviscid Flow (EIF) which extends
through the boundary layer to the wall, but includes the velocity perturbation due

to boundary-layer growth.

R
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w
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Real Flow Equivalent Inviscid Flow

Figure 4-1: Velocity Profiles for Real and Equivalent Inviscid Flows

The transpiration source strength is set so that the velocity normal to the wall in

the potential flow is the same as the normal velocity at the edge of boundary layer,
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Y = ¥, in the real viscous flow. The magnitude of the normal velocity at y, is found
by mtegratmg across the boundary layer. Following Nishida [41], we define two

components of dlsplacement thickness as
Ye
gl = /0 (ue — u)dy (4.2)
* Ve
g0, = /0 (we — w)dy

The normal velocity at the edge of the real viscous flow is

ve Qv
'Ue = 0 6ydy
_ /’1/:_ @+% d
—Jo or 0z Y
3 ve Ou, Ve Ou,
= /0 a dy+/ w)dy — / dJ /———dy
0

(‘)ue 8we] (4.3)

= 5, (00z) + %(qeé*) Ve| 5 T 5
where the continuity equation has been used to obtain an expression for 8" in terms
of u and w as an intermediate step. The partial derivatives can be taken out;side the
first two integrals in the third line of (4.3) because (u, — u) and (w, — w) vanish at
the upper limit of integration. An expression for the normal velocity in the EIF is
found the same way, with the approximation that the edge velocities u. and w, are

constant through a distance y. from the boundary.

v = Vit / " avdy (4.4)
aue Ow,
sl ye[a * Bz]
Equating (4.3) and (4.4),
o = 2( r) 2(( 6;)=Vg m (4.5)
_amqem+6zlez—s .

where the source strength, o¥, has been substituted for V,, and Vg-m is the divergence

of the mass defect in the local (x,z) surface coordinate system.

4.2 Discrete Equations with Transpiration

The perturbation potential can be decomposed into an inviscid part and viscous

correction,
¢ =" + V) (46)
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where the inviscid component, ¢{), is given by the solution of (2.13) and the viscous
correction is a function of the transpiration source strengths. Separate expressions
for the viscous correction are developed for panels located on the body and in the

wake in the following sections.

4.2.1 On-body points

If (4.1) is discretized using the low order panel method described in §2.2.2, the formal
solution for the perturbation potential at the i** body collocation point is obtained
by inverting the dipole matrix A.

Np Np ¢ M Neot Np
=Y A7 [Z B,k( ) — 3 Wim(Uso - Tie)m Z >[4 Bu] oy (47)
j=1 m=1 l=1 k=1

where the first group of terms on the right hand side is the inviscid solution,

N, Ny M
0= St | Em (3) - S|y
j=1 m=1

and the second group is the viscous correction,

Ntot

EDY Z |4 Bu] o} (4.9)

I=1 k=1
By, is (k,l) entry of the transpiration source influence coefficient matrix, N, is the
number of panels on the body, and N, is the total number of panels on the body
and wake surfaces.

The inviscid component of (4.7) is readily calculated by LU decomposing the dipole

matrix and backsubstituting the known right hand side vector,

N M
Z" o¢ Z

m=1
However, the viscous correction must be left in terms of the unknown transpiration
source strengths. (4.9) simplifies to

Niot

¢i =" + Y Hyo} (4.11)
1=1

where the product H = A~!B defines an influence coefficient. H is computed by solv-
ing Ny linear systems of equations, using the columns of the transpiration source

influence matrix B [43] as the right hand side vectors. Each column of H represents
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the potential at the IV, body panels due to a unit source at panel [ which satis-
fies the assumption of an undisturbed inflow inside of the body. H depends on the

discretization of the body and wake geometries, but is independent of the inflow,

4.2.2 Off-body Points

The induced potential at a wake panel is given by the discrete form of (4.1) with T
=1,

~ Np - - 8¢ Neot -
$i=2. [A,-,-¢j - Bij(a—n)j} + ) Buo} (4.12)
Jj=1 =1

where A;; and B;; are the influence coefficients for the potential induced at the it

" body dipole and source panels.! The wake integral, included

wake panel due to the j
in A via the Morino condition, is evaluated as a Cauchy integral so ¢; represents the
average of the potentials on the two sides of the wake, ¢; and (%g) ; are the strengths
of the j** body dipole and source panels.

The inviscid component of the induced potential at wake panel i is

N,

. L - J

D=3 1 Ayel") - Bij(gg)j (4.13)
j=1

with ¢§-1) defined by (4.8). The viscous correction includes the direct contribution
from the transpiration sources plus an indirect contribution from the body dipoles.
The latter is required because the strengths of the body dipole panels are modified

by the blowing sources.

- Nioe NP . -
M=% {Z AixHy + By | of = ) Hyo} (4.14)

=1 k=1

The first term in square brackets is due to the change in the strength of the body
dipole panels caused by the transpiration sources and the second term is the direct

contribution from the blowing sources,

'"The tilde overbar is used to denote that the field point is located on the wake,

50



4.3 Perturbation Velocities Including Wall Transpiration

4.3.1 In Terms of Source Strength

Perturbation velocities are calculated at the panel nodes by differentiating the induced

potential with respect to the surface coordinates x and z,

u, = Vo (4.15)
At the i** node, the velocities are
! Ntot
Ue = u‘(z‘-) + Vg (Z H,'[O’l") (4.16)
=1

(N

where u,;’ are known inviscid velocities, computed using the algorithmn described in
§2.3, and the remaining terms are velocities induced by the transpiration sources.
Note that A replaces H for a field point on the wake. The potential induced by each
transpiration source may be numerically differentiated as well, provided the numerical
method takes into account the discontinuity in the derivative at the source panel. By
introducing ghost cells, the source-induced velocities can be evaluated properly at
boundary nodes.

Two new influence coeflicients are defined by taking the surface gradient of the H
matrix, G = (2, 22) The elements of these matrices relate the surface velocities at,

panel nodes to the unit strength transpiration sources,

U = ug) + Z G,‘[G’lu (4.]7)

4.3.2 In Terms of Mass Defect

The primary boundary layer variables include the mass defect components m, and
my along the streamwise-crossflow coordinates, Using (4.17) therefore requires that
gl be expressed as a function of m, and m, via (4.5)., However, the streamwisc
and crossflow directions are unknown until the coupled potential flow/boundary layer
problem is solved, so the gradient in (4.5) cannot be easily evaluated along these
directions, Instead, the equations are expressed in terms of the mass defect in the
surface coordinate system, m, and m,, which are related to m, and my through vector
rotation identities given in Appendix B. The gradient is the easily taken in the z and

z directions.
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o/ = (Vs-m),

where Vg and m are now expressed in z and z coordinates, The panel source strength
of can be approximated in terms of the nodal values of m; and m, by evaluating
the surface divergence discretely between the four panel nodes. Specifically, four
influence coefficients are assembled by writing the discrete difference formulae in
terms of the mass defect at each node, substituting these expressions into (4.17) for
of, and collecting terms which multiply m at each node.

The final equations for the edge velocity, expressed in terms of the known invis-
cid velocity including the inflow, and an unknown viscous correction that is only a

function of the mass defect, are

uodu Nnodu
=Up -t t+uld + 3 EEmy)i+ Y. F2(m.) (4,18)
=1 =1
(l) nadea nodea
=Ux & +wy + > Ej(ms)+ Z a(me ) (4.19)

=1
where Npoqes is the total number of panel nodes, E; = ( %, B5) are the induced
velocities in the x and z directions at node i due to a unit mass defect in the x-
direction at node !, and Fy = (Fj, Fjj) are the induced velocities in the x and 2
directions at node 7 due to a unit mass defect in the z-direction at node /. The two
summations in these equations represent the perturbation edge velocity due to the

boundary layer.

4,3.3 Numerical Validation

E* is the chordwise component of velocity induced by a chordwise unit mass de-
fect and is analogous to the two-dimensional influence coefficient derived by Hufford
(20]. A two-dimensional calculation may be approximated with the current code by
introducing high aspect ratio panels, oriented with the longer edge in the spanwise
direction,

Figure 4-2 shows E® for a unit mass defect located near the trailing edge on the
upper surface of a wing that is discretized using panels with au aspect ratio of 40, The
induced velocities are evaluated along the grid line where the singularity is located and

multiplied by 2 to simulate a two-dimensional calculation, The peak on the right hand
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Figure 4-2; Chordwise velocity induced by a unit mass defect in the chordwise direction located on
the upper surface near the trailing edge at x/s=0.98

side of the figure shows the strong influence of the singularity on the local velocity.
The global influence of the mass defect induces a significant velocity at the leading
edge (x/s=0.5) via the Kutta condition and at the trailing edge on the other side of
the foil (x/s=0.0). The induced velocity is compared to the two-dimensional influence
coefficient computed with a modified version of Hufford’s PAN2DBL program [20].
Except for slight differences at the leading edge, the induced velocities computed with
two codes are very similar, The difference at the leading edge reflects the unloading
due to induced velocities which are present in 3-D but not in 2-D,

The remaining three-dimensional influence coefficients can only be checked against
one another. T'wo comparisons are presented to demonstrate that the mass defect
influence coefficients approach the correct limits as panel aspect ratio is varied. Figure
4-3 presents E and F for field points on the upper surface of the wing discretized
with the high aspect ratio panels, £E*, F'*, and F'* are approximately zero everywhere
along the section, demonstrating that influence coefficients for high aspect ratio panels
approach the 2-D limit. In practice, the aspect ratio of the panels should not be too
large, otherwise the edge velocity equations will not provide strong coupling when

the outer flow has a large spanwise component.
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Figure 4-3: Comparison of the E and F velocity-mass defect influence coefficients for high aspect
ratio panels. The induced velocities are evaluated at the nodes of the chordwise grid line where the
mass defect is located,

The second comparison is made using influence coefficients computed for a flat
wake discretized with square panels. Two mass defect singularities are placed at the
center of the surface as shown in Figure 4-4 and the induced velocities evaluated at
nodes along the lines A-A and B-B. Figure 4-5 shows the x component of velocity
induced by m, and the z component of velocity induced by m,. For this example,

the velocity fields induced by m, and m, are related by a 90° rotation,
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Figure 4-5: Comparison of the velocity-mass defect influence coefficients for square panels, The
spanwise velocity induced by a unit spanwise mass defect is equivalent to the chordwise velocity
induced by a unit chordwise mass defect that is rotated 90°,
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Chapter 5

Solution of the Coupled Problem

This chapter describes the numerical solution of the coupled boundary layer-potential
flow problem which is formulated in the previous chapters. Newton’s method is used
to solve the non-linear system of boundary-layer equations, The solution procedure
differs from other viscous/inviscid interaction schemes because an exact represen-
tation of the outer flow is incorporated directly into the system of boundary-layer
equations through the Newton Jacobian matrix sensitivities., Furthermore, the equa-

tions for all nodes are solved simultaneously,

5.1 Newton’s Method for a System of Equations

The solution to a system of equations of the form
R(U)=0 (5.1)

can be found using Newton’s method. If the vector U at iteration n does not satisfy
(6.1), a new solution
-U11+1 —_ Un + 6U (5'2)

is determined by linearizing R(U™*!) about the current solution,

. n
R(U™") = R(U" + 6U) ~ R(U") + ‘g%—] U =0, (5.3)
and solving a system of equations for the correction §U
oR]""
— |z n
dU = [8U R(U™) (5.4)

The iteration is repeated until the correction dU is less than a specified tolerance,
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[g—%]n is the Jacobian matrix evaluated at the ** iteration, Element (i,j) of the

matrix is the partial derivative of the i**

equation of the residual vector with respect
to the j** component of the solution vector. The elements of the Jacobian matrix are

computed and the matrix inverted for each iteration,

5.2 System of Equations

In the present application, the system of equations includes the boundary-layer equa-
tions, initial conditions, and boundary conditions described in Chapter 3, The com-
putational stencil for an interior node is shown in Figure 5-1, For the weighting
function specified in §3.5.2, the residual equations for node ¢ only need to be inte-
grated over the cross-hatched panels, The residual equations at node ¢ depend only
on the values of C!/2 and ), at the nodes marked, However, they ..re a function of

the mass defect at all nodes.
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Figure 5-1; Computational grid for node ¢ which is an interior node,

The equations associated with node ¢ are shown symbolically by (5.5).

[ i ( 5Ul ) ( Rl w
B A 'A ’B A 'A B A 'A 'B < U, L = R; {5.,5)
- . L JUN / L R‘N /

The residual vector R; includes the four boundary-layer residual equations for node
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’11 ’I' (l’ N
Ri = {RC}_/% Rk.e.: Rz—morm Rz-—mom}i = {Rl; Rz, RS) Rd i (5.())

To simplify notation, the components of R; are numbered 1-4 as shown, The global
residual vector R is composed of all the nodal residual vectors. The vector of un-

knowns, §U;, contain the variations in the solution variables at node 4,
(SU‘P = {(56’.}./2,50“,5777»1,6"?.2}{ ’ (5.7)

A and B are 4x4 block matrices which contain partial derivatives of the residual

equations for node i, An A block is a full matrix which contains the partial derivatives

of the residual vector at the i** node for all of the solution variables at the j** node,

[ _or ORy ARy Ry ]
acﬁ 2 80y, Om  Oma
OR,  OR, ORy DRy
30:32 80yy  Omy  Omy (5 8)
aR OR3 OR; ORy '
0(1},52 40,y  IOmy  Ama
ORy Ok ORy QR

B 80}_ 2 00“ Bml amz .

If node ¢ is in the interior of the computational domain, there is one A block for cach

th row of the Jacobian

of the nodes marked in Figure 5-1. The remaining blocks of i
matrix are filled with B matrices which contain only mass defect sensitivities., The B

blocks introduce the elliptic influence of the outer flow,

[ ORy  aRy |
00 amy  Oma
00 IRy Ry
Om;  dma (5 9)
0 0 28 9R '
8m1 8m2
IRy Ry
L 00 omy  Oma J

5.3 Assembling the Newton System

The solution variables for the system of boundary-layer equations were selected to
minimize the number of nodal unknowns, However, the residual equations and ecl-
ements of the Jacobian matrix are more easily evaluated using the edge velocitics
and displacement thicknesses, Prior to each Newton iteration, the edge velocities are
evaluated using (4.18), (4.19), and the current values of the mass defect and stored.
The displacement thicknesses are computed from the mass defect and edge velocities

as required,
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The system of equations is formed by visiting each panel sequentially and adding its
contribution to the residual vector and Jacobian matrix. A local z-z coordinate system
is set up on the panel as described in §3.3. After the closure formulae are evaluated in
streamline-crossflow coordinates, the boundary-layer variables are transformed into
the local panel coordinate system using the identities listed in §B.2, Finally, the
elemental residual equations (3.17) are integrated over the panel and added to the
global residual vector.

The Jacobian matrix contains the partial derivatives of the residual equations
with respect to the solution variables. The derivatives are computed by successive
applications of the chain rule at the FORTRAN level to simplify the assembly process,

The calculation of sensitivities for each node of a panel proceeds as follows,

1. The sensitivities of all streamline-crossflow boundary-layer variables with respect
to CT'/Q,G“, 1,05, u., and w, are evaluated and stored. Expressions for the sen-

sitivities are obtained by differentiating the closure relations.

2. The sensitivities of all boundary-layer variables in panel z-z coordinates (peq20..,
Peq20z:,...) with respect to C}/2 6y),6;, ctc. are evaluated and stored, This
requires chain rule differentiation of the transformation equations listed in §B.2,
The derivatives are evaluated using the current solution and the results of Step
I

w

. The sensitivities relating displacement thicknesses and edge velocitics to the
streamwise-crossflow components of mass defect (m;,m,) are calculated using
the expressions that are derived from the panel method influence coefficients in
Appendix C. The derivatives of z-z boundary-layer variables with respect to m,
and m, are evaluated by combining the derivatives from Step 2 with the mass
defect sensitivities, For example,

o) _0() as; o) 95 0() du, () dw,

dm, 96t Om, ' 06;0m,  Ou.Om, = Ow, Om,

(5.10)

After all the sensitivities relating the z-z boundary-layer variables to the solution
vector are computed and stored, the entries of the Jacobian matrix are calculated by
integrating the derivatives of the elemental residual equations over the panel,

A unique feature of the simultaneous coupling scheme described in this thesis is

the elliptic dependence that is introduced by the velocity sensitivities, Since the
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sensitivities satisfy the Kutta condition, trailing edge separation changes the bound
circulation and causes the location of the attachment line to move.

The boundary-layer equations are ill-posed at separation because they do not con-
strain the growth of the displacement thickness. When the edge velocity is determined
as part of the boundary-layer solution, the large self-influence term of the velocity-

mass defect influence coefficients (§4.3.2) keeps the Jacobian matrix well-conditioned.

5.4 Special Equations

The boundary-layer residual equations are replaced with special equations at nodes
where an initial condition is required, At nodes along the attachment line, the
boundary-layer variables are determined by a 2-D Falkner-Skan similarity solution,
The solution at the first streamwise node in the wake is set from the solution at the

trailing edge of the wing,.
5.4.1 Initial Conditions

The following expressions for the streamwise momentum and displacement thicknesses
at the attachment line are incorporated directly into the Newton system, The residual

equation for the momentum thickness is

Ch o I £ i
R2 = 011 038574 RGOO’U.E (011)

and for the displacement thickness is

Ry="4 0,90649J 3 (5.12)
qe Regoug

at nodes along the attachment line, R; and R4 are defined to drive C’T‘/ 2 and m, at
attachment line nodes to zero.

The distance from the attachment line to the node, £, is evaluated in the direction
normal to the leading edge and assumed to be a constant. wg is the projection of the
edge velocity in the direction normal to the leading edge here. It is calculated by

rotating the edge velocity about the surface normal by the angle 7,

Ug = Ug COSY + W, SiN 7y (5.13)
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Figure 5-2: Projection of the edge velocity into the £ direction

with 7 defined as the angle between the chordwise and {-directed tangent vectors as
shown in Figure 5-2.

cosy = €y« & (5.14)

The Jacobian-matrix elements for the attachment line equations are found by

chain rule differentiation of (5.11) and (5.12) with respect to the solution variables,

The sensitivities of u¢ to the local edge velocities u, and w,, required as part of an

intermediate calculation, are obtained by differentiating (5.13).

5.4.2 Trailing Edge Equations

0\—9\9\08
te

o—/"/e/:

Figure 5-3: Paneling arrangement at section trailing edge,

Figure 5-3 shows the chordwise paneling arrangement near the trailing edge., The first
streamwise node in the wake, designated “te”, is located at the section trailing edge,
as are the nodes marked “u”, for upper surface, and “1”, for lower surface, Although
all three nodes correspond to the same physical point, a separate solution is computed

at each one.
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The wake is treated as a single viscous layer that convects in the direction of the
mean velocity vector. The solution at node “te” provides the initial conditions for
the boundary-layer calculations in the wake. The integral boundary-layer equations
are replaced with compatibility relations that assign the state vector at node “te”
based on the state vectors at nodes “I” and “u”, The shear stress coefficient at “te” is
the momentum-weighted average of the shear stress coeflicients evaluated on the two
sides of trailing edge. The remaining terms are simply the sum of the values from the
two sides of the trailing edges. The residual equations at the first streamwise node in

the wake are; 2 1/21pl
Cl/2ugy, +CT/ 01,

Ry = C}*e - 5.15
=G ot + 0, (5:19)
Ry = 6y} — 0}y — 01 (6.16)

Ry = mf* —m} —mj (5.17)

Ry = mif —my —m} (5.18)

The entries of the Jacobian matrix for the trailing edge equations are derived by

straightforward differentiation of these equations.

5.5 Numerical Damping

Initial solutions obtained with the coupled boundary-layer solver contained spanwise
oscillations in the mass defect distributions near regions of separation. The edge
velocity equations should prevent these oscillations, but for the cases presented here,
this suppression is weak because the spanwise resolution is coarse, Second order

numerical dissipation of the form
2

1/2577%”12- (6.19)
is added to the x and z momentum equation to damp the oscillations. The 7 direction
is taken along spanwise grid lines and v, is a small number in the range 0.0001-0,001,
m is the streamwise mass defect in the x momentum equation and the crossflow
mass defect in the z momentum equation. This type of damping is used to control
oscillations that occur near shocks in numerical solutions of hyperbolic systems like
the Euler equations [16]. Numerical damping stabilizes the numerical solution by

increasing the diagonal dominance of the Jacobian matrix,
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Second order dissipation can reduce the accuracy of the numerical scheme, but is
used as a first approximation here because it is easier to implement than fourth order
damping. Two passes over the mesh are required to compute the term proportional
to ?;TT that is used in the fourth order dissipation formula. Damping will not affect,
the solution if the mass defect is constant in the direction of the spanwise grid lines.

A numerical experiment was conducted to determine an appropriate value of v,
for the problems examined here. Boundary-layer calculations were made for a finite
swept wing at an angle of attack of 6.3 degrees. All input parameters and the body
and wake discretizatons were held fixed while the value of the damping coefficient
was varied from 0.00-0,05. Figure 5-4 shows the streamwise component of the mass
defect along the trailing edge on the suction side of the wing for several values of the
damping coefficient. The smallest values of v, failed to damp the oscillations while
the largest values eliminated any spanwise variation in the solution. Large valucs
also tended to reduce the crossflow through the boundary layer, A value of 0.0005
was found to give results which looked reasonable, without overdamping the solution,

The results presented in the next chapter were all calculated with 1,=0,0005,

0.015

—

0.010
ml
Q.,_._..
0.005
v, = 0,00000 ———- v, =0,0005
..... v, = 0,00005 o v,=0,005
- ==+ v, =0,0001 - v, = 0,05
0.000....I....I...I.A.l )
0.0 0.2 0.4 0.6 0.8 1.0

Non-dimensional Semi-span

Figure 5-4: Effect of numerical damping coeflicient on spanwise distribution of i,

The effect of the damping coefficient on the overall solution was checked by com-
paring the viscous drag coefficients computed fromn the momentum thickness at the

downstream end of the wake sheet for several values of 1,. The drag values, listed
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in Table 5.1, are within 3% of each other although the spanwise distributions of

momentum thickness obtained for the various damping coeflicients are different,

vy Cdy V) Cdy
0.00000 | 0.007248 | 0.0005 | 0.007302
0.00005 | 0.007459 | 0.005 | 0.007280
0,0001 | 0.007415 [ 0,05 | 0.007420

Table 5.1: Influence of the damping coefficient v» on the viscous drag coefficient,

5.6 Solution of the Linear System

The Jacobian matrix must be inverted once for each Newton iteration, For a typ-
ical problem presented in this thesis, the matrix contains approximately 4000-8000
equations and is approximately 50% full due to the global mass influence on the edge
velocities, The matrix is currently inverted using a LU decomposition routine that
is customized for the DEC Alpha architecture [6]. The CPU time for each Newton
iteration (equation assembly, matrix inversion, and solution update) ranges from 2-
3 minutes for problems with 600 body panels to approximately 20-25 minutes for
problems with 1500 body panels.

The times reported are for a DEC AlphaStation 600 with a processor speed of
266 MHz with the program residing in core memory. The largest problems that are
presented here require 384 Mbytes of memory.

The time required to invert the matrix might be reduced if an iterative or custom
solver is used, Drela developed a special Gaussian elimination block solver for his
2-D code that speeds up solution of the Newton system [10], A similar scheme can
be developed for the current method, but is not expected to perform as well as the
2-D solver because the 3-D Jacobian matrix is 50% full while the 2-D matrix is only
33% full.

5.7 Solution Update

The standard Newton update may need to be under-relaxed during the first, few
iterations to prevent the solution from oscillating or even diverging to a non-physical
state. An under-relaxation parameter is computed after each Newton step to limit

the relative change in the variables C}/2,6,,, 4}, and &5 to 60% of their current values,
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Clamps are placed on the displacement thicknesses instead of the mass defect to limit
the change in the shape parameter [10]. Once relaxed updates of the edge velocities
and these variables are calculated, the mass defect is updated using its definition
(3.7).
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Chapter 6

Numerical Results

This chapter presents numerical results computed using the coupled potential flow/boundary-
layer technique described in the previous chapters. The results that are presented

include:
o lift and drag coefficient
o chordwise pressure distribution
e chordwise distribution of the integral boundary layer parameters

Calculations are made for three geometries: a highly swept wing, a circular duct,
and a two-dimensional airfoil section with trailing edge separation. The predictions

are compared to experimental results and other numerical predictions when possible,

6.1 Force Calculations

The lift and drag forces can be computed directly by integrating the pressure and
shear stress over the body surface. Surface integration is adequate for lift, but past
experience has shown that this approach is inaccurate for drag calculations [48]. A
better approach is to apply the momentum theorem and calculate the drag by inte-
grating farfield quantities. This also permits t,he drég to be separated into viscous
and induced components.

The farfield formula for the induced drag requires the potential jump across the
wake, however, the potential for the equivalent inviscid flow (EIF) is unknown. The
induced drag is estimated using an approximate method that combines the results
from pressure integration and the inviscid Trefftz plane calculations. The calculation

proceeds as follows:
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1. Calculate the lift and induced drag by Trefftz plane integration, using the inviscid

spanwise circulation distribution.

2. Compute the inviscid and viscous lift forces using surface integration. The dif-

ference between the two is the reduction in lift due to the boundary layer,

3. Subtract the change in lift from the inviscid Trefttz plane lift. 1f the inviscid
lift forces calculated with the two methods are the same, the viscous lift force is
just the value obtained by surface integration. This step is included because the
inviscid lift forces may be different at large angles of attack if the suction peak

is not resolved.

4, Approximate the induced drag for the EIF by

Dy
2 .
DY = L= (6.1)
4
where L, is the viscous lift, L; is the inviscid lift, and Dgi) is the inviscid induced

drag.

This approximation assumes that the boundary layer does not change the spanwise
loading distribution significantly.

The total drag is obtained by adding the induced drag and viscous drag, which
is computed by integrating the x-directed momentum defect across the span of the

wake at the downstream end.

6.2 RAE 101 Swept Wing

The coupled boundary-layer solver is applied to a 45-degree aft swept wing to demon-
strate its full three-dimensional capabilities, The wing had a symmetric RAE 101
section with maximum thickness-chord ratio of 0.12, and was untapered, except at
the tip where the leading edge was faired into a lead out tube for the pressure taps
[54].

The starboard half of the wing is paneled in the present calculations with the port
side represented by a system of images, Although the tip region of the physical modcl
is tapered, the chord and thickness of the computational geometry is kept constant,
over the entire span. The chordwise distribution of panels is set using a blended

spacing algorithm. The spanwise panel distribution is uniform, except at the tip where
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the last panel is subdivided to increase the resolution. The entire semi-span of the
wing is modeled in the base inviscid solution, however, the outermost panel is excluded
from the boundary-layer calculation, Tip panels are dropped from the calculation
because the velocity-mass defect influence coefficients cannot be computed properly
for nodes along the wing and wake tips. As the mesh is refined in the spanwise
direction, the location of the outermost node in the boundary-layer computation

approaches the true wing tip.
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1007 64x10
------- 92x10
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Figure 6-1: Convergence of pressure distribution with the number of chordwise panels,

Calculations are made for several discretizations to investigate the convergence
properties of the boundary-layer code. The number of nodes around the airfoil sec-
tion are varied from 64-124 and the number of nodes across the semi-span from
10-20. Figure 6-1 shows the viscous pressure distribution at the mid-semi-span sta-
tion, n = 0.50, for three chordwise discretizations. The calculations are made at an
angle of attack of 6.3 degrees and Reynolds number of 2.1 x 10°, Small differences
between the three predictions are observed at the suction peak and at the transition
points (x/c=0.60 on the pressure side, x/c=0.08 on the suction side). The differences

at the transition location are caused by the way the transition model is currently im-
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plemented: transition is forced at the first node downstream of the specified location,
rather than at the location itself. This may be a few percent of the chord from the

desired point for coarsely paneled geometries.
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(a) Convergence with the number of nodes around the airfoil section, The
momentumn thickness at mid semi-span is shown for 64, 92, and
124 chordwise nodes.
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(b) Convergence with the number of spanwise nodes, The momentum thickness
at the trailing edge on the suction side of the wing is plotted as a function
of the non-dimensional semi-span for 10, 15, and 20 spanwise nodes,

Figure 6-2: Convergence of streamwise momentum thickness with panel number, All calculations
are made at & = 6.3 degrees
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Figure 6-2 shows the convergence of the streamwise momentum thickness with the
number of panels for the same operating condition. The upper plot shows the depen-
dence on chordwise node number at 7 = 0.50. Here too, the differences between the
three discretizations are associated with the transition location. The lower plot shows
the dependence on the number of spanwise nodes at the trailing edge on the suction
side of the wing. Differences at the tip are believed due to the approximate bound-
ary conditions. The convergence trends for the streamwise momentum thickness are
representative of what is observed for the other boundary-layer variables.

Pressure measurements for this wing are reported in [54] for angles of attack from
0-10.7 degrees and a Reynolds number of 1,68 x 10%, The measurements were made
in a wind tunnel at a Mach number low enough to treat the flow as incompress-
ible. Figure 6-3 shows computed and measured pressure coefficients at three span-
wise stations. The inviscid predictions are shown with dashed lines, the viscous
predictions with solid lines, and the experimental data with symbols, Boundary-layer
computations are made at a Reynolds number of 2,1 x 10% with transition forced
at the experimentally-observed locations, The pressure distributions shown for non-
dimensional span stations 7 = 0.16 and n = 0.50 are for an angle of attack, «, of 6.3
degrees while the one at 7 = 0.90 is for an angle of attack of 10.5 degrees. The agrec-
ment between the viscous predictions and experimental data is very good, except for
the first 20% of the chord at = 0.90. The discrepancy at this location is probably
related to the simplified representation of the tip in the numerical model,

Integral thicknesses are displayed in Figure 6-4 for span stations 7 = .50 and
7 = 0.80 on the suction side of the wing at @ = 6.3° and a Reynolds number of
2.1 x 105, Computed values are shown as solid lines and experimental thicknesses,
obtained by numerically integrating the boundary-layer velocity profiles measured by
Brebner and Wyatt [2], are shown as symbols. The crossflow displacement thickness
05 is negative because the crossflow velocity, which is directed outward toward the
tip, is positive in the upper surface coordinate systemn, The agreement between the
predicted and experimental values is reasonable, and similar to what Nishida achieved
with his boundary-layer solver [41]. However, the current method over-predicts the ex-
perimental values while Nishida's method under-predicts them, The current method
does appear to do a better job of predicting the crossflow displacement thickness,

Figure 6-5 shows the computed lift and drag coefficients compared with experiment,
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Figure 6-3; Comparison of calculated and experimental pressure distributions for the RAE 101 swept,
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Figure 6-4: Upper surface boundary layer quantities at 7 = 0.50 and 5 = 0,80 for the RAE 101
swept wing, The operating condition is @ = 6,3° at a Reynolds number of 2,1 x 10%, Experimental
data are shown as symbols and predictions as solid lines, H is the shape factor, 8;, and 4§} are the
streamwise components of momentum and displacement thickness, and 4} is crossflow component, of
displacement thickness. The integral thicknesses are non-dimensionalized by the wing chord,
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Figure 6-5: Lift and Drag for RAE 45-degree swept wing,

data. The inviscid lift curve is plotted as the dashed line, the viscous lift curve as
the solid line, and the experimental data as symbols in the plot of lift vs, angle of
attack. Viscous effects are responsible for a reduction in lift of approximately 20%
at the largest angles of attack shown. The drag polar compares the lift and drag
calculated using the procedure described in §6.1 to the measured data. Lift and drag

are also compared to Nishida's farfield predictions in Figure 6-6,
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Figure 6-6: Comparison of farfield drag computed with the current model and Nishida's boundary-
layer solver.

One objective of this thesis is to develop a numerical method that is capable of
predicting three-dimensional separation, Figure 6-7 shows the streamlines predicted
for the suction side of the wing at @ = 10.6°. The inflow is from left to right,
with midspan of the wing located at the lower, left side of each plot. Although
the outer flow over the wing is essentially aligned with the inflow, the limiting wall
streamlines are directed outward along most of the trailing edge. Convergence of the

wall streamlines is three-dimensional flow separation [28].



/

a, Outer flow streamlines.

b. Limiting wall streamlines,

Figure 6-7: Streamline traces on the upper surface of the swept wing at o = 10,6°, The inflow is
from left to right
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6.3 DTMB Duct II

DTMB Duct II is representative of a circular duct that might be used in a ducted
propulsor, The airfoil section of the duct is a NACA 66 Mod. thickness form with a
NACA « = 0.8 meanline. The thickness-chord and camber-chord ratios are 0.10 and
0.04 respectively and the chord-diameter ratio for the duct is 0.8, Figure 6-8 shows
the paneled duct. The section at the top of the duct is labeled ¢ = 0° and the section
at the bottom ¢ = 180°, When the duct is pitched, the top section is placed at a

positive angle of attack and the bottom section at a negative angle of attack.

Figure 6-8: Paneled geometry for DTMB Duct II. The top of the duct is at ¢ = 0° and the bottom
at ¢ = 180°. Only the starboard side of the duct is paneled for the calculation,

Measurements of lift, drag, and pressure coefficient along the inner and outer
surfaces of the duct at ¢ = 0° and 180° were reported by Morgan and Caster for
pitch angles of +/-10 degrees [35]. The experiments were conducted with a 20 inch
diameter model at a Reynolds number of 2,06 x 10%, All experiments were run with
natural transition. Qur calculations are made with transition forced 5% of the chord
aft of the leading edge on both the inner and outer surfaces of the duct at pitch angles
of 0° and 2°. The transition line is moved forward to x/c=0.01 for larger pitch angles,

The duct is modeled numerically by cubic integral B-splines in the chordwise di-
rection and quadratic rational B-splines in the circumferential direction, The use of
rational splines enables an exact representation of the circular cross-section of the
duct, The weight and knot vectors and placement of the control net vertices for the
circumferential splines are set using values published by Rogers and Adams for conic

sections [47]. Longitudinal symmetry of the duct is exploited in the calculations re-
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ported here. Only the starboard side of the duct is paneled while the port side is
represented by images. Chordwise panels are spaced using the blended spacing algo-
rithin while the circumferential panels are cosine-spaced to cluster panels at the top
and bottom of the section. The results presented here are for a discretization with
98 nodes around the airfoil section and 13 nodes along the half circumference,

The chordwise pressure distribution at 0 degree incidence is shown in Figure 6-9,
Viscous effects reduce the mass flow through the duct, hence the circulation around
the section, and improve the agreement between the predicted and measured pres-
sure distributions. The viscous pressure distribution shows a pressure jump across
the trailing edge which is believed to be caused by the inviscid velocity calculation
at the trailing edge. Figure 6-10 presents the predicted and experimental pressure
distributions for the top and bottom sections with the duct pitched 4°, The viscous
solution is closer to the measured data, although the suction peak at ¢ = 0° is not

captured very well.
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Figure 6-9: Comparison of predicted and measured pressure distributions on DTMB Duct II at 0

deg. incidence,

The computed shape parameter is presented in Figure 6-11 for the duct in the
unpitched condition. At the trailing edge on the suction side, the shape parameter

exceeds 2.8, indicating turbulent flow separation,
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Figure 6-10: Comparison of predicted and measured pressure distributions on D'TMB Duct II, with
duct pitched 4 degrees,
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Figure 6-11: Shape parameter for Duct II at 0 degree incidence,

The calculation did not converge for pitch angles greater than 5 degrees for this
geometry because laminar separation is predicted on the inside of the duct at ¢ =
180°, just downstream of the leading edge. The boundary-layer solver cannot treat
laminar separation bubbles properly at this time since it is only configured for fixed
transition. Efforts to trip the flow upstream of the separation location did not work
either because separation occurred within the first 1% of chord, A short region
of laminar flow is required near the attachment line because the boundary layer is
modeled using a Falkner-Skan similarity solution. The prediction of a leading edge
separation bubble is consistent with the measured pressuce distributions for larger
pitch angles. Morgan and Caster conclude that there is leading edge separation
at a pitch angle of 8°. However, the lowest pitch angle with separation cannot be
determined from the available experimental data.

Figure 6-12 presents lift and drag coefficients for Duct II at angles up to 5 degrees.
The coefficients are non-dimensionalized by the mean chord, ¢, and duct radius, R,
at the trailing edge.

L D

CL= 5PU%CR Co = spU%cR

(6.2)

The inviscid lift curve from the Trefftz plane calculation is shown as the dashed line,
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the viscous prediction as the solid line, and the experimental data as symbols, Al-
though the predicted lift matches the experimental data well, the drag is about 25%
low. The poor agreement between the predicted and experimental drag is not under-
stood. Drag calculated with an axisymmetric boundary-layer solver for 0° incidence

is similar to the three-dimensional prediction,
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Figure 6-12; Lift and Drag for DTMB Duct II.
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6.4 B1 Foil

A two-dimensional section is analyzed to demonstrate the convergence properties of
the farfield viscous drag calculation and the ability of the method to predict flows
with separation. The B1 hydrofoil, shown in Figure 6-13, was tested in the MIT
variable pressure water tunnel as part of a 2-D flapping foil experiment [34]. The
section is a NACA 16 thickness form with a thickness-chord ratio of 0.0884 and a
NACA a=0.8 meanline with a camber-chord ratio of 0.02576. An anti-singing bevel
which is applied to the trailing edge on the suction side causes turbulent separation
over the last few percent of the chord. The foil was tested at an angle of attack
of 1.2° and Reynolds number of 3.78 x 10, Boundary layer trips were applied at

:L/ C = 0.105 on both sides of the section to induce turbulent flow,
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Figure 6-13; B1 Geometry

Two-dimensional calculations are approximated with the current method by ana-
lyzing the flow over the midspan section of a high aspect ratio wing, The section of
the wing is represented by a single spanwise panel, In the potential flow calculation
image panels are placed outboard of the section to extend the wing 40 chords in both
directions. Even this is incomplete because the angle of attack must be increased by
approximately 2% to match a calculation made with a 2-D panel code, Symmetry
boundary conditions are applied along both edges in the boundary-layer calculation,

Although wall-induced flow curvature influences the experimental chordwise load
distribution, this effect is not modeled in the present calculations, Calculations are
made for the foil in unbounded flow using the experimental Reynolds number and
transition location. The angle of attack is increased to match the experimental lift
coefficient of 0.466, Two-dimensional RANS calculations with and without tunnel

walls were completed by Dannecker for a similar foil [8]. His results indicate that
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the walls have a larger effect on the lift than on the development of the boundary
layer at the trailing edge of the foil. The current predictions are compared with
experimental data even though the problem is modeled in a simplified fashion. Figure
6-14 shows the computed and measured shape parameter, momentum thickness, and
displacement thickness for the Bl foil. The agreement between the prediction and
data is excellent for all three quantities. Turbulent separation is predicted and was
observed at x/c=0.98 on the suction side of the foil.

Figure 6-15 presents the drag predicted with the current method as a function of
panel number, For a 2-D problem the drag is simply the viscous component, obtained
from the farfield momentum thickness, Also shown on the figure is the measured
drag and the converged prediction made with Drela’s XFOIL boundary-layer solver
[10]. The two calculations compare well, but are lower than the experimental drag
coefficient of 0.0101. The difference between the predictions and experiments may
not be as large as shown because Lurie indicates the experimental drag is probably

too high based on the way it is calculated [34].
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(c) Shape parameter
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

7.1.1 Summary of Numerical Implementation

A simultaneous viscous/inviscid interaction (VII) algorithm for the analysis of three-
dimensional lifting surface flows is outlined in this thesis, The procedure couples a
constant strength panel method and the three-dimensional integral boundary-layer
equations by superimposing a source distribution on the body and wake surfaces,
The discrete integral equation for the inviscid flow is transformed into equations
for the edge velocity which depend only on viscous variables, The boundary layer
equations are discretized using the finite element method and solved numerically by
a full Newton method. By using the edge velocity equations to close the system of
boundary layer equations, an exact inviscid model which satisfies local and global
interaction between the inner and outer flows is incorporated in the calculation,
The current formulation uses a surface discretization of the body and inviscid
wake sheet, eliminating the difficulties and expense of gridding a three-dimensional
flow field as is typically required for a Navier-Stokes solver or other VII methods,
The geometries are represented by non-uniform rational B-splines in the panel code,
making the method compatible with existing geometric modeling packages. Moreover,
the grid metric terms needed to evaluate the edge velocity equations are computed
analytically from the B-spline expansion rather than numerically from the coordinates

of the surface grid lines.
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7.1.2 Performance of the Method

Calculations made for a finite swept wing demonstrate the current method converges
as the number of panels is increased in the chordwise and spanwise directions. Rela-
tively few panels are required to obtain a reasonable solution unless localized features
of the flow must be resolved.

Comparisons between experimental data and predictions were presented for a 45°
swept wing, an annular wing, and a two-dimensional hydrofoil section. Good agree-
ment in the overall forces, pressure distributions, and boundary layer integral quan-
tities was shown for flows with three-dimensional effects. The algorithm is stable for
separated flows where the wall shear stress vanishes as well as for flows with 3-D
separation lines,

Numerical smoothing is required to prevent spanwise oscillations when the geom-
etry is not resolved well enough. Dissipation is introduced by adding second order
damping to the X and Z momentum equations. The results of a numerical experiment,
indicate that the damping coefficient should be small, otherwise all spanwise varia-
tions in the solution are eliminated. If the spanwise resolution can be increased so the
panel aspect ratio is smaller, the edge velocity equations will suppress the oscillations

without numerical dissipation.

7.2 Recommendations

Additional research is suggested in the following areas to improve the method pre-

sented here.

Iterative Matrix Solution The computational requirements for the solution of the
boundary layer problem are large because the Jacobian matrix is currently stored in
core memory and inverted using a direct solver, The matrix is O(50%) full due to the
elliptic influence of the mass defect sensitivities, however many of these sensitiviticy
are small and and can be dropped without affecting the convergence rate of the
Newton method significantly (10]. They would all be retained in computing the
viscous edge velocity, so that the final solution would be unaffected, By pre-sorting
the velocity-mass defect influence coefficients so only significant values are retained,

it may be possible to implement an iterative sparse matrix solver in the boundary
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layer code. This modification is expected to reduce the memory requirements, speed
up the assembly of the Jacobian matrix, and reduce the time required to invert the
matrix during each Newton step. As a result, it would improve the performance of

the method significantly as well as permit the analysis of more complex geometries,

Trailing Edge Loading The computed pressure distributions for cambered airfoil sec-
tions show finite trailing edge loading. This is believed to be caused by the algorithm
used to compute the “inviscid” component of the velocity at trailing edge nodes, but

should be examined more closely to determine the actual source of the problem,

Wake Modeling The wake geometry is presently linearized and assumed to follow
the nose-tail line of the airfoil section. However, previous studies [44, 46] indicate that,
wake alignment can have an effect on the inviscid solution for a swept wing, especially
near the tip. It is important that the panel code incorporates features which improve
the inviscid prediction since it provides the base solution for the coupled problem, A

wake-tracing model should be added to the inviscid code,
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Appendix A

Surface Representation by
B-Splines

B-splines provide a simple, but very powerful, means of representing complex surfaces
mathematically. This appendix provides a brief overview of tensor product B-spline
surfaces and the transformation between derivatives in the B-spline parameter space
and 3D Cartesian coordinates. The reader is directed to the book by Rogers and

Adams [47] for a detailed treatment on B-splines.

A.1 Tensor Product B-spline Surfaces

Figure A-1; B-spline surface with its control net, The vertices of the control net are shown as closed
circles
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A point X on the surface S shown in Figure A-1 is mapped from the point (s,t) in
the parametric space by the tensor product B-spline expansion

N, N

X(s,8) =" Xi;S(s,1) (A1)

i=1j=1
where X;; are known global Cartesian coordinates of the control net vertices, S*/
are the rational B-spline surface basis functions, and N, and N, are the number of
control polygon vertices in the s and ¢ directions respectively. The parameters s and
t are assumed to be orthogonal to one another.

The rational B-spline surface basis functions are defined as
hi, i Nk (s)Mu(t)

v, ﬁ‘:lllil,lel,k(s)Mjl,l(t)

where N; x(s) and M;,(t) are the normalized basis functions in the s and ¢ directions

Si'j(.s, t) =

(A.2)

respectively. h;; are weights applied at each vertex which are assumed to be non-
negative. Rational B-splines basis functions are used instead of the simpler, integral
B-spline basis functions so conic sections can be represented exactly. If all the weights
are set equal, integral B-spline basis functions are recovered.

The ith normalized basis function of order k°, N ,(s), is defined using the Cox-
deBoor recursion relations [47].

Nii(s) =

{ 1 ifz; <s<aip

0 otherwise

s — ;)N p-1(s Tivk — S)Nip1p-1(8
M,k(s) — ( l) i,k 1( )+( i+k ) i+1,k l( ) (A3)
Zitk—1 — T Lipk — 2 + 1
where z; is an element of the s direction knot vector, The basis function in the ¢

direction, M,,(t), is defined in a similar manner,
A surface grid is generated by evaluating (A.1) at several values of the parameters
s and ¢, Chordwise grid lines are evaluated with ¢ fixed while spanwise grid lines are

evaluated with s fixed.

A.2 Derivatives of the B-spline Expansion

We are ultimately interested in calculating the velocity tangent to the surface at

point X. Surface tangent vectors can he evaluated analytically at any point on the
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surface using the B-spline expansion. The tangent vectors are used to compute a
transformation matrix relating derivatives in the parametric space to derivatives in
the global system and to construct a local Cartesian coordinate system on the surface
at X.

The surface tangent vector in the s direction at point X is obtained by differen-
tiating (A.1) with respect to s. X, represents the differential change in each of the

Cartesian coordinates along the surface due to a differential change of s at point X,

X  0X ay aZ Ny N

= — z] ,
e Js = (%5 ds’ ;;X;,S 5,1) (A4)
with S (s, t) defined by
N (N, D,
= - - = £
s=5(%-7) (A.5)
N and D are the numerator and denominator of (A.2) with derivatives defined as
Ns N
N, = LZ’I-UB. -A[zi.( s) M (t) (A.6)
i=1 l
D, = Z Z ha i N i (5) M (£) (A7)
i=11=1

The derivatives of the normalized basis function, N, are obtained by differentiating
the Cox-deBoor recursion equations with respect to the parameter s. The tangent
vector in the ¢ direction, X, is calculated in an analogous manner,

Introducing a third coordinate n, we define the outward unit normal vector at

point X by
. _0X _ S X
bp = — = 2 —H (A.8)
an Ia_x x o_Xl
as n

A.2.1 Calculation of the Transformation Matrix

X, Xy, and X, are the columns of a transformation matrix which relates differen-
tial changes in global Cartesian coordinates to differential changes in the B-spline

parametric coordinates at the point X.

axX 8xX ax
dX s Ot on ds
_ ay 8y ay _ 3
dY - ds at  on dt (A )
0z 09z 0z
dz o5 ot on dn
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wake layer

Ou dw
ACp = T;,,g"dﬂ"f’/?‘z—a——d?]

au
L / el (B.23)

= ( ) (L0+42)

= Cr(1.0- U)(10+A2)

The total dissipation coefficient is given by Cp = Cp,, + ACp
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Appendix C

Velocity and Displacement
Thickness Sensitivities

The coupling between the inner and outer flows is introduced through the edge veloc-
ity equations. The sensitivity formulae relating the edge velocities and displacement
thicknesses to the streamwise-crossflow components of mass defect are derived in this
section. The equations presented here extend the sensitivity formulae used by Drela
[10] in two dimensions to three dimensions.

The velocity sensitivities are formed by combining the elements of the velocity-
mass defect influence coefficient matrices that were presented in Chapter 4. Since they
depend on the direction of outer flow streamlines which is determined as part of the
coupled boundary-layer/potential flow solution, the sensitivities must be recomputed

for each Newton iteration

C.1 [Edge Velocity Sensitivities

(4.18) and (4.19) define the edge velocities as functions of mass defect in the surface
coordinate system that wraps around the wing (see Figure 2-3). (4.18) is restated
here for convenience, At node ¢, the chordwise component of edge velocity is

Nnodes Nnadea

ei = ug) + Z zlc mx kKt Z tk mz (C'l)

where E* and F* are the influence coefficients defined in §4.3.2, u( ) is the base inviscid
velocity tangent to the surface, and m, and m, are the components of mass defect in
the surface coordinate system. The base inviscid velocity includes the free stream and

inviscid perturbation velocity and is written as a single term to simplify notation, The
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z-z components of mass defect are replaced with streamwise-crossflow 1-2 components
of mass defect by substituting the 2D rotational transformation equations into the

edge velocity equation.

Mgz = MM COSQ — MySinq (C.2)

m, = mysina-+ mycosa

where cosa = 2¢ and sina = %ﬂ The chordwise edge velocity, expressed as a function
c €
of streamwise-crossflow mass defect, is:

Nnodcs
Ui = ul) + S (BZ cosa + FEsina) (my)
k=1
Nnodca
+ Y (—Ejsina+ Fjcosa) (ma)k (C.3)
k=1

The components of the rotational transformation matrix, cos @ and sin «, are calcu-
lated at the k** node using the local edge velocity from the previous iteration, Finally,
the sensitivities are derived by differentiating (C.3) with respect to m; and m.

8uei

o = (B cosar+ F sin o) (C.4)
1k
auei T z
B = (—E‘i,c sin & + Fi,c cos a) (C.5)
The sensitivities for the spanwise velocities are derived from (4.19) in a similar man-
ner. p
a::ei = (B} cosa + Fj sina) (C.6)
1k
Owe;
amm = (_.. i‘lf"k sin o + in: cos Of) (0'7)
2k

These equations define the sensitivity of the edge velocities at node i to the streamwise-

crossflow components of mass defect at node k.

C.2 Displacement Thickness Sensitivities

The streamwise component of displacement thickness is

«__m
5 = -q—l (C.8)

where ¢, is the magnitude of the edge velocity

@ = ik + 2 (C.9)
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The sensitivity formulae for 3%;7 and —g;% are derived by differentiating (C.8) by
chain rule, with the understanding that ¢, is also a function of the mass defect,

a6, 1 my Oqge

omy  q. q2 Omy

(C.10)

with
9. _ 0q. Ou, ) 0q. Ow,
om, Ou,Om; Ow.dm,

The discrete sensitivity formulae for the streamwise displacement thickness are

(C.11)

obtained by inserting the edge velocity-mass defect sensitivities from the previous
section into (C.10), At node ¢,

0d}: _ [_,”l; Oge Ouei | Oge Owe ]+% (©.12)
om g2 \OueOmy 0w, Omyy Qe
a(srz _ ___m_21 8‘]:: Ote; + an Owe; (0'13)
Omayk q? \Ou.Omor  Ow, Omayy
The equations are evaluated using the current values of ., m, ma, gz-”;, and g{ﬁ— at

node i. The last term in (C.12) is non-zero only when i = £k,
The equivalent sensitivities for the crossflow component of displacement thickness

are:

5*1' e ei e el :
a6} =[ m (Bq ou dqe Ow )] (C.14)

"q_g" Oue Omy  Ow, Omyy,

05 m e et e OlWeq i
983 [_J_n_zl_ (6q ou Oge Ow )] N Ok (C.15)
qe

am% N Bue 6m2k 6’we 6m2k Qe

108



