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OBJECT

The object of this thesis is to develop the linearized
equations necessary to solve for the forces acting on a heat
source in a two dimensional viscous, heateconducting fluid.

The simplified problem of the forces acting on a heat

source in a non-viscous, noneheat conducting fluid is to be solved.



INTRODUCTION

In this thesis a study is made to determine the forces act-
ing on a heat source in a compressible fluid. By considering that the
presence of the source causes only small disturbances it is possible
to linearize the differential equations which characterize the flow.
This assumption greatly simplifies the equations involved..

The solution obtained is for a point source of heat at the
origin, in a two-dimensional flew. The sclution for a source of heat’
at any other point (£,7), in the plane, is obtained by a change in
variables from Ex,y) to (x+£, ye7m). It is possible, therefore, to
solve for the forces acting on a source of heat of any shape if a
source distribution is assumed over the area concerned, by integrat-
ing with respect to &,7.

The results of this thesis can be of value in the field of
combustion by affoiding an insight into the disturbances produced,

and the forces acting, on & flame front of known shape.
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NOTATION

following notation will be used threughout this

velocity of sound.

1i

specific heat at constant pressure.

‘specific heat at constant volume.
Mach number.

‘static pressure.

lecal rate of heat additien.

total rate of heat addition.

gas constant.

abhsolute temperature.

velocity in x-direction.

free stream velocity.

velocity in y=direction.

v1-M°®
VIFET
ratio of specific hentskcp/cv
coefficient of heat conductivity,
coefficient of viscosity,
= second viscosity coefficient.

normal stress in x-direction.

= normal stress in y-directien,

= shear stress in xy-plane.



GENERAL EQUATIONS FOR TWO-DIMENSIONAL FLOW WITH HEAT ADDITION

The exact equations governing the flow of compressible

viscous fluids with heat addition can be written as follows:.

Equation of State
p = pRT
Continuity Equation

3pou N dpv =0
9x dy '

Dynamic Equations

Energy Equation

_Dh 1 Dp

DQ + 1
bt p Dt o Dt

In the equations above we have the following relationships:

du 2 du
T M T3 W) T
v 2 <, du
= _— . — - 4
%y 21 3y 3 (#,H ) (Bx
D _1 [3 3T El oT
Pt pl Bx( Bx) dy ¢ 3Y)

9
—!)-p

3y

"

(1)

(2)

(3)

(4)

(8)



2 du vy ? du. ? v 2
E o= (et | — + — + 9 =) + (—
¢ 3(““)[3:( ay] #[(Bx) (.ay)]
u[zez)”
t o 3 By
h = CT

L,
xy ~ # [3x By]

Let us consider that a uniform flow is approaching a
source of heat with a velocity U, in the poesitive x-direction, If
it 1s now assumed that the presence of the source of heat creates

only small disturbances we may write,

u U+
v = v
p=p°tp
p=p°tp
T=T° +T

where the superscript zero stands for the undisturbed coﬁ&itions and
the prime indicates the perturbetion caused by the addition of heat.

We will now insert the new variables into equations (4)
‘through (5), after eliminating T from equation (5) with the aid of
equation (1). Neglecting second order terms we arrive at the followa
ing simplified, and linearized, equations for a steady state viscous
flow with heéeat addition:

48



‘ Continuity Equation

e -a_ul+'a—vl+U§£l.—O
’p 9% dy dx (6)
Dynamic Equations
du’ [4 9%’ 1 3% %’ Jp’
op 2L [£ 20w 13 _ %
P '“[3 3% 3 oxdy | dy® o ()
IR T T N g .
9x #'3 oy? 3 xdy ox? | oy 8
Energy Equatien
ey o] [, e o
~ p°| ox* z p° | ox* dy*% R ox
dp! ;
+CpUT°a—§- = - q (9)

In deriving equations (6) through (9) a constant heat
transfer coefficient has been assumed. In addition, terms contain-
ing the second viscesity coefficient u’ have been omitted as
experiments to dstermine u’ indicate that its value is substantially
less than the value of u. The omisasion of ', therefore, does not
materially change the problem under consideration. v

We now place equations (6) through (9) in operator form.
Then, tieating them as four simultaneous equations involying the
unknowna u’,Av’, p‘,.and'p' in terms of q, we may solve fer u’ and

v'., We have then:



3 | aPUuTe 3 6 AuT® S G Phs 1 2
,_Ma L. —‘Ev‘+ 7A+LUT+4;LU _B_V4
3p° 3p°(y-1) | ox*

] T 3p%° & | p°

3 _omo 13 3
+ | CuTe +AUT°] B‘V"[ Wt Y13 g
ax P* 30D |
pou* . 3 : 3
+ | —— - C U p°T° | — = C U p°T° '
[(7-1) p- 7 ] e ~ U AT S
P wd . .7
= — —_— - —
ax[ p° Bx"v ! 4 (10)
Similarly
2,0 \' 7O 20 i, 217t 2 +
3| e e Mo TINUTY L AU ]a__v
ox 3p°pP°  Ox p° 3p° 3p°(y-1) | ox*
s 3 3
2 4 AUP°T®  TuU ? 2
+ | CplUT® + NUT® | =V - + a4
[ > ]3XV [ p° 3(y<1) ] x?
4 # 4
£°U 2 9 z
+ - CpUTp°T® | =—,.- CpUp°T® '
[(')’-1) o e ] et P o 3x* 3y?

(11)

z
_o[m o z 2 3, -
AR

= g ,pO 'ax’ay ‘ax'ay



In equations (iﬂ) and (il) the following notation has been usedﬁ

st;af— +BL
9x*  Ody?
. o 3t a*
Vie — + 2 —— + —
ox* 9x* dy oy4
& 6 6 €
v‘z—%+3 31+3az . +3
Ox 3x" dy 9y dy*

Equations (6), (7) or (8), (10) and (11) fully describe the

flow of a viscous, heat conducting fluid past a source of heat.



METHOD OF SOLUTION

In order to obtain solutiens for equations (10) and (11)
we replace u’, v', and q by their respective Fourier integral represen~

tations.

© , o .
ul(x'Y)‘:}{‘}[ A(£,m)sinfx cos My dfdm (12)
o ‘o
© L0
v (x,y) :J[ )[ B(£,m)cos £x sin my dfdn (13)
o ‘o
88}
q (x,y) = / C(&,m)cos £x eos 7y dfdn (14)
o Jo

In the resulting integral eguations we can equate the coefficients of
similar terms, Then if C(£,7m) is known, expressions for A(£,7) and
B(£,mn) are obtained. Using these expressions in equations (12) and
(13) we performz the integrations indiceted as the final step in the
solution for u’ and v’'.

It is possible to represent the heat addition from a source
by an impulse function. Thus if we let the tetal rate of heat addi-

tion be a censtant (, then

iy € €

im

e—-o/ / q{x,y)dxdy = Q
-t £ 3 A

Therefore, a possible solution for the local rate of heat addition

a(x,y) is



-0 when |x| or |y| > €
alx,y) = (15)
Q

z;iwhen |x] or IYlié €

We also have the relationship for a Fourier integral,
®
4
c,m = 'T'T‘/ / ql{p,A) cos &u cos mAadudr ' (16)
o ‘e
Hence selving fer C(&,7) we hnve;

E €
4
cg,m = —_J[ j[ -9; cos &1 cos A du dA
m 4e
o Jo

and

_Q
C(&,m) = s

We now have for the Fourier integral representation of the heat added

m.
q(x,y)-=-%;j[ J[m cos x £ cos vy M d&dw (17)
o o

-



In order to determine the forces, if any, acting on the
source of heat, an integration around a cenvenient contour surround-

ing the source is performed: For the force (X) in the x-direction:

X= _J[ pdy -][ ‘pu(udy - vdx) (18)
c ¢

The boundary conditiens to be imposed on the linearized
solution is that all disturbances must epproach zere, for all values

of y, at large distances in front of the heat source. Therefore

;iTw [u', v, p',‘p'lv= 0 (i9)

10



EQUATIONS FOR THE SIMPLIFIED PROBLEM OF
NO VISCOSITY OR HEAT ‘CONDUCTION

The linearized differential equations which ¢haracterize a
‘two-dimensional flow with heat addition are greatly simplified if
vigscosity and heat conduction are absent. Hence, when .= A\ = 0,

equations (7) and (8) reduce to

o . Ou' _ 3p'
P Ug;"——g (20)

3y’ 3p’
A~ (21)

Equation (20) may be integrated, giving

‘po U ul = ‘__pl + f(y)

However, on applying the boundary conditions (19) it is evident that
u' and p’ are zero for all values of y when x = - ®. Therefore we

conclude that

f(y) =0
and

If equatien (22) is differentiated with respect te y and the value of

éf inserted inte equatien (21) we have

Y
dv’ du’
= == (23)
Ox dy

11



The flow is therefore irrotational and a velocity potential ¢ may be

introduced. Let

(24a)

(24b)

Using the velecity potential the continuity equation (6)

becomes
3 2
3P P !
PPl t | tuU— =0 2
P [sz By‘] 9x (25)
Returning new to the energy equation (9), we have for
LE=EANF0
Cp op’ op!
Uf— -1} — - CpUT® =
[B Jax PPk T 9
or
1 3p; 2 ap‘]
—|uv—= —a*Uu—=| = (26)
7-1[ Ix * ox d
. op' 9’ . . .
Then, by eliminating 32 and 5 .from equation (26) by using egquations
. x x

(20), (24a) and (25) we obtain

12



1 , 239 s (3¢ 3
e - U — + p°x° —_— +__) =
(y-1) [ “ ax* roe (sz oy? a
or
z 2 2
poa° [ e, 0 2 qs]
- —_— ¢ —= | =
G | ) et ] T (27)

where M° represents the Mach number of the undisturbed fluid.
The differential equations invelving u'(x,y) and v’(x,y) in

terms of gq(x,y) can be obtained from eguation (27) by differentiation.

Therefore

p°a°1 a 3w ! 3g

. _Mo m——— 4 —— = o

(7-1) [(l B } 3 (28)
and

z 2 2
p°a’ [ Ay v '] _ Qg
- 7y = =24
el B B = (29)

The solutions for u’ and v’ are ebtained by applying the

methed outlined in Section IV of this paper.
Replacing u’ and g in eguation (28) by their Fourier integral

representations, equatiens (12) and (17) respectively,

© ® .
j{ j[ A(f,ﬂ)[_(i-M°‘)§t + nz] sin x £ cas ynd € dn
o ‘o

- w @
:—(721)’?]/ bgsinxfcosyndgdn
Yp
o /0

13



Equating coefficients of similar terms we find that

(r-1)Q ¢
A ) L= Y
(5 T)) ‘)/p°1T" [ (1~M° )‘fz"‘?‘)z ]

Eguatien (28) can now be written as

-ﬁ’lol ) 52

Wt (x,y) = (y- I)Q'j( j[ (151n x f €os ¥ 7 acdn (30)

Similarly by replacing v’ and g, in equation (29), by their

respective Fourier integral representations we have,

©
// ’B(f,"’}) [ (1-M°z)§z + 77"] cos x £ sin yn ddm
oJo
© o
// (r-1)Q / / m cos x £ sin yn dédn
rp* m*
o ‘o

From which we find,

(y-1)Q "
B » = 2 2 2
(f 77) ,ypo,” 2 |: ( ;-MO )f +7] ]

Therefore equation (28) becomes

14



© o ,

e - (-1)Q . n cos x £ sin y7 3

A2 (X,Y) ’)/p°Tf' / j (l—Mol )§£+n3 dfd’n (31)
: o /o

Finally the equations corresponding to a line source of heat,

at the origin, can be written as

ot} -]
' - -0 ¢ sin x¢
W) T S / o / RET T v
o . °
. and
( ) ® @
. _ (y-1Q 7 sin y7
s = ' I S ey
vi(x,y) porr ./[ cos X §/[ (1-M°t)f *n,dndf (33)
) o

15



HEAT SOURCE IN A NON-VISCOUS, NON-HEAT CONDUCTING FLUID, M°® < 1

Starting with equation (32), the following integration will

be performed first:
_ ? £ sin x¢ 1 ® £ sin x£d€
B TRTL Yo / £2()"
o ) . a

where a® = (1-M°%)

The methed of contour integration will be used to evaluate

the abeve integral. Let,

[+ = Zelxde
[Z+ 132 Z-1I’.

i ZelXxz
I' = _]; Bes ° x > 0
a Z+i7 = :m
a 1Z =il
a
I’ = W_i {e:s‘qj
Y
a 2
Hence,
7 X
. = 20} e & 7 x>0
and
I =_~§__le‘%“‘"" r® < x <O

16



We now have for equation (32), after the first integration with respect

to f

. ")
w'(x,y) = LM e'!a&' cos 4
Y x| 2yp°ma* yn e

o

Performing the final integration, with respect to 7, we ebtain,

vy = (y-1)Q x
u ix,y) z,n-ypoa [ xz 'leyz]
or
1o x '
u' (x,y) 277’)’p°\/1‘M.‘[$‘*(1‘M“)Y‘:| (34)

Equatien (34) represents the velocity increment in the
x-direction caused by a heat source, of strength Q, placed at the
origin.

For the velecity inecrement in the y-directien gquatiqn (83)

gives us the following integration to be performed first:

- 7 8in y7
I"/ o
: ,

where again a® .= (1-M"")

17



i R zel Y >0
= 971 Res. :
z+iad ) Y
zeial
. [e-ﬂf]
I =7
2
We have then
:.7.-7. -a.yf
and
- X7 alyl¢
I, = — — e b4 -0<Cy <
2yl 2

We now have for equetion (33) after the first integration with

respect to 7:

R ®
vix,y) = L r-1)0 o-01 V1€ cos x£ d¢
ly| 2myp® »
Q

Performing the final integration with, respect to £, we obtaini}

18



or
] - (y=-1W1-M"0Q y |
vi(x,y) 2myp® [ xz,',(l_Mat)yl} ' (35)

Equatioen (35) represents the velocity increment in the
y-direction, caused by a heat source, of strength Q, placed at the
origin. ‘

Using the relationship expressed in equation (22), the

pressure perturbation is found te be

' = (7"1.)M°Q ) | x
p (X.Y) . haad zﬂaﬁ‘/—_;zl- [x‘+(1-M°‘)y"} (36)

In deriving an expression for p'(x,y) we return to the linear-

ized energy equation (26), which may be written as

i 3 P 2 2
- e’ + a%Up!| =
cav~ GRS R

Or integrating beth sides with respect to x we have,

o, M, (y-1) *
prlxy) = - wt - q dx
{on]

Eliminating u’ with equation (34), we have finally,

X
1 = . - ‘ ¥
pl(x,y) 2778°3V1-M°2 [x‘i-(l-Mo‘)Y.] a®*U @ e o

19



where

x 0 foer x < 0
‘jr g dx = |
0 : 8§ (y)1(x)Q for x 20

From equation (18) we obtain the following relationship for

1

the force X, on the heat source, in the x-direction, for a linearized

‘selution,

X = —{J/}p°+p’)dy -J/f(p°+p')(U+u')[ (U+u')dy - v'dx J
e , c

or

X = -.}[ p'dy - 20°U J/;'dy +:p°€}( vidx - UZJ/;'dY (38)
c c c [+

Eliminating p’, u',v’ and p' with equatiens (34), (35), (36) and (37)

we have for equation (38),

§ = Sr=10M°Q x_dy (7-1)M°Q x_dy
 9ma%1-M°F | x*+(1-M°%)y*  ma®v1-M°F x2+(1-M°%)y*
c c .
I raryr= § ’
2ma® x2+(1-M°2)y*  2ma®v1-M"] x2+(1-M°®)y*
C

-+

G120 0
C

20



o

Or, after combining terms

- (-DINCQ . 1] x dy
9ma®y/1-M°F [ x®+(1-M°*)y"
c

f e (1-MF)y? | a0 8(y)-1(x)Qdy  (39)
C.

The integration indicated, to find X, will be greatly simpli-
fied if an ellipse with the follewing characteristics is choosen for

the contour;

x = R cos &

05g %
yI-M°% y = R sin 6 =@z
Hence, ‘
ence dx = - R ces 6 d6
R sin 6
dy = ———— d&
[V

Using these relationships we have, for equation (39)

(y=1)M°Q o (y-1)M°Q 2
X.=._-y-—-—,f cos®6 46 - jh—-f 'sin® 6 d6
27ra® 2ma® .
o [4]
"I)Mo .
+ _('y_o___/ 0 (y)-1(x)Q dy
a
e .

and

_ (y-1)M° 0+ (y-1)M°

0

8(y)+1(x)Q dy

a® a

21



However, in going around the contour the integral

i(x)Q/ 5(y) dy
c

has a value only when x é 0 and y = 0, as

. n .
Limit - - <
n-0 §(y) dy =1 and 1(x)Q =0 for 0 = x
“7
Therefore,
(y)-1(x) Q dy = Q
c
and
X=0 for M° < 1 (40)

We have, then, arrived at the following cenclusien. If a
line source of heat is placed in a non-viscous, non-heat conducting
fluid, whose Mach number in the undisturbed fluid is less than unity,

no force will be experienced by the seource.

22



HEAT SOURCE IN A NON-VISCOUS, NON-HEAT CONDUCTING FLUID, M° > 1

Before we attempt the solution for the case where M° > 1,

it will be well to examine the significance of the following integrai

)

) ©
& (x) :-—;/P cos xm dn
7
o

Suppose that we have an impulse function with the follewing

characteristics.

d (x) =0 when - & x|® €

Lim €
e—»O[ 6 (x) dy =1
=€

A possible solution is, & (x) =

€
Lim 1
€0 e 4
-€

Now, let this solution be represented by a Fourier integral:

' ™
8 (x) =;//’ a{x) ces xn d7y
; o
@
a (x)‘=—g;/’ 8 (x) cos nx dx
m
o

23
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where



. 1
“But & (x) = gig- e between zero and € and is zero elsewhere.

Hence

(x) =
2 ) €0 7

i
t-q
e
=
[
N
m
O
N O
L3 7
3
B
Qu
"

= Lim 1 sin 7€
0 7 ne
1
a(x) T —_
”

Therefore the Fourier integral representation of the

impulse functien is:

@
1
8 (x) = ;r—] cos x7 dn (41)
o

Returning now te the szolution for M® > 1, we find that

equ@tion (30) may be written as:

R o ‘
, - (r-1)Q ] cos y7 f ,
Y ypome /,- F o xg/o o (gE 1% 42

where S*:= (M®*-1)

24



Once again the method of contour integratien will be

used to evaluate the follewing integral

Let,
= el¥Z gy
r ”/c (0B8] L]
o=y o€V 2
=5 Res [[ztﬁ%}]zttﬁf
o | eiRYE _ e=ifyg
I = -5 98
Finally

;.= _ 7msin fBye | (43)

3 zﬂf

Therefore, equatien (42) becomes after the integration with

respect to 7:

, © v
2l (x,y) = -'é?i%%é%}(' " sin x & sin By & d¢ (44)

25



An examination of equation (44) reveals that it repres-
ents an odd functien in x. However, the character of the flow
under consideration (M® > 1) is such that a disturbance in the
fluid is not propagated upstream frem the point <f disturbance.

It is therefore necessary, in order to satisfy this beundary cendi-
tion, to add a particular selution of the form ces x & ceos y7.

We therefore have for equation (44), after adding a term of the
form cos x£ ces By€,

cos (x<fy)¢ df (45)

But, as has been shewn, the integral in equation (45)

represents an impulse function.
PR
o1
8 (x-By) =';7J/F cos(x=fy)¢ d&&
o

Therefore

(7-1)0

o e S (xvM°F-1 ) (46)
2ypoYME -1 (x Y |

u'(x,y) =

To solve for v'(x,y) equatien (33) is rewritten as,

[#2] [o9]

, _ (=120 . - 4

vi(x,y) = - —_'yp%r‘,ﬁ"f 7 8in y 7 [ %z%% d¢ dn (47)
(3] o

26



Applying the method of contour integration to the follow-

ing integral, we have:’

@®
\ vos 52
. ;/ _cos xb_ .,
4 t_ (2
G

Let
eixzdz
j (z2D)(2-1)
¢ BB
i [eixz}
I' =— Res | —=
2 i P
7i eI%n-e°1§n
re-7 27
B
Hence

14;_ ﬂsinﬁh

" (48)
2
B

Therefore equatien (47) becomes after the integration with
respect to &:

oo [

r-1)Q . . v
v (x,y) = ——— sin £ 1 sin y 7 dn (49)

2yp°nB B

27



Once again we must add a term to satisfy the conditien
of ne disturbance propagation upstream from the heat source.

After adding a term of the ferm cos % 7 cos yn we have for equation

(49):
-1)C
v (x,y) = 52;3251 cos (X < y) n dy
2’)’p 77,3 o ‘ ﬂ

Changing variables se that 7 = ﬁnf_‘we have:

® k ‘
-~ (y-1)Q ' p
v/ (x,y) = ces (x=<By)n dn' 50
| V) T pmem Ayl dn (50)
o
Once again the integral in equatien (50) is recognized
as the Fourier representation of an impulse function. We have

+ then,

(7-1)Q
2yp°

!

v (x'y)v:

5 (x-vM°% -1 y) ‘ (51)

To find p'(x,y) we return to equation (22). Eliminating
u’ from (22) and (46),

(')’*1)M°Q T . '
! = L} M - 52

The relatienship for pf(x,y) is agin found by rewriting

eguation (26) as,

X
e (x,y) = e u' - &-1) q dx
! a® aolU .m

28



" Hence

' A . X

(y-1)MP° —— (y-1) [

o (x,y) = 21"’—"/1\7__1-‘;:%1- S(xM°*%-1 y) ———aZzU / q dx (53)
<0

where
x | o0ferx<o
/ q dx =
0 8(y)-1(x)Q for x 3 0

‘ The impulse functien & (x#M°"-1 y) is of special significance as
it indicates that the entire disturbance can be considered to occur in the
vicinity of a straight line determined by

x -vM° -1y =0

or .

1
I (54)

T APl

If we examine the characteristics of a Mach wave originating at the origin of

coordinates we find that:

y Mach Wave
__1 y .
Tan 6 = —/= =~ M
)/Mo -1 X O = Taﬂ.‘ ]
y Vor-d
X

Hence we note that equatien (58) is
the relationship determining the posi-

tien of a Mach wave in a supersonic

stream.

29



The disturbance caused by a heat source in a fluid with, M° > 1,
is therefore zero everywhere except on a Mech line originating at the source.
Along the Mach line the changes from free stream conditions appear as
impulses.

To determine the forces 8cting on the heat source in the supersonic
stream we again apply equation (38). However, as a change from free stream
conditions eccures only on the Mach line it will be found convenient to inte-
grate around the rectangular contour shown in the sketch belew.

/c Mach Wa?e
)

Y)

€& - \
CX= -/p dy —/ [ (20°0u’ +0%" ) . dy - Im":"dx]
[+ C

By choesing the above path of integration we find that the enly

contributiens to X come from the follewing terms

7 3
x=-y? p' dy - 2p°U v'dx
-7 ~£ ,

The quantities p’ and u’, having values enly aleng the Mach line, will net
centribute te X. However o', will centribute to X at the point (£,0)
because of the term invelving, 5(y) 1(x)Q. We therefore have

7 ¢

X = 9‘_‘%2’!‘1’ §(y)-1(x)Q dy - M § (xM° -1 Y)dx
a
-7 ‘5
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Bat by definition the integral of the impulse functien 8(x-M°" -1 y)

with respect to x is equal to unity. Also as we have shown previously

/ §(y)-1(x)Q dy = Q 0< x
C

Hence

X =0 Me > 1 | - (55)
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SUMMARY OF EQUATIONS

|

J'

M° < 1
,_ (=120 x
2mypo/ 1-M°" | x*+(1-M°*)y?
. (y=1D/IQ y
v’ .

27yp° x2+(1-M°*)y*

, (y-1)M°Q x
P T omady1-MoT | xte(1-M0%)y?

, (y-1)M°Q x
P T T ama®?IME | x4 (1-M°%)yR

32

]_

' X

(y-1)

a®*y : q dx
00



o
f

H

X 0 for x < 0
where / q dx = .
-0 . §(y)1(x)Q for x > 0

SUMMARY OF EQUATIONS

(y-1)Q

T 2ypoYME -1

2yp°

_ (y-1)M°Q

2a%M°" -1

(y=1)M°Q

2a°3/M°% -1

M® > 1
x>0

[5(x—/M_r° 1 y]

_ (y-1)Q [B(x./M"’_° ) y)]

[ 3 (x-vM°® -1 y)]

[ §(xvM°" -1 y)] -%2
a®°" U

-
-

33

x
/ q dx
00



et

CONCLUSIONS

The results of this thesis indicate that there are no
forces acting on a heat source placed in a non-viscous, non-heat

conducting, compressible fluid. The lack of such forces has been

demenstrated for beth subsonic and supersonic free-stream veloci-

ties.
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