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OBJECT

The object of this thesis is to develop the linearized

equations necessary to solve for the forces acting on a heat

source in a two dimensional viscous, heat.conducting fluid.

The simplified problem of the forces acting on a heat

source in a non-viscous, non-heat conducting fluid is to be solved.

1

- - __J



INTRODUCTION

In this thesis a study is made to determine the forces act-

ing on a heat source in a compressible fluid. By considering that the

presence of the source causes only small disturbances it is possible

to linearize the differential equations which characterize the flow.

This assumption greatly simplifies the equations involved.

The solution obtained is for a point source of heat at the

origin, in a two-dimensional flow. The solution for a source of heat

at any other point (!f,7), in the plane, is obtained by a change in

variables from tx,y) to (x-e, y-77). It is possible, therefore, to

solve for the forces acting on a source of heat of any shape if a

source distribution is assumed over the area concerned, by integrat-

ing with respect to e,7.

The results of this thesis can be of value in the field of

combustion by affording an insight into the disturbances produced,

and the forces acting, on a flame front of known shape.
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NOTATION

The following notation will be used throughout this

thesis.

a velocity of sound.

C specific heat at constant pressure.

C, specific heat at constant volume.

M = Mach number.

p static pressure.

q = local rate of heat addition.

Q total rate of heat addition.

R gas constant.

T absolute temperature.

u velocity in x-direction.

U free stream velocity.

v velocity in y:-direction.

= VM 1-
C.

ratio of specific heats P/C,
X = coefficient of heat conductivity.

= coefficient of viscosity.

p second viscosity coefficient.

0r normal stress in x-direction.

0 y normal stress in y-direction,

T- shear stress in xy-plane.xy

a



GENERAL EQUATIONS FOR TWO-DIMENSIONAL FLOW WITH HEAT ADDITION

The exact equations governing the flow of compressible

viscous fluids with heat addition can be written as follows:.

Equation of State

p pRT (1)

Continuity Equation

-+ -= 0
ax By

Dynamic Equations

u 0r Xv - - = --
By Bx X

P u +

pu -- +x

p u-+[ x1

Energy Equation

DQ 1 Dh

Dt p at

1 Dp

p Dt

+ r
+ 2X

Zy

(2)

(3)

(4)+x -dy

(5)

In the equations above we have the following relationships:

au 2
S=2A -- -

'8x 3

Bu B v
( ') -+-) -
*3x By

Zv 2 au 2v

oY 2 y- -(/-y') (- + -) - p

DQ 1 81T
Dt p Ix *ax

( ---) + q ]
-6y

4

p

v

*ay



2 r u 3v1 Bu2  By 22 p - ' + -3 + 2 p ( - ) + ( - )

3 ax lay ax 'ay

+ aV 3+ -

,3x 'y

h C T

xy lx 6y

Let us consider that a uniform flow is approaching a

source of heat with a velocity U, in the positive x-direction. If

it is now assumed that the presence of the source of heat creates

only small disturbances we may write,

u = U + u'

V =s p

-.= 0 +p'

p = p0 + p'

T T* + T'

where the superscript zero stands for the undisturbed conditions and

the prime indicates the perturiation caused by the addition of heat.

We will now.insert the new variables into equations (4)

through (5), after eliminating T from equation (5) with the aid of

equation (1). Neglecting second order terms we arrive at the follow.

ing simplified, and linearized, equations for a steady state viscous

flow with heat addition:
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Continuity Equation

ru ~ 3v' 1p
p - +- U -. 0 (6)

'3x y ax

Dynamic Equations

'au' 4 t-u' 1 3'a Zu' -a '_Up*U -= : + -+ - (7)
8x 3 'xZ 3 'xay 3y J

av' 31,[ 1 ?u' I ?v2u 3p' (8)
pU- +-- +- (8)

Bx 3 y 3 xy ax 2  ay

Energy Equation

T* [ Lp' r p1 T* o[ p' _aZ' Cp 1p'-- +-- - .- +----l--
p0 Lx By X p0 ax ByL x

+ CpUT* - - q (9)

In deriving equations (6) through (9) a constant heat

transfer coefficient has been assumed. In addition, terms contain-

ing the second viscosity coefficient /' have been omitted as

experiments to determine p' indicate that its value is substantially

less than the value of a. The omission of p', therefore, does not

materially change the problem under consideration.

We now place equations (6) through (9) in operator form.

Then, tteating them as four simultaneous equations involving the

unknowns u', v , p', and p' in terms of q, we may solve for u' and

v'. We hive then:

5



4Xy4UTo 3 v kyT* 
- P --- v +
3p~p* 3x p*0

74pU"T* 4 2U

+ -- V
3p* 3p0 (-1) axz

. +ak UP*T* 7 U' 'as
+ C T + XUT* --V - + - --x

-ax po 3(71 'ax?

(+ .1) - CPUzp*T* - C UpOTO a a u'

au 36 F .4 3 2 ]v- U 'T

Similarly

4XpaUT* 0 4 i kgT*

3pp* ax p*

+ CpzUTO + AUT* 11 -+

7X~4JaTo + 4AILt
3 P0 3p*(y-1)

I xu pOTO +7,4U 3

p 3 yi1)

+ - CpU p*T] CpU p*To j
(Y- ~ U) x

,x p* 3xy a

30

(11)
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In equations (10) and (11) the following notation has been used:

S + 2+ -
3x4 3x3yZ a 4

66
V +3 +3 .-

Equations (6), (7) or (8), (10) and (11) fully describe the

flow of a viscous, heat conducting fluid past a source of heat.

7



METHOD OF SOLUTION

In order to obtain solutions for equations (10) and (11)

we replace u', v', and q by their respective Fourier integral represen-

tations.

u' (x, y) A(6,77)sinx cos -7y dfd- (12)

0 0

v' (x,y) B(f,7)cos ex sin 77y dfd) (13)

q (x,y) C(!f,)cos x cOs 7y dfd (14)

In the resulting integral equations we can equate the coefficients of

similar terms. Then if C(e,7) is known, expressions for A(e,7) and

B(e,?) are obtained. Using these expressions in equations (12) and

(13) we perform the integrations indicated as the final step in the

solution for u' and v'.

It is possible to represent the heat addition from a source

by an impulse function. Thus if we let the total rate of heat addi-

tion he a constant Q, then

Lim[
-im q(x,y)dxdy Q

Therefore, a possible solution for the local rate of heat addition

q(x,y) is

8



0 when fxj or IlI > e

q(x,y)

when lxI or lyl 'E

We also have the relationship for a Fourier integral,

CU,-)(,O) cos y cos -XdsdX

0 0

Hence solving-for C(e,-r) we have:

4 Q
C(e,-r)) f cos ea cos -q dy dk

7Tjr 1 4 Ez"

(15)

(16)

and

7C~f,-r7)

We now have for the Fourier integral representation of the heat added

0 c
q(x, y) =- Cos x e Cos y .7 dedr (17)

.ffz 1 o

9



In order to determine the forces, if any, acting on the

source of heat, an integration around a conv anient contour surround-

ing the source is performed: For the force (X) in the x-direction:

X = - pdy pu(udy - vdx) (18)

The boundary conditions to be imposed on the linearized

solution is that all disturbances must approach zero, for all values

of y, at large distances in front of the heat source. Therefore

L, ' 0 
xnLu' v' p'P 1 =0 (19)

10



EQUATIONS FOR THE SIMPLIFIED PROBLEM OF

NO VISCOSITY OR HEAT CONDUCTION

The linearized differential equations which characterize a
two-dimensional flow with heat addition are greatly simplified if

viscosity and heat conduction are absent. Hence, when f = 0,
equations (7) and (8) reduce to

-P U -- (20)

pC U - -- (21)
?x )y

Equation (20) may be integrated, giving

p0 U u' - pt + f(y)

However, on applying the boundary conditions (19) it is evident that

u' and p' are zero for all values of y when x,= - W. Therefore we

conclude that

f(y) = 0

and

p0 U u, = - p' (22)

If equation (22) is differentiated with respec't to y and the value of

'-2 inserted into equation (21) we have
y

3v' _ *u'- - u
,ax 'ay

11
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The flow is therefore irrotational and a velocity potential f may be

introduced. Let

B' (24a

v -(24b

Using the velocity potential the continuity equation (6)

becomes

W* -unn + to - + U (9) w h f
xi 'ay " ax

Returning now to the energy equation (9), we have for

)

(25)

).= x = 0

CpU -
R

- 1 - -3pI- CpUT*- = q
Zx "ax

1 U 3' a U ax
Y-1 [ 3x Ix

(26)

3p' 3p'
Then, by eliminating and - from equation (26) by using equations

(20), (24a) and (25) we obtain

12
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(P-1) U x + po'y q

or

(1-Mo ) -+= q (27)

where M* represents the Mach number of the undisturbed fluid.

The differential equations involving u'(x,y) and v'(x,y) in

terms of q(x,y) can be obtained from equation (27) by differentiation.

Therefore

00a~ r . ' U1  
*SU' _qO a (1-M ) - + - - (28)

(y-l) [x y2  3

-and

POa a Ox , ' Z S [(-M )- + - (29)
(7-1) 1 ax* Zy1

The solutions for u' and v' are obtained by applying the

method outlined in Section IV of this paper.

Replacing u' and q in equation (28) by their Fourier integral

representations, equations (12) and (17) respectively,

J- A (6, 7) 1 -Mox ) 2 + 77 sin x !f cos y -q d Ld 7

0 0

.Q sin x e cos y 7 d d 77

0 0

13



Equating coefficients of similar terms we find that

A (e,?7) = ^-)Q66
Y p 0-rr (1-m * )I +77

Equation (28.) can now be written as

U, Y) (Y-1)Q
u ( x,y)

Yp*-rrZ
0 0

sin x f cos y -q

(1-moLX. z 2 dfd77

Similarly by replacing v' and q, in equation (29), by their

respective Fourier integral representations we have,

SB(,7)) (l-MO)a + 77J cos x e sin y- ded7

jcc cc

j ylQ 77 cas x f sin y?7 dgd7

0 0 0 0

From which we find,

B~,7) =(Y-I)Q 77

Tp0 T I [tio (2) +77 l

Therefore equation (28) becomes

14
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(V (-1)Q 
v'(x, y)T

77 cos x sin y7

(l1-MO ) a+7*
(31)

Finally the equations corresponding to a line source of heat,

at the origin, can be written as

u'(xy) = (Y-)Q
7yp1r "

e sin x d
cos y z d-d

0 0

and

(v- 1)y Q C x 77 i n y77 d-r7d
V'(X~y) = cos x V a fo7d

is

I

(32)

(33)
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HEAT SOURCE IN A NON-VISCOUS, NON-HEAT CONDUCTING FLUID, M* < 1

Starting with equation (32), the following integration will

be performed first.

e sin xe

(1-Moa)4z+-r
0

00 sin xfdf

ax 2+()

where _ (l-Mo)

The method of contour integration will be used to evaluate

the above integral. Let,

1 Zeixzdz

I'z i 
Z 'i Z-i3.

a

as

R Zeixz
ca

z+i ~ X > 0
Z

.el 71]

Hence,

_ T -eX
Ie a 7

2a*
x '> 0

and

I -
a' T OD < < 00

16



We now have for equation (32), after the first integration with respect

to 4:

CO

u (x,y) x (Y/)Q
Ix| 2yp*-rra}x I 2pO7T

e cos y d77

Performing the final integration, with respect to -r, we obtain,

(7-1)Q x
u'(x,y) (y-)[x ]

27rypa [xt+a yz

or

U,(X(), -1) Q x yz(4u' (x,y) ( y-4)[
27ryp*V/1-M*R [1 +(1-M') yJ

Equation (34) represents the velocity increment in the

x-direction caused by a heat source, of strength 0, placed at the

origin.

For the velocity increment in the y-direction equation (93)

gives us the following integration to be performed first

sin y7

where again a' = (1-M)

17
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Let

I Y zelYZdz

c ( z-ia4 I Z -ial

y > 0

z4*ia6

Ti Res. z :

I =ri[e~~

2

We have then

= 2-ay,
S2 e y> 0

and

lyl 2
- a < y '< N

We now have for equation (33) after the first integration with

respect to '7:

y (Y-1)Q
y I 2irypo

0

e-a yf cos x6 de

Performing the final integration with, respect to e, we obtaini

18
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S(x,y) -l)aQ
27ryp* xz+aAyJ

or

V ('y-1)/1 -Mel Q y
v' (x,y) 0 (y-lv0'Q

2iryp* xz+(l-M)y*j

Equation (35) represents the velocity increment in the

y-direction, caused by a-heat source, of strength Q, placed at the

origin.

Using the relationship expressed in equation (22), the

pressure perturbation is found to be

(36)p'(xy) (y-l)MQ _ _ _

27ra0/v-iM* x&+(1-M04)yJ

In deriving an expression for p'(x,y) we return to the linear-

ized energy equation (26), which may be writte-n as

- *Uiu' + a*ZUpul q
(y-1) ax

Or integrating both sides with respect to x we have,

x
'PGM* (y-1)

p' (x,y) - - u' - aOU q dx

Eliminating u' with equation (34), we have finally,

' (x,y) a (y-l)MQ x 0A*]p'(xy) -2lra**/1-M*F Lx+(-M)yJ
('y-1)

a**U
q dx (37)

19
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where

x

q dx

0 for x < 0

S(y)-l(x)Q for x 0

From equation (18) we obtain the following relationship for

the force X, on the heat source, in the x-direction, for a linearized

solution,

X.- j(P*+P)dy - (p*+p')(U+u') (U+u')dy - v'dx

or

X - p'dy - 2p*U jUidy + -p*U 'dx -U P'dy

c c- e Ie
(38)

Eliminating p', u',v' and p' with equations (34), (35), (36) and (37)

we have for equation (38),

(y-1)M*Q x dy (y-1)M*Q
2-.a/1* cJx+(-Ma)yl - rra*/1-MO

x dy

Xr-+ (1 -mor ) YR
Ic

+ (-l)Ml/ -M*lQ f
2 a*Jc

y dx (_,1)Mo 3Q x dy

x +(l-MG')ya+ 2-Ta*y1-M- x*+(1-M*)yZ

(-1)M*+ y) fr 8(y)-l(x)Q dy
C

20
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Or, after com'bining terms

x .= -
(- 1) * MO - i] 27ra*v/-M* O

x dy

xa+(l-MO)ya

+(y-)M*/l-M** Q y dx + (Y-l)M*
27Ta* x 2+(l-MO)yz + a*

C

8(y)-1(x)Qdy

c

The integration indicated, to find X, will be greatly sinmpli.-

fied if an ellipse with the following characteristics is choosen for

the contour;

Hence,

x R cog 6

1 -M y sin 6

dx = - R cos 9 dO

0 ,. & 27T

dy=R sin dO
dy = d

Using these relationships we have, for equation (39)

_ (y-l)M*Q 27T
X. -

2Wa*
cos 6 dO -

27r
(y--1)M*Q

2ra* .

(-1)M*0+ 8(y)-1(x)Q dy

and

-(y-1)M* (y-1)M*X.= - O Q+ , 8(y)-l(x)Q dy
a 0a0 1i

21
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However, in going around the contour the integral

l(x)Q 8(y) dy

has a value only when x 0 and y.= 0, as

Limit 77
77 - 0 8(y) dy = 1 and l(x)Q - Q for 0 1 x

Therefore,

S(y)-l(x) Q dy Q

C

and

X = 0 for M* < 1

We have, then, arrived at the following conclusion. If a

line source of heat is placed in a non-viscous, non-heat conducting

fluid, whose Mach number in the undisturbed fluid is less than unity,

no force will be experienced by the source.

22
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HEAT SOURCE IN A NON-VISCOUS, NON-HEAT CONDUCTING FLUID, M* > 1

Before we attempt the solution for the case where M* > 1,
it will be well to examine the significance of the following integral

8 (x) - -
0T

cos x77 d-r

Suppose that we have an impulse function with the following

characteristics.

S (x) = 0

Lim
E0

when - lx|> E

8 (x) dy 1

1
A possible solution is, 8 (x) =-,

2e

Lim
E -0

as

1
- dx
2e

Now, let this solution be represented by a Fourier integral:

00S(x) 0 a(

2
a (x)

7T
0

x) cos x d'rq

8 (x) cos -rX dx

23
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But 8 (x) = Lim - between zero and E and is zero elsewhere.
He0 2e

Hence

6

a (x) Lim 2
C-0 7T f

cOs -)7x dx
26

Lim 1 sin 77e
C-0 7r 771E

a(x)
7r

Therefore the Fourier integral representation of the

impulse function is.

S(x) =--7rff cos x-7 d7 (41)

Returning now to the solution for M* > 1, we find that

equation (30) may be written as:

U -(y-)Qfu'I
yp 7 Jo

sin

where ;,8z.= (Mz-l)

24

Cos "j d77dc
7-r (g

(42)



Once again the method of contour integration will be

used to evaluate the following integral

o S 77g

Let,

%' eiyz dz

C

rieeyz
I -eRes

2 [e z+#911 Zut

13 i

e 10Y - ei/3y5 '

2E

7T Sin 8ye
I -

Therefore, equation (42) becomes after the integration with

respect to 77:

u'(x,y) .
2 p'r;6 f

sin x 6 sin 8y d6

25
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An examination of equation (44) reveals that it repres-

ents an odd function in x. However, the character of the flow

under consideration (M* > 1) is such that a disturbance in the

fluid is not propagated upstream from the point df disturbance.

It is therefore necessary, in order to satisfy this boundary condi-

tion, to add a particular solution of the form cos x f cos y7.

We therefore have for equation (44), after adding a term of the

form cos x cos $yf,

u' (x,y) = -
2yp0 77/3.

0#

cos (x-#,8y)f d~f

But, as has been shown, the integral in equation (45)

represents an impulse function.

( -y)
8 ( xn~ ,

cos(x-#y)e de

Therefore

u'(x,y) = - i (x-/M**l1 y)
2epov/M* t

To solve for v'(x,y) equation (33) is rewritten as,

(46)

(Y-1)Q
v' (x, y) - Y- l)7 0 17 sin y

cos , d
i 2 df 17

26
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Applying the method of contour integration to the follow-

ing integral, we have:

I0z

0

YJ
%c

Let

c 0s X6 d

eixzdz

(-2)( z- -)

Vi
I --

2

Ti
I - -

2

ReBis
[Z J

e-7 - e2/x

'2 7

I - 7r ain 77

4 
2 7
3

(48)

Therefore equation (47) becomes after the integration with

respect to e:

CO

V, (x,y) =(Y-l)Q
2yp77/3

sin - 17 sin y 77 d-q

27
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Once again we must add a term to satisfy the condition'

of no disturbance propagation upstream from the heat source.

After adding a term of the form cos E 7 cos y" we have for equation
#

(49):

V', Y) = (-1)
2'(x0y) f

cos (. - y) -7 d77

Changing variables so that -r = 7-r we have:

(Y-1)Q
v' (x,y) =

2ypw
cos (x-3y)71' d7 '

Once again the integral in equation (50) is recognized

as the Fourier representation of an impulse function. We have

,then,

= (y-l)Q
v' (x,y) 8(xVMo#- y)

27p*
(51)

To find p'(x,y) we return'to equation (22). Eliminating

u' f-rom (22) and (46),

(52)(Y-1)MQ
p' (x, y) = 8-- - (x4M* -1 y)

The relationship for p.(x,y) is agin found by rewriting

equation (26) as,

x

P ', 
u' y-

- -Iac a 0AUI

28
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X
= (y-l)M*Q __-_ -f

p' (x,y) = 1U8(x-1 y -
2a*Mft-1aOZU

q dx

0 for x < 0

q dxf=

8(y)-l(x)Q for x > 0

The impulse function 8 (x-V1_1 y) is of special significance as

it indicates that the entire disturbance can be considered to occur in the

vicinity of a straight line determined by

x - VI -1 y : 0

or

1 (54)

If we examine the characteristics of a Mach wave originating

coordinates we find that:

Y1

1 y
Tan 0.

Hence we note that equation (58) is

the relationship determining the posi-

tion of a Mach wave in a supersonic

stream.

at the origin of

Mach Wave

x

29

Hence

where

(53)

fMx

I



The disturbance caused by a heat source in a fluid with, M* > 1,

is therefore zero everywhere except on a Mach line originating at the source.

Along the Mach line the changes from free stream conditions appear as

impulses.

To determine the forces acting on the heat source in the supersonic

stream we again apply equation (38). However, as a change from free stream

conditions occures only on the Mach line it will be found convenient to inte-

grate around the rectangular contour showv in the sketch below.

y

Mach Wave

MO 7

X- p' dy

c

[ (21p*U'+U2P') dy - hUv' dx]
Sc

By choosing the above path of integration we find that the only

contributions to X come from the following terms

77

x - U 2

-77

p' dy - 2p*U

Ihe quantities p' and u', having values only along the Mach line, will not

contribute to X. However p', will contribute to X at the point (,O)

because of the term involving, 8(y)-(x)Q. We therefore have

x=(y-l)M*X (Y1N
ao

-77

(Y-1)M*Q
S(y)-(x)Q dy - ( )

30
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But by definition the integral of the impulse function 8(x-i1* y)

with respect to x is equal to unity. Also as we have' shown previously

3(y)-1(x)Q dy. Q 0 < x

c

Hence

x= 0 DI > 1 (55)

31



SUMMRY OF EQUATIONS

MO < 1.

,l (Y- 1)Q
U- PV744 I

27iyp
0

pf (y-1)m*Q
-27Ta'PQV 17o

[ a +(i-Mo.)yZ]

[x+UoayI

p- ('Y-1)M0Q xp 27Ta 3V/1 _M [1 X2+( 1Mo 2) Y2J

x = 0

32
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SUMMARY OF EOUATIONS

M* > 1

x > 0

(y-4)Q
u 02Up*/M* -2yp Ml -1

(y-1)Q

2yp0

(Y-1)M*O
p 2 aovML 1

s (x -Vil yJ

[ (x-/M 0- Y)

(y-1)M*Q

2a*VM*Z-1 I

x
(y-1)

aO U
q dx

X = 0

x

where

0 for x < 0

q dx

S(y)-1(x)Q for x > 0
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CONCLUSIONS

The results of this thesis indicate that there are no

forces acting on a heat source placed in a non-viscous, non-heat

conducting, compressible fluid. The lack of such forces has been

demonstrated for both subsonic and supersonic free-stream veloci-

ties.
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