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ABSTRACT

In this thesis are formulated the general differential equations of
motion for the magnetization in a small ferrimagnetic ellipsoid magnetized in
an arbitrary direction and excited by spatially uniform microwave magnetic fields
of arbitrary frequencies and directions. The magnetization is assumed to consist
of the uniform precession plus a typical small-amplitude spin wave.

At first the spin wave terms are neglected and various solutions obtained.
The approach used is to first assume that all applied microwave fields are zero
but that at some initial instant the magnetization is nonparallel to the inter-
nal field. The resulting transient of the magnetization is obtained and yields
the natural precession frequency as well as information about modulation products
that are created by the internal modulating fields. The forced or steady-state
solutions when various driving fields are applied are next obtained for both
linear responses, in which the magnetization precesses chiefly at the driving
fiequency, and nonlinear responses, in which it does not. A mechanism of second
harmonic parametric coupling is analyzed, which is strongly dependent on sample
shape and the minimum threshold is given.

The spin wave terms are now considered and various quantities of interest
derived. The generalized spin wave spectrum is found together with the first
and second order instability thresholds beyond which certain spin waves go
unstable. These thresholds are obtained for both linear and nonlinear responses.
Direct parametric coupling between microwave driving fields and certain spin
waves is shown to exist. A method is described by which it appears feasible to



selectively drive any spin wave that is degenerate with the uniform precession.
This would provide a means of measuring the spin wave line width, 2 &Hk, as a
function of wave number k without changing sample geometry, saturation magneti.
zation and/or frequency.

The transient build up and decay of the uniform precession, in response to
a pulsed microwave driving field, is discussed as well as the dynamics of spin
wave interaction. In particular it is shown that if the magnetization of a
spheroid could suddenly be inverted with respect to the magnetizing field, cer-
tain cut-off spin waves would grow very rapidly at the expense of the uniform
precession. The spin wave spectrums, appropriate to succeeding stages of the
ensuing transient, are derived using a quasi-static approximation and they give
at least a qualitative picture of the highly nonlinear loss mechanism. The
position of the uniform precession, relative to the spin wave manifold during
transient conditions, is also studied.
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Title: Professor of Electrical

Engineering
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INTRODUCTION

It is the intent of this thesis to establish a broad theoretical frame-

work suitable for treating many of the linear and nonlinear interaction

problems arising in a small ferrimagnetic ellipsoid in a relatively simple

and straightforward manner with emphasis on the physical picture. The funda-

mental principle underlying practically all microwave devices involving ferro-

magnetic interaction is that of ferromagnetic resonance. In ferrimagnetic

insulators, the basic mechanism of resonance is well understood but there are

some sophisticated aspects of the problem, generally of nonlinear character

that are only beginning to be fully appreciated. These manifest themselves in

the realms of parametric amplification and oscillation, harmonic and subharmonic

generation, and ferromagnetic resonance loss mechanisms.

The magnetization within a ferrimagnetic solid is made up of an ensemble

of magnetic moments, arising from individual electron spins, which are coupled

together quantum-mechanically. Their positions are subject to statistical

variations and it is customary to resolve these normally small fluctuations

into a Fourier expansion both in space and time coordinates and to call an

individual member of the expansion a spin wave, The conventional picture of

resonance neglects these fluctuations and, for small enough samples, it assumes

-1-
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F that all of the magnetic moments are in phase -- cooperating to produce a rigid

magnetization vector. A microwave field of the correct form and frequency can

drive this vector into resonance, under which conditions the configuration of

the magnetization is termed the uniform precession. Nonlinearities complicate

the usual small signal theory and arise, broadly, from two sources. First, the

equations of motion governing the uniform precession are themselves nonlinear,

and, as expected, predict harmonic generation and frequency mixing. Second,

certain of the neglected spin wave states are potentially unstable at high

enough microwave signal levels, and must therefore be taken into account.

In an effort to simplify the problem, the following approach is utilized.

The various components, which go to make up the total internal field within

the ellipsoid, are enumerated and discussed. These fields are then resolved

into appropriate sets of rotating spherical coordinate components. This is

done for the sake of mathematical simplicity and because the physics can be

followed rather easily from the resulting geometrical representation of the

field vectors. In connection with this, it is worth noting that almost all

authors, who deal with elementary expositions of ferromagnetic resonance,

immediately point out the analogy of the subject with that of gyroscopic

motion. Now almost all texts on the latter subject make use of spherical

coordinates and it would appear potentially profitable to do so in the case of

ferromagnetic resonance. This has usually not been done, however, for no

discernable reason save perhaps one. The concept of demagnetizing factors

-2-
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arises inevitably Wen an ellipsoid is considered and these quantities are de-

fined in terms of the three principal ellipsoid axes. This fact has undoubtedly

influenced the use of cartesian coordinates in such problems.

There is another departure in this thesis from the usual formulation.

Although the magnetization and the related field quantities are expanded into

a Fourier series of terms in so far as their spatial variation is concerned, the

time dependence is not -- at least at the outset. There is a strong temptation

to do this for there is a tendency to assume that the nonlinear problem will

yield only to an expansion in various orders of the small signal or linearized

solution. That this is all too often the case is unfortunate but in this parti-

cular problem the differential equations (or close approximationsitD them) may

be integrated directly in many instances.

No major changes of variables occur in the course of solution. All of

the formulation is done in terms of the amplitudes and phases of the various

quantities of interest -- an obvious advantage when it comes to the physical

interpretation of the results.

In Chapter 1, there are derived the general differential equations of

motion for the uniform component of magnetization in a small ferrimagnetic

ellipsoid magnetized in an arbitrary direction and excited by spatially uniform

microwave magnetic fields of arbitrary frequencies and directions. Following

this, various solutions are obtained. The approach used is to first assume

that all applied microwave fields are zero but that at some initial instant

-3-



the magnetization is nonparallel to the internal field. The resulting transient

of the magnetization is obtained and yields the natural precession frequency as

well as information about modulation products that are created by the internal

modulating fields. The forced or steady-state solutions when various driving

fields are applied are next obtained for both linear responses, in which the

magnetization precesses chiefly at the driving frequency, and nonlinear re-

sponses, in which it does not. A mechanism of second harmonic parametric

coupling is analyzed, which is strongly dependent on sample shape and the

minimum threshold is given.

In Chapter 2, the magnetization is assumed to consist of the uniform

precession together with a set of spin waves. Since the spin wave amplitudes

are normally small, products involving two of them are negligible compared to

products of the uniform precession and one of them. This implies that we need

consider only a single, typical spin wave. In some cases, this is not sufficient,

but for the sake of clarity and simplicity only one such component is considered

here. After the basic set of four coupled differential equations is formulated

(for the amplitudes and phases of both uniform precession and spin wave) various

quantities of interest are derived. The generalized spin wave spectrum is found

together with the first and second order instability thresholds beyond which

certain spin waves go unstable. These thresholds are obtained for both linear

responses, in which the magnetization precesses chiefly at the driving fre-

quency, and nonlinear responses, in which it does not. Direct parametric

-4-



coupling between microwave driving fields and certain spin waves is shown to

exist. A method is described by which it appears feasible to selectively drive

any spin wave that is degenerate with the uniform precession. This would pro-

vide a means of measuring the spin wave line width, 2 &Hk , as a function of

wave number k without changing sample geometry, saturation magnetization and/or

frequency.

Chapter 3 is devoted to non steady-state aspects of the magnetization

and in it are discussed the transient behavior of the uniform precession and

the spin waves together with their mutual interaction. The build up and

decay of the uniform precession, which follows the switching on or off of a

microwave driving field, is considered as well as the dynamic behavior of the

spin wave spectrum during certain transients involving sudden changes in the

magnetizing field. Those spin waves, which are found to be cut off, are

analyzed in some detail.

*Material abstracted from this thesis has been published in a very
brief survey paper. See Reference 1.



CHAPTER 1

THE UNIF)RM PRECESSION

1.1. The Basic Equations. A ferrimagnetic ellipsoid is assumed to have its

principal axes along x, y, and z as shown in Fig. 1-1. The total internal dc mag-

netizing field is assumed to lie along the z' axis so that in the absence of any

excitation the magnetization vector M of the material is also along z'. Demag-

netizing factors N x t , and Nz (whose sum is unity) for the principal directions

can be calculated from the physical shape of the ellipsoid in the usual manner,2

and are assumed known. The externally applied dc magnetic field must in general

be nonparallel to the magnetization. In fact it may be shown that (referring

to Fig. 1-1) the applied field will be of the form

Ho~j~4= L N,~N M !1 Sjn2@Nx c os2o+%sho-N

$ $H 0

where I', j', and k', are unit vectors in the primed coordinate system. Mg, is

the dc component of M along z', and H is any value of magnetic field sufficient

to magnetize the sample. The transverse components of the-applied field are

needed to cancel out similar components of the demagnetizing field. They are

zero only when the ellipsoid is magnetized along a principal axis.
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The equation governing the motion of the magnetization is (in mks units)

JdM = (1-2)

where ~Y , a negative quantity, is the gyromagnetic ratio that includes g

factor, and / is the permeability of free space; H is the internal magnetic

field.

The actual form of the magnetization vector depends on the exact boundary

conditions and the spatial and temporal dependence of the applied fields, as

well as the statistical distribution of spin wave excitation from lattice

vibrations, collisions etc. Here we assume, however, that the applied r-f

fields are spatially uniform, and that the magnetization is essentially the

same, with the exception of small-amplitude wave disturbances. These are

neglected for the time being but will be considered in Chapter 2. In terms of

primed coordinates, the magnetization vector is

M 7'~ sine Cos +7 tsine i + 7 I cose (1-3)

The total internal magnetic field i will consist of the applied field

(including time-varying as well as dc components), and the demagnetizing field,

due to surface magnetic dipoles. The latter involves specific boundary conditions,

accounted for in the values of N x Ny , and N . This field is given by

8zx

(in unprimed coordinates) where the bars denote spatial averages. Note that the

demagnetizing factors, which evolve strictly from static considerations, have

been applied to the case where M , M , and Mz include time-varying components

that are spatially uniform. This magnetostatic formulation, which is permissible

as long as the ellipsoid dimensions are small compared to any appropriate wave

=NMI



3
length, is the usual approximation. By transforming the magnetization into

M , M y and Mz components, multiplying respectively by -N , -Ny , and -Nz and

then transforming back into primed coordinates, one has the demagnetizing field

expressed in x', y', and z' components. The transformations appropriate to

Fig. 1-1 are

= X' sin + S' CoSX( Cos + Z'sinM( Cos 3

-(' Cos 3 + a' CO SSin + 'i$ (Si (1-5)

i= - ' CY 4 + ' CoSD(

and

X/
X Si p -- Cos

X ( Co( Coq + COS( SiO - i 0(

= )( Sn( Cos (3+ Si ( + 2 cos K

(1-6)

The dc components along x' and y' just cancel the corresponding components of

the applied dc field, and leave the net internal dc field along z'. This is

given by (1-1) where Mz, = M cosG . For small values of the cone angle, the

cos a is approximately unity.

It is convenient to go one step further and express the transverse demag-

netizing fields in terms of components that are parallel (H ) and perpendicular

(H*) to the transverse magnetization as shown in Fig. 1-2. When the transforma-

tions are actually carried out

(H (A + \ Vs)Zin ) M Sih G (1-7)

w(H*)d (B VWf Cos 2f ) 61e
where

2A = Nsi+2 + Cos +cos) N cos + cI s + I -sim(

-9-
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2B N-(sintr cosV cos2 ) + N (cosz - Cos<siM) - 0s

2W Nx -N Cos ol V1 2#
In addition, the resultant magnetic field component along z' is

&=Hj-Z~cos - CM'5jie cos4 -DMsIrn siv4M19
us "nw.

where

Z = (NX coss + N sin)Si + N, cos

C~~N =sinn(Sm2
(Nx cos'A + N 5in 3 - N1) 2

Notice that if the magnetizing field coincides with a principal axis of the

ellipsoid, the time-varying components of the z' demagnetizing field vanish.

Previous analyses were restricted to such geometries, and certain interesting

solutions were therefore missed.

Various damping terms, which are phenomenological and roughly equivalent

to one another, may be used in (1-2). We choose a Landau-Lifshitz term which

is proportional to N x(M x H); hence, (1-2) may be written

8 M
dMt =x( H + H=(M x H()1 )

where CJ), ) is the precession frequency, and 6H is

half the ferromagnetic resonance line width. In general, the vector H will

*
consist of the applied dc magnetic field, the demagnetizing field and applied

*Additional components will arise from the fields due to anisotropy,
inhomogeneities, etc. These are neglected in this thesis but may be treated in
a similar way.
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time-varying fields. Since the latter will be very small compared to the other

AH
two fields, we can approximate H damping by M (M x H, ). This field has a

zt

component perpendicular to the transverse magnetization given by

Any applied r-f magnetic fields are assumed to be broken up, into circularly-

polarized components in the transverse plane and into linear components along the

z' axis. A typical set of components is

= Cos) s + I ) 40 ) (1-12)

where positive and negative values of Q) represent, respectively, positive and

negative cicular polarization.

The comzlete expressions for the magnitudes of the various vectors, due to

all the sources enumerated above (including the applied microwave fields resolved

into H, H , and Hz, components), are

~ 1's(1-13)

I (B co z co-s 21i)Msin n-+ co(~ --f-&i

\, FZhCOSe - CtMShIe(059O - M' Vs1O S1Q +~t S' (Jt )(-7

The equations of motion for this rotating set of vectors may now be

written, by inspection, from M = '/A(M x H t). They are

-12-



H( -HO + Mz H

M H

and may be expanded into

H (Z-A)Mcose BMCOSG cOS2 + WMcosGsigi

- i COSf - D\ e sW) - i $ C®s-ifo) (1-20)

+ h in(Lo t+ )
and

6 = -9 -M I W M cos2- 2i) Sivi
(1-21)

-F si+(t-{ o) j
where A, B, C, D, W, and Z have been given. An alternate form is

Q,('+
2. -OS4, + Ot

-CWM sn cos40 - , s aG si 4

and

+ (j-1__y_Cos+)i S( r2.{ CosO a V

Sr ( -+ o(I)

-13-
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whe re

LtJy= - ~0

6) -ws1 Cos

x'

Y

=~ c(o,)LAcoseG

A-KB

1.2. The Transient Solution. Let the applied r-f fields be zero and

assume that e is small. Equations (1-22) and (1-23) become

= 2 Cos 2) + w S 4) 2(1-24)
-C W0 Cos - D 0 0 si0

and

0= ( + -
COS 2 XQ (1-25)

The Generalized Resonance Frequency. When 9 is small, the C and

D terms in (1-24) contribute only second order terms to the resonant frequency.

They, therefore, may be neglected and (1-24) integrated directly to give

(1-26)
iQL n r\ +- i avi .t+k) + CoSkL

where

and k is an arbitrary

Z iL1 2ZAs

phase constant. The generalized Kittel frequency is

-14-



which may als

with

x
Y

Wd Z (A) - 2%0 ww

~o be written as

- xs ' + N ICOS2P

N, (jos2p + N1 Si()OSo( +

-~ ~~~oc (Axcs~~sok()iI+/4 0Z
0= C O c SIM t

The quantities X, Y, and Z are effective demagnetizing factors in the x', y',

and z' directions. W will be non-zero if the magnetization does not lie in a

principal plane of the ellipsoid. It is apparent that X + Y + Z = N + N + Nz = I

independent of the orientation. The net magnetizing field along the z' axis of

the ellipsoid must be positive in order for (1-28) to be valid, since the

derivation assumes that the magnetization is saturated. The applied field H

must therefore be greater than ZM.

Two limiting cases of (1-24) are of interest. One case, when the sin

and cos terms are zero, occurs when the ellipsoid is magnetized along a

principal axis; the other, when the sin 2 and cos 2 terms are zero,

occurs when the ellipsoid is magnetized in a principal plane and X = Y.

The Magnetization Along a Principal Axis (C = D = 0). The com-

plete transient solution for the case of magnetization along a principal axis

-15-
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4
has already been given by the author, but the results will be repeated and

extended. There is no loss, in generality, if (N = 0 and = 7r/2, so that

the primed and unprimed coordinates coincide. If 6 is small so that the cosG

is approximately unity (1-22) may be integrated to give

ion (c+ )=Sin af( t+k0)+ Cosv? (1-29)

where

For convenience, choose k = tan

sin Cos ,
+ tCos

COs = I + cSV S

I + CoS k

2

1 _1-os) so that (0) = 0. Thensinq

Sin (4t
coS 2Wt

cos wot
Cos 2wa

sin
sin v Sin 2w)t

+ cos I Cos 2&%t

This latter result may be substituted into (1-25) which may be integrated to

~-*A~CS I + COS COS 20
(0)C L +I + Cos 0]

-16-
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where 0(0) is

are

Mx= Me(

the value of 9 , when t Y 0. Thus the magnetization components

0)

1 M G(0)

C CoS (It

.Q

(1-34)

(1-35)Sin Wt

and

zt.2
When W 0

40(
, we conveniently replace

|II+ cost

COS 2Wt]

by~ e~m

The Magnetization in a Principal Plane with X = Y (B = W = 0).

The general case (subject to the constraint that B = W = 0) is represented if

and N =N cos2ot + N sin2C< Then (if )2-x y z '

o == GC (1-37)

and

= H -(N-N ) WmCOS 20<

which may be integrated to give

COSG + N WMSy 0(S'

COS5

where

COS ( =
(N-Na)LM A/ ,o( Si1Go

N- (N,- A/V)WM COS 2O( coSea

-17-
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(1-38)

(1-39)

(1-40)

(4) . WX

201

-I += Si 4I ,4



and

(0, ( N -W-N1)4M Cos U cosj - SCOS, (1-41)

If tan k + cot =0, so that (t = 0) = 0, the primed coordinate components

become

and

I1si~e0

1s~G0

iIO NA

- CoS V Cos (Cot+)

Cos- COS (WA +

- COSL CO (,;4

M-v - M cos e0 (1-44)

It is evident that a second harmonic component will be found in the

transverse components of magnetization instead of in the longitudinal component,

as in the previous case.

The General Case for Small Cone Angle. Let us now consider the

general case in which all terms are non-zero. Let . + where

s. 1vI ( ) 2 This transformation corresponds, geometrically,

to a rotation in the x'-y' plane as shown in Fig. 1-3. It is convenient to

express the transverse components of the magnetization in the double primed

coordinates. Furthermore, assume that (0) = . Then (1-24) and (1-25)

become

A A

No +% B Cos Z + C" CO5 q + SI 1 i

-18-
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and

where

A

BO

Co

Assume

zero. Then

+

iZ

=1

that

o40 (1-46)

CZ2LW

-c Cos so + D s )w

C s i k. - D cos so) 9

C and D0 perturb the solution already obtained when they are

4 -T7 015q
(1-47)'.JuII -

7+ COST CoS2(44+-t )

where cos
B

=- 0and
0

2 2 2
.t) = A0 - B . It maybe shown that

satisfies the equation

+ CosqCos Z. C\+s' cos .+T)Co-Css ' Sin U]
Sihl m I

with 4)ot + L

(1-48)

. If 6, is small it is permissible to replace U,

by Wi 0 t , and since cos is normally small the square root may be expanded

*The perturbed solution my be assumed in any o several forms. It is
often convenient to write it c = G+ & where 0 is the unperturbed phase.

-20-
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keeping the first two terms. It follows that

~ 1+ C C~os 24 .)Fj+ t 0 4 c ct+)P-Oq S tt (1-49)

and the equation for e becomes (if WA 0 =0)

+ C51 Cos WO + (1-50)

Again, replace (J by Wt and the exponential by the first two terms in its

expansion. Then, since 1 + cos cos U. -Cos cos 2(L , the cone angle

is approximately

0~0rii I I+COSI COS52U:. WZOb~s ~(

The integrations may now be performed without further complication, and the

A .8
double primed components of magnetization Me sin , Mecos , and M(l -

found. As expected, second harmonic terms occur in all three components.

(When expanding to a given order, great care should be taken to include all

terms that are pertinent.) It is interesting to observe that since the

longitudinal and transverse harmonics have different angular dependences, it

is possible to experimentally separate the modulation effects. The longitu-
2

B
0dinal second harmonic power is proportional to , and that of the
A

2 t2
transverse second harmonic to C 2 . Bennett5 has studied the case of a

A
0

-21-.
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thin disc and found reasonable agieement with theory.

It is apparent from the previous results that in general the precession

phase, f, is modulated by internal fields. The demagnetizing field was

considered here, but fields due to anisotropky, inhomogeneities, etc. will

have similar effects. When the ellipsoid is magnetized along a principal axis,

the modulation rate (due to the demagnetizing field) is at twice the average

precession frequency since there are two planes of symmetry in the transverse

plane through which the surface magnetic dipoles rotate. If the cross section

is circular, the transverse demagnetizing field (H ) and the transient pre-

cession frequency are constant. The Kittel frequency is the geometric mean of

the two instantaneous frequencies, which correspond to the torques produced by

the total internal field that is present when the transverse component of

magnetization is aligned in turn with the two principal axes of the ellipsoid.

It is the average or steady component of the resultant motion.

We would expect efficient odd harmonics to be created in the transverse

plane because of this process, since the effective modulating field is essentially

independent of G . This does not occur because the cone angle e is also

modulated by the same field and in such an interrelated manner that products

A *

like ecos f and esin f contain only the fundamental frequency. The longi-

cos9- I

*Actually a factor (1 + cos I cos 2(.jt) 2 should be included in
the transverse components where cos also depende on cose . This is normally
a vory small effect.



tudinal component of magnetization contains a component of second harmonic

proportional to 0 2. When the ellipsoid is magnetized at an angle, time-

varying components of demagnetizing field at the fundamental frequency occur in

the longitudinal direction. These modulate the precession phase without modula-

ting the cone angle, and second harmonic (and higher) components are formed in

the transverse plane. Since the modulating field is proportional to 6 , the

second harmonic is again proportional to e . In general, both transverse

and longitudinal modulation processes may occur so that a superposition of

results exist; in addition, cross modulation between the two may be expected.

Either of these two modulating processes may be obtained (normally less

efficiently) by utilizing applied r-f fields as the modulating agents. 4 ,6' 7

If the ellipsoid is a spheroid magnetized along its axis of rotation, any

modulation effects must come from applied r-f fields. These must serve

double duty, so to speak, for the resonance must be driven, and the resulting

precession modulated. For example, if longitudinal second harmonic is

desired, a transverse positive circularly-polarized field is needed to open

the cone angle, and a transverse negative circularly-polarized field is needed

to modulate it (making the transverse precession path an ellipse). Both fields

are equally important and the optimum condition calls for a linearly-polarized

6
excitation. By using an ellipsoid instead of a spheroid and letting the

internal demagnetizing field perform the modulation, the entire driving field

may be utilized for exciting the resonance.
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1.3. Forced Linear Steady-State Solutions.

Transverse Microwave Excitation. If the general ellipsoid is subjected

to a transverse microwave field of elliptical polarization, two driving terms are

needed in (1-22) and (1-23). The positive circularly- polarized component is

assumed to be of amplitude hl, frequency () , and phase o(, ; the negative cir-

cularly-polarized component is assumed to be of amplitude h2, frequency -(J ,

and phase Q<,. If is assumed to be small, the longitudinal modulating

terms may be neglected. It is convenient then to transform the equations to

the double-primed coordinate system, as before.

= A0 Bosz2 Co s o)(- +0,) + cos(- t-4 ) (1-52)

and

(~in24 &&)0 + Ok, i~(~~1o~ + P(i -&- % (1-53)

The phases C6 and are understood to be measured from the x" axis. Let us
A

assume that and have in the steady state the same form as the lossless

transient solution discussed previously. Then

(1-54)

+ +cosi cos2jt

*The perturbation analysis discussed previously is of course still
valid.



Cos
(.O$ (At

V' I+ COS q COS ,At

09 = rms /+ COS COS2(,)t

where the parameter cos is, as yet, unspecified. If 0, = 0, ,and the field

amplitudes satisfy

4 $ +

and

J - Q

h +Co 

S- *(OST

it may be demonstrated that (1-52) and (1-53) reduce to

oo(, + TE CosZ

and

0= ]30 io 2( 0
provided that r = sinO, . Equations (1-59) and (1-60) are similar to

*
those for the transient case.

*The chosen driving field is the only one capable of exciting the reson-
ance optimumly. For example, a pure positive circularly-polarized field will
not, in general, lead to the maximum response even if its frequency coincides
exactly with that of resonance.
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and

(1-55)

(1-56)

(1-57)

(1.58)

(1-59)

(1-60)

I

i



COS =
- 0 (1-61)

Q = ( A- CJ0 Of l ). 0

2 2
Since the resonant frequency is given by ()0 = A - B

(1-62)

2

0 it is apparent that

cot -+ A

The values of c( and ( correspond to positive and negative values of ().

Corresponding to these are two values each for cos and e

COS I=

and

ertT's

T Bo
A- (cIja (Z)

(.4

(1-64)

(1-65)

The transverse components of the magnetization, and the driving field are,

respectively

M + os * Cos (ot (1-66)

MerIsq I-cos* Sij IWIt

-26.

and

(1-63)

(1-67)

It follows then that the initial assumptions are justified, and that



and

h ~ ~ ~~Cw h[5 C Q 0CO5~OCLt -cSM, s~SMIfW~t] (1-68)

\' ~ ~ ~ ~ In h 4.C Cos Wt -cs Co$( Sj t (1-6 9)

+ B
In general Cos 0 so that 0 cos . If B =0, it is

B 2 +2 t

apparent that cos 0, independent of frequency; then h2 = 0, and both the

driving field and the response are circularly polarized. If B 0 0, the value

of cos is a function of frequency. The driving field approaches linear

polarization if ( 4 1, and circular polarization at frequencies whereB
0

y- > >1. At resonance the maximum value of cos occurs when N =1, and
0

the ellipsoid is magnetized along fhe z axis. Then

C = M (1-70)

2HD+ M
This geometry maximizes the production of longitudinal second harmonic. The

path of the transverse magnetization and the driving field is sketched in

Figs. 1-4 and 1-5 for both positive and negative elliptical polarizations.

Notice the phase relationships of the vectors and the relative orientation of

the principal axes of the ellipsoids in both cases. When (0 = W , then

I, and o( 0
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Fig, 1-
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Th

external per

AisL lU- i

eTensor Permeability. The most general form of the linearized

neability tensor is (in double-primed coordinates)

K*'(4' j *i C

0/A~ 2

0 0

xAp, (1-71)

/ & /I

/A, -Ji A *
/ ,

KI . I

<;-j3<'
Using (1-66) through (1-69), it is easily swhown that these components satisfy

the following relations:

b (sino=bQ-40 i=

I (k'- I)

-)+ Kb] Cos +[(/-) Ib + K"a sl o

[(P I i) -K I (Cosx-( - )a K", b si O (~

Sl'n~~ +( K' - bcos

-30-

whe re

*_Q

(1-72*)

(1-72b)

(1-72c)

(1-72d)

I

(( L'L) - K ~ i i=((")"I] CO Sf 0



- COOX 4 (1-73a)

where a = +cs and b = 1I - cs . There are two sets of four

linear equations, each in four unknowns. These values together with (1-63)

will allow (1-72) and (1-73) to be solved and generalize the results of

Hogan and Jepsen , as well as the Coth(r.c

If B = 0, both a and b are unity and a great simplification results. It

follows that .1 and (-A , =o b - -K K , and (1-72) and (1-73) reduce to

- I B = 0 b an s sl -74a

and

-J M (1-74b)

A straightforward rotation transformation yields the tensor components for the

unprimed coordinates. Thus
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Y (#-7Z

whe re

Sng COSSO+ CO S( COSp P S (CO SO( S'IM P S iM S P #COSS.) - i14 0( S'l

T= (cOSO(COS Cd,- Siqsiq.) (C6SO(SMi flCd.+ CSrSi.) (-Sio Coss.) (1-76)

sNXo cos sn(s4n ~oe

and Tt is the transpose of T.

1.4. Forced Nonlinear Steady-State Solutions. A longitudinal r-f field

(h 2) of frequency (A2 in conjunction with a transverse driving field (h ) at

frequency LU can produce nonlinear resonance.4t799 The longitudinal field

frequency modulates the uniform precession (assumed to be excited at a frequency

.) ) and forms sidebands at frequencies ( K in the transverse plane. If

the kth sideband is equal to Ct and the dc magnetic field is adjusted for

resonance at (. , it may be shown that resonance occurs at (4= ) , then

given by

6i .) KCW 2 (1-77)



The cone ang

where J(6)

above equati

Le

is

on

of the resonance is approximately

(1-78)

a Bessel function of order k. The resonance is dominant and the

correct provided that

0 (1-79)

If h2 is not large enough to insure that the above condition is satisfied, it

follows that the response must be chiefly at the transverse driving frequency (0

If we assume for simplicity that the sample is a spheroid, the cone angle of

this linear response is (from (1-63) and (1-65), with B = 0)

6 CK=o
(1-80)/~~2 (w-~ 2

Since (A)0 = 01 k() 2 , it follows that

(1-81)

Thus the transition from linear to nonlinear resonance occurs when 04)> G *

We would expect similar behavior from the time-varying longitudinal demag-

netizing field with two important exceptions. First, the modulation field will

be at a frequency () rather than at LJz, and second it is, as we have seen,

proportional to the cone angle a . The first consideration leads to

-33-
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S= _(_ k = 0, 1, 2, . . . (1.-82)

which means that subharmonic generation shohld be expected when the sample is

biased to the subharmonic frequency, and the second consideration leads to the

obvious conclusion that a feedback effect is present. This is due to the fact

that the cone angle 6 , is determined by the strength of the modulation,

which in turn is proportional to . Because of the feedback, we may expect

the subharmonic resonances to exist only under certain restrictive conditions.

Since this nonlinear process depends on the longitudinal component of the

time-varying demagnetizing dield, the geometry N = 1/3, N = 2/3, N = 0,x y z

('= ~, and 3= is chosen so that the effect may be studied independently.

Subharmonic Resonance. For the above mentioned geometry, and a

single transverse circularly-polarized driving field, (1-22) and (1-23) are

Sin Cos tQt- +0(4J (l..83)

and

(1-84)

where H =-?HL . Assume that

=ndt + Si (i t Cosvw18)

and
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e= e [ t CO Si~ W't +d8, Cos Owt) (1-86)

where O = 2 The quantities an, bn' cn, and d are all assumed much

less than unity. When (1-85) and (1-86) are substituted into (1-83) and (1-84),

and the latter are expanded to include third order terms, there results

(1-87)

At resonance, the sin Ml is zero and the maximum cone angle is given by

+_ L =SC( e0  Cos N

where O( is 0 or ITradians. The former value leads to a coefficent b (for

non-zero ), which is always greater than unity; and hence, in contradiction

to the assumptions. The non-zero solution for e with r = T is

=( - 3W (1-89)

In order that (1-89) be real, the driving field must exceed a certain threshold,

given by

( AN0  (1-90)

Above the threshold, (9 increases very rapidly.

If we consider the general ellipsoid, the results are essentially of the
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same form. Thus

C

0= - (1-91)

where

C L H O(1-92)

A plot of 9 versus h is given in Fig. 1-6. The curve is valid only in the

region of small 9 . Notice that the slope is infinite at the threshold. The

minimum threshold occurs for a thin disc magnetized at 450 to its plane. This

geometry yields the maximum value of C + D --equal to one half. Below the

threshold the magnetization precesses at the driving frequency (.0 in a linear

manner, but the amplitude of the precession is small since the sample is biased

to the half frequency. The reader should be warned at this point that the

oveo-all picture is complicated by certain spin wave instabilities that will

be developed in Chapter 2. It appears that there will be a premature saturation

of the resonance.

Parametric Coupling. Under certain conditions it is possible to have

*This threshold is approximately correct as long as 4) > B +

aot1*rwise cross modulation effects between the transverse and longitudinal
modulating fields should be taken into consideration.
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direct parametric coupling between a longitudinal modulating field (of

amplitude hz and frequency )z ) and the uniform precession. This coupling is

due to unequal transverse demagnetizing factors. Consider an ellipsoid magneti-

zed along a principal axis (such as (= 0, * ). From (1-22) and (1-23) we

have

X YL4 - COS 2 +
2 2L CO (O 4 (1-93)

and

-94)6 ") j Si-12 - )q) a(U

It may be shown that if 44 1, the phase of the uniform precession is

approximately

0j + Sooc4L~~ 1 5)

where 0 is the unperturbed solution given by (1-30). If 4.z = 2c) o, it

follows that the average value of sin 2 is sin 2f t sin . The

effective line width is therefore

If N > N

(NXr~ Q m k (1-.

and s in a I, the threshold for instability (AHf =0) is

- ')j

which is obviously minimized when N = 1. Then

96)

(1-97)

-9



4 N0(N0-+ M ) (1-98)

This coupling may occur simultaneously with any of the preceding ones. It is

worth noting that the self-generated longitudinal second harmonic field has a

phase P = 0, so that it does not parametrically couple.
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CHAPTER 2

SPIN WAVE INTERACTIONS

2.1. A Continuum Model of Spin Waves, Spin waves arise because the

discrete magnetic moments, within the ferrimagnetic solid, are not necessarily

in hase. The enormous number of these, in any macrosco ic volume, makes it

possible to use a continuous function to describe the magnetization. It is

assumed that

Sl = S, cos9 Cos k. + SIrI( Co5 K- ' + K lg (2-1)

(where Ik = k = ) represents a standing spin wave of wave length Xk'

directed along k. The unit vectors i', j', and k' refer to the cartesian

coordinates x', y', and z', and the magnetizing field is assumed to be in the

direction of the latter. It is possible to resolve any disturbance of the

magnetization into a set of such waves so that

*It might be expected that

i' M cos(1 k.r) + j' 6M sin( 1k - k-r) + k'M' would

represent a traveling spin wave; it does not, except when k is directed
along z'. The correct representation for progressive waves will be given
later on in the text.



M . M1 0 + SM\(2-2)

K
10911

where M is the uniform precession. Following Suhl we assume that

the spin wave length is very small compared to the dimensions of the ellip-

soid so that the exact boundary conditions can be ignored. As discussed by

him, many of the pertinent results derived under such assumptions may be

extrapolated to hold, quatitatively, in the region of small k.

If the spin wave amplitudes are all assumed to be much smaller than the

uniform precession, the magnetization in any small volume will be conserved

as in (2-3)-

1412=x X)X M I + [M.1/-I(SM')] (2-3)

If products involving two spin waves are neglected compared to those invol-

ving the uniform precession and one spin wave, and the relation

M 2 + M 2 + M 2 =M2 is used, there will result

ox/ oy' ozi hr ilrsl

M '(M X + + t1O(S(sMK). +]0 (2-4)

This equality will hold for each separate term as well as for the sum, so that

A ng s i a x Mat I n is 4a-id, t s f i td r(2-5)

As long as this approximation is valid, it is sufficient to consider a single
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spin wave and the uniform precession when setting up the internal field

components. Later on, as many spin waves as are desired may be included in the

interaction equations; however, for clarity and simplicity, only one such

typical mode will be considered in this thesis.

The Magnetization in an Ellipsoid. In terms of the primed coordi-

nates of Fig. 1-1, the magnetization vectors are as shown in Fig. 2-1. Since

the uniform precession is given by

M0 = ' Msinecosd +j'Msw ne sinW + ' lcoSG (2-6)

it follows from (2-1) and (2-5) that

MKSM 05 K OSK-r + blMlIII K(CO K. rL6ICQ4)Kcf (2-7)

- KVtane coS X COs K<-'

where -k = k * The correctness of (2-5) depends on 6M satisfying

2

6M 4 4 2 M cose or 2 M s The propagation vector of ,which

is depicted in Fig. 2-2 is

K ~ Cos~ ~ si~sj +~ Kp ot
The Internal Field. The total internal field, including terms

due to the spin wave, will consist of five terms

*We continue to neglect fields due to anisotropy and inhomogeneities.
Their inclusion, however, poses no particular difficulties.

-A



T-Z 2Tt

8 uls yyI

z



Z- T1

L z



= 2 K/ coS + K 'Sfl1 - K/ +one COS) M cos K.r (

where k x = k sin cos , k = k sin sin ,and k z, = k cos .

The exchange term is due to quantum-mechanical coupling between nearest

neighbor spins and may be shown to be equivalent to

H x~vlt WM + X17V1 (2-

'-9)

10)

when the misalignment between spins is not too great.12 The parameter >\ is a

measure of the strength of this coupling and for cubic crystals is often given

H 2

by \= M ,where H is an effective exchange field and is theex

lattice constant. The component wM will be dropped since it produces no

torque </<M x wM )= 0). Because of the form of SM,, it follows that

-45-

.A = - A. + H. ."a*H+ H
t applied demagnetizing volume dipolar exchange damping

The first and second terms were discussed in Chapter 1and are uneffected by the

inclusion of the spin wave. (The latter does not contribute to the surface de-

magnetizing field since its spatial variation is assumed to be very rapid.)

The volume dipolar field arises because there is a divergence of magne-

tization in the sample, and 'q*Hvol. dip. = - V-M . Since the ellipsoid is

assumed to be small enough for propagation effects to be neglected, a magneto-

static approximation may be used. Then HVol. dip. where is a

2 

d

scaler potential satisfying 17 f = - 7 -. It is easily shown that



N (2-11)

-46.

AH los fli H
The loss field is Hdamp. MHz9 (M x H z,) as discussed in Chapter 1.

In general, however, AH might be different for the spin wave and the uniform

precession. To include this possibility we let

where 2 H 0 and 2 &Hk are the resonance line widths of the uniform precession

and spin wave respectively.

In Chapter 1, the uniform precession fields were resolved into rotating

components H and H , It is worthwhile to treat the spin wave in a similar

manner and as shown in Fig. 2-3 its transverse fields are resolved into

parallel (H2 and perpendicular (H2 ) components with respect to the transverse

component of k . In terms of these components, it may be shown that the

volume dipolar eield is

(12~,d~~[i 1~cos%(-S) - COS K0 os<c(K-)frcsKr (2-13)

2iv 2(i) Si SiS -I~ 4n CoSf( Cfn(<-f (o$I- <2-14)

voi S il nj 2( - ) - SL J n CO X0) $in( - SM Cos. K, 2-4

XtsmK --



ZI

H,

H?
H2

x
M2

x'

Fig. 2-3
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and

(Ni' vol.dip7 COS V I2v1G cOS- Cos SM COS K-

The components of the exchange field are

-KZ SM cos- K-

(2-15)

(2-16)

and

- 2(+u 0 CCosK K (2-17)

while the spin wave loss field is given by

LHK I COs K' (248)

The complete expressions for the various vectors due to all the sources

enumerated above and including those given in Chapter 1 are

M, = Msine

Mr= SM Cos K- V

(2-19)

(2-20)

M cosO - SMtQ4e cos X CoS K-'

H =(A+Bcos2.$+Wsin24)Msae -b cos(Wct-<o+c&) (2-22)

(Bs< -WC Ssi2 Msioo) -- (2-23)
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(2-21)

I

(Hj)cxc6hjt

H* )damz F.



- [K + Sin4' COS-( - iOn G COsX COS(QK) COS K r (2-24>

= 2. Sin2(2) - ,avi ta S%$cos y(-5) - I SM cosKr (2-25)

and

H,= 1;- ZMcose -CMsinecos- DMsiesi n g
+1 b hsin (Co t-+3)

+ 1(X K2+ cosZ C,) cSvI co's X -- c

where

2 A = Nx(siaP + cos'k cosz) + N (cosp + cosx 5 p)+ N, sin'o

2=B Nx (ib' -cos 'pcos') + N (cos1- cos si )- Nsi lo(

zc= (Nx- N ) sino< Si2p

2 D= (Nx coszs + NJ
2 W - (Nx- Nj) cosx sio 2

and

E = (Nx coszp + NJ + N, costv,

2.2. The Basic Coupled Equations. The transverse components of Fig. 2-3

may be transformed into those shown in Fig. 2-4, and the equations of motion

may be written by inspection from = (Mx ) and are

.-49-

(2-26)

si ' -

Si nip) 5 '14,

N') si y



H,+ Hcos x + H*sin x

I

H,+ H, cos x - H, sin x

.J
I

#0

M, +M 2 cos x

= -o

x'

Fig. 2-4



(i+ MZcoSX) 4? + d (M sinX = -A, M,+MycosX

+1sn M (HFH(2-27)

(2-29)

+/+ Mil, Hz cox+ zHSi x

and

M' S X aISnX jM /- M + M4,in sx = = ,)Msinx
(2-30)

- M (H+ vH~,os x~' -- Hiix

Both M zeand H ZIcontain spatially invariant terms and terms involving

COS kM r It is convenient to define V and M (H9) as the spatially

invariant and spatially varying 
terms respectively. d s

If we separate (2-29) and (2-30) into constant and cos k-r components and

then uncouple those equations involving derivatives of both amplitudes and

phases, we obtain
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MIk/4fe/ )(+(MZj/+ '>CCSX + s 4Vx

H> + U4 C&5X- (vi-Z+ M44)

cosX-1I siX

+ COSX +( -t& )

(2-31)

(2-32)

(2-33)

(2-34)

It is assumed that products involving cos k.r refer to the average spatially

invariant component so that a factor of one-half is involved. These are

expanded with the aid of (2-19) through (2-26) to give

~Jo= (O- (z-A)Wmcose + (Bcosz+ Wsim Z) WM Cos

- (c cosc + Dsi)OM si G

+ sin(W t+)

+ ANK SinXCosX +
Mcose

- cote Z&cos(&t-<+,')

+ Cos 

2 M 1co

Cos X

Cos 09
(2-35)

COS(4 -

os(cPK-~) -
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I

S -- -Ug + 4 +(MM+o

and

[C

CSX~z
SihXCCoSK 

siCosG0

Cosa-

SIM

Z=-?14



(si 2- \ coS 29) W si 9

+Z0

S IV]2-

si(coet-Q+) +S

c sin(-) cos(

2mz COSZX
cosae

co
5 . siz( lc)co'x

SimxcosX +
S414Z~
2os G

sih x cosx

+ Sin2y

I

W)N\ COS@ coS2 (TK-S)

cos.+ Dsin 4, snG + Sin (o

+ av) CG$o

+ siI)( cosX

O cosxCos (q-)+(

$2*)( 4g Cos (w;t;- ~-F~)
(g

3A SihG 1(6X

(2-37)

Soo]
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0 = Sin G

coseg- 0$ z

+ sin ?

(2-36)

COS2( -)cs

X) mCos e

-C

SinX cos(4- )

(A) L)- Q40

- Qm kie take cbsX



andd

OCOSOG Si (C- - cosG

-
5 'si'O siq(--) + fa06 (XK4 ccaq -A)iv2X

SiG 2X Cos ( t- + o0) (2-38)
2

+ cosx 4 * siqe -Z s(ki t-

We recall that a quantity is defined equal to (-p49t ) with the

exception of (0 = -?/4 0 0 H . It is also convenient to define a spin wave lossteo0

frequency =4 -= &H k.

If both 6M and sing are very small, the cross coupling terms between

the uniform precession and the spin wave are negligible, and each mode may be

considered separately. Equations (2-35) and (2-36), without the spin wave

terms, were discussed extensively in Chapter 1. Those results are valid unless

an unstable condition is created among one or more of the spin waves. A

similar analysis for the spin wave equations (first neglecting the uniform

precession) is given in the next section.
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2. 3. The

Standing Waves. For simplicity, we will start by assuming that sine

is very small, and that h = 0. Equations (2-37) and (2-38) simplify to

K (1-b-K)wMCosG + 1 WMs coe + coS2(<c-k )z MSL1
and -

SMw _ 0 t'f\ $W~ z(c~-Q - \ K.o5 O

Equations of this form were met during the study of the uniform precession

in Chapter 1 and may be integrated in a similar manner. It follows that

S( -S)=
(+cos~_ Cos ( %t + Dl-f)

+ cos J coS(ZWKt4 2.(-21 )

C~0 q K' Si n ( C+ - )
-i

1 I+ COS JK COS(Z(O,t+2O -{ )

and

6 SMo so + COS Kr (0S( %&+I-24&-2S)C

where O(k is an arbitrary phase constant,

COM Cos e
Cos

(J4- (-Z- A )gCO5G +
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(2-40)

(2-41)

(2-42)

(2-43)

(2-44)

6 z WMCOS

Generalized Spin Wave Spedqrum.



and

5)

of

sin(Okt - () cos k-r6Mrms respectively. Except

for z' directed waves ( = 0), the phase 4k is modulated in a manner

analagous to that by which the uniform precession is modulated if the trans-

verse demagnetizing factors are unequal. In the latter case the transverse sur-

face demagnetizing field acts as the modulating agent; it is the transverse com-

ponent of the volume dipolar field in the former case. The field is independent

of the sample shape (except for very long spin wave lengths) and is a maximum for

( = /2. The spin wave frequency corresponds to the geometric mean of two

-56.

W = (CJH- ZCOMCOSe + \K'oscose)
(2-4

x (WH- Z W MCoSG + XK l CoSG + Sin' M( CoSe)
The latter equation for cose = +1 and Z = Nz , is the small amplitude spin

10
wave spectrum first derived by Suhl. It is shown in Fig. 2-5 for the case

a sphere (Z = 1/3) when W = W) *

Some tffective thermal driving field, which could have been explicitly

written into the equations of motion but was not, is assumed to balance out

the spin wave loss term. This implies WiK can be set equal to zero provided

6M 0 is replaced by the appropriate rms value.

Typical transverse components of the spin wave are

6M cos(4k -k ) cos k-r and M sin((k -5) cos k-r , which become

M+ cosfl k cos( Okt -)cos k.r and
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extremes of the instantaneous torque, as is true for the Kittel frequency. The

spin wave amplitude is modulated in the same interrelated manner with respect

to k , as the uniform precession cone angle is with respect to . This

means that to second order, no spin wave ha :monics are created in the transverse

plane. The precession path is an ellipse.

Traveling Waves. It was stated earlier that

i' 6M cos( - k-r) + a' SM sin( k - k-r) + k' M, dbbs not, in

general, describe a progressive wave. This statement may be verified by

expanding the transverse components into two standing waves

cos k.r + sin sin ker) + j' SM(sin cos k*r - cos sin kr)
it SM(cos4 fk lk i M fin, P~k kr

The cos k-r terms, already treated, lead to (2-39). It may be shown similarly that

the sin k.r terms lead to (for coso = 1)

fK ~ O+ K W +SY -Z ~ 44 Cos(~ i (2-46)

The two equations for k are in obvious contradiction except when 0 so

that the assumed spatial variation is incompatible. The difficulty is resolved

if the transverse components are initially assumed to be

( Fx COSQK CoSK# + 5M S K SiKr)

iV(4t Si kCoKr - SM cos9 Si Zi)
(2-47)
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where the corresponding primed and unprimed quantities are not equal. Then

(2-46) , in terms of , is no longer inconsistent and may be integrated to

give

Cos~ -[) =
COS K

Cosq K

Cos ( ~t
Cos (2W4t + '- 2)

and

1+ C~ IK 
(2-4

- COSK COS ( Wt 4 .K)

where a(k may be set equal to k The equation for SM' , s

integrates to

IM - Cos COS (2 t (

imilar to (2-43)

(2-50)

where 1'rms = 6Mrms , if the effective driving fields for the two components

are equal. Without loss of generality, let ojK-S = 0; the transverse spin wave

components are then

tserse L SMstw I4 COS r(ctm- -)

(2-51)

* j~St~\r~s - OSIK

and form a traveling wave.

The path of the transverse component of magnetization at any position in

space is again an ellipse, except for = 0, in which case it is a circle. It

is the ellipticity that makes it necessary to construct traveling waves with care.

-59-
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2.4. Instability Thresholds -- Linear Response. It was shown in Chapter 1,

Section 1.4, that under suitable conditions nonlinear as well as linear responses

may occur. By this we mean that the magnetization vector can sometimes precess

at other than the driving frequency. When including spin wave coupling effects,

it is convenient to treat the two classes separately and we start by coddidering

the linear responses first.

Transverse Microwave Excitation, The simplest excitation of a gen-

eral ferrimagnetic ellipsoid involves a single, positive elliptically-polar-

ized field of frequency (A) maintained in the x'y' plane. The degree of

ellipticity is assumed to cause the maximum response, and was discussed in

detail in Chapter 1. There it was shown that the positive and negative circu-

larly-polarized components h and h2 , respectively, satisfy the relationships

wh)ki-t +- -Cos (2-52)

and

- L~ = ~ (.05sv (2-53)

where

Cos = (Bz____Z _O _(2-54)

This field produces an rms value of the precession cone angle given by

-60.
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_______.____________2Y (2-

where the resonance frequency (,) is

-- - (2

If only the important coupling terms in the general equations of motion

are retained ( 6M is assumed to be very small), (2-35) through (2-38) become

for small 9

2- )(Af+r+

- /Ch+f &4

S BWs 2W
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56)

(2-57)

(2-58)

Sin( -ia +-



and

+ G(z+ cos - A) Si X -

It is apparent from the inspection of (2-60) that the spin wave loss may be

overcome by at least two different mecht*isms. The first occurs when

(A)k = W/2, and is a first order coupling in & ; the second occurs when

(k = U , and involves a second order coupling. It is important only when

the former mechanism is not possible, that is, when the frequency W/2 lies

below the spin wave manifold.

1) First Order Coupling. If (A)> 2( (0)H - Z ()M ) the first

*Suhl has shown that pairs of modes, whose frequencies sum to the1 iniform
precession, may also go unstable via a first order coupling mechanism. The
half-frequency waves are merely a special case of the general condition and
they do not necessarily have the lowest threshold. Nevertheless, the thres-
hold of the T = Tr/4 half-frequency wave may be considered typical.

-62-
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(2-60)

- .

(J H- (Z- XK"W M+ Z |M + COS 2%-

5 v2~ W Olcos (2O- 0-4 -i+ Co"~'



51- eG sin (2440- S) WM SM

- z (I)COS ( co5Got- I)I2JWM .(

where

The spin wave phase is given by (2-41) and its amplitude by

(2-61)

(2-62)6M1= 8 Ma J I + COS Co(2~t + 2 - 2 )

In many cases, the values of cos and cos qk are small compared to

unity, and terms involving their squares may be neglected. If this is done,

(2-61) simplifies to

.. $in 2p Sin (Z 4-- -
(2-63)

Siz , Si n[2L )

-63-
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order process will dominate, and all the terms arising from (2-60), which

depend on e2 or higher, may be ignored. Since the term

_ sin 2(' e sin(2 k -o - S) ( M is already to first order, it is not

necessary to include in (2-57) through (2-59) any of the terms that are propor-

tional to e . It then follows from the methods previously discussed that



may t

(2-5S

let

perturbed solution). It then follows that

8- --COS C' D' COS(T,+O) S - (2-64)

and

T CrT sin(s+n 2 Co -6z-~ IVC+D sin( 11+) + 2 (2-65)

where

t lC
s2 a Vg1  r

If terms in (cos Ikl)2 or higher are again neglected, the result is

2-

+ Sz1 csn(2uK-L)t + Z,-SWSK

(2-66)

-64.

The other important term in (2-60) is sin 2 sin(2 2 ) (M and it

e expanded in a similar manner except that now the first order terms in

) must be retained. We use the unperturbed solution for 0 and 42 and

2k =k + S1 cos(&)t - @) - 2 sin(4Ut - 01) + . . . ( is the un-



Grms I C + -COSq COS(C OS(2K+ I-2 )

C Cos( Si$ $I (,2) ' + (N, 2)

2[ I Cos~ co0,-S) Si n(2V, + 3rd2f) (2-67)

- ( -cosq sin (( -) CoS (2(K+l- 2S)

- Sirn2y sin (2U(-) = 2 AWK2A1

The critical field required to produce this orms may be found from (2-55).

The values of , 0 k, and are chosen to maximize the left-hand side of

(2-67), but must correspond to one of the allowed half-frequency spin waves.

For example, if half the driving frequency lies very near the bottom of the

spin wave spectrum, the angle W is constrained to be small.

When the sample is a spheroid magnetized along the axis of revolution,

B = W = C = D = 0. It follows therefore that

2LAK 
,

ef
MSfV12 SVll PA

.65.

An instability threshold occurs when Q k = W/2, and the sum of (2-63) and

(2-66) just equals the loss term. The critical value of e rms is given by

the equation

-



This case, treated by Suhl,1 0 has a minimum threshold near = 7T/4.

2) Second Order Coupling. If WO< 2( (J H M), the first

order coupling is forbidden, and the second order process occurs when (d '

The threshold may be obtained by inspection from (2-60) and is

( cos' XK - A)= (2-69)M
The maximum coupling occurs for W = 0, and the frequency condition implies that,

very nearly, Xk2 = A (exactly true for a spheroid) so that

~2 2LY
10i 11

as given by Suhl. It should be noted that the

fields will add correction terms to this threshold,

order threshold. They will be important, however,

frequencies, and then the first order process will

one.

(2-70)

internal modulating

as they did to the first

only at reasonably low

usually be the important

Additional Microwave Excitation. It seems reasonable to suppose

that additional microwave fields can produce coupling between the uniform preces-

sion and certain spin waves similar to that already described. A great variety

of modulation and cross modulation effects appears possible, all governed by

(2-35) through (2-38), and certain basic ones are explored here. For simplici-
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ty, we assume a spheroidal sample magnetized along its axis of revolution. Fr

this geometry, it is convenient to define N = N = N .
x y t

1) Transverse Fields. Let us assume that there are two trans-

verse circularly-polarized driving fields: the one, h., is driving the linear

resonance ((J = (0 ),-the other, h2, is at some arbitrary frequency ()2 not

equal to (A) . The motion of the uniform precession is governed by
0

-0 t (A) s~~[w-. t +K]j (2-71)

and

o - eC i - 8co (U-WI)t+o+ Z (2-72)

where

hi and k2
oe (Wru 6

These two latter quantities are assumed to be small compared to unity.

The second term in (2-60) has an average value of

- 4 sin 2Y 6sin(S + 0(2) provided that a spin wave of frequency 4) = 2/22 2 k

exists in the manifold. Since 6 is assumed to be small, this term will never

be important when the first order coupling process k = Wi/2 is possible;

if it is not possible the term will compete with the second order coupling

((.0k W . The new coupling will dominate when e02 2 k and under
(se

these circumstances the threshold for the (j k = z (/2 wave is

-67m



=2. (w JI~) (2-73)

This threshold is independent of 00 provided that the latter is large enough

to assure that 6 is small. Al. of these conditions may be met simultaneously

2(4)
if sin 2 Ak

2) Longitudinal Fields. The presence of a longitudinal mod-

ulating field h z of frequency (j)z causes frequency modulation of both and

k They are given by

( + (2-74)

and

K,= A + B~o(c-~ +O ~ Si (it+ ) (2-75)

where ( K

NK = 2.

BK = 2l 4 JM
and z is a phase constant. For simplicity, assume that (4)k I> Bk so that

cross modulation effects are negligible. Then retaining important terms, one

has

*Cross modulation refers to a possible coupling between the longitudinal
and transverse modulating processes. This stiould be taken into account at
very low frequencies since it will increase or decrease 6z depending on the
value of .



O

and

with

- CN- , Cos (wt + j )

= Kt 0( - 8 Cos (Lit+ )

(2-76)

(2-77)

The transverse circularly-polarized field h of frequency () is still

present, but the cone angle is assumed to be less than that required for a

second order instability. We need only the first two terms of (2-60), which

are

Sf0 sin [2 t + 2o- 2S + 26 64(Wit +

- o sin zy sin [(w-co)t + 2o + * cos(ct+A) -s]
These may be expanded to give terms that can possess an average value. The

threshold equation (neglecting the Q)k = ()O /2 term, which has already been

considered) is, then

00

si0q s Jn(2) sin[2(&K t +_I
h= I

(2-78)
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r~= ~2~3) (2-79)

provided they exist within the spin wave manifold. The strongest coupling

occurs when n = 1, which is analagous to the direct parametric coupling of

Chapter 1 that concerns the uniform precession. In the case of spin wave

coupling, the transverse volume dipolar field causes frequency mixing, while

in the case of the uniform precession the mixing depends on the shape dependent

surface dipolar field. This coupling was discovered independently by the

1 14 15
author, ' and by Schlumann et al. The latter have also experimentally

verified its existence. It is important to note that with the coupling to the

uniform precession, a definite phase relation between the transverse and

longitudinal fields is necessary to maximize the effect. This is not true in

the case of the spin wave coupling since a spin wave is always available with

the correct phase.

Let us assume that a small value of n is allowed, and that 0 is

maintained be ow any of the first or second order thresholds. Then, according

to (2-78) the condition

-070.

where J (6 ) is a Bessel function of order n; and, , or

may each be set equal to / 2  for any nifihorder to maximize the coupling.

The first set of terms in (2-78) is due to direct parametric coupling, indepen-

dent of 9 (the field h1 could be zero), between the longitudinal modulating

field and the spin wave. An average value exists for the discrete set of spin

wave frequencies

(JK



sin- 2 K (2-80)

causes an instability. Since n is assumed small, )z must normally be large

and 8z small compared to unity. The Bessel function can therefore be

approximated as

(2-81)

which when substituted into (2-80) leads to a threshold

(2 !WfcK ' 0(2-82)

The minimum threshold occurs, of course, for n = 1, provided the corresponding

spin wave exists, and is

(A) (2-83)
WoA sihay

If Oz is very small, the above mentioned process is not possible because n

would have to be very large in order for (n/2)W) to be in the spin wave mani-

fold. Therefore the coupling coefficient would be too small to allow (h to
z

be physically realized. On the other hand, if (z and/or &H were too large,

the process might again require a prohibitively large field.

The second set of terms of (2-78) has an average value if

W= (A)I nWI 2 ) 3 (2-84)
2
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This first order coupling is important only when Cj k = W /2 is below the spin

wave manifold. Under such conditions, the minus sign in (2-84) is ruled out.

The remaining possibility competes with the second order coupling and in order

to dominate it must satisfy the inequalities

2i6IK (2-85)0 M

and

sin zY IJ,(6 ) > M2-86)
As an example of this process, consider the case where the transverse driving

field is exciting the resonance ( 4)1 = C.), and the bottom of the spin wave
0'

spectrum (for the spheroid) is 4/ 2 . This latter condition requires that

W = 2N. W. Consider the k = 0 extensions of the spin wave manifold,0 X

which become

41 Z )(2-87)

Ko + (i S'4

Since (W = ,O 2 n&J it follows that
k 2

So + n(i (2-88)

If n (4z is small compared to 2(4 and 1)., then

*Strictly speaking, the exact magnetostatic modes16 should be considered
in this range, however no very serious error appears to be committed by
extrapolating the Suhl spin wave spectrum to zero k values.
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sinz ~ 2(2-89)

and (2-86) reduces to

24 Tn (2-90)

(Ah

The value of J h z ) decreases much more rapidly than - so that then COz VT

minimum threshold occurs for n = 1, and is

2 (2-91)

Since J( z) has a maximum value of .5819 when &Z = .84 , we see that 4)z

must be at least as large as

(0 7 ) |.5 (OA) (2-92)

for the inequality (2-91) to hold. If the minimum condition exists, the first

threshold is given by

1.26 AHK (2-93)

2.5. Instability Thresholds -- Nonlinear Resonance. Under certain con-

ditions, the principal response of the magnetization may occur at other than

the driving frequency. These cases have in common the presence of longitudinal

modulating fields, either applied or self-induced, and an applied transverse
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field that is rotating at a frequency different from the magnetization. Both

fields can couple to certain of the spin waves and may be treated by the methods

of the previous section. As an example, consider a sphere that is excited in

the transverse plane by a field h of frequency) 1 and simultaneously by a

strong longitudinal field h of a lower frequency 62. The resonant frequency22

and the principal response are assumed to be at the difference frequency

CA) =() = 2 -CJ . Let us further assume that (A) = 4 )M W) = 3) ,
o H 1 2 1 M' 2 M

and 6) 0 W=( . Under these conditions, C4 k = 4 /2 is below the spin wave

manifold and there are three possible instabilities. Transverse and longitu-

dinal couplings occur when (L) k = W, /2 or W k W /2 , respectively, and

the normal second order couplingoccurs when Q k 1 2 . The latter

coupling is negligible compared to the former so that the threshold equation is

given by

SiflI )t (j2C~2jV cWZw (2-94)

The threshold for the (j k /2, = /4 spin wave is

2W9K - ) (2-95)

and the threshold for the WOk = (/2 , = T/ 2 spin wave is

C4 J Z& )W) - (2-96)
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Subharmonic Resonance. The example just given assumes that the

longitudinal modulating field is externally applied. In general, however, there

can be longitudinal fields, which are induced by the precessing magnetization,

as in the case of subharmonic resonance. In Chapter 1, Section 1.4, it was

shown (neglecting spin waves) that for an ellipsoid not magnetized along a

principal axis, excited transversely by a circularly-polarized field -h' of

frequency ()1 and biased to the half-frequency, a resonance can occur at 6)1/2

given by

(2-97)hcyhL --O

provided that h exceeds hcrit. For a thin disc (N = I), magnetized at an

angle C( with respect to its plane, the threshold is given by

C2i ( (2-98)
0M sin 2X(

It is interesting to observe the spin wave behavior as h slowly increases

from zero, Below hcrit , the subharmonic resonance is impossible, and the

i

These thresholds are independent of e as long as 9 > Wh . Since
0 0 W2

2Wh ( 2 for this case of nonlinear resonance (see Chapter 1,o0 2 WO (A ~2

Equation (1-78) ) it follows that (Ah > 2 in order that the nonlinear

response is dominant. If 4JK= 4A this latter condition is met by a factor of

3 at the threshold given by (2-96).
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frequency C) . The cone angle is given by

0 0 C= 0%(2-99)

and since the sample is not resonant, it is quite small. Now half-frequency

spin waves (C) /2) are surely present in the spin wave manifold since the disc

is biased to the fialf-frequency, therefore first order spin wave coupling must

be considered. For the geometry mentioned above, the resonance frequency is

H &)M COS 05 6)( Q (2-100)

and the spin wave spectrum is

2 = (coN- o COS(+ KSkOM1COS2 2 , 2 (2-101)

If () = ) , it follows that t max = O( when k = 0 so that the threshold
ko

value of 0 for the usual first order coupling process is

2 . 4 ) 4 KQ &( 2 -1 0 2 )C)m silzy, (4M sin 2x

which implies that

Crf =is ra (2-10P3)

OMsini 2A

This field is just one - half of that needed to cause the subharmonic resonance.

If h is increased further, the cone angle remains "stuck" at its threshold

value. At this point it is worthwhile to pause and reflect upon the obvious
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relationship between (2-98) and (2-103) and the meaning of the factor of 2. In

the first place, the subharmonic resonance can certainly be considered as a

half-frequency spin wave in the limit as k - 0. The entire spin wave theory

presented in this t)regis is not quantitatively valid in such cases and it is

tempting to reconcile the factor of 2 on that account. A detailed analysis of

this point indicates however that the spin wave analysis is correct in this

instance and that the correct interpretation of the numerical discrepancy

arises from the fact that the two thresholds in question do not refer to the

same physical event. Equation (2-103) indicates the amplitude of the field

needed to cause the first departure from the linear response. As this thres-

hold is overreached, the half-frequency mode will build up to larger amplitude

and there will be coexistence of both responses. Equation (2-98) indicates the

point at which the half-frequency mode suddenly becomes resonant -- its ampli-

tude grows rapidly according to (2-97). It might be argued that since the

response would then be primarily at the half-frequency, the first order

instability process would have to shift to the quarter frequency (41/4 = 4,/2),

and consequently would have a higher threshdid than (2-102) -- (iriinite if

6)o/2 were below the spin wave band). Although this reasoning is correct it

may be shown that there will always be some residual linear response ( a

modulation product of the subharmonic resonance) sufficient to overcome the

loss of Wk = ( 1/2 spin waves. It appears, therefore, that the subharmonic

response will be limited by a modified first order coupling process to

-77-



approximately the same value as the saturated linear response.

2.6. The Measurement of L&I. It is clear from the preceding discussions

that a knowledge of how AHk depends on the spin wave propagation vector k is

necessary in order to properly evaluate any of the various instability thres-

holds. Most of the recent experimental investigations, which aim to uncover such

information, have involved measurements of the power required to cause either

a first or second order instability. In the latter case, it is the degenerate

0 spin waves that are involved (Ak2 = A); whereas, in the former case, it

is usually disturbances of small k value that are important. The majority

of experimental results cluster therefore in one of the two regions.1 1'1 8

Since the spin wave spectrum is a function of the saturation magnetization,

some efforts have been made to alter the particular range of spin waves --

either by changing the temperature of the sample, or by carrying out the

experiments on a series of samples that differ in chemical composition.

Both methods give various values of the magnetization but unfortunately do

not leave other parameters (such as AHk) invariant. Correlations of measure-

ments taken at different frequencies suffer from the obvious disadvantages.

We will now describe a method by which it appears possible to measure,

at will, the line width of any degenerate spin wave, so long as the normal

first order coupling process is impossible. (This can always be arranged if

the operating frequency is high enough.) The key to this method is in the
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60V^4. )H- HN.,JA)M + K .W 4 j-sirt'y OM (2-105)

Because

JO - W H- Nj ow + N tm (2-106)
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realization that additional microwave fields, in conjunction with the normal

transverse positively-polarized excitation, can cause a more flexible para-

metric excitation. The various pouplings outlined in Section 2.4 of this

chapter suggest the use of a spheroid that is acted upon simultaneously by

two transverse circularly-polarized fields of amplitudes h and h 2, having

frequencies of (0 = W and (&)2 respectively, plus a longitudinal field of

amplitude h3 having a frequency (& . Parametric couplings to spin waves of3 ~3*

frequencies (), 2).Z/ 2 , and G) 3 /2 , respectively, exist for such fields and

normally the process with the lowest threshold dominates. If, however,

C1 2 = (A)3 = 2 1 all the couplings involve (AJk = (01 spin waves, and the

remaining questions concern the values J and of the spin wave with minimum

threshold. This threshold is

siz+ 2 - Sinin (+z)

(2.104)

+ (Cos t + XK2 - Nt) Sin 20 =

where since )k = 01 = (o , the relationship between Xk2 and i is known.

For simplicity consider sin 2 t4 - N ( + k24) so that the

spin wave frequency may be approximated as



it follows that

\KN~-- (2-107)

and the quantity (cos2  + Xk2 - Nt) in (2-104) may be written as

(cos2 Y - 1/2 sin2 ). It is apparent from (2-104) that by the appropriate

setting of hl, h2, and h3, the net coupling maybe maximized for any given .

Xhe inverse problem of determining AHk ((j,5 ) from a series of measurements,

is more difficult since although 0(2 and 3 are controllable phases, and OK

are not. If H k( ) were a known function, we could predict exactly which

spin wave would go unstable first for any given setting of hi, h2, h3 ' C 2, and

3 and thus verify the assumption. However if the loss surface is reasonably

well-behaved, it should be poasible to arrive at it experimentally by an

iterative procedure. For example, the loss surface might be considered plane,

and the values of and predicted for a series of experiments. The

measured points would be ascribed to these values, which in turn could be used

to predict for the next set of experiments etc.

One simple and rather amusing experiment could determine the minimum value

of &Hk among the degenerate spin waves, although it initially would yield no

information as to the appropriate value of W . If (2-105) is approximately

valid and h = 0, the threshold equation becomes

( &SIM- 2AN() (2-108)



r
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where 0( will equal to T/4 to maximize the coupling. Now let

h )h 2(3  2.
= 3/2 2 ,and let both driving fields be increased until

2 c1J0

the threshold is reached. If P3 is experimentally varied until the threshold

is minimized, it is certain that sin( 03 + 2S - /2 equals unity. The

important feature is that now the left-hand side of (2-108) is independext of

4 so that all degenerate spin wavesi are being driven equally; the first wave

to go unstable obviously has the minimum value of LHk.

The degenerate spin waves are not the only ones that can be measured

by such techniques, for many different field combinations may be used. As a

single example, an additional field of frequency 02 (greater than )) can

produce instabilities among the W1/2 spin waves, provided that the frequency

W /2 is below the spin wave manifold. The unstable modes presumably have the

largest possible value of sin 2W and could have frequencies greater or smaller

than the resonant frequency (0 *



CHAPTER 3

TBE TRANSIENT MAGNETIZATION

In the preceding chapters, there were derived for an arbitrarily magneti-

zed ellipsoid, the general equations of motion for the spatially-uniform com-

ponent of magnetization, and a typical, small-amplitude, spin wave. The re-

sults obtained assumed for the most part steady-.state conditions. It is of

interest, however, to inquire into non steady-state aspects of the magnetiza-

tion and in this chapter we consider the transient behavior of the uniform

precession and the spin wave spectrum together with their mutual interaction.

Since the general problems are very difficult, if not impossible, the discussion

must be limited in scope to some of the more manageable topics. Those considered

fall into two general categories. The first assumes a steady-state magnetizing

field and considers the transient response of the magnetization when a

circularly-polarized driving field is suddenly turned on or off. The second

assumes that the magnetizing field itself has undergone a sudden change (such

as 180* reversal) and considers the spin wave interactions that are present

until the magnetization reorients itself with the field.
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The Transient Res onse to a Transverse Circ zlarly-Polarized Driving

and

6 = e sin (Wt - 4. + o - WX0 9ine (3-2)

whe re

W0 = W
The precession rate quickly equals the driving frequency, and the cone angle

starts to build up. Compared to th ts build up, the variation is normally

very rapid and we may therefore assume that the phase angle c< adjusts instan-

taneously to its appropriate values during the 0 transient. These are given

by (3-1), which reduces when fo = W t to

CoscK Col = AJ0W(3-3)

(Jh

Equation (3-2) becomes

o = 4)h$ SiM - (6SinO (3-4)

The most important case is that of resonance ( CO = (A) ) for which (3-3) sim.
0
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The Build Up of the Uniform Precession.

Field. As a prelude to the general transient problems involving pulsed

excitation, let us review a very much simpler problem -- that of the build up of

the uniform precession in a sphere (neglecting spin wave interaction). We assume

that the sample is magnetized by a field H and that a transverse circularly.

polarized driving field h of frequency Q is suddenly applied at time t = 0.

For t >O, the equations of motion are

Scote (3-1)



plifies to

COS o( co = 0 (3.5)

Initially cos 0 = 0 and it remains at that value as long as e < i/ 2 , It

follows therefore that

e= Sl o40 Sine (3-6)

which may be integrated to yield

2-4 - )3- 7

when .1 )

(3-8)

when L) =.to

and

(forh al t>0suh ha

when 9 4 ). In the latter case, as

soon as = T/2, (3-5) is satisfied independent of 0( , and sino( changes

from unity to * The cone angle then remains at its saturation value of T/2.
(Ah
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If the sphere is not in resonance, (3-4) becomes

2z
W )f32 (3-10)

When 8= 0, the detuning term in (3-10) is zero, and the cone angle starts to

build up as in the resonant case. As 0 grows this term increases also ( O( is

shifting away from 1T/2 ), and the effective driving field decreases. If the

detuning is appreciable so that Q4.-(d) >> O (or if ()h is small), the cone

angle will not build up to any large value. Then tanO and sine may be

replaced by their arguments and (3-10) approximated as

T a b i td -()v

This may be integrated and gives

-N- W10O

(A-W.-) Wh+ In\
~~s~(tie 0)0c~)~' qeoO

(3-12)

= 2.

which is more conveniently solved for t than for . If 4) = (A) , (3-12)

reduces to

(3-13)
4 

~ C t)

For small values of 9 , (3-7) agrees with (3-13).
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When the sample shape is not spherical the resonance frequency is a function

of e and therefore of the incident power. If the sample is biased to be reso-

nant when 0 = 0, it shifts out of resonance as 0 increases. We may compensate

for this by initially detuning to the other side of the resonance so that an

increasing e tends to restore resonance. As we shall see, this procedure is

limited. Assume that the sample is a spheroid, and that is small. Then

=) 0 CJ- ( NC- Nt Cos (314(OK(~ ~ ase(3-14)
CI + AZ

N - N
whe re () = )H -(N - Nt M and 2 t (Am . Equation (3-11) may

be written as

It, T2.D (Gj (3-15)

where D, the detuning term, is given by

D= w w(~-)+ 4Wo jZ (3-16)

If )= (O , D is zero when 9 = 0 and builds up monotonically as 96 for
0

increasing cone angle. Assume now that W / 40 if W is positive (N > Nt), or
0

> if W is negative (NZ <Nt). Under these conditions D becomes

D wz)ZOZ (3-17)

D - zGe

where 02 = , as is shown in Pig. 3-1. The build up transient is now

very interesting, for if the cone angle can attain a value o/Y , the peak in

D is surmounted and (provided Wh is great enough) 0 will increase to .

.-86-



D

4W28

0

Fig. 3-1

-87-

I
I

8
80I I



Since the height of the barrier is proportional to the sixth power of e , we

would expect that it: can be exceeded easily for small values but that at some

critical point it cannot -- without additional excitation. The condition for

scaling the top of the barrier is

(A --. 24 ) (3-18)

Any further increase in the cone angle will bring about a reduction in the de-

tuning term. If this decrease is sufficient to offset the increase in the loss

term, a "runaway" condition will result. Anderson and Suhl have analyzed such

behavior, on the basis of steady-state theory, and have determined the minimum

instability threshold.19 We are interested here, however, in determining under

what conditions Q can increase until D = 0. A necessary condition is that

the driving field be given by

.O 00 (3-19)

s'o that (3-18) becomes

W W 00 (3-20)

The initial detuning, necessary to make D equal zero when 0= , is

evidently

W)- 002 T 4 (3-21)

Substituting the value of W into (3-21) gives

Z -- C (3-22)
00,- - ),I(J,(c



which is minimized for a thin disc (N = 1). If 0 is slightly greater than
z 0

Ocrit , the cone angle can no longer reach 0 but it will arrive at a value just

under * 1 It should be noted that 9crit is normally greater than the thres-

hold cone angle, for second order spin wave instabilities, which is

2 _ 
2WAK (3-23)

M

Premature Saturation. The simple theory of the transient build up

just given does not prevent the cone angle from attaining large values (when h

is comparable to AH) unless the resonant frequency is a function of 0 . In

practice, the latter never approaches r/2 in the steady-state, even for a

sphere, because, as we have previously discussed , Suhl has shuon that certain

spin waves become unstable at power levels much smaller than those implied by

(4h = - O * These modes feed upon the uniform precession and cause a pre-

mature saturation of . The initial transient state is now very much

complicated. As long as the cone angle is below the minimum spin wave in-

stability threshold, the equations previously given apply. As 0 becomes

greater than this threshold, spin waves start to build up, and Q is reduced

as the loss term increases. There is a time lag before this starts to make

any appreciable difference, however, and so 0 continues to increase. More

*The power required to keep the cone of precession open tosame angle 0
is equal to2the damplhngtorque xCJprecession Therefore, Power/volume =
A M A[ sin e CO.0 0
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and more spin waves become unstable as their thresholds are reached, and the

initial instabilities grow at rapidly increasing rates. The amplitude of max-

imally-coupled spin waves is approximately given by

M n (Sine K) M (3-24)

for first order coupling (k = O/2), and

8 ( + AOK QM _ (3-25)

for second order coupling ( 0 k = )). (Note that if 0 > ff/4 the latter is

the dominant process and near =TW/2, the build-up rate is enormous.) The

increasing loss finally limits the growth of 0 and makes it decrease to the

critical value corresponding to the instability of minimum threshold. The

detailed dynamics of this turbulent system is beyond hope of solving. Even if

only one spin wave were involved, there would result four coupled nonlinear

differential equations. Many such waves are involved, however, and the

number depends on by how much 6 tries to exceed ecrit *

Practical considerations of these transients make a solution desirable.

If spin wave instabilities, of one form or another, are used to limit pulsed

r-f power incident upon a ferrite, the time lag associated with their build

up allows an initial "spike" to remain on the transmitted pulse. This is

often undesirable.

3.2. The Decay of the Uniform Precession. Another interesting transient

condition is found when the incident pulse shuts off. We might expect,
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a priori, that G , which is at its critical value, (the pulse is assumed to be

of long enough duration to insure this) would merely decay (along with the

excited spin waves) when deprived of the driving field. It has been found,

however, that this is not always the case; the cone angle sometimes grows be-

fore finally subsiding. Evidentally in these cases, the spin waves give back

to the uniform precession some of the energy they previously had coupled from

it. This implies that the parametric coupling coefficient changes sign in an

interval, short compared to the relaxation time. Although a solution to this

problem is also very difficult, a number of qualitative statements can be made

about the equations. First of all, to assume that the driving field suddenly

steps to zero will probably not yield a correct model of the usual laboratory

experiment, although it is of interest in its own right. An example may

clarify this remark. Consider that a spheroid is biased to some resonant

frequency 6). and that a transverse driving field of frequency ) , not equal to

WO , is present. Also, assume that the incident power level is sufficient to

create an excited spin wave. Now if the driving field steps to zero the fre-

quency of the uniform precession suddenly shifts from 69 to ('9 which in gen-

eral bears no relation to the frequency of the excited spin wave. The two

modes are decoupled therefore and the parametric coupling averages to zero

over a time interval that is small compared to the subsequent decay time. If,

however, the driving field does not suddenly go to zero, the precession rate does

not immediately change, and it is possible for the parametric coupling to



maintain an average value over the time interval of interest. It appears,

therefore, that a correct model of the driving field decay is important except

perhaps when W= ) 0 ; then no large change in the precession rate occurs in

either case. A qualitative picture of the interrelationship between the ampli-

tude and phases of the two modes may be obtained from an inspection of the

differential equations. Let us consider those appropriate for the first

order coupled modes (C) k =W/2) , assuming a spheroidal sample shape. If

higher order terms are neglected, (2-35) through (2-38), Chapter 2, reduce to

-o- COS +0() 3C -+ +- 2 Cs (3-26)

8M 0

O O 5il(tot-f. +,O<.)- C O + W tSMj(3-27)at12 M;L sinl4iZ

K ( N, WM + XKOm+ $ir1'YW Cos fK-S)
(3-28)

-z [C4os - ) + C.os

and

Si n 2( K-S) -2 Sim -M 3-29)

where

W s ta t K h

We assume that the driving field h (large enough to have caused saturation of e)



steps to zero at t = 0 so that the initial conditions are

0 C =2 LH . 2(3-30)
e~=ec= Msinzy(l in~( W~ )(-0

where sin 2 W (consistent with 4)k = W/2) is chosen to minimize 0 c, and

sin y : -1. The phase of the uniform precession, ( , for t 0 0 is given by

3cos -\ c . \ 3cos1k--CI cslc (
n CoSO - 0 S o) - .(3-31)

where

n= and COO( ==

If is to be positive at any time during the ensuing transient, either sin y

must change algebraic sign before Q does or vice versa. A chahge in the sign

of sin y implies a phase shift between the uniform precession and the coupled

spin wave, which would then act as a source instead of as a sink. If this

could happen immediately, 9 would initially increase from its value of c

before finally decaying. If, on the other hand, the phase did not shift it all,

O would decrease very rapidly because of the normal damping and the spin wave

term. In fact, it would decrease to zero and then become negative (provided

&K was still non-zero). A negative value of 0 effectively means that the

phase of the uniform precession has changed, but only after 0 has gone to

zero first. If M is large enough,101 will then increase rapidly and may
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attain a value larger than 0 c before finally decaying together with 6M.

In general, the relative phase between the coupled modes is not independent

of their amplitudes, as is clear from inspection of the equations. There is a

special case, however, in which a remarkable simplification occurs. Consider

that (A)= (0 and cos2 = 1/3, then cos W = 0 and (3-26) and (3-28) reduce,

respectively to = (A and k = 0k. Since sin y = -.1 for the duration of

the transient, (3-27) and (3-29) become

SM Co -(3-32)

and

Oc rA= (3-33)

where 0(0) = ec, and 6M(O) = 6M . Although there are now only two

coupled equations instead of four, an exact solution is impossible and we

must be content with what appears to be a reasonable approximation. This is

derived in the Appendix and results in

- (3-34)

O = e +- ) Pe ()0et)

for n >, and t 0 ]where

+ + + C +

*Note that if Q rises above ec other spin waves will go unstable.
Because of the time lag in their growth, they probably can be ignored
in most cases.
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2n 6j
and = . Equation (3-34) is plotted in Fig. 3-2 for the case n = 5,

) = (AK The type of behavior that was predicted is clearly evident, although

it shoutld be mentioned that the approximate solution always underestimates the

peak values.

Qualitatively, the discussion above applies also to second order coupled

spin waves. For second order coupling, however, (2435) through (2-38) reduce

instead to

T) (3-36)
0 0 0

S pSzO nfZX (3-37)

K WO-Nt Om +hKZcM + WJMO6 2 C0S2ZX (3-38)

and

where T has been set equal to zero.

3.3. The Transient Spin Wave Spectrum. The previous discussions con-

cerned a typical resonance experiment involving a dc biasing magnetic field

and pulsed microwave excitation. The transient behavior of the magnetization,
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when the biasing magnetic field varies in amplitude and direction, is also

of considerable interest for a number of reasons. For one, a knowledge of the

dynamics of magnetization reversal in ferrite computer elements is necessary in

order to predict the limits on switching times. For another, the possibility

of coupling magngtic energy from transient fields and converting it into pulsed

microwave energy has been theoretically analyzed by the author,2 0' 2 1 and

experimentally demonstrated by Stiglitz and Morgenthaler22 as well as by

Elliot, Shaw, and Schaug-Petterson.23 The behavior of the spin wave spectrum

under transient conditions is naturally of great interest. It is particularly

important to know what relaxation processes would occur if the magnetization

were momentarily inverted ( 1 = T). This problem was treated by the

author,I, 14, 24 and more recently identical results were obtained independently

by Schaug-Petterson.25 The magnetization will change rapidly and it is

important to follow the spin wave spectrum and the strength of the various

couplings for succeeding stages of the transient. Before we attempt this,

it will be helpful to review the O= w case.

The Inverted Spectrumo The spin wave spectrum, which is valid when

negligible transverse components of the magnetization exist (sine' 0), was

derived in Chapter 2 and is given by

WOK- (WW- ZWMCOSe + \KZW1  COSa
(3-40)

x ( - ( cose + XKI (cose +si swcose)
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exchange field is effectively subtracting from it.

in the effect of the volume dipolar field so that

highest frequencies, and '= 7r/2 waves the lowest,

latter waves and assume that they are lossless and

increases the exchange field reduces the frequency

all torques balance and )k becomes zero. At this

so that the component of the volume dipolar field,

the spin wave (see Fig. 3-4), is also zero and the

magnitude of 6M is maintained.

the exchange field to overbalance

proceed in the opposite direction

There is a similar reversal

j = 0 spin waves now have the

Consider for a moment these

propagate when k = 0. As k

more and more until finally

point, sin 2(fk - S) = 0

which is perpendicular to

equilibrium position and

If k increases slightly, one should expect

the applied field, and the precession to

(negative Q)k). Actually, the phase of k

-98-

For e= 17, the value of cos e is minus unity and a region in which spin wave

propagation is cut off may be shown to exist. This region is largest for = r/2

directed spin waves (recall that is the angle that the spin wave propagation

vector makes with the direction of the internal magnetizing field) and decreases

to zero when = 0. The spectrum is plotted in Fig. 3-3 for the case of a

sphere (Z = 1/3) with () H 4) .H M

Mathematically, the cut-off condition comes about when the two factors

in (3-40) have opposite algebraic signs, which lead to imaginary values of 'dk

The physics can best be understood by studying a graphical representation of

the field vectors. This is given in Fig. 3-4. In the first place, because

of the inversion of M, the "demagnetizing field" ZM is adding to H while the
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changes but I k remains zero. Since the sin 2( fk - ) #0, the perpendicular

component of the volume dipolar field becomes non-zero and SM is either increased

or decreased (both phases of f k are permitted). If it is positive an unstable

situation exists. As k increases still more, the phase of k changes ( 4k
still zero) until the sin 2( k - ) reaches a maximum and then it starts to

decrease. When k increases to the point where sin 2(f k -f) = 0 again, the

end of the cut-off region has been reached. Any further increase in k now

unbalances the precession torques and (Wk becomes negative. The situation is

much the same for any other direction of , except that a greater k value is

needed to reach the lpeginning of the cut-off band. It is interesting to note

that the end of the latter occurs for the same value of k, regardless of .

As this angle approaches 0, the band shrinks until it becomes only a single

point. Since the transverse volume dipolar field is proportional to sin2

the parametric coupling decreases to zero in the latter case.

Further mathematical insight comes from the consideration of the lossless

equations of motion for 6M, which are

K= H- i A SM(f %C,05 (fK-g (3-41

and

'M= - SinNZ, ifn(K_- )CoS(fKi) WM A (3-42)

In the cut off region, the precessional motion of the spin wave has stopped

4k = 0). Therefore
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Ksh Cos2&jKi) = 6 + iWM - XK'dM (3-43)

Solving this equation for cos( fk - ) and sin( k - ) and substituting

these expressions into (3-42) yields

+ (j (3-44)

where 4)k is given by (3-40). The plus or minus sign means that both

growing and decaying solutions are possible; the former being the only one of

interest. Since Q)k is imaginary, let W k = itk . Then

~K
SM MO(3-45)

The maximum value of 1. k for arbitrary occurs when Tk /=

since we know from (3-42) that

K 2q M n 2*- (3-46)

It is also seen that =T/2 leads to its largest possible value in

agreement with the previous discussion; then

WKt
(3-47)

The growth of this individual spin wave is therefore extremely rapid unless

the saturation magnetization has a small amplitude. The total effect of the

unstable spin waves is very much greater since a whole band of them exist. The

k value of the fastest growing spin wave in any paritcular direction is easily

found from (3-43) with cos2 ( fk -i ) = 1/2 and is given by
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K = z ) (3-48)

XM
provided that this value of k2 is positive.

The unstable spin wave growth, together with all other relaxation pro-

cesses, will certainly result in the rapid return of the magnetization vector

from its inverted to its normal position. The spectrum just described will,

therefore, continuously change until it finally reaches the steady-state Suhl

spectrum. The actual transient behavior will depend to a large extent on how

much uniform precession is initially present when the spin waves first go

unstable. The case e = Tr is a point of unstable equilibrium for M and im-

plies no such initial component. It is possible, therefore, to assume that the

unstable spin waves could act to increase MKfroma~ts initial value of -M to +Mz

without there ever being formed a spatially coherent transverse component of

the magnetization. Many of these spin waves would grow to large amplitude and

each would in turn effect the frequencies of the others. The determination of

such interactions, even using quasi-static approximations, is too difficult to

carry out.

The General Spectrum. Let us consider instead the more general

case when 9 is not exactly 7 . We assume that the transverse component of the

uniform precession is very much larger than any initial spin wave amplitude.



The initial spectrum is essentially the same as that for = 7r but the un-

stable spin waves will coxrstitute an additional loss as far as the uniform pre-

cession is concerned (now not in unstable equilibrium). This tends to make 9

decrease much faster than usual and causes an initial increase in sin 9 ;

hence, the uniform component. If this latter component is large compared to

the spin wave amplitudes, the spectrum will be governed by the uniform pre-

cession and not by the spin waves. If in addition the quasi-static approxima-

tion (that 64 ) is used, the problem becomes identical to the one of

determining a succession of spin wave spectrums assuming no appreciable spin

wave amplitudes, but some arbitrary value of e .
Again, for simplicity, we consider the sample as a sphecvid magnetized

along its major axis (z). We assume also that all r-f driving fields are

zero. Equations (2-35) through (2-38) are then

fo~- - ( NiN) WMCos8 G<3-49)

-Sin (3-50)

- (N - X KZ) cos e + si (, W 5 Cos ( cos2( -g)

- Sinr2( LJt Sin O COSX cos(2K-5) (3-51)

+( K'+ cos'-N) %1 sineaon cos'x
and
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S(Pcose si(-~ Sim ~ ii4-~~

(3-52)

In general )k will not be equal to either (Co or (./2 so that the sin 2

term in (3-51) has no average value, whereas, cos 2x averages to 1/2. (If

k = or d /2, the equation for 'Pk is in general modified. It is

easily shown, however, that those spin waves that are maximally-coupled to

the uniform precession, and that therefore meet these frequency conditions, are

not significantly modified. Spin waves that are modified will be discussed in

a later section.) It then follows that

K 0o H K) -O- CS COSei +COSz(-)]

+ ( \Kz+ COS2_ N) S i.o W-
Since e is assumed to change negligibly during a precession period, it may

be treated as a constant and the 42k equation integrated directly as before.

The result of the integration is to determine 4)k as

co = (a+ bCoste + CSinZ +dK)( + + (3-54)

where Ncu OSe- k4m sine tone
b- wi sineae

C= LWJcOsG
and

d~ -wMs(cose+si OG)
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Notice that the coefficient d, which determines the slope of the spectrum, is

essentially independent of e except near 0 = 1T/2. (This point 7r/2 is excluded

from consideration since, as derived in Chapter 2, the spin wave equations are

2
not valid unless sm 44 Mcos e or Mcos 2 .) The dependence of d, on , is

shown in Fig. 3-5. The spectrum is plotted in Figs. 3-6 and 3-7 for various

values of 9 for a spherical sample. It is assumed that 4)H = M , and only

the (= 0 and = T/2 spin waves are shown in the figures. An interesting

feature is that these = 0 and ( = T/2 waves alternate in being lower in

frequency as 0 varies from 0 to T, and that neither of these directions con-

stitute the upper limit to the spectrum in certain ranges of 9 . This may be

seen by examining the extrapolated limits of the spectrum for k = 0. If W k

does not equal either W. /2 or (O ,they are given by

)= (c + b coszy)(ca + b cos) + c sint (3-55)

The maximum and minimum values of WO (0) must satisfy the condition

k

Si (OS [26(b-C) COS + (26-C) + C = 0 (3-56)

provided 4)k / 0. Three possibilities exist: 1) = 0 for which

= (0) = (U (3+6 (3-57)

2) = 1T/2 for which

WK(o) = J = 3 ( c + (3-58)

and 3) cos2 a(2b - c) + bc (if is real) for whichCOS 2b(c - b)

(L) ()(3-59)
Z4 b(c-.b)'
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If (9 < /4 (c >2b), it may be shown that W3 is the absolute maximum provided

bc
c 2b > a > -b. In Figs. 3-8 and 3-9 the k = 0 spin wave frequencies are

plotted as a function of Y for several increasing values of 6 . The latter

are chosen to indicate the manner in which the spectrum turns over. Again, the

-case Z = 1/3, Q.H = W M was chosen.

3.4. The Position of the Uniform Precession in the Manifold. The

position of the uniform precession in the spin wave manifold as a function of

the cone angle is important, since its relative position determines which spin

waves will be strongly coupled at any given time. For example, Schlt3mann has

shown that the discrete nature of the spin wave modes together with their fre-

quency dependence on power can account for certain fine structure, which has

been observed in high power resonance experiments.26 Moreover, it appears that

under certain conditions, the uniform precession can drop below the main spin

wave band, although certain other spin waves, with precise phase relationships,

will still be degenerate with the uniform precession. For example, assume

that 4 = 0 spin waves lie lowest in the band and that 0 4W/ 4 . Then

(for a spheroid)

rK~io X~~~%OO 2Kc 1 cs CO X (3-60)

and

w . W - Nj W COSe + NttI cos (3-61)
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where x = k o , as before, and all spin waves are assumed to have infini-

tesimal amplitudes. If (0 is to drop below the spin wave band, we must have

N X XK + (+ AKZ- N avi cosx (3-62)

for all real k. The most stringent requirement is for k = 0 and then

N < (I-N )cos' x c i (3-63)

In general, 4 k o so that cos2x = 1/2, and

2Nt> N(3-64)

gives the critical value of 9 . Notice that for a sphere (Nt = 1/3), 0= T/4

appears to fulfill the condition. However, when 0 = T/4, the (/= 0 waves are

actually at the top rather than at the bottom of the spectrum, and 0 has not

escaped from the spectrum. Further increase of e will not alter the situation.

If Nt is very small (flat disc magnetized normal to its plane) the critical

value of 9 decreases. This is reasonable since for small Nt and 0, the

uniform precession begins close to the bottom of the spin wave manifold and

moves only a short distance before escaping. In fact, for Nt = 0, the uni-

form precession is initially at the very bottom of the manifold and any non-

zero e will cause it to drop below. In practice, of course, there is always

some non-zero Nt .

If k 0 (assume that k cannot equal o/2), it follows that

(for I= 0)

N t = K + (+ + X K- Nt ) a 2 COSa)( (3-65)
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Now cos 2x need not be 1/2 so that their exists a range of degenerate (= 0

spin waves (with precise phase relationships) even though the inequality (3-64)

is valid. They exist from k = 0 for which cos2 x = - N tanzO 1/2 to

k = for which cos x = 0. Notice that the degenerate band has exactly the

same width (in k) as when e = 0, and that the degenerate range of spin waves

is not restricted to 0. Equation (3-65) is generalized to

[Wm- IqU&,cose + XKZ& 4M case + (Cosz F+4hKZ- Nj)G&41sinOf e 1 1&]

X -,' Cos&in ( (3-66)

I_+ %-Nw COSO +XKWcOSe +(cost+X-q)WMSinOA1 O cos X

= %- NtcucosO + NtWmcose

If (4MH2 14 4 1, (3-66) simplifies to

XKz+ (CoSz + Kz-0 aN Coz( (3-67)

No degenerate spin waves exist (for small 9 ) if sin2 P>2Nt

In Chapter 2, the critical value of 0 leading to instability for = 0

spin waves (for which (Ak= k 0), was given and may be written in the form

e2L K .(3-68)

(I+ K- N) M Sin 2X
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Since cos 2x must be less than 1/2, if the inequality (3-64) holds, the insta-

bility thresholds are raised accordingly. Solving (3-67) and (3-68) together

yields

Itan - (Nt- XK') 2  m(3-69)0 (+XKz" Nt) ( Nt- XKV)

The minimum value of tan e occurs when

2- K LA + bi (3-70)

and if -- << 1, as is usual, (3-70) may be approximated as

\Kz -- N - ( ) (3-71)

Substituting this last resdlit into (3-69) yields

21Mio (3-72)

When N .- this solution does not exist for any real k and the minimum
t M,

threshold occurs for k = 0. Then (3-69) becomes

(I -N-t) Nt

If the uniform precession is to drop below the main spin wave band before this

threshold is reached, the following inequalities must hold

S(3-74)
-Nt (\-Nt) Nf
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This is possible since by assumption N 4- . The smaller the value of Nt '

the wider the range of 9 , which satisfies the above conditions. Although the

spin wave instability threshold is raised by using an extremely thin disc,

instabilities of the type discussed by Anderson and Suhl 9which depend on the

resonant frequency being a function of e , will remain with unchanged thres-
holds. These exist, however, only for certain values of the biasing magnetic

field.

The spin wave spectrum is shown in Fig. 3-10 for conditions under which

the uniform precession has dropped below it. One may inquire why the uniform

precession is apparently privileged in this respect. The answer lies in the

assumption that only the uniform precession has a significant amplitude. The

transverse precessional component interacts with all other spin waves or mag-

*
netostatic modes and under certain conditions tends to raise their frequencies.

As long as the other modes possess negligible amplitudes they cannot in turn

effect the uniform precession frequency. If some other mode were excited to a

large amplitude, the spectrum shift could be quite different.

*Actually this has only been proved for the spin wave spectrum, extrapo-
lated to zero k values. For 9 = 0 no magnetostatic modes are below this
extrapolated limit and it is reasonable to suppose that this holds generally,
at least for small 9 .
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APPBNDIX

We establish (3-34) by an iterative procedure. Notice that 6M(O) = 0 and

that &M does not change appreciably (compared to 9 ) until e has gone nega-

tive. As a first approximation, therefore, let 6M = SMO he a constant. Then

0 0 (A-1)

which may be integrated immediately to give

C (A-2)

Now use this to get a better approximation of 6M namely

1M ~In -C ) SM (A-3)

This may be integrated to the form

[v 6MO[ 
(A-4)

which has the correct behavior at t = 0 and yet leads to the eventual decay

of 6M which is necessary.

We use this expression for 6M to improve on (A-1). This is a first

order equation so that the solution is given by

(A-5)

whe re
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e dt + AO

and

The i r (2-1 s
W-*o

The integral in (A-.6), which must be evaluated, is of the form

- ot -@ e.

(A-6)

(A-7)

(A-8)dt

with Y= 6Jo and 0( = Y( - 1). Successive integration by parts gives rise

to the series solution

-oti
e e

(cl+x)(De+ 2zY) e + (

+ _ _ t

O(+Y)(oq +27)(o(4 3Y)

Then

Ce
where

IN)
2U424,t + i-t- +

+ C + (3+1
-

The constant A is evaluated so that
0

A = 60c(- -,)

and (3-34) is established.

0C P(O)
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I

e
(A-9)

+

P(t) + AO (A-10)

3 4i;
+ 1.' ' (A-11)

19() = ec .0 Thus

(A-12)

\I

= ( 0-1 )



CONCLUSION

In this thesis, there were formulate4 for a small ferrimagnetic ellipsoid,

the general equations of motion governing the uniform precession and a typical

small-amplitude spin wave. The internal field used in setting up the equations

consists of the applied fields together with those arising from the demagneti-

zing, volume dipolar, and exchange energies. Schltmann has shown that fields

due to inhomogeneities are important in some cases (particularly with porous

polycrystalline samples) since they can cause a gradual decline in the suscep-

tibility for increasing power levels.27 However, for simplicity, such terms,

as well as those due to anistropy, were neglected; their inclusion in the

general equations poses no serious problem.

The equations of motion, neglecting spin wave terms, were aalyzed with

respect to both linear and nonlinear effects. The generalized ferromagnetic

resonance frequency was derived and the intermodulation between the precession

cone angle and phase wa-s discussed. The general linear external permeability

tensor was obtained and proved to be complicated due to the elliptical preces,

sion path of the magnetization. Harmonic generation occurs in the longitudi-

nal direction because of this ellipticity but it was also pointed out that
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longitudinal components of time-varying demagnetizing fields cause harmonic

generation in the transverse plane. These field components may also cause sub-

harmonic resonance when an applied transverse driving field is above a certain

threshold, provided that the ellipsoid is biased to the subharmonic frequency.

The half-frequency subharmonic is the only case of importance and was analyzed

in detail. The relationship between this resonance and a general class of

nonlinear responses was pointed out.

Next, spin wave interactions with the uniform precession were taken into

account. Solutions of the equations led to a determination of the generalized

spin wave spectrum and a physical picture of the interrelationship between the

spin wave amplitude and phase. This was found to be similar to the case of the

uniform precession but due to volume rather than surface effects. The resulting

elliptical precession path is of major importance in providing parametric

coupling between certain spin waves and the uniform precession and was found

to be responsible for the first order instability threshold in a spheroid, as

discovered by Suhl. The generalized first order threshold was obtained for an

ellipsoid and it was found that both transverse and longitudinal demagnetizing

fields are important. The second order instability threshold for a spheroid, also

discovered by Suhl, was found to be modified in an ellipsoid because of these

fields, but normally only to a minor extent. These above-mentioned thresholds

involve a single transverse driving field but the effects of additional applied

microwave fields, of various frequencies, were sought. It was found that direct
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parametric coupling, between a longitudinal pumping field and both the uniform

precession and spin waves, can exist under certain frequency conditions, and

that transverse pumping fields of the proper frequency can couple directly

to spin waves. An experiment utilizing a combination of driving fields was

described, which should make possible the measurement of &Hk for selected

spin waves. Much of the material discussed has direct and obvious application

to the field of ferrite parametric amplifiers and oscillators.

The transient build up and decay of the uniform precession in response to

a pulsed microwave driving field was discussed, as was the dynamic behavior of

spin wave interaction. In particular, it was shown that if the magnetization of

a spheroid could suddenly be inverted with respect to the magnetizing field,

certain cut-off spin waves would grow very rapidly at the expense of the uni-

form precession. The spin wave spectrums, appropriate to succeeding stages of

the ensuing transient, were derived using a quasi-static approximation and

they give at least a qualitative picture of the highly nonlinear loss mechanism.

Finally, an analysis of the position of the uniform precession relative to the

spin wave manifold indicates that under certain conditions the uniform mode

might drop below the main spin wave band. Under such conditions it appears

that the second order instability threshold in a very thin disc can be made to

rise above its usual value.
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