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ABSTRACT

In this thesis are formulated the general differential equations of
motion for the magnetization in a small ferrimagnetic ellipsoid magnetized in
an arbitrary direction and excited by spatially uniform microwave magnetic fields
of arbitrary frequencies and directions. The magnetization is assumed to consist
of the uniform precession plus a typical small-amplitude spin wave.

At first the spin wave terms are neglected and various solutions obtained.
The approach used is to first assume that all applied microwave fields are zero
but that at some initial instant the magnetization is nonparallel to the inter-
nal field, The resulting transient of the magnetization is obtained and yields
the natural precession frequency as well as information about modulation products
that are created by the internal modulating fields. The forced or steady-state
solutions when various driving fields are applied are next obtained for both
linear responses, in which the magnetization precesses chiefly at the driving
frequency, and nonlinear responses, in which it does not. A mechanism of second
harmonic parametric coupling is analyzed, which is strongly dependent on sample
shape and the minimum threshold is given.

The spin wave terms are now considered and various quantities of interest
derived, The generalized spin wave spectrum is found together with the first
and second order instability thresholds beyond which certain spin waves go
unstable. These thresholds are obtained for both linear and nonlinear responses,
Direct parametric coupling between microwave driving fields and certain spin
waves is shown to exist, A method is described by which it appears feasible to



selectively drive any spin wave that is degenerate with the uniform precession,
This would provide a means of measuring the spin wave line width, 2 AHy, as a
function of wave number k without changing sample geometry, saturation magneti-
zation and/or frequency.

The transient build up and decay of the uniform precession, in response to
a pulsed microwave driving field, is discussed as well as the dynamics of spin
wave interaction, In particular it is shown that if the magnetization of a
spheroid could suddenly be inverted with respect to the magnetizing field, cer-
tain cut-off spin waves would grow very rapidly at the expense of the uniform
precession., The spin wave spectrums, appropriate to succeeding stages of the
ensuing transient, are derived using a quasi-static approximation and they give
at least a qualitative picture of the highly nonlinear loss mechanism. The
position of the uniform precession, relative to the spin wave manifold during
transient conditions, is also studied,
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INTRODUCTION

It is the intent of this thesis to establish a broad theoretical frame-
work suitable for treating many of the linear and nonlinear interaction
problems arising in a small ferrimagnetic ellipsoid in a relatively simple
and straightforward manner with emphasis on the physical picture, The funda-
mental principle underlying practically all microwave devices involving ferro-
magnetic interaction is that of ferromagnetic resonance, In ferrimagnetic
insulators, the basic mechanism of resonance is well understood but there are
some sophisticated aspects of the problem, generally of nonlinegr character
that are only beginning to be fully appreciated., These manifest themselves in
the realms of parametric amplification and oscillation, harmonic and subharmonic
generation, and ferromagnetic resonance loss mechanisms,

The magnetization within a ferrimagnetic solid is made up of an ensemble
‘of magnetic moments, arising from individual electron spins, which are coupled
together quantum-mechanically. Their positions are subject to statistical
variations and it is customary to resolve these normally small fluctuations
into a Pourier expansion both in space and time coordinates and to call an
individual member of the expansion a spin wave. The conventional picture of

resonance neglects these fluctuations and, for small enough samples, it assumes
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that all of the magnetic moments are in phase -- cooperating to produce a rigid
magnetization vector. A microwave field of the correct form and frequency can
drive this vector into resonance, under which conditions the configuration of
the magnetization is termed the uniform precession, Nonlinearities complicate
the usual small signal theory and arise, broadly, from two Sources. First, the
equations of motion governing the uniform precession are themselves nonlinear,
and, as expected, predict harmonic generation and frequency mixing., Second,
certain of tﬁe neglected spin wave states are potentially unstable at high
enough microwave signal levels, and must therefore be taken into account,

In an effort to simplify the problem, the following approach is utilized,
The various components, which go to make up the total internal field within
the ellipsoid, are enumerated and discussed, These fields are then resolved
into appropriate sets of rotating spherical coordinate components, This is
done for the sake of mathematical simplicity and because the physics can be
followed rather easily from the resulting geometrical representation of the
field vectors, 1In connection with this, it is worth noting that almost all
authors, who deal with elementary expositions of ferromagnetic resonance,
immediately point out the analogy of the subject with that of gyroscopic
motion, Now almost all texts on the latter subject make use of spherical
coordinates and it would appear potentially profitable to do so in the case of
ferromagnetic resonance. This has usually not been done, however, for no

discernable reason save perhaps one. The concept of demagnetizing factors
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arises inevitably when an ellipsoid is considered and these quantitigs are de-
fined in terms of the three principal ellipsoid axes. This fact has undoubtedly
influenced the use of cartesian coordinates in such problems,

There is another departure in this thesis from the usual formulation,
Although the magnetization and the related field quantities are expanded into
a Pourier series of terms in so far as their spatial variation is concerned, the
time dependence is not -- at least at the outset. There is a strong temptation
to do this for there is a tendency to assume that the nonlinear problem will
yield only to an expansion in various orders of the small signal or linearized
solution, That this is all too oftemn the case is unfortunate but in this parti-
cular problem the differential equations (or close approximationsito them) may
be integrated directly in many instances,

No ma jor changes of variables occur in the course of solution. All of
the formulation is done in terms of the amplitudes and phases of the various
quantities of interest -- an obvious advantage when it comes to the physical
interpretation of the results,

In Chapter 1, there are derived the general differential equations of
motion for the uniform component of magnetization in a small ferrimagnetic
ellipsoid magnetized in an arbitrary direction and excited by spatially uniform
microwave magnetic fields of arbi?rary frequencies and directions, Following
this, various solutions are obtaiﬁed. The approach used is to first assume

that all applied microwave fields are zero but that at some initial instant
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the magnetization is nonparallel to the internal field. The resulting transient
of the magnetization is obtained and yields the natural precession frequency as
well as information about modulation products that are created by the internal
modulating fields, The forced or steady-state solutions when various driving
fields are applied are next obtained for both linear sesponses, in which the
magnetization precesses chiefly at the driving frequency,:and nonlinear re-
sponses, in which it does not, A mechanism of second harmonic parametric
coupling is analyzed, which is strongly dependent on sample shape and the
minimum threshold is given,

In Chapter 2, the magnetization is assumed to consist of the uniform
precession together with a set of spin waves., Since the spin wave amplitudes
are normally small, products involving two of them are negligible compared to
products of the uniform precession and one of them. This implies that we need
consider only a single, typical spin wave, In some cases, this is not sufficient,
but for the sake of clarity and simplicity only one such component is considered
here, After the basic set of four coupled differential equations is formulated
(for the amplitudes and phases of both uniform precession and spin wave) various
gquantities of interest are derived, The generalized spin wave spectrum is found
together with the first and second order instability thresholds beyond which
certain spin waves go unstable. These thresholds are obtained for both linear
responses, in which the magnetization precesses chiefly at the driving fre-

quency, and nonlinear responses, in which it does not, Direct parametric
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coupling between microwave driving fields and certain spin waves is shown to
exist, A method is described by which it appears feasible to selectively drive
any spin wave that is degenerate with the uniform precession. This would pro-
vide a means of measuring the spin wave line width, 2 AHk , as a function of
wave number k without changing sample geometry, saturation magnetization and/or
frequency.

Chapter 3 is devoted to non steady-state aspects of the magnetization
and in it are discussed the transient behavior of the uniform precession and
the spin waves together with their mutual interaction. The build up and
decay of the uniform precession, which follows the switching on or off of a
microwave driving field, is considered as well as the dynamic behavior of the
spin wave spectrum during certain transients involving sudden changes in the
magnetizing field. Those spin waves, which are found to be cut off, are

*
analyzed in some detail,

*Material abstracted from this thesis has been published in a very
brief survey paper. See Reference 1,
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CHAPTER 1

THE UNIFORM PRECESSION

1.1. The Basic Bquations, A ferrimagnetic ellipsoid is assumed to have its

principal axes along x, y, and z as shown in Fig. 1-1. The total intermal dc mag-
netizing field is assumed to lie along the z' axis so that in the absence of any
excitation the magnetization vector ibof the material is also along z'. Demag-
netizing factors Nx, Ny, and Nz (whose sum is unity) for the principal directions
can be calculated from the physical shape of the ellipsoid in the usual manner,2
and are assumed known. The externally applied dc magnetic field must in general
be nonparallel to the magnetization., In fact it may be shown that (referring

to Pig, 1-1) the applied field will be of the form

- —

Happ{'n o

e 4

T My gined sinzg

i

2 .
4 J/ Ny cos B + !\;E,smzﬁ’ NB. Mz' Sin 2 (1-1)

+X  H,

-t - b
where i', j', and k', are unit vectors in the primed coordinate system, M.27 is
e
the dc component of M along z', and H0 is any value of magnetic field suf ficient
to magnetize the sample. The transverse components of the. applied field are

needed to cancel out similar components of the demagnetizing field. They are

zero only when the ellipsoid is magnetized along a principal axis,

B
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The equation governing the motion of the magnetization is (in mks units)

%ﬂ = WM, (_(‘7\ X ﬁ) + c\ampivw] feem (1-2)

where )/ , a negative quantity, is the gyromagnetic ratio that includes g
facfor, and /Lkois the permeability of free space;'ﬁ is the internal magnetic
field,

The actual form of the magnetization vector depends on the exact boundary
conditions and the spatial and temporal dependence of the applied fields, as
well as the statistical distribution of spin wave excitation from lattice
vibrations, collisions etc. Here we assume, however, that the applied r-f
fields are spatially uniform, and that the magnetization is essentially the
same, with the exception of small-amplitude wave disturbances. These are
neglected for the time being but will be considered in Chapter 2. In terms of

primed coordinates, the magnetization vector is

—r -~/

M = T Msing coch +] Msing sind + XK' Mceos®  a-n

-y
The total internal magnetic field H will consist of the applied field
(including time-varying as well as dc components), and the demagnetizing field,
due to surface magnetic dipoles, The latter involves specific boundary conditions,

accounted for in the values of Nx’ Ny, and Nz. This field is given by
ANV =/ ™M AV,
—_ L NX MX + J N&J Ma + K N‘Z Mf (1-4)

(in unprimed coordinates) where the bars denote spatial averages. Note that the

Hdemaane‘\‘iiin

demagnetizing factors, which evolve strictly from static considerations, have
been applied to the case where Mx’ My’ and Mz include time-varying components
that are spatially uniform, This magnetostatic formulation, which is permissible

as long as the ellipsoid dimensions are small compared to any appropriate wave
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length, is the usual approximation.3 By transforming the magnetization into
Mx, My’ and MZ components, multiplying respectively by -Nx, -Ny, and -Nz and
then transforming back into primed coordinates, one has the demagnetizing field
expressed in x', y', and z' components, The transformations appropriate to

Pig. 1-1 are

X = X'sing + Y Cosx Cosp + 2'sinx cosp

Y ~X'CosB  + Y cosXsing + 2 sine sinp a9
2 = -y sin + 2/ Cos

and

>
~
il

X Sinp — Ycosp
X CosX Cosp + Y CosX s'm@ — 2 5in¥ (1-6)
/ X SinK Cos@ + ﬁ Sinod Sin@ + 2 s X

NS
]

The dc components along x' and y' just cancel the corresponding components of
the applied dc field, and leave the net internal dc field along z'. This is
given by (1-1) where Mz, = M cos@ . PFor small values of the cone angle, the
cos O is approximately unity.
It is convenient to go one step further and express the transverse demag-
netizing fields in terms of components that are parallel (Hi) and perpendicular
(H{) to the transverse magnetization as shown in Pig. 1-2. When the transforma-

tions are actually carried out

(Hl) = (A + B os Z(@ + Wsin Z(P) M sind (1-7)

de ma.g,

W%Hf)dmjé (B sin zde — W cos 2<?> Msing (-8

ZA = Ny(sins + cosi Cosp ) + Nt\(coslp + Cos‘o<sim2§>+ N sinx

s
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2B = N(Sirfs = cosiccos) + Ny (cos's = cosisiti) = s it
2W = ( Ng= Ny) cosx sin 28

In addition, the resultant magnetic field component along z' is

(Hi’)af(‘ied a= H-ZMcose = (Msing cos@ = DMsinsing  a-

pusdcyma.

where
Z = (Necos8 + N, sin‘g) sin‘s + N cos'ex
C = DNe= Ny 600 sin 24

2 .
D= (NX COSZ@ + NSSIHZ@ - Ni) SH:IZ.Z(X

Notice that if the magnetizing field coincides with a principal axis of the
ellipsoid, the time-varying components of the z' demagnetizing field vanish,
Previous analyses were restricted to such geometries, and certain interesting
solutions were therefore missed,

Various damping terms, which are phenomenological and roughly equivalent
to one another, may be used in (1-2), We choose a Landau-Lifshitz term which
is proportional to M x(M x ﬁ); hence, (1-2) may be written

w—lt
M ST LT o
d-t = VA MX<H +Hclam‘>in3) - )//ua MX Ht) (1-10)

- — - —h

where H = _}ZQ_AHO__(MXH), () is the precession frequency, and AH is
dmp.  Mw o

half the ferromagnetic resonance line width. In general, the vector H will

*
consist of the applied dc magnetic field, the demagnetizing field and applied

*Additional components will arise from the fields due to anisotropy,
inhomogeneities, etc, These are neglected in this thesis but may be treated in

a similar way.
=11~



time-varying fields. Since the latter will be very small compared to the other

AH

= iy
by o= (M x H ,). This field has a

ol
two fields, we can approximate H E
Z‘l

damping

component perpendicular to the transverse magnetization given by

(HT)AMP’ = — AH, sinb (1-11)

Any applied r-f magnetic fields are assumed to be broken up into circularly-
polarized components in the transverse plane and into linear components along the

2z' axis. A typical set of components is

— - — —
h,= U hcos(wt+u) + | hisin(uteog) + K’\AQJSM(&JJH@J) (1-12)
where positive and negative values of Q& represent, respectively, positive and
negative cicular polarization.

The comilete expressions for the magnitudes of the various vectors, due to
all the sources enumerated above (including the applied microwave fields resoclved
components), are

*
into Hl , Hl , and HZ

¢

M= Msing

M, = Mcos (1-19)
H,= (A+Bcos2 +Wsinz ) Msing = 2 h; cos (0t~ @ +06)  aao
HT‘ (Beinzg)—W cos 2<Q>\V\5in9 pAT Sin(w;t-¢+ o(;)-AHosmé) 1-10)
R,= H,-ZMcose = CMsing cosq) ~ DMsindsing +JZ l«ijsin(uﬁsj)uum

The equations of motion for this rotating set of vectors may now be

. ) ) X ~
written, by inswection, from M = YAM(M x Ht)' They are
-12.



M@ = -y (M Hy + My H)
M‘-:—mMH

and may be expanded into

{) = -, { H,= (2-A)Meoso + BMcaso @529 + WMesDsinad
-(Msino c:osée —~ DMsin® sinc() —-@do7 COS(%'PW;)
+ % hgd. sin(wit+p;) }

0= —%{(BM Sin 24/~ WM cos 29 - /_\_Hc,) Sind
2y sin(0t-¢+) }

wheze A, B, C, D, W, and Z have been given. An alternate form is
~Csing cosd) — Dy sin6 sind
— COJVGZL&)M Cos(wﬁ,-f{ﬂo(;) + thij Sin (th+(;3)

and

A= (_‘Jiiiﬁ’_sng@ Cos2¢) ~ aq,) Siné

cosé
+ 2 Wy sin (=g + o)

=13~

(1-18)

(1-19)

(1-20)

(1.21)

(1~22)

(1.23)



Wy = = WM Wy = GJH—(-Z—-X>GJM¢059
Wy= W Wy cosb Wy' = QOy-(2-Y )Wy cosbd
Wy, = — 2% i wy = -4 H,
Wi = = A lnﬁ X = A+B
Wy = — W4 O, Y = A-B

1.2. The Transient Solution, Let the applied r~f fields be zero and

assume that & is small, EBquations (1-22) and (1-23) become

(1-24)
~C Wy 0 Coch - Dwwd SM(Q
and
é = ('w‘x/_ig%i‘ Sin 2? — Wy (0S Z(O - wjo) @ (1-25)

The Generalized Resonance PFrequency, When Q is small, the C and

D terms in (1-24) contribute only second order terms to the resonant frequency,

They, therefore, may be neglected and (1-24) integrated directly to give

Tan (‘? + zr": - So) = SiK V( *an (w,t +Jk) + cova (1-26)

where -1 2 W '
_§o = "‘i“ an (wx,_wn/)
s = -2 uf
h CUK,'(' ./

{

and k is an arbitrary phase constant. The generalized Kittel frequency is

wlfw



(JJ:= wx/ (A}ta’ - (dwl (1=27)

which may also be written as

Cdoz = [C«)H - (-Z-)() GJM]{GJH - <Z-Y> Wy | ~ szwz\ (1-28)

= N, sin'g + NLk Cos'

(N, s’ + NLI si#@) cosed + N, sin'
- (Nx 5052(5 + /\/Qa/ S/’M%}Sinzo( + /\[2 cos'x
W= Dl cose sinzg

X
Y
Zz

The quantities X, Y, and Z are éffective demagnetizing factors in the x*', y°',
and z' directions, W will be non-zero if the magnetization does not lie in a
principal plane of the ellipsoid, It is apparent that X + Y + Z = Nx+ Ny+ NZ= 1,
independent of the orientation, The net magnetizing field along the z' axis of
the ellipsoid must be positive in order for (1-28) to be valid, since the
derivation assumes that the magnetization is saturated., The applied field H°
nust therefore be greater than ZM,

Two limiting cases of (1-24) are of interest, One case, when the sin(P
and cos(o terms are zero, occurs when the ellipsoid is magnetized along a
principal axis; the other, when the sin ZCP and cos 2(? terms are zero,

occurs when the ellipsoid is magnetized in a principal plane and X = Y,

The Magnetization Along a Principal Axis (C = D = 0), The com-

plete transient solution for the case of magnetization along a principal axis

=]5e



. 4 .
has already been given by the author, but the results will be repeated and
extended, There is no loss, in generality, if (X = O and @ = T /2, so that
the primed and unprimed coordinates coincide. If 6 is small so that the cos@

is approximately unity (1-22) may be integrated to give

fn(9+T)= sy ton(ab+ )+ G5y o

where
Wy = W 2
X _
cosf = ——= Wy = Wy Wy
w%+ Wy
For convenience, choose k= tan™t ( lg%%%é—) so that 4k0) = 0, Then
-1 .
Vi-cosn  Sinwt

(1-30)

sing

J 1 4 cosn cos 2wt

Vi+cosy Coswt (1-31)

J 4 CosH Cos 20t

s =

and

siny Sin 2wt
|+ Cosn cos 2wt

(1-32)

sinzd =

This latter result may be substituted into (1-25) which may be integrated to

give L

~ul | + cosq cos 26t |

6= G(O)e | +COSV(

(1.-33)

w16



where 9(0) is the value of @ s when t = O, Thus the magnetization components

are

= Mok)e t cos Wb (1-34)

\"\3 Me(0>c et :rj Sin wt, (1-35)

and

My = M- M gye J‘[J U oot | s

.an 2 wa
. 6(o \/ 3
When (J, = (Q , we conveniently replace by = e” .
e I+ cosy rms

The Magnetization in a Principal Plane withX =Y (B = W = 0),

The general case (subject to the constraint tliwt B = W = 0) is represented if
I dN =N cosol +N s‘2 Then (if W), =0 )
(3= Z and N_ = Y oS ¢ , Sin o . n (i o =

9 = é (1-37)

.}
and

5?= C«)u“(N[/\/j)wM €os 2 <056, + Ni%'l’ﬁ Wy $in K SinG smc() (1-38)
which may be integrated to give
PR Wit ! ;
Tan ig = Siny tau (—3— +K> + Cosh (1-39)

where

(Ny=Ny ) Wy Sin 2% Sin6,
Wi = (Nz= My ) i cos 2 cos 6,

(1=40)

€05 v( =

=17 =



and
Z 2
w: = {wn- <N1'N1>UM €03 X COSG"] - (M%~ﬂ> WMZ&'VlzZo( sm’ga (1-41)

If tan k + cotq = 0, so that Q(t = 0) = 0, the primed coordinate components

become

Mx’ = M $in 6, Sing_sin (Wt + 1 ) (1-42)
| = cos cos (wt+¥)

M = MSM eo Cos  — QoS (wt+ 'l_) (1-43)
1 | - Cos y cos (%‘(:-Fiz)

and
M-Z/ = M cos 6, (1-44)

It is evident that a second harmonic component will be found in the
transverse components of magnetization instead of in the longitudinal component,

as in the previous case,

The General Case for Small Cone Angle. Let us now consider the

general case in which all terms are non-zero. Let C()s @-{-S‘o where

-| :

g = 1 +CW1 2 QJW . This transformation corresponds, geometrically,
° 2 ! — w%/

to a rotation in the x'-y' plane as shown in Fig, 1-3. It is convenient to

express the transverse components of the magnetization in the double primed

coordinates, Purthermore, assume that ?(0) = SO « Then (1-24) and (1-25)

become \ |
A A R |
d= A, + B, cos 2(() + C, co_s(_? + D, sm% (1-45)

-18~
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= (B sin2d - )8 -

where wx' + W/
2

J (5% +
._<C_ s + D siwg,)wMe
D,= (C sinjo—Dcosgo>wM6

Assume that C0 and Do perturb the solution already obtained when they are

==
o)
|

o
I

)
o
|

*
zero, Then

Sin(,(\)= Vi-cosq  Sin (%‘t+A)

(1-47)
L
J1+ Cos Cos 2 (wit+A)
B, 2 2 2
where cosVl = - -1-; and W, = A, =-B_ . It may be shown that A

satisfies the equation

A = v 14 cosif cos 2u Co\[l—-i-_cos_t(' COSLL+D°\I|'_<°?VC Sin (1-48)

sinv(

with W= QJ;(:"’A . If [\ is small it is permissible to replace (L

by (:Jo't , and since cosbl is normally small the square root may be expanded

*The perturbed solution may be ,assumed in any of several forms., It is
often convenient to write it $ = °y A where ® is the unperturbed phase.



keeping the first two terms, It follows that

.A'ﬁ (H’ Z ‘-°52“’-t) C \['|+c—ova' sl +DNI- - Cos sinwt (1-49)
Sin "l

and the equation for e becomes (if QJ_“,:O)

_ Bsinyl _ Sin 2w
W \ |+ cosy coSdu hdt (1-50)

rms\/ I+ Cosq cos 2 e

'Again, replace () by w;(', and the exponential by the first two terms in its

1 ~
1+ cosvl cos AW

expansion, Then, since 1l - cosVl cos Zu, , the cone angle

is approximately

B Bpugl 1+ cosp st | | = 2520 sin 2t 1 - csyeostet) bt

The integrations may now be performed without further complication, and the

A 2
double primed components of magnetization M@ sin@ y Mecos% , and M(1 - £8")
found. As expected, second harmonic terms occur in all three components,
(When expanding to a given order, great care should be taken to include all
terms that are pertinent.,) It is interesting to observe that since the

longitudinal and transverse harmonics have different angular dependences, it

is possible to experimentally separate the modulation effects. The longitu-

2
B
dinal second harmonic power is proportional to _P_o_z_ , and that of the
Ao
2 2
. ctpo 5
transverse second harmonic to ——>— . Bennett has studied the case of a
A
o



thin disc and found reasonable agfeement with theory,

It is apparent from the previous results that in general the precession
phase, C? , is modulated by internal fields, The demagnetizing field was
considered here, but fields due to anisotropy , inhomogeneities, etc. will
have similar effects, When the ellipsoid is magnetized along a principal axis,
the modulation rate (due to the demagnetizing field) is at twice the average
precession frequency since there are two planes of symmetry in the transverse
plane through which the surface magnetic dipoles rotate, If the cross section
is circular, the transverse demagnetizing field (Hl) and the transient pre=
cession frequency are constant, The Kittel frequency is the geometric mean of
the two instantaneous frequencies, which correspond to the torques produced by
the total internal field that is present when the transverse component of
magnetization is aligned in turn with the two principal axes of the ellipsoid,
It is the average or steady component of the resultant motioh.

We would expect efficient odd harmonics to be created in the transverse
plane because of this process, since the effective modulating field is essentially
independent of e . This does not occur because the cone angle & is also
modulated by the same field and in such an interrelated manner that products
like QcoscP and esin¢ contain only the fundamental frequency.* The longi-

cos@ =1

*Actually a factor (1 + cos cos 2wt) should be included in
the transverse components where cosrl also depende on cos@ . This is normally
a vary small effect,
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tudinal component of magnetization contains a component of second harmonic
proportional to 692. When the ellipsoid is magnetized at an angle, time=-
varying components of demagnetizing field at the fundamental frequency occur in
the longitudinal direction. These modulate the precession phase without modula-
ting the cone angle, and second harmonic (and higher) components are formed in
the transverse plane. Since the modulating field is proportional to @ s the
second harmonic is again proportional to 692. In general, both transverse

and longitudinal modulation processes may occur so that a superposition of
results exist; in addition, cross modulation between the two may be expected.
Bither of these two modulating processes may be obtained (normally less
efficiently) by utilizing applied r-f fields as the modulating agents.4’6’7

If the ellipsoid is a spheroid magnetized along its axis of rotation, any
modulation effects must come from appliea r-f fields., These must serve

double duty, so to speak, for the resomance must be driven, and the resulting
precession modulated. For example, if longitudinal second harmonic is

desired, a transverse positive circularly-polarized field is needed to open

- the cone angle, and a transverse negative'circularly-polarized field is needed
to modulate it (making the transverse precession path an ellipse), Both fields
are equally important and the optimum cohdition calls for a linearly-polarized
excitation.6 By using an ellipsoid instead of a spheroid and letting the
internal demagnetizing field perform the modulation, the entire driving field

may be utilized for exciting the resonanée.
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1,3, Porced Linear Steady-State Solutions.

Transverse Microwave Excitation, If the general ellipsoid is subjected

to a transverse microwave field of elliptical polarization, two driving terms are
needed in (1-22) and (1-23). The positive circularly- polarized component is
assumed to be of amplitude hl' frequency ) , and phase 0(|; the negative cir-
cularly-polarized component is assumed to be of amplitude h,, frequency - (@),
and phase CKZ_. If 69 is assumed to be small, the longitudinal modulating

*

terms may be neglected, It is convenient then to transform the equations to

the double-primed coordinate system, as before,

@ = AO+BOCO52(?)--é— Wy, €0 (wt—@%(,) + (Jhl COS(“L’JE'ZP-F%) (1-52)

and

é = (.BOS'm 2@ - &)10) e + &)hq S[’Vl(wt-é-l-()(,) + (.)hZan (—w‘t-c?+ 0(2> (1-53)

The phases 0(‘ and Cy% are understood to be measured from the x" axis, Let us
A
assume that ¢ and Q have in the steady state the same form as the lossless

transient solution discussed previously. Then

JI=cosn sinat

SiY\ { = = (1-54)
¢ VI +cosn <05 2wt

*The perturbation analysis discussed previously is of course still
valid.

=24 -



Ity cos wl

CoS ,
¢ v+ cosfy cos 2wt

(1-55)

and

9 = erms\/ | + CoS V( oS Zwt (1-56)

where the parameter cosq, is, as yet, unspecified, If °6 = q&',and the field

amplitudes satisfy

Wy, F Wy, = wh\/ |+ Cosh | (1-57)

and

Wy — Wy, G)h\/ |- COSVL | (1-58)

it may be demonstrated that (1-52) and (1-53) reduce to

A

9

° ‘ A
5 Bo Sin 2(? 9 (1-60)
Wy

provided that erms = m sino(' . Bquations (1-58) and (1-60) are similar to

A
Ao" Wy, COTO(\ + B cos Z(p (1-59)

and

*
those for the transient case,

*The chosen driving field is the only one capable of exciting the reson-
ance optimumly. For example, a pure positive circularly-polarized field will
not, in general, lead to the maximum response even if its frequency coincides
exactly with that of resonance,
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It follows then that the initial assumptions are justified, and that

CoS Vl = - B, (1-61)
A, - Wy cofx,
and
2 _2
2
W = (Ao— W, cdf'o(l > - :Bo (1-62)
2 2 2

Since the resonant frequency is given by wo = Ao -— Bo it is apparent that

| _ Tz 2 '
ot = AT

0449
The values of o(:' and Q(;' correspond to positive and negative values of () .

Corresponding to these are two values each for cosyl and Q

T 7B
COSV( = JAQZ— (wl-wz) 5 (1-64)
and
+ W , 2
@rv = -h-f-o- Stheb———— e (1-65)

The transverse components of the magnetization, and the driving field are,

respectively

t

My = ("Ie‘rit,,s\j\-l'cosv(I

cosS COt (1-66)

1

M'j = =X Meris\/ |- COS‘Zt | Smlwlt (’1-67)

26



and

+ A
\r\xi:: h [N+ cosi” cosy; cosedl 7 Vi- o™ sin Sinfwft | e

1 - £
Y\j = h|y \+cosvf Siny, coswt if\/l-cosqi cose, Sinlwlt| oo

B
0

L
cos e

Vl \I Boz + wz
Y

apparent that cos V[- = 0, independent of frequency; then h2 = 0, and both the

In general

+ .
so that 0® lcosV(- £, If B =0, it is

driving field and the response are circularly polarized. If Bo # O, the value

+
of cos VL" is a function of frequency. The driving field approaches linear

polarization if —%)— Z<& 1, and circular polarization at frequencies where
o

W . .
B > > 1, At resonance the maximum value of cos Vll occurs when NY =1, and
o

the ellipsoid is magnetized along fhe z axis. Then

M
ZH,+ ™

This geometry maximizes the production of longitudinal second harmonic, The

+-
Cos§ V( = (1~70)
path of the transverse magnetization and the driving field is sketched in
Pigs, 1-4 and 1-5 for both positive and negative elliptical polarizations.
Notice the phase relationships of the vectors and the relative orientation of

the principal axes of the ellipsoids in both cases, When ) = (AJO , then

°(+. .TEI: ,and =0 .
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The Tensor Permeability, The most general form of the linearized

external permeability tensor is (in double-primed coordinates)
* K 0

M, J™

> ¥

L%
ﬂX"y”e’ = | JK Mo O | x A (=
0 O I

where
* _ /el * r
M= My =M K~ = Kl‘JKn
¥ /el * A
My = M= M ho = K=Ky
Using (1-66) through (1-69), it is easily shown that these components satisfy

the following relations:

a %:o 8in 0(+= [(/J./—l) a+ K,Ib1CoSO(++ {:( }(:’—I) b + KI”a sinkt a-rew
oo I / - I -
b %o Sin = [(,ul—l)b-K, a.]cos«—\: Fa-K b] Sino( 72

[(u-Db + Kl'a] Sine = {( M- a+K b] cos & (1-72¢)

[(ﬂ,'-l)a - K,I b} Sine( (— (/u|”_ |>b n K‘”CL} s (1-724)
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4+
b%ﬁ S = [ M) b - Ka]cosx +[ ,ul"-t)a—KZ b} SinK (=732

C% S\V\O( [(ﬂz*‘)d:ﬁ"( b}COSD( [/&-()b +K a\smo( (1~73b)
[(/‘Z—l)a— Kz/ b] Sin o(+‘-= [</“z" ‘) - Kzl_/ CL] o 0<+ s

) - /] —_
[(/a,_’-l) b+ Kzfalsnno( = "((/‘&”-’) atK, b] s (1-73)
where a = 4 1 + cos Vl+ and b = 11 - cos\/l+ . There are two sets of four

linear equations, each in four unknowns. These values together with (1-63)
will allow (1-72) and (1-73) to be solved and generalize the results of

8 ’ 7 4
Hogan and Jepsen , as well as the author,

If Bo = 0, both a and b are unity and a great simplification results. It

¥
follows that /(-)f:/uz = /-(. ’ K| =-KZ :-K*, and (1-72) and (1<73) reduce to

/ — / CJM . o g ‘
- — - <in (1=74a)
M-1)F K %, S Coso
and
< '> = — “-’M Sin o( (1-74b)
0

A straightforward rotation transformation yields the tensor components for the

unprimed coordinates. Thus
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-t -
/‘&:(3‘?- = T . /(AX”U”'?_/ s T (1-76)

where

(Sing cosg+Cos cos sing) (cosxsin g cespeoss, ) (~Simasing,)

T= |(cosx cospecss,- Singsing, ) (CosSinpeesget cospsings) (~Sit @s,)| - a-7e)

Sinx Cesp St sing Cos |

and 'l‘lc is the transpose of T,

1,4, Forced Nonlinear Steady-State Solutions, A longitudinal r-f field

(hz) of frequency (4)2, in conjunction with a transverse driving field (hl) at

4,7,9

frequency COl can produce nonlinear resonance. The longitudinal field

frequency modulates the uniform precession (assumed to be excited at a frequency

(W ) and forms sidebands at frequencies () + KQ)zin the transverse plane. If
the kth sideband is equal to (Ol and the dc magnetic field is adjusted for
resonance at (J , it may be shown that resonance occurs at (A)o= G , then

given by

(1=77)

w

W E KW, K=o, 2
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The cone angle of the resonance is approximately

6 = (-:-)ﬂ J. (ﬂlb (1-78)
“ Wgo "R\ Wy

where Jk(&) is a Bessel function of order k. The resonance is dominant and the
above equation correct provided that

Wy
VKW, Y+ w2

(1-79)

@UK >>

1f h2 is not large enough to insure that the above condition is satisfied, it
follows that the response must be chiefly at the transverse driving frequency Qﬁ o
If we assume for simplicity that the sample is a spheroid, the cone angle of

this linear response is (from (1-63) and (1-65), with Bo = 0)

ew —_ Wy (1-80)
K=0 /(wo_wl)2.+ w_‘e:‘

~Since wo = (4)1 + sz , it follows that

= &Jh' (1-81)

Heo (ke )+ Wt

Thus the transition from linear to nonlinear resonance occurs when é%U > .
Ko T g
We would expect similar behavior from the time-varying longitudinal demag-
netizing field with two important exceptions, First, the modulation field will

be at a frequency () rather than at U%Z, and second it is, as we have seen,

proportional to the cone angle 69 « The first consideration leads to
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w=__“)'__ k=0,1,2, ... (1-82)
K4 |

which means that subharmonic generation shoild be expected when the sample is
biased to the subharmonic frequency, and the second consideration leads to the
obvious conclusion that a feedback effect is present, This is due to the fact
that the cone angle 6 » is determined by the strength of the modulation,
which in turn is proportional to 9 « Because of the feedback, we may expect
the subharmonic resonances to exist only under certain restrictive conditions.
Since this nonlinear process depends on the longitudinal component of the
time-varying demagnetizing field, the geometry Nx = 1/3, NY = 2/3, Nz = 0,

T
0<= 1-41- , and @’-‘ 7 is chosen so that the effect may be studied independently,

Subharmonic Resonance, Por the above mentioned geometry, and a

single transverse circularly-polarized driving field, (1=22) and (1<23) are

= W, — %M o sindg — %‘ oS (w,t—cpw(,) (1-83)
and
é= W, 5m<w|‘t'4+0(|> - (‘{(o@ (1-84)

where wo =-7/L°Ho. Assume that

‘P = wl + § (On sin nwl + b, cos m‘t) (1-85)

n=|

and
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00
6 = 60 [+ % (CM Sin nw‘t +CL,\ Cos VILO-(:>  (1-86)

W
where W = —2-‘— . The quantities a, b, ¢, andd are all assumed much

n

less than unity. When (1-85) and (1-86) are substituted into (1-83) and (1-84),

and the latter are expanded to include third order terms, there results

¥

M.(ow

(1-87)
W, Wy

Sin y =

. At resonance, the sin is zero and the maximum cone angle is given b
’ 1 g g Yy

3
W Wy = 4 (_L‘_)m -
(Tﬁ +on o8 = (53 6) Cosx (1-8%)

where 0(1 is 0 or T radians., The former value leads to a coefficent b, (for
non-zero 90), which is always greater than unity; and hence, in contradiction

to the assumptions. The non-zero solution for QO with 0(I = 'ﬂ— is

9 = __(ow \[—" _ 3wy (1-89)
° QJM 2 («)h U)M

In order that (1-89) be real, the driving field must exceed a certain threshold,

given by

C
h = oW al (1-90)
wm °

Above the threshold, eo increases very rapidly,

If we consider the general ellipsoid, the results are essentially of the
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same form, Thus

6'= Ehﬁo -i-(\_ _E) © (1-91)

where

*

-92)
Ho (1-92

=

W, A
2 2
C+D" Wy
A plot of é; versus h is given in Pig. 1-6, The curve is valid only in the
region of small 69 o Notice that the slope is infinite at the threshold, The
minimum threshold occurs for a thin disc magnetized at 45° to its plane, This
. . 2

geometry yields the maximum value of J C + D -=equal to one half, Below the
threshold the magnetization precesses at the driving frequency Q)l in a linear
manner, but the amplitude of the precession is small since the sample is biased
to the half frequency. The reader should be warned at this point that the
ovelr-all picture is complicated by certain spin wave instabilities that will

be developed in Chapter 2, It appears that there will be a premature saturation

of the resonance,

Parametric Coupling, Under certain conditions it is possible to have

2 2
*This threshold is approximately correct as long as & > YB™ + W W

othérwise cross modulation effects between the transverse and longitudinal
modulating fields should be taken into consideration,
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direct parametric coupling between a longitudinal modulating field (of

amplitude hZ and frequency CL)Z) and the uniform precession. This coupling is

dge to unequal transverse demagnetizing factors, Consider an ellipsoid magneti-
T

zed along a principal axis (such as (=0, @ -7 ). From (1-22) and (1-23) we

have

c?= E"%M—L" Al Q"—i‘—uﬁ COSZf? -+ whicos (w,_,t+§£> (1-93)

and
. w - w
— X 4 ‘
@ - ( 2 Sin 2@ - (-UJ(O e (1-94)
It may be shown that if -—éf £&£ 1, the phase of the uniform precession is
approximately

9= ¢ + 22 Sin (gt + ) s

where 4)° is the unperturbed solution given by (1-30). If W = 2w , it

2w

follows that the average value of sin 2@ is sin 2 = sin @z. The
o

ef fective line width is therefore

Nx=N,) W .
AHE{{=AH° \'— <X4A(fg3 M %ﬁ; Sm@i (1-96)

1f N, >Ny and sin @z w 1, the threshold for instability (Aﬂeff = Q) is

= 4-&)0 1-97
\(\'Z (Nx‘Nj)wM AHO ( )

which is obviously minimized when Nx = 1, Then
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h, = 4\ H, E/\HOHV\) A, os

This coupling may occur simultaneously with any of the preceding ones, It is
worth noting that the self-generated longitudinal second harmonic field has a

phase @z = 0, so that it does not parametrically couple,



CHAPTER 2

SPIN WAVE INTERACTIONS

2.1, A Continuum Model of Spin Waves, Spin waves arise because the

discrete magnetic moments, within the ferrimagnetic solid, are not necessarily
in »hase, The enormous number of these, in any macrosco; ic volume, makes it
possible to use a continuous function to describe the magnetization., It is

assumed that

- -/ - - -/ ‘ —_— s -
M, = 1 oMcosd) cosk-r + | dMsing, coskr + KMy e

(where |k| =k = %fl ) represents a standing spin wave of wave length Xk,
k
. el ; - = -
directed along k. The unit vectors i?, j', and k' refer to the cartesian
coordinates x', y!, and z', and the magnetizing field is assumed to be in the

direction of the latter. It is possible to resolve any disturbance of the

magnetization into a set of such waves so that

*It might be expected that
- - - . -~ - > .
it &M COS(47k - ker) +#  j' OM sin( @k - ker) + k'M_, would

N -y

represent a traveling spin wave; it does not, except when k is directed
along z', The correct representation for progressive waves will be given
later on in the text.
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10,11 we assume that

where ﬁb is the uniform precession, Following Suhil,
the spin wave length is very small compared to the dimensions of the ellip-
soid so that the exact boundary conditions can be ignored., As discussed by
him, many of the pertinent results derived under such assumptions may be
extrapolated to hold, quabitatively, in the region of small k.

If the spin wave amplitudes are all assumed to be much smaller than the

uniform precession, the magnetization in any small volume will be conserved

as in (2-3) -
2 2

2
M= o +3 (SMK),(] | Mag + Z(sMe)g |+ Moy + 26| oo

If products involving two spin waves are neglected compared to those invol-

ving the uniform precession and one spin wave, and the relation

M % + M 2 + M 2 =M® is used, there will result

ox/ oy’ oz

% MOX'(SMK))(’ + MOJI<SMK)3/ + Mq'(SMK){/ = 0 (2-4)

This equality will hold for each separate term as well as for the sum, so that

(BMK)Z/ = M—il Mox’(gMK)x’ + Moy’(ng)vl (2-5)

- As long as this approximation is valid, it is sufficient to consider a single
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spin wave and the uniform precession when setting up the internal field
components, Later on, as many spin waves as are desired may be included in the
interaction equations; however, for clarity and simplicity, only one such

typical mode will be considered in this thesis,

The Magnetization in an Ellipsoid. In terms of the primed coordie

nates of Fig. 1-1, the magnetization vectors are as shown in Fig, 2-1, Since

the uniform precession is given by

Mo= ' Msinocosd, + ] Msino sind +% Mese @
it follows from (2-1) and (2-5) that
Y rd - -/ , -
Mo = 1 Meosd cos v+ Msindy coster
- K M fan6 cos X cos X-¥

where x = Qk - 4% . The correctness of (2-5) depends on 6leatisfying

(2-7)

2
cos™@ . .
6M £<& 2 M cosB or 2 M sind . The propagation vector of &k » which

is depicted in Fig, 2-2 is
K=K ém\y(f’cosg + | Sing) + X’ cos (3-8

The Internal Field, The total internal field, including terms

*
due to the spin wave, will consist of five terms

*We continue to neglect fields due to anisotropy and inhomogeneities,
Their inclusion, however, poses no particular difficulties.
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l'11: - I'la.pplied * Hdemagnetizing * Hvolume dipelar * Hexchange * Hdamping
The first and second terms were discussed in Chapter 1:and are uneffected by the
inclusion of the spin wave. (The latter does not contribute to the surface de-
magnetizing field since its spatial variation is assumed to be very rapid.)

The volume dipolar field arises because there is a divergence of magne-

- -
tization in the sample, and Y .H =— VM . Since the ellipsoid is

vol. dip.

assumed to be small enough for propagation effects to be neglected, a magneto-
/

- /
static approximation may be used, Then Hvol. dip. =VCP , Where Q is a

/ -
scaler potential satisfying qu) =— M. It is easily shown that

{

- f, : \ ) 1 et (2-9)
y = -,ZT(KXI COS(QK + KU'SWPK — K{’+0n9 Cos X SM CoS K"
vwhere k , =k sin(// cos § , ky, = k sin(//sing »and k , =k cos l{/ .
The exchange term is due to quantum-mechanical coupling between nearest

neighbor spins and may be shown to be equivalent to

Hexcha.n%c. = W M + \V M o (2-10)

when the misalignment between spins is not too great.]"2 The parameter )\ is a

measure of the strength of this coupling and for cubic crystals is often given
. Hox A2

by )\ = __e__I_‘__ , where Hex is an effective exchange field and ,e is the

lattice constant, The component wiz will be dropped since it produces no

-t iy
torque (/JO[M x wﬁ}: 0). Because of the form of SMk, it follows that
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ﬁe)(cham&e, = Wzéﬂk = - \K S-MK (@-11)

The loss field is H ~ AH
e 1o € damp. MH%,

iy 3
(M x Hz,) as discussed in Chapter 1,
In general, however, AH might be different for the spin wave and the uniform

precession., To include this possibility we let

ﬁdamp, = MH’ (‘\7\ H ) AHK (SM X H ) (2-12)

where 2 ABO and 2 Aﬂk are the resonance line widths of the uniform precession

énd spin wave respectively.

In Chapter 1, the uniform precession fields were resolved into rotating
components H1 and HI o It is worthwhile to treat the spin wave in a similar
manner and asvshown in Pig., 2-3 its transverse fields are resolved into
parallel (Hz) and perpendicular (H;) components with respect to the transverse

component of 3§£ o In terms of these components, it may be shown that the

volume dipolar field is

*

(H Z)VO‘. d‘f’= [S‘ nzw COSY%'S) = Sl%l_q} .\-QV\G COSX COS((p'(g)]SM COS?‘? (2-13)

(Ht )Vo\.di; l:s_%z_w $in2(@§) - 5"‘%%6 CosX s’m(cg(-g)] SMeosk v 10
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and

(Hy Yo = 05"y fond cos— 920 cos(5)| 6M cos KT

The components of the exchange field are

(Hz)exchanje,__' }\KZ SM COS—.'T(:

and

(H,z_’)cxc\nanje, = )\Kz SM tan 0 o5 X COS-E'F

while the spin wave loss field is given by

3 — -
(HZ )damP. = T _AMHL SM CoS§ K'Y“

(2-15)

(2-16)

(2-17)

(2-18)

The complete expressions for the various vectors due to all the sources

enumerated above and including those given in Chapter 1 are

M, = Msinb
M, = &M cos K¢

My = Mcosd — SMtand cosx cos K-

(2-19)

(2=20)

(2=21)

H = (A+Bcoszc(2° + WSiHZCQo>MSiV19 - 2 h; cos (wt-¢+ o(;) 2-22)

HT"' B sin2q)~W co524l>M3‘“9 +% l"é““(“’it"a*"(‘) - BRG

~48=



H = :)\Kz + Si”zw C052<<0K'§> - s'—nzzw Tan 0 cosX COS(O(S):I SMeosKY (2-2)

* i - .
HZ= -_Sl%(l/ SihZ(‘?n’i) - &lzlq)-taﬂe COS’)(SMW@) - A—'\:&] 6M oS kY (2-25)

Hy'= 0= ZMcose = CMsing cosd, - DMsing sing)
Z l’) SH’\(‘U J(,+@J> (2-26)
[()\K +C0S ‘P)“’an@ COSX — éW'—'Zy’cos (- g)] SMeosk v

2A= N(sins + coszcxcos‘@) + Nn(cos‘@ + oS S8 )+ N, Sin's¢

2B = Ny (sin's - cosi cesg) + N»&(cosz(a- ost s = N, Sifg
C= (Ny- NU> sinod sin2p

2D= (Nycos™ + Nysing = N, ) sin 2

2W = (Ne- Ny ) cosex sin2p

2 = ( Ny cos?g + Ny sinz,sa) sinx + N, cos’

2,2, The Basic Coupled Equations, The transverse components of PFig, 2-3

may be transformed into those shown in Fig, 2-4, and the equations of motion

s

. : dM >
may be written by inspection from rete Y MM x Ht) and are

s Y



=0¢—

H, + H, cos x + H sinx

HI'+H; cos x - H, sin x

|

M, +M; cos x

X = ¢k'¢o




(M,+M,cosx) CPO + f{(MzS"”X) = ‘7/‘10{<M|+M1C°5X> Hy

ey |

Wi @ - £l by
| — M, (Hf+ H:ecosx - stinx)g

M.‘(}o + M, cosx ‘pﬁ M, Sinx = - {(MuHe’J’ H) 2209
+ (M Hy + My H,) cosx + M;Hfsmx%

"M. - Mz cosx + M, sinx Cbk = T {" M—Z'Hl* (2303

- M, chosx + (MZH,-I- M, H,) sinx %

Both M_, and H_, contain spatially invariant terms and terms involving
z z
cos k. . It is convenient to define M , (H,)and M_, (H_,) as the spatially
z z z z
invariant and spatially varying terms respectively.
e b
If we separate (2-29) and (2-30) into constant and cos ker components and

then uncouple those equations involving derivatives of both amplitudes and

phases, we obtain
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A °§(MnE’+M1’HI>+(M2H£’+M{ HQ wsX + M,/ H?Si nX i
|\.4\ =% %Mz’ HT‘*' WM chosx- (M.Bs+ M Hz) SinX §
Mz C.?K= =P {(Mzﬁz’ +—Mz’ Hz>+<M| Hz’“LMz’Ha ><05X “Mz’HTsinX }

and

= 2 b+ M s (M otk i |

(2=31)

(2=32)

(2-33)

(2-34)

2_—-
It is assumed that products involving cos k.r refer to the average spatially

invariant component so that a factor of one-half is involved. These are

expanded with the aid of (2-19) through (2-26) to give

q;)o = Wy~ (Z-A)&)M oso + (Bcosl@& W sin 24%) Wy C0S O

— (C cos ¢+D simc{z,) Wy Sin® — 18 Z%cos(wgt-cﬁw(;)

cos?x
+Z% Sin( wt+§,)+ ‘Ou[c sy c%se
4+ AHg sinxcosy + S_MQz S.lﬂ_Q COS)(C"S(‘Q S)
Mcoso
Cos™X X
_ S"‘Z“’ gisg cos(f-g) = Siry cos (fe-s) 5

_ Sty SinycesX _
2 CosO S J““)]

w52
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é= (Bs'anCQ,-WcosZCQo>wM SiNG — Wy, Sink
2

| oM
+ Zwm Sin w't-cp°+o<;> + T w”‘ﬁ—’\%% 05°X
Co

Smll{! Har® S_ﬂ_‘(' Sin
+ 056 Sin( '§> O K = s

2 |
-S)COS X (2-36)

—COSzQJ i%gg SinX cosX + 2755% SINX oS (dy- §>

+ sin'y co—gé cos’( -5 Sin X COS)(]

C?K = Wy = (Z-NC)WosO + Sin*p Wycosd €05 (- ) l
-(C cos@)+Dsin @,)wM Sind + jzwhi;) sin(wjtﬂsj)
— sinal uy Sin cosX cos (q-g) + (NCecadfA )y Sinotmaasi
+ Tand {COSIX ZL‘% cos (wt-g+x,) o
+ Siny cggx{ZLthsm(wét—cﬂﬂ- o(;,)- Wy, Sin @] }

~ Wy s faud <X | B cos(<P,+<Px)+W5f“(‘ﬁ+@]
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andq

S.M = _S_wgg/ €S8 Sin 2(<OK-§> - AHN-‘\‘ s

= S 500 sin(a-¢-) + S—*’""QL““Q(AKicosﬂp-A)Siw
+ -‘;ag"e" SiV\ ZX Z_tp’/\i COS ((Uu-t" (P°+ %) (2-38)
L
Ay . A Sk
+ fan6 cos [—M— Sin@ %—% Sm(w;t%@-to(;)l

~ fanosine cosk [Bsin(g4) ~Wass(g+h)] § v i

We recall that a quantity Qll is defined equal to (=244 ) with the
exception of W, = -, AHO. It is also convenient to define a spin wave loss
frequency Q{?K = =YM AHk .

If both SM and sin@ are very small, the cross coupling terms between
the uniform precession and the spin wave are negligible, and each mode may be
considered separately. Equations (2-35) and (2-36), without the spin wave
terms, were discussed extensively in Chapter 1, Those results are valid unless
an unstable condition is created among one or more of the spin waves. A
similar analysis for the spin wave equations (first neglecting the uniform

precession) is given in the next section,
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2,3, The Generalized Spin Wave Spectrum,

Standing Waves, FPor simplicity, we will start by assuming that sin@

is very small, and that h ~=0. Bquations (2-37) and (2-38) simplify to

J

¢

and -

8M= [S'—Y;—q/ Wy S 2(4e-§) = %A SM cos6

d.= wH-(z-sz)wM CsO + siv?[_zq/ choseD + €05 2(<pK-§)-_\

(2-39)

(2-40)

Bquations of this form were met during the study of the uniform precession

in Chapter 1 and may be integrated in a similar manner, It follows that

V1 +¢0s e cos (et + u(K-§>

\l | + ¢os fk cos (2wt + 2°<K-23) |

Co5(§c) =

Sin(ges)- —J=E e Sl de)
T i costcos (2o + - 28)

and

..gh§039

t :
SM=5M,e \/“\ + Coshy <05 (2wt + =25 )

where O(k is an arbitrary phase constant,

. 2
-— S'Jz—w (UM (059

Cos = ,
V( Wy~ (2-AK})wy cosd + 5‘—“21—4’ Wy Cos@
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(2-41)

(2-42)

(2-43)

(2=44)



and

WF = (Wy= ZwyCos8 + NK*wycoso )

(2-45)
2 ¢ 2
X (wH- Z Wy0sO + NK Wy oSO + Sin wmcose)
The latter equation for cosf=+1 and Z = NZ y is the small amplitude spin
10
wave spectrum first derived by Suhl, It is shown in Pig. 2-5 for the case of
a sphere (Z = 1/3) when (dn =LJM .
Some effective thermal driving field, which could have been explicitly
written into the equations of motion but was not, is assumed to balance out
the spin wave loss term, This implies %K can be set equal to zero provided
SMO is replaced by the appropriate rms value,
Typical transverse components of the spin wave are
T

éM cos( C?k -§) cos ket and &M sin( 4Jk - §) cos k-r , which become

M Y1 + cos cos{W.,t - ¢) cos -1:.-; and
Nk kt =

rms

-t
SMrms Jl - COS rlk sin( wkt - §) cos ko? respectively, Except

for z' directed waves ((//= 0), the phase <Pk is modulated in a manner

analagous to that by which the uniform precession is modulated if the trans-
verse demagnetizing factors are unequal, In the latter case the transverse sur-
face demagnetizing field acts as the modulating agent; it is the transverse com-
ponent of the volume dipolar field in the former case, The field is independent
of the sample shape (except for very long spin wave lengths) and is a maximum for

([/= /2. The spin wave frequency corresponds to the geometric mean of two
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extremes of the instantaneous torque, as is true for the Kittel frequency. The
spin wave amplitude is modulated in the same interrelated manner with respect

to Qk , as the uniform precession cone angle Q is with respect to po . This
means that to second order, no spin wave hais:xnonics are created in the transverse

plane. The precession path is an ellipse,

Traveling Waves. It was stated earlier that

o i ~d
it 6M cos(q?k - k-;) + -5' §M sin( ‘?k - -I:-?) + k¢ Mz, HoEs not, in

general, describe a progressive wave, This statement may be verified by

expanding the transverse components into two standing waves

) why  uly why e -y oy ol e
= . . . >, . o . ‘
i SM(cost cos ker + sin Qk sin ker) + j* §M(sin 4)]: cos ker cospk sin k
The cos -l;-? terms, already treated, lead to (2-39), It may be shown &imilarly th;

—hy ol
the sin k.r terms lead to (for cos@=1)

2
Pe= Wy— ZWy+ KWy + s_w_wa[n - cos(chK-Zg)] (2-46)

'The two equations for ‘?k are in obvious contradiction except when W= 0 so
that the assumed spatial variation is incompatible, The difficulty is resolved

if the transverse components are initially assumed to be

(gf’\)ﬂ%w; (&M Cosfy Cos kT + EM ' sin g Sivﬂ%F)
+7(8M sindk cosT¥ — SM'cosgl sinkT )

(2-47)



where the corresponding primed and unprimed quantities are not equal, Then
) !
(2-46) , in terms of (Pk , is no longer inconsistent and may be integrated to

give

Cos(4-s) = V- cost €05 (W +ot¢-5)

,/ l — Cos h Cos (Zwk-t+2¢>(,<’-25)ﬁ

(2-48)

and

. {
. \/ W -
sin (4-§)= ==k Sin (1t +otc=§) (2-49)
Y |- cos i €05 (2wt + ,20(,:-25)
where 0(1/( may be set equal to ()(k . The equation for {M* , similar to (2-43)

integrates to

§M' = SM:MS\{ | — cosie €05 2wt + 2ty - 255 (2-50)

where SM'rms = SMrms , if the effective driving fields for the two components
are equal., Without loss of generality, let 04515 = 0; the transverse spin wave

components are then

—

(SM)'\"’MS\E&, = -'C' SMMSV |+ Cos qK oS (wK-t_'[z,'F>
= ' . (2-51)
+ ] SMemsV 1 cosiy S (wt-RT)

and form a traveling wave.
The path of the transverse component of magnetization at any position in

space is again an ellipse, except for q/= 0, in which case it is a circle., It

" is the ellipticity that makes it necessary to construct traveling waves with care,



2.4, Instability Thresholds -- Linear Response, It was shown in Chapter 1,

Section 1.4, that under suitable conditions nonlinear as well as linear responses
may occur. By this we mean that the magnetization vector can sometimes precess
at other than the driving frequency. When including spin wave coupling effects,
it is convenient to treat the two classes separately and we start by coddidering

the linear responses first,

Transverse Microwave Bxcitation, The simplest excitation of a genw

eral ferrimagnetic ellipsoid involves a single, positive elliptically-polar-
ized field of frequency () maintained in the x'y' plane. The degree of
ellipticity is assumed to cause the maxiﬁum response, and was discussed in
detail in Chapter 1, There it was shown that the positive and negative circu-

larly-polarized components h, and hz, respectively, satisfy the relationships

1

Wiy + Wiy = Wy \ 14 cosh (2-52)

and

Wiy = Wy = wh\/ | - Cosyl (2-53)

where

—\ (B4 W) Wy
V(B4 W2 wi + w?

This field produces an rms value of the precession cone angle given by

(2-54)

Cosvt =



W,

0= ' {2-55)
rms P(B’N‘)‘L’c«z +(woz+uf)-2\/ (8 eid s Ykt w‘] + 1] 1'4
where the resonance frequency cgo is
2 _ W 2 2,112 Wi s
W = [‘*’H‘ (Z-4) M] — (B4W) Wm

If only the important coupling terms in the general equations of motion
are retained ( §M is assumed to be very small), (2-35) through (2-38) become

for small e ’

Q= N (Bw)ui + o + VB byces(agbil ¥ )
(2-57)

= V5D &y Sin(q+tan < )

é = \l Bz+ w? WM SM(Z(QO—"'Q\{‘ %> (& (2-58)
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T
VD sin(G+or 5 ) wn 6 o
SN2 1, o (afhefi- ) + cos(4-3)]

and

M= 1 22 sin 2(9) — £ sinzp (245 )
9 ()\K+COS G- A)SIVIZX - —l Wy oM

(2=60)

It is apparent from the énspection of (2-60) that the spin wave loss may be
overcome by at least two different mechh#yisms, The first occurs when

*
") OJ/Z, and is a first order coupling in 69 ; the second occurs when

k

cuk () , and involves a second order coupling., It is important only when
the former mechanism is not possible, that is, when the frequency W/2 lies

below the spin wave manifold,

1) First Order Coupling, If ) > 2( QJH - Z OJM), the first

*Suhl has shown that pairs of modes, whose frequencies sum to the Bnlform
precession, may also go unstable via a first order coupling mechanism. The
half-frequency waves are merely a special case of the general condition and
they do not necessarily have the lowest threshold. Nevertheless, the thres-
hold of the () = T/4 half-frequency wave may be considered typical.



order process will dominate, and all the terms arising from (2-60), which
depend on 62 or higher, may be ignored, Since the term

sin 2y . o _ . . sy s
- ) @ sin(2 @k (?o S ) wMéM is already to first order, it is not
necessary to include in (2-57) through (2-59) any of the terms that are propor-

tional to @ . It then follows from the methods previously discussed that

— Slnzwe Sin (24y- - S) by M =

— M Bpms |V 1 cosh cos(wt-B)sin(2g-¢-R,) (2-61)

=\ 1-cosy sm(w”n-(s.) COS(Z(PK-S-@O] Wy &M

where

1 far' ¥

The spin wave phase is given by (2-41) and its amplitude by

§M = SMN I+ coqucos(szmzo(K-zg)' (2-62)

In many cases, the values of cosyl and cos ylk are small compared to
unity, and terms involving their squares may be neglected. If this is done,
(2-61) simplifies to

— SMZ_Z-‘P 8 sin (2-4-¢) WM =

(2=63)

~ Su2b g sin| (20w}t + (2505)] @

-h3e



. sinzg{
The other important term in (2-60) is > sin<z(pk - 2{) W, §M and it

may be expanded in a similar manner except that now the first order terms in

(2=59) must be retained. We use the unperturbed solution for 6 and 4)0 and
am © - -— - -— 2

@k _c?k * 81 cos(Wt @1> 52 sin( Wt (31) .. (4)1: is the un-

perturbed solution). It then follows that

6 ems\jl cosh (\/C D* cos (3,+¢31)- S—Wﬂ' Sin( p,-g)] (2-64)

and

6:

__ﬂ
w

é \/I+COSV[ [\/C +D* sin (5'+@2)+ Sin2y C%(@,'S)] (2-65)

where

-1 C
Bo=lan

If terms in (cos qk)z or higher are again neglected, the result is

Si—gzip Sin(2q-2§) wn §M - =
5”‘22"{ 5 cos[(zw.(—w)t + (zoq(—zg+(5.)] (2-66)

+§, sin[(ZwK—w)t +( 20<.<-2§+@,>] i Wy M,
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An instability threshold occurs when a)k = W/2, and the sum of (2-63) and

(2-66) just equals the loss term. The critical value of é;rms is given by

the equation

Ors) SIN'Y %” VCHD* [\/ (~CoSH CoS(g+4,) COS(20+£,-25)

14 cosn Sin(g+4,) Sin(2°<«+@.’2§)]

+ Sin’-Lj/ZSM 20, ‘t’zx {m COS(‘B,‘Q Sin (2°(K+@|'2§> (2-67)
= V1= cosn Sin(g,-§) cos (2ot - 29]

- Sin2y sm(zoq-g)} = —Z—ﬁﬁ

The critical field required to produce this éarms may be found from (2=55).
The values of q/, O(k, and g are chosen to maximize the left-hand side of
(2-67), but (P must correspond to one of the allowed half-frequency spin waves.
For example, if half the driving frequency lies very near the bottom of the
spin wave spectrum, the angle gb is constrained to be small,

When the sample is a spheroid magnetized along the axis of revolution,

B=W=C=D=0, It follows therefore that

2AH
ecrif = _ lS('\nz G (2-68)
Msmztp\\— —Qﬁz o \
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This case, treated by Suhl,10 has a minimum threshold near ¢/= /4,

2) Second Order Coupling. If W< Z(Q)H - Z(OM), the first

order coupling is forbidden, and the second order process occurs when cuk =W ,

The threshold may be obtained by inspection from (2-60) and is

2 20H,

ém (COSZW + )\KZ‘ A) = M (2-69)

The maximum coupling occurs for ¢/= 0, and the frequency condition implies that,

very nearly, sz = A (exactly true for a spheroid) so that

2 AHg
chi’r = M

(2-70)

10,11 It should be noted that the internal modulating

as given by Suhl,
fields will add correction terms to this threshold, as they did to the first
order threshold, They will be important, however, only at reasonably low

frequencies, and then the first order process will usually be the important

one,

Additional Microwave Excitation., It seems reasonable to suppose

that additional microwave fields can produce coupling between the uniform preces.
sion and certain spin waves similar to that already described, A great variety
of modulation and cross modulation effects appears possible, all governed by

(2-35) through (2-38), and certain basic ones are explored here., For simplici-

Y



ty, we assume a spheroidal sample magnetized along its axis of revolution, Fb:‘:‘
this geometry, it is convenient to define Nx =N =N_,

1) Transverse Fields, Let us assume that there are two transe-

verse circularly-polarized driving fields: the one, hl' is driving the linear
resonance (Cdl = Q)o),-the other, hz, is at some arbitrary frequency Q)z not

equal to o.)o. The motion of the uniform precession is governed by

R

wt = §sin[(wrw)t +o] (2-71)

ds

and
6= 6,1 |- scos[(w-w)t+a,] a2
where
= Wn - Wiy ’
eo P 5 CA (“)z‘wu)

These two latter quantities are assumed to be §ma11 compared to unity,

The second term in (2-60) has an average value of
- —ng sin 2(4/ ésin(g + 0(2) provided that a spin wave of frequency wk = Wy/2
exists in the manifold., Since 8 is assumed to be small, this term will never

be important when the first order coupling process (J, = W,;/2 is possible;

k

if it is not possible the term will compete with the second order coupling

2 Woy

(W,_=W,), The new coupling will dominate when 4 2 pd
k 1 ) Wy

and under

these circumstances the threshold for the Wy = w,_ /2 wave is

b7 -



W . 2 Wk
"2 Wy sin2

(W= “ﬁ)

(2=73)

This threshold is independent of eo provided that the latter is large enough

to assure that 6 is small. All of these conditions may be met simultaneously
2 W
if sin 2 >> -—w-;:—k' o

2) Longitudinal PRields,

The presence of a longitudinal mod-
ulating fi,eld hz of frequency wz causes frequency modulation of both Qo and

Qk' They are given by

%

I

Wt Wy, Sin(wt +8;) (2-74)
and

Q= Ac+ By os(2ge-25) + Wiy sin(yt + (5-3)

where

(2-75)

tiad
AK wH""(Z")\KZ> wM ~+ SI_g’«/ wf"\
'!Z(l

and ﬁz is a phase constant. For simplicity, assume that W, >> B, so that

*
cross modulation effects are negligible,

Then retaining important terms, one
“has

*Cross modulation refers to a possible coupling between the longitudinal
" and transverse modulating processes. This shoild be taken into account at

very low frequencies since it will increase or decrease 62 depending on the
value of Bz'
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Q= wi = &; cos(wt +8;) (2-76)

and
(?K = wK‘t + &~ 6; COS(U{U-@.Z) (2-77)
with
Wy
= _Ni
6, o

The transverse circularly-polarized field h1 of frequency aol is still
present, but the cone angle is assumed to be less than that requdéred for a
second order instability., We need only the first two terms of (2-60), which

are

SLQ_ZQ Sin [2w,<t * 2= 25 + 26 608wyt *@f)]

= % sinay sin| (2u-w)t + 2+ § cos(wat+A) -]

These may be expanded to give terms that can possess an average value. The
threshold equation (neglecting the aJk = W, /2 term, which has already been

considered) is, then

Sirty f T,(28) sin[2(we )t +6,]

(2-78)

D> ' 240
— g, sin zt&g‘ln(sz)sm[(nwi:tzw,(;w,)t- :] = N{\"K



. . +
where J‘n (§) is a Bessel function of order n; and,Cpn , ¢n , Or ¢n

may each be set equal to 'W72 for any n,in.order to maximize the coupling,

The first set of terms in (2-78) is due to direct parametric coupling, indepen-
dent of & (tﬁe field h, could be zero), between‘the longitudinal modulating
field and the spin wave. An average value exists for the discrete set of spin

wave frequencies

Wy = '%% N= 1,23 (2-79)

provided they exist within the spin wave manifold, The strongest coupling
occurs when n = 1, which is analagous to the direct parametric coupling of
Chapter 1 that concerns the uniform precession, In the case of spin wave
coupling, the transverse volume dipolar field causes frequency mixing, while

in the case of the uniform precession the mixing depends on the shape dependent
surface dipolar field, This coupling was discovered independently by the

authof}’14 and by Schibmann et a1, 1’

The latter have also experimentally
verified its existgnce. It is important to note that with the coupling to the
uniform precession, a definite phase relation between the transverse and
longitudinal fields is necessary to maximize the effect, This is not true in
the case of the spin wave coupling since a spin wave is always available with
the correct phase.

Let us assume that a small value of n is allowed, and that 90 is

maintained bedow any of the first or second order thresholds., Then, according

to (2=78) the condition

70w



Sinzt}/ ]-,\(28;5) = EAWH& (2-80)

causes an instability., Since n is assumed small, Q)z must normally be large
and Sz small compared to unity, The Bessel function can therefore be

approximated as

h
Jn (zgi) o= ?\lT Sg (2-81)

which when substituted into (2-80) leads to a threshold

W,. = ( ZH! W \" W (2-82)
hi QJN\Sinz(P i

The minimum threshold occurs, of course, for n = 1, provided the corresponding
spin wave exists, and is
w .
whi = 2 '"Z W (2-83)
Ww sin*y

If wz is very small, the above mentioned process is not possible because n

would have to be very large in order for (n/2)b.)z to be in the spin wave mani-

fold, Therefore the coupling coefficient would be too small to allow (,,)h to
: z

be physically realized. On the other hand, if OJZ and/or Al(k were too large,

the process might again require a prohibitively large field,

The second set of terms of (2-78) has an average value if

Wy = W '-*'Zn Ws n=1,2,3 (2-84)

=7l



This first order coupling is important only when wk = W, /2 is below the spin
wave manifold., Under such conditions, the minus sign in (2-84) is ruled out,
The remaining possibility competes with the second order coupling and in order

to dominate it must satisfy the inequalities

e<; Sin ZW jn(tsi) > 2&“" (2-85)

B
sin2§ J, (&) > M (2-86)

As an example of this process, consider the case where the transverse driving

and

field is exciting the resonance (Cc)1 =(4)o), and the bottom of the spin wave

spectrum (for the spheroid) is @h/2, This latter condition requires that
*

Cdo = 2N, wM. Consider the k = O extensions of the spin wave manifold,

which becone

2 _ Y m 2-87
W = L (w, + 2wy sin'Y) (2-87)
+ 0l
Since wk = (:)—9-—-—2—5, it follows that

2 _NWy (204N W) (2-88)
SIN \P - 2 ‘%WM '

If no.)z is small compared to 2 (,Jo and (J,,, then

*Strictly speaking, the exact magnetostatic modes16 should be considered
in this range, however no very serious error appears to be committed by
extrapolating the Suhl spin wave spectrum to zero k values,
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, nw;
Sih 2y = 2 Wi (2-89)

and (2-86) reduces to

2MH

nw )
—*t h
Wiy Tn( 755} > M (2-90)
Wh
Z

) decreases much more rapidly than A so that the

The value of .Jn (
Z n

minimum threshold occurs for n = 1, and is

wy, I aZGl(K
TR E

Since J, ( §,) has a maximum value of ,5819 when 6, = +84 , we see that w,

must be at least as large as

(2-92)
W > 1.5 Wy
for the inequality (2-91) to hold., If the minimum condition exists, the first

threshold is given by

h, = 1.26 AH (2-93)

2,5, Instability Thresholds -- Nonlinear Resonance, Under certain con-

ditions, the principal response of the magnetizatiom may occur at other than
the driving frequency. These cases have in common the presence of longitudinal

modulating fields, either applied or self-induced, and an applied transverse

=73



field that is rotating at a frequency different from the magnetization. Both
fields can couple to certain of the spin waves and may be treated by the methods
of the previous section, As an example, consider a sphere that is excited in
the transverse plane by a field h1 of frequency (A)l and simultaneously by a
strong longitudinal field hz of a lower frequency 6.)2. The resonant frequency
and the principal response are assumed to be at the difference frequency

6.)0 =UH = 0.)1 —(4)2 . Let us further assume that 6J1 = 460M y W, =30, ,

and Q)o = O)M . Under these conditions, (.Jk = (A)o /2 1is below the spin wave
manifold and there are three possible instabilities, Transverse and longitu-
dinal couplings occur when (")k =W, /2 or wk = 0)2/2 , respectively, and
the normal second order coupling::occurs when wk = (4)1 -—wz o« The latter

coupling is negligible compared to the former so that the threshold equation is

given by

. + 2
Sindy wi _w Sift i S = Y% aeos)
7 C’El. cos ( Wy 2' )-t + W, Cmﬁ(“l( 2 )t (-UM

The threshold for the @, = W /2, (y= T/4 spin wave is

— Z(QJ,(K wz =
Wy, = —t b Wy (2-95)

and the threshold for the (), = W, /2 = T/2 spin wave is
k 2 ’

Mhl= g‘_@ﬁ_& = 0wy (2-96)



Wh
‘These thresholds are independent of 690 as long as E)o;> -3 » Since

W,
Wn Wn

e = L 2 for this case of nonlinear resonance (see Chapter 1,
[o] 20)10 0.)2

Equation (1=78) ) it follows that (uhz > 2 Q&o in order that the nonlinear
response is dominant, If && = Oﬁb this latter condition is met by a factor of

3 at the threshold given by (2-96),

Subharmonic Resonance, The example just given assumes that the

longitudinal modulating field is externally applied. In general, however, there
can be longitudinal fields, which are induced by the precessing magnetization,
as in the case of subharmonic resonance, In Chapter 1, Section 1,4, it was
shown (neglecting spin waves) that for an ellipsoid not magnetized along a
principal axis, excited transversely by a circularly-polarized field h of
frequency &)1 and biased to the half-frequency, a resonance can occur at &ﬁ/z

given by

B = IKVJ‘ IZ.( | — h;\fﬁ) (2-97)

provided that h exceeds h

crit® For a thin disc (Nz = 1), magnetized at an

angle o with respect to its plane, the threshold is given by

2w,
Wy Sin 2K

It is interesting to observe the spin wave behavior as h slowly increases

hcvﬁ = AH, (2-98)

from zero. Below h the subharmonic resonance is impossible, and the

crit ’
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frequency a)l o« The cone angle is given by

Wy ~ 2 W,

“

(2-99)

6, =

)/(wo' W )Z+ ("!Ff
and since the sample is not resonant, it is quite small, Now Iflalf-frequency
spin waves (W /2) are surely present in the spin wave manifold since the disc
is biased to the half-frequency, therefore first order spin wave coupling must

be considered. For the geometry mentioned above, the resonance frequency is

o 2
W= (W= Wy cosh ) (Wy = Wyces's+ysin'x) (2-100)

and the spin wave spectrum is

wZ" ( Wy~ Wy s+ %szMXwH—wM cosX + Akl + Wy 8 nzlli) (2-101)

If (0 = W , it follows that v/max = 0( when k = O so that the threshoid
k o

value of 9 for the usual first order coupling process is

g = 2 W _ 2 Wy
Wy SinZ(Pm Wy sin AX (2-102)

which implies that

- W, ol
hCrH') fivet ovder (‘)M sin o AHO (2-108)

This field is just one - half of that needed to cause the subharmonic resonance,
If h is increased further, the come angle remains "stuck" at its threshold
value, At this point it is worthwhile to pause and reflect upon the obvious



‘relationship between (2-98) and (2-103) and the meaning of the factor of 2. 1In
the first place, the subharmonic resonance can certainly be considered as a
half-frequency spin wave in the limit as k —» O, The entire spin wave theory
presented in this theisds is not quantitatively valid in such cases and it is
tempting to reconcile the factor of 2 on that account. A detailed analysis of
this point indicates however that the spin wave analysis is correct in this
instance and that the correct interpretation of the numerical discrepancy
arises from the fact that the two thresholds in question do not refer to the
same physical event. Bquation (2-103) indicates the amplitude of the field
needed to cause the first departure from the linear response. As this thres-
hold is overreached, the half-frequency mode will build up to larger amplitude
and there will be coexistence of both responses, Bquation (2-98) indicates the
point at which the half-frequency mode suddenly becomes resonant -- its ampli-
tude grows rapidly according to (2-97). It might be argued that since the
response would then be primarily at the half-frequency, the first order
instability process would have to shift to the quarter frequency (& /4 = W /2),
ﬁnd consequently would have a higher threshodid than (2-102) -- (idéinite if
Wo /2 were below the spin wave band).. Although this reasoning is correct it
may be shown that there will always be some residual linear response ( a
modulation product of the subharmonic resonance) sufficient to overcome the
loss of (uk = 0%/2 spin waves. It appears, therefore, that the subharmonic

response will be limited by a modified first order coupling process to



approximatély the same value as the saturated linear response,

:2.6, The Measurement of‘Qﬁk. It is clear from the preceding discussions

L

that a knowledge of how Aﬁ& depends on the spin wave propagation vector k is
necessary in order to properly evaluate any of the various instability thres-
holds. Most of the recent experimental investigations, which aim to uncover such
information,'have involved measurements of the power required to cause either
‘a first or second order instability., 1In the latter case, it is the degenerate
ql = O spin waves that are involved (/\k2 = A); whereas, in the former case, it
is usually disturbances of small k value that are important, The majority
of experimental results cluster therefore in one of the two regions.w’18
Since the spin wave spectrum is a function of the saturation magnetization,
some efforts have been made to alter the particular range of spin waves --
either by changing the temperature of the sample, or by carrying out the
experiments on a series of samples that differ in chemical composition,
Both methods give various values of the magnetization but unfortunately do
not leave other parameters (such aslka) invariant, Correlations of measure-
ments taken at different frequencies suffer from the obvious disadvantages,

We will now describe a method by which it appears possible to measure,
at will, the line width of any degenerate spin wave, so long as the normal
first order coupling process is impossible. (This can always be arranged if

the operating frequency is high enough.) The key to this method is in the



realization that additional microwave fields, in conjunction with the normal
transverse positively-polarized excitation, can cause a more flexible para-
metric excitation, The various gouplings outlined in Section 2.4 of this
chapter suggest the use of a spheroid that is acted upon simultaneously by

two transverse circularly-polarized fields of amplitudes h, and h

1 20 having

frequencies of Cch = (uo and Q)z respectively, plus a longitudinal field of
‘amplitude h3 having a frequency 6)3 +« Parametric couplings to spin waves of
frequencies (4)1 ’ (4)2/2 , and (4)3 /2 , respectively, exist for such fields and
normally the process with the lowest threshold dominates, If, however,

(4)2 = (1)3 = 2(4)l all the couplings involve Cuk = (), spin waves, and the

1
remainin uestions concern the values and of the spin wave with minimum
g q p

threshold, This threshold is

Sinzqz(%%)sin((sﬁzg—zx,() — Sin ZLI/(%“T@)SM(SWZ)

W} . 2 A (1§
+ 0 (costy + NN ) in 2o = 2Bl

where since wk = wl = Q)o » the relationship between }\kz and l’/ is known,

(2-104)

For simplicity consider sin®(P W << W, - N W. + >\k2(4) so that the
M H z M M

spin wave frequency may be approximated as
. 2
(A)K—"-'f wH_Nin + }\szM -+ -Iz-‘Sln qf WM (2-105)
Because
(L)o = wH - Ni wM + Nt wM (2—106)



it follows that
2 . Lot ?
o= — 4 (2-107)
AK Ny — 7 sin°y
. 2 2 . .
and the quantity (cos q} + AK° - Nt) in (2-104) may be written as
(coszw -1/2 sinzq/). It is apparent from (2-104) that by the appropriate

setting of hl’ h,., and h3, the net coupling maybe maximized for any given (p N

27
Xhe inverse problem of determining AHk ( q;,s ) from a series of measurements,
is more difficult since although 0(2 and (33 are controllable phases, g and O(K
are not, If AHk( (P,g ) were a known function, we could predict exactly which
spin wave would go unstable first for any given setting of hl’ h2, h3, 0(2, and
(33 and thus verify the assumption, However if the loss surface is reasonably
well-behaved, it should be pohsible to arrive at it experimentally by an
iterative precedure., For example, the loss surface might be considered plane,
and the values of q/ and S predicted for a series of experiments, The
measured points would be ascribed to these valueé, which in turn could be used
to predict for the next set of experiments etc,

One simple and rather amusing experiment could determine the minimum value
of AHk among the degenerate spin waves, although it initially would yield no

information as to the appropriate value of (// o If (2-105) is approximately

valid and h2 = 0, the threshold equation becomes

sintyy Sin(B,+25-5 ) + (cody— 5 Sin%Y) a—}ﬁ; = 28H(48) o108
2y TS 2 g M

=80



where o(k will equa%. to T/4 to maximize the coupling., Now let

Wh Wh

3

—_— = 32—
2W 2

1 ('Jlo

‘, and let both driving fields be increased until
the threshold is reached. If 53 is experimentally varied until the threshold
is minimized, it is certain that sin( ﬁ3 + 2§ - 'ﬂ'/z) equals unity, The
important feature is that now the left-hand side of (2-108) is‘d.ac‘leggnd&nt of
q" so that all degenerate spin wave?z are being driven equally; the first wave
to go unstable obviously has the minimum value of AHk’
The degenerate spin waves are not the only ones that can be measured

by such techniques, for many different field combinations may be used., As a
single example, an additional field Hz of frequency (4)2 (greater than (4)1) can
produce instabilities among the OJZ /2 spin waves, provided that the frequency
wl/z is below the spin wave manifold, The unstable modes presumably have the

largest possible value of sin 2&0 and could have frequencies greater or smaller

than the resonant frequency wl o

-fla



CHAPTER 3
THE TRANSIBNT MAGNETIZATION

In the preceding chapters, there were derived for an arbitrarily magneti-
zed ellipsoid, the general equations of motion for the spatially-uniform com-
ponent of magnetization, and a typical, small-amplitude, spin wave, The re-
sults obtained assumed for the most part steady-state conditions. It is of
interest, however, to inquire into non steady-state aspects of the magnetiza-
tion and in this chapter we consider the transient behavior of the uniform
precession and the spin wave spectrum together with their mutual interéction.
Since the general problems are very difficult, if not impossible, the discussion
must be limited in scope to some of the’mbre manageable topics., Those considered
fall into two general categories.‘ The first assumes a steady-state magnetizing
field and considers the transient response of the magnetization when a
circularly-polarized driving field is suddenly turned on or off, The second
assumes that the magnetizing field itself has undergone a sudden change (such
as 180° reversal) and considers the spin wave interactions that are present

until the magnetization reorients itself with the field,
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3,1, The Build Up of the Uniform Precession.

The Transient Response to a Transverse Circularly-Polarized Driving

Pield, As a prelude to the general transient problems involving pulsed
excitation, let us review a very much simpler problem -- that of the build up of
the uniform precession in a sphere (neglecting spin wave interaction), We assume
that the sample is magnetized by a field I-Io and that a transverse circulatly-
polarized driving field h of frequency &) is suddenly applied at time ¢ = O,

For t 2> 0, the equations of motion are

¢ = ©,~ w,ccfo cos(wt-¢ +) (3-1)

and

6 = G)h Sin(w-t-¢° +0()_ C%Slne (3-2)

where
W, = wH

The precession rate quickly equals the driving frequency, and the cone angle
starts to build up., Compared to th&s build up, the @ variation is normally
very rapid and we may therefore assume that the phase angle o( ad justs instan-
taneously to its appropriate values during the 6 transient, These are given

by (3-1), which reduces when ¢o =Wt to

Wy W
0 —_ (3-3)
cosex cafo oy

Bquation (3-2) becomes

0 = W, 3N — Wy, SInb (3-4)

The most important case is that of resonance ( W = (4)0) for which (3-3) sim-
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plifies to

cosX cole = 0 (3-5)

Initially cos® = O and it remains at that value as long as 6 < "'/z. It

follows therefore that
B= W, = W,sinb (3-6)

which may be integrated to yield

M(Wf_i)

'\'qn (3-7)
2 \, Z
(w,(o+ ’w_@ ')e W= wh -t+( ’wz wh )
when (qeo > (.L)h ;
%°‘t (3-8)

W - VWi g Yoo
"'OY\'%: _5_:__1_\ 5 lo 1— h -b.t TO wﬁ-___,w‘:) (3-9)

when %04 (J.)h (for all t 3> O such that O < 2 ). In the latter case, as
soon as 9 = /2, (3-5) is satisfied independent of o( , and sin(X changes

» The cone angle then remains at its saturation value of T2,

from unity to

W
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If the sphere is not in resonance, (3-4) becomes

é = \/whz - (Cdo—w)z'fanze — (q,o Sine (3-10)

When 8= O, the detuning term in (3-10) is zero, and the cone angle starts to
build up as in the resonant case. As 9 grows this term increases also ( O is
shifting away from T/2), and the effective driving field decreases, If the
detuning is appreciable so that |W,—W|>> Wy Cor if W, is small), the conme
angle will not build up to any large value. Then tan§ and sine may be

replaced by their arguments and (3-10) approximated as

é = \/(uhz— (wo—w)zézl — W, 6 (3-11)

This may be integrated and gives

Wy,

Ju- (w0 W)t - w0

wo-w .“(&)o-(u

- +
™ Sin o 6 I
(3=12)

2 2
(wo"w) + wJo
..t
Weo

which is more conveniently solved for t than for @ . If (uo = W, (3-12)

reduces to

(3-13)

~ Wyt
6 = (;:;(l—e&)

For small values of 6 , (3=7) agrees with (3-13),
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When the sﬁple shape is not spherical the resonance frequency is a function
of 6 and therefore of the incident power, If the sample is biased to be reso-
nant when 9 = 0, it shifts out of resonance as 9 increases, We may compensate
for this by initially detuning to the other side of the resonance so that an
increasing 6 tends to restore respnance., As we shall see, this precedure is

limited., Assume that the sample is a spheroid, and that 6 is small. Then
W, = Wy= (N,- NQ“’M cos O

w + W6t

(3-14)

R

/ t .
where Cuo = OJH‘— N, - N, OOM and W= —~—— W . Bquation (3-11) may

be written as

é= \/whz— D - ‘»one (3-15)

where D, the detuning term, is given by

D = [(w,,’- w) + W 921292 (3-16)

/ . 6
If W= wo , D is zero when e = 0 and builds up monotonically as @ for

increasing cone angle. Assume now that 0.);4(0 if W is positive (N, >N.), or
‘U'o >U) if W is negative (NZ< Nt)' Under these conditions D becomes

D= Wz ( 92... @f )2 62 (3-17)

_W-Wo

where 602 W

, as is shown in Pig, 3-1, The build up transient is now
very interesting, for if the cone angle can attain a value eo/y— , the peak in

D is surmounted and (provided wh is great enough) 9 will increase to 90.
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Fig, 3-1
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Since the height of the barrier is proportional to the sixth power of Go y We
would expect that it can be exceeded easily for small values but that at some
critical point it cannot -- without additional excitation. The condition for

scaling the top of the barrier is

4  2pb 2 O
Wy = g7 WO > U

Any further increase in the cone angle will bring about a reduction in the de-

(3-18)

tuning term, If this decrease is sufficient to offset the increase in the loss
term, a "runaway"” condition will result. Anderson and Suhl have analyzed such
behavior, on the basis of steady=-state theory, and have determined the minimum
instability threshold.19 We are interested here, however, in determining under
what conditions‘ 9 can increase until D = O, A necessary condition is that

the driving field be given by

W, = W, 6, (3-19)
s0 that (3-18) becomes
2 2 n¥
% %o 2 w 90 (3=20)

The initial detuning, necessary to make D equal zero when 9: 90 , is

evidently

%w' wol\ = ‘wk 902 < —\-/—32"— wlb (3-20)

Substituting the value of W into (3-21) gives

ez < 3V2 Wy — e‘z

: (3-22)
0 IN;- N, | Wy crit
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which is minimized for a thin disc (NZ =1), If 90 is slightly greater than
ecrit , the cone angle can no longer reach 90 but it will arrive at a value just
under eovﬁ . It should be noted that chi . is normally greater than the thres-

hold cone angle, for second order spin wave instabilities, which is

Wi

Premature Saturation, The simple theory of the transient build up

Jjust given does not prevent the come angle from attaining large values (when h
is comparable to AH) unless the resonant frequency is a function of § . In
practice, the latter never approaches /2 in the steady-state, even for a
sphere, because as we have previously discussed , Suhl has shwwn that certain
spin waves become unstable at power levels much smaller than those implied by
(Uh = Q{to .* These modes feed upon the uniform precession and cause a pre-
mature saturation of 6 o« The initial transient state is now very much
complicated, As long as the cone angle is below the minimum spin wave in-
stability threshold, the equations previously given apply. As @ becomes
greater than this threshold, spin waves start to build up, and 9 is reduced

as the loss term increases, There is a time lag before this starts to make

any appreciable difference, however, and so @ continues to increase, More

*The power required to keep the conme of precession open tospme angle O
:ﬁ;nglszzl 31’:3 damping:-torque xwprecession . Therefore, Power/volume =
o o ‘

=80



and more spin waves become unstable as their thresholds are reached, and the
initial instabilities grow at rapddly increasing rates. The amplitude of max-
imally-coupled spin waves is approximately given by

&M = ( él—nzﬁ - I?\/‘l-‘K>CJM6M (3-24)

for first order coupling (OJk = W/2), and

g = (Tandsing _ M), gy (3-25)
2 M/

for second order coupling ((ok = W), (Note that if é} > T /4 the latter is
the dominant process and near Q =T /2, the build-up rate is enormous.) The
increasing loss finally limits the growth of é) and makes it decrease to the
critical value corresponding to the instability of minimum threshold. The
detailed dynamics of this turbulent system is beyond hope of solving, Even if
only one spin wave were involved, there would result four coupled nonlinear
differential equations. Many such waves are involved, however, and the
number depends on by how much § tries to exceed ecrit .

Practical considerations of these transients make a solution desirable,
If spin wave instabilities, of one form or another, are used to limit pulsed
r-f power incident upon a ferrite, the time lag associated with their build

up allows an initial '"spike" to remain on the transmitted pulse. This is

often undesirable,

3.2. The Decay of the Uniform Precession. Another interesting transient

condition is found when the incident pulse shuts off., We might expect,
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a priori, that 69 , which is at its critical value, (the pulse is assumed to be
of long enough duration to insure this) would merely decay (along with the
excited spin waves) when deprived of the driving field. It has been found,
however, that this is not always the case; the cone angle sometimes grows be-
fore finally subsiding. Evidentally in these cases, the spin waves give back
to the uniform precession some of the energy they previously had coupled from
it., This implies that the parametric coupling coefficient changes sign in an
interval, short compared to the relaxation time. Although a solution to this
problem is also very difficult, a number of qualitative statements can be made
about the equations, First of all, to assume that the driving field suddenly
steps to zero will probably not yield a correct model of the usual laboratory
experiment, although it is of interest in its own right. An example may
clarify this remark. Consider that a spheroid is biased to some resonant

frequency Q% and that a transverse driving field of frequency (J , not equal to

“y)

), » is present. Also, assume that the incident power level is sufficient to

create an excited spin wave. Now if the driving field steps to zero the fre-
quency of the uniform precession suddenly shifts from (J to Q)o, which in gen.
eral bears no relation to the frequency of the excited spin wave. The two

modes are decoupled therefore and the parametric coupling averages to zero

over a time interval that is small compared to the subsequent decay time., If,
however, the driving field does not suddenly go to zero, the precession rate does

not immediately change, and it is possible for the parametric coupling to
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maintain an average value over the time interval of interest, It appears,
therefore, that a correct model of the driving field decay is important except
perhaps when &= (00 ; then no large change in the precession rate occurs in
either case. A qualitative picture of the interrelationship between the ampli-
tude and phases of the two modes may be obtained from an inspection of the
differential equations. Let us consider those appropriate for the first

order coupled modes <wk =W/2) , assuming a spheroidal sample shape., If

higher order terms are neglected, (2-35) through (2-38), Chapter 2, reduce to

c? W, — —eh oS wt c? +0(°)+ 8M1wM<3COS §-| Sﬂ'ggpcosﬁ (3-26)

. 2
b= Wy, Sﬂ'n(wt-@&()(‘) - w,,,@ + 8%',%?:(‘)5\ sin 2 Sin Y (3-27)

Q= Wy Ny Wy + szwM + Sitfl Wy cos*(g=¢)

- LV\zZQ Wyb [cos(cp,,- §) + Cos tj]

(3-28)

CSM [ﬂsnz (?K _f) Mesmj— ——K Wy M Goze

where _ ZQK—— @o _ S

We assume that the driving field h (large enough to have caused saturation of @)
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steps to zero at t = O so that the initial conditions are

(uhc

0=6 = 20Hy _
oz (1- 59 %) ™ Yooyt 1

where sin ZSU (consistent with &) = W/2) is chosen to minimize Qc, and

(3=30)

L

sin y = -1, The phase of the uniform precession, o(o , for t €0 is given by

A ) = ¢_ 3eoslh=1 ACc: < (331
n(COSO(o Sinay o Sini, 0 Sin T 0 sinx. G-n

where

C Wy~ W
n=_@_h_ and COTO( = e

W Weo
If é is to be positive at any time during the ensuing transient, either siny
must change algebraic sign before 9 does or vice versa. A chahge in the sign -
of sin y implies a phase shift between the uniform precession and the coupled
spin wave, which would then act as a source instead of as a sink, If this
could happen immediately, e would initially increase from its value of Qc
before finally decaying. If, on the other hand, the phase did not shift &t all,
e woudd decrease very rapidly because of the normal damping and the spin wave
term. 1In fact, it would decrease to zero and then become negative (provided
&M was still non-zero). A negative value of 6 effectively means that the
phase of the uniform precession has changed, but only after @ has gone to

zero first. If §M is large enough,lel will then increase rapidly and may

03



attain a value larger than Gc before finally decaying together with 5M.*

In general, the relative phase between the coupled modes is not independent
of their amplitudes, as is clear from inspection of the equationms. There is a’
special case, however, in which a remarkable simplification occurs, Consider
that (= W and cos’= 1/3, then cos , = O and (3-26) and (3-28) reduce,
respectively to @o = wo and (@k = wk. Since sin y = -1 for the duration of

the transient, (3-27) and (3-29) become

2 ‘
= —W,06— (%‘;\—,\) (n-1) Wy, ) (3-32)

and

. e l

M = (-e—c- %K M €3-33)
where 9(0) = QC, and 6}4(0) =5Mo. Although there are now only two
coupled equations instead of four, an exact solution is impossible and we
must be content with what appears to be a reasonable approximation. This is
derived in the Appendix and results in

=gt
0 -ut Bll-wgt-e ™) ~
= € +-@_-T € Pk)— e Plo)

for n 31 and t 3 O where

-—(.u;f‘, B ~2w,t 2 =3uwt
PAY= |+ &+ g€ " 4ahmy€ 4 e

*Note that if @ rises above Qc other spin waves will go unstable.
Because of the time lag im their growth, they probably can be ignored
in most cases,
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21 Wy . . —
and ﬁ = =——— - , Equation (3-34) is plotted in Fig, 3-2 for the case n = 5,

Weo
Q¢°= &&K' The type of behavior that was predicted is clearly evident, although

it should be mentioned that the approximate solution always underestimates the

peak values,
Qualitatively, the discussion above applies also to second order coupled
spin waves, For second order coupling, however, (2+35) through (2-38) reduce

instead to

0, = ©, — M e o
= @ = —5 COS(Wt-g +o)+ T

2
8= whSin(th* CPO"'O(,,) —(t}eoe +%2%925‘|n2)( (3-37)

' 2
CPK = W,= N't Wy + )\KZC‘JM + Wy 6 COSZX (3-38)
and

SM = - %KSM + gsz Sin 2X ( H')\KZ-N‘;') oM (3-39)

where (P has been set equal to zero,

3.3. The Transient Spin Wave Spectrum, The previous discussions con-

cerned a typical resonance experiment involving a dc biasing magnetic field

and pulsed microwave excitation, The transient behavior of the magnetization,



Fig. 3-2



when the biasing magnetic field varies in amplitude and direction, is also

of considerable interest for a number of reasons. For one, a knowledge of the
dynamics of magnetization reversal in ferrite computer elements is necessary in
order to predict the limits on switching times, For another, the possibility
of coupling magnetic energy from transient fields and converting it into pulsed

microwave energy has been theoretically analyzed by the author,zo’21 a

nd
experimentally demonstrated by Stiglitz and Morgenthaler22 as well as by
~Blliot, Shaw, and Schaug-Petterson.23 The behavior of the spin wave spectrum
under transient conditions is naturally of great interest, It is particularly
important to know what relaxation processes would occur if the magnetization
were momentarily inverted ( 6 = JT ). This problem was treated by the

1, 14, 24 and more recently identical results were obtained independently

author,
by Schaug-Petterson.25 The magnetization will change rapidly and it is
important to follow the spin wave spectrum and the strength of the various

couplings for succeeding stages of the transient., Before we attempt this,

it will be helpful to review the § =T case,

The Inverted Spectrum, The spin wave spectrum, which is valid when

negligible transverse components of the magnetization exist (sing®™ 0), was

derived in Chapter 2 and is given by

WS = (w“— Z Wy (056 + )\szmcose)

(3-40)
x (W4 = 2 WwC050 + Nty s + Sin iy Ceso)
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For 9= TC, the value of cos e is minus unity and a region in which spin wave
propagation is cut off may be shown to exist, This region is largest for ¢=Tr/2
directed spin waves (recall that q/ is the angle that the spin wave propagation
vector makes with the direction of the internal magnetizing field) and decreases
to zero when q/= 0. The spectrum is plotted in Pig., 3-3 for the case of a
sphere (Z = 1/3) with wH =Wy,

Mathematically, the cut-off condition comes about when the two factors
in (3-40) have opposite algebraic signs, which lead to imaginary values of &)k.
The physics can best be understood by studying a graphical representation of
the field vectors., This is given in Fig. 3-4, In the first place, because
of the inversion of ﬁ,‘ the "demagnetizing field" ZM is adding to HO while the
exchange field is effectively subtracting from it. There is a similar reversal
in the effect of the volume dipolar field so that W = O spin waves now have the
highest frequencies, and (I/= T/2 waves the lowest. Consider for a moment these
latter waves and assume that they are lossless and propagate when k = 0, As k
in;reases the exchange field reduces the frequency more and more until finally
all torques balance and l:.)k becomes zero, At this point, sin 2(47]: - S) = Q
so that the component of the volume dipolar field, which is perpendicular to
the spin wave (see Fig. 3-4), is also zero and the equilibrium position and
magnitude of 6M is maintained, If k increases slightly, one should expect
the exchange field to overbalance the applied field, and the precession to

proceed in the opposite direction (negative Uk). Actually, the phase of Qk
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changes but C.Pk remains zero, Since the sin 2( ?k - §) # 0, the perpendicular
component of the volume dipolar field becomes non-zero and 5‘M is either increased
or decreased (both phases of Cpk are permitted). If it is positive an unstable
situation exists. As k increases still more, the phase of cpk changes (?k
still zero) until the sin 2( Qk —§) reaches a maximum and then it starts to
decrease. When k increases to the point where sin 2(<Pk —f) = O again, the
end of the cut-off region has been reached. Any further increase in k now
unbalances the precession torques and b)k becomes negative. The situation is
much the same for any other direction of ql » €xcept that a greater k value is
needed to reach the Qeginning of the cut-off band. It is interesting to note
that the end of the latter occurs for the same value of. k, regardless of q/ .
As this angle approaches O, the band shrinks until it becomes only a single
point, Since the transverse volume dipolar field is proportional to sin2 ql ’
the parametric coupling decreases to zero in the latter case.

Further mathematical insight comes from the consideration of the lossless

» - * -
equations of motion for &M, which are

4)‘( = Wy +Zwy~ >\|<2 WM — Sihzq/ Wy COSz(cp,(-g) (3-41)
and

sM= — Sinzt}/ SN (@e-§) os(gh-g) Wy SM (3-42)

In the cut off region, the precessional motion of the spin wave has stopped

(Qk = 0), Therefore
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. b, 2
Wy slnz(p oS (cpK-g) = Wy +Zuwy — Auwy (3-43)
Solving this equation for cos(@k - S) and sin({?k ——g) and substituting

these expressions into (3-42) yields

S.M = | w oM (3-44)

where wk is given by (3-40)., The plus or minus sign means that both
growing and decaying solutions are possible; the former being the only one of

!
interest. Since W, is imaginary, let wk = i_(),k o Then

nt

5M = &M, e _

The maximum value of flk for arbitrary q,/ occurs when cpk -S = TM/4,

since we know from (3-42) that
. 2
Sin Y '
N, = 7 Wy Sin z(q)K-g) (3-46)

It is also seen that ‘.}/ =T /2 1leads to its largest possible value in

agreement with the previous discussion; then

1
M= M, e *

The growth of this individual spin wave is therefore extremely rapid unless

(3-47)

the saturation magnetization has a small amplitude. The total effect of the
unstable spin waves is very much greater since a whole band of them exist, The
k value of the fastest growing spin wave in any paritcular direction is easily

found from (3-43) with cosz( 41‘ —§) = 1/2 and is given by
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provided that this value of k2 is positive,

(3-48)

The unstable spin wave growth, together with all other relaxation pro-
cesses, will certainly result in the rapid return of the magnetization vector
from its inverted to its normal position., The spectrum just described will,
therefore, continuously change until it finally reaches the steady-state Suhl
spectrum, The actual transient behavior will depend to a large extent on how
much uniform precession is initially present when the spin waves first go
unstable. The case e =Tl' is a point of unstable equilibrium for i and im=
plies no such initial component. It is possible, therefore, to assume that the
unstable spin waves could act to increase szimmmits initial value of -M to +M
without there ever being formed a spatially coherent transverse component of
the magnetization, Many of these spin waves would grow to large amplitude and
each would in turn effect the frequencies of the others. The determination of
such interactions, even using quasi-static approximations, is too difficult to

carry out,

The General Spectrum, Let us consider instead the more general

case when 9 is not exactly J[ . We assume that the transverse component of the

uniform precession is very much larger than any initial spin wave amplitude,

=103=



The initial spectrum is essentially the same as that for 9 = T but the un-
stable spin waves will comstitute an additional loss as far as the uniform pre-
cession is concerned (now not in unstable equilibrium). This tends to make 9
decrease much faster than usual and causes an initial increase in sin @ ;
hence, the uniform component, If this latter component is large compared to
the spin wave amplitudes, the spectrum will be governed by the uniform pre-
cession and not by the spin waves, If in addition the quasi-static approxima-
tion (that é<<4‘>) is used, the problem becomes identical to the one of
determining a succession of spin wave spectrums assuming no appreciable spin
wave amplitudes, but some arbitrary value of e .

Again, for simplicity, we consider the sample as a sphercdid magnetized
along its major axis (z)., We assume also that all r-f driving fields are

zero, Equations (2-35) through (2-38) are then

4)0 = wH - (N-Z—N‘t) C\)M COS@ (3-49)

6 = - (42(0 Sme (3-50)

C.PK'_" Wy - (N, = AK" )y cos @ + sin Wy coso Cos ()
— Sin2lp Wy Sind cosX Cos(¢y-¢ ) s
+ (NKE+ sy =Ny ) Wy in 6 Tan 6 cos'x

and
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M = { s%‘_w €058 SiN2A¢§) — SL:a-"u—“‘“‘? Sin(2fe-go-s)

(3-52)

- %ﬁ‘ cos® + ()\K2+<oszﬁb - /\Q) Sinez___'fq_gg Sin ZX}(‘)M &M

In general wk will not be equal to either 0,)0 or (.do/z so that the sin 2(‘/
term in (3-51) has no average value, whereas, coszx averages to 1/2, (If
Wy = wo or Cuo /2, the equation for ‘{)k is in general modified., It is
easily shown, however, that those spin waves that are maximally-coupled to
the uniform precession, and that therefore meet these frequency conditions, are
not significantly modified., Spin waves that are modified will be discussed in
a later section.) It then follows that .

‘.QK ~ wH_( Ny~ )\Kz)wM 056 + &%_(P choSQ[l +co52(4).<-5)]

'F ( XJ(14-<IISﬁP-— ﬁdt) SHV1EZF1H€9 Qﬁw

Since Q is assumed to change negligibl¥ during a precession period, it may

(3-53)

be treated as a constant and the @k equation integrated directly as before,

The result of the integration is to determine Q)k as
W= (a+beosy + C Si'y +d M) (a+ beos'y +d AKZ) s

where a= Wy- Ni WMCOSG - —‘z N.(: {AJM Sin@ fan 6
b= % y sing tand
C= Wycosh

o d= wy (oo +§jsin9+an6>
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Notice that the coefficient d, which determines the slope of the spectrum, is
essentially independent of 6 except near 9 =TM/2. (This point T /2 is excluded
from consideration since, as derived in Chapter 2, the spin wave equations are

2
not valid unless SM 4& Mcos @ or M—g%eg- .) The dependence of d, on &

, is
shown in Pig, 3-5., The spectrum is plotted in Figs. 3-6 and 3-7 for various
values of 9 for a spherical sample, It is assumed that CUH = Q)M , and only
the q/= 0 and q/ = T /2 spin waves are shown in the figures. An interesting
feature is that these (P= 0 and q/ = T /2 waves alternate in being lower in
frequency as 9 varies from O to TT , and that neither of these directions con-
Stitute the upper limit to the spectrum in certain ranges of Q «» This may be

seen by examining the extrapolated limits of the spectrum for k = O. If Cdk

does not equal either wo/z or (.L)o s they are given by

wé(o) = (a + bcosz‘{/)(a +b coszq/ + C sin‘tp) (3-55)

The maximum and minimum values of wk(O) must satisfy the condition

sin cosy [2b(6-c)cosyp +a(2b=C) + be] = 0 0
provided (dk # 0. Three possibilities exist: 1) y/: O for which

Wele) = W, = a+b (3-57)
2) ql= T /2 for which ‘

Welo) = W, = VG(C(+C> (3-58)

a(2b - c) + bc
2b(c - b)

C
2{b(c-b)

and 3) coszill = (if (y is real) for which

(a+ b) (3-59)

W) = Wy =
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Fig, 3-6
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1f O < T4 (c >2b), it may be shown that (4)3 is the absolute maximum provided

bc
c =2b

>a >-b, In Pigs, 3-8 and 3-9 the k = O spin wave frequencies are

plotted as a function of (P for several increasing values of @ . The latter
are chosen to indicate the manner in which the spectrum turns over., Again, the

‘case Z = 1/3, COH = G)M was chosen,

3.4, The Position of the Uniform Precession in the Manifold, The

position of the uniform precession in the spin wave manifold as a function of
the cone angle is important, since its relative position determines which spin
waves will be strongly coupled at any given time, For example, SchlBmann has
shown that the discrete nature of the spin wave modes together with their fre-
quency dependence on power can account for certain fine structure, which has
been observed in high power resonance expe:r:lments.'?'6 Moreover, it appears that
under certain conditions, the uniform precession can drop below the main spin
wave band, although certain other spin waves, with precise phase relationships,
will still be degenerate with the uniform precession, Por example, assume

that q} = O spin waves lie lowest in the band and that O < T/4, Then

(for a spheroid)

wK(W'G)'-' W= Néwncose + >\sz,1 059 + (I+hk* Nﬁ)wMSinefané co.szx (3-60)

and

W, = Wy~ N& Wy c0s6 + Nt Wy cos8 (3-61)
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where x = 4)1( —-CPO , as before, and all spin waves are assumed to have infini-

tesimal amplitudes, If 6.)0 is to drop below the spin wave band, we must have
A+ (14 A= N, ) Tano cos?
N, < I+ AK—= Ny ) Tan 6 05X (3-62)
for all real k. The most stringent requirement is for k = O and then

N‘t < ( |- Nt> -C_O-S—z;( —"OW\G (3-63)

] e 2
In general, (Pk # @o so that cos'x = 1/2, and

2
J(.QY\ 6 > IT/_V—t— | ' (3-64)

gives the critical value of 9 . Notice that for a sphere (Nt =1/3), @=M/4
appears to fulfill the condition., However, when 9 = T /4, the ¢= 0 waves are
actually at the top rather than at the bottom of the spectrum, and a_)o has not
~ escaped from the spectrum, Further increase of 9 will not alter the situation,
If Nt is very small (flat disc magnetized normal to its plane) the critical
value of @ decreases. This is reasonable since for small N, and g = 0, the
uniform precession begins close to the bottom of the spinm wave manifold and
moves only a short distance before escaping., In fact, for Nt = 0, the uni-
form precession is initially at the very bottom of the manifold and any non-
zero 6 will cause it to drop below, In practice, of course, there is always
SOME NON=Zero Nt'

If (.?k = (i)o (assume that @k cannot equal (i)o/z), it follows that
(for ql = 0)

Ny = AK* + (1 + NK*= Ny ) Tan'e cos®x (3-65
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Now coszx need not be 1/2 so that their exists a range of degenerate V/= 4)

spin waves (with precise phase relationships) even though the inequality (3-64)

N
. . . . . 2. t
is valid. They exist from k =0 for which cos"x = 73— Nt.)tanze < 1/2 to

’ N
k = —}\i for which coszx = 0, Notice that the degenerate band has exactly the
same width (in k) as when 6 = 0, and that the degenerate range of spin waves

is not restricted to “/= 0, Equation (3-65) is generalized to

[&)H- N,y €06 + AK €06 +(costp + AKE= N, )y sing Tand COSIO(]

| 9 056 Sin”y (560
Oy~N, Wy 0058 +AK Wy €30 +(Cos™p+MKE N, )Wiysingtand cosx
= Wy~ N;wycos@ + N, Wycos6
If ::i f_‘;jg—u < < 1, (3-66) simplifies to
. 2
Np= SE o N (cos®y +AR- ) oo cosx cauem

No degenerate spin waves exist (for small § ) if sinzvj >N, .
In Chapter 2, the critical value of 9 leading to instability for q/= 0

spin waves (for which &)k = (.do), was given and may be written in the form

2 My
(14N Ng) M sin 2x

fan’e =

(3-68)
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Since cos x must be less than 1/2, if the inequality (3-64) holds, the insta-

bility thresholds are raised accordingly. Solving (3-67) and (3-68) together

yields
2 AH\4
fnte = Mz hC) = (&) (3-69)
(3= N ) (N - AK?)
The minimum value of tan @ occurs when
2 AN Al YRV
A = Nt+(ﬂ—-’$)—' —M—\/\+(—M—>, (3-70)

and if > &£ 1, as is usual, (3-70) may be approximated gas

>\KZ = Nt— (%&) (3-71)

Substituting this last resulit into (3-69) yields

Tanze = sz,]HK (3-72)

When Nt<-3r-this solution does not exist for any real k and the minimum

threshold occurs for k = O, Then (3-69) becomes

Ntz"' (érv‘:"()z
(1-Ng) Ny

If the uniform precession is to drop below the main spin wave band before this

(3=73)

Ta nze =

. threshold is reached, the following inequalities must hold

2 . (BH\
N4 < -t-cmze < Nt + ( M ) (3-74)
- Ny (1-Ng) Ng
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This is possible since by assumption Nt<T » The smaller the value of Nt ’
the wider the range of & , which satisfies the above conditions., Although the
spin wave instability threshold is raised by using an extremely thin disc,
instabilities of the type discussed by Anderson and Suhl{gwhich depend on the
resonant frequency being a function of 6 , Will remain with unchanged thres-
holds. These exist, however, only for certain values of the biasing magnetic
field,

The spin wave spectrum is shown in Fig. 3-10 for conditions under which
the uniform precession has dropped below it. One may inquire why the uniform
precession is apparently privileged in this respect, The answer lges in the
assumption that only the uniform precession has a significant amplitude, The
transverse precessional component interacts with all other spin waves or mag-
netostatic modes* and under certain conditions tends to raise their frequencies,
As long as the other modes possess negligible amplitudes they cannot in turn

effect the uniform precession frequency. If some other mode were excited to a

large amplitude, the spectrum shift could be quite different,

*Actually this has only been proved for the spin wave spectrum, extrapo-
lated to zero k values. Por @=0 no magnetostatic modes are below this
extrapolated limit and it is reasonable to suppose that bhis holds generally,
at least for small O .
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APPENDIX

We establish (3-34) by an iterative procedure. Notice that &M(0) = 0 and
- »
that &M does not change appreciably (compared to & ) until 69 has gone nega-
tive. As a first approximation, therefore, let M = SMO he a constant. Then
: 5 6
6 = — Gy (n">w,eo (A-1)

which may be integrated immediately to give
& _ Y - — et
( e° = —h{l-¢€ (A-2)

Now use this to get a better approximation of éM namely

- Wygt

SM": "ﬂ@m(l—- e >8M (A-3)

This may be integrated to the form

_ K't‘:;; _ T4t
o = v, ¢ LT

which has the correct behavior at t = O and yet leads to the eventual decay
of éM which is necessary.
We use this expression for &M to improve on (A-1). This is a first

order equation so that the solution is given by

- w,t

B = A“-) € (A=5)

whe re
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‘“ﬂft
C —( 'Otébt -BgE

A= —(n-1)tg0 epfﬁ et a4+ A (8-6)
and

)

B= 2 Wk (A-7)

Wee

The integral in (A-6),. which must be evaluated, is of the form

—wt e
I= ge eé dt (A-8)

with ¥= Wg and X = Y(f— 1). Successive integration by parts gives rise

to the series solution

-rt
-xt -ge | B d’
I=- o—|< e ef [ It 0(:,, c
g7 ~at g’ st 4
+(°(+>‘)(°(+ 27) € -‘-(°<+7)(°<+2>’)("‘+ 37) e * ]

Then

h-1 \ 1¢ 8 —(B-")uwt —péw“i
A= (W)G e e e Pit) + A, (A-10)
where
ST A S [V § 2 3t
Ph)y= l+e "+ @ e  *EEHe o+ @

The constant A is evaluated so that 6 =9 . Thus
= A¢_ (-1 -
Ao = § - —p—-l—) 8 P(O) (A-12)

and (3=34) is established,
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CONCLUSION

In this thesis, there were formulated for a small ferrimagnetic ellipsoid,
the general equations of motion govemning the uniform precession and a typical
small-amplitude spin wave, The internal field used in setting up the equations
consists of the applied fields together with those arising from the demagneti-
zing, volume dipolar, and exchange energies, Schl¥mann has shown that fields
due to inhomogeneities are important in some cases (particularly with porous
polycrystalline samples) since they can cause a gradual decline in the suscep-
tibility for increasing power leveIS.27 However, for simplicity, such terms,
as well as those due to anistropy, were neglected; their inclusion in the
general equations poses no serious problem,

The equations of motion, neglecting spin wave terms, were amalyzed with
respect to both linear and nonlinear effects, The generalized ferromagnetic
resonance frequency was derived and the intermodulation between the precession
cone angle and phase was discussed., The general linear external permeability
tensor was obtained and proved to be complicated due to the elliptical preces~-
sion path of the magnetization, Harmonic generation occurs in the longitudi-

nal direction because of this ellipticity but it was also pointed out thit
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longitudinal components of time~varying demagnetizing fields cause harmonic
generation in the transverse plane, These field components may also cause sub-
harmonic resonance when an applied transverse driving field is above a certain
threshold, provided that the ellipsoid is biased to the subharmonic frequency.
The half-frequency subharmonic is the only case of importance and was analyzed
in detail, The relationship between this resonance and a general class of
nonlinear responses was pointed out,

Next, spin wave interactions with the uniform precession were taken into
account, Solutions of the equations led to a determination of the generalized
spin wave spectrum and a physical picture of the interrelationship between the
spin wave amplitude and phase, This was found to be similar to the case of the

uniform precession but due to volume rather than surface effects. The resulting
elliptical precession path is of major importance in providing parametric
coupling between certain spin waves and the uniform precession and was found
to be responsible for the first order instability threshold in a spheroid, as
discovered by Suhl, The generalized first order threshold was obtained for an
- ellipsoid and it was found that both transverse and longitudinal demagnetizing
fields are important. The second order instability threshold for a spheroid, also
discovered by Suhl, was found to be modified in an ellipsoid because of these
fields, but normally only to a minor extent, These above-mentioned thresholds
involve a single transverse driving field but the effects of additional applied

microwave fields, of various frequencies, were sought, It was found that direct
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parametric coupling, between a longitudinal pumping field and both the uniform
precession and spin waves, can exist under certain frequency conditions, and
that transverse pumping fields of the proper frequency can couple directly
to spin waves, An experiment utilizing a combination of driving fields was
described, which should make possible the measurement of Aﬁ& for selected
spin waves., Much of the material discussed has direct and obvious application
to the field of ferrite parametric amplifiers and oscillators,

The transient build up and decay of the uniform precession in response to
a pulsed microwave driving field was discussed, as was the dynamic behavior of
spin wave interaction. In particular, it was shown that if the magnetization of
a spheroid could suddenly be inverted with respect to the magnetizing field,
certain cut-off spin waves would grow very rapidly at the expense of the uni-
form precession, The spin wave spectrums, appropriate to succeeding stages of
the ensuing transient, were derived using a quasi-static approximation and
they give at least a qualitative picture of the highly nonlinear loss mechanism.
Pinally, an analysis of the position of the uniform precession relative to the
spin wave manifold indicates that under éertain conditions the uniform mode
might drop below the main spin wave band., Under such conditions it appears
that the second order instability threshold in a very thin disc can be made to

rise above its usual value,
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