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Summary

Many data sets exhibit well-defined structure that can be exploited to design faster search tools, 

but it is not always clear when such acceleration is possible. Here we introduce a framework for 

similarity search based on characterizing a data set’s entropy and fractal dimension. We prove that 

searching scales in time with metric entropy (number of covering hyperspheres), if the fractal 

dimension of the data set is low, and scales in space with the sum of metric entropy and 

information-theoretic entropy (randomness of the data). Using these ideas, we present accelerated 

versions of standard tools, with no loss in specificity and little loss in sensitivity, for use in three 

domains—high-throughput drug screening (Ammolite, 150x speedup), metagenomics (MICA, 

3.5x speedup of DIAMOND (3700x BLASTX)), and protein structure search (esFragBag, 10x 

speedup of FragBag). Our framework can be used to achieve ‘compressive omics,’ and the general 

theory can be readily applied to data science problems outside of biology. Source code: http://

gems.csail.mit.edu
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Introduction

Throughout all areas of data science, researchers are confronted with increasingly large 

volumes of data. In many fields this increase is exponential in nature, outpacing Moore’s 

and Kryder’s laws on the respective doublings of transistors on a chip and long-term data 

storage density (Kahn, 2011). As such, the challenges posed by the massive influx of data 

cannot be solved by waiting for faster and larger capacity computers, but instead require the 

development of data structures and representations that exploit the structure of the dataset.

Here, we focus on similarity search, where the task at hand is to find all entries in a database 

that are ‘similar,’ or approximate matches, to a query item. Similarity search is a 

fundamental operation in data science and lies at the heart of many other problems, much 

like sorting is a primitive operation in computer science. Traditionally, approximate 

matching has been studied primarily in the context of strings under edit distance metrics 

(Box 1) (e.g., for a spell-checker to suggest the most similar words to a misspelled word) 

(Ukkonen, 1985). Several approaches, such as the compressed suffix array and the FM-

index (Grossi & Vitter, 2005; Ferragina & Manzini, 2000), have been developed to 

accelerate approximate matching of strings. However, it has been demonstrated that 

similarity search is also important in problem domains where biological data are not 

necessarily represented as strings, including computational screening of chemical graphs 

(Schaeffer, 2007) and searching protein structures (Budowski-Tal et al., 2010). Thus, 

approaches that apply to more general conditions are needed.

Box 1

Definitions

Edit distance

The number of edits (character insertions, deletions, or substitutions) needed to turn one 

string into another.

Scale (in time and space)
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A task requiring time directly proportional to the size of the data is said to scale linearly. 

A task requiring time directly proportional to the size of the data is said to scale linearly; 

for example, searching a database takes twice as long if the database grows by a factor of 

two.

Distance metric

A measure of distance that obeys several mathematical properties, including the triangle 

inequality.

Covering spheres

We define a set of spheres around existing points such that every point is contained in at 

least one sphere, and no sphere is empty.

Metric entropy

A measure of how dissimilar a dataset is from itself. Defined as the number of covering 

spheres.

Fractal dimension

A measure of how the number of spheres needed to cover all points in a database scales 

with the radii of those spheres.

Information-theoretic entropy

Often used in data compression as a shorthand for the number of bits needed to encode a 

database, or a measure of the randomness of that database.

Pattern matching

Refers to searching for matches that might differ in specific ways from a query, such as 

wildcards or gaps, as opposed to searching for all database entries within a sphere of a 

specified radius as defined by an arbitrary distance function.

As available data grows exponentially (Berger et al., 2013; Yu et al., 2015) (e.g., genomic 

data in Figure S1), algorithms that scale linearly (Box 1) with the amount of data no longer 

suffice. The primary ways the literature addresses this problem—locality sensitive hashing 

(Indyk & Motwani, 1998), vector approximation (Ferhatosmanoglu et al., 2000), and space 

partitioning (Weber et al., 1998)—involve the construction of data structures that support 

more efficient search operations. However, we note that as biological data increases, not 

only does the redundancy present in the data also increase (Loh et al., 2012), but internal 

structure (such as the fact that not all conceivable configurations, e.g. all possible protein 

sequences, actually exist) also becomes apparent. Existing general-purpose methods such as 

compressed data structures (Grossi & Vitter, 2005) do not explicitly exploit the particular 

properties of biological data to accelerate search (Supplemental Methods: Theory).

Previously our group demonstrated how redundancy in genomic data could be used to 

accelerate local sequence alignment. Using an approach we called ‘compressive genomics,’ 

we accelerated BLAST and BLAT by taking advantage of high redundancy between related 

genomes using link pointers and edit scripts to a database of unique sequences (Loh et al., 
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2012). We have used similar strategies to obtain equally encouraging results for local 

alignment in proteomics (Daniels et al., 2013). Empirically, this compressive acceleration 

appears to scale almost linearly in the entropy of the database, often resulting in orders of 

magnitude better performance; however, these previous studies neither proved complexity 

bounds nor established a theory to explain these empirical speedups.

Here, we generalize and formalize this approach by introducing a framework for similarity 

search of omics data. We prove that search performance primarily depends on a measure of 

the novelty of new data, also known as entropy. This framework, which we call entropy-

scaling search, supports the creation of a data structure that provably scales linearly in both 

time and space with the entropy of the database, and thus sublinearly with the entire 

database.

We introduce two key concepts for characterizing a data set—metric entropy and fractal 

dimension. Intuitively, metric entropy measures how dissimilar the dataset is from itself, and 

fractal dimension measures how the number of spheres needed to cover all points in a 

database scales with the radii of those spheres. Both are rigorously defined later, but note 

that metric entropy is not to be confused with the notion of a distance metric (Box 1). Using 

these two concepts, we show that if similarity is defined by a metric-like distance function 

(e.g., edit or Hamming distance) and the database exhibits both low metric entropy and 

fractal dimension, entropy-scaling search performs much better than naïve and even 

optimized methods. Through three applications to large databases in chemogenomics, 

metagenomics, and protein structure search, we show that this framework allows for 

minimal (or even zero) loss in recall, coupled with zero loss in specificity. The key benefit 

of formulating entropy-scaling search in terms of metric entropy and fractal dimension is 

that this allows us to provide mathematically rigorous guidance as to how to determine the 

efficacy of the approach for any dataset.

Results

Entropy-scaling similarity search

The basic framework for entropy-scaling search of a database involves four steps. (i) 

Analyze the database to define a high-dimensional space and determine how to map 

database entries onto points in this space (this mapping may be one-to-one). (ii) Use this 

space and a measure of similarity between points to group entries in the database into 

clusters. (iii) To search for a particular query item, perform a coarse-grained search to 

identify the clusters that could possibly contain the query. (iv) Do a fine-grained search of 

the points contained within these clusters to find the closest matches to the query (Figure 1).

Here we provide conceptual motivation for this process. In the following we consider 

entropy to be nearly synonymous with distance between points in a high-dimensional space; 

thus, with low entropy, newly added points do not tend to be far from all existing points. For 

genomic sequences, the distance function can be edit distance; for chemical graphs, 

Tanimoto distance; and for general vectors, Euclidean or cosine distance. We are interested 

in the similarity search problem of finding all points in a set that are close to (i.e., similar to) 

the query point.
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Let us first consider what it means for a large biological dataset, considered as points in a 

high-dimensional space, to be highly redundant. Perhaps many of the points are exact 

duplicates; this easy scenario is trivially exploited by de-duplication and is already standard 

practice with data sets such as the NR NCBI protein database (Pruitt et al., 2005). Or maybe 

the points mostly live on a low-dimensional subspace; statistical tools such as Principal 

Component Analysis exploit this property in data analysis. Furthermore, if the dimension of 

the subspace is sufficiently low, it can be divided into cells, allowing quick similarity 

searches by looking only at nearby cells (Weber et al., 1998). However, when the 

dimensionality of the subspace increases, cell search time grows exponentially; additionally, 

in sparse datasets, most of the cells will be empty, which wastes search time.

More importantly, biological datasets generally do not live in low-dimensional subspaces. 

Consider the instructive case of genomes along an evolutionary ‘tree of life’ (Figure 2). 

Such a tree has many branches (although admixture merges branches back together), and 

looks nearly 1-dimensional locally, but it is globally of higher dimension. Additionally, 

because of differences due to mutation, each of the branches is also ‘thick’ (high-

dimensional) when looked at closely. Viewing this example as a low-dimensional subspace, 

as in PCA, is incorrect.

However, the local low-dimensionality can be exploited by looking on the right scales: a 

coarse scale in which the tree looks 1-dimensional locally and a fine scale where the branch 

width matters. We cover the tree with spheres (Box 1) of radius rc, where rc is on the order 

of the branch width; these spheres determine our clusters, and the number of them is the 

metric entropy of the tree (Tao, 2008). Because all the points within a sphere are close to 

each other, they are highly redundant and can be encoded in terms of one another, saving 

space.

By the triangle inequality, in order to search for all points within distance r of a query, we 

only need to look in nearby spheres with centers (i.e., representatives) within a distance r + 

rc of the query (Figure 1d). However, because the spheres have radius comparable to branch 

width, the tree is locally 1-dimensional on the coarse scale; that is, spheres largely tend to 

extend along the branches of the tree, rather than in all directions. We will call this property 

of local scaling the fractal dimension d of the tree at the scale rc (Falconer, 1990), where rc 

is essentially our ruler size and d=1. Thus, increasing the search radius for coarse search 

only linearly increases the number of points that need to be searched in a fine search.

A similar analysis holds in the more general case where d≠1. The entropy-scaling 

frameworks we introduce can be expected to provide a boost to approximate search when 

fractal dimension d of a dataset D is low (i.e., close to 1) and metric entropy k is low. 

Specifically, the ratio |D|/k provides an estimate of the acceleration factor for just the coarse 

search component compared to a full linear search of a database D. Local fractal dimension 

around a data point can be computed by determining the number of other data points within 

two radii r1 and r2 of that point; given those point counts (n1 and n2, respectively), fractal 

dimension d is simply
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Sampling this property over a dataset can provide a global average fractal dimension. When 

we search a larger radius around a query, the number of points we encounter grows 

exponentially with the fractal dimension; low fractal dimension implies that this growth will 

not obviate the gains provided by an entropy-scaling data structure.

More formally, given a database with fractal dimension d and metric entropy k at the scale 

rc, we show in the Supplemental Methods that the time-complexity of similarity search on 

database D for query q with radius r is:

Thus, for small fractal dimension and output size, similarity search is asymptotically linear 

in metric entropy. Additionally, because the search has to look at only a small subset of the 

clusters, the clusters can be stored in compressed form, and only decompressed as needed, 

giving space savings that also scale with entropy. The space-complexity scales with the sum 

of metric and information-theoretic entropy, rather than just metric entropy (Supplemental 

Methods: Theory).

Practical application of entropy-scaling search

We have presented the simplest such data to analyze for clarity of exposition. However, real 

data is generally messier. Sometimes the distance function is not a metric, so we lose the 

triangle inequality guarantee of 100% sensitivity; sometimes, different distance functions 

can be used for the clustering versus search; and sometimes even what counts as a distinct 

data point is not entirely clear without domain knowledge (for example, long genomic 

sequences might be better broken into shorter subsequences).

To show that entropy-scaling frameworks are robust to the variations presented by real data, 

we explored a diversity of applications from three major biological “big challenges of big 

data”—pharmaceuticals, metagenomics, and protein structure (Marx, 2013). We 

demonstrate that the general scheme results in order-of-magnitude improvements in running 

time in these different contexts, promising to enable new workflows for practitioners (e.g. 

fast first-pass computational drug screens and local analyses of sequencing data in remote 

field sites for real-time epidemic monitoring). These applications are enabled by augmenting 

the framework with domain-specific distance functions in different stages of the process, as 

well as preprocessing to take advantage of domain-specific knowledge. We expect that as 

long as the dataset exhibits both low entropy and low fractal dimension—and this is 

empirically true in biological systems—our entropy-scaling framework has the potential to 
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achieve massive speedup over more naïve methods and significant speedup even over other 

highly optimized methods.

Source code for the applications discussed here is available at http://gems.csail.mit.edu and 

in the Supplementary Data.

Application to high-throughput drug screening

Chemogenomics is the study of drug and target discovery by using chemical compounds to 

probe and characterize proteomic functions (Bredel & Jacoby, 2004). Particularly in the 

field of drug discovery and drug repurposing, prediction of biologically active compounds is 

a critical task. Computational high-throughput screening can eliminate many compounds 

from wet-lab consideration, but even this screening can be time-consuming. PubChem 

(Bolton et al., 2008), a widely-used repository of molecular compound structures, has grown 

greatly since 2008. In July 2007, PubChem contained 10.3 million compounds. In October 

2013, PubChem contained roughly 47 million compounds, while in December 2014 it 

contained 61.3 million compounds.

We designed a compression and search framework around one of the standard techniques for 

high-throughput screening of potential drug compounds, the use of maximum common 

subgraph (MCS) to identify similar motifs among molecules (Cao et al., 2008; Rahman et 

al., 2009). We introduce Ammolite, a method for clustering molecular databases such as 

PubChem, and for quickly searching for similar molecular structures in compressed space. 

Ammolite demonstrates that entropy-scaling methods can be extended to data types that are 

not inherently sequence based. Ammolite is a practical tool that provides approximately a 

factor of 150 speed-up with greater than 92% accuracy compared to the popular SMSD 

(Rahman et al., 2009).

MCS-based search of molecule databases typically matches pairs of molecules by Tanimoto 

distance (Rahman et al., 2009). Tanimoto distance obeys the triangle inequality, and is more 

useful in the domain of molecular graphs than other distance metrics such as graph distance 

(Bunke & Shearer, 1998).

To compress a molecule database, we project the space of small molecules onto a subspace 

by removing nodes and edges that do not participate in simple cycles (Figure S2); note that a 

molecule without cycles will collapse to a single node. Clusters are exactly pre-images of 

this projection operator (i.e., all molecules that are isomorphic after simplification form a 

cluster). Coarse search is performed by finding the MCS on this much smaller projection 

subspace. This step increases speed by reducing both the required number of MCS 

operations and the time required for each MCS operation, which scales with the size of the 

molecule. Further reduction in search time is accomplished by grouping clusters according 

to size of the molecules within; because Tanimoto distance relies on molecule size, clusters 

containing molecules significantly larger or smaller than the query need not be searched at 

all.

The time required to cluster a large database such as PubChem is, nonetheless, significant; 

clustering the 306GB PubChem required approximately 400 hours on a 12-core Xeon 
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X5690 running at 3.47GHz, and required 128GB RAM. However, this database can easily 

be appended to as new molecules become available, and the clustering time can be 

amortized over future queries. It is worth noting that this preprocessing of molecular graphs 

can cause the triangle inequality to be violated; while the distance function is a metric, the 

clustering does not respect that metric. Ammolite can be readily plugged into existing 

analysis pipelines for high-throughput drug screening.

Our entropy-scaling framework can be applied to PubChem because it has both low fractal 

dimension and low metric entropy. In particular, we determined the mean local fractal 

dimension of PubChem to be approximately 0.2 in the neighborhood between 0.2 and 0.4 

Tanimoto distance, and approximately 1.9 in the neighborhood between 0.4 and 0.5. The 

expected speedup is measured by the ratio of database size to metric entropy, which for 

PubChem is approximately 11:1. This is not taking into account the clustering according to 

molecule size, which further reduces the search space.

Because SMSD is not computationally tractable on the entire PubChem database, we 

benchmarked Ammolite against SMSD on a subset of 1 million molecules from PubChem. 

Since SMSD’s running time should scale linearly with the size of the database, we 

extrapolated the running time of SMSD to the entire PubChem database. Benchmarking 

Ammolite and SMSD required 60GB RAM and used 12 threads, although Ammolite’s 

search, used normally, requires <20GB RAM. For these benchmarks, we used five 

randomly-chosen query molecules with at least two rings (PubChem IDs 1504670, 

19170294, 28250541, 4559889, and 55484477), as well as five medically-interesting 

molecules chosen by hand (adenosine triphosphate, clindamycin, erythromycin, teixobactin, 

and thalidomide). We also used SMSD as a gold standard against which we measured 

Ammolite’s recall.

Ammolite achieves an average of 92.5% recall with respect to SMSD (Table 1a). This recall 

is brought down by one poorly-performing compound, PubChem ID 1504670, with only 

62.5% recall, but is otherwise over 80%. Furthermore, Ammolite’s speed gains with respect 

to SMSD grow as the database grows (Table 1b).

Application to metagenomics

Metagenomics is the study of genomic data sequenced directly from environmental samples. 

It has led to improved understanding of how ecosystems recover from environmental 

damage (Tyson et al., 2004) and how the human gut responds to diet and infection (David et 

al., 2014). Metagenomics has even provided some surprising insights into disorders such as 

Autism Spectrum Disorder (MacFabe, 2012).

BLASTX (Altschul et al., 1990) is widely used in metagenomics to map reads to protein 

databases such as KEGG (Kanehisa & Goto, 2000) and NCBI’s NR (Sayers et al., 2011). 

This mapping is additionally used as a primitive in pipelines such as MetaPhlAn (Segata et 

al., 2012), PICRUSt (Langille et al., 2013), and MEGAN (Huson et al., 2011) to determine 

the microbial composition of a sequenced sample. Unfortunately, BLASTX’s run time 

requirements scale linearly with the product of the size of the full read dataset and the 

targeted protein database, and thus each year require exponentially more runtime to process 
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the exponentially growing read data. These computational challenges are at present a barrier 

to widespread use of metagenomic data throughout biotechnology, which constrains 

genomic medicine and environmental genomics (Frank & Pace, 2008). For example, 

Mackelprang et al. (2011) reported that using BLASTX to map 246 million reads against 

KEGG required 800,000 CPU hours at a supercomputing center.

Although this is a problem already for major research centers, it is especially limiting for on-

site analyses in more remote locations. In surveying the 2014 Ebola outbreak, scientists 

physically shipped samples on dry ice to Harvard for sequencing and analysis (Gire et al., 

2014). Even as sequencers become more mobile and can thus be brought on-site, lack of fast 

Internet connections in remote areas can make it impossible to centralize and expedite 

processing (viz.: the cloud); local processing on resource-constrained machines remains 

essential. Thus, a better-scaling and accurate version of BLASTX raises the possibility of 

not only faster computing for large research centers, but also of performing entirely on-site 

sequencing and desktop metagenomic analyses.

Recently, approaches such as RapSearch2 (Zhao et al., 2012) and Diamond (Buchfink et al., 

2015) have provided faster alternatives to BLASTX. We have applied our entropy-scaling 

framework to the problem of metagenomic search and demonstrate MICA, a method whose 

software implementation provides an acceleration of DIAMOND by a factor of 3.5, and 

BLASTX by a factor of up to 3700. This application illustrates the potential of entropy-

scaling frameworks, while providing a useful tool for metagenomic research. It can be 

readily plugged into existing analysis pipelines (e.g., for microbial composition analysis 

using MEGAN). MICA clustering of the September 17, 2014 NCBI NR database 

(containing 49.3 million sequences) required 39 hours on a 12-core Xeon X5690 running at 

3.47GHz; it used approximately 84GB of resident memory.

Our entropy-scaling framework can be applied to the NCBI’s NR database because it, like 

PubChem, exhibits low fractal dimension and metric entropy. We determined the mean local 

fractal dimension of the NCBI’s NR database, using sequence identity of alignment as a 

distance function, to be approximately 1.6 in the neighborhood between 70% and 80% 

protein sequence identity. The ratio of database size to metric entropy, which gives an 

indicator of expected speedup, is approximately 30:1. Indeed, the notion that protein 

sequence space exhibits structure, and lends itself to clustering, has precedent (Linial et al., 

1997).

To evaluate the runtime performance of MICA, we tested it against BLASTX, RapSearch2 

(Zhao et al., 2012) and Diamond (Buchfink et al., 2015). On five read sets (ERR335622, 

ERR335625, ERR335631, ERR335635, ERR335636) totaling 207,623 151-nucleotide reads 

from the American Gut Microbiome project, we found that MICA provides measurable 

runtime improvements over DIAMOND with no further loss in accuracy (Table 2a), and 

substantial runtime improvements over BLASTX. Notably, the mean running time for 

BLASTX was 58,215 minutes, while MICA took an average of 15.6 minutes, a speedup of 

3,724x. MICA uses DIAMOND for its coarse search, and can use either DIAMOND or 

BLASTX for its fine search.
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We also evaluated MICA using BLASTX for both the coarse and the fine search; this 

approach performed slightly slower than DIAMOND, requiring an average of 89 minutes, 

though it was somewhat more accurate, at 95.9% recall compared to DIAMOND’s 90.4% 

recall. MICA using BLASTX for both coarse and fine search relied on a query-side 

clustering (discussed in Supplemental Methods); we note that the time spent performing 

query-side clustering is included for here; without query-side clustering, this variant of 

MICA takes 2,278 minutes, a speedup of 25x over BLASTX.

MICA accelerates DIAMOND with no further loss in accuracy: 90.4% compared to 

unaccelerated BLASTX (Table 2b). Experiments validating accuracy treated BLASTX as a 

gold standard. Since MICA accelerates DIAMOND using entropy-scaling techniques, false 

positives with respect to DIAMOND are not possible, but false negatives are. We report as 

accuracy the fraction of BLASTX hits that are also returned by MICA.

DIAMOND’s clever indexing and alphabet reduction provide excellent runtime performance 

already, though its running time still scales linearly with database size. In contrast, as an 

entropy-scaling search, MICA will demonstrate greater acceleration as database sizes grow 

(Daniels et al., 2013). Moreover, MICA can use standard BLASTX for its fine search, which 

allows the user to pass arbitrary parameters to the underlying BLASTX, but which comes at 

a small run-time penalty (40% in our testing). This option allows for additional BLAST 

arguments that DIAMOND does not support, such as XML output, which may be useful in 

some pipelines. Thus, MICA with BLASTX may be suitable for a wider variety of existing 

analysis pipelines.

Application to protein structure search

The relationship between protein structure and function has been a subject of intense study 

for decades, and this strong link has been used for the prediction of function from structure 

(Hegyi & Gerstein, 1999). Specifically, given a protein of solved (or predicted) structure but 

unknown function, the efficient identification of structurally similar proteins in the Protein 

Data Bank (PDB) is critical to function prediction. Finding structural neighbors can also 

give insight into the evolutionary origins of proteins of interest (Yona et al., 1999; 

Nepomnyachiy et al., 2014).

One approach to finding structural neighbors is to attempt to align the query protein to all 

the entries in the PDB using a structural aligner, such as STRUCTAL (Subbiah et al., 1993), 

ICE (Shindyalov & Bourne, 1998), or Matt (Menke et al., 2008). However, performing a full 

alignment against every entry in the PDB is prohibitively expensive, especially as the 

database grows. To mitigate this, (Budowski-Tal et al., 2010) introduced the tool FragBag, 

which avoids performing full alignments but rather describes each protein as a ‘bag of 

fragments,’ where each fragment is a small structural motif. FragBag has been reported as 

comparable to structural aligners such as STRUCTAL or ICE, and its bag-of-fragments 

approach allows it to perform comparisons much faster than standard aligners. Importantly 

for us, the bag of fragments is just a frequency vector, making FragBag amenable to 

acceleration through entropy-scaling.
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By first verifying that the local fractal dimension of PDB FragBag frequency vectors is low 

in most regimes (d ≈ 2 – 3; Figure S3), we are given reason to think that this problem is 

amenable to entropy-scaling search. As an estimate of potential speedup, the ratio of PDB 

database size to metric entropy at the chosen cluster radii is on average approximately 10:1. 

We directly applied our entropy-scaling framework without any additional augmentation: 

esFragBag (entropy-scaling FragBag) is able to achieve an average factor of 10 speedup of 

the highly-optimized FragBag with less than 0.2% loss in sensitivity and no loss in 

specificity.

For this last example, we intentionally approach the application of entropy-scaling 

frameworks to FragBag in a blind manner, without using any domain-specific knowledge. 

Instead, we use the very same representation (bag of fragments) and distance functions 

(Euclidean and cosine distances) as FragBag, coupled with a greedy k-centers algorithm to 

generate the clustered representation. Note that this is in contrast to MICA and Ammolite, 

which both exploit domain knowledge to further improve performance. Thus, esFragBag 

only involves extending an existing codebase with new database generation and similarity 

search functions.

We investigate the increases in speed resulting from directly applying the entropy-scaling 

framework for both Euclidean and cosine distances and found the acceleration is highly 

dependent on both the search radius and cluster radius (Figure 3). For cosine distance, we 

generated databases with maximum cluster radii of 0.1, 0.2, 0.3, 0.4, and 0.5. Then, for each 

query protein from the set {4rhv, 1ake, 1bmf, 1rbp} (identified by PDB IDs), we ran both 

naïve and accelerated similarity searches with radii of 0.02i, ∀ i ∈ {0, …, 49}. This test was 

repeated 5 times for each measurement, and the ratio of average accelerated vs. naïve times 

is shown in Figure 3a. For Euclidean distance, we generated databases with maximum 

cluster radii of 10, 20, 25, 50, and 100.

Again, for each query protein drawn from the same set, we compared the average over five 

runs of the ratio of average accelerated versus naïve times (Figure 3b). The cluster 

generation required anywhere from 65 to 23,714 seconds, depending on the choice of radii 

(Table 3) and no more than a small constant (< 3) times as much memory as it takes to 

simply load the PDB database (no more than 2GB RAM). Clustering used 20 threads on a 

12-core Xeon X5690, while search used only one thread.

Not only is the acceleration highly dependent on both the search radius r and the maximum 

cluster radius rc, but the choice of query protein also affects the results. We suspect that this 

effect is due to the geometry of protein fragment frequency space being very ‘spiky’ and 

‘star-like’. Proteins that are near the core (and thus similar to many other proteins) show 

very little acceleration when our framework is used because the majority of the database is 

nearby, whereas proteins in the periphery have fewer neighbors and are thus found much 

more quickly. Changing the maximum cluster radius effectively makes more proteins 

peripheral proteins, but at the cost of overall acceleration.

Naturally, as the search radius expands, it quickly becomes necessary to compare against 

nearly the entire database, destroying any acceleration. For the cosine space in particular, 
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note that the maximum distance between any two points is 1, so once the coarse search 

radius of r + rc ≥ 1.0, there cannot ever be any acceleration as the fine search encompasses 

the entire database. Similarly, once the coarse search encompasses all (or nearly all) the 

clusters in Euclidean space, the acceleration diminishes to 1x, and the overhead costs make 

the entropy-scaling framework perform worse than a naïve search. However, as we are most 

interested in proteins that are very similar to the query, the low-radius behavior is of primary 

interest. In the low-radius regime, esFragBag demonstrates varying though substantial 

acceleration (2–30x, averaging >10x for both distance functions for the proteins chosen) 

over FragBag.

It is instructive to note that because of the very different geometries of Euclidean vs. cosine 

space, acceleration varies tremendously for some proteins, such as 4rhv and 1bmf, which 

display nearly opposite behaviors. Whereas there is nearly 30x acceleration for 4rhv in 

cosine space for low radius, and the same for 1bmf in Euclidean space, neither achieves 

better than ~ 2.5x acceleration in the other space.

Finally, while Euclidean distance is a metric—for which the triangle inequality guarantees 

100% sensitivity—cosine distance is not. Empirically, however, for all of the queries we 

performed, we achieve > 99.8% sensitivity (Table 4).

Application to other domains

We anticipate that our entropy-scaling approach will be useful to other kinds of biological 

data sets; applying it to new data sets will require several steps. Here we provide a 

“cookbook” for applying our entropy-scaling framework to a new data set. Given a new data 

set, we first define what the high-dimensional space is. For metagenomic sequence data, it is 

the set of enumerable protein sequences up to some maximum length, while for small-

molecule data, it is the set of connected chemical graphs up to some maximum size, and for 

protein structure data (using the FragBag model) it is the set of “bag of words” frequency 

vectors of length 400.

Given the high-dimensional space, we determine how database entries map onto points (for 

example, in the case of MICA, they are greedily broken into subsequences with a minimum 

length). Next, clustering can be implemented; a simple greedy clustering may suffice (as for 

esFragBag) but clustering of sequence data may be dramatically accelerated by using 

BLAST-style seed-and-extend matching (as used in MICA). Finally, coarse and fine search 

can be implemented; in many cases, existing tools may be used “out of the box,” as with 

esFragBag and MICA. With MICA, we note that coarse search by default uses DIAMOND, 

while fine search provides a choice of DIAMOND or BLASTX. With Ammolite, we used 

the SMSD library, but incorporated it into our own search tool.

Discussion

We have introduced an entropy-scaling framework for accelerating approximate search, 

allowing search on large omics datasets to scale even as those datasets grow exponentially. 

The primary advance of this framework is that it bounds both time and space as functions of 

the dataset entropy (albeit using two different notions of entropy: metric entropy bounds 
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time, while information-theoretic entropy bounds space). We proved that runtime scales 

linearly with the entropy of the database, but we also show (Supplemental Theory) that 

under certain additional constraints, this entropy-scaling framework permits a compressed 

representation on disk. This compression is particularly applicable in the case of 

metagenomic analysis, where the collection of read data presents a major problem for 

storage and transfer. Although we did not optimize for on-disk compression in any of our 

applications, choosing instead to focus on search speed, implementing this compression is 

feasible using existing software tools and libraries such as Blocked GZip (BZGF); each 

cluster would be compressed separately on disk.

Furthermore, we have justified and demonstrated the effectiveness of this framework in 

three distinct areas of computational molecular biology, providing the following open-

source software— Ammolite for small-molecule structure search, MICA for metagenomic 

analysis, and esFragBag for protein structure search. All of our software is available under 

the GNU Public License, and not only can the tools we are releasing be readily plugged into 

existing pipelines, but the code and underlying methods can be easily incorporated into the 

original software that we are accelerating.

The reason for the speedup is the combination of low fractal dimension and low metric 

entropy. Low fractal dimension ensures that runtime is dominated by metric entropy. The 

size of the coarse database provides an estimate of metric entropy. Furthermore, we can 

directly measure the local fractal dimension of the database by sampling points from the 

database and looking at the scaling behavior of the number of points contained in spheres of 

increasing radii centered on those sampled points. We have shown that for three domains 

within biological data science, metric entropy and fractal dimension are both low.

As discussed in the theoretical results, although the data live locally on a low dimension 

subspace, the data are truly high-dimensional globally. At small scales, biological data often 

lives on a low-dimensional polytope (Hart et al., 2015). However, omics data are by nature 

comprehensive, and include not just one but many such polytopes. Although each polytope 

can be individually projected onto a subspace using techniques such as PCA, the same 

projection cannot be used for all the polytopes at once because they live on different low-

dimensional subspaces. Furthermore, as is the case with genomes, the low-dimensional 

polytopes are also often connected (e.g., through evolutionary history). Thus, collections of 

local projections become unwieldy. By using our clustering approach, we are able to take 

advantage of the existence of these low-dimensional polytopes for accelerated search 

without having to explicitly characterize each one.

A hierarchical clustering approach, rather than our flat clustering, has the potential to 

produce further gains (Loh et al., 2012). We have taken the first steps in exploring this idea 

here; the molecule size clustering in Ammolite can be thought of as an initial version of a 

multi-level or hierarchical clustering.

Entropy-scaling search is related to succinct, compressed, and opportunistic data structures, 

such as the compressed suffix array, the FM-index, and the sarray (Grossi & Vitter, 2005; 

Ferragina & Manzini, 2000; Conway & Bromage, 2011). However, these solve the problem 
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of theoretically fast and scalable pattern matching (Box 1), whereas we solve, theoretically 

and practically, the much more general similarity search problem. An entropy-scaling search 

tree is also related to a metric ball tree (Uhlmann, 1991), although with different time 

complexity. Querying a metric ball tree requires O(log n) time, assuming the relatively 

uniform distribution of data points in a metric space. This distribution differs from the non-

uniform distribution under which entropy-scaling search behaves well. As future work, we 

will investigate further acceleration of coarse search by applying a metric ball tree to the 

cluster representatives themselves; this approach may reduce the coarse search time to O(log 

k). This step, too, can be thought of as an additional level of clustering.

Other metric search trees can also be found in the database literature (Zezula et al., 2006), 

although to our knowledge they have not been explicitly applied to biological data science. 

The closest analogue to entropy-scaling search trees is the M-tree (Ciaccia et al., 1997, 

1998), which resembles a multi-level variation of our entropy-scaling search trees. However, 

the M-tree time-complexity analysis (Ciaccia et al., 1998) does not have a nice closed form 

and is more explicitly dependent on the exact distribution of points in the database. By using 

and combining the concepts of metric entropy and fractal dimension for our analysis, we are 

able to give an easier to understand and more intuitive, if somewhat looser, bound on 

entropy-scaling search complexity.

Entropy-scaling frameworks have the advantage of becoming proportionately faster and 

space-efficient with the size of the available data. Although the component pieces (e.g., the 

clustering method chosen) of the framework can be either standard (as in esFragBag) or 

novel (as in Ammolite), the key point is that these pieces are used in a larger framework to 

exploit the underlying complex structure of biological systems, enabling massive 

acceleration by scaling with entropy. We have demonstrated this scaling behavior for 

common problems drawn from metagenomics, cheminformatics, and protein structure 

search, but the general strategy can be applied directly or with simple domain knowledge to 

a vast array of other problems faced in data science. We anticipate that entropy-scaling 

frameworks should be applicable beyond the life sciences, wherever physical or empirical 

laws have constrained data to a subspace of low entropy and fractal dimension.

Methods

Ammolite small molecule search

Ammolite’s clustering approach relies on structural similarity. We augmented the entropy-

scaling data structure by using a clustering scheme based on molecular structural motifs 

instead of a distance function. Each molecule is ‘simplified’ by removing nodes and edges 

that do not participate in simple cycles. Clusters are formed of molecules that are isomorphic 

after this simplified step. Each cluster can then be represented by a single molecular 

structure, along with pointers to ‘difference sets’ between that structure and each of the full 

molecules in the cluster it represents. For both coarse and fine search, we use the Tanimoto 

distance metric, defined as
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where mcs refers to the maximum common subgraph of two chemical graphs. The coarse 

search is performed in compressed space, by searching the coarse database with the goal of 

identifying possible hits. The query molecule is simplified in exactly the same manner as the 

molecular database during clustering, and this transformed query graph is matched against 

the coarse database. To preserve sensitivity, this coarse search is performed with a 

permissive similarity score. Any possible hits—molecular graphs from the coarse database 

whose MCS to the transformed query molecule was within the similarity score threshold—

are then reconstructed, by following pointers to the removed atom and bond information, 

and recreating the original molecules. Since the Tanimoto distance is used, we can bound 

the size of candidate molecules based on the size of the query molecule and the desired 

Tanimoto cutoff. Thus, a second level of clustering, at query time, based on molecule size, 

allows further gains in runtime performance. Finally, the fine search is performed against 

these decompressed possible hits that are within the appropriate size range based on the 

Tanimoto distance cutoff.

MICA metagenomic search

CaBLASTX’s clustering approach relies on sequence similarity. We augmented the entropy-

scaling data structure by using different distance functions for clustering and search. For 

clustering, we rely on sequence identity, while for search, we use the E-value measure that is 

standard for BLAST. All benchmarks were performed with an E-value of 10−7. For coarse 

search, MICA uses the DIAMOND argument --top 60 in order to return all queries with a 

score within 60% of the top hit. When MICA was tested using BLASTX for coarse search, it 

used an E-value of 1000. This seemingly surprisingly large coarse E-value is used because 

E-values are poorly behaved for short sequences; in sensitivity analysis, coarse Evalues of 1 

and 10 exhibited recall below 10%, and an E-value of 100 exhibited recall below 60%. 

Furthermore, during clustering (compression), we apply a preprocessing step that identified 

subsequences to be treated as distinct points in the database. We apply a reversible alphabet 

reduction to the protein sequences, which projects them into a subspace (Supplemental 

Methods).

When applied to high-coverage, next-generation sequencing queries, caBLASTX can also 

perform clustering on the reads (Supplemental Methods). In this instance, coarse search is 

performed by matching each representative query with a set of representative database 

entries. Fine search then matches the original queries within each cluster with the candidate 

database entries resulting from the coarse search.

esFragBag protein structure search

In FragBag, the bag of fragments is essentially a term frequency vector representing the 

number of occurrences of each structural motif within the protein. FragBag turns out to be 

amenable to acceleration using an entropy-scaling data structure because much of the 

computation is spent in doing a similarity search on that frequency vector.
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For the cluster generation, we trivially used a naïve randomized greedy 2-pass approach. 

First, all proteins in the Protein Data Bank were randomly ordered. Then in the final pass, 

proteins were selected as cluster centers if and only if they were not within a user-specified 

Euclidean distance rc from an existing center (i.e., the first protein is always selected, and 

the second if further away than rc from the first, etc.). Recall that this generation of cluster 

centers is the same as the one used to generate covering spheres in Figure 2; the covering 

spheres were overlapping, but we assign every protein uniquely to a single cluster by 

assigning to the nearest cluster center in the second pass.

Similarity search here is performed exactly as described in the section “Entropy-scaling 

similarity search,” with no modification. For a given search query q and search radius r, a 

coarse search is used to find all cluster centers within distance r + rc of q. Then, all 

corresponding clusters were unioned into a set F. Finally, a fine search was performed over 

the set F to find all proteins within distance r of q.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Y.W.Y. is supported by a Hertz Foundation fellowship. N.M.D., D.C.D. and B.B. are supported by NIH 
GM108348. We thank Andrew Gallant for his implementation of Fragbag. We thank Joseph V. Barrile for graphic 
design, Simon Ye for providing a bug fix to MICA, and Jian Peng for suggesting high-throughput drug screening as 
an application.

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of 
molecular biology. 1990; 215:403–410. [PubMed: 2231712] 

Berger B, Peng J, Singh M. Computational solutions for omics data. Nature Reviews Genetics. 2013; 
14:333–346.

Bolton EE, Wang Y, Thiessen PA, Bryant SH. Pubchem: integrated platform of small molecules and 
biological activities. Annual reports in computational chemistry. 2008; 4:217–241.

Bredel M, Jacoby E. Chemogenomics: an emerging strategy for rapid target and drug discovery. 
Nature Reviews Genetics. 2004; 5:262–275.

Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nature 
methods. 2015; 12:59–60. [PubMed: 25402007] 

Budowski-Tal I, Nov Y, Kolodny R. FragBag, an accurate representation of protein structure, retrieves 
structural neighbors from the entire PDB quickly and accurately. Proceedings of the National 
Academy of Sciences. 2010; 107:3481–3486.

Bunke H, Shearer K. A graph distance metric based on the maximal common subgraph. Pattern 
recognition letters. 1998; 19:255–259.

Cao Y, Jiang T, Girke T. A maximum common substructure-based algorithm for searching and 
predicting drug-like compounds. Bioinformatics. 2008; 24:i366–i374. [PubMed: 18586736] 

Ciaccia, P.; Patella, M.; Zezula, P. Deis-csite-cnr. Proceedings of the… International Conference on 
Very Large Data Bases; Morgan Kaufmann Pub; 1997. p. 426

Ciaccia, P.; Patella, M.; Zezula, P. A cost model for similarity queries in metric spaces. Proceedings of 
the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems; 
ACM; 1998. p. 59-68.

Yu et al. Page 16

Cell Syst. Author manuscript; available in PMC 2016 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conway TC, Bromage AJ. Succinct data structures for assembling large genomes. Bioinformatics. 
2011; 27:479–486. [PubMed: 21245053] 

Daniels NM, Gallant A, Peng J, Cowen LJ, Baym M, Berger B. Compressive genomics for protein 
databases. Bioinformatics. 2013; 29:i283–i290. [PubMed: 23812995] 

David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC, Perrotta A, Erdman SE, 
Alm EJ. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 2014; 15:R8. 
[PubMed: 24393166] 

Falconer, K. Fractal geometry: mathematical foundations and applications. John Wiley & Sons; 1990. 

Ferhatosmanoglu, H.; Tuncel, E.; Agrawal, D.; El Abbadi, A. Vector approximation based indexing 
for non-uniform high dimensional data sets. Proceedings of the ninth international conference on 
Information and knowledge management; ACM; 2000. p. 202-209.

Ferragina, P.; Manzini, G. Opportunistic data structures with applications. Foundations of Computer 
Science, 2000. Proceedings. 41st Annual Symposium on; IEEE; 2000. p. 390-398.

Frank DN, Pace NR. Gastrointestinal microbiology enters the metagenomics era. Current opinion in 
gastroenterology. 2008; 24:4–10. [PubMed: 18043225] 

Gire SK, Goba A, Andersen KG, Sealfon RS, Park DJ, Kanneh L, Jalloh S, Momoh M, Fullah M, 
Dudas G, et al. Genomic surveillance elucidates ebola virus origin and transmission during the 
2014 outbreak. Science. 2014; 345:1369–1372. [PubMed: 25214632] 

Grossi R, Vitter JS. Compressed suffix arrays and suffix trees with applications to text indexing and 
string matching. SIAM Journal on Computing. 2005; 35:378–407.

Hart Y, Sheftel H, Hausser J, Szekely P, Ben-Moshe NB, Korem Y, Tendler A, Mayo AE, Alon U. 
Inferring biological tasks using pareto analysis of high-dimensional data. Nature methods. 2015; 
12:233–235. [PubMed: 25622107] 

Hegyi H, Gerstein M. The relationship between protein structure and function: a comprehensive 
survey with application to the yeast genome. Journal of molecular biology. 1999; 288:147–164. 
[PubMed: 10329133] 

Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC. Integrative analysis of environmental 
sequences using megan4. Genome research. 2011; 21:1552–1560. [PubMed: 21690186] 

Indyk, P.; Motwani, R. Approximate nearest neighbors: towards removing the curse of dimensionality. 
Proceedings of the thirtieth annual ACM symposium on Theory of computing; ACM; 1998. p. 
604-613.

Kahn SD. On the future of genomic data. Science (Washington). 2011; 331:728–729. [PubMed: 
21311016] 

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research. 2000; 
28:27–30. [PubMed: 10592173] 

Kent WJ. BLAT-the BLAST-like alignment tool. Genome research. 2002; 12:656–664. [PubMed: 
11932250] 

Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile 
DE, Thurber RLV, Knight R, Huttenhower C. Predictive functional profiles of microbial 
communities using 16S rRNA marker gene sequences. Nature biotechnology. 2013; 31:814–821.

Linial M, Linial N, Tishby N, Yona G. Global self-organization of all known protein sequences reveals 
inherent biological signatures. Journal of molecular biology. 1997; 268:539–556. [PubMed: 
9159489] 

Loh PR, Baym M, Berger B. Compressive genomics. Nature biotechnology. 2012; 30:627–630.

MacFabe DF. Short-chain fatty acid fermentation products of the gut microbiome: implications in 
autism spectrum disorders. Microbial ecology in health and disease. 2012:23.

Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, 
Jansson JK. Metagenomic analysis of a permafrost microbial community reveals a rapid response 
to thaw. Nature. 2011; 480:368–371. [PubMed: 22056985] 

Marx V. Biology: The big challenges of big data. Nature. 2013; 498:255–260. [PubMed: 23765498] 

Menke M, Berger B, Cowen L. Matt: local flexibility aids protein multiple structure alignment. PLoS 
computational biology. 2008; 4:e10. [PubMed: 18193941] 

Yu et al. Page 17

Cell Syst. Author manuscript; available in PMC 2016 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nepomnyachiy S, Ben-Tal N, Kolodny R. Global view of the protein universe. Proceedings of the 
National Academy of Sciences. 2014; 111:11691–11696.

Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequence (RefSeq): a curated non-redundant 
sequence database of genomes, transcripts and proteins. Nucleic acids research. 2005; 33:D501–
D504. [PubMed: 15608248] 

Rahman SA, Bashton M, Holliday GL, Schrader R, Thornton JM. Small molecule subgraph detector 
(SMSD) toolkit. Journal of Cheminformatics. 2009; 1:1–13. [PubMed: 20142984] 

Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, 
DiCuccio M, Federhen S, et al. Database resources of the national center for biotechnology 
information. Nucleic acids research. 2011; 39:D38–D51. [PubMed: 21097890] 

Schaeff SE. Graph clustering. Computer Science Review. 2007; 1:27–64.

Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial 
community profiling using unique clade-specific marker genes. Nature methods. 2012; 9:811–814. 
[PubMed: 22688413] 

Shindyalov IN, Bourne PE. Protein structure alignment by incremental combinatorial extension (CE) 
of the optimal path. Protein engineering. 1998; 11:739–747. [PubMed: 9796821] 

Subbiah S, Laurents D, Levitt M. Structural similarity of DNA-binding domains of bacteriophage 
repressors and the globin core. Current Biology. 1993; 3:141–148. [PubMed: 15335781] 

Tao T. Product set estimates for non-commutative groups. Combinatorica. 2008; 28:547–594.

Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, 
Rokhsar DS, Banfield JF. Community structure and metabolism through reconstruction of 
microbial genomes from the environment. Nature. 2004; 428:37–43. [PubMed: 14961025] 

Uhlmann JK. Satisfying general proximity/similarity queries with metric trees. Information processing 
letters. 1991; 40:175–179.

Ukkonen E. Algorithms for approximate string matching. Information and control. 1985; 64:100–118.

Weber R, Schek H-J, Blott S. A quantitative analysis and performance study for similarity-search 
methods in high-dimensional spaces. VLDB. 1998; 98:194–205.

Yona G, Linial N, Linial M. Protomap: automatic classification of protein sequences, a hierarchy of 
protein families, and local maps of the protein space. Proteins: Structure, Function, and 
Bioinformatics. 1999; 37:360–378.

Yu YW, Yorukoglu D, Peng J, Berger B. Quality score compression improves genotyping accuracy. 
Nature Biotechnology. 2015; 33:240–243.

Zezula, P.; Amato, G.; Dohnal, V.; Batko, M. Similarity search: the metric space approach. Vol. 32. 
Springer Science & Business Media; 2006. 

Zhao Y, Tang H, Ye Y. RAPSearch2: a fast and memory-efficient protein similarity search tool for 
next-generation sequencing data. Bioinformatics. 2012; 28:125–126. [PubMed: 22039206] 

Yu et al. Page 18

Cell Syst. Author manuscript; available in PMC 2016 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Entropy-scaling framework for similarity search. (a) The naïve approach tests each query 

against each database entry to fi entries within distance r of the query (inside the small green 

disc). (b) By selecting appropriate cluster centers with maximum radius rc to partition the 

database, we can (c) first do a coarse search to find all cluster centers within distance r + rc 

of a query (larger green disc), and then the (d) triangle inequality guarantees that a fine 

search over all corresponding cluster entries (blue polygonal regions) will suffice.
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Figure 2. 
Cartoon depiction of points in an arbitrary high-dimensional space that live close to a 1D 

tree-like structure, as might arise from genomes generated by mutation and selection along 

an evolutionary tree of life. Although high-dimensional at a fine scale, at the coarser scale of 

covering spheres, the data cloud looks nearly 1-dimensional, which enables entropy-scaling 

of similarity search. The cluster center generation was performed using the same method we 

used for protein structure search. The blue circles around the green query point illustrate low 

fractal dimension: the larger-radius circle contains only linearly more points than the smaller 

one, rather than exponentially more. In contrast, the red circles around the orange query 

point illustrate higher local fractal dimension.
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Figure 3. 
Scaling behavior of esFragBag. EsFragBag benchmarking data with parameters varied until 

the acceleration advantage of esFragBag disappears. As search radius increases, the fraction 

of the database returned by the coarse search increases, ultimately returning the whole 

database. Unsurprisingly, when returning the whole database in the coarse search results, 

there are no benefits to using entropy-scaling frameworks. (a) Cosine distance gives on the 

whole better acceleration, but results in > 99.8% sensitivity, whereas (b) Euclidean distance 

as a metric is guaranteed by the Triangle Inequality to get 100% sensitivity. See also Figure 

S3.
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Table 1

Benchmarks of Ammolite vs. SMSD on databases of (a) 1 million molecules and (b) All of PubChem (47 

million molecules). See also Figure S2.

(a) Ammolite benchmark on database of 1 million molecules

PubChem ID SMSD (hours) Ammolite (hours) Speedup Recall

    5957 (atp) 4.4 0.14 31 81%

  446598 (clindamycin) 18.7 1.5 11.7 90%

  12560 (erythromycin) 849.6 3.0 279.2 91%

 86341926 (teixobactin) 618.5 2.3 265.5 100%

   5426 (thalidomide) 48.9 0.81 60.4 100%

1504670 8.1 0.8 10.3 62.5%

    19170294 31.3 0.8 39.7 100%

    28250541 43.3 4.8 9.0 100%

4559889 108.8 2.7 41.0 100%

    55484477 23.3 2.5 9.1 100%

(b) Ammolite benchmark on entire PubChem database

PubChem ID Ammolite (hours) Speedup

    5957 (atp) 4.1 51.3

  446598 (clindamycin) 28.4 14.5

  12560 (erythromycin) 79.1 512.9

 86341926 (teixobactin) 96.5 305.9

   5426 (thalidomide) 29.2 80.0

1504670 4.6 84.4

    19170294 6.0 247.4

    28250541 38.9 53.2

4559889 57.3 90.7

    55484477 35.5 31.4
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Table 2

MICA running time results. (a) Running time and (b) accuracy of BLASTX, RapSearch2, DIAMOND, and 

MICA. Data set is the American gut microbiome project read sets ERR335622, ERR335625, ERR335631, 

ERR335635, ERR335636

(a) Running time in minutes (standard deviation)

BLASTX RapSearch2 DIAMOND MICA-DIAMOND MICA-BLASTX

58215 (1561.8) 206 (5.4) 54 (1.1) 15.6 (0.5) 21.9 (1.7)

(b) Accuracy against BLASTX (standard deviation)

RapSearch2 DIAMOND MICA-DIAMOND MICA-BLASTX

79.5% (1.63) 90.4% (3.10) 90.4% (3.10) 90.4% (3.10)
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