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To increase the viability of solar radiation as a widespread and accessible class of renewable energy, 

researchers are actively developing solutions to lower the cost of deploying highly efficient photovoltaic 

(PV) devices. One widely investigated approach is to use a platform capable of focusing solar energy 

onto a set of small, but efficient PV cells.  The most convenient example of this approach is the 

luminescent solar concentrator (LSC), which has the advantage that it is compatible with typical 

infrastructures.[1‒4] LSCs consist of transparent plastic or glass waveguides that channel luminophore 

photoemission from the absorption of sunlight to much smaller PV cells attached at their edges.[5] 

Although a promising architecture as a result of the ability to effectively collect sunlight without 

tracking the sun, conventional LSCs are often plagued by a multitude of unfavorable processes that curb 

their ability to deliver light to PV cells.[3] Of these limitations, non-radiative reabsorption by the 

luminophores is regarded as one of the most severe problems and results from significant overlap of the 

molecule’s absorption and emission spectra.[6] Thus, although luminophores with high 

photoluminescence quantum yields (ΦPL) such as perylene bisimides are desired,[7,8]  their performance 

in LSCs will suffer if they possess small Stokes shifts.  
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A general approach to reducing reabsorption by molecules with narrow Stokes shifts, such as a 

perylene bisimide, is to employ minimal concentrations of luminophore such that its probability of 

encountering an emitted photon en route to the edges of the LSC is low.[9] This tactic, however, comes at 

the cost of poor light harvesting by the emitter. To overcome this drawback and power the coupled PV 

cells, one or more strongly absorbing luminescent species can be added to the LSC to enhance the 

minority perylene bismide’s emission through energy transfer processes. Materials that have been 

recently investigated in an analogous manner are semiconducting heterostructured quantum dots[10‒12] 

and rods[13] wherein the excitons of a higher gap CdS shell are efficiently shuttled to a highly 

luminescent lower gap CdSe core with a much smaller absorption cross-section, resulting in a separated 

absorption spectrum primarily resembling that of the shell and an emission entirely attributed to the 

core. Although organic luminophore-based LSCs that exploit energy transfer schemes to broaden the 

absorption of an acceptor are also well documented,[14‒16] those aimed at specifically reducing 

reabsorption through the use of minority emitters have relied on a limited set of dyes[17,18] and biological 

motifs.[19] The extension of this strategy to discover the untapped potential of any powerful organic 

emitter with a very small Stokes shift, especially one as prized as a perylene bisimide, remains as a 

challenge.  

As highly delocalized semiconducting macromolecular wires, π-conjugated polymers accommodate 

fast exciton migration along their backbones that may be easily disrupted by smaller quantities of lower 

gap emitters.[20] Such energy transfer may be accomplished through dipole-dipole coupling mechanisms 

(i.e. Förster resonance energy transfer, or FRET) between a luminescent polymer and a minority emitter 

with  significant spectral overlap between the emission of the donor and absorption of the acceptor.[21] 

However, our laboratory has demonstrated that thin films of poly(arylene ethynylene)s (PAEs) may 

participate in electron exchange energy transfer processes (i.e. the Dexter mechanism) that circumvent 

this requirement and amplify the emission of spectrally mismatched fluorescent far red dyes.[22] We 
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hypothesized that a combination of two luminescent PAEs of different optical bandgaps (Eg) may 

cooperate in an excitonic relay with a red-emitting perylene bisimde through both FRET and electron 

exchange processes (Figure 1, a, b). Furthermore, through bandgap tuning of the polymers and 

judicious selection of the minority red emitter, the absorption spectra of both polymers can be decoupled 

from the emission of the terminal species while still exhibiting strong absorption across the visible 

spectrum.  

To demonstrate the promise of this proposed down-conversion, we describe herein a highly emissive, 

low reabsorbing thin film LSC that makes use of a migratory excitonic cascade from PAEs P1 (Eg ≈ 2.7 

eV) and P2 (Eg ≈ 2.3 eV) to minority perylene bisimide Lumogen F Red 305 (Red 305, Eg ≈ 2.0 eV), 

the structures of which are displayed in Figure 1c. As the efficiencies of both FRET and electron 

exchange highly depend on the distance between donor and acceptor,[23] a core requirement necessary to 

effectively activate all modes of energy transfer in this ternary scheme is to keep all participants in the 

cascade proximate to each other. An ideal configuration involves hosting the minority emitter in a layer 

of P1 and P2. To accomplish this we needed to address the tendency of π-conjugated polymers to 

undergo aggregation-induced luminescence quenching that impedes energy transfer to the high ΦPL 

minority luminophore.[24] To overcome this problem, we utilized bulky tert-butylated pentiptycene units 

to render the polymers’ backbones incapable of simple and direct π-π stacking. P1[25] and P2[26] are 

structurally modified derivatives of PAEs previously studied by our laboratory and were synthesized via 

the Sonogashira cross coupling reaction (see Supporting Information). As a result of their inability to 

undergo interchain π-π stacking and alkyl substituents in their repeat units, these PAEs have high 

solubility for mixing with other polymers and casting into thin films. The absorption and emission 

spectra of thin films of Red 305 in poly(methyl methacrylate) (PMMA) and the individual PAEs are 

displayed in Figure 1d. Although both P1 and P2 possess small Stokes shifts, there is no overlap 
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between their absorption and the emission of Red 305, thereby supporting the directed energy transfer 

cascade.  

The schematic of the LSC is illustrated in Figure 2 (a). The device is a 50/50 blend of P1 and P2 that 

functions as the host matrix for small amounts of Red 305 as the terminal isotropic emitter. The 

resulting thin film composite lies on a thick transparent square substrate that acts as the primary 

waveguiding medium. The latter feature is best realized with a host layer refractive index that is nearly 

equal to or lower than the substrate at the relevant emission wavelengths.[19] Consequently, the 

corresponding light guided to the edges of the LSC will be primarily confined to the substrate, thereby 

avoiding reabsorption. To obtain the refractive index n as a function of wavelength (Figure 2b), we 

applied spectroscopic ellipsometry to model the dielectric function of a host layer consisting of 1:1 (by 

weight) P1:P2 (see Supporting Information). The wavelength profile of n exhibits wide dispersion that 

is typical of thin films of semiconducting π-conjugated polymers:[27] n ranges as low as 1.58 in the 

absorptive regime and as high as about 1.70 in the emissive region of the blend. Within the 

photoluminescence of Red 305 (λ = 545 nm to λ = 800 nm), n ranges from 1.65 to 1.61. Guided by this 

data, we used N-SF10 glass (n ≈ 1.7) as a compatible substrate, although polycarbonate is also a 

potential candidate (n ≈ 1.6). It is worth noting that the refractive indices of π-conjugated polymer films 

often depend on the thickness and processing conditions of the film.[28] Thus, the data in Figure 2b is 

best translated to the LSC if similar processing conditions are observed. Nonetheless, by design n is 

relatively low for π-conjugated polymer films containing highly polarizable benzo[2,1,3]thiadiazoles as 

repeat units[29] and this is the result of the large internal free volume provided by the tert-butylated 

pentiptycene scaffold.[30]  

LSC1 was constructed by spin casting an optically clear blend of 1:1 (by weight) P1:P2 containing 

1.5 wt% Red 305 on top of a square piece of N-SF10 glass with dimensions 17.5 mm x 17.5 mm x 1.5 

mm (Figure 3). The geometric gain (G), or the ratio of the area of a single face of the LSC to the total 
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area of edges coupled to a PV device, represents the concentrating capability of the LSC. Assuming all 

four edges will be completely covered by PV cells, the value of G for LSC1 is approximately 3. The 

measured film thickness of LSC1 (186.2 nm) is close to that of the ellipsometry sample and thus 

correlates with the data in Figure 2b. As a result of its small amount, Red 305 was assumed to not affect 

n. 

The absorption and photoluminescence spectra of LSC1 is displayed in Figure 3a.[31] The two major 

bands that span λ = 400 nm to λ = 540 nm are attributed to P1 and P2, whereas the much smaller peak 

centered at λ = 564 nm is assigned to the minority Red 305 present. To directly quantify the amount of 

light absorbed at a given wavelength, the absorption spectrum is displayed in the form of its 

absorptance, which corresponds to the fraction of incident light absorbed after correcting for reflection 

(i.e. absorptance = 1 – 10-A, where A is the measured absorbance). LSC1 absorbs approximately 70% of 

light at its absorption maximum (λmax = 422 nm) and as much as 40% around λ = 500 nm. In contrast to 

these larger magnitudes, the peak absorption of Red 305 is only about 2%. However, upon excitation of 

LSC1 in a regime where absorption is mainly attributed to P1 (i.e. λex = 405 nm), the 

photoluminescence spectrum almost completely resembles that of Red 305 with minor residual 

emission from P2 present.  

The total ΦPL of LSC1 was evaluated with an integrating sphere and measured with an excitation 

wavelength of λex = 405 nm, which is close to the absorption maximum. For LSC1, ΦPL was determined 

to be 79%, among the highest values observed for π-conjugated polymer thin films.[32] Following 

precedent for other systems,[14,18] a portrait of the efficiency of energy transfer (ηET) from the PAEs to 

Red 305 was then determined. An excitation spectrum was acquired via monitoring an emission 

wavelength of λem = 630 nm, which should be effectively attributed to Red 305 (Figure 3b). From this 

data, ηET from P1 and P2 to Red 305 per wavelength was calculated as the ratio of the normalized 

excitation intensity to the normalized absorptance (Figure 3c). The spectra are normalized at the 
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absorption maximum of the minority Red 305 to assign a default ηET of 100%. Within the higher-energy 

band (λ = 400 nm to λ = 460 nm), ηET maintains values between 88% and 80%, while efficiencies for 

the second band (λ = 460 nm through λ = 525 nm) vary from 80% to 62%. By invoking the Kasha-

Vavilov rule for LSC1, ΦPL from Red 305 (ΦPL,R) as a function of excitation wavelength may then be 

estimated with Equation 1. 

𝛷𝑃𝐿,𝑅(𝜆) = 𝛷𝑃𝐿
° (

𝐹𝑅

𝐹𝑡𝑜𝑡𝑎𝑙
) (

𝜂𝐸𝑇(𝜆)

𝜂𝐸𝑇
° )               (1) 

Where Φ°PL and η°ET are the total quantum yield and energy transfer efficiency at λex = 405 nm, 

respectively. FR/Ftotal is the fraction of the area under the emission spectrum (Figure 3a) that is assigned 

to Red 305 (i.e. between λ = 545 nm and λ = 800 nm) due to the very small contribution from P2. This 

ratio indicates that, with λex = 405 nm, this region is responsible for about 88% of the observed 

photoluminescence. Through Equation 1, the plot of ΦPL,R with excitation wavelength indicates that Red 

305 maintains quantum yields near or above 50% at all wavelengths via energy transfer by P1 and P2 

(Figure 3c). 

The key metric of an LSC’s performance is its optical efficiency (ηopt), defined as the fraction of 

incident photons emanating from the edges of the device. As a key goal of LSC research is to scale 

developed prototypes to commercially relevant sizes, we applied a Monte Carlo simulation to assess the 

promise of larger versions of our designed LSC by calculating ηopt as a function of G through an 

analysis of unproductive loss channels. Figure 4 summarizes these results using the photophysical data 

in Figure 3a, the total ΦPL, and an assumed refractive index of 1.7 across all emission wavelengths as 

inputted parameters for LSC1. For LSC1, ηopt was calculated as approximately 40%. A plot of ηopt 

versus G (Figure 4a) exhibits a slow and steady decrease as G increases, an expected trend due to non-

radiative reabsorption by the trace absorption of Red 305. Despite this drop, scaled versions of LSC1 

are projected to maintain high ηopt at large G and is well above 20% even at G = 400, on par with 

predictions for high-performing nanocrystal LSCs.[33] The concentration factor, or the product of G and 
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ηopt, is also plotted as a function of G and represents the actual magnitude of photon concentration by 

the LSC and rises in a nearly linear fashion as G increases. For example, at G = 400, a 90-fold 

concentration of photons toward PV cells at the edges is expected.  

Figure 4b summarizes the simulation’s calculated impact of the possible loss mechanisms on the 

performance of LSC1 at G = 200 and a single excitation wavelength (λex = 405 nm). The displayed 

chart tabulates the fates of incident photons that strike the face of the scaled LSC. Prior to absorption, 

the fixed Fresnel coefficient for the inputted refractive index directly contributes to a 7% loss of photons 

via reflection off the surface of the LSC. By taking into account that some incident photons are lost due 

to incomplete absorption by the LSC after this reflection occurs (“Not Absorbed,” 31%), the simulation 

predicts non-radiative events (“Not Reemitted”) to result in a modest 21% loss in which minor 

reabsorption processes play a large role. Additionally, a leakage of emitted photons through the 

waveguide’s escape cone (“Top Loss”) is projected to result in a 15% overall loss. The remaining 27% 

of incident photons, albeit down-converted by Red 305 (“Collected”), represents ηopt.  

To summarize, we have demonstrated a blend of π-conjugated polymers as amplifying antennae for a 

perylene bisimide to create a low reabsorbing thin film LSC with significant absorption in the visible 

spectrum and performance similar to state-of-the-art analogs. The participants of the described cascade 

all possess solubilities that allow for facile and low-cost solution processing. Through the development 

of even lower gap luminescent π-conjugated polymers, we envision creating additional high-

performance LSCs capable of more complete absorption of the visible spectrum with efficient energy 

transfer directed toward spectrally separated minority terminal luminophores that emit in the far red or 

near-infrared for improved spectral matching with silicon PV cells.  

Supporting Information  
Supporting Information is available from the Wiley Online Library or from the author. 
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Figure 1. Photoinduced migratory cascade of excitons in thin films of two π-conjugated polymers, P1 

(blue) and P2 (green), to minority fluorophore Red 305 (red) via (a) FRET and (b) electron exchange 

(Dexter) energy transfer. (c) Structures of P1, P2, and Red 305. (d) Absorption (solid) and emission 

(dashed) spectra of thin films of P1 (blue) and P2 (green) and a sample of 0.5 wt% Red 305 in PMMA 

(red). Optical bandgaps were estimated from absorption onsets. 
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Figure 2. (a) Schematic of the designed LSC (yellow layer: blend of P1 and P2; red: molecule of Red 

305) illustrating exciton diffusion from P1 and P2 to Red 305. (b) Refractive index (n) of a film of 1:1 

(by weight) P1:P2 (thickness = 188.3 nm). 
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Figure 3. (a) Absorption and emission (λex = 405 nm) spectra of LSC1 with absorption in terms of its 

absorptance. (b) Absorption and excitation spectra (λem = 630 nm) of LSC1 normalized at λ = 564 nm. 

(c) Plots of the energy transfer efficiency (ηET) from P1 and P2 to Red 305 and estimated 

photoluminescence quantum yield of Red 305 (ΦPL,R) in LSC1 with respect to wavelength. (d) LSC1 

under normal lighting (left) and UV radiation at λ = 365 nm to illustrate light concentration at the edges 

(right).
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Figure 4. (a) Projected optical efficiency (ηopt) and concentration factor with increasing geometric 

gain (G) for LSC1. (b) Calculated loss channels for G = 200 (λex = 405 nm). 

Abstract 

 

A highly efficient thin film luminescent solar concentrator (LSC) utilizing two π-conjugated 

polymers as antennae for small amounts of the valued perylene bisimide Lumogen F Red 305 is 

presented. The LSC exhibits high photoluminescence quantum yield, low reabsorption, and 

relatively low refractive indices for waveguide matching. A Monte Carlo simulation predicts the 

LSC to possess exceptionally high optical efficiencies on large scales.  
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A Low Reabsorbing Luminescent Solar Concentrator Employing π-Conjugated Polymers  
  

Gregory D. Gutierrez, Igor Coropceanu, Moungi G. Bawendi, and Timothy M. Swager* 

 

I. General information 

A. Materials 

Prior to use, N,N-diisopropylamine was distilled over KOH and sparged under argon for 1 hour. 

Toluene was passed through a solvent purification system (SPS) via columns of activated alumina, 

stored over 3 Å molecular sieves, and sparged under argon for 1 hour. Anhydrous THF was also 

obtained from the same SPS and used immediately. Unless otherwise indicated, all other purchased 

solvents and reagents were used without additional purification. Lumogen F Red 305 was obtained 

from BASF and also used without further purification. Column chromatography was implemented 

with silica gel (60 Å pore size, 230 – 400 mesh, Sigma-Aldrich) as the solid phase. Thin layer 

chromatography (TLC) was carried out with Baker-flex silica gel IB-F plates (J. T. Baker). N-SF10 

glass samples (Schott) were obtained as circular blank plates (25 mm diameter, 1.5 mm thickness) 

from UQG Optics (Cambridge, UK) and manually cut to specification with a diamond cutter. The 

glass was cleaned with acetone and chloroform, followed by a stream of N2 gas, before use. 

B. Instrumentation and measurements 

1H NMR (400 MHz) and 13C NMR (101 MHz, proton-decoupled) spectra were acquired using a 

Bruker Avance III HD NMR spectrometer. The multiplicities and/or shape of all indicated 

resonances are labeled with the following key: singlet (“s”), doublet (“d”), doublet of doublets 

(“dd”), triplet (“t”), multiplet (“m”), and broad (“br.”). All spectra were obtained with CDCl3 as the 
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solvent and reported chemical shifts are referenced with respect to solvent peaks (δ = 7.26 ppm for 

1H and δ = 77.16 ppm for 13C). NMR data for π-conjugated polymers are reported in the context of a 

single repeat unit. Gel permeation chromatography (GPC) measurements were carried out using an 

Agilent 1260 Infinity gel permeation chromatograph with UV/vis and refractive index detectors 

calibrated against polystyrene standards and THF as the eluent. The injection concentration of the 

prepared GPC samples was 0.5 mg/mL. High resolution mass spectrometry (HRMS) data were 

obtained via direct analysis in real time (DART) with positive ionization at the MIT Department of 

Chemistry Instrumentation Facility with a Bruker Daltronics APEXIV 4.7 Tesla FT-ICR mass 

spectrometer. Mass spectrometry (MS) via matrix assisted laser desorption/ionization-time of flight 

(MALDI-TOF) was performed at the MIT Biopolymers Laboratory using 2,5-dihydroxybenzoic acid 

as the matrix. Melting point determination was carried out with a MelTemp II melting point 

apparatus (Laboratory Devices Inc, USA). Spin coated samples were created using a Model WS-400 

Spin Processor (Laurel Technologies Corporation) coupled to a vacuum line. Film thicknesses were 

measured using a Dektak 6M profilometer. Ellipsometry measurements were carried out using a J. 

A. Woollam Co., Inc. M-2000D variable angle spectroscopic ellipsometer and the V.A.S.E. 32 

software package.  

     Photophysical spectra were obtained with thin films facing the source lamps. Absorption spectra 

were obtained using an Agilent Cary 4000 UV/vis spectrophotometer. Photoluminescence and 

excitation spectra were acquired on a HORIBA Jobin Yvon Fluorolog-3 spectrofluorometer (model 

FL-321) equipped with a 450 W xenon lamp as the excitation source. Front-face detection was used 

to observe photoluminescence near excitation.  

     Quantum yield measurements were taken using an integrating sphere (Labsphere RTC-060-SF). 

The experimental set-up that was used is shown schematically in Figure S1 below. The sample was 

illuminated using a 405 nm diode laser with an excitation power of 5mW that was chopped at 210 
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Hz. The output was collected using a calibrated germanium detector (Newport: 818-UV) through a 

Stanford Research Systems lock-in amplifying system. The integrating sphere included two baffles, 

one which lay immediately beneath the sample holder to prevent direct emission into the detector as 

well as a baffle on a side, which could be used to ensure that reflected light from the initial beam 

could only reach the detector after multiple reflection events.  

 

Figure S1. The configuration used to measure the absolute quantum yield. 

Two measurements were than taken using this system: 1) Laser Intensity (LI), where the laser was 

directed behind one of the baffles with the sample outside of the sphere; 2) Sample Fluorescence 

(SF) where the excitation beam was passed through the sample and out through an exit port and the 

reflection was allowed to exit through the side port. From these two measurements and the 

absorbance of the sample, it was possible to extract the photoluminescence quantum yield (ΦPL) of 

the LSC by calculating the number of photons absorbed and the number of photons emitted 

(Equation S1):     

𝛷𝑃𝐿 =

SF
EQE(S)

/
LI

EQE(L)

𝐴𝑏𝑠(𝐿)
 

Equation S1. Equation for calculating the photoluminescence quantum yield ΦPL.   

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



     
 

18 

 
 

In the equation above, EQE(S) and EQE(L) refer to the external quantum efficiency (EQE) of the 

detector at the wavelength of the sample emission and of the excitation source, respectively, and 

Abs(L) is the absorptance of the sample at the excitation wavelength. 

C. Preparation of thin films  

Thin films of P1, P2, and Red 305 in PMMA: Thin films of P1 and P2 were spin casted onto soda-

lime glass substrates from 20 mg/mL chloroform solutions at 2000 rpm for 45 seconds. A thin film 

of 0.5 wt% Red 305 in PMMA was made by drop casting a chloroform solution containing 100 

mg/mL PMMA and 0.5 mg/mL Red 305 onto a soda-lime glass substrate.  

Model LSC (LSC1): 0.2 mL of a 0.375 mg/mL solution of Red 305 in chloroform was added to a 

vial containing 2.50 mg P1 and 2.50 mg P2. After dissolution of the polymers, 0.1 mL of the 

resulting solution was drawn into a syringe and quickly added on top of a blank plate of N-SF10 

glass spinning at 2000 rpm. Upon completion of the injection, the sample was spun at the same 

speed for 45 seconds.  

 

II. Synthetic procedures 

2,6-di-tert-butylanthracene (3),[S1] 6,10-di(tert-butyl)triptycene-1,4-quinone (4),[S2] 1,4-

bis(tetradecyloxy)benzene (6),[S3] and 5,6-bis(tetradecyloxy)benzo[2,1,3]thiadiazole (8)[S4] were 

synthesized following published procedures.  
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Scheme S1. Synthesis of tert-butylated pentiptycene dialkyne 1.  

tert-Butylated pentiptycene quinone 2 

The following synthesis is a modified preparation of 2 described in Nesterov et al.[S5] in which 

benzoic acid is employed as the solvent. To a 50 mL round bottom flask containing a magnetic stir 

bar, 3 (1.10 g, 3.79 mmol), 4 (1.88 g, 4.73 mmol), and benzoic acid (5.55 g, 45.5 mmol) were added 

and mechanically blended with a spatula. The flask was submerged in an oil bath heated to 145°C, a 

temperature at which benzoic melts, covered, and stirred under aerobic conditions. After 15 h, the 

reaction was quickly aerated and resealed with stirring proceeding for another 9 h. The reaction 

mixture was cooled to room temperature and the resulting solid slab was triturated into 2 x 30 mL 

CHCl3. The fractions were combined and washed 2 x 100 mL saturated NaHCO3 (aq.) solution, 

followed by 100 mL saturated NaCl (aq.) solution. The organic layer was dried with MgSO4 and 

filtered. 15 g silica gel was added to the organic layer and volatiles were evaporated. The residue 

was dry-loaded at the top of a column of silica gel and purified using 100% hexanes as eluent to 

remove excess 2,6-di-tert-butylanthracene (3), followed by 1:1 CHCl3:hexanes to obtain 2 as an 

orange solid and set of inseparable diastereomers (1.74 g, 67% yield). 1H NMR (400 MHz, CDCl3): 

δ (ppm) = 7.40 (d, 4H, J = 1.8 Hz, 4H), 7.28 (d, 4H, J = 7.8 Hz, 4H), 6.98 (dd, 4H, J1 = 1.8 Hz, J2 = 

7.8 Hz, 4H), 5.70 (s, 4H), 1.22 (s, 36 H). 13C NMR (101 MHz, CDCl3): δ (ppm) = 180.5, 151.4, 

148.8, 144.0, 141.0, 123.7, 122.0, 121.8, 47.4, 34.7, 31.6.  

tert-Butylated pentiptycene dialkyne 1 
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This procedure was performed with some modifications to the preparation of 1 described by 

Nesterov et al.[S5] To a solution of timethylsilylacetylene (1.00 g, 10.22 mmol, 1.44 mL) in 30 mL 

anhydrous THF at 0 °C were added n-BuLi (1.60 M in hexanes, 8.76 mmol, 5.47 mL) dropwise. The 

mixture was stirred at 0 °C under argon for 30 minutes and then cannula-transferred into a 500 mL 

3-neck round bottom flask containing 2 (2.00 g, 2.92 mmol) in 200 mL anhydrous THF at 0 °C. The 

reaction was stirred at 0 °C for 1 h and then at room temperature for 18 h, all of which was under 

argon. The mixture was then poured into 100 mL 10% w/v NH4Cl (aq.). 250 mL Et2O was added 

and the biphasic mixture was partitioned. The organic layer was washed with 100 mL H2O, then 100 

mL saturated NaCl (aq.), dried with MgSO4, and concentrated in vacuo. The crude residue was 

passed through a plug of silica gel using 1:1 CHCl3:hexanes as the eluent. The crude mixture of diols 

was isolated as a beige solid and immediately dissolved in 50 mL THF (de-inhibited by distillation). 

The solution was sparged with argon for 25 minutes. A degassed solution of SnCl2⋅2H2O (1.65 g, 

7.30 mmol) in 5 mL H2O and 5 mL AcOH was cannula-transferred into the mixture and then stirred 

at room temperature under argon for 24 h. 20 mL of saturated NaHCO3(aq.) solution was carefully 

added to neutralize the AcOH, followed by 25 mL H2O. The resulting precipitate was filtered and 

washed with 10 mL saturated NaHCO3 (aq.) solution and 10 mL H2O. 100 mL CHCl3 was added to 

the solid to dissolve any organic species with any remaining insoluble precipitates filtered off. The 

remaining solid was treated with another 100 mL CHCl3, then filtered off. Both CHCl3 fractions 

were combined and evaporated. The resulting crude material was subjected to column 

chromatography (3:7 CHCl3:hexanes) to isolate 823 mg of a mixture of TMS-protected 

intermediates immediately carried over to the next step. (Rf = 0.41, 0.50 (SiO2 TLC, 1:9 

CHCl3:hexanes)). The resulting solid was dissolved in 25 mL de-inhibited THF, to which a solution 

of KOH (106 mg, 1.89 mmol) in 10 mL MeOH was added. After stirring the reaction at room 

temperature for 3 h, the mixture was poured into 50 mL Et2O, washed with 150 mL saturated NaCl 
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(aq.), 100 mL H2O, and another 150 mL saturated NaCl (aq.) solution. The organic layer was dried 

with MgSO4. To the filtered solution was added 5 g silica gel with volatiles then evaporated. The 

sample was dry-loaded onto a column of silica gel and chromatographed using a 1:9 

CHCl3:hexanes/1:1 CHCl3:hexanes gradient to furnish 658 mg 1 as an off-white solid and mixture of 

diastereomers (32% overall yield). Rf = 0.34 (SiO2 TLC, 1:9 CHCl3:hexanes). 1H NMR (400 MHz, 

CDCl3): δ (ppm) = 7.39 (d, J = 1.8 Hz, 4H), 7.30-7.27 (2 d, J = 7.8 Hz, 4H), 6.97 (dd, 4H, J1 = 1.8 

Hz, J2 = 7.8 Hz, 4H), 5.78 (s, 4H), 3.71-3.70 (2 s, 2H), 1.23 (s, 36H). 13C NMR (101 MHz, CDCl3): 

δ (ppm) = 148.4, 145.0, 142.20, 142.15, 123.3, 123.2, 121.96, 121.92, 121.3, 121.2, 114.01, 113.97, 

84.43, 84.38, 79.60, 79.58, 52.0, 34.7, 31.6. MS (MALDI-TOF, m/z) calculated for C54H54, M+: 

702.423, found: 702.465. [S6] 
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Scheme S2. Synthesis of π-conjugated polymers P1 and P2 from 1 and their respective bandgap-

limiting co-monomers 5 and 7. 

 

2,5-diiodo-1,4-bis(tetradecyloxy)benzene (5) 
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Compound 5 was prepared with some modification to a general procedure offered for the synthesis 

of 2,5-diiodo-1,4-bis(alkoxy)benzenes.[S3] 6 (1.50 g, 2.98 mmol), I2 (757 mg, 2.98 mmol), KIO3 (319 

mg 1.49 mmol), 30 mL AcOH, 3 mL H2O, and 0.3 mL H2SO4 were added to a 100 mL round-bottom 

flask containing a magnetic stirbar and reflux condenser. The reaction was stirred at reflux for 18 h. 

20 mL 10% Na2S2O3⋅5H2O (aq.) solution was then added to the flask. The mixture was added to 200 

mL CH2Cl2 to dissolve the crude product and 100 mL H2O. The organic layer was partitioned and 

then washed with 100 mL saturated NaHCO3 (aq.) solution and 100 mL saturated NaCl (aq.) 

solution. The organic layer was dried with MgSO4, filtered, and evaporated. The resulting residue 

was recrystallized from isopropanol twice to obtain 5 as a white solid (1.59 g, 71% yield). 1H NMR 

(400 MHz, CDCl3): δ (ppm) = 7.17 (s, 2H) 3.92 (t, J = 6.5 Hz, 4H), 1.80 (m, 4H), 1.49 (m, 4H), 1.26 

(br. m, 40H) 0.88 (t, J = 7.1 Hz, 6H). 13C NMR (101 MHz, CDCl3): δ (ppm) = 153.0, 122.9, 86.5, 

70.5, 32.1, 30.5, 29.9, 29.8, 29.7, 29.7, 26.1, 22.8, 14.3. HRMS (DART, m/z) calculated for 

C34H58I2N2O2S, M+: 754.2677, found: 754.2676. 

4,7-Diiodo-5,6-bis(tetradecyloxy)benzo[2,1,3]thiadiazole (7) 

The preparation of 7 is based on a procedure for the production of 4,7-diiodo-5,6-

bis(octyloxy)benzo[2,1,3]thiadiazole reported by Nagarjuna et al.[S7] To a 300 mL round-bottom 

flask equipped with a magnetic stirbar were added 8 (2.50 g, 4.46 mmol), iodine (1.36 g, 5.35 

mmol), [bis(trifluoroacetoxy)iodo]benzene (2.30 g, 5.35 mmol), and 150 mL CH2Cl2. A reflux 

condenser was attached to the flask and contents were heated to reflux and stirred for 24 hours. The 

reaction mixture was cooled to room temperature and washed with 2 x 100 mL 20% Na2S2O3 (aq.) 

solution, 2 x 100 mL 20% NaHCO3 (aq.) solution and 2 x 100 mL saturated NaCl (aq.) solution. The 

organic layer was dried with anhydrous MgSO4 and filtered through a short plug of silica gel with 

CH2Cl2 as the eluent. The solvent was evaporated under reduced pressure and the resulting residue 

was recrystallized from isopropanol. The material was lastly subject to column chromatography 
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using 1:1 CHCl3:hexanes as the eluent to furnish 7 as a white solid (2.83 g, 78% yield). Rf = 0.46 

(SiO2 TLC, 1:1 CHCl3:hexanes). m.p. 81 °C – 82 °C.  1H NMR (400 MHz, CDCl3): δ (ppm) = 4.12 

(t, J = 6.7 Hz, 4H), 1.91 (m, 4H), 1.54 (m, 4H), 1.26 (br. m, 40H) 0.88 (t, J = 7.1 Hz, 6H). 13C NMR 

(101 MHz, CDCl3): δ (ppm) = 157.2, 151.9, 82.8, 75.1, 32.1, 30.5, 29.9-29.8, 29.6, 29.5, 26.3, 22.8, 

14.3. HRMS (DART, m/z) calculated for C34H58I2N2O2S, [M + H]+: 813.2381, found: 813.2367. 

π-Conjugated polymer P1 

To a 25 mL Schlenk flask equipped with a magnetic stirbar were added 1 (300 mg, 0.427 mmol), 5 

(349 mg, 0.469 mmol), Pd(PPh3)4 (24.66 mg, 21.34 μmol), and CuI (4.06 mg, 21.34 μmol). After 

degassing the flask with 3 vacuum-argon backfill cycles, 7 mL of degassed toluene and 3 mL of 

degassed N,N-diisopropylamine were added. The reaction mixture was stirred under argon at 65 °C 

for 2 days, which was then cooled to room temperature. The viscous mixture was then added 

dropwise to the vortex of 200 mL of rapidly stirring methanol. The resulting precipitate was filtered 

and washed with 50 mL methanol. After dissolving in chloroform, and passed through a short plug 

of silica gel using chloroform as the eluent. The collected fraction was concentrated in vacuo to 

approximately 10-15 mL and the polymer was precipitated in 200 mL stirring acetone. The polymer 

was filtered, washed with 50 mL acetone, and dried to yield P1 as a brilliant yellow solid (459 mg, 

87% yield). 1H NMR (400 MHz, CDCl3): δ (ppm) = 7.51 (br. s., 6H), 7.43 (br. s., 4H), 7.07 (br. s., 

4H), 6.05 (br. s., 4H), 4.51 (br. s., 4H), 2.26 (br. s., 4H), 1.75 (br. s., 4H), 1.48 (br. s., 4H), 1.33-1.18 

(br. m, 76H), 0.90 (br. t., J = 6.9 Hz, 6H). 13C NMR (101 MHz, CDCl3): δ (ppm) = 154.0, 148.3, 

145.4, 144.5, 142.5, 123.4, 121.9, 121.3, 118.0, 115.1, 93.6, 91.5, 70.4, 52.4, 34.8, 32.1, 31.8, 30.1, 

29.8, 29.5, 26.5, 22.9, 14.3. GPC (THF): Mn = 46 kDa, Ð = 2.1. 

π-Conjugated polymer P2 
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To a 25 mL Schlenk flask equipped with a magnetic stirbar were added 1 (170 mg, 0.242 mmol), 7 

(197 mg, 0.242 mmol), Pd2(dba)3 (5.65 mg, 17.8 μmol), (p-tol)3P (7.40 mg, 71.1 μmol), and CuI 

(2.33 mg, 35.6 μmol). Following 3 vacuum-argon backfill cycles, 7 mL anhydrous degassed toluene 

and 3 mL anhydrous degassed N,N-diisopropylamine were added and contents were stirred under 

argon at room temperature for 20 minutes and then at 65 °C for 2 days. Subsequently, the reaction 

mixture was stirred at 80 °C for 1 day. The reaction was worked up in the same way as that of P1 to 

furnish P2 as a brilliant orange solid (209 mg, 67% yield). 1H NMR (400 MHz, CDCl3): δ (ppm) = 

7.64 (br. s., 4H), 7.50 (br. d., J = 7.8 Hz, 4H), 7.08 (br. d., J = 7.8 Hz, 4H), 6.36 (br. s., 4H), 4.94 (br. 

s., 4H), 2.37 (br. s., 4H), 1.85 (br. s., 4H), 1.52 (br. s., 4H), 1.38-1.24 (br. m., 76H), 0.89 (br. t., J = 

6.6 Hz, 6H). 13C NMR (101 MHz, CDCl3): δ (ppm) = 157.2, 153.3, 148.4, 146.4, 145.4, 145.2, 

142.6, 123.5, 122.0, 121.5, 115.3, 108.6, 98.3, 90.4, 75.6, 52.3, 34.8, 32.1, 31.8, 31.4, 30.1-29.9 

(br.), 29.6, 26.8, 22.9, 14.3. GPC (THF): Mn = 24 kDa, Ð = 1.7. 

 

 

 

 

 

 

 

 

III. 1H and 13C NMR Spectra 
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Figure S2. 1H NMR spectrum of 1 (400 MHz, CDCl3). 
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Figure S3. 13C NMR spectrum of 1 (101 MHz, CDCl3). 
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Figure S4. 1H NMR spectrum of 2 (400 MHz, CDCl3). 
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Figure S5. 13C NMR spectrum of 2 (101 MHz, CDCl3). 
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Figure S6. 1H NMR spectrum of 5 (400 MHz, CDCl3). 

 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



     
 

31 

 
 

 

Figure S7. 13C NMR spectrum of 5 (101 MHz, CDCl3). 
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Figure S8. 1H NMR spectrum of 7 (400 MHz, CDCl3). 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



     
 

33 

 
 

 

Figure S9. 13C NMR spectrum of 7 (101 MHz, CDCl3). 
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Figure S10. 1H NMR spectrum of P1 (400 MHz, CDCl3). 
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Figure S11. 13C NMR spectrum of P1 (101 MHz, CDCl3). 
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Figure S12. 1H NMR spectrum of P2 (400 MHz, CDCl3). 
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Figure S13. 13C NMR spectrum of P2 (101 MHz, CDCl3). 
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IV. Procedure for spectroscopic ellipsometry and data analysis 

Ellipsometry data were acquired at a single incident angle of 70° and with a scan range of λ = 192 

nm through λ = 994 nm. Samples were coated on a square silicon substrate with facial dimensions 

9.9 mm x 9.9 mm and a thickness of 0.525 mm. Before coating, the substrate was initially cleaned 

with a stream of N2 gas. A native SiO2 layer with thickness 6.946 nm was initially determined by the 

ellipsometer. The analyzed sample consisted of a composite blend of P1 and P2 prepared under the 

same processing conditions as LSC1, but with Red 305 absent. 2.50 mg of P1 and 2.50 mg of P2 

were dissolved in 0.2 mL of chloroform. 0.1 mL of the resulting solution was spin-casted onto a 

silicon substrate at 2000 rpm for 45 seconds.  

     The model used to fit the data to yield the refractive index n describes the dielectric constant ε as 

a function of photon energy E and employs a series of harmonic oscillators (Equation S2). This 

treatment follows the guidance of Campoy-Quiles et al. in their analysis of polyfluorenes and 

assumes the casted film to be an isotropic layer.[S8] 

𝜀(𝐸) = 𝐾 +∑𝐴𝑗𝑒
𝑖𝜙𝑗 [(𝐸 + 𝐸𝑐𝑗 + 𝑖𝛤𝑗)

−1
− (𝐸 − 𝐸𝑐𝑗 + 𝑖𝛤𝑗)

−1
]

𝑁

𝑗=1

 

Equation S2. Harmonic oscillator model employed in the ellipsometric analysis of the host layer. 

Here, N is the number of oscillators that obey the model and, for this study, N = 7. This value of N is 

the sum of oscillators used to analyze individual polyfluorene-based analogs for P1 (PFO) and P2 

(F8BT) by Compoy-Quiles et al.[S8] Aj is the amplitude of an oscillator, ϕj is the exciton phase, Ecj is 

the corresponding center energy, and Γj represents the broadening. A constant K accounts for 

additional transitions in the ultraviolet region. The form of the dielectric function indicated by 

Equation S2[S9] was used to fit the experimental data (Figures S14 and S15) by employing a 

Levenberg-Marquardt minimization algorithm. The fit additionally uses the film thickness of the 
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blend measured via profilometry (i.e. 188.3 nm), which was kept fixed and not fitted by the 

algorithm. In the region of interest (i.e. λ = 400 – 800 nm), the model (solid line) closely fits the 

experimental data (dashed line). The mean squared error of the fit is 11.54. 

 

 

Figure S14. Ellipsometry data for the amplitude ratio Ψ (“Y”) and its model fit. 
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Figure S15. Ellipsometry data for the phase shift Δ (“D”) and its model fit. 

Parameter Fitted Value 

K  2.2512±0.0264 

ϕ1   5.3288±0.147 

A1 0.052294±0.00642 

Ec1  2.4452±0.0115 

Γ1 0.21759±0.0209 

ϕ2   -10.117±0.0164 

A2 3.6084±0.976 

Ec2  4.6051±0.00489   
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Γ2 0.42278±0.135 

ϕ3   -0.5264±0.239 

A3 0.091561±0.0219 

Ec3  2.8239±0.035 

Γ3 0.34234±0.0708 

ϕ4   -19.139±0.459 

A4 1.5969±0.752 

Ec4  5.1561±0.221 

Γ4 1.2041±0.375 

ϕ5   2.7043±0.858 

A5 0.40926±0.389 

Ec5  4.1308±0.115 

Γ5 0.628±0.27 

ϕ6   -0.59275±0.596 

A6 3.5452±1.92 

Ec6  4.6408±0.0142 

Γ6 0.40098±0.154 

ϕ7 -4.9983±2.61 
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A7 0.33321±1.78 

Ec7 4.6212±0.0492 

Γ7 0.222±0.249 

 

   

Table S1. Fitted parameters obtained for Equation S1 (N = 7). 

     In addition to a plot of n with wavelength, the extinction coefficient k, the imaginary component 

of the complex refractive index ñ (i.e. ñ(λ) = n(λ) + ik(λ)), was also obtained in the fitting process 

(Figure S9). The extinction coefficient k is an indication of the extent of absorption by the P1:P2 

layer per wavelength and thus bears resemblance to the absorption attributed to P1 and P2 in Figure 

3a. 
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Figure S16. Profile of the extinction coefficient k of the analyzed blend composed of P1 and P2. 

V. Procedure for Monte Carlo simulation 

The Monte Carlo simulation was carried out using an implementation fully described in the 

supplementary information of a previous report.[S10] Briefly, a photon with a specified wavelength 

was released into the LSC from the top and it was determined whether the photon was reflected and 

then whether it was absorbed. If it was absorbed, it was then determined whether the photon was re-

emitted, and if so, it was given a wavelength sampled (from the photoluminescence spectrum) and a 

propagation length and direction. The photon was then allowed to propagate through the device until 

it was collected or lost. As inputs the program used the absorption and emission spectra of the 

composite and the refractive index, which, from the ellipsometry data, was approximated to be 1.7 

for all wavelengths to simplify the analysis of the LSC by treating it as a symmetric slab waveguide. 

The slight refractive index difference between the luminescent film and N-SF10 glass was assumed 

to not significantly influence refractive-index dependent parameters, namely the Fresnel reflection 

coefficient and trapping efficiency.  

To better assess the low reabsorption of the LSC, the absorption spectrum (Figure 3a) used was cut 

off and corrected at λ = 650 nm due to a slight sinusoidal baseline drift between λ = 650 nm to λ = 

800 nm that was attributed to thin film interference effects.[S11,S12] Past λ = 650 nm, all absorptance 

values were manually set to 1x10-4 . This phenomenon manifests in a regime where no absorption by 

the LSC is expected and is post-reflection event that should have little to no relevance to the 

performance analysis.  

Once the absorption spectrum was corrected, the photophysical spectra were plotted on a 

logarithmic scale to clearly view the low extent of reabsorption by the minority Red 305 (Figure 

S17). 
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Figure S17. Absorption and emission spectra (logarithmic) of LSC1 after the specified baseline 

correction.  
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