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Abstract

The field of autonomous collision avoidance has continued to advance in many ar-
eas including sensory and perception, navigation, payload integration, and collision
avoidance. The advances in collision avoidance, however, have largely focused on iter-
ative changes to the velocity obstacle – an algorithm that inherently loses important
collision avoidance information key to replicating a human-like decision space. This
thesis examines algorithms that generalize the traditional velocity obstacle into a
multi-threshold based approach that more realistically represent and evaluate human
ship driving practices. Novel protocol-constrained collision avoidance evaluation al-
gorithms are proposed including the ability to perform both on-line and post-mission
analysis of both robots and humans. These algorithms become especially impor-
tant when considering complex missions of competing objectives in a contact-dense,
protocol-constrained collision avoidance environment. Introduction of competing per-
formance metrics consistent with human ship driving practices allows autonomous col-
lision avoidance algorithm designers to consider previously unexplored tradespaces.
On-water results of up to five simultaneously interacting autonomous vessels validate
the collision avoidance algorithms using four key areas of evaluation: spatial e�ciency,
temporal e�ciency, protocol compliance, and safety. Testing of 10 complex scenarios
totaled over 6,150 vehicle-pair on-water encounters. Human-robot field experimen-
tation demonstrated autonomous collision avoidance performance under conflicting
protocol requirements of COLREGS while interacting with human-driven vessels.
An autonomous collision avoidance “road test” framework is proposed to incorporate
testing of arbitrary collision avoidance algorithms both in the field and in simulation.
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Chapter 1

Introduction

The field of marine robotics has continued to advance in many areas including sens-

ing and perception, navigation, payload integration, and collision avoidance. The

advances in collision avoidance, however, have largely focused on iterative advances

to the velocity obstacle algorithm – a technique that creates binary decision regions

where results are said to either result in or not result in a collision. Velocity obstacle-

based methods inherently lose key encounter information that humans use in their

decision making.

This thesis investigates and expands collision avoidance algorithms that generalize

the velocity obstacle into a multi-threshold based approach that more realistically rep-

resents human ship driving practices. These algorithms become especially important

when considering complex missions of competing objectives in protocol-constrained,

contact-dense environments. On-water testing of up to five autonomous vessels under

the protocol constraints of COLREGS demonstrates superior performance of these

collision avoidance algorithms compared to the velocity obstacle of the current state

of the art.

Introduction of performance metrics consistent with human ship driving practices

allows new tradespaces for autonomous collision avoidance designers and evaluators.

Collision avoidance protocol metrics and evaluation algorithms enable evaluators to

perform both on-line and post-mission analysis using a configurable protocol evalu-

ation library. These evaluation algorithms can be applied to both autonomous and
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human-operated vehicle track data independent of the underlying collision avoidance

algorithm.

Extensive on-water experimentation results demonstrate improvement in perfor-

mance metrics when comparing the algorithms of this thesis to the velocity obstacle

approach in four key performance areas: spatial e�ciency, temporal e�ciency, proto-

col compliance, and safety. These on-water experiments included complex and often

competing COLREGS1 requirements in which vehicles were either autonomous or

human-operated. A proposed autonomous collision avoidance road test framework

incorporates testing of arbitrary collision avoidance algorithms both in the field and

in simulation to a standardized level of performance. The road test framework ex-

tends naturally to test human operators to the same criteria of autonomous robots

thereby advancing evaluation transparency, trust of autonomous systems, and ease of

transition to human-machine teaming in protocol-constrained environments. Com-

bining the proposed performance metrics, evaluation techniques, testing procedures,

and improved collision avoidance algorithm results in more human-like autonomy as

demonstrated by over 6,150 on-water encounters.

1.1 Motivation

As vehicles with varying degrees of autonomy become increasingly present in human-

dominated environments, the ability for humans and robots to safely and e�ciently

interact becomes paramount. Autonomous collision avoidance algorithms exist in

many physical domains including land, air, undersea, and sea surface (“surface”).

To enable right-of-way and o↵er decentralized governance without communication,

certain governing bodies adopted rules that codify collision avoidance protocols for

specific physical domains. Many civilian ground transportation governance bodies, for

1COLREGS refers to international rules as formalized at the Convention on the International
Rules for Preventing Collisions at Sea, developed by the International Maritime Organization, and
ratified as an international treaty by Congress. These rules were further formalized by the U.S.
International Navigational Rules Act of 1977 [84], and are sometimes referred to as the Collision
Regulations outside the United States. Additional information is presented for reference in Ap-
pendix A.
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example, give right-of-way to a particular ground vehicle when two or more vehicles

simultaneously arrive at an intersection controlled by a stop sign.

In the air, rules instruct aviators as to required altitude changes and course ma-

neuvers. The rules governing collision avoidance of surface ships allows any two vessels

to know their required role and order of precedence based only on the type of ves-

sels involved, relative geometry, and relative speed. These collision avoidance rules

comprise a subset of the COLREGS and increasingly have been the focus of research

in the field of marine autonomy. The rules reflect intentionally vague language and

do not account for all marine customs and traditions. Further, case law and mar-

itime navigational experience greatly influence the humanistic reality of the rules in

practice.

To enable autonomous vehicles to emulate human behavior in collision avoidance

scenarios, this thesis introduces techniques to replicate the human decision making

process including metrics to articulate the active tradespace. Practical application

can be seen beyond the realm of algorithm design and testing. Insurance companies,

safety regulators, acquisition authorities, and litigation courts may greatly benefit

from the standardized, repeatable, and quantifiable means to evaluate performance

described in this thesis.

1.2 Contributions of this Research

1.2.1 Primary Contributions

Three primary contributions of this research combine to yield more human-like be-

havior than the current state of the art in autonomy and marine robotics including:

1) demonstration that a range-, time-, and pose-informed CPA-based collision avoid-

ance algorithm generalizes and outperforms the velocity obstacle, 2) development of

protocol-based collision avoidance evaluation metrics, algorithms, and testing tech-

niques, and 3) performance of over 6,150 on-water experiments spanning 10 complex

multi-contact scenarios validating the claims of Section 1.3 and techniques of Chap-
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ters 4 and 5.

1.2.2 Attributes Supporting the Primary Contributions

Several attributes of this thesis contributed to the above primary contributions as

articulated in the following sections:

• demonstration that CPA-based collision avoidance algorithms generalize the

literature-standard velocity obstacle to multiple range thresholds (Section 3.3.4)

• introduction of the patience parameter for autonomous primary missions (Sec-

tion 3.6)

• first to measure, evaluate, and design for e�ciency & safety as a tradespace

(Sections 4.2 and 4.4)

• first to quantify and subsequently assess performance with respect to protocol

compliance (Section 4.3)

• first known rigorous analysis of entry and exit criteria of protocol-constrained

collision avoidance rules for autonomous vessels (Section 4.5.1)

• first to develop a collision avoidance protocol evaluation library with real-time

and post-mission tools (Section 4.6)

• development of iterative geometric testing algorithms for autonomous collision

avoidance robustness testing and sensitivity analysis (Section 5.4)

• development of the first known “road test” framework for autonomous collision

avoidance algorithms (Section 5.6)

• demonstration of significant2 on-water testing involving over 6,150 on-water

vehicle-pair encounters using 5-vehicle interactions in 10 collision avoidance sce-

narios (Chapter 6) including:

2This represents a greater number of simultaneous rule combinations, on-water vehicles, and total
vehicles encounters than any work in the current literature.
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– 5+ vehicle conflicting tra�c patterns (Section 6.1.1)

– UUV track & trail scenario in congested tra�c (Section 6.1.2)

– human-robot interactions in which a vessel was human operated among a

field of autonomous vehicles (Section 6.1.3)

– high-speed interactions (case study in simulation: Section 5.5; on-water

results: Section 6.1.3)

– non-compliant actor scenarios (protocol agnostic, collision agnostic, & dead

in the water) (Section 6.1.4)

– navigationally constrained & congested harbor scenarios (Section 6.1.5)

1.3 Formal Problem Statements

1.3.1 Reduction of Collisions

For a vessel with current state hx, y, ✓, vi and limited kinematic prediction, find the

solution course-speed vector h✓⇤, v⇤i satisfying conflicting protocol collision avoidance

constraints with human-realistic behavior that optimizes trades between safety, colli-

sion avoidance protocol requirements, and mission performance e�ciencies.

Assertion: Development of a continuous utility function to generalize the velocity

obstacle improves safety and e�ciency in complex, multi-contact collision avoidance

encounters under the protocol constraints of COLREGS.

Chapter 3 presents material to define the solution space. Chapter 4 defines the

metrics for safety, protocol compliance, and e�ciencies. Chapter 6 demonstrates

results to validate the assertion of this problem statement.

1.3.2 Identification of Non-Compliant Vessels from Track Data

Using only track data (position-heading tuples), identify, quantify, and assess protocol

requirements and compliance.
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Assertion: Evaluation algorithms can identify a vehicle not complying with the

rules (protocol agnostic or collision agnostic) using only track data.

Chapter 4 introduces the algorithms and techniques for evaluation. Section 4.7

demonstrates validation for identification algorithms.

1.3.3 Reduction of Performance in Alternative Scenarios

Using only track data (position-heading tuples), demonstrate the reduction of perfor-

mance throughout various on-water experimentation scenarios.

Assertion: Testing of collision avoidance algorithms within a limited scope of mis-

sion scenarios insu�ciently bounds performance under alternative mission scenarios.

Chapter 4 introduces the algorithms and techniques for evaluation. Chapter 5

demonstrates reduction of performance based on initial contact geometry and patience

pairs. Chapter 6 demonstrates reduction of performance for various on-water mission

scenarios.

1.4 Assumptions and Scope

1. Vessels assumed other agents followed a linear track at constant speed for their

current instantaneous state. Contacts were not necessarily assumed to adhere

to protocol requirements any more than a human-operated contact in the high

seas would be assumed to do so. No explicit communication verified intent of a

contact prior to commencement of a compliant maneuver in real time. Updates

of instantaneous state at a 4Hz frequency allowed for real-time evaluation of

a contact’s intent consistent with a human watch stander3. Communication

remained limited to state data hx, y, ✓, vi consistent with visual observations by

a human watch stander.

2. Perfect sensing was assumed using GPS position reports of all agents via a

shared communication link occurring within a su�cient time interval. While

3The term watch stander denotes the person responsible for a particular function(s) of a vessel’s
safe operations.
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real-ships operate using the Automated Information System (AIS,[81]), they

are required to have and operate onboard sensors (visual, auditory, and radar).

This thesis focused on the collision avoidance algorithms and protocol evaluation

techniques while assuming perfect contact sensing and sensor fusion consistent

with the communication limitations of Assumption 1.

3. To model realistic sensing limitations, position information was only made avail-

able to other agents who were within a reasonable range to be considered de-

tected visually. Unless specifically annotated, detection ranges were assumed

to be approximately twice the preferred range at closest point of approach.

4. Discussion and modeling of protocol-based collision avoidance was limited to

the international COLREGS, specifically as they govern interactions between

power-driven vessels unless otherwise specified. The methods of this thesis

naturally extend to other collision avoidance protocols of other physical domains

such as the “Rules of the Air”.

Within the context of this thesis, multi-objective optimization refers to the “subclass

of single-objective optimization problems where the single objective function to be

optimized is composed of components that are themselves meaningful objective func-

tions” unless otherwise annotated [3]. The problem described in Chapter 3 focuses

on the selection of an optimal solution within the set of admissible values of the de-

cision variables without necessarily exploring alternative solutions in the objective

tradespace. While this usage of the term multi-objective optimization in this context

is consistent with published literature [3–5], the distinction is articulated to avoid

confusion.

Four specific objective tradespace metrics considered in this thesis are temporal

e�ciency, spatial e�ciency, safety, and protocol compliance using variations of the

patience parameter described in Section 3.6. These four objective tradespace quan-

tities – with e�ciencies acting as a surrogate for any specific mission performance

requirements – constitute the primary values that a human operator might reason
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about when making maneuvering decisions. True multi-objective optimization be-

comes relevant when assigning a value of importance to these objective space metrics

relative to each other, as discussed in Chapters 4-6.

1.5 Thesis Overview

Chapter 2 provides a review of relevant literature and the current state of the art

including autonomous collision avoidance algorithms, path planning algorithms, and

collision risk metrics. Chapter 3 introduces the full (range-, time-, and pose-informed)

CPA quantification algorithms including the generalization of the velocity obstacle.

Chapter 4 presents evaluation techniques and metrics for autonomous collision avoid-

ance. Chapter 5 presents techniques to robustly test non-canonical encounter ge-

ometries in statistically significant ways using a design of experiments. Chapter 5

further presents testing techniques for robustness and sensitivity analysis of collision

avoidance algorithms. Results in Chapter 6 validate the claims of Section 1.3 and

demonstrate meaningful improvements over the current state of the art. Chapter 7

presents conclusions and opportunities for future work including the autonomous road

test framework.

Appendix A presents a brief overview of the relevant sections of COLREGS for

power-driven vessels. Appendix B presents lexicon and notation found throughout

this thesis. Appendix C provides verification of ample CPU loading margin during

computation of multi-contact collision avoidance encounters. Appendix D provides

details of the validation of the evaluation algorithms of Chapter 4 using human op-

erator surveys.
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Chapter 2

Literature Review:

The State of the Art

Recent literature demonstrates considerable interest in solving practical autonomous

collision avoidance problems where a vehicle either knows or senses an obstacle’s

course and speed. Ultimately, the final decision of an autonomous decision maker

must be to select an appropriate velocity vector. Velocity obstacles and closest point

of approach (CPA) methods encompass the two most commonly developed types of

algorithms for determining if a candidate decision vector (course and speed) results

in a collision free path. Local reactive path planning literature for collision avoidance

focuses on finding a safe, collision-free trajectory that achieves the primary mission

needs using only on-board sensing and knowledge.

Local reactive path planning is a subset of global path planning literature. The

area of local reactive path planning focusing on interactions with newly detected

static obstacles has dominated replanning algorithms for global path planning for

some time. Advances were then made toward local replanning for dynamic obstacles

including collision avoidance with other vessels. This set of literature is then further

refined to include local replanning for dynamic obstacles with the constraints of a

protocol-based collision avoidance rule set. To fully appreciate the scope of literature

involved, a review of more general global path planning literature is first introduced.

A sampling of literature for system identification and how it informs global path plan-
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ning is discussed. This review then zooms into the section of path planning literature

involved in localized reactive path planning dealing with collision avoidance. The

notion of collision risk is discussed including the necessary creation of collision avoid-

ance utility functions to reason about various deviations from the primary mission

objective. The primary collision avoidance algorithms for determination of collision

risk (velocity obstacles and explicit closest point of approach techniques) are reviewed

and analyzed in the context of quantifying collision risk to inform local path planning

utility functions. A subsequent discussion of literature for evaluation of protocols

to quantify the notion of protocol “compliance” is addressed. Testing and evalua-

tion frameworks are reviewed to include geometry configurations, simulations, and

on-water experimentation. After a review of the literature, a brief introduction of its

applicability to this research is given.

2.1 Motivation

Global path planning literature often focuses on moving a vehicle from a starting

point to a destination with regard only to fixed obstacles and navigation constraints

rather than collision avoidance of other vessels. Those authors who focus on collision

avoidance of other vessels often do so from a non-path planning stance where evasive

maneuvers will be taken before returning to a predefined-defined track. Many collision

avoidance techniques disregard the triad of competing objectives when planning and

constructing a path for traversal. The triad of competing objectives include:

• desires and goals of the mission(s)1

• navigational and obstacle2 avoidance requirements

1Mission in this context refers to the reason(s) that a vessel is underway. This might include
a simple transit of waypoints across a body of water or might include more intricate mission path
planning and constraints for objectives that are more sensitive to changes of course or speed such
as bottom mapping with a side-scan or towed sonar array.

2The literature is inconsistent with reference to obstacle and collision avoidance. In maritime
operations, the lexicon di↵erentiates allisions and collisions. The former is the striking of a static
object or vessel with ownship. The latter involves two vessels which are both underway colliding.
To di↵erentiate between the two within the scope of this document, “obstacle avoidance” refers to
decision making and maneuvers required to avoid an allision while “collision avoidance” refers to

34



• collision avoidance requirements

These three objectives are in no priority order until the designer of an autonomous

mission assigns a priority weight to each component. This assignment of importance

in most literature comes in the form of a binary representation where one of two

primary modes is active while the other is precluded from the decision space. The

two primary modes of most autonomous marine vehicle literature include:

• a path planning algorithm that constructs a path based on obstacles and navi-

gation constraints while meeting the overall mission objective

• a collision avoidance algorithm that allows a vessel to deviate from the planned

path to perform collision avoidance for another vessel or unexpected moving

obstacle3

In operating under this binary mode scheme, the mission seems somewhat static

with reasonably predictable obstacles and navigation constraints such as navigational

markers, geographic features, and tra�c control schemes. This predictable path plan-

ning is continued by most autonomous platforms until faced with a collision scenario;

then, planners typically disregard mission requirements to perform collision avoidance

for another vessel or avoid a newly discovered static obstacle. That is, most literature

that addresses maritime collision avoidance will forego seeking some balanced weight-

ing to continue achieving the mission while simultaneously avoiding collisions with

other vessels. By incorporating a means of evaluating weighted priorities for each

component of the mission, navigation, and collision avoidance constraints, a tradeo↵

can be continuously made that allows for selection of an appropriate course and speed

combination with due consideration of mission e�ciency, safety, and compliance with

the governing protocol. The literature that attempt to balance the competing objec-

tives predominantly seeks the least cost deviation from the a priori determined path

decision making and maneuvers required to avoid a collision. Allisions, and therefore obstacle avoid-
ance, often involve navigation constraints such as buoys, day markers, piers, geographic features,
and other static hindrances.

3This deviation often correctly considers navigational constraints but neglects the primary mission
and the next track waypoint.
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that is collision free. Little to no consideration is given to the overall e↵ects (mission

e�ciency and safety) of incorporation of collision avoidance constraints into selection

of the desired velocity vector. However, it has been shown that collision avoidance can

greatly influence mission safety and e�ciency [93]. Incorporating collision avoidance

in the determination of the desired velocity vector is therefore a worthwhile consider-

ation rather than as a heuristic to minimize deviation from a mission-only informed

decision.

This balance must be made between computational expense, precision, and ac-

curacy. The “good enough” standard for marine autonomy missions will vary for

each designer and end user. A tradespace does exist for computational expense and

solution refinement. When considering a collision avoidance protocol such as COL-

REGS with su�cient stand o↵ ranges, obstacles avoidance, and general navigation,

the problem seems readily achievable. By inserting multiple concurrent contact ves-

sels operating under geometries resulting in multiple and often conflicting COLREGS

rules, the problem grows more complicated. After cluttering the environment with

navigational and obstacle constraints, a clear need exists for computationally e�-

cient algorithms that are able to accurately predict compliant maneuvers without

unnecessarily compromising overall e�ciency or safety.

2.2 Global Path Planning

Motion planning is “widely studied in robotic navigation research” and mostly solved

for land based problems [78]. Motion planning remains an open problem for surface

vessels likely due to the sole culpability lying with the master of the vessel and polit-

ical inertia preventing movement toward non-human, autonomous control. Insurance

companies are also less likely to sponsor a vessel without a human master, though

recent highlights in the media [56, 91] may help facilitate forward momentum.

Lekkas detailed the purpose of a continuous-curvature path for path planning

in [53]. The two main categories discussed for connecting points were: 1) combin-

ing straight lines and arc segments, and 2) using splines. The former method is
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inherent to Dubins path generation where the allowance is zero [23]. The latter cate-

gory connects waypoints using splines but is mostly focused in the field of computer

graphics [53]. The spline methods include clothoids, cubic Hermite spline interpola-

tion, natural cubic splines, and Pythagorean-hodograph curves. As Lekkas describes,

Pythagorean-hodographs do not guarantee curvature continuity. Curvature discon-

tinuity is indicative of discontinuity in desired lateral acceleration which ultimately

a↵ects the heading controller as described in [83]. This is more relevant to autonomy

focused on aerial systems, though the discussion of path smoothing is relevant for

fitting techniques of trajectories. Lekkas described this technique of using an arc as

a shortcut to reaching all waypoints by accepting some allowance [53].

Care should be taken though to consider scenarios where track deviation must be

reduced or even eliminated to achieve each waypoint. Consideration is due at the time

of mission planning as to whether these allowances can be tolerated or whether they

could ultimately change the modeling style for macro level path planning. Allowance

is therefore a topic of importance to the mission designer. Lekkas [51] introduced the

principle of allowance which is discussed in more detail by [19]. Allowance is defined

to be the deviation of the arc from the initial piecewise linear path. The allowance can

be translated to other literature which refers to a “capture radius” of a waypoint [6],

or in other words, how close a vehicle must be to its originally designed waypoint

to be able to rightfully declare completion of that leg. The degree of precision of

any waypoint capture is of considerable design consequence and depends greatly on

the mission at hand. Many authors discuss the question of capture radius and the

sensitivity thereof. There is often assumed no loss of utility for an arbitrarily large

capture which may not be appropriate for an autonomous marine vehicle application

such as bottom mapping where tolerance is low for missed waypoints. There is also

little discussion in literature of error tolerances for waypoint capture radius, the needs

of the mission, the e↵ects on piloting, or similar a↵ects which are important to marine

navigation.

The definition of allowance can be expanded to show the comparison of errors

between circular smoothing, Fermat smoothing, and clothoid smoothing. Each of
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these may result in large errors which may not be appropriate for a given mission;

again, the sensitivity to a given mission must be understood by the designer. Similar

to allowance for given waypoints, track deviations between waypoints may also be

adverse to the mission’s needs especially in tracks requiring strict adherence such

as towed sonar applications or side scan sonar where unnecessary course deviations

can severely a↵ect data quality. To this point, an incorporation of tolerance for

allowance should be considered for certain missions. Another example is piloting in

the vicinity of a buoy where passage to a particular side of the waypoint must be

further understood beyond the scope of this study. Another example might include

considering a piloting channel where a waypoint might represent the center of a buoy

channel. While this example considers the risk of allision where obstacle avoidance

techniques might supersede the discussion of allowance, other open-ocean scenarios

without risk of allision might entail the same degree of importance of staying on track

and achieving waypoints. A general note is made as to possible undesired e↵ects of

passing between waypoints in [52].

Lekkas’s contributions in [51] were: 1) to use Fermat’s spiral as a means of path

smoothing to ensure continuous curvature by extending other research to remove a

speed singularity at the origin, 2) to present a more thorough analysis of Fermat

spiral arc length, and 3) to show that the Fermat spiral could be used in combination

with circular arcs to produce Dubins paths with Fermat spiral transitions. The main

motivation was to construct paths of simple geometry (straight lines and arc segments)

which avoid the curvature discontinuity of Dubins paths and computational intensity

of clothoids [53]. Rather than using clothoids, Lekkas used Fermat’s spiral to cut

down significantly on computation time. Two main categories of path planning with

waypoints are discussed including the use of splines as well as combinations of straight

lines and arc segments. Splines are discussed in the context of computer graphics

including the cubic Hermite spline interpolation (CHSI) to achieve continuous velocity

paths and eliminating wiggle. Lekkas points to other literature to discuss the spline

method not necessarily having paths with continuous curvature.

The use of straight lines and arc segments is shown to be an extension of a Dubins
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path which in its most general sense does not invoke continuous curvature at transition

points between piecewise components. Tsourdos [83] is often cross referenced as a

more rigorous discussion of the main disadvantage of the curvature discontinuity,

while discussing that this curvature discontinuity yields a discontinuity in the desired

lateral acceleration. The governing equation for this discussion is Equation (2.1)

where a is lateral acceleration, v is the velocity vector, and  is curvature using the

notation of [83].

|a| = |v|2 ·  (2.1)

Some authors recommend the use of a clothoid arc between a straight line and

circular arc to achieve continuity of curvature. Clothoids are often called Euler spirals,

Cornu spirals, or spiros and are advantageous due to their curvature being a linear

function of arc length. Lekkas points out that a major disadvantage of the clothoid

approach is that they require computation of the Fresnel integrals which can be costly

due to lacking a closed-form solution. Two uses for clothoids are shown, namely to

replace the arc that connects two line segments with two smoothing clothoids, or to

use a clothoid to transition between a line segment and its adjoining arc segment.

While clothoids provide a rather attractive feature for curvature, their computational

time is poor compared to Fermat’s spiral. Fermat’s spiral however has a velocity and

acceleration which are undefined at the ends until reparameterized [53].

Two types of curves are discussed for fitting in [51, 53], namely interpolating

curves which pass through all given points and approximating curves which do not

pass through all given points. The interpolating and approximating curves are there-

fore mutually exclusive for a given curve and set of points, that is, each curve can

be interpolating or approximating, but not both by these definitions. Lekkas showed

that the path tangential angle is discontinuous with undefined curvature at way-

points when only using linear segments resulting in a path that cannot be followed by

under-actuated vehicles. Mission designers must also consider the true error result-

ing from attempting to follow such a piecewise linear path using an under-actuated
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vehicle and determine if the resulting path deviation is of significant consequence.

Further this assumes generation of a path without consideration of a vehicle’s own

maneuvering characteristics. If a piecewise linear path is constructed using a known

feasible trajectory with su�cient resolution of waypoints, then the computationally

heavy path construction that explicitly enforces curvature constraints is no longer

necessary. For example, a small maximum error in track may not be important for

most to all missions of a specified platform. If this is the case, it is possible to con-

sider that the addition of functions to achieve constant curvature may in the end

be unnecessary calculations which take computational resources from more impor-

tant onboard processing especially when considering multiple simultaneous collision

avoidance scenarios. The Lekkas study assumed constant external disturbances such

as current acting on the vehicle rather than focusing on a purely geometric perspec-

tive. The lack of environmental considerations is consistent with many path planning

algorithms in recent literature [78].

Smoothness is an important feature to consider in global path planning but takes

multiple meanings. Lekkas describes two meanings of path smoothness, namely para-

metric and geometric continuity. Parametric continuity is defined as the combination

of orientation and speed whereas geometric continuity removes the speed component.

For a detailed discussion of their di↵erences, see [51]. An automated procedure for

determining waypoint locations is described in [51] as follows:

• define the obstacles on a given map [chart] and specify the clearance constraint

(the shortest safe range that a vehicle should maintain from any given obstacle)

• generate a feasible set of ordered waypoints using the Voronoi diagrams to

respect the clearance constraints

• design a path with allowance equal or lower than the clearance constraint

The property of tractability is a↵orded two main components: practicality of the

overall shape of the path and shape control of the path [51]. The latter is concerned

with the a↵ect on the total path if one waypoint location is modified or added; this
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applies more to macro path planning rather than reactive localized path planning for

collision avoidance. Lekkas confirms the distinction when o↵ering that a user can

“tolerate a relatively short cross-track error at the curvature continuity locations” for

the purpose of collision avoidance. In [51], obstacle avoidance is defined as being the

collision free path resulting from consideration of static, fixed obstacles commonly

seen in the literature as navigation constraints including land formations and buoys.

An acceptable clearance range is considered as well as curvature constraints by means

of Voronoi diagrams.

Comparing paths can be objectified using the several criteria below with a more

detailed discussion of this concept is given in [53]:

• length

• allowance

• tractability

• algorithm complexity

While some authors prefer Voronoi diagrams for their O(n) complexity, a balance

must be reached to ensure a desired answer is produced. Voronoi diagrams translate

a problem of obstacle avoidance into a geometric space such that the borders of the

regions are maximally distant from all the obstacles in the environment. For example,

classic Voronoi diagrams for navigating a buoy channel would yield a solution that

places a vessel at the center of an allision free path, or in this case, the center of the

buoy channel. This directly conflicts with ship driving practice and international law.

The assumptions required for far field planning, however, are not achievable for

contact avoidance requiring decentralized, protocol-based decisions [47]. The far field

marine collision avoidance problem requires reliable and complete contact input from

sources such as the Automated Information System (AIS). AIS cannot be relied upon

for information about all vessels. Rather, onboard sensors are required to ensure a

complete contact picture. Raw radar, vision, and auditory sensors are required for
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Figure 2-1 Larson showed that the COLREGS collision avoidance problem was dis-
tinctly reactive in [47]. Image is Figure 3 from [47].

onboard sensing and place any contacts detected by those means in the realm of local

reactive path planning as shown in Figure 2-1.

2.3 Local Reactive Path Planning for Collision Avoid-

ance

A comprehensive review of collision avoidance and path planning literature was com-

pleted by Tam [78]. Tam particularly focused on the collision avoidance evolution for

marine environments. Path planning algorithms are traditionally focused on land-

based robotic navigation (e.g., rule-based expert systems or combinatorial motion

planning) and iterative non-deterministic optimization algorithms. Tam notes that

these are di�cult to adapt to COLREGS compliant schemes or other schemes in-
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volving the “practice of seamanship.” Tam further notes that besides the protocol of

COLREGS, vessel dynamics including di↵erent hull forms make the problem much

harder than a land based system.

Collision avoidance techniques have increasingly focused on the use of velocity

obstacles for ease of both computation and implementation. By their nature, velocity

obstacles transform a single dynamic planning problem into m static problems [26,

27] where each static problem holds a binary value of safe or unsafe for each can-

didate maneuver (course and speed) in velocity space. In order to accomplish this

transformation out of the dynamic environment, the range at which a collision is said

to occur as well as the shape of all vehicles involved requires assumptions. Additional

discussion of the traditional velocity obstacle may be found in Section 2.5.

Before entering the “harder” areas of collision avoidance, many authors have ex-

amined vehicle following in dynamic environments [71, 73, 74]. Campbell accurately

captures this in a review of improving autonomy of unmanned surface vehicles through

intelligent collision avoidance: “It should be stressed that motion planning for marine

vehicles has been investigated in detail, however little attention is paid to COLREGS

compliance” [12].

While velocity obstacle and CPA-based methods dominate the collision avoidance-

informed local path planning literature, several other techniques have been examined

in the literature. Fuzzy logic was used in [32, 36, 38, 43, 50, 60, 61, 98, 101] to

allow for fuzzy reasoning about collision avoidance states. Genetic and evolutionary

algorithms [37, 41, 69, 72, 76, 79] allowed for alternative methods for constructing

collision free paths. Grid-based algorithms [59, 65, 75] used the traditional technique

of populating an occupancy grid and searching for a collision free path, usually by an

algorithm such as A*. Linear temporal logic [44] attempted to formalized the rules

and entry criteria using a series of states including wind conditions. Maze routing [13]

was attempted but was unable to overcome the reactive nature of onboard sensing

requirements. Potential field [97] methods allowed attractive and repulsive forces

though were unable to account for the necessity of apparent maneuvers. Rapidly-

exploring random trees (RRTs) [2, 31, 48, 55, 63, 80] are promising for deliberative
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planning problems. Using a more advanced means of determining collision risk such

as the methods of Chapter 3, RRTs may prove promising once over-the-horizon colli-

sion avoidance information become available to ships via satellite feeds in the future.

However, onboard sensors (and therefore reactive methods) will remain necessary for

vessels undetected by methods such as shared position information. A local reactive

RRT could become more realistic to the protocol-constrained maritime problem by

reasoning about collision states and risk using the quantification techniques of this

thesis. Voronoi diagrams [19, 51, 53, 83] provide a means staying clear of known ob-

stacles, however are inconsistent with some protocol requirements including ensuring

a bias toward a particular side of an obstacle (e.g., tra�c separation scheme).

Global path planning approaches remain insu�cient for cases of collision avoidance

requiring rapid local re-planning and often focus on scenarios of piloting where navi-

gational constraints are more numerous than collision avoidance constraints. Chang

et al. [13] investigated Lee’s maze-routing algorithm using velocity vector advances

and grid cell comparison to prevent any two ships from occupying the same cell si-

multaneously. This method does not neglect COLREGS entirely as alluded to in [78]

but does only focus on Rule 8. Environmental conditions were entirely neglected and

a weighted ship domain is considered which is mapped to the grid-maze. Szlapczyn-

ski [75] used a maze-routing method similar to Chang though incorporated additional

turn penalties by increasing arrival time, time-dependent forbidden zone to alleviate

risk of narrow passage diversion, and speed reduction ability in the case that course

alteration alone was insu�cient. This speed reduction was a linear function of range

to the forbidden zone and accounted for discrete engine speeds. A binary search al-

gorithm was used to find the minimum speed reduction necessary to avoid a collision

scenario. Tam asserts that this lacked optimization with respect to environmental

conditions and is only capable of handling ownship speed reduction [78]. Szlapczyn-

ski does however correctly consider that an examination is required to determine if

slowing rather than turning is advantageous for “economical reasons.” This alludes

to the determination of a balance of mission e�ciency and collision avoidance though

was focused on the assumption of maintaining course and speed to achieve the current

44



mission.

A Chebyshev problem of optimal control by solving the sequential gradient restora-

tion algorithm was studied by Miele et al. [57]. Only two ships were considered and a

safety range of zero was used. While interesting academically, no practical navigator

would consider bringing a vessel this close in a collision avoidance scenario rendering

Miele’s work incompatible with real world modeling. Convex set theory was con-

sidered by Hong et al. [36] by creating triangular regions from the decomposition of

obstacle-free regions. These were then used similar to a Voronoi diagram to identify

a feasible collision-free path.

Schuster presented an interesting method of coupling a low-cost radar sensor model

with a collision avoidance technique relying on three main models of a contact’s

trajectory [65]. Schuster quantified the likelihood of each of the three trajectory

models being accurate. These three models consisted of constant velocity, constant

turn rate with constant velocity, and constant acceleration. The constant turn rate

with constant velocity model used a circular arc while relying on an interacting multi-

model filter for obstacle detection. The contact data gathered was then used to find

a safe path in close range encounters. Curvature was kept continuous by using Bezier

splines to connect waypoints. A grid was then populated and an A* algorithm search

algorithm was used to find a collision free path. To incorporate ship’s kinematics, a

T-shape neighborhood is enforced in the grid search to consider only grid cells that

are reachable by the vessel’s current state. COLREGS was attempted using a ship

domain approach where the A* algorithm coupled with the grid allowed for a real-

time capability of a waypoint search. Monte Carlo testing was performed to consider

the error between GPS track and sensor data.

Schuster’s results showed that the constant velocity model and the constant turn

rate with constant velocity model had very similar likelihoods of accuracy during

straight line vessel motion. This calls into question the need to suppress the constant

turn rate with constant velocity during known straight line trajectories. An intro-

duction of this type of logic to determine whether a non-zero yaw rate is expected

should improve the accuracy of both models. Schuster claimed that this was likely
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due to small yaw rates. Consideration should be given to an appropriate filter to

remove small course corrections and noise that do not necessarily map to a change

of ordered course. Bezier splines were used to generate a smooth path navigable by

the vessel. On-water results with one dynamic obstacle were used to validate Monte

Carlo simulations. Schuster discusses that while the absolute position accuracy was

observably low, positions relative to ownship were satisfactory and often more im-

portant. This importance of relative position may be true for the case studied, but

improved absolute position accuracy should be addressed more thoroughly for scaled

applications such as multiple concurrent collision risks while simultaneously consider-

ing navigational constraints such as shoals, which are often addressed using absolute

position. Schuster’s study considered a maximum range of 800m, which is perhaps

appropriate for the small craft used in this study. Scalability for larger craft using

Schuster’s approach would be a worthwhile extension of [65].

Smierzchalski [69] used an evolutionary algorithm for trajectory planning by al-

tering ownship speed after first establishing polygon-shaped domains. Feasible navi-

gation paths were used to seed randomly populated initialization genes before solving

for the cost functions considering spatial, temporal, and trajectory smoothness fac-

tors. To impose COLREGS, the ship domain shape was modified to have ownship

moved within the polygon depending on the particular COLREGS scenario. This

approach also lacked environmental considerations.

Another genetic algorithm was used by Ito et al. [41] to compute the collision

avoidance navigation path by first defining a ship domain as a danger zone to find

the optimal configuration of passing points. Cost functions in this study were the

level of danger, length of avoiding path, straightness of the avoiding course, and loss

of energy. An optimum course was considered from the output of 100 iterations.

COLREGS was not used as a part of the algorithm’s decision making scheme. The

straightness consideration is a primitive example of a need to consider track e�ciency

as part of the collision avoidance decision making process.
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2.3.1 Target Following

Target following has been studied to achieve proper compliance with COLREGS in

many cases. A model predictive planner which included modeling of hydrodynamic

coe�cients was studied in [73]. This used a least-cost heuristic, weighted A* algorithm

to find a trajectory to complete target following while avoiding dynamic obstacles

and claiming COLREGS compliance. Because of the uncertainty in possible future

states, worst case models were used for computations of range to CPA. In the event

that a COLREGS-compliant action was not found in time, Svec [73] allowed vessels to

violate COLREGS. Candidate trajectories were designated as being feasible, violating

COLREGS, or violating a collision region that indicated a collision would eventually

occur. However, [73] did not consider taking way o↵ the vessel as a compliant and

often safe alternative to proceeding with a maneuver known to violate the Rules.

Taking way o↵ the ship is often a safe alternative to a maneuver so long as there are

no complicating vessels such as when traveling in a convoy formation. No extension

to non-following scenarios was discussed.

Svec et al. [71] provide a method for achieving target following using a generalized

velocity obstacle (Section 2.5) approach while accounting for the di↵erences in vehicle

dynamics of the target vehicle and the unmanned surface vessel follower. The work

allows for dynamic targets to follow while considering “the risk of losing the target

boat, trajectory length, risk of collision with obstacles, violation of COLREGS, and

execution of avoidance maneuvers against boats that do not follow COLREGS.”

2.3.2 Assessing Collision Risk

Tam investigated the development of collision risk assessment for stand on vessels

in close-range encounters [77]. This work was limited to analyzing the suitability

of the navigation plan and did not go so far as to provide reasoning for a suitable

evasive maneuver. For discovering a head on scenario, the study used a heading

di↵erence angle of ⇡/8 radians. Tam used heading regions to categorize the obstacles

and what rules might be required. An encounter safety area is created based on both
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forward and aft considerations with a powerful way of visual realization using a polar

plot. By incorporating the collision risk factor into the calculations, Tam removes

the traditional safety o↵sets that other algorithms build around their target (contact)

vessels due to uncertainty.

Collision risk assessment for ships at sea was investigated in [78]. Many of these

methods for assessing collision risk were based entirely on range at CPA. Most path

planning algorithms studied assumed a safety region around each obstacle that indi-

cates the risk of collision as cited first by Fujii and Tanaka [29]. Fuji and Tanaka’s

study is often considered the basis for modern approaches of ellipsoidal shapes with

ownship at center [78].

Iijima and Hagiwara [39] used a breadth-first heuristic search to perform au-

tonomous collision avoidance including judgment of collision risk and maneuvering

control. They evaluated collision danger by circular ship domain, shortest track,

least rudder angle, and COLREGS conformity based on “knowledge-base rules” on

a 10 second frequency while neglecting environmental factors. This evaluation of

shortest track is one of the few instances where a collision avoidance algorithm gives

any consideration to track e�ciency of a candidate maneuver. This work, however,

allowed turns to port in direct conflict with the protocol restrictions of COLREGS.

Fuzzy set theory has been used to model collision avoidance maneuvers. Hwang [38]

used this method in conjunction with circular ship safety domains with useful graph-

ical representations of the fuzzy inferences. A discussion of how the final output was

not guaranteed to be optimal can be found in [78]. Additional fuzzy reasoning for

collision risk was studied by Lee and Rhee where a collision avoidance module was

activated and an A* search algorithm was used to find feasible safe actions at minimal

cost. Lee and Rhee used both time and range to CPA in their analysis of collision risk.

Of note, their examples violate COLREGS by allowing the stand on vessel to unnec-

essarily deviate from course when no imminent collision exists. Lee and Kim [50] used

a fuzzy relational product to identify candidate sectors of a standard polar velocity

plot then compared “safe” sectors against COLREGS based on an action table; Lee

and Kim however only considered a single vehicle. Lee and Kim chose a six degree
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o↵set from the bow for declaring a head on situation. This reflects a design choice

that is not usually published but is reasonably consistent with real-world ship driving.

Liu and Shi [98] used fuzzy set theory and a neural network with three subnets to

monitor the 1) encounter type and output collision avoidance action, 2) speed ratio

based on fuzzified terms, and 3) alteration action with the magnitude and direction.

Liu and Shi only could account for the contact with highest collision risk.

Tam accurately notes that most studies make highly simplifying assumptions be-

fore addressing COLREGS related models [78]. Tra�c management schemes were

developed through iterations of local jurisdictions experimenting with marine navi-

gation to reduce collisions. West Germany, France, and the United Kingdom were

the first to impose a one-way tra�c separation scheme similar to that used on land.

With the success of this limited implementation of marine tra�c separation in Eu-

rope, the International Maritime Organization supported the expansion of marine

tra�c separation schemes in other locations. The Dover Strait mandated the use of

a similar scheme in 1967. Tam notes that this resulted in a significant reduction of

the observed number of collisions in head on geometry [78].

The challenge with tra�c separation of marine vessels compared to their aerial

counterparts is that altitude separation is possible in the air. By removing the third

dimension, only uni- and bi-directional schemes are possible without the introduction

of crossing tracks [78]. For non-parallel geometries and all geometries outside of

tra�c separation schemes, a protocol such as COLREGS must be used to manage

both safety and e�ciency.

Geometry for Safety Bu↵ers

With the introduction of Fiorini’s velocity obstacles, disc shapes were assumed for

both contacts and ownship [26, 27]. The radius of the ship was determined based

on the dimensions of the vessels and various uncertainties. This is later generalized

to spheres of arbitrary size for three dimensional collision avoidance. Disc shapes for

collision avoidance are found in both maritime and aerial literature [68, 71, 96].

Tam [77] considered dividing a ship into fore and aft sections with di↵erent half-
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elliptical areas based on ship parameters. Tam’s area-based ship domain concept

was defined for both ownship and obstacles. Tam used these geometry o↵sets to

reduce the safety margins built into more traditional disc shapes due to uncertainty

in vehicle shape and other uncertainties. Tam’s original graphic from [77] is shown

in Figure 2-2.

Figure 2-2 Tam introduced varying safety areas based on ownship and obstacle
parameters using a fore and aft half-elliptical model. Image is Figure 6 from [77].

Kim et al. [43] introduce the concept of Minimum Range Requirement to account

for pose, position, and velocity in a collision risk calculation, i.e., the drawing of

a “collision shape” around a vessel. Pose in the context of [43] was limited to a

binary value: orthogonal or parallel track to ownship. MRR e↵ectively calculates

center-of-body ranges for given poses to determine if actual vehicle shapes collide

by determining rectangular outlines of vessels based on ship geometric parameters.

Kim’s work e↵ectively reduces the “collision” range for head-on like objects as the

pose of detection to account for their narrow aspect.

Many authors have chosen simple geometries to bound the vessels for computa-

tional ease while others have computed the Minkowski sum of the vehicle shapes to

form a collision region of arbitrary shape that facilitates computation of the velocity

obstacle [45, 46]. This technique uses a fixed range for each side and projects the
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bounding boxes of each vehicle to create a polygon of exclusion for candidate veloc-

ities rather than the disc originally used by Fiorini [26]. In cases using a bounding

box such as this (e.g., Minkowski sum of shapes), an e↵ective collision disc may be

realized using the range of the contact and the circular shape that properly fits inside

the velocity obstacle. Figure 2-3 shows examples of two collision risk methods from

the literature.

(a) Kim’s Minimum Range Requirement (b) Kuwata’s Minkowski Sum

Figure 2-3 Kim introduced the minimum range requirement to produce a range to
center line of a contact. Image (a) is Figure 3 from [43]. Kuwata used a Minkowski
sum to create a collision boundary around a contact. Image (b) is Figure 3 from [45].

2.3.3 Collision Avoidance Utility Functions

Similar to creating utility functions to describe the attractiveness of any candidate

velocity vector for the primary mission, collision avoidance behaviors can also be

described using utility functions for the candidate velocity vector with respect to an

obstacle. Rather than describing the utility of obtaining, for example, the best course

and speed to track a submerged contact, the collision avoidance utility function deter-

mines if the candidate velocity vector results in a maneuver that is safe with respect

to certain metrics for ownship and the given obstacle. The obstacle in this context is a
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contact vessel. Similar to objective functions for the primary mission and navigational

constraints, collision avoidance utility functions can be weighted to reflect the relative

importance of the collision avoidance pair with respect to the safety of ship. For the

case of protocol-constrained collision avoidance, metrics expressing compliance with

the rules can further be incorporated. Multiple styles of utility function design for

collision avoidance behaviors exist. The primary two methods are velocity obstacles

and explicit quantification algorithms. As seen in Section 3.3.1, velocity obstacle

based algorithms result in a binary decision: the maneuver is either safe or unsafe, or

in utility function vernacular, 0 or 1. Explicit quantification algorithms can return

utility values that are continuous between 0 and 1. Based on the weighting scheme,

the importance of the overall objective function can be properly balanced with com-

peting objectives. In the case of velocity obstacles, the collision avoidance utility

function acts as a filter of a priori determined mission-preferred velocity vectors.

However, explicit quantification algorithms can reflect varying degrees of safety to be

reasoned about when considering candidate velocity vectors without using heuristic

schemes. The resulting objective functions can then be used in conjunction with an

optimal solver to determine the resulting course-speed pair of highest overall utility

to ownship.

A simple weighted collision avoidance behavior with objective function fi = avdi

with priority weight wi might define utility (Equation (2.2)) at each sampled candi-

date velocity vector�!x = hv, ✓i as a function of CPA range (rcpa), pose at CPA, or time

until CPA. This collision avoidance objective function might have a priority weight

as some function of current range to the contact (r), time at CPA (tcpa) on current

course and speed, pose at CPA (⇥cpa), and/or range rate ṙ). Equation (2.3) demon-

strates three example priority weight functions that a designer might choose for a

collision avoidance priority weight depending on the overall mission profile consid-

erations. More detailed collision avoidance design considerations may be found in

Chapter 3. Consistent with marine autonomy literature, the specific modeling of

lower order actuators and controllers is omitted. The decision space is limited to

what a watch o�cer might consider on the bridge of a vessel as orders for driving the
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ship: deciding on a course and speed pair within the limitations of a Dubins-like turn

radius limitation. Collision avoidance algorithms using a maneuvering approximation

such as the Dubins car model can be found in [19, 21, 22, 30, 34, 42, 64].

avd = avd(rcpa) (2.2)

avd = avd(⇥cpa)

avd = avd(tcpa)

avd = avd(rcpa, ⇥cpa, tcpa)

w = w(r) (2.3)

w = w(tcpa)

w = w(⇥cpa)

w = w(ṙ)

w = w(r, tcpa, ⇥cpa, ṙ)

2.4 Collision Avoidance Testing and Evaluation

Canonical geometries for testing collision avoidance techniques are worthwhile in

academic environments to improve algorithms and verify test cases, but they o↵er

limited value in practical real-world vessel encounters. Less predictable encounter

geometries occur in manned vessels environments where complex interrelations and

less predictable initial geometries are present. Many factors can contribute to the

less orderly encounter geometry. Some of the reasons that canonical geometries are

insu�cient are amplified by the following considerations:
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• unique missions

• di↵ering end points of each local vessel’s track

• unique maneuvering characteristics and capabilities of each vessel

• complicating characteristics of each encountered vessel including, for example,

towed bodies, nets, or appendages

• tracks falling near transitions of tra�c separation schemes

• ranges of stability in various sea states and environmental conditions forcing

certain courses to be driven

• proficiency and awareness of the crews of manned vessels or sensing capabilities

of their autonomous or remotely operated counterparts

Several examples of protocol based collision avoidance are found in the literature.

Many of these authors [49, 50, 60–62] studied single vehicle pairs at any given time.

Of those studies examining multiple vehicles, the scenarios often appear in sequential

single vehicle pairs such as a vessel crossing a wide sea-lane. Several simulation-based

protocol tests have also been conducted recently though many are limited in their

scope to near-canonical encounter geometries and limited simultaneous, multi-contact

encounters. These geometrically canonical or otherwise constrained encounters often

evaluate either orthogonal or parallel tracks. In most recent literature, these “multi-

contact” tests occur in succession rather than simultaneous fashion, thus limiting

the utility of rigorously testing the underlying collision avoidance algorithms. More

interesting results occur when the algorithms are stressed with competing constraints

of both protocol and operational importance simultaneously.
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2.5 Velocity Obstacle Collision Avoidance Algo-

rithms

Since first introduced, the velocity obstacle has been widely used as a technique to

eliminate course-speed pairs that would cause a collision. The velocity obstacle family

of algorithms has developed to include many novel improvements to the underlying

velocity obstacle algorithm. The velocity obstacle family is introduced and its evolu-

tionary results are discussed.

2.5.1 Traditional Velocity Obstacles

The velocity obstacle family includes several variations of the original algorithm.

Velocity obstacles were first introduced by Fiorini to allow for a transformation of

a single dynamic planning problem into m static problem by introducing circular

or more complex geometric objects in velocity space and projecting their motion in

finite time along a linear path [26, 27]. Fiorini found that an e�cient algorithm

was needed as an alternative to explicitly solving the complicated dynamic problems

associated with collision avoidance of an object and the obstacles it may encounter.

By transforming the collision problems to velocity space, vector transformation was

possible to scale the technique to multiple concurrent collision avoidance instances.

Using Fiorini’s notation in [26, 27], relative velocity is defined by V0,i = Vo � Vi

for ownship (object) objo and any contact (obstacle) obsi. The relative trajectory is

defined by trj0,i = {(x, ẋ)|ẋ(t0) = V0,i, x(t0) = xo}, and a collision exists in velocity

obstacle problems if trj0,i \ obsi 6= ;. A collision cone is generated based on the

relative trajectories trj0,i of the object obj0 and obstacles obsi, and a translation can

be made to obtain the absolute collision cone CC0(t0) and thus the absolute velocities

causing such a collision as shown in Equation (2.4) using the notation of [26] 4. It is

this absolute collision cone that Fiorini calls the Velocity Obstacle for a prescribed

shape and size of collision shape. The selection of the shape including its size is a

4The notation shifted in [27] such that relative trajectory � ⌘ trj0,i

. The remainder of this thesis
will refer to �.
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design choice that defines the e↵ective “collision distance” of an object with respect

to one or more obstacles.

v0 2 CC0(t0) (2.4)

CC0(t0) = {v0|trj0,i 2 CC0(t0)}

Velocity obstacles reduced complicated brute force calculations of closest point

of approach to a more manageable decision space of “allowed/excluded” regions by

linearly projecting instantaneous velocities in time and determining if a single, fixed

collision range threshold was violated. Collision discs of fixed ranges were traditionally

used for both the object and the several obstacles to determine a superimposed region

of excluded velocity vectors deemed to result in a “collision” within the velocity space.

Here a collision implies a violation of the range threshold of one or more obstacles;

however, with the additional margins built into the designer’s selection of a collision

disc radius, a collision would not necessarily result in physical contact of two bodies.

The summation of the various velocity obstacle wedges in polar space (radius =

speed, angle = course) resulted in a set of feasible solution space from which the

course-speed decision could be made. Velocity obstacles create a first-order approxi-

mation of a vehicle’s velocities that would cause a collision within a finite time horizon

but do not o↵er further information beyond whether a collision will or will not re-

sult [27]. Consideration is given to vehicle dynamics to determine the set of reachable

(feasible) avoidance velocities [27]. Fiorini introduced several heuristics for consider-

ation including choosing the highest avoidance velocity along the path of the goal,

selection of the maximum avoidance velocity within some allowed deviation angle

from the goal, and selection of a velocity that avoids the obstacles as ranked by their

perceived risk. The first two heuristics assume an a priori known goal direction im-

plying prior calculation of the optimal solution without regard to obstacles. The third

heuristic chooses the “velocity that avoids that obstacles according to their perceived
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risk” though no further details are given [27].

Using the utility function concept of Section 2.3.3, the binary state of velocity

obstacles result in a safe or unsafe value and can therefore be mapped to a uniform

stepwise function with values 2 {0, 1}. A nominal velocity obstacle utility function

mapping is shown in Figure 2-4 where the independent axis shows “collision range”

and the dependent axis shows resulting utility. Note that the function has a stepwise

increase to a safe value at the only range of concern: collision range. Using the

family of velocity obstacle techniques, this collision range must account for ownship

dimensions, contact ship dimensions, uncertainty stando↵s, and a bu↵er range for

peace of mind to the operator. Using a polar heat map (red = safe, blue = unsafe)

shown in Figure 2-5, candidate velocity vectors can be mapped to a polar stepwise

function representing the maneuvers determined to be safe for a contact.
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Velocity Obstacle Utility Function

Figure 2-4 A nominal velocity obstacle utility function is shown representing the
stepwise increase in safety as a resulting maneuver’s range crosses the a priori
determined collision range.
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Figure 2-5 The aggregate of utility values for all candidate course-speed pairs is
shown in a polar heat map where red is desirable (safe) and blue is undesirable
(unsafe).

2.5.2 Generalized Velocity Obstacles

Wilkie et al. expanded on Fiorini’s work to define the generalized velocity obsta-

cle [92]. The generalized velocity obstacle takes into account constraints of car-like

robots that are then able to use a velocity obstacle-like approach. To achieve this,

feasible control solution sets must be sampled for all controls on each iteration. By al-

lowing kinematically constrained agents to consider a velocity obstacle-like approach,

Wilkie et al. found that it was possible for their circularly shaped objects to, in

some cases, determine an explicit equation for the velocity obstacle itself. Wilkie’s

definition of the generalized velocity obstacle in the notation of [92] is shown in Equa-

tion (2.5) for object A with size radius = rA of control input u opposing obstacle

B of size radius = rB for time t. This method admittedly has limitations including

numerical inaccuracies requiring a safety bu↵er, high sensitivity to measured noise,

low suitability for complex environments with local minima, and no guarantee to find

a feasible solution even if one exists [92].

{u|9t > 0 :: ||A(t, u)� B(t)|| < rA + rB} (2.5)
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2.5.3 Reciprocal Velocity Obstacles

Reciprocal velocity obstacles for real-time multi-agent navigation were introduced by

van den Berg to consider multiple dynamic obstacles as an extension of the traditional

velocity obstacle. The work of van den Berg et al. introduces the reciprocal velocity

obstacle which “implicitly assumes that the other agents make a similar collision-

avoidance reasoning [90].” This algorithm therefore accounts for the assumed colli-

sion avoidance reaction of the opposing vessel. The oscillatory behavior is avoided

by selecting velocities based on the mean of its current velocity and a velocity lying

outside the other agent’s velocity obstacle. By invoking the assumption, the recip-

rocal velocity obstacle guarantees an oscillation-free collision avoidance decision with

respect to which side of the contact ownship will pass. The work of van den Berg et al.

advanced Fiorini’s work while adding a method to counter the oscillations often seen

in multi-agent navigation [90]. The original representation of the reciprocal velocity

obstacle is shown in Equation (2.6) where object A encounters obstacle B.

While 2D space was assumed, this could easily be translated to 3D geometries.

The contact’s position and velocity are again required (as in the traditional velocity

obstacles) and some assumption or acquired data about the shape of the obstacle

is required. Each of the obstacles is kinematically and dynamically constrained as

appropriate including maximum speed and maximum acceleration. In the event of a

multi-agent candidate decision space that is wholly precluded by reciprocal velocity

obstacles, van den Berg allows for violation of the reciprocal velocity obstacles while

assessing a weighted penalty based on the expected time of collision and the deviation

from the a priori preferred mission velocity vector. A limitation of the reciprocal

velocity obstacle in practice is thrashing when two agents are unable to “agree” on

which side to pass each other [70].

RV OA
B(vB, vA) = {v0

A|2v0
A � va 2 V OA

B(vB)} (2.6)
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2.5.4 Generalized Reciprocal Velocity Obstacles

The reciprocal velocity obstacle is then generalized by van den Berg to create the gen-

eralized reciprocal velocity obstacle that assumes a linear weighting scheme to select

a velocity between the current velocity and the candidate velocity that lies outside

the velocity obstacle. By choosing the weight of the current velocity to be zero, the

generalized reciprocal velocity obstacle recovers Fiorini’s traditional velocity obstacle.

Geometrically, van den Berg shows that this is similar to a translation of the velocity

obstacle apex to (1�↵A
B)vA +↵A

BvB for the share of e↵ort A avoids B, ↵A
B. Much like

with other velocity obstacle algorithms, this approach allows for the combination of

multi-agent collision avoidance constraints by summing the excluded regions to form

a combined reciprocal velocity obstacle. Also similar to other related velocity obstacle

techniques, selection of the final velocity vector using the reciprocal velocity obstacle

relies on a technique of exclusion rather than preference. The generalized reciprocal

velocity obstacle is shown in Equation (2.7) using the original notation of [90].

A preferred velocity vector without regard to potential collisions must be selected

then the reciprocal velocity obstacle constraints applied. In cases where the preferred

velocity vector is excluded by one or more reciprocal velocity obstacles, the velocity

vector closest to the preferred velocity but outside the combined reciprocal velocity

obstacle (and therefore inside the admissible velocity space) is chosen [90]. In the case

of a fully excluded velocity decision space due to a combined reciprocal velocity ob-

stacle that fully fills the set of admissible velocities, van den Berg allows selection of a

velocity vector inside the excluded reciprocal velocity obstacle space (Equation (2.7))

while assigning a penalty dependent on the “distance” to the preferred velocity vec-

tor as measured by a vector norm plus a weighted time-to-collision factor. Then the

velocity with the minimal penalty is selected as the new velocity. The penalty scheme

is shown in Equation (2.8) using van den Berg’s notation with weight wi to “reflect

di↵erence in aggressiveness and sluggishness [90]” to select the final velocity as that

with the smallest penalty value as shown in van den Berg’s notation in Equation (2.9).
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RV OA
B(vB, vA, ↵A

B) = {v0
A| 1

↵A
B

v0
A + (1� 1

↵A
B

va 2 V OA
B(vB)} (2.7)

penaltyi(v
0
i) = wi

1

tci(v0
i)

+ ||vpref
i � v0

i|| (2.8)

v0
i = argmin

v00
i

2AV i

penaltyi(v”i) (2.9)

2.5.5 Hybrid Reciprocal Velocity Obstacles

One limitation of the reciprocal velocity obstacle is that it can often enter a “recipro-

cal dance” when unable to reach agreement on which side to pass due to the implicit

assumption of similarity in collision avoidance reasoning. The e↵ective lock into an

oscillatory pattern is addressed by Snape et al. using the hybrid reciprocal velocity

obstacle [70]. Snape presented the hybrid reciprocal velocity obstacle which, as its

name implies, is a hybrid of the velocity obstacle and the reciprocal velocity obsta-

cle [70]. With a hybrid velocity obstacle, thrashing is reduced by yielding priority to

the other agent if its first solution incorrectly assumed the side that would be passed

in e↵ect resulting in a traditional velocity obstacle. If the correct passing side was

chosen, then cooperation with the other agent is assumed and actions continue with

the benefits of the reciprocal velocity obstacle. If a vehicle incorrectly assumes the

best side to pass another vehicle, then the hybrid reciprocal velocity obstacle forces

ownship to yield full priority to the other vehicle. When both vehicles choose the

“correct” side, then their cooperative nature is rewarded by retaining an equal prior-

ity similar to the reciprocal velocity obstacle [70]. Similar to other velocity obstacle

techniques, the candidate velocities are prioritized by determining the closest non-

excluded velocity to the a priori determined preferred velocity vector. As with other

velocity obstacle techniques, the hybrid reciprocal velocity obstacle relies on an a
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priori known “preferred velocity” vpref
A

i

as shown in Equation (2.10) and expressed in

the original notation of [70]. Figure 2-6 demonstrates the traditional velocity obstacle

and its evolution in recent literature.

vnew
A

i

= argmin
v/2HRV O

A

i

||v-vpref
Ai

||2 (2.10)

(a) Velocity Obstacles

(b) Generalized Velocity Obstacles

Figure 2-6 Fiorini’s relative velocity vA,B and collision cone CCA,B are shown in (a).
Image (a) is Figure 2 from [27]. Example sketches of di↵erent forms of velocity ob-
stacles (b) shows the evolution of the velocity obstacle, reciprocal velocity obstacle,
and hybrid reciprocal velocity obstacle. Image (b) is Figure 1 from [70].
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2.6 Velocity Obstacle Techniques in Practice

Kuwata et al. employed velocity obstacles to demonstrate COLREGS-based collision

avoidance with a single fixed threshold value of collision range including an additional

safety margin o↵set [45] (Figure 2-7). Maneuvers resulting in COLREGS violations

were superimposed on the velocity obstacle to further restrict the velocity vector

decision space. The safety margin o↵set was just slightly larger than the actual

velocity obstacle and used to account for worst case uncertainty resulting from “noise

and state estimation errors for the tracked tra�c boat.” Relaxation of the safety

margin o↵set was possible for very distant contacts (as determined by time to CPA)

whose sensor noise was irrelevant. Candidate solutions that were still admissible

after velocity obstacle and COLREGS pruning then received a cost value based on

time to collision and deviation from the mission-preferred velocity vector. On-water

experimental results demonstrated a successful maneuver for a head-on contact pair

detected using onboard sensors.

Figure 2-7 Kuwata applied the traditional velocity obstacle with an additional ex-
clusion range for maneuvers that were said to be non-compliant with COLREGS.
Image is Figure 10 from [45].

Shah [66] used a model-predictive trajectory planner with A* and velocity obsta-

cles in a “5D” state space (X,Y, speed, heading, time) to find a feasible control space as

well as a contingency control space for emergency reactions in case of a non-compliant
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vessel. This approach looked for the least cost from a given weighting scheme and

used adaptive control action primitives with velocity obstacles. Shah further claimed

“it may be in the USV’s best interest to actually breach COLREGS by turning left to

avoid a collision.” The necessity to avoid a turn to port when at risk of collision with

another vessel cannot be overemphasized. To characterize this breach of the Rules as

a best interest reflects an absence of real-world experience navigating the nuances of

Rules. Other authors continue to develop di↵erent algorithms for COLREGS-based

collision avoidance using velocity obstacles as the underlying collision checker. Leng

used velocity obstacles with mixed integer linear programming though a further com-

putation was used to include CPA range and time [54]. This additional calculation

was based on a single value for range discrimination. Future work from this author

claims to look at the environmental factors and increased algorithm e�ciency. Shah

claims that this study resulted in improved planner performance and lower incidence

of collisions compared Kuwata’s velocity obstacle-based COLREGS planner [45, 46].

Specifically, Shah claims that the deliberative planner has significantly fewer col-

lisions than Kuwata’s velocity obstacle-based planner primarily due to the lack of

consideration of vehicle dynamics and motion of contact vessels. To make this state-

ment definitively, however, consideration must be given to the objective construction

of experiments to remove other variables. The only variable that was consistent

seemed to be the number of vehicles interacting. There was no consistency shown for

any other variables including geometry of encounters, speed of encounters, applicable

COLREGS rules at the time of interaction, range until first action, range of required

action, and priority of collision avoidance with respect to other mission parameters.

A more in depth analysis of these variables and their a↵ects on both track e�ciency

and collision percentage is detailed in [93] using a CPA-based approach rather than

velocity obstacles. Shah [67] later expands this to adaptively scale motion primitives

during the search for a trajectory based on a tra�c congestion metric.
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2.7 Closest Point of Approach (CPA) Collision Avoid-

ance Algorithms

Explicit CPA calculations were used to demonstrate COLREGS-based collision avoid-

ance by Benjamin et al. using on-water autonomous testing [4, 5]. Benjamin’s work

avoided brute force CPA calculations by invoking interval programming to sample

the underlying decision space [3]. Further testing using explicit CPA calculations was

demonstrated for an ocean-going catamaran in [24]. Choi et al. used a CPA range

based algorithm to determine collision likelihood for a single fixed collision range

threshold with multiple unmanned aerial vehicles [14]. Adherence to the Rules of the

Air protocol was not addressed.

Rather than “transform[ing] a single dynamic planning problem into m static

problems,[27]” explicit quantification techniques maintain the single dynamic prob-

lem for each contact pair. With the advances of computational power and sampling

algorithms [7] since Fiorini introduced velocity obstacles, use of these more informa-

tive techniques are now available to onboard payload computers in real time.

Closest point of approach (CPA) based continuous decision space methods main-

tain the problem in the dynamic domain for computation of an exact value of CPA

range, time, pose, and other desired information for each contact for each point of

interest in the velocity space. By reasoning about exact numeric values rather than

a boolean, the CPA method allows for consideration of a more decision-rich velocity

vector space. When entering a multi-contact collision avoidance situation possibly

with multiple competing mission objectives, known values of utility and risk can be

incorporated to allow for more informed determination of the velocity vector.

Velocity obstacles are excellent for path following scenarios where the objective

is to “follow a pre-defined path, which only involves a spatial constraint [11].” Us-

ing RRTs, several authors have achieved path tracking where the objective includes

temporal data along the pre-defined path. For missions that are more complex than

successive waypoint traversal, real-time path creation is necessary often with mul-

tiple competing inputs. One example of a real-time path creation problem for an
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autonomous surface vessel is acoustic-based target tracking of a submerged contact.

Based on the complex nature of localization and tracking of an underwater target

coupled with the inherently uncooperative relationship and additional complications

of honoring the protocol constraints of collision avoidance with other surface vessels,

a waypoint traversal of global path planning is infeasible. When considering the use

of evolving tactics, “a combination of deliberative, reactive, and reflexive path plan-

ning is required [9].” Rather, real-time local path planning that can appropriately

account for all mission, navigation, and protocol-based collision avoidance constraints

has lagged in the literature.

2.7.1 Real-Time, Non-Brute Force Methods: Interval Pro-

gramming (IvP)

CPA-based collision avoidance algorithms are possible because of su�cient advances

in sampling techniques within the last decade. Representing the entire decision space

using brute force calculations rather than an intelligent sampling algorithm would

result in extreme ine�ciencies. Interval programming (IvP) provides an algorithmic

approach to appropriately sample a decision space without the ine�ciencies of brute

force techniques. This sampling of the underlying decision space allows the expanded

state space precision without sacrificing computational capabilities.

IvP constructs a set of piecewise linearly defined IvP pieces that represent the por-

tion of the objective function that underlies each piece. By adjusting the coarseness

of the overall sample, e�ciency can be gained. By locally refining pieces of insu�cient

fit by constructing additional pieces from further sampling, a more accurate approx-

imation to the underlying function is realized without compromising the e�ciency

gains.

The interval programming (IvP) model uses piecewise linearly defined objective

functions that may represent only an approximation of an underlying objective func-

tion [3]. These functions are then searched through the combination space of pieces

rather than through the actual decision space thus freeing the algorithm from form
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assumptions and guaranteeing global optimality within the limitations of any ap-

proximation errors during formation. Techniques to produce accurate and e�cient

piecewise linear approximations for objective functions are more thoroughly discussed

in [3–5, 8].

The interval programming model assumes that each decision variable within the

decision space is finite, uniformly discrete, and consists of known upper and lower

bounds. For the course-speed decision space of collision avoidance, this model fits

well: upper and lower bounds of both decision variables are known (✓ 2 [0�, 360�)

and v 2 [0, vmax]); the decision space can be considered uniformly discrete (e.g.,

courses resolved to 0.5� precision); and, the decision space for each decision variable

is therefore finite. The overall multi-variable decision space is also therefore finite

and uniformly discrete. Little to no loss is assumed in the fidelity of the problem

by assuming these uniformly discrete decision steps within each variable: to order a

course or speed of greater precision is both unnecessary and wasteful of computational

resources [3].

A proper IvP problem requires two components: IvP pieces and IvP functions.

IvP piece construction uses the techniques shown in Equation (2.11) for rectilinear

pieces where edges are parallel to the variable axes. IvP allows non-rectilinear pieces

to be used as well by including the evaluation of some function f(x, y), for example,

as part of the interior function as shown in Equation (2.12). Each IvP piece is defined

by upper and lower bounds for each decision variable and an interior function using

the notation first described in [8].

As detailed in [3, 8], an IvP function has several representational restrictions

including: each point in the decision space is contained in at most one piece, each

piece is given by one set of boundary intervals for each decision variable, and each

piece has a linear interior function used to evaluate each point in that piece. Any

point not contained in a piece is considered infeasible. The assumption of a uniformly

spaced decision space does not imply uniform distribution of pieces nor uniform shape

of pieces [3].
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rect(i) = mxix + myiy + ci (2.11)

x�
i  x  x+

i

y�
i  y  y+

i

nonrect(i) = mxix + myiy + mfif + ci (2.12)

x�
i  x  x+

i

y�
i  y  y+

i

f�
i  f(x, y)  f+

i

An IvP problem is then formed by a collection of IvP functions (one per objective

function) and their associated priority weights. The IvP functions reflect the design

intentions that best realize the desired outcome of the behavior over each course-speed

pair while the priority weight accounts for each function’s relative importance to the

vehicle’s overall goal with account for appropriate state and environmental context.

The IvP model can lead to a natural tendency to discuss brute force techniques to

exhaustively search a decision space for a globally optimal solution. These methods

however do not scale especially when considering the multi-contact collision avoidance

problem without leveraging computing power disproportionate to the vessel’s appro-

priate outfitting. IvP, however, has guaranteed global optimality while balancing

accuracy, speed, and flexibility [8]. While full brute force methods fall short in speed,

simplified brute force methods fall short in accuracy, and analytical methods fall short

in flexibility, IvP o↵ers an appropriate balance of accuracy, speed, and flexibility. To

achieve this balance, IvP problems must be accurate and e�cient for both creation

and solution phases. Additional details on these properties and the techniques used
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to e�ciently solve IvP problems are found in [8].

2.8 CPA Techniques in Practice

Choi examined reactive collision avoidance for multiple mid-air UAVs using a CPA-

based collision avoidance algorithm [14]. Choi described this work as a reactive nav-

igation method to inform the previously planned path. Choi’s collision avoidance

utility function was designed based on a single range threshold. Choi used a mid-air

collision “miss distance” to determine his proximity to the a priori defined safety

radius as shown in Figure 2-8. Choi used disc geometry for all aircraft and neglected

the protocol requirements for aerial vehicles (Rules of the Air). Multiple vehicles

were considered simultaneously using weighted cost objective functions. Numerical

simulations were performed for various 1-on-1 and 2-on-1 encounters showed positive

results. A simulation of up to 8 simultaneous simulated aircraft demonstrated a star-

like pattern was possible without collision or altitude separation, though protocol

constraints were not invoked.

Figure 2-8 Choi used a safety area based on fixed range of ownship (airplane). Image
is Figure 2 from [14].

Benjamin et al. first demonstrated on-water experimentation with CPA-based

techniques under protocol constraints [4, 5]. Two vehicles were simultaneously un-
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derway for waypoint-driven missions when they encountered each other. Benjamin

demonstrated successful maneuvers that honored the protocol requirements of COL-

REGS. These single contact interactions were demonstrated with up to five on-water

encounters while obeying COLREGS in [93]. Use of explicit quantification of CPA

to examine safety and e�ciency of the resulting maneuvers was described in [95].

This study of safety and e�ciency was the first to give design e↵ects based on input

parameters for safety and e�ciency while obeying a protocol constraint.

CPA-based collision avoidance techniques such as that used in [4, 5] rely on range

calculations in the dynamic planning space based on geometric projection of all ve-

hicles in time. The CPA ranges for each candidate course-speed pair are retained

for each contact with which ownship has a potential interaction within a finite and

prescribed look ahead time.

2.9 COLREGS Compliance in the Literature

Non-protocol based methods of collision avoidance are inconsistent with international

law and are therefore insu�cient as advances in marine autonomy intended for inclu-

sion in human-present vessel environments that operate exclusively under protocol-

based rules. These non-protocol based methods might be useful in specific condi-

tions which are isolated from interactions with the general human-present marine

environment but are inherently unable to be applied in human-present ocean-going

collision avoidance applications where the COLREGS prevail. They therefore do not

contribute to the human-robot integration of autonomous collision avoidance in a

general practical sense, but rather add value to components that may be used by

COLREGS-based solutions. Further, [93] showed that protocol constraints result in

more safe, e�cient, and predictable maneuvers than non-protocol constrained colli-

sion avoidance.

Other studies claim to be “COLREGS-compliant” but suggest allowing explicit

violations of the Rules in certain scenarios. Violations of the Rules such as turning

to port when a risk of collision exists [66] call into serious question the validity of
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the study’s underlying collision avoidance algorithms and the researcher’s experience

with the Rules. Experienced mariners would be highly unwilling to turn to port

when a risk of collision exists especially in a more complex multi-interaction scenario

where a turn to port sets into motion a cascade of reactions by other vessels. Proper

action when a turn to port seems attractive is often to slow or back down rather than

alter course to port. This decision to slow a vessel’s forward speed is also prudent

for more complex situations such as multiple rules being concurrently relevant where

direct communication is unavailable to resolve other vessels’ intentions or more time

to analyze a situation might reduce the risk of a hasty and dangerous maneuver. Few

authors have examined the tradespace of taking way o↵ a vessel rather than finding

a least-cost deviation from the mission preferred velocity vector.

Many collision avoidance algorithms have been designed for autonomous marine

decision making by those with little real-world ship driving experience. The Rules are

complex, vague, and full of nuances that must be considered; however, the true intu-

ition required to appropriately invoke the Rules requires not only science but an art

learned from proper application of these more nuanced scenarios while participating

in real-world ship driving.

Collision avoidance protocols are prevalent in many physical domains where ex-

plicit negotiation or communication is either impractical or infeasible. In common

practice, these protocols are often communicated simply as having “right of way.” In

ground transit, drivers are taught to yield to the driver on the right when arriving

simultaneously at an intersection with stop signs [18]. Airplanes use the Rules of the

Air to determine right of way and appropriate maneuvers when not under active con-

trol of an air tra�c controller [40]. Surface vessels similarly abide by the COLREGS

to determine right of way and appropriate maneuvers without explicit communica-

tion [84]. Special rules within each protocol have evolved from real-world feedback;

one such example is the tra�c separation schemes of COLREGS when entering or

exiting a harbor [17, 82]. While the Rules of the Air and COLREGS are largely sim-

ilar, di↵erences in the physical domains manifest as di↵erences between the collision

avoidance protocol requirements such as maintaining altitude separation.
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Collision avoidance using COLREGS has been incorporated on autonomous vessels

using various approaches since first introduced in [5]. Throughout maritime literature

discussing COLREGS, the term “compliance” arises in varying context and mean-

ing. Power-driven collision avoidance implementations of COLREGS (Rules 13-18)

dominate the COLREGS-related literature. Other non-collision avoidance rules of

COLREGS arise as being compliant within the literature when discussing acoustic

detection and light configurations [20, 28].

Testing to date in the literature does not demonstrate what the term compli-

ance means in any quantifiable fashion. Several authors claim compliance with these

protocols without specifying the degree or scope of compliance [45, 66, 93]. In [45],

the head-on rule was shown to appropriately eliminate all turns to port. It did not,

however, appear to prefer courses that were “readily apparent” (COLREGS Rule 8)

when finding a turn to starboard. Case law defines apparent course maneuvers to

consist of a minimum of 35� turn while common practice often requires no less than

30� of heading change [1, 17, 85, 86]. Courts have found that head-on maneuvers with

insu�cient turns (i.e., not readily apparent) are in fact non-compliant and, when a

collision occurs, partly to blame. The concern with readily apparent maneuvers rests

with the ambiguity of a series of successive subtle (i.e., small) course maneuvers that

are not easily recognized by other vessel operators. Therefore course maneuvers are

required to be large enough to be easily recognized and allow for response by other

vessels in vicinity. With velocity vector cost functions that favor maintaining course

and speed [45, 90], improper selection of costing weights may easily result in less than

apparent course changes. Other authors consider breaches of COLREGS that “may

be in the USV’s best interest” such as turning to port to avoid a collision when ex-

plicitly prohibited by the COLREGS [66]. Many authors such as [93] simply claimed

COLREGS compliance without any quantification or definition of scope.

Case law and common practice greatly influence the requirements of COLREGS

despite not being found anywhere within the written rules. Examples of on-water col-

lisions and case law provide relevant insight into nuances of the COLREGS and their

evolution over the years. Areas for increased scrutiny in autonomous collision avoid-
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ance solutions can be derived from problematic past encounters of human ship drivers.

The intentional vagueness of the COLREGS including their underlying meaning as

derived from the evolution of protocol-constrained collision avoidance in maritime

environments, analysis of real-world examples, critiques of experienced mariners, and

relevant rulings from Courts of Admiralty are presented in detail in [1, 17, 33, 82,

100] with examples presented as appropriate in this thesis.

2.10 Protocol Evaluation

The literature in general currently lacks any means of objectively quantifying a degree

of compliance a vessel has with COLREGS. The Rules give guidance and requirements

under many situations, though they are intentionally written quite vaguely to capture

the human component of ship driving and to allow the master of a vessel to make his

or her best judgment as to the appropriate maneuver. However, the master’s intuition

does not always succeed and collisions inevitably occur. There is no scorecard or other

means of determining a numeric value to relate a vessel’s actions with how consistent

a maneuver or series of maneuvers is with respect to the intention of the Rules. That

is, there is currently no means of scoring other than whether a vessel was or was not

in a collision – simply a 0 or 1.

However, the majority of literature that includes collision avoidance often deviates

from track to mitigate a collision risk then either returns to the a priori determined

path or computes a new path to the objective end point once the collision risk has

passed. There is no existing standard for evaluation or reasoning about higher or-

der requirements that consider collision avoidance in the larger local reactive path

planning optimization problem.

A certification scheme for protocol-based collision avoidance currently does not

exist. This requires several components to evaluate rule compliance, safety, and

e�ciency. A means to allocate a numerical grade to the performance of a vehicle’s

compliance with the rules is necessary. A means to determine the degree to which the

vehicle operated safely must be determined and incorporated into this score. Taking
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excessive liberty to stretch the intention of the rules should not be rewarded; likewise,

making overly conservative maneuvers that might delay or possibly increase risk to

other vessels must also be avoided. While perhaps not an explicit violation of any

rule, certain behaviors are inconsistent with normal maritime operations and must

be penalized in order to allow a timely, safe, and natural evolution of autonomously

controlled vehicles into the human-present marine domain.

2.11 Summary of Collision Avoidance Testing

Much of the collision avoidance testing in the literature can be categorized as prelim-

inary steps toward autonomous vessel interactions using one or more of the following:

• experiments are limited to single vehicle pair interactions (this includes contacts

that may be lumped into being e↵ectively one contact)

• canonical encounter geometries are the norm with nearly parallel or perpendic-

ular tracks

• opposing vessels are often predictably compliant or simply maintain course and

speed

• non-protocol based methods are used with disregard to established protocols

such as COLREGS

• human interactions and emulation are the exception and rarely mentioned

Many studies perform testing exclusively in simulated environments without val-

idating their results with on-water testing. On-water testing is key to demonstrating

that laboratory results will be realizable in real-world environments. Further compli-

cating the literature is the absence of an objective method or algorithm to evaluate

COLREGS with quantifiable output.

A more broad comparison of literature can be summarized in Table 2.1. CPA

methods and “state of the art” velocity obstacle methods generally refer to marine

literature. UAV collision avoidance methods in the literature predominantly rely on
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velocity obstacle techniques while largely ignoring their protocol requirements of [40].

Similarly, the Google Car provides an example of in-field experimentation performed

on autonomous ground vehicles with human interaction.
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Chapter 3

Protocol-Constrained Collision

Avoidance Objective Functions

This chapter1 examines autonomous collision avoidance algorithms2 and shows the

generalization of the velocity obstacle using CPA-based methods. Section 3.1 de-

scribes multi-objective optimization formulation including the direct application to

marine autonomy. Section 3.2 describes the closest point of approach method. Sec-

tion 3.3 introduces the full CPA quantification algorithm and mathematically shows

its generalization of the velocity obstacle currently used in state of the art systems.

Section 3.6 introduces the course-speed decision ratio and the patience parameter to

adapt primary mission objective function designs under collision avoidance constraints

to maximize the performance metrics of Section 4.1. The concepts presented in this

chapter create a foundation for the evaluation construct presented in Chapter 4.

3.1 Objective Function Construct

The construct of multi-objective optimization applies naturally to multi-contact, com-

plex mission scenarios in marine autonomy. Each of a vehicle’s several mission and

navigation constraints maps to its own objective function. Similarly, each collision

1Portions of this chapter first appeared in [93].
2Appendix B describes the notation used throughout this chapter.
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avoidance vehicle pair maps to a unique objective function designed to adhere to

the appropriate protocol constraints. This section describes the application of multi-

objective optimization and objective function design. This section further describes

the design of the protocol-constrained collision avoidance objective functions includ-

ing their utility and priority weight functions within the context of the larger multi-

objective optimization problem.

3.1.1 Multi-Objective Optimization

Multi-objective optimization seeks a globally optimal solution allowing autonomous

decision makers to balance the many competing mission, navigation, and collision

avoidance objectives. Each instantiation of a behavior forms its own objective func-

tion that expresses the designer’s3 intentions while accounting for real-time environ-

mental and state conditions. Each objective function in turn has a priority weight

that mathematically represents its relative importance to the overall decision scheme.

A mathematical solver then finds the globally optimal solution vector that maximizes

the combined weighted utilities over the collective domain of each decision variable

according to the assigned priority weights.

The multi-objective optimization problem defined by Equation (3.1) determines a

globally optimal solution for the given objective functions. Each fi(x1, ..., xn) defines

the objective function for the ith of k active behaviors. The vector �!x represents a

candidate decision vector within the decision space. The vector
�!
x⇤ represents the

globally optimal solution of Equation (3.1). The evaluation of each fi at some can-

didate �!x gives a value for the candidate vector’s utility. The set of utility values

over the decision space defines the surface of each objective function. Each objective

function receives a priority weight wi (wi � 0) that represents the relative importance

of the ith behavior with respect to the overall system. Priority weights receive their

values from current environmental and state variables according to the designer’s poli-

3Throughout this thesis, the term designer refers generally to both the person creating the soft-
ware and the operator configuring a vehicle for deployment. Both of these entities make decisions
that directly a↵ect the decisions of the underlying autonomy.
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cies. A behavior in this context represents any one of the many competing priorities

of a vehicle; a behavior may also have multiple simultaneous instantiations. Each

instantiation then becomes active once its priority weight wi becomes positive.

�!
x⇤ = argmax�!x

k
X

i=1

(wi · fi(
�!x )) (3.1)

3.1.2 Marine Autonomy Objective Function Construct

Three primary decision areas are relevant to a human ship driver: mission, navi-

gation, and collision avoidance. These three decision areas comprise the primary

objective function types and allow expansion of Equation (3.1) to take the form of

Equation (3.2) with utility functions fi = {msni, navi, avdi}, respectively. Each of c

collision avoidance objective functions combines with objective functions for the m

missions and n navigational constraints to determine the optimal
�!
x⇤. Each type of

objective function requires specific consideration in design. Collision avoidance be-

haviors may rely on range at CPA (rcpa), time until CPA (tcpa), and contact pose (⇥)

to determine utility (Section 3.2).

�!
x⇤ = argmax�!x

✓ k
X

i=1

�

wi · fi(
�!x )
�

◆

= argmax�!x

✓ m
X

i=1

�

wmsn
i · msni(

�!x )
�

(3.2)

+
n
X

i=1

�

wnav
i · navi(

�!x )
�

+
c
X

i=1

�

wavd
i · avdi(

�!x )
�

◆

Decision Variables

Autonomous surface vessels require course and speed input resulting from a weighted

combination of objective functions. Each objective function may reason about one or

both of these variables. For other physical domains, altitude or depth decisions are
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made as appropriate. The course-speed pair forms a velocity vector �!x = h✓, vi that

represents candidate decisions within the decision space of the multi-objective opti-

mization problem. The vector
�!
x⇤ = h✓⇤, v⇤i represents the globally optimal solution

of Equation (3.2). With each iteration of the solver, the globally optimal velocity

vector passes
�!
x⇤ to the front-seat controller to drive the vehicle. With an appropriate

frequency of calculation4, the front-seat receives su�ciently updated orders allowing

for timely maneuvering and calculation for complex multi-contact scenarios. In the

case of autonomous surface vessels, the decision space �!x is defined as the combination

of feasible headings and speeds5, viz ✓ 2 [0�, 360�), v 2 [0, vmax], respectively. The

optimal �!x results in the highest utility of the combined weighted objective functions

and becomes the preferred vehicle maneuver
�!
x⇤.

Primary Mission Objective Functions

A mission behavior represents the overall primary purpose of a vessel’s actions less

any navigation or collision avoidance constraints. The utility function of each mission

takes the form of Equation (3.2) where fi = msni(✓, v) with some priority weight

wmsn
i corresponding to the ith of m mission priorities. Example primary missions

might represent some combination of the following:

• waypoint traversal with or without time of arrival constraints

• queuing or sensing of another vehicle (e.g., trailing or shadowing a submerged

contact or object while maintaining a certain range, angle, and/or speed o↵set)

• loitering in a pre-determined geographical area to collect data until a particular

state triggers a follow on action

The existence of multiple concurrent missions may quickly result in simultane-

ously competing objectives that must be weighed by the solver to determine the best

combination of priorities when selecting a single velocity vector. For example, the

4A typical iteration frequency for marine autonomy is ⇡ 4Hz
5Backing down with astern propulsion is possible for slowing. Making way in an aft direction

after slowing to a stop is not considered to occur at su�cient speeds to require altering the decision
space. A vessel is therefore only considered to reason about speeds between 0 and v

max

.
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desired course to steer a sensor toward a trailed contact could place the vessel on

a heading that forces the vessel to exit its allowed loiter area within a short period

of time. When adding navigation and collision avoidance constraints, the available

course-speed decision space may be significantly reduced.

Navigation Objective Functions

Safe navigation must remain a high priority to any reasonable vessel. Navigation ob-

jective functions must also allow for multiple competing behaviors. The utility func-

tion of each navigation behavior takes the form of Equation (3.2) where fi = navi(✓, v)

with some priority weight wnav
i corresponding to the ith of n navigational consider-

ations. A buoy chain (or other static obstacles available from a navigation chart)

might receive some variable scale of undesirability as range closes. Similarly, a con-

fining region might represent a Notice to Mariners for a closed area as published by

local maritime authorities. While not necessarily directly known when planning the

primary mission, the navigation objective functions must adapt to allow appropriate

consideration in situ. Within the scope of this research, all dynamic obstacles in-

cluding other vessels are included in the collision avoidance decision area. All static

obstacles fall in the realm of navigational constraints.

Collision Avoidance Objective Functions

Autonomous vessels must practice good seamanship to determine the appropriate ma-

neuvers that comply with the laws of the sea while avoiding collision with other vessels.

The concepts developed as part of this thesis apply generally to multi-contact collision

avoidance in protocol-constrained, complex multi-mission scenarios. As a specific in-

stantiation for testing and discussion, the international COLREGS for power-driven

collision avoidance are invoked as the primary collision avoidance protocol require-

ment within this thesis. The concepts of this thesis generally apply to other collision

avoidance protocols including those of other physical domains, though adaptation for

other appropriate decision variables such as depth or altitude could be necessary.

As described in Section 2.5, the velocity obstacle prevails as the current underlying
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means of quantifying safety of a candidate maneuver within state of the art marine

autonomy collision avoidance literature [26, 27, 45, 46, 66, 70, 71, 90, 92]. While

some collision avoidance algorithms allow consideration of a cost function for the

selection of feasible velocity vectors outside the excluded region, they rely on knowing

the a priori preferred velocity vector to achieve a given goal; this a priori preferred

velocity vector of the velocity obstacle algorithm is often based exclusively on primary

missions rather than including the collision avoidance input as another consideration

for optimization. By considering that a vehicle might have more than one competing

goal at any one time, a natural method for determining the desired velocity vector is to

use multi-objective optimization. By further considering that each collision avoidance

vehicle pair can be mapped to its own objective function, multi-objective optimization

empowers designers to shape mission-specific collision avoidance algorithms while

guaranteeing globally optimal velocity vector selection. This notion decouples the

velocity obstacle’s biasing of a course-speed decision toward the contact-free mission-

preferred choice of velocity vectors; instead, it allows a decision based without undue

bias for the mission. To achieve this in a meaningful way, the developments of this

research are necessary to give non-stepwise utility functions to find advantageous

compromise when selecting the globally optimal course-speed vector.

The utility function of each collision avoidance behavior takes the form of Equa-

tion (3.2) where f = avdi(✓, v) with some priority weight wavd
i . Equation (3.3) demon-

strates three examples of arbitrary utility functions for collision avoidance behaviors.

The collision avoidance utility functions listed include range at CPA, time at CPA,

and pose at CPA as parameters for returning a corresponding utility value. In proto-

col constrained collision avoidance, the governing protocol restrictions (R) must also

be applied as shown in Section 3.3.56. Further, time-based derivatives of these values

may prove worthwhile of inclusion in future work.

6The governing protocol restrictions assumed in this thesis are the COLREGS. The notation R
references protocol restrictions generally as well as the application of the COLREGS rule set for
maritime surface vessels (here, Rules 13-17). Appendix A references details of the protocol rule set
used in this work while Appendix B lists additional notation used for specific rules within the rule
set.
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avd1 = avd(rcpa) (3.3)

avd2 = avd(rcpa, tcpa)

avd3 = avd(rcpa, tcpa, ⇥cpa)

Priority Weight Design

Priority weight wi mathematically describes the relative importance of an objective

function with respect to the overall multi-objective optimization problem. Some

objective functions might receive a constant priority weight giving a static importance

to the decision space. Other objective functions might have a varying priority weight

whose value depends on state and environmental variables according to some policy.

Priority weight can take many forms including step, linear, quadratic, and other

arbitrary function shapes.

Equation (3.4) demonstrates three example priority weight functions that a de-

signer might choose for a collision avoidance behavior depending on the overall mission

profile. Collision avoidance priority weight often appears as some combination of in-

stantaneous7 range (r), instantaneous range rate (ṙ), and range and/or time at CPA

(r�0
cpa, t

�0
cpa) on current trajectory �0.

w1 = w1(r) (3.4)

w2 = w2(t
�0
cpa)

w3 = w3(r, ṙ, r
�0
cpa, t

�0
cpa)

7Instantaneous or current values of variables appear without subscript. Variables appearing with
subscripts of “cpa” represent values at the time of CPA (Section 3.2). Variables appearing with “0”
subscripts represent values at the time of detection (t = 0). Detailed explanation of notation can be
found in Appendix B.
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The priority weight for collision avoidance scenarios expresses the designer’s in-

tentions on when and to what degree each collision avoidance behavior influences the

overall velocity vector selection. Priority weight must be designed su�ciently high for

any collision avoidance scenario to ensure safety and compliance with law and cus-

toms while not unnecessarily taking action prematurely to the detriment of mission

performance.

Back-Seat Computing

Recent trends in marine autonomy allow for a division of processing consisting of

front-seat and back-seat computers. This division allows for decoupling of the plat-

form from the autonomy using a common interface. Actuators are controlled by the

front-seat based on course-speed decisions passed from the back-seat8. The back-

seat computer receives sensor and navigation information from payloads (e.g., GPS

receiver, RADAR, etc.) either directly from a payload computer or through an inter-

face with the front-seat computer. The back-set determines the optimal course-speed

pair from solving the multi-objective optimization problem of Equation (3.2) and

sends driving orders in the form of a course-speed vector to the front-seat. This con-

cept allows a modular back-seat computer to be quickly deployed in vehicles with

di↵erent maneuvering characteristics. This naturally supports an autonomy struc-

ture based on all behaviors reasoning about a common set (or subset) of decision

variables – in this case, course and speed. The designer of each underlying objective

function must account for the appropriate state variables, environmental variables,

and configuration parameters to achieve the desired actions by the vehicle. Within

the framework of this research, an objective function results from each behavior that

has a positive priority weight.

Nominally one or more behaviors exists for each of three major decision areas: mis-

8Back-seat autonomy was first proposed by Dr. David Battle at MIT and first run on a Bluefin-
21 R� in Monterey Bay in August 2006. Previously, third party autonomy software was typically
run on the vehicle manufacturer’s main vehicle computer. Payload computers primarily existed to
process sensor data of 3rd party sensors.
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sion, navigation, and collision avoidance. Each active behavior produces a piecewise

linear objective function. A multi-objective solver determines the optimal solution of

Equation (3.2) on each iteration. During each iteration of the solver, a single optimal

course-speed output vector results. This single course-speed output is guaranteed to

be globally optimal9 regardless of the underlying function form vis-à-vis any error

in representing the underlying objective functions with piecewise linear approxima-

tions [3].

The interchangeability of the back-seat computer leads to the assumption of lim-

ited kinematic prediction for objective function design and creates a logical opening for

future work incorporating kinematic prediction in the collision avoidance algorithms

discussed throughout this chapter10. For autonomous marine collision avoidance, the

selection of course-speed decision variables independent of controller input or actua-

tor states is appropriate given the number of decision iterations achieved relative to

the development and resolution of the collision avoidance encounter.

For the purpose of this thesis, a primitive Dubins-like turn radius limit is imposed

on the design space. A Dubins-like turn radius appropriately models a human-like de-

cision space where a watch o�cer might decide on a course and speed within the turn

radius limitations of a full rudder. A human ship driver does not typically consider

small di↵erences in actuator position such as whether to order a 14� rudder rather

than a 15� rudder. Rather, unless a situation occurs resulting in particular urgency,

a standard rudder order is typically issued to achieve the desired course commen-

surate with current speed. The turn radius maneuvering limitation value is quickly

configurable in the back-seat to properly match the vehicle’s physical limitations.

3.2 Closest Point of Approach

Closest point of approach (CPA) is defined as the point on ownship’s track where the

range to the contact reaches its minimum value of the encounter. While many factors

9Global optimality refers to the instantaneous solution of Equation (3.2) rather than the time
horizon of the entire mission.

10Future work is collectively addressed in Section 7.2.
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are important to the CPA vernacular, the two most important values are the range

between vessels at CPA (“range at CPA”, rcpa) and the time until or at which CPA

occurs (“time of CPA”, tcpa).

Range at CPA is often colloquially referred to simply as “CPA.” CPA-based al-

gorithms project vehicle trajectories in spatial coordinates rather than velocity space

to compute the closest point of approach range as shown in Equation (3.5). While

CPA as a general concept has been used as an intuitive component of human driving

of both ships and airplanes, the concept has been largely avoided in the autonomous

collision avoidance literature because of the velocity obstacle’s ease of implementation

and relatively low computation load. Equation (3.5) was first introduced in [8] and

more thoroughly described in [93] using Equations (3.6) through (3.12). In Equa-

tion (3.5), ownship and contact position ((x, y), (xc, yc)), course (✓ and ✓c), and speed

(v and vc) determine range at CPA within a specified time horizon thorizon.

rcpa = rcpa(xc, yc, ✓c, vc, x, y, ✓, v) (3.5)

=
n

p

(xc � x)2 + (yc � y)2
o

cpa

= argmin
time

n

p

k2 · t2 + k1 · t + k0

o

for 0  t  thorizon
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k2 = v2 + v2
c � 2 · sin(✓) · sin(✓c) · v · vc � 2 · cos(✓) · cos(✓c) · v · vc (3.6)

k1 = 2 · sin(✓) · v · y � 2 · sin(✓) · v · yc (3.7)

� 2 · sin(✓c) · vc · y + 2 · sin(✓c) · vc · yc

+ 2 · cos(✓) · v · x� 2 · cos(✓) · v · xc

� 2 · cos(✓c) · vc · x + 2 · cos(✓c) · vc · xc

k0 = (y � yc)
2 + (x� xc)

2 (3.8)

Equation (3.9) results from substituting Equations (3.6), (3.7), and (3.8) into

Equation (3.5). By taking the partial derivative of Equation (3.5) with respect to

time, and equating to zero (Equation (3.10)), the critical point for minimized range

is determined. Time of CPA is found according to Equation (3.11) which can then

be substituted into Equation (3.5) to give Equation (3.12). This value of CPA range

found at the critical point in time is computed for all sampled heading and speed

combinations at a nominal frequency of several times per second. In the case of

k2 = 0, Equation (3.11) has a denominator of zero and Equation (3.6) reduces to

Equation (3.13). In the special case of v = vc and ✓ = ✓c, tcpa is set to 0 for practical

purposes since the vessels are e↵ectively at a current and persistent CPA [8]. For

the case of tcpa < 0, CPA has already occurred, tcpa is set to 0, and range will

continue to open. For the case of tcpa > thorizon, tcpa assumes the value of thorizon as

a conservative approximation. To avoid brute force techniques while appropriately

and su�ciently sampling the decision space, an intelligent sampling technique must

be used (Section 2.7.1).
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r2cpa(✓, v, t) = k2 · t2 + k1 · t + k0 (3.9)

@

@t
(r2cpa) = 0|t=t

cpa

(3.10)

tcpa =
�k1

2 · k2
(3.11)

rcpa(✓, v, tcpa) =
q

k2 · t2cpa + k1 · tcpa + k0 for tcpa 2 [0, thorizon] (3.12)

vc

v
= sin(✓) · sin(✓c) + cos(✓) · cos(✓c) (3.13)

±
p

2 sin(✓) sin(✓c) cos(✓) cos(✓c) + 2 cos2(✓) cos2(✓c)� cos2(✓)� cos2(✓c)

= 1 ±
q

cos2(✓) · (2 · sin2(✓) + 2 · cos2(✓)� 1� 1)), 8 ✓ = ✓c, k2 = 0

= 1 ±
p

0 = 1, 8 ✓ = ✓c, k2 = 0 (3.14)

) ✓ = ✓c & v = vc =) k2 ⌘ 0 =) tcpa =1

In addition to rcpa and tcpa, a third important value of CPA calculations is pose

(“pose at CPA”, ⇥cpa). Pose in this context refers to the combination of relative

bearing (�) and contact angle11 (↵) as shown in Equation (3.15). Pose at CPA is

therefore not a single quantity, but rather a term to collectively consider relative

bearing and contact angle in the context of each other. The pose at time of sighting

or detection (⇥0) often dictates which rules of a protocol apply. The pose at CPA

(⇥cpa) when combined with rcpa yields considerable insight into the degree of risk

at tcpa. Equation (3.16) shows absolute bearing of a contact relative to ownship

11Contact angle refers to the relative bearing of ownship as seen from the perspective of the
contact in question. The term originated in World War II submarine operations under the names of
“angle on the bow” and “target angle.” Contact angle serves as a clear means to distinguish between
the two relative bearings: one from the perspective of ownship, the other from the perspective of
the contact. Relative bearing (�) henceforth refers to ownship’s relative perspective of the contact;
contact angle (↵) refers to the contact’s relative perspective of ownship, or in other terms, relative
bearing as viewed from the contact. See [25, 87]
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(bngos
cn). Equation (3.16) accounts for the special cases that would otherwise make

the denominator of the inverse tangent function zero and ensures a north-up, degree

based system. Equation (3.17) relates the bearing of ownship from the perspective of

the contact (bngcn
os ); this is defined equal to the absolute bearing of the contact from

ownship plus 180�. Equation (3.18) shows relative bearing � of a contact relative to

ownship using ownship’s bow as 0�. Contact angle ↵ takes the form of Equation (3.19).

Because ↵ represents a ship driving term for the number of degrees di↵erence from

the contact’s bow pointing ownship as seen from ownship’s bridge, the domain is

conventionally ↵ 2 [�180�, 180�).

⇥ ⌘

2

4

↵

�

3

5 (3.15)

bngos
cn =

8

>

>

>

>

>

>

>

>

>
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>
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>

>

>

>

>

>
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>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

0� (x = xc) and (y  yc)

180� (x = xc) and (y > yc)

tan�1

0

@

|y � yc|
|x� xc|

1

A ·

0

@

180�

⇡

1

A+ 90� (x < xc) and (y  yc)

90� � tan�1

0

@

|y � yc|
|x� xc|

1

A ·

0

@

180�

⇡

1

A (x < xc) and (y > yc)

tan�1

0

@

|y � yc|
|x� xc|

1

A ·

0

@

180�

⇡

1

A+ 270� (x > xc) and (y  yc)

270� � tan�1

0

@

|y � yc|
|x� xc|

1

A ·

0

@

180�

⇡

1

A (x > xc) and (y > yc)

(3.16)

bngcn
os ⌘ bngos

cn + 180� (3.17)
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relbngos
cn = � =

8

>

<

>

:

bngos
cn � ✓ (bngos

cn � ✓) � 0�

360� + bngos
cn � ✓ otherwise

(3.18)

� 2 [0�, 360�)

relbngcn
os = ↵ =

8

>

<

>

:

bngcn
os � ✓c (bngcn

os � ✓c) � 0�

360� + bngcn
os � ✓c otherwise

(3.19)

↵ 2 [�180�, 180�)

By substituting Equation (3.17) into Equation (3.19) and subtracting Equation (3.18),

Equation (3.20) results. Equation (3.20) allows for e�cient determination of contact

angle when courses and relative bearing are known without performing the calcula-

tions of Equation (3.19). The temporal derivative of Equation (3.20) yields Equa-

tion (3.21) for ↵ and � as parametric functions of time. For the special case of

constant course (including linear track projections), Equation (3.21) reduces to Equa-

tion (3.22). That is, when under a constant course or assumed linear track for both

contacts, the relative bearing rate and relative contact angle rate are numerically

equivalent.

� � ↵ = ✓c � ✓ � 180� (3.20)

�̇ � ↵̇ = ✓̇c � ✓̇ (3.21)

�̇ = ↵̇, for ✓̇c = ✓̇ = 0 (3.22)
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3.3 Full CPA Quantification Algorithm

Direct computation of CPA quantities results in explicit knowledge of rcpa, tcpa, and

⇥cpa for all candidate (✓, v) pairs. Detailed analysis can then be performed on range

at CPA, pose, and times from several candidate course-speed pairs representing the

entirety of the decision space to make an objective function fully defined for each

point in the function domain (i.e., decision space) using a continuous utility mapping.

Algorithms such as velocity obstacles e↵ectively return a point along a step function

that defines the candidate as either allowed or excluded without amplification; CPA-

based techniques allow for creation of a continuous, non-stepwise function to map

these CPA range, time, and pose values to utility values.

Typical approaches using velocity obstacles classify each candidate maneuver as

either safe or unsafe [45, 66]. This single range threshold technique eliminates large

swaths of feasible decision space that conflict with the chosen safety range thresh-

old. For algorithms invoking a collision avoidance protocol, these restrictions further

reduce the feasible decision space often in another stepwise manner. If a candidate

maneuver evaluates to a range less than the designated “safe” range or if the candi-

date maneuver would violate a protocol constraint, it is eliminated from the feasible

solution space. VO implementations commonly employ a heuristic to choose the least

cost deviation from the primary mission’s desired velocity vector [45]. If the primary

mission’s desired velocity vector is not contained in the feasible solution set, then

most literature heuristically chooses the least cost deviation from the desired velocity

vector in velocity space to a neighboring feasible solution according to the designer’s

policies. This least cost feasible solution becomes the chosen course-speed pair.

The full CPA quantification algorithm evaluates all possible course-speed deci-

sions either directly or interpolated between two nearby directly evaluated decisions.

Velocity obstacles by definition operate in velocity-based coordinates as shown in Sec-

tion 3.3.1 [27]; velocity obstacles therefore have no direct knowledge of (x, y) or pose

as a function of time, including time of CPA. CPA algorithms by definition operate

in spatial coordinates and have full access to all desired quantities including at time
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of CPA. Therefore, any velocity obstacle algorithm desiring information (i.e., time,

range, or pose at CPA) beyond whether a maneuver is safe require additional direct

calculations for each desired candidate maneuver. The advances of computational

power and improvements in intelligent sampling algorithms since the introduction of

the velocity obstacle allow for su�cient decision space sampling within the required

iteration frequency (typically 4Hz) using an onboard payload-size12 computer. A key

advantage of full CPA evaluation includes interpolation of unsampled points in the

decision space as discussed in Sections 2.7.1–3.4. By using a full CPA sampling tech-

nique, information about time, range, relative bearing, and contact angle at CPA

for each candidate maneuver may be incorporated into the decision making process.

This enables a feasible yet penalized (lower utility) region of decision space that would

otherwise be infeasible using velocity obstacle techniques. The full CPA sampling be-

comes especially beneficial in cases of dense contact situations or when mission rules

compete or conflict with each other.

3.3.1 Velocity Obstacle

By considering a pre-defined stando↵ range from other vessels whose solution (posi-

tion, course, and speed) is known, the transformation of the problem into velocity

space allows for an exclusion wedge (velocity obstacle) to be drawn for each vehicle

pair. By using any of the preferred types of velocity obstacle algorithms of Section 2.5

(e.g., velocity obstacles, generalized velocity obstacles, reciprocal velocity obstacles,

generalized reciprocal velocity obstacles, etc.), any given ownship velocity (course and

speed) that falls into the exclusion region is assumed to result in a collision. A ve-

locity obstacle combination outside the exclusion region results in the solution being

deemed safe. When a velocity obstacle-based approach considering multiple collision

agents returns a null solution space, a heuristic algorithm to relax the excluded re-

gions is required to obtain a non-excluded solution; this is often accomplished not

12Current on-board payload computer specifications include a 900MHz quad-core ARM Cortex-A7
CPU, 1GB RAM, 1200mA load at 5VDC, 85.60mm x 56mm x 21mm space requirement, mass ⇡
45g, and cost ⇡ $35USD. Appendix C discusses CPU loading details.
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by direct assessment of a candidate maneuver’s CPA solution but rather on a factor

based on the time to collision and deviation from an obstacle-free mission-desired

velocity vector.

While selection of this nearest neighbor guarantees optimality of the given prob-

lem statement, it does not necessarily ensure selection of the most human-realistic

choice in the context of non-mission specific considerations. In situations such as mul-

tiple near-term collision encounters, prioritization must often disregard the mission-

preferred solution to allow the contact picture to resolve before proceeding. For

collision avoidance scenarios that are heavily constrained by a dense contact picture

and competing protocol requirements, evaluation techniques using a single fixed col-

lision range can become over-constrained. Time to CPA (tcpa), pose at CPA (⇥cpa),

COLREGS rule compliance (R), spatial track e�ciency (⌘dist), temporal e�ciency

(⌘time), Safety (S), and exact range at CPA (rcpa) all importantly contribute to the

risk decision of a human operator. In contact-dense scenarios, these considerations are

arguably more important than the amount of deviation required from the previously

desired course and speed.

Designers often incorporate additional margins into an algorithm’s collision range

including a bu↵er from actual physical contact at “collision,” uncertainties in con-

tact maneuvers, uncertainties in contact shapes, and other model uncertainties. The

velocity obstacle algorithm evaluates candidate maneuvers against a single threshold

collision range (Rvo
col) in the velocity space resulting in a binary response: a candidate

course-speed pair is either deemed allowed or excluded based on whether its resulting

range at CPA (rcpa) falls outside or inside the fixed collision range threshold within

a given time horizon.

In e↵ect, a velocity obstacle objective function avdvo
i using the literature-standard

techniques yields a step function in utility values: allowed candidate maneuvers re-

ceive a utility of 1 while excluded candidate maneuvers receive a utility of 0 as shown

in Equation (3.23). When adding the protocol constraints, the step properties re-

main with further constraint as shown in Equation (3.24) for maneuvers violating the

applicable rule set R.
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avd(✓, v)voi =

8

>

<

>

:

0, if rcpa < Rvo
col

1, if rcpa � Rvo
col

(3.23)

avd(✓, v)voi =

8

>

<

>

:

0, if rcpa < Rvo
col or �!x /2 Rallowed

1, if rcpa � Rvo
col and �!x 2 Rallowed

(3.24)

Designers then typically assign a cost value to each still-admissible candidate

velocity vector using already known or derived information. Transforming the prob-

lem to velocity space inherently limits the velocity obstacle’s available information,

most importantly the exact value of candidate range at CPA. Techniques to relax

over-constrained velocity obstacles or determine least cost neighbors to the mission-

preferred velocity vector remain only aware of the threshold collision range at CPA

(Rvo
col), range and time of CPA on current trajectory (r�0

cpa, t
�0
cpa), current range to con-

tact (r), and collision avoidance binary utility avdvo
i . The velocity obstacle techniques

lack explicit knowledge of rcpa, tcpa, and ⇥cpa unless deliberately calculated for specific

candidate maneuvers. Any costing information based on other information requires

full sampling beyond the computations already performed.

For the arbitrary collision geometry of Figure 3-1, if the current relative trajectory

�0 results in a violation of the rcpa < Rvo
col threshold, an alternative maneuver must be

found. Candidate maneuvers �!x seek to find a relative trajectory � that increases rcpa

to an acceptable level. The velocity obstacle algorithm uses velocity space calculations

to map the results of the single CPA range for candidate maneuvers according to

Equation (3.23) without directly computing values of rcpa. Equation (3.23) is depicted

graphically in Figure 3-2. The shaded region of Figure 3-3 demonstrates excluded

(utility = 0) resulting candidate maneuvers using a velocity obstacle algorithm.

Human mariners, however, intuitively rely on knowing more detailed e↵ects of

a collision avoidance maneuver. In many cases, human operators in dense contact
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(a) Initial Geometry

(b) Candidate Maneuver Geometry

Figure 3-1 Ownship (labeled “O/S”) is the give-way vessel in this canonical crossing
geometry (COLREGS Rules 15/16) with current trajectory shown in (a). The
stand-on contact (right; COLREGS Rules 15/17) is at a current range of r. With
a risk of collision existing, a candidate maneuver (�!x ) is considered that results in
a candidate relative velocity vrel along the candidate relative trajectory � as shown
in (b). Each �!x and its associated vrel along � changes the projected value of rcpa.
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Figure 3-2 The velocity obstacle function of Equation (3.23) is shown as a step
function at the velocity obstacle’s collision range (Rvo

col).

situations choose course-speed pairs based more on the contact picture and less on

the mission’s priorities. In these cases of heavy contact density and conflicting rules,

anchoring the course-speed pair selection to that of a weighted heuristic deviation

from the mission’s preferred velocity vector can result in a poor collision avoidance

decision. That is not to say that the mission should be wholly disregarded; however,

priority commensurate with the severity of the collision avoidance picture should be

granted to selection of the vehicle’s course-speed pair. Further, any relaxation of the

collision range should involve explicit metrics such as resulting CPA range.

3.3.2 Collision Avoidance Utility Mapping

Using explicit values of range, time, and pose at CPA, a continuous utility map-

ping function can be created to replace the binary allowed/excluded velocity obstacle

paradigm. Rather than the single collision range of Equation (3.23) to delineate

the stepwise change of utility, the utility function can be a function of one or more

CPA-related quantities. A non-stepwise function with a zero-utility left tail and a

unity-utility right tail requires a minimum of two points of demarcation on the inde-

pendent axis: one point corresponding to the transition from constant zero utility to a

non-zero interior utility function, and one point corresponding to the transition from

an interior utility function to constant unity. For the example of a linearly increas-
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Figure 3-3 A velocity obstacle for ownship (O/S) traveling ✓ ⇡ 080� for a
near-canonical crossing geometry with a contact traveling north at speed
vc and range r shows the excluded (shaded) region of collision range viola-
tions. Any �!x must produce a relative velocity vrel such that the resulting
range at CPA (rcpa) along candidate trajectory � falls outside the collision
cone resulting from a single threshold fixed range of concern Rvo

col. The
resulting maneuvers are known to be allowed (utility=1) or excluded (util-
ity=0) without directly calculating rcpa. This velocity obstacle does not
reflect the added constraints of COLREGS rules which in this situation
prevent ownship from turning to its left, thus further eliminating other-
wise feasible candidate maneuvers. Costing is often performed based only
on the information available or derivable from this graphic, less the actual
value of rcpa.
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ing function connecting a zero utility to a full utility, the values of the independent

variable where utility changes from constant zero to linearly increasing and where

the linearly increasing changes to constant maximum utility must be identified. The

three components functions (zero utility, linearly increasing, and full utility) fully de-

fine the objective function. Utility functions can take as parameters a single variable

(range-only, time-only, etc.) or can be a function of multiple variables.

Objective functions can therefore be defined as being comprised of one or more

component functions fl. A single fl will represent the utility function when its corre-

sponding conditions are met such that one and only one fl represents utility for any

given combination of input parameters. The conditions used to select the function fl

to represent the utility function avdi are called discriminators. Discriminators (D)

allow the utility function avd to be mapped to the correct component function (fl)

for any given �!x and system state as defined by the designer (Figure 3-4). For the

example of a range-only discriminator, a utility function might have two threshold

range values Rmin and Rpref . Any CPA range rcpa between these threshold values

would receive a continuous utility value commensurate with the assigned interior

utility mapping function. Equation (3.25) and Figure 3-4b represent a linear example

where a single variable (rcpa) is used to select the interior function. The discriminator

concept described for utility functions also applies to non-stepwise priority weight

functions (Figure 3-5) to select which component function (e.g., constant zero, linear,

quadratic, constant unity, etc.) represents the priority weight for a given state.
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avd(✓, v)i =

8

>

>

>

>

>

<

>

>

>

>

>

:

0, if rcpa 2 D0

f1, if rcpa 2 D1

1, if rcpa 2 D2

(3.25)

where, f1 = f1(rcpa) =
rcpa �Rmin

Rpref �Rmin

With either an explicitly known or well-estimated full representation of the en-

tire course-speed decision space with respect to collision avoidance quantities, the

velocity obstacle threshold safety range can be expanded to other discriminators,

threshold levels, and metrics based on the collision avoidance quantities of explicit

CPA range, pose, and time, the governing protocol rule set, relative bearing, and

target angle among others. The addition of multiple collision avoidance component

functions improves the richness of the collision avoidance decisions over the veloc-

ity obstacle methods and more accurately depicts human ship driving by allowing

threshold-specific objective function design. By allowing multiple threshold levels,

a simple step function can be expanded to shape the decision space using piecewise

continuous functions. As a real-world example of how a human-operated vessel would

use multiple range thresholds, consider Example 3-1.

The notion of multiple threshold ranges for distinct actions in Example 3-1 can be

expanded into a series of component functions (fl) that collectively define the utility

function. Consider that in addition to discrete actions being required at particular

range thresholds, the watch o�cer of Example 3-1 would likely prefer larger CPA

ranges where possible. There is not only some increasing risk with decreasing CPA

range, but there is also an increasing workload and increasing inconvenience of the

Captain’s time with each additional measure. These would cumulatively result in a

closer CPA range being less desirable than a more distant CPA range. Accordingly,
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(b) Linear Utility Function
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(c) Quadratic Utility Function
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(d) Arbitrary Utility Function

Figure 3-4 In (a), a nominal CPA utility function shows the utility for a single
threshold mapping. In the case of a range-based function, the resulting maneu-
ver’s range crosses the a priori determined “safe” range for a single range threshold
and the velocity obstacle is recovered. In (b-c), a two-threshold, three-component
utility function represents the collision avoidance objective function. Arbitrary in-
terior functions can be used for a more advanced utility mapping than possible
by velocity obstacles. The three-component linear function of (c) represents Equa-
tion (3.25) with an independent variable of range at CPA. In (d), an arbitrary
non-uniform utility function is shown. The discriminators D allow selection of the
appropriate component function fl based on one or more conditions usually involv-
ing range, time, pose, and collision avoidance rule. Expansion to more generalized
collision avoidance utility functions allows for greater reasoning within the larger
autonomous vessel mission scheme. Independent variables other than range can be
designed, and multiple discriminators can be used. An example second discrimina-
tor would be to map all tcpa > thorizon to the fl = 1 component function without
further evaluation of range.
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(a) Step Priority Weight Function
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(b) Linear Priority Weight Function
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(c) Quadratic Priority Weight Function
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(d) Arbitrary Priority Weight Function

Figure 3-5 The selection of priority weight allows multiple objective functions to
be added in accordance with their relative importance to select the globally opti-
mal solution. Shown here are four priority weight functions. Each priority weight
function is piecewise defined over some domain of its independent variable (e.g.,
instantaneous range, current time to CPA, etc.). The conditions that select the
appropriate piece of the function to be used as the priority weight function are its
discriminators (D). In (a), a nominal priority weight function shows the priority for
a single threshold mapping. The resulting maneuver’s independent variable (range)
crosses the a priori determined range at which collision avoidance maneuvers be-
come important for a single range threshold. In (b-c), a dual-range threshold is
used and a linear or quadratic function can be used for a more dynamic priority
weight mapping. In (d), an arbitrary function is used to determine priority weight.
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Example 3-1

Human Ship Driving Example

A vessel is operating in a congested tra�c area. Depending on the mission sen-
sitivity (e.g., payload value or fragility, security posture, etc.), the shape of the
interior collision avoidance utility function can be tailored to fit the circumstances
or general policies of the Captain. Accordingly, the vessel’s Captain has ordered
that all contacts should ideally be kept at a range greater than or equal to some
preferred range, though deviations to closer ranges are allowed as necessary under
the following provisos:

1. The Captain must be notified of any contact’s expected CPA range less
than some preferred range if CPA time is less than some time horizon of
concern:

rcpa < Rpref

tcpa < thorizon

2. The Captain’s permission is required to bring any contact closer than some
permission range within some time horizon of concern:

rcpa < Rpermission < Rpref

tcpa < thorizon

3. The Captain is stationed on the bridge for any contact whose expected
CPA range is closer than some minimum range of concern and CPA time
less than some time horizon of concern:

rcpa < Rmin < Rpermission < Rpref

tcpa < thorizon
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closer CPA ranges should map to lower utility values. To account for the additional

burden of each discrete threshold (e.g., summoning the Captain to the bridge), an

increasingly more drastic (e.g., linear then quadratic) utility mapping might occur

upon crossing a subsequent threshold demarcation to avoid the next discrete action.

This methodology reflects practical open ocean experience of vessel masters that

realize some amount of consideration must be given to closer-than-desired ranges at

CPA in multiple contact scenarios to allow for a globally optimal course-speed decision

pair without neglecting the safety of the vessel.

Full CPA calculations allow for exact assessment of the resulting maneuver with

respect to the preferred range. This quantifiable knowledge of CPA data for candidate

maneuvers where rcpa < Rpref allows for direct calculation of risk (and therefore

utility) rather than heuristic relaxation of the velocity obstacle. By choosing some

set of CPA ranges to avoid a collision with decreasing utility to the watch o�cer, the

Captain has empowered the crew to robustly manage collision avoidance encounters

with reasonable flexibility while mitigating increased risk of closer CPA ranges.

Any unsafe CPA range (rcpa < Rmin) could be assigned zero utility. Likewise,

the higher CPA range threshold (Rpref ) could be considered as the range at which

any greater CPA range provides no additional benefit to ownship. For the range-

only utility discriminator, the CPA ranges of each sampled candidate maneuver are

compared to the prescribed threshold ranges then mapped to a utility value. One can

then define arbitrary component functions mapping CPA range values between Rmin

and Rpref . The overall collision avoidance utility function therefore can be broken

into multiple piecewise continuous functions using the discriminator concept based on

the designer’s choice of discriminator variables to choose the appropriate component

function.

In Example 3-1, the discriminators are range at CPA and time at CPA. Example 3-1

demonstrates why the discriminator concept is useful: here any tcpa � thorizon imme-

diately results in avdi = 1 and eliminates further computation of utility. In the case of

collision avoidance more generally, discriminators may include CPA quantities (rcpa,

tcpa, ⇥cpa), environmental characteristics, instantaneous range r and relative angles
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(↵, �), and any protocol-specific properties or rules (R). A discriminator D allows

an objective function avdi or priority weight function wi to be split among two or

more condition statements for the ith contact allowing ease of graphical display of an

algorithm. In Example 3-1, D = D(rcpa, tcpa). Discriminators may take more general

forms such as D = D(r, rcpa, tcpa, ⇥cpa,R).

3.3.3 Formal Description of Algorithm

To better adapt autonomous collision avoidance algorithms to the real-life decisions of

mariners in complex scenarios, the full CPA quantification algorithm allows multiple

threshold levels of CPA quantities to be considered when creating collision avoidance

utility functions. Intermediate discriminator criteria (Dl) allow a candidate maneu-

ver’s CPA quantities to be mapped using a continuous utility mapping function fl.

The resulting collision avoidance objective function becomes information rich, non-

stepwise across the decision space (unless necessary for protocol constraints), and

more tailorable to human-like decision making. Equation (3.26) shows a multi-CPA

range threshold design’s collision avoidance objective function using the full CPA

quantification algorithm representing the scenario of Example 3-1 for tcpa < thorizon.

Equation (3.27) shows a more general multi-discriminator collision avoidance objec-

tive function using the full CPA quantification algorithm. Figures 3-6 and 3-7 graph-

ically depict Equation (3.27). Equation (3.28) shows an example range-only linear

utility function of rcpa with two range-only discriminator values corresponding to the

minimum (Rmin) and preferred (Rpref ) ranges at CPA.
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...

1, if Rpref  rcpa

(3.26)

where, 0  fl(�, r, ṙ, rcpa, tcpa, ⇥cpa,R)  1
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0, if D 2 Dmin

...

fl, if D 2 Dl

...

1, if D 2 Dmax

(3.27)

where, 0  fl(�, r, ṙ, rcpa, tcpa, ⇥cpa,R)  1

fl(rcpa) =
rcpa �Rmin

Rpref �Rmin
(3.28)

The full CPA quantification method samples and evaluates the numeric CPA quan-

tities (rcpa, tcpa, ⇥cpa) throughout the decision space to create an underlying objective

function.This technique shifts the collision avoidance decision to one of continuous

context rather than boolean. The formal full CPA quantification algorithm takes the

form of Algorithm 1 for arbitrary discriminators. Equation (3.26), Equation (3.28),

and Algorithm 2 demonstrate a nominal full CPA collision avoidance algorithm whose

rcpa is determined for each sampled �!x for a two-range threshold configuration using

a linear interior function. Rather than act as a post-decision collision filter, the addi-
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Figure 3-6 In the full CPA quantification algorithm with a range-only discrimina-
tor, candidate maneuvers �!x are sampled (non-brute force) throughout the deci-
sion space while directly computing each sampled range at CPA (rcpa). Explicit
knowledge of rcpa allows direct mapping of candidate maneuvers to non-integer
utilities whose rcpa falls between preferred CPA range Rpref (utility = 1) and the
minimum acceptable range at CPA Rmin (utility = 0) for all feasible �!x where
Rmin < rcpa < Rpref .

tional CPA information for each candidate maneuver informs the choice of
�!
x⇤ with a

more human-realistic continuous-utility decision process that appropriately considers

resulting range, time, and pose at CPA of each maneuver in the context of mission

and navigational objectives. Using intelligent sampling techniques such as interval

programming (Section 2.7.1), direct CPA quantity calculations can be made with suf-

ficient sampling resolution to appropriately characterize the decision space without

approaching the ine�ciencies of brute force techniques.

3.3.4 Generalization of the Velocity Obstacle

A fixed single collision range of Rvo
col creates a disc-shaped obstacle OBSi in velocity

space (Section 2.5). Fiorini described this velocity obstacle as a relative trajectory �
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Algorithm 1 Full CPA quantification algorithm for determining CPA range, time,
and pose for sampled candidate maneuvers under COLREGS constraints.

1: procedure Pseudocode for FullCPAQuantification()
2: for ith contact do

3: ri  current contact range
4: ✓i  current contact course
5: vi  current contact speed
6: Calculate: r�0

cpa, t
�0
cpa, ⇥

�0
cpa

7: Calculate: risk of collision (per COLREGS) w.r.t. ith contact
8: if (collision risk � collision risk threshold) then

9: ⇥0  ⇥0(x, y, xc, yc, ✓, ✓c)
10: Ri  R(⇥0) . determine governing protocol rule
11: wavd

i  wl(r, ṙ, r�0
cpa, t

�0
cpa, ⇥

�0)
12: fl  D(r, ṙ, t, ⇥,R) . inputs variables per designer
13: for j = courses.min to courses.max do

14: for k = speeds.min to speeds.max do

. sample appropriate subset, i.e., not brute force
15: avdi[j, k] fl(rcpa(j, k), tcpa(j, k), ⇥cpa(j, k))
16: avdi[j, k] avdi[j, k]�Ri(j, k)
17: end for

18: end for

19: end if

20: end for

21: end procedure

such that � \ OBSi. Using Figure 3-3, � 2 Rvo
col implies a CPA range less than Rvo

col,

or rcpa =
p

r2 � (vrel · tcpa)2 < Rvo
col.

In the special case of full CPA quantification in which only one fixed discrimination

threshold range exists (i.e., R = Rmin = Rpref in Equation (3.26)), an arbitrary �!x

results in a relative trajectory �, a collision for any rcpa < R, and f ⌘ 1 for all

rcpa � R, therefore recovering the velocity obstacle utility of Equation (3.23) where

R ⌘ Rvo
col.

3.3.5 Application to Protocol Collision Avoidance Constraints

Collision avoidance perhaps encompasses the largest growth area in marine autonomous

design. The nuances of the rules including common practice and case law create

non-trivial limitations on vessel maneuvers in given encounter geometries. Human

mariners largely follow these nuances and likewise expect the same of other vessels,
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Algorithm 2 Full CPA algorithm for determining collision avoidance utility for sam-
pled candidate maneuvers under COLREGS constraints using range-only discrimina-
tion of Equation (3.26).

1: procedure Pseudocode for FullCPAQuantification()
2: for ith contact do

3: ri  current contact range
4: ✓i  current contact course
5: vi  current contact speed
6: Calculate: r�0

cpa, t
�0
cpa, ⇥

�0
cpa

7: Calculate: risk of collision (per COLREGS) w.r.t. ith contact
8: if (collision risk � collision risk threshold) then

9: ⇥0  ⇥0(x, y, xc, yc, ✓, ✓c)
10: Ri  R(⇥0) . determine governing protocol rule
11: wavd

i  wl(r, ṙ, r�0
cpa, t

�0
cpa, ⇥

�0)
12: fl  D(rcpa,R) . Per Equation (3.28)
13: for j = courses.min to courses.max do

14: for k = speeds.min to speeds.max do

. sample appropriate subset, i.e., not brute force

15: avdi[j, k] 
(

0,
rcpa �Rmin

Rpref �Rmin
, 1

)

16: avdi[j, k] avdi[j, k]�Ri(j, k)
17: end for

18: end for

19: end if

20: end for

21: end procedure

regardless of whether the contact is human operated, autonomous, or some combina-

tion thereof.

To see the benefits of considering additional calculations to garner explicit collision

avoidance information, consider the geometry scenario of Figure 3-1 with a range at

CPA on current relative trajectory rcpa requiring a maneuver to avoid collision. Raw

CPA ranges for candidate course-speed maneuvers are displayed in Figure 3-8 as a

polar plot with blue representing closer ranges and red representing farther ranges.

Using the velocity obstacle algorithm, a polar collision avoidance objective function

can be generated to show allowed (red) and excluded (blue) ownship candidate ma-

neuvers (Figure 3-9a) subject to selection of a fixed collision range threshold Rvo
col of

Equation (3.23). Under the limiting COLREGS protocol constraints for a give-way

vessel, turns to the left are excluded to avoid crossing ahead of the stand-on vessel if
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Figure 3-7 The full CPA quantification algorithm of Equation (3.27) is shown as an
arbitrary continuous function for a two-threshold range configuration.

the circumstances of the case admit. This limitation significantly reduces the decision

space, as shown in Figure 3-9b, especially when considering ownship’s desire to drive

east.

Using the full CPA quantification algorithm, direct knowledge of rcpa for candidate

maneuvers allows for additional threshold values of CPA ranges of interest. Specifi-

cally in this demonstrative case, Rvo
col maps to Rpref of Equation (3.26); a closer range

value of Rmin represents ownship’s minimum acceptable CPA range. Samples of the

decision space then allow mapping intermediate rcpa values to continuous utility values

between 0 and 1 for candidate maneuvers as shown in Figure 3-10. An exact value of

rcpa, and therefore some inference of goodness, and therefore risk, becomes known for

any choice of maneuver considered between Rmin and Rpref . The non-integer utility

values present a quantified metric of risk to the multi-objective optimization solver

using the same encounter geometry as Figure 3-9. After applying the COLREGS col-

lision avoidance protocol constraints13, the full CPA quantification algorithm demon-

13COLREGS-specific considerations are presented for power-driven vessel encounters within rules
13-17 in Chapter 4. Portions of the COLREGS are presented for reference in Appendix A.
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strates highly relevant collision avoidance information for higher speeds along the

mission-desired path (East) that were otherwise excluded by the velocity obstacle

algorithm (Figure 3-10b). If faced with a heavily constrained or over-constrained col-

lection of objective functions, the solver may now reason about a previously excluded

subset of decision space with a means of inferring the risk involved.

Figure 3-8 This polar objective function with radius = speed (v), polar angle (north
up) = course (✓, North-up) depicts raw CPA ranges varying from smallest (dark
blue) to largest (dark red). The red plateau depicts maneuvers where an opening
aspect would occur, i.e., CPA is in the past.
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(a) Velocity Obstacle (b) Velocity Obstacle with COLREGS

Figure 3-9 These polar objective functions with radius = speed (v), polar angle
(north up) = course (✓, North-up) represent the �!x (✓, v) decision space for the sin-
gle vehicle-pair collision avoidance scenario of Figure 3-1 using a velocity obstacle
algorithm of Figure 3-3. The velocity obstacle algorithm shows both allowed (red,
utility = 1) and eliminated (blue, utility = 0) candidate maneuvers without (Fig-
ure 3-9a) and with (Figure 3-9b) COLREGS protocol constraints (give-way vessel
crossing astern of the stand-on vessel). The stepwise cli↵ in utility occurs along the
lines corresponding to �!x crossing into the excluded region of the velocity obstacle or
violating a COLREGS protocol constraint. The amount of allowed (red) candidate
maneuvers can be significantly reduced when protocol constraints are applied.

111



(a) Full CPA (b) Full CPA with COLREGS

Figure 3-10 These polar objective functions showing the same collision avoidance
scenario of Figure 3-1 demonstrate the continuous utility values available when us-
ing the full CPA quantification demonstrated in Figure 3-6 and Algorithm 1. Both
allowed (red, utility = 1) and eliminated (blue, utility = 0) candidate maneuvers of
this figure are consistent with the velocity obstacle. Intermediate continuous utili-
ties (other colors) are allowed based on direct computation of range at CPA both
without (Figure 3-10a) and with (Figure 3-10b) the added COLREGS protocol con-
straints for a give-way vessel crossing astern of the stand-on vessel (Rules 15/16).
With the significant reduction in feasible candidate maneuvers after applying the
COLREGS rules, the full CPA quantification algorithm allows direct sampling of
otherwise excluded candidate maneuvers. Those sampled candidate maneuvers de-
termined to have a resulting range at CPA (rcpa) between the minimum allowed
(Rmin) and preferred (Rpref ) ranges at CPA are considered for selection with a
utility value commensurate with their corresponding value of rcpa.
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3.4 Techniques to Improve Computational E�ciency

3.4.1 Sampling Size

The number of pieces sampled to create an IvP function from an underlying objective

function largely drives the tradespace between speed and accuracy vis-à-vis errors of

imprecision. To avoid the speed scalability pitfalls of full brute force methods while

being more accurate than simplified brute force methods, an appropriate selection

of IvP function sample size is prudent. A piecewise linear approximation to the

underlying objective function that is su�ciently accurate without being prohibitively

slow becomes the goal of the designer. The selection of the appropriate sample size is

a design choice, though it can be seen that a relatively few number of pieces generate

a very representative model of the true underlying function. Figure 3-11 depicts the

ability of IvP functions to represent an underlying objective function for a simple

bimodal distribution with a large plateau of low utility. These example IvP functions

enforce uniform spacing and uniform sampling size of varying values of precision in

the IvP decision space domain; improvements to accuracy by allowing non-uniform

spacing and sizes of IvP pieces is incorporated through smart refinement.

3.4.2 Smart Refinement

The smart refinement feature of IvP allows for greater resolution in areas of interest

especially those areas where the underlying objective function experiences non-linear

changes of shape within the sample subspace. As an IvP function initially creates its

IvP pieces, the algorithm can grade its work to determine how accurate the linear

fit matches the underlying objective function over the IvP piece’s decision variable

sub-domain [6]. IvP maintains a priority queue based on these grades that prioritizes

poorly fitting pieces. The poorly fitting pieces are then refined up to the maximum

piece limit selected by the behavior’s designer.

Smart refinement demonstrates the power of IvP by allowing a rather course sam-

pling of the underlying objective function for those areas lacking interesting features
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(a) 64 pieces (b) 512 pieces

(c) 1000 pieces (d) 4000 pieces

(e) Underlying Objective Function

Figure 3-11 Selection of an appropriate number of pieces to sample the IvP function
allows for very fast computation while retaining su�cient accuracy (red represents
a high utility while blue represents an undesirable utility). Figure 3-11e shows the
underlying objective function from which the four piecewise linear approximations
were created. For these four IvP approximations, the same underlying bimodal
objective function (e) is sampled using four di↵erent values of uniformly spaced
and uniformly sized pieces. While IvP piece size and spacing is not required to be
uniform, these examples illustrate the power of only changing the number of pieces
on the area of interest. Figure (3-11a) shows 64 uniformly spaced and sized IvP
pieces; note the degraded accuracy of the peak on the right with the degraded pre-
cision. The 512 piece approximation (b) demonstrates uniformly spaced and sized
IvP pieces and shows a significantly improved representation of the second peak.
The same underlying objective function sampled with 1000 and 4000 uniformly
spaced and sized IvP pieces show considerable improvement in refinement ((c) and
(d), respectively).
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(e.g., low utility plateaus). For the underlying bimodal objective function shown in

Figure 3-11e, the large areas of low utility plateau can be modeled with a course grid.

After the initial modeling of the function, smart refinement adds several more samples

that greatly improve the fitting in more dynamic areas such as the build up to the

two peaks. Using the same bimodal distribution, consider its most course sampling

(Figure 3-11a) with an 8x8 grid totalling 64 IvP pieces. Without any alteration to

the sparsely sampled plateau regions, the addition of pieces in the regions of the two

peaks quickly create a very precise and accurate model of the underlying objective

function. The same 64-piece IvP function of Figure 3-11 undergoes smart refinement

as shown in Figure 3-12 with 100, 200, 500, and 750 pieces. Note that even the 100

piece smart refinement model very reasonably fits the underlying bimodal objective

function. By having a method of accurate modeling requiring few enough samples to

be scalable, IvP introduces a data-rich region of desirable course-speed pairs rather

than simply identifying poor (blue) plateau regions for exclusion.

While IvP allows the balance of accuracy, speed, and flexibility, improvements

such as smart refinement allow a greater number of simultaneous contacts to be

reasoned about for some given onboard processing capability without saturating the

back-seat computer. Experimentation with 5 vehicles did not over stress back seat

computational loading, therefore smart refinement was not required for the testing

within this thesis. Expansion to greater numbers of simultaneous contacts may require

the sampling e�ciencies of this section and are reserved for future work. Results of

this experimentation are presented in Chapter 6.

3.5 Sampling Algorithms Applied to Collision Avoid-

ance

IvP creates a 3 dimensional (radius = speed, polar angle (North up) = course, z

= utility) polar piecewise linear approximation of the underlying collision avoidance

objective function by sampling a sub-space over appropriate intervals using meth-
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(a) 100 pieces (b) 200 pieces

(c) 500 pieces (d) 750 pieces

(e) Underlying Objective Function

Figure 3-12 Smart refinement allows for increased sampling of the underlying objec-
tive function in areas where the IvP function would benefit from further refinement.
The 64-piece IvP function of Figure 3-11a acts as a baseline for four successive smart
refinements using 100, 200, 500, and 750 pieces. Note how few additional pieces are
required to construct a representative IvP function based on the course 64-piece grid
approximation of the underlying objective function (e). The smart refinement tech-
nique allows for a course underlying grid with su�cient sampling in high interest
areas promoting a balance of accuracy and e�ciency.
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ods described in [3] and Section 3.1. In an extreme configuration, sampling could

be forced over the entire decision space, though this is ine�cient and unnecessary.

By using the smart refinement algorithm of Section 3.4.2, large plateau regions of

the course-speed decision space can be assigned large IvP pieces without further re-

finement. Therefore, the approximation of the underlying objective function using

e�cient sampling techniques enables identification of a globally optimal solution to

multi-contact collision scenarios while operating under multiple and often competing

mission objectives.

An example of an arbitrary collision avoidance objective function for a multi-

contact complex geometry encounter with clear advantage of certain velocity vectors

over others is shown in Figure 3-13. Several uniformly spaced and sized IvP pieces

without invoking smart refinement, caching, or other e�ciency enhancing techniques

show the varying levels of accuracy while changing precision (Figures 3-13 (a)-(d)).

This objective function uses a utility mapping with two threshold ranges at CPA and

a linear interior mapping similar to that shown in Figure 3-4b. Figure 3-13e shows the

underlying objective function while Figures 3-13a through 3-13d show the resulting

approximation of various uniform sampling frequencies. The underlying objective

function begins to take shape with relatively few samples while the higher sample

sizes are nearly indistinguishable from the underlying objective function.

Smart refinement of the same arbitrary collision avoidance objective function is

shown in Figure 3-14. Note that with the intelligent addition of a limited number

of additional samples, the underlying objective function quickly begins to take shape

using the techniques of Section 3.4.2. The complexities of this underlying objective

function illustrate the importance of additional IvP pieces to more fully define nuances

of the underlying function.

For a velocity obstacle-based algorithm, the data available to the autonomous

decision maker is the area that is considered a protocol violation or unsafe. Techniques

shown in Chapter 4 can be used to assign varying metrics of “goodness” in the final

selection of a velocity vector, but the cost functions only know the excluded velocity

space and the a priori determined preferred velocity vector. Maintaining consistency
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(a) 64 pieces (b) 500 pieces

(c) 1000 pieces (d) 4000 pieces

(e) Underlying Objective Function

Figure 3-13 An arbitrary collision avoidance objective function is shown with IvP
functions sampling at uniform sampling size and shape without refinement of any
kind; here, red represents a high utility while blue represents an undesirable utility.
This worst case sampling for the given number of pieces shows that a reasonably
small sample size provides an accurate representation of the underling objective
function. By using IvP rather than a simple exclusionary technique such as the
velocity obstacles family of algorithms, allowed regions of course-speed candidates
can be incorporated into the selection of the globally optimal velocity vector. IvP
approximations of the underlying objective function (e) are shown using 64, 500,
1000, and 4000 uniformly spaced and sized IvP pieces.
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(a) 100 pieces (b) 200 pieces

(c) 500 pieces (d) 750 pieces

(e) 1000 pieces (f) 2000 pieces

(g) Underlying Objective Function

Figure 3-14 A representative collision avoidance objective function shown in Fig-
ure 3-13e is again approximated with IvP functions using the same 64-piece sample
frequency of Figure 3-13a. The smart sampling techniques of IvP are applied to
increase the sample frequency of the underlying objective function in local regions
whose linear fit could be improved. The smart sampling algorithm results for 100,
200, 500, 750, 1000, and 2000 total pieces ((a)-(f) respectively) to further refine the
underlying 64-piece IvP function show that few additional pieces are required before
the underlying objective function takes shape in the IvP function approximation.
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with these algorithms, one could consider the excluded velocity space as any velocity

vector that results in a collision as defined by the designer’s collision range while

accounting for safe stand o↵ ranges.

A CPA-based objective function can be used for common demonstration between

the two algorithms by using a plane of height z =Rvo
col to bisect the underlying objec-

tive function. In velocity obstacle algorithms, any course-speed pair below the plane

z =Rvo
col is considered a collision and excluded from consideration. All points above

the plane z =Rvo
col are considered collision-free and are included without preference.

For the same collision avoidance scenario, the CPA-based algorithm also excludes

the region below the plane z =Rmin insofar as such a low utility is highly unlikely

to receive selection as the final velocity vector assuming that the collision avoidance

behavior’s objective function has a reasonable significant priority weight in the solver.

Depending on the velocity obstacle designer’s selection of Rvo
col, one of two impor-

tant information losses occur when compared to the full CPA quantification algorithm:

• a low Rvo
col value neglects all important information above the plane that could

be used to find a better-than-default solution

• a high Rvo
col value neglects all important information below the plane that could

be used in lieu of heuristic relaxation

Considering the objective functions shown in Figures 3-11 and 3-13, the value of

Rvo
col is shown graphically as the transition between blue and green. By adding the

horizontal plane at z =Rmin, the region excluded from consideration in both velocity

obstacle and CPA-based algorithms is shown by the black plane in Figures 3-15 and

3-16. All values of color above the black plane indicate a candidate course-speed pair

that is considered collision-free and therefore admissible as a feasible solution for the

cost function of each designer’s choice. While velocity obstacles consider all points

in color above this plane to be of equal “goodness,” the full CPA quantification

algorithms consider the rich green, yellow, and red regions as di↵erent degrees of

“goodness” when solving for the yet-to-be-determined optimal velocity vector that

balances all active behaviors (mission, navigation, and collision avoidance) according
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(a) Bisected Objective Function of Figure 3-11e

(b) Bisecting Objective Function of Figure 3-13e

Figure 3-15 A plane at z =Rmin bisects the underlying objective functions of Fig-
ures 3-11 and 3-13 represented here by the transition from blue to green. All blue
values (below the black plane) result in a violation of the collision range and are
considered inadmissible for velocity obstacles. Identically, all values below the black
plane result in a violation of Rmin and are highly discouraged from selection when
appropriate priority weight is applied to the behavior’s objective function in full
CPA quantification algorithm based collision avoidance. Information rich decisions
can be made for points above the plane of discrimination.

to their respective priority weights.
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(a) Underlying Function – Top View (b) Underlying Function

(c) Bisected Objective Function at z =Rmin (d) Bisected Objective Function at z >Rmin

Figure 3-16 An arbitrary complex collision avoidance objective function without ap-
proximation (a) demonstrates the complexities of multi-contact collision avoidance.
Red colors again represent desirable conditions while blues represent unfavorable
collision conditions (ranges less than Rmin, or equivalently, excluded regions from
multi-contact velocity obstacle solutions). The topographic view (b) demonstrates
the existence of three highly desired red peaks. By again bisecting the true ob-
jective function with a plane at z =Rmin, the black plane represents the exclusion
zone of velocity obstacles (c). By choosing some z >Rmin, the more highly desirable
solutions with ranges at CPA approaching Rpref become evident to present a more
decision-rich input to the velocity vector solution.
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3.6 Designing for Patience

The patience parameter14 introduces an additional objective function design parame-

ter allowing an active tradespace between constant course decisions (speed may vary)

and constant speed decisions (course may vary). By using multi-objective optimiza-

tion with a non-binary collision avoidance decision space based on the resulting closest

point of approach, intelligent compromise can be achieved to choose a velocity vec-

tor consistent with considerations of a human operator. This parameter does not

a↵ect the primary mission objective function’s peak value for the unconstrained case;

rather, it gives the primary mission objective function a policy-consistent method

for shaping alternative primary mission utilities when the preferred velocity vector is

infeasible or highly undesirable to other weighted priorities. The patience parameter

represents a weighted preference to alter either course or speed. This patience param-

eter gives the mission objective function designer wide latitude in tuning routines to

behave as desired with respect to performance metrics. Specific performance metrics

are presented in Chapter 4.

E↵ects on primary mission and collision avoidance performance when deviations

are required has been little studied in the literature. The literature is especially bare

when comparing a tendency to prefer a course or speed dominated maneuver over the

other. Rather, users of the velocity obstacle have little choice but to deviate from

the mission prioritized velocity vector using a heuristic lowest cost maneuver. In the

case of recent collision avoidance literature using a velocity obstacle, the heuristic

least cost deviation is usually determined using a 2-norm over the two-dimensional

course-speed decision space such as in [45].

When designing a mission objective function, consideration must be given for

deviations from the mission preferred course and speed. In situations with multiple

conflicting protocol requirements, more complex consideration must be given for how

to best deviate if all else were equal. The three maneuvering deviations within the

two-dimensional course-speed decision framework include:

14Section 3.6 first appeared in part in [94].
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• maintain current course with change of speed as necessary (usually slowing)

• maintain current speed with change of course as necessary (under protocol,

usually a turn to starboard)

• change both course and speed according to some policy.

A tradespace between the possibilities of a course-only or a speed-only maneu-

ver presents a new region of autonomous design for collision avoidance routines as

shown in Figure 3-17. Thoroughly exploring this deviation tradespace requires per-

formance metrics to be identified, incorporated into design, and used for evaluation

(Chapter 4). Primary mission objective functions must incorporate the ability to

gracefully deviate within this tradespace when under non-mission constraints such as

collision avoidance. In the context of protocol-constrained collision avoidance, eval-

uating vessel performance using spatial e�ciency (Section 4.2.1), temporal e�ciency

(Section 4.2.2), and safety (Section 4.4) provides insight into future performance in

similar scenarios. Under various decision points within the course-speed tradespace,

some designer-selected combination of metrics can be maximized yielding a preference

toward either a course or speed maneuver. The exploration of these maneuvering de-

cisions and their consequences allows for both design changes and online autonomous

tuning of objective functions when collision avoidance routines are active (i.e., their

priority weight is greater than zero).

3.6.1 Course-Speed Design Ratio

The concept of a maneuvering tradespace when deviating from a contact-free deci-

sion can be formalized according to Equation (3.29). In the two extreme cases of

maneuvering considerations, either course or speed is held constant while the other is

varied appropriately. For the combination of some amount of both course and speed

change, one can identify a preference toward a course-dominated or speed-dominated

deviation by assigning a weight to each. A tendency to prefer course deviations are

represented with a course weight (⇡✓) while speed deviations are represented using a
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(a) ⇡✓ = 30% (b) ⇡✓ = 70%

Figure 3-17 These polar heat maps show course (angle) and speed (radius) for pa-
tience parameters with values of ⇡✓ = 30 (a) and ⇡✓ = 70 (b). Desirable velocities
are dark red while less desirable velocities are blue. Both examples are trying
to achieve a course of 180�. The fuchsia point represents the peak value of each
objective.

speed weight (⇡v). To identify the preference of a course change over a speed change,

or vice versa, the course-speed design ratio of Equation (3.29) is introduced. Course

weight and speed weight are defined on a domain of [0, 1] and are required to sum

to 1 (Equation (3.30)). The introduction of these relative course and speed weights

on a [0, 1] domain allow for greater ease of configuration. Figure 3-17 demonstrates

two mission objective functions: one preferring course-dominated deviations and one

preferring speed-dominated deviations.

⇡ =
⇡✓

⇡v
(3.29)

⇡✓ 2 [0, 1]

⇡v 2 [0, 1]

⇡✓ + ⇡v = 1 (3.30)
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3.6.2 Patience Parameter

In the case of a pure course change (speed constant), the course-speed design ratio

reaches a value of ⇡ = 1. Similarly, a pure speed change results in a course-speed

design ratio of ⇡ = 0. To allow a more computationally attractive form, the patience

parameter of Equation (3.31) is introduced. The patience parameter expresses the

normalized general maneuver preference for a two-dimensional collision avoidance

decision space.

⇡ =
⇡✓

⇡v + 1
(3.31)

⇡✓ 2 [0, 1]

⇡v 2 [0, 1]

⇡ 2 [0, 1]

⇡✓ + ⇡v = 1

A designer may choose a static or dynamic patience parameter. A static patience

parameter implies the designer pre-tuning a patience configuration for some constant

preference of a vessel’s deviation characteristics. While a tendency might be to prefer

a course change over a speed change (or vice versa), having robustly designed mission

objective functions capable of deviating from a preferred velocity vector opens a new

spectrum of collision avoidance decisions and therefore optimization.

The patience parameter of Equation (3.31), when dynamic, allows variation based

on online autonomous determination of its “best” value. This tuning must account

for several possibilities of variation including some combination of the following:

• recognition of a geometric configuration (Section 5.4)

• designer preference

• configuration parameters
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• environmental conditions (e.g., limited visibility, etc.)

• explicit protocol restrictions or requirements

Once proper metrics for evaluation are identified, a dynamic patience parameter

value can be found for the collision avoidance situation and current mission to achieve

the most desirable performance characteristics. If the collision avoidance scenario

changes such as by the detection of a new contact in a conflicting rule, the dynamic

patience parameter would be re-evaluated to determine the new “best” deviation

policy.

Additional discussion of metrics and evaluation techniques can be found in Chap-

ter 4. On-water results using these metrics and evaluation techniques can be found

in Chapter 6.

3.7 Conclusions

In conclusion, this chapter presented the range-, time-, and pose-informed closest

point of approach-based method of calculating risk of collision. This “full” CPA-based

approach was used to construct collision avoidance objective functions using a more

human-like utility function than the literature-standard velocity obstacle. The CPA-

based approach was shown to be a mathematical generalization of the velocity obstacle

for the range-only case where two range thresholds were set equal to each other and

to the “collision” range of a velocity obstacle. The notion of patience for autonomous

vessels was introduced to allow a spectrum of primary mission modification to prefer

a speed dominated, course dominated, or speed-course weighted preference when

deviating from the mission’s contact free choice of course and speed. Chapter 4

expands this chapter’s concept of pose-informed collision risk to introduce metrics

for evaluation of safety and protocol compliance. Mission performance metrics and

evaluation techniques are introduced to inform a holistic (i.e., mission, safety, and

collision avoidance protocol compliance) testing framework for simulation (Chapter 5)

and on-water (Chapter 6) testing.
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Chapter 4

Collision Avoidance Metrics and

Evaluation

The ability to deliberately, consistently, and rigorously quantify autonomous colli-

sion avoidance enables society to assess compliance and performance with confidence.

Insurance companies can use these performance scores when giving policies to au-

tonomous vessels. Regulatory bodies can use these metrics for an autonomous or

remotely operated vehicle’s “road test” before certification. Humans can train with

real-time feedback with measurable performance values. Autonomous collision avoid-

ance systems can use machine learning to improve behavior using aggregated data.

The methods discussed in this thesis are intended to be a first step toward a more

robust and standardized autonomous collision avoidance evaluation process. These

methods can further serve to standardize literature regarding collision avoidance com-

pliance, especially under protocol constraints.

This chapter1 describes the metrics, scope, and evaluation techniques for quanti-

fying compliance and performance of autonomous collision avoidance under protocol

constraints. With the methods of this thesis, conversations in future literature can be

more exact in their meaning of compliance in protocol-constrained collision avoidance

research. Using the foundation of the continuous collision avoidance utility functions

of Chapter 3, Section 4.1 introduces metrics for evaluating autonomous collision avoid-

1parts of this Chapter first appeared in [93–95]
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ance performance in the context of the overall vessel’s mission. Section 4.2 introduces

evaluation of mission performance including spatial and temporal e�ciencies. Evalu-

ation techniques for collision avoidance protocols are introduced in Section 4.3 with

examples given specific to COLREGS. Techniques for evaluating safety with the in-

corporation of pose are presented in Section 4.4. Introduction of evaluation techniques

for both human operators and autonomous collision avoidance algorithms based on

admiralty case law and on-water experience is presented in Sections 4.5 through 4.6.

Chapter 6 presents experimental results using the algorithm advancements of

Chapter 3, the evaluation techniques of this chapter, and the testing considerations

and techniques of Chapter 5.

4.1 The Tradespace of Safety, E�ciency, and Pro-

tocol Compliance

Current autonomous collision avoidance designs are based on least cost heuristic de-

viation from the a priori determined preferred mission velocity vector. These algo-

rithms are, by design, intended to achieve the primary mission at all reasonable costs.

A more human-realistic approach, however, is to consider the primary motivations of

a normal operator. The five main considerations that a human operator intuitively

balances when choosing how best to maneuver include a weighted combination of the

following:

• spatial e�ciency (Section 4.2.1)

• temporal e�ciency (Section 4.2.2)

• protocol compliance (Section 4.3)

• safety (Section 4.4)

• other mission considerations
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The requirement to obey a prescribed set of rules such as COLREGS often fur-

ther restricts a collision avoidance decision space; deciding on how best to deviate

requires an appropriate balance of safety, e�ciency, and compliance. While rule com-

pliance has often been considered largely binary throughout the literature (compliant

or non-compliant), Chapter 4 presents algorithms that describe a continuous domain

of protocol compliance scores. These continuous metrics of performance and protocol

compliance allow more precise conversation in the literature and more robust design

in practice.

Each of these performance characteristics necessitates a quantifiable metric for in-

clusion in autonomous collision avoidance and consideration for mission design trade-

o↵s. In partnership with the patience parameter of Section 3.6 and testing techniques

such as the iterative geometric testing of Section 5.4, a designer’s preferences on the

balance of these metrics allows appropriate selection of a maneuver.

By using these metrics rather than simple binary characteristics, comparison and

tradeo↵s can be made as the objective space of a true multi-objective optimization

problem. Examples of tradeo↵s are shown in Section 5.1.

4.2 E�ciency and Mission Performance

For the standard transiting vessel, “mission” simply refers to the desire to reach the

next waypoint within reasonable parameters of time and deviation from track2 (energy

consumption). More complex scenarios might include using a sensor that requires a

particular orientation with respect to an Earth-fixed location or a moving object. In

most mission cases, track deviation distance and transit time are likely contributing

factors to a measurement of success. The ideas of track deviation and transit time

may be quantified using spatial e�ciency and temporal e�ciency as described below.

Missions that value non-standard metrics of performance (e.g., maintaining contact

with an underwater entity) may use alternative measures of performance that those

presented below. A collision avoidance encounter begins from the point of first de-

2Track refers to the ideal path a vessel would follow to achieve its primary mission [10].
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tection and ends when the contact is well clear, opening range, and approaching its

initial detection range.

4.2.1 Spatial E�ciency

Spatial e�ciency as an output metric represents the additional distance travelled from

an intended track between any two points of reference. The nominal track need not

be linear, nor do the points of reference necessarily need to correlate with mission

waypoints. More formally, Equation (4.1) describes the notion of spatial e�ciency as

the ratio of nominal track distance to actual track distance between any two specified

points.

In the case of a collision avoidance maneuver, spatial e�ciency can be consid-

ered nominally in two ways. Spatial e�ciency could be measured from the waypoint

preceding a collision avoidance encounter to the waypoint following the collision avoid-

ance encounter. Alternatively, spatial e�ciency could be measured from the point in

space at which a contact is first detected to the point in space where a vessel re-

turns to her intended track. Figure 4-1 graphically demonstrates spatial e�ciency

between a starting point A and ending point B along ownship’s track in the context

of Equation (4.1). Spatial e�ciency measures by ratio of intended track distance

⇢̂ and the actual distance traversed (⇢) between any two points A and B. While

depicted linearly, a general non-linear ship’s track may be considered in appropriate

circumstances where a vessel’s mission would not necessarily dictate a constant course

transit.

⌘⇢ =
⇢̂

⇢
(4.1)

⌘⇢ 2 [0, 1]

The notion of spatial e�ciency transcends missions more broadly than simply

trying to minimize resources such as fuel. A desire for high spatial e�ciency may
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(a) High Spatial E�ciency (b) High Temporal E�ciency

Figure 4-1 Two example canonical crossing encounters are shown. In (a), ownship
(“O/S”) chooses to slow and allow the contact to pass. Positions at times t0 and t1
are nearly identical resulting in near zero deviation from track. When the contact
passes at time t1, O/S proceeds down track (green line). In (b), O/S chooses to
deviate from track to maintain speed and proceed in general direction of track.

accompany certain primary mission characteristics. For example, a vessel may be

towing a sensor that would cause poor data quality if altering course; however, a

speed reduction may provide little to no loss of data quality.

4.2.2 Temporal E�ciency

Temporal e�ciency provides a metric of the additional time required to complete a

collision avoidance maneuver. Similar to the spatial e�ciency metric of Section 4.2.1,

temporal e�ciency may take place between waypoints or during specific parts of

a voyage that are a↵ected by collision avoidance encounters. Temporal e�ciency

measures the ratio of nominal and actual times to transit a specified track as shown

in Equation (4.2). Actual time to traverse A to B is given by ⌧ while ⌧̂ denotes time

to traverse the intended track assuming constant initial speed.

⌘⌧ =
⌧̂

⌧
(4.2)

⌘⌧ 2 [0, 1]

133



4.3 Evaluating Protocol Compliance: Quantifying

the Rules

Several authors have studied collision avoidance with claims of “compliance” with

the Collision Regulations (also referred to as COLREGS or Rules). Compliance,

however, lacks objectivity partly due to the inherent vagueness of the COLREGS

and partly due to the varying scope of many collision avoidance algorithm solutions.

This intentional vagueness allows the human operator liberty to interpret the vast

array of complex collision avoidance scenarios without being overly restricted from a

common sense yet safe approach.

A further complicating factor results from the disconnect between experienced

mariners and autonomous designers. Few designers of marine autonomous collision

avoidance algorithms have demonstrated significant experience using COLREGS in

open ocean navigation for non-academic purposes. The varying scope of what authors

claim as compliant largely depends on the scope of interest of a particular researcher.

For example, a perception and sensing author might claim COLREGS compliance

if day shapes or vessel types are correctly identified. An acoustician might claim

compliance for properly identified sound signals. The notion of compliance, however,

should be amplified with the applicable scope of the COLREGS.

This section proposes several categories of scope as a first pass means of grouping

similar research and subsequent evaluation. With the development of metrics and

evaluation techniques within each category of scope, performance can be reliably

demonstrated to a certifying body to a required degree of satisfaction within each

given category. A means would then exist to properly combine work of di↵ering

categories to produce more fully compliant solutions. The techniques of this section

permit the admission of a road test (Section 5.6) to o↵er a means for regulatory bodies

to consider certification of autonomous collision avoidance algorithms operating under

the protocol restrictions of COLREGS.

Protocol compliance is often asserted by authors in the collision avoidance realm

with no metric of verification or validation. The term compliance is often used in
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the general context of COLREGS protocols to ambiguously describe only the power-

driven vessel rules in nominal operating conditions (COLREGS Rules 13-17). Little

discussion exists in the literature as to how protocols such as COLREGS should be

examined for compliance for either human-controlled or autonomous vessels for the

complete set of protocol requirements. The Rules are intentionally vague to allow a

reasonably experienced human operator the flexibility to take the most appropriate

action within the context of the Rules. There are no well-defined universally recog-

nized rubrics to measure or grade any vessel on how best to be “compliant” with the

protocol nor what protocol compliance means. There are, however, extensive cases

in admiralty law and practical experience of seasoned mariners that o↵er insight

into means of shaping a framework for protocol evaluation. Literature pre-dating

autonomous collision avoidance has consolidated many scenarios, lessons, and court

rulings regarding collision avoidance on the seas [17]; however, many of these lessons

are violated in recent academic literature on the subject due to the unintentional

disregard of human-established customs and case law.

Proper testing of compliance requires a thorough understanding of the protocol

constraints. These constraints are more than what appears in the few sentences agreed

to by international law. Rather, it is a combination of the written rules, years of case

law, and accepted common customs and implementation of the rules in the sea-going

world. Section 4.3 discusses the evaluation of protocol constraints within the context

of COLREGS including an examination of particular failures or omissions in recent

literature.

4.3.1 Categories for COLREGS Scope

Collision avoidance compliance in the most general sense involves maneuvering one’s

vessel to properly interact with a contact for a given initial geometry. To counter the

disparity between claims and actual performance, this thesis quantifies the scope and

requirements of COLREGS compliance as part of an autonomous collision avoidance

approach. Notional algorithms are presented to measure each applicable rule’s de-

rived metrics and to assess a performance grade. Accordingly, the COLREGS rules
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are separated into categories to allow a vehicle to demonstrate compliance of appro-

priate COLREGS subsets. International Maritime Organization guidance, US Coast

Guard’s local issuance of inland-specific requirements, and other local guidelines can

be adopted as appropriate.

The categories proposed to define scope of work within the international COL-

REGS and compliance thereof are listed in Table 4.1 and include:

• general requirements of vessels including Rules 1-3

• conduct of vessels in any condition of visibility including Rules 4-8

• special cases for channels and separation schemes including Rules 9-10

• conduct of two sailing vessels in sight of one another and operating under Rule 12

• general vessel encounters including conduct of vessels in sight of one another

and operating under Rules 13-17

• responsibilities of vessels in sight of one another as exhibited in Rules 11 and 18

• conduct of vessels in restricted visibility under Rule 19

• lights and shapes required of vessels under Rules 20-31

• sound and light signals required of vessels under Rules 32-37

• inter-vehicle communications to include sending, receiving, interpreting, and

appropriately acting on messages to/from other vessels or third parties (e.g.,

USCG district)

• cumulative performance of the above categories to ensure a satisfactory holistic

approach to safe navigation and collision avoidance

Rule categorization allows one designer to claim compliance within one or more

categories (for example, maneuvering requirements of power driven vessels) while de-

ferring evaluation of rules related to other areas (for example, sound identification
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Table 4.1 Categories of Scope for Evaluation of COLREGS Compliance

Category Description

I General Rules (Rules 1-3)
II General Conduct of Vessels (Rules 4-8)
III Special Tra�c Schemes (Rules 9-10)
IV Sailing in Sight of Another Sailing Vessel (Rule 12)
V Vessel Encounters in Sight of One Another (Rules 13-17)
VI Responsibilities in Sight of One Another (Rules 11, 18)
VII Restricted Visibility (Rule 19)
VIII Lights and Shapes (Rules 20-31)
IX Sound and Light Signals (Rules 32-37)
X Inter-Vehicle Communications
XI Cumulative Performance Including Local Customs

and response) to other authors. By defining the scope of applicable rules and demon-

strating quantifiable levels of compliance within each category of rules, autonomous

collision avoidance algorithm designers can su�ciently articulate their contributions

to the literature. It should be noted that evaluation within the scope of one category

may rely on compliance of another category to some degree. For example, because

Category II includes maintaining a lookout, determining safe speed, determining risk

of collision, and taking action to avoid a collision, it heavily influences evaluation of

Categories III-VII.

4.3.2 Approach

A means to quantify the power driven rules is presented to include a numeric scale

of compliance (0-100) for each applicable rule and its subsequent contribution to the

applicable categories of rules. Qualitatively mapping grades of pass, marginal, and

fail with configurable threshold levels allow ease of initial viewing of performance by

the certification authority. Detailed numeric evaluation of scenarios may accompany

the top level grade to provide additional feedback and amplification of score penalties.

COLREGS collision avoidance evaluation within this thesis consists of two primary

metrics: safety and protocol compliance. Safety is based on a combination of range

and pose of the vessels at CPA. Protocol compliance is based on collision avoidance
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rule-specific requirements. Pose at CPA, specific values of range at CPA, complexity

of simultaneous contact geometries, and total contact picture are complicating factors

that are not directly quantified in the COLREGS except in limited circumstances or

as a consideration without specific definition. Each of these factors are, however,

important to collision avoidance decision making.

Examination of past encounters can be used to help train algorithms to understand

safe values of these quantities. These are related yet can provide additional value

when in context of the other. For example, a su�ciently compliant maneuver with

respect to the written rules might have varying degrees of safety depending on certain

configuration parameters. By examining the components of safety and compliance to

include range, speed, pose, and similar quantities, much insight into true performance

can be inferred. Section 4.4 discusses the safety metrics of evaluation. Section 4.5

discusses protocol compliance metrics and considerations.

4.4 Evaluating Safety Using CPA Range and Pose

The safety metric gives a quantifiable means to evaluate the danger associated with

a particular maneuver. Gains in temporal and spatial e�ciency possibly compromise

the range or pose at closest point of approach. Safety must therefore be quantified

in order to understand the risk associated with e�ciency gains. By introducing the

protocol compliance metrics of Section 4.3, safety and protocol compliance can be

largely decoupled3 to determine when a rule provides an otherwise safe closest point of

approach regardless of its adherence to the Rules. This decoupling allows exploration

of degrees of protocol compliance and resulting risk to the vessel.

While range is the predominant metric of traditional methods such as the velocity

obstacle, some account must be given to pose at CPA. This is especially important

when considering relaxation of range at CPA. Figure 4-2 demonstrates two collision

avoidance encounters of equal CPA range. Note, however, the intuitive inclination to

prefer the parallel CPA of Figure 4-2b over Figure 4-2a. Near-parallel CPA geometries

3Compliance of some rules incorporates safety as a component based on specific requirements.
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have several advantages over near-orthogonal CPA geometries. First, near-parallel

collision avoidance solutions require less dependence on ship geometry parameters

(inherently slender bodies with high aspect ratios have less target area when in a

narrow aspect). These solutions are also less sensitive to maneuvering casualties such

as engine failure (stopping of one vessel requires no additional action by the other

vessel to avoid collision). Finally, the near-parallel aspect allows greater predictability

despite a more quickly closing range.

Using contact angle, relative bearing, range, and speed, a complete contact geom-

etry can be realized. Contact angle assumes positive increasing values clockwise from

the starboard bow and negative values counterclockwise from the port bow, such that

↵ = 0� represents the contact’s bow and ↵ = ±180� represents the contact’s stern.

Pose at CPA is therefore not a single quantity, but rather a combination of values

that give great insight into the collision avoidance problem. The pose at time of

sighting or detection (⇥0) often dictates which rule(s) of a protocol applies. The pose

at CPA when combined with rcpa and relative speed gives considerable insight into

the degree of risk at tcpa. Figure 4-3 shows relative bearing and contact angle for an

arbitrary initial geometry and geometry at CPA. Figure 4-4 shows the importance of

considering pose for two di↵erent encounters of the same range at CPA.

Maneuvers that are otherwise compliant with required turn direction and speed

but maneuver in a way that results in unnecessarily close range at CPA are penalized

in the safety score. The resulting range and pose at closest point of approach are

considered when penalizing unsafe maneuvers. An autonomous collision avoidance

routine is configured to know four primary configurable range values of importance,

including in descending order:

• preferred range at CPA (Rpref )

• minimum acceptable range at CPA (Rmin)

• range value considered to be a “near miss” encounter (Rnm)

• range value considered to be a true collision (Rcol)
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A tiered range approach allows for maneuverability considerations between the

minimum acceptable CPA range and preferred CPA range. This technique gives a

more informed score for values closer than the minimum preferred CPA range com-

pared to binary safe/unsafe algorithms such as the traditional velocity obstacle. While

any range closer than Rmin is undesirable, quantifying each encounter allows more

thorough insight into the overall e↵ectiveness of a collision avoidance algorithm, colli-

sion avoidance configuration parameters, performance under certain rule constraints,

and other similar variables. Continuous or stepwise penalty functions can be assigned

between the configuration parameter values. In a basic example, a linear function

maps values between each of the configuration ranges with a collision (rcpa < Rcol

having zero value (maximum penalty) and any range greater than Rpref having max-

imum value (zero penalty). Penalty values at each transition range can be tailored

by the evaluator. Pose of the two vessels accounts for the notion that two identical

ranges are not necessarily equally dangerous at CPA as seen in Figure 4-4. For ex-

ample, a ship crossing in front of another (ownship’s bow pointing a contact’s beam

at CPA) is considerably more dangerous than two vessels passing at the same range

in a port-to-port or stern-to-beam arrangement.

An arbitrary safety function at CPA (S) primarily depends on CPA values of pose

(⇥cpa = h↵cpa, �cpai) and range (rcpa) as shown in Equation (4.3). Equation (4.4) de-

fines an example range-based discontinuous piecewise-linear safety function Sr with

stepwise penalties corresponding to each range threshold (Figure 4-5). Safety func-

tions might take alternative forms such as quadratic, logarithmic, or stepwise designs.

Equation (4.5) defines a pose-based safety function to reward an encounter where the

contacts are not pointing each other at CPA. By combining a reward for target an-

gle with Equation (4.6) and relative bearing with Equation (4.7), a reward may be

granted for beam or stern aspects at CPA up to a maximum value of Smax
⇥ . Contact

angles at CPA aft of a configurable cuto↵ value ↵cut may be given a uniform reward

value. Similarly, relative bearings at CPA aft of a configurable cuto↵ value �cut may

be given a uniform reward value.

Combining ⇥ and r to form a collective safety metric may take many forms in-
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cluding weighted summation or multiplication as shown in Equations (4.8) and (4.9),

respectively. The appropriate weights for pose (s⇥) and range at CPA (sr) are left

configurable to the evaluator. Pose can act to reward a vessel for passing astern,

for example, by some reasonable percentage defined by Smax
⇥ using a combination of

Equations (4.4), (4.5), and (4.10). An example discontinuous piecewise linear map-

ping of safety scores based on pose-adjusted range at CPA is shown in Figure 4-5.

Equation (4.4) would give the general discontinuous piecewise linear shape while an

additional reward percentage would be computed based on pose using Equations (4.5)

and (4.10). Figure 4-6 uses Equation (4.6) to construct a reward for non-bow contact

angles at CPA using ↵cut = 90�. An example algorithm for assessing safety as a

function of both range and pose is shown in Algorithm 3.

S = S(rcpa, ⇥cpa) (4.3)

Sr = Sr(�SR
min , �SR

nm , Rcol, Rnm, Rmin, Rpref ) (4.4)

S⇥ = Smax
⇥ · S↵

⇥ · S�
⇥ (4.5)

S↵
⇥ =

8

>

<

>

:

1� cos(↵cpa), if |↵cpa| < ↵cut

1� cos(↵cut), if |↵cpa| >= ↵cut

(4.6)

S�
⇥ =

8

>

<

>

:

1� cos(�cpa), if |�cpa| < �cut

1� cos(�cut)), if |�cpa| >= �cut

(4.7)
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Algorithm 3 General Approach of Safety Evaluation

1: procedure Pseudocode for analyzeSafety()
2: Input: range thresholds and associated penalty values
3: Input: safety functions (linear, quadratic, etc.)
4: Input: pose/range combination type (sum, product, etc.)
5: for each encounter do

6: ⇥cpa  pose at CPA
7: rcpa  range at CPA
8: Sr  S(rcpa) . penalize close range
9: S⇥  S(⇥cpa) . reward safe pose

10: S  S(rcpa, ⇥cpa) . combine
11: end for

12: end procedure

S = sr · Sr + s⇥ · S⇥ (4.8)

sr + s⇥ = 1

S = Sr · S⇥ (4.9)

S = Sr · (1 + S⇥) (4.10)

4.5 Rule-Specific Algorithms and Considerations

Standardized measures of performance and e↵ectiveness allow consistent evaluation

of COLREGS for both human-operated and autonomous vessels. Creating rule cat-

egories, assigning each rule to a category, and defining metrics for each applicable

rule enables consistent evaluation and allows for more clear scientific conversation

regarding the advancement of autonomous collision avoidance. Incorporation of the

appropriate case law and knowledge of the evolution of the COLREGS are vital to

ensuring appropriate behavior in nuanced situations. While the Rules give general

guidance, actions generally consistent with human behavior and expectations must
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Algorithm 4 General Approach of Evaluation Technique

1: procedure Pseudocode for EvaluateEncounter()
2: Input: vehicle positions (x,y), courses (✓), and speeds (v)
3: Input: configurable threshold ranges and angles
4: Input: configurable penalty values and functions
5: for each encounter do

6: Calculate: initial pose (⇥0)
7: Calculate: pose at CPA (⇥cpa)
8: Calculate: final CPA range (rcpa)
9: Calculate: changes in speed (�v, vmin, vmax)

10: Calculate: changes in course (�✓)
11: Determine R using Algorithm 5 . applicable protocol rule for each vehicle
12: R R(⇥0, ⇥cpa, rcpa, �v, �✓)

. evaluate for each contact with respect to its rule set R
13: S  S(rcpa, ⇥cpa)

. evaluate safety for each contact using AnalyzeSafety() routine
14: end for

15: end procedure

be the objective when integrating autonomous systems into human-present environ-

ments. Appropriately modeling and accounting for human intuition, common prac-

tice, and human expectations are among the many factors not found on any page

of written rules. For example, the colloquial Law of Gross Tonnage states that a

small craft generally stays out of the way of a large vessel such as an intercontinental

merchant even when, strictly by the protocol requirements, the small vessel might

have right of way. Adherence to custom and human expectation must be considered

and honored in order to integrate autonomous platforms into a human-dominated

environment.

Algorithm 4 demonstrates the general approach of evaluating COLREGS compli-

ance. Protocol compliance functions take the symbol R with a superscript denoting

the applicable COLREGS rule(s) (e.g., R14 denotes evaluation of head-on compli-

ance). Each subsection below presents an algorithm and brief discussion of evaluation

technique and nuance regarding a category of COLREGS scope.
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4.5.1 Vessel Encounters in Sight of One Another

Each collision avoidance rule except Rule 14 (COLREGS Rules 12-13, 15-18) allows

for entry criteria that assign one vessel to be stand-on (maintain course and speed4)

and the other give-way (keep out of the way of the other) based on geometry, ship

type or maneuverability restrictions, and environmental (wind) conditions for the

specific case of two sailing vessels. Rules 13-17 are presented with considerations

below. Rule 18 is discussed in Section 4.5.2. Algorithm 4 demonstrates the general

approach of the evaluation of a collision avoidance encounter including calculation

of the safety score using Algorithm 3. Algorithm 5 demonstrates entry criteria for

Rules 13-17 assuming no overriding Rule 18 precedence. Figure 4-7 demonstrates

example poses for rule entry criteria and the critical contact angles used throughout

this section.

4Maintaining course and speed gives appropriate latitude to normal actions required per case
law [1, 17, 100].
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Algorithm 5 COLREGS Entry Criteria: Determining the Appropriate Rule Set

1: procedure Pseudocode for COLREGS Entry Criteria
2: ↵13

crit  overtaking tolerance . default 45�; tolerance for “coming up with” pose
. also require closing range and risk of collision

3: ↵14
crit  head-on tolerance . default 13�

. tolerance for “reciprocal or nearly reciprocal courses”
. “When...in any doubt...assume...[head-on].”

4: ↵15
crit  crossing aspect limit . default 10�

. all ↵crit values are configurable by evaluator

5: ↵0  initial contact angle (↵ 2 [�180, 180))
. ↵360�

0 maps ↵0 from [�180, 180)! [0, 360)
6: �0  initial relative bearing (� 2 [0, 360))

. �180�
0 maps �0 from [0, 360)! [�180, 180)

7: if (�0 > 112.5) && (�0 < 247.5) && (|↵0| < ↵13
crit) then

8: R R13/17 . vessel is overtaken (stand-on)

9: else if (↵360�
0 > 112.5) && (↵360�

0 < 247.5) &&
10: (|�0|180

�
< ↵13

crit) then

11: R R13/16 . vessel is overtaking (give-way)
12: else if |�180�

0 | < ↵14
crit && |↵0| < ↵14

crit then

13: R R14 . vessel is head-on; tolerance is configurable
14: else if (�0 > 0) && (�0 < 112.5) && (↵ > �112.5) && ↵ < ↵15

crit then

15: R R15/16 . vessel is crossing give-way; crossing aspect limit is configurable
16: else if (↵360�

0 > 0) && (↵360�
0 < 112.5) &&

17: (�180�
0 � 112.5 && (�180�

0 < ↵15
crit then

. crossing aspect limit is configurable
18: R R15/17 . vessel is crossing stand-on
19: else

20: R Rcpa . vessel likely has no risk of collision but remains detectable
. verify and continue tracking with rcpa, range-rate, and bearing-rate

21: end if

22: end procedure

145



(a) Perpendicular CPA

(b) Parallel CPA

Figure 4-2 Safety of an encounter with two equivalent values of rcpa can be shown to
require a pose component. In (a), a contact reaches CPA ahead of ownship, while in
(b) the vessel is safely abeam at the same range and quickly opening range. Human
drivers intuitively prefer encounters whose CPA where one vessel is not pointing or
nearly pointing another while still making way.
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(a) Initial Pose (⇥0)

(b) Arbitrary Pose at CPA (⇥cpa)

Figure 4-3 Ownship (labeled “O/S”) is traveling east and first sites a contact at
relative bearing � with contact angle ↵ in (a). Speed is represented by the length
of the colored lines from each vessel (red for contact, blue for ownship). From the
perspective of the contact looking at ownship, ↵ and � are simply interchanged.
These two angles give great insight into the collision avoidance picture and quickly
aid in determining the applicable protocol constraints. Combined with CPA range
and time (rcpa, tcpa), pose at CPA (⇥cpa = h↵cpa, �cpai) gives important information
as to risk of collision, collision avoidance protocol compliance, and overall safety of
a maneuver. Relative bearing and contact angle at CPA are shown in (b). CPA (b)
occurs when the range between contacts reaches its minimum value of the encounter.
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(a) Bow-Crossing Pose at CPA (b) Stern-Crossing Pose at CPA

Figure 4-4 Ownship (labeled “O/S” and traveling north) encounters two scenarios of
a canonical track crossing with identical ranges at CPA. The bow crossing scenario
of (a) demonstrates a much more dangerous encounter than the stern crossing of (b).
While many techniques treat all ranges equally, this canonical example of equivalent
ranges demonstrates the necessity of incorporating pose into calculations of risk and
performance. A decision to more appropriately cross astern of the stand-on vessel
at the same range gives an equivalent range with a safer pose at CPA. The stand-on
vessel (O/S) is given higher confidence in the give-way vessel’s intentions to respect
right-of-way while also allowing for engineering casualties to have less likelihood of
a resulting collision.
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Figure 4-5 Safety scores consider range and pose at CPA. This figure demonstrates
a linear mapping of range at CPA (rcpa) to safety scores using the configuration pa-
rameters of Equation (4.4). Additional penalty or reward may be assigned for pose
considerations according to the evaluator’s preference of a safety function. Safety
functions of the general form of Equation (4.3) may take the form of Equations (4.8),
(4.9), and (4.10).
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Figure 4-6 COLREGS pose reward functions can be used to give preference to pass-
ing contacts with relative bearing and contact angle that are least likely to increase
risk of collision. This function rewards beam and stern contact angles at CPA using
Equation (4.6). This example shows the cuto↵ angle set to ↵cut = 90� to give equal
preference to beam and stern aspects. No reward is given for beam aspects.
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Entry Criteria

Entry criteria for Rules 13-17 largely depend on a combination of relative geometry,

relative speeds, and an assessed risk of collision. While relative bearing is specified

explicitly in the COLREGS for Rule 13, ambiguity exists for Rule 14. Contact an-

gle o↵ers significant insight into the appropriate rule and helps discriminate risk of

collision before making more costly calculations. Configurable critical contact angles

(↵crit) shown in Figure 4-7 help specify whether a vessel should take action per the

COLREGS. The ability to configure ↵crit gives flexibility to the evaluator.

Rule 13 – Overtaking

Overtaking vessels are defined in Rule 13 and assigned responsibilities under Rules 16

and 17. The overtaking rule allows a faster vessel to safely pass a slower vessel.

Collision avoidance routines for overtaking vessels (Figure 4-7a) may rely on ex-

plicit entry criteria specified in the COLREGS with respect to initial pose: a contact

must be more than 22.5� abaft the other vessel’s beam. Di↵erent countries have in-

terpreted the “coming up with” phrase to take di↵erent meanings including a notable

admiralty case in England involving Nowy Sacz and the Olympian [1, pp. 402-411].

Most courts contend, however, that the overtaking rule applies when the appropriate

encounter geometry exists, the astern vessel has a higher speed than the overtaken

vessel, the vessels are closing range, and an expected range at CPA would reasonably

require prudence.

The overtaking (higher speed) vessel is defined as a give-way vessel by Rule 16 [1,

17]. Pose becomes an important aspect of measuring performance for the overtaking

vessel due to both common practice and specific requirements in the Rules including

her “duty of keeping clear ... until past and clear.” Overtaking on near-parallel

tracks (such as in a merchant transit lane) allows for safe pose at CPA and accounts

for a significant and mostly trivial case in the absence of other collision avoidance,

environmental, or navigational constraints. A reasonable set of entry criteria for

Rule 13 generally include a contact angle (↵) within the exclusive sternlight region,
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(a) Overtaking (b) Head-on

(c) Crossing (d) Crossing (edge case)

Figure 4-7 Entry criteria for Rules 13-17. All critical angles are relative to ownship’s
heading. Critical angles of Rules 13 and 14 represent half-angles of the shaded
region. All critical contact angles are configurable to the evaluator as they have no
prescribed value in the COLREGS.
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(a) Initial overtaking geometry (b) Overtaking astern of contact

Figure 4-8 Ownship’s (O/S) initial encounter geometry, closing range, and proximity
at CPA require action under an overtaking scenario of Rule 13. Dotted lines indicate
the blue (O/S) and red (contact) speeds and demonstrate a closing range given the
initial contact pose h↵, �i in (a). By appropriately altering course to starboard
early in the collision avoidance encounter (b), O/S will pass to the contact’s stern
without causing the stand-on vessel to maneuver for a risk of collision.

a su�cient speed and relative bearing (�) for closing range, and a CPA range and

CPA pose consistent with a risk of collision.

When the contact situation or initial geometry requires overtaking on non-parallel

tracks such as in Figure 4-8, preference should be given to overtaking astern of the

overtaken vessel when possible. Passing track in front of the overtaken vessel creates

an encounter with higher risk and less evasive maneuverability for the overtaken

vessel. Passing in front of the overtaken vessel within a range considered a risk of

collision further degrades the overtaken vessel’s ability to maintain its course and

speed. Therefore, a penalty is assessed for overtaking vessels who cross ahead of

track of an overtaken vessel within a certain range.

The vessel being overtaken is, by the definition of Rule 17, a stand-on vessel and

must keep her course and speed [1, 17]. This nuance is often unknowingly neglected

by autonomous collision avoidance authors and emphasizes the need for incorporation

of practical at-sea experience of those involved in designing and evaluating collision

avoidance algorithms for autonomous vessels [45, 46]. Vessels deemed to be overtaken

must therefore demonstrate their obligation to maintain course and speed within the

context of their contact-free intentions [1].
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Algorithm 6 Rule 13/16: Overtaking Vessels

1: procedure Pseudocode for Overtaking Vessels
2: R13  R16 . overtaking vessels are give-way vessels (Rules 13 & 16)
3: end procedure

Overtaking algorithms must be validated for correct contact angle, relative bear-

ing, and speed considerations to verify mode entry criteria and algorithm robustness.

A final necessary check in evaluation of overtaking collision avoidance algorithms is

to ensure that modes do not shift from overtaking to crossing. Any mode changes

from overtaking to crossing should be deemed a failure of the overtaking collision

avoidance algorithm, as it violates an explicit clause of Rule 13.

A general approach for evaluating overtaking vessels under Rules 13 and 16 is

shown in Algorithm 6 viz Algorithm 10 give-way requirements and includes the fol-

lowing attributes:

• penalize for unnecessary crossing of contact’s bow at close ranges

• penalize for unnecessary hindrance of overtaken vessel’s desired maneuvers

• penalize for delayed action (range of maneuver relative to detection range and

CPA range if a maneuver is required) (Algorithm 12)

• penalize for safety violations including su�cient range and early action (Rules 7 - 8)

A general approach for evaluating overtaken vessels under Rules 13 and 17 is shown

in Algorithm 7 viz Algorithm 11 stand-on requirements and includes the following

attributes:

• penalize the overtaken vessel in accordance with requirements of a stand-on

vessel (Rule 17)

• penalize for safety violations resulting from neglecting to invoke Rule 17.a.ii

• compensate for changes in course or speed required as a result of being in

extremis
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Algorithm 7 Rule 13/17: Overtaken Vessels

1: procedure Pseudocode for Overtaken Vessels
2: R13  R17 . overtaken vessels are stand-on vessels (Rules 13 & 17)
3: end procedure

Rule 14 – Head-on

The head-on policy of Rule 14 prevents two vessels on nearly reciprocal courses from

colliding by requiring a port-to-port passage. A nuance often over-looked by novice

approaches though specifically required by combining Rules 8 and 14 occurs when a

vessel must cross the track of an on-coming vessel to achieve a port-to-port passage

[17]. While a starboard-to-starboard passage might seem intuitive to the novice to

avoid entering the head-on rule, any alteration for a contact on a nearly reciprocal

course – including a slight alteration to port for an otherwise starboard-to-starboard

passage – is acknowledgment of a risk of collision and must therefore result in a

maneuver to starboard for a port-to-port passage.

Head-on situations (Figure 4-7b) provide arguably the most ambiguous entry cri-

teria of the rules for power-driven vessels. The definition of “reciprocal or nearly

reciprocal courses” is vague and left to interpretation. The compass course is re-

quired to be used when assessing course di↵erence due to the ship-fixed masthead

light and sidelight definition of ship’s course in Rule 14. Confusion arises when envi-

ronmental parameters greatly a↵ect the course-over-ground; non-visual means (e.g.,

radar, lidar, etc.) measure course-over-ground, so care must be taken in evaluating

contact geometry for proper entry criteria and resolution of ambiguity. Similarly, a

consistent entry criterion for “nearly reciprocal course” should be configurable and set

in accordance with local customs or certifying agency requirements. Environmental

conditions such as sea-state, current, or fluctuating wind might also warrant a change

to the entry criteria angle (↵14
crit) tolerance or use of a filter.

Evaluation scenarios should incorporate su�cient set and drift to realize an appre-

ciable distance between course-over-ground and compass heading before certification

as compliant with Rule 14. Small sequential maneuvers should also be penalized, as a

single, readily apparent maneuver is required (Rule 8). The size of a readily apparent
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maneuver is not explicitly defined in the COLREGS, though turns of 30� have been

determined by custom to be su�cient [85]. Some texts suggest a minimum of 35� for

a su�cient turn [1]. The intention of the rule is to ensure that turns are apparent

by both radar and visual observation; the single large turn clearly communicates to

the other vessel that a risk of collision has been assumed and the vessel is taking

appropriate early action in accordance with the COLREGS.

When evaluating maneuvers for a head-on scenario, both vessels must maneuver

to starboard in an appreciable and timely way. Maintaining course or turning to

port should be viewed as a failure to maneuver in accordance with Rule 14. Rule 14

further specifics that passing pose must be port-to-port. Pose should therefore enter

into the protocol compliance metric for head-on encounters. Equation (4.11) demon-

strates an arbitrary Rule 14 pose function (R14
⇥

cpa

) accounting for both relative bearing

and contact angle at CPA. Equation (4.12) uses specific pose functions to give large

preference to near-canonical port aspects.

R14
⇥

cpa

= R14
↵
cpa

· R14
�
cpa

· Rmax (4.11)

R14
⇥

cpa

=

0

@

sin(↵cpa)� 1

2

1

A

20

@

sin(�cpa)� 1

2

1

A

2

Rmax (4.12)

This example pose reward uses combinations of sinusoidal functions of relative

bearing (�) and contact angle (↵) at CPA. A true port-to-port passage will be a

relative bearing of � = 270� and a contact angle of ↵ = �90� as seen in Figure 4-9.

Within an allowable tolerance, large deviations from port-to-port passage in open-

ocean scenarios likely indicate insu�cient or delayed maneuvers by one or both vessels.

In Figure 4-9a, a nearly canonical head-on CPA geometry gives a high pose reward

score. In Figure 4-9b, a likely late maneuver by ownship and a subsequent narrow

contact angle at CPA results in a smaller pose reward. Algorithm 8 demonstrates an

approach to evaluate head-on encounters. Alternative functions are available in the
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(a) Near-canonical head-on geometry at CPA.

(b) Head-on geometry at CPA resulting from delayed action of ownship (O/S).

Figure 4-9 Rule 14 requires head-on contacts to maneuver to starboard and pass
port-to-port. The geometry of a nearly canonical case (a) shows the preferred CPA
geometry including relative bearing � and contact angle ↵. Using Equation (4.12), a
nearly maximum pose score would result. In (b), a delayed maneuver from ownship
(“O/S”) results in a port relative bearing at CPA; contact angle ↵cpa, however,
accounts for the less than ideal CPA geometry. Equation (4.11) would reduce the
overall performance score for the situation in (b).

evaluation library discussed in Section 4.6.

Figure 4-10 shows an example port-to-port pose function. Figure 4-11 shows a

more severe preference to port angles. Possible scores range from 0 to the maximum

possible protocol compliance score (Rmax = 100%).
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Algorithm 8 Rule 14: Head-on Vessels

1: procedure Pseudocode for Head-on Vessels
2: Input: ↵cpa

3: Input: �cpa

4: R14  Rmax

5: R14  assess non-starboard turn penalty
. “each shall alter her course to starboard”

6: R14  assess delayed action penalty . “made in ample time” (Algorithm 12)
7: R14  assess non-apparent turn penalty

. “be large enough to be readily apparent” (Algorithm 14)
8: R14  assess R14

⇥
cpa

penalty if not port-to-port . Equation (4.11)
. “each shall pass on the port side of the other”

. configurable per library of Section 4.6.1
9: end procedure
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Figure 4-10 The example protocol evaluation function
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allows strong

reinforcement of port-to-port passage when substituting both relative bearing and
contact angle for � as shown in Equation (4.12). The plot of the Rule 14 cost
function (a) demonstrates high reward for near-port angles. The polar plot rep-
resentation (b) demonstrates the same reward function in a top-down view more
natural to a collision avoidance encounter. The radius of the polar plot indicates the
percentage of Rmax; the origin corresponds to zero while the outer ring corresponds
to Rmax = 100%.
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Figure 4-11 A function such as this fourth-order sinusoidal function imposes a more
strict requirement for beam passing than those of Figure 4-10.
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Rule 15 – Power-Driven Crossing

Rule 15 assigns give-way and stand-on responsibilities to each of two crossing power-

driven vessels with a risk of collision (Figure 4-7c). The geometric entry criteria are

derived from eliminating head-on and overtaking geometries while retaining a risk of

collision. Relative bearing therefore spans {� : (� < 112.5�) or (� > 247.5�)} with

an appropriate contact angle (↵) such that a risk of collision exists without inducing

head-on or overtaking obligations.

Crossing give-way vessels are specifically required to not cross ahead of the stand-

on vessel; this notion has been reinforced in admiralty courts [1]. Note that a risk

of collision must exist for Rule 15 to apply. Therefore a risk of collision invoking

crossing give-way actions requires a stern crossing. Verification that a vessel crossed

astern of the stand-on vessel is possible using pose at CPA. For example, a stern

crossing or near-stern crossing will result in a narrow or negative contact angle if the

stand-on vessel does not maneuver (Figure 4-4). If the stand-on vessel determines

that an in extremis situation exists and maneuvers to starboard, the give-way vessel

should similarly be penalized for failure to act in accordance with the COLREGS.

A general approach to evaluating a crossing give-way power-driven vessel under

Rule 15 can be seen in Algorithms 9 and 10 and includes the following attributes:

• penalize crossing ahead (e.g., �25� < ↵cpa < 165� (configurable) where ↵cpa is

the stand-on vessel’s contact angle if no action is taken under Rule 17.a.ii)

• penalize forcing an in extremis maneuver by the stand-on vessel in accordance

with Rule 17.a.ii

• penalize give-way requirements of Rule 16 (Section 4.5.1)

• include safety penalty for early and substantial action clause of Rule 16

Requirements of the stand-on vessel in a power-driven crossing situation are discussed

in Section 4.5.1 and Algorithm 11.
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Algorithm 9 Rule 15: Power-Driven Crossing

1: procedure Pseudocode for Power-Driven Crossing Vessels
2: if crossing give-way vessel then
3: R15/16  R16 . crossing give-way vessel must obey Rule 16 (Algorithm 10)
4: R15/16  assess pass-ahead penalty

. “avoid crossing ahead of the other vessel” (case law [1, 17, 82])
5: else if crossing stand-on vessel then
6: R15/17  R17 . crossing stand-on vessel must obey Rule 17 (Algorithm 11)
7: end if

8: end procedure

Rule 16 – Give-way

Give-way vessels are to take early action, to take substantial action, and to keep well

clear. This yields three measurable criteria for all give-way vessels:

• time of maneuver relative to the times of detection, determination of collision

risk, and CPA

• determination of substantial action as measured by the size and direction of the

maneuver (turn and/or speed change consistent with Rule 8)

• range and pose at CPA

It should be noted that Rule 16 does not apply exclusively to power-driven vessels

nor does it apply exclusively to crossing situations [1, 17]. Rather, Rule 16 may

be invoked as a result of Rules 12, 13, 15, or 18. Claims of “compliance” with

Rule 16 have been implicitly made in autonomous collision avoidance literature with a

scope limited to crossing give-way situations (Rule 15) without discussion of its wider

implications. Full Rule 16 compliance claims must, however, specify that they include

the scope of Rule 12 (sailing vessels), Rule 13 (overtaking), Rule 15 (power-driven

crossing), and Rule 18 (precedence) to be complete and truly compliant. Algorithm 10

demonstrates Rule 16 evaluation.

Rule 17 – Stand-on

Stand-on vessels are by definition the vessel not assigned give-way responsibilities

for an encounter requiring one vessel to keep clear (i.e., Rule 16 give-way). Stand-
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Algorithm 10 Rule 16: Give-way Vessels

1: procedure Pseudocode for Give-way Vessels
2: R16  Rmax

3: R16  AnalyzeSafety() (Rules 8,16,18) . “keep well clear”
4: R16  penalize for delayed action . Algorithm 12
5: R16  penalize for non-apparent maneuvers . Algorithm 13

. “take early and substantial action”
6: R16  penalize for hindrance of stand-on vessel

. “keep well clear”
7: end procedure

on vessels are not necessarily limited to situations of a crossing encounter with two

power-driven vessels. The stand-on vessel is required by Rule 17 to maintain course

and speed. A penalty should thus be assessed for changing course and another penalty

assessed for changing speed with some reasonable tolerance for environmental con-

ditions and noise. Consideration must be given, however, to stand-on vessels ma-

neuvering when invoking their obligation to avoid collision when in extremis under

Rule 17.a.ii. Stand-on vessels failing to maneuver prior to a collision have repeatedly

been found partially (usually 25%) at fault by admiralty courts when not invoking

this clause [1]. Environmental and contact picture-specific variables heavily influence

the determination of when to maneuver as a stand-on vessel.

Further, obligations of a stand-on vessel simultaneously assigned responsibilities

as a head-on or give-way vessel with another contact must take care to understand

the obligations of case law as it applies to maintaining course and speed. Courts have

repeatedly ruled that maintaining course and speed implies those navigational ma-

neuvers consistent with a “steady, predictable maneuver.” This includes maneuvers

for avoidance of danger or other navigational requirements that the stand-on vessel

would otherwise perform (e.g., slowing to take on a pilot, maneuvering for another

COLREGS obligation, etc.) [1].

Stand-on vessels that determine themselves to be in extremis are both allowed and

required by the COLREGS to take action subject to certain restrictions. Reasonable

and consistent criteria are required for determination of when to take action under

Rule 17.a.ii. Once entry criteria are established, evaluation of stand-on vessels deemed
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Algorithm 11 Rule 17: Stand-on Vessels

1: procedure Pseudocode for Stand-on Vessels
2: R17  Rmax

3: R17  AnalyzeSafety() (Rules 8,17,18)
. “she shall take such action as will best aid to avoid collision”

4: R17  penalizeCourseChange() . Algorithm 16
5: R17  penalizeSpeedChange() . Algorithm 17

. “shall keep her course and speed”
6: R17  compensate for maneuvers required of normal navigation

. case law [1, 17, 82]
7: if in extremis then

8: R17  compensate for maneuvers required in extremis

. “take action to avoid collision by her maneuver alone”
9: if power-driven crossing then

10: R17  penalize port maneuvers for port contacts
. “...not alter course to port for a vessel on her own port side”

11: end if

12: end if

13: end procedure

to be in extremis should focus on safely avoiding a collision subject to the power-driven

restriction of Rule 17.c. With the exception of Rule 17.c, evaluation of evasive action

should use the safety score as a primary metric for rule compliance of the stand-on

vessel.

For stand-on vessels, a change in speed is a violation of Rule 17 within the afore-

mentioned caveats. To quantify speed change, the speed at the declaration of entry

into the stand-on obligation must be identified. A penalty can then be assigned

for any subsequent speed up or slow down relative to this initial speed value. A

speed change that is likely undetectable by the contact or insignificant to the col-

lision avoidance scenario should be disregarded. Speeding up or slowing down by

appreciable amounts without navigational necessity, however, violates Rule 17 and

can result in unnecessary complication of the collision avoidance scenario.

Similarly, course changes greater than some threshold noise level (say, 2�) must be

penalized for stand-on vessels not otherwise invoking Rule 17.a.ii. Some small heading

change up to the generally accepted substantial value of 30� must be increasingly

penalized. An example metric uses a linear or quadratic mapping between minimum

detectable and substantial course changes (2�-30�) with a plateau of penalty outside
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Algorithm 12 Penalize for Delayed Action

1: procedure Pseudocode for PenalizeDelayedAction()
2: rdetect  range to contact at time of detection . default 1.8 · Rpref

3: rmaneuver  range to contact at time of ownship’s maneuver
4: rcpa  range to contact at CPA
5: Rdelay  maximum score deduction (percent)

6: Rdelay  Rdelay ·
 

rdetect � rmaneuver

rdetect � rcpa

!

7: Rrule  Rrule · (1�Rdelay)
8: end procedure

Algorithm 13 Penalize for Non-Readily Apparent Maneuver

1: procedure Pseudocode for PenalizeNon-ApparentManeuver()
2: R�✓

app  Non-ApparentCourseChange()
3: R�v

app  Non-ApparentSpeedChange()
4: thresh threshold penalty before non-apparent maneuver deducts from score
5: . default 30%
6: if

�

R�✓
app < thresh

�

||
�

R�v
app < thresh

�

then

7: return;
8: else if

�

R�v
app < thresh

�

then

9: Rrule  Rrule ·
�

1�R�✓
app

�

10: else

11: Rrule  Rrule ·
�

1�R�v
app

�

12: Rrule  Rrule ·
�

1�R�✓
app

�

13: end if

14: end procedure

Algorithm 14 Check for Non-Readily Apparent Course Change

1: procedure Pseudocode for Non-ApparentCourseChange()
2: R�✓

app  max penalty for non-apparent course maneuver
3: . R�✓

app 2 [0, 1], default 50%
4: |�✓| absolute course deviation
5: �✓app  apparent course deviation threshold . default 30�

6: �✓md  minimum detectable course deviation . default 0�

7: if |�✓| > �✓app then

8: return
�

R�✓
app  0

�

9: end if

10: R�✓
app  R�✓

app ·
 

�✓app � |�✓|
�✓app ��✓md

!

11: end procedure

the linear region. Several small turns resulting in a larger e↵ective turn should also

be penalized accordingly.
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Algorithm 15 Check for Non-Readily Apparent Speed Change

1: procedure Pseudocode for Non-ApparentSpeedChange()
2: R�v

app  max penalty for non-apparent speed maneuver
3: . R�v

app 2 [0, 1], default 50%
4: �v  apparent speed reduction threshold . �v 2 [0, 1], default 50%
5: v0  initial ownship speed at time of detection
6: vmin  speed after slowing

7: �v  
 

v0 � vmin

v0

!

8: if (�v � �v) then

9: return
�

R�v
app  0

�

. su�ciently apparent speed change
10: end if

11: R�v
app  R�v

app ·
 

�v ��v

�v

!

12: end procedure

Algorithm 16 Penalize Course Change

1: procedure Pseudocode for PenalizeCourseChange()
2: if tmaneuver > tcpa then

3: return;
4: end if

5: Rmax  maximum penalty for changing course . default 50%
6: |�✓| maximum heading deviation
7: �✓app  apparent turn threshold . default 30�

8: �✓md  minimum detectable heading deviation . default 2�

9: if (|�✓| < �✓md) then

10: return;
11: else if (|�✓| > �✓app) then

12: return
�

Rrule  Rrule �Rmax
�

13: end if

14: Rrule  Rrule �Rmax ·
 

|�✓|��✓md

�✓max ��✓md

!

15: end procedure

4.5.2 Responsibilities of Vessels within Sight: Rules 11, 18

Identification of the contact’s type (e.g., power-driven, sailing, etc.) gives necessary

knowledge for determining precedence under Rule 18. Certain vessels yield right-of-

way to others by the nature of their vessel type; similarly, other vessels expect and

are a↵orded right-of-way. To be compliant with Rule 18, autonomous vessels must

be able to correctly classify vessel types and properly assign give-way hierarchy.

Detection of another vessel being under sail is insu�cient for some scenarios in-
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Algorithm 17 Penalize Speed Change

1: procedure Pseudocode for PenalizeSpeedChange()
2: if tmaneuver > tcpa then

3: return;
4: end if

5: Rmax  maximum penalty for slowing . default 50%
6: �vfast  vmax � v0
7: �vslow  v0 � vmin

8: �vmax  max(�vfast, �vslow)
9: �vmd  minimum detectable speed change . default 0.2m/s

10: if �vmax < �vmd then

11: return;
12: end if

13: Rrule  Rrule ·
 

v0

vmax

!2

. penalize speeding up

14: Rrule  Rrule �Rmax ·
 

�vslow

v0

!

. penalize slowing down (not mutually exclusive)
15: end procedure

volving multiple sailing craft in the vicinity of a power-driven autonomous vessel. In

order to anticipate the likely movements of a sailing give-way to avoid a sailing stand-

on, each autonomous vessel should be able to identify which sailing vessel is stand-on

and which is give-way to the other. By determining environmental conditions such as

wind, a power-driven autonomous vessel can anticipate a likely maneuver of a sailing

give-way vessel that might interfere with ownship’s intentions to give-way to both

sailing vessels.

4.5.3 General Rules (Rules 1-3)

Much debate exists as to whether an autonomous vessel without a human physically

present constitutes a “vessel” under international law. This thesis assumes that the

definition accorded in Rules 1-3 apply equally to any floating structure (or “water-

craft”) as if a human were physically present and operating it. Rule 3 defines the

scope of COLREGS to include any “vessel” without specification of control, be it

human, machine, or some combination thereof. The only distinctions drawn by the

COLREGS are related to propulsion (e.g., sail, power-driven, etc.) and maneuver-
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ability (e.g., fishing, not under command, etc.) constraints. This is consistent with

case law dating back to the 19th century [33, 89, 93]. As recently as 2013, the U.S.

Supreme Court rejected a permanently moored house boat meeting the definition

of a vessel. In doing so, the court a�rmed that the definition of a vessel is met if

a reasonable observer would consider it designed to a practical degree for carrying

people or things over water citing the house boat’s absence of a rudder or steering

mechanism as well as a lack of capacity to generate or store electricity [88].

Accordingly, COLREGS must apply to autonomous vessels as though they were

human controlled and performing the same tasks. Rule 3 further stipulates that

“Vessels shall be deemed to be in sight of one another only when one can be ob-

served visually from the other.” Various work to emulate a human lookout by use of

on-board sensors and sensor processing enables “sight,” including cameras, infra-red

sensors, and other similar technologies. The COLREGS deliberately address a visual

requirement when two vessels are in “sight” of each other, though this does not ex-

clude non-sight sensors (e.g., radar, lidar, sonar) from assisting with initial detection,

classification, or queuing of sight sensors. Similarly, the “restricted visibility” defini-

tion of Rule 3 must consider the limitations of human-operated vessels especially as

it relates to the human-visible spectrum of light; the inherent safety implications of

entering a restricted visibility constraint even if an autonomous vessel’s sensors allow

greater detection range than that of a human operator must be considered.

The intention of the restricted visibility sections of COLREGS are two-fold:

1. increase detectability to other contacts to maximize detection range

2. reduce allowable speed while further limiting maneuver directions to account

for and partially mitigate limited detection distances

Autonomous designers require clarification from the international governing bodies

as to what o�cially constitutes “sight” of a non-human controlled vessel.
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4.5.4 General Conduct of Vessels and Special Tra�c Schemes

(Rules 4-10)

Rules 4-10 address the requirements of all vessels including the stationing of a look-

out, use of safe speed, determining risk of collision, the action required to avoid

collision, behavior in narrow channels, and behavior in tra�c separation schemes

[84]. One point of contention is the requirements of Rule 5 to maintain a look-

out. Several boards have been formed in the international community to address the

perceived discrepancy in what, if any, non-human means may constitute a look-out

in accordance with the COLREGS. This thesis assumes that any means of “sight

and hearing” whether human or machine may constitute a look-out so long as it

su�ciently functions within the spirit of the COLREGS and to the standards of a

qualified human lookout.

Rule 5 – Lookout

Rule 5 requires a look-out to be stationed “by sight and hearing as well as by all

available means appropriate in the prevailing circumstances.” Evaluation should pre-

fer coordination between sight and hearing algorithms consistent with a reasonably

trained human look-out. Metrics for Rule 5 under the assumption of machine-based

lookout include:

• listening with on-board auditory sensors at all times while underway. Above-

waterline sensors must always be functional. Sonar may supplement if installed

but must never replace a surface vessel’s above-waterline auditory sensor re-

quirement

• observing with a su�cient combination of on-board non-auditory (visual, radar,

lidar, infrared, etc.) sensors at all times when underway

• conditionally supplementing with additional on-board sensors (e.g., radar), o↵-

board sensors (e.g., accompanying aerial vehicle), and externally provided data

(e.g., AIS) as necessary
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Rule 6 – Safe Speed

Environmental factors and ship dynamics predominantly enter with Rule 6. Rule 6

specifically identifies 12 areas – assuming that the autonomous vessel has radar –

requiring evaluation when determining a safe speed. The state of visibility, contact

density, stopping distance, turning ability, sea state, and draft are just some of the

parameters identified when determining a safe speed. Autonomous vessels must be

able to independently determine their e↵ective time-distance capabilities, turning

kinematics and dynamics, and e↵ects of contact density when selecting a maximum

allowable speed to be fully compliant with Rule 6.

Rule 7 – Risk of Collision

As in human-operated ship driving, autonomous marine vehicles enjoy widely vary-

ing interpretation of what a “risk of collision” means based on operating style and

design. Several factors allow mariners to make assumptions about the other vessel’s

level of tolerance when assessing a risk of collision including vessel type, cargo, pri-

mary mission, maneuverability, and pose. For example, merchant vessels often have

similar desired ranges at CPA based on common training, similar ship maneuverabil-

ity characteristics, and maritime customs. A liquid Nitrogen gas tanker might have

a tendency for larger, more conservative ranges at CPA than say a transiting fishing

trawler who is more accustomed to high contact density environments with greater

maneuverability. Pose becomes a highly relevant consideration for determination of

collision risk. Both pose at CPA and initial pose must be considered in conjunction

with speed and range when assessing risk of collision.

Another consideration is the underlying flexibility of the collision avoidance algo-

rithms. Human operators often use multiple CPA range thresholds to determine risk

of collision and necessary actions. To determine risk of collision, one must know the

conditions present in the decision space of the vessel as well as the vessel’s current

capabilities. For example, certain crew members o↵er greater levels of experience,

while certain machinery conditions or watch-stander configurations allow for greater

169



maneuverability or performance. Requiring the vessel’s Captain or additional watch

o�cers on the bridge for certain encounter scenarios is one example of a modified

watch-stander configuration. These factors directly contribute to the level of conser-

vativeness of the subsequent maneuver.

A vessel master’s policy often dictates that certain precautionary measures must

be in place before taking contacts closer than certain ranges [85, 86]. This might

include certain qualified watch-standers present on the bridge, certain machinery

configurations, or certain environmental conditions. Similarly, restricted visibility

and other detectability considerations must be considered in the determination of

risk of collision.

Two considerations are specifically required as components of determination of

collision risk, namely, 1) contacts with constant compass bearing with corresponding

decreasing range, and 2) approaching large vessels, tows, or close range contacts.

If either of these two areas are not explicitly considered in risk determination, an

immediate failure score is warranted for Rule 7. Additional metrics should include

the appropriate configuration of range thresholds, the tolerance for determining a

constant bearing/decreasing range scenario, early warning capabilities, and analysis

of “scanty information”. Such scanty information [84] might be considered with

appropriate weight based on radar return strength, fusion of other sensor data, and

sensor filter settings.

4.5.5 Sailing in Sight of Another Sailing Vessel (Rule 12)

Sailing vessels must be properly identified in order to discriminate precedence per

Rule 18 and, in the case of ownship also being a sailing vessel, determine stand-on

and give-way status per Rule 12. In the case of both vessels being under sail, proper

identification of the windward side of both vessels is required (both wind direction

as well as the location of the mainsail or the largest fore-and-aft sail). Failure to

properly identify other sailing vessels must result in a failure of Rule 12. Further

evaluation using the requirements of Rules 16 and 17 applies as appropriate.
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4.5.6 Restricted Visibility (Rule 19)

In addition to the discussion of Section 4.5.3, Rule 19 addresses situations of reduced

visibility, i.e., when vessels cannot see the other due to the environmental reasons

prescribed in Rule 3. Specific checks should be made during algorithm testing to

ensure restrictions are in place to limit speed consistent with Rules 6 and 19. The

two specific cases addressed in Rule 19.d should be explicitly tested in conditions

emulating restricted visibility, including:

• ensuring a vessel does not alter course to port for a vessel forward of the beam,

except in cases of overtaking

• ensuring a vessel does not alter course toward a vessel abeam or abaft the beam

Testing should also consider the cases of auditory detection of fog signals ahead of

the beam to ensure invocation of the bare-steerage clause of Rule 19.e.

4.5.7 Lights and Shapes (Rules 20-31)

There are two main areas of scope in the lights and shapes section of the COLREGS.

First, designers must properly display the required lights and shapes on ownship

according to certain ship characteristics. This requires self-awareness of whether a

particular section of the COLREGS which requires special lights and shapes applies.

In addition, the ability to actually transmit the appropriate signal for the correct

duration of time is required. Second, a vehicle must be able to properly identify

lights and shapes of other vessels including assignment of proper meaning. This

recognition and application to the contact directly complements Rule 18 requirements

of precedence with respect to ownship’s collision avoidance role viz stand-on or give-

way. Special lights and shapes may be necessary for autonomously operated vessels

to display. The community would be well served by international governing bodies

issuing guidance stating whether a special day shape or light signal is required to

identify autonomously operated vehicles, and if so, making such display or signal
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standard across the world5.

4.5.8 Sound and Light Signals (Rules 32-37)

Quite similarly to the lights and shapes requirements of Section 4.5.7, vessels must

be able to properly communicate using sound and light signals in accordance with

the COLREGS. Autonomous vessels are in need of clarification of any special sound

and/or light signals required for autonomous vessels. To avoid ad hoc signals in-

tended to indicate an autonomous vessel encountering a human vessel, international

governing bodies should provide articulated guidance. Advances in the field within

the scope of this section would focus on multiple areas including:

• receiving a contact’s light and sound signals

• interpreting these light and sound signals then influencing ownship’s autonomous

collision avoidance behaviors appropriately

• transmitting light and sound signals to a contact when ownship autonomously

determines necessity in accordance with the COLREGS

4.6 COLREGS Testing and Evaluation

A COLREGS testing and evaluation software program was designed to be used from

a third party neutral “shoreside” observer with assumed perfect sensing data of the

vessels under observation. The purpose of the testing and evaluation program is to

act as a neutral grader of a ship’s performance in complying with the COLREGS,

especially in the absence of human intervention. Third party perfect sensing repre-

sents a reasonable assumption for a road test or other evaluator entity, as the vessel

autonomy could be evaluated in a well-sensored testing range with verified GPS-based

location data recorded for all vessels. A position reporting protocol such as AIS may

5Submarines operating on the surface are currently the only special signal not contained as a
requirement within the numbered international rules.
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prove satisfactory if reports can be deemed trustworthy. Future work could incorpo-

rate sensor fusion and imperfect sensing scenarios that would enable this concept to

be used outside the realm of certification-focused testing and evaluation.

Scope of the testing and evaluation program was limited to power-driven vessel

rules, specifically Rules 13-18. A library was developed to allow for both real-time

(Section 4.6.2) and post-mission analysis (Section 4.6.3). Complex multi-contact en-

counters such as the one shown in Figure 4-12 are capable of real-time or post-mission

analysis. A graphical example of a cumulative post-voyage report is shown in Fig-

ure 4-13 using the categories of scope from Table 4.1. In this example, performance

was limited to Categories I-V while omitting evaluation in Categories VI-IX.

The testing and evaluation program for a multi-contact power-driven scenario

includes the ability to:

• identify that the geometry of two vehicles requires action per the COLREGS

• identify the specific rules assigned to each vessel

• quantify the actions of each vessel with respect to the identified rules

• generate a report of each vessel’s actions at the conclusion of the encounter

• populate a scoring system for each vehicle and a cumulative performance as-

sessment based on various scenarios and interactions over a specified duration

• provide quantified data to support determination of a vessel’s scope of COL-

REGS compliance after performing specified encounters

• conduct su�cient encounters in various multi-vessel, multi-rule scenarios to

achieve the “road test” described in Section 5.6

4.6.1 Evaluation Library

The protocol-constrained collision avoidance evaluation library allows a common

repository for evaluation algorithms. The library enables expansion of functionality

173



Figure 4-12 COLREGS evaluation allows consideration of complex scenarios such
as this non-canonical geometry, multi-rule encounter. Note that multiple collision
avoidance rules exist simultaneously between these power-driven vessels.

to multiple programs using a common set of algorithms while maintaining standard-

ized configuration of collision avoidance parameters and adaptability to other protocol

rule sets. This allows real-time and post-mission analysis programs to use equivalent

means of evaluation; however, it also allows post-mission evaluation using di↵erent

penalty functions or configuration settings according to the evaluator’s preference.

The library of algorithms allows configuration parameters to properly tune weights

and metrics to local customs or requirements of certification authorities.

Users may use Equations (4.13)-(4.16) as an initial library to construct relevant

evaluation functions based on pose angles. The input angle � may be configured to

use the contact angle ↵ or relative bearing �. A steering angle �0 allows tailorable

directionality for alternative use of the same functions. An alternative use might

represent a passing arrangement agreed via bridge-to-bridge radio, such as a rare

starboard-to-starboard passage. Linear and quadratic functions of range and speed

are also available within the initial evaluation library release. Incorporation of other
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Figure 4-13 After separating rules into categories, graphical displays such as this
can demonstrate the scope of work as well as the level of compliance within the
scope. Here a report shows work in autonomous collision avoidance for Categories I-
V with performance below the configurable threshold for “compliance” visually
indicated by the red dashed line at a score value of 80%. The evaluation of this
example certification authority uses an unweighted average across Categories I-
IX to compute a Category X score. This thesis primarily considers evaluation of
Categories II,V, and VI.

functions and input parameters is reserved for future work.
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Configuration is possible for several parameters of interest to a designer or evalu-

ator including:

• preferred range at CPA

• minimum acceptable range at CPA

• range at which a near-miss occurs

• range at which a collision is assumed

• threshold COLREGS rule compliance score below which instantaneous reports

should be made

• threshold safety score below which instantaneous reports should be made

• vessel types to consider (allows knowledge of aerial, ground, and undersea ve-

hicles without interference of collision avoidance evaluation)

• range at which contact detection likely occurs

• maximum time threshold allowed for comparison of a contact’s position report

and ownship’s position report

• display of visual indicators when configuration ranges or minimum rule compli-

ance scores are violated

• sounding of audible alerts when configuration ranges or minimum rule compli-

ance scores are violated

4.6.2 Real-Time Analysis

Using the protocol library for COLREGS developed in this thesis, a real-time collision

avoidance evaluation program gives instantaneous feedback to vessel designers and a

means of real-time evaluation to any certification entity. This can be used to assign

penalties or warnings to vessels violating the COLREGS, especially but not limited to

training and design verification scenarios. Notifications can be sent to vessels in the
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vicinity of non-compliant actors to allow increased caution while operating. Reports

of egregious actions can be passed to designers, insurance agencies, or enforcement

entities as appropriate or required by statute.

Within the scope of the current work, the real-time protocol evaluation tool was

used to display important information at the shoreside observation center including:

• COLREGS compliance scores for power-driven rules

• safety scores after an encounter

• rules required as determined by the observer

• range at CPA

• time of CPA

• vessel names and types

A real-time text report is posted to the mission console including summaries of

overall performance (e.g., safety, protocol compliance, type of interaction) as shown

in Figure 4-14. To assist a shoreside observer with several vehicles underway, a

series of visual and audible indicators were incorporated to provide real-time warning

of dangerous or inappropriate action. Colored range rings (Figure 4-15) appeared

whenever violations occurred including:

• rcpa < Rmin (green)

• rcpa < Rnm (yellow)

• rcpa < Rcol (red)

• COLREGS score less than the threshold value (blue)
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Figure 4-14 Scoring of COLREGS collision avoidance rules allow for real-time eval-
uation of vehicle performance at the shoreside observation center. Configurable
range parameters include nominal detection range, preferred range at CPA, mini-
mum acceptable range at CPA, threshold range at which a near-miss occurs, and
the range at which a collision is assumed. An aggregate tally of COLREGS viola-
tions (scores below a configurable threshold value) and of each configuration range
are displayed. Vehicle types as specified by each vessel are used as a filter to allow
consideration of only certain entities within the “visibility” of the shoreside ob-
servation center. This allows underwater, ground, and aerial vehicles to share the
shoreside observation display without unnecessarily being considered as COLREGS
compliance candidates.

4.6.3 Post-Mission Analysis

A post-mission analysis tool was constructed to provide detailed insight into collision

avoidance performance of vessels. The post-mission analysis requires only vehicle

position logs; the real-time assessment program was not required to be running to

conduct post-mission analysis.

A report is generated for each run of the post-mission analysis tool with a config-

urable scale of verbosity. In more verbose modes, detailed explanations of cause for

score deduction allows designers and operators to understand the rationale for evalua-

tion scores. This can be used to provide feedback and tune future actions. In addition

to the verbosity option, all configuration parameters of Section 4.6.1 are available in
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(a) Minimum desired range vi-
olation

(b) Near-miss range violation

(c) Collision range violation (d) COLREGS violation

Figure 4-15 Violations of range below configurable threshold values ((a) minimum
desired, (b) near-miss , and (c) collision) result in display of green, yellow, then
red rings, respectively, around the vehicle and sounding of an optional audible
indicator. This allows real-time warning to an evaluator of a dangerous collision
situation.Violations of COLREGS collision avoidance rules below a configurable
threshold value result in display of a blue ring (d) around the vehicle and sounding
of an optional audible indicator.

the post-mission analysis tool. Evaluation data are exported to a comma-separated

value report for ease of meta analysis in a user’s favorite data analysis program. This

data can then be used for performance analysis by vehicle, by rule combination, or

by other parameters of interest to the evaluator.
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4.7 Validation of Protocol Evaluation Algorithms

Once evaluation algorithms were developed, a means of validation was required to

ensure that appropriate rules were detected, protocol agnostic behavior was identifi-

able, and collision agnostic behavior was identifiable. A test scenario was designed

allowing four vehicles to encounter each other under random geometry. The scenario

consisted of two vehicles traversing in a North-South lane while two other vehicles

were placed at large distances away: one to the East and one to the West. The North-

South vehicles transited along an oval in either an overtaking fashion or a head-on

fashion. Each of the East-West vehicles drove within a small polygon until such a

time that a random polygon was generated on the opposite side of the North-South

lane. That is, each of the two East-West vehicles would switch sides while driving

to a new and randomly generated polygon. The polygons were su�ciently far away

such that the vehicles in the polygon could only detect the other vehicles during a

switching of sides.

The pattern forced random geometries of encounter while leaving a know mixture

of overtaking, head-on, and crossing scenarios with up to four vehicles simultaneously.

An example configuration of this validation scenario is shown in Figure 4-16. Three

primary modes were run for the validation scenario: all vehicles running COLREGS,

one vehicle agnostic to COLREGS, and one vehicle agnostic to collisions. Long dura-

tion simulations of the latter two modes demonstrated that the evaluation algorithms

could accurately detect and classify the non-compliant vehicle.

4.7.1 Validation of Protocol Agnostic Vehicle

A long duration simulation using the construct of Figure 4-16 tested the ability of

three vessels operating under the protocol constraints of COLREGS and one vessel

using a generic collision avoidance algorithm. The generic collision avoidance algo-

rithm mapped rcpa to utility based on a linear function similar to Equation (3.28)

without any preference to maneuver in accordance with the rules. Results of 3, 840

encounters demonstrated a clear decline in protocol compliance scores for the proto-
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Figure 4-16 A validation scenario allowed for testing of the evaluation algorithms.
Four vehicles traversed in a sequence such that two vehicles traded sides to randomly
generated polygons while two other vehicles continuously transited in North-South
lanes.

col agnostic vehicle with the exception of the stand-on overtaking rule as shown in

Figure 4-17. A clear drop in the head-on protocol compliance score of approximately

50% confirms the intuitive expectation that a vehicle equally likely to turn left or

right would correctly choose right approximately half the time. The crossing give-

way score was approximately equal for the protocol constrained and protocol agnostic

vehicles. This is consistent with knowing a vehicle’s desire to avoid a contact is gen-

erally consistent with giving way. When controlling for the tendencies of the generic

algorithm to mimic a COLREGS-compliant give-way maneuver, a clear distinction in

protocol compliance scores exists as shown in Figure 4-18.
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Figure 4-17 Mean protocol compliance for three protocol constrained vehicles and
one protocol agnostic vehicle demonstrated the ability to identify the o↵ending
vehicle. A total of 3, 840 encounters demonstrated that the most clear reduction in
compliance score occurred for the head-on case (R14).
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Figure 4-18 Mean protocol compliance for three protocol constrained vehicles and
one protocol agnostic vehicle demonstrated the ability to identify the o↵ending
vehicle. A total of 3, 840 encounters demonstrated that the most clear reduction
in compliance score occurred for the head-on case (R14). By controlling for the
give-way case, a clear distinction can be made between performance of COLREGS-
compliant vessels operating in the vicinity of protocol agnostic vehicles and the
protocol agnostic vehicles themselves.
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4.7.2 Validation of Collision Agnostic Vehicle

A long duration simulation using the construct of Figure 4-16 tested the ability of

three vessels operating under the protocol constraints of COLREGS and one vessel

using no collision avoidance algorithms. The collision agnostic vehicle had zero pref-

erence to avoid collisions and maneuvered exclusively for its primary mission. Results

of 1, 788 encounters demonstrated a clear ability to identify a collision agnostic vehicle

as being in violation of the COLREGS as shown in Figure 4-19. The head-on sce-

narios showed the most clear reduction of score (0% average for the collision agnostic

vehicle). Stand-on rules benefited the collision agnostic vessel with the exception of

the times that the vessel failed to maneuver when being in extremis . When controlling

for the stand-on encounters, a comparison of COLREGS-compliant vessels operating

in the vicinity of a collision agnostic vehicle and the collision agnostic vehicle yielded

a reduction in score of approximately 50% as shown in Figure 4-20.

4.7.3 Significance Testing for Compliance Detection

To ensure the protocol compliance algorithms su�ciently detected non-compliant

behavior, an additional series of experiments were developed using up to four vehicles

to test for statistical significance. The scenarios again allowed for testing one of three

compliance settings:

• COLREGS cognizant

• protocol agnostic

• collision agnostic

COLREGS cognizant vehicles made decisions based on protocol compliance and

safety. In the protocol agnostic case, a generic collision avoidance algorithm mapped

rcpa to utility (see Equation (3.28 where avd(rcpa = Rmin) = 0 and avd(rcpa =

Rpref ) = 1) without bias or penalty for protocol compliance, i.e., only using safety.

In this protocol agnostic case, for example, a contact in a head-on encounter (re-

ciprocal course with risk of collision) would be approximately 50% likely to turn
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Figure 4-19 Mean protocol compliance for three protocol constrained vehicles and
one collision agnostic vehicle demonstrated the ability to identify the o↵ending
vehicle. A total of 1, 788 encounters demonstrated that the most clear reduction
in compliance score occurred for the head-on case (R14). The stand-on rules were
largely compliant as maintaining course and speed was natural for the collision
agnostic vehicle. A lower than perfect score for R15/17 resulted from the few cases
where the collision agnostic vehicle failed to take evasive action when in extremis .
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Figure 4-20 Mean protocol compliance for three protocol constrained vehicles and
one collision agnostic vehicle demonstrated the ability to identify the o↵ending
vehicle. A total of 1, 788 encounters demonstrated that the most clear reduction
in compliance score occurred for the head-on case (R14). By controlling for the
stand-on case, a clear distinction can be made between performance of COLREGS-
compliant vessels operating in the vicinity of collision agnostic vehicles and the
collision agnostic vehicles themselves.
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the protocol-compliant direction (starboard). For the collision agnostic vehicle, all

collision avoidance was removed from the decision making process.

Validation was performed by placing one vessel in a field of 3 or more protocol

compliant vessels under long duration simulation. Table 4.2 shows p-values for sta-

tistical significance, while t-test values and degrees of freedom are shown in Table 4.3

and Table 4.4, respectively. These validation tests showed that a protocol agnostic ve-

hicle was detectable in a field of COLREGS cognizant vehicles under all power-driven

rules to a significance value of p < 0.01.

A vehicle operating without regard to COLREGS cognizant vessels (i.e., collision

agnostic) was detectable (p < 0.01) by the evaluation algorithms in all cases except

when the collision agnostic vehicle was being overtaken. In the specific case of a colli-

sion agnostic vehicle being overtaken by a COLREGS cognizant vehicle, significance

was shown to p = 0.017. This case confirms intuition where an overtaken (slow) vessel

would normally maintain course and speed unless placed in extremis ; in this case, the

overtaking vessel is COLREGS cognizant and unlikely to place the overtaken vessel

in extremis given the long tcpa associated with an overtaking geometry. Vehicles op-

erating in a protocol agnostic mode were detectable in a field of COLREGS cognizant

vehicles by the evaluation algorithms to significance values of p < 0.01.

Table 4.2 Significance Testing for Compliance Detection

Inference for Two Independent Samples

p-values for 1-sided test, significance assumed at p < 0.01
COLREGS & Generic COLREGS & No Avoid Generic & No Avoid

Rule 13/16 < 0.001 < 0.001 0.001
Rule 13/17 < 0.001 0.017 0.002

Rule 14 < 0.001 < 0.001 < 0.001
Rule 15/16 0.006 < 0.001 < 0.001
Rule 15/17 < 0.001 < 0.001 < 0.001

4.7.4 Human Agreement with Evaluation Results

Nine collision avoidance scenarios were analyzed by the evaluation tools presented in

Chapter 4 including assignment of a required protocol rule and assessment of blame
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Table 4.3 Significance Testing: t-Test Values

Inference for Two Independent Samples

t-test values
COLREGS & Generic COLREGS & No Avoid Generic & No Avoid

Rule 13/16 6.70912 4.05034 -3.26807
Rule 13/17 -4.67568 -2.12754 2.91374

Rule 14 19.36010 72.03438 -10.00225
Rule 15/16 2.52264 14.06200 -11.77708
Rule 15/17 13.11400 -8.46315 14.52719

Table 4.4 Significance Testing: Degrees of Freedom

Inference for Two Independent Samples

Degrees of Freedom
COLREGS & Generic COLREGS & No Avoid Generic & No Avoid

Rule 13/16 178 111 33
Rule 13/17 232 329 349

Rule 14 372 472 310
Rule 15/16 2232 1917 613
Rule 15/17 2151 1917 550

when a collision or near miss occurred. These nine scenarios were then presented to

self-identified ship drivers claiming significant on-water experience driving under the

protocol requirements. Respondents first identified the rule required in each scenario,

then identified the vessel or vessels to which they would assign primary blame. One of

the scenarios had two blame questions for a total of nine rule identification questions

and ten blame questions. Responses by the self-identified experienced protocol experts

overwhelmingly supported the conclusions of the evaluation algorithms. A total of

98.15% of rule questions agreed with the decisions of the evaluation algorithms. A

total of 90.83% of blame assignments agreed with the decisions of the evaluation

algorithms as shown in Figure 4-21.

These rates of agreement are far higher than the assessed rates of correct rule iden-

tification by students testing in COLREGS (see Appendix D). Blame assignments in

the evaluation algorithm were consistent with case law, and may be cause for some

of the less than 10% discrepancy with respondents. For example, a stand-on vessel
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Figure 4-21 A human survey validated the evaluation results of the evaluation al-
gorithm with self-identified experienced protocol experts agreeing with over 98% of
rule assignments and over 90% of blame assignments.

rarely receives more than 25% blame in a collision though often receives some blame

for not taking action . In the majority of the 9.2% of disagreement between the

evaluation algorithm and the respondents, the respondents assigned blame to both

parties, however in a reversely proportionate fashion. Further surveys with condi-

tioning the respondent to know the likely percentage of blame assigned for particular

rule violations would likely yield higher correlation between responses and evaluation

algorithm blame. This conditioned survey is reserved for future work.
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4.8 Conclusions

In summary, this chapter defined metrics and algorithms to quantify protocol compli-

ance, safety, and mission performance viz spatial and temporal e�ciency. Algorithms

were validated using long term statistics and human sampling from self-described rules

experts. A library of functions was proposed to allow configuration of the protocol

evaluation tools in both real-time and post-mission analysis. Specific instantiation of

protocol quantification and evaluation was demonstrated for the rules of the road for

sea-going vessels, i.e., COLREGS. Chapter 5 presents simulation testing techniques

and an example case study framework using the methods of this chapter. Chapter 6

presents on-water testing techniques and results using the methods of this chapter.
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Chapter 5

Performance Testing and

Simulation Methods

Chapters 3 and 4 developed methods to quantify and evaluate safety and protocol

compliance of individual collision avoidance encounters. This chapter uses the indi-

vidual encounter tools to test, analyze, and assess autonomous vehicle performance

in the larger context of balancing mission performance, safety, and collision avoidance

protocol compliance. This chapter then develops methods for simulation testing to

exercise the collision avoidance algorithms in simultaneous multi-contact encounters

under complex geometries. More specifically, this chapter:

• develops methods for understanding trades between safety, e�ciency, and pro-

tocol compliance

• introduces algorithms to perform edge case searches using a systematic frame-

work that incorporates non-canonical encounter geometries

• introduces the concept of egregiousness to prioritize edge cases for evaluator or

designer consideration based on combined safety and protocol compliance scores

• enables a design of experiments to use multi-contact initial detection geometry

as a testing parameter
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Rigorous testing allows the use of specific metrics and population of decision data

structures for analyzing various configurations of collision avoidance parameters, mis-

sion requirements, and available platforms. Specific tuning of collision avoidance algo-

rithms changes performance characteristics. Placing a well-tuned collision avoidance

algorithm on a vehicle with di↵erent operating characteristics such as a high-speed

vessel requires examination of a↵ects on performance metrics prior to fielding. By

using these testing and evaluation techniques in high volume simulation, an exten-

sive edge case search and sensitivity analysis may be performed prior to subjecting

an algorithm to on-water testing. By using a systematic approach to testing in a

simulation environment, some understanding can be made as to the performance of

autonomy algorithms under edge cases that might be hard to create – at least in

su�cient quantity – with on-water testing. By varying algorithm configuration pa-

rameters and inserting random noise into initial conditions, sensitivity analysis may be

performed to determine the likelihood of unwanted behavior under certain conditions

prior to experimenting in an on-water scenario that is likely costly, time consuming,

and exposes human testers to possible danger if an algorithm responds unexpectedly.

Section 5.1 discusses a means for the designer or evaluator to visualize the perfor-

mance metrics of Chapter 4 in the larger context of mission performance. Section 5.2

discusses the necessity of safe default maneuvers and what those maneuvers might

mimic to be recognizable to humans and consistent with human behavior. Section 5.3

presents a method to prioritize edge cases for evaluator or designer consideration based

on combined safety and protocol compliance scores. Section 5.4 presents the itera-

tive geometric testing framework for edge case search and sensitivity analysis prior

to on-water fielding. Section 5.5 demonstrates results of a case study of the iterative

geometric testing framework applied to a high-speed vessel with two slow speed con-

tacts using the patience parameter of Section 3.6 as a design variable of consideration.

Section 5.6 presents considerations for autonomously operating in the vicinity of and

teaming with human operated vehicles.
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5.1 Performance Curves of the Objective Tradespace

Each designer or operator must choose a policy that appropriately balances the per-

formance metrics to best achieve the goals of the autonomous system. Using the sur-

rogate mission performance metrics of spatial and temporal e�ciency (Section 4.2),

a collision avoidance algorithm may be examined under numerous scenarios to deter-

mine its sensitivity and performance with respect to protocol compliance and safety.

In the absence of a clearly defined metric for mission performance, either temporal

or spatial e�ciency may represent the preferred mission performance metric. Three

two-dimensional tradespace comparisons are shown in Figure 5-1.

Three primary functions of a populated performance curve may provide human

designers with greater understanding of the autonomous system including:

1. For an algorithm whose curve has yet to reach the well-populated state, out-

liers in performance may be identified in real time to signal possible edge case

detection for designer review. For example, a particular experimental configu-

ration might result in exceptionally low e�ciency or safety scores below some

design threshold identifying a possible flaw in the algorithm or an undesirable

configuration state.

2. Once well populated, a performance curve may give great insight as to what

configuration combinations yield the most preferred results for given initial con-

ditions. One such initial condition set might be the multi-contact encounter

geometry at the time of detection. If a vehicle detects a known or nearly known

geometry with a well-populated data set of performance outcomes, then the

collision avoidance and mission configuration parameters that best achieved the

desired performance metrics may be tuned in real time by the autonomous

vehicle. An example of this would be to pick the dynamic patience parameter

(Section 3.6) that achieves the desired e�ciency performance while not reducing

safety or protocol compliance below configurable threshold values.

3. For a system that is well populated, deviation outside of an expected tolerance
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Figure 5-1 Two-dimensional performance curves allow mapping of autonomous col-
lision avoidance results to easily visualized graphs. This allows for edge case detec-
tion, discovery of optimization characteristics such as Pareto optimal solutions, and
selection of the desired performance ratio within a given tradespace. In this case,
a simplifying assumption that mission performance is represented by a single e�-
ciency (either spatial or temporal) yields three two-dimensional performance curves
for analysis: (a) mission and safety, (b) protocol compliance and mission, and (c)
protocol compliance and safety. Here the safety threshold violations are shown by
red, mission performance (e�ciency) by green, and protocol compliance by blue.
With a configurable setup such as this, performance points falling below threshold
values may quickly be examined to determine edge case discovery or undesirable
a↵ects of configuration variables.
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can give insight into algorithm degradation, lack of either precision or accuracy

in determining the assumed initial conditions, non-compliance by the other

vehicle, or detection that a change to the plant (i.e., the vehicle) has occurred

requiring recalibration of the decision space.

As an autonomous collision avoidance algorithm becomes used by more vehicles,

data may be aggregated across various vehicles to determine higher fidelity perfor-

mance characteristics, and when appropriate, further populate the performance space

to allow distributed autonomous learning. Consideration may be granted to having

more specialized performance curves to best represent specifically identified scenarios

by reasoning about attributes such as:

• the number of vehicles involved in a collision avoidance situation

• the combination of collision avoidance protocol rules simultaneously required

• tonnage of ownship and contacts

• environmental parameters including but not limited to sea-state, visibility, and

wind

• degradation of detection and classification equipment such as visual or auditory

sensors, radar, or AIS

• alternatively required protocols such as Inland COLREGS or alternative direc-

tion of buoyage1

• recognized encounter geometries2 using combinations of the above attributes

Once a more specific performance curve is referenced when available, the designer’s

performance preferences (e.g., maximize temporal e�ciency without violating given

threshold of safety and protocol compliance) may reduce the problem to a subset of

1The International Association of Lighthouse Authorities has di↵erent regions throughout the
world for determining the color of buoys one should expect to see on a particular side of the vessel
when entering port. This has led to numerous groundings and collisions.

2Geometry refers to a specific combination of range, pose, and speed for a given contact relative
to ownship.
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course-speed pairs from the Pareto optimal frontier. The decisions of the designer

may be imposed by policy on the autonomous system [58].

5.2 Default Safety Maneuvers

When humans operate in human-only environments, an implicit assumption is that

each vehicle will act in due regard to other vehicles in the event of an emergency that

causes maneuverability restrictions or when a dangerous collision avoidance encounter

inadvertently arises. Not only must autonomous vehicles assess plant health in real-

time, but they must possess a means of confidently knowing that actions taken in

collision avoidance scenarios achieve su�cient safety for all involved. Autonomous

designers must incorporate a means of identifying when a collision avoidance scenario

falls outside the scope of the vehicle’s reasoning or maneuvering abilities. Ideally,

these edge cases would be discovered and mitigated prior to fielding. Su�ciently

identifying over-constrained or unrecognizable scenarios are necessary to build trust

with human operators and society more generally.

In the event that an autonomous vehicle cannot with confidence take action to

avoid collision, a default safety maneuver should be activated. In some scenarios this

might be simply taking all way o↵ the ship, backing down, and communicating its

distress to neighboring vehicles and the designer. This communication can be both in

protocol-formal means such as sounding a danger signal as well as relaying information

via communication protocols such as AIS. In the event of losing confidence in its own

ability to determine safe actions, an autonomous vessel under protocol constraints

of COLREGS should consider presenting itself to other vessels as being not under

command (Rules 3, 27, 35).

Autonomous designers must understand the human aspect of safe maneuvers in

di↵erent scenarios. For example, taking way o↵ the ship may indeed be a very at-

tractive default maneuver, though create an extremely dangerous outcome if done

with no warning and without additional action. In the case of a heavily congested

tra�c separation scheme or narrow strait, an autonomous vessel with high drag might
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stop too quickly to prevent a vessel astern from taking necessary action to prevent

a collision, allision, or grounding. In more open ocean scenarios, turning to star-

board may be prudent. Several default safety maneuvers must be considered and the

appropriate cases identified for when to enact each. Autonomous designers would

be well served by having consensus in the international community as to what hu-

man ship driving expectations would be in the event of a need to execute a safety

maneuver under various initial conditions or causes. By giving more predictability

and standardization in both maneuvers and means to communicate the necessity of

emergency action, human trust can be gained knowing that a well communicated and

properly executed safety maneuver that emulates human driving is pre-programmed

into autonomous vehicles. Exercise of autonomous vehicles in situations that would

create over-constrained decision spaces or otherwise require use of a default safety

maneuver should be conducted prior to fielding.

5.3 Egregiousness

While Sections 4.3 and 4.4 establish methods to quantify protocol compliance and

safety, respectively, coupling of the two metrics provides a measurement of egregious-

ness of encounters. A measure of egregiousness provides a means to determine when

a maneuver is both non-compliant and unsafe as shown in Equation (5.1) and Fig-

ure 5-2.

E(S,R) =
(Smax � S) · (Rmax �R)

Smax · Rmax
(5.1)

E 2 [0, 1]

A vessel may maneuver in such a way to be non-compliant due to a series of small,

non-apparent maneuvers that ultimately results in a safe distance and pose at CPA.

While this is not compliant with the protocol constraints, its safety is su�ciently

high to not necessarily warrant prioritization over a case with equally bad protocol
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Figure 5-2 A vessel may maneuver in such a way as to be readily apparent but also
result in a dangerous and unsafe CPA. The apparent maneuver is necessary but
not su�cient to warrant a high compliance score. The egregiousness score assists
designers and evaluators in prioritizing collision avoidance encounters for analysis
and corrective action

compliance and a more severe safety violation. A vessel may maneuver in such a way

to be readily apparent but also result in a dangerous and unsafe CPA. The apparent

maneuver is necessary but not su�cient to warrant a high compliance score. The

resulting egregiousness score would be high and thus the decision would be identified

as a prioritized edge case. Figure 5-3 demonstrates both non-compliant but safe

maneuvers as well as non-apparent and unsafe maneuvers. Egregiousness allows easy

identification of values that are both unsafe and non-compliant. Encounters having

a high egregiousness score represent edge cases for immediate evaluator attention

and designer rectification. By having a means of finding and ranking dangerous and

non-compliant maneuvers, a means of prioritization of edge cases is possible.
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5.3.1 Blame

When a dangerous encounter occurs, a natural tendency exists to assign blame to one

or both parties. Case law gives guidance in how blame might be assigned in certain

scenarios. Often case law assigns blame in a way that consistent with the give-way

vessel not giving way early or su�ciently to avoid a dangerous encounter. The exact

manner of the blame determination remains dependent on case law; however, an

initial blame may be assigned by one of two methods:

1. consistent with case law, assign majority (at least 75%) blame to the give-way

vessel, if one exists

2. assign blame proportionally to each vessel according to the proportion of egre-

gious factors

In scenarios of evaluation using proportional blame assignment, blame may be

(a) COLREGS Violation (b) Safety Violation

Figure 5-3 These on-water experimental results demonstrate the necessity of evalu-
ating both safety and protocol compliance in conjunction with each other. The first
encounter demonstrates that vessels with acceptable CPA ranges can still violate
the requirements of the COLREGS. In (a), a crossing give-way vessel maneuvers
to starboard to cross astern of the crossing stand-on vessel. While an acceptable
CPA is achieved, the maneuver of the crossing give-way vessel was neither substan-
tial nor early, thus violating COLREGS. In (b), a maneuver that was both early
and substantial still resulted in an unsafe collision range. In addition, the crossing
stand-on vessel of (b) began in extremis action under Rule 17.a.ii.

199



used to quickly identify a vessel who under performs other vessels in conjunction

with scores of egregiousness.

5.4 Iterative Geometric Testing

To advance the canonical nature and relatively small variation of geometries found

throughout the literature, a geometry generation and testing scheme was developed.

This section introduces a testing framework to:

• perform edge case searches using non-canonical, multi-contact encounter geome-

tries

• determine aggregate performance characteristics using large variations of initial

detection geometry

• conduct a design of experiments using initial detection geometry as a variable

of the design

A collision avoidance algorithm may be subjected to large variations of initial

geometry while holding constant collision avoidance and primary mission algorithm

configurations. These geometries and experiments could then be repeated using vari-

ations of collision avoidance and primary mission algorithm configurations to further

perturb the system while holding initial detection geometry configurations in known

states for future analysis. These iterative geometries produce varying combinations of

required protocol rules and interaction scenarios. After successive testing of a partic-

ular algorithm configuration over the desired geometries, analysis can determine the

influence of initial geometry and protocol rule requirements on the metrics of concern

with the given settings. Additionally, the other design variables may be analyzed for

sensitivity in resulting performance to initial detection geometry. Iterative geometric

testing forces edge cases and non-trivial multi-contact encounters to the surface.

To create a design of experiments, the number of desired geometries, contacts,

and variations on collision avoidance parameters is first determined. Initial speeds
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and headings of the primary testing vehicle are then selected for each experiment.

These parameters are used to seed a geometry generation algorithm (Algorithm 18)

for the vehicles. A baseline geometry configuration G for the contacts is assumed and

uniformly (or normally) distributed noise perturbs the initial headings and speeds

of the contacts. By inserting these variations for each of the contacts, su�cient

deviation from canonical cases is achievable while testing the general e↵ects of the

iterative vehicle’s encounter geometries. By maintaining a baseline geometry of the

contacts vis-à-vis heading and speed noise, initial relative contact geometry can be

used as a variable for a design of experiments. Each perturbation of the design may

have a di↵erent initial nominal geometry of the contacts from which ownship geometry

perturbations are seeded. Once initial vehicle headings and speeds are determined,

all contacts in the encounter are placed such that they arrive at a shared collision

point simultaneously in the absence of any maneuvers.

An example iterative geometric testing experiment is shown in Figure 5-4. Own-

ship (C) is iteratively tested at various initial positions and speeds as shown in Fig-

ure 5-4b while the contacts (A & B) are given perturbations of initial heading and

speed.

The placement of vehicles such that they share a simultaneous collision point cre-

ates encounters that require consideration of multiple simultaneous rules that often

conflict with each other. Operational compromises3 must be made between safety,

e�ciency, protocol compliance, and perhaps other performance considerations . A

common tie-breaking scheme in the literature is to use time to CPA [45] or colli-

sion probability [67] to choose which constraint to relax; in this testing geometry

configuration, time to CPA and collision probability are equivalent by design for all

vehicles; therefore, a more elegant tie-breaking scheme and decision is required within

the collision avoidance algorithm being tested.

By repeating this experiment for several geometries of protocol-constrained initial

3With the admission of these evaluation metrics, a set of Pareto optimal solutions can be found
and preference information incorporated when choosing course-speed solution vectors. Additional
information regarding use of the objective space more generally and related formal multi-objective
optimization can be found in [58].
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Algorithm 18 Iterative Geometry Generation

1: procedure GenerateGeometry
2: [✓c]  nominal contact heading matrix (# experiments ⇥ # contacts)
3: [vc]  nominal contact speed matrix (# experiments ⇥ # contacts)
4: [✓̃c ] angle variation matrix (# experiments ⇥ # contacts)
5: [ṽc ] speed variation matrix (# experiments ⇥ # contacts)
6: [v]  nominal ownship speed vector (# experiments ⇥ 1)
7: [ṽ] ownship speed variation allowed (# experiments ⇥ 1)
8: �✓  heading noise standard deviation
9: �v  velocity noise standard deviation

10: tcol  time to simultaneous collision
11: P = (Px, Py) simultaneous collision point
12: for experiment i do
13: for contact j do

% adjust contact’s initial heading and speed for random noise %
14: if uniform noise then . default
15: [✓c](i,j)  [✓c](i,j) + [✓̃c](i,j) · U(�0.5, 0.5)
16: [vc](i,j)  [vc]i,j + [ṽc](i,j) · U(�0.5, 0.5)
17: else if normally distributed noise then

18: [✓c](i,j)  [✓c](i,j) + [✓̃c](i,j) · N(0, �✓)
19: [vc](i,j)  [vc]i,j + [ṽc](i,j) · N(0, �v)
20: end if

21: (x, y)(i,j)  P � [vc](i,j) · tcol ·


cos([✓c](i,j))
sin([✓c](i,j))

�

22: end for

23: [✓]i  U(0, 360) . determine initial conditions for ownship (o/s)
24: [v]i  [v]i + ṽ · U(�0.5, 0.5)

25: (x, y)i  P � [v]i · tcol ·


cos([✓]i)
sin([✓]i)

�

26: end for

27: end procedure

conditions, the nature of the autonomy’s scheme for resolving conflicting priorities is

forced to the surface. The true ability of the underlying collision avoidance algorithms

to successfully reason about more complex scenarios of each rule set is tested in concert

with mission performance and navigational restrictions.

Discovery of edge cases for particular rule pairs in one-on-one collision avoidance

scenarios is not trivial; however, the edge case search for advanced autonomous col-

lision avoidance algorithms requires advanced techniques. When properly designed

with large numbers of iterations, this iterative geometric testing scheme allows testing

of the full geometry spectrum using multi-rule, multi-contact scenarios in protocol-
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(a) Initial Positions (b) Positions with Noise and Iteration

Figure 5-4 An example three-vehicle encounter (a) shows the initial positions of a
random experiment. The dot in the center represents the simultaneous collision
point. Distance from the collision point represents the initial speed of the vehicle
where farther distance implies faster initial speed. Slow speed vessels A and B
are in nominal crossing patterns with initial heading noise to preclude canonical
geometries (b) while high-speed vessel C assumes initial headings throughout the
range of 0� to 360�. Each geometry configuration G is iterated over the variations
of the design of experiments.

constrained environments.

Beyond the testing advantages of iterative geometric testing, this technique pro-

vides a means to improve performance while underway. By aggregating performance

data in complex collision avoidance scenarios, a mapping of algorithm configuration

and its associated performance to the contact geometry at initial detection is possible

by using the methods of Section 5.1 with initial detection geometry as a filterable

attribute. When a vehicle finds itself in a complex collision avoidance encounter,

estimations of performance in similar cached encounters may enable selection and

self-tuning of collision avoidance and mission algorithms to achieve the most desir-

able performance attributes. This allows, for example, selection of various dynamic

patience parameter configurations (Section 3.6) to achieve the desired mission, spatial,

and temporal e�ciencies for a given minimum required score of protocol compliance

and safety. Table 5.1 lists a summary of iterative geometric testing attributes. Sec-
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tion 5.5 presents a case study of iterative geometric testing for a high-speed vessel

encountering two slower speed vessels.

Table 5.1 Iterative Geometric Testing Attributes

Number Attribute

I Systematically test non-canonical collision avoidance encounters for
multiple simultaneous contacts

II Inject noise into otherwise standard testing geometries
III Perform an extensive edge case search
IV Perform sensitivity analysis of performance metrics such as mission

performance, e�ciencies, safety, and protocol compliance
V Populate a cache of known encounters for auto-tuning of collision

avoidance algorithm configurations

5.5 Case Study on High-Speed Vessels

The iterative geometric testing framework was applied to a high-speed vessel encoun-

tering two vehicles already in a crossing scenario. This case study demonstrated how

these techniques would be applied by a developer or an evaluator interested in the

e↵ects of the patience parameter of Section 3.6 for a high-speed vessel encountering

two slower speed vessels at various initial detection geometries. The testing in this

case study was performed as a demonstration of the framework of Section 5.4. Test-

ing was demonstrated under complex, multi-contact, multi-rule encounters within the

constraints of protocol-based rules using international COLREGS for power-driven

vessels. For statistically significant results, additional testing runs using the method-

ology of this framework should be performed for each of the configurations.

The case study shows how iterative geometric testing would explore whether the

collision avoidance algorithms of normal speed vessels could be more broadly applied

to high-speed vessels without more specific tuning of algorithm parameters. More

generally, if a designer were to trust his or her algorithms su�ciently to propagate

them to vehicles outside the original scope of testing, this framework would enable

determination of whether adverse performance would result. If the performance were
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indeed degraded or if the designer was conservatively reluctant to blindly extend the

work to high-speed vehicles, then determination of an appropriate design envelope

or bounds on vehicle specifications could be identified. Any operation outside of

these bounds must be done with an assumed risk or deferred until su�cient informa-

tion became available through additional testing – either simulated or on-water as

appropriate.

5.5.1 Experimental Setup

The framework for a design of experiments was developed to test the e↵ects of ini-

tial geometry and the patience parameter on the performance metrics of high-speed

vessels. A three vehicle experiment was conducted using simulated vehicles: 1 fast,

2 normal (slow). Eight geometries were considered with eleven patience parameter

settings each as shown in Figure 5-5. All vehicles within each experiment operated

with the same patience parameter setting for the entirety of the experiment.

Three vehicles existed on the course with no other vehicles or navigational con-

straints present; this scenario simulated an open-ocean interaction of three transiting

vehicles with extreme collision risk if no action were taken. Two of the vehicles were

given speeds similar to transiting merchants that might be found on the open seas

(12 and 17 knots). The third vehicle, a high-speed transiting vessel, was assigned a

speed of 35 knots. The two slower craft were positioned such that they would nomi-

nally start in a crossing situation (Rules 15, 16, and 17 of COLREGS); however, their

initial courses were each chosen using random noise of up to 20 degrees (10 degrees

either port or starboard) to create non-canonical initial detection geometries. The

high-speed vessel started at headings chosen by the experiment designer encompass-

ing all 360 degrees. With the unique initial headings and vehicle speeds assigned for

each experiment, the vessels were positioned at (x, y) coordinates such that without

autonomous collision avoidance action, all three vehicles would collide simultaneously

at the origin.

Each vessel’s primary mission was to achieve the next navigational waypoint.

The waypoint’s location was a point on the initial track line of each vessel such that
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Table 5.2 Iterative Geometry Experimentation Configuration

100 · ⇡✓ 100 · ⇡v ⇡ ⇡ 100 · ⇡

1 99 0.01 0.01 1
10 90 0.11 0.05 5
20 80 0.25 0.11 11
30 70 0.43 0.18 18
40 60 0.67 0.25 25
50 50 1.00 0.33 33
60 40 1.50 0.43 43
70 30 2.33 0.54 54
80 20 4.00 0.67 67
90 10 9.00 0.82 82
99 1 99.00 0.98 98

the simultaneous collision point existed at one-third of initial track distance. The

experiment was iterated over varying levels of patience parameters with ⇡✓ = 0.01 to

⇡✓ = 0.99 (11 steps total) as shown in Table 5.2. This forced all three vehicles to be in

stressing situations while allowing analysis of the underlying algorithm performance.

All other collision avoidance tuning parameters were held constant.

The experimental parameters included initial geometry, initial velocity, protocol

rule combinations, and the vessel’s emphasis on prioritizing course over speed (or

vice versa). By forcing a multi-contact simultaneous encounter with su�cient bear-

ing spread to prevent contact lumping, the autonomous solver was forced to choose

velocity vectors that might ultimately conflict with the desires of the mission (here,

achieving the next waypoint down track) and other collision avoidance rules required.

As an example, a vessel might be in a stand-on situation with one contact and simul-

taneously be in a give-way situation with another contact.

Robust testing scenarios such as this case study exercise the autonomous collision

avoidance algorithms in ways that current literature does not discuss thus allowing a

more thorough understanding of full spectrum response. Specific maneuvering char-

acteristics of the vessels were considered and values were chosen to be consistent

with open ocean going vessels including turn radius, limiting accelerations, and sim-

ilar parameters. These maneuvering characteristics were not varied as experimental
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parameters, and thus were not examined as part of the post-mission analysis. Fu-

ture work should consider the influence of individual vessel constraints on collision

avoidance algorithm design in conjunction with the parameters studied here.

5.5.2 Example Encounter Analysis

Two such experiments of the same initial detection geometry and nearly identical

instantaneous geometries illustrate the variation possible in the decision space. The

geometry configuration for this example experiment at a critical decision point for

the high-speed vessel is shown in Figure 5-6. A snapshot of the high-speed vessel’s

objective functions for patience parameters of ⇡✓ = 0.30 (left column) and ⇡✓ =

0.70 (right column) is shown in Figure 5-7. The combination of collision avoidance

objective functions (rows 1-2 of Figure 5-7) and primary mission objective function

(row 3) correspond to a collective objective function (row 4) according to priority

weights. For this same initial geometric configuration, the snap shot of objective

functions taken at nearly identical4 points in the experiment gives insight into the

high-speed vessel’s decision space.

The first row of objective functions represents collision avoidance for the high-

speed vessel encountering slow speed vessel A. The second row of objective functions

represents collision avoidance for the high-speed vessel encountering slow speed ves-

sel B. Based on the time that this experiment was frozen, the objective functions are

nearly identical for collision avoidance in the two variations of patience parameter.

The third row of objective functions represents the primary mission objective:

transiting along track to the next waypoint. Note that the variation in patience

parameter values was the most prominent di↵erence in the two experiments and was

the primary variable of interest to each iterative geometric test. The ⇡✓ = 0.30 (left

column) experiment shows high desire to maintain speed at the cost of altering course.

Likewise, the ⇡✓ = 0.70 (right column) experiment shows a high desire to maintain

4The areas of slight variation seen in the angle of excluded (blue) decision space in objective
functions for the high-speed vessel encountering slow speed vessel B (row 2) were not in regions of
peak values (darkest red) for the collective objective function, and are therefore valid for comparison.
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Figure 5-6 Instantaneous relative geometries are shown for comparison of the ob-
jective functions of Figure 5-7 (vessel size not to scale). The high-speed vessel is
shown in red at a critical decision point of whether to speed around vessel A or
slow and allow vessel A to proceed down its track.

course while allowing the vessel to slow as necessary.

The final pair of objective functions represent the collective objective function

based on the weighted summation of rows 1-3. This experiment demonstrates the

variation of the chosen course-speed pairs as shown by a fuchsia dot on the cumulative

objective function polar plot. The ⇡✓ = 0.30 vessel chose maximum speed at course

⇡ 90�; the ⇡✓ = 0.70 vessel chose near-zero speed while maintaining course. The

resulting maneuvers caused significant reduction in temporal e�ciency (90% vs. 68%)

while maintaining relatively high spatial e�ciency (Figure 5-8). Examining this in

the context of the overall mean for the same geometry exemplifies the need for tuning

based on mission priorities.

Testing within this case study was limited to power driven vessels in sight of each

other. Assumptions for vessels operating in degraded sensing environments, non-

power driven or special exemption status, and other advanced considerations should

be incorporated into similarly challenging testing regimes that incorporate similar

metrics for e↵ectiveness.
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Figure 5-7 The high-speed vessel’s objective functions for patience parameters of
⇡✓ = 0.30 (left column) and ⇡✓ = 0.70 (right column). These polar objective
functions represent the high-speed vessel’s decision space. In this heat map of
candidate velocity vectors, red is most desired while blue is least desired. Radius
corresponds to desired velocity; maximum speed is represented by the outer edge
of each circle. The polar angle corresponds to heading with North being vertical.

5.5.3 Case Study Analysis

The example encounter of Section 5.5.2 demonstrates the need to examine perfor-

mance characteristics more closely prior to fielding collision avoidance algorithms

outside their initially intended scope. Trends for geometries and algorithm configura-

tions (here, patience parameter settings) may be identified from aggregate data and a

regression analysis performed [93]. Results are shown for the 8 tested geometries and
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Figure 5-8 The e�ciencies varied for the high-speed vessel depending on the pa-
tience parameter chosen. The spatial and temporal e�ciencies for the experiment
of Figures 5-6 and 5-7 demonstrates that a significant fluctuation in e�ciencies is
possible when changing the patience parameter. Careful study of the a↵ects of
configuration settings on performance parameters are necessary extending a known
configuration to a new type of vessel. Here the experiment performance values are
shown in blue. The mean performance over all geometries for the same value of
patience parameter is shown in blue.

11 patience parameter combinations of this framework demonstration for all three

vessels using the methods of Section 5 in Figure 5-9.
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An aggregate examination of performance data shows several interesting trends

worth closer examination and further experimentation from this example case study

framework:

• protocol scores range from 0% - 100% necessitating edge case searches and

examination for any underlying variable

• safety scores remained high with respect to protocol compliance with the excep-

tion of a notable dip for some protocol scores approximately between scores of

45 and 80 necessitating edge case searches and examination for any underlying

variable

• temporal e�ciency varied more for the high-speed vessel than it did for the slow

speed vessels

• spatial and temporal e�ciencies deviate from an otherwise linear mapping for

some high-speed tracks warranting examination for any underlying variable

5.5.4 Limiting Range and Safety Analysis

In scenarios where multiple contacts are present, statistics of all vehicles encountered

may obscure the most important collision avoidance information. For example, in a

scenario where two contacts are simultaneously avoided, the mean range may seem

reasonable; however the closer of the two rcpa values might give more meaningful

insight to algorithm performance. For this reason, examination of the limiting (i.e.,

minimum over all contacts) range of CPA in a simultaneous encounter should be ex-

amined. While this aggregate data seems to show reasonably consistent results, the

safety scores examined as a function of the minimum rcpa of each encounter (Fig-

ure 5-10) may demonstrate an underlying variable (here, either geometry or patience

setting).

Within this section, a linear mapping of the minimum rcpa of each encounter to S

allows for ease of discussion of either safety score or range at CPA though the con-

cepts would hold for a more complicated safety scoring such as that in Section 4.4.
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Figure 5-9 The high-speed vehicle performance was compared across the four per-
formance metrics of spatial e�ciency, temporal e�ciency, safety, and protocol com-
pliance. By evaluating performance using di↵erent metrics, trades can be made
based on metrics that are given preference. Note the wide variation of protocol
compliance. The high-speed vessel is shown in yellow while slow speed vessels A
and B are shown in red and blue, respectively.
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The value of S therefore is convenient to map as S = min (rcpa) of each multi-contact

encounter to [0, 100] as a percentage of preferred range at CPA (Rpref ) for the pur-

poses of discussion of the case study. This minimum of all safety scores in each

configuration may demonstrate wide variation of performance in some configurations

and across some geometries. A need to further study collision avoidance tuning in

specific scenarios before attempting to propagate standard settings to other vehicle

types such as a high-speed vessel could therefore be warranted.

For a study of aggregate data, there is insight to be gained from examining the

overall limiting range from all vehicles in a multi-contact encounter. Statistics on

this minimum encounter range (and by extension, safety score S) of all vehicles in a

single encounter may be examined by fixing several parameters. The two parameters

most easily fixed in this example case study are initial geometry configuration G and

patience parameter ⇡. The geometry that results in the minimum rcpa for a given pa-

tience parameter is given by Equation (5.2) while the patience parameter that results

in the minimum rcpa for a given geometry configuration is given by Equation (5.3).

Equation (5.4) defines the minimum contact range over all encounter geometries

for a given patience parameter as rG|⇡min. Equations (5.5)-(5.6) define the mean rG|⇡min

and standard deviation �(rG|⇡min), respectively. Equation (5.7) defines the minimum

contact range over all patience parameters for a given geometry configuration as

r⇡|Gmin. Equations (5.8)-(5.9) show the mean r⇡|Gmin and standard deviation �(r⇡|Gmin).

Examination of aggregate statistics allows analysis of overall performance. The

standard deviation may reveal wide variation within each parameter further justifying

the need to actively explore any underlying variable. If su�cient data existed once

fielded, use of these aggregate performance statistic for the variables of the design of

experiment might allow selection of configuration parameters if real-time tuning were

not possible. In the case of this example case study, a patience parameter could be

selected to an appropriate aggregate performance standard.

If a vehicle had su�cient data and capability to identify its initial detection geome-

tries in real-time, an active configuration tuning scheme could be used. If su�cient

and significant data were available in this example case study, a vehicle that values
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only safety might recognize its initial detection geometry and select the range of pa-

tience parameter values that maintain a safety score above a desired threshold value.

For example, a vehicle desiring to maintain safety above 85 and determining itself to

be in Geometry 0 might use cached performance data such as Figure 5-10 to choose

a course weight between 50 and 70. The mission objective function would therefore

be tuned in real-time with a preference toward maximizing safety when deviations

for collision avoidance were necessary. While this case study examined variations

of geometries and patience parameters, additional testing would be necessary before

having su�ciently and significantly populated data to make a tuning decision such

as this.

Gr
cpa

|⇡
min = argmin

G|⇡
{rcpa} (5.2)

⇡r
cpa

|G
min = argmin

⇡|G
{rcpa} (5.3)

rG|⇡min = min
G|⇡

{rcpa} (5.4)

rG|⇡min = mean(rG|⇡min) (5.5)

�(rG|⇡min) = std(rG|⇡min) (5.6)

r⇡|Gmin = min
⇡|G

{rcpa} (5.7)

r⇡|Gmin = mean(r⇡|Gmin) (5.8)

�(r⇡|Gmin) = std(r⇡|Gmin) (5.9)
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Figure 5-10 The minimum safety score of each encounter allowed the limiting case
in a multi-contact collision avoidance scenario to be identified. Statistics based on
this data give insight to performance for either fixed geometry or fixed patience
parameter. Course weights shown on the horizontal axis represent 100 · ⇡✓. For a
well-populated and statistically significant data set, an analysis using a method such
as this chart could give insight into tuning preferences to maximize performance
metrics (safety, e�ciency, protocol compliance, etc.). This example data indicate
that most geometry and patience combinations yield a minimum safety greater
than 80; additional testing in areas below 80 may provide interesting edge cases for
particular combinations of geometry and patience values. Additional testing would
be necessary to draw conclusions worthy of tuning. If an initial contact geometry
could be determined and the data populating a chart such as this were su�cient and
significant, tuning of experimental variables would be possible to operate according
to a designer’s policy.
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5.6 Integrating Autonomous Systems with Humans

Clare et al. examined human-robot trust by priming operators and measuring sys-

tem performance in a decentralized network of heterogeneous unmanned vehicles [15].

Several aspects of Clare’s work reinforces the need to establish, sustain, and moni-

tor human trust in autonomous systems using metrics and techniques of this thesis.

Extensive use of human-understandable metrics such as those in Chapter 4 and the

systematically thorough techniques of this chapter further build trust with evaluators

and ultimately the human operator who would interact with the autonomous vehicles.

Clare found that participants with significant (as self-reported) experience playing

computer and video games over trusted the automation of their experiment. Previous

work had found that operators that had an appreciably low amount of trust in the

system spent excessive amounts of time in either replanning or adjusting the mission

when working under a Rules of Engagement protocol scenario, especially when final

plans did not seem “logical” [16]. These two concepts reinforce the need for mea-

surable and unbiased means to quantify performance in human-understandable ways.

Trusting an operator who might in fact over trust his or her algorithms could lead

to disaster. Similarly, an under trusting evaluator might spend unnecessary time and

money to attempt to test all possible scenarios if there is no quantifiable means to

establish a baseline passing performance.

The concept of human trust inertia [35] may be extended to the field of au-

tonomous collision avoidance. Having just one accident using autonomous collision

avoidance algorithms could likely set back society’s trust in not only specific algo-

rithms but autonomous collision avoidance more generally. Great cost and time would

be required to simply regain lost trust. Rigorous and methodical testing regimes are

therefore prudent to more fully understand not only the capabilities but perhaps more

importantly the limitations of collision avoidance algorithm performance.

In situations where robot-robot interactions are expected, human concerns remain

abundant. Human crew members may be onboard to perform maintenance or cargo-

tending roles while the vessel is autonomously underway. Cargo or mission may be
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of high value causing excessive shoreside human involvement or increased insurance

costs if trust cannot be raised to an acceptable level. Groundings, allisions, and

collisions would likely result in significant environmental damage raising the likelihood

of government restrictions and requirements until a su�cient and consistent level of

trust existed.

Establishing a rigorous, consistent, deliberate, and transparent testing and evalu-

ation scheme allows designers and society alike to know and agree to the standards to

which autonomous collision avoidance algorithms must be held. These standards also

therefore define the limitations of trust and performance of these systems. Section 5.5

demonstrated the dangers possible in assuming a high-speed vessel using su�cient

computational power could simply default to similar collision avoidance configuration

parameters of slower vessels operating under the exact same protocol algorithms.

Similar cases could be found where innocent extensions of otherwise working collision

avoidance algorithms may prove disastrous if not subjected to a methodical testing

regime.

5.7 Conclusions

In summary, this chapter presented methods to use the tools of Chapters 3 and 4 to

test and evaluate large scale performance characteristics by:

• developing methods to understand trades between mission performance, safety,

and protocol compliance

• introducing algorithms to perform edge case searches using a systematic frame-

work that incorporates non-canonical encounter geometries

• introducing the concept of egregiousness to prioritize edge cases for evaluator

or designer consideration

• enabling a design of experiments to use multi-contact initial detection geometry

(viz range, pose, and speed) as a testing parameter
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An example case study of using the iterative geometric testing framework was

presented for a high-speed vessel encountering two slower speed vessels in simulation.

Methods to reason about a fully populated data set were introduced to determine

underlying variables a↵ecting collision avoidance performance. A limiting range safety

analysis was developed for multi-contact encounters. A method to autonomously self-

tune collision avoidance configuration settings in real-time to achieve a desired level

of performance metric(s) was proposed.

Using the techniques of this chapter, an evaluator or designer would be empowered

to view and reason about performance characteristics in the context of the vehicle’s

mission, have large simulation data sets to discover edge cases, determine the e↵ects

of initial detection geometry through simulation testing, set preliminary configuration

values to maximize desired performance characteristics, and identify a prioritized list

of edge cases for algorithm improvement. After su�cient iteration using the methods

of this chapter to improve collision avoidance performance to an acceptable level,

on-water testing is prudent to certifying algorithms before fielding in a non-testing

environment. Chapter 6 demonstrates scenarios, techniques, and results of on-water

experimentation for testing collision avoidance algorithms.

219



THIS PAGE INTENTIONALLY LEFT BLANK

220



Chapter 6

On-Water Experimentation and

Results

Chapter 6 presents the scenarios, techniques, and results of on-water experimentation

using the algorithms and methods of Chapters 3, 4, and 5. Section 6.1 presents the

scenarios for experimentation. Section 6.2 describes the vehicles, laboratory setup,

and testing environment used in conjunction with these on-water experiments. Sec-

tion 6.3 presents the results from each scenario.

6.1 Extended Scenarios and Evaluation Techniques

Testing was performed such that all vehicles on the course operated under identical

vehicle software configurations including collision avoidance algorithms and parame-

ters at any one time. Results were then aggregated for each algorithm for comparison.

All autonomy computations including collision avoidance were performed on a pay-

load computer that was connected to the vehicle’s front seat control computer via

on-board ports. On-board payload computer specifications included a 900MHz quad-

core ARM Cortex-A7 CPU, 1GB RAM, 1200mA load at 5VDC, 85.60mm x 56mm x

21mm space requirement, mass ⇡ 45g, and cost ⇡ $35USD. Each payload computer

was interchangeable to the other vehicles.

Five autonomous marine vehicle encounter scenarios were constructed. One to
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three emulated vehicles completed the five vehicle field in times of maintenance and

were running the same mission parameters as the fielded autonomous marine ve-

hicles. Fielding emulated vehicles allowed for long duration testing by performing

routine maintenance such as battery changes without stopping the experiments. Ve-

hicles consisted of those described in Section 6.2. All vehicles assumed perfect contact

sensing within their limited range of awareness; detection range was limited to ap-

proximately 2 ·Rpref which represents a reasonable approximation for visual detection

range of a human-operated vessel relative to its conservatively desired range at CPA.

Maneuvers for collision avoidance were constrained by the protocol requirements

of open-water international rules for power-driven vessels (COLREGS Rules 1-8, 11,

13-18). Scope of protocol evaluation was therefore limited to power-driven vessels

acting under Category V of Table 4.1. Safety was evaluated using the cost function

shown in Figure 4-5. That is, �SR
nm = 30%, �SR

min = 60%, Rmin = 0.5 · Rpref ,

Rnm = 5
16 ·Rpref , and Rcol = 3

16 ·Rpref . Encounter scenarios are listed in Table 6.1 and

focused on non-canonical geometries using the nominal tracks of Figure 6-1 and 6-2

unless otherwise specified. Perturbations o↵ track occurred as necessary for collision

avoidance. Multi-encounter scenarios with 4-5 autonomous vehicles simultaneously

interacting were common.

Table 6.1 Scenarios for On-Water Experimentation

Scenario Description of 5-Vessel Encounter Scenario

A Open ocean star pattern using CPA-based algorithm
B Open ocean star pattern using velocity obstacle-based algorithm
C Tra�c-constrained monitoring of underwater entity
D Open ocean star pattern with human-driver encounters
E Open ocean star pattern with one vehicle ignoring COLREGS
F Open ocean star pattern with one vehicle dead-in-water
G Open ocean star pattern with one vehicle ignoring all contacts
H Navigationally-constrained using quadratic priority weight
I Navigationally-constrained using linear priority weight
J Navigationally-constrained using power function priority weight
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6.1.1 Algorithm Comparison (Scenarios A & B)

On-water experimentation with protocol evaluation allows for comparison of di↵erent

collision avoidance algorithms, certification of compliance, and tuning of designs. In

Scenarios A and B, two COLREGS-based collision avoidance algorithms were tested.

Scenario A represented a CPA-based method derived from work in [5] (see Chap-

ter 3) and known as the full CPA quantification algorithm. Scenario B represented

the popular velocity obstacle method modeled from [45]. Both scenarios used the

same underlying COLREGS algorithms while the means of determining risk (CPA

or velocity obstacles) was varied. All vehicles in Scenarios A and B used the same

algorithm and configuration parameters at any one time. The course consisted of the

five-vehicle simultaneous-collision star pattern shown in Figure 6-1 and 6-2.

A multi-contact collision avoidance scenario was constructed to deliberately stress

the vehicles beyond the current literature standard. Five vehicles were placed on

near-simultaneous collision paths involving combinations of multiple concurrent COL-

REGS rules: head-on, overtaking, and crossing. The primary mission objective for

each vehicle was a simple waypoint traversal along a straight track while maintaining

a minimum desired range at CPA without violation of the COLREGS. Upon reaching

a desired waypoint outside the collision avoidance area, each vessel reversed course

to follow its track to the previous waypoint. The tracks were constructed such that

non-canonical geometries were represented in nominal track design; deviations of ini-

tial course and therefore encounter angles were realized from granting an allowance

to achieving each waypoint.

Two complex collision avoidance experiments were developed using a starburst-

type geometry of five vehicles. Scenario A used five vehicles traversing five nominal

tracks at similar speeds as shown in Figure 6-1. Scenario B allowed five vehicles

to traverse three tracks. Two vehicles were simultaneously assigned to each of two

tracks and one vehicle assigned its own track as shown in Figure 6-2. One vehicle of

each shared track in Scenario B was given a higher speed to induce overtaking as well

as shorter times to CPA for cross-track contacts. Each scenario showed complicated
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Figure 6-1 A 5-vehicle 5-track starburst pattern was used for on-water
Monte Carlo testing with each vehicle on its own nominal track. Small
perturbations in initial course allowed for non-canonical geometries of si-
multaneous encounter at the origin under multiple simultaneous COL-
REGS rules.

characteristics in its own right: five simultaneous collision tracks of di↵erent headings

is indicative of a congested waterway, while five simultaneous collision tracks of three

nominal headings is indicative of a vessel encountering two crossing merchant lanes.

Results are presented in Section 6.3.2.

On-water Monte Carlo experimentation tested complicated collision avoidance

geometries for both a traditional velocity obstacle algorithm and a full CPA quan-

tification algorithm. The traditional velocity obstacle was modeled such that certain

characteristics were consistent with recent marine autonomy literature and allowed a

fair comparison to the methods of this thesis, including:

• This thesis assumes perfect sensing thus removing the need to model safety

margin o↵sets such as the one found in [45]. Fair comparison of a traditional

velocity obstacle method can then be made once accounting for a designer’s

costing function.
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Figure 6-2 A 5-vehicle 3-track starburst pattern allowed for complicated
interactions. Each of 2 vehicle pairs shared 2 tracks and 1 vehicle had
its own track. On-water Monte Carlo testing allowed for non-canonical
geometries of simultaneous encounter at the origin under multiple simul-
taneous COLREGS rules. The shared tracks each had a fast and normal
speed vessel.

• Both collision avoidance algorithms used the same underlying COLREGS algo-

rithms. Performance was therefore a function of the collision avoidance algo-

rithm performance and not specific implementation of the rules of the road.

• Costing of admissible solutions that involve time to collision was accounted for

using a priority weight wavd
i based on current contact range on the collision

course assuming a constant current speed. Distant times to collision are some-

times used as a cost penalty for velocity obstacle candidate solutions. This thesis

modeled priority weight of a traditional velocity obstacle as a quadratic func-

tion of current range to the contact. This gives increasing priority to contacts

as they become closer to ownship and is consistent with a common literature

cost function of inverse time to collision.

• Deviation from the mission-preferred velocity vector received appropriate penalty

by adding the two-plateau velocity obstacle model with the mission objective

function. The mission objective function rewarded behavior that was consistent

with its desired velocity vector.
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Figure 6-3 This polar objective function with radius = speed (v), angle = course
(✓, North-up) depicts a nominal waypoint behavior that favors the best course
and speed to achieve its desired waypoint (pink dot at maximum speed and ✓ =
90�). The color gradient from the optimal point indicates a costing function that
increasingly penalizes velocities that deviate from the optimum waypoint solution.

A two-plateau method was used to map a velocity obstacle to an objective function

consistent with Figure 3-9. A plateau of full utility value accounts for acceptable

solutions while a plateau of zero utility value accounts for inadmissible solutions.

Addition of the mission objective function and the velocity obstacle plateau regions

according to Equations (3.2) and (3.23) accounts for a velocity obstacle designer’s

cost function that penalizes deviation from mission preference. An example mission

objective function that imposes a cost for deviations from mission-desired course and

speed is shown in Figure 6-3.

6.1.2 Tra�c-Constrained Monitoring Missions (Scenario C)

To evaluate protocol compliance of more complex (non-waypoint following) missions,

a simulated unmanned underwater vehicle (UUV) was monitored by one of the au-

tonomous surface vessels with tra�c in near-parallel tracks to emulate a merchant

transit lane (Scenario C). The monitoring vessel was subject to any collision avoid-

ance restrictions required of it due to surrounding surface vessel tra�c. The simulated

underwater vehicle was traversing in the vicinity of the transit lane in such a way that
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required the monitoring vessel to choose between COLREGS compliance and losing

desired position with respect to the UUV. Figure 6-4 shows the experimental geometry

and on-water data of the tra�c-constrained monitoring scenario.

The autonomous vessel in a dynamic mission such Scenario C must be able to

determine when breaking contact is necessary to honor collision avoidance protocol

requirements and maintain safe encounters with other vessels in the area. Using the

evaluation concepts of this thesis, autonomous designers can explore the tradespace

of mission goals, safety, and protocol compliance as configuration parameters are

changed (perhaps in real time) given the many variables of importance to each com-

ponent.

6.1.3 Testing Human Integration (Scenario D)

Using the open-water experimental setup of Figure 6-5, additional perturbations were

inserted using a human-operated high-speed motorized kayak (Scenario D). Adding

a human-operated vessel to the experiments increased the complexity of the testing

and allowed for more fine-tuned experimental encounters. Human experimentation

was focused on stressing the full CPA quantification algorithm with close encounters

and unexpected deviations by the human operator.

The stresses that autonomous vessels faced as a result of the human operator

included the human:

• maneuvering without regard of the autonomous vessels

• maneuvering for the autonomous vessels in violation of the collision avoidance

rules

• approaching the autonomous vessel at unsafe speeds for the contact geometry

or contact density

• approaching the autonomous vessel at unacceptably close ranges after a com-

pliant maneuver (curious observer)
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(a) Tra�c-constrained monitoring experimental geometry

(b) Tra�c-constrained monitoring on-water testing

Figure 6-4 The nominal on-water testing geometry of (a) allowed up to 4 au-
tonomous vessels and several simulated surface vessels of varying speeds the ability
to interact in successive, non-deterministic, non-canonical encounter geometries tak-
ing the form of an open ocean merchant lane. Maneuvers for other vessels caused
deviation from both nominal track and encounter geometry of subsequent contacts.
A simulated UUV (yellow) was being monitored by an M200 autonomous vessel
(blue). On-water experiments (b) provided perturbations to stress the underlying
collision avoidance algorithms outside of their normal testing scenarios. The moni-
toring vessel was required to autonomously determine when a maneuver for safety
and protocol compliance was necessary while maximizing contact. Using the eval-
uation tools, an autonomous designer can determine what mission configuration
parameters are appropriate given the importance of the mission, the nature of the
surrounding contacts, and the degree of conservativeness desired with respect to
rule and safety scores.
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Figure 6-5 This nominal on-water testing geometry allowed up to 5 autonomous
vessels of varying speeds the ability to interact in successive, non-deterministic,
non-canonical encounter geometries. The human-operated high-speed motorized
kayak (shown in red) operated without track restrictions which allowed for fur-
ther perturbation during the on-water Monte Carlo experimentation of Scenario D.
The human also inserted non-compliant behavior to further stress the autonomous
vessels.

6.1.4 Non-Compliant and Unresponsive Vehicles

(Scenarios E - G)

One of the five vessels was given one of three non-compliant behaviors. The other

four vehicles were responsible for appropriately maintaining COLREGS compliance

and completing their mission without a priori knowledge of the vehicle being non-

compliant. Scenario E demonstrated one vehicle operating without knowledge of

COLREGS. Scenario E’s non-compliant vehicle maneuvered to maintain the same

desired CPA values as the COLREGS-cognizant vessel, however, without a protocol

bias for maneuvering in a particular way. Scenario F demonstrated one vehicle drifting

dead in the water (not under command) without properly identifying itself as such.

Scenario G demonstrated a vehicle driving with complete disregard of other vehicles.

This vessel was willing to accept collisions to achieve its mission without compromise.

Scenarios E, F, and G used the star pattern geometry of Figure 6-1.
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6.1.5 Navigationally-Constrained Environment

(Scenarios H - J)

A pattern with closer tracks and smaller allowable ranges than the open ocean sce-

nario was constructed with navigational barriers along two sides to simulate a navi-

gationally constrained environment. Figure 6-6 shows the notional geometry for the

navigationally constrained environment test. Experimentation involved the same fleet

of autonomous vessels using the full CPA quantification algorithm. Priority weight

was varied from the default quadratic function (Scenario H) using linear (Scenario I)

and power (Scenario J) functions. Scenario J used an exponent of 1.5 for the priority

weight power function. All priority weight functions reasoned about instantaneous

range to the contact in question. CPA range values used for calculating risk were

reduced by 37.5% of the open ocean scenario to allow the vehicles to accept closer

ranges given the increased constraints on their operating environment.

Figure 6-6 The nominal on-water testing geometry of the navigationally constrained
encounters placed up to five autonomous vessels in close proximity with each other
and bounded two sides with navigational constraints. The collision avoidance pa-
rameters were tightened to allow closer encounters.
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6.2 On-Water Experimentation Setup

On-water testing was completed at the MIT Marine Autonomy Lab located on the

Charles River in Cambridge, MA, USA. Vehicle communication was possible using a

Bullet wifi antenna broadcasting across the river. A shoreside computer continuously

operated to provide situational awareness and emergency control of vehicles to the

laboratory personnel. Vehicles were unable to directly communicate with each other.

To emulate an environment consistent with open ocean navigation, course-speed-

heading tuples of each contact within visual detection range were given to the vehicles.

6.2.1 Vehicles

Three types of vessels were used directly in testing:

1. Clearpath R� M100 trimaran autonomous vessels with propeller propulsion

2. Clearpath R� M200 catamaran autonomous vessels with water jet propulsion

3. Mokai R� human-driven gas-powered kayak

Support vessels were used for safety of other river tra�c and performing routine

maintenance such as battery changes. These support vessels were not detectable to the

autonomous vessels which enabled long duration on-water testing without interference

by lab sta↵ during operations such as battery changes. The human-driven kayak

served three functions: inducing human interaction with the autonomous vessels,

acting as a high-speed contact in the testing environment, and allowing a highly

maneuverable platform to cause otherwise undesirable encounter scenarios for edge

case and robustness testing. Figure 6-7a shows the vessels used in on-water testing

stored in the shoreside lab. Figures 6-7b and 6-7c show the vehicles that were used

in on-water experimentation.

6.2.2 Experimentation Field

To establish a safe area clear of other vessels, a buoy field (Figure 6-8) was deployed

during close encounter testing and congested harbor scenarios (Section 6.1.5). To
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(a) Vehicles in Shoreside Lab

(b) Vehicles on Dock

(c) M200 Autonomous Catamarans

Figure 6-7 Testing was performed using the autonomous vessels displayed here.
High-speed and human interactions were achieved using the motorized human-
operated kayak by Mokai.
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give larger maneuvering freedom to the vessels, an experimentation field was used

as shown in Figure 6-9. To maximize the use of the field and avoid interactions

with vessels outside the scope of the experiments, testing was performed between

sunset and sunrise. Running lights and safety lights on the autonomous vessels were

more readily visible than most common river tra�c allowing for verification of vessel

locations. Operating status queues such as battery levels and hardware malfunctions

were visible by light signals as well as messages sent to the shoreside station. A closer

view of vehicle testing within the buoy field is shown in Figure 6-10.

Figure 6-8 The daytime testing range was marked with a buoy field and allowed for
constrained vehicle testing.

233



Figure 6-9 Night testing was the primary setup and allowed for extensive use of
large scale experiments. The three track pattern of Figure 6-2 is shown with the
safety region surrounding the testing area.
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Figure 6-10 Vehicles were allowed to operate in close proximity to each other during
Scenarios H-J as shown here. Prioritization of when to make collision avoidance
decisions relative to the time of contact detection greatly influenced safety and
protocol compliance results.
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6.3 On-Water Experimentation Results

On-water experimentation using the 10 scenarios of Table 6.1 accounted for over

6,150 vehicle-pair encounters as shown in Table 6.2. Sixty-five experimental sessions

totalling over 272 vehicle-hours provided the on-water experimental data presented

in this chapter as shown in Table 6.3. The 65 experimental sessions totalled 6488

encounters, however 332 of these were isolated one-on-one human-robot testing that

did not count toward the aggregate experiments shown in Table 6.2. Multi-rule

combinations are denoted using their two-number identifier (e.g., R15/16 denotes

crossing give-way). Encounters labeled “CPA-only” indicate vehicle pairs that were

within detection distance but did not warrant entry into a particular rule at any time

during the interaction. Tables 6.4 - 6.10 demonstrate performance of the algorithms

of Sections 2.5 and 3.3. Aggregated results are shown in Tables 6.11 - 6.14 and

discussed in Section 6.3.2. Scenario B uses the velocity obstacle collision avoidance

algorithm. All other scenarios of Table 6.1 use the full CPA quantification algorithm

of Section 3.3.

Table 6.2 Number of On-Water Encounters Observed per Scenario

Scenario Rule Set

R13/16 R13/17 R14 R15/16 R15/17 CPA-only
A 224 224 232 997 997 318
B 255 255 264 1016 1016 276
C 76 76 140 211 211 222
D 102 102 96 297 297 170
E 37 37 22 123 123 48
F 9 9 10 17 17 8
G 52 52 48 142 142 58
H 158 158 206 791 791 170
I 41 41 68 239 239 54
J 28 28 32 104 104 32

236



Table 6.3 Summary of On-Water Experiments

Experimental Scenario Vehicle-Hours Vehicle Number Human
Session Encounters of AMVs Interaction

1 A 1.87 64 5
2 B 0.56 16 5
3 B 0.62 21 5
4 B 9.57 339 5
5 A 6.55 219 5
6 A 3.14 109 5
7 B 1.87 26 5
8 B 2.42 88 5
9 B 4.16 148 5
10 A 5.85 221 5
11 A 2.43 88 5
12 A 1.14 17 5
13 A 2.55 56 5
14 B 6.62 189 5
15 A 6.09 163 5
16 B 4.63 119 5
17 B 3.93 129 5
18 B 8.54 291 5
19 A 1.73 37 5
20 A 7.24 211 5
21 A 6.03 162 5
22 D 4.92 208 5 Yes
23 B 4.75 175 5
24 A 1.04 6 5
25 A 6.21 143 5
26 D 6.35 150 5 Yes
27 D 6.13 86 5 Yes
28 D 7.26 68 5 Yes
29 D 2.46 50 5 Yes
30 D 3.65 21 5 Yes
31 D 9.03 148 5 Yes
32 C 4.55 36 5
33 C 1.26 14 5
34 C 1.27 12 5
35 C 3.52 35 5
36 H 5.53 124 5 Yes
37 H 1.94 124 5 Yes
38 C 5.77 211 5
39 C 1.03 13 5
40 C 8.81 98 5

237



Summary of On-Water Experiments

Experimental Scenario Vehicle-Hours Vehicle Number Human
Session Encounters of AMVs Interaction

41 C 5.83 49 5
42 H 2.19 24 5
43 H 10.16 242 5
44 H 0.93 13 5
45 H 1.26 16 5
46 H 7.16 145 5
47 H 7.28 115 5
48 H 3.59 76 6
49 H 7.38 58 6
50 H 2.27 14 6
51 H 7.57 203 6
52 H 3.06 84 6
53 H 4.53 32 6
54 I 1.43 13 5
55 I 1.64 21 5
56 I 0.66 9 5
57 I 1.22 12 5
58 I 1.38 10 5
59 I 4.51 127 5
60 I 1.43 149 5
61 J 6.37 121 5
62 J 2.60 43 5
63 G 6.06 247 5
64 F 1.93 35 5
65 E 6.84 195 5

Total 272.2 6488 9
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Figure 6-11 This track data shows the perturbations of geometry possible with a
long duration experiment using the starburst pattern of Figure 6-2.

6.3.1 Scenario A & B Results

Compromises that used direct knowledge of the resulting rcpa, tcpa, and ⇥cpa for a

candidate course-speed pair improved collision avoidance and mission performance as

demonstrated by the reduced number of violations of the minimum acceptable CPA

range and improved spatial and temporal e�ciencies. On-water track data showing

the non-canonical geometries possible using long duration experiments are shown

in Figure 6-11. Figure 6-12 demonstrates an example on-water 5-vehicle collision

encounter using Scenario B. The corresponding ownship decisions for contacts A, B,

and C at the beginning of the track lines are shown with necessary compromises in

Figure 6-13.

The full CPA quantification experiments considered rcpa as well as ⇥cpa for COL-

REGS rule penalties. Extensive on-water tests of Scenarios A and B resulted in

more than 3,050 vehicle-pair interactions requiring a collision avoidance maneuver.

Performance of both algorithms was evaluated using the same metrics.

The nominal velocity obstacle collision range was used as the upper threshold
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Figure 6-12 The geometry for the 5-vehicle, 3-track on-water experi-
ment of Figure 6-2 shows concurrent maneuvers required for multiple
simultaneous COLREGS rules. Ownship’s (O/S) accompanying de-
cisions based on the full CPA quantification algorithm are shown in
Figure 6-13.

for the CPA-based method (Rvo
col = Rpref ); a lower threshold of half the velocity

obstacle collision range was set for the lower threshold of the CPA-based method

(Rmin = 0.5 · Rvo
col) consistent with experienced ship driving practice as shown in

Figure 6-14. Any range at CPA less than half the velocity obstacle collision range

(rcpa < Rmin) was considered a violation of the minimum acceptable CPA range

regardless of the underlying algorithm. Violations of Rmin represent a significant

and unsafe deviation from operator-desired range at CPA and therefore constituted

the primary metric for comparison of algorithm performance under the five vehicle

scenarios.

Algorithm comparison was baselined to mean collision avoidance CPA range (rcpa)

normalized by preferred CPA range. The normalized mean CPA ranges for both al-

gorithms were consistent to three significant digits indicating fair comparison of al-

gorithms as shown in Table 6.4. The number of experiments in each configuration

240



Figure 6-13 Example on-water objective functions with full CPA
quantification. This snapshot of a point in time shows ownship’s
objective functions corresponding to the beginning of the tracks
displayed in Figure 6-12. The white dot at the center of each
figure represents the center of the decision space. The pink dot
represents the maximum value of each objective function. The
top left figure shows the combined objective function for a desired
transit to the east (mission objective function shown as Figure 6-3)
with three simultaneous contacts of concern. Ownship’s optimal
course-speed pair (

�!
x⇤ of top left image) is depicted by the white

arrow in each graphic. Ownship’s COLREGS collision avoidance
objective functions (A - top right, B - bottom right, C - bottom
left) at the same instant show compromised (non-red) values for
A and B with an optimal value for C.

is shown in Table 6.5. When placed under the loading of the five-vehicle simultane-

ous collisions of Scenarios A and B, both algorithms resulted in mean CPA ranges

approximately 10% closer than desired.

Under the loading of these simultaneous five vehicle encounters, the traditional

velocity obstacle algorithm violated of the minimum acceptable CPA range (rcpa <

Rmin) in 4.5% & 4.7% of encounters for Scenarios A & B, respectively. For the

same nominal “collision range” (Rpref = Rvo
col), the full CPA quantification algorithm

achieved an improvement over the traditional velocity obstacle in both geometry
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Figure 6-14 The velocity obstacle and CPA methods were compared in Scenario A
using (Rvo

col = Rpref ). The red circle indicates ranges that violated (Rmin = 0.5·Rvo
col).

Experimentation using on-water encounters demonstrated that the full CPA method
reduced the number of occurrences where a contact entered the red circle as shown
in Table 6.6.

Table 6.4 Mean CPA Range Normalized to Desired CPA† for 5-Vehicle Scenarios

Algorithm 3-Tracks 5-Tracks

Velocity Obstacles
�

rcpa/R
vo
col

�

89.9% 90.9%
Full CPA

�

rcpa/Rpref

�

89.9% 90.9%

† Rpref ⌘ Rvo
col for Scenarios A & B

scenarios as shown in Table 6.6. The full CPA quantification algorithm resulted in

violations of the minimum acceptable CPA range for 3.3% & 3.7% of encounters

for Scenarios A & B, respectively. This represents a non-trivial reduction of range-

violating encounters.

Spatial and temporal e�ciencies were calculated for each traversed track when

collision avoidance was required and averaged over the aggregate of all encounters.

Similar improvements were achieved in long term means of both spatial and temporal

e�ciencies between the two algorithms as shown in Tables 6.7 and 6.8, respectively.

Standard deviations are shown in Tables 6.9 and 6.10, respectively. This demonstrates
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Table 6.5 Number of On-Water Experiments Performed for 5-Vehicle Scenarios

Algorithm 3-Tracks 5-Tracks

Velocity Obstacles 921 682
Full CPA 699 753

Table 6.6 Percent of rcpa < Rmin Events for Scenario A & B 5-Vehicle On-Water
Collision Avoidance Encounters

Algorithm 3-Tracks 5-Tracks

Velocity Obstacles 4.5% 4.7%
Full CPA 3.3% 3.7%

that the full CPA quantification algorithm resulted in fewer range collisions than

the traditional velocity obstacle while reducing track deviations and time between

waypoints for complex 5-vehicle encounters.

With more range violations using velocity obstacle techniques, one would assume

velocity obstacles would achieve higher spatial e�ciency (less track deviation) or

higher temporal e�ciency (shorter overall time). Rather, the full CPA quantifica-

tion algorithm out performed the velocity obstacle-based technique in both e�ciency

metrics as well as the safety metric.

The standard deviations of unadjusted range at CPA between Scenarios A and B

are lower for CPA-based algorithms indicating more predictability in maneuvers for

the CPA-based method. The exception is overtaking vessels (R13/16 and R13/17)

that are likely less willing to cross track given the less flexible velocity obstacle risk

calculation.

Table 6.7 Mean Spatial E�ciency for Scenario A & B 5-Vehicle On-Water Collision
Avoidance Encounters

Algorithm 3-Tracks 5-Tracks

Velocity Obstacles 0.843 0.774
Full CPA 0.853 0.821
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Table 6.8 Mean Temporal E�ciency for Scenario A & B 5-Vehicle On-Water Col-
lision Avoidance Encounters

Algorithm 3-Tracks 5-Tracks

Velocity Obstacles 0.564 0.514
Full CPA 0.581 0.556

Table 6.9 Standard Deviation of Spatial E�ciency for Table 6.7

Algorithm 3-Tracks 5-Tracks

Velocity Obstacles 0.072 0.090
Full CPA 0.074 0.119

Table 6.10 Standard Deviation of Temporal E�ciency for Table 6.8

Algorithm 3-Tracks 5-Tracks

Velocity Obstacles 0.215 0.210
Full CPA 0.190 0.206
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6.3.2 Scenarios C - J Results

Scenarios C-J demonstrated that the primary mission of a vehicle largely a↵ects the

collision avoidance performance capabilities with respect to both safety and protocol

compliance. A more complicated mission that relies on real-time reactive responses

such as underwater vehicle monitoring showed variation in safety and protocol compli-

ance compared to a waypoint following mission. If a waypoint following mission were

used for validation of collision avoidance algorithms, it is possible that performance

would be below thresholds in more complex primary missions.

Figure 6-15 and Table 6.11 show mean protocol compliance scores with standard

deviations shown in Table 6.12. Safety was measured using the cost function of

Figure 4-5 with a 30% pose reward based on Equations (4.5) and (4.10) (Smax =

30%). Safety function values were consistent with other experiments: �SR
nm = 30%,

�SR
min = 60%, Rmin = 0.5 · Rpref , Rnm = 5

16 · Rpref , and Rcol = 3
16 · Rpref . A pose

reward was assigned according to Figure 4-6 using Equations (4.6) and (4.7) with

↵cut = 70� and �cut = 110�. Figure 6-16 and Table 6.13 show mean safety scores with

standard deviations shown in Table 6.14. Vehicles using the full CPA quantification

algorithm were allowed to accept risk (with decreasing utility) as close as 50% of the

preferred CPA range similar to Section 6.3.1.

Within the navigationally constrained environments (Scenarios H - J), both safety

and collision avoidance scores were lower than the Scenario A baseline as expected.

The safety evaluation scores were compensated commensurate with the 35% reduc-

tion in range thresholds discussed in Section 6.1.5. This indicates that despite the

closer ranges allowed, range violations still occurred. This is expected when forcing

vessels into a more contact dense environment with little room to maneuver. High

standard deviations were also seen in both the non-compliant and navigationally con-

strained scenarios. This is consistent with having less room to maneuver as desired

or encountering a contact that is not acting as expected.

Some amount of the lower safety score of Scenario D resulted from the intentionally

forced maneuvers by the human operator. This included closer-than-desired encoun-
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Table 6.11 Mean Protocol Score

Scenario Rule Set

R13/16 R13/17 R14 R15/16 R15/17
A 77.11 56.44 84.54 53.04 66.17
B 77.49 51.99 82.01 57.59 63.96
C 79.00 38.00 64.00 52.00 46.00
D 72.98 52.58 76.58 56.19 58.56
E 82.03 56.94 60.53 58.74 60.73
F 77.61 64.11 43.50 59.29 58.97
G 55.45 55.33 64.58 43.73 70.93
H 51.80 78.08 54.13 42.03 77.24
I 64.50 66.66 59.94 49.27 78.86
J 53.35 70.16 69.10 42.10 72.53

Table 6.12 Standard Deviation of Protocol Score

Scenario Rule Set

R13/16 R13/17 R14 R15/16 R15/17
A 25.03 41.73 27.45 31.95 40.28
B 21.90 42.79 29.52 31.18 40.89
C 22.79 43.71 26.72 32.97 41.11
D 27.16 43.46 29.80 32.42 41.17
E 23.64 46.16 40.04 35.03 42.12
F 24.30 44.72 33.51 40.23 41.62
G 39.10 43.33 33.77 35.50 38.57
H 29.64 38.46 37.35 30.55 37.08
I 26.40 43.48 36.17 29.08 38.08
J 28.13 44.41 32.87 30.55 43.08
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Table 6.13 Mean Safety Score

Scenario Rule Set

R13/16 R13/17 R14 R15/16 R15/17 CPA-only
A 91.92 92.82 93.45 91.72 93.23 99.40
B 92.51 93.40 93.64 91.00 92.20 99.88
C 91.28 83.6 87.8 85 83.8 99.16
D 84.81 85.97 89.45 86.10 87.43 99.03
E 94.85 95.84 91.46 92.78 93.47 99.95
F 92.83 93.42 83.83 85.96 87.95 95.88
G 73.53 74.71 61.94 81.98 82.54 95.45
H 65.22 65.22 58.24 58.02 58.19 90.04
I 74.47 74.99 61.75 64.76 65.07 90.75
J 67.19 67.20 58.45 62.68 62.32 89.94

Table 6.14 Standard Deviation of Safety Score

Scenario Rule Set

R13/16 R13/17 R14 R15/16 R15/17 CPA-only
A 19.18 18.94 12.34 13.71 12.59 4.91
B 14.82 14.65 10.95 16.23 15.64 0.92
C 20.31 20.32 11.65 18.73 18.02 4.46
D 20.61 20.56 15.13 21.63 21.44 3.98
E 12.11 11.64 17.93 12.47 12.00 0.37
F 20.40 19.73 10.02 22.97 22.28 5.27
G 35.20 34.82 34.57 26.76 26.25 8.92
H 27.81 28.01 23.48 26.33 26.10 10.66
I 22.56 23.43 23.36 20.31 20.03 10.50
J 25.86 25.98 20.69 23.69 23.28 10.01
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ters which were used to stress the collision avoidance algorithms. An examination of

human-to-human interactions compared to human-to-robot interactions without the

intentional stresses of Section 6.1.3 will be explored in future work.

Several cases of behavior deemed either 1) resulting in less-than-desirable ranges

at CPA but otherwise COLREGS-compliant, or 2) safe but in violation of the COL-

REGS reinforced the concept of using both safety and protocol compliance scores to

quantify performance. Two example cases from on-water experimentation are shown

in Figure 5-3.

6.4 Conclusions

In summary, the experiments presented in this chapter demonstrated that:

• multi-contact encounter performance as measured by safety, e�ciency, and pro-

tocol compliance varied depending on the scenario (e.g., waypoint following

navigation, UUV following, etc.)

• complex (non-waypoint following) scenarios altered protocol compliance and

safety scores in multi-contact encounters for collision avoidance configurations

• collision avoidance algorithm testing for compliance with protocol requirements

must account for the expected operational scenario including the likely number

of simultaneous contacts

• human-present interactions in on-water encounters may alter performance char-

acteristics of an autonomous collision avoidance algorithm

• changing when and how a vehicle prioritizes collision avoidance over mission

achievement (i.e., priority weight functions) greatly a↵ected safety and protocol

compliance performance

• the presence of a collision-agnostic vehicle greatly reduced the protocol compli-

ance and safety performance of COLREGS-cognizant vehicles
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• quantifying risk using a more full approach such as the algorithms presented

in Section 3.3 rather than the velocity obstacle improved decision making in

multi-contact encounters as demonstrated by the reduced number of minimum

acceptable range violations
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

With increasingly complex autonomous mission demands and congested contact envi-

ronments, algorithms that can simultaneously reason about and appropriately balance

collision avoidance and mission priorities must be explored and rigorously tested. The

full CPA quantification algorithm allows collision avoidance utility function designs

to reason about numeric values of rcpa, tcpa, and ⇥cpa for candidate maneuvers us-

ing a non-brute force sampling technique. This empowers autonomous algorithms to

reason about risk of collision similar to humans throughout the entire decision space.

Real-time on-vehicle instantiations of the COLREGS evaluation program in this

thesis are possible to detect non-compliance of other vessels and adjust collision avoid-

ance parameters accordingly. Results validated the thesis assertions of Section 1.3 and

demonstrated that the full CPA quantification algorithm allowed for reduced number

of violations of the minimum acceptable CPA range and improved both spatial and

temporal e�ciencies compared to the traditional velocity obstacle algorithm under

similar configuration. Traditional methods for calculating collision risk and validat-

ing a mission-preferred velocity vector have wide applicability to autonomous decision

making. Processing improvements and intelligent sampling techniques such as inter-

val programming make explicit calculations of range, time, and pose at CPA using

non-brute force techniques feasible for small on-board computers.
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Experimentation with high-speed vessels in protocol-constrained, multi-contact,

multi-rule scenarios demonstrated that both geometry and patience parameters in-

fluenced key metrics of performance. Comparison of slow and high-speed vessels

showed inconsistencies in performance that should be considered by high-speed col-

lision avoidance algorithm designers especially when tuning for desired performance.

If considering pose as a primary factor in the quantification of safety or protocol

compliance, designers should also consider pose as a factor in the selection of veloc-

ity vectors in any collision avoidance scenario. The tuning of autonomous collision

avoidance algorithms is a little-studied area. The e↵ects of placing equivalent collision

avoidance algorithms on both slow and high-speed vessels require further investiga-

tion before fielding. As demonstrated in the results of the high-speed vessel case

study, several e↵ects can be seen to cause pause when a designer arbitrarily assigns

a collision avoidance or corresponding primary mission algorithm to a vessel for all

initial speeds and encounter geometries. Rather, designers should use approaches to

robustly test their algorithms to determine which variables require tuning specific to

the real-time mission and collision avoidance scenario.

In summary, this thesis has made the following primary contributions in conjunc-

tion with the attributes of Section 1.2.2:

• demonstration that a range-, time-, and pose-informed CPA-based collision

avoidance algorithm generalizes and outperforms the velocity obstacle

• development of protocol-based collision avoidance evaluation metrics, algorithms,

and testing techniques

• performance of over 6,150 on-water experiments spanning 10 complex multi-

contact scenarios

7.2 Future Work

Further generalization of the multi-threshold concept of Section 3.3 to incorporate

more than two threshold levels of CPA range into multi-objective optimization al-
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gorithm design are reserved for future work. The assumption of limited kinematic

prediction leads to a simplified decision tradespace. Incorporation of more explicit ve-

hicle dynamics is possible to further expand these techniques for highly maneuverable

vehicles.

Research into the protocol evaluation techniques of this thesis would benefit from

additional work in the following areas:

• incorporating vehicle kinematics to assist with determining safe speed, stopping

speed and distance, and maneuverability

• incorporating environmental parameters such as daylight, fog and visibility, sea

state (visibility and bearing errors), and radar sensitivity

• accounting for detection range (radar, mast head height, sea state)

• designing more thorough evaluation of other rules including Rules 6, 9, 10, 19,

20-38

• assessing when action warranting in extremis action per rule 17.a.ii is appropri-

ate by standards using the above considerations

• allowing communication-based negotiations such as bridge-to-bridge radio agree-

ments

• incorporating self-reporting schemes such as AIS including the perceived trust-

worthiness of the reports

• allowing a vessel to detect compliance scores less than a threshold value and

choose to maneuver sooner than normal or seek a more conservative range or

pose at CPA

• expansion of the evaluation libraries to include more complex and tailorable

functions to be applied and tuned as appropriate

Other future work within the field of autonomous collision avoidance more broadly

includes:
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• examination of what circumstances may justify contact lumping to be both

su�cient and appropriate

• incorporation of trajectory prediction literature

• incorporation of perception and sensor integration literature including reliance

on probability of detection and false alarm as well as proper contact classification

• adjustment of decision space based on real-time identification of compliance

• incorporation of additional protocols and rules into the software produced by

this thesis including:

– sailing, sounds, and lights

– inland rules

– Rules of the Air

• investigation of human-to-human, human-to-robot, and robot-to-robot interac-

tions and performance results under similar environments and decision policies

• investigation of human-robot teaming and negotiation

• incorporation of human behaviors and kinesics in close aboard scenarios to

further amplify incorporation of human expectations into autonomous behavior

Future work will enable third-party evaluation of the full rule sets rather than

limitation to power-driven vessels. Further work is required to more fully model

contact-free intentions when maintaining course and speed of a stand-on vessel in

complex scenarios such as slowing to pick up a pilot.

7.2.1 Collision Avoidance Road Test

In order to certify autonomous collision avoidance algorithms for use outside of a

testing environment, this section proposes a framework for a road test comprised of

a comprehensive scope of examination and quantifiable metrics of performance. To
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be compliant with the appropriate protocol rule set being examined, a satisfactory

level of performance must be met across each category of evaluation. The categories

of Section 4.3.1 comprise the evaluation areas for this test when using the proto-

col requirements of COLREGS. Adaptations must be considered for other physical

domains and protocols such as Rules of the Air as required.

This constitutes the first known road test framework for autonomous collision

avoidance and would allow consistent testing and certification of algorithms with

configurable metrics prior to fielding. Di↵ering degrees of road tests may be possible

for various levels of certification for operation. Table 7.1 lists performance areas

important for a collision avoidance road test. Table 7.2 lists attributes of the road

test.

A road test would provide the following functionality to the testing and evalua-

tion community prior to certification of an autonomous vehicle and any associated

algorithms for operation in human-present environments:

• identify protocol and safety requirements to be evaluated

• ensure su�cient testing of non-canonical geometries

• verify the ability to choose an appropriate combination of course, speed, or

depth/altitude changes

• verify the ability to properly enter and exit each rule set as required

• quantify specific vehicle and more general algorithm performance with respect

to protocol and safety compliance

7.2.2 Incorporating the Human Factor

A road test of autonomous collision avoidance algorithms also allows for examining

human performance in controlled testing environments. By expanding the notion of

this road test, humans would be able to certify aspiring or seasoned ship drivers to

the same standards that their autonomous counterparts would be certified. Scoring
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Table 7.1 Road Test Performance Areas

Number Performance Area Description

I Achieving passing scores for all applicable categories of scope as set
by the appropriate certification authority†

II Determination of obligations and governing rule(s) for both own-
ship and the contact for various geometric configurations at time
of visual or radar detection

III Determination of role hierarchy when nested rules apply (e.g., own-
ship overtaking a vessel that is already overtaking a third (slower)
vessel)

IV Identification of redundant contacts and su�ciently performing
contact fusion

V Releasing priority for contacts past CPA and opening
VI Verification of unsaturated CPU loading‡ for up to N -simultaneous

contacts, where N is set by the certification authority

† For autonomous surface vessels, scope is identified in Table 4.1.
‡ Verification of unsaturated CPU loading is presented in Ap-
pendix C.

metrics would allow comparison of performance of both humans and robots to ensure

su�cient abilities throughout key areas (Table 7.1) while achieving particular testing

attributes (Table 7.2).

Holding humans and robots to the same standards would allow experienced mariners

the opportunity to train the evaluation algorithms to best represent customs and

decisions of human operators. Holding all parties to human standards and requir-

ing human-like behavior of autonomous vehicles allows for a natural incorporation

into human-operated environments. Humans seeing predicable human-like behavior

from all vehicles (whether human or robot operated) would reinforce the trust in

autonomous collision avoidance. It is possible that a future observer of protocol-

constrained collision avoidance track data and evaluation scores may not be able to

pick the human from the robot, thus a form of a collision avoidance Turing test.

Care must be taken however to incorporate human factors research to assess the

degree of bias (if any) that might be applied to human operators if and when a hu-

man (likely remote) operator must take control of an autonomous vehicle. Work in

the aerial collision avoidance community has demonstrated that those with experi-
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Table 7.2 Road Test Attributes

Number Road Test Attribute Description

I Non-canonical and reasonably exhaustive geometries†
II Multi-contact, multi-rule scenarios
III Conflicting simultaneous collision avoidance rules
IV Conflicting mission, rule, and navigational priorities
V Multi-speed encounters
VI Non-compliant contacts (disregarding or delayed action)
VII Over-constrained encounters
VIII Robot-robot and robot-human interactions
IX Exercise of a default safe mode
X Statistical significance of testing encounters
XI Broadcasting appropriate signals (including distress) to other vehi-

cles or shoreside/ground entities as necessary

† Thorough geometric testing approaches such as the iterative ge-
ometric testing of Section 5.4 are encouraged.

ence with a system may be “prone to over trusting the automation” especially with

positive priming [15]. In a situation where an autonomous vehicle requests human

involvement in a collision avoidance decision – or likely worse with respect to bias if

the autonomous vehicle were to propose a course of action for a human’s concurrence

– work in the aerial community suggests the human may be prone to deferring to the

autonomous system’s inclination without stepping back to fully appreciate the full

collision avoidance scenario.

7.3 Final Thoughts

Before integrating human controlled and autonomous systems outside of laboratory

environments, the common practices, customs, and interpretations of human oper-

ators must be fully understood. Autonomous designs that incorporate expectations

and norms of human operators will achieve solutions that more naturally integrate

autonomous and human-operated vessels. The categorization of scope and the in-

corporation of the nuance, applicable case law, and customs related to COLREGS

allows appropriate and quantifiable assessment of autonomous collision avoidance per-
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formance. The International Maritime Organization and other governing bodies may

choose to include these metrics as a means to inform both regulation and policy in

maritime collision avoidance protocols.

The techniques of this thesis may be applied more generally to other physical

domains. Ground, air, or undersea vehicles might discover ways of improving per-

formance characteristics by examining exact range, time, and pose of all sampled

candidate maneuvers rather than generally preferring a particular range alone for

discrimination. General obstacle avoidance may find value in populating these algo-

rithms with sensed real time data and intelligently sampling the available decision

space to achieve more informed collision avoidance decisions, evaluation metrics, and

testing routines.

Autonomous vehicle trust in society requires that these last few percent of safety

be realized, as demonstrated with the reduction of Rmin violations in this thesis.

Improvements such as the full CPA quantification algorithm are necessary to reduce

the number of high contact density near miss and collision occurrences to as close

to zero as possible. Quantifiable metrics and extensive, robust testing including a

standardized framework for road tests present a means of establishing and articu-

lating trustworthiness to the humans that will inevitably share the open seas with

autonomously operated vessels.
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COLREGS Reference
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A.1 Collision Regulations for Power-Driven Ves-

sels in Sight

The most relevant selection of International COLREGS collision avoidance rules are

included within this appendix for ease of reference. They may be found in their

entirety in [84].

Rule 13: Overtaking

(a) Notwithstanding anything contained in the Rules 4-18, any vessel over-

taking any other shall keep out of the way of the vessel being overtaken.

(b) A vessel shall be deemed to be overtaking when coming up with a

another vessel from a direction more than 22.5 degrees abaft her beam,

that is, in such a position with reference to the vessel she is overtaking,

that at night she would be able to see only the sternlight of that vessel

but neither of her sidelights.

(c) When a vessel is in any doubt as to whether she is overtaking another,

she shall assume that this is the case and act accordingly.

(d) Any subsequent alteration of the bearing between the two vessels

shall not make the overtaking vessel a crossing vessel within the meaning

of these Rules or relieve her of the duty of keeping clear of the overtaken

vessel until she is finally past and clear.
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Rule 14: Head-on Situation

(a) [ Unless otherwise agreed ] when two power-driven vessels are meeting

on reciprocal or nearly reciprocal courses so as to involve risk of collision

each shall alter her course to starboard so that each shall pass on the port

side of the other.

(b) Such a situation shall be deemed to exist when a vessel sees the other

ahead or nearly ahead and by night she could see the masthead lights of

the other in a line or nearly in a line and/or both sidelights and by day

she observes the corresponding aspect of the other vessel.

(c) When a vessel is in any doubt as to whether such a situation exists

she shall assume that it does exist and act accordingly.

Rule 15: Crossing Situation

When two power-driven vessels are crossing so as to involve risk of colli-

sion, the vessel which has the other on her own starboard side shall keep

out of the way and shall, if the circumstances of the case admit, avoid

crossing ahead of the other vessel.
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Rule 16: Action by Give-way Vessel

Every vessel which is directed to keep out of the way of another vessel

shall, so far as possible, take early and substantial action to keep well

clear.
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Rule 17: Action by Stand-on Vessel

(a) (i) Where one of two vessels is to keep out of the way, the other

shall keep her course and speed. (ii) The latter vessel may, however, take

action to avoid collision by her maneuver alone, as soon as it becomes

apparent to her that the vessel required to keep out of the way is not

taking appropriate action in compliance with these Rules.

(b) When, from any cause, the vessel required to keep her course and

speed finds herself so close that collision cannot be avoided by the action

of the give-way vessel alone, she shall take such action as will best aid to

avoid collision.

(c) A power-driven vessel which takes action in a crossing situation in ac-

cordance with Rule 17(a)(ii) to avoid collision with another power-driven

vessel shall, if the circumstances of the case admit, not alter course to

port for a vessel on her own port side.

(d) This Rule does not relieve the give-way vessel of her obligation to keep

out of the way.
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A.2 Example Collision Avoidance Geometries
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Lexicon and Notation
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B.1 Lexicon

Table B.1 Table of Definitions

collision avoidance the avoidance of dynamic obstacles, specifically other
vessel tra�c. Collision avoidance can be protocol or
non-protocol based. The primary protocol for ships is
the COLREGS [84].

COLREGS international rules as formalized at the Convention on
the International Rules for Preventing Collisions at Sea,
developed by the International Maritime Organization,
and ratified as an international treaty by Congress.
These rules were further formalized by the U.S. Inter-
national Navigational Rules Act of 1977, and are some-
times referred to as the Collision Regulations outside the
United States.

contact angle “angle on the bow” or “target angle”
CPA closest point of approach
designer an author of a design (e.g., collision objective utility

function) or by extension the operator entering configu-
ration parameters as allowed by the author. The term
designer in this thesis is extended to an evaluator who
makes collision avoidance decisions for the purpose of
testing.

encounter a collision avoidance interaction is defined to start at
the expected range of contact detection and ends when
a contact is well clear, opening range, and approaching
its initial detection range

full CPA a CPA calculation that is informed by explicit values of
range, time, and pose at CPA

geometry specific combination of range, pose, and speed for a
given contact relative to ownship
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Table B.2 Table of Definitions

mission a mission behavior represents the current primary pur-
pose of a vessel’s actions less any navigation or collision
avoidance constraints. This encompasses the primary
motivation(s) for a vessel not being tied to a pier in
port.

navigation the avoidance of static obstacles including but not lim-
ited to land, shoals, buoys, day markers, tra�c separa-
tion schemes, etc.

ownship the vessel of reference as though the operator were on-
board.

track the ideal positions that a vessel would travel to achieve
its mission.

tradespace the range of values of performance metrics resulting from
configuration settings that are used to inform a decision
policy. For example, an operator might be willing to
trade a small out of safety to realize greater temporal
e�ciency.

vehicle any means of transit through a physical domain; oc-
casionally used in place of vessel, but by default more
general to all physical domains

vessel a vehicle specifically operating on the sea surface
waypoint a navigational point sometimes associated with a par-

ticular time. A vessel’s track is often defined by a list of
waypoints.
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B.2 Notation

Table B.3 Table of Notation

Subscripts

⇤0 initial value; when used in context of a collision avoid-
ance scenario, the value at the time of detection or rule
determination

⇤c variable associated with the contact rather than ownship
⇤cpa value at the time of closest point of approach; can be

used to describe both a future CPA prediction or a state-
ment of fact for a posteriori encounters

⇤horizon limiting value of interest, such as in the time horizon of
interest

⇤min global minimum of a value over all relevant time (usually
duration of an encounter)

⇤max global maximum of a value over all relevant time (usu-
ally duration of an encounter)

⇤now value at the current time or geometry

Superscripts

⇤⇤ optimal
⇤180� angle converted to [�180, 180) as in �180�

⇤360� angle converted to [0, 360) as in ↵360�

⇤V O quantity associated with the traditional velocity obsta-
cle; absence of V O implies the full CPA quantification
algorithm of Chapter 3

Special Symbols

⇤ mean
⇤̇ temporal derivative; ⇤̇ = d

dt⇤
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Table B.4 Table of Notation

Decision Variables

↵ contact angle
↵̇ contact angle rate; temporal derivative of ↵
↵cut cuto↵ contact angle to define reward functions
↵crit critical angle to determine entry criteria
� relative bearing
�̇ relative bearing rate; temporal derivative of �
�cut cuto↵ relative bearing to define reward functions
� arbitrary angle for generic functions
avdi collision avoidance objective function
avdvo

i velocity obstacle collision avoidance objective function
CPA closest point of approach; point of minimum encounter range
r current range to obstacle
f(�!x ) generic objective function of msni, navi, avdi

fl component objective function, where one or more components com-
prise a full objective function

G geometry configuration
⇢ intended track distance between the measured starting and ending

points
⇢̂ actual distance traveled between the measured starting and ending

points
⌧ time to traverse the intended track assuming constant initial speed
⌧̂ actual time to traverse between the measured starting and ending

points
⌘⇢ spatial track e�ciency between waypoints
⌘⌧ temporal e�ciency between waypoints
� linear relative trajectory of �!x
�0 linear relative trajectory of current course and speed
msni objective function of primary mission(s)
navi objective function of static navigational constraints
OBS obstacle; contact where a risk of collision exists
⇡ course-speed design ratio
⇡ patience parameter
⇡✓ course weight
⇡v speed weight
r range to a contact
rcpa predicted or actual CPA range
r�0
cpa predicted CPA range on current course/speed

rcpa mean of CPA ranges for given algorithm
rcpa mean of CPA ranges for given algorithm
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Table B.5 Table of Notation

Decision Variables

R configurable range to any contact; a threshold value rather than an
actual range

Rvo
col velocity obstacle “collision” range

Rmin min acceptable range at CPA in explicit algorithm
Rnm range considered a near-miss encounter
Rpref preferred range at CPA in explicit algorithm
R50% range equal to 1/2 the desired range at CPA
Rl lth intermediate CPA range threshold
D discriminator used to determine applicable avd
R governing protocol rule set
Rmax maximum possible COLREGS compliance score
R⇥ pose component of COLREGS compliance score
R13

allowed set of allowed maneuvers based on a particular rule, here rule 13
S safety function for an encounter
Sr range component of safety function
S⇥ pose component of safety function
tcpa time of CPA on candidate course/speed
t�0
cpa time of CPA on current course/speed

✓ candidate or actual course (✓ 2 [0, 360))
⇥ pose consisting of h↵, �i
⇥0 initial relative pose (determines rule set)
⇥cpa relative pose at CPA (measure of safety)
v speed, |�!x |
vmax maximum possible speed in decision space
wi priority weight of ith objective function
(x, y) position of a vessel in North-up coordinate system
�!x candidate decision vector < ✓, v >
�!
x⇤ optimal, chosen decision vector < ✓⇤, v⇤ >
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Computational Loading
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C.1 Computational Loading

Figures C-1, C-2, and C-3 demonstrate CPU load for vehicles operating a small pay-

load computer for two contacts including all mission and navigational processes. Suf-

ficient computational reserve is available when using the full CPA quantification al-

gorithm of Section 3.3. An additional payload computer would be advantageous for

any sensor processing data necessary for feeding the collision avoidance algorithm

real-time contact information.

Real-time CPU loading is shown by the blue line as a fraction of total CPU capac-

ity per iteration. The red line gives the maximum CPU loading per iteration. There

are nominally four iterations per second. In reality, if loading were too burdensome,

relaxation to a lower iteration frequency (e.g., 2Hz) would likely be su�cient for

calculation of collision avoidance maneuvers given the pace at which most maritime

collision avoidance scenarios develop. Computation in other domains would benefit

from this type of chart, though higher computation frequency may be warranted.

The vertical dashed lines indicate when a collision avoidance rule set was started

or changed. The integer numbers in the center indicate the total number of vehicles

being avoided starting at that time. The statistics at the top o↵er valuable insight

into performance. The percentage of time that i contacts are being simultaneously

avoided within the scope of the displayed chart is given as �i. The mean µi and

standard deviation �i of the CPU loading for i simultaneous contacts o↵er further

insight into algorithm performance and CPU capability. The max values displays the

maximum overall load experienced by the CPU during the experiment.
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Appendix D

Validation of Evaluation

Algorithms
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A survey was presented to a number of experienced ship drivers to validate the

evaluation algorithm results. Survey correlation to the evaluation algorithm is pre-

sented in Section 4.7.4. The questions posed to the respondents are presented through-

out this Appendix. Raw response data is shown in Table D.1.

D.1 Experience Question

1. Which best describes your experience with COLREGS?

• I have driven power-driven vessels in the open ocean under the obligations

of international law (COLREGS).

• I have COLREGS experience in collision avoidance coding or testing in

academic environments.

• I have COLREGS experience in collision avoidance coding or testing with

industry.

• I have no experience with COLREGS.

D.2 Scenario Questions

All scenario questions were prefaced with the following guidance:

Assume that all vessels are power-driven and operating under inter-

national COLREGS with full visibility. No other vessels are present and

no restrictions in abilities to maneuver exist for any reason. Vessels are

not drawn to scale – rely on the text for clarification. Assume a risk of

collision su�ciently exists to require a rule.

D.2.1 Scenario 1

1. What rule is required of these vessels?

• overtaking
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• head-on

• crossing

2. If a dangerous condition were to have resulted in this scenario, to which vessel

would you assign blame?

• slower vessel (solid track line)

• faster vessel (dashed track line)

• both the slower and faster vessels

Figure D-1 This still image represents the most meaningful part of Scenario 1 as
presented to the respondent. The actual survey included a moving image (Graphics
Interchange Format) from time of detection to just pass time of CPA.

D.2.2 Scenario 2

1. Assume the vessels are on nearly reciprocal courses at the time of detection.

What rule is required of these vessels?

• overtaking

• head-on
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• crossing

2. The graphics are not to scale. Assume archie (green) maneuvered just after

detecting evan on a nearly-reciprocal course. If a dangerous condition were to

have resulted in this scenario, to which vessel would you assign blame? [Note:

white never maneuvers]

• archie (green)

• evan (white)

• both vehicles equally

Figure D-2 This still image represents the most meaningful part of Scenario 2 as
presented to the respondent. The actual survey included a moving image (Graphics
Interchange Format) from time of detection to just pass time of CPA.

D.2.3 Scenario 3

1. Assume these vessels are on nearly reciprocal courses at the time of collision.

What rule is required of these vessels?
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• overtaking

• head-on

• crossing

2. Assume Mokai (blue) maneuvered 30 degrees to starboard. If a dangerous

condition were to have resulted in this scenario, to which vessel would you

assign blame?

• mokai (blue)

• felix (yellow)

• both vehicles equally

Figure D-3 This still image represents the most meaningful part of Scenario 3 as
presented to the respondent. The actual survey included a moving image (Graphics
Interchange Format) from time of detection to just pass time of CPA.
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D.2.4 Scenario 4

1. At the time of first detection, these vessels are on nearly reciprocal courses.

What rule is required of these vessels?

• overtaking

• head-on

• crossing

2. Assume the vessels are not in sight of each other until on reciprocal courses.

If a dangerous condition were to have resulted in this scenario, to which vessel

would you assign blame?

• betty (blue)

• felix (yellow)

• both vehicles equally

D.2.5 Scenario 5

1. Assume these vessels are detectable to each other form the beginning of the

graphic. What rule is required of these vessels?

• overtaking

• head-on

• crossing

2. At the time of the collision, to which vessel would you assign blame?

• betty (blue)

• mokai (yellow)

• 75% to betty (blue), 25% to mokai (yellow)

• 25% to betty (blue), 75% to mokai (yellow)
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Figure D-4 This still image represents the most meaningful part of Scenario 4 as
presented to the respondent. The actual survey included a moving image (Graphics
Interchange Format) from time of detection to just pass time of CPA.

D.2.6 Scenario 6

1. Assume vessels are on constant courses from time of detection until yellow

maneuvers. What rule is required of these vessels?

• overtaking

• head-on

• crossing

2. Assume that the evan (yellow) was crossing the track in front of charlie (blue)

at the time that both vehicles simultaneously maneuvered (evan to starboard;

charlie to starboard – ignore the small fluctuation of charlie to port). Assuming

this encounter resulted in a near miss, to which vessel would you assign blame?

[Note: case law normally awards majority penalty to give-way vessels]

• charlie (blue)
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Figure D-5 This still image represents the most meaningful part of Scenario 5 as
presented to the respondent. The actual survey included a moving image (Graphics
Interchange Format) from time of detection to just pass time of CPA.

• evan (yellow)

• 75% to charlie (blue), 25% to evan (yellow)

• 25% to charlie (blue), 75% to evan (yellow)

D.2.7 Scenario 7

1. What rule is required of these vessels? (Assume nearly reciprocal courses at the

time of detection.)

• overtaking

• head-on

• crossing

2. To which vessel would you assign majority blame in the event of a collision?
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Figure D-6 This still image represents the most meaningful part of Scenario 6 as
presented to the respondent. The actual survey included a moving image (Graphics
Interchange Format) from time of detection to just pass time of CPA.

• archie (blue)

• betty (yellow)

• 50% to archie (blue) and 50% to charlie (yellow)

D.2.8 Scenario 8

1. What rule is required of the yellow and pink vessels? (Assume all vessels were

detectable to each other from the beginning of this scenario.)

• overtaking

• head-on

• crossing

2. To which vessel would you assign blame in the event of a collision.
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Figure D-7 This still image represents the most meaningful part of Scenario 7 as
presented to the respondent. The actual survey included a moving image (Graphics
Interchange Format) from time of detection to just pass time of CPA.

• betty (yellow)

• davis (pink)

• 75% to betty (yellow) and 25% to davis (pink)

3. Comparing blue and yellow, which vessel best maneuvered for the possible col-

lision with pink and green?

• betty (yellow)

• archie (blue)

• neither vessel maneuvered correctly

D.2.9 Scenario 9

1. Assume all vessels are detectable to each other once on an initial constant course.

What rule is required of the yellow vessel with respect to the blue vessel?
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Figure D-8 This still image represents the most meaningful part of Scenario 8 as
presented to the respondent. The actual survey included a moving image (Graphics
Interchange Format) from time of detection to just pass time of CPA.

• overtaking

• head-on

• crossing

2. To which vessel would you assign blame in the event of a collision?

• charlie (yellow)

• evan (green)

• archie (blue)
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Figure D-9 This still image represents the most meaningful part of Scenario 9 as
presented to the respondent. The actual survey included a moving image (Graphics
Interchange Format) from time of detection to just pass time of CPA.
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Table D.1 Individual Respondent Data Before Controlling for Percent of Blame

Respondent

Question 1 2 3 4 5 6 7 8 9 10 11 12
1 A A A A A A A A A A A A
2 A A A A A A A A A A A A
3 B B B B B B B C C B B B
4 B B B B B B B B B B B B
5 B B A B C B B A A B C B
6 B B B B B A B B B B B B
7 B B C B B B B C B B C B
8 B B B B B B B C B B B B
9 A A A A C A A A A A A A
10 C C C C C C C C C C C C
11 C C A C C C C B C D C C
12 C C C C C C C C C C C C
13 C C B C C A B B C C C C
14 B B B B B B B B B B B B
15 B B A B C B B C B B B B
16 C C C C C C C C C C C C
17 A C A A A C A B A A A A
18 B B B B B A B A B B B B
19 C C C C C C C C C C C C
20 A A A A A B A A A A A A
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D.3 Studies Conducted in the Literature

Figures D-12, D-12, and D-12 present literature that o↵er insight into some of the

poor scores seen in human testing of protocol requirements. They further identify

competency, ignorance, and disregard as the most likely causes of collisions and non-

compliant maneuvers. By adapting an objective means of quantification, more de-

tailed assessment of the degree of contradiction is possible for real-world encounters.

Figure D-10 This table displays the percentage of correct answers to COLREGS
rule numbers as first reported by Zekic in [99]. Image is Table 1 from [99].
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Figure D-11 This chart shows the reasons for collisions with competency of the
rules prevailing. Having a set of objective and standard evaluation metrics and
algorithms may promote improved competency through more standardized at-sea
or in-simulator testing. Image is originally from Maritime Accident Investigation
Branch Report of 2004 and reproduced as Figure 5 in [102].

Figure D-12 This chart shows ignorance and disregard were the prevailing reasons
that drivers failed to obey COLREGS. Image is from Syms 2002 and reproduced
as Figure 6 in [102].

293



Bibliography

[1] C. Allen. Farwell’s Rules of the Nautical Road. Blue and gold professional
library series. Naval Institute Press, 2005.

[2] G. S. Aoude et al. “Probabilistically Safe Motion Planning To Avoid Dy-
namic Obstacles With Uncertain Motion Patterns”. In: Autonomous Robots
35.1 (2013), pp. 51–76.

[3] M. R. Benjamin. “The Interval Programming Model for Multi-Objective De-
cision Making”. In: MIT CSAIL AI Memo 2004.021 (Sept. 2004).

[4] M. R. Benjamin, J. A. Curcio, and P. M. Newman. “Navigation of Unmanned
Marine Vehicles In Accordance With The Rules of The Road”. In: IEEE In-
ternational Conference on Robotics & Automation (2006), p. 3581.

[5] M. R. Benjamin et al. “A Method for Protocol-based Collision Avoidance
Between Autonomous Marine Surface Craft”. In: Journal of Field Robotics
23.5 (2006), pp. 333 –346.

[6] M. R. Benjamin et al. An Overview of MOOS-IvP and a Users Guide to the
IvP Helm - Release 13.2. Tech. rep. MIT Computer Science and Artificial
Intelligence Lab, Feb. 2013.

[7] M. R. Benjamin et al. Extending MOOS-IvP and Users Guide to the IvPBuild
Toolbox. Tech. rep. MIT Computer Science and Artificial Intelligence Lab,
2009.

[8] M. R. Benjamin and L. P. Adviser-Kaelbling. “Interval Programming: A Multi-
Objective Optimization Model for Autonomous Vehicle Control”. PhD thesis.
Brown University, 2002.

[9] I. R. Bertaska et al. “ExperimentAl Evaluation of Approach Behavior for Au-
tonomous Surface Vehicles”. In: ASME 2013 Dynamic Systems and Control
Conference. American Society of Mechanical Engineers. 2013.

[10] N. Bowditch. The American Practical Navigator. 2002 Bicentennial Edition.
Paradise Cay Publications; 2015.

[11] M. Breivik, V. E. Hovstein, and T. I. Fossen. “Straight-line target tracking
for unmanned surface vehicles”. In: Modeling, Identification and Control 29.4
(2008), pp. 131–149.



[12] S. Campbell, W. Naeem, and G. Irwin. “A Review on Improving The Auton-
omy of Unmanned Surface Vehicles Through Intelligent Collision Avoidance
Manoeuvres”. In: Annual Reviews in Control 36.2 (Dec. 2012), pp. 267–283.

[13] K.-Y. Chang, G. E. Jan, and I. Parberry. “A Method for Searching Optimal
Routes With Collision Avoidance on Raster Charts”. In: The Journal of Nav-
igation 56.03 (2003), pp. 371–384.

[14] H. Choi et al. “A Reactive Collision Avoidance Algorithm for Multiple Midair
Unmanned Aerial Vehicles”. In: Transactions of the Japan Society for Aero-
nautical and Space Sciences 56.1 (2013), pp. 15–24.

[15] A. S. Clare, M. L. Cummings, and N. P. Repenning. “Influencing Trust for
Human–Automation Collaborative Scheduling of Multiple Unmanned Vehi-
cles”. In: Human Factors: The Journal of the Human Factors and Ergonomics
Society 57.7 (2015), pp. 1208–1218.

[16] A. S. Clare et al. “Operator object function guidance for a real-time unmanned
vehicle scheduling algorithm”. In: Journal of Aerospace Computing, Informa-
tion, and Communication 9.4 (2012), pp. 161–173.

[17] A. N. Cockcroft and J. N. F. Lameijer. Guide to the Collision Avoidance Rules.
Butterworth-Heinemann, 2012.

[18] Commonwealth of Massachusetts. Right-of-way at Intersecting Ways; Turning
on Red Signals. Part 1 Title XIV Chapter 89 Section 8.

[19] A. R. Dahl. “Path Planning and Guidance for Marine Surface Vessels”. MA
thesis. 2013.

[20] C. D’Este et al. “Avoiding Marine Vehicles with Passive Acoustics”. In: Journal
of Field Robotics 32.1 (2015), pp. 152–166.

[21] I. S. Dolinskaya. “Dynamic Navigation in Direction-Dependent Environments”.
In: Advances in Dynamic Network Modeling in Complex Transportation Sys-
tems. Springer, 2013, pp. 245–263.

[22] I. S. Dolinskaya and A. Maggiar. “Time-optimal Trajectories With Bounded
Curvature In Anisotropic Media”. In: The International Journal of Robotics
Research 31.14 (2012), pp. 1761–1793.

[23] L. E. Dubins. “On Curves of Minimal Length with a Constraint on Average
Curvature, and with Prescribed Initial and Terminal Positions and Tangents”.
In: American Journal of Mathematics 79.3 (1957), pp. 497–516.

[24] M. A. Filimon. “Site Planning and On-Board Collision Avoidance Software
to Optimize Autonomous Surface Craft Surveys”. MA thesis. University of
Rhode Island, 2013.

[25] W. Fillingane. Lookout Training Handbook. Naval Education and Training Pro-
gram Management Support Activity (U.S. Navy), 1991.

[26] P. Fiorini and Z. Shiller. “Motion Planning In Dynamic Environments Us-
ing The Relative Velocity Paradigm”. In: IEEE Proceedings of Robotics and
Automation. May 1993, 560–565 vol.1.



[27] P. Fiorini and Z. Shiller. “Motion Planning in Dynamic Environments Using
Velocity Obstacles”. In: International Journal of Robotics Research 17.7 (July
1998), pp. 760–772.

[28] M. Fisher. Evaluation of The Vertical Sector Light Requirements for Unmanned
Barges; Final Rept. Tech. rep. US Coast Guard, 1991.

[29] Y. Fujii and K. Tanaka. “Tra�c Capacity”. In: Journal of Navigation 24.04
(1971), pp. 543–552.

[30] J.-M. Godhavn. “Nonlinear Tracking of Underactuated Surface Vessels”. In:
Proceedings on Decision and Control. Vol. 1. IEEE. 1996, pp. 975–980.

[31] M. Greytak. “Integrated Motion Planning and Model Learning for Mobile
Robots With Application To Marine Vehicles”. PhD thesis. Massachusetts
Institute of Technology, 2009.

[32] K. Hasegawa and A. Kouzuki. “Automatic Collision Avoidance System for
Ships Using Fuzzy Control”. In: Journal of the Kansai Society of Naval Ar-
chitects 205 (1987).

[33] A. Henderson. “Murky Waters: The Legal Status of Unmanned Undersea Ve-
hicles”. In: Naval Law Review (2006), pp. 55–72.

[34] M. J. Hirsch et al. “Multi-depot Vessel Routing Problem In A Direction De-
pendent Wavefield”. In: Journal of Combinatorial Optimization 28.1 (2014),
pp. 38–57.

[35] R. R. Ho↵man et al. “Trust in automation”. In: Intelligent Systems, IEEE
28.1 (2013), pp. 84–88.

[36] X. Hong, C. Harris, and P. Wilson. “Autonomous Ship Collision Free Trajec-
tory Navigation and Control Algorithms”. In: Proceedings on Emerging Tech-
nologies and Factory Automation. Vol. 2. 1999, 923–929 vol.2.

[37] T. Hussain et al. “Genetic Algorithms for Ugv Navigation, Sniper Fire Lo-
calization and Unit of Action Fuel Distribution”. In: Workshop on Military
and Security Applications of Evolutionary Computation (MSAEC-2004) at
GECCO-2004. 2004.

[38] C.-N. Hwang, J.-M. Yang, and C.-Y. Chiang. “The Design of Fuzzy Collision-
Avoidance Expert System Implemented by H-Autopilot”. In: Journal of Ma-
rine Science and Technology 9.1 (2001), pp. 25–37.

[39] Y. Iijima, H. Hagiwara, and H. Kasai. “Results of Collision Avoidance Manoeu-
vre Experiments Using A Knowledge-Based Autonomous Piloting System”. In:
Journal of Navigation 44.02 (1991), pp. 194–204.

[40] International Civil Aviation Organization. Rules of the Air. Ed. by Interna-
tional Civil Aviation Organization. Convention on International Civil Avia-
tion, 2005.

[41] M. Ito, F. Zhnng, and N. Yoshida. “Collision Avoidance Control of Ship With
Genetic Algorithm”. In: Proceedings of Control Applications. Vol. 2. IEEE.
1999, pp. 1791–1796.



[42] J. Jou↵roy. “A Control Strategy for Steering An Autonomous Surface Sail-
ing Vehicle In A Tacking Maneuver”. In: IEEE International Conference on
Systems, Man and Cybernetics. IEEE. 2009, pp. 2391–2396.

[43] D. H. Kim et al. “A New Criterion Pose and Shape of Objects for Collision Risk
Estimation”. In: International Journal of Electrical, Computer, Electronics
and Communication Engineering 7.12 (2013), pp. 1221–1225.

[44] A. Kreutzmann et al. “Towards Safe Navigation by Formalizing Navigation
Rules”. In: TransNav: International Journal on Marine Navigation and Safety
of Sea Transportation 7.2 (2013).

[45] Y. Kuwata et al. “Safe Maritime Autonomous Navigation With COLREGS,
Using Velocity Obstacles”. In: Oceanic Engineering, IEEE Journal of 39.1
(2014), pp. 110–119.

[46] Y. Kuwata et al. “Safe Maritime Navigation with COLREGS Using Velocity
Obstacles”. In: IEEE Conference on Intelligent Robots and Systems (2011),
pp. 4728–4734.

[47] J. Larson, M. Bruch, and J. Ebken. “Autonomous Navigation and Obstacle
Avoidance for Unmanned Surface Vehicles”. In: Defense and Security Sym-
posium. International Society for Optics and Photonics. 2006, pp. 623007–
623007.

[48] S. M. LaValle. “Rapidly-Exploring Random Trees A New Tool for Path Plan-
ning”. In: (1998).

[49] H.-J. Lee and K. P. Rhee. “Development of Collision Avoidance System by
Using Expert System and Search Algorithm”. In: International Shipbuilding
Progress 48.3 (2001), pp. 197–212.

[50] Y.-i. Lee and Y.-G. Kim. “A Collision Avoidance System for Autonomous
Ship Using Fuzzy Relational Products and COLREGs”. In: Intelligent Data
Engineering and Automated Learning. Springer, 2004, pp. 247–252.

[51] A. M. Lekkas. “Guidance and Path-Planning Systems for Autonomous Vehi-
cles”. PhD thesis. Norwegian University of Science and Technology, 2014.

[52] A. M. Lekkas and T. I. Fossen. “Integral LOS Path Following for Curved
Paths Based on a Monotone Cubic Hermite Spline Parametrization”. In: IEEE
Transactions on Control Systems Technology (2014).

[53] A. M. Lekkas et al. “Continuous-Curvature Path Generation Using Fermat”.
In: Modeling, Identification and Control (2013).

[54] J. Leng, J. Liu, and H. Xu. “Online Path Planning Based on MILP for Un-
manned Surface Vehicles”. In: Oceans. 2013, pp. 1–7.

[55] Ø. A. G. Loe. “Collision Avoidance for Unmanned Surface Vehicles”. MA
thesis. Norwegian University of Science and Technology, 2008.

[56] A. Madrigal. By The Time Your Car Goes Driverless, You Won’t Know The
Di↵erence. npr.com. Mar. 2014.



[57] A Miele et al. “Optimal Control of A Ship for Collision Avoidance Maneuvers”.
In: Journal of Optimization Theory and Applications 103.3 (1999), pp. 495–
519.

[58] K. Miettinen. Nonlinear Multiobjective Optimization. 1st ed. Vol. 12. Springer
US, 1998.

[59] W. Naeem, G. W. Irwin, and A. Yang. “COLREGs-based Collision Avoidance
Strategies for Unmanned Surface Vehicles”. English. In: Mechatronics 22.6, SI
(2012), 669–678.

[60] L. P. Perera, J. Carvalho, and C. Soares. “Fuzzy Logic Based Decision Making
System for Collision Avoidance of Ocean Navigation Under Critical Collision
Conditions”. In: Journal of Marine Science and Technology 16.1 (Aug. 2010),
pp. 84 –99.

[61] L. P. Perera, J. Carvalho, and C. Soares. “Intelligent Ocean Navigation and
Fuzzy-Bayesian Decision/Action Formulation”. In: IEEE Journal of Oceanic
Engineering 37.2 (2012), pp. 204 –219.

[62] L. P. Perera et al. “Experimental Evaluations on Ship Autonomous Navigation
and Collision Avoidance by Intelligent Guidance”. In: (2014).

[63] A. Perez et al. “LQR-RRT*: Optimal Sampling-Based Motion Planning With
Automatically Derived Extension Heuristics”. In: IEEE International Confer-
ence on Robotics and Automation. May 2012, pp. 2537–2542.

[64] C. Petres et al. “Path Planning for Autonomous Underwater Vehicles”. In:
Robotics, IEEE Transactions on 23.2 (Apr. 2007), pp. 331–341.

[65] M. Schuster, M. Blaich, and J. Reuter. “Collision Avoidance for Vessels using
a Low-Cost Radar Sensor”. In: (2014).

[66] B. C. Shah. “Trajectory Planning with Adaptive Control Primitives for Au-
tonomous Surface Vehicles Operating in Congested Civilian Tra�c”. In: IEEE
International Conference on Intelligent Robots and Systems (2014).

[67] B. C. Shah et al. “Resolution-adaptive risk-aware trajectory planning for sur-
face vehicles operating in congested civilian tra�c”. English. In: Autonomous
Robots (2015), pp. 1–25.

[68] Z. Shiller, F. Large, and S. Sekhavat. “Motion Planning In Dynamic Environ-
ments: Obstacles Moving Along Arbitrary Trajectories”. In: IEEE Interna-
tional Conference on Robotics and Automation. Vol. 4. 2001, 3716–3721 vol.4.

[69] R. Smierzchalski. “EvolutiOnary Trajectory Planning of Ships In Navigation
Tra�c Areas”. In: Journal of Marine Science and Technology 4.1 (1999), pp. 1–
6.

[70] J. Snape et al. “The Hybrid Reciprocal Velocity Obstacle”. English. In: IEEE
Transactions on Robotics 27.4 (2011), 696–706.
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