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Abstract

In this thesis, I studied how the full tensorial stress state applied to a kinetic tran-
sition impacts the activation enthalpy. To this end, the activation energy, scalar
activation volume, and tensorial activation volume were studied for several kinetic
transition types. This computational study used the nudged elastic band method to
find the activation state for initial and final configurations known a priori, primarily
from the kinetic activation relaxation technique. The preliminary work was verified
by a commonly studied and well understood vacancy generation and migration to
an adjacent lattice cite in FCC copper and HCP titanium. The method was then
applied to transitions of increasing complexity: point defect generation in a perfect
copper crystal, and grain boundary transitions in the ⌃ 5 [210] grain boundary in
copper.
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Chapter 1

Introduction

Whether it is a 40 ft steel beam holding up the fiftieth floor of a high rise building or

a 40 micron gear in a microelectromechanical device, nearly all materials experience

stress in their final application. Applied stress affects materials in many ways; it

stretches atomic bonds in the elastic regime, creates and drives dislocations motion

in the plastic regime, and may lead to complete failure when the fracture strength is

exceeded. Stress also affects material properties like diffusion and electric conductiv-

ity.

This work will explore the effect that an applied stress state has on kinetic transi-

tions. I will start this work by motivating the project with the necessary background

information on kinetic transitions and grain boundaries in chapters one and two, re-

spectively. Chapter three outlines the methods for determining kinetic events, activa-

tion energy, activation volume scalars, and activation volume tensors. Chapters four

through seven are case studies on different systems in order of increasing complexity

from a simple vacancy migration to transitions in the ⌃ 5 [210] grain boundary.
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1.1 Kinetics

The field of kinetics focuses on the rate at which transformations or reactions in a

material or chemical process occur. A kinetic event is the progression of a system of

atoms from one metastable state to an adjacent metastable state. This work will use

the terms reaction, kinetic event, and kinetic transition interchangeably.

1.2 Activation Free Energy Barrier

The activation free energy barrier, G*, of a kinetic event is the energy required to get

from one atomic configuration to another. It is essentially the barrier between two

metastable atomic states and is important to the field of kinetics because it determines

how often a kinetic event is to occur. The Arrhenius equation, equation 1.1, is one of

the most fundamental equations in kinetics; it describes the temperature dependence

of reaction rates. [1]

k = A0e
� G⇤

kBT (1.1)

In this equation, k is the rate constant, A0 is the pre-exponential factor, G* is the

activation free energy barrier, k
B

is the Boltzmann constant, and T is the temperature

in absolute degrees.

The activation free energy barrier is a difference in the Gibbs free energy of the system

in the initial and activated states as shown in figure 1-1. The Gibbs free energy is the

sum of the enthalphy and the entropy of a state as shown by equation 1.2.

G = H � TS (1.2)

Where H is the enthalpy given by:

H = E + pV (1.3)
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Figure 1-1: Activation Free Energy Barier

and S is the entropy, E is the internal energy, p is pressure, and V is volume.

The activation free energy barrier, G*, is the similarly defined as:

G⇤ = E⇤ + pV ⇤ � TS⇤ (1.4)

where E* is the activation energy, V* is the activation volume, and S* is the activation

entropy.

In many studies of kinetics in metals, researchers assume that the contribution from

the pV * term in this equation is significantly smaller than the internal activation

energy term, and the activation enthalpy is roughly equivalent to the activation energy

[2, 3]:

H⇤ ⇡ E⇤ (1.5)

1.3 Activation Energy

The activation energy is the energy required to go from one metastable state to

another under zero applied pressure and at absolute zero temperature. The energy

landscape is a mapping of the available metastable states accessable to a given initial

state. Figure 1-2 shows a three-dimensional representation of an energy landscape.
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The metastable states reside in the wells of the energy landscape as shown by the

blue stars, and the saddle point along the purple line between them represents the

activation energy.

Figure 1-2: Activation Energy Landscape Contour

The activation energy can be measured experimentally from a rearrangement of the

rate equation, 1.1, which can be rewritten as:

ln(k) = ln(A0)�G⇤(
1

k
B

T
) (1.6)

By experimentally measuring the rate at varying temperatures, the activation energy

can be calculated on an Arrhenius plot from the slope of the plot of ln(k) versus
1
T
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1.4 Activation Volume Scalar

The activation volume scalar is a single value which describes the overall dilation of

a system between the initial and saddle point states during a kinetic transition. This

value is commonly reported in terms of the atomic volume, ⌦0, of the material. It

is an important value in kinetics because it describes the sensitivity of the activation

enthalpy to a hydrostatic stress state. [4, 5, 6, 7]

Mathematically, it can be determined as the change in the activation energy of the

system, E*, with a change in the hydrostatic applied pressure, P, at 0� Kelvin, as

shown in equation 1.7.

V ⇤ =
@E⇤

@P

����
T=0

(1.7)

Experimentally, the activation volume scalar, V*, for diffusion processes is determined

by the pressure dependence of the diffusion coefficient at a constant temperature. This

method is detailed explicitly by Mehrer et al. in the Diffusion in Solids, but is briefly

summarized as: [2]

V ⇤ = �k
B

T

✓
@lnD

@P

◆

T

+ k
B

T
@ln(fa2⌫0)

@P| {z }
correction

(1.8)

where the first term on the right is the slope of the line of the logarithm of the

diffusion coefficient with respect to the pressure, P, and the second term on the right

is a correction term that can be estimated by the isothermal compressibility, 
T

, and

the Gruneisen constant, �
G

as

correction ⇡ k
B

T
T

�
G

(1.9)

The activation volume scalar is not experimentally calculated for other types of kinetic

events than those found in diffusion. This is likely due to complexities in categorizing

and measuring individual kinetic transitions in a bulk experimental sample.
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Computationally, however, the activation volume scalar is easily measured by the

change in the activation energy of a kinetic event with respect to an applied hy-

drostatic pressure. This can be done by calculating the activation energy at several

magnitudes of hydrostatic applied stress and measuring the slope of the energy, E*,

versus pressure, P, curve as described in further detail in section 3.3.

1.5 Activation Volume Tensor

The activation volume scalar, V*, is an oversimplification of the stress dependent

behavior of a kinetic event. This value is only valid for a hydrostatic applied stress

state. In most operating conditions, the atomic configuration in a bulk solid is not

subjected to a hydrostatic state of stress and is instead subject to a 3-dimensional

stress state that can be represented by a second rank tensor, �̄

�̄ =

0

BBB@

�11 �12 �13

�21 �22 �23

�31 �32 �33

1

CCCA
(1.10)

Therefore, a symmetric, second order tensor is required to represent the stress sensi-

tivity of the enthalpy to this 3-dimensional stress state, the activation volume tensor.

Each term, ⌦
ij

, represents a strain value between the initial and saddle point states.

The diagonal terms (i = j) represent the dilation between the two states for the three

coordinate directions of the simulation cell. The off diagonal terms (i 6= j) represent

the shearing between the initial and saddle point states. It should be noted that this

is also commonly referred to as the activation strain tensor in the literature.

⌦ =
@E⇤

@�̄

����
T=0

(1.11)

22



where ⌦⇤ is the activation volume tensor given by:

⌦ =

0

BBB@

⌦11 ⌦12 ⌦13

⌦12 ⌦22 ⌦23

⌦13 ⌦23 ⌦33

1

CCCA
(1.12)

Currently, there are no known works that study the activation volume tensor experi-

mentally. However, there are several works which study the tensor computationally.

[8, 9, 10, 11, 12] Many of these works focus on calculating the activation volume ten-

sor by directly measuring the strain between the atoms in the initial and saddle point

configurations; this will be referred to as the strain measurement method.
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Chapter 2

Motivation: Applications to Grain

Boundary Engineering

2.1 Grain Boundaries

Grain boundaries (GBs) are interfaces between pairs of crystal grains in a poly-

crystalline material. These interfaces exhibit different energetics and properties as

compared to the bulk material, and as such grain boundaries play a significant role

in the mechanical, thermal, and electrical properties of many metal and ceramic ma-

terials. Intergranular corrosion, embrittlement, and creep are highly dependent on

grain boundary diffusion characteristics [13, 14, 15, 16, 17, 18, 19]. In addition, grain

boundaries play a significant role in plasticity as barriers for dislocation movement

[20, 21].

2.1.1 Grain Boundary Structure and Orientation Space

The structure of grain boundaries has been studied extensively. [22, 23] Most works

classify grain boundaries into two sub-categories: low angle and high angle. Low
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angle grain boundaries are boundaries where the misorientation angle between the

two grains is small. These GBs are often modeled as arrays of nearby screw or edge

dislocations. [1, 19, 24] High-angle grain boundaries are classified as boundaries in

which the misorientation from coincidence is greater than 15 degrees [25] Beyond this

critical angle, the dislocation arrays making up these boundaries overlap. [1] These

general grain boundaries display a wide range of energies and properties [26]

The grain boundary orientation space is a vast field that can be described by five

macroscopic degrees of freedom (DOF). In the coincident site lattice (CSL) terminol-

ogy which is adopted in this work, three DOFs are defined by the CSL rotation, and

two DOFs are defined by the grain boundary plane. In the interface plane method,

there are four DOFs to describe the grain boundary plane normals and one DOF to

describe the angle of rotation [27, 28].

In the CSL notation, the sigma value, ⌃, represents the reciprocal of the density

of coincident sites in the grain boundary. Small sigma values correspond to high

densities of coincidence [22]. CSL boundaries are often categorized as "special" GBs.

"Special" boundaries are a unique category of grain boundaries consisting primarily

of low angle and CSL boundaries. It was broadly defined by Randle as "an interface

with at least one low-index boundary plane forming its surface" [28] This category of

grain boundaries is not self-consistent within the literature, categorized by geometric

considerations at times and by properties at others. [29, 30]

2.2 Motivation: What is Grain Boundary

Engineering?

Materials science and engineering is a field dedicated to understanding the ties be-

tween microstructures, processing, and properties. Within this broad field of study

lies the smaller field of grain boundary engineering (GBE). Grain boundary engineer-
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ing focuses on controlling the populations of grain boundaries within a polycrystalline

material in order to optimize material characteristics. In order to strategically design

the grain boundary networks within a material, engineers require a proper under-

standing of the nature of grain boundaries and grain boundary transitions. This

work aims to contribute to the field of grain boundary engineering in two key ways.

The first goal is to improve the computational methods of studying grain bound-

aries by providing an improved understanding of how grain boundary transitions are

affected by an applied stress state. With a more accurate representation of grain

boundary kinetics, improved models of the grain boundary energy landscape can be

used to study grain boundary behavior at physically realizable time scales using ki-

netic Monte Carlo methods. The second way this work may contribute to the field

of GBE is in implementation of grain boundary engineering in practice. By under-

standing how the activation energy changes in response to an external stress state,

engineers will have a better understanding of how to drive grain boundary kinetic

transitions during materials processing.

2.2.1 Experimental Studies in GBE

Grain boundary engineering is a method of controlling a microstructure by increasing

the population of "special" grain boundaries. This empirically driven field has led to

order of magnitude improvements in grain boundary controlled properties including

corrosion resistance, creep resistance, strength, and ductility.[16, 31, 32] Grain bound-

ary engineering as we know it today began in the late 1980’s with improvements to the

corrosion resistance of nickel-based superalloys. In the 1990’s thermo-mechanical pro-

cessing techniques were developed which increased the proportion of low-CSL bound-

aries within FCC metals with low stacking fault energies.[28] The following decade

had many studies on the connectivity of grain boundary networks. [33, 34, 35]
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2.2.2 Computational Studies in GBE

There have been a number of computational studies on grain boundaries in order

to improve the fundamental understanding of grain boundary engineering. Recent

work out of Sandia National labs by Olmstead et al. consisted of the computational

survey of 388 distinct grain topologies. This work focused on the grain boundary

energy, grain boundary plane geometry, i.e. free volume and CSL value,[26] and grain

boundary mobility [36] Extensive studies have also been performed investigating the

grain boundary mobility [37, 38, 39, 40]. Understanding how applied stress influences

grain boundary kinetices is an important factor in these mobility studies. [41] Very

high driving forces are commonly applied to the grain boundaries. Many in the field

cannot agree on the validity of these studies since they do not reproduce experimental

data.

2.3 Stress Effects on Kinetic Transitions

One of the final goals of this research project was to gain insight into how the stress

state within a polycrystalline material affects the activation energy for grain boundary

evolution. This work is essential to understanding grain boundary migration at the

high stress states seen in material processing and at materials used in very high stress

states.
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Chapter 3

Methods

This work focused on developing methods for determining the activation parameters

for any arbitrary kinetic transition. It combines the activation relaxation technique

(ART) as developed by Alexander et al. [42], the nudged elastic band method (NEB),

and the weighted least squares approach to find the activation energy, E*, activation

volume scalar, V*, activation volume tensor, ⌦⇤, and the second invariant of the

activation volume, ⇤.

3.1 Finding Kinetic Transitions

In order to use the nudged elastic band method (NEB), the initial and final atomic

configurations of a transition must be known a priori. In this work there were two

methods for finding the initial and final states. For the vacancy migration studies,

the configurations were developed using LAMMPS built in functions, as shown in

appendix C. With the more complicated point defects and grain boundary transitions,

the final state of the kinetic transition was determined using the activation relaxation

technique (ART). [43]
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3.1.1 Vacancy Migration in LAMMPS

For the vacancy migration studies in FCC copper and HCP titanium, the initial and

final states were created using the region, delete_atoms, and displace_atoms com-

mands in LAMMPS. [44] In order to maintain consistent atom numbering between the

configurations, the final state was first generated by removing an atom at an adjacent

site to the atom located at the origin of the simulation cell. The system was relaxed

using the conjugate gradient method. This file is stored as the final configuration

and the atom at the origin is relocated to the vacant site using the displace_atoms

command, effectively creating a vacancy at the origin of the simulation cell. This

system is also relaxed using the conjugate gradient method.

3.1.2 Transitions using the Activation Relaxation Technique

ART is an eigenvector following method that can be used to map the saddle points

and adjacent minima on the energy landscape of an atomic configuration. Thus, it

can be used to catalog the kinetic events that a system can undergo when only an

initial configuration is known. [42, 45] Starting from an energy minimized initial

configuration, our implementation of ART searches the energy landscape for saddle

points by systematically perturbing unique atoms in the starting configuration. Each

systematic perturbation results in a configuration that is no longer in the minimum

energy basin of the potential energy surface (PES). If the system is in a region of

the PES with one negative curvature, then ART iteratively pushes the system in

the direction corresponding to the negative curvature and relaxes the system in the

hyperplane of this curvature. The method continues to evolve the system in this

fashion until either a saddle point is found, the system falls back into a potential

energy basin, or the maximum allowed number of convergence steps is exceeded. If

a saddle point is successfully found, the system at the saddle point configuration is

then relaxed away from the initial minimum structure using a conjugate gradient

minimization scheme until an adjacent minimum structure is found.
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In this implementation of ART, atoms in the initial structure are deemed to be

unique based on the location of their nearest neighbors. The systematic perturbations

that each atom is subjected to correspond to the directions of a 156 point uniform

spherical mesh superimposed on concentric spheres centered on the target atom, with

radii ranging from 0.75 to 2.25 Å. Kinetic events are then determined to be unique

according to the displacements of each atom during the kinetic process.

Though ART allows us to investigate kinetic processes given only an initial config-

uration, it is not constrained to finding only minimum energy saddle points and is

capable of finding high energy pathways on the energy landscape. Additionally, be-

cause the trajectory followed in the search for the saddle point follows a numerical

search process, only the saddle points and adjacent minimum configurations found

with this method, rather than the specific motions of the atoms during the search

process, are physically meaningful. [42]

3.2 Activation Energy Using the Nudged Elastic Band

Method (NEB)

ART is an effective method for determining the accessible atomic configurations for

a given initial state; however it is not constrained to the minimum energy pathway

between the configurations. The activation energy determined by the ART is not

consistently physical under an applied stress state. Therefore, the nudged elastic band

method (NEB) is used to calculate the activation energy in this work. Additionally,

preliminary studies performed by K. Alexander showed that the ART method does

not properly capture the behavior of kinetic events under hydrostatic applied loads;

it produces a parabolic curve of activation energy versus pressures, centered about

the zero-pressure state. Figure 3-1 shows the activation energy as calculated by ART

vs NEB for grain boundary transitions and for localized point defects generated in

a perfect copper crystal. Values above the solid line are those for which the ART
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method over estimates the activation energy.
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Figure 3-1: Activation energy calculated by activation relaxation technique (ART)
vs nudged elastic band (NEB) on grain boundary kinetic events and localized point
defect generation

3.2.1 What is NEB?

The nudged elastic band (NEB) method is a constrained method for finding the saddle

point energy of a kinetic process given both an initial and a final atomic configuration.

Given these end states as inputs, NEB breaks up the reaction coordinate into a series

of snapshots, called replicas, through linear interpolation of the atomic positions at

the initial and final states of the process. [46, 47]

Minimization occurs in a two-stage process. First, a spring-force is applied between

these replicas tangentially to keep them evenly distributed along the reaction coordi-

nate. The true force is the gradient of the energy function with respect to position

and acts perpendicular to the spring force. The atoms in each replica are then re-

laxed using a conjugate gradient approach modified by the spring-force connecting
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(a) A

(b) B

(c) C

(d) D

(e) E

Figure 3-2: Nudged elastic band replicas as shown by a kinetic event in the ⌃5[210]
grain boundary colored based on atomic displacement
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the replicas, which effectively drives the band to the minimum energy path. Then

the spring-force is replaced by a function of the energy gradient for the saddle point

replica and the system is minimized with a damped dynamics routine. [48, 49]

3.2.2 Implementation of NEB

This work uses the NEB method as implemented in LAMMPS [44]. Preliminary stud-

ies were performed using the hydrostatic stress state on grain boundary transitions in

copper in order to find adequate NEB settings. For all kinetic events, the quickmin

minimizer was used, with a time step of 0.01 ps, a band spring constant of 5, a con-

vergence energy threshold of 1.0x 10-15 eV, a convergence force threshold of 5.0x10-9

eV/Å. The number of replicas was dependent on the transition complexity. This work

used 8 replicas for the vacancy migration studies, 12 replicas for the local defects, and

20 to 24 replicas for the ⌃ 5 [210] grain boundary transitions. The maximum allowable

iterations also varied with system complexity, with values ranging from 150,000 to

500,000 for the simple transitions and grain boundary transitions, respectively. These

system variables were determined by doing sweeps of each parameter individually and

selecting the least computationally intensive value.

3.3 Activation Volume Scalar

As described in 1.4, the activation scalar, V*, is a singular value which describes the

overall dilation between an initial atomic configuration and the saddle point config-

uration for a given kinetic event. It is useful in understanding the effect which a

hydrostatic stress state has on the kinetics of a given reaction.

The diagram in figure 3-3 shows the general workflow for determining the scalar ac-

tivation volume for a given kinetic transition. First, the initial and final state atomic

configurations must be determined from the methods in section 3.1. Then, a hydro-
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Figure 3-3: Activation Volume Scalar Determination Process

static pressure is applied to these two configurations, and the atoms are relaxed to the

lowest energy state. The activation energy is then determined using NEB. The pres-

sure and energy steps are repeated for a set number of pressure magnitudes. Finally,

the activation volume scalar, V ⇤ is calculated using a least squares regression analysis

from the slope of the activation energy with respect to pressure magnitude.

3.3.1 Implementation

The activation volume scalar is determined by applying a hydrostatic stress state to

the initial and final atomic configurations using the fix box/relax command with the

iso keyword for an isostatic stress state, with �
xx

= �
yy

= �
zz

= P, and the shear

terms equal to zero, �
xy

= �
xz

= �
yz

= 0.
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Under each applied hydrostatic pressure, P, the energy of the system was relaxed to

its minimum energy state using a conjugate gradient method, with an additional ener-

getic term associated with this applied pressure. This process was repeated for differ-

ent magnitudes of hydrostatic pressure. It should be noted that in the LAMMPS con-

vention of stress, negative values of pressure correspond with tensile loading; whereas

positive values correspond to compression. The applied values of hydrostatic pressure

ranged from 5000 bar in tension to 5000 bar in compression.

Initial studies were performed using a high sampling density, with pressure increments

of 100 to 250 bar over the entire pressure regime. It was soon determined that this

high sampling rate was not necessary to adequately measure the activation volume.

The optimal sampling rate was determined to be 1000 bar increments over the entire

pressure regime, in order to reduce the computational load, while still capturing the

behavior of the kinetic transition under load.

3.3.2 Calculation and Uncertainty

As stated in section 1.4, the activation volume of a given transition is given by equa-

tion 1.7.

V ⇤ =
@E⇤

@P

����
T=0

In this work, it is determined by the slope of the activation energy, E*, with respect

to the hydrostatic pressure, P, as shown by figure 3-4, using a linear least squares

regression analysis as shown in equation 3.1, where n is equal to the number of pressure

magnitudes measured.

V ⇤ =
(⌃E⇤)(⌃P 2)� (⌃P )(⌃E⇤P )

n(⌃P 2)� ⌃(P 2)
(3.1)

There is always some amount of uncertainty when calculating a given quantity. This

uncertainty must be known in order to understand the validity of the calculation.
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Figure 3-4: Activation Energy vs. Hydrostatic Pressure in a Copper Vacancy Migra-
tion

The uncertainty in the slope of the line can be determined by equation 3.2

S
V

⇤ =

vuut
⌃(E⇤

i �Ê

⇤
i)2

n�2

⌃(P
i

� P̄ )2
(3.2)

The confidence interval for the activation volume from the uncertainty in the slope

can be obtained by multiplying the uncertainty, S
V

⇤ , with the Students t-value for

the given degrees of freedom, n-2, for a ninety percent confidence interval as shown

in equation 3.3

✏
slope

= t90SV

⇤ (3.3)

In addition to this uncertainty, the uncertainty from the numerical error associated

with the cutoff energy, E , during convergence as shown in equation 3.4 is
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✏
num

=
E
E⇤V

⇤ (3.4)

These errors can be combined by equation 3.5

✏
total

=
q
(✏

slope

)2 + (✏
num

)2 (3.5)

This total error defines the upper and lower bounds of the activation volume.

3.4 Activation Volume Tensor

As stated previously, the activation volume tensor shows the effect any arbitrary

stress state has on the activation enthalpy for a given reaction, as shown by 1.3. It

is also a measurement of how the atomic configuration changes between the initial

and saddle point of the kinetic event. [10] The method of calculating the activation

volume tensor is very similar to that which is used in determining the activation

volume scalar. Figure 3-5 shows the steps of this process.

3.4.1 Implementation

In order to calculate the activation volume tensor, ⌦, several directional measurements

of activation energy versus pressure are required. To this end, an array of evenly

distributed directions is generated, equivalently populating half of a unit sphere.

This hemisphere, in the positive z-direction, has been populated using two distinct

methods. The first is a discrete value method, where integer values from one to five are

selected in the x, y, and z directions, these integer values are then normalized. This

method has the drawback of unevenly sampling the region of low angular displacement

from the xz and yz planes, as shown in figure 3-6 The second method, developed by

Rusin [50] generates a given number of evenly dispersed directions around the positive
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Figure 3-5: Activation Volume Tensor Determination Process

z-hemisphere of directional unit space. As seen in figure 3-7, the density of direction

normals is evenly distributed about the space.

Once the array of directions is found, the uniaxial load in each direction must be

converted into an equivalent stress state within the coordinates of the system cell.

In order to do this, the stress state is converted into uniaxial stress, T̄ , in the local
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Figure 3-6: Uniaxial Load Direction Normals for Integer Method

Figure 3-7: Uniaxial Load Direction Normals for Evenly Distributed Method

coordinate frame.

T̄ =

0

BBB@

P 0 0

0 0 0

0 0 0

1

CCCA
(3.6)

The normalized direction that this uniaxial stress in the global frame of the simulation

cell is ~l
~l =

⇣
l
x

l
y

l
z

⌘
(3.7)
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This local stress state can be transformed into the global reference frame stress state

S̄ from the direction cosine matrix, Q̄ using equation 3.9. [51]

Q̄ =

0
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(3.8)

S̄ = Q̄T̄ Q̄T (3.9)
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The global stress matrix, S, can be applied to the target system using the LAMMPS

box/relax fix during static minimization where P is is the stress magnitude in bar.

Next, we find the directional activation volume scalar, v0, in the given uniaxial direc-

tion ~l by taking the partial derivative of the activation energy, E*, with respect to the

magnitude of the uniaxial stress using equation 3.1, where P is now the magnitude of

the uniaxial stress in the given direction.

3.4.2 Calculation and Uncertainty

This work uses the weighted least squares regression analysis to calculate the activa-

tion volume tensor, ⌦, from the directional activation volume scalar, ~v0. The weighted

least squares method is preferred over the ordinary least squared method commonly

used to measure tensorial properties [51] because it allows for the quantification of

error in the activation volume tensor. In this section, the mathematical derivation of

41



this method will be outlined.

Table 3.1 outlines the variables and concepts used in this derivation.

If activation energy calculations and stress state applications were exact, the activa-

tion volume tensor could be quantified by six measurements of the activation volume

in six directions according to equations 3.10.

~v0 = ā~⌦ (3.10)

Where v̄0 is the vector of directional activation volume scalars, ~⌦ is the vector repre-

sentation of the symmetric activation volume tensor ⌦̄, and ā is a matrix of coefficients

calculated from the components of the direction vectors, ~l, by:

ā =

0

BBBBBBBB@

l21x l21y l21z 2l1yl1z 2l1xl1z 2l1xl1y

l22x l22y l22z 2l2yl2z 2l2xl2z 2l2xl2y

...
...

l2
Nx

l2
Ny

l2
Nz

2l
Ny

l
Nz

2l
Nx

l
Nz

2l
Nx

l
Ny

1

CCCCCCCCA

(3.11)

However, there are inherent errors associated with the measurements necessary for

determining the activation volume tensor. Therefore, instead of solving, 6 equations,

one must find a solution that minimizes the error, ⌘, between the measured value and

the transformed value of ~⌦ in N given directions.

~⌘ = ā~⌦� ~v0 (3.12)

Equation 3.12 does not take into account the measurement error, ~✏; therefore, a

weighting matrix,W̄ is introduced and the weighted least squares method is used as

shown by equation 3.13.

~⌘ = W̄ ā~⌦� W̄ ~v0 (3.13)
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Table 3.1: Activation Volume Tensor Calculation Variables

Variable Description Mathematical Representation
N total number of directional

measurements taken

ā (N x 6) transformation ma-
trix

0

BBB@

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

... ...

a
N1 a

N2 a
N3 a

N4 a
N5 a

N6

1

CCCA

~l uniaxial load direction vec-
tor

⇣
l
x

l
y

l
z

⌘

⌦̄ (3 x 3) activation volume
matrix in Voigt notation

0

B@
⌦1 ⌦6 ⌦5

⌦6 ⌦2 ⌦4

⌦5 ⌦4 ⌦3

1

CA

~⌦ activation volume vector

0

BBBBBBBB@

⌦1

⌦2

⌦3

⌦4

⌦5

⌦6

1

CCCCCCCCA

~v0 vector of directional activa-
tion volume scalars

0

BBBB@

v01
v02
...
v0
N

1

CCCCA

~✏ directional activation vol-
ume measurement error

0

BBBB@

✏01
✏02
...
✏0
N

1

CCCCA

W (N x N) diagonal error
weighting matrix

0

BBBB@

W1 0 · · · 0

0 W2 · · · 0
...

... . . . 0

0 0 · · · W
N

1

CCCCA

~⌘ linear least squares error

0

BBBB@

⌘01
⌘02
...
⌘0
N

1

CCCCA
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Where the weighting matrix is a diagonal matrix whose components are the reciprocals

of the errors in the measurement of the slope.

W
ii

=
1

✏
i

(3.14)

W
i 6=j

= 0 (3.15)

The vector, ~⌦, is the solution which satisfies min |⌘|2. The error is minimized when

⌘
i

d⌘
i

d⌦
j

= 0 (3.16)

taking the derivative of equation 3.13,

d⌘
i

d⌦
j

= W
ii

a
ij

(3.17)

3.13 and 3.17 into 3.16 provides

(W
ii

a
ik

⌦
k

�W
ii

v0
i

)W
ii

a
ij

= 0 (3.18)

which can be rewritten in matrix notation as

(W̄ ā~⌦� W̄ ~v0)(W̄ ā) = 0 (3.19)

furthermore,

(W̄ ā)T (W̄ ā~⌦� W̄ ~v0) = 0 (3.20)

expanding these terms

(W̄ ā)T W̄ ā~⌦� (W̄ ā)T W̄ ~v0 = 0 (3.21)

bringing the ~v0 term to the other side and distributing the transpose

āT W̄ T W̄ ā~⌦ = āT W̄ T W̄ ~v0 (3.22)
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and finally solving for ~⌦

~⌦ = (āT W̄ T W̄ ā)�1āT W̄ T W̄ ~v0 (3.23)

Confidence intervals on the activation volume tensor can be determined from initially

calculating the error standard deviation as:

�̂ =

s
~v0

T

(Ī � ā(āT ā)�1āT )~v0

N � 7
(3.24)

From this, the standard error matrix can be constructed

C̄ = �̂2(āT ā)�1 (3.25)

Finally, the 90 % confidence interval can be determined on each value in the activation

volume vector, ~⌦, from the diagonal components of 3.25

~⌦
j

± t90,N�7

p
C

jj

(3.26)

Alternatively, the error associated with a measurement was to take the difference

between ⌦⇤ as measured with the maximum error and the minimum error. The

maximum vector is calculated by adding the measurement error to the directional

activation volume vector, v’

~⌦
max

= (āT W̄ T W̄ ā)�1āT W̄ T W̄ (~v0 + ~✏) (3.27)

In a similar fashion, the minimum vector is calculated

~⌦
min

= (āT W̄ T W̄ ā)�1āT W̄ T W̄ (~v0 � ~✏) (3.28)
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and the maximum difference error is found by

~⌦
max

� ~⌦
min

(3.29)

The confidence interval error was used with the vacancy migration studies and point

defect generation. The maximum difference error was used with the point defects.

3.5 The Second Invariant of the Activation Volume

Tensor

Similar to the concept of the equivalent shear stress in solid mechanics problems,

the second invariant of the activation volume, ⇤, captures the deviatoric part of the

activation volume tensor. In this work, this concept will be referred to as ⇤. It can

be calculated much in the same way as the equivalent shear stress as follows:

⇤ =

r
1

6
[(⌦11 � ⌦22)2 + (⌦11 � ⌦33)2 + (⌦22 � ⌦33)2] + ⌦12

2
+ ⌦13

2
+ ⌦23

2 (3.30)

Large values of ⇤ correspond to large deviations from complete uniform dilation of the

system. Therefore, this value can tell you whether the activation volume scalar, which

only captures the dilation or response to a hydrostatic load, is a good approximation

to use when looking at how stress affects the Gibbs free energy of the system.

3.6 Calculating the Enthalpy Change from a Given

Applied Stress

The purpose of this work is to understand how an applied stress state affects the

kinetics of a given reaction. The change in enthalpy of activation was previously
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given in equation 1.3 as:

H⇤ = E⇤ + pV ⇤

The pressure work term, pV*, is more accurately represented by the inner product of

the applied stress tensor and the activation volume tensor:

�̄ · ⌦ (3.31)

where �̄ is the symmetric applied stress tensor,

�̄ =

0

BBBBB@

�11 �12 �13

�12 �22 �23

�13 �23 �33

1

CCCCCA
(3.32)

and ⌦ is the activation volume tensor. The inner product then produces:

� · ⌦ ⌘ �11⌦11 + �22⌦22 + �33⌦33 + 2(�12⌦12 + �13⌦13 + �23⌦23) (3.33)
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Chapter 4

Method Validation: Vacancy

Migration in FCC Copper

Vacancy migration in FCC copper consists of an atom swapping with a vacancy at

one of its nearest neighbor sites. Vacancy migration is the primary mechanism for

self-diffusion within the bulk of the material. This system is used to validate the

methods implemented in this work for two primary reasons. Firstly, the system is

well-characterized and results can be compared to computational and experimental

literature. Secondly, atomic positions are also well understood and symmetric at the

initial, saddle point, and final configurations of the transition, therefore relationships

between the symmetry of the mechanism can be related to the activation volume

tensor.

4.1 Simulation Parameters

The vacancy migration simulation cell consisted of a crystal of FCC copper with 2047

atoms, with edge lengths of 28.92 angstroms and periodic boundary conditions. The

vacancy was placed at the origin of the unit cell, (0,0,0) and in the final state, it is
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placed at the nearest neighbor site at (a
0

/2, a
0

/2, 0) The initial and final states are

relaxed using conjugate gradient energy minimization methods before NEB was used

to determine the activation energy of the event. The Mishin embedded atom method

(EAM) potential was used to calculate the energies. [52]

4.2 Results

The formation and activation energies and volumes are well tabulated in FCC copper,

therefore, these are used to verify the system parameters. The activation volume

tensor, ⌦, was determined for this system by Zhu et al. using a strain calculation

method, this tensor is used to verify the calculated value of ⌦ using the applied

stress method. Finally, the second invariant of the activation volume, ⇤, is used to

describe the acceptability of using the activation volume scalar as a substitution for

the activation volume tensor in practice.

4.2.1 Formation and Activation Energy

The formation energy was determined by equation 4.1, where E
f

is the formation

energy, m is the number of atoms in the perfect crystal, E
vac

is the energy of the

relaxed system with a vacancy in it, and E
pc

is the energy of the perfect crystal.

E
f

= E
vac

� m� 1

m
E

pc

(4.1)

This value has been measured extensively in the copper diffusion literature [2] Since

it is a commonly reported value, it provides us with a good check to verify that the

initial vacancy configuration is at the minimized state.

The activation energy for the copper vacancy migration was determined using the

method described in chapter 3. Table 4.1 shows the activation and formation en-

ergies for the vacancy migration in FCC copper. The calculated column refers to
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the value determined in this work, the computational value is reported for the EAM

potential and the experimental values come from measurements of diffusion. [52].

These numbers match closely, verifying the validity of NEB for this system.

Table 4.1: Formation and Activation Energy in FCC Cu Migration

Calculated Computational Experimental
Formation Energy (eV) 1.272 1.27 1.27
Activation Energy (eV) 0.689 0.69 0.71

4.2.2 Activation Volume Scalar

The activation volume scalar captures the overall volume change between the ini-

tial configuration and the saddle point state. For the vacancy migration study, this

value is reported in the validation work of the interatomic potential used. [52]Table

4.2 shows the activation volume scalar as compared to the reported value for the

given EAM potential and experimental values. [52, 2] It should be noted that the

activation volume referred to here is occasionally referred to as the activation vol-

ume of migration. This is the only part of the activation volume term for diffusion

which involves adding the formation volume of the relaxed vacancy to this migration

activation volume.

Table 4.2: Activation Volume in FCC Cu Migration

Calculated Computational Experimental
Activation Volume (⌦0) 0.107 0.107 0.12

It should be noted that the overall volume change between the initial and saddle point

states is roughly 10% of the atomic volume of copper. This suggests that there is not a

significant volume change for this transition, and therefore there will be no significant

change in the activation enthalpy due to the pressure-volume term. Looking further,

the activation volume tensor suggests a different story.
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4.2.3 Activation Volume Tensor

The activation volume tensor was determined with 513 distributed directions of di-

rectional activation volume scalars, v’, as shown in figure 4-1.

Figure 4-1: Directional activation volume scalar projection for Cu vacancy migration

In the reference frame of the simulation cell, the activation volume tensor is listed in

table 4.3. It should be again noted that the direction of migration is along the (1,1,0)

direction. The eigenvalues and eigenvectors show the magnitude of volume change in

the principal directions, where only dilation occurs along the direction of the given

vector. These values are shown in table 4.4 and are represented as the stars in figure

4-1

The activation volume tensor for copper vacancy migration has been calculated by

Zhu and Li in their study of ultra-strength materials [10]. The local atomic strain

between the initial state and the saddle point state is used to measure the activation

volume tensor. Transforming their work into the reference frame of this simulation

cell generates the tensor found in table 4.5. The reference tensor is very close to

the calculated tensor, though roughly 1.15 larger than the calculated tensor, and the
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Table 4.3: Activation volume tensor for FCC Cu vacancy migration

-0.4809 -0.1333 0
-0.1333 -0.4806 0

0 0 1.069
Table 4.4: Activation volume principal directions for FCC Cu vacancy migration

Magnitude -0.614 -0.3475 1.069

Direction
0.7074 0.7068 0
0.7068 0.7074 0

0 0 1

trace of this tensor is 0.12 ⌦0. Since the trace of the tensor calculated in this work

matches the computational reference value of 0.107, the applied stress method used in

this work has been proven to be a valid technique to calculate the activation volume

tensor.

Table 4.5: Reference activation volume tensor for FCC Cu vacancy migration

-0.5675 -0.1519 0
-0.1519 -0.5675 0

0 0 1.2505

4.2.4 Second Invariant of the Activation Volume Tensor

Most works that discuss stress effects on kinetic transitions only focus on the first

invariant of the activation volume tensor, the activation volume scalar. This value

only accounts for the spherical term of the tensor and the overall volume change. In

order to better understand how the transition responds to stress, the second invariant

of the activation volume tensor, the second invariant of the activation volume tensor,

⇤, was studied. For this transition,⇤ was 0.9045. This value is nine times larger

than the activation volume scalar, which means that V ⇤ is not similar to one of

pure dilation, which would have zero off-diagonal terms and equal terms along the

diagonal.
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4.3 Discussion

As shown by the eigenvectors of the activation volume matrix in table 4.4, the vacancy

migration in the (1,1,0) direction has one principal axis along this axis of migration

and two principal axes in the directions perpendicular to the direction of migration.

This is indicative of the symmetric nature of the saddle point. At the saddle point, the

migrating atom is at the (14 ,
1
4 , 0)a0 location. There are no atoms in the direct vicinity

of the atom in the saddle point state in the principal directions. Additionally, the signs

of these terms are negative to the term along the transition axis. When taking the

sum of these terms, the activation volume scalar of 0.107 ⌦0 is an order of magnitude

smaller than the largest diagonal term of 1.069 ⌦0.

This suggests that for this particular kinetic transition, using the activation volume

scalar to calculate the pressure term of the enthalpy is only valid for the hydrostatic

case. If, for instance, one were to apply a uniaxial tensile stress along the axis of

migration of a given magnitude, the energy would drop by an order of magnitude

larger than if a hydrostatic tension of the same magnitude was applied.

A few other features came out of this vacancy study. First, is that the symmetry

of the activation volume tensor is dependent on the symmetry of the atoms at the

saddle point state, not the symmetry of the underlying crystal structure. Additionally,

there were a few directions in which an applied uniaxial stress produced a non-linear

relationship between the activation energy and the stress magnitude. One of these

directions is shown in figure 4-2. This specific direction corresponds to a direction of

close-packed atoms aligned with the migrating atom at the saddle point configuration

shown in figure 4-3. The other directions of close-packed atoms are similarly nonlinear

and indicate the same symmetry as the saddle point configuration.
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Figure 4-2: Nonlinear Directional Activation Volume Scalar

Figure 4-3: Saddle point configuration with close-packed directions
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Chapter 5

Vacancy Migration in HCP

Titanium

In addition to the FCC copper vacancy migration study described in chapter 4, the

vacancy formation and migration was studied for ↵ titanium. This hexagonal close

packed (HCP) metal was chosen as a contrasting system to the FCC copper case; and

because it is a well characterized kinetic transition with experimental results and a

reasonable interatomic potential. [53, 54, 55, 56, 57, 58, 59]

There are two distinct vacancy migrations in HCP metals: migration within the basal

plane of the vacant site and migration out of the basal plane. Within the basal plane,

an atom exchanges positions with a nearest neighbor vacant site within the basal

plane; similarly in the non-basal vacancy migration, an atom changes positions with

a nearest neighbor vacancy out of the basal plane. Atom-vacancy exchange within

the basal plane has been experimentally shown to occur at slightly lower activation

energies than that out of the plane. [53]
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5.1 Simulation Parameters

Both of the titanium vacancy migrations had simulation cells consisting of 2047 atoms

and edge lengths of 23.3964 Å, 40.5238 Å, and 38.2062 Å for the x, y, and z coordinates

respectively. The boundary conditions for this system were periodic in all directions,

and the atomic spacing, a0 was 2.975 Å. The embedded atom potential by Zope

et. al was used for these simulations. Initial studies were performed comparing

different interatomic potentials for titanium, but only the Zope interatomic potential

performed well under an applied external stress [53, 60] For the basal migration study,

the vacancy was located at the origin, (0,0,0) and was moved to the nearest neighbor

site at (a
0

,0,0). The out of plane migration also began at the origin, but was moved to

the nearest neighbor site at (0, a0
2 ,

4a0
5 ) These two configurations are shown in figure

5-1 and 5-2; these images are looking at the simulation cell with a viewing axis in the

positive z-direction, colored according to bond energy.

(a) Initial State (b) Saddle Point State (c) Final State

Figure 5-1: Basal Plane Vacancy Migration in HCP Ti

(a) Initial State (b) Saddle Point State (c) Final State

Figure 5-2: Non-Basal Plane Vacancy Migration in HCP Ti
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5.2 Results

5.2.1 Formation and Activation Energy

The formation energy for a vacancy in HCP titanium was determined in the same

method as for the copper vacancy using equation 4.1. Table 5.1 shows the comparison

between the measured values in this study, the predicted reference values from the

EAM potential, and the experimental values of formation and activation energy for

each of the kinetic transitions. [53, 61]

Table 5.1: Formation and Activation Energies in HCP Ti Migration

Calculated Computational Experimental
Formation Energy (eV) 1.82 1.83 1.55

Basal Migration Activation Energy (eV) 0.795 0.80 –
Non-Basal Migration Activation Energy (eV) 0.827 0.83 –

In agreement with prior work, the activation energy required to migrate out of the

plane of the vacancy is greater than that required for in-plane migration and match

closely with the reference values.[53, 61]

5.2.2 Activation Volume Scalar

The activation volume scalars in the titanium vacancy migration events are shown

in table 5.2. The activation volume for a vacancy migration in ↵-Ti is not well

characterized experimentally. One study was performed in the 1970’s which worked

to quantify the activation volume in dislocation migration [62], and several works look

at the formation energy of titanium monovacancies [61]. In all of the literature on

this topic, there are no values listed for direct comparison. [2, 58]
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Table 5.2: Activation Volume in HCP Ti Migration

Activation Volume ⌦0

Basal Plane Migration 0.0218
Non-Basal Plane Migration 0.0372

5.2.3 Activation Volume Tensor

The activation volume tensors for the basal and non-basal vacancy migrations were

determined using 452 and 459 integer distributed directions, respectively, as shown in

figure 5-3. The stars represent the principal directions mapped onto the directional

unit hemisphere.

Figure 5-3: Distributed directions of v’ for Ti vacancy migration colored by magnitude
of v’

The activation volume tensors for each direction of migration are shown in tables

5.3 to 5.6. Tables 5.3 and 5.5 show the tensors within the frame of reference of the

simulation cell, while tables 5.4 and 5.6 show the principal directions of the transition

and magnitudes of the activation volume, where only dilation occurs in the given

direction.
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Table 5.3: Activation volume tensor for HCP Ti basal plane vacancy migration

-0.3677 0 0
0 0.2412 0
0 0 0.1489

Table 5.4: Activation volume principal directions for HCP Ti basal plane vacancy
migration

Magnitude -.3677 0.2412 0.1489

Direction
-1 0 0
0 1 0
0 0 1

Table 5.5: Activation volume tensor for HCP Ti nonbasal plane vacancy migration

-0.3501 0 0
0 0.4671 -0.8061
0 -0.8061 -0.0798

Table 5.6: Activation volume principal directions for HCP Ti non-basal plane vacancy
migration

Magnitude -0.658 -0.350 1.045

Direction
0 -1 0

0.583 0 -0.813
0.813 0 0.583

5.2.4 Second Invariant of the Activation Volume Tensor

The second invariant of the activation volume tensor describes the response of the

kinetic transition to non-hydrostatic stress states. It is shown in table 5.7.

Table 5.7: Second Invariant of the Activation Volume in HCP Ti Migration

Second Invariant of the Activation Volume ⌦0

Basal Plane Migration 0.3282
Non-Basal Plane Migration 0.6085
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5.3 Discussion

The formation and activation energy for the kinetic events in Ti self-diffusion shown

above are consistent with the literature. This provides confidence in the EAM po-

tential used and verifies the model is correctly set up. Though the activation volume

scalars are not commonly reported, the values for in-plane and out-of-plane migra-

tions are similar, as expected. These values are an order of magnitude smaller , 0.02

⌦0 , as compared to the activation volume of a vacancy migration in copper, 0.1 ⌦0.

Therefore, the titanium vacancy migration events are less sensitive to applied stress

than the copper vacancy migrations.

The second invariant of the activation volume, ⇤, for the basal plane migration is

approximately half of the out-of-plane value. As noted above, the activation volume

scalar is approximately the same for both kinetic events. This suggests that the non-

basal plane migration is more sensitive to non-hydrostatic stress states than the basal

migration case.

For the basal migration case, the activation volume tensor in the reference frame of

the simulation cell has no nonzero off diagonal terms and the primary directions are

the simulation cell axes. For this transition, the migrating atom is moving in the

(1,0,0) direction. At the saddle point, halfway between the two atomic sites, the

atom has four nearest neighbor atoms symmetrically about itself as shown in figure

5-4. It also has free space in the three principal directions, including the direction of

migration as shown in the red boxes. This makes sense because in these directions,

the volume around the atom can freely grow or shrink without having to shear atoms

out of the way.

The nonbasal migration in Ti is similar to that in copper; they both have one non-zero

shear term. For this migration in the (0,0.5,0.8) direction, the principal directions are

in the directions in which free space exists as shown in figure 5-5, one in the direction

of migration, and two in the perpendicular directions of free space.
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Figure 5-4: Basal Ti migration saddle point

Figure 5-5: Non-Basal Ti migration saddle point
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Chapter 6

Point Defects in FCC Copper

Point defects are one dimensional imperfections and play a crucial role in material

properties including strength, hardness, and diffusion characteristics. Some point

defects include interstitials with foreign atoms, self interstitials, vacancies, dumbbells,

and substitutional defects. [2, 63]

In this work, we use the term point defect very loosely, meaning localized defects

that emerge from a perfect crystal by a kinetic event. Two distinct types of local

defects were studied: dumbbell/vacancy pair creation, and ring mechanisms. This

work on local defects is a crucial step in understanding between the simplest vacancy

migration studies described in earlier chapters, to the much more complicated stud-

ies of grain boundary kinetic events, described in the subsequent chapter. But the

energy associated with the kinetic transitions of point defects is very high; they are,

therefore, not likely to occur at a high enough rate for experiments to capture. Ad-

ditionally, these defects are created in a perfect crystal where no preexisting defects

exist. As stated in the beginning of this chapter, even the most ideal crystal has

defects, therefore these kinetic events are more likely going to occur as several kinetic

events in series.
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6.1 Simulation Parameters

This is the first study in this thesis in which the activation relaxation technique

(ART) was required in order to determine the final atomic configuration. For this,

the technique developed by Mousseau, et al. [45] and later implemented by Alexan-

der et al. [42] was implemented using the Mishin EAM potential [52]. The initial

configuration consisted of a triclinic simulation cell with 500 atoms with equal edge

lengths of 18.075 and periodic boundary conditions.

The activation relaxation technique was applied to this perfect crystal and over the

course of 12 hours, it found 500 transitions with nine distinct values of activation

energy ranging from 4.40 to 4.89 eV. Of these 500 successful measurements, eleven

were chosen for further study, one for each distinct energy value which appeared

at a low frequency, and two for those which the same activation energy appeared

often. Initial studies on the activation volume scalar determined that some of these

eleven transitions were fundamentally the same. Ultimately, we only fully studied

five distinct transitions.

The nudged elastic band method for these defects used 12 replicas, an energy tolerance

of 1⇥ 10�15 eV and a force tolerance of 5⇥ 10�9 eV/Å, the quickmin minimizer and

a spring force coefficient of 5.

6.2 Results

6.2.1 The Two Categories of Defects

Of the 11 defects studied, there were two distinct subclasses of kinetic transitions:

vacancy/dumbbell pairs and ring mechanisms. In the vacancy and dumbbell event, a

vacancy was generated somewhere in the crystal, this caused a collective movement

of atoms which ultimately led to a dumbbell located at a lattice site somewhere else
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in the crystal. Figure 6-1 shows a schematic of how atoms are distributed in the final

state. The ring mechanisms were events which resulted in another perfect crystal

Figure 6-1: Dumbbell-Vacancy Mechanism

configuration, but with atoms in positions differing from those in which they started.

Two atom, three atom, and four atom ring mechanisms were found in this study. The

schematic in figure 6-2 shows how the atoms behave in these transitions.

Figure 6-2: Ring Mechanism

The figures of the atomic configurations for each of the studied local mechanisms can

be found in appendix B. However, a brief verbal description is given here in table 6.1.
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It should be noted that the identifier used in this work corresponds to the activation

energy in eV, as calculated by the ART method, multiplied by 100.

Table 6.1: Local point defect descriptions

Identifier Description
440 dumbbell/vacancy pair with dumbbell aligned with traversal direction
444 dumbbell/vacancy pair with dumbbell aligned with traversal direction

457A dumbbell/vacancy pair with dumbbell perpendicular to traversal direction
457B dumbbell/vacancy pair with dumbbell perpendicular to traversal direction
458A 2 atom collective ring mechanism
458B 3 atom ring mechanism
462 4 atom ring mechanism
468 2 atom collective ring mechanism to dumbbell
476 2 atom collective ring mechanism

476B 2 atom collective ring mechanism
489 2 atom collective ring mechanism

6.2.2 Activation Energy and Activation Volume Scalar

The activation energy for each of the eleven transitions is listed in 6.2. The activation

Table 6.2: Local point defect activation energy and volume

Identifier Energy (eV)
440 4.402
444 4.443

457A 4.577
457B 4.577
458A 4.676
458B 4.341
462 4.568
468 4.583
476 4.676

476B 4.676
489 4.676

Identifier Volume (⌦0)
440 1.55
444 1.58

457A 1.65
457B 1.65
458A 1.63
458B 1.53
462 1.58
468 1.77
476 1.63

476B 1.63
489 1.63
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volume scalar vs. activation energy plot for these point defects is shown in figure 6-

3. This shows a general increasing trend between activation volume and activation

energy. This intuitively makes sense because as more atoms get involved with the

transition, the energy and the volume change between the initial perfect crystal and

the saddle point state increase together.

Figure 6-3: Activation Volume vs. Activation Energy

From these initial studies, it was determined that the 457A and 457B transitions were

the same dumbbell/vacancy pair; this will be referred to as the 457 transition. The

collective two-atom ring mechanism was also the same for the 458B, 476A, 476B, and

489 kinetic events; the 476 identifier will be used to represent this group of transitions.

Transitions 440 and 444 were very similar in nature, with the 444 transition creating

an unbound dumbell-vacancy pair, with the dumbell one lattice spacing further away

from the vacancy; therefore, only the 440 transition was studied further.
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6.2.3 Activation Volume Tensor

Of the eleven originally selected kinetic events, only five of the distinct transitions were

further studied. The activation volume tensors in this work were determined using

between 422 and 536 integer distributed directions as shown in appendix B. Table 6.3

shows the activation volume tensors for each of these five transitions.
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Table 6.3: Activation volume tensors for selected point defects

Point Defect ID Activation Volume Tensor

440 (|| dumbbell)
0.6555 �0.0584 0.5062

�0.0584 0.6721 0.0334

0.5062 0.0334 0.2228

457 (? dumbbell)
0.5660 0 0

0 0.5713 �0.2773

0 �0.2773 0.5817

476 (2 atom ring)
1.368 �0.0007 0.0074

�0.0007 0.1183 1.439

0.0074 1.439 0.0871

458B (3 atom ring)
0.4929 0.0702 �0.0768

0.0702 0.5058 �0.0854

�0.0768 �0.0854 0.5165

462 (4 atom ring)
0.7842 �0.1016 �0.1019

�0.1016 0.3963 �1.879

�0.1019 �1.879 0.3965
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6.2.4 Second Invariant of the Activation Volume Tensor

The second invariant of the activation volume tensor was determined for each of the

five transitions. These values are shown in table 6.4. These values should be compared

to the activation volume scalars, V*, of the given transitions in order to understand

the validity of using V* to represent the overall applied stress term.

Table 6.4: Point defect second invariant of the activation volume tensor

Identifier Second Invariant of the Activation Volume
440 (|| dumbbell) 0.5707
457 (? dumbbell) 0.2788
476 (2 atom ring) 1.6142

458B (3 atom ring) 0.1351
462 (4 atom ring) 1.8978

6.3 Discussion

There were two sub-categories of local defect studies: dumbbell/vacancy pairs and

ring mechanisms. The activation energy for both types of events is very similar,

therefore these values are not capable of predicting the physical nature of the mecha-

nism. For the dumbbell/vacancy migrations, a higher distance between the dumbbell

and the vacancy resulted in higher activation energy, because more atoms were dis-

placed in the kinetic transition. For the ring mechanism, the four ring mechanism

had greater activation energy and volume than the three ring mechanism, because

more atoms were involved. This trend is also true with the two-atom ring mechanism,

because although in the final state, only two neighboring atoms swapped positions, a

very large number of atoms were displaced in the collective mechanism at the saddle

point. High populations of disturbed atoms lead to large values of E* and V*. For all

of these local defect kinetic events, the activation energy is much higher than for the

vacancy migration studies, which had a preexisting defect in the crystal lattice.
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These local kinetic events also show the full functionality of the second invariant of

the activation volume, ⇤. Remember that this term captures the deviatoric part of

the activation volume tensor. When the ⇤ term is large with respect to the activation

volume, like in point defect 462 (the 4 atom ring mechanism), the off-diagonal terms

are large and the diagonal terms are different within the activation volume tensor. The

uniform dilation assumption is not valid, and the activation volume scalar does not

accurately represent the system under a non-hydrostatic load. If, however, the second

invariant of the activation volume tensor is small compared to the activation volume

scalar, as in point defects 457 (? dumbbell) and 458B (the 3 atom ring mechanism),

the off-diagonal terms are much smaller than the terms in the diagonal, which are

nearly equal. These systems are well represented by the activation volume scalar,

because they exhibit nearly uniform dilation and when any stress state applied, they

will behave the same as a hydrostatic pressure.

As stated previously, the activation energy required to drive these kinetic events is

very high. A calculation in the 457 dumbbell/vacancy pair shows that in order to

reduce the activation energy to below 2 eV, a hydrostatic load of 21 GPa is required.

This is several orders of magnitude larger than the ultimate tensile strength of cop-

per.

6.3.1 Error

As stated in the chapter on vacancy migration in copper, non-linear trends exist

between the activation energy and the applied stress state. In the studies on local

defects, a second behavior emerged. In some directions of applied uniaxial stress,

the event exhibited two different, yet linear trends in the activation energy versus

volume. In this work, they will be referred to as "knees" in the data. Figure 6-4

demonstrates this behavior for a (-1, -2, 5) applied stress in the 2 atom ring collective

point defect. It is currently unclear what causes these knees to exist, but the high

sampling rate with relatively few knees and the weighting matrix under the high
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Figure 6-4: Non-Linear Activation Energy vs. Uniaxial Stress

error in the slope means that these are not a big contributing factor to the overall

calculation of the activation volume tensor. The standard error ranges from 0.0005

⌦0 for the 440 dumbbell vacancy pair to 1.324 ⌦0 for the 2 atom collective ring

mechanism; appendix A shows the complete list of error arrays for each event.
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Chapter 7

Grain Boundary Kinetic

Transitions

This section focuses on kinetic events in the ⌃5[210] grain boundary in FCC copper.

The ⌃5[210] boundary is a high angle, high energy symmetric tilt boundary which

has been studied extensively by Frolov et. al. [64]. They also describe in great detail

how this particular grain boundary was constructed. In this work, the grain boundary

initial and final states were generated by my collaborator, Kathleen Alexander, using

the activation relaxation technique. [42]

7.1 Simulation Parameters

Similar to the vacancy migration and point defect studies in copper, the grain bound-

ary study used the EAM potential developed by Mishin et al. [52]. The simulation

cell consisted of 2040 atoms and box dimensions of 18.044 Å, 16.143 Å, and 83.604 Å

in the x, y, and z directions respectively. Figure 7-1 shows the grain boundary sim-

ulation cell at the initial configuration. There are two grain boundaries within this

system in order to maintain periodic boundary conditions in all directions without
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Figure 7-1: ⌃5[210] Grain Boundary Simulation Cell
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having free volume. The transitioning grain boundary is in the center of the cell in

the x-y plane. The secondary boundary, which does not host any kinetic events in

this study is parallel to this surface at 83.604 Å in the z-direction. Initial studies were

performed in order to ensure that there was no interaction between these two grain

boundaries at any point in the NEB process. These studies used 2960 atoms and had

a z-dimension of 120.2 Å. Table 7.1 shows the energy per atom of the grain boundary

regions for the two different grain boundary spacings.

Table 7.1: Grain Boundary Energy Comparison

Grain Boundary Spacing (Å) Center Grain Boundary Energy (eV) Distal Grain Boundary
83.6 -3.540 -3.540
120.2 -3.540 -3.540

After the initial and final configurations were determined using the activation relax-

ation technique, a known stress state was applied to the two given configurations

and the system was relaxed to a minimum energy state using the conjugate gradient

method. Finally the states were used as inputs to NEB with 20 or 24 replicas, a spring

constant of 5, a cutoff energy of 1.0⇥ 10�15 eV , and a cutoff force of 5.5⇥ 10�9eV/

Å.

The activation volume tensor for most of the kinetic transitions was determined using

74 evenly distributed uniaxial stress directions as shown in figure 7-2 (a). In order to

ensure this was enough directions, the activation volume tensor for two of the kinetic

transitions were also calculated with a higher sampling density of 526 evenly spaced

directions as shown by figure 7-2 (b). These high directional density activation volume

tensors matched closely with the low directional density values; however the error

standard deviation as calculated by equation 3.24 was roughly an order of magnitude

smaller with the higher sampling density. However, the reduction in the error is

not worth the computational cost associated with running over seven times as many

simulations, which would equate to over 350,000 extra simulations for just this small

sample of kinetic events.
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(a) Low density of stress directions (b) High density of stress directions

Figure 7-2: Density of stress directions for grain boundary transition 112

7.2 Results

Similar to the local defect studies in copper, the grain boundary transitions are labeled

by the activation energy determined by ART. It was determined that there were 70

distinct kinetic events with activation energies ranging from 0.72 eV to 2.44 eV. From

these 70 kinetic transitions, 30 events were further analyzed.

7.2.1 Types of Grain Boundary Transitions

From analysis of the atomic displacements between the initial and saddle point states,

two distinct trends emerge. The first is described by the global movement of bulk

atoms in the simulation cell. In some kinetic transitions, the upper and lower grains

slide relative to one another initiated by the local perturbation of the grain boundary;

while, in other transitions, only local displacements within the grain boundary oc-

curred. The secondary descriptor for the transition type is the local movement at the

transition boundary. Some boundaries exhibited movement of atoms from one side of

the grain boundary to the other, this will be referred to as a grain boundary migration

mechanism. Other transitions exhibited atomic movement along the grain boundary,

this is referred to as grain boundary diffusion. This is demonstrated schematically in
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Figure 7-3: Categorization of Atomic Movements

figure 7-3.

The atomistic migration description for each of the grain boundary kinetic events

is shown in table 7.2. These transitions are color coded based on the four types of

movements.
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Table 7.2: Grain Boundary Kinetic Event Descriptions

41 Diffusion along GB in Y with no sliding
70 Diffusion in X & Y, Sliding in Y
77 Migration from top and bottom grain with no sliding
81 Migration from top grain with no sliding
103 Migration from top and bottom grains with sliding in Y
112 Diffusion in X-Y direction with no sliding
126 Diffusion in Y with sliding in Y
127 Diffusion in X & Y with no sliding
134a Diffusion in X with no sliding
135 Diffusion in X with no sliding
137 Diffusion in X with no sliding
137a Migration from top grain with sliding in Y
138 Diffusion in X with no sliding
145 Migration from top grain with sliding in Y
146 Diffusion in X with no sliding
148 Diffusion in X with no sliding
150 Diffusion in X &Y with no sliding
154 Migration from bottom grain with sliding in Y
159 Diffusion in X & Y with no sliding
170 Diffusion in X with no sliding
177 Migration from top and bottom grain with sliding in Y
184 "Follow-the-leader" migration in X with no sliding
188 Migration from the bottom grain with sliding in Y
197 Migration from top grain with no sliding
206 Diffusion in Y with no sliding
212 Migration from bottom grain with sliding in Y
221 Migration from the top and bottom grains with sliding
230 Direct exchange of two grain boundary atoms
239 Diffusion in Y with no sliding
242 Diffusion in Y with no sliding

80



7.2.2 Activation Energy

The activation energy for the kinetic transition ranges from 0.75 to 2.50 eV as deter-

mined by NEB as described in chapter 3. These energies are significantly lower than

the point defect events as described in the previous chapter. This is due to the fact

that the grain boundary is a large planar defect and it takes much less energy to move

atoms in a loosely packed atomic configuration where the number of close bonds are

fewer; therefore, the energies are lower. Table 7.3 shows the activation energy at each

different grain boundary transition.
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Table 7.3: Grain Boundary Activation Energy

Event Identifier Activation Energy (eV)
41 0.7491
70 1.1308
77 0.7094
81 0.7935
103 1.5558
112 1.1000
126 1.1308
127 1.4515
134a 1.4348
135 1.4412
137 1.4348
137a 1.3547
138 2.5011
145 1.3547
146 0.9671
148 1.4609
150 1.4609
154 1.3547
159 1.6073
170 1.6589
177 1.5340
184 no convergence
188 1.7488
197 1.9365
206 description
212 1.9365
221 1.9613
230 no convergence
239 no convergence
242 no convergence

82



Activation Energy (eV)
0 0.5 1 1.5 2 2.5

A
ct

iv
a
tio

n
 V

o
lu

m
e
 (

a
to

m
ic

 v
o
lu

m
e
)

0

0.2

0.4

0.6

0.8

1

1.2

Figure 7-4: Activation volume vs. activation energy for grain boundary transitions

7.2.3 Activation Volume Scalar and the Second Invariant of

the Activation Volume Tensor

The activation volume scalar, which is related to the spherical part of the activation

volume tensor, and the second invariant of the shear activation volume are shown in

table 7.4. The activation volume scalar has values ranging from 0.1557 ⌦0 to 1.8983

⌦0. These values are plotted against the activation energy in figure 7-4 and show a

generally increasing trend of V* with E*, as shown previously.

The second invariant of the activation volume has values between 0.7636 ⌦0 to 4.661

⌦0. These values are significantly higher than those for the point defect generation

or for vacancy migration. This means that there is a wider range of sensitivities to
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Figure 7-5: ⇤ vs. V* for grain boundary transitions

shear in the grain boundary kinetic events. This is likely due to the asymmetry and

free volume within the grain boundaries. Figure 7-5 shows the second invariant of

the activation volume plotted versus the activation volume scalar. As expected, and

unlike the V* vs. E* plot, there is no general trend relating ⇤ and V*.
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Table 7.4: Grain boundary activation volume and second invariant of the activation
volume tensor

Event Identifier Activation Volume (⌦0) Second Invariant Activation Volume (⌦0)
41 0.2889 1.6220
70 0.3125 0.7539
77 0.2594 1.6853
81 0.1557 1.1557
103 0.4019 3.3676
112 0.1677 2.6731
126 0.3179 0.7636
127 0.2178 no convergence
134a 0.5668 0.9468
135 0.5082 0.8327
137 0.4741 .7586
137a 1.0853 no convergence
138 1.4406 1.2726
145 0.3899 no convergence
146 0.5054 0.8385
148 0.2676 2.8807
150 0.2618 2.8628
154 0.2792 1.5679
159 0.7935 1.0798
170 0.6281 0.7928
177 0.6365 1.5509
184 no convergence
188 1.8983 2.6904
197 0.4175 4.5235
206 0.2215 no convergence
212 0.4175 4.5235
221 0.5991 1.7548
230 no convergence
239 no convergence
242 no convergence
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Figure 7-6: Spherical Distribution of Principal Directions of Grain Boundary Transi-
tions

7.2.4 Activation Volume Tensor

For the sake of readability, the activation volume tensors are only listed in appendix

A. This section will instead focus on the overall trends within the grain boundary

kinetic events.

Figure 7-6 shows the spherical distribution of eigenvectors for each of the grain bound-

ary transitions. Each color represents a different grain boundary kinetic transition.

As discussed in previous chapters, the eigenvectors are the directions in which the

shear components of the activation volume tensor are zero. This plot shows no dis-

tinct trends, which may appear as clusters, and that the directions are randomly

dispersed along the surface of the unit sphere. This means that the dilation between

the initial and saddle point configurations is distinct for each different event.
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7.3 Discussion

Just like for the point defects, the activation energy in the grain boundary kinetic

transitions is related to two main things: the number of atoms involved in a transition

and the displacement. To illustrate this point, take for example the 77 and 81 kinetic

events, which have energies of 0.7094 and 0.7935 eV respectively. These events involve

highly localized atomic migration across the grain boundary. Very few atoms are re-

quired to move in order to accommodate the very short distance traversed. Compare

this to the 212/197 kinetic event, which had one of the highest activation energies of

1.9365 eV and consisted of several atoms migrating along the x-axis down the grain

boundary. Similarly, as more atoms are involved in the transition, the activation vol-

ume also increases, because there are more contributions to the volume shift between

the initial and activated states. However, there are no easily discernible trends in the

activation volume tensors or the second invariant of the activation volume tensors that

can be established without looking at the individual mechanisms themselves.

Unlike the simple vacancy migrations and point defect studies, the grain boundary

atomic movements consisted of complex movements in asymmetric geometry. There

is, therefore, no simple mapping between the atomic movements of these events with

their activation volume tensor. Figure 7-7 and 7-8 show the activation volume vs

activation energy and second invariant of the activation volume tensor, respectively,

as colored by the movement type. The random distribution of each color demonstrates

that there is no distinct trend. This is expected, because as stated previously, the

activation parameters are highly dependent on the atomic configurations at the saddle

point state.
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for grain boundary kinetic events as colored by the movement type
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Figure 7-9: Curved non-linear direction

7.3.1 Error

The error in the activation volume tensor for the grain boundary kinetic events is

much higher than that of the vacancy migration and point defect studies. This is

most likely due to a high population of non-linear directions between the activation

energy, E*, and the applied uniaxial stress, P. One example is shown in figure 7-

9.

Though this data is for grain boundary transition 112, this specific shape occurs often

in many of the different kinetic events. Additionally, this same shape appears for

the applied uniaxial stresses which are symmetrically spaced about the Z-axis to the

specific direction. In this example, the stress is applied in the (0.2937, 0.5091, 0.8090)

direction within the simulation cell, this trend also appears in the (0.2937, -0.5091,
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(a) (0.29, 0.51, 0.81) (b) (0.29, -0.51, 0.81)

(c) (-0.29, 0.51, 0.81) (d) (-0.29, -0.51, 0.81)

Figure 7-10: Non-linear trends in symmetric directions

0.8090), (-0.2937, 0.5091, 0.8090), and (-0.2937, -0.5091, 0.8090) directions, as shown

in figure 7-10. As discovered in the copper vacancy migration study, non-linearities

can be related to close-packed directions aligned with the saddle point atoms. Due

to the symmetric nature of these directions, alignment to specific features within the

grain boundary plane may be source of these non-linearities.

There exists a secondary type of non-linearity in the grain boundary directional ac-

tivation volume scalars. This type consists of jagged linear sections, of alternating

slope, as shown in figure 7-11 is similar to that which is found in the study on local

defects.

It should be noted that these directions have a high error in the slope measurement,

and are therefore, have a small weight in the weighted least squares regression anal-

ysis.
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Figure 7-11: Jagged non-linear direction
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Chapter 8

Conclusions

8.1 Activation Energy, Activation Volume Scalars,

and the Second Invariant of the Activation Vol-

ume Tensor

This work demonstrates that the stress effects on kinetic events can be described in

a multitude of ways. The first method for capturing the stress effects is through the

first invariant of the stress tensor. The activation volume is commonly used when

discussing how kinetic events behave under an applied load, but as shown in this

work, it only tells part of the story and for most cases; it is not sufficient in capturing

what happens under a stress state more complex than the simplest case of hydrostatic

pressure.

The second way to describe how stress affects kinetic events is by analyzing the second

invariant of the activation volume tensor. This value captures the deviatoric part of

the activation volume tensor. It is useful in describing how sensitive the kinetic event

is in response to a more physically realistic non-hydrostatic load in a singular, scalar

value.
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The final and most comprehensive method for understanding how a kinetic transition

is affected by an applied stress state is by looking at the activation volume tensor.

This second rank tensor physically represents the change in size and shape between

the initial and saddle point states of the kinetic event. The scalar product between

this tensor and the stress tensor determines the change in the activation energy under

the applied load. When high applied stress or internal stress is coupled with the high

magnitude values within the activation volume tensor, the Gibbs free energy barrier

can be affected drastically. This phenomenon is not ordinarily captured by the more

simplistic single value activation parameters.

The most simple kinetic events, such as vacancy migrations, are good systems to

study in order to understand the relationships between the physical transition and

the activation parameters. The copper and titanium vacancy studies demonstrated

that the activation energy for single atom transitions is relatively low. The activation

volume scalar is just the trace of the activation volume tensor, and therefore sign can-

cellations within the diagonal terms make the activation volume scalar much smaller

than the individual terms. The principal directions of the activation volume tensor

correspond to directions of free space around the atom at the saddle point state. The

second invariant of the activation volume is much higher than the activation volume

scalar, which suggests that the activation volume scalar is an oversimplification of

the stress effects, and the activation volume tensor should be used instead. Addition-

ally, these studies showed that non-linear behavior appears between the activation

energy and the applied stress state magnitude when a uniaxial stress is applied in the

direction of close-packed atoms aligned with the saddle point configuration.

The local defect studies helped move the work in a more complex direction with

multiple atoms moving simultaneously to get from a perfect lattice to a final state

which consisted of either another perfect lattice or a dumbbell and vacancy pair.

These were events which took a high amount of energy and were highly sensitive to

the hydrostatic stress state, with high magnitudes of activation volume. Although the

activation volume did not vary much between the different transitions studied, the
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second invariant of the activation volume varied greatly. The transitions with low ⇤

values had very small shear components and similar values along the diagonal, which

means the reaction to any load is similar to the hydrostatic case, and the activation

volume scalar nicely captures the effects. However, when ⇤ is high, significant off-

diagonal terms exist, the magnitudes along the diagonal vary greatly, the assumption

of hydrostatic load is not valid and the activation volume scalar no longer provides

enough information. The final piece of insight that these transitions provide is that

in complex atomic configurations, the directional activation volume scalar can change

based on the load applied. In some directions of applied uniaxial load, the behavior

was completely different for tensile and compressive loads.

The most complex system studied in this work was in the ⌃5[210] grain boundary in

copper. The events occurring at the grain boundary were sorted by two movement

type categories: global and local. Globally, some transitions exhibited bulk sliding

between the two grains in order to accommodate the given kinetic event and others

that did not. Secondly, the local atomic movements within the grain boundary were

divided between those which the majority of the movement occurred along the plane

of the grain boundary, which has been coined as diffusion, and those which the move-

ment primarily occurred across the grain boundary, which is referred to as migration.

There is no correlation between these overall movement classes with the activation

parameters. There is, however, a relationship between the number of atoms involved

in a given transition and the distance traveled by migrating atoms which can be

qualitatively related the the activation energy and volume.

For all kinetic events, there was a general trend of increasing activation volume with

activation energy. This is a well studied and understood phenomenon [7] shown in

figure 8-1.
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Figure 8-1: Activation Volume vs. Activation Energy for All kinetic events
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8.2 Future Directions

Stress effects on kinetic transitions is a sparsely populated topic of research. Upon

completion of this project, I am left with more questions than answers I have created.

There are many topics within this field which should be explored beyond this work.

One topic of future study would be to investigate the abrupt change in trends of

the directional activation volume scalar, v’, between the various regions of stress

in the local defect studies. Additionally, it would be useful to efficiently visualize

the activation volume axes on the actual crystal structure at the transition point.

Another useful study in the realm of point defects would be to investigate how solute

atoms might behave under load in binary systems. In the larger scope of this project,

applying this process to transitions in other grain boundaries would be the next step

in finding out how grain boundary kinetics behave under applied stresses. Finally, it

would be useful to connect with the larger field of grain boundary engineering to use

these tools in the study grain boundary mobility.
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Appendix A

Activation Parameters Tables

A.1 Vacancy Migration in FCC Cu

Table A.1: Formation and Activation Energy in FCC Cu Migration

Calculated Computational Experimental
Formation Energy (eV) 1.272 1.27 1.27
Activation Energy (eV) 0.689 0.69 0.71

Table A.2: Activation Volume in FCC Cu Migration

Calculated Computational Experimental
Activation Volume (⌦0) 0.107 0.107 0.12

* from the work of Zhu and Li using a strain measurement calculation [10]
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Table A.3: Activation volume tensor for FCC Cu vacancy migration

-0.4809 -0.1333 0
-0.1333 -0.4806 0

0 0 1.069
Table A.4: Zhu reference activation volume tensor for FCC Cu vacancy migration *

-0.5675 -0.1519 0
-0.1519 -0.5675 0

0 0 1.2505
Table A.5: Activation volume principal directions for FCC Cu vacancy migration

Magnitude -0.614 -0.3475 1.069

Direction
0.7074 0.7068 0
0.7068 0.7074 0

0 0 1

A.2 Vacancy Migration in HCP Ti

The basal plane vacancy migration in HCP titanium is in the (1,0,0) direction and

the out of plane migration was along the (0,0.5, 0.8) direction.

Table A.6: Formation and Activation Energies in HCP Ti Migration

Calculated Computational Experimental
Formation Energy (eV) 1.52 1.83 1.55

Basal Migration Activation Energy (eV) 0.795 0.80
Non-Basal Migration Activation Energy (eV) 0.827 0.83

Table A.7: Activation Volume in HCP Ti Migration

Activation Volume ⌦0

Basal Plane Migration 0.0218
Non-Basal Plane Migration 0.0372
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Table A.8: Activation volume tensor for HCP Ti basal plane vacancy migration

-0.3677 0 0
0 0.2412 0
0 0 0.1489

Table A.9: Activation volume principal directions for HCP Ti basal plane vacancy
migration

Magnitude -.3677 0.2412 0.1489

Direction
-1 0 0
0 1 0
0 0 1

Table A.10: Activation volume tensor for HCP Ti nonbasal plane vacancy migration

-0.3501 0 0
0 0.4671 -0.8061
0 -0.8061 -0.0798

Table A.11: Activation volume principal directions for HCP Ti non-basal plane va-
cancy migration

Magnitude -0.658 -0.350 1.045

Direction
0 -1 0

0.583 0 -0.813
0.813 0 0.583

Table A.12: Second invariant of the activation volume tensor in HCP Ti migration

Second invariant of the activation volume tensor ⌦0

Basal Plane Migration 0.3282
Non-Basal Plane Migration 0.6085
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A.3 Point Defects in Cu

The following section contains the activation parameters for point defect events gen-

erated in a perfect crystal of FCC copper as described in chapter 6.

Table A.13: Local Point Defect Descriptions

Identifier Description
440 dumbbell/vacancy pair with dumbbell aligned with traversal direction
444 dumbbell/vacancy pair with dumbbell aligned with traversal direction

457A dumbbell/vacancy pair with dumbbell perpendicular to traversal direction
457B dumbbell/vacancy pair with dumbbell perpendicular to traversal direction
458A 2 atom collective ring mechanism
458B 3 atom ring mechanism
462 4 atom ring mechanism
468 2 atom collective ring mechanism to dumbbell
476 2 atom collective ring mechanism

476B 2 atom collective ring mechanism
489 2 atom collective ring mechanism

Table A.14: Local Point Defect Activation Energy and Volume

Identifier Energy (eV)
440 4.402
444 4.443

457A 4.577
457B 4.577
458A 4.676
458B 4.341
462 4.568
468 4.583
476 4.676

476B 4.676
489 4.676

Identifier Volume (⌦0)
440 1.55
444 1.58

457A 1.65
457B 1.65
458A 1.63
458B 1.53
462 1.58
468 1.77
476 1.63

476B 1.63
489 1.63
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Table A.15: Activation volume tensors for selected point defects

Point Defect ID Activation Volume Tensor

440 (|| dumbbell)
0.6555 �0.0584 0.5062

�0.0584 0.6721 0.0334

0.5062 0.0334 0.2228

457 (? dumbbell)
0.5660 0 0

0 0.5713 �0.2773

0 �0.2773 0.5817

476 (2 atom ring)
1.368 �0.0007 0.0074

�0.0007 0.1183 1.439

0.0074 1.439 0.0871

458B (3 atom ring)
0.4929 0.0702 �0.0768

0.0702 0.5058 �0.0854

�0.0768 �0.0854 0.5165

462 (4 atom ring)
0.7842 �0.1016 �0.1019

�0.1016 0.3963 �1.879

�0.1019 �1.879 0.3965
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Table A.16: Local defect second invariant of the activation volume tensor

Identifier second invariant of the activation volume tensor
440 (|| dumbbell) 0.5707
457 (? dumbbell) 0.2788
476 (2 atom ring) 1.6142

458B (3 atom ring) 0.1351
462 (4 atom ring) 1.8978
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A.4 ⌃ 5 [210] Grain Boundary Transitions
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Table A.17: Grain Boundary Activation Energy

Event Identifier Activation Energy (eV)
41 0.7491
70 1.1308
77 0.7094
81 0.7935
103 1.5558
112 1.1000
126 1.1308
127 1.4515
134a 1.4348
135 1.4412
137 1.4348
137a 1.3547
138 2.5011
145 1.3547
146 0.9671
148 1.4609
150 1.4609
154 1.3547
159 1.6073
170 1.6589
177 1.5340
184 no convergence
188 1.7488
197 1.9365
206 description
212 1.9365
221 1.9613
230 no convergence
239 no convergence
242 no convergence
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Table A.18: Grain boundary activation volume and second invariant of the activation
volume tensor

Event Identifier Activation Volume (⌦0) Second Invariant (⌦0)
41 0.2889 1.6220
70 0.3125 0.7539
77 0.2594 1.6853
81 0.1557 1.1557
103 0.4019 3.3676
112 0.1677 2.6731
126 0.3179 0.7636
127 0.2178 no convergence
134a 0.5668 0.9468
135 0.5082 0.8327
137 0.4741 .7586
137a 1.0853 no convergence
138 1.4406 1.2726
145 0.3899 no convergence
146 0.5054 0.8385
148 0.2676 2.8807
150 0.2618 2.8628
154 0.2792 1.5679
159 0.7935 1.0798
170 0.6281 0.7928
177 0.6365 1.5509
184 no convergence
188 1.8983 2.6904
197 0.4175 4.5235
206 0.2215 no convergence
212 0.4175 4.5235
221 0.5991 1.7548
230 no convergence
239 no convergence
242 no convergence
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Table A.19: Activation volume tensors, ⌦̄, and Error

Identifier Activation Volume Tensor (⌦0) Max Difference Error (⌦0)

41

1.309 �0.2777 �0.1947

�0.2777 �0.5407 1.188

�0.1947 1.188 �0.4794

0.0042 0.0027 0.0014

0.0027 0.0378 0.0117

0.0014 0.0117 0.0074

70

0.4853 �0.3874 �0.3214

�0.3874 0.3138 �0.2144

�0.3214 �0.2144 �0.4866

0.0213 0.0068 0.0028

0.0068 0.0142 0.0002

0.0028 0.0002 0.0138

77

�0.1124 0.3111 1.1797

0.3111 0.3446 �1.1388

1.1797 �1.1388 0.0271

0.0193 0.0055 0.0231

0.0055 0.0089 0.0274

0.0231 0.0274 0.0385

81

0.7139 �0.3114 0.9150

�0.3114 �0.4383 �0.2177

0.9150 �0.2177 �0.1199

0.0111 0.0005 0.0070

0.0005 0.0353 0.1690

0.0070 0.1690 0.0129
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103

1.5593 0.1539 0.3086

0.1539 0.1183 �3.0352

0.3086 �3.0352 �1.2757

0.0883 0.0053 0.0450

0.0053 0.1035 0.2803

0.0450 0.2803 0.0319

112

0.6076 0.0805 �0.7959

0.0805 0.0554 2.3819

�0.7959 2.3819 �0.5084

0.0138 0.0007 0.0077

0.0007 0.0269 0.0244

0.0077 0.0244 0.0217

126

0.4935 �0.4102 �0.3232

�0.4102 0.3143 �0.1901

�0.3232 �0.1901 �0.4899

0.0211 0.0064 0.0026

0.0064 0.0142 0.0004

0.0026 0.0004 0.0139

127

1.3112 �0.1805 �0.1658

�0.1805 �0.4124 4.0134

�0.1658 4.0134 �0.6810

0.0257 0.0429 0.0103

0.0429 0.0658 0.1238

0.0103 0.1238 0.0469
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134a

�0.0685 �0.1609 0.2664

�0.1609 �0.3162 �0.4868

0.2664 �0.4868 1.0029

0.0654 0.0032 0.0044

0.0032 0.0106 0.1426

0.0044 0.1426 0.0272

135

�0.2135 �0.1408 �0.0203

�0.1408 �0.2590 �0.4230

�0.0203 �0.4230 0.9807

0.0230 0.0006 0.0245

0.0006 0.0465 0.0043

0.0245 0.0043 0.1195

137

�0.0135 �0.1679 0.0697

�0.1679 �0.3239 �0.4408

0.0697 �0.4408 0.8114

0.0269 0.0022 0.0298

0.0022 0.0120 0.1065

0.0298 0.1065 0.0597

137a

2.4312 0.4155 �0.0640

0.4155 �0.1137 8.4533

�0.0640 8.4533 �1.2322

0.5190 0.0904 0.1281

0.0904 0.1736 0.0276

0.1281 0.0276 0.0580
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138

�0.1733 �0.0303 �0.0848

�0.0303 �0.2620 �0.3854

�0.0848 �0.3854 1.8758

0.0427 0.0023 0.0120

0.0023 0.0122 0.0109

0.0120 0.0109 0.0429

145

3.4237 0.9420 �1.1556

0.9420 �1.7773 7.7087

�1.1556 7.7087 �1.2565

1.2117 0.1368 2.1061

0.1368 1.0660 0.3908

2.1061 0.3908 1.0264

146

0.1071 �0.1198 0.2982

�0.1198 �0.3756 �0.5163

0.2982 �0.5163 0.7739

0.0937 0.0054 0.0192

0.0054 0.0097 0.2248

0.0192 0.2248 0.0077

148

0.2696 �0.0168 �0.5481

�0.0168 0.5123 2.7767

�0.5481 2.7767 �0.5143

0.0473 0.0031 0.0339

0.0031 0.0399 0.0231

0.0339 0.0231 0.0174
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150

0.2419 �0.0191 �0.5461

�0.0191 0.5194 2.7604

�0.5461 2.7604 �0.4995

0.0516 0.0079 0.0357

0.0079 0.0386 0.0282

0.0357 0.0282 0.0166

154

1.5598 �0.3078 �0.0903

�0.3078 �0.4707 �0.8444

�0.0903 �0.8444 �0.8100

0.0464 0.0284 0.0080

0.0284 0.0398 0.0210

0.0080 0.0210 0.0129

159

�0.2183 0.0932 0.4653

0.0932 0.8190 0.8173

0.4653 0.8173 0.1927

0.0174 0.0002 0.0073

0.0002 0.0178 0.0178

0.0073 0.0178 0.0146

170

�0.1382 �0.0811 0.2185

�0.0811 0.7253 0.6054

0.2185 0.6054 0.0410

0.0112 0.0019 0.0026

0.0019 0.0242 0.0133

0.0026 0.0133 0.0372
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177

1.3026 0.0787 �1.0900

0.0787 0.1731 0.2512

�1.0900 0.2512 �0.8392

0.0113 0.0199 0.0041

0.0199 0.1656 0.0696

0.0041 0.0696 0.0871

188

1.6687 �0.2610 �0.3533

�0.2610 �0.7064 2.3593

�0.3533 2.3593 0.9360

0.0474 0.0210 0.0760

0.0210 0.0590 0.1693

0.0760 0.1693 0.2713

197

1.5334 �0.0858 0.1744

�0.0858 0.4808 4.2293

0.1744 4.2293 �1.5967

0.1490 0.0083 0.0078

0.0083 0.1190 0.0091

0.0078 0.0091 0.1713

206

1.0796 �0.5141 0.7133

�0.5141 �0.1489 �1.4137

0.7133 �1.4137 �0.7093

0.0294 0.0002 0.0312

0.0002 0.0370 0.0140

0.0312 0.0140 0.0096
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221

1.5522 �0.0603 �0.0032

�0.0603 0.5978 �0.7412

�0.0032 �0.7412 �1.5510

0.1579 0.0128 0.0064

0.0128 0.1261 0.0573

0.0064 0.0573 0.1845

242

0.3868 �0.1808 �2.5075

�0.1808 0.2429 1.5867

�2.5075 1.5867 �3.7460

0.0607 0.3187 4.7312

0.3187 0.1789 3.1734

4.7312 3.1734 6.7750
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Appendix B

Figures of Atomic Configurations and

Direction Distributions

This appendix is dedicated to useful reference figures of atomic configurations at the

saddle point of the transitions and projected hemisphere plots of the direction dis-

tributions. The configuration plots are useful in understanding the physical nature

of the mechanism and visualize the important directions within the kinetic transition

itself. The direction distribution plots are projections of a hemisphere in the posi-

tive Z quadrant for the directions of uniaxial applied stress used in calculating the

activation volume tensor. Each of the circles is a singular direction colored based on

the magnitude of the directional activation volume scalar, v’, in that given direction.

The stars on the plot indicate a projection of the principal directions of the activation

volume tensor, similarly colored by magnitude as measured in atomic volumes for the

given material.
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B.1 Vacancy Migration in FCC Copper

Figure B-1: Vacancy Migration in Copper

Figure B-2: Vacancy Migration in Copper
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B.2 Vacancy Migration in HCP Titanium

Figure B-3: Basal Vacancy Migration in Titanium

Figure B-4: Basal Vacancy Migration in Titanium
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Figure B-5: Non-Basal Vacancy Migration in Titanium

Figure B-6: Non-Basal Vacancy Migration in Titanium
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B.3 Point Defects

(a) Transition (b) Direction Hemisphere

Figure B-7: Parallel Dumbbell - Vacancy Creation Mechanism (440)

(a) Transition (b) Direction Hemisphere

Figure B-8: Perpendicular Dumbbell - Vacancy Creation Mechanism (457)
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(a) Transition (b) Direction Hemisphere

Figure B-9: 2 atom ring Mechanism (476)

(a) Transition (b) Direction Hemisphere

Figure B-10: 3 atom ring Mechanism (458)
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(a) Transition (b) Direction Hemisphere

Figure B-11: 4 atom ring Mechanism (462)
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B.4 Grain Boundary Kinetic Transitions

The grain boundary transitions are generated using the OVITO visualization software.

[?]. They are plotted looking down the Z-axis at the grain boundary plane with slices

with a (0,0,1) normal direction at distances of 6 and -0.5. The atom coloring is

based on displacement from the inital configuration state. There are two periods in

the X and Y directions in order to show the movement of atoms across the periodic

boundaries.
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Figure B-12: GB Kinetic Event 41
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(a) GB 70 Transition
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Figure B-13: GB Kinetic Event 70

(a) GB 77 Transition
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Figure B-14: GB Kinetic Event 77
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(a) GB 81 Transition
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Figure B-15: GB Kinetic Event 81

(a) GB 103 Transition (b) GB 103 Direction Hemisphere

Figure B-16: GB Kinetic Event 103
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(a) GB 112 Transition
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Figure B-17: GB Kinetic Event 112

(a) GB 126 Transition
X

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Activation Volume Contours (atomic volumes) ~126

-1.5

-1

-0.5

0

0.5

1

(b) GB 126 Direction Hemisphere

Figure B-18: GB Kinetic Event 126
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(a) GB 127 Transition
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Figure B-19: GB Kinetic Event 127

(a) GB 134a Transition (b) GB 134a Direction Hemisphere

Figure B-20: GB Kinetic Event 134a
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(a) GB 135 Transition
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Figure B-21: GB Kinetic Event 135

(a) GB 137 Transition
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Figure B-22: GB Kinetic Event 137
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(a) GB 137a Transition (b) GB 137a Direction Hemisphere

Figure B-23: GB Kinetic Event 137a

(a) GB 138 Transition
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Figure B-24: GB Kinetic Event 138
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(a) GB 145 Transition
X

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Activation Volume Contours (atomic volumes) ~145

-8

-6

-4

-2

0

2

4

6

8

10

(b) GB 145 Direction Hemisphere

Figure B-25: GB Kinetic Event 145

(a) GB 146 Transition
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Figure B-26: GB Kinetic Event 146
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(a) GB 148 Transition
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(b) GB 148 Direction Hemisphere

Figure B-27: GB Kinetic Event 148

(a) GB 150 Transition
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Figure B-28: GB Kinetic Event 150
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(a) GB 154 Transition
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Figure B-29: GB Kinetic Event 154
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(a) GB 159 Transition
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Figure B-30: GB Kinetic Event 159

(a) GB 170 Transition
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Figure B-31: GB Kinetic Event 170
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(a) GB 177 Transition
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Figure B-32: GB Kinetic Event 177

(a) GB 188 Transition
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Figure B-33: GB Kinetic Event 188
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(a) GB 197 Transition
X

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Activation Volume Contours (atomic volumes) ~197

-4

-3

-2

-1

0

1

2

3

(b) GB 197 Direction Hemisphere

Figure B-34: GB Kinetic Event 197

(a) GB 221 Transition
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Figure B-35: GB Kinetic Event 221
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(a) GB 242 Transition
X

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Activation Volume Contours (atomic volumes) ~242

-16

-14

-12

-10

-8

-6

-4

-2

0

2

(b) GB 242 Direction Hemisphere

Figure B-36: GB Kinetic Event 242
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Appendix C

LAMMPS input files

C.1 Vacancy Creation and Migration

The following section describes how a vacancy in copper is created and moved in

order to create the initial and final states that are then used as inputs to the nudged

elastic band file.

# Input file for Vacancy Migration Energy in Ti

# with zero applied pressure

# --------------- INITIALIZATION ------------------

clear

units metal

dimension 3

boundary p p p

atom_style atomic

atom_modify map array sort 0 0.0

# ------------------ ATOM DEFINITION -------------------
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variable ao equal 2.9575

lattice hcp 2.9575

region simbox block -4 4 -4 4 -4 4

create_box 1 simbox

lattice hcp 2.9575 origin 0 0 0

create_atoms 1 region simbox

# ------------------------ FORCE FIELDS -----------------------

pair_style eam/alloy

pair_coeff * * Zope-Ti_Al-2003.eam.alloy Ti

#neighbor 2.0 bin

#neigh_modify delay 10 check yes

#---------------------------Settings----------------------------

compute csym all centro/atom fcc

compute eng all pe/atom

compute eatoms all reduce sum c_eng

compute atomstress all stress/atom NULL

#----------------------Run Minimization-------------------------

reset_timestep 0

thermo 100

thermo_style custom step pe lx ly lz press pxx pyy pzz c_eatoms

dump 1 all cfg 1000 dump.relax.*.cfg mass type xs ys zs id c_csym c_eng

min_style cg

minimize 1e-15 1e-15 5000 5000

minimize 1e-15 1e-15 5000 5000

#-----------------------Pressure------------------------------

#external pressure in bar

138



variable pres equal 0

#Apply pressure

fix fxp all box/relax iso ${pres}

#---------------------Phase 1 ----------------------------

# Vacancy Creation at (ao, 0, 0)

#r2 is the radius of the copper atom

variable r2 equal (${ao})/2

region select sphere ${ao} 0 0 ${r2} units box

delete_atoms region select compress yes

# Relax Atoms to lowest energy state

reset_timestep 0

dump L1p1 all cfg 5000 dump.p1.*.cfg mass type xs ys zs c_csym c_eng

#Relaxation of moving atom to initial NEB location

minimize 1e-15 1e-15 5000 5000

minimize 1e-15 1e-15 5000 5000

undump L1p1

## Store the positions with the vacancy in position NEB final

write_dump all custom final.txt id type x y z fx fy fz c_csym c_eng

unfix fxp

minimize 1e-15 1e-15 5000 5000

minimize 1e-15 1e-15 5000 5000

#-----------------Phase 2---------------------------

## Move the atom to position NEB start (0, 0, 0)

region rmv1 sphere 0 0 0 ${r2} units box

group mv1 region rmv1

displace_atoms mv1 move ${ao} 0 0 units box
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#Relax the atoms in the NEB initial position

reset_timestep 0

dump L1p2 all cfg 5000 dump.p2.*.cfg mass type xs ys zs c_csym c_eng

minimize 1e-15 1e-15 5000 5000

minimize 1e-15 1e-15 5000 5000

undump L1p2

write_dump all custom initial.txt id type x y z fx fy fz c_csym c_eng

#variable Enebi equal "c_eatoms" computes the final energy of the cell

# system after the vacancy is in pos NEB initial

variable Enebi equal "c_eatoms"

C.2 Nudged Elastic Band for Known Configurations

When initial and final states are known, from LAMMPS or ART, the nudged elastic

band method is used to find the activation energy. It should be noted that if the

atomic configurations are coming from art, they must first be sorted such that the

atomic numbering in the initial and final states match. Once this is complete are

first relaxed under a given pressure state using the fix box/relax and the conjugant

gradient method. These sorted and relaxed states are then used as inputs to the neb

.in file as follows:

# Input file for Grain Boundary Transition Activation Energy in Cu

# with given applied pressure

# --------------- INITIALIZATION ------------------

clear

units metal

dimension 3
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boundary p p p

atom_style atomic

atom_modify map array sort 0 0.0

# ------------------ ATOM DEFINITION -------------------

variable ao equal 3.615

lattice fcc 3.615

region simbox prism -4 4 -4 4 -4 4 0 0 0 units box

create_box 2 simbox

#create atom to fix a segmentation fault

#create_atoms 1 single 1.0 1.0 1.0

# read data from dump file

read_dump p_out.atom.initial 0 x y z box yes purge yes add yes replace no

# ------------------------ FORCE FIELDS -----------------------

pair_style eam/alloy

pair_coeff * * Cu01.eam.alloy Cu Cu

neighbor 2.0 bin

neigh_modify delay 10 check yes

#---------------------------Computes----------------------------

compute csym all centro/atom fcc

compute eng all pe/atom

compute eatoms all reduce sum c_eng

#-----------------------Pressure------------------------------

#external pressure in bar

variable pres equal 500
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variable Sx equal ${pres}/2

variable Sy equal ${pres}/2

variable Sz equal 0

variable Syz equal 0

variable Sxz equal 0

variable Sxy equal -${pres}/2

#Apply pressure

fix fxp1 all box/relax x ${Sx}

fix fxp2 all box/relax y ${Sy}

fix fxp3 all box/relax z ${Sz}

fix fxp4 all box/relax yz ${Syz}

fix fxp5 all box/relax xz ${Sxz}

fix fxp6 all box/relax xy ${Sxy}

#----------------------Energy Minimization-------------------------

reset_timestep 0

thermo 1000

thermo_style custom step pe lx ly lz press pxx pyy pzz c_eatoms

dump 1 all cfg 100 dump.initial.*.cfg mass type xs ys zs id c_csym c_eng

min_style cg

minimize 1e-15 1e-15 5000 5000

minimize 1e-15 1e-15 5000 5000

undump 1

unfix fxp1

unfix fxp2

unfix fxp3

unfix fxp4

unfix fxp5

unfix fxp6
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#counts the total number of atoms in the cell

variable N equal count(all)

variable No equal $N

#variable Ei equal "c_eatoms" computes the initial energy of the

#cell system before the vacancy

variable E equal "c_eatoms"

variable Ei equal $E

print "Initial Energy energy = ${Ei}"

#-----------------------NEB-----------------------

reset_timestep 0

timestep 0.01

thermo 1000

variable A uloop 24 pad #run this job with 16 processors

dump 3 all cfg 10000 dump.NEB.${A}.*.cfg mass type xs ys zs c_csym c_eng

fix fx1 all neb 5

min_style quickmin

neb 1.0e-15 5.0e-9 300000 300000 10000 final p_out.atom.final

#--------------------Compute & Show-----------------

variable E equal "c_eatoms"

print "Final energy = ${E}"

variable N equal count(all)

variable EAtot equal $E/$N

print "Total Energy Per Atom = ${EAtot}"
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