
BRITTLE FRACTURE

by

THOMAS PHILLIPS MELOY

A.B* Harvard University (1949)

B.S. Massachusetts. Institute of Technology (1951)

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

October 1960

Sigiature, of Author
Department of Metallurgy
October 31, 1960

Signature of Professor
in Charge of Research

Signature of Chairman of
Department Committee on
Graduate Students

Signature Redacted

7



BRITTLE FRACTURE

by

Thomas Phillips Meloy

Submitted to the Department of Metallurgy

Massachusetts Institute of Technology

on October 31, 1960

In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ABSTRACT

A mathematical model of brittle fracture was set up. From this

model was derived an equation which expresses the cumulative weight of

material finer than a given size as a function of size. The equation is

ox r
0 0

where W(x) is the weight of material finer than a given size, x, W0 is

the initial weight of material, X is the initial size of the particle

and r is the size ratio.

With the use of .a probabilittic rdodel of grinding ian integral dif!

ferentiaL equation, was 1e t up 46d soivedw The soluon .expressed the

site distribution of'the ,oUtpuat.of rommeroial -rindirig machines',&$ a

function of time and size.
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INTRODUCTION

It is estimated that in the United States alone, one billion

tons (1) of material are comminuted each year. Yet the efficiency of

new surface produced per unit of energy consumed is far less than

one percent. Thus any improvement in the comminution process would

be of far reaching economic importance. However, before any real

breakthrough can be expected, a greater understanding of the funda-

mentals of single and repeated fractures must be obtained.

Historically, the approach to understanding and predicting the

output of a comminution device has been through energy. Rittinger (2)

and to a lesser extent Kick were the promulgators of this viewpoint.

Gaudinl/'9' 6. and his co-workers took another tack. They pursued the

experimental approach and essentially set the guideposts to which any

theoretical study must conform.

In 1941, Brown(7,8,9 and his co-workers using the Rosin-Rammler(lO)

empirical distribution for single fracture attempted to predict the

composite distribution of the product of grinding machines. Hukki(5)

did the same thing using the Gaudin-Schuhmann (6) equation. In 1948,

Epstein 6h-owed that the log cum weight finer vs. log size plot

would be a straight line if all particles had an equal probability of

being broken. The assumption that the probability of a particle being

broken, P(x)i is independent of size was widely held(4,
6 ,7,8 ,9)

In 1956, Callcott and Broadstreet decided to determine if and

how P(x) varied with size in the grinding machines they were using. By

using matrix analysis they obtained empirical values of P(x) in their
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matrices. To do this, they used the same type of size distribution

(9)function that Brown had used. However, they expressed the hope

that a better size distribution would be derived so that they might

use it in their analysis. In 1959, Gilvarry (13) derived an equation,

similar to the empirical Rosin-Rammler (10)equation both of whici

are of the form

x

1 -e (1)

00
W(x) is the weight finer than a given size x, W 0 is the weight of the

sample and b is the exjerimantally determined constant.

The writer has essentially done three things:

1) He derived a new size distribution for individual fracture*

2) He derived P(x) for both a ball mill and a rod mill.

3) He set up and solved an integral differential equation

which predicts the output of grinding devices. The equation was

solved both numerically and analytically.
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DEFINITIONS

Since the approach in this dissertation is new, it is necessary

to define certain terms which will be used repeatedly throughout the

text. The te ms will be defined by referring to specific events.

Comminution event - If an ordinary drinking glass were dropped

on a hard floor it would break. The breaking of the glass is a

comminution event. Though many fragments are formed, they are the

result of one, single, individual comminution event. If one of the

fraginents of the glass is later broken, then this is another comminu-

tion event.

Single Fracture - The drinking glass undergoes single fracture

if it is broken during a comminution event.

Repeated Fracture - The glass would undergo repeated fracture if

it were broken during a comminution event and then fragment of the glass

were subsequently broken by later comminution events.

Daughter Products - When the glass undergoes single fracture

the fragmentfare daughter products. If the daughter products are

subsequently broken, they are called second generation daughter

products.
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Size Ratio - This is the average number of surfaces of fracture

required along the characteristic dimension per original particle, to

yield the product obtained. Since the daughter products vary in size,

it is difficult to reconcile the size ratio with the customary re-

duction ratio. Howeverthis correlation can be made whenever the

feed has already been broker, vi, contains particles of all. sizes.

A mathematical definition is the ratio of size of the feed to size of

the daughter product at the point where = 1 in the Gaudin-Schuhmann

equation.

Characteristic Shape - When a homogeneous material is broken,

it breaks into a series of fragments, all of which have the same general

shape. The characteristic shape varies from material to material but

remains the same for a given material, irrespective of the size of

the fragment.

Characteristic Dimension - If the fragments of a particle are

all spheres, the characteristic dimension could be the radius or the

diameter. If the fragments are rectangular prisms, the characteristic

dimension could be the diagonal or one of the edges. The characteristic

dimension of the fragments may be chosen arbitrarily but once chosen it

must be the same characteristic dimension throughout the analysis. The

cube of the characteristic dimension is proportional to the volume of

the particle.

Size Frequency Distribution - When a particle, such as the drink-

ing glass breaks, there are many fragments. The fragments are of dif-

ferent size, or to be more precise, the size of the characteristic di-
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mension is different for each particle. If a plot is made of the

frequency of occurrence of fragments of a given size versus size,

there results the size frequency distribution. This is a frequency

distribution of a continuous random variable and has the property

of an'integral betwee the "smallest and,.largest sized ,particle which is

equal to one. The size frequency distribution is a mathematical fre-

quency distribution.

Mass Frequency Distribution - This is similar to the size fre-

quency distribution except that the frequency of mass is plotted

versus size. It, too, is a mathematical frequency distribution.

CWF or Cumulative Weight Finer - The CWF, in mathematical terms,

is the cumulative frequency distribution of the massefrequency distri-

bution. In other words, the CWF is the integral from 0 to x of the

mass frequency distribution, x being any size between the smallest

and largest fragment.

Gaudin-Schuhmann Equation - This is an empirical equation de-

veloped by Gaudin and modified by Schuhmann(6) to express the CWF.

Weight Retained - The weight retained means the weight of fragments

retained on a smaller screen while passing through the larger screen.

Mathematically, it is the integral of the mass frequency distribution

between a given screen size and the next larger screen size.

Half-Life - The term half life is borrowed from physics and

means the time required for half of the particles of a given classifica-

tion to be broken.
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SINGLE FRACTURE

This chapter is concerned with single fracture. It introduces

conceptsp terms and models used in discussing single fracture events.

The basic assumption is that the material is homogeneous and conse-

quently has no grain size.

A single fracture event is considered to take place instantaneously4

For example, if a glass sphere is dropped on the floor and breaks this

is considered as one comminution event. Many fragments may be formed

but they are a result of a single comminution event or single fracture.

If subsequently one of the daughter products is broken this is a second

comminution event. Two comminution events cannot take place simulta-

neously. They must be seriated.

When a single crystal breaksthe result is many fragments. These

fragments vary in size. The usual way of reporting the experimental

data is to plot log weight finer than a given size versus the log size.

This is called the cumulative weight finer plot. The resultant plot

shows a straight line on log-log paper when the size is small compared

to the largest size fragment. In the upper size ranges the empirical

plot bends to the right of the straight line portion of the curves.

Three equations have been developed to describe the cumulative

weight finer plot. The first is the Gaudin-Schuhmann equation:

(2)
W tst
0

where W(x) is the weight finer than a given size xq a characteristic
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dimension of the particle, W is the weight of the sample, k is the

size modulus (or maximum theoretical size fragment) and m is the slope.

X
The size modulus k can be expressed as Xo where X is the size of the

r

initial particle and r is the size ratio.

The second equation was first developed empirically by Rosin and

Rammuler (1 and then derived theoretically by Gilvarry (3). It is

x

k -ek (3)
0

The symbols are the same as in equation 2. In this dissertation a

third equation is derived. It is:

=~x 1-_ (1-_ x) r(4
W Xo 0

The exponent r is the size ratio.

All three equations are plotted in figure 1, on log-log paper.

It is readily seen that if m in the Gaudin-Schuhmann equation is taken

as 1, then all three equations converge to a itraight line with a slope

of 1 when x is small compared to X . If the straight line part of the

curve is extrapolated to W/W = 1, then the intersection - = 1. This0 X r

is the size ratio. Physically, it can be interpreted as the ratio of

the size of the most prevalent weight fraction to the initial size. In

other words, when a particle is broke, the greatest frequency of the

x =1
mass appears at the size .* This definition is applicable only

0
to single comminution events.
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Size Frequency Distribution and Mass Frequenqy Distzibution

In this section a model is proposed and from it a theoretical

equation is derived which fits the experimental results better than

equations (2) and (3).

The model of fracture is as follows: surfaces randomly oriented

in position and direction pass through a crystal. The crystal frac-

tures along segments of these surfaces* All fragments have the same

shape.

The actual postulates made in the derivation may be stated as

follows:

1) All fragments of the fractured crystal have the same shape.

2) Any characteristic dimension of the crystal, such as an edge

or diagonal, which is cut by one of the randomly oriented surfaces is

equi-likely to be cut anywhere along the line segment by that surface.

The assumption that all fragments have the same shape puts constraints

on how the surfaces cut the characteristic dimension in other directions.

It is hoped that future work will uncover what restraints on the sur-

faces are involved to give a characteristic shape irrespective of size*

From these two postulates is derived a mathematical expression (see

pp.12-19) which relates the distance along the characteristic dimension

between two adjacent surfaces, s, and the frequency with which this dis-

tance A will occur. It is:

P 7( = (X9 -0 r -5)

0

where P 7() is the probability of the distance between two cuts being
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exactly 4, r is the number of surfaces cutting the characteristic

dimension of ieng-H X . The frequency distribution, correspondlng to

this probability is of course

f (4) -_ _Z _=)r (6)
dp X r 0

0

Equation 5 is used to derive the equation of cumulative weight finer

versus size:

1 - (1- Xr (4)
W x0 0

where x is the magnitude of the characteristic dimension of the frag-

ment, such as the edge of a cube, and X is the magnitude of the

characteristic dimension of the original particle.

Derivation of equation.)

To derive equations 4 and 5, consider a line segment, X in length,

cut by r surfaces. The object is to determine the frequency distribu-

tion of 4, the distance between any two adjacent cuts.

1 2 n- I n n+l n+2 r-1 r

04

00

Figure A-1

Let there be r cuts along the line segment (figure A-1). The cuts



will be ordered by calling the one closest to the origin the first, the

next, second, those 'to the last cut are called the rth cut. For the

moment let the nth cut be fixed at X and the n + 1st cut be fixed at

X n+. What is the probability that the nth and the n + 1 cuts will be

in a given position while there are (n - 1) cuts between 0 and the nth

cut and r - (n + 1) cuts between the n + 1 cut and X ?

Since the nomenclature used in this section is different from that

of elementary texts in calculus, a brief explanation is included. Be-

cause this approach requires a large number of both variables and con-

stants, subscripts are used to differentiate the variables as well as

the constants. The lower case x denotes a variable, and the subscript

denotes the cut with which the variable is associated. For example,

x. is the variable distance along the characteristic dimension to the
1

ith cut. In figure A-1, xn-l is the distance from the origin to the

n - 1 cut, which is not fixed. On the other hand, an upper case X

such as X denotes a fixed distance. X is the distance, a constant
0 n

distance, along the characteristic dimension to the nth cut, when and

only when that cut remains fixed at a given point. The upper case P is

used to denote a mathematical function of probability. P may or may

not be related functionally to P. . N(x,t) means that the fuinction:,N(x,t)
1 -10

is a function of both x and t. The function N(x,t) is the same function

as N(yt) but the variables are different. The nomenclature in this

dissertation is similar to that used in Wadsworthls(4) book.

The probability of the nth cut being at a point Xn distant from the

origin, is

100
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dx

Xn (7)
0

Similarly, the probability of the n + 1 cut being at Xn + 1 is:

dxnx + 1
X
0

The probability of having n - 1 cuts between 0 and X is:

nnn -i

(- ) (9)X
0

and similarly, the probability of having r - (n + 1) cuts above

X is
n+l

r -n-i
iX - X
[0 n + 1 (10)

X 9

The probability, P nXn+l) of having all of these events happen

simultaneously is the product of their individual probabilities

(X ) n-l dx dx+ 1  (xO - Xn+1rnl
P( n' n+) n- n)l
1-4 (X )n-l X 0 X X r-n-l

Equation 11 gives the probability that there will be n - 1 cuts be-

tween 0 and Xn, one cut at-X one cut at n + l, and-r - n - 1 cuts between

X and X . Since the r cuts were ordered after the event took place, an 0

multinominal coefficient must be used to determine all possible ways r

cuts can cut a line with only the nth, and n + 1st cut having a fixed

position. Since there are two groups of cuts, n - 1 below Xn and t - n - 1

A



above Xn + 1 the multinominal coefficient, a, is:

rl (12)
(n 1)j (r - n(12

Thus the probability, P (XnXn+l) of having r cuts at random on a line

segment, X in length, with the nth and n + 1st cuts fixed is a P(XnXn+l).
0 1-4

Thus

n-l
X rP n (__ (nn-n-l) dx dx (13)

5  n(n-l)1 (r-n-) X r 01- n n+l
0

What is of interest is the distribution of the distance between the

nth and the n + 1st cuts. Let 4 be the distance between the two cuts,

At this point, the position of the nth and n + 1st cuts are allowed to

vary, that is X becomes xn, X n+ becomes xn+l and

- x (14)
n+1 n

Rearranging

n+1 + x (15)

The first step, after Wadsworth(15), in deriving the distribution ofp

is to regard xn as fixed while xn+l varies. The derivative of xn+l with

respect tQ p holding x fixed will be a partial derivative. Thus,

xn+
~Xn~ 1(16)

The joint distribution of p and xn is given by equation 13, where

- -a



0 X x Subs

equation 13

P6 Xn) I 0 1

Since this equation c

the equation will be

This can be done beca

independent variables

its limits, the indiv

lower limit of x is

I3.

A

tituting the values of equation 16 and 15 into

n n-1 X0 - - xn r-n-l d*dx (17)

)ntains both 4, the desired variable, and xn'

integrated with respect to xn to eliminate it.

us6 equation 17 is a joint distribution of two

. By integrating one of the variables between

[dual distribution of the other is obtained. The

zero.

n (lS)

The upper limit of Xn is fixed by equation 14 for when xn+l is at

its maximum:

x n Xo -p (19)

Integrating equation 17 and putting in the limits for xn

(x n) n-l ((X -xn )r-n-1 dxn (20)

The form of the integral can be changed by defining a new variable y

such that

x = y (X&-.g)

dx = (X0-1u) dy

(21)

(22)

P ()= a X r du f

0
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Substituting the values of xn from equation 21 and 22 into equation 17

P7() = a X r (X) r-l (n-1 _Y)r-n-1 dy (23)

The integral in the equation is a beta function

f n-1 ( 1 -Yr-n-1 dy = (n, r-n) (24)

This beta function can be expressed in terms of gamma functions

F(n) F(r-p) (5(n, r-!n) (r)(25)

Since both r and n are integers:

L'2WJ T~x7+(26)

Thus the integral of equation 24 equals

1f n-1(1 ) r-n-l dy = (n-l)i rF )i (27)

Substituting the results of equation 27 into 23

P7 () (X -)r-d (2$)
X
0

Equation 28 is identical with equation 5.

Equation 28 can be interpreted as follows. P7( ) is the proba-

bility of obtaining a distance of exactly p between two adjacent cuts.

Though the equation was derived by considering the distance between the

nth and n + 1st cut, n does not appear as a parameter in the final equa-

tion. Actually this is not strictly true in this case, for the deriva-



tion of P7( ) was for one specific line. Once the distance between

two cuts has been fixed then all the other r - 2 cuts must fall within

a distance X0-p. However, if one considers what happens when a large

number of particles are broken then this restiction tis removed. Thus

p may be regarded as the distance between any two adjacent cuts regard-

less of where the cuts were. This is significant for it simplifies

the mathematics.

A relatively simple check can be made on equation 28 to see that

it is a distribution function. The probability of i being between 0

and X is 1, because the distance between two adjacent cuts must be

equal to or greater than zero but equal to or less than the length of

the line being cut, X . TherelOre, the integrand of equation between
0

0 and X must be 1.

0 X 0X0

f P() =rr f (X0 -)r-l d4 (29)

0 0

Let

W = (X 0- L) (30),

Thus

dw = - (31)

Substituting equation 30 and 31 into 29

X 0
0

P (4) wr- dw (32)

f 7 X

X

I

0
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x0

X r

P )= + 0 (33)

0

This shows that equation 28 has the property of a distribution function.

Derivation of CWF equation (equation 4)

From equation 28 it is possible to derive an equation for CWF.

The relative volume of a fragment of characteristic size p and one

of the original size X is ( ) . Hence the abundance S(p) of particles

of size p equals the probability of fracture pieces being of that size,

given by equation 28 divided by the relative volume ( ) , or
, o

X 3
S 0 r
AL3  xr ( x 0 -~

0

df I (34)

The mass of particles of size A, M(A), is

number of particles of size p by the mass

X 3

x3M(AL) = Ss)Q4 PAL =p 0

0

In this equation p stands for the density

the shape factor such that

obtained by multiplying the

of each particleA pf 3

r-
r(X0-4):, dp4 (35)

of the particles and A for

(36)
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where V is the volume of the particle having a characteristic size p.

M(g) can be interpreted as being the infinitesimal mass of frag-

ments having exactly this size p. Normally the integral of this expres-

sion is used in presenting data. If the integral is between 0 and a

given size x, it is called the CWF plot. If on the other hand, it is

between x1 and x2 where x, and x2 may be two seriated screen sizes, then

it is the weight retained equation. Since most data in the literature

are presented in terms of CWF plot, the integral from 0 to x will be used.

The integral of M(A) is defined as W(x) in the following manner:

x

W(x) = M(p)4 (37)

0

After differentiating

dW (p) =M() c4 (38)

Substituting the value of M(s) obtained in equation 35

dW (4) AP0r r(X p ) r-1l (39)

0

Setttng up the integral between the limits of 0 and x

x

W(x) 0 T r (XosfrL1 (40)

0 f
0

On completing the integration, inserting limits, and simplifying:
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W(x) =pX03  -(1 - )r

The weight of the original crystal is -X where X is the

cube of the characteristic dimension, A is a dimensionless number which

corrects for the shape factor to- give the true volume and p is the density.

w 0 =kpx 0 3 (4+2)

SubstigUti tn this result in equation 42

x1- (1 )r3)

0 0

Qomparison of this CWF equation with other equations

Equation 43 is the same as equation 4. All that remains is to com-

pare it to the Gaudin-Schuhmann and the Gilvarry equation* Let:

X =rK (44)

where K is a constant to be defined later.

Substituting this value of X in equation 43

W - x1 ) r - (45)W rK
0

Expand the righthand side of equation 45 by the binomial theorem.

x r (r - l x + r (r - 1) (r -2), 3(46)
T K r2 21 K r3 31 K
0

Dropping all but the first term

W = X (47)w K
0
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Hukki(5) found that m, the slope of equation 2 was one for a

single comminution event. Consequently, equation 2 and equation 447

are equivalent if:

K = k, (48)

that is if the constant K introduced in equation 44 is the modulus

of the product.

Charles defines reduction ratio, R, as the modulus of the feed,

kf, divided by the modulus of the product, kp,

R kfR = k f
k
p

In the case of single comminution event this is

x
R = --

(49)

(50)

By virtue of equatiors 45, 49 and 50, r is similar to the reduc-

tion ratio
x

r = R = 04- (51)

The significance of equation 52 is that r, the number of surfaces

cutting the characteristic dimension is similar to the reduction ratio,
x

R, and the-size modulus k is equivalent to in the case of a single
r

comminution event. This equivalence is true only when the size ratio

is greater than 1.

Equation 45 may be rewritten so that:

W - W(x)
0 -( )r (52)

W rk
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Now, define Q as the cumulative weight of material greater than

a given size x. Thus:

Q =W - W(x) (53)

Substituting the value for Q in equation 52

(1 _ )r (54)Wo rk

Equation 54 is the alternate method of presenting 45. These two

equations both describe the size distribution to be expected from the

fracture of a single, homogeneous crystal. It is of interest that the

slope of equation 47 which is the approximation of equation 45 has a

slope of 1. This is the experimental verification of Hukkirs(5) con-

tention that the slope of the fracture of a single crystal is one.

Gilvarry 13), by considering edge flaws has derived an equation

which is similar to the Gaudin-Schuhmann equation. Using the same

nomenclature, the Gilvarry equation is:

x - e-x/k (55)W
0

Expanding and dropping the higher order terms of (x) this equa-

tion becomes

(56)
Wo k

This is the same as equation 47 and approximates equation 2 if

the slope, m, equals one. Equation 55 agene li en

e p lit size ranges.

Unfortunately, the Gilvarry equation does not conserve mass, for



in the interval between 0 and X the fraction of the mass, (W ), is
0

less than 1 for all finite values of x. This means that particles

larger than the original must be considered if the mass is to be con--

served. This appears to be a contradiction of the bourday condition.

The Gaudil-6chuhmann equation, while conserving the mass at finite

sizes, has never fitted the experimental data in the upper size ranges.
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REPEATED FRACTURE

Repeated fracture is the sum of a series of individual, sequential

comminution events. In repeated fracture both the initial particles

and their daughter fragments are broken. It is as if a drinking glass

were broken on the floor and then a hammer were used to pulverize the :

fragments.

In a ball mill, large particles are broken and fragments of th4

large particles are again broken in later, individual comminution events.

This is the way which almost all commercial comminution devices operate.

In this 6ection a method for predicting the results of repeated comminu-

tion-of homogeneous solids will be proposed. A mathematical model will

be set up. Analytical and numerical solutions will be given in the

section on results.

As delineated in the section on Single Fracture a single comminu-

tion event produces a mass frequency distribution. Likewise, the sum

of a series of individual comminution events will produce a mass fre-

quency distribution. If one knows the input to a comminution device

and the particles Which have been comminuted, one can predict the out-

put mass frequency distribution.

For example, if the input were two water tumblers, both of which

were broken on the floor and the pieces larger tha one inch were broken

with a hammer, then the output mass frequency distribution could be pre-

dicted. One only need know the input and what transpired to predict

the output.

The model of repeated fracture presented consists of three parts:



the concept of the half-life of a particle, how the half life varies

with time; and the size ratio of an individual particle when it is

fractured. Experimentally, each of these three parts can be measured

independently of the other two.

The concept of half-life of radio isotopes is clearly established.

The concept of half-life of a particle in a ball mill is essentially

the same. If one starts out with 100 particles of ia given size,,how

long is it until only 50 of the original particles remain? That length

of time is called the half-life, It is assumed that the half-life does?,

not vary with time.

As the half-life of radio isotopes varies from isotope to isotope

so one would expect the half-life to vary with the size of the particle.

It is possible to derive how the half-life of a particle will vary in

rod mills and in ball mills.

The basic assumption made is that the probability of a particle

being broken is independent of the mill loading. That is to say, if

a particle is in the path of a descending ball it will be # oken ir-

respective of the number of other particles in the path of a descend-

ing ball,

If a particle, assumed to be a sphere, of radius x is to be broken

by a ball of radius R, then the particle must be within a radius y of

the contact point of the ball and mill. See Figure A-2. Consider now

the line running from the center of the ball to the center of the sphere.

Its length is R + x. Consider now a perpendicular projection of the cen-

ter of the particle on the vertical radius of the ball. Call this point,

I



24.

P. The distance 0 P is (R - x) in length. By simple geometry

0
(R + x) cos Q = (R - x) (57)

0

Ball or Rod
R x

Particle

xP
yP --- 4

Surface of Mill Shell
Figure A-2

Dividing by (R + x)

cos G = -~ (58)
R + x

By deifinition of a sine and the Pythagaren theorem

2 2
sin G 2R 2)(R x (59)

(R + x)

Collecting terms

sin 9 (60)

Referring to Figure A-2



y= (R + x) sin g

Substituting the value for sin @ obtained in equation 60

y = 2T

This is an exact derivation. Equation 62 may be written

y =(2-\J) V

25.

(61)

(62)

(63)

The results obtained in equation 63 are also obtained if one con-

siders the case of a ball in a large cylindrical mill. Figure A-3

or the collision of two balls, Figure A-4. Naturally the constant in

B4Ad o#od
Ball or Rod

Particl

Particle

x
ShellB

of kill -eyBal'l1 or Rod

0

Figure A-3 Figure A-4

front of the differs in each case. Equation 62 and 63 are

equally valid for rods in a rod mill, providing the axis of the cyl-

inders are parallel.

The question to be settled is: how does the probability of a

particle being broken vary with the size of the particle? In a ball

mill, all particles within a radius y, see Figure A-2, will be broken.

Thus the probability is:
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Ty 2
P =T-y (6/+)A

m

Where A is the area of the mill.m

Substituting the value of y from equation 63

p (65)
m

Since the radius of the ball, R, and the area of the mill, Am, are

constant, the probability can be expressed ass

P = cix (66)

where c1 is a constant. The conclusion is that the probability of

breakage of a particle in a ball mill is proportional to the' first power

of the radius of the particle.

In a rod mill, all particles w1thin a distance y of the center

line of contact will be broken. Thus, for a unit length, L, of rod

the probability of a particle being broken is:

2Ly (67)

Am

Substituting the value of equation 63

P A (68)
Amm

Since A , R and L are constant, equation 68 may be expressed as

P = c2V/ (69)

where c2 is a constant. In a rod mill, the probability of a particle

being broken varies with the square root of particle size. This is



very different from the ball mill where the probability of being broken

varies with the first power of particle size.

The results of this analysis suggest that the rod mill does more

grinding of fine particles than does a ball mill. Thus one would ex-

pect that when attempting to grind a material a rod mill would be used

first for general grinding followed by a ball mill for selective grind-

ing of the larger particle. :In- practice a ball mill is generally used

after a rod mill, but for other reasons than more selective grinding

of the larger particles. No doubt there are factors not considered here

that intervene.

A stamp mill can be analyzed in a

similar manner. A flat bottomed plunger

strikes the material on a flat plate. The

probability of being broken, P(x), is equal to

a constant. Thus it can be said that

P(x) = cx . In this equation the exponent

of x has thk value zero. Figure A-5

In general, one would expect that the probability of grinding

would have an equation of the form:

P = c X9 (70)

where g, a dimensionless exponent, has a value between 0 and 1 or per-

haps 2, and depends on the comminution device.
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A MATHEMATICAL MODEL OF REPEATED FRACTURE

With the development of the CWF equation for single fracture and

the development of P(x) for particle size, it is now possible to de-

rive an equation which expresses the CWF for repeated fracture. This

CWF equation is a function of both time and size. The solution of

the equation appears later in the text.

To develop the mathematical model, a mass balance is made on the

number of particles of exactly size x. The number of particles of

size, x, at time, t, is defined as N(x,t). The instantaneous change

in the number of particles, t must be equal to the number of

particles entering the x size range, as fragments of larger particles,

minus the number of particles leaving the size range because they are

broken. This can be expressed as an equation:

2) N (x.t)'_
t particles entering - particles leaving (71)

The number pf particles leaving the size range x is equal to the

probability of any one partiple leaving per unit time, P(x), times

the number of particles in that particular size range, N(x,t). There-

fore equation 71 can be written:

particles entering - P(x)N(x,t) (72)

It should be noted that the probability of a particle leaving a given

size range does not vary with time.

The number of particles entering the size range, x, is a little



29.

more complicated. In order for a particle to enter size x it must

be a fragment of a larger particle which is broken. Let y denote the

size of the larger particle. The probability of a larger particle be-

ing broken in a given length of time At is P(y) and the number of

particles of size y at time,,.t, is by definition N(y,t). Therefore

t
the number of particles of exactly size y being broken in A is

P(y)N(y,t). Equation 34 expresses the relative abundance of particle,

SW), as a function of initial particle size and reduction ratio. The

equation may be written

S(x) = r (y - x) dx (73)
x r

Y

This equation is comprised of two parts: the infinitesimal, dx, and

the frequency, Y r (y - x)r-1 of a particle of size x occurring;
x3 r

Y

this might be termed f(x). Actually f(x) is the frequency which a

fragment of size x occurs when a particle of size y is broken with a

size ratio of r. By multiplying the number of particles of size y

being broken by the frequency of occurrence of fragments of size x

formed by the fracture of a particle of size y gives the number of

particles of size x formed by the fracture of P(y)N(yt) particles.

It is P(y)N(y,t) f(x). This, however, is only the number of frag-

ments of x formed by the fracture of particles of exactly size y.

Since y can be any particle size greater than x but equal to or less

than X0, the largest initial particle, then, to obtain the total num-
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ber of fragments of size y one must integrate the expression from

x to X . In other words, x : y Xo and thus the total number of

particles breaking into fragments of size x in time t is the integral

of y from y x x to y = X w It is:

0X

to 3
no. of fragment of size x P(y)N(yt) X (y - x)rdy (74)

x

Substituting this result in equation 72:

X
0 3, r-l

bN x.t) - P(x)N(xyt) + P(y)N(y.9t) y -r (y x) dy()0Y

x

Note that the integral is on y, not x.

This equation can be put in a more manageable form if equation 75

is multiplied byQAx3:

X
r0

x3N(xt)] -P(x) Ax3N(xt) + P(y y3N ,t) r(YX)r- dy

(76)

The number of particles of a given size x, N(xt), times the mass

of a particle of size x, PAx3, is the mass of particles, M(xt) of size

x. Substituting this iri equation 76

X
M~x.t) 0 (y~) r YXr-1

= - P(x)M(xt) + P(y)M(yt) r(-x)
x1 r

x
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This integral-differential equation is valid for comminution devices

so long as the P(x), the probability of a particle being broken, does

not vary with time. Unfortunately, analytical solutions have not

been found for equation 77, except in very special cases. It can be

solved numerically however. The analytical and numerical solutions

follow.
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ANALYTICAL SOLUTIONS TO EQUATION 77

Equation 77 can be solved under special circumstances. Two such

solutions are presented below.

1) Decay of feed size material in product.

Consider the case where all the material is initially of size X .

Since there is no material larger than X0, the amount of material en-

tering from a larger size range is zero. Thus equation 77 becomes:

M(X0 ,t) = - P(x0 )M(x, t) (78)

Since X is a constant, this equation is equivalent to

dM(X 0,t)

dt 0)M(X0,t) (79)

Separating the variables

dM(X , 't)
dXt - P(x ) dt (80)

M(X 0,t) 0

Integrating

Log M(X09 t) = - P(X0)t + Const = - P(X0)t + log f(X0) (81)

M(X0,t) = f(X )e 0 (82)

When t 0

M(X , t) = M(Xo,0) (83)

hence, from equation 82:

M(X00) = f (x) ((84)
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Consequently equation 82 becomes:

M(X0,t) = M(X ,)e 0  (85)

The amount of initial material of size X0, M(X'0) is a constant, M0

M(X ,Q) = Mo (86)

Thus equation 85 becomes:

M(X0, t) = M 0e ) (87)

Equation 87 predicts an exponential decay of the material in a given

size fraction, if no new material is entering that size range.

A very similar example is where the material in a given size frac-

tion is tagged either chemically or radioactively.(06) Since the ma-

terial is tagged for one, given size fraction, no new, tagged material

can break into that size fraction. Consequently, the tagged material

which remains in that size fraction is also predicted by equation 87.

2) Genexal Rlution for fixed values of parameters

Consider the case where:

i P(x) +cx, c being a constant

ii r =1

Equation 77 becomes

X

M(x,t) = - cxM(x,t) + c M(y, t) dy (88)

x
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let:
x

R(x,t) = + cf

X

0

M(y, t) dy

Differentiating 89 with respect to x

- R(x,t) = cM(x,t)

In this differentiation, note that

(89)

(90)

the limits between which M(y,t)

is intograted affect variables in the derivative.

Substituting equation 89 and 90 into 88:

1 62
c'a 6x 6t

xR(x,t) -x -R(x,t) - R(xt) (91)

This is equal to:

6t x R(x,t)
- - xR(x~t)]

Integrating both sides with respect to x:

t R(x,t) = - cxR(x,t)

Divide by R(x,t):

-R(x,t) - cx

Integrate with respect to t:

(93)

(94)

log R(xt) = - cxt + h(x)

(92)

(95)



in which h(x) is an arbitrary function.

Anti logging:

R(x,t) = g(x)e-cxt (96)

-g(x) is an arbitrary function which is the anti log of h(x).

From equation 89:

R(X 0,t) = 0 (97)

for all values of t. Hence

g(X 0 ) = 0 (98)

Equation 96 is the general solution of equation 93. Thus from 89 and 96

x
0

M(yt) dy = g(x)e-cxt

Differentiating

-cxt
-M(x,t) = c

Initially

M(x,0) = f(x)

At time t = 0, equation 100 becomes

M(x,) =- -F g

Thus

(x) = - cf(x)

cf

x

(99)

[ - g(x) - ct g(x) (100)

(102)

(103)

35.
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If g(x) is defined in the following manner

g (x) = c f

x

f (y) dy (104)

(105)

When x = X then:
0

g(X0 ) = 0

This conforms to equation 98. Equation 100 becomes

M(x,t) = e-cxt ct f(y) dy + f(x)]

x

(106)

A critical test of equation 106 is the conservation of mass for

all t. Substituting equation 89 into 96 and setting x = 0

x
-R(Q,t') = 0

0

From equation 104

x

g (0)

M(yt) dy = g(0)

0

f (y) dy

0

The integral of f(x) from 0 to X is the initial mass, M . From

equation 1 97 and 108f 01 x0
M(y, t) dy J

0

f (y) dy = M (109)

(107)

(108)



37.

Since M(x,t) is a function of x and t and the integral over all x

is constant for any t, then the mass is conserved for all time, t.

Equation 106 expresses the mass frequency distribution as a func-

tion of both time and size. It does so for any initial input. The

conditions chosen are those of a ball mill. The restriction that the

:si'z. rAtie dis. equal to 1, r = 1, is severe. However, equation 106

does show hoW a solution would be expected to behave if analytical

solutions could be obtained. One of the outstanding characteristics

of the equation is the exponential decay that the term e-cxt imposes on

rX
the equation. The other feature is that the term ctf 0 f(y) dy will,

0

at firsty cause an increase in the material in a given size range x

but the exponential multiplier eventually causes the maierial in size

range x to decrease and vanish. It is important to remehiber, however,

that the mass is conserved at all .times.

Equation 77 has been solved numerically for a number of values

of r and P(x). To compare the numerical solution with the one derived

in this section, set

x U x X

f(x)dx (110)

0 f 0 x X: X

In other wordsthe integral of the function f(x) is zero for x less

than X ,and is equal to U0 for x = X. Essentially the integral of
0 s s

f(x) is a step function.

- '1
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The form in which the numerical data is plotted is weight re-

tained between two different screen sizes. The screen size openings

vary by a ratio of 2. In terms of R+-t) this is:

U(xt) = R(2xt) - R(xt)

From equation 89, 106, 109 and 110

X0 X 0

U(x, t) = ecxt f(y) dy - e-2cxtf

x 2

f (y) dy

(111)

(112)

xc0U 01e -cxt -e-2cxt]

U(xt) =

U e-ctx

dividing by UO

U
0

{-cxt --2ctx
e -

-cxte

(113)

x = X

(11/)

x = X0

Solving for a maximum value of U(x,t) With respect to X.

dU(x.t) 0 = -ctectx + 2 cte-2ctx
dx

Dividing by ct, multiplying by e+2ctx and transposing

(115)

I



e+ctx 2

Logging and solving for x

x lin 2 =ct ct

Substituting this in equation 114 the maximum value of U(xt) is

Umax (xt) = .25 at x = 1

if c = 1/2.

39.

(116)

(117)

(118)

I
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METHOD OF NUMERICAL SOLUTION OF EQUATION 77

Since equation 77 can only be solved in certain specific cases,

numerical methods must be used for a wider variety of solutions. The

grinding process is considered a Markov chain and solved as such for

various times.

Equation 77 is the basic equation to be solved and is:

X

o( x, t) =-P( x) M( x, t)+ P (y) M(y, t) r (I-x r-l

x

(119)

If small increments of time, At, are taken r M(x,t) can be approxi-

mated by

(120)

t t) can be represented as:

( x, t) =M(Xqt+ 1) - M(Xtn)
At ln

Where:

At=+t -tn =

(121)

(122)

Hence, equation 119 can be written as:

X ( r- 1
M(x,tn+1) -M(Xtn) = -P(X)M(Xtn) + P(Y)M(y, tn) X) dy

X1

Rearranging terms:

(123)

I

6M( xt) . m( xt)
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M(xjtn+i) [1-P(x)] M(xtn) + f P(y)M(ytn) r dy (r24)

x

Attempts to develop a difference equation from equation 77 were un-

successful. However, this equation can readily be expressed by a

Markov chain. It is not the purpose of this dissertation to develop

the use of Markov chains or matrix algebra, The reader is referred to

books by Feller(I$) and Hildebrand . However, a brief explanation

will be given. The matrix below is an m by m matrix. There are m

rows and m columns. All matrices in this diertation are 20 by 20.

Column

Row 1 2 3 m

1 11 a12 a 13 alm

2., 21 a22- 23 a2P
2. a2 a a2 a

M aml am2 am3 anin

See Fig. A-6. Each position in the matrix is designated by a coeffi-

cient with 2 subscripts, a. The first subscript designates the row,

and the second subscript designates the column. For example, the co-

efficient a26 is the coefficient in the second row and the sixth column.

To make a Markov matrix t6 represent equation 124,the largest

size fraction of material is designated m. The size fraction m means

X
al materil in the size ranga of to X. Likewise the size fraction m-1

-. I
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ROW 2

ROW 3
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FIG. A-6 MARKOV MATRIX
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X X
means all material in the size range X to . For the coefficient

a is put the fraction material in size range m will remain in that

size range after a time A t. For the coefficient alm is put the frac-

tion of material which broke from size range m to size range m-1 in time

At. For the coefficient a is put the fraction of material which
m-2, m

broke from size m to size range m-2 in time . t. In other words, column

m is a weight retained screen analysis of the material after time 4 t

if all the material were initially in size range m. The screens are

a geometric series with a ratio of two between screen openings. Column

2 is very similar to column 1 except it is a weight retained screen

analysis of all material which initially was in size range m-1. Con-

sequently, amm-1 is zero, for no material can break from size m-4 to size

m. Column m-2 is a screen analysis of all material which initially started

from size range. m-2. Thus amm-2 = am-1 m-2 = 0. The other columns are

made up the same way. The sum of the coefficients in each column is one

because the material which started in a given size range must end up in

a some size range if the mass is to be conserved. Consequently, all co-

efficients in row 1 represent the cumulative weight finer material below

size range 2, (m-19).

If the initial Markov matrix, [V] , is post multiplied by a screen

analysis of the feed, a column matrix, [F] , the result is a screen anal-

ysis of the product, a column matrix, 9 , after one time interval, A t.

[V] . [F] [G (125)

Now [G] can be considered the feed for the grinding during the second

-~ <4
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t. Thus:

IV] .[o] =[92] (126)

Substituting equation 125 in 126

v . v F =[ (127)

Carrying out the matrix multiplication

[V] 0 [F] = (128)

In other words, if the column matrix [F] is premultiplied by the square

of the initial Markov jiatrix then the result is the product matrix, [G2]
after 2 intervals of time, A t. In a like manner, the product after 4

time intervals, [Q] , is obtained from the following equation:

[V] 4 IF] [Q4] (129)

After 8 time intervals:

8
IV] . F] =[j (130)

In equation 124 there are two arbitrary parameters and one arbi-

trary function. The arbitrary parameters are r, the size ratio, which

influences the shape of the screen analysis and X0, which is the largest

initial particle, The arbitrary function, P(x), expresses theway the

probability of a particle breaking varies with size for a fixed time, A t.

X is the largest size particle and all other particles size, x,
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are expressed as the ratio, x/X0. Essentially, this means that column

20 in the matrix initially contains particles of size X0/2 to X column

19, X0/4 to X/21 column 18, XO/8 to X0/4 etc.

The size ratio, r, determines what fraction of the mass will fall

in a given size fraction if equation 35 is used to express the mass fre-

quency distribution. Four different size ratios were used: r' 2, 4, 8

16 and so designated. To test the effect of another mass frequency dis.-

tribution, a Gaudin-Schuhmann equation, was used. It is:

M(x) O x-(131)X+

When equation 131 was used, the matrix was entitled R = 4, S = 1.

The arbitrary function P(x) designates how the probability of a

p4ticle breaking varies with size. Five different functions were used.

In each case the function was constructed so that 50% of the particles

most likely to be broken would be broken. The functions were:

(x) = 0.5 0 x X0  (132)

P(x) =0.5 (.~)1/2 0 x X (133)

XX

0

P(x) )05 (x )l 0 x (134)
0

P(x) =0.5 (2H2 0 X X (135)
0

x x(0.5(16,!-)
0 0 1

(x) (136)

+ x

-,.5(x 32'
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The P(x) function in equation 136 was designated as P(x) = comp. 1.

All the others were expressed as:

P = 0.5 EO; 0.5 El/2; 0.5 El; 0.5 E2

where EQ mmns (--; El means (x)l etc.
0 0

The matrices are designated in the following manner MARKOV t = 32,

P 0.5 El/2, R = 8. This means that it is the initial Markov matrix

raised to the 32nd power (l.e, when 32 At's had elapsed). The arbi-

trary probability of breakage function is:

P(x) = -5(x )l/2 (137)
0

and the reduction ratio is equal to eight.

The Markov matrices alternate with the output matrices. The out-

put matrices are the product of the preceding Markov matrix with the 20

by 20 feed matrix. The feed matrix consists of screen analysis of 20

possible feeds. The output matrix consists of the predicted screen

analysis of 20 products for the 20 given feeds. Thus column 1 of the

matrix designated OUTPUT t = 32, P = 0.5 El/2, R = 8 is the pre-multi-

plication of the corresponding Markov matrix with column 1 of the feed

matrix. In other words, column 1 of the output matrix is the predicted

screen analysis of the feed in column 1 of the feed matrix for 32 A t's

plus the other conditions.

Since the squaring of a 20 by 20 matrix using a hand computer takes

about one week it was not possible to do the work by hand. Instead the
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calculations were performed on the IBM 709 computer. A general purpose

matrix abstraction program, called 9MA, was used.

The program may be obtained from Share. The instruction to the

computer and the data appear in the appendix. Also both the Markov and

Output matrices are tabulated in the appendix.

A
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RESULTS

The results are divided into three parts. The first is the derived

equation for the mass frequency distribution; a comparison of the derived

equation with other experimental and theoretical plots is given in figures

1-3. The second part is the analytical solution to equation 77, the in-

tegral differential equation. The solution is derived in a previous

section and the results for a given set of boundary conditions are plotted

in figure 16. The third part is the numerical solution to equation 77

with different boundary conditions. The tabulated results of the calcu-

lations appear in the appendix. Selected results have been graphed in

figures 6-15 and figures 17-29. These results may be compared with the

analytical solution in figure 16 and the experimental results in figures

4, 5, 30, 31, 32 and 33.

The mass frequency distribution, MFD, of the fragments of a particle

broken once is derived in the section on Single Fracture. In the inte-

grated form, this MFD expresses the weight of material finer than a

given size x. Equation 47is:

- (1 - -)r (138)W X
0 0

in which W(x) is weight of material finer than size x. W is the total

weight of the initial particle, X is the characteristic dimension of

the initial particle and r is the size ratio. Figure 1 is a comparison

of three curves which represent CWF, cumlative weight finer, of a

particle broken once. One curve is a plot of equation 138 with W0 = 1,

<A
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X = 1 and r = 2. The second curve is a Gaudin-Schuhmann equation and
0

is:

(rx)m (139)W 0 X0

where W 0, X0 and r have the same values as before. The slope, m, is

set at 1 to conform to the other two equations and the experimental re-

sults of Hukki(5). The third equation is the one derived by Gilvarry (13)

and is:
rx
X

W 1 - e 0 (140)
0

where W , X and r are as before. In the smaller size ranges, all three
00

equations approach one another asymptotically and have a slope of 1. The

derived equations bend to the right of the Qaudin-Schuhmann equation.

At x = X the Gilvarry equation states that the amount of material equal to,
0

or finer than, the original particle size is 86.5% of the original mass.

This equation does not conserve mass, whereas the derived equation does.

In figure 2 experimental data from Hukkils(5) thesis is compared with

equation 140. Galena, the material being crushed, was chosen because

the initial particle size could be calculated from the initial weights

by assuming the particle to be a cube. The experimental results and the

derived equation closely agree. The full plot of Hukki's(5) data on

galena is shown in figure 3. A comparison of figures 1 and 2 show that

the other two CWF curves would not fit the data as well.

An analytical solution to equation 77 has been put in the sane form

(in equation 113) as the numerical solutions. Equation 113 has been plotted

A
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for 8 values of j t in figure 16. Figures 17-21 are numerical solutions of

equation 77 and differ from figure 16 only in the value of the reduction

ratio. Thus, figures 16-21 are a complete family of figures. It is in-

teresting to note the similarity of form. All the curves have the same

shape, spacing, maximum and evenness of plot. The numerical and analytical

solutions appear compatible. The slope of the curves approaches 1 in the

lower size ranges.

The third part of the results is the tabulation and plotting of the

numerical solutions of equation 77. The appendix contains the tabulation

of the solutions, and figures 6-29 are plots of the numerical solution

for the same boundary condition. The analytical solution in figure 16

also has the same boundary condition. The boundary condition was chosen

suQh that all of the material was initially at size X .

There are five sets of figures: 6-10, 11-15, 16-21, 22-25 and 26-29.

The first set of figures (6-10) represents solutions to equation 77 where

the probability of a particle being broken in a given length of time is

independent of size. The second set of figures (11-15) gives solutions

to equation 77 where the probability of a particle being broken is propor-

tional to the square root of the particle size. As shown in the section

on Single Fracture, this is the condition that would be expected in a rod

mill. One of the plotted curves in figure 11 is taken from figure 4.

In the third set of figures (16-21) solutions are given to equation

77 where the probability of a particle being broken is proportional to the

first power of the particle size. The fourth set of figures (22-25) gives

solutions to equation 77 where the probability of a particle being broken

A
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is proportional to the square of the particle size. The fifth set of

figures (26-29) is a composite of two probability functions. The

probability of a particle being broken rises linearly until the 2L ratiox
0

is 1/16 and then falls linearly. This may be the condition in a ball

mill where some particles are so large that they are not likely to be

broken. For example, in a ball mill the angle of nip may be exceeded

by the larger particle and thus greatly reduce their chance of being

broken,

Within each of the five groups there is a variation in the size

ratio, and a figure where the value of r is equal to 2, 4, 8 and 16.

The mass frequency distribution used with these four values is the one

derived in the section on Single Fracture, equation 35.

To test the effect of another mass frequency distribution, a Gaudin-

Schuhmann (6) equation with a slope of 1 and a size ratio of 4 was used.

The figures using this mass frequency distribution are figures 8, 13

and 19, while figure 16 has a size ratio of one. The curves in this

figure 16 come from the analytical solution of equation 77. They are

included in group 3 because they resemble the numerical solution so

closely.

(4)
Figures 4, 5, 30, 31, 32 and 33 are taken from Gaudin as examples

of experimental work.
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SUMMARY AND CONCLUSIONS

Three major areas of investigation were explored: single

fracture, variations of the half-life of a particle with size, and re-

peated fracture.

The investigation of individual fracture, based on a mathematical

model, led to a CWF equation

wx r1 1 )r (143)
o 0

As can be seen from figure 2 this equation fits the data well. The

mathematical model from which this equation was derived assumed that

all fragments of a fracture had the same characteristic shape. This

assumption has been verified experimentally insofar as the shape factor

has been explored. It is hoped that future work will reveal why particles

break this way, for the assumption constant shape implies that the par-

ticles are not broken completely at random.

Stamp mills, rod mills and ball mills were the subject of the in-

vestigation for determining how the half life of a particle varies with

size. From this investigation, a general conclusion was drawn that the

probability of a particle of size x being broken in a given length of

time is:

P(x) cxg (70)

where c and g are constants. The constant c depends on the length of

time .involved, and g ranges from zero to one or perhaps two. The derived

value of g for a stamp mill is zero; for a rod mill, one-half; and for a

ball mill, one. It was assumed during the derivation that all balls or
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rods were of the same diameter and that there was no effect of larger

particles shielding smaller particles. The simulation of the rod -mill

was more realistic than the ball mill.

The investigation of repeated fracture led to the developmernt of

equation 77, an integral differential equation. When solved, equation

77 expressed CWF as a function of both size and time. The equation was

solved analytically for special cases and numerically for a variety of

cases. The results of the solution are presented graphically in figures

6-29.

The simulation of the rod mill, figures 11-15, was quite effective.

The simulation of the ball mill, figures 16-21 and 26-29 was less effec-

tive. This may be due to one of several assumptions made about the ball

mill. It was assumed that all particles of the same size broke with the

same reduction ratio. This is not likely since some particles of the

same size will be more violently broken than others. The second assunj_

tion was that the size ratio did not vary with size. Intuitively, this

seems false, for smaller particles have less chance to resist the ball

than larger particles do. The third assumption was that all balls were

of the sa e size. This is known to be untrue. The fourth assumption

was that larger particles do not undergo surface spalling. This is also

known not to be the case.

Many of the assumptions that were made were known to be untrue, but

were assumed to play a minor role. However, if the model had included

these assumptions, it would have been more complicated and would have

required far more calculation to determine the effect of the varioks
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parameters. Later work can include the investigation of these parameters.

Figures 26-29 simulate a ball mill where the lirger particles have

little cance to be broken. These figures resemble those in figures

30-33 taken from Gaudin . The direction b>f increasing size is different

for figures 26-29 and figures 30-33. The double hump plus the deep trough

i indicate that it is relatively easy to simulate this action of a ball mill

by assuming that the chance a particle has of being broken increases with

size to a maximum and then decreases with size. Once again, only one

value of size ratio has been chosen and surface spalling has not been

considered.

The ability to simulate the shape of the product of grinding machines

by a relatively simple mathematical model is possible. Simple refinements

in the model will bring the results closer to that found in practice. In

conclusion, this model of comminution is valid for it accurately simulates

the output of a comminution device.
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FUTURE WORK

Listed below are some suggestions for future work which are an

outgrowth of this dissertation.

1) One of the basic assumptions made in deriving the mass fre-

quency distribution for single fracture of a homogeneous solid was

that all fragments have the same characteristic shape. This has

been verified experimentally down to size of one micron. However, in

the sub-micron range very little is known of the shape of the fragments.

2) The shape of the surface grinding curves in Figure 5 were not

simulated by. any of the models used. It is suggested that a P(x) = x

and a reduction ratio of r = 0.1 might very well simulate spalling in

both a rod mill and a ball mill.

3) No effort was made to determine the effect of varying the re-

duction ratio with particle size. It is suggested that this is probably

the case in grinding devices. The writer presumes that the reduction

ratio would get smaller with decreasing particle size.

4) No effort was made to use a spectrum of reduction ratios for

a given particle size. This certainly is to be expected for not all

particles of a given size break in the same manner. The expected ef-

fect would be to lower the peak and broaden the base of the curves.

'Me writer would presume that a Poisson distribution of the integers

about a chosen mean would be the initial starting point.

5) The model of a ball mill with particles so large that they are

unlikely to break worked fairly well, However, other models with other

variations in P(x) should be explored.
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6) The problem of grain size and preferential breakage were

not considered, It would be a relatively easy matter to set up models

of preferential breakage to find out which factors a'e governing. The

models should include variations in the CW curve for individual frac-

ture, systematic variation of r so that all sizes would tend to break

to a given size, and variations in P(x) so that larger particles would

break easily while smallericnnvs wouldn't.

7) A major goal is to represent complex materials consisting of

two or more phases in a manner whereby the locked particles would be

seiparately tabulated from the free particles of each phase. It is

possible to do this now but large matrices are required. Once complex

iaterials can be represented, it is only a short step to analyzing

-grinding circuits.

8 Once complex ores or materials can be represented, it is a

simple step to represent the ore by one matrix, the different machines

ty another matrix and the feed by another* An actual circuit could be

simulated and the product calculated. In fact, one can consider this type

of analysis similar to the analysis of an RLC electronic circuit where in-

stead of each element being represented by a pure number, it is represented

by a matrix. The resulting calculations would be similar except that

Matrix algebra would be used*

Using this approach one could set up and analyze the optimum grinding

circuit for a gived fo

-1
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