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Abstract

This thesis presents a new, systematic method of synthesizing an output feedback adap-
tive controller for a class of uncertain, non-square multi-input/multi-output systems. The
control design process consists of first designing an inner-loop controller for a reduced order
plant model to enforce command tracking of selected inner-loop variables, with an adaptive

element used to accommodate parametric uncertainties in the plant. Once this inner-loop

control design is complete, an outer-loop is then designed which prescribes the inner-loop
commands to enforce command tracking of selected outer-loop variables.

The main challenge that needs to be addressed when designing the inner-loop controller

is the determination of a corresponding square and strictly positive real transfer function.

The first contribution of this thesis is the design of a new procedure to synthesize two gain
matrices that allow the realization of such a transfer function, thereby allowing a globally

stable adaptive output feedback law to be generated. The unique features of this output

feedback adaptive controller are a baseline controller that uses a Luenberger observer, a

closed-loop reference model, manipulations of a bilinear matrix inequality, and the Kalman-

Yakubovich lemma. Using these features, a simple design procedure is proposed for the

adaptive controller, and the corresponding stability property is established.
The outer-loop controller is designed around the plant with existing adaptive inner-loop

controller such that global stability of the closed-loop system is guaranteed. The design of

the outer-loop uses components of a closed-loop reference model in a judicious manner which

enables a modular approach, without any re-design of the inner-loop controller. In addition,
this architecture facilitates the use of an additional state-limiter to enforce desired limits on

the state variables.
A numerical example based on a scramjet powered, generic hypersonic vehicle model

is presented, demonstrating the efficacy of the proposed control design. The six-degree-of-

freedom nonlinear vehicle model is linearized, giving the design model for which the controller

is synthesized. The adaptive output feedback controller is then applied to an evaluation

model, which is nonlinear, coupled, and includes actuator dynamics, and it is shown to result
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in stable tracking in the presence of uncertainties that destabilize the baseline controller.
Benefits of various aspects of the sequential and modular control design as well as its adaptive
components are clearly illustrated in this numerical example.

Thesis Supervisor: Anuradha M. Annaswamy
Title: Senior Research Scientist
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Chapter 1

Introduction

Automatic control has been used for thousands of years, dating back to the ancient Greeks

and a regulator for the water level in a tank. However, it was not until the development

of the modern steam engine in the 1 8 th century that the development of control theory

really began. With the steam engine came the necessity to regulate the engine's output to

a desired set point. For many years a lot of focus was placed on developing new regulators

for the steam engine, and developing the theory necessary to understand their operation.

Development of control systems continued in the 1 9 th century with applications in weapons

and ship steering systems, and then electrical systems. The first airplane autopilot was

invented by the Sperry Corporation in 1912. Since then, the control of physical systems

become increasingly important, including applications in aircraft, spacecraft, cars, and many

other sorts of vehicles. The control of such vehicles as since grown into the broad discipline

that is now called guidance, navigation, and control, or GNC.

In order to provide some context for the control architecture proposed in this thesis

as compared to existing approaches, an overview of the accepted definitions for each of

these terms is first provided: Guidance refers to the process of determining a desired path

for a vehicle to follow and generating the appropriate maneuvers for realizing these paths

[29]; navigation is the process of determining a vehicle's location, attitude, and velocity; and

control is the interface between the guidance system and the vehicle, providing the necessary

19



actuator inputs to stabilize and change the motion of the vehicle. There are many different

systems onboard a modern aircraft, and these systems can be delineated based on whether

they provide the function of guidance, navigation, or control. Stability derivative augmenter

systems, or stability augmentation systems (SAS) refer to systems which alter an aircraft's

stability derivatives by means of feedback control thus providing artificial stability for aircraft

with undesirable flying characteristics, without the pilots perception [1, 64, 73]. Also, control

or command augmentation systems (CAS) allow a pilot or guidance system to specify desired

values of certain aircraft motions, such as a desired vertical acceleration, angle-of-attack, or

roll angle [74]. These types of systems typically fall under the category of inner-loop control,

as they are typically represented in a block diagram as the inner loop, with an outer-loop

providing the function of autopilots, pilot relief, guidance, and navigation [104]. In making

this distinction between guidance, navigation, and control systems, the usage of the term

outer-loop controller is reserved to mean a guidance component which is capable of tracking

of variables which more meaningfully describe the path of an aircraft, such as flight path

angle, altitude, or heading angle.

Dividing the development of a control system into hierarchical structure with inner and

outer-loop design tasks has many benefits, both in aerospace and other control applications.

The first is that many control systems were designed when only an inner-loop was necessary,

with a human operator providing the function of the outer-loop. Thus significant knowledge

exists around how to design many the inner-loop control systems to provide the desired degree

of stability and robustness to the closed-loop system. Secondly, when using a hierarchical

structure, each successive loop is generating a command to the closed-loop system within it.

This structure, with the explicit calculation of commands by outer-loop controllers, facilitates

the limiting of of these commands. This is very valuable for many systems, including in

aerospace applications where the limiting of inner-loop commands may be necessary in order

to respect structural or aerodynamic limitations. Furthermore, a hierarchical approach is

desired in that designing controllers for several lower-order systems is often preferred over

designing a single controller for a higher order system. The hierarchical architecture is also
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advantageous in that the inner-loop is often used to provide system stability, with the outer-

loop providing guidance commands. In this arrangement, it is often desirable to be able

to change the outer-loop control law while maintaining the inner-loop control law. Lastly,

control practitioners have often found the sequential loop closure approach to provide more

robust control designs than single loop closure approaches in practice.

One industry in particular that has leveraged this approach to control design is aerospace.

Historically, the design of flight control systems has used sequential loop closure to synthe-

size feedback control laws. These control laws are typically designed separately for the

longitudinal and lateral-directional dynamics, as these dynamics are decoupled under most

flight conditions [89]. When closing each successive loop, practical experience, root locus

techniques, and frequency domain techniques are used to determine how to feed back each

specific measured signal, such as pitch rate or angle of attack, to a particular control surface.

In doing this, the aircraft could be given desirable closed-loop performance and stability

margins. Conventional control techniques such as classical sequential loop closure require

precise and accurate knowledge of the aerodynamic characteristics of the aircraft, and the

resulting controllers are designed with sufficient margins to accommodate any uncertainties

encountered during flight.

However, despite this hierarchical architecture having been motivated by applications in

the control of vehicles, and aerospace vehicles in particular, the benefits of such an approach

are applicable to many other applications, as described above. Regardless of the application,

much of the control theory that has been developed has been done so by using a model of

the system to be controlled. When there exists uncertainty in the plant model, many control

techniques are not sufficient to maintain stability, set point tracking, or command regulation

as desired. In these cases the controller may need to reconfigure itself to adapt to the true

plant as necessary. This kind of controller is part of what is now referred to as adaptive

control.
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1.1 Need for Adaptive Control

When designing controllers for modern systems, obtaining accurate values of the system

parameters can be challenging, thus making the process of designing a stabilizing controller

more challenging as well. This has led to an increased use of adaptive techniques to solve

control problems, with great success [59]. Adaptive control research was driven in the 1950s

by the need for autopilots for aircraft that operated in a wide flight envelope, across which the

aircraft dynamics change significantly [5]. While many other control techniques offer their

own unique advantages in certain applications, adaptive control is a particularly attractive

candidate for dealing with the problems associated with the control of aircraft including, for

example, hypersonic vehicles.

Aircraft dynamics can be reasonably approximated by a linearization about a trim flight

condition. The parametric uncertainties which are prevalent in aerospace applications such

as control surface ineffectiveness, unknown aerodynamic coefficients, center of gravity shift,

and more manifest themselves themselves in a way which is conducive to the design of an

adaptive controller. That is, many of the uncertainties associated with hypersonic vehicles

can be represented as parametric ones, entering the system through the control channels.

An adaptive controller can contend easily with these and ensure the desired closed-loon

performance is attained, when degradation of a robust baseline controller is inevitable. The

adaptive control structure taken in this thesis is then built around this linearized design

model with the parametric uncertainties.

Many such adaptive controllers have previously focused only on the problem of inner-loop

control [63, 79, 95, 96, 97, 100, 101]. This inner-loop design procedure enabled the design

of a lower order controller to provide stability in the presence of uncertainties, but have

not provided the ability to track meaningful flight trajectories; that is guidance loops were

typically not designed. The design of the guidance laws around vehicles with adaptive inner

loops is typically accomplished using ad-hoc methods, with stability and performance of the

closed-loop system only verified through simulation.

An alternative to the multi-loop design approach described above is to use a higher order
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model to represent the vehicle dynamics, and design guidance and control laws simultane-

ously. The result is a more complex controller with a greater number of integrators and

adaptive parameters. In Reference [39] an adaptive controller was designed for a linear sys-

tem which represents the longitudinal dynamics of a hypersonic vehicle. The controller used

feedback from all five state variables to each of the three inputs, with additional feed forward

terms, resulting in 24 adaptive parameters.

Other approaches have used sequential loop closure on higher order nonlinear models.

In Reference [35] the non-minimum phase dynamics typically associated with the transfer

function from an aircraft's elevator input to the altitude were overcome by the addition of

a canard, which would be practically impossible to implement on a hypersonic vehicle due

to the effects that aerodynamic heating would have an such a forward control surface. In

Reference [36] a canard is no longer used, and the resulting unstable zero dynamics associated

with regulating flight path angle using the elevator input are overcome using a non-adaptive

dynamic inversion controller with a low gain outer loop and saturation functions. Reference

[9] uses an adaptive dynamic inversion inner-loop control law, with a parameter identification

algorithm which requires the state derivative be measurable. The outer-loop is closed using

sequential loop closure, but no stability proof is provided to ensure stability of the overall

closed-loop system.

The sequential loop closure based approach developed in this thesis uses an adaptive

element to accommodate plant uncertainties, and leverages the benefits of using a hierarchical

approach. While the previous paragraphs have motivated the need for adaptive control and

described some existing aerospace applications and their drawbacks, the applicability and

benefits of a hierarchical adaptive approach extends beyond controlling aerospace systems.

In the following section the control problem is formulated with a general structure applicable

to a wide class of systems.
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1.2 Problem Formulation

Consider the following linear time-invariant system

:iw(t) = Awxw(t) + Bwu(t)

yw(t ) = CWxw(t) .)

zw(t) = CuzxW(t) + DWZu(t)

where xw C R"-, Aw E R"-X"w, Bw I E R xm and u(t) E Rm. yw(t) E RP-I"- is the measured

output, which represents a set of sensor outputs that are available for measurement, and

zw (t) E R new X"lw is the regulated output, which represents a particular set of outputs for

which command tracking is desired. Consider those class of systems in (1.1) which can be

partitioned as

[P(t) A, B x,(t) + B u(t)
O(t)J Bgp Ag x[x(t) 0

y (t) Cp 0 xp(t) (1.2)

y9 (t) 0 C xg(t)

z 9 (t) C oz 0 xD(tI) Dpz

zg(t) J 0 C z Xg (t) 0 u

where Ap E R"p " , A9 E Rnxn9 , Bp E Rflpxm, Bgp Rn9 xfp, Bgd E Rlpxg , C, E Rlpxnp,

C9 E RgXng, Cpz E Rnepxnp, Ce,, E R *,g and Dpz E R ep*xm are known matrices. The

measured outputs are given by yp(t) and yg(t), and the regulated outputs zp(t) and zg(t) cor-

respond to particular outputs for which tracking of command signals Zp,cmd(t) and Zgcmd(t),

respectively, is desired. The number of regulated outputs cannot exceed the number of in-

puts, that is n, ; m. It is very common to be able to partition systems in (1.1) as described

by (1.2). For example, many mechanical systems exhibit this structure, where the equations

with the subscript p represent the dynamics, and g the kinematics. The input u(t) to such a

system thus enters through the dynamics, with the kinematics essentially being integrations
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of the dynamic state variables. The outputs are often decoupled as well, with various sensors

providing feedback about the dynamics by providing velocities or accelerations, and other

sensors providing kinematic information such as position or orientation. The partitioned

structure of (1.1) as (1.2) is taken advantage of to facilitate the design of a controller in the

following chapters. Furthermore, for systems represented as in (1.2) the Bgd term is often

negligible, as this term represents the coupling effect of the the outer-loop kinematics on the

inner-loop dynamics, which is usually small.

The inner-loop dynamics in (1.2) can be written

4(t) = Apxp(t) + Bpu(t) + Bgdxg(t)

yW(t) = CPxM(t) (1.3)

zp(t) = Cp2xp(t) + Dpu(t)

and the outer-loop dynamics by

9 (t) = Agxg(t) + Bgpxp(t)

y9(t) = Cgxg(t) (1.4)

z9(t) = C9zxg(t)

Assuming Bgd = 0 allows the inner-loop dynamics in (1.3) to be simplified and given as

14(t) = Apxp(t) + Bpu(t)

y,(t) = CPx,(t) (1.5)

zp(t) = Cpzxp(t) + Dpzu(t)

The parametric uncertainties considered in this work manifest themselves in the linear system
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given in Equation (1.2) as

P+ BP'' Bd1 BA
( A BP Bg I xp(t) B A

+ U(t)
5,t)By A, xt 0

yM(t) C 0 xg(t)J

Ly,(t M_ 0 C9, x9 (t)i

z(t) C, + Dpz pT 0 xP(t) DpzA

zg(t) 0 Cgz x(t) 0

where the nonsingular matrix A E Rmxm and T, E RnpXm, which represents constant

matched uncertainty weights that enter the system through the columns of BP, are un-

known. These uncertainties are called "matched" uncertainties, as they enter the system

dynamics through the control channels [59]. The representation of uncertainty in the form

of (1.6) is common for the same reasons which allowed the system in (1.1) to be expressed

by the block partitioned structure in (1.2). Again using the example of a mechanical system,

expressing the uncertainty in this way is possible by the fact that uncertainties are often

present in the dynamics of the system, and do not affect the kinematics.
TTiimn+,nlxr +hc, -n"Vn nrnl7 ;v +o Acn'rv 40u (1 rl\ 4- b -. -~ (4 +-- -1 (- rP1__ _

U----y t -_ o g is V t" desL% L).L6.L.ign ki(.%J) sOj thCU 4g,() Uacksn /,,cmdk'). TheUeI Uar

many controllers which may be designed to satisfy the control goal. In this work the control

design process is simplified by using a sequential-loop-closure approach with an adaptive

element to accommodate uncertainties. This process requires a controller for the reduced

order inner-loop system which contains the uncertainty to be designed first. The uncertainty

introduced in (1.6), when partitioned, modifies the inner-loop dynamics in (1.3) as

4,(t) = Apxp(t) + Bp(Au(t) + PI' xp(t)) + Bgdx()

yM(t) = CPxP(t) (1.7)

zp(t) = Cpzxp(t) + Dpz(Au(t) + iTxy(t))

Because the uncertainty does not affect the outer-loop dynamics, there is no change to
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(1.4). The design of a controller for the system in (1.7) is typically called the inner-loop

controller. After the inner-loop is closed, the outer-loop dynamics in (1.4) are reintroduced

and another control design is complete. As the inner-loop control design is completed first,

and independent of the outer-loop dynamics, the effect of the outer-loop kinematics on the

inner-loop dynamics is neglected by setting Bgd = 0 in (1.7) to obtain

.2(t) =(Ap + B,'T) )xP(t) + BpAu(t)

y(t) = CPx,(t) (1.8)

zp(t) = Cz x,(t) + Dz(Au(t) + XpTxP(t))

The input u(t) in (1.8) is then designed so that zp(t) tracks Zp,cmad(t). The design of this

control input to satisfy the inner-loop control goal concludes the inner-loop control design.

Next, Bgd is reintroduced into (1.8) giving (1.7), and the outer-loop dynamics in (1.4) are

considered, and the goal is then to design the inner-loop command Zp,cmd(t) such that z,(t)

tracks z,,cmd(t). This completes the outer-loop design.

1.3 Thesis Overview

The first contribution of this thesis is the design a robust inner-loop controller for systems

described by (1.8) which is capable of accommodating the uncertainty present in the plant,

only requires sensor measurements yp(t) and zp(t) which are available, and provides command

tracking of the inner-loop regulated output z,(t). A robust adaptive inner-loop controller

along the lines of References [59, 78, 95, 100, 101] is used. This thesis provides a new way

of synthesizing the gain matrices required for such a controller, providing a larger set of

solutions and extra degrees of freedom to tune the controller for increased performance and

robustness.

The second contribution of this thesis is the design of the outer-loop controller which

generates appropriate inner-loop commands Zp,cmd(t) so that the plant output zg(t) follows a

desired command trajectory, as prescribed by the outer-loop command z,cmd(t). The outer-
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loop controller incorporates a state-limiter, allowing the inner and outer-loop command

signals to be modified as necessary to limit the evolution of the state trajectories to within a

certain prescribed region within the state space. The outer-loop controller uses components

of a closed-loop reference model, and the resulting closed-loop system is shown to be globally

stable. This sequential loop closure based procedure to synthesize an outer-loop controller

simplifies the process of designing guidance and control laws from that of designing a single

higher-order controller to several lower-order controllers. Additionally, existing outer-loop

controllers are designed using ad-hoc methods, selecting feedback gains sufficiently small in

an attempt to ensure stability, but with no theoretical guarantees of stability. The proposed

approach provides an outer-loop control design which does not require a re-design of the

existing inner-loop, and guarantees global stability of the closed-loop system, and enforces

desired state limits.

The third contribution of this thesis is the demonstration of the efficacy of this method

by applying the sequential loop closure based adaptive controller to a highly nonlinear, un-

stable, six degree-of-freedom hypersonic vehicle model, which includes unmodeled actuator

dynamics. In order to produce a practical controller, a high level of practicality was consid-

ered and maintain throughout the development of the controllers described in the first two

contributions. That is, significant emphasis was kept throughout the control design process

on ensuring that the resulting controller was practically feasible. The result was a controller

that is computationally simple to design and implement, provides constructive procedures to

produce the necessary gains, and ensures that these gains are not numerically impractical.

The structure of the remainder of this thesis is described as follows.

Chapter 2 presents the adaptive inner-loop output-feedback control design which requires

the synthesis of two static gain matrices that ensure a set of underlying dynamics are made

strictly positive-real. The proposed control architecture is compared to the existing clas-

sical multi-input-multi-output (MIMO) adaptive control designs. Several simple numerical

examples are provided.

Chapter 3 presents the outer-loop control design, which is designed to work around
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and without requiring a re-design of the inner-loop controller in Chapter 2. This design

involves the selection of two additional reference model components, and the synthesis of

three additional feedback gain matrices which decouple the inner and outer-loop errors and

guarantee global stability. A state-limiter is presented as applied to this combined inner

and outer-loop controller which modifies the inner-loop commands as necessary so as to

enforce desired limits on the various plant states. The numerical examples from Chapter 2

are continued, each utilizing the existing inner-loop controller and demonstrating the design

of the outer-loop controller.

Chapter 4 presents a numerical example of this sequential loop closure based architecture

applied to the control of a nonlinear six degree-of-freedom generic hypersonic vehicle model.

The dynamical equations describing the hypersonic vehicle model are presented and the

assumptions used in this model are stated. The equations of motion are linearized about

a nominal flight condition, and the flight modes are analyzed. The uncertainties which are

considered, and their representation in the linear model, are presented. Details about this

evaluation model used for the simulations is provided. The proposed control architecture is

shown to result in stable performance, outer-loop command tracking, while satisfying desired

state constraints.

Chapter 5 provides the conclusions of this research, and suggests possible directions for

future research.

29



THIS PAGE INTENTIONALLY LEFT BLANK

30



Chapter 2

Inner-Loop Control Design

This chapter presents a new method of synthesizing an output feedback adaptive con-

troller for a class of uncertain, non-square, multi-input multi-output systems given by (1.8).

The main challenge that needs to be addressed is the determination of a corresponding

square and strictly positive real transfer function. This chapter presents a new procedure to

synthesize two gain matrices that allows the realization of such a transfer function, thereby

allowing a globally stable adaptive output feedback law to be generated.

The unique features of this output feedback adaptive controller are a baseline controller

that uses a Luenberger observer, a closed-loop reference model, manipulations of a bilinear

matrix inequality, and the Kalman-Yakubovich Lemma. Using these features, a simple design

procedure is proposed for the adaptive controller, and the corresponding stability property

is established. The proposed adaptive controller is compared to the classical multi-input

multi-output adaptive controller.

A state feedback linear quadratic regulator (LQR) baseline controller with integral action

and augmented with an adaptive component has proven to be an effective choice for accom-

modating the parametric uncertainties present in flight control applications, and ensuring

satisfactory reference tracking [23, 32, 39, 53, 59, 61, 95]. However, such a controller requires

that the state is measurable, which may not always be possible. Also, inaccuracies in the

system output measurements may render state feedback controllers sensitive to measurement
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errors and thus not applicable. For these reasons there has been an increasing drive to de-

velop an adaptive output feedback extension of the robust integral-augmented LQR baseline

plus adaptive controller.

Existing classical methods of multi-input multi-output (MIMO) output feedback adaptive

control are applicable for plants that are square [90]. An m x m transfer matrix is used to

represent the dynamic behavior of the plant, and the existence of a stable adaptive solution

depends on the available prior information about this plant transfer matrix [70, 86]. The

solution relies on non-minimal controller representations to dynamically decouple the plant,

and the controller structure consists of a feedforward gain and two filters in the feedback

path, the order of which depends on m and an upper bound on the observability index of

the plant, v. The resulting classical MIMO adaptive solution will introduce 2mv controller

states and 2m2 v adjustable parameters.

More recent methods of MIMO output feedback adaptive control have adopted a Lu-

enberger observer-based approach in which a minimal observer is used to generate a state

estimate to use for feedback control [57, 59, 78, 79, 102]. This observer also serves as the

reference model which is used by the adaptive controller, and the presence of the observer

feedback gain L provides the structure known as the closed-loop reference model, or CRM

[41, 42, 43, 44]. These CRM based approaches have relied on the so-called squaring-up pro-

cedure [67] to add fictitious inputs to a tall system (one where the dimension of the output

is greater than the dimension of the input) making it square and ensuring any transmission

zeros are stable. These fictitious inputs are used only to synthesize a postcompensator Si

and the CRM gain L which ultimately render a set of underlying error dynamics strictly

positive real (SPR). These SPR error dynamics allowed stable update laws to be chosen to

guarantee system stability. Note that systems with transmission zeros cannot be squared

up using the method as described in Reference [67], which has led to a recent modification

to overcome this limitation and allow the design of output feedback controllers for systems

with stable transmission zeros [80]. One of the limitations of the existing approaches is in

their parameterization of all of the solutions L by just a few scalar parameters which must
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be picked sufficiently large so as to guarantee stability. Parameterizing the solutions in this

way reduces the degrees of freedom the control designer has, which may limit the robustness

of the control design, and require larger gains than otherwise might be necessary.

The CRM based output feedback design procedure proposed in this paper takes an al-

ternative approach to synthesizing S1 and L which does not require the system first be

squared-up. Instead, the postcompensator Si is determined as a generalized inverse of the

system matrices, and a state feedback approach is used to stabilize a related lower order plant

subsystem. This results in a feasible linear matrix inequality (LMI) which is solved to yield

L. This LMI is the same inequality which is solved in the existing approaches, and depends

on a positive definite matrix P. In the existing approaches, this matrix is parameterized

by a single scalar parameter; the proposed approach provides the set of all P, which admit

solutions L to the inequality, in terms of a symmetric (n - m) x (n - m) matrix X. Once

this P, is obtained the, proposed approach then guarantees the existence of a solution L to

the LMI, which again provides many degrees of freedom, beyond the scalar parameter used

to parameterize the solutions in the existing approaches. While the proposed approach does

not provide a closed-form solution to the matrix L, it is the degrees of freedom in the matrix

X and the solution to the LMI which can be leveraged to yield improved control designs.

In this thesis the case of tall systems is considered, but the case of wide systems holds by

duality. Furthermore, because L is a component of both the baseline and adaptive controllers,

it is crucial that it be selected to provide good frequency domain properties for the baseline

control system, as well as desirable adaptive control performance. This procedure is able

to exploit the structure of the given system to obtain a large amount of freedom in the

selection of L in order to achieve a robust baseline control design and the desired adaptive

performance.

In Section 2.1 the control architecture is presented, and the control problem of interest

formulated using this proposed architecture. Section 2.2 provides a constructive procedure

for obtaining an update law for an adaptive controller which guarantees global stability.

Section 2.3 compares the proposed controller to the existing classical controller, Section 2.4
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provides some numerical examples applying the controller to several systems, and Section 2.5

provides some concluding remarks about the inner-loop controller developed in this chapter.

2.1 Inner-loop Control Problem Formulation

For the design of the inner-loop controller, consider systems of the form (1.8). The

control goal is to design the input u(t) which will make zp(t) track the command Zp,cmd(t)

with bounded errors in the presence of the uncertainties A and XP,. Make the following

assumptions about the system in (1.7).

Assumption 1

A) (Ap, Bp) is controllable.

B) (Ap, Cp) is observable.

C) Bp, C,, and CB, are full rank.

D) Any finite transmission zeros of (A,, B,, C,, 0) are strictly stable, and the rank of the

following matrix is full

rank AP B n +fne

(IC,2 Dpz 1

E) (a) A is nonsingular and diagonal with entries of known sign

(b) ||JY 112 < Tma. < oc, where Tmax is known

In order to facilitate command tracking, integral action is introduced, and for this purpose

an additional state xe is defined as

4(t) = Z,,cmd(t) - z,(t) (2.1)

This integral error state is appended to the plant in (1.7) leading to the following integral-
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augmented open-loop dynamics

[,(t) 1 0 X(t) B 0
=PM I + P (Au(t) + ,T'x(t)) + z,cmd M

[ e(t) [-Cz 0 Xe(t) -DpzJ [I

y(t) Cp 0 xp(t)

Xe(t) 0 i Xe(t)

zP(t) = [C, 0] x ](t) + Dp (Au(t) + XTXP(t))
-xe(t)-

Define the unknown matrix T as

IF= [ XT Omxne ]T

Eq. (2.2) can then be expressed as

A, 0 xp(t)

-C,2 0 [xet)

CP 0 XP(t)

0 I Xe (t)

+ [ x,(t)]
zePM)

[B,1
+ B Au(t) +

- Dpjz

0
Zp,cmd (t)

I_I

z (t) = [C,2 0 + Dp, Au(t) + T x(t)])

Xe (0)

The system in (2.3) can be written more compactly as follows

i(t) = Ax(t) + B(Au(t) + TX(t)) + BcmdZp,cmd(t)

y(t) = Cx(t)

z,(t) = Czx(t) + D, (Au(t) + VTX(t))
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[,(t)
[Xe(t)]

y _j)

met W

(2.3)
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where A E R , B E Rnxm, Bcmd E "xn,, and C E RPxn are the known matrices given by

A = P Onpxe

_Cpz Onexne-

Note that p = f + ne. It

equivalent to Assumption

B = B j Bcmd = [ :x: C = C
-DPz In, xn Onexnp, Ine-j

CZ = [CPZ 0]

can be shown that Assumption 1 regarding the plant in (1.8) is

1' regarding the system (A, B, C, 0) in (2.4), which is stated below.

Assumption 1'

A) (A, B) is controllable.

B) (A, C) is observable.

C) B, C, and CB are full rank.

D) Any finite transmission zeros of (A, B, C, 0) are strictly stable.

E) (a) A is nonsingular and diagonal with entries of known sign

(b) II'I12 < ma. < oc, where 'ma is known

F) (A, B, C, 0) is tall: p > m.

Remark 1 The system in (1.8) satisfying Assumption 1A-D when augmented with the

integral error state as shown in (2.2) also satisfies Assumption 1'A-D. In other words, under

Assumption 1A-D, integral error augmentation does not destroy controllability, observability,

or the rank conditions. Nor does it add any transmission zeros [57].

Remark 2 Assumptions 1'A and 1'B are standard. Assumption 1'C implies that inputs

and outputs are not redundant, as well as a MIMO equivalent of relative degree unity.

Assumption 1'D is a standard requirement for output feedback adaptive control. Assumption

1'F can be considered without loss of generality as the case of wide systems p < m holds

by duality. The case of square systems has been given in Reference [50] and is discussed in

Section 2.2.
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2.1.1 Baseline Control Design

The underlying problem here is to design a control input u(t) in (2.4) so that the closed-

loop system has bounded solutions and zp(t) tends to Zp,cmd(t) with bounded errors in the

presence of the uncertainties A and xP. In this section, the baseline control design for the

nominal case when there are no uncertainties present, that is when A = I and T = 0, is

described.

A controller along the lines of References [57, 79, 102] is proposed, as it leads to a low

order robust controller. This controller includes a Luenberger observer together with LQR

feedback control gains. As the ultimate goal is to develop an adaptive controller which in

turn requires a reference model, a control design where the reference model has components

of an observer as well, is proposed. In particular, a feedback component is introduced into

the reference model, with the corresponding feedback gain L chosen similar to a Luenberger

gain, that is, so that it ensures adequate stability margins for the nominal closed-loop system.

The resulting reference model is referred to as a closed-loop reference model (CRM) which

has been shown recently to result in highly desirable transient properties [41, 43, 44, 42]. To

obtain the reference model, consider (2.3) with no uncertainty, that is A = I and T = 0,

with a reference input r(t) in place of zp,cmd(t), and the addition of the CRM gain L. The

reference model state xm(t) is used in place of the plant state x(t), and a baseline control

input Ubl(t) in place of the control input u(t).

2,.t A, 0 x,( Bp 0 L,En (t)1 - [M A 0)+ Ubl(t) + r(t) + ] (ym(t) - (t))

Iem (t) j I- Cpz 0 _9-Xem(t) -Dj I- z_ __ Le

Ym(t) C, 0 x,(t)

Xem(t) 0 I Xem(t)

zM)= [Cz 0] [PM (t) + DpzubI(t)
Xem(t)(

(2.5)
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The reference model (2.5) can be written more compactly as

Xm(t) = Axm(t) + BubI(t) + Bcmdr(t) + L(ym(t) - y(t))

ym(t) = Cxm(t) (2.6)

zpm(t) = Czxm(t) + DpzUb1(t)

where

Le

Propose the following baseline controller that can guarantee command tracking and a cer-

tain amount of stability margins for the nominal closed-loop system. That is, propose the

following form of the baseline control law which will be used to construct the reference model

in (2.6)

UbI(t) = KIXm(t) (2.7)

where K, is chosen such that Am = A+ BKI is Hurwitz. In addition, K, should be selected

to provide the desired closed-loop performance of the nominal system. With such a K., and

baseline control law, the reference model in (2.6) becomes

:im(t) = Amxm(t) + Bcmdr(t) + L(ym (t) - y(t))

ym(t) = CXm(t) (2.8)

zpm(t) = Czxm(t) + DpzKixfm(t)

With the reference model constructed using the nominal system, that is (2.4) with A = I

and xP = 0, which contains integral action, guarantees that zpm(t) will track Zp,cmd(t) with

bounded errors. Essentially the reference model serves as a command pre-filter, so that

zpm(t) is just a filtered version of Zp,cmd(t).

The block diagram for the baseline controller is depicted in Figure 2-1. As discussed

above, while the selection of L is done so as to allow the use of an adaptive law, it should also

provide sufficient stability margins for the baseline system. This baseline control architecture
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is simply a classical dynamic output feedback compensator with a closed-loop Luenberger

state estimator.

baseline controller

__ V
Integral

augmentation + ev

L11+

Inner-loop
reference xn

model

Control law
U

Plant
zp

Figure 2-1: Inner-loop baseline control block diagram.

2.1.2 Adaptive Controller

With the baseline controller determined as above, the next step is to design an adaptive

controller in the presence of A f I and T # 0. Suppose the nominal controller in (2.7) is

augmented with an adaptive element as

u(t) =(Kx(t) + e(t)) T Xm(t) (2.9)
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where e(t) is to be determined by a suitable update law. The question is if the introduction

of the parameter 6(t) as in (2.9) is sufficient to accommodate the parametric uncertainties.

For this purpose, a matching condition as described in Remark 3, is introduced below.

Remark 3 (Matching condition) The selection of the reference model state matrix as

Am = A + BK:j guarantees the existence of a parameter 6* that satisfies the following

matching condition.

Am A + B T + BA(*T + KI)

where 0* is given by

=*T = (A- - I)K T - T

Given a system satisfying Assumption 1', the matching condition in Remark 3, and the

proposed control architecture, the reference tracking control problem is reduced to selecting

the CRM gain L in (2.8) and a suitable adaptive law for updating 6(t) in (2.9).

In summary, the problem that is addressed in this chapter is the determination of an

adaptive augmented robust baseline output feedback controller as in (2.9) to control the

plant in (2.4) using the CRM/Observer as in (2.8). This in turn necessitates finding an

adaptive law for adjusting 0 in (2.9) and the observer gain L in (2.8). The main tools

used for determining the adaptive controller were provided in Appendix B and involve the

Kalman-Yakubovich [70] and matrix elimination lemmas [13], which help reduce the problem

of finding L to a state feedback problem of a related lower order subsystem. The complete

adaptive control design and the corresponding stability result are presented in Section 2.2.

2.2 Adaptive Control Design

In this section the process for selecting the CRM gain L in (2.8) and the update law for

0(t) in (2.9) is provided. To accomplish the goal of reference tracking an approach which

focuses on the error between the closed-loop plant and the reference model states, as opposed

to each of these trajectories individually, is taken. Thus, the goal of reference tracking can be

ensured by appropriately selecting the update law to drive this state error to zero. Similarly,
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consider the error between the parameter e(t) in (2.9) and E* in Remark 3. The resulting

state tracking error and parameter error, respectively, can be defined as

ex(t) = x(t) - Xm(t)

e(t) = E(t) -E*

The problem of finding an adaptive law for E(t) that guarantees stability depends on the

relationship between the two errors above. This relation, denoted as error model, in turn

provides cues for determining the adaptive law. In the problem under consideration, the

underlying error model can be described as

d(t) = (A + LC + BW T)ex(t) + BAET xm(t) + Bcmd (Zp,cmd(t) - r(t) (2.10)

ey(t) = Cex(t)

where ey(t) is the measured output error. Furthermore, select the reference model input r(t)

as

r(t) = Zp,cmd(t) (2.11)

which is typical in adaptive control and further simplifies the error dynamics in (2.10) to

e(t) =(A + LC + BT T)ex(t) + BAeT(t)Xm(t) (2.12)

ey(t) = Cex(t)

As mentioned earlier, the problem of finding a stabilizing adaptive controller is equivalent to

finding an L and an adaptive law for adjusting 6(t) in (2.12). Determining a stable adaptive

law for an error model as in (2.12) relies on properties of an underlying transfer function

that is SPR [70], which in turn enables the use of Lemma 1 in Appendix B. However, the

definition of SPR is restricted to square transfer functions. As such, for these properties to

be applicable to the error model in (2.12), a suitable static postcompensator Si E R1xP has
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to be chosen such that

S1C(sI - A - LC - BlT)1B E Rm"(s)

where Rp(s) denotes the ring of proper rational transfer functions with coefficients in R.

That is the underlying transfer matrix is square, and therefore can be evaluated in terms of

SPR properties. It is therefore necessary to introduce a synthetic output error e,(t) as

e,(t) = SiCeX(t) (2.13)

Using the synthetic output error in in place of the output error, the underlying error model

in (2.12) is modified as

ex(t) =(A + LC + BIT )ex(t) + BAeT(t)Xm(t) (2.14)

e,(t) = S1Cex(t)

Thus, the design of an output feedback adaptive controller is reduced to selecting matrices

S1 c R"'P and L E R"XP such that the error dynamics in (2.14) are SPR.

In.L.L Secio 22.uaprcure LU t'uct Uk i adu L/ 1s prUvideU. This procedUrIe [equires

Si to be solved as a generalized inverse based on the matrices of (A, B, C, 0) in (2.4) alone.

L is found by satisfying Lemma 3 (Kalman-Yakubovich), the solution of which is reduced

to a state-feedback problem of a lower-order plant subsystem which ultimately leads to a

feasible LMI which is solved numerically to obtain L.

2.2.1 Finding S, and L

In this section a method for selecting Si and L which ensure the system in (2.14) is SPR,

is provided. The conditions from Lemma 3 to ensure (A + LC + BIT, B, SIC) is SPR are
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given by

(A + LC + B XT)TP, + Px(A + LC + BW T) < 0 (2.15)

PxB = (SiC)T (2.16)

where, by the corollary to Lemma 3 in Appendix B, a Px exists which satisfies (2.16) if and

only if SjCB = (SCB)T.

Finding Si

The matrix S, satisfying (2.16) can be computed as a generalized left inverse of CB as

S, =((CB)T CB) '(CB)T (2.17)

Note that this choice of S, is not unique. An alternative choice for S1 is

S = BTCTKs (2.18)

where K, = KT E RP'P.

Finding L

The annihilator matrices B' and CTI in Appendix B are not unique. In the following

subsection the notation N and M is used to represent particular annihilators that satisfy

NB = 0 CM=0 (2.19)

as well a few additional desired properties. That is, N represents a particular BIT and

M a particular CT. Given arbitrary annihilators B' and CT' a constructive process for

obtaining N and M is provided, and these matrices are then used to find L. The inequality

43



(2.15) is satisfied if the following inequality is satisfied

(A + LC)T Px + Px(A + LC) + Qx < 0 (2.20)

for

BT Px + PxB4T < Qx (2.21)

Using (2.16), the inequality (2.21) can be written as

4'S1C + (PS1 C)T < Qx (2.22)

Note that Qx satisfying (2.22) is independent of Px. Using Lemma 4 in Appendix B, an L

exists which satisfies (2.20) if and only if a Px exists which satisfies

MT(AT P + PxA)M < -MTQXM (2.23)

Using (B.8), Px is given by

x = (S1C)T (S1CB) -TS 1 C + NT XN (2.24)

Substituting the expression for Px from (2.24) into the inequality(2.23) the following is

obtained

(NAM)T XNM + (NM)TX(NAM) < -MTQxM (2.25)

Thus, the problem of finding an SPR L which satisfies the inequality (2.15) is now reduced

to finding the matrix X satisfying the inequality (2.25). An X satisfying (2.25) specifies a

P as given in (2.24) that reduces (2.15) to a feasible LMI in L. This LMI can then be easily

solved using any widely available numerical LMI solver to obtain L.

Reference [50] gave the inequality (2.25) for a square system, suggesting that X be

obtained by solving this LMI numerically. However, it was shown in Reference [55] that for

a square system, the eigenvalues of NAM in (2.25) are the transmission zeros of the system
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and the annihilators N and M in (2.25) can be always be selected such that NM = I.

Given a square system with only stable transmission zeros, this selection reduces (2.25) to a

Lyapunov equation where the matrix NAM is stable, and the existence of X > 0 satisfying

this inequality is guaranteed [7]. Thus, when the system (A, B, C, 0) in (2.4) is square, the

inequality (2.25) can be solved to obtain X, and P, can be computed using (2.24). The

inequality (2.15) can then be solved for L. For a non-square systems the matrix NAM is

not square, and so determining X > 0 satisfying (2.25) requires additional steps.

Determining a Similarity Transform A similarity transform - that will allow annihi-

lator matrices N and M in (2.25) to be computed given arbitrary annihilators B' and CT"

is now defined. Defining B as

= [B F CTI (2.26)

it is always possible to choose F E Rnx(p-r) so that - is invertible and

CE = [0 0px(n-p)] (2.27)

E-1B = [ixrnm Omx(n-m)]

where C E RPxP [75]. Because of the structure of B and C arising from the integral aug-

mentation and the assumption that CB is full rank, the matrix F in (2.26) will always have

a structure

F = OnpxP-m (2.28)
F1

where F1 E Rnep"m. The inverse of E is given by

R

_1 N1 (2.29)

N2
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where R C Rn', N1 E R(P-')" and N2 E R("-P)". Given the matrix B in (2.26), its

inverse B-- must obviously satisfy

R

LN2J

RB

F CT N1B

N2 B

where the matrix F, and thus - and therefore B-1

can be seen that

are yet to be determined. From this it

N2 B = 0(n-p)xm N2F = 0(n-p)x(p-m) N2CTI = I(n-p)x(n-p)

Note that by Assumption 1'C the matrix CB is full rank, implying that none of the columns

of B lie in the nullspace of C. Thus the columns of [B CT1] are linearly independent. The

columns of F which ensure (2.26) is invertible lie in null(B T ) n range(C T ). Define

R

=A -- 'A-= N] A B

S V2

All A 12

= A 2 1 A 2 2

A 3 1 A 32 J

RAB

F CTI = NjAB

AT- A

E Rmxp, A 12 E Rmx(n-p), A 21 C R(P-m)xP, A 22

R(n-p) x(n-P) are given by

Al = [RAB RAF]

A 2 1 = [N 1AB N1AF

A 3 1 = [N2AB N2AF]

A 1 2 = RACTI

A 2 2 = N1 ACT-L

A32 = N2ACT-L
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N1F

N2F

RCT-L

N1 CTI

N2 CT Ij

FI
=10

0

0

I

0

0

01=I

I]

(2.30)

(2.31)

RAF

N1AF

A2 A L'
.k V 2.1 I.L

RACT-L

NACTL
AT ACV-TI I

(2.32)

where A11

and A 32 E

E R(P-m) (n-p), A 31 C R () x

(2.33)



Using (2.27) define the following transformed eliminators No and MO which satisfy NOE- 1 B =

0(n-m)xm and CEMo = Opx(n-p) as

No- [O(n-m)xm I(n-m)x(n-m) (2.34)

MO [O(n-p)xp I(n-p)x(n-p)]T (2.35)

Note that these choices are not unique. Define

N = No- 1  (2.36)

M = =MO (2.37)

Note that with the selection of MO in (2.35) and with E in (2.26) that M = CTI. The matrix

NM is given by

NM = [0(n-p)x(p-m) I(n-p)x(n-p)]T (2.38)

With this choice of - and using the form of A from (2.32), the matrix NAM can be expressed

as

NAM = No--1 A-Mo = NOAMO

[An A 12 1- [[l A 1 O px (n - ) A 22 (2 .3 9 )
= 10(n-m)xm I(n-m)x(n-m) A 2 1 A 2 2

A I(n-p)x(n-p) L A32_
LA31 A32

Note that with the choice of NM satisfying (2.38), X in (2.25) can be partitioned as

X- = 1 1 (2.40)
X1 2 X22

where X11 E R(P-m)x(p-m), X22 E R (-p)x(n-P) and X12 E R (P-m)x(n-). Furthermore, X12

must be selected such that XTN 1 Bmi is full rank.
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Proposition 1 Given the matrix X in (2.40) if X2 2 > 0 then X > 0 if and only if

X1 - X12X221X2 > 0. This is the Schur Complement of X2 2 .

Remark 4 The requirement that X12 be selected such that XTNBmd is full rank has

no impact on the ability to complete the stable inner-loop control design. That is, the

matrix X12 can be selected such that X12 = 0 and still achieve a stable inner-loop controller,

although the selection of X12 would have an effect on the numerical values of the gains, and

hence the underlying baseline controller margins. However, the requirement that XTN1Bmd

be full rank is needed for the design of the outer-loop controller presented in Chapter 3.

Lemma 1 The requirement that X12N1Bmd is full rank is equivalent to MTNTXNBmd

being full rank.

PROOF Using the expression for N given in (2.36), the matrix MTNTXNBcmd can be written

as

MT NT XNBcmd = MT(NO=-1)TXNE-1Bcmd (2.41)

with E- 1 given by (2.29), and No given by (2.34), Eq. (2.41) can be expressed

MTNTXNBem = MT [RT VTX N]T [1 X In T , B B (2.42)
L J L- -J ~*- -''

N2

Multiplying the terms in (2.42) together gives

--R

MTNTXNBcmd = MT [RT N T] N2 [ N BcmdN X N ~ d I R jT N2 0 X LN

= M T [NT N2T] X [, Bcmd
N2

Using the fact that MT N1T= 0 and MT N2T = I from (2.30), allows this expression to be
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written and further simplified as follows

M T N T XNBcmd = M T [NT N] [X11 X12] [ Bcmd
-12 X22 N2

= [0 I] X11 X12 N1 Bcmd

X12 X22 N2

- ]X N 1 B
12 X22] ] Bcmd

- XTNBcmd + X2 2N2 Bcmd

Based on the structure of Bcmd as being in the same space spanned by F in (2.28), and

the requirement in (2.31) that N2F = 0, it follows that N 2 Bmd = 0, simplifying the above

expression as desired.

Evaluating XNM in (2.25) using X from (2.40) and NM from (2.38) gives

XNM X12
X22

With NAM given by (2.39), equation (2.25) is equivalent to the following

AT A] TX 1 2 + xT 22
x2 32 + X12 X22] -]
X22 A32

< -MTQM

which can be written as

X12 + XT AT + T X22 + X2 2A 32 < -MTQxM

or alternatively as

AT2X22 + X 2 2A 32 < -MTQXM - A22X 12 - XT A2
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Eq. (2.43) is recognized as a Lyapunov equation

A32X 22 + X 22A 32 = -Qx (2.44)

where Q, is selected such that

0 < MTQXM + A TX 12 + X2A 2 < Qx (2.45)

Furthermore, the matrix F which defines 7 in (2.26) must be selected such that A 3 2 , given

in (2.33), is Hurwitz, thus allowing X22 to be obtained as the solution to (2.44). X11 > 0 can

then be selected arbitrarily to specify X. Recall from (2.30) that N2 has to satisfy N2B = 0,

N2 CTI = I, and N2F = 0. To satisfy the first of these two conditions, it is apparent that

N2 lies in the nullspace of BT and so N2 has the form

N2 = KB IT (2.46)

where K E R(nP)x(n-"'). With the choice of N2 as in (2.46) the second condition from (2.30)

requires that K satisfies KBITCTI = I, where such a K takes the columns of B' which

are spanned by the columns of CT". The columns of K'B' where K' satisfies KK' = 0

thus lie in null(B T ) n range(C T ), and so selecting F as

F = B'K'L (2.47)

ensures that (2.26) is invertible. With the choice of N2 as in (2.46) the matrix A 3 2 can then

be expressed as

A 32 = KBIT ACTI
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The remaining requirements described above are stated as: find K E R(n-p)x(n-,") such that

KBLTCT-L = I(n-p)x(n-p) (2.48)

A 32 = KBIT ACTI is Hurwitz (2.49)

An Equivalent State Feedback Problem The control design process continues by show-

ing how the selection of K satisfying (2.48) and (2.49), can be found by solving a state

feedback problem. The requirement in (2.48) is that K is a left inverse of the tall matrix

BITCTI. This matrix has full rank by Assumption 1'C. The generalized inverse of a tall

matrix T E R (n-") x (n-p) with full rank is given by

T- = Tt + U(I(n-m)x(n-m) - TT)

where U E R(n-p) x (n-r) is arbitrary and t is the Moore-Penrose pseudo inverse. This gives

a form of all K satisfying (2.48) as

K = (B ITCTI)t + U (I(n-m)x(n-m) - (BITCT-)(BTCT-L)t)

This can be simplified as

K = (BITCT I)t + U (I(n-m)x(n-m) - J) (2.50)

J = (B ITCTI)(B ITCTI)t (2.51)

where J E R(n-")x("n-") is a rank n - p matrix. Thus A 32 is given by

A 32 = [(BIT CTI)t + U (I(n-m)x(n-m) - J)] BT AC

which can be written

A 32 = G +UH (2.52)
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where G E R-P)x(n-P) and H E R(n-m)x(n-p) are given by

G = (BITCTI)tBIT ACTI (2.53)

H =(I(n-m)x(n-m) - J)BILTACTI (2.54)

Selecting U such that A 3 2 is Hurwitz is possible in general if (GT, HT) is controllable. The

uncontrollable modes of (GT, H T) correspond to the transmission zeros of (A, B, C, 0) [56]. If

the system has any unstable zeros, no U can be found such that A 32 is Hurwitz. If the system

has stable transmission zeros, (GT, HT) is stabilizable, and U can be selected to stabilize

the remaining modes. If the system has no transmission zeros, (GT, HT) is controllable, and

U can be picked to make the poles of A 32 arbitrarily. By Assumption I'D (A, B, C,0) has

no unstable transmission zeros, so (GT, HT) will be at least stabilizable. With U computed

using the desired state-space technique, A 32 is determined as in (2.52). K can then be

solved for from (2.50) and (2.51), N2 computed using (2.46) and F using (2.47). With this

F, the matrix - is completely specified, and N can be solved for from (2.36) and M given

by M = CTI. Finally, (2.44) must be solved to obtain X22, which requires the specification

of Q., > 0. The following paragraph and theorem provide a method to select an appropriate

Solving the LMI to Obtain L All that remains to solve the LMI in (2.20) for L is to

specify Px as given by (2.24) and Q satisfying (2.22). Therefore it is necessary to choose an

appropriate Q which guarantees the feasibility of the LMI in (2.20) by satisfying (2.22), as

given by the following theorem.

Theorem 1 If Qx is chosen as

Qx = 2'FmaIICsI2Inxn (2.55)

where C, = S1C and Tmax is defined as in Assumption 1E-(b), then (2.22) holds.
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PROOF Using C, = SC the inequality (2.22) can be written

TCs + (TCS)T < Q

Using 1C 111Cs1121 |IT'2|ICsII2I < 'I'm|aICs||2I the matrix Qx in (2.55) satisfies

(2.22). L

With Qx picked as in (2.55), A 3 2 made stable by selection of U in (2.52), and Q, selected

satisfying (2.45), the Lyapunov equation in (2.44) can be solved to obtain X2 2 . This pro-

cedure guarantees the feasibility of the LMI in (2.20) which can be solved numerically with

any widely available solver. This procedure is summarized in the following subsection.

2.2.2 Summary of the Design Procedure for Si and L

Section 2.2.1 provided a procedure to determine S1 and L for the system (A, B, C,0)

satisfying Assumption 1' which render (2.14) SPR. This subsection summarizes the overall

procedure. Given known plant matrices A, B, Bcmd, C, knowledge of the sign of the un-

certainty A and upper bound |1|T'I12 Tma. in (2.4), reference model in (2.8), and control

law in (2.9), the following steps provide a procedure to determine S1 and L such that the

underlying error dynamics in (2.14) are SPR:

1. Solve for S1 as in (2.17).

2. Determine arbitrary annihilators B' and CT such that BTBI - 0 and CCT1 = 0.

3. Calculate matrices G and H using (2.51), (2.53), and (2.54) and then solve for U such

that A 3 2 in (2.52) is Hurwitz.

4. Compute K using (2.50), F using (2.47), and N2 using (2.46).

5. Define No as in (2.34). Calculate N = No--1 and set M = CTI

6. Pick X12 such that XTNBmd is full rank.

7. Select Q, as in (2.55) and Q_ satisfying (2.45) and solve (2.44) to obtain X22

8. Select Xu satisfying X1 > X1 2Xj2 1 X2 and assemble X as in (2.40)

53



9. Solve for P as in (2.24).

10. Solve the LMI in (2.20) to obtain L

Remark 5 In the case where p - 7n > n - p, the matrix H in (2.52) is a matrix of

full column rank and so HtH = I(rp)x(,_p). This provides the freedom in selecting U

to not only make A 32 stable, but to select it to be any stable matrix. This allows us to

select X22 > 0 arbitrarily, and then solve for A*2 as the solution to the Lyapunov equation

A*nTX 2 2 + X 2 2 A* = -MTQM. Then U can be picked in step 3. as

U =(A* - G)Ht (2.56)

Inner-loop controller

Integral
augmentation

Zp,cmd = T
Inner-loop
reference r

model

Control law

Update law-
S

yp
U

)0 Plant Z

Figure 2-2: Inner-loop adaptive control block diagram.
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Remark 6 The calculation of L should conclude with the verification that A + LC + BKIT

is Hurwitz. While this is not a theoretical requirement, for practical implementation on

systems such as the one presented in the numerical example in Chapter 4, this requirement

is enforced to ensure the reference model in (2.8) is stable.

2.2.3 Adaptive Law and Stability Proof

Using the closed-loop reference model defined in (2.8) with L selected as described in

Section 2.2.1, the following update law is proposed:

E(t) = -Xm\(t)(Sey(t)) Tsgn(A) (2.57)

where Si is chosen using (2.17). The closed-loop system is represented using the block

diagram shown in Figure 2-2. Alternatively, the inner-loop controller can be represented

using the block diagram shown in Figure 2-3.

L+-

Sreference
model --M

yy

Plant with Yp
F adaptive Inner- b

loop control 'ZP,

Figure 2-3: Inner-loop control block diagram.
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Global stability of the closed-loop system is guaranteed by the following theorem.

Theorem 2 Given the uncertain linear system in (2.4) which satisfies Assumption 1', the

reference model in (2.8) with reference input selected as in (2.11), control law as in (2.9),

and the update law in (2.57) results in global stability, with limt, 0 ex(t) = 0.

PROOF With a radially unbounded Lyapunov function candidate

V (ex(t), e(t)) = ex (t)Pex(t) + tr(IA| T (t)F-16(t)) (2.58)

where the operation I - I takes the absolute value of each entry of the matrix argument, a

time-derivative V (ex (t), 6(t)) is obtained as

Q(ex(t), e(t)) = dQX(t)Pxex(t) + ex x(t)Pdx(t) + tr (AIE) (t)F-e(t)) + tr(A I8 T(t)F-l(t))

Substituting in the error dynamics from (2.14) where AL = A + LC + BT T the Lyapunov

candidate derivative V(ex(t), e(t)) is written

V(ex(t), e(t)) =(ALex(t) + BAeT(t)xm(t)) TPex(t) + ex (t)P(ALex(t) + BAeT(t)xm(t))

+ 2tr(IAIeT (t)Fe(t))

= eT (t )Aj Prex(t) + eIT(t )PALex {t) + 2e1T(t )PB A T (t)xm(t)

+I- 2tr6(IA IeT (t)F (t))

= ex (t)(ALPx + PxAL)ex(t) + 2eT (t)PxBA6 T(t )xm(t)

+ 2tr(IAI 6 T (t)FIE)(t))

Let AlP + PAL = -Qx < 0 as assured by the selection of L satisfying (2.15) giving

V (ex(t), e(t)) = -e T(t)QXex(t) + 2eT(t)PxBA6T (t)xm(t) + 2tr(IAIeT (t)F 1E(t))
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Substituting the update law given in (2.57) results in

-eI(t)Qxex(t) + 2eT(t)C T ST A T (t)Xm(t)

+ 2tr(IAle T(t)F- 1 ( - rxm(t)e T (t) ST sgn(A)))

= -eT(t)Qxex(t) + 2eT(t)A6 T (t)Xm(t) - 2tr(JAe T (t)xm(t)e T(t) ST sgn(A))

= -el (t)Qxex(t) + 2e, (t)A6T (t)Xm(t) - 2tr (eT(t)Ae T (t)Xm(t))

= -eT(t)Qxex(t)

Which implies that V(ex(t), 0(t)) is a Lyapunov function. Since V(ex(t), 0(t)) >- 0 and

V#(ex(t), 0(t)) -< 0, it follows that V(t) V(0) < oo. Thus V(t) E fo which implies

ex(t), 0(t) E LO. Since Zp,cmd(t), ex(t) E L4, and the reference model is stable, xm(t) E L,

which implies that x(t) E Lo0. Furthermore,

/ tV(r)dr = V(t) - V(0)

and since V(ex(t), 6(t)) is non increasing and positive definite, V(0) - V(t) V(0). This

gives

- V (T)dT < V(0)

Substituting in the expression for

(et),~t) =-eT(t)Qxex(t)

gives

I t ex(r)TQxex(r)dr < V(0)

and in turn that ex(t) E L2. Finally, looking at (2.14) with ex(t), 6(t), and Xm(t) E C,, it

follows that dx(t) E LOO. With this, it can be concluded using Barbalat's Lemma [70] that

limtao ex(t) = 0. Since (2.58) is radially unbounded stability is global. b

Remark 7 The use of the closed-loop reference model in (2.8) in no way compromises
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stability of the closed-loop system. Furthermore, with es(t) -+ 0 asymptotically as t -÷ 00,

the term L(ym(t) - y(t)) in (2.8) tends to zero asymptotically, which in turn indicates that

the output of the closed-loop reference model in (2.8) tracks that of an open loop reference

model, given by (2.8) with L = 0, asymptotically. The transient response of the closed-

loop reference model as compared with its open-loop counterpart have been discussed in

[42, 43, 44]. Bounded reference tracking of zp,cmd(t) by zp(t) follows from the stability of the

closed-loop system as described in the Corollary 1 below.

Corollary 1 The inner-loop regulated output zp(t) tracks the inner-loop reference model reg-

ulated output z, (t) asymptotically. Furthermore, for piecewise constant commands Zp,cmd(t),

the regulated output zp(t) tracks Zp,cmd(t) asymptotically.

PROOF From limt+, e_(t) = 0 it follows that limt+s, (Xe(t) - xem(t)) = 0 where xe(t) is

defined in (2.1) and Xem(t) is defined in (2.5) as em(t) = z,cmd(t~zpm(t)+Le (ym(t)y(t)).

With this, the following limit can be written

lim (zp,cmd (T) - z,(T)) dT - (Zp,cmd - Zpm(T) + LeC(xm(r) - X(T)))d =T 0

simplifying

1m J(zp (T) - zm(r))dT - lim LeI ex(T)dT < oo (2.59)

where the error ezp(t) is given by

ez,(t) = zP(t) - zPM(t)

Recall now that the goal is to show limt, 0 ezp(t) = 0. Writing out the expression for ezp(t),

it follows that

ez,(t) = Czx(t) + Dpz(Au(t) + lITX(t)) - CzXm(t) - Dpzubl(t)
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with u(t) in (2.9) and Ubl(t) in (2.7) the error ez,(t) can be written as

ezp(t) = Czx(t) + Dpz(A (Kx + E(t)) Xm(t) + pTX(t)) - Czxm(t) - DpzKixm(t)

= Czex(t) + DPZ(A (Kx + e(t) + 8*)TXm(t) + XITX(t) - KTXm(t)) (2.60)

= Czex(t) + Dpz(A(Kx + e*) Txm(t) + AeTXm(t) + XpTX(t) - KTxm(t))

Taking the time derivative of (2.60) gives

(Kx+()*) 
T

() = Czer(t)+Dz (A (Kx+e*)Tm(t)+A(e (t)Xm(t)+eT(t).m(t))+XIT (t)-Kji m(t))

(2.61)

Recall Barbalat's Lemma [87]: If a function f(t) has a finite limit as t -+ oo and if f(t)

is uniformly continuous (which is equivalent to f(t) being bounded) then limte, 0 f(t) = 0.

For this application, let f(t) = ft erp(T)d'r and f(t) = ezp(t) and f(t) = ,p(t). From (2.59)

the function f(t) has a finite limit as t -+ oo. Looking at f(t) = ez(t) in (2.61), all of the

arguments are bounded, so ezp(t) is bounded. Thus limte,0 f(t) = 0 which is equivalent to

limt+, ezp(t) = 0 as desired.

Furthermore, with the embedded integrator, the reference model in (2.8), is a type 1

system with respect to the command input. With this, the tracking error tending to zero

asymptotically as limte, 0 ex(t) = 0, and the reference model input in (2.11), it follows that

Zpm(t) -+ Zp,cmd(t) as t -+ oo for piecewise constant commands Zp,cmd(t). From this, it

follows that zp(t) -+ Z,cmd(t) asymptotically as t -+ oo, thus satisfying the control goal as

desired. L

Remark 8 Corollary 1 provides the expected tracking result, in that asymptotic tracking

of an arbitrary bounded command Zp,cmd(t) is not possible. For example, if the command is

a square wave, the best tracking performance that can be achieved is by enforcing the plant

to track a suitably filtered version of the command signal. In this way, the reference model

is essentially serving as a command pre-filter.

Remark 9 When compared to the existing CRM based adaptive control approaches [57,

59, 79], the CRM based method presented in this thesis offers an approach which is compu-
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tationally simpler, requiring primarily finding nullspaces of some matrices, as described in

the step-by-step procedure in Section 2.2.2.

In the following section the applicability of the CRM based method as compared to the

classical MIMO adaptive control method is examined.

2.3 Comparison Between CRM Based and Classical

MIMO Adaptive Control

Given the classical approaches used in the literature thus far, the obvious question that

is raised is how the proposed MIMO controller fares compared to the classical ones. The

first point to note here is that the classical approaches are limited to square plants while

the approach proposed here is not. This is the most obvious advantage of this method. The

next question that arises is a comparison of the two approaches when the underlying plant

is square. This is addressed below.

As a first step, the relevant definitions are provided below:

Definition 1 (Markov Parameters) [4] Given a transfer matrix G(s), the Markov Pa-

Ho = lim G(s), H1 = lim s(G(s) - Ho), H2 = lim s2 (G(s) - Ho - His-')
s-400 5-00 s-+00

and so forth.

Theorem 3 The set (A, B, C, D) is a realization of G(s) if and only if

HO = D Hi = CA- 1 B, i= 1,2,...

PROOF The proof can be found in Reference [4].

Definition 2 (Relative Degree One) The MIMO system G(s) with realization (A, B, C, D)

is said to be Relative Degree One if Ho = 0 and H = CB is full rank.
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Lemma 2 Reference [70] Given a square nonsingular strictly proper transfer matrix Wp(s) E

Rl"xr(s), its Hermite form is diagonal if and only if the constant matrix E(Wp(s)) is non-

singular, where E is calculated as follows. Calculate ri as the minimum relative degree in

the ith row of Wp(s) and the rows of E are

E = lim s r W , (s) (2.62)
s-+oo

where Wp,i(s) corresponds to the ith row of Wy(s).

PROOF The proof can be found in Reference [19]

Given W,(s) E Rrnxm(s), the assumptions that must be satisfied for a classical adaptive

control solution to exist are as follows [70].

Assumption 2

(i) The high frequency gain matrix Kp is of the form Kp = KpA where Kp is known and

sign(A) is known.

(ii) The right Hermite normal form Hp(s) of Wp(s) is known.

(iii) An upper bound v on the observability index of Wp(s) is known.

(iv) The zeros of Wp(s) lie in C~.

Theorem 4 Given the square plant Wp(s) E Rp" with realization (A, B, C, 0), the Her-

mite form Hp(s) of Wp(s) is diagonal if CB is full rank. Furthermore, the high frequency

gain matrix is given by Kp= CB.

PROOF Theorem 3 connects the Markov Parameters of Relative Degree One systems to the

realization of Wp(s) with Ho = 0 and H1 = CB. With this and Definition 1, lim,,Oo sWp(s) =

CB is full rank, and so the minimum relative degree in each row of Wp(s) is ri = 1. By

Lemma 2 E(W,(s)) = CB and the Hermite form H,(s) of Wp(s) is diagonal. In Reference

[70] it is shown that E(Wp(s)) = Kp. L

Using Definitions 1 and 2 as well as Theorems 3 and 4, it is shown in Proposition 2 that

the classical and the CRM based MIMO adaptive control solution in this paper are equally
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applicable when the system in (1.8) is square.

Proposition 2 Consider the uncertain system in (1.8) where f = m and the plant transfer

matrix is given by

Wp(s) = Cp(sI - Ap - BpITT)- 1 BpA (2.63)

if the plant in (1.8) satisfies Assumption 1, then the corresponding Wp(s) in (2.63) satisfies

Assumption 2.

PROOF Assumption 1E-(a) and Theorem 4 can be shown to imply that the corresponding

Kp satisfies Assumption 2(i). Assumption 1C together with Theorem 4 implies that the

corresponding Hermite form is diagonal with known entries and is therefore known, which

leads to Assumption 2(ii). Assumption 2(iii) follows from the fact that n, is known. Finally

Assumption 1D is equivalent to Assumption 2(iv). L

In addition to the main advantage of the proposed method of applicability to non-square

plants, the proposed controller is of lower order, requiring only n controller states and nm

adjustable parameters, as compared with the classical solution which will introduce 2mv

states and 2m2v parameters. This reduces the number of states and parameters necessary

by at least two, since n < vm [20]. Finally the proposed solution is based on a CRM, which

has been shown to possess a superior transient performance [41, 42, 43, 44].

It should be noted that of Assumptions 1A-E, which are required to be satisfied for

the proposed controller, the most restrictive one is Assumption 1C, which implies that the

MIMO system must have Relative Degree One. In most aerial platforms including hypersonic

vehicles, this assumption is easy to satisfy as the relative degree of the transfer functions

between the control surface deflections and aircraft angular rates is unity. Additionally, the

structure of the plant as in (1.8) which has matched uncertainties is also commonly present

in flight control applications where much of the plant uncertainty is in the aerodynamic

moment coefficients and loss of control effectiveness, which are spanned by the columns

of B. It is however required that the uncertainty T, satisfy Assumption 1E-(b), which is

not required in the classical approach. Note finally that the above comparison between the

proposed controller and the classical ones was done for Relative Degree One plants only.
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Clearly the classical methods such as those in Reference [70] are applicable to plants with

with larger relative degrees, where the proposed method is not.

2.4 Numerical Examples

2.4.1 Example 1: Inverted Pendulum Cart

Consider the inverted cart-pendulum system as given in Ref. [6] and shown in Fig. 3-8.

Xpc n I

X I

Figure 2-4: Inverted pendulum on cart from Ref. [6].

The linearized equations of motion are given by the following, where M is the mass of

the cart, m is the mass of the pendulum, J is the moment of inertia of the pendulum, 1 is

the pendulum length, c and y are coefficients of viscous friction, and g is the acceleration

due to gravity.

Q -?-ML -in Mtmgl ur1

_'yJtl~m cj it2
1 ~

- + F (2.64)
1 0 0 0 0 0

0 1 0 0 x 0
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where the total mass Mt and total moment of inertia Jt are given by

Mt = M+m

Jt = J+,m12

and where p is given by

p mtJe - m 212

Considering uncertainty in the coefficients of viscous friction, this system is represented by

Eq. (1.6). Partitioning (2.64) as described in Chapter 1, the inner-loop dynamics in the

form of (1.7) and outer-loop dynamics as in (1.4) are obtained. The following numerical

values were selected

m = I kg

M = 1 kg

1 1 m
(2.65)

y =1 Ns/m

c =1 Ns/m

g = 9.8 m/s2

The inner-loop control goal is to stabilize the system using a single velocity measurement.

The velocity of the cart i; is selected, with this output serving as both the measured and

regulated outputs, leading to the following inner-loop dynamics

E
dCIn

cJt
AS

. 9

[ =0 1
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Using the numerical values in (2.65), the system in (2.66) is given by

0 -2 -1 0 1
+ F

The following uncertainty was selected, which is equivalent to the damping coefficient c = 0,

thus making the uncertain system marginally stable, as well as having a reduction in the

input to 65% the nominal control force applied to the cart.

IF = 10 '1'

A = 0.65

The following weighting matrices were used to design the LQR inner-loop baseline controller

Qiqr = diag( [0 0 1])

Riqr = 10-6

The following upper-bound on the uncertainty was used

Tmax = 10

resulting in X in (2.24) given by

1.11
x =

1 10

This inner-loop adaptive controller was then implemented in a simulation of the pendulum

model, resulting in the response shown in Fig. 2-5. In the following simulations, the simu-

lation begins with the baseline controller applied to the nominal system. At t = 10 seconds

uncertainty is introduced, while still using only the baseline controller. At t = 30 seconds
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adaptive controller is turned on. In these simulations, it is important to first note that the

oscillations observed in the baseline response are due to the coupling of the kinematics, in

this case the pendulum angle, into the dynamics. While it is often assumed, as described

above, that the term associated with this coupling, Bgd, is negligible, it will still have an

impact on the closed-loop performance, except in cases when it is identically zero. While

the nominal response does contain oscillations, they are damped, and steady-state tracking

of the piecewise constant cart velocity command is achieved. When uncertainty is intro-

duced, the oscillations become much larger, and begin to diverge, indicating the uncertainty

has made the closed-loop system very lightly damped, and slightly unstable. The adaptive

controller, when turned on, quickly recovers the nominal performance.
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Figure 2-5: Time response of pendulum cart with inner-loop controller.
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2.4.2 Example 2: Longitudinal Dynamics of a Transport Aircraft

For this example, consider the longitudinal dynamics of a transport aircraft, in this case

a 747-100.

Center of Gravity end
Mass Characteristics

W - 638,600 lb
CG at 25% MAC
1, - 18.2 x 10 Sug-ft 2

I - 33.1 x 106 Slug - t 2
z *49.7x1o6 SlUg ft 2

2 .7 0 Skug.ft 
2

References Geometry

S - 5500 It 2

b - 195.68 ft
T - 27,31 ft

0 0 0

Boeing 747

Jet Transport

Figure 2-6: Boeing 747-100 transport aircraft from Ref. [73].

The equations of motion describing the longitudinal dynamics of a transport aircraft such

as the 747-100 during steady, level flight are given by the following

6

h

Veq

Ma + MaZ"
Veq

0

-VeqL

1

Mq+ M&

1

0

0

0

0

Veq

0

0

0

0

a

q

0

h

Z,5e
Veq

+ e

0

0

(2.67)

where a is the angle-of-attack, q is the pitch rate, 0 the pitch angle, h is the altitude, and

J, is the elevator deflection angle. Considering uncertainty in the aerodynamic moment

coefficients Ma and Mq, this system is represented by Eq. (1.6). Partitioning (2.67) as

described in Chapter 1, the inner-loop dynamics in the form of (1.7) and outer-loop dynamics
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as in (1.4) are obtained. The following numerical values were selected from Ref. [47, 73]

v= 871 ft/s

ZQ = -349 ft/s 2

Ma = -1.65 rad/s2

M& = -0.139 rad/s

Mq = -0.401 rad/s

M" = -1.22 rad/s2

Zs. = -18.6 ft/s2

The inner-loop control goal is to stabilize the system using only pitch rate measurement, with

this output serving as both the measured and regulated outputs, leading to the following

inner-loop dynamics

The following uncertainty was

coefficients. In addition, there

50% its nominal value.

Zbe1

+ Veq J e[j
(2.68)

selected, which is equivalent to uncertainty in the moment

is a reduction in the control effectiveness of the elevator to

lTp= [4 -4

A =0.5

The following weighting matrices were used to design the LQR inner-loop baseline controller

Qiqr= diag( [0 0 1000])

Riqr = 1
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The following upper-bound on the uncertainty was used

Tmax 1000

resulting in X in (2.24) given by

1.0005 1
X =

1 2199

This inner-loop adaptive controller was then implemented in a simulation of the aircraft

model, resulting in the response shown in Fig. 2-7. Unlike the pendulum model, the kine-

matics of the aircraft, the pitch angle and altitude, do not couple into the inner-loop short-

period dynamics at all. Thus, the assumption that Bgd = 0 in Eq. (1.6) is satisfied exactly.

At t = 10 seconds uncertainty is introduced, but the adaptive controller is not activated

until t = 30 seconds.
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Figure 2-7: Time response of transport aircraft with inner-loop controller.
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2.5 Conclusion

This chapter presented a new alternative method for synthesizing a CRM based output

feedback adaptive controller for a class of uncertain MIMO systems which do not have any

unstable transmission zeros. The controller is composed of a baseline control gain augmented

with an adaptive component to accommodate control effectiveness uncertainty and matched

plant uncertainty, and makes use of the closed-loop reference model to improve the transient

properties of the overall adaptive system. The adaptive controller requires the underlying

error dynamics be made SPR through the synthesis of the postcompensator S1 and CRM gain

L. The SPR relationship is enforced by reducing an underlying bilinear matrix inequality to

a feasible linear matrix inequality through appropriate selection of a tuning matrix X. The

procedure does not require the plant first be squared-up. It is computationally simple, and

it requires only the calculation of some generalized inverses, the solution of the Lyapunov

equation, and the solution of a reduced order state feedback problem. This procedure is

summarized in nine straightforward steps. Furthermore, the degrees of freedom in the tuning

matrix X capture a large subset of all possible solutions which ensure the SPR property.

Using these degrees of freedom, X can be tuned to provide the desired stability margins

for the baseline system, as well as a globally stable update law- The result is a baselin e

output feedback controller with good stability margins and adaptive augmentation capable

of accommodating matched uncertainties.

This inner-loop design provided a controller capable of enforcing bounded reference track-

ing of Zp,cmd(t) by zp(t), and accommodating uncertainties. With the design of this inner-loop

adaptive controller complete, the original control goal described in Chapter 1 has not yet

been satisfied. Recall that this control goal ultimately requires u(t) in (1.6) to be designed

such that zg(t) tracks Zg,cmd(t). With the inner-loop designed providing u(t) such that zp(t)

tracks Zp,cmd(t), the problem now becomes how to prescribe Zp,cmd(t) such that zg(t) tracks

Zg,cmd(t). The solution to this problem is described in Chapter 3 which utilizes the exist-

ing inner-loop control design, but reintroduces the Bgd term as in (1.7) and considers the

outer-loop dynamics in (1.4).
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Chapter 3

Outer-Loop Control Design

This chapter presents an outer-loop control design for uncertain systems represented in

(1.6) which already have an adaptive inner-loop controller designed as described in Chapter 2.

The outer-loop controller presented in this chapter is designed around the system with closed

adaptive inner loop, uses fixed-gains, and guarantees stability of the closed-loop system. The

outer-loop uses components of a closed-loop reference model, and generates the appropriate

commands for the inner loop Z,cmd(t) such that the outer-loop regulated output z,(t) tracks

the desired outer-loop command Zycmd(t) with bounded errors. The design of the outer-

loop utilizes the existing inner-loop design, which has been designed to have good stability

margins and the desired time-response characteristics. While certain features are added to

the inner-loop controller, this outer-loop design does not require any changes to any of the

existing inner-loop control gains. In addition, an state limiter is proposed in Section 3.6

which is incorporated into the outer-loop control design and limits the inner-loop command

generated by the outer-loop controller. This limiting is done so as to prevent state variables

from exceeding certain limits, or to simply restrict the inner-loop command from becoming

too large. The proposed outer-loop controller is designed to be added around the existing

inner-loop, and generate the inner-loop commands, as shown in Figure 3-1 below. In this

figure, the unlabeled inputs to the inner and outer-loop controllers represent additional

feedback signals that will be used to ensure stability and enforce command tracking, which
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have yet to be determined. This architecture was first presented in Ref. [98] for the case of

state feedback, that is systems in the form of Eq.(1.6) where Cp = I and C. = I.

Zp,cmd

Outer-loop
controller

'g,cmd r = rcmd

Integral
augmentation

Inner-loop
reference A

model Control law

Update law

Inner-loop controller

U
Plant Y9

Z-g

Figure 3-1: Outer-loop control architecture block diagram.

I
3.1 Outer-Loop Control Architecture

In this section the outer-loop control architecture is proposed, which consists of two

additional reference model components, and some additional outer-loop static feedback gains,

two of which are CRM gains. This architecture is presented, and conditions on the selection

of the feedback gains to guarantee global stability of the closed-loop system is given.

In designing the outer-loop controller, the Assumption that Bgd in (1.7) is zero is relaxed.

By including the Bgd term in (1.7) and using the same integral augmentation, the system in

(2.4) becomes

(t) = Ax(t) + B(Au(t) + + TX(t)) + BcmdZp,cmd(t) + BdXg(t)

y(t) = CX(t)

(3.1)
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where Bd E R"lf 9 is given by

Bd [ B=1
[Ofep XfgJ

To accommodate the Bd term in (3.1), the inner-loop reference model in (2.8) is modified as

,im(t) = Amxm(t) + Bcmdr(t) + L(ym(t) - y(t)) + Bdxgm(t) (3.2)

ym(t) = CXm(t)

This change with the addition of the Bd term in the plant in (3.1) and reference model in

(3.2) modifies the inner-loop error dynamics in (2.10) as follows

e(t) = (A + LC + BIJT )ex(t) + BAeT(t)xm(t) + Bcmd(zp,cmd(t) - r(t)) + Bde(t)

ey(t) = CeX(t)

The next step is to consider the outer-loop dynamics in (1.4) and generate the reference sig-

nals r(t) and Zp,cmd(t) in (3.3) so that zg(t) tracks Zg,cm(t) with bounded errors. Asymptotic

tracking of an arbitrary bounded command Zg,cmd(t) by zg(t) is not possible. However, in

the same way that the inner-loop reference model essentially serves as a command pre-filter

for Zp,cmd(t) generating zpm(t) for which asymptotic tracking by zp(t) is possible, a similar

filtered version of Zg,cmad(t) for which asymptotic tracking is possible, is created. For this,

some additional outer-loop reference model components are required.
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3.1.1 Reference Model Design

Outer-Loop Reference Model

An additional outer-loop reference model is introduced in addition to the inner-loop

reference model in (3.2) as

.gm(t) = Agxgm(t) + B9xm(t) + L,(ym(t) - y(t)) + Lg(ygm (t) - y 9(t))

Ygm(t) Cgxgm(t) (3.4)

zgm(t) = CgzXgm(t)

where LY E Ra nfpl , and L9 E R Xpg. The outer-loop tracking error is given by

eg(t) = x9 (t) - Xgm(t)

and the measured outer-loop error by

eg(t) = yg(t) - Ygm(t)

and the goal is to design an outer-loop controller such that limtso e (t) = 0, which will thus

enforce the outer-loop tracking as desired.

Remark 10 With the structure of the measured and regulated outputs in the outer-loop

reference model component (3.4) where unlike the inner-loop reference model (2.8) the reg-

ulated output has no direct feedthrough, the measured output matrix is selected so as to

contain the regulated output as well. That is, the matrix Cg in (3.4) is expressed as

ClO

Subtracting the outer-loop dynamics (1.4) and the outer-loop reference model (3.4) gives
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the following outer-loop error dynamics

?g (t) = Ax,(t) + Bgx(t) - Agxgm(t) - Bgxm(t) - Ly(y,(t) - y(t)) - Lg(ygm(t) - y 9(t))

= A 9 (x9 (t) - xgm(t)) + B9 (x(t) - Xm(t)) + LyC(x(t) - xm(t)) + L9 Cg(x9 (t) - xgm(t))

= Ageg(t) + Bgex(t) + LyCex(t) + LgCgeg(t)

giving

6(t) = (Ag + LgCg)eg(t)+(Bg + L C) ex(t) (
egy(t) = Cgeg(t)

Forward-loop Reference Model

Combining the inner-loop reference model in (3.2) and the outer-loop reference model in

(3.4), the combined reference model is obtained as

[zm(t)] A A ] B E xm(t)] [Bcmd]rt [L] - 0)
[B9M~) r x(m(t)J + [oJ [L (ym(t) - Y() + [ (ygm(t) -y9(t))

2,~) Bg Ag xamt 0 L, L,

zgm(t) = [ C;,][ xm(t)

(3.6)

The forward-loop controller which generates the reference model input command r(t) from

the outer-loop command signal Z9"cmd(t) is now designed. Furthermore, this forward-loop

reference model must ensure the complete resulting reference model, given by Eq. (3.6) with

the forward-loop reference model, is stable. A control of the follow form is selected

fm (t ) = Afmxfm(t) + Bf1Zg,cmd(t) + Bf2Xgm(t) + Bf3Xm(t)

rcmd(t) = Cfmxfm(t) + Df1zg,cmd(t) + Df2Xgm(t) + Df3 Xm(t)
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where the matrices Afm E R ff , Bf1 E

R epxf Dfi E R fepxfe" , Df 2 E R lep xflg

loop system given by combining (3.7) and

of zg,cmd(t) by zgm(t) when the errors ey(t)

outer-loop command zg,cmd(t) in (3.7) equal

RffXeg, Bf2 E R f"xng, Bf 3 E Rnfxn, Cfm E

and Df 3 EE R nx" are selected so the closed

(3.6) provides steady-state command tracking

and egy(t) are zero. Furthermore, we set the

to the desired outer-loop command zogcmd(t) as

Zg,cmd(t) = Zg,cmd(t)

Set r(t) in (3.6) using the output from the forward-loop

as

reference model component in (3.7)

r(t) = rcmd(t) (3.9)

Substituting the forward-loop controller (3.7) into (3.6) gives the following

im(t) Am Bd 0 xm(t) Bcmdl

;gm(t) Bg Ag 0 xgm(t) + 0 r(t)+

fm(t)J B 3 B1 2 Afm] Xfm(t) 0

+ L m(t) yg(t)) + 0 Zg,cmd(t)

0 Bfi1

xm(t)

rcmdt = [Df3 Df2 Cfml xgm(t) + Df1,,cmd (t)

Xfm(t)-

The entire complete reference model (3.10) can be written more compactly as

.m(t) = Atm(t) + Br(t) - Lyey(t) - Lgegy(t) + Bmzg,cmd(t)

rcmd(t) = Cmjm(t) + DflZg,cmd(t)
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:1F L

LY (ym(t) - y(t))

0

(3.10)

(3.11)



where the entire reference model state im(t) E IRn+ng+nf is given by

m W) = [ x(t)
T

xTm(t) X mT)

and where A E Rf+fg +nf Xn+ng+nf, B E R n+n4+nf xne, I E Rn+ng+nf xp, L9 E R n+ng+nf xP

Bm E Rn+ng+nf xneg, and Cm E RnfepX +ngf+nf are given by

Bcmd L

= 0 Y= L

0 0

Om = Df3

0

BM= 0

Bf1

D12 Cn]I

Setting the inner-loop reference model command r(t) as in (3.9) and simplifying (3.10) gives

Am + BcmdDf 3

B9

Bf 3

Bd + BcmdDf 2

A9

Bf 2

BcmdCfm

0

Afm

Xm(t)
xgm(t)

x1 m(t)

BcmdDf 1
+ 0 Z9,cmd W

B 1

L 0

+ L, (ym(t) - y(t)) + L (ygm(t) - Yg(W)

0 0

[Xm(t)1

r(t) = [Df 3 D1 2 Cfm] xgr(t) + Df1Zg,cmd(t)

XfM(0-

(3.12)

which can be represented more compactly as

.m(t) = Amtm(t) + BcmdZg,cmd(t) - Ley(t) - Lgeg.(tW

rcmd(t) =mtim(t) + Df1Zg,cmd(t)
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A Bg

Bf 3

Bd 01

Ag 0

B1 2 AfmJ

Xm(t)

gm(t)E fm(t)

(3.13)

0

L9, L9

0



where Am E Rfn+ng+nf xn+ng+nf and Bcmd E R n+ng+nf xneg are given by

Am+BomdDf Bd+ BcmdDf 2 BcmdCfm BcmdDf 1
Am Am +B A 0 cmd 0 (3.14)

Bf3 Bf2 Afm B 1

where Am = A + BCm. Appropriate selection of the controller in (3.7) ensures that Am

in (3.13) is Hurwitz. Combining the integral augmented, uncertain inner-loop dynamics in

(3.1) with the outer-loop guidance dynamics (1.4) and reference model (3.13) the following

system is obtained

(t) = Ax(t) + B(Au(t) + ITX(t)) + BcmdZp,cmd(t) + BdXg M

y(t) = Cx(t)

9 (t) = Ax(t) + Bgx(t) (3.15)

yg(t) = Cgxg(t)

Xm = Amtm(t) + PcmdZgcmd(t) - Lyey(t) - Lgeyy(t)

rcmd =Cmtm(t) + D1 Zg,cmd(t)

where only the specification of Zp,cmd(t) remains to completely specify the control architec-

ture.

Remark 11 One possible selection for the forward-loop reference model in (3.7) is that of

an LQR-PI controller as used in the inner-loop design. When using such a controller, (3.7)

becomes

dfm(t) = Zgcmd(t) - Zgm(t) (3.16)

rcmd(t) = k Tm(t)

where R E Rn+lg+ff xnep is given by

S= [Df 3 Df 2 CfmJ (3.17)
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with n = neg and where the remaining matrices which define the forward-loop reference

model in (3.7) are selected as follows

Afm = 0 Bf = I B12 =Cq, Bf3 = 0 Df1 = 0 (3.18)

and Cfm, D1 2 , and Df 3 in (3.17) are selected using LQR.

3.1.2 Generating the Inner-Loop Command

The command input to the plant Zp,cmd(t) in (2.11), with the inner-loop reference model

input given by r(t) = rcmd(t) as in (3.9), is modified with an outer-loop error feedback term

as follows

Zp,cmd(t) = r(t) + eg.(t) (3.19)

where

eg(t) = Sgegy(t) (3.20)

and S9 E RfPXPg. This choice of zpcmd(t) modifies the inner-loop error dynamics in (3.3) as

,(t) =(A + LC + BIJI )ex(t) + BAeT(t)Xm(t)+(BcmdSCg + Bde9 (t) (3.21)

ey(t) = Cex(t)

The proposed control architecture can be represented by the block diagram in Figure 3-2,

which groups the components as in (3.15) with the reference model separate from the plant,

and shows the two additional CRM feedback gains L9 and L9 in addition to the inner-

loop CRM gain L. Alternatively, the architecture can be represented as in Figure 3-3 which

better shows the grouping of both reference model and control into their inner and outer-loop

components.
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_ < L*

Lg

Reference model

Forward-loop r r Inner-loop i Outer-loop Ygm
reference reference -reference

model model model

ey

L <71 __ij~~----- I

+e

L Plant with XP Outer-loop
adaptive inner- dynamics

loop control

Figure 3-2: Complete integrated inner and outer-loop design block diagram.
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Outer-oon

I ~

Reference m

-_outer-loop
dynamics

Forward-loop
c--d- referencecmd I L model

r r

oer oop
VIntegral

augmentation

inner-loop
Reference Xm

model

Yp

d Control law Plant
Yg

Figure 3-3: Complete integrated inner and outer-loop design block diagram.

In the most simple form, the block diagram in Figure 3-3 can be represented using the

block diagram in Figure 3-4 where x(t) represents the feedback of the plant and inner-loop

reference model outputs and contains yg(t), e,(t), and xm(t). The signal e(t) contains the

outer-loop error e,,(t) and the outer-loop reference model state xgm(t).

Zg,cmde
Plant with X

Outer-loop r Inner-loop

Figure 3-4: Simplified inner and outer-loop block diagram.

The above sections have presented the inner-loop control design and the outer-loop archi-

tecture including the forward-loop reference model. Combining the inner-loop error dynamics
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in (3.3) with the outer-loop error dynamics in (3.5) with zp,cmd(t) given by (3.19) and (3.20)

the following inner and outer-loop error dynamics are obtained

eX(t) =(A + LC + B T ex(t) + BAET (t)xm(t)+(BcmdSC + Bd)e(t) (3.22)

eg(t) = (Ag + L 9Cg)e(t)+ (Bg + L9C)ex(t)

The CRM feedback gains L9 , Lg, and Sg in (3.22) need to be selected to guarantee global

stability of the closed-loop system. Looking at these error dynamics provied a cue as to how

stability may be achieved, with L9 being used to stabilize the outer-loop error dynamics,

and Sg and Ly used to cancel the error cross-coupling terms. By selecting these outer-loop

reference model gains in this way, the error dynamics are essentially reduced to standard

adaptive error dynamics on the inner-loop, and stable outer-loop error dynamics. The specific

requirements for stability of the error dynamics in (3.22) and the resulting conditions leading

to the solutions for Sg, Lg and Ly are provided in the following subsection.

3.1.3 Conditions for Stability

The complete control architecture is specified by the plant and reference model (3.15),

inner-loop command specified by (3.19) and (3.20), control input (2.9), and update law in

(2.57). All that remains to complete the control design is to specify solutions to L9 , L,,

and Sg such that the closed-loop system is stable and the control goal of command tracking

is satisfied. In order to prove stability of the closed-loop system, the matrices L9 , S9, and

P = P' > 0 need to be found satisfying the following condition

(B9 + LyC)T P9 + PxBcmdSgCg + Bd = 0 (3.23)

where L9 must be picked together with P so that, in addition, the following Lyapunov

inequality is satisfied

(A9 + L9 C 9)TP9 + P1(A9 + LgC) <-Q9 (3.24)
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where Q9 = QT > 0. Together, the conditions in (3.23) and (3.24) can be combined, and the

problem restated as: Find the matrices L9 , S9, L. and P. that together satisfy the following

conditions

(B9 + LyC)T P9 + PxBcmdSgCg + Bd = 0 (3.25)

(A9 + L9C)T P9 + P9(Ag + LgCg) <Qg (3.26)

The condition in Eq. (3.25) can be rearranged as

CT L T = -PxBcmdSgCg P- 1 - B T - BdPg-1 (3.27)

Examining the condition in (3.27) it can be seen that the CRM gain L T on the left hand side

rotates and scale the columns of CT, but cannot do anything such that the columns of the

matrix CTL T are orthogonal to columns of CT. This means that, in general, Ly would not

be enough to direct the columns of CT so as to match the right hand side of (3.27). Thus

S. together with P1 must be used to ensure the columns of the right hand side in are in the

space spanned by the columns of CT. That is, S. and P must be selected such that when

(3.27) is left-multiplied by MT, that the quantity on the right hand side vanishes, where

M is the inner-loop measured output annihilator matrix from (2.19) that satisfies CM = 0.

Left multiplying (3.27) by MT and substituting in the expression for P, from (2.24) the

following is obtained

- MTNTXNBmdSgCgP- = MT(Bg + BdP,-) (3.28)

Furthermore, recall from Lemma 4, the Matrix Elimination Lemma, for an L9 to exist

satisfying (3.26), a P must exist satisfying

CIT(APg + P9 A9 )CTI < 0 (3.29)
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Thus in order to find L9 , S9 , and Pg satisfying (3.27), and thus (3.25), with the additional

constraint that P solves (3.29), thus guaranteeing an L9 exists that solves (3.26), the ma-

trices P and Sg must be found satisfying

MTNTXNBmdSgCgPg- MT(BT +BdP- 1 ) (3.30)

CTIT (A Pg + PgAg) CT'_ < 0 (3.31)

If Sg and Pg exist satisfying (3.30) and (3.31), then the solution to the outer-loop control

problem exists. Once solutions S9 and P. are found analytically, an Lg satisfying (3.26) is

guaranteed to exist, which can be simply found it by solving (3.26) numerically, as was done

to obtain L in the inner-loop design in Chapter 2. With the solutions S9 and P, the solution

L9 from (3.27) is calculated. So the problem that remains is to find S and P satisfying

(3.30) and (3.31).

Remark 12 If the requirement that the inequality in (3.26) be strict is relaxed, then the

condition given by (3.31) is changed so as not to be a strict inequality either.

The existence of solutions to (3.30) is dependent on the sizes of the matrices. Based on

these different sizes will affect how (3.30) is manipulated to get it in a form which can be

solved.

Case I: n - p =ne

This case corresponds to the number of inner-loop regulated outputs nep, being equal to

the number of unmeasured inner-loop states, given by n - p. In this case, MTNTXNBmd

in (3.30) is square, and full rank as specified in Remark 4, so left-multiply (3.30) by

(MTNTXNBcmd)~ 1 and right-multiply by Pg to obtain

S9C =(MT NT XNBcmd)MT(B + BPg-1 )Pg (3.32)

It can be seen from (3.32) that Sg can only rotate the vectors that make up the rows of C

to other directions within their span. Thus, it is necessary to make sure that the right hand
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side of (3.32) lies in the same span as the rows of C, then S9 can be used to rotate them as

required. For the right hand side to be in the same span as the rows of C, it has to have the

same nullspace. That is, if (3.32) is multiplied on the right hand side by CF the resulting

quantity must be zero. Thus the goal is to find P satisfying the following

(MTNTXNBcmd)-lMT(BF + BdfP-)P9 C;' = 0 (3.33)

But since MTNTXNBmd is square and full rank, finding P satisfying (3.33) is equivalent

to finding P satisfying the following equation

MTBTP CT1 = -MTBdCTI (3.34)
g9 9g

with MTBT E RnpXng and CTI E R"gxfl-Pg. Since C is always wide, S9 from (3.32) can

be solved for using a right inverse of C to get

S = -(MTNTXNBcmd) MT(B; + BP-1)P9 Cg right (3.35)

Case II: n - p < neP

This case corresponds to the number of inner-loop regulated outputs nep, being greater

than the number of unmeasured inner-loop states, given by n-p. In this case MTNTXNBmd

in (3.30) is wide. A right inverse is used to simplify (3.30) as

S9C9 = -(MT N T XNBmd)-'right MT (B T + BdP-1)P

As in Case I, S9 can only match the right hand side in the span of C, so need to make sure

that the right hand side is within the span of Cg. So P must satisfy

(MTNTXNBem) - rightMT(B T + BdP-1)PCTI = 0 (3.36)
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But because (MTNTXNBm)l-Iright is tall and full rank, finding Pg satisfying (3.36) is

equivalent to finding Pg satisfying the following equation

MT B TP CT1 = -MTB CTI (3.37)g g g dg

Once Pg satisfying (3.37) is found, Sg is determined by

Sg = -(MTNXNBcmd>lrightMT(Bf + BaP-1)p g 1right

Case III: n - p > nep

This case corresponds to the number of inner-loop regulated outputs nep, being less than

the number of unmeasured inner-loop states, given by n - p. In this case MTNTXNBemd

in (3.30) is tall, so Sg doesn't have the degrees of freedom to satisfy (3.30).

The conditions for the existence of Sg and Pg exist satisfying (3.30) and (3.31) is stated

in the following theorem.

Theorem 5 For the existence of Sg and Pg satisfying (3.30) and (3.31) for a stable outer-

loop controller, the plant must satisfy n -p < nep, n - p < ng, as well as the following

inequaGlty

CTIT AT(BgM) (CTIT(BM)<ri)ht < 0 (3.39)

PROOF Finding S. and Pg satisfying (3.30) involves first manipulating (3.30) by selecting P

to ensure that Sg, which acts through the rows of Cg, will be sufficient to satisfy (3.30). This

results in a finding the set of all p = PT >0 which satisfy HAPgJB = Hc, where HA, IB,

and LI are matrices which depend on the state-space plant matrices. Finding P1 involves

using a generalized singular value decomposition, and fixes certain elements of Pg based on

HA, HB, and He. Then, from this set of P, those which also satisfy (3.31) are found. This

involves substituting the form of Pg into (3.31) and manipulating to obtain (3.39). These

steps are outlined in detail in the following sections. E

Remark 13 The control solution is still possible when the inequality in (3.39) is not strict,
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which results in (3.31) not being strict as well. The implications this has on tracking are

discussed following the stability proof, but it is noted that outer-loop command tracking is

still achieved as desired.

Remark 14 For the existence of a stable outer loop as described in Theorem 5 for the

case when n - p ;> ng, a solution is still possible, but requires additional constraints to be

satisfied. See Appendix C.

3.2 Solving Pg: Symmetric Solutions to the Matrix

Equation HAPgHB = HC

Solving for P in (3.34) and (3.37) for P = Pg' > 0 are in the form HAPHB = HC, and

P9 must also satisfy (3.31). In the two cases above, the matrices HA, HB, and 1C in (3.34)

and (3.37) are given by

HA =

sB =

1c =

MTBT
C 9.L

(3.40)

where HA E R"fPX"g, P E Rngxg, HB

definitions in (3.40), the inequality (3.31)

as: Find Pg = PT > 0 satisfying

E R " Pg and Hc E R" PXflgP. Using the

is rewritten and the problem once again restated

HAPgJHB = 'Ic

HB(A9Pg + PgAg)HB < 0

where HA, HB, and Hc are defined in (3.40).
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3.2.1 A Generalized Singular Value Decomposition

Determining solutions Pg to Eq. (3.41) involves first decompose the matrices HA and HB

in (3.40) using a generalized singular value decomposition (GSVD) [46, 25, 76, 49] as follows

H A = UEAP
(3.43)

B = VEBP

where U E R"-PX"P and V (E R n-pl x,-lp, P E R n""g, and EA E RflPX"g and EB

R ng-Pg x",. This decomposition is provided in detail in the above references, and described

here for the case where the rank of the following matrix is full.

[HA] 
(3.44)

i

As the matrices HA and HB in (3.44) essentially capture the unmeasurable system outputs,

the requirement that (3.44) be full rank can be easily satisfied for most systems by ap-

propriate selection of the sensors used. A simplified way this full rank condition can be

interpreted is that if the system in (1.6) is not observable using only the inner-loop output

yp(t), then using outer-loop measurements that are simply pure integrations of the inner-loop

measurements will not make the system observable. Instead, the outer-loop measurements

must contain additional information about the outer-loop states. The matrices describing

the decomposition in Eq. (3.43) when (3.44) is full rank are given by

EA =Inpxn-p On-pxn,-p, On-pxp-n+pJ (3.45)

B [Ong-pgx9  p Ing _P >x nf-pg On-pg xp-n+pg

and

P= PT f B ](3.46)

IIB U][.T
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where PA is an arbitrary block diagonal matrix, with full rank, given by

PA 0

PA= 0 PB

0 0

0

0

PN_

(3.47)

where PA C R"-P"-P, PB E Rn.- l X"gPg, and PN E RP+Pg-nlxp+pg-n are each matrices of

full rank. Substituting (3.47) into (3.46) gives

PAHJA

P = PB

[PN [ A IAT

(3.48)

Select U and V in (3.43) as

V=P 1

ensures that the decomposition (3.43) holds.

3.2.2 Satisfying IAPgHB = c with pg = pT > 0

With 1 1 A and 1 1 B decomposed as in (3.43) and plugging these expressions into the equa-

tion IIAPgI7 = flc gives

UEAPP9 PThBVT = nc (3.49)

Propose the following solution P to (3.49)

p = PlXDp-T (3.50)
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where XD X > 0 ensures that Pg = PT > 0. Plugging the form of P from (3.50) into

(3.49) results in

UFEAPP--XDP B B

which can be simplified as

UFAXD T c (3-51)

The matrix XD = X9 > 0 is written as

XD11 XD12 XD13

XD XD 1 2 XD22 XD23 (3-52)

XD1 3 XD2 3 XD33

where XD11 E Rn-PX"-P, XD12 E R"PXflgo, XD13 E Rnpxpn+p9 , XD22 E R gPg"l gP,

XD23 E R"g~pgxp-n+pg, and XD33 E Rp-n+pgxp-n+p. Plugging in the form of XD from (3.52)

and EA and EB from (3.45) into (3.51) gives

XD11 XD12 XD13 0

U [I 0 0] XDT 12 XD22 XD23 I VT= fc

[XD 13 XD23 XD33J [0]

which simplifies to

UXD12V T = IC

Solve for XD12 as

XD12 = U-CV-T

= P(3.53)=PAIICPB

The choice of XD12 in (3.53), ensures that P given by (3.50) with XD given by (3.52) satisfies

the equation HAPgHB = HC. However, the remaining degrees of freedom in XD must be

selected to ensure also that Pg > 0, and that Pg also satisfies the inequality (3.42).
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3.2.3 Satisfying H (Ag + PgAg)HB < 0

With the form of P given by (3.50) dependent on XD given in (3.52) with XD12 given in

(3.53) and P given in (3.48), the goal now is to find the remaining elements of XD so that

the resulting P satisfies the inequality (3.42) and ensures P > 0. Plugging the form of X

from (3.50) into the matrix elimination lemma inequality from (3.42) gives

flB(AgP-XDP T + P-1XDP TA)fB <0 (3.54)

rearrange as

lTsP-1(PA TP-1 XD + XDp-T A 9 p p-T IB < 0 (3.55)

To try to find an analytical expression for P-1 given the expression for P, its inverse P-1

must satisfy

PAJIA 1 0 0

PBJ7~ P 1 = 0 I 0 (3.56)

[N FA [.0T

It can be seen from this that

B = [0 I 0] (3.57)

from which it can be seen

BlgP 1 = [0 P-1 0] (3.58)

Using (3.58), the inequality (3.55) becomes

0

[0 P-l 0] (PA P 1 XD + XDPTAgPT) [PT < 0 (3.59)

0

Defining P as

P = PATP- 1 (3.60)
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the inequality (3.59) can be written as

0

[0 P-l 0] (PXD + XD PT) pg T < 0

0

(3.61)

It is now necessary to examine the structure of the matrix P in the inequality (3.61), which

requires an expression for P-1 so as to determine P as given by (3.60). Given P in (3.48),

its inverse P- 1 must obviously satisfy PP-1 = I as in (3.56). Examining (3.56) it can be

seen that the columns of P- 1 are given by

P-1 = ( priht I TL(pf ll )-1right X] (3-62)

where x indicates a column of P-1 which is to remain unspecified. Expanding P and P-1,

the requirement that PP-1 = I requires the following conditions be satisfied

PA17LB(

PB B

r ,IT
PN [ B] I

PAHAH (
PBrN[ri B T

AN U A A

PA~a rlAr- -1igt- I
PAflA17IB) l1right =0

PAIIAHB)-iih _ 0

A A -1right = 0A A

PB -lright
PB A) -r 0

Bp -1right

The first two conditions in (3.63) and (3.64) are obvious, following from the definition of the

right inverse, and properties of the annihilator matrices. That each of the third conditions is

true is less obvious, and is contained in Appendix C. With P-1 given by (3.62), P in (3.60)
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can be written as

PAH A

PBTB T A AHL)-lright _ PBH -) l-right xj

PN [i-A B IT]

(3.65)

where x in (3.65) again represents a column of P which remains unspecified. P can also be

partitioned into a block matrix given by

P =P 21

LP31

P12

P22

P 32

P13

P23

P33]

where Pu E R -PX"-P, P12 E R pXf-, P 13 E R n-PXP flp9  P2 1 E R"f lg7"fl,

R"gPgxfg"Pg, P 2 3 E Rng-pgxp-n+pg, P 3 1 E Rp-n+pgxn-p, P 3 2 E Rpn+pgxng-pg, and

RP-n+pgxp-n+Pg with P2 1 and P 22 given by

(3.66)

P 22 E

P33 E

P 21 = PBgTB gB (PA IA )right

P22 = PBfB g A I7 B l -lright

(3.67)

The inequality in (3.61) with P given by (3.66), where P21 and P2 2 are given by (3.67),

and XD given by(3.52) must be satisfied by the selection of the remaining elements of XD.

Plugging these expressions for P in (3.66) and XD in (3.52) into the inequality in (3.61)

gives

P 13 XD11

2 3  XDT1 2

P33 J X 13

12 XD13

22 XD23

23 XD33
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XD12 XD13

XD22 XD23

XD23 XD33J

P1 2  3T 1

P12 P2P2 2

P13 P23 P33_

P12

P2 2

P32

XL

XL
TL

Ph

[0 P 1 0] P21

4P31

XD11

+ XT12

XD13

(3.68)
0

Pi
T

0

< 0) [.



which is equivalent to

P21XD12 + P 2 2XD2 2 + P23 + XD 1 2P 21 + XD 2 2 P22 + XD 2 3P23 <0-(.69

The PB terms in (3.68) can be dropped, as they are full rank matrices, and thus have no

influence on the satisfaction of the inequality. XD12 in (3.69) is fixed based on the solution to

(3.53) thus ensuring HAPgHB = HC, and the remaining elements of XD must be selected so

that XD > 0 and so as to satisfy the inequality in Eq. (3.69). This will ensure that XD > 0

in (3.50) and that the resulting P satisfies (3.42). Rearranging the terms in (3.69) gives

(P2 2XD 2 2 + XD 2 2 P22) + (P21XD12 + XD 12 P2) 2 -(P2 3XD2 3 + XD2 3 P23 (.7

Recall that XD12 was given in (3.53). The challenge now is selecting the remaining elements

of XD so as to satisfy (3.70), while also ensuring XD > 0.

3.2.4 Solving for XD

To satisfy (3.70) and ensure XD > 0 in (3.52), the solution XD12 from (3.53) is used, and

set

XD13 = 0 XD23 =0 XD33 > 0

which simplifies (3.70) to

(P 2 2 XD2 2 + XD2 2 P22) + (P21XD12 + XD 1 2P2) <0 (3.71)

and XD in (3.52) to

XD11 XD12 0

XD= XD12 XD22 0 3.72)

0 0 XD33

If P22 in (3.71) is stable, this Lyapunov equation (3.71) can be solved to obtain XD22. Then

with XD12, XD22, and XD33 fixed, the Schur Complement is then used to selected XD11 to
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ensure XD > 0 in (3.72). With P22 given by (3.67), this provides an easy way to check if

the outer-loop control solution exists. However, if P22 in (3.71) is not stable, this inequality

may still be satisfied, based on the properties of P2 1 and XD12. Thus, in this case, these

properties must be examined to determine whether the outer-loop control solution exists.

These two cases are considered in the following subsections.

Case i: P2 2 is Stable

If P22 in (3.71) is stable, this Lyapunov equation can be solved to obtain XD22. Then,

XD11 > 0 can be selected satisfying the following Schur complement

XD11 > XD12X22 (3.73)

which ensures that P satisfies HAPJHB = flc with P. = P T > 0, and also satisfies the

inequality (3.42). Thus, satisfaction of the inequality (3.42) and existence of the outer-loop

controller is dependent on P22 in (3.67) being stable, where P22 in (3.67) is repeated below

for convenience.

P 22 = PBBAT Bt) (3.74)

Stability of P22 in (3.74) is equivalent to the following

rigT TiT_ (I T IT-) 1rg"::B* < B (3.75)

Using the notation in (3.40), the requirement in (3.75) can be written as

CTIT A (BgM) 1 (CTIT(BgM) ) lright < 0 (3.76)

If (3.76) is satisfied, then XD = XT > 0 exists which defines Pg and ensures that P1 pT >

0, IIAPHB = 1C as in (3.41), and B7(AgP9 + PgAg)HB < 0 as in (3.42).
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Case ii: P 2 2 is Not Stable

If P22 is not stable, the inequality (3.71) can still be satisfied if

(P21XD1 2 + XD 12P) < 77)

In this case, XD22 can be selected sufficiently small so that the negative term (3.77) in (3.71)

ensures the inequality is satisfied. Using the expressions for P12 from (3.67) and XD12 from

(3.53) to evaluate the quantity P21XD12 in (3.77) gives

P21XD1 2 = PBIAT (PAAi -- riht-'CT (3.78)

The matrix P21XD12 in (3.78) is square, with dimensions nr - p9 x ng - pg. Using the

expression for P21XD12 in (3.78) allows the inequality in (3.77) to be expressed as

PBIT AT PAflA ) -right pAflCpB
B g B B(3.79)

+(PBrIT ATI(PArAS) rihtpAfCpT)T < 0

Satisfying the inequality in (3.79) is independent of the selection of the matrices PA and

PB. The proof of this is provided in Appendix C. Thus, satisfying the inequality in (3.79) is

equivalent to satisfying

riT A T Ui( l ~1right iB g~ B(flAfBL~) l(3.80)

+ (11 II -UA 1rightCT
B~ IlrB <0

The equivalence of the inequalities (3.79) and (3.80) is shown in Appendix C. Plugging in

expressions for HA, HB and Hc from (3.40) in terms of the plant state-space matrices into

(3.80) gives

- (CIT ATT CC9BMMTBdC, ) - (CTT ATCgT BMMT BCTI)T < 0 (3.81)
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Thus, when P22 in (3.71) is not stable, a solution still exists if (3.81) is satisfied. In this case,

XD22 can be selected sufficiently small so that the negative term (3.77) in (3.71) ensures the

inequality is satisfied.

Degrees of Freedom

The degrees of freedom available to the control designer are the matrices PA, PB, and

PN in PA and thus P as in (3.48), that can be selected arbitrarily as long as they are full

rank. In addition XD > 0 contains several degrees as follows. The matrix XD33 = XD 3 3 > 0

is arbitrary, XD22 can be selected as desired, satisfying the inequality in (3.71), and finally

XD11 can be selected using the Schur complement to ensure XD > 0.

3.3 Solving for Remaining Outer-Loop Controller Gains

With the solution P determined, S9 can now be determined from (3.35) or (3.38), depend-

ing on the dimensions. With this Pg, an Lg satisfying the inequality in (3.30) is guaranteed

to exist and can be solved for numerically. The CRM gain L9 can then be solved for by first

taking the transpose of (3.27) as

LYC = -(PxBcmdSgCgP;-) T 
- B g - PTBJ

and then using a right inverse to obtain L9 as

L =((PxBcmdSgCgP-1 )T + B9 + P-TBd)C-risht (3.82)

The matrix L9 modifies the outer-loop guidance portion of the reference model in response

to errors within the inner loop. It is this feature which enables stability of the combined

inner and outer loops, and provides command tracking of altitude at the outer loop. The

stability of the complete system using the adaptive inner-loop and sequential loop closure

procedure to close the outer loop is given in Theorem 6.
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Remark 15 When the outer-loop kinematics do not affect the inner-loop dynamics at all,

that is when Bd = 0, then P. changes the solution to Sg as given by (3.35) and (3.35), but

has no effect on Ly. This can see this by plugging in the solution Sg from (3.35) or (3.38) into

(3.82), resulting in P canceling out. This is important to note when tuning the outer-loop

controller.

3.4 Stability

The inner-loop error dynamics were given in (2.10) and a Lyapunov function provided in

(2.58), which showed stability of the closed loop system with update law in (2.57). When

the outer-loop dynamics were considered, the assumption that Bd = 0 when designing the

inner-loop controller was relaxed, giving the modified inner-loop dynamics in (3.1). This

change to the inner-loop plant dynamics modified the inner-loop error dynamics in (2.10) to

those in (3.3). The inner and outer-loop error dynamics in (3.22) can be written in matrix

form as

XA + LC + BlT BcmdSgCg + Bd ex(t) B T
+ A6 (t)xm(t) (3.83)

eGffl B, + L,C A, + L,C, e,(t 0

The stability of the closed-loop system with the error dynamics in (3.83) is proved in the

following theorem.

Theorem 6 The uncertain system in (1.6) with inner-loop controller specified by the control

law in (2.9), update law in (2.57), and the reference model in (3.2) where S1 and L are chosen

as described in Chapter 2, and the outer-loop controller specified by the outer-loop reference

model in (3.4), forward-loop reference model component in (3.7), with inner-loop command

input prescribed by (3.9), (3.19) and (3.20), with Sg, Lg, and Ly selected as described above

results in global stability, with limt, 0 es,(t) = 0 and limt+n eg(t) = 0.
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PROOF With a radially unbounded Lyapunov function candidate

V(e-(t), e9(t), e (t)) (t) ) + ee. (t)Peg(t) + IA16T (t)F-1e(t) (3.84)

where P., is given by (2.24) and where Pg is the solution to the Lyapunov equation in (3.26),

which is satisfied by the selection of L9 and P as described above. The time-derivative

V(ex(t), e 9(t), 6(t)) is given by

Q(ex(t), e9 (t), e(t)) = ei(t)Pxex(t) + e(t)Pex(t)

+ i4T(t)Pgeg(t) + egj(t)Pgd4(t) + 21AI (t)Fle(t)

Substituting the inner-loop error dynamics (3.21) and outer-loop error dynamics from (3.5)

into #(ex(t), e9(t), e(t)) in (3.85) gives

YV(ex(t), e9(t), e (t)) =(ALex (t) + BA6T (t )xm(t) + BcmaSgCgeg(t) + Bde9 (t))T Pxex(t)

+ eix(t)P,(ALex(t) + BAeT(t)xm(t) + BcmdSgCgeg(t) + Bdeg(t))

+((Ag + L9 Cg)e 9 (t) + (B9 + LyC) ex(t))T Pgeg(t)

e(t)P ((Ag + LgC)eg(t) + (B9 + LyC)ex(t))

+ 21AIeT (t)F- 10(t)

= ext (ALP , + PxAL )ex (t)

+ 2ex (t)Px (BAT(t)xm(t) + BcmaSgeg(t) + Bdeg(t))

+ ej (t (A9 + LgC _)TgP e(t) + eT (t) (B9 + Ly C)TPge(t)

+ e'(tA)P 9(A + LgCg)eg(t) + e (t )P(Bg + LyC)e(t)

+ 21AI T (t)F- 1E(t)

(3.86)

where AL = A + LC + B1T. Let AL P + PxAL = -Qx < 0 as assured by the selection of L
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satisfying Eq. (2.20) giving

E(ex (M), e9() M (0)) = ' -,(t) QXex (t)

+ 2e x(t)P(BAe T (t)Xm(t) + BcmdSgCgeg(t) + Be,(t)) (3.87)

+e ((Ag + LCg)T Pg + Pg(Ag + L9 Cg))e.(t)

+ 2e +(t)(B9 + LC) TPe(t) + 21A\T(t)I-l(t)

Substituting the update law (2.57) into (3.87) and using the Lyapunov equation (3.26) gives

(e (t), e(t), e(t)) =-eI(t)Qex (t) - eTI(t)Qgeg(t) + 2e1 (t)PxBAe T (t)Xm(t)

+ 2ej q(t)((B9 + LC )TP + PBcmdSgCg + Bd) e(t)

- 2jAjeTX r(t)(Siey(t))T sgn(A)

- -e(t)Qxex(t) - eI(t)Qgeg(t)

+ 2e (t _ ((B 9 + LyC )TP + PBcmdSgC9 + Bd) e(t)

The choice of L9 in (3.82) simplifies the Lyapunov derivative to

, (e (t), e,(t), e(t)) = -eT(t)Qxex(t) - e T(t)Qqeq(t) (3.88)

which implies that V(ex(t), e9 (t), e(t)) is a Lyapunov function. Since V(ex(t), e9 (t), e(t)) >-

0 and V(ex(t),eq(t),&(t)) -_ 0, it follows that V(t) V(0) < oc. Thus V(t) E 'C" which

implies ex(t), e9 (t), e E Loo Since Zg,cmd(t), ex(t), e9(t) E Lo and Am in (3.13) is

Hurwitz, Xm(t), xgm(t), Xfm(t) E LOO, which implies that x(t), xg(t) E Lo,. With the input

Xm(t) and 6(t) to the error dynamics (3.83) bounded, this implies that dx(t), eg(t) E LOC.

Finally, ft E(r)dT = V(t) - V(0) and since V(t) is non increasing and positive definite,

V(0) - V(t) V(0). This gives - ft V(r)dr < V(0). Substituting in the expression for

V = -eT(t)Qxex(t) - eT(t)Qgeg(t) gives ft ex(T) T Qxex(T) + eg(r) T Qgeg(r)d-r < V(0) and

in turn that ex(t), eg(t) E 42. With this, it can be concluded using Barbalat's Lemma [70]

that limt,÷, ex(t) = 0 and limt÷, eg(t) = 0. Since (3.84) is radially unbounded stability is
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global. L

Corollary 2 The outer-loop regulated output zg(t) tracks the reference regulated output

zgm(t) asymptotically. Furthermore, for piecewise constant outer-loop commands, zg(t) tracks

Zg,cmd(t) asymptotically.

PROOF The proof of Theorem 6 provides that xg(t) -4 xgm(t) as t -+ oc and thus zg(t) -

zgm(t) as t -* oo as zg(t) = C,,xg(t) and zgm(t) = CgzXgm(t).

By appropriate selection of the forward-loop reference model (3.7), for example as in

(3.16), the reference model in (3.13) with output zgm(t) is made a type 1 system with

respect to the command Zg,cmd(t). Thus, for piecewise constant Zg,cmd(t) it follows that

Zgm(t) -+ Zg,cmd(t) as t -4 oo, from which it follows that zg(t) -+ Zg,cmd(t) as t -+ o, as

desired. LI

Remark 16 In the case when the inequality in (3.39) is no longer strict result is the inability

to show e9 (t) E C2 and thus it cannot be show that limt_,+ eg(t) = 0. However it holds that

limt+e eg,(t) = 0 in this case, which gives yg(t) -+ ym(t) as t -+ oo and with the selection

of Cg defining the measured output to contain the regulated output as described in Remark

10 this gives zg(t) -+ zgm(t) as t -+ oo providing outer-loop command tracking as desired.

Thus the loss of the the unmeasured outer-loop error going to zero does not affect the ability

of the closed-loop system to achieve the control goal.

3.5 Outer-loop Controller Summary

This section provides an overview of the outer-loop controller described above. The con-

trol design procedure is summarized, assuming an adaptive inner-loop control as described

in Chapter 2 has already been designed. The function of each of the outer-loop controller

parameters Sg, Lg, and Ly is provided, and insight given as to how, in addition to compro-

mising stability, the controller is affect in the absence of any of these components. Lastly, an

overview of the complete control design is provided, providing a summary of the equations

describing the uncertain inner and outer-loop plant dynamics, reference model, control law,
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update law, inner-loop command, and outputs.

3.5.1 Summary of Outer-Loop Design Procedure

1. Design an inner-loop controller as outlined in Chapter 2.

2. Add the Bd term to the inner-loop reference model in (2.8) resulting in (3.2)

3. Define the outer-loop reference model in (3.4), the forward-loop reference model in

(3.7), and the inner-loop command input as in (3.19)

4. Calculate P22 from (3.74) where PB is an arbitrary full rank matrix.

5. Calculate XD12 from (3.53) where PA is an arbitrary full rank matrix.

6. Solve the Lyapunov equation (3.71) to obtain XD22-

7. Assemble XD in (3.72), where XD33 > 0 is arbitrary, XD12 is given by (3.53), XD22

satisfies the inequality (3.71), and XD11 satisfies (3.73)

8. Assemble (3.47) where PN is an arbitrary full rank matrix and then calculate P as in

(3.46).

9. Using P in (3.48) and XD in (3.72), calculate P. from (3.50).

10. With the solution P determined, S from (3.35) or (3.38) is then solved for, depending

on the dimensions.

11. With this Pg, an L9 satisfying the inequality in (3.30) is guaranteed to exist and can

be solved for numerically.

12. Then solve for LY as in (3.82).

3.5.2 Function of the Outer-Loop Controller Parameters

The primary function of the closed-loop reference model gain L, term is to feed the

outer-loop error into the outer-loop reference model to provide stability for the outer-loop

error dynamics in cases where A9 is not stable. However, it has the additional function,
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whether Ag is stable or not, of being used to tailor the solutions Pg to (3.26). This is so that

a particular Pg can be found which ensures the existence of an S9 satisfying (3.30). Overall,

Sg acts along the directions of C, Ly along the directions of C, and and P needs to be

selected so as with these restrictions on S9 and L., that (3.27) can still be satisfied. Without

L., in cases when A9 is unstable, a divergence in the outer-loop dynamics is expected. In

cases when A9 is stable, compromised stability should still be expected.

The closed-loop reference model gain L9 feeds the inner-loop error into the outer-loop

reference model. This is to modify the outer-loop reference trajectory as necessary to account

for the the fact that the uncertain plant with adaptive controller, while it will somewhat

"look" like the inner-loop reference model, it necessarily be identical in that there is no

guarantee that the closed-loop poles of the plant with inner-loop controller will be the same

as the inner-loop reference model.

This difference in pole location doesn't matter in steady-state, but during transients will

cause an error, and this L. term decouples the inner and outer-loop errors.

Lastly, the Sg term feeds the outer-loop error into the command input of the plant with

inner-loop adaptive controller. This term is necessary in addition to L. to decouple the

inner and outer-loop errors. Without S9, the inner-loop error dynamics are the same as

those used for the inner-loop design given in (2.10) with the exception of the Bd term. This

is given by (3.22) where Zp,cmd(t) = r(t). Thus it is expected that the inner-loop error will

go to zero, except for any perturbation due to the Bd term. However this means that the

necessary adjustment to the inner-loop command will not be made so as to track the outer-

loop command. So in addition to compromising stability, without S it can be expected that

the steady-state tracking error of the outer-loop command does not go to zero.

3.5.3 Complete Controller Summary

The entire closed-loop system, consisting of the plant and controller, can be summarized

with the following set of equations. The uncertain plant (3.1), the outer-loop dynamics

(1.4), the inner-loop reference model (3.2), outer-loop reference model (3.4), forward-loop
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reference model component(3.7), inner and outer-loop measured errors, control (2.9), inner-

loop command input (3.19) and (3.20), and update law (2.57) combined are given by

Plant: i(t)

d9 (t)

Reference model: M(t)

mw(t)

m,(t )

Command: rcmd(t)

r(t)

Z,cmd (t)

Zg,cmd (t)

Errors: ey(t)

egy(t)

Control: u(t)

e(t)

= Ax(t) + B(Au(t) + IFTx(t)) + BcmdZp,cmd(t) + BdXg(t)

- Agxg(t) + Bx(t)

= Amxm(t) + Bcmdr(t) - Ley(t) + BdXgm(t)

= Bgxm(t) + Agxgm(t) - Lyey(t) - Lgegy(t)

= Bf 3 Xm(t) + Bj 2Xgm(t) + Afmxfm(t) + B 1Zg,cmd(t)

Cfmxfm (t) + Df1Zg,cmd(t)+ Df 2Xgm(t)+ Df3 Xm(t)

= rcmd(t)

= r(t) + Sgegy(t)

Scmda )

= C(x(t) - Xm(t))

= C9 (x9 (t) - xm(t))

=(Kx + E(t)) Txm(t)

= -xm(t)(SeY(t)) T sgn(A)

3.6 State Limiter

The above sections have presented the design of an outer-loop controller around a plant

with an adaptive inner-loop as designed in Ch. 2. The result is a globally system capable

of accommodating a class of uncertainties and tracking outer-loop commands. While there

are other control architectures that could have been used to control the system in (1.2) and

enforce tracking of outer-loop commands, one of the benefits of the proposed architecture is

in the explicit calculation of the inner-loop command rcmd(t), which is used as the input to

the inner-loop reference model and plant r(t) as given in (3.9). Furthermore, the rcmd(t) is

described by the output of the known, linear, time invariant system in (3.11). The benefit

of such an architecture is that it facilitates the ability to limit the inner-loop command as
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necessary. With the inner-loop command for systems such as aircraft typically being vehicle

angular rates or accelerations, placing limits on these commands is highly important so as to

avoid generating inner-loop commands which may otherwise cause the aircraft to maneuver

in a way which may exceed its structural limitations. Alternatively, in many situations it

may be desirable to limit the inner-loop command based on limits on other state variables.

For instance, during aggressive maneuvering of an aircraft, maintaining coordinated flight

may be difficult, and so excursions in the vehicle sideslip angle may occur. In this case it

may be desirable to reduce the inner-loop commands so as to respect limits on the sideslip

angle.

In this section a limiter is designed which will generate the inner-loop command r(t) in

a different way than in (3.9) so as to accommodate these desired state or command limits.

This approach is inspired by the work in [38, 58, 59 and originally developed in [83]. The

primary difference is that the limiter proposed here is for the output feedback case, whereas

the references above as well as Refs. [34, 69] are for the case of state feedback. Enforcing

limits on the plant state are made more difficult when the state is not measurable. In

addition, because the proposed limiter is used within the reference model, a known, linear,

and time-invariant system, the proof of stability is considerably more simple, and does not

rely on any parameters be selected sufficiently large so as to guarantee stability. Lastly,

the proposed limiter reduces the inner-loop command rcmd(t), as opposed to modifying the

control input u(t) in order to accommodate state constraints. However, in this case, the

control input u(t) is implicitly limited in that the output feedback control law depends only

on the reference model state, so limiting the reference model state thus limits the control

input u(t). However, unlike in [59] where the state limiter is designed to accommodate an

bounded, unknown, time-varying disturbance, such disturbances are not considered in this

thesis.
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3.6.1 Overview

This proposed limiting method modifies the simplified block diagram in Figure 3-4 as

shown in Figure 3-5. This approach will generate the inner-loop reference model and plant

input r(t) by scaling the inner-loop command rcnd(t), as well as the generating the outer-

loop command zg,cmd(t) by scaling the desired outer-loop command zgcnd(t) based on limits

placed on the reference model states. Should the system be command to enter a region

in the state-space which would invoke the limiter, these modifications will then affect the

outer-loop tracking performance, which is expected. Sacrificing tracking performance to limit

the inner-loop command or the system states is an expected trade-off, and also a necessary

one. In the event that the aircraft cannot track the desired outer-loop command without

exceeding these limits, it is better to reduce tracking performance, as exceeding the limits

may in many cases lead to the loss of the aircraft. However, for cases where the system is

not forced to invoke the limiter, tracking performance will be unaffected.

Zg,cmd e
Outer-loop .Plant with
controller rcmd r inner-loop

controller

Figure 3-5: Simplified outer-loop block diagram with limiter.

This modifies the block diagram in Figure 3-2 as shown in Figure 3-6.
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Reference Ygg,cmd Z+cm Forward-loop rcmd r Inne-op In I eeec g
) reference reference outer-loop

model + - model dynamics
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yg

+ y

'pcmd Plant with X Outer-loop Y
adaptive inner- dynamics

+loop control

Figure 3-6: Expanded outer-loop block diagram with limiter.

The entire reference model containing the inner-loop, the outer-loop, and forward-loop

components is given in (3.11). When a controller as in (3.16) is designed, with I as in

(3.17), the entire reference model (3.11) is modified as

xm(t) = Am(t) + Br(t) - Lyey(t) - Lgegy(t) + Bm-z cm)
(3.89)

rcmd(t) =m$0im(t)

However, to facilitate command and state limiting the inner-loop command r(t) and the

outer-loop command zg,cmd(t) in (3.89) should be modified when certain reference model

states become too large. Thus inner-loop command r(t) is no longer set as in (3.9) but

instead as

r(t) = rcmd (t) - rTim(t) (3.90)
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where the inner-loop reference model command limiter rim(t) is given by

ruim(t) = -kr7Khmzm(t) (3.91)

where k, > 0 has dimensions k, E RfeP n"eP and Kim E Rnepxn+ng+nf is given by

Kiim = -Riim(Bm + B kr)TP (3.92)

where Rum RIm > 0 has dimensions Rum C R nep nep and P is the solution to the Lyapunov

equation

A T P+PAm =-Q (3.93)

where Q = QT > 0. The outer-loop command Zg,cmd(t) is no longer selected as in (3.8), but

is instead generated from the desired outer-loop command Z,cmd(t) as

Zgcmd(t) = S(7( m(t)))Z,cmd(t) - zguim(t) (3.94)

where

S ((Xm(t))) = 1 - '(zm(t)) (3.95)

and zgim(t) is given by

zgim(t) = -7Kumm(t) (3.96)

The scalar quantity -y( m(t)) is the modulation function, which is a function of the entire

reference model state m(t), and is selected such that -y(.tm(t)) E [0, 1]. When -y( m(t)) = 0

this corresponds to no state limiting, and when -y( m(t)) = 1 this corresponds to the state

limiter being fully active. Thus, 7 ( m (t)) is selected using several regions within the reference

model state space such that within an inner region 7( i.(t)) = 0, an annulus region within

which -/( m(t)) varies between 0 and 1, and an outer region for which y(tm(t)) = 1 as shown

in Figure 3-7. See, for example the modulation function in Ref. [59].
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y 0

0 < < I

Figure 3-7: State limiter modulation function regions from Ref. [58]

Using the outer-loop command zgcmd(t) as generated by (3.94) into (3.89) gives

tm(t) = AmmtTf(t) + Bk,(m(t))Km7m + g(1 - W(tm(t)))zycmn

+ Bm7y(m(t))Kiimxm(t) - Lyev(t) - Lgegy(t) (3.97)

rcmdt)O m-xm0t

which can be further simplified as

i m(t) =(Am, + k,7(m(t))Kim + B-m y( r(t)) Kim)tm(t)

+ Rm(1 - -y(Qm(t)))z;,cmd t - Lyey(t - Legy (t) (3.98)

Tcmd(t) = CmUm(t)

3.6.2 Stability

Because the inner-loop reference model input r(t) cancels out in the error dynamics in

(3.21), and Zg,cmd(t) is not present either, the state-limiter modification does not require

any change to the Lyapunov function in (3.84) to prove boundedness of the errors e,(t) and

eg(t). However, in the stability proof without the state limiter, the boundedness of zg,cmd(t),

eC(t), and egy(t) and stability of Am in (3.13) imply boundedness of the reference model

states Xm(t), xgm(t), and xfm(t), from which boundedness of the plant states x(t) and xg(t)

is concluded. However, showing boundedness of the reference model states is less obvious
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when using the state limiter, which modifies the entire reference model dynamics in (3.13)

to obtain the limited reference model dynamics in (3.97). Thus it is necessary to ensure that

with the limiting modifications the reference model state m(t) is still bounded, and global

stability is still proved, as stated in the following theorem.

Theorem 7 The uncertain system in (1.6) with inner-loop controller specified by the control

law in (2.9), update law in (2.57), and the reference model in (3.2) where S1 and L are

chosen as described in Chapter 2, and the outer-loop controller specified by the outer-loop

reference model in (3.4), forward-loop reference model component in (3.7), with inner-loop

command input Zp,cmd(t) is prescribed by (3.19) and (3.20), where r(t) is given by (3.98),

(3.90), and (3.91), and outer-loop command generated by (3.94), (3.95), and (3.96), with

S,, Lg, and Ly selected as described above, results in global stability, with limt+, e,(t) = 0

and limt+- eg(t) = 0.

PROOF This proof follows from the proof of Theorem 6 by proposing the same candidate

Lyapunov function as in (3.84) and differentiating to obtain (3.88) from which it can be

concluded that e,(t), eg(t), 6(t) E ,. Bounds on e,(t) and eg(t) can be found as follows

I/ex(t)II V(0) \

Ileg(t)jj V(0)e V 'xink- x)(3.99)

l i e 9 ( 1 1 _V ( 0 )
Amin(Pg)

giving the following bounds on their respective measured output errors ey(t) and egy(t) as

I|ey(t)II < ey,m = 111C | V0)
Ami (P)nx) 

(3.100)

I|eg(t)II eg,ma x = J|C || I V (0)
Amin(Pg)

Propose the following additional candidate Lyapunov function to prove boundedness of the

reference model state

V(zm(t)) = i4 (t)Iim(t) (3.101)
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Differentiating (3.101) gives

Y ( =m(t)) = - (t)PtM(t) + T (t) pim(t) (3.102)

Substituting the limited reference model dynamics (3.97) into (3.102) gives

VZ( m(t)) =(Amtm(t) + Bki( m(t))Knj.tm(t) + Bm(1 - Y(Gm(t)))Z',cmdt

+ Bnm-Kiimnm(t) - Ley(t) - Lgegy(t))TPtm(t)

+ si(t)P(Amsm(t) + Bk,-y( m(t))Kjmm(t) + Bm(1 - -y(Gtm(t)))z

+ Bm7Kimnm(t) - Ley(t) - Lgegy(t))

T (t) (A TP + P m)i m(t) + tT (t )Kij_( M(t))kf3TPtM(t)

+ s (t)PfAkrY( m(t))Kiuim(t) + T (t)KmY(tm (t))f-T Ptm (t)

+ T (t)Pfm7Y( m(t))Kiim m(t) + 2tT (t)Pfm(1 -- 7( m(t)))Zglcm(

- 2 (t)P(Lyey(t) + Lgegy(t))

= :t (t)( P + PAm) m(t) + s (K :'(2m(t))k1 L3 T P + PfkrY( m(t))Knm

+ KLY(m(t))BT P + Pfm yt(m(t))Kii) m(t)

+ 2t (t)Pfm (1 - ((2mP (Lyey(t) + Legy(t))

= 4T(t )( P + P m>2m(t) + t)(KImY( m(t))(kYB T + BT )P

+ P(Pk, + m)-y( m(t))Kim).tm(t)

+ 22 (t)Pfm (1 - 7(T -- (t)P(Lye(t) + Lge9y(t))

(3.103)

Using Kuim as in (3.92) where P is the solution to the Lyapunov equation (3.93), the derivative
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in (3.103) becomes

V (tm(t)) = zt)(A P + Ptm>zm(t) - T t)(( +kr)R 7(y.(t))(k, fT + BT )P

+ P(T3 k, + fm) Rim(PBm + B k,)TP).tm(t)

+ 2 T (t)P 3m (1 - 7( (t)))Zmt - 2 t(t)P(LYey (t) + Lgegy)

= (t) (ALP + PAm)zm(t)

-X T (t)(2P( fm + Akr)RIimy7n(t)) (k' TT + f)P)m(t)

+ 2 (t)Pfm (1 - 7( m(t)))4zmdcm) - 24T(t)P(Lyey(t) + Lgegy9

(3.104)

Using Q from (3.93) and defining the following

Qium(7) = 2P(Pm + Bkr)R my(kYB T + BT)P ; 0 (3.105)

allowing (3.104) to be rewritten as

(tm(t)) = -i7(t) (Q + QIm (7)) tm(t) + 2tT (t)Pfm(1 - )z,cmd)
- 2 7(t)P(Zg(c _ ()

= + Qim(7))m(t) + 24L(t)P(Bm(1 - )Zcmd(t) - Lyey(t) - Lgegy(t))

(3.106)

Note that the bounds on ey(t) and egy(t) in (3.100) are independent of m(t). Eq. (3.106)

contains a negative quadratic term in tm(t), and a sign indefinite term which is linear in

zm(t). Thus, for sufficiently large tm(t), the derivative V(xm(t)) in (3.106) becomes strictly

negative. This is quantified precisely by the following statement: V(.tm(t)) < 0 outside the

compact set

Ej ={tm(t) E : I m(t)I < 2Amax(P)(II5m1(1 - 7)zycmd,ma + Ly ey,max + Lg egy,max)
Amin(Q + Qijm(7))

(3.107)
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for all -y(Qm(t)) c [0, 1]. Thus the entire reference model state ,,m(t) is bounded [70] which,

with the boundedness of the errors ex(t) and eg(t), implies that x(t), x,(t) E Loo. With

ex(t), eg(t), xm(t), e E LO, and the the error dynamics in (3.83), this implies that

ex(t), eg(t) E Lo. Finally, fo V(r)dr =V(t) - V(0) and since V(t) is non-increasing and

positive definite, V(0)--V(t) < V(0). This gives - f V(r)dr < V(0). Substituting in the ex-

pression for V = -exi(t)Q ex(t) - egj(t)Qgeg(t) gives fo ex r)T Qxe,(7) + e.(T)T Qgeg(r)dT <

V(0) and in turn that ex(t), eg(t) E L 2. With this, it can be concluded using Barbalat's

Lemma [70] that limt+o, ex(t) = 0 and limteo,, eg(t) = 0. L

Theorem 7 proves stability of the closed-loop system with state limiter, with asymptotic

tracking of the reference model states xm(t) and Xgm(t) by the plant states x(t) and xg(t),

respectively. In the absence of the state limiter, satisfaction of the control goal of outer-loop

command tracking was discussed in Corollary 2. When using the state limiter, Theorem

6, like Theorem 7, provided zg(t) -+ zgm(t) as t -+ oo. However, without the limiter, the

reference model in (3.13) was selected so that zgm(t) was a filtered version of the outer-loop

command, so that asymptotic tracking of constant commands was achieved, as given by

Corollary 2. When using the limiter, the reference model dynamics in (3.97) are modified

such that zgm(t) is no longer simply a filtered version of the outer-loop command zgcmd(t)-

Thus asymptotic tracking of Zgcmd(t) by zg(t) doesn't hold in general, due to the scaling of

the outer-loop command by the limiter. However, if a desired outer-loop command Z"cmd(t) is

given such that the limiter is inactive and y(tm(t)) = 0, the same conclusion as in Corollary

2 can be made, with Zg,cmd(t) = zgcmd(t). This statement is formalized in the following

corollary to Theorem 7.

Corollary 3 For all piecewise constant outer-loop command inputs Zycmd(t) which satisfy

||zl,cmdt)||0o 5 Z,cmd,max, the outer-loop regulated output zg(t) tracks Zgrmd(t) asymptotically,

where Z9,cmd,max is given by
/ _ X,maxZg,cmd,mx (3.108)

Ihm|ji

where hm is the impulse response of the nominal reference model, given by (3.98) with

7(ytm(t)) = 0, y = 0 and 1g =0, and -m,max = maxm(t)E, 11|tm(t) ||.
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PROOF For all xm(t) E Q6 the state limiter is inactive, and the evolution of the reference

model state tm(t) is governed by (3.98) with -y(tm(t)) = 0, while ey(t) and egy(t) tend to

zero asymptotically. Thus, the reference model state m(t) ultimately depends only on the

command input Zy;cmd(t). The following bound on the reference model state holds, where

hm is the impulse response of the nominal reference model, (3.98) with (zm(t)) = 0.

|I2m(t)jjoc = Xm,max Ijhm|II IZcmd M) 1 00

From this, the bound on the command input can be found as in (3.108) that ensures the

reference model state zm(t) E Q 6 , thus not invoking the state limiter, and providing the

tracking properties given in Corollary 2.

Remark 17 Corollary 3 states that if the desired outer-loop command Z9,cmd(t) is such that

the system is not driven to enter the limiting region, that the limiter will not impact tracking

performance of the system. This is due to the fact that the convergence of the tracking errors

ey(t) and egy(t) to zero is obtained regardless of whether the limiter is invoked or not. In

other words, as these errors tend to zero, only the desired outer-loop command zgcmd(t) can

drive the reference model state tm(t) out of Q6 , as governed by (3.13). Thus, if the desired

outer-loop command is such that it does not force xm(t) outside of Q 6 , the limiter will become

inactive. Corollary 3 then finds the maximum value of z"cmd(t) such that zm(t) E O using

the impulse response of the reference model.

Remark 18 The benefits of the state limiter are apparent from the compact set in (3.107)

outside of which V(tm(t)) < 0. The size of E6 monotonically decreases in size as 'Y(:m(t))

increases, hence shrinking the bound on itm(t) when the limiter is invoked, versus without

the limiter.

Degrees of Freedom

The limiter described above has several degrees of freedom which can be chosen by the

designer to achieve the desired performance. These degrees of freedom are the gains kr, Rrm,
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Q, and the modulation function '(zm(t)) and the corresponding sets Q and Q6. The limiter

components ruim(t) and zlim(t) enter through the input matrices B and Bin, respectively,

of the reference model in (3.89). The matrix Rum scales Kiim in (3.92), which is the gain

used in both of the limiting components ruim(t) and zgim(t), whereas kr scales only rum(t).

Thus, by adjusting Rum and kr, the relative influence of the limiter through B and B can

be changed. This alters the the effective reference model matrix in (3.98) when the limiter

becomes active, and thus Quim(7y(m(t))) in (3.105). This, along with the matrix Q, alters

the region outside of which V < 0, and thus affects the time response of the system when the

state limiter is active. With kr = 0 and Rum = 0 the limiter would still be stable, however

the only adjustment would come through the reduction of the outer-loop command z'm, )

in (3.106). The modulation function Y(zm(t)) simply defines based on zm when the limiter

becomes active, and can be selected so as to depend on the various elements of zm(t) as

desired.

3.6.3 Complete Controller Summary with Limiter

The entire system closed-loop system, consisting of the plant and controller, can be sum-

marized with the following set of equations. The uncertain plant (3.1), the outer-loop dynam-

ics (1.4), the inner-loop reference model (3.2), outer-loop reference model (3.4), forward-loop

reference model component (3.7), with inner-loop command input prescribed by (3.90), (3.19)

and (3.20), (3.91) and outer-loop command generated by (3.94), (3.95), and (3.96), control

law(2.9), inner-loop command input (3.19) and (3.20), and update law (2.57) together are

summarized as follows.
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Plant:

e model: i

'f

mmand: rcm

rl

zg,c

zp,c

Errors:

e

Control:

i(t) = Ax(t) + B(Au(t) + PTX(t)) + BcmadZp,cma(t) + Bdxg(t)

bg(t) = Axg(t) + Bx(t)

m(t) = Amxm(t) + Bcmdr(t) - Ley(t) + Bdxgm(t)

m(t) = Bgxm(t) + Agxgm(t) - Lyey(t) - Lgegy(t)

,m(t) = Bf 3Xm(t) + B 2Xgm(t) + Ajmxfm(t) + B! Zg,cmd(t)

d (t) = Cfmxfm(t) + Df1zg,cmd(t) + Df2Xgm(t) + Df 3Xm(t)

r(t) = rcmd(t) - riim(t)

m(t) = -kr-y(xim(t))Kiimim(t)

ad(t) = S('Y)Zg,cmd(t) - Zg,im(t)

rad(t) = r(t) + Sge9y(t)

ey(t) = C(x(t) - Xsm(t))

gy(t ) = Cg(xg(t ) - xgm(t ))

u(t) =(Kx + E(t)) Txm(t)

e(t) = -Fxm(t)(Siey(t)) sgn(A)

3.7 Numerical Examples

3.7.1 Example 1: Inverted Pendulum Cart

The inverted pendulum on a cart example from Section 2.4 is continued here. In the

first part of this example, the inner-loop adaptive controller was used to accommodate un-

certainties in the viscous damping coefficients and force input, and enforced tracking of the

commanded cart velocity. The example is continued here using the plant with this adaptive

inner-loop, and the outer-loop controller prescribe the necessary cart velocity command so as

to track pendulum position commands. The pendulum position was selected as the output

so as to satisfy the rank condition in (3.44), requiring that the outer-loop output supply
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sufficient information about the system beyond simply an integration of the inner-loop out-

put. This is essentially the statement that if the entire system as in the form (1.6) is not

observable through only yp(t), that integrating this output will not make it observable.

Xpcndulu

X I

Figure 3-8: Inverted pendulum on cart from Ref. [6].

The pendulum cart dynamics in (2.64) were partitioned into the inner-loop dynamics in

(2.66) and the outer-loop dynamics in the form of (1.4) given in (3.109) below

0 0 0 0 1 0 0

S 0 0 X 0 1[j [o 0] [ j + k 1 [1 (3.109)

Xpendulun 1

The matrix Bgd which couples outer-loop kinematics into the inner-loop dynamics is given

by the following
Mtmgp

Byg =A
Mg 0
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Using the numerical values for the pendulum given in Section2.4, the relevant matrices are

given by

[o0 0 B 1 0 C 1 1T - 19.6 0

0 0 0 1 1 96.04 0

The forward-loop reference model was designed using integral action on the regulated output

as in (3.16) using the following weighting matrices

Qiqr = diag( [0 0 0 0 0 1])

Riqr = 0.01

Using the outer-loop design procedure summarized in Section 3.5.1, Pg was calculated as in

(3.50) using P calculated as in (3.46) and XD, where PA in (3.46), and XD was selected as

1.0001 0.0086621 0.025 0
XD = A ~=

0.0086621 1 0 0.025

With the resulting P, Sg was determined using (3.35), and Lg obtained numerically satis-

fying (3.30). Finally Ly was computed using (3.82) thus completing the outer-loop control

design.

The following plot in Fig. 3-9 shows the response of the closed-loop system to track pen-

dulum position commands, when subject to the same uncertainties described in Section2.4.

As in the first example, the plot shows the baseline controller applied to the nominal plant

until t = 10 seconds when the uncertainty is introduced. At t = 30 seconds the adaptive

controller is turned on. As in the inner-loop example, the adaptive element ensures stability

in the presence of the uncertainty, and outer-loop command tracking is provided. However,

there are significant oscillations in the response due to the uncertainty, with the pendulum

reaching angular velocities of 200 deg/s. Fig. 3-10 shows the response of the same system,

but with the limiter used to limit the angular velocity of the pendulum to within 80 deg/s.
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Figure 3-9: Time response of pendulum cart with inner and outer-loop controller.
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Figure 3-10: Time response of pendulum cart with inner and outer-loop controller and state

limiter.
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3.7.2 Example 2: Longitudinal Dynamics of a Transport Aircraft

Boeing 747

i Iransport.Je

Center of Gravity and
Mass Charactrftlcs

W a 636.600 lb
CG at 25% MAC
1, - 1.2 x 100 Slug -ft

2

I -33.1 x 106 Sg. 2

ir .49.7x 106 slug .f 2
l 230.97 x 10 Slug - ft 2

References Geometry

S - 5500 2
b a 19568 ft
'd- 27.31 ft

0 0 00

Figure 3-11: Boeing 747-100 transport aircraft from Ref. [73].

The longitudinal dynamics of a transport aircraft example from Section 2.4 is continued

here. In the first part of this example, the inner-loop adaptive controller was used to ac-

commodate uncertainties in the moment coefficients and elevator effectiveness, and enforced

tracking of the pitch rate commands. The example is continued here using the plant with

this adaptive inner-loop, and the outer-loop controller prescribe the necessary pitch rate

command so as to track altitude commands.

The longitudinal aircraft dynamics in (2.67) were partitioned into the inner-loop dynamics

in (2.68) and the outer-loop dynamics in the form of (1.4) given in (3.110) below

0 0 0 0 0 1 a

[Z] Ve 0 h J -Ve 0 + [ q j

h= [0 1] ]
h
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The matrix Bgd which couples the outer-loop kinematics into the inner-loop dynamics in this

example is identically zero. Using the numerical values for the aircraft given in Section 2.4,

the relevant matrices are given by

0 0
Ag =

871 0

0 1
BP -871 0

0
19

0
C9 =

L J

The forward-loop reference model was designed using integral action

as in (3.16) using the following weighting matrices

on the regulated output

Qiqr=diag( [0 10 0 0 10 10])

Riqr = 10 8

Using the outer-loop design procedure summarized in Section 3.5.1, P was calculated as in

(3.50) using P calculated as in (3.46) and XD, where PA in (3.46), and XD was selected as

100 0 1 0
XD =PA =

0 100 0 1

With the resulting Pg, S9 was determined using (3.35), and Lg obtained numerically satis-

fying (3.30). Finally L. was computed using (3.82) thus completing the outer-loop control

design.

The following plot in Fig. 3-12 shows the response of the closed-loop system to track

altitude commands, when subject to the same uncertainties described in Section2.4. The

plot shows the baseline controller applied to the nominal plant until t = 90 seconds when the

uncertainty is introduced. At t = 110 seconds the adaptive controller is turned on. As in the

inner-loop example, the adaptive element ensures stability in the presence of the uncertainty,

and outer-loop command tracking is provided. However, in Fig. 3-12 during the transients

a pitch rate of 30 deg/s is experience. In Fig. 3-13 the state limiter is used to enforce the

pitch rate to within 15 deg/s.
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Figure 3-12: Time response of transport aircraft with inner and outer-loop controller.
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Figure 3-13: Time response of transport aircraft with inner and outer-loop controller and

state limiter.
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3.8 Conclusion

This chapter presented a new method for developing an outer-loop controller for a class of

uncertain MIMO systems. Using the existing inner-loop adaptive control design presented

in Ch. 2, this chapter described how to specify the command Zp,cmd(t) to the inner-loop

such that z,(t) tracks Z',cmd(t). The controller is composed of additional reference model

dynamics corresponding to the outer-loop dynamics, and additional CRM gains to suitably

modify the outer-loop reference model trajectories to ensure global stability, and provide

command tracking of the outer-loop command. Specifically, these CRM gains were chosen

so as to stabilize the outer-loop reference model, and then decouple the inner and outer-loop

error dynamics. Synthesis of the CRM gains involved satisfying a matrix equality and an

bilinear inequality, to provide the desired error decoupling, and outer-loop reference model

stability. Using the matrix elimination lemma as in Ch. 2, the BMI was reduced to an LMI,

and the problem of determining the CRM gains was reduced to finding a positive definite

matrix P which satisfied the LMI, with the additional constraint that P1 also satisfy the

matrix equation HAPgH1 B = Hc. The set of all solutions which satisfied these constraints was

given in terms of an arbitrary matrix XD. The set of all XD which ensured a stable outer-loop

controller was large, allowing the extra degrees of freedom of XD to be selected to provide

the desired level of performance and robustness to the closed-loop system, in addition to

stability. The result is a hierarchical MIMO adaptive output-feedback controller which can

be designed to have good stability margins, contains an adaptive element to accommodate

uncertainty, and provides the desired command tracking. Furthermore, the architecture of

the hierarchical approach allowed the addition of a state-limiter to the controller, to limit

the plant state to certain regions in the state space.

In Ch. 4 this hierarchical, MIMO adaptive output feedback controller consisting of the

inner-loop controller from Ch. 2 and the outer-loop controller from Ch. 3 is applied to a

hypersonic vehicle model.
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Chapter 4

Application to a Hypersonic Vehicle

4.1 Introduction

Some of the challenges associated with the control of hypersonic vehicles include the

limited wind tunnel data available to determine accurate models for control design, large

flight envelopes with significant uncertainty in the operating environment, and need to cope

with engine unstart, in addition to problems such as actuator failure, flexibility effects, and

time delays. This section provides some background and historical context to hypersonic

flight, discusses some of the existing methods developed to control hypersonic vehicles and

cope with these challenges, and why the adaptive control structure used in this thesis was

chosen.

In this chapter the efficacy of the proposed combined inner and outer-loop control design

method described in Chapters 2 and 3 is examined by providing a numerical example. An

adaptive output feedback controller following this sequential loop closure process is designed

and applied to the a 6-DOF Generic Hypersonic Vehicle model [95, 81, 96, 97]. The GHV

is a small blended wing-body vehicle, with 3-D inlet and nozzle, and axisymmetric through-

flow scramjet engine. The nonlinear equations of motion describing the GHV are linearized

about a nominal flight condition of Mach 5 at an altitude of 80,000 feet, corresponding

to a dynamic pressure of 1,474 lb/ft2 . Modal analysis allowed the linearized equations of
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motion to be decoupled, and the resulting uncertain longitudinal and lateral-directional plant

subsystems are represented as in Eq. (1.6), and velocity dynamics represented as in (1.8).

These uncertain linear subsystems compose the design model which. is used to synthesize the

controller.

In Reference [95] a state feedback LQR baseline controller with integral action and aug-

mented with an adaptive component was applied to design three independent CRM based

adaptive controllers - one for the each of the longitudinal, lateral-directional, and velocity

subsystems. In Ref. [98] the outer-loop design described in Ch. 3 was presented for the

state-feedback case as well, given by (1.6) where C, = I and C I, and implemented on

the linear longitudinal dynamics of the GHV with a state-feedback inner-loop as in [95].

This approach was very effective at maintaining stability and tracking performance in the

presence of uncertainty, but required the availability of angle-of-attack and sideslip angle

measurements.

In the following example, it is no longer required that these incidence angles are mea-

surable, which is more realistic for this class of vehicle, thus turning the problem into one

of output feedback. That is, C, = I and C f I in (1.6). The adaptive control design pro-

cedure described in Chapter 2 was used to design two independent CRM based inner-loop

output feedback adaptive controllers, one for each of the longitudinal and lateral-directional

subsystems, with a state-feedback controller used for the velocity subsystem. The outer-loop

output feedback controller described in Ch. 3 was used around the longitudinal and lateral

subsystems with inner-loop controller. This sequential loop closure based adaptive output

feedback controller is then applied to the evaluation model, which is nonlinear, coupled,

and includes actuator dynamics, and is shown to result in stable tracking in the presence of

uncertainties that destabilize the baseline linear output feedback controller.

4.1.1 Background

With a history spanning well over a half century, hypersonic flight continues to be a

topic of significant research interest [14, 26, 45, 54, 77]. Air-breathing hypersonic vehicles
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are particularly attractive due to their potential to serve as high speed passenger transports

and long range weapon delivery systems, and provide cost-effective access to space. Hy-

personic vehicles are likely to be inherently unstable [10, 65, 66] and the integration of the

airframe and engine in an air-breathing hypersonic vehicle contributes to additional model-

ing and control challenges. With limited wind tunnel data, harsh and uncertain operating

environments, poorly known physical models, and largely varying operating conditions, it is

of great importance to ensure that any control scheme will be significantly robust to ensure

safe operation during flight.

Unlike the transition from subsonic to supersonic flow, the physics of hypersonic flow do

not differ from that of supersonic flow. Instead, the distinction of hypersonic flow is made to

stress the importance of certain physical phenomena which exist in all supersonic flows that

become dominant at hypersonic speeds, typically defined to be flow at a Mach number of 5

or greater [3]. It wasn't until 1946, well into the study of such flow regimes, that this term

was finally coined [91]. The high flight Mach numbers experienced by a hypersonic vehicle

result in significant aerodynamic heating. This aerodynamic heating can have a great impact

on the material properties of the vehicle. In addition to this coupling of aerodynamic and

structural effects, the engines of air-breathing hypersonic vehicles are tightly integrated into

the airframe of the vehicle, where long fore and aft sections of the vehicle make up large

portions of the engine inlet and nozzle, respectively. This tightly couples the engine dynamics

with the airframe and structural dynamics as well as the aerodynamics [18]. The physics of

hypersonic flow and these resulting interactions between all the components of the vehicle

make the control of hypersonic vehicles very challenging.

A major challenge associated with the control of hypersonic vehicles, in addition to the

interactions between airframe, engine, and structural dynamics, is the limited ability to

accurately determine the aerodynamics characteristics [17, 21, 62, 85]. With the presence of

such tight coupling between all aspects of a hypersonic vehicle, the ability to collect wind

tunnel and flight data to study these interactions would be highly useful. However, these

tests are very difficult to do, and so much of the knowledge about a hypersonic vehicle's
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aerodynamics must come from physics-based models. This makes accurate determination of

the aerodynamic characteristics very difficult, making the design of a controller more difficult

as well.

Another control challenge associated specifically with air breathing hypersonic vehicles is

that of engine unstart. Unstart is a phenomenon caused by several factors including thermal

choking and insufficient air recovery at the inlet. This ultimately leads to the upstream

propagation of the shock train out of the inlet, effectively preventing air from entering the

engine due to a standing normal shock in front of the isolator entrance [24]. This causes an

abrupt change in the pitching moment, an increase in drag, decrease in lift, loss of thrust,

and potentially changes in vehicle yawing and rolling moments as well [12]. If the flight path

is such that it requires the air-breathing hypersonic vehicles to encounter periods of unstart,

the control law must be such that it can accommodate these large and sudden changes, thus

ensuring stable flight can be maintained.

With all of the complex interactions between the different aircraft components, and high

level of uncertainty in the models, the control of a hypersonic vehicle is very challenging.

These challenges have led to many advances in the design of flight control.

4.1.2 History

The science of aerodynamics was first invented in the early 1900s by Ludwig Prandtl in

Germany. The field of aerodynamics matured considerably over the next half-century, and

during World War II, the Germans were beginning to approach hypersonic speeds in labo-

ratory wind tunnel tests at Mach 4.4, and with weapons such as the V-2 rocket approaching

similar speeds [48]. The hypersonic technology of the United States was substantially be-

hind that of the Germans at the time, until the war ended and Wernher von Braun and his

team of rocket scientists came to the United States. Just over eleven years after the end of

World War II, history was made when the X-2 became the fastest airplane ever, reaching a

speed of almost Mach 3.2. Moments after the record was broken, the plane lost control and

began tumbling downwards toward Earth, destroying the plane and killing the pilot due to
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a mechanism known as inertial coupling [73]. This disaster made the consequences of not

maintaining stability during high speed flight very real.

The study of hypersonics in the 1950s was also being propelled by the United States'

interest in intercontinental ballistic missiles, which began with the X-17 rocket. The accurate

guidance of such missiles over long ranges was of particular importance, but it was the

challenges associated with significant aerodynamic heating upon atmospheric re-entry that

dominated research in this area during this time. The first test of the X-17 took place in 1956

to investigate the re-entry of a hemispherical nose-cone, and reached a speed of Mach 12.4.

This research provided valuable information used in the Mercury program, which succeeded

in putting the first American in space in 1961. The inherently stable design of the Mercury

capsule allowed safe atmospheric re-entry even without an effective control system. While

guidance, navigation and control (GNC) challenges of later hypersonic re-entry vehicles were

more difficult, the effective control of atmospheric hypersonic vehicles such as the X-2 was a

major problem that needed to be solved.

Following the testing of the X-2, the X-planes program continued in the late 1950s,

with much of the knowledge gained through research to be used in the development of high

performance fighter aircraft of the time. One of the most notable hypersonic airplanes to ever

fly, the X-15 pictured in Figure 4-1, made its first flight in 1959. The designers of the X-15

overcame many of the challenges associated with hypersonic flight. The X-15 had to be very

heat resistant to withstand the temperatures encountered during flight at nearly Mach 7, and

the engine needed the power to propel the plane to these high speeds. The flight envelope

of the X-15 was so broad that reaction controls were used in addition to the aerodynamic

control surfaces, which lost effectiveness above 100,000 feet altitude. Transitioning between

these two control systems was difficult as well. In addition to these challenges, and more, the

only significant source of aerodynamic data used in the development of the X-15 came from

a single small hypersonic wind tunnel, making modeling for control especially challenging.

Despite these challenges, three variants of the X-15 made a combined total of nearly 200

flights over the next ten years following its first flight. The third variant of the X-15 was the
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only of the three craft to include an adaptive controller as part of its stability augmentation

system. This adaptive controller attempted to adjust feedback gains to provide optimum

angular rates as commanded by the pilot, and also provided a means to transition from

aerodynamic to reaction controls. Conventional aerodynamic control surfaces were used to

create the moments necessary to control the vehicle when the atmosphere was sufficiently

dense, but at high altitudes these surfaces lost their effectiveness, and a reaction control

system using thrusters was required to create the necessary moments. It was critical to allow

the command of both control systems from a single control stick in the cockpit. While the X-

15 allowed hours of valuable flight data to be obtained, engineers were once again reminded

of the consequences of faulty designs when the MH-96 adaptive controller aboard the X-15

failed to reduce the feedback gains upon re-entry setting up a violent pitch oscillation which

destroyed the aircraft and killed the pilot.

Figure 4-1: North American X-15 from Ref. [92].

Toward the end of the X-15's career, there was a building interest in a new, advanced air-

breathing propulsion system for hypersonic flight, as opposed to the rocket propulsion used

on the X-15 and its predecessors. This Hypersonic Research Engine (HRE) was to utilize

concepts first disclosed by The Johns Hopkins Universities' Applied Physics Lab in 1959, as

part of a project known as Supersonic Combustion Ramjet Missle (SCRAM). The scramjet
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engines were initialy designed as pods, much like conventional turbofans on commercial and

transport aircraft. Early plans called for a podded scramjet to be fitted on the X-15, but it

was quickly realized that this would not be possible. To make scramjets practical for use in

flight, the engine would have to be integrated intimately with the airframe, using the fore

and aft sections of the vehicle as part of the inlet and nozzle of the scramjet. Development of

scramnjet technology was pushed forward in the early 1980s in part by the U.S. Air Force, in

order to develop a single-stage-to-orbit vehicle to deliver military weapons systems to space.

This ultimately led to the National Aero-Space Plane (NASP) program, and the design of

the 160 foot long Rockwell X-30. This program lasted over ten years and lead to many

advances in scramjet propulsion research and the study of flexible hypersonic vehicles, but

none of these vehicles were ever built.

Figure 4-2: NASA X-43A from Ref. [72].

Hypersonic research slowed for some years, until scramnjet research emerged again in the

early 1990s as part of a collaboration between the United States and Russia. This collabo-

ration saw scramjets mounted aboard rockets being tested in flight. Control again became

a critical challenge in hypersonic flight, this time in the control of the engines. Fuel delivery

had to be controlled precisely to keep the engines operating in supersonic combustion mode,

and avoid a condition known as unstart. Control systems aboard these rocket-mounted

scramjets were designed to monitor pressures within the engines and adjust fuel flow to

135



prevent unstart, but the early control systems were not yet ready for this demanding chal-

lenges. An all-American effort at practical scramj et powered hypersonic flight was born in

1996 under the name Hyper-X [37]. Hyper-X was an eight year NASA program with the goal

of demonstrating the viability of air-breathing hypersonic flight. The demonstrator vehicle

for this program, the X-43, was 12 feet long, and 5 feet wide. The first flight took place

in June 2001 and failed, but in March 2004 the X-43A became the first vehicle to ever be

propelled during hypersonic flight by an air-breathing engine, reaching a speed of Mach 6.8

for 11 seconds. The third flight in November 2004 lasted 10 seconds and reached a speed

of Mach 9.6. These ground breaking flights demonstrated the practicability of a scramjet

powered hypersonic vehicle, and are alongside the X-15 in terms of importance in the history

of hypersonic flight.

In the 1990s and 2000s, many hypersonics programs have been introduced, including

HyTECH, HyShot, HyCause, HIFiRE, and more. The most notable platform since the

X-43A was the X-51, built by Boeing and managed by the U.S. Air Force Research Lab

(AFRL). While the X-43A demonstrated the feasibility of scranijet powered flight, a new

record was set by the X-51 in 2010 by maintaining scramjet powered flight at Mach 5 for

140 seconds. The second X-51 flight took place in 2011 and ended early due to unstart, and

during the third test flight the X-51 lost control and fell into the ocean. History was made

once again in May 2013, when the X-51 made the longest air-breathing hypersonic flight,

maintaining Mach 5.1 for 240 seconds under its own power.

Figure 4-3: Boeing X-51 waverider from Ref. [99].

136



The history of hypersonic flight is still in the making, with current research centered

around the sustained flight of air-breathing vehicles. The previous trajectories flown by

aircraft such as the X-15, X-43 and X-51 were fairly benign in that abrupt and sudden ma-

neuvers were generally avoided, and the goal was to demonstrate primarily the ability of

these experimental aircraft to maintain hypersonic flight under their own power. As technol-

ogy grows the demands of these vehicles will grow too. Current research is being performed

to develop new materials and engine designs for these vehicles, as well as advanced control

systems which will allow complex maneuvers to be performed while maintaining stability

even in situations where unstart conditions are encountered. One project in particular is the

HIFiRE program, which is a collaboration between the U.S. Air Force Research Laboratory

and the Defence Science Technology Organisation in Australia. In particular, the HIFiRE

6 flight vehicle shown in Figure 4-4 is designed to evaluate the tracking performance of an

adaptive flight control system on a representative hypersonic vehicle that is executing a set

of predefined maneuvers [2, 11, 27].

Figure 4-4: HIFiRE 6 flight vehicle from Ref. [27].

4.1.3 Control of Hypersonic Vehicles

The equations of motion which describe an aircraft are nonlinear, but in most cases it

is acceptable to linearize these equations to facilitate control design and analysis. This led

to the description of aircraft dynamics using the transfer function, and to simple stability

augmentation systems such as roll and yaw dampers [22]. These flight control systems were

simple, low-order, linear dynamic feedback compensators such as lead-lag and PID, and
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typically used small feedback gains [28, 64, 104]. Thorough frequency domain analysis was

critical to ensure a robust design. Optimal control techniques slowly began seeing use in

flight control in the early 1980s with limited success, but have now become more widely used

[1, 16, 88, 89]. Many robust, nonlinear, and adaptive control solutions are proposed in recent

literature [11, 40, 51, 52, 81, 103] which include sliding mode, H2 /H, dynamic inversion,

and neural network control, as well as many other techniques.

4.2 Hypersonic Vehicle Modeling

The Generic Hypersonic Vehicle (GHV) which is used as a platform for analysis and

control design is shown in Figure 4-5. The GHV is a small, pilotless, blended wing-body

vehicle, with 3-D inlet and nozzle, and axisymmetric through-flow scramjet engine. There

are four aerodynamic control surfaces which can be moved independently, consisting of two

elevons and two rudders. The relevant vehicle properties are listed in Table 4.1.

Figure 4-5: AFRL Generic Hypersonic Vehicle from Ref. [821.

The GHV was developed by the Air Force Research Lab in an effort to create a pub-

licly releasable hypersonic vehicle model for studies of operability, controllability, and aero-

propulsion integration as described in Reference [821. The objective was to design a common

vehicle which would be relevant to the technical efforts of current hypersonic projects, in-
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cluding the HIFiRE 6 vehicle, which the GHV closely resembles, as can be seen in Reference

[11]. This GHV was designed be launched on rocket to accelerate to cruise at Mach 6, at

a dynamic pressure of between 1000-2000 lb/ft2 . The mission profile for the GHV then re-

quired maneuvers to be performed during the middle of the cruise phase before descending

and decelerating, and making an unpowered maneuver to evaluate the potential to make a

controlled landing. The GHV has the capability to perform sustained maneuvers up to a

load factor of up to approximately 2G.

Table 4.1: Vehicle properties

Parameter Unit Value

Gross weight [ibm] 1220.3

Empty weight [lbm] 993.3

Vehicle length [in] 175.9

Span [in] 58.6

Nose diameter [in] 11.0

Tail diameter [in] 18.8

The aerodynamic data for the GHV was calculated using Hypersonic Engineering Aerother-

modynamic Trajectory Tool Kit (HEAT-TK), developed for the Air Force by Boeing [15],

and the engine data is calculated using the Ramjet Performance Analysis (RJPA) code,

developed at Johns Hopkins University's Applied Physics Lab.

The equations of motion describing many aircraft can be derived assuming a flat, non-

rotating Earth. Due to the high flight speed of a hypersonic vehicle in the atmosphere, the

rotation and curvature of the Earth are typically significant, and should not be neglected.

Thus, the governing equations of motion for the GHV are derived assuming the vehicle is

a rigid body flying through the atmosphere of a spherical, rotating Earth. The equations

of motion describing the GHV are given in References [8, 33], and will be presented in this

chapter for completeness.
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Notation

In deriving and applying the equations of motion which govern the motion of an aircraft,

care must be taken to carefully book-keep the various vector quantities which describe the

position, velocity and orientation of the aircraft. For instance, when considering the velocity

of an aircraft, it must be kept clear both with which frame the velocity is with respect to, and

in which frame the velocity vector is described. Some of the standard notation describing

the expression of vectors in various reference frames is outlined below.

" fa denotes reference frame a.

* Oa denotes the origin of reference frame a.

" Va describes the velocity of the origin of reference frame b relative to the axes of

reference frame a, described using the coordinate system of reference frame b.

" W',6 describes the angular velocity of reference frame a relative to reference frame bC

described using the axes of reference frame c. Omission of the second superscript

implies the angular velocity of coordinate system a is with respect to inertial axes.

When the subscript is omitted, it is implied this quantity is described in the coordinates

of frame a. For example wB is the inertial angular velocity of frame fB, described using

the axes of frame fB.

" The transformation Rab describes a vector transformation from being expressed in

reference frame b to being expressed in reference frame a.

* dVl denotes the rate of change of V, with respect to frame b.

" All vectors are describing a relation of frame a to frame b are described along the axes

of frame a.

In many cases, the equations of motion can be greatly simplified when studying the

dynamics of an aircraft. Such simplifications often center around assuming the Earth is

flat, but this may be an oversimplification for problems of hypersonic atmospheric flight.
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While this simplification still might be acceptable for calculations involving the attitude

dynamics where the rotating earth terms are typically very small, in trajectory calculations

the rotating earth terms for a hypersonic vehicle become non-negligible. This section presents

the equations of motion that describe the GHV.

4.2.1 Equations of Motion

The equations of motion are developed using an Earth-centered, Earth-frame fEC with

origin at the center of a spherical, rotating Earth. It is assumed that the atmosphere travels

uniformly with Earth as it rotates with angular velocity Wearth in inertial space, and that the

aircraft is sufficiently rigid that flexible structural effects can be neglected. The position of

the GHV around Earth and relative to fEC is described by its latitude A, longitude T, and

distance from the center of the Earth, Mt. These three coordinates give the location of the

vehicle-carried frame fv, defined with z-axis always pointing toward the origin of fEc.

N XV

XEI

OE ZI

0.1 h
1 7 Equator

Figure 4-6: Reference frames [33]

The vehicle carrying frame fv is a frame with origin attached to vehicle at the CG, and

the z-axis Ovzv is defined to point vertically downward along the local g vector. Ovxv is

defined to point north, and Ovyv east as shown in Figure 4-6. The vehicle-carried frame has

angular velocity wV due to the curvature of the earth. The body-fixed reference frame fB is a
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right-handed coordinate system attached to the GHV with x-axis pointing towards the nose

of the aircraft along the longitudinal axis, and the z-axis pointing down. This body-fixed

axis system is used to derive the equations of motion for the GHV.

In deriving the equations of motion, the only additional assumption is that the centripetal

acceleration due to Wearth is negligible. The equations of motion describe the dynamics of

the GHV around the Earth when subject to external forces and moments. These forces and

moments, given in the body axes by FB, and MB respectively, are due to the thrust and

aerodynamic forces acting on the GHV, and are taken from pre-determined look-up tables

within the simulation. The aerodynamic forces depend on on control surface deflection angle,

dynamic pressure, angle of attack, and sideslip angle. The thrust forces depend on on control

surface deflection angle, dynamic pressure, and angle of attack.

Force Equations

The force equation describing the the motion of the GHV center of gravity in body axes

is given as the following

+W~ VB+BXV +BX BT (4.1)
dt B

where VA denotes the velocity of fB relative to the atmosphere-fixed reference frame, and WE

is the inertial angular velocity of the Earth-fixed frame fE, described using the coordinate

system of the body reference frame. Note in this work that the atmosphere is assumed fixed

with respect to the earth, so fA = fE. The components of the atmospheric velocity are

VA =[ v w ]T

The force vector FB that represents all non-gravitational forces acting on the body in body

axes is given by

FB=[X Y Z]T
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In the Equation (4.1) this force is separated into aerodynamic and propulsive contributions

as FB = FA + FT where the aerodynamic and propulsive forces have components given by

FA =[XA YA ZA (4.2)

FT =[XT Y, ZTIT

Moment equations

The vehicle moments are described by the following equation. Note the absence of any

rotor contributions to the vehicle moment, as the scramjet engine lacks moving parts, unlike

jet-turbine powered craft.

J dw W x B = MA + MT (4.3)dt B

WB is the angular velocity of the body frame relative to the inertial frame, with the rate of

change evaluated in the body frame, and components

w B=[ p q r]T

The total torque in body axes is given by

MB=[L M N IT

This total moment is split into the contributions due to aerodynamic and propulsive moments

in Equation (4.3) as MB = MA + MT where the aerodynamic and propulsive moments have

components given by

MA=[LA MA NAIT 
(4.4)

MT =[LT MT NT]T
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The moment of inertia matrix J is given by

J -Jy -Jz~
J= -Jz JXY -J I

aJy - X yy - yz

-JXz -Jyz Jzz

Without any simplification, expansion of the moment equations would become very cumber-

some. In general, aircraft are symmetric about the x - z plane, mass is uniformly distributed,

and the body coordinate system is oriented such that Jxy= Jyz = 0. This allows the moment

of inertia matrix for the GHV to be simplified to

J[ 0 - J,,

= 0 Jyy 0

J~X 0 Jzz

Orientation Equations

The orientation, or kinematic equations describe the orientation of the aircraft body axes

with respect to the vehicle carried frame. The relationship between Euler rates and body

angular velocities in the vehicle- carried frame is given by

1 tan(6) sin(#) tan(0) cos(#) PV

0 cos(o) - sin(O) qv (4.5)

0 sin(#)/cos(O) cos(#)/cos(O) rv

where #, 0, and 4 are the roll, pitch, and yaw or heading angles, respectively, and are known

as the Euer angles. The components of angular velocities pv, qv, and rv are for the aircraft

with body-fixed reference frame fB and are relative to the vehicle-carrying frame fv. These

components of angular velocity are about the x, y, and z body axes, respectively. The

relative angular velocities of the GHV are related to the vehicle absolute angular velocities
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by

where RBV is

PV P (Wearth + fi) cos A

q = q RBV

rV r -(Wearth + f) sin A

the orthogonal rotation matrix given by

cos 0 cos 4

RBV =Sin q sin 0 cos ?/) - cos q sin /b

cos 0 sin 0 cos 0 + sin 0 sin V)

cos 6 sin V)

sin q sin 0 sin 4/ + cos 0 cos /b

cosqsin9sin4 - sin qcoso

The reason for the distinction between relative and absolute angular rates in the above

equations is due to the spherical Earth. If a hypersonic vehicle was flying continuous circles

around the world, the relative angular rates pv, q,, and r, would all be zero as the aircraft

would be stationary relative to the vehicle carried frame. However, the absolute angular

rates p, q, and r would be non-zero, as the vehicle carried frame would be rotating as it

moved over the surface of the Earth.

Navigation Equations

The location, or navigation equations describe the location of the origin of the body fixed

coordinate system with respect to the inertial axes. The quantities describing this location

are latitude, longitude, and altitude. The navigation kinematic equation is given by

1 [u]E- ?cosA] = RVB Vi
-14 J [ W

(4.6)

where RVB = R-
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4.2.2 State Space Representation

The aerodynamic and propulsive forces and moments in (4.2) and (4.4), respectively

depend on the vehicle state and input. With this, the equations of motion in (4.1), (4.3),

(4.5), and (4.6) can be represented in state-space form as

X(t) = f (X(t), U(t)) (4.7)

with state vector

X[ V a q 0 h 3 p r A TT (4.8)

where VT is the total velocity, a and # are the angle of attack and sideslip angle, #, 0, and 0

are the roll, pitch, and yaw angles, p, q, and r are the absolute angular velocity components,

and A, r, and h are the latitude, longitude, and altitude, of the GHV, respectively. The

input vector is given by

U L Uth Uelv Uail Urud (4.9)

where Uth, Uelv, Uail, and Urud are the throttle, elevator, aileron, and rudder inputs, respec-

tively. The entries of the state vector are arranged so as to facilitate separation of the lateral

and longitudinal equations of motion during control design. The deflection of the elevons are

accomplished through static mixing, combining differential and collective deflections from

the aileron and elevator commands, respectively, while both rudders are actuated together

using the single rudder input. The control vector U5 contains the deflections of the right and

left elevons (Ur,eiv, Ui,eiv), rudders (Ur,rud, Ul,rud), and throttle as

U5 =[ Uth Ur,eiv Ul,elv Ur,rud UL,rud ] T
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The control allocation matrix M is the matrix which defines the following transformation

between control vectors U5 and U as

U = MU

where control allocation matrix is

1

0
M=

0

0

0

1/2

1/2

0

0

1/2

-1/2

0

0

0

0

1/2

0

0

0

1/2

4.3 Open-Loop Analysis

The open-loop behavior of the GHV was analyzed about a nominal flight condition of

M = 6, h = 80, 000 ft, corresponding to a dynamic pressure of 1,474 lb/ft2 . The geographical

coordinates and heading of the GHV are insignificant in the equations of motion for the

purposes of inner-loop control law development, and these state variables are dropped from

the state vector (4.8) for trim, linearization, and control.

X=[VT a q 0 h p r p ] (4.10)

The state X from this point forward is used to mean the truncated state (4.10), as it contains

the primary quantities describing the vehicle dynamics that are to be controlled.

4.3.1 Linearization

The dynamics of the system with truncated state are described by (4.7). The equilibrium,

or trim state Xeq and input Ueq satisfy

Xeq = f(Xe, Ue) = 0 (4.11)
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The equilibrium state and input are found for the nominal steady, level cruise condition,

and Equation (4.7) is linearized about this trim condition as follows. Defining x and u to be

state and input perturbations about equilibrium, the state and input can be expressed as

X(t) = Xeq + x(t)

U(t) = Ueq + u(t)

Differentiating (4.7)

X(t) t) = f (X(t), U(t)) (4.12)

= f (Xq + x(t), Ueq + U(t))

Performing a Taylor series expansion, neglecting second order terms and higher

. f(X, U) &f(X, U)
i=f(Xe, Ue) + o U U + E (4.13)

eq eq

where the subscript ()eq indicates these quantities be evaluated at the equilibrium point.

With f(Xeq, Ueq) = 0, the linearization results in the state-space system given by

:i(t) = Ax(t) + Bu(t) (4.14)

where

A -Of(X, U) B Of(X, U)
X eq U eq

Using this linear system, the open-loop dynamic modes of the GHV during the nominal

steady level cruise condition are analyzed through a sensitivity analysis. It is also impor-

tant to note that the perturbation state x of the linear system in Equation (4.14) will be

represented as having the following components.

x=[ AVT Ac Aq AO Ah AO Ap Ar AO ]T
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The perturbation input for the linear system is equivalently defined as

U = [ Ath A elv Aaii A rud ]

In following sections, this notation is abused by not explicitly including the A preceding

each component to indicate that the components of the state vector x and input vector u

are in fact perturbation states and inputs, respectively. This is done only when there is no

possibility of confusion, and so when referring to the state and control input of the linear

system given by Equation (4.14) the following notation will be used

x=[ VT a q 0 h p r ] (4.15)

U= [th Jelv Jail Jrud ]T (4.16)

Linear Assumption

The nonlinear equations of motion in (4.7) were linearized resulting in (4.14) and ana-

lyzed. In this section the validity of this linear assumption is examined. In particular, it is

desired to get a sense of the size of c in (4.13) as the perturbation terms x and u increasingly

deviate the linearized system from the equilibrium point.

The nonlinear function in (4.12) and its linear counterpart in (4.14) could be evaluated

for different values of x(t) and u(t), and difference them to explicitly determine C. However,

since this system has dimension higher than two, and has entries which have many different

units, it will be difficult to get a sense in this way, as to what the region looks like around

the trim point where the aircraft can be operated and still reasonably satisfy the linear

assumption.

An alternative, which is possible in the case of stable systems, is to look at the initial

condition response of both the linear and nonlinear systems to get a sense of how the two

differ. However, because the hypersonic vehicle model used for this work is unstable, this

approach is not possible. For this reason, the response of the linear and nonlinear model
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were compared in simulation when using the closed-loop controller, to verify the validity of

the linear assumption.

4.3.2 Modal Analysis

Given a linear system such as Equation (4.14) it is often of interest to examine the

system modes. Conventional aircraft usually have modes which are quite predictable in

their characteristics from one vehicle to the next, but with an aircraft such as the GHV,

the significant state variables in the different modes may differ from those of conventional

aircraft. Because of this it is crucial to analyze the system modes to better understand the

dynamics of the GHV in order to facilitate the control design process.

The sensitivity matrix for the linear system given in Equation (4.14) is calculated, which

contains the desired modal information. The sensitivity analysis aims to determine which

entries in a given eigenvector are small when the units of each state variable are not the

same. This method examines slight changes in the initial condition of each state separately

in order to determine whether this change will influence some modes more strongly than

others. This analysis will provide knowledge of what modes the GHV exhibits, which states

are dominant in each of these modes, as well as the stability of these modes.

Mode Sensitivity

Consider the linear system (4.14) describing the GHV dynamics, with perturbation state

vector given by (4.15). This section outlines the method presented in [33] of applying a

linear transformation to a state space system to obtain a system represented in characteristic

coordinate system to facilitate the modal analysis and calculation of the sensitivity matrix.

Considering only the initial condition response, the following autonomous system results

, (t) = Ax(t) (4.17)
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The following nonsingular transformation is introduced

x(t) = Vq(t)

where V A [ v, ... v,, ] is the modal matrix made up of the eigenvectors or A as shown.

Note that this transformation will not alter the eigenvalues or eigenvectors of the system in

(4.17). Using this transformation

4(t) = Aq(t)

where

A = V- 1AV

The matrix V- 1AV can be expressed as

AV=A I v 1 ... vn = Avi ... Avn[ viAj ... vnAn VA

giving

4(t) = Aq(t)

where A is the diagonal matrix of eigenvalues. The solution is given by

q(t) = e*tq(O)

The unforced response of the system in response to initial conditions is of interest. In

particular, an initial condition is selected as a scalar multiple of an eigenvector vi

x(O) = aivi

Using the linear transformation

q(O) = V-'x(O)

= ajV-1vj
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Since V-'V = I where fi is the identity matrix, V-1 vi is just the ith column of I. In other

words, the initial condition q(O) corresponding to the selected x(O) will be a column vector

of zeros, with the exception of the entry ac in the ith row. The response of the state x(t)

from this initial condition is given by

X(t) = VeAtoiV-lVi

= ciVeAt[ 0 ... I ... 0

Expanding

0
e it 0 ... 0

vn] 0 e A2t ... 0

0 0 ... eAnt
0

=aie AiV

This shows that only the mode corresponding to Ai will be present in the response from an

initial condition along the ith eigenvector. The general response in terms of x is given by

summing the individual responses starting from each eigenvector initial condition

x(t) = aie tvi
i=1

Based on this unforced modal response, if any entries in vi are small relative to the others,

the corresponding states are thus not influential in determining the initial condition response.

Calculating the Sensitivity Matrix

In this section the methods of [30, 31] used to calculate the sensitivity matrix for A are

outlined. The matrix V and its inverse V- 1 are first calculated. The rows of V are denoted
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using ri, and the columns of V-1 as ci

T =[ r T rT ... r T I V = * -e oCf c

The diagonal matrices Ci are formed using the elements of ci

ci,l

Cj,2

ci,n

c, 1

0

0

ci,2

0 0

0

0

... Ci,0

The n x n sensitivity matrix S is defined as

r1C1

r2C2

Sensitivity Matrix Analysis: Nominal Flight Condition

The sensitivity matrix S is shown in Table 4.2 for a nominal flight condition of flight

Mach number M = 6 and altitude h = 80,000 ft, giving a dynamic pressure of q = 1, 474

psf.

Table 4.2: Sensitivity matrix: nominal flight condition
A1  A 2
-2.24 -4.87

A3 A4 A5
1.89 1.37 0.76j

A6  A 7
0 0.12j

A8  A9
-0.0039 -0.0272

VT 3.44E-05 1.22E-13 6.57E-05 1.34E-10 1.34E-10 0.0022 0.0022 0.9955 2.46E-09

a 0.3618 7.31E-10 0.3226 3.04E-08 3.04E-08 0.1578 0.1578 3.04E-05 4.96E-10

q 0.4823 1.05E-09 0.5103 4.97E-08 4.97E-08 0.0036 0.0036 2.48E-07 4.57E-12

0 0.0088 1.79E-11 0.0160 3.92E-09 3.92E-09 0.4876 0.4876 5.32E-05 1.59E-09

h 0.0012 9.70E-13 0.0020 5.77E-10 5.77E-10 0.4962 0.4962 0.0044 8.55E-10

P 1.79E-10 0.2311 1.16E-07 0.3844 0.3844 3.17E-11 3.17E-11 3.30E-15 7.59E-05

p 2.81E-09 0.4259 5.66E-08 0.2855 0.2855 7.34E-10 7.34E-10 4.73E-12 0.0031

r 3.87E-10 0.0119 9.56E-09 0.3412 0.3412 7.91E-09 7.91E-09 1.73E-10 0.3058

< 5.01E-11 0.0237 4.84E-08 0.3096 0.3096 1.08E-08 1.08E-08 2.88E-09 0.3570
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Each row corresponds to a state, and the modes corresponding to the columns. In each

column, the magnitude of the each entry indicates how influential this corresponding state

is in the mode corresponding to that column. The values in any given column which are

at least one order of magnitude greater than the other values are shown in bold, showing

the states which are most dominant in each mode. The smallest terms, which are several

orders of magnitude less than the largest values in each mode do not significantly impact

the response. These values are removed, as shown in the sensitivity matrix in Table 4.3.

Table 4.3: Sensitivity matrix: nominal flight condition
Al  A2  A3  A4  A 5  A6  A7  A8  A 9
-2.24 -4.87 1.89 1.37 0.76j 0 0.12j -0.0039 -0.0272

VT - - - - - 0.0022 0.0022 0.9955 -
a 0.3618 - 0.3226 - - 0.1578 0.1578 - -
q 0.4823 - 0.5103 - - 0.0036 0.0036 - -

0 0.0088 - 0.0160 - - 0.4876 0.4876 - -

h 0.0012 - 0.0020 - - 0.4962 0.4962 0.0044 -
) - 0.2311 - 0.3844 0.3844 - - - -

p - 0.4259 - 0.2855 0.2855 - - - 0.0031
r - 0.0119 - 0.3412 0.3412 - - - 0.3058

- 0.0237 - 0.3096 0.3096 - - - 0.3570

Table 4.3 shows the influence of the significant states on each mode. From this, it can

be seen that the assumption of decoupled lateral and longitudinal dynamics is a good one.

None of the lateral states are present in any of the longitudinal modes, and none of the

longitudinal states are present in the lateral modes. Comparing the magnitude of the entries

in the sensitivity matrix for the GHV, each of the modes was separated by at least one order

of magnitude difference, indicating a strong decouplingof the flight modes.

Summary of Flight Modes

The sensitivity analysis indicated the presence of two longitudinal and three lateral flight

modes as shown in Figure 4-7. The GHV has a highly unstable irregular short period mode

and an unstable dutch roll mode. The phugoid mode is neutrally stable, and the rolling

mode is stable. The velocity mode is given by a pole at the origin, and is omitted from

Figure 4-7.
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Figure 4-7: Open-loop poles of A for M = 6, h = 80, 000 ft steady, level cruise

The sensitivity analysis performed above indicates the presence of six flight modes. These

modes are explained below.

" Short Period (A 1 ,3 ) - an unstable mode dominated by a and q. Relatively fast, purely

real poles, with A, 3 ~ 2.

" Rolling (A 2) - a stable mode, dominated by 3 and p. Fast, real pole at A2 = -4.9.

" Dutch-Roll (A 4,5) - an unstable mode, which is a combination of a rolling, pitching,

and yawing motion in flight.

* Phugoid (A 6 ,7 ) - a neutrally stable phugoid-type mode.

" Velocity (A 8) - neutrally stable.

" Spiral (A 9 ) - a slow, but stable mode.

The eigenvalues corresponding to the different modes are shown in the pole plot in Figure
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4-7. The pole corresponding to the velocity mode is dropped, since it has no affect on any of

the other longitudinal dynamics. This stability analysis was repeated at several other flight

conditions, and revealed the same basic modes, although the pole locations and stability of

some of the modes differed from the flight condition shown here.

4.4 Model for Control Design

The above sections presented the nonlinear equations of motion which describe the dy-

namics of the GHV, linearized these equations, and then analyzed them to determine the

validity of the linearization, and decouple the linear system into several reduced order sys-

tems: the velocity, longitudinal, and lateral-directional subsystems. The modal analysis

showed the decoupling of the velocity, longitudinal, and lateral modes, allowing each of

these three subsystems to be considered independently. This allows the control design of

the GHV to be simplified, by having to design three lower order controllers, as opposed to

a single higher order controller. The velocity and longitudinal subsystems are both single

input systems. The throttle input Uth controls only the velocity VT, and the elevator input

Uelv controls the longitudinal states. The lateral subsystem is multi input, with the aileron

Uail and tail Urud as control inputs. Before the control design for each of the three subsystems

is presented, a few paragraphs are devoted to providing some additional background on the

types of uncertainty that are present in the hypersonic vehicle and as in (1.6), and that are

studied in the simulation results presented in this chapter.

4.4.1 Model Uncertainty

A model is only a mathematical representation of a system or process, and so the pres-

ence of uncertainty in any plant model is inevitable. This is particularly true in the case of

a hypersonic vehicles, due in part to engine/airframe coupling, complex shock interactions,

flexible effects, and unsteady aerodynamics [65, 84, 93]. When building a more conventional

vehicle such as a subsonic transport aircraft, much wind tunnel and flight test data is col-
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lected, and the aerodynamic coefficients describing the aircraft can in general be determined

with a high level of accuracy [60, 68]. This data is difficult to obtain for a hypersonic vehicle,

where wind tunnel testing is more difficult to do. Additionally an extremely limited amount

of hypersonic flight test data has ever been recorded, especially for air-breathing hypersonic

vehicles. Existing analytical techniques often fail to accurately predict the stability deriva-

tives for air-breathing vehicles due to hypersonic flow assumptions which are violated due

to the presence of the engine [94]. The use of CFD has become increasingly used to model

the aerodynamics of hypersonic vehicles, but there is still much work to be done. Because

of these challenges, uncertainties in the values of the aerodynamic properties, such as in the

stability derivatives of up to several hundred percent, are possible in a hypersonic vehicle.

Additionally, loss in control effectiveness can occur through damage sustained during

flight, as depicted in Figure 4-8, degradation over time, as well as for similar reasons as

above: the aerodynamic forces and moments generated by a control surface deflection are

different from those forces and moments as predicted through modeling.

Figure 4-8: Uncertainty in control effectiveness due to control surface damage

Conventional aircraft can typically have significant variations in the center of gravity

location. These variations are minimized by careful loading of the aircraft, and by placing

fuel tanks as close as is practicable to the center of gravity location so as to minimize the

CG shift due to fuel burn. The GHV will not be carrying any auxiliary payload, and it is

the goal to have fuel tanks which are as close to the CG as possible. Even so, uncertainty in

the center of gravity location is inevitable and can greatly impact the stability of the vehicle.

Furthermore, changes in center-of-gravity location have a similar effect on the stability of
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the vehicle as shifts and uncertainty in the center-of-pressure location. Thus, assuming

uncertainty in center-of-gravity location also captures the effect of uncertainty in the center-

of-pressure, which is very common in hypersonic vehicles.

4.4.2 The Three Control Subsystems

The three subsystems that the plant was separated into based on the distinct flight modes

allowed for the design of multiple lower order controllers. Each of the subsystems of the plant

for which a controller will be designed is outlined here.

Velocity Subsystem

From the sensitivity analysis, the total velocity is decoupled from the rest of the states,

allowing a separate controller to be designed to regulate and control only velocity. The

perturbation state, input, measured output, and regulated output used in the design of the

velocity controller are given by

xp = VT U = Jth y, = VT zp = VT

For the velocity subsystem nr = 1 and m = 1, and is a state-feedback problem. Integral

action is applied for tracking velocity reference commands. That is nep = 1. The state-space

matrices for the velocity subsystem represented by (1.8) are given by

AP = XV BP = XUth COS(Oeq) =1 C = 1 Dpz = 0
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Longitudinal Subsystem

The uncertain, linear, longitudinal dynamics of the GHV in the form of(1.6) are described

as follows [88].

Z'
Veq -Zd

Ma + sM&Za
__ Veq- Z&

6 0

-Veq cOs(7eq)

Veq+Zq g sin eg
Veq-Z& Veq-Z6,

Mq + M&(veq+Zg) MA - M&gsin(-yeg)
Veg-Z& Veq -Z&

1 0

0 Veq cOs(7eq)

0 q

0 0

0 h

Zu1

Veq-Z&

MU + M Z&

0

0

Inner-loop Partitioning the longitudinal dynamics gives the inner-loop short-period dy-

namics as described by (1.7) with plant matrices given by

Z.
- Veq-z&

Ma + MaZa
Veq-Z&

Veq+Z 1
eq-Z6

Mq + M& (veq+Zg)
Veq-Z.

_gsin yeg 0
B9 d Veq -ZA&

M _ M&gsin(yeg) 0oVeq-Z& .

Zuely

AMlel + M&Zuel
Veq - Z

0 0

CPZ=Cp=

and with Dp, = 0. To design the inner-loop controller for the longitudinal subsystem, the

Bqd term in (1.7) for the inner-loop short-period dynamics is neglected, giving a system in

the form of (1.8) where the state, control, measured output, and regulated output for the

inner-loop linear longitudinal subsystem are given by

x=[ a qJ
T

U= Je y= q z= q

The pitch rate is measurable but the angle of attack is not. The inner-loop control goal is

to track pitch rate commands Zp,cmd = qcmd-
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Outer-loop The plant matrices for the outer-loop phugoid dynamics in the form of (1.4)

are given by

0 0

g qCOS ( -Ye ) 0

0 1

- g qCOS ( -Ye) 0

-- T
0

C9 =
0

C,,

T

with outer-loop state, measured output, and regulated output given by

xg = 0 h] yg = h zg = h

The altitude is measurable but the pitch angle is not.

The inner-loop control design described in Ch. 2 requires the state vector x, be aug-

mented with the integral error state as in Eq. (2.1) resulting in a system of the form Eq.

(2.4). The augmented state and output vector are

x= Ice q xe]

T
Y= [q xeT

160



Lateral-Directional Subsystem

The uncertain, linear, lateral-directional dynamics of the GHV in the form of(1.6) are

described as follows [88].

Lpa LP Lr

N, + 3 Np + Nr+ YVeq)N
Veq Veq Veq

- sin -yeq

cos Yeq

Yud
Veq

NuL +YB
Yrud (3

0

0

Inner-loop Partitioning the lateral-directional dynamics gives the inner-loop dynamics as

described by (1.7) with plant matrices given by

yo_
Veq

LN'3+ y qo

Yr-Veq
Veq

Lr
(Yr -Veq)N4

Nr+ y ]eq

YUpj

Veq

B = L Uail

NUai + Yai1 B

0 1 0
Cp= 0

[001]

Yud 1
Veq

Nud + YUd B
Cd = 0Veq j

CPZ = 0 01

g cos('yeq)
Veq

Bgd= L4

LNO

Dpz = [0 0]
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Veq Veq
Y-Veq

Veq

'3

ill,-

g Cos(-yeq)

Veq

0

0

1

0

0

0

0L

+

p

r

0 0

0 0

Veq

L Uail

NUa. + Vq

0

0

(4.18)

Uail

Urud

Y
Vq

N + Y eq

0

0

0]



To design the inner-loop controller for the lateral-directional subsystem, the Bgd term in (1.7)

for the inner-loop dynamics is neglected, giving a system in the form of (1.8) where the state,

control, measured output, and regulated output for the inner-loop linear lateral-directional

subsystem are given by

p = p rT U [Ea r] Yp P r p1jT z= r

The roll rate and yaw rate are measurable but the angle of sideslip is not. The inner-loop

control goal is to track roll rate commands Zp,cmd = Pcmd.

Outer-loop The plant matrices for the outer-loop dynamics in the form of (1.4) are given

by

Ag=0 0 0 1 -sin eq

0 0 0 0 cosyeq]

with outer-loop state, measured output, and regulated output given by

[ ]T

Heading angle is measurable but the roll angle is not.

The inner-loop control design described in Ch. 2 requires the state vector x, be aug-

mented with the integral error state as in Eq. (2.1) resulting in a system of the form Eq.

(2.4). The augmented state and output vector are

[ T TX = 0p r xe Y = p r xe

4.5 Simulation Implementation

This section contains simulation results demonstrating and comparing the capabilities

of the baseline and adaptive controllers when applied to the nonlinear evaluation model as

depicted in Figure 4-9. Before presenting the simulation studies showing the response of the
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vehicle to different commanded trajectories, some additional uncertainties which were used

in the simulations are first outlined.

e,

xM

Zg,cmd Sgegy 
Z

Outer-loop XgM Inner-loop
controller r c!.controller Z

Figure 4-9: Simulation block diagram.

4.5.1 Actuator Models

Throttle

The propulsion system is modeled as a first order system with a cutoff frequency of 10

rad/s, with transfer function

Gth(S) - Wth
S + Wth

While the physics of the engine happen on time scales order of magnitude faster than the

rest of the dynamics, this simple model was proposed to capture fuel system delivery limits.

Control Surfaces

Second order actuators with rate and deflection limits were included in the simulation

model on all four of the aerodynamic control surfaces. The transfer function for the control

surface actuators is
Wn 2

Ge2(s) = 2( 2 n +Wn2

163



and the block diagram for the control surfaces as implemented is shown in Figure 4-10 where

the signal Ucmd is generated by the controller, and due to the actuator dynamics the actual

control surface deflection is given by usat. The relevant values used in the second order

aerodynamic control surface actuator model are listed in Table 4.4.

Ucmd V U usat

deflection rate deflection
saturation saturation saturation

Figure 4-10: Second order actuator dynamics.

Table 4.4: Second order aerodynamic control surface actuator parameters

Parameter Unit Value

Surface deflection limit [deg] -30 to 30

Surface rate limit [deg/s] -100 to 100

Damping ratio 0.7

Natural frequency w, [rad/s] 150
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Table 4.5: Components of trim state vector at nominal flight condition of Mach 5

State variable Units Value

VT

a

q

0

h

p

r

[ft/s

[deg]

[deg/s]

[deg]

[ft

[deg]

[deg/s]

[deg/s]

[deg]

5866

-0.59

0

-0.59

80,000

0

0

0

0

4.6 Simulation Results

The performance and robustness of the inner-loop adaptive controllers synthesized using

the design model as represented by Eq. (1.8) were evaluated by applying these controllers

to an evaluation model - the hypersonic vehicle which is nonlinear and includes second

order dynamics on the actuators which actuate the elevators, ailerons, and rudders, and the

throttle response modeled as first order. The numerical property values are listed in Table

4.4. Uncertainties were introduced in the nonlinear model, which manifest themselves in the

uncertain linear system as given in Eq. (1.8). The uncertainty is as follows:

" Control effectiveness on all surfaces is reduced to 20% of the nominal value.

" Center of gravity is shifted 0.7 feet rearward, effectively representing uncertainty in

the center-of-pressure location.

" The rolling moment coefficient C, is reduced to 10% of the nominal value.
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4.6.1 Inner-Loop Response

To evaluate the response of the inner-loop longitudinal controller, a 2 deg/s pitch rate

doublet command was given. The nominal response of the aircraft is shown in Figure 4-

11 with the corresponding control inputs shown in 4-12 for the case with no uncertainty

and when using the baseline controller: 0(t) = 0. To evaluate the response of the lateral-

directional controller, a 5 deg/s roll rate doublet command was given. The nominal response

of the aircraft is shown in Figure 4-13 with the corresponding control inputs shown in Figure

4-14 for the case with no uncertainty and when using the baseline controller: O(t) = 0.

The purposed of both these inner-loop simulation responses is to show the nominal com-

mand tracking performance. The introduction of uncertainty ultimately destabilizes the

system when using the baseline controller, with the adaptive controller able to restore stabil-

ity and ensure command tracking in the presence of these uncertainties. However, to better

examine the effect of these uncertainties on the vehicle performance when using both the

baseline and adaptive controllers, this was done when using the outer-loop controller as well,

as shown in the following section.
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4.6.2 Outer-Loop Response

With the command tracking performance of the inner-loop controller verified in Sec.

4.6.1, the outer-loop was then designed around this inner-loop as described in Ch. 3. The

performance of the combined inner and outer-loop control structure was evaluated for both

the longitudinal and lateral-directional control subsystems.

Longitudinal Response

To evaluate the longitudinal response of the GHV when using the closed-loop controllers,

an altitude command to climb 1000 ft was given. Figs. 4-15 and 4-16 show the response

in the nominal case, corresponding to the absence of uncertainty, and no adaptive control

used. That is A = I, 'ip = 0, and E(t) = 0. The response shows a smooth climb to the

new altitude, while maintaining the desired heading, and without requiring large control

magnitudes or rates.

Figs. 4-17 and 4-18 show the response when the uncertainty was introduced, but with the

adaptive controller still not used, that is e(t) = 0. In this case, the uncertainty is sufficient

to destabilize the GHV within a matter of seconds.

Figs. 4-19 and 4-20 show the response when the adaptive controller is turned on. The

result of this is closed-loop stability, and tracking of the altitude command. However, during

the course of adaptation some large undesirable oscillations are observed.

Lateral-Directional Response

To evaluate the lateral-direction response of the GHV when using the closed-loop con-

trollers, a heading command of a right turn of 5 degrees was given. Figs. 4-21 and 4-22

show the response in the nominal case, corresponding to the absence of uncertainty, and no

adaptive control used. That is A = I, x', = 0, and e(t) = 0. The response shows a smooth

turn to the new heading, while maintaining the desired altitude, and without requiring large

control magnitudes or rates.

Figs. 4-23 and 4-24 show the response when the uncertainty was introduced, but with the
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adaptive controller still not used, that is E(t) = 0. In this case, the uncertainty is sufficient

to destabilize the GHV within a matter of seconds.

Figs. 4-25 and 4-26 show the response when the adaptive controller is turned on. The

result of this is closed-loop stability, and tracking of the heading command. However, during

the course of adaptation some large undesirable oscillations are observed.
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4.6.3 Outer-loop Response with Limiter

The outer-loop responses in Sec. 4.6.2 showed the ability of the combined inner and outer-

loop controller to provide good command tracking of the outer-loop heading and altitude

commands, while maintaining stability in the presence of uncertainty when the baseline

controller could not. However, despite stability and good command tracking performance,

in Figs. 4-25 and 4-26, for example, there are significant oscillations present in the response,

and large deviations in sideslip. On the GHV such large deviations in sideslip angle would

likely lead to unstart and further instability, although this phenomenon was not captured in

the nonlinear GHV model used for the simulations in this thesis. Regardless, it is beneficial

to be able to suppress these large sideslip angle deviations, and ensure coordinated flight is

maintained. It is for this purposed that the limiter described in Sec. 3.6 is used.

Figs. 4-27 and 4-28 show the same response as in Figs. 4-25 and 4-26, with the exception

of the addition of the state limiter. The modulation function is selected so as 7 = 0 for

E [-0.1, 0.1] deg, and y = 1 for # V [-0.2, 0.2]. These regions, defined by the sets js and

are plotted in the figure. Corollary 3 is easily verified, to ensure that for the given heading

angle command that asymptotic tracking will be achieved. This agrees with intuition, as it

is expected that at the completion of a turn to a new heading, that the aircraft should be

in coordinated flight, with zero sideslip angle. Furthermore, by enforcing coordinated flight

throughout the turn, Figs. 4-25 and 4-26 show the drastically reduced oscillations observed

in Figs. 4-27 and 4-28.

To further illustrate the effect that the limiter has on the inner and outer-loop commands,

Fig. 4-29 shows a comparison between the inner and outer-loop commands from the response

without the limiter, shown in Fig. 4-25, to those with the limiter, shown in Fig. 4-27.

When not using the limiter, the outer-loop command is equal to the desired value, that

is zg,cmd(t) = Zcmd(t), and the inner-loop input is also equal to the command value as

r(t) = rcmd(t). When using the limiter, the command zg,cmd(t) and r(t) are modified from

the desired or commanded values, as shown. The limiting of both of these inner and outer-

loop command signals is what is used to limit the sideslip angle, also shown in Fig. 4-
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29. Because the outer-loop command Zg,cmd (t) is used to generate the inner-loop command

rcmd(t), the outer-loop limiting has an indirect effect on the inner-loop command. However,

the inner-loop command is further limited, resulting in r(t) as shown. It is the limiting

of these commands that is responsible for the improved time response demonstrated in the

simulations

From Corollary 3, another situation that may be encountered, is one where for piecewise

constant commands z cmd) I > ,cmd,mx, in which case asymptotic tracking of the

command is not obtained. Consider, for example, applying the state limiter to enforce a

limit on the roll angle, so as to limit the G-loading during a turn. Figs. 4-30 and 4-31 show

the state limiter used in this way to limit the roll angle to 20 degrees. However, by limiting

the bank angle during a turn, the turn rate of the aircraft is limited. To make large heading

angle changes, large bank angles are required. With the roll angle limiter becoming invoked

simply as a result of the command, asymptotic command tracking does not follow.
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Chapter 5

Conclusions and Future Work

This thesis presented the design of an adaptive controller for a class of uncertain MIMO

systems. Synthesis of the controller is completed using a sequential loop closure based

procedure, where an adaptive inner-loop controller is designed first, followed by an outer-

loop controller.

The inner-loop controller is capable of accommodating the uncertainty present in the

plant, only requires the plant output, and provides command tracking of an inner-loop

regulated output. The controller is uses a baseline Luneberger observer based controller,

which, when combined with the adaptive element provides the closed-loop reference model

structure. This thesis provided a new way of synthesizing the gain matrices required for

such a controller, providing a larger set of solutions and extra degrees of freedom to tune

the controller for increased performance and robustness.

The outer-loop controller generates appropriate inner-loop commands so that the outer-

loop plant regulated output follows a desired command trajectory. The outer-loop controller

incorporates a state-limiter, allowing the inner and outer-loop command signals to be modi-

fied as necessary to limit the evolution of the state trajectories to within a certain prescribed

region within the state space. The outer-loop controller also uses components of a closed-loop

reference model, and the resulting closed-loop system is shown to be globally stable.

This sequential loop closure based procedure to synthesize an outer-loop controller sim-
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plifies the process of designing guidance and control laws from that of designing a single

higher-order controller to several lower-order controllers. The proposed approach provides

an outer-loop control design which does not require a re-design of the existing inner-loop,

and guarantees global stability of the closed-loop system, and enforces desired state limits.

Finally, this adaptive controller was applied to a highly nonlinear, unstable, six degree-of-

freedom Generic Hypersonic Vehicle model, which includes unmodeled actuator dynamics.

The performance of the GHV was evaluated by providing altitude and heading commands,

when subject to uncertainty. The proposed adaptive controller was shown to provide stability

when the baseline could not, accommodated the desired state limits, and provided command

tracking.

The control design presented in this thesis has provided a new control architecture, and

a constructive procedure to synthesize the required gain matrices to provide stability and

command tracking. This procedure used to synthesize the gain matrices has provided a large

set of solutions, from which the control designer can select each of the desired matrices.

This has, in practice, provided very good control designs with little effort. However, work

remains to determine methods or rules by which to select from the set of possible controller

solutions ones that are more desirable than others. This may help to ensure the control gains

are minimized, to provide specific frequency domain properties for the underlying baseline

controller, or minimize control effort, for example.

In addition, the state limiter presented in Section 3.6 requires further analysis. While

some qualitative analysis was done to understand how the state limiter can be used to

improve the time response of a system by enforcing limits, work remains to quantify this

benefit more precisely. In particular, the state limiter introduces many additional degrees of

freedom that must be fully understood in order to more successfully design and implement

the limiter on future systems.
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Appendix A

Hypersonic Vehicle Numerical

Simulation Data

This appendix contains the numerical data for each of the three plant subsystems and

the corresponding controllers that were designed for the Generic Hypersonic Vehicle in Ch.

4.

A.1 Velocity Subsystem

The velocity subsystem is of the form (1.8). It is a scalar system, and thus uses state

feedback, and contains no outer-loop dynamics.

A.1.1 Plant Data

The open-loop plant parameters in (1.8) are given by the following

AP = -0.0058 Bp = 16.7465 Cp = 1 Cpz = 1 Dpz = 0
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A.1.2 Controller Data

The following weighting matrices were used to compute K. as in Eq. (2.7) using the

MATLAB command lqr

Qiqr = diag( [10 1])

Riqr = 10

The following baseline control gain K. in Eq. (2.7) was computed

Kx = [-1.0184 0.3162

A.2 Longitudinal Subsystem

A.2.1 Plant Data

The nominal plant matrices in the form of (1.1) are given by

-0.2398 1 0 0

4.5689 -0.1189 0 0

0

-5866

1 00

0 5866 0

When partitioned, the inner-loop plant matrices are given by

-0.2398

4.5689

with Dp, = 0. The outer-loop plant matrices are given by

0 0
.A9 =

5866 0

0
B= -5866

T

B =

-0.0001

-0.1856

0

0

C- =

0

1

0

0

-0.0001

-0.1856

0
C, =

0]
CP =

0i

01
0

L J

T
0

C, =
L1
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A.2.2 Controller Data

Inner-loop controller

The following weighting matrices were used to compute K, as in Eq.

MATLAB command lqr

Qiqr = diag( [0

(2.7) using the

10 170])

Riq, = 0.001

The following baseline control gain K, in Eq. (2.7) was computed

Kx = [-3.3559 118.5 -412.311

resulting in the following state feedback gain and phase margin

GMsf= [-21.3 154.2] dB

PMsf = 60 deg

The controller was then tuned by selecting X1, X 12 , and X 2 2 as described in inner-loop

steps 7. and 8. resulting in X given by

318660]

Resulting in S1 and L

Si = [-5.0525 0]

-2.6749

L = -1979.2

[-0.0118
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This provided the following gain and phase margin for the resulting output feedback com-

pensator

GM0f = [-21.2 39.8 dB

PM0f = 59 deg

Outer-loop controller

The forward-loop reference model was designed using integral action on the regulated

output as in (3.16) using the following weighting matrices

Qir = diag( [1 1 1 1 1 1000])

Riqr = 1000000

Using the outer-loop design procedure summarized in Section 3.5.1, P was calculated as in

(3.50) using P calculated as in (3.46) and XD, where PA in (3.46), and XD was selected as

1 3.6957e - 13 0.01 0
XD= PA =

3.6957e - 13 10 0 1

With the resulting P , S9  2.0319 was determined using (3.35), and L obtained numerically

satisfying (3.30). Finally LY was computed using (3.82) thus completing the outer-loop

control design.

10 5.1073e - 15 -0.20218 -1 2.5135e - 12
P = Lg LY =

5.1073e - 15 0.00041288 -82.576 4.0446 -4921.4
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A.3 Lateral Subsystem

A.3.1 Plant Data

The nominal plant matrices in the form of (1.1) are given by

-1.0000

-0.0075

-0.0531

-0.0088

1.0001

0

0

0.0053512

0

0

-3.0021e - 06

2.9365e - 08

1

0

0

0

1

0

0

0

0

le - 12

0

0

6.2245e - 05

-8.6563e - 07

0

0

When partitioned, the inner-loop plant matrices are given by

-0.0697 -0.0104 -1.00001

AP -1336.7 -2.026 -0.0075

2.0689 -0.0015 -0.0531]

0 1 0

0 0 1 C-

The outer-loop plant matrices are given by

0 0.0002

B= -8.0424 10.325

0.0317 -0.2848

0 1] Dpz= [0 0]

-3.0021e - 06

A9 2.9365e - 08

6.2245e - 05

-8.6563e - 07]

C = [0 1]

-0.0002
Bg =

2.8915e - 06

C9 = [0 1]
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-0.0697

-1336.7

2.0689

-0.0002

.8915e - 06

-0.0104

-2.026

-0.0015

0.8535

02

0

-8.0424

0.0317

0

0

0.0002

10.325

-0.2848

0

0

0.8535

0

-0.0088

1.0001



A.3.2 Controller Data

Inner-loop controller

The following weighting matrices were used to compute K, as in Eq.

MATLAB command lqr ()

Qiqr = diag( E1000

(2.7) using the

0 0 10001)

Riq, = diag( [0.01 0.01])

The baseline control gain K_ in Eq. (2.7) was computed

-281.19
K 8=

-288.63

- T

7.2309 50.495 -265.57

-3.4406 75.18 171.68

which resulting in the following state feedback gain and phase margin

GMsf= [-11.2 276.4] dB

PMsf = 60 deg

The controller was then tuned by selecting X1 1 , X1 2 , and X22 as described in inner-loop

steps 7. and 8. resulting in X given by

2.5426e + 051

The resulting S1 and L were calculated

-0.1638
Si=

-0.0581

-5.8866 01

-8.6832 0]

-0.1196 1.0446 -0.0179

-10556 140.29 0.0098

140.33 -43.212 0

0.9996 -0.0124 -4552.4
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This provided the following gain and phase margin for the resulting output feedback com-

pensator

GM0 f [-10.0 16.4] dB

PMof = 50.3 deg

Outer-loop controller

The forward-loop reference model was designed using

output as in (3.16) using the following weighting matrices

integral action on the regulated

Qir = diag( [20 1 0 0 0 0 1000])

Riqr = 0.1

Using the outer-loop design procedure summarized in Section 3.5.1, Pg was calculated as in

(3.50) using P calculated as in (3.46) and XD, where PA in (3.46), and XD was selected as

10.408 -6.3861
XD -

-6.3861 100

1000
PA =

0

With the resulting P., S9 = -15.474 was determined using (3.35), and L. obtained numeri-

cally satisfying (3.30). Finally Ly was computed using (3.82) thus completing the outer-loop

control design.

100 -23051

-23051 3.403e + 07]

-0.85355 -0.0021509

[-9.8889e - 13 -1

--0.0004854

-5.0844e - 07

0.00012421

5.3885e - 07
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Appendix B

Preliminaries

Annihilators Given a matrix B, the matrix B' is a basis for the orthogonal complement,

or annihilator of B. That is B' satisfies BITB = 0. In addition, in this thesis, this notation

is used to indicate that this basis be selected to be orthonormal.

Inverses Given a full rank matrix B E R"'Xm, when B is square, that is n = m, the inverse

of B is written B- 1 and satisfies BB- 1 = I. When B is tall, that is n > m, B has a left

inverse B-eft E Rm"" which satisfies

B-1eftB = Imxm (B.1)

where B-e1ft is given by

B-1eft = (BT B)-BT (B.2)

When B is wide, that is n < m, B has a right inverse B-1right E Rmxfl which satisfies

BB -right = Inxn (B.3)

where B-1right is given by

B-'right = BT(BBT)- 1 (B.4)
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The following well-known lemma gives necessary and sufficient conditions to ensure that

the system (A, B, C, 0) is strictly positive real (SPR).

Lemma 3 (Kalman-Yakubovic) Given the strictly proper transfer matrix G(s) with sta-

bilizable and detectable realization (A, B, C, 0), where A E R"* is asymptotically stable,

B c R"nxm and C c: R"nxn, then G(s) is SPR if and only if there exists a P = pT > 0 such

that

ATP + PA < 0 (B.5)

PB = CT (B.6)

PROOF The proof can be found in Reference [71].

Corollary 4 There exists a matrix P = pT > 0 that satisfies (B.6) if and only if

CB = (CB)T > 0 (B.7)

Furthermore, when (B.7) holds, all solutions of (B.6) are given by

P = CT(CB)-TC + B- XBIT (B.8)

where X = XT > 0 is arbitrary and B' E Rnx(n-"0.

PROOF The proof can be found in Reference [50]. E

Lemma 4 (Matrix Elimination) Given

G +CT LTP +PLC < 0 (B.9)

where G c R*n C E RPxn, and P = pT E Rx* is full rank, an L e R" P exists which

satisfies (B.9) if and only if the following inequality holds

CTITGCTI < 0
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where CT1 E R nx(n-p) satisfies CCT1 = 0.

PROOF The proof can be found in Reference [13].
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Appendix C

Proofs

Lemma 5 Theorem 5 holds for systems where n - p > ng if the following conditions are

satisfed

iT i-leftic = (flTflleftfjC)T (C.1)

U2HjjTieTft = 0 (C.2)

UiT T1lTieTftVi E > 0 (C.3)

where U1 , V, and E are found by performing a singular value decomposition on LT as

described in [49], and for the resulting P to also satisfy (3.42) as required, the following

inequality must hold.

flT A T UjicftflC + (flTA ITjl1eftflC)T < 0 (C.4)

If these conditions are satisfied, P can be found as follows

Pg = A-Iright B+(I-A-right A)(A-right B)T+ (I-A-rightA)BT (BA T)B(I-A-IrightA)+V2GV2T
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where V2 is found by performing a singular value decomposition on flB as described in [49,

G = GT > 0 is arbitrary, and A and B are given by the following

A =UT

B = (fleA C)T

PROOF In this case, symmetric solutions to the matrix equation HAPg1B = rIc must be

found, where now HA is no longer wide; it will either be square or tall. The matrix HB is

always tall. In this case the equation can be rearranged using a left inverse to obtain

Pfl = ll1ef
tflC (C.5)

Taking the transpose of both sides of (C.5) gives

lTsPg = lTflTeft (C.6)

Symmetric positive definite solutions P = PT to (C.6) are given in [49]. Satisfying the

additional inequality (3.31) required for Theorem 5 to hold, is equivalent to the inequality

(3.42) using the expression for HB. Substituting (C.5) into (3.42) gives the inequality in

(C.4). Whether or not a given plant satisfies these conditions can be easily verified by

substituting the expressions for HA, HB, and Hc from (3.40) into (C.1), (C.2), (C.3), and

(C.4). Thus, the conditions in this lemma can be verified given a plant to determine the

existence of the outer-loop controller, and provides the solution P necessary. 0

Lemma 6 The third conditions from (3.63) and (3.64), given below, hold for matrices HA,

IIB, PA, PB, PN given in Chapter 3.

P AT B T Bl AA right

PN [ni! IB A Bi (pfIT -)lright 0
AN [n! IB] A~iT (B A1I')lih (3.64)
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PROOF Writing out the right inverse, (3.63) and (3.64) can be written as

PN [ A B B (PAHAHB) ((PAHAfIB) (PAHA TB-L

PN [A B B Bf BB B T T-1 0

Which is equivalent to satisfying

[ 1B A B T(PAAHB)T

11T~ I HiT-I(PB117~fl7TI)T = 0

which in turn is equivalent to satisfying

A iB I A A B 0

Satisfying these two conditions is equivalent to showing

fiflUiT T = [][T 1B] K 1  (C.7)

ITIITITB = 1T B] K 2  (C.8)

where K, E R(n-P)+(n,-pg)xn-p and K2 E R(n-p)+(n--p)xn--pg. We continue the sketch of

the proof for (C.7); the same arguments apply for showing (C.8). The matrix HjTHAT are

the projections of the columns of fJl into the each of the orthogonal vectors of unit length

which form the basis for the nullspace of HB. Then multiplying these quantities by Hfl

gives the vectors that are exactly the columns of HT projected into the nullspace of UB.

Such a projection can be exactly represented by the right-hand-side of (C.7). That is, these

projections can be obtained by scaling the columns of [jI and subtracting off the components

that are in the HB directions.

Lemma 7 Satisfying (3.79) is independent of the selection of the matrices PA and PB.
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PROOF As PB in (3.79) is full rank, it does not impact the satisfaction of the inequality.

Thus, satisfying(3.79) is equivalent to satisfying

iiTA17I -(PAH ) -right PARC (C.9)
B g BB I T(C.9)

+(nIAgInT (PA ARB) right PIC) <

To examine how PA cancels the out from (C.9), the inverse (PArArH) -right term is exam-

ined. The right inverse is given by

(PA - lright = (P A -nL)T ((PArArL) (PA lAfL T) -1

=UiTX~a((PAlArB B AAT)-= HiTHiTpT (p Ji)ITHTpT -

= AT i (PArArIRU UP)-1

Having evaluated this right inverse, we return focus to (C.9), of which the following term

can be written as

HiATi(PAAl) lPrightPARC = rIT T11 (HST7TP(PA AR~R T R7~P )PARC

= B(ATI B g B (P A(PARARB T  PAT)- C

From this, it can be seen that satisfying the inequality (C.9) is independent of PA, and hence

the same holds for the inequality (3.79), as desired. l
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