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Abstract

Ocean wave energy is a large, and mostly untapped potential source of renewable energy
worldwide. The scope of engineering solutions for harvesting wave energy is vast, ranging
from wave-induced oscillating bodies, to overtopping devices and oscillating water columns.
One particularly interesting approach to energy harvesting is to use arrays of oscillating
bodies. The advantage of such a solution lies in potential amplification of the wave field
through the interactions of waves that are diffracted and radiated by the bodies. Recent
examples from other fields of physics (e.g. photonics crystals) show that by carefully engi-
neering the configuration of the array, it is possible to greatly improve its performance. This
thesis studies the performance of large arrays of axisymmetric bodies through the use of
multiple scattering formulation of wave interactions. The focus is on the energy extraction
characteristics in particular, but the effects on mean drift force are also studied.

The multiple scattering (MS) formulation for Wave Energy Converter (WEC) arrays is
extended in three areas. First, the dynamical behavior of a body in an array is decoupled
from the dynamics of the array as a whole. This allows for the dynamical characteristics of
a body to be completely determined in isolation, and then used in an array setting through
newly-formed dynamical transfer matrices. This approach is especially beneficial in opti-
mization studies, where the changes in the spatial array configuration do not require the
recalculation of the hydrodynamic characteristics of an array. Second, the non-linear mean
drift force on an array is expressed in terms of newly-formed non-linear drift transfer ma-
trices. Lastly, a theoretical formulation is developed for periodic arrays with closely-spaced
rows of bodies so that they can be analyzed in an exact manner within the MS formulation.
Based on these extensions, a fast computational algorithm is developed that is capable of
handling large arrays (0(100) bodies) of different configurations (general finite-size arrays,
periodic arrays, periodic arrays of subarrays). The algorithm imposes no constraints on the
body-size-to-wavelength ratio or on the inter-body spacings.

Using this algorithm, a series of systematic studies of energy extraction characteris-
tics by different array configurations is performed (as a function of wavenumber and wave
incoming angle). These array configurations can be described with at most two param-
eters. In particular, the study of periodic and uniformly spaced line arrays reveals that
large gains occur before new scattering orders appear (at Rayleigh wavelength). The gains
are particularly large for super-resonant wavenumbers where there is still significant energy
extraction. The studies of rectangularly arranged arrays show that, while still related to
Rayleigh wavelengths, the optimal spacing is governed by the emergence of higher scatter-
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ing orders. In all cases, arrays arranged in the direction of array propagation (attenuator
arrays) perform poorly, except for sub-resonant wavenumbers. The effect or spacing irreg-
ularity (linear, quadratic and random) is studied on terminator arrays. The performance
of irregularly spaced arrays as a function of wavenumber is more uniform, without high
peaks in performance, and it indicates that there is a trade-off between high array gain and
broad-bandedness of array gain.

Finally, optimization of spatial configuration of a series of large arrays (up to 200 bodies)
is performed. The array configuration is parameterized such that it can be described by
a small number of variables, but that still allows a large number of different configuration
types (irregularities in body spacings). Gradients of objective functions (extracted energy,
array gain, drift force) are obtained using the adjoint method that, by also employing
matrix-free matrix-vector multiplications, leads to a fast, memory-efficient gradient-based
optimization algorithm. The optimization is performed for regular and irregular seas. The
optimized rectangular arrays lead to high array gains, especially for mildly super-resonant
wavenumbers where it reaches values of over 4. Surprisingly, uniformly spaced rectangular
arrays perform better than the irregularly spaced ones in both regular and irregular seas.
For many optimized arrays, the array capture width (extraction cross-section) is equal to
the geometrical extent (cross-section) of the array, indicating that these arrays harvest all
the energy of a particular frequency incoming on the spatial area they occupy. The optimal
configurations are analyzed from a physical standpoint and compared to other structured
arrays in physics. The results overall provide guidelines on the possible future design of
WEC arrays.

Thesis Supervisor: Dick K.P. Yue
Title: Philip J. Solondz Professor of Engineering
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Chapter 1

Introduction

Ocean wave energy is a large. and mostly untapped potential source of renewable energy

worldwide. The scope of engineering solutions for harvesting wave energy is vast, ranging

from wave-induced oscillating bodies, to overtopping devices and oscillating water colunns.

One particularly interesting approach to energy harvesting is to use arrays of oscillating

bodies. The advantage of such a solution lies in potential amplification of the wave field

through the interactions of waves that are diffracted and radiated by the bodies. Recent

examples from other fields of physics (e.g. photonics crystals) show that by carefully engi-

neering the configuration of the array, it is possible to greatly improve its performance. This

thesis studies the performance of large arrays of axisymmetric bodies through the use of

multiple scattering formulation of wave interactions. The focus is on the energy extraction

characteristics in particular, but the effects on mean drift, force are also studied.

The wave elergy potential on the US shores in given in Figure 1.1a. The power carried

(kWii)

(a)Wav Enrg Flx oi ontumiaUS

Average Annual Wavw Power (kMm)-

- iis

(b) Wvave enierg~y flux worldwide (Crnz,
2008)

Figure 1.1: Renewable energy resources.
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Figure 1.2: Examples of ocean spectra (Brentschneider)

by a monochromatic wave of amplitude A is given by

P 1  AP, = pgcgA2 (1.1)

where p is the fluid density, g the gravitational acceleration and c, the group velocity of

the wave. A quick back of the envelope calculation caii give us a look into the orders of

magnitiide of the wave energy potential. For example, the 30 kW/n power flux could be

carried by a wave of amplitude of 1 neter and a period of 10 seconds.

There are several reasons why ocean wave energy is a viable source of renewable en-

ergy it does not depend on diurnal rhythn like solar energy; energy density is rather

high (due to water density, as compared to wind); energy put in by distant offshore storms

reaches the shores where it can be captured with almost no dissipation. Engineering chal-

lenges, however, are also rather big, mainly due to the harsh environient the wave energy

converter devices need to operate in the ocean. Floating devices (more about them in

the next section) are exposed to potentially devastating storms that can destroy the entire

structure/power plant in a, matter of hours. Slowly acting forces are no less destructible.

Biological growth and corrosion take place over longer periods of time, but require constant

maintenance of the devices, and cani cause problems iii regular operation.
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In comparison, solar power is a well-established source of renewable energy. Commercial

power plants have already been built and are connected to the power grid. For example,

the world's largest solar power plant, Noor 1, has been put into service recently (2015). It

uses concentrated solar power using parabolic trough mirrors to melt salt that can then be

used as energy storage even when there is no sun. The expected production is 370 GWh

per year, to be sold at $0.19/kWh.

According to US Energy Information Administration (EIA), the cost of wind energy on

land is $0.07/kWh, while the cost of the offshore wind energy is $0.20/kWh. (In comparison,

EIA also reports that the cost of thermal solar energy is around $0.24/kWh.) Wave energy

technology, although still far from being mature, seems to be competitive with wind and

solar - the cost of wave energy in the UK is reported to be $0.075/kWh.

1.1 State-of-the-Art in Wave Energy Converters

Despite almost forty-year-long research effort in ocean wave energy conversion, it can still

be considered a nascent technology. An indication why that might be the case is in the

sheer number of completely different wave energy converter (WEC) concepts (some purely

theoretical, some operational) that have been developed over the years. Babarit (2015) gave

a rather exhaustive review of hundreds of different WECs and their comparison in terms

of performance. Some of the different design solutions are shown in Figure 1.3. However,

there is still no clear consensus oi what the best design(s) for energy harvesting might

be. Undoubtedly, given the variety of environmental, operational, governmental conditions

that WECs operate in, there does not need to be a single preferred design. The size and

the harshness of the environment in which the WECs operate make the real-size tests very

costly.

WEC technology can be systematized in many different ways - according to WEC size,

principle, proximity to shore etc. Babarit (2015) classifies WEC devices into oscillating

water columns (OWCs), overtopping devices, oscillating wave surge converters (OWSC),

and heaving devices. Mei, Stiassnie, and Yue (2005) classify WEC devices according to

their orientation with respect to the incoming waves. This is the classification that we will

mostly use in this thesis because it is also more applicable to different kinds of WEC arrays.

According to this classification, floating wave energy converter (WEC) devices can roughly
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Figure 1.3: Different types of wave energy converters.
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be separated into three groups: terminators, attenuators, and omnidirectional absorbers.

The first designs of how to extract energy from ocean waves were employing terminator

devices (or beam-sea absorbers) - devices that oscillate around a horizontal axis that is

placed parallel to the incoming wave crest. The device that started it all is Salter's duck

(Salter, 1974), Figure 1.3a. The devices can have more than one degree of freedom, and

the energy is usually extracted from the relative motion between the different segments of

the device. The advantage of these devices is that they can extract a very large portion

of the incoming energy at certain frequency. In particular, a submerged horizontal circular

cylinder undergoing circular oscillations can be tuned to extract all of the incoming energy at

a given frequency (Evans, Jeffrey, et al., 1979). Attenuators, on the other hand, are devices

oriented such that their characteristic dimension is in the direction of wave propagation,

Figure 1.3b.

Omnidirectional absorbers are devices that are axisymmetric around the vertical axis.

They have a power-take off (PTO) device connected to them, and they usually extract en-

ergy from the heave motion of the body. An appealing feature of omnidirectional absorbers

is that they can be placed in proximity to each other and form WEC arrays, thus potentially

achieving a multiplication of energy absorption. The position of the devices with respect

to each other greatly influences the wave interactions between them, and consequently the

actual extracted energy. This question - how to position the devices in order to extract

the most energy for a given sea state - is the main subject of this thesis.

Careful hydrodynamic consideration is perhaps nowhere more crucial than in designing

WEC arrays. The WEC array performance varies drastically based on the spatial configu-

ration of bodies that form it. If not carefully designed, it can perform several times worse

than how the same number of bodies would perform in isolation.

However, for many of the proposed designs the hydrodynamic performance almost seems

like an afterthought -- the performance of the device is analyzed after the device has been

designed, rather than designing the device with an optimal performance in mind. More

emphasis seems to be directed towards the (optimal) control of a given device, rather than its

hydrodynamic design. For example, one is hard-pressed to find the hydrodynamic reasoning

behind the array layout in some existing WEC array, Figure 1.4.

A potential indication that arrays could prove to be the method of choice for energy

extraction comes via a glaring example from another field of physics -- photonic crystals.
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Figure 1.4: Some WEC array concepts
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Photonic crystals are man-made "materials", i.e. carefully designed and engineered patterns

in an optical material (Joannopoulos, Villeneuve, and Fan, 1997). The interaction between

the electromagnetic waves (light) and the patterns in the material (e.g. large arrays of holes

or rods) has been harnessed through the design and utilized to achieve different purposes

selective mirrors (Shen et al., 2014), waveguides (Fan et al., 2001), resonant cavities

(Joannopoulos, Villeneuve, and Fan, 1997), energy harvesters (Sheng et al., n.d.) - with a

much improved performance over the traditional materials. The governing physics between

photonic crystals and WEC arrays is very similar, so one can wonder whether there is room

for a greater improvement in ocean wave energy extraction by carefully designing large

WEC arrays.

Floating structures, be it WEC arrays or any other large structure, need to be moored

to the ocean bottom so that they do not drift away under the action of waves. Mooring

lines constraint surge and sway (oscillatory horizontal motion) of the structure that is of the

same frequency as the incoming wave, but they are even more crucial for constraining the

effect of the mean wave drift force on the array. Mean drift force is a non-linear effect that

arises because of the change in the wave momentum caused by the structure, and, unlike the

oscillatory character (with zero mean) of the first-order force, it has a constant value (for a

wave of particular frequency). (There are other important phenomena regarding mooring

lines and wave forcing -- such as large second-order non-linear oscillations at the difference

(slow) frequency - but these are outside the scope of the thesis.) Mean drift force, thus,

has a huge impact on very large floating structures (VFLS), Figure 1.6, due to the expenses

related to the mooring systems.

Similar to boosting the performance by designing spatial array configuration, bodies can

be placed in an array in a way that would mitigate the effects of the mean drift force. For

WEC arrays, maximizing the energy extraction while minimizing the drift force results in

conflicting objectives because energy extraction will necessarily change the wave momentum

and thus cause an increase in drift force. A solution to this multi-objective problem might

lie closer to the maxinal-energy-extraction extreme. For structures that are not intended

for energy extraction, finding the array configuration that minimizes the drift force is a

well-posed problem, and one that has not been thoroughly studied.
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Figure 1.6: Sonic examples of Very Large Floating Structures
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1.2 Thesis Objectives

Based on the challenges presented in the previous sections, the objective of this thesis is

to address a number of scientific and technical challenges. Namely, the objectives of this

thesis are:

" Develop a framework that enables the study and optimization of large (0(100)-body)

arrays in regular and irregular seas, capable of dealing with bodies of any size, and

without imposing constraints on body size or body spacings.

" Systematically study the performance of large arrays of simple spatial configurations

in order to better understand the underlying physics behind the potential amplifica-

tions in extraction performance. Address differences in performance between regularly

spaced arrays (e.g. uniformly spaced line arrays), and those where some level of ir-

regularity has been introduced.

" Develop parameterizations such that the number of optimization variables for large

arrays can be reduced, while still allowing for a large variation in configuration irreg-

ularity.

* Systematically optimize the spatial configuration of large arrays in order to further

improve the energy extraction performance. In particular, this refers to arrays that

have too many optimization variables to be analyzed directly, i.e. to have their per-

formance mapped out as a function of every variable.

" Provide guidelines for the improved design of WEC arrays, in terms of the number of

bodies and their spatial configuration. These guidelines should address both regular

and irregular seas. Address how these improvements are achieved, e.g. by increasing

the energy extraction bandwidth in irregular seas, or by significantly improving energy

extraction at a particular frequency.

" Address the effects of mean drift force on WEC arrays and other Very Large Float-

ing Structures (VLFS). Develop a fast algorithm that enables a fast evaluation and

minimization of these forces on an array of bodies.
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1.3 Approach

This thesis will consider inviscid, potential flow of the fluid, with linear wave hydrodynamics

and linear wave-body interaction. The linearity here implies that wave slopes are small,

and that the motion of the body is also small. The problem will be addressed in frequency

domain; we will consider monochromatic waves and irregular seas (multiple wave compo-

nents either all aligned or having a directional spread). We will study axisymmetric bodies

only, placed in a fluid of finite depth. The bodies are constrained to move in one degree of

freedom only, and a passive power take-off device is connected to it.

The hydrodynamic model of wave interactions that satisfies the requirements laid out

in the thesis objective is the multiple scattering theory (Kagemoto and Yue, 1986). It is (in

principle) exact, it does not impose constraints on body size, shape, or inter-body spacing,

and it has a very attractive feature that the performance of an array is built from the

performances of individual bodies in isolation. For an array that is formed from bodies

of the same type (or of few types), this means that with the changes in the spatial array

configuration the characteristics of individual bodies do not need to be recalculated, but

only their mutual interaction is recalculated. This makes it particularly appealing for array

configuration optimization. Multiple scattering framework is, thus, a good model to build

upon, and it is the main model used in this thesis. This thesis provides some theoretical

and computational improvements to the model in order to better meet the objectives laid

out in Section 1.2.

The thesis is organized in the following way. Chapter 2 covers the hydrodynamics

of wave-body interaction and the dynamics of energy extraction of a single body, which

serves as a building block for forming WEC arrays. It also contains a parametric study of

energy extraction performance of a truncated vertical cylinder. A novel implementation of

the multiple scattering framework for WEC arrays is introduced in Chapter 3. Chapter 4

contains the analyses of large structured arrays, where one or two parameters describing the

array configuration have been systematically varied. It gives insights into the phenomena

that occur in large WEC arrays, and serves as a motivation and provides explanations

for Chapter 5, which contains results of optimized large arrays. These arrays have been

optimized based on a larger set of optimization variables that make detailed systematic

analysis computationally prohibitively expensive. In a slight departure from WEC arrays,
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Chapter 6 covers a novel multiple scattering formulation of mean drift forces on an array,

and provides results of an optimized VLFS. Finally, the findings and contributions of the

thesis are summarized in Chapter 7, including some suggestions for extending this work in

the future.
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Chapter 2

An Isolated Body as an Energy

Converter

A floating body set in motion by the waves is a fundamental part of many ocean wave energy

extraction devices. It is also a basic building block for forming WEC arrays. This chapter

reviews the basics of hydrodynamics of wave-body interaction, and describes the describes

the performance of an isolated axisymmetric WEC and the optimal extraction conditions.

It also contains a systematic study of energy-extraction performance of a truncated vertical

cylinder as a function its radius and draft in monochromatic and irregular seas, and the

effects of the PTO device. This analysis is the basis for the selection of the WEC device

that is used in arrays in the later chapters of the thesis.

The shape of the chosen WEC is not optimized, but it is chosen such that it meets

conflicting criteria - ensuring efficient energy extraction with limited body motions.

2.1 An Isolated Body as an Energy Harvester

The hydrodynamics and energetics of energy extraction by a floating body is reviewed here

for completeness. These results are well known and can be found in many references, e.g.

Mei, Stiassnie, and Yue (2005) and Evans (1981b).
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2.1.1 The Hydrodynamics of Wave-Body Interaction

Consider a body floating in a fluid of finite depth h, being set into motion by the incoming

monochromatic wave of amplitude A, angular frequency w, and wavenumber k

2ir
k = 1-

A'I

where A is the wavelength. We focus here on linear (small steepness kA < 1), time-harmonic

waves only. We will use complex notation throughout, with the time-dependent term e-iwt,

unless otherwise stated. This term will be omitted in the text, but is always tacitly present.

To get the real-valued physical quantities, the real part of the complex functions is to be

taken in the end, unless stated otherwise (e.g. in power calculations).

The motion of water waves can be considered as inviscid, and thus can be modeled to

a great degree of accuracy as governed by the potential flow. Under the potential flow

assumption, the velocity field can be expressed in terms of a potential # as

So the potential is # = Re #e-iwt). Note that we will be using complex notation for all

time-dependent quantities throughout this thesis, so a complex amplitude A stands for a

time-dependent quantity A = R(Aeiwt) is

The governing equation for the inviscid fluid is the Laplace equation

V20 = 0 , (2.1)

where q is the velocity potential (v = V 0). For the case of uniform depth, the depth

dependence can be factored out, and the Laplace equation becomes the Helmholtz equation

VHff0 +k 2 0=0 (2.2)

where k is the wavenumber, and VH is the Laplace operator in the horizontal plane

82 092 (2.3)

The potential # needs to satisfy the combined linearized kinematic-dynamic boundary
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condition on the free surface

-W2o+z= =0 z= . (2.4)az

where g is the acceleration of gravity, and the kinematic no-flux condition on the bottom

- = 0 z = -h . (2.5)
az

Finally, equations (2.2), (2.4), and (2.5) lead to the dispersion relation for a fluid of finite

depth

W 2 = gk tanh kh . (2.6)

In a non-dimensional form, the dispersion relation reads

w 2h = kh tanh kh . (2.7)
9

For any frequency w, there is a single k that satisfies the dispersion relation. Due to

this relationship, quantities that are a function of frequency (say f(w)) will regularly be

expressed as a function of wavenumber (say f(kh) or f(ka)) and vice versa (in a slight abuse

of notation), with the mapping between the frequency and the wavenumber according to

(2.6) (or (2.7) tacitly implied.

A presence of a body will usually lead to the creation of evanescent waves in its vicinity.

Evanescent waves do not propagate into the far field, and are governed by the modified

Helmholtz equation

VHO-kV0= 0. (2.8)

They also satisfy a modified dispersion relation

W2 = gki tan kih , (2.9)

which has an infinite number of real solutions ki.

In general, the motion of a body in waves can lead to geometrical nonlinearities (changing

of the body surface and volume, large angles of rotation) due to large motion amplitudes,

even under the action of linear water waves. However, if the motion of the body is assumed
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small as well, i.e. the amplitude of motion X of any degree of freedom is comparable to the

wave amplitude A or smaller

IXI = O(A) , (2.10)

then the general wave-body interaction problem can be broken into two simpler ones - the

diffraction problem and the radiation problem (Mei, Stiassnie, and Yue, 2005).

The presence of a body scatters the incoming waves, which sets the body into motion,

thus further radiating waves. This coupled wave-body interaction problem can be cleanly

decoupled for linear problems, i.e. linear waves and small body motions. The total problem

can be then considered by studying separately the diffraction problem, i.e. wave-body

interaction for a fixed body, and a radiation problem where a body is oscillating in an

otherwise undisturbed fluid. The total potential 0 can thus be decomposed into

0 D+ U 1 0 '+ U 1 (2.11)

where OD is the diffraction potential consisting of the incoming wave potential 0, and the

scattered wave potential OS; 0j is the radiation potential due to the unit velocity in the

i-th degree of freedom, and Ui is the corresponding velocity amplitude.

The diffraction potential OD needs to satisfy the homogeneous no-penetration condition

on the body surface S

&q$D g f=0 => =o @s , (2.12)
on 0 on jT n

where n is the unit normal of the surface S. The radiation potential # needs to satisfy the

non-homogeneous boundary condition caused by the body motion. For the unit velocity

oscillation in direction k, the boundary condition for the radiation potential is

04R
k = nk ns -(2.13)

with nk being the k-component of the surface normal.

The harmonic forces exerted on the floating body can be decomposed in a similar way.

The diffraction force F is caused by the diffraction potential OD, and its k-th component is
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given by

Fk = -iwp sD nk dS. (2.14)

The radiation force FR due to body motion can be decomposed into two components - one

dependent on body velocity and one on body acceleration. The radiation force in direction

k can be written as

F= -ZWPjflnkZEUi -dS

=-iwp (nk dS
=-i ./p 0fy Ui

(2.15)
= -w 2 pZ #nTkdS Xj

-S(w
2 ,lkj (W) + iw bkj (w)) Xj

where the relationship between the body velocity and body motion

Uj = -iwXj (2.16)

has been used in the above. Due to their equivalence to the dynamic equation of motion of

a body, the frequency-dependent hydrodynamic coefficients in (2.15) are called the added

mass coefficient yk3 (w)

Pkj(W) = -pRe #nk dS, (2.17)

and the radiation damping coefficient bkj(w)

bkj(w) = iwpIm OR nkdS. (2.18)

The added mass and damping coefficient are NDOF x NDOF matrices, and they are sym-

metric in terms of j and k

Pkj(W) = yjk(W), bky(w) = bik(W) , (2.19)

courtesy of Green's theorem (Mei, Stiassnie, and Yue, 2005). They are dependent on the

submerged shape of the body and the frequency of the motion, but not on its amplitude.

With these basic hydrodynamic concepts of wave-body interaction in place, we turn our
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attention to the dynamics of power extraction.

2.1.2 Power Extraction by an Oscillating Body

The energy is extracted from the motion of a floating body by a power take-off (PTO)

device that is connected to it. Throughout this thesis we will assume that the PTO device

has linear properties, such that the force exerted by it (in the direction opposite to the

motion) is

FPTO(X) = CPTO x + bpTo b (2.20)

where x is the time-dependent motion amplitude, CPTO is the elastic spring constant, and

bpTO the power extraction constant.

Due to the overall linearity of the problem (linear excitation force, linear restoring and

damping forces), the governing equation of body motion simplifies to that for a forced

harmonic oscillator. For simplicity, we will consider here motion in one degree of freedom

only, so we will drop the subscript denoting the degree of freedom. The equation of motion

in the frequency domain for a body oscillating in one degree of freedom is given by

[-w2 (m + pz(w)) - iw(b(w) + bpTO) + (c + cpTo)] X = F(w) (2.21)

where X is the complex motion amplitude, F(w) the diffraction force, and c is the restoring

coefficient due to changes in buoyancy. For a body whose waterplane area is A., the

restoring coefficient is

c = pgAw (2.22)

The radiation forces are represented by frequency-depended added mass P(w) and damping

b(w) coefficients. All these quantities are for the corresponding degree of freedom. In the

case of multiple degrees of freedom, X and F are replaced by their vector representations,

and the coefficients by coefficient matrices.

The equation (2.21) for a given frequency w represents a forced harmonic oscillator

(FHO), whose motion amplitude is

F(w)X = .~w (2.23)-w 2 (m + p(w)) - iw(b(w) + bpTO) + (c + cpTo)

The behavior differs, however, from the standard FHO because the coefficients are func-
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Figure 2.1: Added mass, radiation damping and diffraction force for a series of vertical
truncated cylinders.

tions of frequency, not constants. The response is in general very similar qualitatively; the

difference in the response would be for impulsive forcing, where in the absence of a PTO

device an over-damped response cannot be achieved.

The added mass, damping and the diffraction force depend on the geometry of the body,

but some features are similar for all bodies. Figure 2.1 shows added mass, damping and

diffraction force for a range of vertical truncated cylinders with different radius-to-draft

ratio. For long waves ka < 1, the diffraction force F tends to Froude-Krylov force where

the only excitation is due to buoyancy variation.

The mean power P extracted by a WEC is P = -FPTO &, or in the frequency domain

1 *. 1
P(w) bPTOX*X = -w 2 bpTo X 2  (2.24)

2 2

The analysis of the optimality of energy extraction can be approached in two different

ways. The first approach is to fix the frequency for which the maximum energy extraction

is sought, and look for the device characteristics that would ensure it. This is usually the

approach that one takes if the performance of a device at a single frequency, and not over

the entire spectrum, is needed. The conditions for optimal energy extraction by an isolated

device for a fixed frequency are well known (Mei, Stiassnie, and Yue, 2005), and the most

important results are repeated here for completeness.

Consider a WEC operating with one degree of freedom only. We want to find the

maximal power that can be extracted from waves for a certain frequency w. For example,
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this frequency could be the peak frequency w, of a wave spectrum. The extracted power is

P = 'JFw1 (2.25)
2 [c - w2(m + p(W))]2 + w 2(b + A(w)) 2

The denominator is strictly positive, so making it smaller without influencing the numerator

increases the power extraction. This can be achieved by making

C - W2(M + p)) = 0 . (2.26)

This means that for optimal power extraction the device has to be tuned in such a way that

at the given frequency it is in resonance, i.e. that w should be equal to resonant frequency

wo. This can be achieved by modifying the body geometry (affects c and M(w)), or by adding

a an elastic restoring element with stiffness cpTo to the PTO system.

Further improvements in extracted power can be made by modifying the extraction rate

b. The optimal value of b is found by requiring

-- = 0 (2.27)
ab

This leads to the condition at the given frequency w = wo

L -I- N lcrr \-opt - Awo) (2.28)

indicating that at the given frequency the optimal extraction rate is equal to the radiation

damping coefficient. If these two conditions are satisfied, the power extraction at W = wo is

F(w) 2
- IF(w)1 2

8b 8A(w)

The conditions (2.26) and (2.28) ensure that the body achieves the highest energy extraction

among all bodies.

To get a better scale of the extracted energy, we can normalize it by the energy flux

carried by a monochromatic ocean wave of the same frequency. For a wave of unit length

along the crest, the energy flux is given by (1.1)

P =pgc9 A 2 (2.30)
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where cg is the group velocity of the wave. The ratio of the extracted power and the

incoming power flux is called capture width W

W = - (2.31)
Pw

and it corresponds to the (dimensional) width of the incoming wave crest from which all

the energy has been extracted by the body. To make W non-dimensional, one can relate it

to wavelength A, or equivalently to wavenumber k, which leads to non-dimensional capture

width kW.

The capture width of a device optimized according to (2.26) and (2.28) is

Wr = IF(wo)12  (2.32)
4A(wo)pgcg

This expression can be simplified by using Haskind relation (Mei, Stiassnie, and Yue, 2005,

sec. 8.6.3)
27r

bi= A 2 J IFi(w; 0)1 2 dG (2.33)
87r pgcg|A12

0

where i is the degree of freedom in question. For an axisymmetric heaving cylinder, the

expression (2.33) simplifies to

_k |F3 (w)12
b33(W) = kpgc9 A 2  (2.34)

Apgc.9A2

which simplifies the expression for capture width to

Wr = 1/kr (2.35)

where kr is the wavenumber corresponding to the resonant frequency wr. The normalization

of Wr with the resonant wavenumber kr The form of (2.35) begs for a non-dimensionalization

of W by kr, giving

(kW)r = 1. (2.36)

where (kW)r is The result (2.36), in addition to its simplicity, has another important

consequence.

In addition to considering energy extraction from body dynamics (2.25), we can look

at the power extraction and energy conservation from the hydrodynamics side. With the
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use of the optical theorem (Mei, Stiassnie, and Yue, 2005, sec. 8.9.3), we find that the

maximum value of kW that an axisymmetric device can achieve while oscillating in one

degree of freedom is

(kW)max = 1 (2.37)

Combining (2.36) and (2.37) gives

(kW)r = (kW)max = 1, (2.38)

which means that the maximal value of the non-dimensional capture width that any ax-

isymmetric body can achieve is 1, and it occurs at the resonant wavenumber kr. Without

(2.37), (2.36) would not be sufficient to ensure that the value of kW actually achieves an

extreme at kr with respect to the wavenumber.

We will call here the devices that are optimized according to criteria (2.26) and (2.28)

(and,thus, achieve (2.36) at the resonant frequency), as resonance-optimal devices (or

WECs).

Non-dimensional capture width kW is often confused with the efficiency of energy ex-

traction. A clear maximum of kW at the body resonant frequency, however, makes it

susceptible to misrepresent the resonant frequency as that where the energy extraction is

the largest.

The power extraction is not maximum at the resonant frequency, even for the systems

that satisfy (2.26) and (2.28). For such systems, a moment's consideration of (2.25) or

(2.29) reveals that &P/ow is not zero at wr.

Since the diffraction force F, the added mass p(w) and the radiation damping are all

general functions of frequency and the body shape, we do not have analytical expressions at

hand to derive an optimality condition similar to (2.26) or (2.28). We can, however, obtain

more knowledge about the location of the maximum of the power extraction of a resonance-

optimal device by expanding (2.25) in Taylor series around the resonant frequency.

Going back the the question of the optimality of energy extraction, a second way to look

at the problem is to fix the body shape, and look for the frequency (or the wavenumber)

and the PTO rate b at which the extraction is maximum.

A different approach to the question of maximum energy extraction is to look for the
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frequency at which the extraction is maximum, i.e. look for

-j = 0. (2.39)

This condition is different than conditions (2.26) and (2.28), so bodies that achieve maxi-

mum energy extraction at a given frequency do not actually have a energy extraction peak

at that frequency. This fact is not often mentioned in the literature. For example, one might

look for the frequency that the body selected according to conditions (2.26) and (2.28)

We can find where the peak of the energy extraction of a body lies with respect to the

resonant frequency by Taylor expanding (2.25) around the resonant frequency wo.

2.1.3 Power Extraction Characteristics for Irregular Seas

The total power PS that a device can extract when operating in irregular seas is

PS = P() S(w) dw , (2.40)

where S(w) is the ocean wave spectrum. Ocean spectra are usually of the form of a Gamma

spectrum NREL

s(content) (2.41)

with the peak frequency The energy flux carried by irregular waves that are impinging on

the body is

P -s = pg JS(w)cg dw (2.42)

The energy period Te (and the corresponding energy frequency we, wavenumber ke) is related

to the period of waves that have the largest energy flux.

Similar to the approach for monochromatic waves, we define a spectral capture width

W' which is the ratio between PS and the total incoming energy flux

pSWS = PS(2.43)
pg f S(w)cg dw

The choice of a non-dimensionalization quantity is not immediately obvious as for the

monochromatic waves. Some of the choices for the non-dimensionalization quantity are the

spectrum peak wavenumber kp, spectrum mean wave-number kj For example, we can use
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We proceed to define spectral non-dimensional capture width kpW8 We further define W8/D

For a given ocean spectrum, we are free to vary the body geomerty g and the PTO

characteristic bpTO in order to find the maximum extracted energy. This leads to the

conditions
apS _ (W) op

=bPTO S(w) dw (2.44)

- S(w)-dw

In this thesis, the PTO characteristics are assumed not to be tunable. They can be

set to a optimal value for some frequency based on (2.28), and this value is used for all

other frequencies. This makes it crucial to understand the behavior of the WEC away from

optimal condition it is tuned for. In particular, it is interesting to compare the bandwidth

where the energy extraction is significant to the bandwidth where significant energy exists

in the wave spectrum.

For a freely floating body, the mass of the body is not independent from the shape. Once

the underwater shape of a WEC is chosen, this fixes the mass of the body by Archimedes

principle.

In addition to tuning the PTO extraction rate to optimize the power extraction, could

something else be made to improve the performance of the device? This is especially

interesting over a larger range of frequencies where the energy carried by the waves is

larger. Since the added mass and damping are related to body geometry, they cannot be

modified (if we stick with the same body geometry). However, the diffraction force FD

depends on the environment, and modifying its frequency-dependent behavior could lead

to an increased power-absorption bandwidth. One way of modifying the diffraction force

is to place many bodies into an array. In that case the interactions between the scattered

and radiated waves from many bodies would create a different wave picture around a body,

possibly leading the increased performance. This is a problem that we study in the next

chapter.

2.2 Vertical Truncated Cylinder as WEC

What do conditions described in the previous section mean for a real power converter? Here

we conduct a systematic study of a truncated vertical cylinder heaving in water of finite

depth, and study its performance as a function of its radius a and draft H. We are primarily
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interested in maximal power extraction, extraction bandwidth, and motion amplitudes of

the device.

As shown in the previous section, the maximal non-dimensional capture width kW of an

axisymmetric device moving in one degree of freedom is 1, regardless of its shape. The body

shape, however, affects the bandwidth of effective power extraction. The capture width kW

for truncated cylinders of different radii a' = a/h and drafts H' = H/h are shown in Figure

2.2. Clearly, increasing the cylinder draft H' narrows the extraction bandwidth drastically,

while increasing the radius moves the resonant frequency to lower values.
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Figure 2.2: Non-dimensional capture width kW for
a' a/h and draft H' = H/h.

d = 0.50

Ll
o

0

8

7

6

5

3

2

1

0

2.0

1.5

S1.0

0.5 F

0. 0.2 0.4 0.6
H/h

0.8 1.0

truncated cylinders of different radius

The normalized capture width kW can be somewhat nisleading, however. Although it

gives a nice theoretical bound kWmax = 1, it relates the dimensional capture width W to

the incident wavelength A. One could be inclined to believe that for long waves kh < 1,

a WEC can extract energy from a vast extent of the incoming wave crest. This is better

visualized when capture width is normalized by a characteristic body dimension. Figure

2.3 shows that the maximal capture width Wmax normalized by body diameter D = 2a is

0(1) for a range of different geometries of TVCs in heave. For TVCs with large aspect ratio
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H/D, especially those with small radius a/h, the maximal capture width is larger than the

body diameter D, i.e. the body extracts the energy

4.5 4.5
40 a' = 0.10 4.0 a' = 0.10

4. - a' = 0.20 4.5 a' = 0.20

3.5 a' = 0.30 3.5 a' = 0.30

3.0 a' = 0.40 3.0 a' = 0.40

a' = 0.50 a' = 0.50
2.5 a' = 0.60 2.5 a' - 0.60

2.0 2.0-

1.5 1.5

to.0------------------------------ - - - - -10

0.0 0.5

0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 5
H' H/D

Figure 2.3: Maximal value of capture width ratio WmaX/D, D = 2a as a function of (a)
cylinder draft H/h, and (b) aspect ratio H/D, for different radii a/h. Cylinders of large
aspect ratio H/D, the capture width is larger than cylinder diameter D.

The shape of the body greatly affects the motion amplitude as well, which is especially

pronounced at resonance. Some characteristic motion amplitudes that correspond to trun-

cated cylinders of different shape are shown in Figure 2.4a. For long waves the motion of

the body exactly follows the wave elevation, so JX/AJ goes to 1 for ka < 1. The resonant

motion, however, can greatly exceed 1 for some shapes. This is especially pronounced with

the increase of body draft H', Figure 2.5a. For "shallow" cylinders, i.e. for those with

small values of H/a, the body motion does not exceed 1 even at resonance. In the frame-

work of simple harmonic oscillator, these cylinders can be considered as over-damped. The

correspondence is not entirely correct, because a heaving cylinder is a harmonic oscillator

with variable, frequency dependent coefficients, but the resulting behavior is very similar

to const ant-coefficient harmonic oscillator, Figure 2.4b.

2.3 Selection of a good WEC(s)

2.3.1 Ocean Spectra

Wave energy converters are usually not exposed to monochromatic waves, but operate in

a realistic ocean environment, and are exposed to waves of different frequencies and am-

plitudes. Typical ocean spectra like Brentschneider or Pierson-Moskowitz carry significant

energy at a rather large range of frequencies, i.e. they have a large bandwith. The power

spectral density S(w) of a standard gamma spectrum in deep water is defined as (Faltinsen,
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where T1 is the mean wave period, H, the significant wave height, and w' is the normalized

frequency

w' T
Wi T

(2.46)
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The parameters A and B depend on fetch etc. For example, for Brentschneider spectrum

for fully developed seas, the A and B parameters are

A = 1.25 B = 1.25.
87r (2.47)

For a Brentschneider spectrum, the maximum value of S(w') occurs at w' = 1. The maxi-

mum value of energy flux S(w) cg, i.e. the energy carried towards an extracting device(s),

occurs at a frequency w' < 1.

-- S(W)

S(w) c,I
I ~

ii
II
II I
II I

I I
I I

.1 N

I I
I I

0.5 1.0
L [-

1.5

Figure 2.6: Energy density S(w') and energy flux S(w')
Characteristic frequencies w' = 1, w', and w' are denoted

c. for Brentschneider spectrum.
by dashed lines.

One of the main objectives of an effective WEC is to have a energy extraction bandwidth

comparable to the energy bandwidth of the wave spectrum the device is operating in.

The spectrum definition (2.45) depends on the mean wave period T1 , which is an external

variable, so it has to be set before a one-to-one comparison between of energy bandwidths

Akh and Aw' can be made.

w-w

(2.48)hw ( kbh tanh kbh - kah tanh kah)

h 9 f(kah, kbh)hwi

For truncated vertical cylinders, larger bandwidths occur for small H/h and larger a/h.

54

0.0 2.0

i



U'

Ideally, a WEC should, relative to its size, have large power extraction at resonance with

not too excessive motions, and large energy extraction bandwidth. As shown on the example

of TVCs (Figures ), these requirements cannot be simultaneously achieved. Shallow TVCs,

i.e. those with larger a' and small H', have well correlated relatively large bandwidths and

moderate motion amplitudes at resonance that makes them a good choice for WECs. Their

capture width relative to their diameter is not as good (Figure 2.3), however.

A good way to choose a WEC is to have its resonance frequency match the energy

frequency we, i.e. the frequency where energy flux S(w) c9 is maximum. This depends on

the mean wave period and water depth (for finite water depths). Figure 2.8 shows the

wavenumber khe that corresponds to w' for different peak periods Tp and water depths h.

14 ............................ .........- h = 15 m
-- h = 20 m

1 2 .... .... . . .......

10...................................=m12 -- - --- - . -. - h = 25 m

10 - h 30

-- h = 35 m
7~ 8 --- .. -..-..-.....-- .--..--.- h = 4 0 m -

0-
0 1 2 3 4 5 6 7

kh, [-]

Figure 2.7: Energy period Te that corresponds to resonant wavelength kh, for different
water depths h.

The PTO device for irregular seas can be selected so that it maximizes the energy

extraction at a particular frequency, following the same procedure as for monochromatic

waves. The WEC device can be tuned such that the resonance occurs at spectral peak

frequency, ensuring large energy extraction

2.3.2 The effect of the PTO device

When it comes to monochromatic seas, tuning the PTO device such that it matches the

hydrodynamic damping at resonance leads to high energy extractions. If a WEC with

a tunable PTO device is operating in monochromatic waves, it could be set to satisfy the
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Figure 2.8: Contours of wavenumber khe that corresponds to energy frequency w' for dif-
ferent peak periods Tp and water depths h.

conditions (2.26) and (2.28) for optimal energy extraction at any frequency W (not occurring

simultaneously). However, if the device is not tunable, its performance can be significantly

diminished away from the resonance frequency. Furthermore, if a WEC is operating in

irregular seas where waves of many frequencies are simultaneously present, actively tuning

PTO device to resonant conditions for every component is not possible. The PTO device

could be tuned according to (2.28) to match the resonant characteristic of the most energetic

wave component wp in the spectrum, or one might look for PTO characteristics that would

give maximal performance in spectral sense, i.e.

ab S(w) (dw . (2.49)
ab . ab

In this case, a simple analytical result like (2.28) does not exist because of the non-trivial

frequency-dependent behavior of hydrodynamic quantities.
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Chapter 3

Mathematical Formulation of

Array Interactions for Energy

Extraction

In this chapter we describe the mathematical framework that is used in the rest of the thesis.

The framework is based on the multiple scattering approach, which uses transfer matrices

of isolated bodies to obtain in principle an exact solution to the scattering problem.

Section 3.1 reviews some of the present methods for studying the interactions of waves

with both finite and infinite arrays of bodies. We then review an existing multiple scattering

approach and introduce a novel decomposition of array forces that enables an increase in

computational speed, and is more consistent with the overall methodology. We then further

extend the multiple scattering framework to allow the calculation of closely spaced group

of bodies in a periodic array.

3.1 Literature Review

The multiple scattering approach in ocean waves problems was first studied by Spring and

Monkmeyer (1974). They studied the interaction of bottom mounted cylinders, and applied

the boundary conditions on all cylinders simultaneously, leading to a linear system for the

unknown coefficients. Note that they call this method "direct matrix method", while they

reserve the term "multiple scattering" for the method where scattered waves from different
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cylinders are sequentially added and approach the "direct" solution. We follow here a

slightly different terminology (see e.g. Martin, 2006), where multiple scattering refers to the

direct method of solving for the unknown scattering coefficients, while order of scattering

refers to the iterative method like used by Twersky (1952).

Linton and Evans (1990) employed the same multiple scattering approach as Spring &

Monkmeyer. The difference between that approach and Kagemoto and Yue (1986) is that

the former is only valid for bottom-mounted cylinders.

The hydrodynamic analysis into using arrays of bodies as a means of energy extraction

has started with Evans (Evans, 1980) and Falnes (Falnes, 1980), both arriving at the same

expression independently. They extended the theory to account for parallel infinite rows of

absorbers (Falnes and Budal, 1982; Falnes, 1984).

When dealing with bottom-mounted cylinders in water of constant depth, the depth

dependency can be factored out, arid the remaining problem is identical to a well-known

problem in acoustics of scattering by a sound hard cylinders.

Following an approach similar to Kagemoto & Yue, Linton and Evans (1990) studied

the diffraction and drift forces on small arrays of bottom-mounted cylinders (4 bodies in

Linton and Evans (1990), 4,5,6 cylinders in Evans and Porter (1997)).

Duclos and Clement (2004) use the multiple scattering formulation of study the influence

of near-trapped waves on the diffraction force amplification on arrays of bottom-mounted

cylinders (16 and 38 bodies). They also studied the effects of deviation from regular spacing

on the average transmission coefficient behind the array.

Periodic arrays of scatterers have been handled with different methods. Linton, McIver

and Evans have studied the periodic arrays by placing the body inside an infinite channel and

using so-called channel multipoles - eigenfunctions that satisfy the free surface conditions,

appropriate radiation conditoin and the boundary conditions on channel walls - for N

bodies in a channel of constant depth (Linton and McIver, 1996), radiation and diffraction

by a circular cylinder in a channel (Linton and Evans, 1992)

For doubly-periodic arrays, Mei has employed methods of multiple scales for small scat-

terers ka < 1 in a series of papers (Li and Mei, 2007b; Li and Mei, 2007a). In particular,

he studied the effects of Bragg scattering on energy extraction (Garnaud and Mei, 2010).

The wide-spacing approximation between the infinite rows of scatterers for ocean waves

problems has been studied by Dalrymple, Seo, and Martin (1988) where the expressions
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for the transmission and reflection coefficients of widely spaced rows of bottom-mounted

cylinders are derived. A similar method has been derived by Peter and Meylan (2009).

Doubly-periodic arrays for long waves (wavelength much larger than the spacing) have

also been studied by homogenization (Hu, Shen, et al., 2004; Hu and Chan, 2005; Hu,

Chan, et al., 2011), and used to study band structure of a dense doubly periodic arrays

of bottom-mounted cylinders and resonators. These methods, however, require a doubly

periodic array

3.2 Multiple Scattering Formulation for Finite-Size Arrays

We consider a problem of wave-body interaction where an incoming wave is scattered by

multiple bodies that may be set into motion by the wave forcing and, thus, further radiate

waves. We model the hydrodynamics of the wave-body interaction within the classical

multiple scattering framework (Kagemoto and Yue, 1986). This approach is reviewed first

and then modified to decouple single body dynamics from the array interactions.

In general, the total potential 1' for N oscillating bodies can be written as

Nb

=4S iI+EG' + 1: V%, D R' (3.1)
i=1 k

where V' represents the incoming planar wave, 4D'" the diffraction potential of body n

and (' n radiation potential of body n oscillating in mode k with unit velocity amplitude;

the actual complex velocity in mode k of body n is V. Mode k denotes one of six degrees

of freedom (k E M; M C D = {1, 2,... , 6}), where directions 1, 2,3 correspond to the

translation modes of motion (surge, sway, heave) and 4,5,6 to the rotational modes (roll,

pitch, yaw).

The incoming field Di on body j can be written as

-IIjr)= - Ds - ZVk4R,j

k
Nb (3.2)

= I1 + L (DS,'(ri) + Z V kD'(ri)

i=1,ifj k
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so that the total potential at body j can also be written as

= G~i +,DESi + E Vkg ),j .(3.3)
k

We can expand the potentials near body j in terms of radial incoming and outgoing

partial waves, i.e. Hankel functions and modified Bessel functions, which are fundamental

solutions of the Helmholtz equation. In the cylindrical coordinate system (rj, tj, z) of body

j, the general incoming potential can be written as

I' =ES dnm~n(kmrj)ei #(Z) (3.4)
m,n

where In(z) is the modified Bessel function of the first kind, dnm are the coefficients of the

incoming partial waves, and
00 00

(3.5)
m,n m=O n=-oo

The scattered potential can be written as

'Sj = I cmKn(kmrj)ein "Om(z), (3.6)
m,n

where Kn(z) is the modified Bessel function of the second kind, and cnm are the coefficients

of the scattered, outgoing partial waves. Similarly we can write the radiation potential of

body j as

D'j = cR I'Kn(kmrj)en jm(z) , (3.7)
m,n

where c are the coefficients of the radiated, outgoing partial waves due to motion of

body j in direction k. In the above expressions, we have used the identities between modified

Bessel functions and Hankel and Bessel functions

Kn(-ix) = in+H1 W(x) (3.8)

In(-ix) = i~Jn(x) (3.9)

to simplify the expressions. Hankel function Hn'l (x) = Jn (x) + iYn (x) represents a outward
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propagating wave. With that, the propagating mode is m = 0, with

ko = -ik , (3.10)

while the rest of the evanescent modes are for m > 0, with km being the solutions of the

modified dispersion relation (2.9).

Since the overall problem is linear, there exists a linear mapping between cnm and dm.

This mapping is determined from the diffraction boundary condition (2.12) on body j, and

it is dependent solely on the shape of the body. We can express that in matrix form as

c=TJ d' , (3.11)

where c3 and dj are vectorized versions of the set of coefficients cnm and dnm, respectively.

The particular order in which the vectorization is conducted is not important, as long as it

is consistent.

The most important ingredient of (3.11) is diffraction transfer matrix Ti or T-matrix

of body j. The T-matrix is the basic component of the multiple scattering framework. It is

independent of the actual wave field around the body, so it can be calculated for the body

in isolation. The T-matrix can be calculated either analytically or numerically, depending

on the body shape, but the particular method of calculating it is not a subject of this

thesis. (The T-matrix for truncated vertical cylinders used in this thesis can be calculated

analytically, and it is given in Appendix B.)

Note that because there are in general infinite number of partial waves (in both radial

and angular direction), the vectors of coefficients ci and di are infinitely long, and the T-

matrix is doubly-infinite in size. The infinite length ensures that the formulation is still

exact, no approximations have been made. However, to make the problem computationally

tractable, we truncate the limits of summation of radial modes to M and the number of

angular modes to Np
00 M 00 N,

1:-+*E , : -+- 1 . (3.12)
m=0 =0 n=-oo n=-N,

This inevitably introduces a truncation error into the calculation results, but the formulation

is still generally applicable, and no physical approximations have been made. With such
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truncation, ci and di are of the size 1 x Alt, where

Mt - (2Np + 1) x (M + 1), (8.18)

while Tj is of the size M x Alt.

In order to fully express the potentials on body j in coordinate system of body j so

that we can use the (3.11), there are two ingredients missing (i) scattering potentials in

coordinate systems of other bodies from (3.2) need to be expressed in the coordinate system

of body j; and (ii) the oscillation velocities Vjk need to be related to the wave field.

We can transform the partial waves that are in coordinate system it into partial waves

in coordinate system j by using Graf's addition theorem for Bessel functions (Abramowitz

and Stegun, 1964)

Oc

Kri(kmri)einOi r (-1)' Kn-u(k,17Rij) e2(fl , I(k1nri) ei10j, 7 < Rij (3.14)
l=-oc

We can express (3.14) in matrix form as a relation between partial wave K (kmri)ecinO

body-i coordinate system and 1 (kmrj) eW0i in body-j coordinate system as a matrix SU,

whose elements are

(S)n-i,m = (-1)' Knu1(kmRij) inlai (3.15)

The matrix Sj is called separation matrix, and it only depends on the relative position

between two bodies. Similar to T-matrix, the ordering of elements in Si is not important,

as long as it is consistent with the ordering of T-matrix. The size of S3% is Alt x Al, the

same as for Ti.

P

ri

3:3y Rjz

x

Figure 3.1: Coordinate systems for bodies i and j.
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Transfer matrix for body dynamics. The oscillation velocity of body i should be

determined from the equation of motion, similar to (2.21) for an isolated body. However,

the hydrodynamic forces occurring on the body in an array are different, so the equation

of motion needs to change. The standard way how this is done in the literature is to

calculate the added mass and radiation damping coefficients for an array as a whole. The

coefficient matrices then become 4-dimensional, i.e. they are described by four indices (e.g.

added mass of body i in direction k due to the motion of body j in direction 1). This

method has drawbacks in that every time that the configuration of the array is change, all

the hydrodynamic coefficients need to be recalculated because they depend on the relative

positions between the bodies. Here I introduce a novel way of decomposing forces in an

array so that hydrodynamic coefficients remain that of an isolated body, and independent

on the spatial array configuration.

The equation of motion for a body j in an array with spatial configuration C can be

written as

A = -Xj = F3(w, C) (3.16)

where A3 is the system matrix from (2.21), Xi the amplitude of motion, and Fj the total

diffraction force on body j. Instead of modifying the matrix Ai (i.e the added mass and

radiation damping) due to the array effects, we use linearity of the system and modify the

diffraction force F. Using the linearity of wave-body interaction, the diffraction force on a

body can be related to scattering coefficients of the outgoing partial waves ci

Fj =F 3 T c, (3.17)

where F3 is the diffraction force transfer matrix of body j, which can be calculated for a

body in isolation (F for a truncated cylinder is given in Appendix B). For a body with

NDOF degrees of freedom, the size of F3 is Mt x NDOF. By relating the velocity to the

motion amplitude

V = -iwX , (3.18)

we can express velocity of body j completely in terms of the scattering coefficients ci

V3 - W C C (3.19)

65



where wi is the velocity transfer' matrix

Wi = -iwF3 - (A . (3.20)

In the new formulation, the hydrodynamic coefficients (added mass, damping) remain

the same as calculated for an isolated body. The diffraction force is what changes when

bodies are in proximity. In the old formulation, the diffraction force on each body would

remain the same, but the hydrodyxiainic coefficients would be altered. This made sense if

the scatterers were actually a part of a bigger structure, so that all of them were connected.
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Figure 3.2: Infinite row of periodically repeated configuration of scatterers

3.3 Scattering by an infinite row of periodically placed scat-

terers

In this section, I present a novel multiple scattering formulation for periodic arrays, formed

by cells with multiple closely-spaced bodies. This extends the formulations for periodic

arrays with rows that are far apart (Peter, Meylan, and Linton, 2006). For brevity, the ex-

position here is mostly for fixed bodies. The extension to oscillating (and energy extracting)

bodies is equivalent to that in 3.2, and it is made in the end of this section.

Consider an infinite array formed by periodically repeating a configuration C of Nb bodies

along the y-axis, Figure 3.2, with periodicity d. Such an array is often called a diffraction

grating The configuration C consists of a finite number of bodies but is otherwise completely

general. Let B denote the set of all bodies in C.

B= {jBi i = 1, ... , N} (3.21)

Each of the bodies B in B is of arbitrary shape, and the spacing between them (i.e. the

configuration C) is arbitrary. The incoming wave is propagating with angle 01 relative to

the positive x-axis.

A periodic array can be viewed as if it is built of identical cells of width d that are

stacked in y-direction. We can assign an index B to label each of the cells; B = 0 denotes
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the cell where the origin is, say. We can also assign an index J to each of the bodies in

the array. The bodies are labeled in a cell-first manner, i.e. such that we first label all the

bodies within cell B before moving to cell B + 1; the labeling within a cell is always done

in the same manner. In that case we can relate a general body index ^ to an index i in the

basic cell B = 0 by

B=LNb 
(3.22)

j =j- BNb,

where L- denotes the floor function.

The scattering potential of body B, is given by

DSP cmKn (krp) e"Pm (z) (3.23)
m,n

where
00 00

(3.24)
m,n m=O n=-oc

The body B, can be in the basic cell B = 0, without the loss of generality. The incoming

wave on B, consists of the ambient incoming wave b', and of the scattered waves from all

the other bodies in the array.

jEZj3p

= E (-1)In(korp)e - o (z) + cnmKn(kmrj)ei"*im(z) (3.25)
n=-oo jEZ, m,n

where P- = ei(kxp Cos +ky sin) is the phase of the incoming wave at body Bp.

Analogous to the approach in Section 3.2, we can transform the body Bj-based coordi-

nate system into a Bj-based one by using Graf's addition theorem (3.14), giving

- &1)Ii(kmrp)e 1tPVm(z) (moPie'9 +E E c5nmKn-j(kmRjp)e'n-1)ap)

m,j jeZ, n=-oo

(3.26)

where Rjp is the distance between bodies 5 and p, and aj, the angle between them. The

problem now is how to sum the contributions coming from an infinite number of bodies.
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The summation over infinite number of bodies in (3.26) can be simplified by reorganizing

the summation itself, and by using Bloch's theorem. First, the summation can be split into

two by recognizing
00

=E E+ E , (3.27)
jEZ, B=-oo, jEP jEP\{p},
jop B50 B=O

where

PI={j j=1,...,N}. (3.28)

Second, we can use the periodic nature of the problem and use Bloch's Theorem. Bloch's

Theorem states that in a periodic system, the values of a field in corresponding locations of

two different cells differs only in the phase, caused by the incoming wave at the corresponding

locations. For a one-dimensional periodic array or a diffraction grating where the periodicity

is only in one direction, the Bloch's theorem states

O(x, y + d) = eido(x, y) (3.29)

where

k sin OI (3.30)

is the component of the wavenumber vector along the array (0 is also called crystal wave

vector in solid state physics).

Using (3.29), the scattering coefficients of body j are related to those of body j through

cInm = cnmPB, (3.31)

where PB is a phase difference for cell B

PB = eiBkdsinG (3.32)

With (3.31) and (3.27), the second term in parentheses of (3.26) becomes

00 00

c mKn55(kmRjp)ei"-a + E cIm 5 PBKn-t(kmRjp) , (3.33)
jEP\{p}, n=-oo jEP n=-oo B=-oo,

B=O B50

where the index ^ in the second summation corresponds to indices j, B according to (3.22).
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The first term is the summation over the bodies in the basic cell, and it is identical to (6.30)

for scattering by a finite array. The second term needs further treatment.

The summation over all bodies can be considered in two parts - summation within

a cell, and summation across the cells. We can take the contributions accounted by

Kn-j(kmRjp)ei(n-1ajp as primary. Contributions from bodies in the other cells can be

transformed into contributions by equivalent body in the basic cell using a different version

of Graf's Addition Formula.

Consider bodies Bp, Bj, and Bj as shown in Figure 3.3. The relationship between their

positions is given by

Rjp = NRg + R3P (3.34)

where R.j = -Bd 4. For the case when jI > jRjpj, which is for sure valid for large B,

the Graf's addition formula (3.14) applied to vectors in Figure 3.3 gives

00

KM(kmR p)e'MajP (-) K -v(km|Bjd) ei(-V)*B Iv(kmRjp) e'viep (3.35)

where
-- B > 0

aB= j . (3.36)
,E B< 0

Let us assume for now that the maximal distance between the bodies in a cell is smaller

than the periodicity d, i.e. max{RjP : j, p e P} < d. In that case the expression (3.35)

is valid for all cells B, and the second sum in (3.33) (after some straightforward algebra)

becomes

S S c'm E (-i)u+v Iv(kmRjp)eevk*P E [PB + P-B(-1)" ] Kgj-v(B kid) (3.37)
jEP n=-o v=-00 B=1

where y n - 1. The last sum is usually in the literature called lattice sum

Un,m(9, d) = B[P + (-1)nP-B] Kn(B kmd), (3.38)
B=1

and it only depends on the periodicity of the lattice and the incoming wave angle 6, not on

the number of bodies in the basic cell, or on their configuration.

The lattice sums for propagating orders o0-,o are extremely slowly convergent, so the
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direct application of (3.38) is computationally not feasible. It is possible to accelerate the

convergence of the series using Kummer's transformation (Linton, 1998). The transformed

series converges to within 10-7 usually in less than 10 terms, except for Uo,o and U1,o where

it might take around 20 terms. The lattice sums for evanescent modes an,m, m > 0 converge

quickly, so (3.38) can be directly used. In all cases On,m = 0 -n,m, so only lattice sums for

positive n > 0 need to be calculated.

Finally, with , (3.38), the incoming potential on body p can be written as

m,1

where

dPm = ( -1) 1 moIp e-&1O+

+ (-1)' ( cm (1 - Jjp)Ktjkm R peiA~jP + E (-i) +vIv(kmRjp)eiv a OPI-vm)
jEP n=-oo V=-00

(3.40)

The scattering and incoming coefficients &m, dpm are related through the T-matrix of body

p. We can thus obtain the same type of linear system as for scattering by a finite array,

namely

(I - T(S+ Q)T) c = Td, (3.41)

where Q is the global periodicity matrix. Periodicity matrix QjP for bodies j and p is of

size Mt x Mt, and its elements are

00

(Qjp)n,l,m = S E (-iU +vIv(kmR1.)e'vadr o-v,m, n (3.42)
jEP v=-00

For a periodic array with a single body (Nb = 1), Rjp = 0, which leads to a well known

result (Peter, Meylan, and Linton, 2006)

(Qjp)n,i,m = Qn,l,m = Un-l,m (3.43)

Let us return to the case when for some bodies and a range of cells around the basic
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cell, the intra-cell spacing is larger than inter-cell spacing, i.e.

Rjp > Rjj . (3.44)

Let E denote the set of all B for which this condition holds, i.e.

E(j,p) = {B : Rjp > |B~d, B E Z} , (3.45)

and let Bm denote the largest B for which this condition is valid, i.e.

Bm = maxE. (3.46)

For bodies j, j and p for which condition (3.44) does not hold, the set E is empty, and the

previous derivation holds. Otherwise, the Graf's formula for bodies reads

00

K(kmRjp)e 'A9 = E (-i)"- IMv(IB~kmd) ei(AV)CB Kv(kmRjp)evan , (3.47)
V=-00

and a correction y needs to be added

00 Bm

y ~ ~ ~ ~ ~ ~ V = -) P - Bev 4-vKv(kmRjp)Ikp_v(|B~kmd) - (-i j p+vTv(kmRjp)KAp(J(-1)' S S [PB + (-1)A vB] eivajp [i/ -
v=-oo B=1

(3.48)

If E is an empty set, y 0. For large orders v that might arise in the summation, the

products of Bessel functions Kv(kmRjp)Ig4v(|Blkmd) and Iv(kmRjp)Ky-v(IBlkmd) might

lead to overflow errors if not carefully accounted for.

The expression just derived has several appealing properties. It is valid for bodies of

general shape that do not need to be all the same. The bodies are allowed to be closely

spaced, and the evanescent near-field is taken into account. The bodies do not need to

be fixed, and they can also extract energy. The only change in the above derivation is to

replace the scattering coefficients c with those that take into account the radiated waves

due to body motion c~ , where

In= cm,(1 + R - ). (3.49)
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Figure 3.3: Bodies j,

0 3

0 0

Rjj R j

x

p and j, and distanice vector Eg decomposition.

3.4 Far-Field Structure

The potential describes the full field, but it is not helpful in revealing the wave structure

in the far field. The field has to be periodic in y-direction with period d, so the incoming

planar wave diffracts into several planar waves whose angles of propagation are such that

the periodicity condition on the array is satisfied. The amplitudes of these transmitted and

reflected waves are calculated next.

If Bloch' (3.29)theorem is applied on a x = const. plane far away from the array where

evanescent disturbances are no longer present, we get a condition for angles 0m at which

waves are allowed to propagate.

27r
sinm =sinrO+--m , m=0,1,2,... (3.50)

kd

Here the index m denotes the scattering order, i.e. a planar wave propagating in direction

0m in the far field. If we assume that incoming waves are coming from the left half-plane

(-7r/2 < 01 < 7r/2), then waves propagating in the right half-plane (-7r/2 < Om < 7r/2) are

called transmitted waves, and waves propagating in the left half-plane are called reflected

waves.

The equation (3.50) also gives the condition for when new scattering modes are to

appear. For small values of kd the second term in (3.50) is very large, so the condition
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cannot be satisfied except for m = 0. Thus, only one transmitted and one reflected wave

exist in that case. The transmitted wave is propagating in the same direction as the incoming

wave (0 = 01), and the reflected wave is propagating at an angle OR = --i, as if reflected

by a mirror. (In cases where there confusion or ambiguity might arise, 0' and OR denote

the angles of propagation of transmitted and reflected waves, respectively.)

When kd is increased to a critical value kdm, a new scattering mode "emerges" at a

so-called grazing angle Om = 7r/2, i.e. the wave propagates along the grating. Further

increase of kd past kdm the direction of propagation Om of the scattered wave with move

closer to 01. The value of kdm can easily be obtained from (3.50)

kdm = k(27rm - kd sin 01) . (3.51)

In a 3d-kd plane, the equation (3.51) describes two mutually perpendicular families of

parallel lines, crossing the ordinate axis at positive multiples of 27r.

When a new scattering order appears, there is a redistribution of amplitudes in the

existing scattering orders, resulting in abrupt changes in These "anomalies" were first no-

ticed by Wood (1902) in scattering by optical diffraction gratings and are called Rayleigh's

anomalies (Hessel and Oliner, 1965), in tribute to Lord Rayleigh who was the first to give

an explanation why they occur. (The original name "Wood's anomalies" is now a larger

set that contains Rayleigh anomalies and anomalies occurring due to trapped waves. But,

about trapped waves a bit later.) The amplitudes of these scattered waves for a general

periodic array are described next.

3.4.1 Transmission and Reflection Coefficients

The total scattering potential of the entire periodic array is

S =Z c 'Kn(k,,rj)et m/0m(z) (3.52)
.EZ n=-oo m=O

Far away from the array, i.e. lxi -+ oo, evanescent waves are absent, and by using (3.8),

(3.22), (3.31), (3.32), the equation (3.52) simplifies to

3 = --5ciPBHn(krj,B)ineino(z) (3.53)
n=-oc jEP B=-oc
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where we have retained only propagating m = 0 mode and replaced expressed it in terms

of Hankel function (we have also used k = Iko I). We can further simplify this expression by

using the the Sommerfeld integral representation of Hankel function (Sommerfeld, 1949)

- 0 in e arcsin t
Hn(krj,B jeinteinBn+1 e_ .Z ik(yj-Bd)t eikxi&lt einrc2n dt (3.54)

-00

and the Poisson summation formula,

L f(n)= E Jf(x)e-i2rkx dx (3.55)
n=-oo k=-oo -00

we can see that

I: PBHn(kr)ein 
=n

B=-o mEM

Here we define the set M of all indices of the propagating modes in the far field

21rm
M={pI: sin - I- < 11 (3.56)

kd

Finally, we get for the scattered potential

s ~z ikr cos(00 eikRi [cos(Oi -aj)-cos(0/,-aj,)] inO,(357
kd Cos 1: L_

cos6 /- iEP n=-oo

The above expression is a superposition of planar waves propagating in directions 0,'. The

amplitudes of transmitted A+ and reflected A-, waves in the far field are

A = gr 1 e ikRpcos(Omu-Fap) SnCi E M. (3.58)
kdcosQ :

For a single body in the basic cell (Ri = 0), these expressions simplify well-known results

(Twersky, 1962)

A1 ; p E M. (3.59)
M kd cos I:

There is a large redistribution of energy between the scattering modes when the new

modes appear (Rayleigh wavelength).

75



76



Chapter 4

The Analysis of Energy Extraction

by Large WEC Arrays

In this chapter, we perform a series of systematic investigations of different array config-

urations using the multiple scattering framework introduced in the previous chapter, and

study the effects of the configuration parameters on the energy extraction performance.

In particular, we study periodic arrays, large arrays with uniform spacings (both line and

rectangular types), and large arrays with irregular spacings (systematic and random). De-

spite the large number of bodies, these arrays can be described with a limited number of

configuration parameters, making the visual presentation feasible.

4.1 Literature Review

After the theoretical foundation for energy extraction by isolated bodies was set in the

late seventies (Budal and Falnes, 1975; Evans, 1976; Mei, 1976), the analysis of energy

extraction by WEC arrays started in the early eighties, most prominently by Evans (Evans,

1980; Evans, 1981a; Evans, 1981b), Falnes (Falnes, 1980; Falnes and Budal, 1982; Falnes,

1984), and Budal (Budal, 1977). In particular Evans (1980) and Falnes (1980) derived

an expression for the maximal energy extraction by an array of oscillating and interacting

bodies

Pa, max = F+B'F = U+B-'Uo, (4.1)
8 2
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where F is the vector of diffraction forces on the array (for fixed, non-oscillating bodies),

B the hydrodynamic damping matrix of an array as a whole, and Uo the vector of optimal

body velocities

Uo B-F. (4.2)
2

In this formulation, both F and B depend on the actual array configuration. Equation

(4.1) provides us with the limit of possible energy extraction for a given array. It gives no

indication of how P, max would change with a change in array configuration, either in terms

of spatial positioning or in terms of the number of bodies in an array. Furthermore, it gives

no indication for how to achieve that the bodies are oscillating with the optimal velocity

Uo at any frequency.

Further advances can be made by assuming that bodies in an array are point absorbers -

axisymmetric, heaving devices that are not affected by the radiated waves from other bodies.

For that case Evans (1980) derived an expression for the maximal amplification, or gain, q

in energy extraction that an array of point absorbers can achieve. The resulting equation is

only a function of body locations. Newman (1983) improved the point absorber formulation

in the low-frequency limit where the damping matrix B becomes singular. He also gave

theoretical limits for maximum energy extraction by point absorbers in the low-frequency

limit. Srokosz (1980) applied point absorber approximation to derive the maximum gain

for an infinite row of point absorbers for normal incidence. Falnes and Budal (1982) and

Falnes (1984) generalized the result by Srokosz for periodic arrays of multiple bodies and

for any incidence angle, and they showed that it is theoretically possible to extract all of

the energy from an incoming wave if there are four or more rows of bodies. Fitzgerald

and Thomas, 2007 derived a useful identity regarding the angular dependency of array gain

q(Gi) for optimal point absorber arrays - the integral over all possible incoming directions

equals 27r

-- q(01) d0=1. (4.3)
27r fo II

The conditions was later generalized for optimal WEC arrays of general axisymmetric bodies

by Wolgamot et al. (2011). Here 'ptimal" refers to an array in which all bodies move

according to (4.2). If that requirement is not met, the integral (4.3) no longer equals 1 but

some other constant c. Child and Venugopal (2010) find c to be close to 1 (- 0.9-1) for

close-to-optimal arrays.

78



In addition to point absorber approximation, other approximations have been used to

study WEC arrays. Simon (1982) used plane wave approximation (large spacing) to study

arrays of up to 9 bodies. McIver and Evans (1984) extended the plane wave theory to

include the first-order correction to plane waves, and used it two study arrays of three bod-

ies. Kyllingstad (1984) used a low-scattering approximation to extend the point absorber

theory for the large spacing case, and used it to study the performance of two-body WEC

array. Unlike the point absorber approximation, in the low-scattering approximation bodies

are allowed to oscillate in all three translational modes of motion. A comparison of these

approximations to the multiple scattering formulation for a 5-body line array (Mavrakos,

1997) showed that while the point-absorber and plane-wave approximations give good re-

sults in their respective region of validity (long waves and large spacings, respectively), only

multiple scattering formulation is uniformly valid for all wavenumbers and body spacings.

More recent works studied the performance of small WEC arrays (up to four bodies)

based on multiple scattering theory of Kagemoto and Yue (1986) (Child and Venugopal,

2007; Siddorn and Eatock Taylor, 2008). Recently, McNatt, Venugopal, and Forehand

(2015) analyzed a single 101-body WEC array, but with no analysis of configuration changes.

That simulation is the largest WEC array that has been simulated up to date.

Boundary element method (BEM) was also used to study WEC arrays. Cruz, Sykes,

Siddorn, and Eatock Taylor (2009) and Cruz, Sykes, Siddorn, and Taylor (2010) used a

commercial BEM code WAMIT to calculate the performance of a 4-body square array.

Taghipour and Moan (2008) used WAMIT as well to study a FO3 Wave Converter, a

commercial 21-body square array of small spheres (point absorber like). FQ 3 has also been

studied by De Backer et al. (2010) using WAMIT. They also performed individual PTO

optimization for a 12-body array, keeping the array configuration fixed.

Garnaud and Mei (2009) and Garnaud and Mei (2010) recently studied energy extraction

by periodic arrays of small bodies (ka < 1) by using multiple scales and homogenization

theory. The spacing between the bodies is uniform, and assumed to be on the same oder

of magnitude as the wavelength (kd = 0(1)). They found that there is a strong decrease

in energy extraction in the vicinity of Bragg resonance, and that there is an advantage of

forming a compact array of bodies, compared to having a single body of equal total volume.

However, assumption of small, weakly absorbing buoys and strong constraints on spacings

make this theory harder to apply for general problems of practical interest.
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In summary, our current knowledge on the influence of array configuration on energy

extraction is severely lacking. In a problem with (at least) three distinctive length scales -

body radius a, inter-body spacing d, wavelength A -- most of the studies have focused on

the analysis of performance as a function of a/A, keeping a/d (and overall configuration)

constant. Providing performance maps - performance as a function of wavenumber and

array configuration parameters - of different array types would greatly help in designing a

better WEC for a realistic utilization. Furthermore, we do not know what are the limits of

energy extraction for large arrays, what is their maximal gain, and how do these quantities

change with the increase in the number of bodies in an array. Ideally, such questions should

be answered in a way that is valid for general array types; approximations that put the

regimes of possible strong extraction (closely spaced arrays; strong scattering/absorption)

out of reach should ideally be avoided. This chapter attempts to address some of these

issues.

4.2 Array Energy Extraction Performance Measures

Let us first define several energetic measures that quantify the energy extraction perfor-

mance of an array. The total energy extraction rate for a monochromatic wave, or extracted

power, Pa of an array is the sum of the extracted power by all the bodies in the array

Nb

Pa(WG ) = ZPi( ,6) (4.4)
i=1

where P(w, 0) is the extracted power by body i (operating as a part of the array) at

frequency w and incoming angle 0).

The energy extraction rate for irregular seas, or spectral extracted power, PS is defined

as the total extracted power over all wave frequencies

P J Pa(, 0) S(w) dw, (4.5)

where S(w) is the wave spectrum. The total energy extraction rate pDS for a directional

sea spectrum S(w) f(0) is defined as the total extracted power over all wave frequencies and
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incoming wave angles 0

p2DS 2r P27r
PfS=J 0 )f()d - 0

f(0) dO j Pa(w, 0) S (w) dw (4.6)

where f(0) is the wave direction spectrum, which has to satisfy

Tr/2

-7r/2
f (0) dO = 1 . (4.7)

A very common form of the directional spectrum, which I will also use throughout this

thesis, is cosine-based

f (0) = a cos2 s 0 (4.8)

where s is a factor that determines the spreading angle, and a is the normalizing constant

so that (4.7) holds.
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Figure 4.1: Directional spectrum f(0) for different values of spreading factor s.

Analogously to the case for an isolated body, we can formulate the capture width for an

array. The array capture width W is defined as

Pa
Wap=" ,
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where P is the wave energy flux defined in (1.1). The spectral capture width W is defined

as the ratio of the spectral extracted power Pa and the total incoming energy flux PS from

a certain direction

WS P~W = s , (4.10)

Pf is defined in (2.42).

In addition to comparing the energy extraction performance of a WEC array to the

incoming wave energy flux, we can compare it to the energy extraction performance of

equal number of isolated bodies. This leads to the concept of array gain q (or interaction

factor), which is the ratio between the energy extracted by an array and the equivalent

number of isolated bodies

q(w, 6) - Pa(W,0) (4.11)
Piso, tot

Here, Piso, tot is the total energy extracted by the bodies in the array if they were operating

as isolated bodies. For an array consisting of Ntyp types of WECs, and Ni bodies in each

type i, the extracted power operating in isolation would be

Ntyp

PsO, tot Ni Piso,i(w) , (4.12)

with
Ntyp

N = N. (4.13)
i=1

WEC devices that belong to the same WEC type need to have identical body geometry,

body size, and PTO characteristics. For the most common case of an array consisting of

only one WEC type, the equation (4.12) simplifies to

PsO, tot(W) = Nb P(w) , (4.14)

leading to

q(w, 0) = (w, 9) (4.15)
N6 P(w)

with P(w) defined in (2.24).

The values of array gain q greater than 1 denote WEC arrays which are better (in

terms of total extracted power) than N isolated (non-interacting) wave energy converters.
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Definition (4.15) means that q solely quantifies hydrodynamic interactions within an array,

it does not depend on isolated body performance. For example, power extraction peak at

resonance does not lead to a similar peak in q; the peaks and troughs in q are all caused by

wave interactions. This can be misleading because q can, in principle, obtain large values for

wavenumbers where the energy extraction is negligible; in these cases the extracted energy

at these wavenumbers is still negligible, despite large q. The goal is, of course, to achieve

as high q as possible for a particular frequency, or over a range of frequencies where waves

carry a significant amount of energy.

The amplification in energy extraction over a range of frequencies is called spectral gain

qS. It is a measure that quantifies the total benefit of placing wave energy devices in an

array for realistic sea state, and it and it is defined as a ratio of spectral performances of

array and isolated bodies the array is made out of

qS (0) - Ps(0) ,(4.16)PS(9
ISO, tot

where Pso tot is the spectrally integrated Piso, tot

PIo, tot = Pso, tot(W) S(w) dw. (4.17)

Similarly, the total spectral gain qDS for directional sea spectrum is given by

qDS a (4.18)
Rsiso, tot

We have used here the fact that every WEC device is a axisymmetric body (P(w, ,3) = P(O))

so tot is not a function of the incoming wave angle 0, and we can write the total spectral

gain for directional seas as a simple weighted sum of spectral gains over the incoming waves

angles

qDS f j () qS(0) dO (4.19)
0

As a consequence, we can understand the behavior of a WEC array in directional seas

from its behavior in uni-directional seas. In contrast, spectral array gain qS(O) cannot be
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expressed in a similar manner from array gains q(w, 6) for monochromatic waves

qS(9) # q(w, 0) S(w) dw . (4.20)

Note that all the definitions of array gain (4.11), (4.16), (4.18) quantify only the in-

fluence of hydrodynamic interactions between the bodies in the array; all the other WEC

properties are the same as if the devices are operating in isolation (e.g. PTO character-

istics). Further changes in array performance are possible if, say, PTO characteristics of

individual devices are allowed to change. That would lead to another array gain factor, say

2', which would include the influence of changing the PTO characteristic of the bodies in

the array. In this thesis, we will not be studying the influence of intra-array modification

of PTO characteristic, although the framework presented supports such an analysis in a

straight-forward manner.

4.3 Performance of Periodic Arrays

We study first periodic arrays as perhaps the simplest of large arrays, even though it is

infinite in size. Here "the simplest" refers to the number of parameters needed to describe

its configuration, not that its behavior is simple. They also serve as the basis for explaining

large but finite arrays of uniform spacing.

Before discussing the arrays performance, let us define the body that will be the building

block of all the arrays studied in this chapter, the PTO devices, and the ocean state the

arrays are exposed to. We will use a truncated vertical cylinder or radius a/h = 0.3 and

draft H/h = 0.2, oscillating only in heave. Its performance characteristics are described in

Chapter 2. This body will also be used for all the simulations in this thesis as a whole,

unless otherwise stated. The body is connected to a PTO device that is tuned such that

at the body resonant wavenumber ka, the energy extraction is maximal (i.e. kW = 1).

The PTO is passive, i.e. there is no real-time tuning, and the extraction rate bpTO is

kept constant and equal for all the bodies in the array. We use Brentschneider spectrum to

describe the ocean state, selected such that the peak wavenumber kp matches body resonant

wavenumber kr, Figure 4.2,

k = kr. (4.21)
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In addition to a full spectral response, for sonic analyses we will specifically focus oii three

wavenumbers the body resonant wavenuniber kar, the sul)-resonant wavenumber ka< =

0. 7 2 kar, and the super-resonlant wavenumber ka> = 1.22kar. These wavenumbers are

within the bandwidth where the isolated body extracts significant anioulnt of energy, and

an ocean spectrum with a peak matching the resonant wavenumber offers a lot of potential

for energy extraction at these wavenumbers, especially at ka>. For directional spectra, we

will use a cosine-based spectrum from equation (4.8) with s = 4.0. For simplicity, we will

only consider directional spectra with the mean incoming angle 01 = 0'.

1.0

0.8 -

I I J.4

0.6

0.3

0.4 -

0.2

0.0
0.0 0.5 1.0 1.5 2.0

ka

Figure 4.2: Capture widths kW and W/D as a function of ka for a truncated vertical
cylinder with a' = 0.3, H' = 0.2. The Brentschneider spectrun whose peak matches
the body resonant wavenumber is shown for comparison (no scale). The dashed magenta
lines represent wavenumbers ka., kar and ka> at which some analyses will be specifically
focused.

Consider first a periodic array formed by a single extracting body. Here there is only

one parameter that governs the spatial configuration of the array the periodicity d. In

total for frequency-dependent quantities of interest (e.g. array gain q, non-dimensional

capture width kW, body motion X), three parameters govern the behavior of the array

wavenumber ka, wave incoming angle O1, and the periodicity d.

Based oii the Bloch condition (3.50), we can expect that, there might be abrupt changes

in the features of the observed quantities when new scattering orders appear, because of the

redistribution of energy between the scattering orders. Following (3.51), this occurs when



si11m0r= 1, giving the critical value of periodicity d,, when the m-th order appears to be

d~m = M .7 (4.22)
k ( I - sin 01)

We will call here any kd 01 combination for which a scattering order of any order appears

(i.e. condition (4.22) holds) as a clitical cond'it1o.

The effect of array periodicity d on nion-dimensional capture width kWa is shown in

Figure 4.4, for several incoming angles 01. The wavenumbers for which the energy extraction

is substantial are still strongly centered around the resonant wavenunber ka, for ka < 0.5

and ka > 1.5 the extracted energy is negligible, similar to that for an isolated WEC (c.f.

Figure 4.38b). The energy extraction bandwidth is, thus, not increased by the array. The

values of k47, however, are substantially different than for the isolated body case. The

first thing to notice is that the values of kWa are drastically reduced for critical values

where new scattering orders appear. The maximum values of k147) are for ka ~ kar, and

for spacings that are between the critical ones. For the 01 00 case for which the energy

extraction is the strongest, the maximal value of (kWa)max 1.99 is achieved for ka = 0.90

and d/2a = 2.56 ((kW)max 1 for an isolated body). The maximal values of kWa are

reduced with the increase of the incoming angle 01, and it approaches zero as 01 -+ 90'.

This can be explained as a constraint imposed by the Bloch Theorem (3.29), which assumes

periodic potential O(x, y) along the array, so no reduction in wave amplitude (energy) is

possible for 01 - 90'.

10 09=0.0 '030. 0 0=60.0 2.00

_ - 1.75
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7 -- 1.25
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' ' 0.00
0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0
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Figure 4.3: Contour plot of the nondimensional capture width kW as a function of wavenmili-

ber ka and array periodicity d/2a, for (a) 0I = 0.0', (b) OI = 30.0', (c) 0, = 60.0'. The

white dashed line denotes the body resonant wavenumuber ka,.
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Figure 4.4: Contour plot of the nondimensional capture width Wa/2a as a function of

wavenumber ka and array periodicity d/2a, for (a) 0I = 0.0', (b) 01 = 30.0, (c) 01 = 60.0'.

The white dashed line denotes the body resonant wavenumber kar.

The exact form of kWa as a function of wavenumber is better seen on a cross section

of Figure 4.3 for a particular spacing and incoming angle. This is shown in Figure 4.5, for

d/2a = 2.0, 3.0, 3.6, Q1 = 0'. In all cases, kWa achieves values larger than 1 for some

wavenumbers, but there is also a strong reduction in performance for critical wavenumbers

(denoted by arrows). The spacing d/2a = 3.6 is chosen specifically so that the body

resonance wavenumber ka, coincides with the wavenumber kdi when the first scattering

order appears. One might think that matching two "resonances" might lead to substantial

amplification of energy extraction. However, the energy extraction is greatly diminished in

that case, and it is close to zero at ka, = kdi, with a very sudden jumip in value.

2.0

1.5

1.0

0.5

0.0
0. 0 0.5 1. 2.0

kol
2.5 3.0

Figure 4.5: Non-dimensional capture width kWa for three array spacings d/2a, 01 = 0'.
The red dashed line denotes the body resonant wavenumber kar. Arrows denote critical ka

values where the first scattering order appears; arrow color matches the color of kWa for

every spacing. The red region marks an estimate of a standard ocean spectrum bandwidth.
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The contour plot of array gain q make the jumps in energy extraction formed by the

creation of scattering orders very obvious, Figure 4.6. The ridges of low q closely follow the

critical values, with maxima occurring at kd values (or, equivalently, ka--d/2a combination)

just below a new scattering mode appears. The overall maximal values of q are for ka > 1.5,

so the very high q-value attained is of little benefit because extracted energy is very low

for these wavenumbers (e.g.

region close to kar, maximal

for 01 = 0', qmax = 9.14 at ka = 2.93, d/2a = 2.08). For the

value of q is around 2, as was apparent from Figure 4.3.

0=0.0 W

I\ '

0.5 1.0 1.5 2.0 2.5 3.0

ka

(a)

0=30. V

- \\
\ \\

- \

0.5 1.0 1.5 2.0 2.5 3.0

ka

(b)

0=60.0'

\ T

0.5 1.0 1.5 2.0 2.5 3.0

ka

(c)

Figure 4.6: Contour plot of array gain q as a function of wavenumnber ka and array period-

icity d/2a, for (a) 0, = 0.00, (b) Oi = 30.0', (c) 01 = 60.00. The white dashed line denotes

the body resonant wavenumber kar. The color range has been cropped to allow for a better

resolution at q values of interest (around 1).

The effect of the array periodicity on the extracted energy is perhaps more pronounced

when we have a closer look at the capture width normalized by the periodicity d, rather than

normalizing it by wavelength. We call this value Wa/d capture eficiency of an array. This

normalization is a better indicator of "array efficiency" since it is a ratio of capture width of

an array and its spatial extent, and as such gives an indication of the percentage of the power

flux incoming on a patch of coastline that an array placed along a coastline has captured.

Figure 4.7 shows that Wa/d has a very different character than kWa (or Wa/2a, Figure 4.4).

Here there is a clear preference for smaller array spacing, with Wa/d diminishing rapidly

for d/2a > 3. Energy extraction is still the greatest near the resonant wavenumber;

the extraction diminishes with the increase in the incoming angle. The maximum value

(Wa/d)max = 0.50 occurring for 6 = 0' is achieved for d/2a = 1.76 and ka = 0.93. Thus,
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maximum "efficiency" of a periodic array is around 50%.
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Figure 4.7: Contour plot of the nondimensional capture width W0 /d as a function of

wavenumber ka and array periodicity d/2a, for (a) 01 = 0.00, (b) 01= 30.00, (c) 01 = 60.00.

The upper y-axis limits are adjusted (c.f. Figure 4.3) so that a large uniform region where

Wa/d ~ 0 is not shown. The white dashed line denotes the body resonant wavenumber kar.
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Figure 4.8: Contour plot of motion amplification X/Xj.ol as a function of wavenumber ka

and array periodicity d/2a, for (a) 01 = 0.00, (b) 01 = 30.0 , (c) 01 = 60.0'. The white

dashed line denotes the body resonant wavenumuber kar.

The incoming angles O1 = 00, 30', and 600 shown in previous figures are show some

indication of how the quantities change with respect to the incoming angle. A more detailed

picture of that dependency is shown in Figures 4.9- 4.11, where the spacing is fixed, and

the quantity of interest is shown as a function of the wavenumber and the incoming angle.
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Actually, the incoming angle 01 is only indirectly shown in these figures as kd sin 01, where

0 = ksin01 (4.23)

is the projection of the wavenumber along the array. In this coordinate system, waves

coming from the same direction are represented by linear rays emanating from the origin,

so that the y-axis corresponds to 01 = 0, and y = x line to 01 = 90'. This transformation of

the x-axis transforms the critical values at which new scattering orders appear into straight

parallel lines that intersect at right angles, and they intersect the y-axis at multiples of 27r.

This type of presentation is often used in optics, and it is called light-cone because the area

above y = Ix lines contains the kd -kd sin 1 values for which light can propagate in free

space. This of course holds for water waves as well.
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Figure 4.9: Contour plot of nondimensional capture width kW as a function of wavenumbers
kd sin 01 and kd, for (a) d/2a = 2.0, (b) d/2a = 3.0, (c) d/2a = 3.6.
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The performance of a periodic array for irregular seas loses the features due to scattering

modes creation because of the integration over the frequencies (or wavenumbers). The

spectral capture width WS/d for irregular seas described by a peak-resonance-matched

Brentscheider spectrum we talked about above is shown in Figure 4.12a. The higher values of

WS/d are for snall spacings and incoming angles, as the maximal value (Ws/d)mx = 0.21

occurs at d/2a - 1.19 and i - 00. Comparison with the maximal value of (Wa/d)ma -

0.50 reveals that for irregular seas described by the given Brentschneider spectrum the array

efficiency is

The spectral gain qS, which is also equivalent to the ratio of WS/2a between the array

and the isolated case, is shown in Figure 4.12b for a range of periodicity and incoming

angles. There is a region of substantial gain for periodicity 1 < d/2a < 3 , and for incoming

angle 01 ,< 200. Increasing 01 beyond these values greatly diminishes qS to well even below

1. Arrays with large spacing d/2a do not suffer from such an rapid decline in qS with the

increase of 1, but the overall values of qS are lower since those arrays are closer to resemble

a collection of isolated bodies. The maximal value q = 1.44 occurs at d/2a = 2.08 and

1= 0'.
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(a) Spectral capture width W'/d (b) Spectral array gain qS

Figure 4.12: Contour plot of spectral properties as a function of d/2a and 01.

We further integrate the spectral performance over the cosine directional spectrum f(0)

with s = 4.0. The capture width WrS of periodic arrays in directional seas as a function of

array periodicity d is shown in Figure 4.13a. The two normalizations WESId and Wrs/2a

reveal two different maxima, occurring two different optimal spacings. The maximal value

(WDS/d)max 0.20 is achieved when the spacing is d/2a 1.17, while the maximal value

(WDS/2a)m,= 0.29 is achieved when the spacing is d/2a = 1.83.
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13: Total (directional) spectral properties

L W-d
-- W')s/2a

Maximal value d/2a ka

q 9.14 2.08 2.93
qS 1.44 2.08 -

qDS 1.28 1.83 --
kWa 1.99 2.56 0.90
Wa/d 0.50 1.76 0.93
Wa/2a
Was/ d 0.21 1.19
Ws/2a
WPS/d 0.20 1.17
WPS/2a 0.29 1.83

Table 4.1: Maximal performance values and optimal spacings for periodic arrays.

4.4 Performance of Large Uniformly Spaced Line Arrays

As the first example of finite arrays, we look at line arrays with uniform spacing, and study

the influence of the number of bodies and spacing d on the array performance. The array

geometry is shown in Figure 4.14, where the array extends along the y-axis.

A finite line array with uniform spacing is characterized by two parameters --- the

number of bodies Nb and spacing d. One can expect that as the number of bodies increases,

the performance of a finite array approaches that of a periodic one with the same spacing

d. In fact, that number does not need to be very large.

Figure 4.15 shows the maximal attained array gain q over any spacing

f (N, 01) = max q(ka)
d/2ac[1.1,6]
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(b) Spectral array gain qDS
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Figure 4.14: Line array with uniformly spaced bodies

where q is evaluated at ka = kar, ka<, ka>, or at ka that gives maximum value of q . The

figure shows that in most cases the q is very close to its asymptotic value for a relatively

modest number of bodies (~ 25). Normal incidence leads to maximal gains for resonant and

super-resonant wavenumbers, with the maximal q almost monotonically decreasing with the

increase in Gj.
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Figure 4.15: Maximal values of array gain q for certain wavenumbers as a function of the
number of bodies in an array. Note that for the values that are not close for N = 25 and
Nb = 100, the values at Nb = 100, 101 are not true representatives of the asymptotic values.

A notable exception from the trend is for incidence 0i = 90', i.e. when waves are

traveling along the array. Arrays of that type (or of that orientation) are called attenuator
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arrays. For resonant and super-resonant wavenumbers, the maximal q decreases with the

number of bodies. A nafve argument could be framed, stating that only a first few buoys

of a terminator arrays (91 = 900) extract energy, regardless of the number of buoys in the

array. That would lead array gain to decrease as q oc 1/Nb. The behavior of q at kar and

ka> indicates that q tends to zero more slowly than 1/Nb. Moreover, q for ka< increases

with Nb to an asymptotic value.

The comparison between the array gain q for finite arrays (Nb = 20 and 100) and for the

periodic array as a function of body spacing is shown in Figure 4.16 for two wavenumbers.

For both wavenumbers, the finite arrays perform almost exactly like a periodic array. For

the resonant wavenumber ka, and normal incidence angle 91 = 0', this performance can

be compared to the theoretical prediction derived by Srokosz (1980) for the maximum

extraction by a point absorber in a channel

kd P2nr )2 -2
q= -- ( +2E(kd .. (4.24)

We see that both the periodic arrays and the line arrays with large number of bodies

roughly follow the trend set by (4.24), although not quite reaching the peak values. The

performance of line arrays closely matches that of periodic arrays for all other wavenumbers

and incoming angles until 0 reaches the grazing angle 0 = 90' (see Appendix D, Figures

4.2-4.4).

As discussed in the previous section, for 01 = 90' the energy extracted by a periodic

array is zero (91 = 890 shown in Figure 4.16 to show the trend). On the other hand, the

energy extracted by a finite array for 91 = 900 is not zero, but it is strongly influenced

by the number of bodies Nb, in a negative way - as Nb increases, the overall gain q of

the array reduces. For ka = ka, this trend tends to the periodic array performance; for

ka = kasures, the performance of finite arrays is drastically different.

Figures 4.17 and 4.18 further confirm the difference between large line arrays and peri-

odic arrays exists only for angles very close to O1 = 900. The difference is only noticeable

for angles that are within ~ 100 from 9 j. We will call the range of these angles the grazing

cone.

These figures also clearly show that for sub-resonant wavenumbers ka < ka, and non-

grazing incoming angles, there is little difference between array performance and isolated
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Figure 4.16: Comparison of the array gain q between arrays of different size as a function of
body spacing for two wavenumbers, (a) resonant, and (b) sub-resonant. Theoretical limit
by Srokosz for maximum gain at optinial energy extraction is shown for comparison in (a).

body performance (q ~ 1), while for super-resonant wavenumbers ka > ka, it is possible

to achieve high q values. This holds for all angles outside the grazing cone. Within the

grazing cone, the situation is reversed. Large array gain q > 1 is achieved for sub-resonant

frequencies, while for ka > kar array gain drops to well below 1 for the entire range (although

not zero like for periodic arrays). As these figures show, this overall behavior is independent

on spacing d/2a (see also Figure 4.5). More surprisingly, it is also independent on the actual

resonant wavenumber (see Figure 4.6 for the results for a larger WEC).

In terms of performance as an efficient WEC array, Figure 4.15 clearly shows it is

advantageous to position the array such that it is normal to the incoming wave. Even

for broad directional ocean spectra that cover incoming angles from 70' from the mean

incoming direction, the performance of a finite line array with uniform spacing is almost

identical to a periodic array with the same spacing. Figure 4.19 shows the similarity of

qS and qDS between 25-body line array and a periodic array. (For more comparisons, see

Appendix D, Figures 4.10.) Since the performance of all quantities outside the grazing cone

is similarly comparable, the analysis and the results presented for periodic arrays in Section

4.3 follows here as well.

The behavior of line arrays at (near) grazing angles deserves a closer look. This array

orientation corresponds to attenuator devices, where the main axis of the device is placed

inline with the mean direction of wave propagation. Devices like that have been stud-

ied (Anaconda, Pelarnis), and some have even been deployed in real-scale situation and
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Figure 4.17: The contours of array gain q as a function of wavenumber ka and incoming

angle 01 for arrays with (a) Nb = 9 bodies, (b) Nb = 20 bodies, and (c) periodic array, all

with spacing d/2a = 2.88.

connected to an electricity grid (Pelamis).

The array gain q for 01 = 90' shows a strong change in behavior around kar, Figure

4.20 is a more focused look into the behavior of array gain at 01 = 900. It shows that

above resonant frequency kar, q is always much less than 1, regardless of the number of

bodies or array spacing. Below kar array gain is larger than 1, and the maximum value

of q increases with the number of bodies to an asymptotic value (c.f. Figure 4.15). This

indicates that a way to improve the energy extraction at sub-resonant frequency is via an

attenuator array. However, we must bear in mind that the energy extracted by a attenuator

array (i.e. 01= 90') is much smaller than for terminator arrays (0, = 0'), so that even

with this improvement it does not compete with the energy extraction at kar.

To understand what happens in the points where q drops to close to zero, we plot the

forces occurring on the bodies in the array. Figure 4.21 shows the heave and surge (inline)

forces on the middle body in a 25-body line array. We see that the heave force for normal

incidence 01 = 0' exhibits an abrupt jump at every Rayleigh point. For the case of 0 = 90',

the peaks occur at wavenumbers that would correspond to trapped waves (Maniar and

Newman, 1997), although of much smaller amplitude than for 01 = 0' case. The surge

(or inline) force for 01 = 0' exhibits high large peaks at these trapped wave wavenumbers,

increasing the force multi-fold. The peaks are smaller in magnitude than those for fixed,
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Figure 4.18: The contours of array
angle 01 for arrays with (a) Nb = 9
with spacing d/2a = 2.88.

gain q as a function of wavenumber ka and incoming
bodies, (b) Nb = 20 bodies, and (c) periodic array, all

bottom mounted cylinders found by Maniar and Newman (1997), because the bodies in our

case are of shallow draft, and they are not fixed but radiate waves and extract energy.

The peaks in heave forces translate into peaks in body motion amplitude. Figure 4.22

shows the motion amplitude of the middle body of a 25-body array, where there is a signif-

icant reduction in the amplitude at the Rayleigh critical points. The spacing of the array

has been chosen such that body resonance occurs at the first, most dominant Rayleigh

point, leading to a large reduction in JX where the body is most capable of extracting

energy. This leads to a drastic reduction in array gain q at the resonant wavenumber. The

reduction in JX for 01 = 90' due to trapped waves is not that significant, but it still leads

to a reduced performance.

Figures 4.23 and 4.24 look beyond the performance of just a single body, and show

the performance of every body in the array as a function of wavenumber ka. Figure 4.23

corresponds to the array for which q at resonance is near zero (d/2a e 4.0, the first Rayleigh

point); Figure 4.24 corresponds to the array for which q at resonance is maximum (d/2a =

2.88). For the array that leads to near-zero q at resonance, we see that the body resonance

wavenumber kar aligns with the Rayleigh points, leading to the reduction in motion for all

bodies in the array, similar to that shown in Figure 4.22. For the array that has maximum

gain at resonance, all the bodies experience an motion amplification at kar, leading to large
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Figure 4.19: Comparison of array gains of 25-body line array with the periodic array, for a

range of spacings.

overall gain.

Note that in all the cases the distribution of power extraction per body for angles outside

the grazing cone is pretty uniform along the array, except at the resonant frequencies of the

array. There the body at the ends of the array extract a much larger portion of the energy

than the rest of the array. Recall, the total extracted energy is lower at these resonant

wavenuibers. At the grazing angle, the behavior is different. There, for ka > ka, the first

front of the array extracts more energy, with bodies further down the array extracting ever

decreasing amount of energy. Correspondingly, the motion amplitudes of the of the first

few front bodies are amplified, while all the others are reduced. At critical wavenumbers,

however, the energy extraction is far more uniform (although overall smaller).

The inline force for 0i = 900 shows large amplification for every wavenumber at which

near-trapped waves are present. For higher-order modes, the amplification is reduced for

bodies along the array. For normal incidence, Rayleigh points result in inline force amplifi-

cation, especially for the edge bodies.
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4.5 Performance of Large Irregularly Spaced Line Arrays

In this section we relax the requirement that the spacing between the bodies in a line

array is uniform, and introduce a random or a systematic variation. For the non-random

configurations, the spacing di between bodies i and i + 1 can be expressed in general as

di =do + cO(ri) , (4.25)

where 0(1ri) is the functional dependency of the spacing variation, and c a coefficient that

determines the strength of the variation. Here, ri represents a point on a [0, 1] interval

spacing

r i = 1, ... ,Nb - 1;, (4.26)Nb - 2

at which the spacing function for bodies i and i + 1 is to be evaluated. The grid points ri

depend only on the number of bodies in the array, not on the particular spacing distribution

between them. In this section, we will be studying linear and quadratic variation in spacing.

For the configurations where we study the functional dependence on two geometrical

parameters (d and c), we will again focus on three discrete wavenumbers - ka<, kar, and

ka> -- to make the data easier to visualize. For the randomly spaced arrays, the entire

range of ka values of interest is analyzed.

4.5.1 Line Arrays with Linear Spacing

We focus here on a 20-body line array, and we let the spacing to vary linearly along the

array. The spacing between bodies i and i + 1 is

dt = d + cl(2ri - 1) (4.27)

where d is the average spacing between the bodies, and ri is determined according to (4.26).

The linear function is chosen such that at ri = 0 and ri = 1 its absolute value is 1, i.e.

the spacing between two end buoys will achieve the extreme values of d I cl 1. The sign

of cl determines whether the array is denser at one or the other and of the array, Figure

4.25. Clearly, switching the sign of cl merely mirrors the array about the axis that is going

through the center of the array and that is parallel to x-axis.

In the analyses below, the constraints are imposed on the minimal and maximal spacing
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Figure 4.25: Geometry of two 20-body line arrays with linear variation in spacing, for (a)

negative and (b) positive value of cl (d = 1.34 for both).

between any two bodies to prevent bodies from touching each other or being placed too far

apart. If we prescribe the minimal spacing dmin between the two bodies (center-to-center),

the maximal value cim,min that can be used to define array configuration is

C"lim, min= (d - dmin). (4.28)

Here, the plus or minus sign corresponds to the direction in which the spacings are in-

creasing, c.f. Figure 4.25. Similarly, if we impose the maximal allowable spacing dmax, the

limiting values of cl are

tim, max=-
C1  = (dmax - d) (4.29)

Together, these can be written as

Ici ; inin(d - dmin, dmax - d) , (4.30)

which gives the allowable values of cl for a given average spacing d. Since the constraints

are not on the configuration parameters d and cl themselves, but on their combination

through (4.30), these constraints are manifested in the d-ci plots as lines that reduce the

allowable parameter space, Figure 4.26. The feasible parameter space (4.30) is represented

by the shaded area between the constraint lines (4.28) and (4.29). The performance of

systematically varied array configurations in figures below are all shown in this feasible

parameter space.
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Figure 4.26: The feasible parameter space (gray) for line arrays with linear spacing. The
feasible space is constrained by the requirement that the spacing di should be between the
prescribed minimal and maximal spacing, eq. (4.30). The lines represent the constraints
on minimal (4.28) and maximal (4.29) spacing.

The Figure 4.27 shows the total capture width W normalized by Nb = 20 buoy diam-

eters, which makes the comparison with the single buoy simpler (c.f. W/D = 0.58 for the

isolated buoy). Comparing the power extraction at three distinct wavenumbers, most of

the power is extracted at the resonant wavenumber kar, followed by that for super-resonant

wavenumber ka>, and then for ka<. This is true for all incoming angles, except those close

to the grazing angle for subresonant wavenumbers (see Figure 4.29). The sign of c1 , i.e.

the direction of spacing variation, very mildly affects the performance -- even for non-zero

incoming angles, the performance maps are almost symmetric with respect to c = 0 axis.

In general, uniform arrays (or those close to being uniform, ci ~ 0) exhibit the largest

variations in performance -- they achieve higher peaks and deeper troughs in performance.

This is more clearly visible for array gain q, Figure 4.28. Along the ci 0 axis there is a

familiar pattern observed in periodic and uniform arrays where the performance is strongly

diminished around the Rayleigh points. The maximum performance occurs for arrays that

are closer to Rayleigh points from below.

Away from the ci = 0 axis, i.e. for more spacing-skewed arrays, the performance is

pretty independent on the array configuration array gain q is almost constant. There

are, however, linear features in the parameter space along which the performance is aways

reduced. These features are emanating from Rayleigh points, running parallel with the

spacing constraint lines (4.28) and (4.29), and extend the area of reduced performance into

the non-uniform-array region of the parameter space. Interestingly, arrays that resemble the

performance of uniform arrays with Rayleigh spacing are not arrays that have the average
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spacing equal to the Rayleigh wavelength, i.e. that the distance between middle two bodies

in the array is equal to the Rayleigh wavelength. These arrays would have equal d and

different cl (those would be represented by vertical lines emanating from Rayleigh points).

Rather, the continuation seems to be for arrays for which the distance between the the two

end bodies, either minimal or maximal, is equal to a Rayleigh wavelength. These arrays are

located along the lines that emanate from Rayleigh points and run parallel to the minimal-

or maximal-spacing constraint lines. These lines are given by

,m (d - d,m) (4.31)

where dR,m is spacing equal to the m-th Rayleigh wavelength. (The lines based on (4.31)

are shown in Figure 4.16 not to clutter Figure 4.28.) For an array characterized by the

parameters constrained by (4.31), the spacing between the bodies is given by

X' = d (d - dR,m) (2ri - 1) ,i =1, ... , jN - 1, (4.32)

where the choice of the sign corresponds to the direction of the spacing increase, equivalent

to that represented in Figure 4.25. For ri = 0, 1, i.e. for spacings at the either end of the

array, the spacing is equal to the Rayleigh wavelength. It is not clear as to why the spacings

at the edges of an array play a more important role with regards to the similarity to the

uniform array performance than would, say, the average spacing.

Similar to line arrays with uniform spacing, 01 = 90' is a special case. The for subres-

onant wavenumber ka<, the array gain q is greater than 1 (with maximal value q = 1.34)

for almost the entire parameter space (except the Rayleigh points), Figure 4.29. For larger

wavenumbers, q is uniformly very low (below 0.8 for kar, and below 0.7 for ka>). The

attenuator formation, however, leads to the highest dependency on the sign of cl. For ex-

ample, for ka, the arrays with positive cl - the spacing increases along the array (in the

direction of wave propagation, c.f. Figure 4.254.25b) -- are clearly preferred, Figure 4.29b.

Spectral array gain qS does not offer improvements over the uniformly spaced array,

Figure 4.30 (c.f. Figure 4.194.19a). The highest performance is achieved mostly by uniform

(or near-uniform) arrays. Notable exceptions occur when uniform arrays perform poorer

(e.g. for d/2a ~ 4-5, 01 = 00), in which case the arrays with the maximal skewness in

spacing take the lead (i.e. cl as large as possible). The direction of this skewness, however,
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is not important, since there is almost no significant dependency on the sign of cl, in all

cases.

Directional spectrum introduces slight changes to the discussion above, Figure 4.31. For

a spectrum with the mean incoming direction perpendicular to array axis, the total spectral

gain qDS is greatest for closely-spaced uniform arrays. For wider spaced arrays (d/2a > 3),

arrays with high skewness (large Icil) perform better, although still not outperforming

the closely-spaced uniform arrays. The normalized capture width WrS/Y is greatest for

closely-spaced arrays, and it shows almost no dependency on the spacing skewness. Both

DS and WDS/Y are similar in value to that for uniformly spaced arrays.

Overall, the introduction of linear variation in spacing does not significantly improve

array performance (q, W/Nb D) over the uniformly spaced arrays for the wavenumbers in

question (ka<, kar, ka>). Even though linear variation of spacings introduces other length

scales into the problem, there is no significant improvement in spectral performance where

one might expect to see some changes. (See additional results on line arrays with linear

spacing variation in Appendix D.1.)
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4.5.2 Line Arrays with Quadratic Spacing

We again consider a 20-body line array, but here we let the spacing to vary quadratically

along the array. The spacing between bodies i and i + 1 is

di = do + C2 (81r - 87i + 1) (4.33)

where do is the constant component of spacing between the bodies, and ri is determined

according to (4.26). The quadratic function O(x) is chosen such that at ri = 0, 1 its absolute

value is 1, and 4'(ri = 0.5) = -1. One can recognize that 8?2 - 8r +1 is actually Chebyshev

polynomial T 2 (ri) on a shifted interval [0,1]. Note that in equation (4.33), do is not the

average spacing.

Arrays described by the spacing equation (4.33) are symmetric with respect to the axis

that is going through the center of the array, parallel to x-axis. The sign of c2 determines

whether the array is denser in the middle (c2 > 0) or at the ends (c2 < 0), Figure 4.32. Note

that the array extent Y depends on the sign of c2, not only on its absolute value (unlike

for linear variation in spacing, c.f. Figure 4.25), where arrays with negative c2 have larger

y-extent than arrays with a positive c2 (of equal absolute value).

8
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-5 -5
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(a) c2 = -0.52 (b) c 2 = 0.52

Figure 4.32: Geometry of two 20-body line arrays with quadratic variation in spacing, for

(a) negative and (b) positive value of c2 (do = 1.34 for both).

In the analyses below, constraints are imposed on minimal dmin and maximal spacing

dmax between any two bodies, analogously to those in the previous section. The spacing

equation (4.33) is linear in c2, and the spacing function achieves extreme values of 1 and

-1 (for ri = 0, 1 and -ri = 0.5, respectively). This results in the same feasible parameter
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space as in Figure 4.26 (the only difference is replacing ci with c2 ).

The analysis closely follows the one presented in the previous section for line arrays with

linear variation in spacing. Hence, I will here mostly focus on the more salient aspects of

the results. Further results are presented in Appendix D. 1.1.

The Figure 4.33 shows the total capture width W normalized by Nb = 20 buoy diame-

ters for the resonant wavenumber kar. The maximal values are identical to those for arrays

with linear spacing variations (Wa/NbDmax = 1.08) because the maximum occurs for a

uniform array (c2 = 0). However, these arrays with quadratic variation in spacing show

more dependency on the "direction" of the variation, i.e. the sign of c2. This is more visible

in array gain plots.
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Figure 4.33: Normalized capture width Wa/NbD for ka = kar for 20-body arrays with
quadratic variation in spacing between the bodies. Note that the changes in kdo/7r corre-

spond to changes in do as the wavenumber is constant for each plot.

Figure 4.34 shows array gain q for resonant wavenumber kar. Identical to the linear-

spacing-variation arrays, the performance is dominated by uniform arrays, so the maximal

values occur along the c2 = 0 axis. Here, however, the performance shows more prominent

features for the c2 > 0 half of the feasible parameter space, i.e. for arrays with bodies more

densely packed in the middle of the array. Notably, the region of diminished performance

that runs along the lines emanating from Rayleigh points are more pronounced in the c2 > 0

region. This means that the arrays where the spacing between the central bodies equals

one of the Rayleigh wavelengths, the performance is diminished.

The spectral array gain qS makes the preference on the sign of c2 even more clear, Figure
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Figure 4.35: Spectral array gain q

The preference for positive values of c2 (arrays with a denser center) over a large range

of incoming angles carries over to the case of directional seas, Figure 4.36. Both in terms of

total spectral gain qDS and in terms of extent-normalized spectral capture width WDS/y

arrays with positive (or at least positive-definite) c2 perform better. Overall, however,

maximal values of qDS and IWDS/y occur for very closely spaced arrays (small do/2a) with

uniform spacing.
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in directional seas.

In summary, line arrays with quadratic variation in spacing exhibit some similar fea-

tures to those found in arrays with linear spacing variation. The maximum and minimum

performance values are also very similar because both of these array types are dominated

by the performance of uniformly spaced arrays. Arrays with quadratic spacing variation

exhibit a stronger dependency on the direction of variation, i.e. the sign of c2, especially for

arrays with larger spacing. In those cases, arrays with densely packed center are preferred.

I
4.5.3 Line Arrays with Random Spacing

The line arrays studied in the previous two sections had a systematic variation of inter-body

spacing. Here we loosen that constraint and allow for random variation in spacing. The

spacing between bodies i and i + 1 is now defined

di = d+ Ad (4.34)

where Ad is the random deviation from the uniform spacing d. The random deviation Ad

is drawn from a uniform distribution U

Ad ~ U(-E, E) ,(4.35)

where c denotes the limits of the support of the distribution. The maximum value C is

bounded from above by

(4.36)c < d - 2a,
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which prevents cylinders in a perturbed array to touch each other (a is the body radius).

Several examples of array configurations are shown in Figure 4.37.
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O V - 1-L-- -1 1 1 1 . .1 1 0 L +-A11 1- - - - -1 1 1 1 1

(a) d/2a 2.9, 6/2a = 1.85 (b) d/2a 4.8, c/2a 3.75

Figure 4.37: Examples of 15 configurations of 50-body line array with random spacing
perturbation for different average spacings. The random perturbation is close to maximum

allowed in both cases. Red lines indicate the average spacing d. Note that these are all line

array (i.e. only one column of bodies); multiple realizations of these line arrays are shown

together for comparison. Also note that the y-limits have been cropped for clarity, so the

entire array extent in y-direction is not captured in this view.

We present here a summary of a number of simulations conducted on 50-body line arrays

of different average spacing d and with different random perturbations. For three different

amplitudes of perturbation 6, we calculate 50 realizations of random array configurations.

The results below focus on the means and the standard deviations of the obtained results.

Array gain q for 50-body line arrays for normal incidence is shown in Figure 4.38. As

expected, a small amount of position perturbation from a uniform spacing does not alter

the performance significantly. As the amount of allowed random perturbation c increases,

the performance deviates from the uniform-spacing performance. In particular, the changes

in performance act towards ironing out the peaks and troughs in performance. This is effect

is amplified for arrays with larger average spacing, especially at larger wavenumbers, Figure

4.38b. As a result, array gain is more uniformly distributed as a function of wavenumber.

Note that there is no significant increase of standard deviation of q when increasing c from

medium values to maximum, especially for large average spacing and large wavenumbers.

The mean, however, is still affected by the increase in E. Performance for different average

spacings and incoming angles (smaller than 90') is very similar, e.g. see Figure 4.29.

When the waves are incoming along the array (0 = 90'), the performance is markedly

different than that in Figure 4.38. We still see the usual trait of attenuator arrays gain
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Figure 4.38: Array gain q of 50-body line arrays with different amount of random pertur-

bation, for two different average spacings d; incoming angle = 0. The results show the

mean 1 standard deviation for three different perturbation distributions. For both spac-

ings the largest amount of perturbation is very close to the maximal allowed amount based

on (4.36). Performance of a periodic array with the periodicity d is shown for comparison.

is larger that 1 for sub-resonant wavenumbers, and much lower than 1 for super-resonant

frequencies. The increase of the amplitude of random perturbations slightly affects the

mean in that the perturbations iron out the slight jumps in the performance. On the other

hand, the standard deviation of q is alnost unaffected by the increase of e -- it is negligible

in all cases. Overall, introducing random irregularities cannot affect the performance of an

attenuator arrays.

Increasing the number of bodies in the array to more that 50 has a limited effect on

the performance. Figure 4.40 shows the comparison of q for 50- and 100-body arrays with

maximum amplitude of random perturbations. For most incoming angles, doubling the

number of bodies has almost a negligible effect on the mean q, and its standard deviation

is slightly reduced (see also Figure 4.30). For 01 = 90', increasing the number of bodies

affects the mean in the way that it works to increase the difference in wavenumber-dependent

performance - the maximal gain in the sub-resonant region is increased, and the gain in

the super-resonant regime is uniformly decreased. The decrease in performance with the

increase in Nb for attenuator arrays is similar to the case for uniform spacing, Figure 4.15.

There the decrease in q with the increase on Nb is caused by adding bodies "downstream",
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Figure 4.39: Array gain q of 50-body line arrays with different amount of random perturba-

tion, for two different average spacings; incoming angle 0 - 90'. The results show the mean

+ 1 standard deviation for three different perturbation distributions. For both spacings

the largest amount of perturbation is very close to the maximal allowed amount based on

(4.36).

in the shadow of all previous bodies, where they do not contribute significantly to energy

extraction (c.f. Figure 4.24). The standard deviation of q is negligible, identical to 50-body

arrays.

Spectral gain qS shows little dependency on the amplitude of random perturbations. For

smaller average spacings, there is almost no difference in the mean values of qS, while the

standard deviation is negligible, Figure 4.41. Increasing the spacing only slightly changes

that, and mostly for smaller incoming angles 01. Choosing a, different spectrum could result

in larger differences.

Increasing the number of bodies has even smaller effect on qS than on q, Figure 4.42.

The only case where the 100-body array performs differently than a 50-body one is for

01 = 90'. For 01 = 90 qS of a 100-body array is worse than the 50-body one, similar to

that observed for q, and with the same cause.

An alternative approach to the one taken here for studying arrays with random spacing is

also possible. Instead of studying random deviations from a uniform spacing, one can draw

each spacing di from a distribution on a semi-infinite support, e.g. a Gamma distribution

di ~ F(a, o) + 2a , (4.37)
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Figure 4.40: Comparison of the mean and standard deviation of array gain q for 50- and

100-body line arrays, for d/2a = 4.8. The results show the mean 1 standard deviation

for the maximum allowed perturbation.

where a and # are the shape and scaling parameters describing the Gamma distribution

(defined on {0, o})

F(a, B) oc x-e- . (4.38)

The shape parameter a should be larger than 2 so that the probability of bodies touching is

zero (increasing it further would decrease the chances of bodies almost touching). Varying

the rate parameter 0 would then alter the mean spacing of the array (the mean of the

Gamma distribution is a/0).

The approach based on (4.34) that is used in this section limits the largest spacing to

d - 2a. Using a distribution like (4.37) would allow for a much larger range of allowed

spacings by removing the maximum spacing constraint. The introduction of large spacings

into an array might lead to an improved performance for small wavenumbers. We leave this

problem for future studies.
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Figure 4.41: Spectral array gain qS of 50-body line

perturbation, for two different average spacings.
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Figure 4.42: Comparison of the mean and standard deviation of the spectral array gain qS

for 50- and 100-body line arrays, for d/2a = 4.8. The results show the mean 1 standard

deviation for the maximnum allowed perturbation.
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4.6 Performance of Large Regularly Spaced Rectangular Ar-

rays

We now turn our attention from line arrays to rectangular arrays. By a rectangular array

we consider an array where bodies are placed in a structured way, on the nodes of a regular,

two-dimensional grid. In general, the grid only needs to be topologically identical to a

rectangular grid, i.e. such that there exist a bijective mapping between the distorted and

the regular grid. For example, uniform rectangular arrays are those for which there is no

distortion of the background grid, and the spacings do, d. between bodies along x and y

axes (major axes of the grid) are constant. We leave further discussion of different spatial

configurations and parameterizations of rectangular arrays for Section 5.3, and focus here

on uniform rectangular arrays.

4.6.1 Rectangular Arrays with Uniform Spacing

Consider a rectangular array with uniform spacing between the bodies in each row, and

uniform spacing of the rows (leaving aside for a moment the ambiguity in defining a "row").

Without the loss of generality, let us orient the array such that the two major axis of the

array grid coincide with x and y axis. We denote the number of bodies in x- and y-direction

as Nx and Ny, respectively. Let i and j denote the x- and y-direction body indices. Then

the location of body Bij in an array with uniform spacings d. and d. is

-ij = (i-i) d x (4.39)

Yij = (j - 1) dy

where

i = N j= 1,...,Ny (4.40)

We can now define what exactly is meant by a "row". A row of an array in this thesis

denotes a collection of bodies that is placed perpendicular to the dominant wave propagation

direction. Since we take 9 1 = 0 as the dominant direction, an array row denotes a collection

of bodies extending in the y-direction that have the same i-index. Then j index labels a

body in the row. This definition is similar to the usual matrix notation where i index

denotes a row and j denotes a column, with the difference that in our case the array is

122



rotated by 900.

In section we study the performance of uniform rectangular WEC arrays with N, = 3,

Ny = 20 in regular and irregular seas as a function of spacings d. and dy. A part of the

geometry of a typical array is given in Figure 4.43.

0 0 0

0 O O
k dy

- 0 0

0 0 0

0 0 0

dx

Figure 4.43: Geometry of a rectangular array with uniform spacing.

The effect of spacings dx and dy on non-dimensional capture width Wa/NbD is shown in

Figure 4.44, for the resonant wavenumber kar and three incoming angles. As is the case for

line arrays, the largest portion of energy is extracted at the resonant wavenumber kar; off-

resonant energy extraction is lagging behind, especially for the sub-resonant wavenumbers

(Figure 4.31). A prominent feature is the occurrence of linear features for constant dX or

dy spacing along which arrays extract far less energy. These features are better visible on

the array gain plot, discussed next.

Array gain q for three representative wavenumbers and three incoming angles in shown

in Figure 4.46. There is a significant gain for all three wavenumbers, but one has to keep

in mind that the absolute amount of extracted energy for off-resonant wavenumbers is still

much smaller than for resonant one, Figure 4.31. Compared to the line array configurations,

uniform rectangular arrays exhibit larger q values for all wavenumbers in question (c.f.

Figure 4.28 for linear-spacing and Figure 4.34 for quadratic-spacing variation arrays, both

of which contain the performance of a uniformly spaced line array when the spacing variation

is zero). Hence, there is a clear benefit in combining rows of bodies to form rectangular

arrays.

There is a lot of structure in the energy extraction response, as can be expected for a

structured array. In particular, the linear features of reduced performance resulted from a
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Figure 4.44: Normalized capture width Wa/NbD for resonant wavenumber kar and three
differenit incoming angles 01. The dashed lines represent B ayleigh-related spacings (ma-
genta), and Bragg-related (green) spacings. Note that the changes in kd,/7r and kdy/7F
correspond to changes in d, and dy as the wavennumber is constant for each plot.

well-known physical phenomena. The horizontal lines of decreased extraction performance

are due to the new mode creation at Rayleigh wavelengths, i.e. when the spacing d, equals

one of the Rayleigh wavelengths, as given in (4.22). This effect is equivalent to the one

occurring in periodic and line arrays with uniform spacings. However, unlike the periodic

or unifornly-spaced line arrays where maximal q occurred for kd below the first critical

point, here the maximal q occurs for higher kd, i.e. for wavenumbers for which there was

already some energy redistribution to newly formed scattering modes. The exact location

of the maximum and its position relative to the Rayleigh critical points depends on 01 and

dx, but it is almost always after some new scattering modes have been formed.

The vertical lines aloig which there is a reduction in extracted energy can lbe related

to Brao resonance. Bragg resonane occurs when there is a comistructive interference froi

scatterers caused by a favorable relationship between the phases of scattered waves. This

occurs when the scatterers are separated by an integer number n of half-wavelengths apart,

in the direction of wave propagation. In our notation, that condition reads

kdx cos 01 = n7 . (4.41)

Bragg resonance is usually definied wheii a waves hits a structured medium that occupies

seini-infinite space (e.g. a right half-plane), in which case the reflection cai be very strong

(Li and Mei, 2007a). Here we have ail example of a, structured array that does not fully
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occupy the half-space, so the effects of Bragg scattering are expected to be less prominent.

The predictions on the locations of reduced performance based on (4.41) still hold well,

Figure 4.44-4.45.

If we compare the array capture width Wa with the array extent Y in the y-direction,

Figure 4.46, we see that for the resonant wavenumber Wa/Y > 1, i.e. the array extracts all

of the energy from an incoming wave crest of length larger than array extent! This is much

larger than Wa/Y for line arrays, which was around 0.47 for uniformly-spaced line (and

periodic) arrays. These high values occur for smaller d, values, so that the array operates

in the regime before new scattering modes have been created. As seen in Figure 4.45, this is

the area with a modest q (still larger than 1), so there is a trade-off between achieving high

q and high WaIY. For off-resonance wavenumbers, WaIY drops below 1, but still remains

rather large (~ 0.6-0.9, Figure 4.32).

For waves incoming at 01 = 90', i.e. along the y-axis of the array, we observe the same

behavior as for arrays of other configuration types -- array gain q is significant only for

sub-resonant wavenumbers, Figure 4.47. There are further reductions in q at spacings that

correspond to Bragg-resonant spacing due to increased reflection (note that in this case d,

replaces d, in equation (4.41), and the incoming angle for that equation is measured from

90'). Also, there are two regimes in which an attenuator array at sub-resonant wavenumbers

(ka< in this case) is efficient. The first configuration are arrays with large dx/2a spacing,

and small dy/2a spacing (dy below the first Bragg resonance line), corresponding to the

high-q area in the lower right corner of Figure 4.47. The second regime is for small d./2a

and large dy/2a (upper left region of Figure 4.47a), which can be considered as a line array

or closely-spaced groups of bodies. In both cases the behavior should approach that of line

arrays (c.f. Figure 4.20), where there is significant gain at sub-resonant wavenumber for

any spacing d.. In the first regime, this should occur when d, is large enough so that the

rows can be considered as isolated line arrays. In the second regime, this occurs for larger

dy values (already visible in Figure 4.47), so that a group of bodies can be approximated

by a singe body.

Having the results of Section 4.4 in mind, one might question whether the reductions in

q are due to near-trapped waves, rather than Bragg resonance. Both of these phenomena

occur (if they exist) around kd = nrr, so they can be hard to differentiate. It is not known

whether the array in question supports a trapped wave, and what precisely its effects might
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be. However, resonant effects due to trapped waves are usually sharp, asymmetric features

Hsu, Zhen, Lee, et al., 2013, while Bragg resonant causes deep, symmetric wells. Since the

character of the features in Figure 4.47 is pretty symmetric across the critical value, we

believe that the features are predominantly due to Bragg resonance.

Spectral array gain qS smooths out most of the features in q caused by scattering mode

creation and Bragg resonance, Figure 4.48. The maximum value of 1.32 for 01 = 00 is

smaller than that for uniformly-spaced line arrays and periodic arrays. The maximum qS

occurs for d,/2a = 4.28, dy/2a = 5.40, i.e. for much larger y-direction spacing than for

uniform line arrays and periodic arrays. The values of qS are much more modest for non-zero

incoming angles (also see Figure 4.35).

The spectral capture width WS is now much smaller than the array extent Y (maxi-

mum value Wg/Y ~ 0.45 for all incoming angles in question), Figure 4.49, but it is still

substantially larger than that for uniformly-spaced line arrays and periodic arrays where

the maximum value is ~ 0.24. The maximum values of Wg/Y still occur for closely spaced

arrays in y-direction, with little dependency on d,.

The maximal value of the total array gain qDS = 1.06 is smaller than for the uniformly-

spaced line array (qDS = 1.28 in that case), Figure 4.50a. The maximum occurs at d,/2a =

6.05 and d,/2a = 2.88, a much larger y-spacing than for uniformly-spaced arrays. On the

other hand, the maximum value of the total capture width WDs/Y = 0.44 is larger than

for line arrays. Smaller dy is still favored in that case.
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4.6.2 Rectangular Arrays with Staggered Rows

We study here the effect of row shifts sy in y-direction on uniformly spaced arrays. We

call this configuration an array with staggered rows. A staggered configuration could be

beneficial because it allows for the bodies in the back rows to come out of the shadow of the

bodies in front of them, and thus potentially improving the energy extraction performance

of the array.

The array configuration is defined as follows. The coordinates of body Bij is given by

Xij = (i - 1)dx (4.42)

yij = (j - 1) dy + (i - 1)s,

where i and j indices are given in (4.40). In this section, we study a 2 x 20 (Nx x N,)

staggered rectangular array. We keep d. spacing fixed (d,/2a = 2.8), and systematically

vary spacing d. and row shift sy.

0 0

0 0

0 0

k 0 d
+ 0 0

0 0

dx

Figure 4.51: Geometry of a staggered array with uniform spacing.

Array gain for staggered arrays in shown in Figure 4.52. The maximum q values for both

resonant and off-resonant wavenumbers are larger than for uniformly-spaced line arrays, but

still smaller than for the uniform rectangular array studied in the previous section. That

could be due to the fact that the arrays studied in the previous section had three 20-body

rows, while the arrays in this section have only two. Adding more rows could improve

the performance of a staggered arrays, but they are not studied here because they would

introduce another parameter that render the presentation of the results very cumbersome.

Note that the high q values for the off-resonant wavenumbers are of limited merit because the
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overall extracted energy at these wavenumbers is much smaller than that for the resonant

wavenumber kar, Figure 4.37.

The array capture width Wa normalized by the array extent Y for the resonant wavenum-

ber kar is smaller than for the uniformly spaced rectangular array, Figure 4.53, and similar

to that of uniform line array. There is only a moderate dependency on the values of d. and

s., with many shallow maxima and minima, making it difficult to decide on an optimum.

The lack of strong dependency of WaIY on d. is also seen in uniform rectangular arrays

(c.f. Figure 4.46). For off-resonant wavenumbers the values of Wa/Y are smaller than for

kar, but the lack of a strong dependency on d, and s. is still present.

Considering again the special case of 0I = 90', the familiar picture presents itself again

-- there is significant gain only for sub-resonant wavenumbers, Figure 4.54. Maximal gain

occurs when there is no s, shift, two rows closely spaced together.

Spectral array gain qS is shown in Figure 4.52. The maximal values qs ~ 1.3 are

comparable to that for uniform rectangular arrays for normal incidence, and outperforming

the uniform rectangular arrays for larger incidence angles (see also Figure 4.43). For normal

incidence (01 = 0'), there are two distinct regions with high q values - one with sy = 0,

placing the body in the second row in the direct shadow of the body in the first row, and

the other with sy = dy/2 and d. as small as allowed. This second case is actually very

similar to a 40 body line array with d' = d,/2 because the bodies in the second row are

located in the middle of the first-row spacing. This is an unconstrained optimum - there

is an isolated maximum for non-zero de, so the second-row bodies would not end up in the

first row if the constraint d- > 2a were to be removed. For non-normal incidence, non-zero

sY values are strongly favored. The spectral capture width Wa/Y shows only modest values

(maximal value ~ 0.12), Figure 4.42. The pattern is very similar to qS because of the weak

dependency of Wa/Y on d. and sy.

The total spectral gain qDS and the total capture width WDs/Y exhibit the same

features as previously discussed, with both achieving lower values than for uniform line

arrays. The total array gain qDS achieves maximum in a very similar way to qS -- by

either placing the second row body directly behind the first one, or by placing them in

between the first row bodies with a small spacing between the rows.
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4.6.3 Random Rectangular Arrays

Finally, we present here a computational tour de force example - the analysis of 200-body

random rectangular arrays. The notation requires some clarifications. The term rectangular

refers to the fact that every body in the array can be indexed in terms of i, j indices on

a grid, in the same way as in (4.40). However, unlike the arrays studied in the previous

section where the spacings were either uniform, here every spacing is random - hence the

term "random" arrays.

We define the location of body Bij in a random rectangular array as

i

ij dx; j-1i + sx; ij 7

= . (4.43)

=ij dy; i,j-1 Sy; i
j=1

=1,... , N j = 1, .. , N.

with the convention that dx, o = dy, i,o = dy, Nx,j = 0. The spacings dx, i, dy, ij and the

vertical row shift sy, i and horizontal body shifts sx, ij are all drawn from probability distri-

butions. The spacings dx, i and dy, ij are drawn from a Gamma distribution

dxj - 2a ~ P(kx, Ox) (4.44)

dy,ij - 2a ~ F(ky, y) ,

Gamma distribution F(k, 0) is a two-parameter distribution defined on [0, oc}, where k is

the shape parameter, and 0 the scale parameter. The probability density function f of the

Gamma distribution is proportional to

f(x; k,0) oc xk-1e-X/O . (4.45)

The mean of a random variable X distributed according to X ~ F(k, 0) is

E[X] = kO , (4.46)
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and the variance is

Var(X] = k0 2
(4.47)

The scale parameter 0 can be obtained from (4.46) if we provide a desired average spacing

d and the shape parameter k, e.g. for y-direction

d - 2a
OY -Yk i (4.48)

Examples of probability density functions of a Ganna-distributed random spacing with

diffirent shape parameters k but the same imean dy/2a is given in Figure 4.57.
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Figure 4.57: Probability density functions of a Gamna-distributed randon spacing with

different shape parameters k but the same mean d,/2a.

The horizontal shift s,, ij of a body in row i is drawn form a uniform distribution

sX, U ~ 6U-e 6,i),(

where 6i is the midpoints of spacings dx ,j, adjusted for the body size i.e.

dxi
2

The end rows are treated specially, by defining dO = dx ,1 and dx ,N.

4.49)

4.50)

= dx ,N so that

(4.49) holds for all i = 1,...., N.

Row shifts sy, are designed to be comparable to the uncertainty in array y-xtent.

According to the Central Limit Theorem, the array extent Y = dy , is a normallyj=1 Yi sanral
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distributed random variable

Y ~ JV(P, U~Y) (4.51)

where y = (N - 1)T, is the mean, and oy the standard deviation

Var[d, ,ij] (T - 2a)2

y - - . (4.52)
VN;7- 1 -k%/N1-1

(Note that here the real array extent is Y = maxi Y.) We want for the row shifts to be

comparable to ay, or to T, which ever is greater. Hence, we draw s., j from a normal

distribution with a zero mean

SX, ij ~ J(0,O 2 ) (4.53)

where the standard deviation a is defined as

a = max(dY, ay). (4.54)

The definition (4.43)-(4.54) of array configuration enables a very random-looking arrays,

while guaranteeing there will be no overlap between the bodies, regardless of the parameter

values or the intricacies of a particular realization.

Here we perform a Monte Simulation on Nx = 4, Ny = 50 random rectangular arrays,

with two different distribution parameters fixed: (i) type-I with 4/2a = 3.88, c4 /2a = 3.88,

and (ii) type-II dx/2a = 3.88, Ty/2a = 5.8,both with kx = ky = 3. The average values Tx

and T4 are selected so that that it matches the high-qS area for uniform rectangular arrays,

Figure 4.48. A few realizations of each array configuration type are shown in Figures 4.58

and 4.59. Calculation is performed on 100 different realizations of array configurations, and

a basic statistical analysis is presented next.

The statistical measures of array gain q are shown in Figure 4.60. There is a notable dip

in performance at the resonant wavenumber kar, and nearly constant gain for super-resonant

wavenumbers. The dip in the performance indicates that the optimized performance of an

isolated body at resonance is hard to beat with purely random wave interference. No

features due to array-resonant behavior like those occurring in arrays with uniform spacing

are present any longer. Overall, the maximal values of q (either mean or maximum of all

data) are much smaller than for uniform rectangular arrays, c.f. Figure 4.45. On the other

hand, there are no regions of strong reduction (q ~ 0) in performance caused by uniform-
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Figure 4.58: Several realizations of random rectangular arrays with dx/2a = 3.88, d4/2a=
3.88, kx = ky = 3 (type I).

spacing phenomena as for uniform arrays. The type-II (wider d, spacing) shows a smaller

dip (higher q) at kar, but also lower q for super-resonant wavenumbers. This is another

example of the trade-off between the achievable maximum values and the broadbandedness

in the wavenumber space.

Overall, the performance of the array diminishes with the increase in the incoming

angle Oj. For 01 < 900, the performance dip at ka = ka, is still prominent. Array gain for

01 = 900 shows similar features as in all other arrays studied, Figure 4.61, in that there is

a significant gain only for low, sub-resonant wavenumbers. Type-I and type-II arrays show

almost identical performance. The standard deviation and the extreme values are very close

to the mean (a much tighter distribution than for other incoming angles), similar to that

for random line arrays (c.f. Figure 4.39). The region of q > 1 is pushed to even lower values

of ka than for other array configurations studied in this thesis.

Due to the reduced performance at the body resonant wavenumber ka, for both type-

I and type-II arrays, the integration of energy extraction over a spectrum whose peak

wavenumber matches ka, is bound to give low values. This is also borne out in calculation

for spectral array gain qS, Figure 4.62. The maximal values of qS at 01 = 0' barely reach 1,

and the performance is monotonically decreasing (with a very tight distribution) with the

increase in Gj. The drop becomes much steeper for 01 > 45'. Given the fact that q is nearly

constant for super-resonant wavenumbers, integration over a spectrum that is peaked at
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Figure 4.59: Several realizations of random rectangular arrays with dT/2a = 3.88, dy/2a =

5.8, kX = ky = 3 (type II).

higher, super-resonant wavenumbers would likely give larger values of qS. Note, however,

that despite having a high gain at super-resonant wavenumbers, the energy extraction is

low in that regime so the usefulness of such an approach is questionable.

To further confirm the results on random rectangular arrays, a rectangular array with d.

spacing in between that for type-I and type-II arrays, and with a much tighter distributions

(kx = ky = 16). The results fall in between those presented in this section, with little

change in the standard deviation of the results (see Appendix D.1.5).

139

-20 0 20

x

5

4 i I

bU.

-20 0 20 -20 0 20

x x



- -

0I.

.AAI

ol=45
2.0

1.8

1.6

1.4

r 1.2

1.0

0.8

0.6

0.4

ka ka

OT= 6 0 1

- c-4/2a =3. 88

(4/2a=5. 80

--~

1.0 1.5 2.0

ka

Figure 4.60: Array
incoming angles O1.
area), and maximal

gain q for randoin rectangular arrays (type-I and

The results show the mean (solid line) 1 standard

and minimal values (dashed line).

type-II) for three

deviation (shaded

o1 = 90

- d/2a 3. 88

(1/2 = 5. 80

- - - - - - - - - - -

- -

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ka

Figure 4.61: Array gain q
show the mean (solid line)

values (dashed line).

for random rectangular arrays (type I and type II). The results

1 standard deviation (shaded area), and maximal and minimal

140

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5

- /

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0. 4

SOMMEMONNOW-

I



1.0 - -

0.8

0.6

0.4 d/2a= 3. 88

0.2 - d/2a=5. O

0 10 20 30 40 50 60 70 80 90

0 [: ]

Figure 4.62: Spectral array gain qS for randmn rectangular arrays (type-I and type-II). The

results show the mean (solid line) t 1 standard deviation (shaded area), and maximal and

minimal values (dashed line).

141



4.7 Discussion

What to take away from a slurry of analyses and results presented in this section? Look-

ing at the results presented in this section as a whole, we can make some observation on

how WEC arrays behave. Overall, the changes in array configuration parameters affect the

wavenumber-dependent quantities much more than the spectrally-averaged ones. This is ex-

pected because the physical phenomena that can occur at certain wavenumbers can greatly

affect the array performance. This is especially the case for arrays with regular, uniform

spacings, where the occurrence of the formation of new scattering modes at Rayleigh points

and Bragg scattering all lead to abrupt changes in performance at certain wavenumbers.

The changes in performance are most prominently visible in array gain q. However, one

should not be fooled by very high q-values at wavenumbers far away from the resonance

because the energy that non-tuned devices (like the ones considered in this thesis) is neg-

ligible, so even high amplifications of those small values does not lead to a large absolute

gain in extracted energy.

The super-resonant wavenumber ka> that was specifically considered is in the range

where our truncated vertical cylinder still extracts significant amounts of energy. Thus, high

gains at that wavenumber do lead to significant improvement in overall energy extraction.

This is further confirmed by looking at the array capture width Wa normalized by the array

extent along the wave crest Y. We find out that 3 x 20 uniform rectangular arrays extract

almost 90% of the energy at super-resonant wavenumber ka>. At resonant wavenumber

kar, even higher percentage of energy flux is extracted - Wa/Ylmax = 1.04, i.e. the array

extinction cross-section is greater than its geometrical one!

The presented results show that for uniformly-spaced arrays close spacing results in

higher extracted arrays (d/2a ~ 2.0 gives best performance based on several criteria for

periodic arrays). This gives justification to the choice of the mathematical model - for

frequencies and configurations that give maximum power extraction ka, d/2a, kd are all

0(1), so the scattering and the wave interactions are strong.

Attenuator arrays, i.e. positioning the (long) array axis along the mean wave propaga-

tion direction, were shown to have poor performance with q - 0.2 for all wavenumbers, ex-

cept for a range of sub-resonant wavenumbers ka < kar, where q is greater than 1 routinely.

This is borne out for both structured and irregular attenuator arryays. One should bear
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in mind, however, that despite the perceived gain over the isolated bodies for sub-resonant

wavenumbers, the overall energy extracted at these wavenumbers is still minuscule to be

used in that regime for practical purposes. This should raise questions on the effectiveness

of some attenuator-type devices that are proposed or in use today (Anaconda, Pelamis).

Their motion could be approximated as an attenuator array, and we see that, regardless of

the array configuration, the extracted energy is much smaller than for a terminator array.

Irregular arrays are less sensitive to the changes in the configuration parameters, espe-

cially when the irregularity is already large. The features that emerge in uniformly-spaced

arrays are completely absent in irregular arrays, but with the drawback of reduced maxi-

mal values in q. We observe a trade-off between high (or low) extreme values of q and the

broadbandedness of the response - no high gains, but no very low ones either, and a reduc-

tion in performance around the body resonance is balanced by a uniform performance for

super-resonant wavenumbers ka > kar. Somewhat surprisingly, even for spectral gain qS,

where one might expect that there would be benefits of having many different spacings that

could correspond to different wavelengths in the spectrum, the uniform spacing rectangular

arrays outperform the random ones. In a way, a hydrodynamicist might feel relieved that

a random scatter of bodies does not outperform her carefully designed WEC array.

4.7.1 Comparison of WEC Arrays with Optical Structures

Phenomena occurring when an array of bodies placed in a structured manned and exposed

to water waves share many similarities with those occurring when photonic crystals and

absorbing films are exposed to electro-magnetic (EM) radiation, i.e. light. For one, both

are governed by the Helmholtz equation (with a difference that it is the two-dimensional

version for water waves (2.2), and three-dimensional for EM waves). Second, photonic

crystals and thin-film solar cells are man-made materials, engineered by creating periodic

patterns in a dielectric medium. The periodic structure of the material leads to phenomena

like band structure, band gaps, mode coupling, etc.

In terms of geometry, our problem is most similar to photonic crystals made out of

dielectric rods. The rods are placed in a periodic pattern, and their band structure can

possess many interesting features, including embedded localized surface states (Hsu, Zhen,

Chua, et al., 2013; Hsu, Zhen, Lee, et al., 2013) and band gaps (Johnson et al., 1999),

which can be utilized in practice. For example, band-gap photonic crystals have been
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used to design mirrors, wave-guides (Fan et al., 2001), resonant cavities (Joannopoulos,

Villeneuve, and Fan, 1997).

Using a two-dimensional periodic array of bodies refracts the incoming wave inside that

domain, so the domain effectively becomes as if having a different index of refraction. This

way we can remove the change in depth, and just have a region of densely placed bodies.

The change of the effective index of refraction has been demonstrated by Hu and Chan

(2005) for the incidence of long waves (kd < 1, ka < 1) on arrays of bottom-mounted

(fixed) cylinders in shallow water. They showed how a densely populated array (small

spacing compared to the wavelength and to the cylinder radius) can act as if there is a

change in depth (and in gravity for two dimensional arrays). This leads to phenomena like

the existence of the Brewster angle (incoming angle at which there is no reflected wave),

or the ability to focus the waves to a certain location by organizing the array in a lens-like

formation (Hu and Chan, 2005).

Further similarities of densely packed array of cylinders with photonic crystals have been

investigated by Hu, Chan, et al. (2011), who found have also looked at energy extraction of if

they are not placed in a structured way (Hu, Chan, et al., 2011; Hu and Chan, 2005) These

structures resemble photonic crystals the most because they also posses band structure,

equivalent to that in photonic crystals.

Solar energy can also be efficiently captured using a thin-film material with a random

surface. This material is usually weakly absorbing, if the light were to go through it (in

a single pass), it would absorb only a small amount of energy. The idea to improve the

absorption is to re-direct the light so that it propagates along the film and, thus, absorbs

more energy. This field is very well studied in optics, with several established theoretical

limits for maximum absorption, especially for thick (slab) cells.

The cell is made out of a material with a higher refractive index n than air (vacuum) so

that the light is trapped inside the material by total internal reflection in thick slabs, or by

having too slow phase speed to couple with the surrounding wave-field for thin-film cells.

For this concept, however, it is harder to draw parallels with the ocean energy extraction

technologies. In case of water waves, there is no difference in the medium (unless we are

talking about effective media like discuss by Hu and Chan (2005)). However, the equivalent

to changing the medium would be having an abrupt change in water depth h, with the higher

refractive index corresponding to the domain with the larger water depth hH , Figure 4.63.
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The refractive index ratio n' would in that case be dependent on the frequency in question

because water waves are dispersive, but n' would remain greater than 1.

h K KH K
hH

Figure 4.63: An abrupt change in water depth corresponds to a higher refractive index n.

The change of depth still does not resolve the second problem with the analogy -- how

the energy is extracted. In solar cells, the energy is extracted in the bulk of the material.

If we want to use oscillating bodies for energy extraction, they would have to be placed

throughout the shallow water region. For thick-slab analogy, these buoys would scatter

waves in all directions and a lot of it would leak out without being confined in the high-

index area.

Perhaps taking everything into account, the best analogy between the solar cells and

water wave energy extraction is to place an energy-extracting membrane on the surface of

the fluid. This membrane would change the dispersion relation in that domain, effectively

changing the refractive index. Furthermore, if we assume that the membrane is capable of

extracting energy over its entire surface (by connecting an elastic membrane to a distributed

absorption system, say), this would be equivalent to case when a light penetrates an energy-

absorbing material. Ideas for energy extraction by an elastic membrane already exist,

although for a membrane placed at the bottom of the sea (WaveCarpet from UC Berkeley).

If we stick to the elastic membrane as our energy-extracting system (note that we are leaving

the realm of oscillating bodies here), could we apply some of the powerful theorems derived

for optical structures?

For thick slabs, i.e. when the material is many wavelengths thick, the fundamental

Yablonovitch limit in ray optics states that the intensity of light in is n2 times larger in a non-

absorbing optical slab than in vacuum, provided the surface of the slab is rough enough to

achieve isotropic distribution of light rays inside of the slab (the enhancement is 2n2 if there

is a reflector at the other side of the slab). This results follows from statistical mechanics,

and rests on the requirement that the rays internal to the medium behave ergodically. The
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energy density of states in the slab in that case is proportional to k2 = (nw/c)2 , where c

is the speed of light, as if it was in a thermodynamical equilibrium with the black-body

radiation from the surrounding vacuum. For weakly absorbing media, this concept leads to

large absorption enhancements (4n2 ), where a single pass would give negligible absorption

(Yablonovitch, 1982). For example, for silicon this leads to absorption enhancement of

around 50. There are many extension of this limit, e.g. for concentrated light the limit

increases to 4n2 / sin2 0, where 0 here is the half-angle of the absorption cone (Campbell and

Green, 1986), and further generalized by Yu and Fan (2011) to be 47rn 2 (valid for gratings

and roughness with characteristic lengths on the order of a wavelength of light).

For thin-film cells, Stuart and Hall (1997) considered slabs whose thickness is on the

order of a single wavelength of light, and provided an absorption enhancement limit that is

lower than that of Yablonovich, but with the benefit of having a much thinner slab.

Unfortunately, currently there are no theorems of Yablonovich type for the membrane-

type problem. Would such a theorem hold for the case of ocean waves, or be of practical

importance? First considering the thick-slab regime, for the ray optics to be valid the

characteristic length of the surface roughness has to be large enough so that the wave in-

teraction effects are negligible and ray approximation is valid. Surface roughness in optical

slabs would correspond to an irregular front edge of the membrane. The membrane length

(equivalent to the slab thickness) should also be at least several wavelengths (in the mem-

brane domain) long to avoid wave interaction effects (Stuart and Hall, 1997). Ocean waves

that carry significant amounts of energy have wavelengths of tens to hundreds of meters

(see Figure 1.2), so the membrane would have to be several kilometers wide (or more) and

hundreds of meters long for the ray approximation to hold. This immediately indicated

that the membrane would have to operate in a thin-film regime, where its thickness can be

on the order of the wavelength, and the

Taking a step back, however, a bigger problem is that all these theorems are based on

the concept of density of states. Density of states (DOS) is a quantum mechanical concept

that does not exist for a classical system like water waves. DOS describes the number

of states per interval of energy at each energy level that are available to be occupied. In

quantum mechanics, energy is directly related to the frequency of a particle

E = hw (4.55)
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so that the non-relativistic dispersion relationship

_ k2

W - (4.56)

directly connects wavenumber k and its energy E. Such a system does not exist in water

waves, where the energy of a wave per unit crest length is not a function of frequency

(or wavenumber), it is only a function of amplitude. Without the basic foundation on

which these optical theorems are based, it is doubtful that they can be used for water wave

problems. Without DOS, some interesting phenomena that occur in quantum systems are

not likely to be present in water wave problems. For example, Van Hove singularity (VHS)

occurs when group velocity reaches a maximum, i.e. when VE(k) - 0. That results in

large spikes in DOS, and can potentially have many uses in quantum, thermal, nano and

biological systems (Cortes and Jacob, 2013).

Looking into enhancements as the waves propagate into the membrane domain from

a classical standpoint, they are constrained by the energy conservation equation. For the

case where there is no absorption (equivalent to a non-absorbing optical slab), the energy

flux E -cg is conserved in space, where E oc A 2 is energy of a particular wave of amplitude

A at some frequency. Since the extracted power P is proportional to A 2 (cf. 2.24), the

enhancement factor e between regions 1 (open water) and 2 (membrane domain), with

equivalent water depths hl and h2 , would be

P2 A2 Cg Ie=- = -- 2 (4.57)
PI A2 sP1  C92

For a deep water wave case (kh > 1), the group velocity is c9 = }w/k, so the enhancement

would be

edeep = = n , (4.58)

For a shallow water limit kh < 1, the waves are non-dispersive and cg = VgT, leading to

enhancement

eshallow = = V , (4.59)

For the intermediate depth case, the dispersion relation (2.6) leads to a more complicated

expression cg = dw/dk, but the enhancement would be between V and n (leading to a

reduction in the required membrane length). In any case, we can see that the enhancement
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for water waves is much smaller than that for light, and it rests on different principles than

for light waves.

Yu, Raman, and Fan (2010) find that for a thick one-dimensional slab with a periodic

grating on the surface the enhancement is 0(n) (27rn for an asymmetric grating, irn for a

symmetric grating). That setup is the closest to the case of an extracting membrane with

a periodic front end for water waves, and the result is similar to (4.58). The reduction

from 0(n2 ) to 0(n) in optical slabs is due to the reduced number of resonances (not all

resonances supported by the film were coupled into). For the water wave case, however,

all resonances supported by periodic membrane can be accessed by an incoming wave, so

0(n) enhancement is due to the character of energy density, not the inability to couple into

resonant channels.

Note also that the character of the absorption enhancement limit for 1D slab with

a periodic surface grating (Yu, Raman, and Fan, 2010) is reminiscent of the Srokosz's

theoretical limit for optimal gain periodic arrays of point absorbers (equation (4.24)), in that

the enhancement(gain) reduces(drops to zero) whenever a new guided channel(scattering

order) appears.

Another theoretical similarity is the trade-off between large enhancement and broad

angular enhancement. The angular constraint on the light trapping enhancement derived

by Yu and Fan (2011) is a direct equivalent of the equation (4.3) for the angular constraint

on array gain q. In both cases large gains or enhancements at certain angles must be met

by a reduction in performance at others.

One big difference between WEC arrays and solar cells is in the manner of absorption

ocean wave energy converters of the type considered in this thesis extract energy from

oscillatory motion and thus further radiate waves, while solar cells absorb energy in the bulk

of the material passively, without any addition wave creation. Another significant difference

contributing to is that wave energy converters (in isolation) considered in this thesis are

not weak absorbers. For example, the truncated vertical cylinder considered in this thesis

extracts around 50% of the energy that impinges on its projected area. Truncated vertical

cylinders of different radius and draft can extract even more energy than its width, Figure

2.3. For those reasons, in WEC array problems it is not crucial to divert the wave to go

along the structure, while still preserving good extraction characteristics (e.g. Wa/Y ~ 1).

An area where optical structures and WEC arrays have a lot in common is in practical
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design. Optical structures have been designed and optimized to posses the required prop-

erties, e.g. light trapping in thin films through periodic and rough interfaces (Sheng et al.,

n.d.; Kowalczewski, Liscidini, and Andreani, 2012; Ganapati, Miller, and Yablonovitch,

2014) or disordered photonic crystals (Oskooi et al., 2012). In terms of designing a suitable

system, this approach is very similar to the one employed in this thesis.
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Chapter 5

Optimization of Large WEC

Arrays

The results of the previous chapter showed that a careful choice of an array configuration

can lead to large amplifications in energy extraction. With the increase in the number of

parameters that describe the array configuration, the curse of dimensionality (and our capa-

bility to visualize multi-dimensional spaces) prevents us from performing a detailed analysis

of array performance as a function of each parameter. Hence, we turn to optimization and

look for a arrays that would perform optimally in some sense.

In this chapter, we first introduce optimization objectives and constraints, and then

derive gradients of the objective functions to make efficient gradient-based optimization

possible. Optimization results on a series of different large WEC array types is shown in

the end.

5.1 Optimization Objectives and Constraints

We consider the optimization of WEC arrays with respect to their spatial configuration,

i.e. with respect to the positions of individual bodies forming the array. As we have shown

in the Chapter 4, the spatial configuration of the bodies in an array is a major factor

that determines the amount of the extracted energy. Thus, it is of great interest to find

optimal configurations that would lead to maximal power extraction (quantified in a certain

manner).

In general, the optimization problem we are studying can be written as follows. Given
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a real-valued scalar objective function f : RN -+ R find the solution x* that minimizes

f(x)

X arg min f(X), (5.1)
XER"

such that

gl(X) O, l=1,...,Ng, (5.2)

and

lix u , i = 1, ... , N, .(5.3)

Here, X is a vector of optimization parameters, consisting of Np elements that are bounded

by (5.3) (for unbounded problems, set 1i or ui to plus/minus infinity, as needed). In addition

to the box-constraints (5.3), there can be an additional number Ng of nonlinear inequality

constraints gi(x). The optimal value of objective function f* is then

f* = f(x*) (5.4)

The equations (5.1)-(5.4) completely describe our problem in general terms. For the prob-

lem of optimal WEC arrays, f is a highly nonlinear and multi-modal function of X. The

specifics of x, gj(x) and f(x) pertaining to WEC arrays are described next.

Optimization variables. Before defining the optimization variables, some clarification

of the terminology regarding array configurations is needed. By array configuration type we

refer to a parameterization of array configuration that describes it using a particular set of

parameters x. An instance of a parameterization (or of that array configuration type)

a particular point in x-space - is called an array configuration. For example, we can talk

about rectangular arrays with Chebyshev-defined spacings as an array configuration type,

and proceed to describe an instance of that parameterization/type.

The optimization variables X = (X1, x2, ... , XN,) are the parameters that determine a

particular array configuration. In general, they can describe the position of the bodies,

individual body shapes, or PTO characteristics. In this thesis, we will only focus on the

optimization of spatial configuration (keeping the body shapes and PTO characteristics

constant), so X describes the spatial configuration alone.

For example, perhaps the simplest parameterization is using the body locations (xi, yi)
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as optimization parameters. This leads to Np = 2Nb -2 optimization variables Xi (one body

is held fixed), a number that can slow down convergence rate of optimization algorithms for

large arrays. A reduction in the number of variables can be achieved by defining parameter-

izations that introduce relationships between body positions; e.g. rectangular arrays with

uniform spacing along both major axes can be described by only two parameters. Several

configuration parameterizations are further described in 5.3.

One aspect of an array configuration that remains constant during the optimization is

the number of bodies Nb. Having Nb as an optimization variable introduces various technical

difficulties that one is eager to avoid. One difficulty is that Nb is a discrete, integer variable,

so having it as an optimization variable so the optimization problem would become one of

integer programming. Integer programming is NP-hard, which makes the computational

expense of finding the optimum potentially prohibitively expensive computationally. The

second difficulty is that the problem is further complicated for some parameterizations (e.g.

optimization variables are individual body locations), where a change in Nb would lead

to the change in the number of optimization variables during the optimization procedure.

However, we can still study the effect of Nb on optimal solutions by running the optimization

for a particular parameterization with increasing Nb.

Constraints. We impose two types of constraints on the optimization variables (config-

uration parameters). The first are box constraints introduced in (5.7), which are imposed

on each optimization variable, and they limit the optimization parameter space. If they are

imposed arbitrarily (e.g. to limit the search space of an optimization algorithm) and the

optimal solution is found on such arbitrary bound, the bound should be increased and the

optimization repeated.

The second type of constraint are the non-linear inequality constraints gi(x) described

by (5.2), and they represent the physical spacing constraints, i.e. the requirement that the

bodies do not touch. For bodies Bi and B3 with radii ai and aj, located at (xi, yi) and

(x,, yj), the spacing between them is

rij = I(Xi - x) 2 + (y, - yj)2 . (5.5)
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The spacing constraint gi(x) is then

gl(X) = ri - (ai + aj) l =1 ... , Nb x (N - 1)/2 (5.6)

where each 1 corresponds to one i, j, , i # j pair. Note that rij is a function of X, which

in turn determines the body locations (xi, yi). Depending on the configuration parameter-

ization type, the number of the spacing constraints can be reduced, even drastically. For

example, for uniformly spaced rectangular arrays of identical bodies of radius a, the spacing

constraint (5.2) becomes a simple box-constraint

dx ! 2a , du > 2a . (5.7)

Note that in a realistic application, one might need to add additional constraints per-

taining to, say, the spatial extend the WEC array is allowed to occupy. These would be

added and treated in an analogous manner.

We do not impose any equality constraints.

Objective functions. The choice of the objective function f for our problem is not

unique. As described in Section 4.2, there is a number of measures that quantify the

"goodness" of energy extraction, and any one of them can be used as an objective func-

tion for optimization. For example, we can choose to optimize array gain q(kao, 00) for a

given wavenumber kao and incoming direction 0 to maximize the improvement of energy

extraction over the same number of isolated bodies. Similarly, one might optimize spectral

array gain qs(9o), total gain qDS, or normalized capture width Wa/Y(kao, 00), to name

a few. The final choice might depend on the external requirements a designer of a WEC

array might face (e.g. maximal energy extraction over a stretch of shoreline). Since here we

have no such requirements, we will illustrate the optimization algorithm and its capabilities

mostly on one objective function -- array gain q, optimized for different wavenumbers and

wave incoming angles. The approach is very similar for the other objective functions, with

the caveat that spectral objective functions are computationally more expensive, but still

well within the range of the presented algorithm capabilities.

As it is often the case with the shape optimization in physics, the objective function f
does not necessarily depend explicitly on the optimization variables x. Rather, an inter-
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mediate physical problem that directly depends on X needs to be solved, and the objective

function depends on the solution of the underlying physical problem. In our case, the un-

derlying physical problem is the one of wave scattering , and the objective function (some

version of the extracted power) depends on the obtained wave (and motion) velocities. This

distinction - whether the objective function is an explicit function of x, or only through an

underlying physical problem - makes a difference only if gradients of the objective function

need to be calculated.

Optimization Algorithm and the Nature of Optima. In general, for non-linear op-

timization problems one chooses between a certain version of a gradient-based optimization

algorithm, and a stochastic evolutionary-type search algorithm that does not require any

additional information other than the function value. Both have their advantages and

drawbacks.

Gradient-based algorithms for non-linear optimization problems start at a given initial

point, and use the objective function gradient information to step towards the optimum.

These algorithms are very fast compared to the evolutionary ones, especially if the gradi-

ent Vf is analytically provided. They handle much better the increase in the number of

optimization variables. However, once in the vicinity of a local optimum, they will most

likely converge to it, regardless of the presence of other (potentially better) local optima,

let alone the global optimum. Hence, for multi-modal functions, i.e. those with many local

optima, the result highly depends on the initial point because that determines the local

optimum the solution will converge to. An additional problem is that the gradient Vf can

be difficult (and/or expensive) to calculate in some cases.

Stochastic evolutionary algorithms, on the other hand, sample a set of randomly selected

points from the entire parameter space, and evolve it according to some rule. They do riot

require any additional information from a function other than its value, so they can handle

non-smooth problems. The exploration of the entire parameter space leads to a higher

chance of locating the global optimum. The number of function evaluations, however, is

much larger than for the gradient-based algorithm to reach an optimum. This is especially

true for high-dimensional problems, where an increase in the number of variables can lead

to the curse of dimensionality for some algorithms (exponential increase in the required

number of samples), making it prohibitively slow for problems with large Np.
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Due to the oscillatory nature of the underlying problem, the objective functions f for

WEC arrays are smooth, but usually highly non-linear functions of the spatial configuration

parameters, with many local optima (e.g. see any performance plot of array gain q as a

function of spatial configuration in Chapter 4). The number of local optima is likely to

increase with the increase in the number optimization variables. The multi-modality of the

problem makes the finding of a globally optimal configuration a formidable task.

This presents us with a problem of which type of optimization algorithm to use - a

gradient-based one that is fast but can get trapped in a local optimum, or a gradient-free

algorithm that explores the parameter space and has a greater chance of finding the global

optimum, but at a much slower pace. Often the best approach is to combine the two

algorithms - first use an evolutionary algorithm for coarse search to determine the region

where a global optimum is likely to be found, and then switch to a gradient-based algorithm

to find the exact optimum quickly.

In this thesis, however, we will focus only on the gradient-based approach to the problem.

As mentioned, In the next section we derive the objective function gradients with respect

to the array configuration parameters using the adjoint method, followed by the description

of several position parameterizations used.

5.2 Adjoint Method for Gradient Calculation

Adjoint method is especially suited for design optimization problems, where before optimiz-

ing an objective function, an underlying physical problem needs to be solved (e.g. solving

the wave scattering problem). Considering (potentially) large size of the system (even with

limited number of bodies), fast and memory-efficient implementation is needed.

Consider an optimization problem where we want to minimize a real scalar objective

function f(x) E R that depends on Np optimization variables Xi

X = {X1,X2 ... XN} E RNp . (5.8)

In our case, f is a function that quantifies energy extraction or drift force on an array, and

x is a certain parameterization of body locations, body sizes and extraction rates.

In a standard optimization problem, f can be directly calculated from Xi, and the

gradients are simply calculated as 49f/&x. However, if x does not appear in the expression
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for f, but is actually used as an. input to an auxiliary problem from which the objective

function f is calculated, then the adjoint method proves to be superior (Johnson, 2012).

Let f(x; c(X)) be a (nonlinear) objective function, and c E CMX1 is M x 1 complex

column vector which is the solution to the underlying (linear) physical problem

A(X) c = b (5.9)

Here, the M x M complex system matrix A and the M x 1 complex vector b depend on

the optimization variables X.

The total gradient df/dx of f with respect to the optimization variables x can then be

expressed as
df af Of Oc Oc+ Of
dX aX + TC Bi + c+ (5.10)

= Vxf + 2 Re (Vef -Vxc)

where Va g stands for a gradient of a general (scalar, vector or matrix) function g with

respect to vector a. Here, the gradient ! is 1 x Np row vector, Vf a 1 x M vector,

and VXc a M x Np matrix. While Vef is usually easily found (the expression is often

analytically available), finding Vyc can be a very cumbersome process (we would need to

solve M x M linear system Np times). This is where adjoint method comes to play.

The gradient Vc can be obtained by differentiating the system equation (5.9) with

respect to X

(VXA)' -c + A Vc = Vyb,

giving

VXc = A- 1 [Vxb - (VXA)T - c] (5.11)

The system matrix gradient VXA is a complex three-dimensional matrix of size M x M x N,

and the operator ()T represent the transpose with respect to the last two dimensions of a

three-dimensional matrix

[A']ijk := [A]kJ . (5.12)

This way the matrix-vector product

OA--
(VxA) c=E cA

X 5k
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follows the usual rules of summation over the last index for inner products.

Substituting back, we get

Vcf -Vxc Vef A-' [Vxb - (VxA)' . c]

= AT [Vxb - (V A) - c] (5.13)

AT B

The entire trick of the adjoint method lies parenthesizing differently the right hand side

of the previous expression - instead of calculating and multiplying it term by term, we

can group the first two terms together and recognize it is the solution of an adjoint linear

system

AT. A = (Vcf)T (5.14)

Here, A is the adjoint, and it is a M x 1 complex vector. This M x M system is independent

of the number of optimization variables N, and has the same complexity and characteristics

as the original problem. So by regrouping the product differently, we only need to solve two

M x M systems during the each step of the optimization process, instead of 1 + N systems

if we had done it in the straight-forward way. The matrix B in equation (5.13) we term the

"adjoint Jacobian"

B = [V b - (V A)' . c] . (5.15)

We can also further modify the expression to utilize the nature of the problem. The

system matrix A is actually a function of the relative positions between the bodies in polar

form R = {Rjj : i, j =1,. .. ,Nb; i # j}, a {jai : i, j = 1,. .. ,Nb; i 5 j}, so that the

vector of natural variables

X = {R,a, .... . (5.16)

Using natural variables, the product (VxA)- c can be expressed as

- (V*A) T 
.c] .(VXk

giving

(V A)T . c = [(ViA) -c] - (Vxi) (5.17)
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We can now recognize that the first term (ViA)- c is independent of parameterization,

while the second term VX* is independent of the solution vector c. We call the matrix

VX parameterization Jacobian.

Similarly, the system forcing vector b in (5.9) (incoming wave forcing) is also expressed

in terms of its own natural coordinates i

(5.18)

where r = {ri : i = 1,..., N;}, 0 = {; : i = 1,..., N;} are the distance and the angle

from the origin. With that, V b can be written as

Vyb = (Vg b) - (Vxx) (5.19)

Putting it all together, the adjoint Jacobian B becomes

B = (Vib) - (Vx,) - [(V*A)T - c] (VX). (5.20)

The total gradient of function f is then

df = Vf + 2Re (AT B) . (5.21)
dx

This is the formulation we implement in our algorithm for gradient-based formulation. In

addition, the system matrix gradient VXA is a complex rank-3 tensor of size M x M x N, so

for large problems it would take a lot of memory to store it. However, we have an analytic

expression for it, so we apply matrix-free operation when calculating (VxA)T - C.

The Application of Adjoint Method to WEC Arrays The application is actually

quite simple, and we have all the elements in place. All of the objective functions depend

on the extracted power Pa, which is of very simple form

Pa = c+f c, (5.22)
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where f is a real,symmetric, block-diagonal matrix containing the extraction characteristics

f= - diag(bpTo) - W. (5.23)

From here, VcPa = c+ needed for (5.14) easily follows. This can then be easily adapted

to other objective functions. To illustrate, the gradient of the total extracted spectral power

by an array with respect to some parameterization X is given by

d S

d = JS(w) [VXPa + ATB] dw (5.24)

If we do not optimize bpTO, VXPa = 0 and the expression is even simpler.

5.3 Parameterization of Array Configuration

Spatial configuration of an array can acquire an infinite number of different configurations,

both in terms of the number of bodies and their location. With the increase in array size,

the number of optimization variables describing the spatial configuration can grow very

large as well and make thus pose a significant computational problem. Parameterization of

body locations leads to a (significant) reduction in the number of optimization variables,

and It can also provide an insight into the physics of certain array configurations.

Although other quantities of interest (body size, PTO extraction rate bpTO) can also be

parameterized, here we focus on optimizing body locations alone. Hence, the optimization

variables x are only related to position parameterization, and the natural variables ' and

x are

R = {Ri, :i, j= 1,..., N; i #

Ct = {atij i, j =,..,Nb; i 0 i}

r = ri = 1,..., N} (5.25)

S= {6: i= 1,..., N}

x= {R, a} , i = {r, } .

Because of the translational symmetry of the problem, the location of at least one body in

the array needs to be fixed.
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5.3.1 Position parameterization in rectangular arrays

Expanding on the concept presented in Chapter 4, we parameterize the spacings in x and

y direction in terms of Chebyshev polynomials,

Nc,_

dx = Zcn T(ri) , (5.26)
n=O

NY

dv = Zcy T(ri) , (5.27)
n=o

and use the coefficients as optimization variables X = {co, co, . . . , c N, cN Y}. Here,

rj = (i - 1)/(N - 2) , i = 1, 2, ... , N - 1 (5.28)

with N in the last equation being either Nx or N., depending on whether x or y spacings

are being parameterized. The maximal orders Ncx and Ne, are set beforehand, and it sets

the type of disorder that is permitted in an array. The parameterization Jacobians VXj

and VX* follow in a straight-forward manner and are omitted here.

5.4 Optimal Rectangular Arrays with Uniform and Non-Uniform

Spacing

We focus on the optimal configuration of a series of rectangular arrays. Each rectangular

array is made out of Nx rows of N. bodies, i.e. of Nb = Nx x N, bodies total. Most of

the configurations studied in Chapter 4 fall under this category. We study several differ-

ent spacing parameterizations, each providing a different level of flexibility (or degrees of

freedom) to an array configuration.

Given that the optimization of array configuration is a nonlinear optimization problem,

an initial configuration needs to be prescribed before starting the optimization. The initial

point in the optimization variable space is always the same, and it corresponds to an array

with equal uniform spacing in both directions dx = d., such that the gap between the bodies

is the minimal allowed 5min

dX = dy = 2a + 6min. (5.29)
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The array configuration for each (N,, N.) rectangular array is then optimized over the

spacing parameters, either for maximum array gain q at a given wavenumber (kar, ka< or

ka>) or for spectral array gain qS. We present maps of optimal configuration parameters,

optimal performance (e.g. q), or some other performance measure for the optimal array

(e.g. Wa/Y) for each (Nt, N.) rectangular array.

We will often refer to arrays with N > N as terminator arrays, and, conversely, those

with N, > Ny, as attenuator arrays.

Note that the number of bodies N is not optimized. We approach the problem of the

Nb-optimality by running the optimization for an increasingly larger number of bodies, and

in that way capture as a function of Nb a possible extreme or an asymptotic value that the

objective function might acquire.

5.4.1 Optimization Algorithm

For all the optimization results presented in this section, we use method-of-moving asymp-

totes (MMA) algorithm from a nonlinear optimization package NLOPT (Johnson, n.d.).

MMA algorithm (Svanberg, 2002) is a gradient-based nonlinear optimization algorithm

that allows for nonlinear inequality constraints like the ones imposed on this problem.

A note on Local vs. Global optimum. All the results shown in this section are locally

optimal. There is no guarantee that these are close to global optima, either in terms of

the optimal value or of the value of the optimization variables at the optimum. Given the

multi-modal nature of the problem, it is very likely that there might be a better solution

somewhere in the parameter space.

5.4.2 Optimal Rectangular Arrays with Uniform Spacing

We start by studying optimal rectangular arrays with uniform spacings (i.e. N, = = 0).

Here there are only two optimization parameters describing a N,-Ny array - the row

spacing do, and the spacing between bodies in a row dy. An analysis of a 3 x 20 rectangular

arrays was conducted in Chapter 4, but here we want to study how the optimal performance

might change if we add more rows and more bodies in general and optimize the spacing

between them.

Figure 5.1 shows the obtained optimal array gain q for a series of rectangular arrays.
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Each (Ni, Ny) pair represents one array that was optimized. We see a clear preference for

terminator arrays (N, > Ny) for all wave directions. The maximal obtained values are

large, but smaller than the maximal observed in Figure 4.45. That is because of the highly

multi-modal character of q, as exemplified in Figure 4.45. For this optimization, the initial

array configuration was as tight as possible, so the optimizer found one of the local optima.

As mentioned previously, the maximal q for 3 x 20 array occurs when the spacings are such

that the array operates above the first Rayleigh point for the given wavenumber. In this

case, the optimizer found a local optimum that is below the first Rayleigh point, where

maximal values of q are small than they would be if it was searching in the area beyond the

first Rayleigh point. The same argument holds for spacing do, where the Bragg resonances

locked the optimizer in an area with a smaller local optimum.

Nevertheless, the optimization results reveal interesting results. As for the line arrays,

increasing the number of bodies in y-direction beyond 20 bodies does not effect the maximal

q. This holds for all incoming angles. The maximal q for all incoming angles 01 < 300 are

comparable.

The optimal configurations can be deduced by observing optimal spacings dx* and dy*

shown in Figures 5.3 and 5.4. It is evident that for terminator arrays with Ny < 7 where the

optimal gain q* is significant that the bodies are placed close to each other in x-direction. If

we compare this result with the detailed spacing analysis of 3 x 20 rectangular array, we can

understand the reason why q* is generally smaller than the maximum observer in Figure

4.45 - the optimize is locked in the local maxima with small dx, while higher q-maxima

(and the global maximum) are found for larger dx/2a spacings.

The spacing dy*/2a for attenuator arrays is generally larger than dx*/2a and it asymp-

totes to a constant value for larger Ny, except in isolated points. The relationship between

the asymptotic values of dx*/2a and Rayleigh critical points is better visible in Figure 5.5,

where we plot dy*/2a as a function of Ny for terminator array with up to four rows. The

optimal spacing dy*/2a is always close to a Rayleigh spacing, and the jumps in the values of

dy*/2a for certain Ny occur when the optimization converged to a different local optimum

corresponding to a different Rayleigh point. These jumps in dy*/2a correspond to jumps

in q* for those same (Nx, Ny) pairs, both being linked to converging to a different local

optimum.

The capture width Wa normalized by the y-direction extent of the the q-optimal arrays
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rectangular arrays with N, x Ny bodies, for

is shown in Figure 5.6. The large values of Wa/Y do not properly represent the energy

extraction potential because the normalizing constant Y in those cases is very small. The

low values of gain q* in those cases confirm that (Figure 5.1). On the other hand, Wa/Y for

terminator arrays is a real measure of energy extraction efficacy. The values of Wa/Y are

increasing with the increase in the nunber of rows No. For normal incidence, with N, = 4

the array captures all the energy flux incoming on its geometrical extent (Wa/Y 1),

Figure 5.7; for larger 0 it takes more rows to reach values close to 1.

For the 3 x 20 rectangular array studied in 4.6.1, the configurations that lead to high

q-values and high Wa/Y values were different -- large dy was favored in one case, and small

dy in the other. So there is a trade-off when one designs an array. Here however, we can

find arrays that achieve high values of both q and Wa/Y at the same time. This is achieved

by adding more rows to an array. For example, arrays with N = 7 and Ny > 13 all have

q* > 1.7 and Wa/Y ~ 1. The optimal configuration of a 7 x 25 array for maximal q, at

0 = 0 is shown in Figure 5.8.
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For super-resonant wavenumber, the optimal q* is even higher, reaching the values of

q* ~ 4.0 for terminator arrays with N = 3, Figure 5.9. This is very similar to the

3 x 20 array at ka> analyzed in 54.6.1. Relatively high q* is achieved for terminator

arrays at all incoming angles 0. For sub-resonant wavenumnber ka<, optimal gains reach

values of q* ~~ 1.6. Overall, d, is smaller for sub-resonant optimal arrays than for super-

resonant ones. Further results for super-resonant and sub-resonant wavenumbers are given

in Appendix D.2.
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Figure 5.5: Optimal values of dy* for rectangular
1,... , 4, for resonant wavenumber ka = kar.
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5.4.3 Optimal Rectangular Arrays with Irregular Spacing

We now allow for the spacing between the bodies to be non-uniform. In particular, we

parameterize the y-direction spacing by a quadratic polynomial N, = 2 from (5.27), and

allow that the spacing between the rows d, is individually assigned. We will only focus on

terminator arrays, so we limit N_ < 7. We optimize for q for 0' and 15'.

The optimal gain q*, Figure 5.10 is similar to that for uniformly spaced arrays (c.f.

Figure 5.1), especially for normal incidence. For the oblique incoming angle 0 = 15, the

q-values in this cases are larger than for uniformly spaced arrays.

30

25
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15

10

5

- -

2 4 6

N,

Figure 5.10: Optimal values of gain q for
Nc- = 2 and d, individually controlled, for

0=15.0'
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1.2 *C1
-I

1.0

0.8

0.6
2 4 6

Nx

rectangular arrays with N. x Ny bodies, with

the resonant wavenumber ka = kar.

To get a better impression of the role of irregularity, we plot the coefficient of a quadratic

irregularity c2* for every array, Figure 5.11. For normal incidence, the highest values of q,

whether isolated or as a part of a trend, mostly correspond to cases of uniform arrays

(c2 a 0). For 0 = 15', that effect is less pronounced, and some high q-values correspond

to the areas of high irregularity. Overall if irregularity is present, negative values of c2 are

preferred (c.f. Figure 4.32).

Several optimal array geometries are shown in Figure 5.12. While the y-spacing overall

seems to be favored to be uniform, optimal d, shows more variation. In Figure 5.125.12a we
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Figure 5.11: Optimal values of quadratic irregularity parameter C2* for rectangular ar-
rays with N, x N. bodies, with Nc, = 2 and d, individually controlled, for the resonant
wavenumber ka = kar.

see that the rows are placed symmetrically with respect to the central one. For other optimal

configurations, such symmetry may not necessarily be present, but the non-uniformity in

d, is always there. For normal incidence, there is a clear preference in some arrays to put

the bodies close together. This could indicate that instead of having a circular buoy, a

non-axisymmetric device or one with multiple degrees of freedom would be preferred.

Figure 5.13 shows that for terminator arrays with the larger number of rows N, > 5 the

capture width ratio Wa/Y is close to 1, similar to uniformly spaced arrays. Indeed, those

arrays for which Wa/Y 1 all have uniform dy spacing, while arrays with non-zero c2 have

lower Wa/Y. The exact values of Wa/Y are better visible in Figure 5.14.

The results for super-resonant wavenumber ka> show similar trends and are left for

Appendix D.2.

5.4.4 Optimal Rectangular Arrays for Irregular Seas

We move from optimizing q for a single wavenumber to optimizing the array gain over a

spectrum S(w). We use the same Brentschneider spectrum (with the peak at the resonant

frequency) as for the analyses performed in Chapter 4.
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Figure 5.12: Geometry of four optimal arrays for resonant wavenumber ka = kar, with

Ncy = 2 and dx individually controlled.

The optimal spectral gain qS for three different array configuration types in unidirec-

tional seas coming from 0 = 00 is shown in Figure 5.15. Interestingly, the highest values of

qS are achieved by uniform spacing arrays (Nc0 = Nc, = 0). Increasing the allowed degree

of irregularity does not lead to higher values of qS. In fact, the optimized gets stuck in

local minima that are of lower value than for the uniformly spaced array, which would be a

feasible point to reach for those parameterizations.

The spectral capture width ratio Wfa/Y is reduced to well below 1, to maximum values

of around 0.3, Figure 5.16. This is comparable to WS/D values of an isolated cylinder,

Figure 5.17.

Two examples of optimal uniformly spaced arrays (Nx, = N = 0) are given in Figure

5.18.

Optimized total spectral gain qDS for rectangular arrays with quadratic spacing irreg-

ularity in y-direction over a directional Brentschneider spectrum with the spreading factor

s = 2.0 gives modest values, with maximum values barely reacling 1.05, Figure 5.19. The

very low values are in part because the optimizer converged to local optima with very large

y-direction spacing, which resulted in the fact that there is virtually no gain over the per-

formance of an isolated body. The geometries of two optimal arrays are shown in Figure

5.20. In both cases the spacing in x-direction is much smaller than the y-direction spacing.

One can hardly consider these as arrays where the interaction between groups of two bodies
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Figure 5.13: Capture width ratio Wa/Y for q-optimal rectangular arrays (N x N, bodies),
with N,, = 2 and d. individually controlled, for the resonant wavenumber ka = kar.

is meaningful. A different initial point is clearly required here in order for the optimizer to

reach a different, and hopefully better, optimum.

5.5 Discussion

In this chapter, we presented a series of results of the optimization of spatial configuration

of WEC arrays of up to 200 bodies. These are by far the largest optimization studies of

WEC arrays in literature. Existing studies by Fitzgerald and Thomas (2007) and Child and

Venugopal (2010) optimized locations of WEC arrays of optimally tuned 5 bodies, which

would be insufficient in size for a realistic practical implementation of WEC arrays as a

commercial energy source.

We optimized rectangular arrays of different N, x Ny sizes, and employed different

parameterizations to study the effects of spacing irregularity. In particular, we studied

uniform spacing arrays, and those where a systematic irregularity (quadratic) is allowed

in y-direction, with the inter-row spacings do, allowed to be set individually. Overall,

the number of optimization parameters did not exceed 15. A gradient-based method was

used to find the optimum solution, with the gradient calculated by a fast adjoint method
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Figure 5.14: Capture width ratio Wa/Y for q-optimal rectangular arrays as a function of

N. for N = 1, 2, 4, 5, 7 bodies (Nc, = 2 and d, individually controlled), for the resonant
wavenumber ka = kar).

derived in this thesis for the WEC array problem. The arrays were always initialized in a

minimum-spacing configuration according to (5.29).

We find that uniformly spaced arrays appear to be favored as optimal solutions, both for

regular and irregular seas. The fact that uniformly spaced arrays are favored for a particular

wavenumber is expected (especially in the y-direction) because of the array phenomena that

boost their performance (around Rayleigh wavelength). A more surprising finding, perhaps,

is that non-uniformity does not have a stronger effect on the optimal values for irregular seas.

This is probably because the large gains at the tuned wavenumber of uniform rectangular

arrays greatly contributes to the overall extracted energy, so that arrays that have a more

uniform response due to the irregularity still cannot make up for those large gains (c.f.

Figure 4.38).

Optimal uniform spacing in y-direction is again related to the Rayleigh wavelength,

although not always to the one of the same order (Figure 5.5). While y-spacing for high-

performing arrays was almost always uniform, the optimal row spacing in x-direction was

not uniform when such a degree of freedom was allowed. The optimal spacing in x direction

resulted in some rows being very close together, indicating that perhaps a body of different

shape or more degrees of freedom in place of a simple heaving cylinder would be favored.

Overall, none of the optimal arrays of any size or with any degree of spacing irregularity,

optimized for maximal q or maximal qS, did outperform the maximal performance measures

of a 3 x 20 uniform rectangular array analyzed in Chapter 4. The maximal values of q

and Wa/Y are comparable, although sometimes achieved by arrays of different size. The
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Figure 5.15: Optimal values of spectral gain qS for rectangular arrays with N, x Ny bodies,
with varying N, and N,, for a Breiitschneider spectrum with kp = k, and 0 00.

maximal capture width ratio Wa/Y is around 1 for uniformly spaced arrays in y-direction,

indicating that almost all energy is extracted from the incoming wave hitting the array.

Falnes and Budal (1982) and Falnes (1984) found that for periodic arrays of point absorbers,

all the energy can be extracted if we have 4 optimally placed rows of bodies. Here we show

that, indeed, with 4 uniformly spaced rows if is possible to get Wa/Y ~ 1, Figure 5.7 The

maximal spectral gain qS found in 3 x 20 arrays have not been reached in this optimization

study. A globally optimal solution would undoubtedly change that claim.

One has to bear in mind, however, that all these are locally optimal solutions, and we can

only speculate of whether irregularity would benefit the optimal performance if a globally

optimal solution is to be found. In the light of the results on random rectangular arrays from

Chapter 4, we can expect that even if some irregularity improves the performance of WEC

arrays in, say, irregular seas, this irregularity should not be strong. One could study different

parameterizations, and, say, describe the y-spacing according to a NURBS spline whole

control points are the optimization variables. This would give more flexibility to the spacing

pattern, while still not being completely random. Perhaps a systematically introduced

irregular spacing, particularly in x-direction, is the best-case-scenario for irregularities to

have a positive impact on the performance.
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Figure 5.16: Spectral capture width ratio WS/Y for qS-optiial rectangular arrays with
N x N, bodies, with varying N, and Nc, for a Brentschneider spectrum with k, = kr
and 0 = 0'.

The strong preference for uniforn spacing in y-direction gives more weight to the ex-

tension of the multiple scattering framework for periodic WEC arrays of groups of closely

spaced bodies. We can analyze and optimize the configuration of that group alone, with a

great reduction in the computational expense. Before we can conduct a full optimization

that also includes periodicity d as an optimization parameter, a convergent expression for

the derivative of the lattice sinus (3.38) needs to be derived. The lattice sun (Schldnmilch

series) o-,,o as it is is a very slowly convergent series, whose usability was only made possible

by a series of accelerations (Kuninier transformations). The derivative of 0-,O

SB (ik sin0 [PB - (-1)" PB] Kn(B kmd) + k [PB + (-1)P-B] K<c(B kmd))
B=1

(5.30)

introduces a growing integer factor B that makes the series (5.30) divergent for m = 0. We

know that this divergent series has a finite limit (e.g. we cain calculate -au,o/8d numer-

ically), but an analytical expression that would allow for a fast evaluation of the sum in

(5.30) is currently not available.

The high non-linearity and mnulti-iodality of the underlying objective function is tie

culprit for many issues that might raise questions in the analysis of the results. The most
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Figure 5.17: Spectral capture width ratio Wg/Y for qs-optimal rectangular arrays as a
function of N. for N = 1, 2, 3, 4, 5 (Nc, = = 0, Brentschneider spectrum with k, = kr
and 0 0').

immediate consequence of high multi-modality is that the presented results correspond to

(different) local optima, and as such are only the lower bounds of the possible performance

of optimal WEC arrays. The sometimes checkered result of, say, optimal spacing parameter

(e.g. Figure 5.11) is caused by the fact that increasing N or N, by 1 sometimes results in

converging to a different local mininium. One would expect that if a true global optimum

would be found every time, that changes in array sizes would lead to a gradual change in

optimal parameter values and optimal performance with N or Ny. We do see such behavior

in some cases (e.g. Figure 5.4, especially for 0 = 30'), where the change in N or Ny does

not result in skipping to a different local optimum. However, that still does not mean that

the optimum the algorithm keeps converging to is the global optimum.

A different issue, but still related to the convergence to local optima, is the fact that in

some cases the optimal results under-perforn a trivially available configuration. This is the

case for all optimal arrays where the optimal q or qs is lower than 1 (a trivial configuration

better than that is a collection of infinitely spaced bodies with q = qS = 1). This is

also the case when an introduction of a degree of freedom in the optimization parameter

space results in the decrease in the optimal performance, while the initial configuration is

still feasible in the expanded space. For example, increasing the allowed level of spacing

irregularity reduced the optimal spectral gain compared to the uniformly spaced array,

Figure 5.15, but the uniforn spacing results and, thus, equal qS, were an allowed optimum

even in this newly expanded space. These cases all result from the fact that the local

optimum closest to the initial point is below some threshold, whether it is the threshold for
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Figure 5.18: Geometry of two optimal arrays for Brentschneider spectrum with k= k, and
= 00, with N = = 0.

a collection of isolated bodies (q = qS = 1), or that set by an optimal array with a simpler

configuration, a configuration that is attainable with the more complicated parameterization

(e.g. a comparison with the uniformly spaced array).

The remedy for most of the issues stated above is, instead of being stuck at different

local optima, to find the global optimum. That is, of course, easier said than done, but

several things can be done towards that goal. The first approach, if we continue using the

same algorithm as described here, would be to start the optimizations at several (drasti-

cally) different initial points. The differences should be strong enough such that there is a

possibility for the optimization to end up in a different optimum. With enough different

tries, one might even feel (falsely) confident that a global optimum has been reached.

A more automated way of testing many initial points is to use a stochastic evolutionary

algorithm instead, e.g. Covariance-Matrix Adaptation Evolutionary Strategy (CMA-ES)

(Hansen and Ostermeier, 2001; Hansen, 2006). The initial random population would be

evolved towards the (global) optimum only to narrow down the region where it might be

located. From that as a starting point, the gradient-based optimization algorithms can then

be used to speed up the convergence towards the optimum. This way the we would be able

to get a better sense of the WEC array performance limits.
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Chapter 6

A Novel Formulation for the Mean

Drift Force on Arrays

Mean drift force plays a large role in the design of large offshore structures. It is an inviscid,

steady force on a structure caused by wave action. While the time-harmonic diffraction

forces that were studied in the thesis so far are responsible for body motion and energy

extraction, the steady nature of the mean drift force gives headaches to offshore engineers

and investors. In order to hold a floating structure in place, large mooring systems need to

be devised to counteract the effect of the mean drift force. The price of a mooring system

contributes a significant amount to the total cost of a structure, so one has every desire to

try to minimize it.

In this chapter, after a brief introduction and a literature review, we introduce a novel

formulation of the mean drift force based on multiple scattering framework. The formu-

lation allows for the calculation of the total mean drift force on an array as a sum of the

contributions from each body, through the newly introduced drift force transfer matrix.

This new formulation enables a simple extension of the optimization framework that we

presented in the previous chapter.

6.1 Introduction & Literature review

The mean drift force (MDF) is a steady, non-linear force acting on bodies (or collection of

bodies) in arrays. While the diffraction forces F discussed in the previous chapters might

have large amplitudes, their mean is always zero. If ships were exposed to diffraction forces
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alone, anchors would be superfluous!

MDF is caused by the change in the wave momentum caused by the presence of a

structure. Since structures usually reflect the waves, the mean drift force is usually in the

direction of wave propagation, especially for simple, compact bodies. However, the mean

drift force on an array need not be in the direction of wave propagation. Emmerhoff and

Sclavounos (1992) calculated the drift force on a 4-legged structure and noticed that at

some wavenumbers the MDF on a structure was directed opposite to the wave propagation

direction. Hence, there has to be a wavenumber at which this force is zero, which would

minimize the mooring costs.

Since MDF can be calculated entirely from the linear, first-order potential that is the

solution to the diffraction (and radiation, if present) problem, one way of calculating the

MDF is to integrate the modified potential over the body surface (more on that in the next

section).

The other way of calculating the MDF is from the far-field. Since MDF is related to the

change of wave momentum, we can evaluate the wave momentum in the far field, and any

imbalance in it is cause by the mean force exerted by the structure. This method, however,

allows for the calculation of MDF on the structure as a whole only, without being able to

calculate the MDF on a body in an array, say.

An interesting trade-off arises when considering the effects of MDF on WEC arrays.

Since the entire purpose of WEC arrays is to extract energy from waves, they inescapably

alter the wave momentum. The larger the effectiveness of a WEC array in energy ex-

traction, the large change in wave momentum. This means that WEC arrays will almost

inevitably experience large MDF, possibly reducing the economical benefits of harvested en-

ergy. Depending on the relative costs, one might opt to optimize a multi-objective problem

of maximizing energy extraction and minimizing MDF.

In this chapter we will only focus on the MDF aspect alone, with the goal of minimizing

it. The proposed framework is completely general so it can also be used for floating offshore

structures whose goal is not energy extraction. In fact one of the main objectives of very

large floating structure (VFLS) design is how to minimize the MDF. With our purpose

clearly set, we proceed with introducing the novel formulation of MDF on arrays.
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6.2 Matrix Formulation

The mean drift force D = (D., Dy) is caused by the nonlinear hydrodynamic effects on

the body. It arises when the pressure from the first-order solution is integrated over the

time-dependent wetted surface area. The leading order (second-order) nonlinear mean drift

force can be calculated from the linear solution

D=1 EV4 -V*ndS - 0 . * nd1 (6.1)
" s4 ,c 4g

where '1 is the total potential evaluated on the surface of the body, Sb the mean wetted

surface of the body, and C the mean waterline. The x and y components of the mean drift

force are obtained by taking the inner product.

For a truncated cylinder , this expression can be written in a matrix form as

Dx = c+F_ c (6.2)

where F. is the drift force transfer matrix (for the x-component of the force) obtained for

an isolated body, and c is the vector of coefficients of the scattered waves. This formulation

is valid both for isolated bodies and for those in an array. If c represents the scattered wave

coefficients for an incoming plane wave, the result will be the isolated body mean drift force.

If these coefficients represent the scattered field for a body in an array, it will give the drift

force (x and y) for that body.

As an example, consider the mean drift force on a vertical cylinder of radius a. In

that case, the surface integral in (6.1) can be separated into depth-dependent and angle-

dependent integrals. For the x-direction force, the angle dependent integral gives

J2r(-) ein o cos 0 dO = r, n = 1 .l (6.3)
0 0 otherwise

The y-direction force yields

j (-) ein sin d9 0 = { othe wis (6.4)
co 0, otherwise

Clearly, the contribution to the mean drift force comes only from the components where
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Inj= 1.

Let 0 be the incoming and scattered wave field around the the body

A E E 0m(z) ein, (dnmln(kmr ) + cnmKn(kmr))
n=-oo m=O

-A S Om(z)e"'Vnm(r)
n=-oo m=O

where a short-hand notation has been used.

The mean drift force D in x and y directions for a truncated vertical cylinder is

0 27r

D( = dz Vq . V4*Ir=a
-d 0

Cos dO -
ksinOJ

27zr

j4g
0

q 0* 1r=a,z=O
(Cos 0 dO
sin 0)/

The required VO - VO* and 44* can be expanded in terms of (6.5) as

A*2=5 = Z km(z)s(z) (PnmSv41,, eO + 'nm ,n-1 e)

n=-oo m=0 s=0

VO - VO*lr=a = A 2 5 ( 0 ,n(0z),',/(z)kmk* + OM(Z) (Z)
n=-oo m=O ,=O

(6.6)

(6.7)

1)).-
(6.8)

(PnmcP-i,seio+4 -mn i, O)

With (6.7) and (6.8) the mean drift force in x direction becomes

oira n ~~8(in~i
nM,= (Onm=P*-js

n=-00 M=0,=0
+ V*m n-1,S)r=a (6.9)

where an is

0

-d/h

(z)/'(z) +

and

PnmCn*-1,, 1 = dnmd*,1,sIn (kma)I*_ (k.a) + cnmc*_i,,Kn(kma)K*_ (ka)+

+ dnmC*_,sIn (kma)K*_ (ksa) + cnmd*-,_,Kn (kma)I* *(kaa).
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a2 OM(Z)OS (Z) Idz - Kom(O)Os(O)



Note that In(kma) is real for m > 0 and for ko = -i ko where ko is the solution of the

dispersion relation for propagating waves (2.6)

I,*(koa) = I,(i oa) .

The equation (6.11) can be written in a more compact form by recognizing that we can

write each product in terms of vector-matrix-vector product, where the matrices are of the

form

0 :Jn 0 0

n~ 0 3Yni (6.12)
0 *+1 0 :n+2

0 0 3n+2

Here, Jn is a (M + 1) x (M + 1) matrix whose (m, s) element is

3nm,8) = Jmjn(kma)Ii*_(kja) . (6.13)

Corresponding to (6.11), we will label there matrices F1 , F2 , F3 , and F4 , respectively.

Note that these are all zero-trace matrices.

Putting all together, the drift force can now be written as

D., = JZ2 [d+F1 d + c+F 2 c + c+F 3 d + d+F4 C] (6.14)

Using the expression between the incoming and scattered coefficients (6.30) (and d+

c+ T-1+), the upper expression becomes

D, = A 12 Pc+ [T-1+F1T-1 + F2 + F3T- 1 + T-+F4 c (6.15)
4 1

which is actually the expression (6.2), with

Fx = 1A2 1 T-+FT-1 + F2 + F3T-1 + T~1+F4  (6.16)

For the mean drift force in y direction

D = 2 S S i a (C nmcp1,s - 9~nmSn-i,s) r=a (6.17)
n=-oo m=O =O
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and the rest follows analogously.

6.3 Low-Scattering Approximation

The low scattering approximation considers that there is only one "bounce" of the wave off

any body. The wave after scattering passes through other bodies unaffected. This kind of

approximation leads to phasing arguments.

Here we consider only diffraction problem as the bodies are assumed not to be oscillating

in waves.

The total potential can be written as

Nb

= + (6.18)
i=1

Evaluated at body j, this potential can be written as

Nb

+D+ #q +j (6.19)
3=1,ij

where j is the potential due to body i, evaluated at body j. The notation j here implies

that the transformation of the coordinate system needs to take place to express the Bessel

functions in terms of coordinate system of body j.

The product of potentials required to calculate the drift force on body j from (6.1) gives

Nb Nb

Nb N (6.20)

i=1,i~ji=l,i54j
Nb Nb

+ E E 41i 0q$li
i=1,n p ionsnj

The last term in the previous equation is a higher-order term that can be neglected if Of|
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is small (i.e. for large spacing). Hence, the product of potentials can be approximated as

Nb

<= b +S[ rij (6.21)
i=1,i#j

where

<by = <bI'j + Oq (6.22)

and the interaction factor -rij is defined as

'rij D 0y 4 * + <Dt (6.23)

Note that rij depends only on the locations of bodies i and j, not on the other bodies in

the array.

The product of the gradients of potentials D is derived analogously to (6.20), leading

to the gradient of the interaction function 7 defined as

TN 4 IjV + V(bjv 4 (6.24)

The mean drift force on the body j under the low-scattering approximation can then be

written as

I TFD(4D) -.FD(D)+ b7 ~ailF. 7i! (S J bryjdn'Pd

(6.25)Nb

=D + F( - ri)FP' 5 F(rj-)
i=1,i:j

where Fif (rj - ri) = (F , FP) denotes the drift interaction force between bodies i and

j, which depends only on their positions relative to the wave direction. For two truncated

vertical cylinders, the drift interaction force is given in Section B.3.1.

The drift interaction force FP(rj - ri) components can be expressed in matrix form in

terms of the coefficients of propagating components of scattered and incoming waves c and
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y

x

d as:

FP -(r ri) = c+FD d + dF j,+C + c+CD ,,xc 2,(c+FD ixd) + c+cD j xc

(6.26)

FP (r1 - ri) - c+FD ,yd + d+FDi + c + CD i ,YCc= 2sR(c+FD j d) + c CDiy c

(6.27)

where FDijx, FD CD x and CD jV are coefficient matrices obtained from isolated

body calculations. These matrices contain the body-dependent information stemming from

integrals in (6.25). For a truncated vertical cylinder, the matrices Fjx, FD CD,

and CD i,y are given by (B.26)in B.3.1.

The scattered and incoming wave coefficients in (6.26) and (6.27) are calculated for an

isolated body, and are used for all bodies without the change in phase due to different

relative position. All the phase effects due to body positions are contained in the matrices.

The scattering potential <j can be evaluated using the addition theorem for Bessel
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functions (A.5)

fl-00

= 6ilAo(z) 13 Cn 3(- ) - KI)ein i (6.29)
fl-00 =-0o

= 6A'?(z) E CnKn-(r - ri)Il(rj)ein*j (6.30)
n=-oo 1=-oo

where ini (rj - ri)

Kni(rj - ri) = (-1)le(n1)aiKnij(-ikrij) (6.31)

accounts for the separation effects. If the large spacing approximation is used, far-field

expression (A.8) for Kn(-ikr) is substituted into (6.31).

The conditions for neglecting the last term in (6.20) are now clearer-#$1. is a small

quantity when either the scattering coefficients cn are small, or when the distance krij is

large. In both cases, the product 4f O#f, is an order of magnitude smaller that the other

terms.

In the case the scattering is low, the products O' 0 and their conjugates can also be

neglected.

The interaction factor glo has to be of smaller order of magnitude (O(E)) than the leading

order interaction. This happens either when the scattering off of a body is small (ka < 1),

or the distance between the bodies is large. Both of these cases are referred here as low-

scattering approximation because they do not lead to multiple scatterings to the leading

order.
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Chapter 7

Conclusion

As a conclusion, we briefly summarize the contributions made in this thesis. We also

highlight some topics that, from this vantage point, seem like fruitful directions for future

study.

7.1 Thesis Contributions

This thesis made contributions to the mathematical and computational treatment of large

wave energy converter (WEC) arrays, to the systematic analysis of the spatial WEC array

configuration, and to the understanding of their performance. We first summarize the

physical insights we gain from the results presented in the thesis, and then summarize the

technical contributions that made such analyses possible.

7.1.1 Summary of Physical Insights into the Energy Extraction by Large

WEC Arrays

In this thesis we presented a thorough analysis of the performance of WEC arrays of up

to 200 bodies in regular and irregular seas, as a function of the spatial array configuration.

The analysis simulations and optimizations conducted in the thesis represent the largest

computational analyses of WEC arrays in the literature, both in terms in the number of

bodies in the arrays, and the number of array configuration types considered. The results

as a whole form the first detailed spacing-dependent performance maps of WEC arrays

with uniform spacing (line and rectangular), as well as those with irregular spacing (linear

and quadratic). The computations of this scale were made possible by the advances in the
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computational algorithm that allowed for a fast and memory-efficient way of calculating

wave interactions, without resorting to approximations.

While the underlying hydrodynamic problem is linear - i.e. the wave amplitude is

assumed to be small compared to its wavelength, and the body motion is assumed to be on

the order of the wave amplitude -- the dependency of WEC array performance on its spatial

configuration is highly nonlinear and multi-modal (i.e. with many maxima and minima).

This multi-modality comes from the complicated nature of wave interactions, which are

further amplified in arrays because the slowly decaying outgoing waves couple the responses

of all the bodies in an array together. We can talk about short-range interactions, i.e.

those that occur between waves scattered and radiated between the bodies in an immediate

neighborhood, where the evanescent waves can make a difference and the oc 1/f/r decrease in

amplitude of outgoing waves still does not matter. But we can also talk about "long-range"

interactions in structured arrays, where the periodicity of the array results in persistent

wave features that extend far beyond few spacings between the bodies. The computational

algorithm we developed allows us to study all these cases.

We find that by carefully choosing the array configuration, it is possible to achieve very

high performance metrics that would bring the real-world utilization of large WEC arrays

closer to reality. In particular, uniformly spaced rectangular WEC arrays are shown to

have a large gain over the same number of isolated bodies at the resonant wavenumber

(q, ~ 1.9), Overall, these high values of q are caused when the incoming wavelength and

the array spacing dy in the direction perpendicular to the wave propagation direction (or its

projection) are close to that required for the creation of new scattering modes that would

appear in the far field of periodic arrays with periodicity d = dy. The wavelengths at which

the new modes appear are called Rayleigh wavelengths AR, and the high-q values usually

occur when the spacing is slightly smaller than one of the Rayleigh wavelengths dy sj AR.

The optimized rectangular arrays can also have their capture width equal their geomet-

rical cross-section (Wa/Y ~ 1), i.e. they are capable of extracting all the energy flux that is

incoming on their geometrical extent. When considering the performance in irregular seas

(for a single spectrum considered), the spectral gain reduces to qS ~ 1.3, and the capture

width ratio drops down to Wa/Y ~ 0.3.

Interestingly, uniformly spaced arrays outperform the irregularly spaced arrays even

for irregular seas considered here. One might expect that different spacings present in an
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irregularly shaped arrays could positively "resonate" with different wave components con-

tained in a spectrum, but that does not appear to be the case. More analysis should be

conducted before such a claim can be completely dismissed, but the analyses of purely ran-

domly spaced arrays shows that their performance is lower than that of optimized uniformly

spaced rectangular arrays.

The analysis of random arrays points out to an interesting observation that there is a

trade-off between extreme values of gain and the bandwidth of high-q performance - a

high-q value is not sustained over a large ka interval, while constant q-range comes hand-in-

hand with its modest value. While there exists a theoretical constraint on an angular values

of q for a given wavenumber (4.3) (Fitzgerald and Thomas, 2007), such a constraint does

not appear to exist for wavenumber-dependent values. Nevertheless, we find that carefully

tuned arrays (like rectangular ones with uniform spacing) exhibit both very high-q values,

as well as those close to zero, while for random arrays such abrupt changes are absent.

This is a clear indication why configuration optimization is important if we want to achieve

high-q values.

When it comes to array orientation towards the incoming waves, we have shown that

attenuator arrays, i.e. arrays whose major dimension is in the direction of wave propaga-

tion, behave poorly at body resonant and super-resonant wavenumbers, without exception.

Attenuator arrays perform acceptably, i.e. with gain q > 1 for sub-resonant wavenumbers.

As the number of bodies in along the long dimension of the attenuator array increases, the

acceptable range of wavenumbers moves to further lower values. Overall, while still outper-

forming the isolated bodies, the effectiveness of these arrays at such low wavenumbers is

questionable because extractors with passive, non-tuned PTO devices (like all considered

in this thesis) extract very small amounts of energy at these wavenumbers, so even a high

gain does not bring forth meaningful performance. These results can give some indication

on the design of attenuator devices that have been developed in the real world (Pelamis) or

are proposed (Anaconda).

The bodies the arrays were made out of were all identical truncated vertical cylinders

allowed only to heave, and with a fixed (non-tunable) power take-off device. It is expected

that further improvements in WEC array performance if the extractor as a whole is being

allowed to change (or optimize) in conjunction with the spatial array configuration. In

particular, the body geometry and the number of degrees of freedom can have a large impact
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on the bandwidth of efficient energy extraction. In particular, some of our optimization

results show that two very closely spaced rows of bodies lead to an improvement in energy

extraction, indicating that those might be a surrogate for a single device with multiple

degrees of freedom, even an asymmetric device. In periodic arrays (or large arrays with

uniform spacing in y-direction), an asymmetry of a device with respect to y-axis might lead

to an improved performance. We can also draw similarities with optical structures, where it

was shown that asymmetric particles lead to an improved absorption of light (Miller et al.,

2014).

7.1.2 Theoretical and Computational Contributions

In addition to the contributions to the understanding of physics behind efficient energy ex-

traction by large arrays that were presented in the previous section, this thesis makes further

contributions to the theoretical and computational treatment of wave-body interactions in

large arrays.

Main Theoretical Advances. The following theoretical advances have been made to

extend the multiple scattering framework:

" Introduced a formulation for scattering by periodic arrays with cells of closely-spaced

bodies (Section 3.3). The existing formulation of periodic arrays with a single body in

a cell has been extended to include a finite number of closely-spaced bodies. The bod-

ies can be of general shape, spacing, and connection (fixed, free, energy-extracting).

" Introduced velocity transfer matrix (Section 3.2). The new decomposition allows

for the added mass and radiation damping for bodies in the array to remain that

of an isolated body; the relation between the body velocity and the wave field is

now expressed through a velocity transfer matrix. The new formulation is especially

advantageous for cases where many different array configurations need to be calculated

(e.g. systematic studies of body spacings, or spatial configuration optimization).

" Introduced transfer-matrix-based formulation for second-order mean drift force for

arrays (Chapter 6). Introduced drift force transfer matrix that is calculated for an

isolated body; the drift force on an array is obtained by calculating the standard multi-

ple scattering system for the array. The new formulation allows efficient minimization
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of the mean drift force.

Main Computational Advances. Developed algorithm based on multiple scattering

theory capable of analyzing and optimizing large arrays 0(200). While current state-of-the-

art optimizations or systematic analyses of array configurations have not been made with

more than 5 bodies (Child and Venugopal, 2010), the algorithm developed for this thesis

was used to produce systematic analyses and optimizations of array of up to 200 bodies.

No constraints are imposed on body size, shape or spacing. Some of the advancements that

were introduced to enable such performance are:

" Developed a series of array configuration parameterizations for reduced-order opti-

mization and analysis of array performance (Section 5.3).

" Derived and implemented system gradients based on adjoint method.

* Matrix-free algebra for most memory-intensive products.

" Parallelized code.

7.2 Future work

There are several directions in which this thesis can be expanded that are immediately

obvious. Some of them we list here.

Couple PTO characteristics optimization with array configuration optimization.

All the results in this thesis have been obtained while keeping the extraction rate bPTO

constant, and tuned for the maximal power extraction at resonant frequency. As shown

in Section 2.3.2, this is not optimal even for an isolated body in irregular seas. One can

expect that when bodies operate in an array, the optimal bpTO will be different than for an

isolated body, and its optimization (either as constant for the entire array, or individually

for each body) would further improve array performance. The framework presented in this

thesis can easily tackle this problem (including the already-derived gradients with respect

to bpTO). In addition, one could study the effect on energy extraction caused by connecting

a spring element (in addition to a PTO device) to every body. For isolated bodies, that

shifts the resonant frequency to higher values, but how it might affect the energy extraction

capability of an array as a whole is still not known, especially in irregular seas.
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Couple body shape optimization with array configuration optimization. Similar

to adding bPTO to optimization, optimizing body shape can lead to even higher gains.

Coupling shape and configuration optimization, while still preserving the computational

efficiency of the multiple scattering framework, is slightly more complex from a technical

standpoint. For the multiple scattering formulation presented in this thesis, any change

in shape of any body would necessarily lead to a recalculation of all transfer matrices for

that body. This could potentially reduce the advantages that this algorithm has over BEM

methods. However, a general body shape could be adequately parameterized, and then

its hydrodynamic characteristics (including transfer matrices) could be precalculated as a

function of these parameters. Depending on the complexity of the shape (i.e. the number

of parameters that describe it) and the number of grid points for shape and wavenumber

discretization, the resulting matrices could be very large and expensive to calculate. A

reduction in size could be achieved by using a course grid determined by the roots of a

Chebyshev polynomial, and then approximating the values in between using Chebyshev

series.

Energy Extraction from Horizontal Motion.

Implementing iterative solver for the multiple scattering system matrix.

Time-domain formulation and real-time tuning. This thesis has considered the

problem of energy extraction in frequency domain only. However, there are aspects of

the problem that would be better tackled in time-domain. For example, one simple solution

to boosting a performance of an isolated WEC is to use so-called "latching" (Falnes, 2002;

Falcdo, 2008), i.e. controlling the phase by stopping a body in place until in synchrony

with the wave field such that maximal motion velocities are ensured. Instead of a discrete

control of that type, one could also tune the bpTO value in a real-time manner, depending

on the wave field. However, if the input to the system is the wave elevation at a certain

point, this system in time-domain formulation is non-causal (Falnes, 1995), i.e. the response

depends not only on the current forcing, but also on the past motion. That is why a fully

optimal control to get, say locking phases, is not possible (Falnes, 2002). Whether having

the knowledge of the motion of several bodies in the array would improve the causality of

the system is not known.
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Cloaking for mean drift force. Recently, Newman (2014) and Kashiwagi, Iida, and

Miki (2015) have studied how placing bodies around the body we are concerned about can

reduce the drag force on the said body. They have used a small number of additional bodies

and achieved reductions in mean drift force. It would be interesting to study whether an

increase in the number of additional bodies and optimization of their spacing would lead

to further reduction (or complete annihilation) of the mean drift force on the object of

interest. This could have a large practical use for retro-fitting the existing structures with

these cloaking bodies to reduce the mooring costs.

To summarize, in addition to the improvements in WEC array design that have been

addressed in this thesis, WEC arrays seem to be brimming with opportunities for further

enhancement. Both the prospect of obtaining another reliable method for extracting energy

from a dependable source of renewable energy, and the prospect of tackling an interesting

and rich scientific problem should excite aspiring researchers, as well as those already prac-

ticing in the field. I hope this thesis will provide a small contribution to that endeavor.
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Appendix A

Bessel Function Identities

A.1 Bessel Identities

Expressing Hankel function in terms of modified Bessel function of the second kind

Kn(-ix) = 1rin+1HF (x)2 n (A.1)

The Bessel function of the first kind Jn (x) can also be expressed in terms of modified

Bessel functions of complex argument.

(A.2)

The derivatives of Bessel functions of complex argument can be obtained from the well-

known expressions for the real-argument ones. For example

- J(x) = (Jn-(x) -Jn+(X))

2
(A.3)

where Jn(x) = in In(-ix) was used. Then it follows

in 19In(-ix) = lin~1 (In_,(-ix) + In+,(-Hx))

and finally

(A.4)
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A.2 Addition Theorem

Bessel function in one coordinate system can be expressed in terms of another coordinate

system using addition theorems (Abramowitz and Stegun, 1964)

DO

Kn (ri) einoi = (- 1)lei(-l~aijKn-(rij)Il (rj)einoi
I=-00

(A.5)

A.3 Far-field Approximation

Hankel function can be expressed in terms of modified Bessel functions of complex argument

as

Kn(-ix) = 1 n+1 H7) (. (A.6)

The far-field (large argument) approximation for the Hankel function is

lim Hn(kr) = eik e'~ ~i i 
kr-+oo ir kr

(A.7)

or, in terms of the modified Bessel function

lim Kn(-i kr) = eikr+i 4
kr-+oo

2
ir kr

(A.8)

Notice that (A.8) does not depend on the order n. However, with the increase in n, the

value of kr for which the approximation is valid increases.
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Appendix B

Hydrodynamic Properties of a

Truncated Vertical Cylinder

Truncated vertical cylinder is a common body shape considered for energy extraction.

The influence of the cylinder shape can be easily studied due the existence of the analytic

solution and due to the small number of the parameters required to describe the shape.

A,A z1

dj a

OS h

Figure 2.1: Truncated vertical cylinder

B.1 Diffraction Problem

The incoming propagating wave potential can be expanded in terms of Bessel functions.

This expansion contains only propagating components since they are the only ones found

in a propagating monochromatic wave. However, after scattering from a body evanescent

waves are in general present in the wave-field and those modes can reach another body.
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Here we describe such general case.

Consider a j-th mode hitting a truncated vertical cylinder, where j = 0 represents the

propagating wave and j > 0 denotes evanescent waves. The incoming potential can be

written as

(B.1)

The scattering potential can in general be written as

In(kj a) 00
4) = (ka) Kn(kjr) j(z) + an

1=0

Kn(klr)0()
Kn(kia) j = 0, 1, .

The potential below the cylinder can be expressed as Garrett, 1971

c In (kmr)
rn-i nm, In (kma)

cos (u'm(z + h))

where
mir

VM - h-d

The unknown coefficients a, and C&m are determined from the boundary conditions on

the body.

For the diffraction problem the body is considered to be fixed in its mean position. The

kinematic boundary conditions that needs to be satisfied on the body surface require

D, as
Or ar

=0
09z

(B.4)

(B.5)

Matching of the pressures and the velocities across the artificial boundary that separates

the two solutions requires

Os + I --

a(4 S I) + OD
Or a,

(B.6)

(B.7)

These boundary conditions will be satisfied in an integral sense, i.e. matching of pressure
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,D- = Oj(z) In (kj r) , ko = -i Ico .

no (r)Inj +cj. -
2 a



and velocity at r = a leads to

-d

J Ir=a
-h

-d

cos (vm(z + h)) dz = I(<b + 0S)
-h

Using the orthogonality of cos (vm(z + h)) on the

equation for cim gives the expression

I(k a) 00
Cnm = 2 In(kja) I(ka) Kn (ka) gmj+ 2 Ea" 1

r=a cos ((z + h)) dz (B.8)

interval (-h, -d), we can get an

K (kia)
K'(kla) gm1, m= 0,1,... (B.9)

where the following expressions were used

-d

h d cos2(vm(z+h)) dz 2' m00
-h

and

9ml h d f-h (z) cos (vm(z + h)) dz.

Matching of the velocities give the condition

[01 TS- 
1

I-h T T-ra
dz = j- a

f-h (9rr = a

where the condition

Or 0, -d z<-0
r=a

that the velocity is only due to external region.

By using the orthogonality of depth eigenfunctions 01(z), the scattering

be expressed as

coefficients can

1 Inc h-d (ma)
a'i = n gnoi + - d m (h -d) In gnm (B. 12)kih 2 a/h h -1nm lm IB(.m1a)

L m=1 I1

The equations (B.9) and (B.12) form a coupled system that can be solved in terms of

either internal or scattered coefficients, after it has been truncated to a finite number of

evanescent waves M and angular modes N.

205

(B.10)

,1(z) dz (B.11)



In terms of the internal potential coefficients, the obtained system can be written as

0Ssm - f,"m (6so n h - +2(1 -S0)1n) = 2 gj In(ki a) K (- k a) Kn(k a)

(B.13)

After the system (B.13) has been solved for all cL, the coefficients of scattered waves a 3

can be calculated from (B.12). These coefficients form the T-matrix for the truncated

cylinder-every value of a3 obtained is the amplitude of a partial wave scattered by a unit

incoming partial wave j of order n.

The structure of the T-matrix depends on the (arbitrary) arrangement of coefficients

of incoming and scattered coefficients. In the case of the truncated vertical cylinder the

T-matrix is sparse because the axial symmetry-incoming partial wave of order n scatters

waves only of order n.

B.2 Radiation characteristics

The derivation of the added mass and damping coefficients of vertical cylinders follows

Yeung, 1981.

B.3 Mean Drift Force

B.3.1 Low-Scattering approximation

00

'bD ='I" J =6jAgZo(z) 3 e "'(dnIn(-ikrj)+cnoKn(-ikrj))

(B.14)

= 6Aoo(z) E e> " r)
n=-oo

i = 6 o z) e"'Ii (-ikr ) gio(3 -ir) (B.15)
i=-oo

For a circular cylinder, all the contribution to the mean drift force comes from modes

206



with Inl = 1. Using (B.14) and (B.15), the equation (6.23) can be expanded as

= 2 E (Gijeie + g9*e-)o )L/2(z) (B.16)
n=-oo

= 2  3 eiogjiO) (2(z) ( - 1) +12(z)k (B.17)

n=-00

where

S- r) ,Ingn(r - ri)

00

= 6j6 (d n In + cn K n ) I * _ C * t i*,l _1 + (B .18 )

+6*6i (d*_I 1+caK 1 I: C1 Kin

i=-00

Here for brevity, the arguments of Bessel functions have been omitted; they are to be

evaluated at -ikrj, or at ikrj for conjugated functions (I* In(ikr,)). The spacing factor

Kin is defined in (6.31).

After substituting (B.16) and (B.17) into (6.25), the components of the drift interaction

force can be written as

fl00Fx,41A2 Pn(g r* (B. 19)
n=-oo

Fy = lAI2 i (gg - G*) (B.20)
n=-oo

where shorthand notation an a' for (6.10) has been used here because there are no

evanescent waves. The expressions (B.19) and (B.20) can be expressed in matrix form by

expanding the sums _E'0 aj?.

f00 fl00 0=-oS anGn3 = J3JdnanInI* 1x*,nlc*+

n=-oo n=-oo 1=-oo

+JjJid*_1nI** 1In + (B.21)

+6j6%cnKnI*lI*,_l1c*+

+J oic N 1 Kn* 1Ininci

After the truncation to a finite number of Np angular modes, the sum in (B.21) can be
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expressed in matrix form as

Z car = c+Fid + d+F 2 c + c+F3 c, (B.22)
n=-N,

where the (1, n) element of matrices F1 , F2 and F3 are, respectively:

(1'n) = 6iolanInI*_1Ir*,1

1 00
- " =* Qo1Ij'f 11*I1+1n,l+1 (B.23)

F '"n) = jlanKnI* _-n*,,_1 + JjJjanK*_1IntI~n

Using (B.19) and (B.22), it follows

c+Fid + d+F2 c + c+F3c + (c+Fid)* + (d+F2c)* + (c+F3c)* =
(B.24)

=c+(Fl + F2 +)d + d+(F1 + + F2 )c + c+(F 3 + F3 +)c

where transpose of a scalar has been used to get the products in the right form. Similarly,

for (B.20) and (B.22) we get

i [c+Fid + d+F2c + c+F3c - (c+Fid)* - (d+F2c)* - (c+F3 c)*] =
(B.25)

-c+ [i (F1 - F2+)] d + d+ [i (F2 - F1 +)] c + c+(i F3 -i F3+)c.

With (B.24) and (B.25), the matrices are

FD A12 (F1 + F 2+)4

F D A 12 P" [i (F1 - F2+)
(B.26)

CD Al P(F3 +F3+)
4

CD A2 P(i F 3 - i F 3 +)

Note that CD i,x and CD j,y are Hermitian matrices, and that the sum of first two terms

is Hermitian as well, so the overall sum is always real.
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Appendix C

Validations

In this chapter, the computer ()le developed for this thesis is validated against the published

results for mltiple interactions in array, both with energy extraction and without.

kh=Z5, .=0 F

Fs t

Figourc 31: Comparison of free surface amplitudes with Linton and Evans (199)0), ka 7r/5.
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Appendix D

Supplementary Results

D.1 Array Performance Analysis

Analysis of Line Arrays with Uniform Spacing
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Figure 4.1: Comparison of the array gain q between arrays
body spacing for super-resonant wavenumber ka> for Gi =

of different size as a function of

00, 900.
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Analysis of Line Arrays with Linearly Varying Spacing
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changes in kd/7r correspond to changes in d as the wavenumber is constant for each plot.
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linear variation in spacing between the bodies.
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D.1.1 Analysis of Line Arrays with Quadratically Varying Spacing
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Figure 4.22: Normalized capture width W/NbD. Note that the changes in kdo/7 correspond
to changes in do as the wavenumber is constant for each plot.
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Figure 4.23: Capture width W normalized by the array extent Y. Note that the changes

in kdo/7r correspond to changes in do as the wavenumber is constant for each plot.
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D.1.2 Analysis of Line Arrays with Random Spacing
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Figure 4.29: Array gain q of line arrays with different amount of randon perturbation, for

two different average spacings d; ineoming aiigle 0 = 30. The results show the mean

1 standard deviation for three different perturbation distributions. For both spacings the

largest ainoiit of perturbation is very close to th1 inaxinal allowe(l anount based oii (4.36).

Performance of a periodic array with the periodicity d is shown for coiiparisoii.
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D.1.3 Analysis of Rectangular Arrays with Uniform Spacing
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D.1.4 Analysis of Rectangular Arrays with Staggered Rows
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Figure 4.37: Normalized capture width Wa/NbD for three characteristic wavenumbers and

different incoming angles 0I. Note that the changes in kdx/r corresponds to changes in dx
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D.1.5 Analysis of Random Rectangular Arrays
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Figure 4.44: Several realizations of random rectangular arrays with dx/2a = 2.88, dy/2a=
4.8, kx = ky = 16.
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k= ky = 16). The results show the mean (solid line) t 1 standard deviation (shaded

area), and maximal and minimal values (dashed line).
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Figure 4.50: Optimal values of gain q for rectangular arrays with N x N, bodies, for
sub-resonant frequency ka = ka<.
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Figure 4.51: Optimal values of the linear irregularity parameter c1* for rectangular ar-

rays with N. x N bodies, with N,, = 2 and d, individually controlled, for the resonant

wavenumber ka = kar.
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