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Abstract

Incidents in urban rail systems are common. They vary in cause and severity, and can

lead to minor or major disruptions on the network. Disruptions affect both the customers

and the operating staff. To control and lessen the impact of an incident on the rail network,

controllers implement corrective actions. Controllers rely mainly on experience, personal

judgment and intuition to decide what recovery strategy to deploy for a given disruption.

The recovery strategy deployed has a strong impact on both the service quality and the time

to recovery. However, there is no systematic feedback loop to evaluate specific choices

made in the control room. The scarcity of numerical data directly retracing operational

actions makes ex poste aggregate analysis very difficult.

The objective of this research is to increase our knowledge about the impact of

recovery strategies deployed on high frequency lines. A crucial step is to build a new dataset

that accurately retraces controller's actions. The process is based on a comparison between

observed train movements and scheduled train movements. Actual train movements can be

obtained through various vehicle location databases. This research develops an efficient

merger of several vehicle location databases to create a reliable and complete vehicle

location dataset.

Building upon the reconstructed recovery strategy database, the research describes

a framework to evaluate the effectiveness of recovery strategies. The framework includes a

comparison between measures of recovery strategy characteristics and measures of
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recovery effectiveness. In particular, this methodology includes the definition of recovery

effectiveness indices (REI) that take into account the impact of the disruption both for

passengers and for the crew. For passengers, the research defines an integrated index

based on a calculation of excess waiting time. For crew, the study focuses on lateness

evaluated at crew relief points. The framework is applied to a case study based on the

Piccadilly Line, a high-frequency line of the London Underground. In the context of the case

study, the comparison of recovery strategies and effectiveness metrics suggests that an

incremental implementation of cancelations compared to an aggressive cancelation

strategy can have a positive overall impact on passengers.

Even though most of the research is applied to the Piccadilly Line, both the proposed

framework and the conclusions of this thesis are transferable to other metro lines and

systems.

Thesis Supervisor: Nigel H.M. Wilson

Title: Professor of Civil and Environmental Engineering

Thesis Supervisor: Haris N. Koutsopoulos

Title: Professor of Civil and Environmental Engineering Northeastern University
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Chapter 1: Introduction

Incidents in urban rail systems are common. They vary widely in cause and severity,

and can lead to minor or major disruptions on the network that affect both the customers

and the operating staff. To control and lessen the impact of an incident on the rail network,

controllers deploy a wide array of recovery strategies. On high frequency lines, the typical

operational actions taken are train cancelation, rerouting or holding. Controllers rely mainly

on experience, personal judgment and intuition to decide what recovery strategy to deploy

for a given disruption. Similar incidents may be resolved with very different recovery

strategies depending upon the controller in charge.

The recovery strategy deployed can have a strong impact on both the service quality

and the time to recovery. However there is no systematic feedback loop to evaluate specific

choices made in the control room. The scarcity of numerical data directly retracing

operational actions such as train holding or rerouting makes ex poste aggregate analysis

very difficult.

The objective of this research is to increase our knowledge about recovery strategies

deployed on high frequency lines. A crucial step is to build a new dataset that accurately

retraces controller's actions. The process is based on comparison between observed train

movements and scheduled train movements. Actual train movements can be obtained

through various vehicle location databases. This research develops an efficient merger of

several vehicle location databases to create a reliable and complete vehicle location

dataset. The result of this work will lead to a better understanding of current practices and

should eventually lead to guidance for better management of future incidents.

The first section of this chapter provides background information on service control

and high frequency lines. The second part presents the motivation for this research. The

third part describes the Piccadilly Line which will be used as a case study throughout the

thesis. Finally, the fourth part presents the general organization of this thesis.

12



1.1 Background

1.1.1 Rail transit disruptions

A disruption in an urban rail system can be defined as any unforeseen event that

forces the system out of normal operations. The line is said to be disrupted if the observed

train movements differ substantially from the scheduled movements. A disrupted rail

system is generally characterized by accumulated delays and high variability in headways.

The main cause of a disrupted rail system is the occurrence of an incident, such as a signal

failure, a disabled train in a tunnel, or a passenger emergency. Other events, such as

extreme overcrowding or internal staff problems can also lead to a disruption. In this

research, an incident is defined as any event that leads to a disrupted state.

Babany (2015) identifies two distinct phases in any disruption as shown in Figure 1-1.

The incident phase includes the period when the line is directly affected by the incident. An

example could be a signal failure that forces a train on the line to stop. During this phase,

controllers' main focuses is on safety and efficient communication. Specialized teams and

engineers are contacted to resolve the incident in the field. The main actions taken by

controllers are holding the trains closest to the incident. In addition, they often cancel trains

due to the incident or to reduce the congestion caused by holding trains.

The recovery phase starts when the incident is fully resolved. The line is still

disrupted but there are no longer any physical constraints imposed on train movements. In

the case of a signal failure, all trains are now allowed to run at normal speed. However, the

incident phase resulted in irregular headways and delays that have a direct impact on the

observed train locations. The main goal during the recovery phase is to bring the trains back

to their schedule. During this phase, controllers often reroute and renumber trains. They

also re-introduce trains which were previously cancelled to get back to the scheduled

frequency. The end of the recovery phase is a return to normal operations.

The disruption duration is defined as the time between the start of the incident and

the end of the recovery phase. Time to recover varies depending on the characteristics of
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the line and the incident, as well as the type of actions taken by controllers. Further detail

will be given in chapter 2.

Figure 1-1: The phases of a disruption

1.1.2 Service control

Service control is the process deployed by controllers to bring a disrupted system

back to normal operations. The process includes a variety of actions taken during the

disruption. A recovery strategy is defined by the bundle of corrective actions taken by

controllers to reduce the impact of a given incident. The recovery strategy is initiated during

the incident phase, as controllers take corrective actions such as train cancelation to allow a

smoother return to normal operations after the incident is resolved.

Carrel (2009) states that service control is a continuous process occurring

throughout the day. Figure 1-2, adapted from Carrel (2009) and a service control manual of

the RATP, the transit authority of Paris (Froloff, Rizzi, & Saporito, 1989), illustrates this

process. The system starts at State 0 with normal operations. A first incident occurs, which

leads to a disrupted State 1. If no action is taken, the system deteriorates to a State 2 that is

characterized by higher delays and headway variability. To respond to State 1, the

controllers take corrective actions A, that lead to a less disrupted line in State 2. If no

additional actions are taken, the line can further deteriorate to State 3. Because the line is

not back to normal operations, controllers deploy an additional set of corrective actions B

that lead to State 3. State 3 could be characterized as a return to normal operations, but

depending on the severity of Incident 1, it could also be characterized by residual

disruptions. A second unforeseen event, Incident 2, occurs, forcing the controllers to initiate

another set of corrective actions. Corrective actions A and B are seen as the recovery
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strategy in response to Incident 1. Corrective actions C are part of the recovery strategy in

response to Incident 2. The whole process describes the service control strategy, and

illustrates the dependency between various actions and the state of the system over time.

State 0

Incident 1

State 1

State 2

Corrective
Actions A -I

3

State 2 - CorrectiveActions 8

State 3 State 3

Incident 2

State 4

State 5

Corrective
Actions C

State 5

V

Figure 1-2: The continuous process of service recovery
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1.1.3 High frequency lines and the timetable

The research focuses on disruptions on high frequency lines. Most examples in the

thesis relate to rail systems and train operations. However, the general methodology and

findings are also applicable to other modes, in particular bus rapid transit.

High frequency lines are defined as rapid transit lines with a frequent scheduled

service. Observed headways on high frequency lines are typically under 15 minutes (at least

4 trains per hour and per direction). Most rapid rail transit systems are located in dense

urban areas with high demand, such as Hong Kong (MTR), London (TfL), New York (MTA),

Paris (RATP) and Boston (MBTA) which require frequent service on many lines.

Because of short headways, passengers do not plan their trip around a specific

scheduled departure. The frequency and reliability of the service are high enough for the

passenger to accept a short, random wait time. As we will expand on later, the average

waiting time in case of random passenger arrivals is a function of both the mean and

standard deviation of headway. Except in the case of fully automated systems, most high

frequency lines are based on a timetable for train operations. Even though passengers do

not use the timetable to plan their journeys, the operating staff depend on it. Each train is

assigned a train number and the timetable consists of a list of (iocation, time, train number)

triplets. Timetables are designed meticulously by the planning team to conform with various

constraints including desired frequency, rolling stock characteristics, and crew work rules.

Timetables are updated periodically to reflect changes in demand or operating performance

on the line. Some latency is included in the timetable which allows for small amounts of

lateness to be absorbed. However, larger incidents usually result in trains drifting away from

their scheduled movements. Controllers' main focus during disruptions is to bring all the

trains back to schedule to run smooth operations. This focus on lateness rather than

headway will be discussed in detail throughout the thesis.
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1.2 Motivation

As will be seen in more detail in chapter 2, in most systems there is variability in

controller responses to incidents. Most agencies do not have a system to systematically

record the corrective actions that were implemented. This makes it difficult, if not

impossible, to reconstruct recovery strategies taken, or to evaluate them.

Addressing this question complements Babany's (2015) previous work on developing

a tool to support controllers' choices during the recovery phase. Our research approach is

based on analyzing existing strategies. This is made possible thanks to in-depth analysis of

incident data. The results will help to put in perspective the recovery optimization tool

proposed by Babany (2015).

1.3 Research Approach

The overall goal of this research is complex and can be broken down into a set of

research objectives. The first milestone is to use different sources of Automated Vehicle

Location (AVL) data to constitute a reliable database for further analysis. This includes an

effective merging (implemented in R) between two incomplete, but complimentary, AVL

databases : Netmis and CTFS. The second step is to infer the actions taken by controllers

during both the incident and the recovery phases. Based on Carrel's (2009) methodology,

the analysis will compare timetable values and observed train movements to retrace

controllers' decisions. The final step is to use the recovery strategies database in parallel

with reliability metrics calculated from AVL data to provide insight into current recovery

strategy practices. Figure 1-3 illustrates the thesis workflow.
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Figure 1-3: Research work flow
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1.4 Literature review

Service recovery has been the subject of numerous past studies. Research

concerning service control can be dated back to 1972. Most of the early work described

corrective actions that are implemented without any knowledge on train locations

throughout the line. In particular, Osuna and Newell (1972) developed a dynamic

programing approach for optimal holding strategies at terminals. Osuna and Newell focused

on understanding the impact of holding strategies for both the transit agency and the

passengers. The holding strategy was computed to satisfy both the transit agency's goal

which was to achieve the minimum possible running times (lower costs) and the

passenger's goal which was to achieve maximum reliability.

The first elements of research concerning expressing and short-turning were

conducted on the MBTA Green line. In particular, Deckoff (1990) studies the potential

impacts of short-turning on passengers. He uses a simulation framework in which he

generates data from a Monte Carlo simulation. He identifies several configurations where

short turns provide a benefit to passengers. Even though his early research is an important

first step in the field of disruption management, his results are specific to the characteristics

of the MBTA Green line and cannot be easily applied to other high frequency lines. A few

years later, Eberlein (1995) studied the usage of expressing, holding and deadheading for a

linear rail line. She formulated two nonlinear integer programming models to minimize

passenger wait time. She concluded that the effectiveness of the recovery strategies was

mainly a function of the demand rather than the type of strategy.

With the increase in availability of real time information, more recent research

provide comprehensive models to test holding and dispatching strategies on train or bus

simulations. For example, Adamski & Turnau (1998) created a bus line simulation model to

test a set of dispatching strategies, aiming mainly at good headway adherence. More

recently, Sanchez Martinez (2015) developed an optimization model for holding-based

control that accounts not only for the current state of the system, but also for expected

changes in running times and demand.

While many research studies focus on the potential of simulations to provide insight
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on potential recovery strategies, only a very limited number of studies are fully based on

non simulated data. Soeldner (1993) is one of the first researcher to have collected data on

actual control decisions taken by local dispatchers. Because of the absence of numerical

data available concerning corrective actions, which is still generally the case today, Soeldner

collected data from manual logs for two days of Green Line operations. He classified the

dispatcher's decisions as "good" or "bad" decisions by comparing them with model

predictions. He concluded that a more structured control strategy which didn't rely solely

on the individual judgment of dispatchers could increase the number of effective control

decisions that were made. Carrel (2009) provided a great advance concerning the use of

actual data for service recovery analysis. He develops a framework to infer various

corrective actions based on non simulated train tracking data. His methodology is based on

features of the data that are specific to the line of application, which could limit the

potential for application to other lines. The general framework he develops will however be

used in the context of this thesis to develop a more general and easily transferrable

methodology.

1.5 Application to the Piccadilly Line

This section introduces the public transport system in London, with an emphasis on

the Piccadilly Line which will be used as a case study and application throughout the thesis.

The general research methodology, as well as the insights provided by this research, are

applicable to other high frequency lines in London and throughout the world. Section 1.5.1

describes the London public transport system, in particular the transport agency Transport

for London and the London Underground. Section 1.5.2 gives an overview of the Piccadilly

Line. The Piccadilly Line is the high frequency line on which most of the data and field

research of this thesis is based.
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1.5.1 Transport for London and the London Underground

Greater London Region and Transportfor London

Greater London is a region of England consisting of 32 London Boroughs and the City

of London. With a population of 8.2 million in an area covering approximately 600 square

miles (Transport for London, 2009), it is the most dense region of England. London has an

extensive and well developed transport network, which includes both public and private

services. Transport for London (TfL) (formerly "London Transport") is the local government

body responsible for most aspects of the transport system in Greater London. The agency

was created in 2000 as part of the Greater London Authority and is overseen by the Mayor

of London. Transport for London is the public agency responsible for setting budget and fare

policies for the London public transport system. TfL also oversees London's main road

network and congestion charging scheme as well as the licensing, regulation, and inspection

of London's taxi and private hire industries. In addition, it is responsible for the London

Underground (LU), local buses, the London Overground, Tramlink, the Docklands Light

Railway (DLR), the Barclays Bike Share network and more recently the Emirates Air Line

(Transport for London, 2009). Except for the London Underground (LU) that is a subsidiary

of TfL, operations are generally contracted out to the private sector. Long distance rail

networks such as national rail lines are not the responsibility of TfL. They are overseen by

the National Department for Transport (DfT). TfL is also responsible, jointly with DfT, for

commissioning the construction of the new Crossrail line. The 2015-2016 annual budget of

TfL was 11.5 billion pounds, covering some 23,000 employees (Transport for London, 2011)

London Underground

London Underground Ltd. (LU), which is a subsidiary of TfL, is the oldest transit

system in the world with its first line opening in 1863. Today, LU is a rapid transit system

that serves a large part of Greater London and extends into parts of Buckinghamshire and

Hertfordshire as well as Essex. The network includes a total of 270 stations, 11 lines and

approximately 250 miles of tracks. The annual ridership in the 2014/2015 fiscal year was 1.3
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billion passengers (Transport for London, 2015). Fare collection has evolved from the paper

format Travelcard ticket (1983) to the Oyster card (2003) which is a contactless (blue) smart

card used to enter ("tap in") and exit ("tap out") the system. TfL is progressively contracting

out the electronic ticketing business to the private sector. Since June 2014, contactless debit

and credit bank card payments are accepted as a substitute for an Oyster card for the same

fare.

Figure 1-4 shows the entire rail network overseen by TfL. The various colors of full

lines represent the 11 different LU lines. The lighter colored lines represent the other

systems (Crossrail, DLR, Cable Car, London Overground, London Tramlink).

0 -Ro

Figure 1-4: TfL Ra I Network
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The network is articulated around central London and extends through various

branches and systems to the outer areas of London. It is a complex network, with many

interchange stations. Some lines share portions of their route with other lines and many

journeys can be completed using a variety of lines and routes. These redundancies make the

whole network more robust. However interdependencies also increase the complexity of

the network and the difficulty of planning and operations.

In the context of disruptions, the interdependencies are usually beneficial for

passengers. In case of service suspension or extreme overcrowding on a given line, it is

often possible for passengers to complete their journey by switching lines, even though this

will inconvenience passengers, as will be discussed in detail later. However, it provides an

opportunity for them to reach their destination without needing to change modes or to exit

the public transport system. If interconnections and redundancies are numerous, the

average journey time may be little changed using an alternate, second choice, route. The

total negative effect on passengers of a disruption is therefore reduced due to redundancy

in the network. On the planning side, shared tracks and interdependencies make operations

more complex and add difficulty during recovery.

LU, and more broadly TfL as a whole, has a major economic impact on the London

region. It provides a rapid transit system which connects millions of individuals to

employment, shopping, entertainment, attractions and travel hubs such as airports or

international train stations. The 2 1st century has seen a steady decline in total car trips in

London, as shown in Figure 1-5. Coinciding with this decrease of car usage there has been a

significant increase in public transport trips. As seen in Figure 1-6, the percentage of trips in

London made by public transportation increased by almost 10% in the previous decade. The

growing population of London as well as this shift from private to public transportation

increases both the agencies' impact as well as the multiple challenges it faces. Many

systems, in particular many London Underground lines, run at capacity during peak hours in

Central London. Running at capacity both reduces flexibility in operations and sets higher

expectations for reliability. At near capacity operations, incidents may lead to severe

disruptions with larger negative impacts on passengers.
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Figure 1-5: Average number of trips per weekday by mode

Percentage of trips
60%

50%

40%

30%

20%

10%

0%
:993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Public Transport - Private Transport Cycle -- 'Walk

Figure 1-6: Percentage of trips in London by mode
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1.5.2 The Piccadilly Line

In the context of the MIT-Transport for London partnership, the London

Underground was chosen as the main Underground Line for analysis. More particularly, the

Piccadilly Line is the line on which this thesis focuses. The research findings are also based

on various field studies that complement the theoretical approach to disruption

management. These field studies were mainly conducted in the Piccadilly Line control room

at Earl's Court. Even though the thesis is based on Piccadilly Line data and observations, the

general research framework and methodology are applicable to any other high frequency

line in London. The metrics, concepts, and data used in the context of this research are

applicable to many other lines throughout the world. Furthermore, the findings and insight

from this research should be of value to many other transportation agencies beside TfL. This

section presents the general characteristics of the Piccadilly Line.

* $Of
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Figure 1-7: The Piccadilly Line, source Freemark (2013)
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The Piccadilly Line is the 2 nd longest line of the London Underground with 71 km of

tracks (Transport for London, 2014) and has 53 stations. The line is a crucial connector to

major travel hubs, as it serves both the international rail station King's Cross and the

terminals of Heathrow International Airport. It is also used by many tourists since it serves

many famous London attractions. There are a more than 200 million journeys per year

made on the Piccadilly Line.

As seen in Figure 1-7 from Freemark (2013), the line runs from the Northeast to the

Southwest, from Cockfosters to Uxbridge and Heathrow. The line splits into two branches at

Acton Town. The portion between the stations Ealing Common and Earl's Court is shared

with the District Line. The crew depots are at Arnos Grove and Acton Town, at each end of

the line. The main points where trains can reverse directions are Arnos Grove, Acton Town,

Uxbridge and South Harrow. The control room, which will be described in section 2.2.3, is

at Earl's Court. The Piccadilly line is operated with 1973 tube rolling stock. The fleet is

composed of a total of 86 trains, but only 79 are needed to run the scheduled service during

the peak period. Table 1-1 describes the average train frequency scheduled by route.

Table 1-1: Train frequencies by route.

Portion of the line Scheduled frequency in trains per hour

Off Peak On Peak

Cockfosters-Heathrow T5 6 9

Cockfosters-Heathrow T4 6 9

Cockfosters-Uxbridge 3 4

Cockfosters-Rayners Lane 3 4

Arnos Grove-Northfields 3 4

The Piccadilly Line is of particular interest, as it presents many representative

challenges to LU. It has seen a steady increase in ridership and yet relies on some of the

oldest infrastructure and rolling stock. These characteristics make it a good line to study in

the context of disruption management as incidents are frequent and impact a large number

of passengers. The PICU project, which will renew parts of the signaling system and upgrade

26



the control room, should reduce the occurrence of some types of incidents such as signal

failures. However, there are no plans for a full update of the rolling stock and tracks in the

next 10 years . These observations motivate our research. Given the capacity and age of the

line, we will study alternate ways to lessen the overall impact of disruptions, both for

passengers and for the operating staff.

1.6 Thesis Organization

Chapter 2 provides background information on service recovery applied to high

frequency lines. First, the chapter defines types of disruptions and analyses incident causes.

A precise understanding of disruptions is important to better grasp the utility and

complexity of recovery strategies. The second part focuses on service recovery strategies. It

describes the various corrective actions used to mitigate the effect of an incident. In

addition, it explains the general framework used to measure the effectiveness of recovery

strategies. The third part of Chapter 2 provides a detailed description of the Piccadilly Line

including a description of the different roles of the operating staff as well as a discussion of

communication and work flows during disruptions. It emphasizes the importance of the

control room, but also describes the other units that play a role during service recovery. The

Piccadilly Line is the high frequency line used as an example throughout this thesis and from

which the data used originates. The findings and processes developed throughout this

research are applicable to any high frequency line. However, some specifics of the

algorithms deployed as well as some key assumptions are directly linked to the choice of

the Piccadilly Line itself. It is therefore essential to present in detail the characteristics and

challenges of this line.

Chapter 3 is focused on Automated Vehicle Location data. The chapter describes the

characteristics and utility of AVL data. AVL data is crucial to track train movements and is

the main type of data most public transport agencies rely on to measure service

performance. Typical measures include headway variability or number of trains per hour. In

the specific context of the research, AVL is a building block to infer controllers' actions
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through a fine comparison with the timetable. The chapter continues with an in depth

description of the characteristics and limitations of the two distinct databases available for

the Piccadilly Line. The CTFS database is limited in spatial and temporal resolution. The

Netmis database is unreliable and many records are missing train numbers. A methodical

comparison between scheduled train movements and observed train movements can

reconstruct recovery strategies. The AVL that provides observed train movements should be

as precise and reliable as possible to enable the reconstruction of recovery strategies.

Missing train numbers in the AVL dataset could prevent the comparison with scheduled

movements. Poor spatial resolution could limit the identification of short-turning strategies.

Poor temporal resolution could limit the identification of holding strategies.

Chapter 4 presents the methodology and algorithm developed to resolve the AVL

data quality issues. The chapter describes the fusion of several incomplete and unreliable

databases to obtain a higher quality AVL dataset. The first part presents the methodology

and general approach to the merging process. The knowledge acquired can be applied to

multiple sets of complimentary but incomplete databases. The second part focuses on the

AVL data and details the different steps of the merging algorithm. The third part of the

chapter concentrates on the various parameters included in the merging process. The

fu pa L Ueibes the implementation of th-e merging algorithm for the Piccadilly Line.

The final part discusses results of the merging, the validation methodology and the choice

of parameters based on a sensitivity analysis.

Chapter 5 concerns the inference of recovery strategies. The first part describes the

general methodology applied to infer all the corrective actions implemented on the line.

This methodology is based on a comparison between observed train movements and

scheduled train movements. The algorithm developed both for the short-turn and

cancelation inference is detailed in the second part of this chapter. A discussion on the

choice of parameters for the inference is presented. The final part describes both the

results and the limitations of the inference process. In particular, the inference is limited to

a small subset of all the possible corrective actions that can be implemented on high
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frequency lines and further research could include other corrective actions such as

expressing or holding.

Chapter 6 presents a methodology to evaluate the effectiveness of recovery

strategies. The methodology is based on a comparison of days with similar incident

conditions. The first part define recovery effectiveness indices for both passengers and

crew. the protocol and defines recovery effectiveness indices. These indices provide a

metric to evaluate the total impact of the disruption. The second part describes two similar

incidents that occurred on the Piccadilly Line. These incidents are chosen as a case study to

apply the proposed methodology. In particular, prior and posterior incidents during the

chosen days are studied as these may have an effect on the assessment of recovery. Finally,

the last part of the chapter presents the results of the case study.

Chapter 7 concludes with a summary of the main findings. It presents

recommendations as well as the potential short and long term gains for Transport for

London and other transportation agencies. Finally, it details the limitations of the research

and the potential next steps.
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Chapter 2: Disruptions and Recovery Strategies

This chapter provides background information on service recovery on high frequency

lines. Section 2.1 characterizes incidents. Section 2.2 discusses the various impacts of

disruptions on both passengers, crew and the travel agency. Section 2.3 discusses recovery

strategies and how to measure their effectiveness. The final section presents in more detail

the specifics of the Piccadilly Line control environment.

2.1 Incident characterization

All disruptions are initiated by the occurrence of an incident. Incidents are common

on rail systems but they vary widely in cause, frequency and duration. This section presents

different possible incident categorization schema and describes the large variability in

incidents.

2.1.1 Variability in cause of incident

Most public transport agencies differentiate incidents by cause including customers,

signals, staff errors, rolling stock, track, safety, fleet or external reasons such as extreme

weather. The CuPID database records all incidents that occur on London Underground lines.

The database is available for ex poste analysis but is not available in real time. Each incident

on the London Underground is assigned a unique identification number. The CuPID data

provides information on this incident, mainly the time and date of the incident, the location

of the incident, the duration of the incident, the incident type as well as a more detailed

description of the incident. Chapter 6 presents in more detail the limitations and

information available through this database.

Based on CuPID data, Figure 2-1 illustrates the distribution of incidents by cause that

occurred on the Piccadilly Line from October - December 2013. This illustrates the large

variability in incident cause. Figure 2-2 references the total time of incident by cause. Even
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though incidents caused by staff are more frequent, the biggest portion of incident time is

due to signals. As can be seen in Figure 2-2, 35% of the total incident time are due to

signals. This observation is particular to the Piccadilly Line and can be explained by the

aging infrastructure and rolling stock. The specific difficulties linked to the aging signaling

system will be discussed in Chapter 3.

Distribution of Incidents by cause

Staff 24%

Rolling Stock 22%

Customer & Public 22%

Signal 17%

Track and Civils 9%

External 2%

Safety and Security 2%

Fleet 1%

0% 5% 10% 15% 20% 25% 30%

Figure 2-1: Distribution of incidents by cause on the Piccadilly Line

Total Time of Incident by Cause

Signal 35%

Rolling Stock 19%

Staff 15%

customer and Public 12%

External 12%

Track and Civils 4%

Fleet 1%

Safety and Security 1%

0% 5% 10% 15% 20% 25% 30% 35% 40%

Figure 2-2: Total time of incident by cause on the Piccadilly Line
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I
2.1.2 Variability in number of incidents

The variability in the number of incidents is also high. Figure 2-3 reports the number

of signal failures on the Piccadilly Line over one month.

Number of Signal Failures per Day

4

3

2

0
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Figure 2-3: Number of signal failures

2.1.3 Variability in total time of incident

In addition to the variability in the cause of incidents and in their frequency, the

total time of incidents (defined as the time from the start of the incident to the time of

resolution) is also variable. Figure 2-4 represents the histogram and values of durations

observed on the Piccadilly Line from October - December 2013.
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Distribution of Incident Durations
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Figure 2-4: Incident duration

This high variability leads to complex decision processes in the control environment

as corrective actions need to be implemented without a good idea of the likely incident

duration and it's potential effect on the line.

2.2 Impact of disruptions

Disruptions that occur on rail systems have an impact both on passengers as well as

on the operating staff. For example, drivers may often have to alter their scheduled shift

because of an incident. Passengers' journey times may be increased and they may

experience additional anxiety or inconvenience. Finally, the transport authority can also

suffer severe negative impacts including financial loss and degradation of public image.

33



2.2.1 Impact on passengers:

- Increased Waiting Time and Journey Time.

The main negative impact on passengers resulting from a disruption is an increase in

journey time. The incident usually results in disrupted service characterized by lower train

frequency and uneven headways. Passengers located near the incident location or further

away on the same line, as well as on substitute lines, are all affected because of the

propagation of the disruption. Both longer journey times (because of potential reduced train

speeds) as well as increase in platform waiting time have a direct negative impact on

passengers.

- Increased anxiety

In addition to an increase in Journey Time, incidents result in increased anxiety for

the passengers. Most common incidents require trains to be held for safety concerns. For

example, if smoke is detected in a tunnel, the driver will bring the train to a stop and a

specialized repair team will need to be sent into the tunnel. Signal failures are also a

common cause of trains being held. Signals are located at various points along the tracks,
a,~ %A~~ Thi systemuragee iga t nnddrversmswtra g signal LU enter the next track segment. This simple system

keeps a safe separation between trains. If the signal stays red, safety protocols require the

driver to stop the train. Trains will also be brought to an abrupt stop in case of a passenger

on the tracks. The engineering staff will turn the traction current off on the affected tracks

for safety reasons.

These examples illustrate times when a train in service with passengers onboard is

stopped. In some circumstances, the train may be stopped between stations. In cases of

overcrowding, passengers may feel ill or faint. If the train must be held for an extended

period between stations, the operating staff will assist passengers in alighting. A common

strategy is to bring a second train up to the rear of the blocked train to allow passengers to

pass through the second train to alight. In extreme cases, passengers will use the

emergency paths along the tracks to reach the closest station.
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In addition to the unknown duration of the hold, direct safety issues can lead to

additional anxiety. Sudden stops caused by an emergency braking can harm passengers. The

smell of smoke or loud unexpected noises can also cause additional anxiety. Rare events,

such as doors opening while the train is moving, can have a large impact on passengers'

experience. All these effects impact only the passengers directly affected by the incident.

They are difficult to quantify precisely and they are likely to be only a small fraction of the

total passengers on the network.

- Increased inconvenience

During disruptions, passengers throughout the disrupted line (or network)

experience increased inconvenience. Disrupted service can result in higher levels of overall

crowding. Tirachini (2013) explores the various effects of crowding on passenger wellbeing.

The increased inconvenience due to crowding results from different factors. Crowding

increases overall stress and feelings of tiredness, it reduces the productivity of passengers

working on a train and can trigger a feeling of loss of privacy as well greater concern for

safety. All these factors increase inconvenience.

The inconvenience can also be due to longer journey times, the increased possibility

of arriving late at work or less time spent with friends or family. Even with an equivalent

journey time, passengers needing to switch lines or modes may experience greater

inconvenience. These passengers need to re-plan their routes, possibly walk further, wait

for another train (or bus) or even switch from public to private transport. Inconvenience

and anxiety can result in an increase in perceived journey time. An additional inconvenience

in case of switching systems is an increased fare for the same journey. These issues will be

further discussed in section 6.1.
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2.2.2 Impact on crew:

- Possible late relief or shorter meal break

Disruptions generally result in longer shifts or shorter meal breaks for drivers. The

driver of a late train may be forced to stay on duty for an extended period of time. The

impacts of disruptions on drivers vary depending on the transport agency and the power of

the driver unions. When driver's unions are powerful, the main priority of recovery

strategies may be to ensure that drivers' shifts are respected. If a train is late, a driver may

be replaced by a spare driver to respect his planned shift. In other systems where drivers'

unions are weaker, respecting drivers' shifts and meal breaks may be less of a priority and

drivers may often have to drive over schedule.

- Increased complexity

Incidents and disruptions result in increased overall complexity for drivers and staff.

During normal operations, drivers are assigned to specific shifts and their main tasks are

driving the train (advancing while respecting the signaling indications) and opening doors

for passengers. In non-automated systems, the driver may also be responsible for

anniuniing dill dLinations, next stations and connections to other lines. On the London

Underground, some lines are automated and the main task for drivers is controlling the

doors. However, when disruptions occur, drivers have many other tasks with the safety of

passengers being most important. The driver needs to report any malfunctions or anomalies

(smoke, passengers on tracks, etc). The driver must be able to communicate clearly with the

rest of the operating staff. He needs to describe the incident as (s)he is experiencing it. In

case of a signal failure (for example a signal being blocked at red), the driver may need to

pass the signal at low speed if ordered to do so by operations control. The experienced

complexity is very much linked to the overall lateness of the line. Staff do not have any

additional tasks or uncertainty while working on a line running on schedule. On the

contrary, the more the train are late the more the crew and staff will see changes in

routine, scheduled operations and shifts.
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As can be seen, both the complexity and the possible late reliefs, or changes in shift,

are the direct result of lateness of trains. A measure of the observed lateness at crew reliefs

is a good way to approximate the overall impact of lateness on crews. Section 6.1 will

further elaborate on this point.

2.2.3 Impact for the transport authority

- Financial loss:

The first major impact is a financial loss for the transport authority. Transport

authorities often reimburse passengers who experience severely disrupted journeys. On the

London Underground specifically, passengers may request a total refund if their trip was

delayed for more than 15 minutes (Transport for London, 2016). In addition to direct

financial loss, the transportation agency loses passengers who switch to other modes due to

disrupted services. Passenger counts at stations provides insight on this metric. By

comparing the total number of station entries and exits between normal days and disrupted

days, it is possible to infer how many passengers were lost by the agency. In some extreme

disruption cases, entire stations or lines must be closed resulting in an increased financial

loss for the transport authority. In addition to temporary switches, some customers may

permanently switch modes, resulting in an additional financial loss for the agency.

- Degraded public perception :

High number of incidents and repeated disruptions often lead to a decline of popularity

and trust from passengers. Reliability and safety are key for passengers using the service

and disruptions can have a severe negative impact on their perception of travel. In dense

networks where a large part of the population heavily relies on public transit, media

extensively report and comment incidents and disruptions, feeding in the general degraded

public perception. Social media such as twitter or Facebook that disseminate passengers'

experience and dissatisfaction may increase this phenomenon. The degraded public
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perception may increase the number of passengers switching permanently from public to

private modes.

Even though the impact of disruptions on the transport authority is important, the

research will focus on the impact on both passengers and crew.

2.2.4 Metrics

Section 2.1.2 discusses the various impacts of disruptions. In particular, there is an

important distinction between passenger impact and crew impact. Passenger impacts are

related mainly to journey time metrics while crew impacts are related to lateness compared

to the schedule. This research focuses on waiting time as the main measure of impact of a

disruption. A possible next step for further research would be to include Automated Fare

Collection data to incorporate metrics of observed journey times during disrupted days.

Assuming random arrival of passengers at stations, the average waiting time at a

station is a function of the average headway and the headway variance, as given by Larson

& Odoni (1981):

E(T) = (1+ cv(H)2 ) (2-1)
2

E(T) = expected value of passenger waiting time,

E(H) = expected value of headway,

cv(H) = coefficient of variation of headway

In this case, only the headway value and regularity matter. Any measure of train

lateness is irrelevant. However, the evolution of lateness is of great concern for controllers.

As discussed in section 2.2.2, it is important to consider the impact of lateness on crews.

Table 2-1 summarizes the main metrics that will be used throughout the thesis.
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Table 2-1: Metrics to measure impact

2.3 Service recoveries and metrics to measure their effectiveness

This section describes the corrective actions that are implemented by controllers to

mitigate the impact of incidents. Section 2.3.1 describes the most common corrective

actions that are used in rail systems. Section 2.3.2 presents the general characteristics of

service recovery. Section 2.3.3 discusses recovery strategy effectiveness.

2.3.1 Description of corrective actions

Figure 2-5 (a) depicts schematically a network with trains represented in grey. A

disruption is represented by the black star. With no corrective actions, the incident would
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Proposed Metric Definition Point of View

Definition

Difference between

observed train Value associated

Lateness departure and by train number Crew centric measure

scheduled train and station

departure

Value associated
Number of

to a portion of or Passenger centric
Frequency of trains operating trains in

an entire line or measure
both directions

network

Value associated
Standard deviation

Evenness of to a portion of or Passenger centric
of observed

headways an entire line or measure
headways

network



lead to a highly disrupted service. Figure 2-5 (b) illustrates the possible state of the line with

no control interventions. The eastern part of the line has extremely long headways and the

western part of the line is bunched with trains blocked between stations. Controllers

implement a variety of corrective actions to mitigate the effects of the incident. As

explained in Chapter 1, the sequence of corrective actions is called the recovery strategy.

This section details a few of the most common actions used on high frequency lines.

(a) Initial state of a line with disruption

(b) State of a line with disruption and no control

Figure 2-5: Schematic disruption

- Holding

Holding consists of purposefully stopping a train while in service. On some systems,

automatic holding instructions are given to maintain, or increase, headway regularity. This

type of holding occurs at stations and does not last longer than a few minutes. In the event

of more severe disruptions, controllers generally give specific instructions to drivers

concerning the location and the duration of a hold. Holding can cause immediate

annoyance or anxiety for passengers in the concerned train. However, it is a useful strategy

to reduce the possible bunching and keep a balanced distribution of trains on the line. The

holding strategy has been studied and modeled in numerous previous research. Depending

on the focus of the research, the holding strategies differ in general objectives (passengers
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or crew centric measures), underlying models used, and available information utilized for

the optimization. Common objectives include schedule adherence (Adamski and Turnau,

1998), headway adherence (Rossetti and Turitto, 1998), headway regularity (Daganzo, 2009

and Bartholdi and Eisenstein, 2012), and general cost minimization (Delgado et al., 2009,

Delgado et al., 2012, and S'aez et al., 2012).

- Short tripping

A train is short tripped when it changes direction before its scheduled destination.

66 Short tripping literature review A short trip can only be implemented at locations with

reversing points. A reversing point allows a train to switch directions thanks to additional

installed tracks. On the Piccadilly Line, there are a total of six reversing points. Short tripping

impacts passengers whose final destination is no longer served. These passengers may have

to change trains or wait longer and hence, have a longer journey time. Controllers

implement short trips mainly to reduce lateness of a given train as illustrated in Figure 2-6.

Train S goes through the reversing point. In the given example, the running time from A to B

is 20 minutes and train S has accumulated a total of 25 minutes of lateness compared to

schedule. A short trip for train S will result in the train arriving at point B only 5 minutes

late.

S

B

Figure 2-6: Short tripping
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- Expressing

To bring a train back to schedule, another possible operation is expressing. 66 Short

tripping literature review A This strategy is less common and is usually implemented in

dense networks with closely spaced stations. A train is expressed when it does not stop at a

given set of stations it was scheduled to stop at. For passengers planning to board or alight

at the expressed stations, journey time will be increased and they will need to switch trains.

- Train renumbering or train reformation

A very common strategy is to implement train renumbering, also called reformation.

This strategy consolidates lateness on a reduced number of trains. Train renumbering

changes the train number of a train. Usually, controllers implement a series of reformations.

Figure 2-7 illustrates the logbook with a reformation plan documented. Reformations bring

all trains back to schedule except for one train that accumulates the delay of all other trains.

This train is then expressed or short tripped to get back to schedule. Train renumbering

does not directly impact passengers. The main impact is on crew and the operating staff.

Drivers need to change the number of the train they are driving and a reformation will

usually result in a change in their shift.
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during the recovery. Cancelations have a direct negative impact on passengers as train

frequency drops. Chapter 6 will discuss the possible benefits of aggressive or incremental

cancelation policies.
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2.3.2 Characteristics of service recovery strategies

As can be seen by the different actions just described, the main goal for the

controllers and the operating staff is to bring the trains back to schedule. In some cases of

severe disruptions, a return to scheduled operations may be very difficult to achieve. In

those cases, it may better to concentrate on passenger metrics (train frequency, evenness

of headways) rather than on lateness.

Even though there is a limited set of possible corrective actions that can be used

during disruptions, there is a large variability in responses due to the experience, personal

preferences and habits of controllers. For similar incident characteristics, two different

controllers may implement very different recovery strategies. The lack of reliable

information and the paper-based tools controllers work with also limit the scope of possible

recovery strategies. For example, in the case of the Piccadilly Line, the controllers have a

good understanding of train lateness but do not have access to real-time metrics on

frequency or headway evenness. Both personal opinions and a lack of complete information

can lead to sub-optimal choices of the corrective actions to implement.

Most agencies do not have any system to systematically record the corrective

ctiVnsa that were implemented. The research develops a framework to infer all the

corrective actions that were deployed based on a comparison between train tracking data

and schedule data.

2.3.3 Effectiveness of recovery strategies

As discussed previously, there are many ways to measure the performance of a line.

This research focuses on a multi-criteria characterization of performance. Both passenger

and operating metrics are incorporated in the evaluation. This section briefly describes the

general concepts and framework that are used to measure the effectiveness of a recovery

strategy.
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One important concept is the time to recover. As seen in Figure 2-8, time to recover

is defined as the time from the end of the incident to return to normal operations. Normal

operations are usually described as scheduled operations, which relates to lateness

measures. However, the passenger point of view, only train frequency and evenness of

headway are important. Chapter 6 will include both passenger and operation metrics to

take into account the different players in the system.

'irIe io -ecover

Figure 2-8: Time to recover

An effective recovery strategy is defined as a recovery strategy that mitigated a

given incident's impact as much as possible. Because of the high variability in type, location

and time of incidents as discussed in section 2.2.2, it is difficult to compare recovery

strategies one to the other. Chapter 6 introduces a methodology to explore situations with

similar incident characteristics. The protocol compares similar disruptions and studies the

impact of different recovery strategies on metrics linked to reliability and time to recover.
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2.4 Service Recovery on the Piccadilly Line

2.4.1 Organization of the control center

Figure 2-9 illustrates the organization of the Piccadilly Line control center. The

control center is at Earl's Court on the southwest of the line. The control room combines

four different roles. The signalers (I) are dispersed in a semi-circle facing the train tracking

system represented by dashed lines. Each signaler is in charge of a portion of the line. On

the right side of the room, an engineer is present to advise controllers during disruptions

caused by signal failures or train malfunctions. The engineer is in charge of sending the

appropriate repair staff to the field when needed. Behind the signalers and on a higher level

(for visibility purposes), there are two controllers (IV) and the line information manager (Ill).

Figure 2-10 is a picture of the control room.

IV IV

Figure 2-9: Display of Earl's Court Control Center Figure 2-10: Earl's Court's controllers desk

The controllers are in charge of implementing all corrective actions when disruptions

are observed. They work with a screen tracing train lateness. The screen indicates every

value of train lateness at four given stations. A color code is used to indicate lateness. Green

lines represent trains which are less than 5 minutes late. Orange lines indicate trains

between 5 and 10 minutes late. Trains with more than 10 minutes of delay are displayed in
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red. Figure 2-11 is a screen shot of such a screen. This color coding may create a bias

towards train lateness versus train frequency. During in-depth interviewing with controllers,

the main goal that is mentioned is to return the lines to green.

Every corrective action is written in a manual logbook for personal records. These

manual records are archived for several years but are accessible only in case of major fault

or legal concerns. In most cases, the logbooks are used for controllers to transmit

information from one shift to the other or for their own purpose to keep track of their

operations. The service control manager does not sit in the control room but is also in the

control center. His role is to manage the controllers and give feedback to the service

manager who is usually a more senior employee. Service control managers are in charge of

delivering daily summaries of operations. This system is effective to give direct feedback to

operating staff in case of major faults. However, it does not allow more refined feedback on

the type of recovery strategies deployed. The daily summary of operations does not

precisely retrace the corrective actions that controllers implemented, as these are only

recorded in paper logbooks. The service control manager therefore does not have access to

enough information to give detailed feedback on the type of corrective actions that were

implemented on a given day. Discussion with staff in place suggest that rebuilding such a

database would be extremely helpful.

The line information manager communicates with the controllers and is the

interface between the operation staff and the station staff as well as the public. Typically,

the information manager is the person in charge of updating the publicly available

dashboard to indicate the level of disruption to passengers. The display of the room enables

every player to communicate easily with each other. To contact staff outside the control

room, telephone is the main mode of communication. A new control room is in the process

of being developed at South Kensington to replace Earl's Court. The general organization

will stay the same. A major change will be the potential of rotating roles. As is done on

other lines including the Central, new staff will be trained to operate interchangeably in the

roles of signalers, controllers and line managers. This will allow each player to have a better
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understanding of the complexities of given roles and should ease communication between

the groups.

ONJ

Figure 2-11: Lateness screen shot

2.4.2 Communication

Figure 2-12 illustrates the flow of information between the key players during

disruptions. The control room is the main center of decision-making. However, in the case

of the London Underground, train and staff management are separated. The duty manager

trains, or DMT, is in charge of dispatching drivers to the trains. In case of a change of

schedule, the controllers must first contact the crew depot to verify that their operations

are feasible from the crew perspective. These calls are time consuming and communication

issues can block a potentially successful recovery strategy. Controllers may propose a

recovery strategy that includes a number of reformations. If the manager in the crew depot

is not able to re-assign the drivers to the requested shifts, the controllers' optimal plan must

be revisited. As described earlier, Babany (2015) proposes an optimization framework to

automatically create an optimal recovery plan given crew constraints.

Besides the crew depot, both controllers and crew depot managers must

communicate directly with the drivers in the field. Station staff may also be helpful to

resolve some incidents. Since the 2012 Olympics, an incident response cell was created to
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deal with serious incidents. This cell is composed of specialized units and police to assist

during a severe incident, notably for situations where legal issues are likely to arise

(passenger fatality, severe injuries, ...).

control Room - -- --- Crew Depot

driver

Incident Response cell Staff at Stations

Figure 2-12: Communication during disruptions
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Chapter 3: Track tracking data availability and reliability

Background information on service recovery on high frequency lines was provided in

chapter 2. The emphasis of this chapter will be on Automated Vehicle Location (AVL) data

which is the main source of data the research is based on. Section 3.1 describes the various

data sources that can be used to qualify and quantify events linked to service recovery.

Section 3.2 describes the various uses of AVL data, both during service recovery and for

performance tracking. Section 3.3 and 3.4 describe the AVL data available on the Piccadilly

Line where information concerning train location is provided through two independent

systems: Netmis (Network Management Information System) and CTFS (Controlled Train

Following System).

3.1 AVL in context

Section 3.1 introduces the range of data feeds available in the context of disruptions, giving

their main characteristics and limitations. The second part of this section defines and

describes the main characteristics of AVL.

3.1.1 Data generated during disruptions

This section lists some of the available data recorded during disruptions. As seen in

Figure 3-1, some data is recorded automatically while other information is manually

generated.
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Figure 3-1: Data generated during disruptions

Most agencies rely on automatically generated data to monitor the system's

performance, specifically fare collection data and train tracking data.

Fare collection data

Automated Fare Collection data, is recorded through the information system that is

installed to collect fares from passengers. On the London Underground, all entries and exits

are recorded through smartcard or a credit card taps, which provide a high level of spatial

and temporal resolution for passenger data. The AFC data specific to the London

Underground is referred to as Oyster data. Freemark (2008) uses Oyster data to measure

the impact of disruptions on passengers. Even though Oyster data will not be the main

source of data used in thi research, it is a reliable and valuable data source that provides an

accurate description of demand. It is not available in real time. In other systems, fare

transactions occur only at entry gates which limits the information available to entries per

station. In such cases, it is possible to estimate the spatial and temporal demand using

origin-destination inference (ODX) algorithms such as those developed by Gordon (2012).
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Train tracking data

Train tracking systems provide data on train location. Most rail agencies have such

systems since it is a key element in signaling and control systems. The most common train

tracking systems rely on the signal system. Track are divided longitudinally into blocks.

When a train crosses a block boundary, this event is detected by the track circuit and the

time is recorded. Based on this data train trajectories can be developed. In addition to the

signaling system, some agencies use radio signals as well as GPS to increase the reliability of

train tracking. GPS is viable only at grade (or elevated) lines where direct communication

between satellites and trains is feasible. Section 3.2 and 3.3 will discuss the characteristics

and importance of this type of data in depth.

Staff phone calls

As described in Chapter 2, incidents require communication between many different

players. In particular, controllers must call drivers and crew depot managers to inform them

of recovery actions. Some of the communication occurs in the control room, as signalers

and controllers are usually located in the same room. The control room of Piccadilly Line of

the London Underground described in chapter 2 is an example of a control environment
%Ahk r c; rT~Ir n n 4LA con
w ,re sgnalers aiu cnLrUlICIrs interact in the same space. However, most crucial

information is communicated through phone calls which are typically recorded. The phone

records are used mainly for legal or disciplinary purposes (homicide, operation error

resulting in severe impact on passengers,etc). They can be accessed only through specific

procedures which they were not feasible for this research. However, if the records were

available, it would be an interesting additional source of data which could provide valuable

information on both the decision making process as well as the recovery strategies

themselves. A voice recognition system could be used to transcribe the messages and

subsequently a machine-learning algorithm could be used to infer recovery strategies from

these patterns.
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Staff logbooks

Most transportation agencies require controllers to record all significant corrective

actions in logbooks. The logbooks serve two distinct purposes. First, they are a valuable

working tool for controllers who use them to organize their thoughts and to create the

recovery strategies. They are also used to keep track of the current strategy being deployed

(list of trains reformed, drivers contacted, trains canceled, etc). The logbooks are kept

securely and can serve as additional evidence in case of legal or disciplinary issues. Because

of the manual format of most logbooks as well as the variability of presentation depending

on individual controller preferences, it is impractical to parse large amounts of data for

aggregate analysis. Scrutiny of logbooks can however be useful for disaggregate analysis of

particular incidents.

Staff summary files

Most operating centers produce a daily summaries of the main aspects of train

operations and related events. These files provide a high level picture of the main events

that occurred on a given day. On the London Underground, these files provide the number

of canceled trains, information on train lateness, and what types of incidents (if any)

occurred. The documents are usually used only on a daily basis by the service control

manager and are not shared with upper management or the analytics team within TfL. For

the Piccadilly Line, information on cancelations is approximate (number of trains canceled

per three hours time intervals) and does not record the location of the cancelation. The

information is recorded manually and is prone to errors. This limits the full understanding of

the recovery strategies implemented. It can however serve as a good validation source for

the recovery strategy inference that will be developed in Chapter 5. The information can be

parsed easily as all documents are numerical and follow a similar format. Figure 3-2 is an

example of such a daily report.
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Datly Report

ra. , 2C16 1C 35 42

Piccadilly Line
Service Manager's Daily Review

For 24 hours commencing: 0200

Timetable In Use: WTT54 (PIC)

Monday 21 December 2015

Snapshot Cancellations and Station Closures
Time Train Cancellations Cance

t
led Scheduled Staton Closures

06:00 Customer Action (101: (+ 10 unlisted trains) Person 10 41 Turnpike Lane
under train Turnpike Lane

09:00 Sional System Failure (25 + : ( 25 unlisted trains) 25 78 None

12:00 Sianal System Failure (25) (+ 25 unlisted trains) 25 68 None
Acton Town failure

15:00 Signal System Failure (s 224, 225, 226, 300, 310, 15 68 None
316, 320, 323, 340, 342, 350, 351, 352, 354, 357
Due to the earier failure in the Acton Town area.

18:00 Signal System Fadure (21 : 226, 324 Due to the 2 77 None
earlier failure in the Acton Town area.

21:00 Signal System Failure (11 : 322 Cancelled as part of 1 70 None
service recovery wnich took place at Arnos Grove.

24:00 Full Service 0 56 None

Summary Of Late Running
Eastbound

Staton 06:00 09:00 12:00 15:00 18:CO 21:00 24:00

Arnos Grove SEVERE 60 20 12 5 4 2

Figure 3-2: Daily report of the Piccadilly Line

Incident database

Incident databases record all incidents for a given line. These databases are

generally generated manually by controllers or signalers, and are therefore prone to error.

Important characteristics of incidents are type, duration, location, and time. As discussed in

chapter 2, the CuPID system is the database used by the London Underground.

3.1.2 AVL features

As discussed in section 3.1.1, many different sources and formats of data are

available in the context of disruption management. This research focuses on train tracking

data to provide a reliable and easily reproducible framework for disruption analysis. Train

tracking data is the most direct source of information that provides insight into train

movements. It is available in most transportation agencies and the main features
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(timestamp, time number, station) are inherent in all systems. This makes it a valuable data

type to base the research on as the framework developed can easily be applied to a large

variety of transportation systems.

Depending on the structure providing AVL data (signaling system, radio signal, GPS,

wifi etc), the precise fields included in the AVL data can change. In the context of this

research, AVL data will be defined as data providing at least time-space information for a

given train in the system. Generally, the train in service is represented by a unique train

number that corresponds to the train number given in a schedule. AVL data sourced from

train tracking systems provides information on train trajectories throughout the line. Other

AVL data may be provided through train detection systems at stations, such as the

Automated Vehicle Identification system used on the MBTA Green Line to detect when

trains pass specific points on the line. More complex signaling systems or GPS tracking can

provide additional information. In all cases, it is a key source of data to track train

movements on a given rail system.
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3.2 Uses of AVL data

AVL data is a key data source used by most transportation agencies to track overall

performance. It is also the main source of data used for real-time control environments to

inform the operating staff on train movements. Each of these functions is described below.

3.2.1 Use of AVL data for performance tracking

AVL is a main source of data that transportation agencies rely on to asses the

performance of their system. Many different metrics can be calculated from AVL data. The

main focus of most transportation agencies are metrics linked to train frequency, headway

regularity, and lateness. These three metrics are directly linked to train movement data

available through AVL.

Average waiting time is a key metric of system performance for the passenger side.

As described in section 2.1.1, the average waiting time E(T) is a function of both the mean

headway and it's coefficient of variation. Transportation agencies can therefore use AVL

data to measure both the mean headway and it's coefficient of variation to extract the

average waitin LIm

E(H)
E (T) = (1 + cv(H)z) (3-1)

2

It is important to acknowledge that more sophisticated measures of a system's

performance exist and include passenger data. Wood (2015) develops a framework for

measuring transit reliability relying mainly on AFC data. The main metric is the reliability

buffer time (RBT) that is defined as the difference between the Nth percentile and the

median travel time over a given origin-destination pair and a time period. This metric is

extremely useful to measure the reliability of a system and is more easily calculated with

passenger data as input.
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Aside from key metrics that are calculated at an aggregate level, transit agencies

also use visual tools to track the performance of their systems. These tools provide a

snapshot of the state of the line at a given time and are available both for real-time

monitoring and ex-post analysis.

Figure 3-3 illustrates how the London Underground relies on graphs representing the

scheduled headways (upper line) and the observed headways (lower line) at chosen

stations. This tool is called "HQ clocks" and was inspired by the historic use of cards

punched when a train passed a station. The tool enables easy tracking of headway

regularity. Graphs representing headways can be used by the operating staff to give direct

feedback to the drivers and controllers.

In addition, time-space diagrams are powerful tools used to illustrate train

movements. The London Underground refers to them as waterfall diagrams. Figure 3-4 is an

example of such a chart from Rahbee (2011). Many other transit agencies rely on similar

time-space diagrams. A line represents the trajectory of a train, the slope of the line

corresponding to its speed.

Scheduled -Actual M sd Hadways

HO Clack for Baron Court E8 Dep on Thursday 30 Jan 2014

| | |I li lll 1111111 1 1 A IIIIIIIII I IIII IIII I III III I I II IH 1 1 I NIIIIIIIIII IIIIIIII lllllllll I IIIIIIIII III l III 1111111 1 11 1 Ill ll| 1111111 I Il 1 I11 1 IIIII11 1 111111l0

0500 0600 0700 0800 0900 1000 11 00 1200 1300 1400 1500 1500

14.1 15 00 1600 1700 1800 1900 2000 21 00 2200 2300 0000 01 10

Figure 3-3: HQ Clocks
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Figure 3-4: Waterfall diagram

3.2.2 Use of AVL data for service control

AVL data is constantly used during operations. Most control centers rely on AVL data

to track trains in service. As an example, Figure 3-5 is a snapshot from the control center of

Newcastle-upon-Tyne (Smith, 2011). Tracking the real-time position of trains enables

controllers to react quickly in the case of anomalies and also to identify possible recovery
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strategies in the event of a disruption. Short trips can only be ended at reversing points.

Similarly, AVL data can indicate bunching or large gaps, in which cases the controller may

deploy holding strategies.

Figure 3-5: Newcastle upon Tyne control center

In addition to train tracking, it is also important for the operating staff to track train

lateness. In the case of the Piccadilly Line, this information is available to controllers in real-

time.

3.3 Netmis data

Both Netmis and CTFS systems provide data that contains train time and space

information. According to our previous definition, Netmis and CTFS data are AVL data.

3.3.1 From TrackerNet to Netmis

Information concerning train location for every line of the London Underground is

provided through a system called Netmis. The Netmis system is only the end system of a
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more complex flow of data represented in Figure 3-6. First, track circuits indicate the

presence of a train on a given track circuit, or block. This information is sent to local

computers that transfer it to the TrackerNet system. The TrackerNet system then

aggregates the information received by the signaling system as well as information provided

by radio signals sent from transmitters located at every station. The system correlates the

radio signal with the track circuit information to retrace trajectories and infer the train

number corresponding to a detected train movement. This information is sent to Netmis.

Netmis processes TrackerNet information into a user friendly format with stations and time

stamps (the movements between stations are not passed from TrackerNet to Netmis).

Signaling
System

TrackerNet Netmis

Radio 0
Signals

Figure 3-6: Flow of data from sensors to Netmis

The Signaling System

The signaling system on the Piccadilly Line is organized in six sections which operate

with five different signaling systems. This is due to the history of contracts linked to the

renewal of signaling infrastructure. This partitioning leads to lower reliability of train

tracking data at the boundaries between different signaling systems. Figure 3-7 is a

schematic illustration of the signaling partitions used by Trackernet based on discussions

and maps provided by staff.
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Figure 3-7: Sections of the signaling system

Radio Signals

In addition to the signaling system, TrackerNet relies on radio signal data to track

train numbers and train destinations. The limited coverage of connect radio in certain

tunnels of the Piccadilly line, also has a direct impact on data quality. Figure 3-8 (a)

illustrates the theoretical coverage provided by connect radio. The line should be totally

covered by connect radio in order for the system to effectively track a given train number.

Humidity and aging infrastructure lead to situations represented in Figure 3-8 (b). The radio

coverage is not continuous over the entire line. When the train enters a portion of the line

that is not covered by radio, the computers lose track of the train. This results in gaps in the

Trackernet data. The system relies on the continuity of information to infer train numbers.

In cases of poor radio connect coverage, the system may assign an erroneous train number

as the train number information will have been lost.

(a) Good coverage (b) Poor coverage

Figure 3-8: Radio connect coverage
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3.3.2 Description of features

Netmis data is available on all London Underground lines and is the database on which the

majority of the London Underground's internal performance metrics rely. It is retrieved in a

user-friendly way through an Excel Macro via SQL queries. One month of AVL data for the

Piccadilly Line corresponds to approximately 50 Mb of data. Table 3-1 summarizes the

information included in Netmis database.

Table 3-1: Fields provided in Netmis data

TRNEVNTID: unique ID for a given data point

TRAFFICDATE: Calendar datefor the recorded event

TIMESTAMP: time stamp (precise per second) for the recorded

event

TRACKCIRCUITNAME: Reference of the track circuit corresponding to the

location of the train

SUTORCODE: Station code referred by three letters

TRAINNUMBER: Train number (from 230 to 373), 0 if no train number

associated with the event

LINEID: 7for the Piccadilly Line

TRAINDESTINATION: Code for the destination of the train

TRAINIDENTIFICATION: Code referring to legs of trips made by a same train

ACTUAL_DEPARTURE_TIME: Departure time of the train

LEADCAR_NUMBER: Reference for the lead car of the train

PASSENGERLOADSTATUS: NA for Piccadilly Line, but for other lines records the

weight of the total train (proportional to the number

of passengers riding)
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3.3.3 Time Space diagrams

Time-space diagrams are an effective way to visualize AVL data and this format will

be used throughout the thesis to represent train trajectories and illustrate data reliability

issues. These diagrams are similar to the waterfall diagrams presented in section 3.2.1 but

only present one train per graph. This section describes the process through which these

diagrams are created.

Raw Netmis data can be queried from TfL's data warehouse and extracted as a csv

file. This data is exported to the data analysis software R for further treatment. Using R, the

fields unrelated to date and timestamp, location, and train identification are discarded. The

program filters the dataset by train number and date, as a time-space diagram is unique for

every (train number, date) pair. The station codes are transformed into numerical codes.

For the section of the line with no branches, consecutive stations on the line are given

consecutive integers, from north to south. For the western branches, the program

attributes integer numbers to the stations on the Heathrow branch and the same numbers

shifted by a half unit for the Uxbridge branch. Thanks to this technique, the north-south

trajectory is depicted and there are no large gaps on the diagram that correspond to

different branches. Different shapes are used to represent the two branches. The triangular

points correspond to the Uxbridge branch and the stars to the Heathrow branch.
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Figure 3-9 illustrates such a time-space diagram, for train number 312 on 12 October

2013. We can observe that this train ran four round trips, twice to the Uxbridge branch in

the morning and twice to the Heathrow branch in the afternoon. This diagram is also an

effective way to observe any data discrepancies or quality issues in the data. A few gaps can

be seen around 9:50 am near Cockfosters and around noon near Rayners Lane. These gaps

where only a few data points are missing do not impede the general understanding of the

train's trajectory. As will be seen later on, in some cases the gaps are much larger and result

in large time windows where no reliable information on the train's trajectory is available.

3.3.4 Data quality

AVL data quality and reliability are key issues for train trajectory analysis. This

section will describe the various data quality issues encountered with the Netmis data

which can affect analysis. Table 3-2 illustrates the Netmis database imported into R after

discarding the unwanted fields.
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Missing Values

Table 3-2: Netmis data

TIMESTAMP TRAIN NUMBER

302

0

0
04:47:40 e

04:48:12 262

03:49:00 0

03:49:30 8

03:49:42 0

04:50:44 8

04:51:41 e

04:52:14 262

0

04:54:00 0

04:54:12 262

03:55:19 0

03:55:43 0

TRAIN-IDENTIFICATION

1013080

1013108

1013405

10134e5

1013429

1013405

1013405

1013405

1813405

1013405

1013429

1013439

1013439

1013429

1013439

1013439

ACTUALDEPARTURETIME

03:12:51

03:16:28
04:46:40
04:47:25
04:50:23

04:51:11

04: 52: 52

04:53:08

04:53:53

04:54:33

As can be observed in Table 3-2, many fields have missing values. Table 3-3

summarizes the frequency of missing values in of the October 2013 Netmis database. The

percentage of missing points are calculated in R by counting the total number of lines where

a value in the corresponding field is missing, divided by the total number of rows in the

database.

Table 3-3: Percentage of missing points

Field Percentage of missing points

TIMESTAMP 1.3%

ACTUALDEPARTURETIME 16.0%

TRAINNUMBER 24.4%

SUTORCODE 15.0%

The field Timestamp rather than ACTUALDEPARTURETIME was used in this study

as it more reliably available. The location as described by the SUTORCODE field is missing

in 15% of cases, which is significant. The other key observation is the very high number of
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SUTORCODE

HOL

WeD

NFD

SEL

OST

ACT

ACTS

HNE

NFD

SEL

HNC

TRAFFIC-DATE

01/10/2013
01/10/2013
01/10/2013

01/10/2013

01/10/2013
01/10/2013

01/10/2013

01/10/2013

01/10/2013

01/10/2013

01/10/2013

01/1e/2013
01/10/2013

01/10/2013
01/10/2013
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missing train number values. This research focuses on re-establishing the correct train

number values in this database. This is made possible by the use of another database that

has higher reliability in train tracking.

Another significant amelioration of the database would be to work on the missing

information concerning locations. It has been observed that often missing location is

correlated with missing train number. Approximately 25% of points that are missing

location are also missing train numbers. This makes the reassignment more difficult as more

information is missing for these points.

Erroneous data points

In addition to missing values, some data points are erroneous. To quantify the

importance of these errors, a visual analysis was performed. Indeed, the difficulty to

quantify correct and incorrect points algorithmically combined with the effective time-space

diagram visualization tool strongly encourages a manual count rather than an algorithmic

approach. It is very easy to use visual intuition (continuous trajectory) to detect erroneous

legs or points on the diagram. It is much more complex to implement a code that will

automatically distinguish an erroneous leg from a valid leg, or erroneous points. A more

numerical and reproducible approach to the analysis of erroneous points would be

beneficial to this study but is beyond the scope of our research.

The manual analysis is performed on two days of data chosen to represent various

states of the line. The first day (2 October 2013) is chosen as a day with few disruptions (no

observed incidents reported on the daily summary) and a low number of reformations. The

second day (10 October 2013) is chosen as a heavily disrupted day with a total of eight

canceled trains and 55 reformations.

There are two main types of errors. The first is an invalid trajectory due to a leg that

is visibly erroneous. This error is quantified as the percent of erroneous observed

trajectories. A trajectory is defined as a back and forth movement of a train. This count is

implemented by the number of observed trajectories and the number of erroneous

trajectories.
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The second type of error is erroneous points. These points are points that are visibly

out of the scope of a feasible trajectory and exist due to noise in the data. The protocol to

quantify this error is to (visually) count all the points that are considered erroneous and

divide by the total number of observed points that have a train number (given directly by R).

This method is easily applicable to a given day as only a few points per train are considered

erroneous. To implement both of these counts, all the time-space diagrams corresponding

to all the trains that have run for the given day are produced automatically through R and

checked manually. Results are given in Figure 3-10. Figure 3-10 illustrates a) correct

trajectories, b) erroneous legs and c) erroneous points observed. The time is in seconds

after midnight.

40- 40-

40000 60000 00000 30000 50000 70000

time time

(a) No error (b) Erroneous trajectory

30 - x

Z 3

z 74

20000 40000 60000 F0000
time

(c) Erroneous points

Figure 3-10: Time-Space Diagram showing data quality issues
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Table 3-4: Results of the count of errors

Day: 10/02/2013 10/10/2013

Count of erroneous trajectories 5 4

Count of erroneous points 2 11

Percentage of erroneous trajectories 1.4% 1.2%

Percentage of single erroneous points 0.01% 0.05%

Percentage of total erroneous points
0.76% 0.6%

(single points + erroneous trajectories)

Results show that there are a small number of erroneous data points both for the

non- disrupted day and the highly disrupted day. The percentage of erroneous points is

under 1% and it should not impact our understanding of trajectories.

Based on this quantitative description of the quality of the Netmis data, the missing

train numbers on the Piccadilly Line is the largest limitation of the existing database. The

issue of reliable train tracking is known by the operating staff and planners at TfL and is in

part due to the aging and fragmented signaling structure of the Piccadilly Line. This

limitation of AVL data exists on other rail lines in London, mainly on all the Overground

Lines that, similarly to the Piccadilly Line, rely on older signaling systems.

3.4 CTFS Data

This section describes the second source of AVL data which is the Controlled Train

Following System, or CTFS, data. It discusses both the data features and the

complementarities between CTFS data and Netmis Data.

3.4.1 Description of features

CTFS data became available with the Piccadilly Line extension to Heathrow. The

signaling system communicates with local computers that were installed as part of the
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extension. These computers transfer the information directly to the CTFS system. The data

is sent in real-time to the Earl's Court control room to track train lateness, as discussed in

Chapter 2. In addition, the data is saved and can be retrieved in raw binary format that is

then processed by the IT department of TfL into a .txt format. This .txt file can be imported

in R and transformed to a user-friendly .csv format resembling the Netmis format. One

month of data is equivalent to 1.5 Mb. Table 3-5 (b) is a snapshot of the original text format.

Table 3-5 (a) describes the data fields.

Table 3-5: CTFS fields

Field Description

Station Station at which the event is recorded

TRN Train Number

rTRN : If the train was reformed, contains the initial number,

otherwise NA

TD Train destination

Expected Time Time of arrival at the station according to the schedule

Actual Time Observed time of arrival at the station

Lateness (s) Observed algebraic lateness in seconds

(a) Field Description

***** Sudbury Hill EB *****
TRN TD Expected Time

274
360
275

A2S 06:53:30
A2S 07:08:30
A21 07:23:00

(b) CTFS snapshot

Actual Time

06:52:48
07:07:56
07:24:21

Lateness (s)

-42
-34
81

rTRN

0
0
0
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3.4.2 Data Quality

Missing stations

The spatial resolution of CTFS data is poor, as can be seen in Figure 3-11 where the available

CTFS stations are represented in grey. The CTFS data available for this research covers only

33% of all stations and there is no available data toward the end of the Uxbridge and

Cockfosters branches. This low spatial resolution on the branches limits in particular the

detection of short trips, which is a key strategy used during disruptions.

00

Figure 3-11: Stations available through CTFS data

Erroneous points

A similar methodology to the one presented in section 3.3.4 was implemented on

the same days using CTFS data. Counting both single erroneous points and erroneous legs,

the levels of error were less than 2% for both days. CTFS can therefore be considered a

reliable source of data for tracking trains on the Piccadilly Line.
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Chapter 4: Building a reliable train tracking database

A reliable and complete AVL dataset is crucial to accurately retracing train

movements and operations. As described in chapter 3, the available AVL data is limited in

terms of spatial and temporal resolution and incomplete, preventing the full representation

of train movements. This chapter presents the methodology and algorithm used to build a

more reliable AVL dataset, based on a combination of imperfect data sources. Section 4.1

describes the methodology, referred to as the merging process, which combines

information from different AVL databases. The AVL databases used in this research are

Netmis and CTFS which are both available on the Piccadilly Line, as described in chapter 3.

However, this methodology could be applied to other databases that have similar

characteristics. The merging algorithm is presented in section 4.2. This algorithm uses

various parameters that are discussed in section 4.3. Section 4.4 outlines the application of

the algorithm and section 4.5 presents the results and validation.

4.1 Methodology

4.1.1 Conceptual Framework

Different databases that record the same physical events can provide various types

of data with different levels of accuracy and completeness. The merging method queries the

different databases, matches data points that correspond to the same event, combines data

for the event, and builds a new data set based on the combination.

For the Piccadilly Line, the Netmis and CTFS databases both track train movements

but they originate from different information systems and therefore have different fields of

interest and characteristics and are largely independent so that an error in one database

may not exist in the other database. As described in chapter 3, Netmis has excellent

spatiotemporal resolution but many records are incomplete. Specifically, about 25% of

records do not contain a train number. The CTFS database on the other hand provides much
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weaker spatial coverage ( only about 30% of all stations are covered) but is comprehensive

in terms of train numbers. The merging process matches Netmis points with corresponding

CTFS points for a given train trajectory and updates the train number in Netmis when the

value is missing. Figure 4-1 represents the general workflow that was applied.

1 mm inmi

L
L

j
-l

Matching data
points that

correspond to a
single event

Combining
different fields of

interest

4I
-mm

INPUT:
Various databases
with intrinsic
inaccuracies and
gaps

MERGING
PROCESS

-J

OUTPUT:
Unique database
with higher
accuracy and
completeness

-J

Figure 4-1: Fusion process
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4.1.2 Database discrepancies

The matching of data points is based on fields that are common to both databases.

In the case of train movements, the common fields are time and location. Because the

databases originate from different physical information systems, there can be significant

discrepancies in values for an identical field and the same event. For example, the

timestamp of the Netmis and CTFS values are not strictly identical because the systems that

provide data to the Netmis and CTFS databases have different characteristics (internal clock,

underlying assumptions, etc). Furthermore the information system's occasional errors can

lead to additional differences between values that should be identical. In the case of the

Piccadilly Line, a signaling incident that leads to a momentary malfunction in the Trackernet

system or a systematic delay of a few milliseconds on the connect radio in certain regions

could both impact the accuracy of the timestamp value.

These possible discrepancies make the matching process more complex, as it must

deal with both deterministic and stochastic sources. The matching process links data points

that correspond to the same event with high probability, but there is a non zero chance of

error. The sensitivity analysis and the test of the merging algorithm on a sample of data will

be described in section 4.3 66 and will assess the accuracy of the matching process.

4.1.3 Preliminary study on the time difference

The matching of CTFS and Netmis data is based on comparing spatiotemporal values

of data points. The value of time and location are indeed the unique and (generally) reliable

common fields of the two databases. For a given station location, two points are assumed

to correspond to the same physical event if they have similar timestamp values. A margin of

error is applied to account for the discrepancies between databases noted above. A first

important step is to understand the possible intrinsic differences between the CTFS and the

Netmis data points. In the databases, both fields are named "ACTUALDEPARTURETIME"

and should correspond to the moment when the train has left the reference station.
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A case study on one day (the 1 6th of January 2014) with regular service is used to

gain a better understanding of these systematic time differences. The approach is to

calculate the time difference between CTFS and Netmis data points that are known to refer

to the same event. The analysis uses the statistical programming language R. The data

points with known time, location and train number are selected in both the Netmis and

CTFS datasets. They are matched by location and train number. Because a given physical

train will usually pass through the same station several times a day, there exist multiple

data points for a given triplet of date, location, and train number. These triplets are ordered

by time of day to ensure that they are matched correctly. Tables 4-1, 4-2 and 4-3 illustrate

the matching process with a hypothetical example.
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Table 4-1: Netmis database Table 4-2: CTFS database

Table 4-3: Simplified example of event matching

Location Netmis Time CTFS Time Train N*

Station A 08:31:20 08:33:10 230

Station C 08:58:15 08:58:15 230

Station A 09:15:45 09:16:55 230

Station A 08:35:45 08:36:05 231

Station C 09:02:15 09:03:05 231

The difference between the CTFS and the Netmis timestamp for the same event is

computed for a set of matched data points, over all stations and trains. The

differenceVector is an array of the values of time differences in seconds between CTFS and

Netmis for any matched data point.

differenceVector = CTFS Time - Netmis Time
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Location Time Train N*

Station A 08:31:20 230

Station B 08:46:30 230

Station C 08:58:15 230

Station B 09:12:35 230

Station A 09:15:45 230

Station A 08:35:45 231

Station B 08:50:25 231

Station C 09:02:15 231

Location Time Train N*

Station A 08:33:10 230

Station C 08:58:15 230

Station A 09:16:55 230

Station A 08:36:05 231

Station C 09:03:05 231

9
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-n

differenceVector

(a): Error distribution

Range Number of Points Percentage
[-300,0) 298 5%
[0,50) 4808 89%
[50,100) 230 4%
[100,300) 83 2%

(c): Table of the global distribution

[1

differenceVector

(b): Error distribution around zero

Range Number of Points Percentage

[0,5) 60 1%

(5,10) 2110 44%
[10,15) 2288 48%
[15,20) 21 0%
[20,25) 136 3%
[25,30) 87 2%

[30,35) 46 1%
(35,40) 44 1%

(d): Table of the near zero distribution

Figure 4-2: Distribution of the time difference

Figure 4-3 shows a systematic gap of approximately 10 seconds between CTFS and

Netmis data points. This time difference exists due to intrinsic characteristics in the CTFS

and Netmis information systems. The differences in underlying semantics explain this time

gap. More precisely, different underlying semantics related to "DEPARTURETIME" (CTFS

departure times are calculated according to Figure 4-3(c) and Netmis departure times

correspond to Figure 4-3 (b) ) are the main reason for the CTFS and Netmis discrepancies.

The departure of the train from a station can be defined in different ways. A few seconds

span between the moment the train starts moving and the moment the last car of the train

exits the station. Figure 4-3 (a) shows a train at a given station, with the track sections that

detect the train's presence. Figure 4-3 (b) illustrates a potential definition of departure

time, when the first car of the train is detected on a track section beyond the platform.

I
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Figure 4-3 (c) is an alternate definition of departure time, when the train is no longer

detected on any station track section.

Section A Section B Section C

(a) Train at station

Section A Section B Section C

(b) Head of train exits the station

Section A Section B Section C

(c) Last car exits the station

Figure 4-3: Departure time definition

The time difference r is defined by the time between events in Figure 4-3 (b) and (c).

With s the speed of a train leaving a station (approximately 33 k.h-1 or 33/3.6 m.s 1), and L

the length of the train (108 meters for the 6 car trains of the Piccadilly Line) we obtain an

approximate value of time difference T:

L
r - 12s (4-1)

S

The time difference obtained via this simplified calculation is of similar magnitude to

the systematic time gap between CTFS and Netmis. The matching process will incorporate

this systematic time lapse to increase the chances of correctly matching two data points

that are associated with the same event. Two other smaller group of points are detected
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around 23 and 90 seconds. These points correspond to erroneous CTFS time stamps that

have an added time lag for a given event. These time points are rare and are not

representative of the more usual 10 second time lag.

4.2 The merging algorithm

The goal of the matching algorithm is to fill in the correct train number in the Netmis

dataset where initially the train number field in blank, thus it is applied only on the data

points that do not have a train number. The algorithm has three steps that are illustrated in

the workflow in Figure 4-4.

1) Identify on the Netmis data set legs of trips that relate to the same train

2) Match the CTFS data points that correspond to the given trip

3) Reassign the value of the train number to these data points. Figure 4-10 illustrates the

various steps.

Filter Netmis Compare data Match CTFS data Assign CTFS train

points with no Identify physical point values of _* number to
Doints~mtcin Netmois oi"..,J

Train Number legs of trips the legs with Netmis legsmatching Netmis
CTFS leg

Figure 4-4: Workflow of the algorithm

4.2.1 Identifying legs of trips

Figure 4-5 illustrates the Netmis data that does not contain a value for the train

number field on a particular day. Even though a pattern of superimposed trajectories similar

to the ones presented in chapter 3 can be observed, it is difficult to group data points that

correspond to a single train in all cases. Point-to-point processing, assigning each point to

it's closest feasible neighbor, could potentially rebuild the trajectories of all trains, however

with approximately 6000 data points to sort per day, this process would be extremely

greedy in computational time and would not result in an efficient merging process.
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Time Space Diagram for Train Number 0 on the 2013-12-10

rF) . -- 7 T I. :Z,-

Time in the Day

Figure 4-5: Time Space Diagram for train number 0

To reduce the computational time, the Train Identification field is used. This field,

recorded directly through the signaling system, is linked to a car of a train. From the 6000

data points per day, there are approximately 300 unique train identification values for 86

unique train numbers. This leads to clusters of an average of 20 points that represent (parts

of) trajectories. The time-space plot of points filtered by a given Train ID is presented in

Figure 4-6.

Tirme Space Diagramn for Train N*O and Train 101004361 on the 2013-12-10

l\ i I

_4 Ot ft

\ / \I\I

TTie in the Day

Figure 4-6: Time Space Diagram obtained after a filtering by Train Identification

Time gaps in the data can be observed (for example between 11:45 and 12:00 during

which the train movement is not recorded via the train tracking system. This could be due

to internal processes in the Trackernet. The algorithm identifies these gaps and divides the

data points into groups corresponding to continuous legs. These final groups are the entities
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that are considered as legs and that are compared to CTFS values to assign correct train

numbers. Any given data point from this group will therefore be assigned the same train

number.

4.2.2 Comparing the legs with CTFS values

Once the algorithm obtains the various groups of data points, each set is compared

to the CTFS data points. It uses the CTFS trajectory with a known train number as a baseline,

and compares it with the Netmis legs of trips. Figure 4-7 illustrates the concept. The blue

points represent the Netmis legs and the red points represent the CTFS data points with the

known train number. The algorithm looks at the intersection of the CTFS and Netmis data

points by station, and computes the time difference between every point. Given the

intrinsic difference in time measurement previously discussed, a certain margin of error is

allowed. Points that are for the same station and close in time are considered to be

matching. If the CTFS and Netmis data have a number of matching points above a threshold

to be discussed in the parameters section, the Netmis leg is a match with the CTFS data.
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Time in the Day

(a) No match between CTFS and Netmis

Time in the Day

(b) CTFS and Netmis match

Figure 4-7: CTFS and Netmis comparison

4.2.3 Reassigning the correct train number

When the algorithm concludes that a Netmis leg matches the CTFS data, the train

number associated with the CTFS data is assigned to all the points of the Netmis leg. The

process loops over all train identifications and all train numbers. The result is a database

with the Netmis values and updated train numbers for the data points that were matched.

The merging process can be seen as refining the data, as it uses one reference dlataset to

complete the other. The output is a dlataset with high spatiotemporal resolution and more

complete train numbers.
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4.3 Setting the parameters

As seen in the pseudo code provided in Appendix B, there are six key parameters

used in the merging algorithm. This section describes the various parameters and the

sensitivity analysis that was implemented to choose their values.

4.3.1 Description of parameters

- The number of points needed per unique train identification

The algorithm applies a threshold value for the number of points obtained when

filtering by train ID. This eliminates subsets of data of very few points that do not represent

a trip.

- The time gap between various legs obtained from the same train ID

This parameter determines the maximum time gap authorized before grouping a

given set of points into smaller groups of continuous points. As described previously, this

parameter is useful to take account for reformations. The Train Identification is

characteristic of a physical train but if a renumbering occurs, it is possible that various legs

will have different train numbers.

- The number of points obtained after dividing the data by continuous legs

Similar to the first parameter, this parameter requires a minimum number of points

from the groups that were created by dividing the data into continuous legs. If the leg is too

short (typically only 2 or 3 points), the matching process will not be effective and it is

possible that the wrong train number could be assigned to these points.
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- The time difference between a CTFS and Netmis point

This parameter defines when a CTFS and a Netmis (timelocation) pair is identical. As

discussed previously, there exists an inherent time difference between the two databases.

The parameter is the maximum that the absolute value of the difference between CTFS and

Netmis time can have for two points to be viewed as identical.

- The number of common points

This parameter selects how many common points between CTFS and Netmis are

required to conclude that a leg matches the CTFS data.

- The ratio of common points to total leg parts

This parameter is the minimum value of the ratio of the number of common points

and the total number of points on the leg. If the leg contains a large number of points, a

larger number of common points may be required to conclude that the two legs match.

This ratio is low due to the low resolution of the CTFS data (a same leg is represented by

many more points in Netmis compared to CTFS).

4.3.2 Choice of parameters and sensitivity analysis

The initial values of the various parameters were assigned using a heuristic

approach. The merging process was applied on a few days with regular service used as case

studies to develop the algorithm. For every matching leg, the algorithm automatically plots

the given leg and the matching CTFS data. This facilitates the development of the

identification of any major issues in the matching process and to apply a heuristic approach

to determine an approximate value of parameters. In our case, the parameters are set as

constants for the entire time window considered (three months).

A sensitivity analysis was then conducted to refine the values of certain parameters.

For practical and computational reasons, the sensitivity analysis was implemented on single

days with standard levels of service (no reported incidents and a low number of observed
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reformations). It could be beneficial to apply a similar methodology to a larger set of data.

An other approach could be to vary the value of parameters for every day of the sample.

This approach would result in an increase in merging accuracy but would simultaneously

significantly increase the computational time.

The steps of the sensitivity analysis are as follows:

1) Select the parameter to test as well as the range of values to be tested.

2) Apply the merging algorithm to a single day of data for a variety of values within

the selected range. All other parameters are kept constant to test the effect of one

parameter on the merging results.

3) The number of points matched for the various values of this parameter.

This gives us access to the number of points matched for the chosen value of the

parameter. The results of the sensitivity analysis suggest that there exists a threshold value

for each parameter. In the example of the ratio value as seen in Figure 4-8, a ratio value

below 0.6 results in a very high number of matched points. The constant high levels of

matched points suggests that choosing a lower value of a threshold does not improve the

matching rate. On the other hand, if the ratio value is set over 0.8, the threshold is too high

and only a very small number of points will be matched. A similar methodology is applied to

other parameters. However, in the context of the research, a choice based on visual

judgment is applied. The results, as discussed in section 4.5, are satisfying for the level of

precision required and do not necessitate more refined parameter choices.

Table 4-4 summarizes the parameters and the order of magnitude of the values used in the

implementation.
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Figure 4-8: Influence of the threshold value on the number of points matched

Table 4-4: Parameter values

p
The time difference between CTFS and Netmis in seconds is set to take into account

the exceptional or recurring inaccuracies between CTFS and Netmis timestamps. The value

should however not be higher than the headway as this could lead to data points being

assigned to the number of the neighboring train.
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Parameter Threshold Value

Number of points per Train ID 4 points

Time Gap between legs 30 minutes

Number of points after subsetting per time gap 4 points

Time difference between CTFS and Netmis 100 seconds

Common Points required 4 points

Ratio Value 0.7
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4.4 Implementation

This section describes how the algorithm was applied to the CTFS and Netmis data.

Section 4.4.1 presents the programming language and development environment used for

the implementation. Section 4.4.2 details how the various data formats were made

compatible, and section 4.4.3 presents the results and validation of the merging algorithm

4.4.1 RStudio

R was used as the primary programming language and statistical computing and

graphics tool throughout the research. Rstudio, which is an open source integrated

development environment compatible with R, was used as the user interface. R provides

powerful statistical and graphical packages that were useful throughout the phases of data

exploration as well as data analysis. In particular, most graphs were plotted through the

popular package ggplot.

4.4.2 Formatting

An important part of the implementation consisted in formatting the various

databases in compatible structures. The Netmis format was used as a template and the

algorithm adapts the CTFS data to be compatible with the Netmis format. This choice was

motivated by three factors. First of all, most of the employees in the planning department

of Transport For London as well as in the London Underground rely on Netmis data. Our

merging algorithm respects this format and can therefore easily be incorporated without

having to adapt the existing analysis workflow that the London Underground uses. Second,

Netmis data is available on all lines of the London Underground. Our merging methodology

could be applied to other lines, it would be beneficial to have the output be compatible

throughout lines. Third, the next step in the research workflow is to compare the merged

database with timetable values. The schedule database is provided by Transport for London
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in a similar data format as the Netmis data is. Respecting the Netmis data format will

therefore facilitate the comparison phase described in Chapter 5.

As presented in Chapter 3, the CTFS original data format is a text file representing all

movements for a given day. The text file is a concatenation of numerous small tables

containing the same columns presented in 3.4 66. and visible in Figure 4-9. These tables are

linked to stations, introduced at the beginning of each new table by a line with stars and the

spelled out name of the station. A first step was to write an algorithm that detects the star

pattern and integrates the station name as a feature of the tables. The tables can then be

merged into a single database that contains an additional "Station Name" column. The CTFS

database was used per se for values concerning lateness and train reformations, two fields

that are directly provided in this format. A second step was to format the CTFS database

into a format similar to Netmis data. The column names were changed and the time stamp

was converted into seconds after midnight. CTFS and Netmis do not use the same station

name coding and an extra step was needed to transform the station column for further

compatibility. Station numbers were used for simplicity.

342 A2S 00:16:30 21:14:53 -97 0
232 A2S 00:31:30 21:31:20 -10 0
261 A21 00:46:30 21:45:27 -63 0
131 ATL 00:52:45 21:54:29 104 0
350 A21 00:59:00 21:59:09 9 0

***** North Eating WB *****
TRN TD Expected Time Actual Time Lateness (s) rTRN

232 RL 05:28:00 05:21:27 -393 0
234 RL 05:31:30 05:26:48 -282 0
130 RU 05:14:00 05:39:05 1505 0
243 UX 05:49:00 05:45:20 -220 0

Figure 4-9: Raw format of CTFS data

To process the databases efficiently during both the formatting and the merging

process, the CTFS and Netmis databases are saved in lists, with one element of a list

corresponding to one day of data. Using lists rather than two nested "for" loops resulted in

a substantial gain in computational time.
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4.4.3 Results

The merging leads to a significant improvement in the AVL completeness regarding

train number values. One complete month of data (approximately 9*10A5 points) is used to

measure the improvement of AVL quality. Figure 4-10 summarizes the proportion of rows

from the data with no train numbers before and after the merging algorithm. In the original

Netmis data, 20% of the data points lacked values for the train number field. In the merged

data, only 6% of the data points lack values for the train number field.

Original Netmis Data Merged AVL Data

6%

20%

Train Number Train Number

No Train Number No Train Number
80% 94%

(a) Original Data (b) Merged Data

Figure 4-10: Results of the AVL merging for on one month of data

This large improvement on AVL quality provides a better understanding of train

movements. Figure 4-141shows the time space diagram of a given train using the original

Netmis data in (a) and the merged AVL data in (b). Chapter 7 will discuss the multiple

benefits of such an improvement in train number reliability, both for further research and

direct use in transit agencies. In the case of this research, the merged database is useful to

understand all the train movements that occurred during incidents, in particular to retrace

the changes between the scheduled and observed movements. Chapter 5 will describe in

more detail how the merged AVL database is used in parallel with the schedule data to infer

the corrective actions implemented on the line. The next step is to validate the

methodology on a test sample to verify that the inferred train numbers are correct.
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Time Space Diagram for Train Number 230 on the 2013-12-10 Time Space Diagram for Train Number 230 on the 2013-12-10
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(a) Original Netmis data (b) Merged data

Figure 4-11: Train trajectories

4.4.4 Validation methodology

The validation methodology tests the accuracy of our merging algorithm. It is

implemented on a test sample of one month of data with available train numbers

(approximately 9 x 1OA5 points). The method assumes that the train number is not known

and the merging algorithm described in section 4.2 is applied to the data. The last step is to

compare the inferred train number with the actual train number. Given the relatively low

rate of errors for existing values of train numbers discussed in Chapter 3, we assume that

the original Netmis data provides reliable values for train numbers.

Results are presented in Figure 4-12. As can be seen, the merging appears to be

effective as 83% of data points are correctly matched to their actual train number. A small

amount (15%) of points form the sample test are not matched to any train number. Missing

values for train numbers can introduce a bias in the inference of cancelations, as a trip may

not appear complete in the AVL data but has actually been run. final percentage of missing

values in the merged data is less than 10% of the data, which limits the potential bias in the

cancelation inference. The comparison of a real count of cancelations and inferred count

presented in Chapter 5 shows that this bias remains low. Missing values can bias the short

turn inference, but only in the cases where the missing values correspond to the time

window during which the train was short-turned. Finally, 2% of the number of points are

matched to a wrong train number. It is important for this value to be very low as the wrong
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train number may result in a wrong inference of implemented corrective actions, both for

cancelations and reformations.

5% 
Co rrectly M atched

83% 2% Not Reassigned

Incorrectly Matched

Figure 4-12: Results of the validation
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Chapter 5: Inferring recovery strategies

Chapter 5 presents and discusses the recovery strategy inference. Section 5.1

describes the general methodology applied to infer corrective actions from train tracking

and timetable information. In particular, it provides the pseudo-code for the inference

algorithm and lists some key assumptions. Section 5.2 focuses on the implementation of the

inference process on the Piccadilly Line. This section describes in more detail the tools used

to implement the inference process and describes specific features of the Piccadilly Line

relevant to this application. The final section presents the results of the implementation, at

both the aggregate and disaggregate levels, and discusses the reliability of the results.

5.1 General Methodology

This section describes the general inference methodology. As discussed previously,

most transportation agencies do not have numerical information documenting the

corrective actions implemented during disruptions. The objective is to use the available

numerical data, principally train tracking, to build a database that retraces these corrective

actions. The database will provide a list of all corrective actions which will be useful to

analyze recovery strategies at both an aggregate and disaggregate level.

5.1.1 Timetable and merged AVL comparison

The methodology is based on a comparison between the timetable and observed

(inferred) train movements. The algorithm detects the differences between observed train

movements and scheduled movements for a given train number. This comparison provides

information on all the changes that were made to the planned service. As shown in Figure

5-1, the input to this process is the timetable data and the AVL data and the output is a

database containing all corrective actions. The algorithm can be run on any time period

where both timetable and AVL data are available.
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In this research, the inference process is restricted to short-turns and cancelations.

As described in Chapter 3, reformations are directly available through the CTFS database

and are incorporated during the final stage of the reconstruction, as shown in Figure 5-1.

Short-turns, cancelations, and reformations are the three main types of corrective action

implemented on the line of interest. Given the low temporal resolution of the available AVL

data, holding strategies are not inferred in this research, although this methodology could

be applied in a similar way to take advantage of such information where it exists. In

particular, the inference algorithm could detect unscheduled train delays in stations and

attribute these to holding. A similar comparative methodology could also be applied to

detect other corrective actions such as expressing. Expressing is particularly common on the

New York metro system because of the existence of double tracks on several lines, and

would be necessary to incorporate when applying this methodology to the MTA system.

Complete AVL
Database

> Database > Short Turns and
comparison Concelations

Timetable Database Recovery
Database merging

Reformations
from CTFS

Figure 5-1: Inference process

5.1.2 Illustrative example

Figure 5-2 provides an illustration of the inference methodology. The green points

on the time-space diagram represent the scheduled train movements for a given train on a

given day. The blue points represent the observed trajectory for this train and day. This

information is accessible respectively through timetable data and the merged AVL database

presented in Chapter 4. In the example in Figure 5-2, there is a difference between the

scheduled train movement and the actual train movement around 11:40 am. This train was
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scheduled to reverse at Uxbridge, the terminus of the northwest branch of the line but the

blue points indicate that the train actually reversed a few stations earlier, at Ruislip. This is

an example of an inferred short trip.

UXL;-

Cu

c)) j
Time of Day

Figure 5-2: Short-turn inference example

Cancelations are detected in a similar manner. If there is a large time gap in the AVL data

but not in the scheduled data, the inference is that the train was canceled for that time

period. Section 5.1.2 presents the algorithm developed for the inference of both short-turns

and cancelations. Table 5-1 gives an example of the output of the inference. The various

fields are described below, with their significance varying across the type of action inferred.
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Table 5-1: Recovery Strategy database

RAINN. - mel - rne2 - Station' - Station2 - Date *7Vp

300 26521 31435 34.25 33.25 12/7/13 Cancelatior
303 26604 31848 39.25 39.25 1217/13 Cancelatior
342 26619 31821 36.25 35.25 12/7/13 Cancetatior
302 26652 31986 37.25 36.25 12/7/13 Carcelatior
310 26652 31476 32.25 33.25 12/7/13 Cancelatior
301 26765 32068 39.25 37.25 12/7/13 Cancelatior
306 26808 31866 36.25 38.25 12/7/13 Carcelation
305 27471 32028 39.25 39.25 12/7/13 Cancelatior
307 28208 32998 39.25 39.25 12/7/13 Cancelatior
340 32338 44711 4 7 12/7/13 Cancelatior
237 32547 48104 7 2 12/7/13 Cancelation
314 32634 37494 4 7 12/7/13 Cancelation
254 34182 45220 30.25 30.25 12/7/13 Cancelation
303 34437 41556 28 34.75 12/7/13 Cancelatior
357 34587 40231 4 5 12/7/13 Cancelatior
317 35972 52132 4 6 12/7/13 Cancelatior

313 36613 47333 4 6 12/7/13 Cancelatior

256 38338 50168 1 2 12/7/13 Cancelatior

301 36422 44239 1 4 12/7/13 Cancelation
315 38480 49867 4 6 12/7/13 Cancelatior
243 38537 63172 10 2 12/7/13 Cancelatior
307 40185 51458 1 4 12/7/13 Cancelatior
245 27539 27780 36.75 1 1217/13 Shortturn
311 27769 27750 30.25 36.75 12/7/13 Shortturn

275 28150 27930 36.75 1 12/7/13 Shortturn
255 29511 29550 36.75 1 12/7/13 Shortturn

352 31010 30480 6 1 1217/13 Shortturn

For a cancelation:

- TRAINNUMBER the train number affected by the cancelation

- Timel: the moment the train was canceled

- Time2: the time at which the train was brought back into service

- Sationi: station where the train cancellation was detected

- Station2: station where the train was detected as being put back into service

For a short-turn:

- TRAINNUMBER : the train number affected by the short-turn

- Timel: time at which the train was scheduled to reverse

- Time2: time at which the train was inferred to reverse

- Stationi: station where the train was scheduled to reverse

- Station2: station where the train was inferred to reverse

The inference algorithm includes two independent parts. The first part detects all short-

turns and the second part detects all cancelations. The function's input is a list of days on
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which to apply the inference process, and the output is a list of databases retracing all

detected short turns (or cancelations) by day. An additional program is written to transform

the two lists of databases into a unique database containing all days and all inferences (both

cancelations and short turns). The last step is to incorporate reformations from the CTFS

database.

5.2 Short-turn and cancelation inference

This section describes the algorithms to infer corrective actions. The general

methodology is to compare all the reversals and large time gaps detected from the

timetable with those detected from the AVL data. Section 5.2.1 presents the methodology

used to infer the short-turns. Section 5.2.2 describes the algorithm developed for the

cancelation inference. Section 5.2.3 presents the sensitivity analysis performed to choose

the parameters for both short-turn and cancelation inference. Section 5.2.4 presents the

CTFS data retracing reformations.

5.2.1 Short-turn inference

The algorithm is built as a function that can be applied to a list of days that

correspond to the time window of interest. For this research, the inference was limited to a

time period that corresponded to a single timetable, specifically from 1 October 2013 to 7

December 2013, the last day before a new timetable was implemented. This time period

includes 68 days of operations but in practice, the inference was applied on 54 days

because some days operated on different timetables and were discarded. Figure 5-3 shows

a flow chart of the algorithm.
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train
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Detect all
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Identify
different
reversals

Short turn
data

Figure 5-3: Flow chart of the short-turn algorithm

The main steps of the program are described in detail below.

a) Import timetable and A VL data andfilter by train number

The first step is to import the AVL data and timetable data that corresponds to a day

d. The AVL merger process outputs data in an identical format to the timetable, which

allows the direct importation of the AVL merged database for use in this module.
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b) Detect all reversals from the timetable and AVL data

As in the merging algorithm, the inference algorithm is applied by train number. The

same process is applied to both the timetable and the AVL data. The objective of this step is

to detect all short turns. The database records are ordered chronologically. The algorithm

determines the direction of the train at each time point by subtracting the value of the next

station from the value of the present station. Given the station numbering protocol, a

positive value indicates trains traveling to the northeast. The values of the station numbers

(referred to as SUTORNUMBER) per station are presented in Appendix A. The algorithm

detects the points at which the calculated direction value changes sign. This corresponds to

a train reversal. The algorithm saves the location and time of every reversal in both the

timetable data and the actual data. Figures 5-4 and 5-5 summarize the reversing points

inferred for two different days and train numbers. The time plots in both figures are plotted

in seconds after midnight and SUTORNUMBER refers to the station numbers used

throughout the research. Figure 5-4 corresponds to a train number and day for which there

are no observed short-turns. Figure 5-5 corresponds to a day and train number with two

inferred short-turns, at station number 37.25 around 9 am (32400 seconds after midnight)

and at station 5 around 5 pm (61300 seconds after midnight).
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(a) Time-Space Diagram
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(b) Reversing points from A VL
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(c) Reversing points from timetable

Figure 5-4: Reversing point detection A
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(a) Time-Space Diagram
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Figure 5-5: Reversing point detection B
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c) Detect the reversing points that are different between the schedule and A VL data

The next step is to compare the reversals of the timetable and the AVL data to

identify any differences. These differences correspond to inferred short-turns. The

algorithm aggregates all the reversing points calculated by train number into one table

containing an additional field for the train number. It does so both for the timetable

reversing points (Database A) and the AVL reversing points (Database B). Time stamps

between the timetable and the AVL data may differ because of train lateness. In addition

the number of scheduled reversing points detected for a given train and day may not

correspond to the number of reversing points observed. This is due either to data quality

issues or train cancelations. In Figure 5-6 (a), we can see that the AVL data between 8:30

and 9:30 am is unreliable. The limited number of available AVL data points in that interval

make it impossible to trace the train's movements. In this example, 14 reversing points are

detected from the timetable data (Figure5-6 (b)) and only 11 reversing points are detected

from the AVL data (Figure 5-6 (c)). It is not possible to merge databases row by row for the

comparison as both databases do not have the same number of records. The next

paragraph explains how the comparison between the two databases is implemented.
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For every row k of Database B, the algorithm goes through each row I of Database A.

If the train numbers of both rows correspond, the algorithm calculates the difference in

time between the detected reversals. If the reversing station is different and the time

difference is smaller (in absolute value) than a given threshold, Ashort turn, the algorithm

records this instance as a reversal. Specifically, it saves both the location and times reported

in Database A and B. The threshold Ashort turn, , which can easily be changed, takes into

account the possibility of a train being late (or early). Generally, a short trip occurs to

reduce train lateness, it is therefore crucial to include such a time parameter with an

appropriate value. This value should be smaller than the time needed for a train to traverse

the line, otherwise the algorithm could be comparing reversals on different trips on the line.

Section 5.2.4 will discuss the value of the threshold used in the case of the Piccadilly Line.

The two nested loops result in a large computational time (o(k*l)). In practice, the

number of reversing points is low and the total number of rows per day is generally less

than 1000. This methodology may require higher computational time when applied to

shorter lines with a large number of reversals.

d) Incorporate line constraints

Step c) results in a database listing all the inferred short trips. The last step is to

refine the results by incorporating infrastructure constraints: short-turns can occur only at

stations where cross-over tracks allow reversals. . In the case of the Piccadilly Line these

stations are listed in the Table 5-2.

Table 5-2: Piccadilly Line Reversing points

Station Station Number

Arnos Grove 4

Wood Green 6

Hatton Cross 36.25

Rayners Lane 36.75

Ruislip 39.75

Northfields 30.25

King's Cross 13
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These constraints are used to partition the database obtained from step c) above. Other

constraints, such as imposing fixed tuples of scheduled reversing location and observed

reversing location, could be incorporated to increase the precision and reliability of the

inference process. For example, if the train was scheduled to run to the terminus of the

branch, it may not be possible to reverse in central London.

5.2.2 Cancelation inference

The cancelation inference uses a similar methodology to the short turn inference

process: by identifying all the reversing points in both the timetable and the AVL data, the

process compares all large observed time gaps. Similar steps can be used to describe the

process. The flow chart of this algorithm is given in Figure 5-7.
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Figure 5-7: Flow chart of the cancelation algorithm
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a) Import timetable and AVL data and filter by train number

This step is identical to the first step in the short trip inference process.

b) and c) Detect all large time gaps and compare timetable and observed data

Rather than detecting all reversing points, this step detects all large time gaps. The

process creates a database that records all these time gaps. The algorithm calculates the

difference in time between two adjacent points, and if the time difference is larger than a

given threshold, Acanceiation, it saves the value. The threshold value is used to limit cases of

cancelations being inferred as a result of missing data. Section 5.2.4 discusses the choice of
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this parameter. Figure 5-8 shows two cases where large time gaps are observed. In case (a)

both the timetable and the observed data show large time gaps. In this case the process will

not infer a cancelation. In case (b), the train was scheduled to run between 8:30 and 11 am

but no data exists for train movement in this time interval. When large time gaps are

observed in the AVL data but not in the timetable, the algorithm saves the time and location

at the start and end of the time gap. These values correspond to the time and location of

the cancelation and the time and location of the re-entry into service.
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5.2.3 Reformations

As described previously, the reformation information is directly available through

the CTFS data. Figure 5-9 provides a snapshot of CTFS data with the last field corresponding

to the original train number if the train has been reformed. The rTRN value is zero if the

train has not been reformed. The algorithm detects all the rows with a non-zero rTRN value

and incorporates that information in the corrective action database. A case study was

conducted for a given day to verify that the information provided by this CTFS field is

reliable. The methodology was to detect all the reformations recorded through the CTFS

data and compare the data obtained from the manual logbooks. The case study showed

that the retraced reformation information provides an accurate picture of the reformations

implemented in a given time period. Figure 5-10 provides the manual logbook and data

used.

***** Sudbury Hill EB *****
TRN TD Expected Time Actual Time Lateness (s) rTRN

274 A2S 66:53:30 06:52:48 -42 0
360 A2S 07:08:30 07:07:56 -34 0
275 A21 07:23:00 07:24:21 81 0

Figure 5-9: Snapshot of CTFS data
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Figure 5-10: Reformation comparison
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(b) Reformations from CTFS

For this time period, the logbook records 13 reformations while CTFS detects 15

reformations. From the 13 reformations noted in the logbook, only 1 reformation is not

revealed in the CTFS data. Of the 15 reformations noted in CTFS, 3 are not shown in the

logbook. These discrepancies could be due to an incomplete logbook or an error in the CTFS

data. Assuming that the logbook accurately records all reformations, Table 5-3 is the matrix

summarizing the differences between CTFS reformation and logbook reformations.
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Table 5-3: Confusion matrix

CTFS reformation Not shown in CTFS reformation

Reformation on logbook 12 (true positive or TP) 1 (false negative or FN)

Not a reformation on logbook 3 (false positive or FP) NA

We can calculate the sensitivity, TPR (true positive rate), and the precision, PPV (positive

predictive value), defined in the literature as:

TP
TPR= TP+FN (5-1)

TP
PPV= TP+FP (5-2)

In our case, the sensitivity is 92% and the precision is 80%. Based on this example, the CTFS

database has a tendency to overestimate the number of reformations (the CTFS count is

15% higher than the actual count) but it does not miss many of the reformations that were

implemented. The calculated levels of sensitivity and precision are high enough to validate

the usage of CTFS as reliable indicator of reformations.

5.2.4 Choice of parameters

As described in sections 5.2.2 and 5.2.3, both inference algorithms rely on the value of

parameters, Ashort turn in the case of short turn inference, and Acancelation in the case of

cancelation inference. A sensitivity analysis is used to choose the value of these parameters.

The general methodology is similar to the sensitivity analysis implemented in the merging

algorithm. The algorithm is run with a variety of values for the parameters, and we observe

the output of the algorithm for each value. In the case of the inference algorithms, we focus

on the number of short trips and the number of cancelations inferred.
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a) Short-turn parameter

Ashort turn is used as a threshold to compare the times of reversals detected in the

timetable and in the AVL data. The sensitivity analysis is implemented on three different

days.

Change in the count of short turns
25

20

0

2 3 4 5 6 7 8 9 10 '1 12 13 14 15 16 17 18 19 20

Treshold in minutes

(a) 15 November

Change in the count of short turns

. 2 3 1 I 2 339 1 31 U3 43 1 b 1/ 1/ 1n

Treshold in minutes

(b) 4 November

Change in the count of short turns

o 3

Treshold in minutes

(c) 6 November

Figure 5-11: Sensitivity analysis for short-turn time threshold
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Figure 5-11 shows that for cases (a) and (b) there seems to exist a given threshold

above which the algorithm overestimates the number of short turns. The value of 10

minutes is used as a threshold for our analysis, but it is understood that this choice

increases the uncertainty in the inference count. In particular, the choice of 10 minutes

seems more arbitrary given the evolution of the counts as seen in Figure 5-11 (c). A next

step would be to validate this threshold by comparing the number of inferred short turns

with the actual number of short turns. A one-day case study during which the researcher in

the field manually records all the short turns that are implemented by the controllers and

then compares this value with the inferred value would be a good way to validate the

inference. In some AVL systems, the data retraces the scheduled train destination and the

actual train destination. If such fields are proven to be reliable, it would be interesting to

use the inference methodology to compare the inference results with the short turns

detected directly through destination changes.

b) Cancelation parameter

The parameter Acancelation'is used as a threshold to detect large time gaps. It is

important to use such a threshold as small observed time gaps may be due to data gaps

rather than train cancelations. The sensitivity analysis was run on three days with various

levels of service. Case (a) in Figure 5-12 corresponds to a high level of disruptions, case (b)

to a medium level of disruption and case (c) to normal operations. The analysis looks at the

evolution of the number of inferred cancelations per day given a certain value of

Acanceiation- As expected, too small a threshold value results in a large overestimate of the

number of cancelations. In the three cases, there seems to be a threshold value beyond

which the number of cancelations is less sensitive to changes in parameters. In some cases

((a) and (b)), the count seems to be underestimated for high values of Acancelation. The

value that corresponds to the beginning of a plateau for the counts is chosen as our

threshold. The daily summary for 6 November (case (a)) allows us to compare the inferred

cancelations and the reported cancelation (horizontal line at 14). This confirms that the
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plateau value provides a realistic estimate of the actual number of cancelations. The value

of 75 minutes is chosen as the threshold.
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Figure 5-12: Sensitivity analysis for cancelation time gap threshold
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5.3 Results and limitations of the inference process

Sections 5.1 and 5.2 described the inference algorithm and its implementation. This

section provides some examples of how this recovery strategy database can be used to

provide insight into operations, both on an aggregate and disaggregate level. The last part

of this section discusses the limitations and assumptions made during the inference process

and their implications on the reliability of the results. Further analysis based on the

information provided through the recovery strategy database will be presented in Chapter

6.

5.3.1 Count of actions per day

The recovery strategy database can be used to better understand operations and

the corrective actions that were implemented in response to a given incident. This

numerical information could be useful for service control managers to better understand

the COrreCtive actions dhat were implemented. it would allow them to have a more precise

and direct record of the number of cancelations, short trips and reformations, rather than

relying on oral reports and manual logbooks. Daily disaggregate analysis that focuses on the

evolution of counts of corrective actions over the day will be presented in Chapter 6.

Information on the type, number, location, and time of corrective actions could be

incorporated in daily reviews as well as the general performance proxy used within the

London Underground. In particular, having access to information concerning short trips and

cancelations provides a better understanding of the total impact of the disruption and

recovery on passengers.
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Other illustrations based on the recovery strategy database may be useful for

further analysis. Figure 5-13 illustrates the evolution of the daily number of cancelations,

short-turns and reformations over the time window of interest. Even though there seems to

be some correlation between the counts of different actions, some instances show a high

number of a particular type of corrective action and a lower number of another type. This

suggests that the recovery strategies implemented vary across days. This type of diagram

can be used by the operating staff as it is also useful to detect days that experienced larger

or smaller numbers of interventions.
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5.3.2 Short trips

The recovery strategy database can also be used to illustrate the locations and times

of all short trips implemented during a given time period. Figure 5-14 illustrates the short

trips implemented in October 2013. The red points indicate the scheduled reversing points

and the blue points indicate the inferred reversing points. This graph is a user-friendly way

to observe all short-turns in a single format. The majority of short trips are operated

between 7:00 am and 11:00 pm and there is a higher density of short trips on the northern

branch of the line.
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Figure 5-15 (a) illustrates the percentage of short trips by station of occurrence. As

can be seen in Figure 5-15 (b), the two largest reversing locations are on the northwest

branch of the line. This information can be shared with local controllers and service control

managers, as well as employees in charge of infrastructure. It could also be useful to

observe how this distribution and the total number of short-turns may change in response

to new timetables or changes in infrastructure (new crew depot, new train depot, etc).

Wood Geen 30%

ArnoS Grove 28%

Ravne-s Lane 14%

Rutsp 11%

No-"f-elds 9%

-tatn Cross 9%

King's Cross 0%

(a) Most common reversing points

(b) Location of these points

Figure 5-15: Most used reversing points
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5.3.3 Cancelations

The corrective action database can also provide insight into cancelations. As can be

seen in Figure 5-16 (a), in the case of the Piccadilly Line, it is not surprising that the main

location of cancelations is Arnos Grove, where a train depot is located. This information is

useful to confirm the accuracy of the inference. The average duration of a cancelation

(plotted in minutes in Figure 5-16 (b) ) is 3 hours and 15 minutes, with a large group of

cancelations shorter than 3 hours and a smaller group of cancelations that appear to be

much longer (around 7 hours).

Histogram of CancelationDuration

200 400 600 800

CancelationOuration

(a) Distribution of the duration of cancelations

F oure d ti- nanwon r Er

Cht~wel

t4r ow
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P; - --- CM

IM Twickenhamn
Sidt

(b) Heat map of the location of cancelations

Figure 5-16: Cancelation characterization

118



5.3.4 Assumptions and limitations

The method of comparing the timetable and AVL data is applicable to a large variety

of high frequency lines that operate with a schedule and with human controllers. In this

section the assumptions as well as the limitations of this methodology are discussed. The

process can only function with reliable data for both scheduled and observed train

movements. In addition, all discrepancies between scheduled and observed movements are

inferred to be corrective actions that are part of a recovery strategy. In some cases, trains

are canceled or short turned directly because of an incident, for example a train that is

damaged will be sent to the depot. The actions affecting these trains are for safety and are

not part of the recovery strategy as described in Chapter 1. These actions are assumed to be

rare in comparison with similar actions implemented as part of a recovery strategy. Further

analysis and research on differences between actions taken to resolve an incident and

actions taken to respond to the line disruption would be useful.

The main limitations of this methodology are related to train tracking reliability. The

quality of this data can indeed impact the precision and reliability of the inference results.

The AVL data used needs to present a high enough spatial resolution to correctly detect all

reversing points to infer short trips. In addition, the inference of cancelations may be biased

to over-estimating the number of cancelations because of train tracking data gaps. As

described in Chapter 3, significant incidents such as signal failures may result in large gaps in

data for a given train. In that case, the train has in fact run in service but this is not

identified through the train tracking data. The inference algorithm will detect a gap and

erroneously conclude that a cancelation occurred. The use of a threshold of an hour and

fifteen minutes for the time gaps detected is a first step towards dealing with this issue

(usually data gaps due to missing data are shorter than an hour), but this limitation must be

kept in mind throughout the analysis of the data.
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Chapter 6: Evaluating the effectiveness of recovery strategies

Chapters 4 and 5 described the process of AVL data fusion and the methodology

used to infer recovery strategies based on comparison between observed and scheduled

train movements. Chapter 6 illustrates how the inferred information on recovery strategies

can provide insight and recommendations on current practices. This chapter presents a

methodology and metrics that can be used to describe and assess the effectiveness of a

recovery strategy. It focuses on a case study of the Piccadilly Line to illustrate the

knowledge gained from the recovery strategy database.

6.1 General Framework

The general approach is to compare similar incidents to assess how different

recovery strategies lead to different recovery characteristics. The protocol described here is

based on an analysis of historical data. This methodology complements previous research

on disruption management by Babany (2015) that is based on a simulated optimization

platform.

From an initial condition characterized by incident features and the state of the

network, controllers implement a recovery strategy that leads to the recovery of the line.

The proposed methodology selects days with similar initial conditions and compares how

different recovery strategies lead to a differences in the way the line recovers. It is

important to select days with similar incident characteristics. Indeed, a similar recovery

strategy may result in different recovery characteristics if the incident characteristics are

different. The general methodology is illustrated in Figure 6-1.

Identify the Calculate the Use recovery
Indent eonion implemented s metrics related to characteristics to

icdncodtos recovery strategies recovery compare recovery
strategies

Figure 6-1: Methodology to evaluate the effectiveness of a recovery strategy
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In particular, it is important to define two different recovery effectiveness indices

that quantify respectively the effectiveness of the recovery for passengers and the

effectiveness of the recovery for the crew. This approach complements the approach

developed by Babany (2015). Babany develops an optimization tool based on an objective

function that includes both passenger service costs, schedule adherence, and a measure of

the complexity of the proposed recovery schedule. He defines the passenger cost as a

measure of passenger waiting time. He neglects the possible irregularity of headways and

uses half the average headway as a measure of waiting time. Babany defines schedule

adherence as the observed lateness during crew swaps. Indeed, if all the crew swaps are on

time, the line is operating on schedule which corresponds to normal operations. This

description of crew impact will be incorporated in this research. A main difference between

Babany's work and the current research framework is linked to the context in which the

metrics to assess passenger and crew impact are used. Babany defines the passenger and

crew cost in the context of a simulated optimization tool that predicts an optimal recovery

strategy given a set of fixed constraints. This research focuses on metrics for the ex poste

analysis of actual recovery data. Building on Babany's previous work, section 6.1.1 and

section 6.1.2 introduce metrics to evaluate the impact of disruptions on passengers and on

crew.

6.1.1 Recovery Effectiveness Index for passengers

Excess Waiting Time:

As described in Chapter 2, disruptions have various impacts on passengers. A

comprehensive measure of passenger impact should include average and regularity of

headways, demand levels to take into account the number of passengers impacted by the

disruption, measures of in-train times and measures of additional transfers. In particular,

additional short-turns or cancelations may require passengers to make more transfers than

planned and could increase their total travel time. In the context of this thesis, the analysis
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focuses on metrics related to platform waiting time as this is assumed to have the highest

impact on passengers.

This section defines the metric R that can be used to represent the excess waiting

time. We calculate the average and variance of headway, and compute the total wait time

after weighting the expected wait time by passenger counts. To incorporate the variability

in passenger counts, the line is divided into N sections. All values are calculated by ten-

minute time intervals (the function WT is therefore defined as one value per ten-minute

interval). E[T]i,t corresponds to the average observed waiting time per section and per time

interval t. E[HIl,t is the average headway observed on section i during the time interval t.

cv(H)1,t is the coefficient of variation of headways observed on section i during the time

interval t and Di, is the percentage of demand observed on section i during the time interval

t. Finally, E0 [H]i,t corresponds to the scheduled headway on section i during the time

interval t. Subtracting half this value (equivalent to the scheduled waiting time) from the

observed waiting time gives an approximation of the excess waiting time. The excess

waiting time is defined per direction since both the headway average and headway variance

are defined per direction. The measure defined in (6-1) and (6-2) complements Babany's

definition of passenger cost as it represents the excess waiting time rather than the average

wKing -:me and it includes headway irregularity measures. This metric does not capture

the effect of denied boarding for passengers.

= E[H]jt(1 + cv(H) ,' 2 ) (6-1)
2

N

WT= (E[T - 0.5 * E[Hi,) *Di (6-2)
i=1
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Integrated Passenger Index

The excess waiting time as defined in (6-2) is a good metric to measure the impact of

disruptions on passengers. Typically, the excess waiting time will sharply increase after the

beginning of the incident. It will reach a maximum value and then gradually decrease until

the line is back to schedule and the excess waiting time is null. Different recovery strategies

may lead to different values of maximum excess waiting time as well as different times to

recover. It is important to incorporate both the time taken to reach normal operations and

the observed values of excess waiting time. Figure 6-2 represents schematic examples of

two different recoveries. Part (a) depicts an aggressive recovery strategy leading to a short

time to recover. Part (b) depicts a more incremental recovery strategy with a longer time to

recover but smaller maximum values of waiting time. We define a single integrated

recovery effectiveness index (REI) that captures the impact of maximum values but also the

total time to recover. It corresponds more precisely to the shaded area shown in Figure 6-2.

WT

A B C time
(a) Rapid recovery with high impact

WT

a

A B C ime

(b) Slow recovery with small impact

Figure 6-2: Different types of recoveries
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In the case of the theoretical example presented in Figure 6-2, REI can be defined as:

REI= a(6-3)
2

As the general form of excess waiting time is not linear let alone triangular, REI is more

broadly defined in the form:

C
REI = f(WT(t) - WT(a))dt (6 - 4)

As it is based on the waiting time, REI is specific to a direction. It can be calculated both for

the overall line as well as a specific section of the line.

Calculating the average headway on the Piccadilly Line:

The average headway E[H] can be calculated directly from the refined AVL data. The

direction of the train is inferred with the same methodology used for the short-turn

inference. The data is then sorted by direction, station and time. The headway is estimated

as the difference of two consecutive time stamps at a given location for a given direction.

The next step is to calculate the average observed headway by direction. The analysis uses

ten-minute time intervals, but this value can be changed depending on the desired level of

granularity. For each direction and line section, all data points are grouped into ten-minute

intervals. The analysis computes the average for each group of data. This results in the

average headway value per ten-minute interval for each direction and section. In the case of

the Piccadilly Line, the line can be divided into four zones, A to D, as shown in Figure 6-3,

with the list of all the stations in each zone given in Appendix C. Zone B includes Central

London and has a higher density of stations and a higher frequency of service.
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Cock"ters

LX:;iJgE Zone A

Z eD Zone Finsbury Park

D Zone B r

Zone C Acton Town

Heathrow

Figure 6-3: Geographic segmentation of the Piccadilly Line

Figure 6-4 illustrates the average headway for eastbound trains on a normal day of

operations (3 December 2013). It is calculated over the whole line (Figure 6-4 (a)) as well as

a for Zone B. The average overall headway corresponds to the scheduled headway of

approximately 3.3 minutes. As expected, the headway is lower in Zone B with an average of

2.5 minutes. An equivalent methodology can be used to calculate the standard deviation of

the headway per direction, section and 10 minute time interval.
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(a) Overall

Average eastbound headway in Zone B
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B

I

Time of Day

(b) Zone B

Figure 6-4: Average observed southbound headway

6.1.2 Recovery Effectiveness Index for the crew

Metrics related to headway values are not of importance for the crew. A different

recovery effectiveness index should be defined to measure the impact of the disruption on

the crew, in particular on the drivers. To accurately measure the impact of recovery on the

crew, it is important to understand the operations planning process.
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Crew scheduling:

In his work on evaluating the robustness of crew schedules under disrupted

services, Ravichandran (2013) provides a detailed description of operations planning. The

operations plan is described as a set of plans which fully describe the utilization of the

transit agency's resources. A key constituent of the operations plan includes the timetable,

which describes all the scheduled train movements. Another important element is the crew

schedule that describes all the driver shifts to cover the scheduled train movements. The

crew schedule is designed to operate under normal operations. A single driver is assigned to

a specific duty that corresponds to part of a trajectory from the timetable. Generally, a

small amount of slack time is incorporated to allow for small levels of train lateness.

However, in the case of larger train lateness, drivers may experience late reliefs and a

change in their scheduled duties. Most transit agencies rely on the availability of spare

drivers to provide relief to drivers assigned to late trains. Ravichandran discusses the benefit

of spare drivers but also the difficulty of utilizing this resource effectively. In the context of

this framework, the availability of spare drivers is not incorporated in the final measure of

the impact of disruptions.

Recovery Effectiveness Indices for crew:

Given the crew scheduling process, the best metric to assess the impact of a

disruption on the crew should be linked to schedule adherence at crew relief locations.

Indeed, if the lateness of a train is recovered before the end of a drivers' shift, the driver will

not suffer any negative impacts. A first metric that can be used is the total number of late

trains observed at crew relief locations. Late trains are defined by trains arriving at the crew

depot with a lateness above a certain threshold. The REI linked to the count of late trains

corresponds to the sum of all trains that arrived late between the start of the incident and

the return to normal operations. The return to normal operations is defined as the moment

when all trains are back on schedule.

In addition to the count of late trains, it can be useful to study the cumulated value

of lateness at crew reliefs for all late trains. This takes in account the fact that a driver
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scheduled on a train that is 30 minutes late at the relief point is more impacted than a

driver scheduled on a train that is only 12 minutes late at the relief point. The REI linked to

the cumulated lateness of trains corresponds to the sum of the observed lateness of trains

that are out of schedule. The sum is implemented from the start of the incident to the

return to normal operations. With L(T) the value of lateness for train T and (Tl...TN) the list

of all trains that arrived late at the crew depot between the beginning of the incident and

the end of recovery, we can define:

N

REIcrew = L(Ti) (6-5)
j=1

One limitation of using the lateness at crew relief locations is that it overestimates

the impact on drivers. Indeed, it is possible that a driver passes a crew relief station without

a driver swap. In that case, even though the train is late, if it recovers the lateness before

the next actual relief point, the driver will not be impacted. For more precision, the analysis

should incorporate the actual scheduled relief points to count late trains at scheduled

reliefs.

Even though the median lateness observed throughout the line does not accurately

represent the impact of the disruption on drivers, it is a good metric to understand how the

line gradually recovers from a disruption. In particular, it can be assumed that a return to

low levels of median lateness corresponds to a return to normal operations. This leads us to

define two important metrics of time. The time of disruption as described in Figure 6-5

corresponds to the time from the beginning of the incident to the end of the recovery. It

does not take into account the length of the incident. The time to recover is defined as the

time of the recovery phase.
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time to recover

time of disruotion

Figure 6-5: Time of disruption

Finally, the number of canceled trains can have an impact on the crew as it results in

a change in drivers' shifts and additional maneuvers. TIn the case of the Piccadilly Line, on

field interviews suggest the majority of cancelations are implemented at crew depots. This

suggests that they do not have a large negative impact on the crew as drivers shifts are

usually shortened as a result. The number of cancelations is therefore not included as a

measure of crew impact in this methodology.

Application to the Piccadilly Line

In the case of the Piccadilly Line, the lateness value is not directly available from

Netmis data but it is accessible through CTFS data as described in Chapter 3. CTFS data

contains a field that directly indicates lateness in minutes. This field is used by controllers in

real time to identify trains that are significantly behind schedule. As presented in Chapter 3,

one limitation of this database is it's low spatio-temporal resolution. In particular, data is

available for only one of the two crew relief points of the Piccadilly Line (Acton Town and

not Arnos Grove)

6.1.3 Identification of similar incidents

Section 6.1.1 focused on defining recovery effectiveness indices both for passenger

and crew impact. These indices are important to integrate to the comparison methodology

as they provide metrics to assess the performance of various recovery strategies. This
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section discusses the selection of similar incidents to apply our comparison methodology

on.

Various factors need to be taken into account to identify similar incidents. First of all,

it is desirable to select disruptions that occurred in similar locations and during the same

time period. The recovery strategy implemented due to a signal failure occurring off peak

outside central London can be difficult to compare with one in response to a similar failure

that occurred in the peak in central London. Lower train frequencies and higher passenger

loads may result in a larger accumulation of overall lateness and a longer time to recover in

the latter case. This difference can bias the comparison of the line recovery strategies and

effectiveness. In addition, during the peaks in central London, high levels of crowding and

smaller headways can raise safety concerns. As an example, no overcrowded train should

be held in tunnels due to the increased risk of passenger illness. This can constrain the

possible recovery strategies. Depending on the desired level of precision, comparing

incidents that occurred in the peak (or off peak) in central zones (or outside the center)

might suffice. If more data is available, it would be beneficial to compare incidents that

occurred in the same hour and at the same station. If available, the track direction affected

by the disruption should also be incorporated in the analysis.

I- Add n 'hm nd on of -he disruption, it is important to identify
Ill alUUILlonI Lu Me LIImi ad IUcLLI I L tilI IT

similar incident characteristics. The duration as well as the type of incident both have a

direct impact on the recovery. In the case of the London Underground, incidents are

classified by type as described in Chapter 2. This classification will be incorporated in the

choice of case study days. Section 6.2.1 provides more insight into the selection process

used for the Piccadilly Line case.

The uncertainty on the total duration of the incident may have a large impact on

controller decisions. As seen in Chapter 2, this uncertainty is characteristic of most incident

conditions. It is important to take into account the fact that uncertainty may be a driving

reason for differences in recovery strategies. In particular, on field interviews suggest that

controllers dealing with an incident they are confident will last long are more likely to

implement a high number of cancelations in a short period of time. On the contrary, if the
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controller has very little information on the incident, he may prefer implementing

cancelations incrementally. One way of reducing the effect of uncertainty in our

methodology is to select incident types that are as equivalent as possible. In particular, the

analysis should focus on incident types that have similar distributions in duration. As will be

discussed in Chapter 7, the implementation of the methodology on a large sample size may

reduce the impact of uncertainty on our conclusions.

Finally, once similar incidents have been identified, the last step is to determine the

time window for analysis. It is important to be aware of any previous and following

incidents as these may also have an impact on the recovery. The study should focus on a

time window during which only the incident of interest occurred.

6.1.4 Identification and comparison of recovery strategies

An important step in the comparison framework is to identify the recovery strategies

that were implemented. The reconstructed recovery strategy database described in Chapter

5 is the source of data used for this step. In the case of the Piccadilly Line, the corrective

actions that are identified are cancelations, reformations and short-turns. The case study

focuses on the evolution of the number of corrective actions that were implemented during

the chosen time window. A further step in the analysis would be to study the duration of

cancelations as well as the location of short turns. This information is available in the

inference database described in Chapter 5.

Figure 6-6 provides an example of the count of corrective actions. It represents the

recovery strategy implemented in response to a customer incident that occurred around

13:40 and lasted approximately 20 minutes at Covent Garden on the 4 October. Once the

recovery strategy is identified, the study compares the metrics related to the line's recovery

with the metrics linked to recovery strategies. This comparison can lead to insight on the

impact of specific corrective actions on the recovery of the line.
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U -

Corrective Actions on the 4th October

-Number of cancelations --- Number of Short Turns -Number of Reformations

/

1340 14.09 14 38 15:07 15:36

Time Of Day

Figure 6-6: Recovery Strategy on the 4th October

16:04 16:33 17:02

6.2 Case Study Presentation

This section describes the case study days selected for the case study analysis.

Section 6.2.1 focuses on the methodology implemented to choose the case study days.

Section 6.2.2 describes the incidents of the case study and section 6.2.3 details the previous

and posterior incidents of the chosen days. This last step is important to identify recovery

strategies deployed in response to a specific incident.

6.2.1 Choice of days

The available data for the recovery strategy database covers nine weeks from the 1

October 2013 to the 7 December 2013. As described previously, the case study days must

be chosen based on similar incidents, locations, times and characteristics. A good metric to

provide insight into these three factors are Lost Customer Hours (LCH) calculated by the

London Underground and provided throughout the CuPID database.

Lost Customer Hours are obtained through a modeling tool developed internally by

LU that uses the cause, duration, time and location of the incident. It is a metric that reflects
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the direct impact of the incident on customers' journey times, but does not consider the

recovery strategy deployed. This is therefore an appropriate metric to characterize the

incident itself. Figure 6-7 illustrates the value of LCH for incidents from October - December

2013. It represents every value per observed incident. As can be seen, the value of LCH

varies widely over this period. The average per incident is 917 and the standard deviation of

all the values per incident is 4108.

Variation of LCH values

Figure 6-7: Variability in LCH value

Signal failures have a direct impact on data quality. In particular, a signal failure

results in a higher number of missing data points as the train tracking information used in

this analysis comes from the signaling system. The analysis therefore focuses on customer

incidents. Customer incidents are relatively homogeneous and do not impact train

movement data collection. As can be seen in Figure 6-8, customer incidents occur

throughout the line.
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Figure 6-8: Location of customer incidents

The data is sorted by location and time to help identify similar incidents that

occurred at the same station. Table 6-1 provides a snapshot of the table used. Due to a

limited time period as well as the need for similar time, location and incident

characteristics, the number of possible case studies is constrained.
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Table 6-1: CuPID data snapshot

Date Time Train Ni Location

10/10/13 18:23 '241 HAMMERSMITH (D & P)
11/22/13 8:09 '306 ACTON TOWN
11/8/13 14:08 '313 SOUTH EALING

10/12/13 22:13 '350 ARSENAL
11/11/13 9:17 '251 KINGS CROSS ST. PANCRAS
11/12/13 18:43 '334 ACTON TOWN
10/2/13 13:55 706 EARLS COURT

11/20/13 8:50'314 ACTON TOWN
11/22/13 22:37 '253 MANOR HOUSE
11/30/13 15:22 '360 HYDE PARK CORNER
12/21/13 13:18 COVENT GARDEN
12/11/13 17:28 '351 KNIGHTSBRIDGE
10/21/13 18:46 '342 HYDE PARK CORNER
10/25/13 8:45 '353 GREEN PARK
10/27/13 18:20 '303 PARK ROYAL
10/1/13 8:50 '313 KNIGHTSBRIDGE

11/27/13 8:23 '304 GREEN PARK
12/2/13 8:11 '310 NORTHFIELDS
11/7/13 14:14 '316 HAMMERSMITH (D & P)

12/18/13 8:32 '276 KINGS CROSS ST. PANCRAS
10/14/13 18:37 '230 MANOR HOUSE

10/1/13 10:10 '312 HYDE PARK CORNER
10/16/13 8:48 '310 HYDE PARK CORNER
10/13/13 18:30 '307 SOUTH KENSINGTON
10/10/13 8:20 '303 HAMMERSMITH (D & P)

10/16/13 8:50 '254 GLOUCESTER ROAD
11/6/13 10:44 '257 HOUNSLOW WEST
12/7/13 7:24 '300 HOUNSLOW EAST
10/4/13 13:51 '275 COVENT GARDEN

10/11/13 8:29 '276 KINGS CROSS ST. PANCRAS
10/10/13 8:00 '342 GREEN PARK
11/16/13 16:25 '304 GREEN PARK
10/14/13 15:38 '342 RUSSELL SQUARE

Direction ID Initial Delay (mins) LCH:
WB 3
EB 2
WB 7
WB 5
WB 3
WB 4
WB 6
EB 3
W1B 7
EB 3

WB
EB
EB
WB
EB
EB
EB
WB
WB
WB
WB

EB
WB
EB

EB
ES
ES
WB
WB
EB
EB
EB

Cause Category
250.61 Customers & Public
267.51 Customers & Public
300.95 Customers & Public
315.76 Customers & Public

365 Customers & Public
39S.S8 Customers & Public

413 Customers & Public
440.37 Customers & Public
444.44 Customers & Public
504.48 Customers & Public
506.54 Customers & Public
516.05 Customers & Public
570.24 Customers & Public
607.72 Customers & Public

611.7 Customers & Public
626.83 Customers & Public
694.75 Customers & Public
760.98 Customers & Public
836.68 Customers & Public
923.94 Customers & Public
965.22 Customers & Public

1207.95 Customers & Public
1405.62 Customers & Public
1433.27 Customers & Public
1667.48 Customers & Public
1822.13 Customers & Public
3194.27 Customers & Public
3331.17 Customers & Public
3338.05 Customers & Public
3537.79 Customers & Public
4983.63 Customers & Public

10294.92 Customers & Public
13476.14 Customers & Public

The case study focuses on a comparison between the customer incidents on the 6

November and 7 December. They are characterized by similar, high levels of Lost Customer

Hours. Furthermore, they occurred at the same station (Hounslow) and in the same

direction (Eastbound). Finally, both incidents occurred off peak, around 7 am on a Saturday

for 7 December and around 11 am on a Wednesday for 6 December.

6.2.2 Description of the chosen incidents

This case study is of particular interest because of the strong similarities between

the incidents themselves. Both incidents occurred at Hounslow East, which is located on the

southwest branch of the Piccadilly Line as shown in Figure 6-9.
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Figure 6-9: Case Study incident location

The CuPID data provides additional information that confirms that both incidents are

similar. The two incidents are characterized by the Customers & Public - Illness/Accident

cause. Appendix A provides details on the reported incidents, as reported by the controller

on duty at the time of the incident. On 6 November, even though the incident is reported in

CuPID as occurring at 10:44, the detailed description of the incident suggests it occurred at

10:13. According to the CuPID data, a customer fell on the tracks at 10:13 while a train was

approaching the station. The traction current was turned off, and the station was evacuated

and closed. The Piccadilly Line was suspended between Northfields and Heathrow for the

emergency team to intervene. After the victim was removed from the tracks, the traction

current was turned on again at 10:50. According to the CuPID data, the service was resumed

in both directions at 10:58, after a 45 minute delay.

The information available for the incident on 7 December does not provide a precise

start time for the incident. We will therefore assume that the start time is the one indicated
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in the CuPID time value (07:24), even though this information may not be accurate. The

incident is also characterized as a person under a train. Similarly to the 6 November, the

traction current was turned off to let the emergency group intervene. The line was

suspended between Northfields and Heathrow. An important difference to note is the

duration of the incident. According to the controller's description, service resumed at 08:48,

84 minutes after the initial incident. In this case the victim died a few minutes after the

incident, which may account for its duration.

6.2.3 Prior and posterior incidents

The next step was to study the occurrence of other incidents on the chosen days.

Incidents that occurred both before and after the selected incident may have an impact on

the line recovery and affect the findings. Figure 6-10 illustrates the LCH value of all the

incidents observed for the chosen days.

On 6 November, the CuPID data describes the occurrence of various smaller

incidents prior to, and after, the major customer incident at Hounslow East. Even though

these incidents have lower LCH values, they may have had a negative impact on the

recovery of the line. On 7December, two signal failures occurred, the first at Holborn at

11:21 followed by one at Arnos Grove at 18:33. The high LCH values seen in Figure 6-9 and

the detailed information provided in the incident descriptions indicate that these signal

failures had a significant impact on the overall performance of the line that day. These

additional incidents could bias our understanding of the line recovery. Therefore, to

understand precisely the effect of a given recovery strategy, the case study limits the

analysis to a time window that corresponds to the single incident. In our case, a four hour

time window is chosen in which the only major incident observed on both days is the

customer incident at Hounslow East. The time window includes time before the reported

start of the incident to account for the uncertainty on the exact time of the incident. Section

6.3.1 shows how the reported CuPID time of incident does not seem to correspond to the

actual incident start time.

137



14000 -

12000 - -- -

10000

Gj
: 8000

U 6000

4000

2000

0
5:00 5:36 7:28 8:09 9:49 9:54 10:44 16:15 21:55 22:45 23:56

Time Of Day

(a) 6 November

14000

12000

10000

6000

- 6000

4000

2000

S:24 6:18 6:28 7:02 7:24 8:12 11:21 11:46 13:38 17:33 18:33 19:46 23:56

Time Of Day

(b) 7 December

Figure 6-10: LCH Values
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6.3 Case Study Results

This section presents the results and conclusions of the case study. The case study is

an application of the methodology described in Section 6.1. It is presented to illustrate the

methodology and is not intended to be a comprehensive analysis of the effectiveness of

recovery strategies on the Piccadilly Line.

6.3.1 Recovery Strategy

As described in Figure 6-1, the first step is to analyze the recovery strategies

implemented in the time window of interest. Figure 6-11 provides insight into the recovery

strategy implemented during the hour after the customer incident. The cumulative number

of inferred cancelations, short-turns and reformations are represented in black, red and

blue.
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Number of Corrective Actions on the 7th of December
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Figure 6-11: Recovery Strategy

The main difference observed is the speed at which cancelations are implemented

on the line. Within the first 20 minutes of the 7 December incident controllers canceled 8
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trains, compared to 2 on the 6 November. This aggressive use of cancelations certainly lead

to higher headways but perhaps a quicker recovery. The analysis of reliability metrics will

provide more insight on the impact of this strategy. The first hour of recovery on the 7

December is characterized by a higher number of short turns and a lower number of

reformations compared to the 6 November. The study of the lateness at crew reliefs will

provide insight on the impact of this lower number of reformations.

6.3.2 Passenger Recovery Index

The second step is to analyze different performance metrics associated with the

chosen time window. This section focuses on passenger REL.

- Simplified RE:

The general form of REI was defined in section 6.1. The time window for this case study

corresponds to off peak operations with stable levels of demand and stable train

frequencies. We therefore assume that the levels of demand as well as the scheduled

values of average headway and headway regularity are constant. Additionally, the case

study assumes that the headways are regular, and limits the numbers of sections defined in

equation (6-2) to 1. Finally, the case study uses the simplified formula defined in equation 6-

1, assuming that the REI can be approximated by the area under the triangle as defined in

Figure 6-12. The period corresponding to the time between the start of the incident and the

return to normal headway values will be referred as the passenger time of disruption. The

difference between the maximum average headway and the initial average headway will be

called excess average headway.
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Mean Headway )A: Start of Incident
C: Return to initial headway values
a: Initial mean headway value
6: Maximum mean headway value

A C time

(a) Rapid recovery with high impact

Figure 6-12: Simplified REI

RE!( - a) *(C -A) (6-2)
2

ExcessAverageHeadway * PassengerDisruptionTime (6-6)

2

This formulation is a very simplified application of the theoretical REI defined earlier.

Further research should incorporate the more comprehensive definition of REI for a fine

tuning of results. It is however a good first order representation of the impact on

passengers as it captures both the maximum observed values of average headway and the

total time during which headway values are observed. The next step is to calculate these

maximum values of average headway and total time.

- Average Headway:

The passenger REI is calculated both for the overall line and for Zone C where the

incident occurred. Figures 6-13 and 6-14 illustrate the average headway in both direction on

the 6 November and 7 December. The dashed line is the start of the incident phase. In both

cases, this time is different from the reported start time of the incident. On the 6

November, the incident starts around 9:50 am, rather than 10:13 as stated in CuPID.

Similarly, the dashed line for the 7 December is at 7:05 am, 19 minutes before the reported
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incident start time of 7:24 am. From these observations, we can conclude that even though

the CuPID data can be used as a valuable source of information, it does not always provide

completely reliable information.

For both days, the start of the incident corresponds to a rapid increase in headway

values, particularly in Zone C where the incident occurs. Once the headway reaches a

maximum value, there is a decrease of average headway. Depending on the days and zones,

the decrease in headway is more or less sharp, corresponding to a quicker or slower

recovery.
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Figure 6-14: Average Headway for the 7 December

145

-I

En
'0
r

Q)

CD
-r

a)
I,

J
C----- ~

ci

Cs

8.



U-__________

The initial values of observed headways correspond to values slightly above normal

operations, approximating 5 minutes on both days. The average overall headway is lower

than the observed headway in Zone C, as expected, since Zone C corresponds to a single

branch of the line. Table 6-2 summarizes the main values for the average headway on both

days. The times are given in minutes after the start of the incident. The shaded cells

correspond to the smallest values, both for the maximum observed value as well as the

passenger disruption time.

Table 6-2: Comparison of headway values

Eastbound Overall Westbound Overall Eastbound Zone C Westbound Zone C

6th Nov. 7th Dec. 6iNov. 7th Dec. 6t' Nov. 7'h Dec. 6tNov. 7th Dec.

a 230s 330s 300s 360s 400s 300s 500s 380s

3 390s 660s 410s 705s 2300s 4400s 2500s 2500s

Passenger 160 min 85 min 40 min 30 min 60 min 102 min 40 min 60 min

disruption time

The maximum values of headways are higher on the 7 December and are reached

sooner. Given the similar nature of the incidents, these higher and sharper peaks can be

assumed to be due to the differences in the recovery strategies deployed. Concerning the

passenger disruption time, the overall line seems to recover sooner on 7 December (85 and

30 minutes compared to 160 and 40 minutes) but metrics specifically linked to Zone C have

a shorter recovery time on 6 November.

- REI calculation:

Based on Table 6-2, the analysis calculates the passenger REI as defined in equation

6-5. The calculation is implemented per day, direction, and both on the overall line and

specifically to zone C. The result presented in Table 6-3 are in squared minutes.
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Table 6-3: Comparison of passenger REI

Eastbound Overall Westbound Overall Eastbound Zone C WestBound Zone C

6 tNov. 7 tDec. 6 tNov. 7 tDec. 6 Nov. 7 th 6 7t Dec.

Dec. Nov.

REIpassenger 213 233 37 86 950 3485 667 1060

- Conclusion for passengers:

A comparison between the two similar days provides insight on the possible impact

of recovery strategy choices. In particular, the passenger REI values for the 6th of November

are lower for both directions and for both overall values and values specific to Zone C. This

indicates a better recovery for passengers. Even though the rapid implementation of many

cancelations led to quicker recoveries of headway values as seen on the 7 December, the

overall negative impact on passengers was higher. These results complement Babany's

findings (2015). The application of his optimization tool to a simulated case suggests indeed

that a higher number of cancelations has a positive impact on total time of passenger

disruption. This can be confirmed in this case study. However, to complement Babany's

(2015) work, it is important to consider the total impact on passengers rather than only the

time taken to recover usual headway or waiting time values. Indeed, when taking into

account the overall integrated impact on passengers, a more incremental implementation

of cancelations has a better output on passengers.
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6.3.3 Crew Recovery Index

-Time of disruption and time to recover:

The first step is to look at median values of lateness. This provides a good

approximation of the time of disruption and the time to recover.

Aggregated overall lateness

'I

V -

Time of Day

(b) 6 November

Aggregated lateness in Zone C

Time of Day

Aggregated overall lateness

A

A

Aggregated lateness in Zone C

h~/ \ /\
/ \~( \/ V r\

\\ f\t
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Time of Day Time of Day

(b) 7 December

Figure 6-14: Lateness evolution

Table 6-4: Time of disruption and time to recover

Overall Zone C

Time of Disruption

6 tf November

200 min

7 in December

NA

6 " November

115 min

Time to Recover 155 min NA 70 min

7 t December

150 min
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As seen in Figure 6-14, the 6 November has higher maximum values of lateness,

both on the overall line and in Zone C. The plot of the median overall lateness on the 7

December shows that the line does not seem to recover the lateness from the incident

within the defined time window. In Zone C, even though the time of disruption is shorter on

the 6 November, when taking into account the total length of the incident, the 7 December

performs better with a lower time to recover. This quick recovery time can be linked with

the aggressive cancelation technique.

- Number of late trains

Let us observe the evolution of the cumulative count of late trains within the first

hour after the incident. A train is considered late if it arrives at the crew relief more than 10

minutes after the scheduled arrival. This analysis is provided in Figure 6-15 and illustrates

how the incremental cancelation technique leads to a higher number of late trains

compared to a more aggressive approach.
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Figure 6-15: Impact of corrective actions on the number of late trains

We can calculate a recovery effectiveness index as defined in 6.1. The recovery

effectiveness index sums the total number of observed late trains during the disruption

(from the start of the incident to the end of the recovery). Table 6-5 summarizes the values

in number of trains.
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Table 6-5: REI values for crew

6 November 7 December

RElpassenger 17 13

The 6 November is characteristic of a higher impact on crew. This is due to the large number

of cancelations implemented by the controllers within the first hour of the incident.

6.3.4 Conclusion

This case study shows the insight gained from using the methodology presented

here to identify corrective actions and evaluate their potential. The analysis illustrated the

various steps of the comparison methodology and applied simplified versions of the REL.

Comparing the recovery strategy characteristics with various REI measures provide

important insight on the impacts of corrective actions on passengers and crew. In particular,

the main difference between both days lied in an aggressive implementation of cancelations

on 7 December. This analysis of the rate of cancelations complements Babany's research

that focused only on the total number of canceled trains.

Even though this aggressive strategy lead to a quicker recovery in headway values,

the overall impact on passengers as measured by RElpassenger was worse compared to the

more incremental approach implemented on the 6 November. Concerning lateness, the

aggressive cancelation strategy of the 7 December resulted in a smaller impact on crew in

Zone C. However, the overall lateness was not recovered in the time window of analysis.

Based on this case study, an implementation of incremental cancelations is recommended

to mitigate as best as possible the impact on passengers. This conclusion complements

Babany's findings concerning cancelations. Based on a case study, Babany concludes that

the implementation of cancelations immediately after the incident leads to better overall

recovery. As we have seen, the quick implementation of cancelations does lead to a smaller
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impact on crew and a quicker recovery to schedule. However, the aggressive

implementation of cancelations has an overall negative impact on passengers. This case

study is presented to illustrate the methodology developed in section 6.1. In particular, the

next step for this research is to implement a similar comparison methodology to a larger

number of incident occurrences to provide statistically significant conclusions and

recommendations.
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Chapter 7: Conclusion

7.1 Summary of the main findings

The first part of the thesis examined the benefit of the merging of several

incomplete but complementary databases. The second part of the thesis developed a

methodology to infer corrective actions based on a comparison between observed train

movements and scheduled train movements. Thanks to the reliable reconstructed AVL

database, the comparison successfully inferred the various corrective actions. The

methodology applied on the London Underground was limited to short turns and

cancelations. A similar framework can be developed to best represent additional corrective

actions on other metro systems. The inference methodology provided a numerical database

with key information on recovery strategies. This advance provides deeper insight in

disruption management and is a useful input for the last part of the thesis.

The last part of the thesis develops a framework to measure the effectiveness of

recovery strategies. Thanks to the inference step, precise information concerning recovery

strategies is available for any given incident. The analysis defines recovery effectiveness

indexes that capture the total impact of the disruption both for passengers and for crew.

The methodology compares the recovery strategies implemented and the recovery

effectiveness indexes for similar incident conditions. A case study is developed to illustrate

the proposed framework. Based on the case study conclusions, this research suggests that

an incremental implementation of cancelations leads to a smaller overall impact on both

passengers and crew.

7.2 Direct applications and recommendations for the London Underground

This section details the recommendations and potential applications of the research

for the London Underground. First of all, the thesis developed a methodology to increase

the quality of AVL data. For the Piccadilly Line, the use of a second complementary database
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helped reduce the percentage of missing train numbers from 23% to 4%. The thesis

processed the merging on three months of available data. This available refined data could

be used by the London Underground for further analysis. The methodology could be

industrialized by the London Underground to significantly reduce issues concerning missing

train numbers. This could be useful both to improve the reliability of performance metrics

calculated by the London Underground that are based on AVL data,.as well as provide a

better near to real-time tracking of trains for operations.

The corrective action database can also be of direct use for the London

Underground. The available database retraces 9 weeks of data. It provides aggregate

information on the location and frequency of the corrective actions as presented in Chapter

5. This information can provide support for infrastructure decisions such as the construction

of a new crew depot. It can also be used to assess the impact of a new timetable. The

database can also be used in a disaggregate way as illustrated in the case study. Information

on the corrective actions that were implemented could be integrated in the daily reviews to

encourage a constructive feedback loop between managers and controllers. On the longer

term, this comparison methodology could be integrated in a near to real time control tool.

It could help controllers keep track of the recovery strategy and simplify communication

between drivers, signalers, controllers and managers. it would also be particularly useful

during shifts swaps or when several controllers work in parallel.

The methodology developed to measure the effectiveness of recovery strategies

provides key insights to disruption management. In particular, it emphasis the difference

between crew impacts and passenger impacts. Control service tends to focus primarily on

lateness measures, which implies neglecting the impact of disruptions on passengers.

Integrating both the passenger and the crew recovery effectiveness indexes to the London

Underground analysis tools could provide insight on the true impact of a recovery strategy

on both crew and passengers. In particular, the case study illustrated how an aggressive

cancelation strategy resulted in a smaller time to recover lateness locally but a larger impact

on passengers and crew globally. Other measures such as providing real time information

on headway values and regularity could encourage controllers to incorporate passenger
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centric measures of disruption. In the longer term, a larger scale implementation of the

described methodology could lead to statistically significant conclusions and

recommendations for best practices.

7.3 Limitations and next steps

- Limitations concerning the recovery effectiveness index:

The REI defined for passenger and crew impact are a first step towards an

integrated understanding of the impact of recovery. On the passenger side, the proposed

index proposed reflects mainly a measure of excess waiting time as a function of average

headway average and regularity. It takes into account demand to measure the total impact

on passengers. However, other passenger impacts of disruptions described in chapter 2 are

not reflected in this measure. For example, disruptions lead in additional transfers or

extended in train time. Automated Fare Collecting data could provide a significant

improvement for the measure of the recovery effectiveness index for passengers. Further

research could address the need to add other negative impacts of disruptions on passengers

that are less easily measurable such as added anxiety could be approximated.

On the crew side, the REI is defined as a function of median lateness and total

number of late trains. This metric captures the overall impact of lateness on crews and

counts in the actual number of affected drivers thanks to the number of late trains.

However, it must be acknowledged that train lateness has a variable impact on crew

depending of location. In particular, high values of lateness observed at crew relief points

are likely to have the highest negative impact on crew. Furthermore, a measure of the

number of available spare drivers could be integrated as on site interviews suggested that

spare drivers could considerably lessen the negative impact of lateness on crew by

providing additional reliefs to respect driver's shifts.
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- Limitations on the developed methodology:

The methodology developed to measure the effectiveness of recovery strategies

also has limitations First of all, each incident is unique and it is difficult to find strictly

identical incident conditions for the comparison. For the case study, even though the

incident descriptions are very similar and the incidents occur at equivalent locations and

time, the total duration of the incident was reported to be 30 minutes longer on the second

day. Limited available reliable information on the start time and end time of the incident

may limit our understanding of the precise impact of the length of the incident on recovery

effectiveness. In particular, the uncertainty concerning the total length of the incident

should be acknowledged as a factor that may impact decisions of controllers. The

implementation of the comparison methodology on a large number of incidents could

reduce the impact of these discrepancies and limitations. Given the low number of similar

incidents, the methodology would need to be implemented on a large time window of

several years to lead to statistically significant results and recommendations.

-Further research on decision making:

Future research could study more precisely the process of controllers' decision

making. in particular, it would be interesting to study the impact of personal opinion and

biases in controller choices. The databases retracing corrective actions could be used in this

context. Provided with information on controller shifts, the analysis could link a controller

with the set of actions he implemented. The analysis could thencompare characteristics

(such as the number of trains canceled within the first minutes or the total number of

reformations between several drivers) over the course of a significant number of incidents.

This would provide more insight on the variability of recovery strategies due to personal

biases and choices.
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Appendix A: Station Names and Codes

SUTORNAME

Cockfosters

Oakwood

Southgate

Arnos Grove

Bounds Green

Wood Green

Turnpike Lane

Manor House

Finsbury Park

Arsenal

Holloway Road

Caledonian Road

King's Cross St. Pancras

Russell Square

Holborn

Covent Garden

Leicester Square

Piccadilly Circus

Green Park

Hyde Park Corner

Knightsbridge

South Kensington

Gloucester Road

Earl's Court

Barons Court

Hammersmith (District & Picc)

Turnham Green

Acton Town

South Ealing

Ealing Common

Northfields

North Ealing

Boston Manor

Park Royal

Osterley

Alperton

Hounslow East

Sudbury Town

Hounslow Central

Sudbury Hill

Hounslow West

South Harrow

Hatton Cross

Rayners Lane

Heathrow Terminals 123

Eastcote

Heathrow Terminal 4

Ruislip Manor

Heathrow Terminal S

Ruislip

Ickenham

SUTORCODE

CFS

OAK

SGT

AGR

BGR

WGN

TPL

MNR

FPK

ARL

HRD

CRD

KXX

RSQ

HOL

COV

LSQ

PIC

GPK

HPC

KNB

SKN

GRD

ECT

BCT

HMD

TGR

ACT

SEL

ECM

NFD

NEL

BOS

PRY

OST

ALP

HNE

STN

HNC

SHL

HNW

SHR

HTX

RLN

HRC

ETE

HRF

RUM

HRV

RUI

ICK

SUTORNUMBER

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26
27

28

29.25

29.75

30.25

30.75

31.25

31.75

32.25

32.75

33.25

33.75

34.25

34.75

35.25

35.75

36.25

36.75

37.25

37.75

38.25

38.75

39.25

39.75

40.75
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Appendix B: Pseudo-Code of the Merging Algorithm

d indexes the day, from the 2013-10-01 to 2013-12-31

RawDataCTFS : AVL data frame from CTFS for the given day d, that contains correct train numbers

RawDataNetmis : AVL data frame from Netmis for the given day d, with correct and zero train numbers

for d in all the dates

TrainsNetmis <- vector of all the unique Train Numbers of RawDataCTFS
NetmisZero <- subset of RawDataNetmis with Train Number = 0
TrainIdentification <- vector of all the unique values of Train Identifications of
NetmisZero

for i in TrainsNetmis

ExtractCTFS <- subset of rawdataCTFSd with Train Number = i

for k in TrainIdentification

ExtractNetmis <- subset of NetmisZero with Train Identification = k
ExtractNetmis$difference <- difference of time between two rows of ExtractNetmis

Cuts <- vector of indexes of ExtractNetmis where difference is >

for c in Cuts

ExtractNetmisCut <- subset of ExtractNetmis where time is > time[c] and <= time[c+1]

if number of rows of ExtractNetmisCut is >

Intermediate <- merge ExtractNetmisCut and ExtractCTFS by Train Station
ListStations <- vector of all the unique Train Stations of intermediate

PointsNetmis <- number of rows of the merge between ExtractNetmisCut and ListStations

Intermediate2 <- subset of Intermediate with difference between Netmis
and CTFS < - meDifference

CommonPoints <- number of rows of intermediate2

Ratio <- CommonPoints/PointsNetmis

if Ratio > RatioValu and CommonPoints > CommonPointsValue

update the values in Netmis of these rows to the Train Number i

save in a separate file the plot of the superposition of CTFS and this subpart of Netmis data

end if
end if

end for
end for

end for
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Appendix C: Zone segmentation

SUTORNAME Zone

Cockfosters A

Oakwood A

Southgate A

Amos Grove A

Bounds Green A

Wood Green A

Turnpike Lane A

Manor House A

Finsbury Park A

Arsenal B

Holloway Road B

Caledonian Road B

King's Cross St. Pancras B

Russell Square B

Holborn B

Covent Garden B

Leicester Square B

Piccadilly Circus B

Green Park B

Hyde Park Corner B

Knightsbridge B

South Kensington B

Gloucester Road B

Earl's Court B

Barons Court B

Hammersmith (District & Picc) B

Turnham Green B

SUTORNAME Zone

Acton Town B

South Ealing C

Ealing Common D

Northfields C

North Ealing D

Boston Manor C

Park Royal D

Osterley C

Alperton D

Hounslow East C

Sudbury Town D

Hounslow Central C

Sudbury Hill D

Hounslow West C

South Harrow D

Hatton Cross C

Rayners Lane D

Heathrow Terminals 123 C

Eastcote D

Heathrow Terminal 4 C

Ruislip Manor D

Heathrow Terminal 5 C

Ruislip D

Ickenham D

Hillingdon D

Uxbridge D
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Appendix D: Detailed CuPID incident information

- 6th of November

***PRELIM EIRF 596794*** Person Under Train. 1013 SS Hounslow Central alerted via emergency operation of PHP
that female customer had apparently suffered a fit while at the PTI on the eastbound platform as T.257 was on the
approach. Female customer had fallen on to the track and subsequently T.257 had travelled over her location. SS
informed Service Controller and requested traction current be turned off. Station evacuated and closed. Piccadilly Line
suspended Northfields to Heathrow in both directions. Trains berthed in platforms and reversed as appropriate.
Incident Channel 27 in use. SOO Gold Control. Piccadilly Line SM Silver control. 1030 LAS, LFB and BTP on site.
Customer conscious underneath the train, approx. 10m from the front cab. SS and T.Op laid SCDs front and rear. SS
and emergency services accessed track and to assess casualty. 1035 ERU on site. 1040 DRM, TOSMs and relieving T.Op
on site. Casualty moved to platform. Conscious and first assessments suggest injuries to the right pelvis. LAS
continuing to treat. 1047 NIRM on site. 1050 All staff and equipment clear of the track. Requestfor traction current to
be turned on made. 1052 Incident train departs Hounslow West to Northfields Depot with relieving T.Op and TOSM on
board. Track search commenced, personal items of casualty found and ERU access track to gather them. Casualty
moved from platform area to ambulance by LAS. NIRM becomes Silver Control. 1058 Service resumes in both
directions. Hounslow West station reopened. Customer suffered fit while near edge of platform which caused her to
fall on to the track as T.257 approached. Situation very well controlled by SS on site which aided swift resolution of
incident.

- 7th of December 2013
DTSM EIRF 602658: Piccadilly Line service suspended between Northfields and Heathrow EB & WB due to a person
under a train at Hounslow East eastbound. When spoken to by the undersigned the Train Operator of eastbound train
300 was able to briefly explain that he had approached the station at normal line speed, as he came around the left
hand bend into the platform he could see a number of people waving. Initially he though they may have been messing
about on their way home after a night out, however he then saw a body laying on the track ahead. The train was
stopped by an emergency brake application and came to a stop approximately three cars into the platform and the
Service Controller then alerted by train radio. At the same time a customer on the eastbound platform used a help
point to alert the Station Supervisor to the same situation. Traction current was discharged Hatton Cross - Hounslow
East EB and LAS & LFB arrived on site shortly after. The LFB requested that traction current also be discharged
Hounslow East - Hatton Cross westbound to allow safe access to the site. BTP, ERU & NIRM arrived on site and
incident talk group 27 established to maintain communications. Initially the Station Supervisor took responsibility as
Bronze Control and this was later handed over to the DRM with the NIRM assuming Silver Control. The Train Operator
of train 300 was supported throughout the incident by a spare Train Operator from Acton Town. He was interviewed
by the BTP and later returned to Arnos Grove by special taxi where he was offered any additional support he may
require. Eastbound train 342 was stalled approximately ten metres from the platform at Hounslow West, an
emergency detrainment was authorised and implemented by the Station Supervisor and additional staff. This was
completed at 0818 hours with approximately 120 customers being walked to the station and no reported injuries or
complaints. Eastbound train 302 was stalled on the eastbound approach to Hatton Cross at signal WW2, the
Hounslow West Station Supervisor was authorised to open section switches 844 & 844A to provide a single end feed
allowing train 302 to berth into the platform. Section switches 844 & 844A were authorised to be left open and were
subsequently closed by the night DRM. BTP officers 1963 & 4296 viewed the station CCTV (camera 23) and declared
that the incident was not deemed suspicious and stated that services were free resume following an all clear. It
appears the person was asleep on a bench, woke up and then was walking around a family on the platfrom before
falling on the track. The person that had fallen onto the track received medical attention under the train and was able
to be removed alive from under the train but subsequently declared deceased on the platform. Traction current
sections Hatton Cross - Hounslow EB & WB were recharged to allow the incident train to move. At 0848 hours, the all
clear was given, and services resumed with trains being reformed, reversed and cancelled as required.


