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Abstract

Very Flexible Aircraft (VFA) corresponds to an aerial platform whose flight dynamics

critically depends on its flexible wing shape, and has been investigated as a poten-

tial solution to generate high-altitude low-endurance flights. The dominant presence

of model uncertainties and potential actuator anomalies motivate an adaptive ap-

proach for control of VFA. Another particular control challenge for VFA is that its

flexible modes cannot be measured accurately, which necessitates an output-feedback

multi-input multi-output (MIMO) control approach. The focus of this thesis is on an

adaptive output-feedback controller for a generic class of MIMO plant models with

an emphasis on the control of a VFA so as to execute desired flight maneuvers. The

proposed adaptive controller includes a baseline design based on observers and pa-

rameter adaptation based on a closed-loop reference model (CRM), and is applicable

for a generic class of MIMO plants of arbitrary relative degree, and therefore the

overall design is suitable for control in the presence of uncertainties in flexible effects,
sensor dynamics, and actuator dynamics. In addition, the proposed controller can

accommodate plant models whose number of outputs exceeds number of inputs. One

major advantage of the proposed design is that the number of integrators required for

implementation is significantly less than that of previous methods and therefore the

controller can be implemented even for large-dimensional VFA models. Conditions

are delineated under which asymptotic stability and command tracking can be guar-

anteed, and the overall design is verified using realistic simulations on a high-fidelity

VFA model with unknown varying wing shape and actuator anomalies.

Thesis Supervisor: Anuradha M. Annaswamy

Title: Senior Research Scientist
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Chapter 1

Introduction

1.1 Large Dimension MIMO Systems

To achieve engineering marvels, modern machines are made of a huge number of

intricate components and mechanism, and therefore include complicated dynamics.

Control designs that are based on a simplified low-order plant model cannot produce

stable performance in all operation range while applied on the real machine, while

control designs based on high-fidelity high-order models usually yield a much higher

order controller that defies efficient implementation. These large dimension systems

are also equipped with a large number of sensors and actuators, and are required

to perform a complex maneuver that involve all sensors and actuators simultane-

ously, which defies classical single-input-single-output (SISO) decoupling approach

and therefore motivates a MIMO approach. One of such large dimension MIMO

control challenge is Very Flexible Aircraft (VFA) [1, 2].

1.2 Very Flexible Aircraft

VFA platforms are being investigated with increased attention in the last decade,

motivated to a large extent by the desire to generate high-altitude long-endurance

(HALE) flights [1, 3,4]. VFA corresponds to an aerial platform whose equilibrium

flight condition (trim) critically depends on the flexible modes of wings [3,51. One
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of the challenges of VFA is a significant change in the rigid-body dynamics around

a trim as its wing morphs. For example, the pitch (short period) mode of VFA

can become unstable when wing dihedral is trimmed at a high value [5, 6]. As a

consequence, control designs based on low-order rigid-body dynamics only may face

unexpected adversities. An example of this adversity occurred in 2003 during the

second test flight of Helios when the flight controller failed to regulate the wing

dihedral and eventually, allowed the unstable pitch mode to diverge [6]. The lesson

learned from the mishap is that the model for control designs has to include body

flexible effects [5,6].

Nonlinear VFA models have been investigated in [5,7,8] with focus on capturing

the flexibility effects while VFA navigates through multiple trims. For maneuvers

around a single trim, high-fidelity linear model, such as the one for Vulture VFA [2], is

also introduced with the focus on verification of the control design for large dimension

systems. All these platforms feature a particular challenge that only a set of state

measurements can be used for control because body flexible modes have to be included

in the model but none of them are measurable. The restriction necessitates control

designs based on output-feedback, such as linear observer-based controllers.

1.3 Linear Output-Feedback Control

Output-feedback MIMO control designs have been studied extensively because of

their ability to control a plant with only incomplete state measurements. One strat-

egy is to use an observer to generate state estimates, and use the estimates to perform

state-feedback-like control [9]. Observer-based controllers have been widely employed

for aircraft control and their performance is quite satisfactory for a nominal lin-

ear time invariant (LTI) plant model, which are able to capture most of the rigid

body dynamics [10,111. Combined with the "full-state" loop transfer recovery (LTR)

technique [9,12] (referred as the LTR technique hereafter), the resulting controllers,

denoted as observer-based LTR, recover the guaranteed stability margins of linear

quadratic regulators (LQR) asymptotically [9,12,13], and therefore can tolerate a

18



certain amount of model uncertainties. Application of observer-based LTR controllers

to VFA, however, faces unique difficulties. First, since flexible wings can deform to an

unknown shape, the actual trim and the corresponding flight dynamics can drift far

away from the nominal trim and its nominal dynamics (trim drift). Second, a HALE

flight can cause severe actuator anomalies such as power surge in motors or structure

damage on control surfaces. Both unknown adversities can exceed stability margins

of observer-based LTR controllers, and therefore make these controllers inadequate

for VFA.

1.4 Adaptive Output-Feedback Control

The limitations of linear controllers motivate an adaptive control solution that is

able to accommodate the unknowns associated with VFA flights. Those unknowns

include unknown structure stiffness and compliance change caused by unknown trim

drift, which is another consequence of unmeasurable states, and unknown scaling

of lift/thrust force caused by actuator anomalies. This thesis will show that both

types of the unknown adversities can be modeled as parametric uncertainties in the

underlying plant model.

For uncertain plant models, adaptive control has been investigated as a candi-

date improvement over linear controllers for the reason that it guarantees to recover

both stability and performance despite the presence of large parametric uncertain-

ties [14]. The classical approach to MIMO adaptive controllers (see [14, Chapter 10]

and [15, Chapter 91) is based on the underlying plant transfer function matrix. Such

a design typically requires the knowledge of plant's Hermite form [16,171 and uses a

non-minimal observer along with a reference model, resulting in a significant num-

ber of integrators (a high order controller). These high order designs prohibit their

applications to VFA since VFA model usually features large amount of flexible states.

19



1.5 Relative Degree One Observer-Based Control De-

sign

In contrast to the classical method, recent literature proposes a new approach of

adaptive control based on state-space representation, which uses a minimal observer to

generate the underlying state estimates [18, Chapter 14]. The state estimates are then

used for both feedback (similar to observer-based linear controllers) and parameter

adaptation. Unlike the classical approach, the observer is also used as a reference

model, by appealing to the notion of a closed-loop reference model (CRM), which is

recently shown to be a highly promising direction in adaptive control due to improved

transients [19-21]. The presence of CRM allows the new controllers to use much

fewer integrators than the classical ones, and is therefore an attractive alternative in

the case of MIMO plant models (see [18,22-24]). The proposed controllers in these

references guarantee stable adaptation based on an underlying strict positive real

(SPR) condition and therefore can be applied on a plant model with relative degree

one. Implementation of the proposed controllers requires solutions for its parameters,

which are subject to a matrix inequality, and therefore are solved using numerical

methods in these references. As a result, applications to a large dimension plant

model, or analysis of LTR properties, are not available.

1.6 Higher Relative Degree Control Design

The adaptive controllers proposed in the above-mentioned references [18,23-25] are

based on a restrictive assumption that the underlying relative degree of the plant

is unity. This implies that any actuator dynamics that may be present has to be

sufficiently fast, and also that the set of sensors must result in the number of net

integrations to not exceed one (for example, velocity sensors for mechanical systems).

Since actuator dynamics or sensor dynamics are hardly negligible in real applications,

especially for HALE flight where actuator/sensor aging could take place, high relative

degree plant models with uncertainties in both the plant dynamics and the actua-
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tor/sensor dynamics need to be considered. While adaptive controllers for such kind

of plant models have been addressed in SISO plants [21], currently very few results

exist for this case in MIMO plants. Classical adaptive control approach (see [14, Chap-

ter 10] and [15, Chapter 9]) addresses MIMO plant models with high relative degree

at the cost of huge amount of integrators and therefore are not suitable for large

dimension systems such as VFA applications.

1.7 Nonsquare Plant Models

Square systems play a key role in control theory development because of some unique

properties they may possess such as SPR properties [26], which serves a crucial role

in guaranteeing stability. Therefore, in adaptation design for MIMO plant mod-

els [14,15], square plant models with stable transmission zeros are commonly as-

sumed. Nonsquare plant models, whose number of outputs exceeds number of inputs,

become increasingly popular in industry since sensors are cheap and can be massively

deployed. The fact that nonsquare plant models usually do not have transmission ze-

ros makes them a good candidates for adaptive control design. To extend control de-

sign to non-square systems, a squaring-up method is usually needed, which effectively

produces an artificial square system through addition suitable inputs. Literature on

squaring-up methods were rather sparse until the work by [27,28]. The squaring-up

method in these references, however, are subject to a restrictive assumption that the

underlying plant models have uniform relative degree one, which prevents the design

to be applicable to plants that have actuator dynamics, i.e. higher relative degree.

1.8 Synopsis of Thesis

The main contribution of the thesis is the development of an adaptive output-feedback

controller for a class of MIMO plant models with unequal number of inputs and out-

puts and arbitrary relative degree, and the demonstration of the design on a high-

fidelity large dimension VFA model for high-altitude flight with body flexible effects.
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First, a generic class of MIMO plant models that are suitable for control purpose, in

particular for VFA control, is examined in Chapter 2. Then mathematical prelimi-

naries necessary for control design and analysis are introduced in Chapter 3. While

assuming no actuator dynamics present, we develop an adaptive controller for the

plant model with relative degree one in Chapter 4. In Chapter 5, we then explicitly

consider actuator dynamics and extend the control design to plant models with rel-

ative degree two. The control design is further extended to relative degree three in

Chapter 6, which serves as a corner stone to extend the whole design to arbitrary

relative degree in Chapter 7. Squaring-up method are provided in each section such

that the overall method can be applied on nonsquare plant models. Simulations with

high-fidelity VFA model are presented at the last section of each chapter for each of

the control designs. All proof of the Propositions, Lemma, Theorem can be found in

the Appendix.

1.9 Thesis Contributions by Chapter

The main contributions of the thesis is described in Section 1.8. The following para-

graphs are thesis contributions by chapter.

Chapter 2

A class of nonlinear VFA model as proposed in [81 is properly linearized and is shown

to contain parametric uncertainties due to unmeasurable flexible effects. This class

of linearized VFA model is shown to belong to a generic class of MIMO plant models.

Chapter 3

Based on a series of definitions and properties pertain to relative degree [29,30], an

implementable state-space realization is developed for a plant model with its input

being differentiated, which is a crucial part for high relative degree control design.

22



Chapter 4

Based on the previous adaptive control design for relative degree one plant models

[18], a new explicit closed-form solution for its parameters is proposed and shown

to guarantee an underlying SPR condition while retaining the LTR properties in

the baseline controller. The design is also extended to plant models with nonlinear

parametric uncertainties. Demonstration of the control design on a large-dimension

nonsquare VFA model is carried out around a single trim.

Chapter 5

Using a recursive property of the new control parameter design, the relative degree

one adaptive control design is extended to plant models with relative degree two.

Extension to nonsquare plant models whose number of outputs exceeding number of

inputs is also integrated into the design. Demonstration of the control design on a

nonlinear VFA model is carried out while the VFA navigating through multiple trim.

Chapter 6

The relative degree two adaptive control design is extended to nonsquare plant models

with relative degree three. Demonstration of the control design on a VFA model ver-

ifies that significantly less number of integrators are used compared with the classical

adaptive controllers.

Chapter 7

The adaptive control design is extended to nonsquare plant models with arbitrary

relative degree.
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Chapter 2

Plant Model Description

This section describes a class of MIMO plant models that are commonly seen in real

world applications. First a generic class of uncertain MIMO plant models is examined

in Section 2.1. The main focus of this thesis is presented in Section 2.2, where a class

of VFA model is examined and shown to be a MIMO plant model with parametric

uncertainties. Then Section 2.2.1 presents a 3-Wing VFA model that belongs to the

class and will be used for our simulation validation. Section 2.2.2 describes another

example of the class, the Vulture VFA model, that will be used for the verification of

the design on a large dimension plant model.

2.1 A Class of Uncertain MIMO Plant Model

Dynamics of a MIMO plant around an equilibrium flight condition can be described

by a linear time invariant (LTI) model as

x= Ax + Bu
(2.1)

y = Cx

where x E R' are states, u E R" are control inputs, and y E RP are measurement

outputs. A E R"X", B E Rnm, C E RPXf are known matrices which represent

a nominal model. Since in most flight control applications, there are more sensors

than actuators (as sensors are much cheaper than actuators), and all states are not
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measurable, we assume that n > p > m.

Eq.(2.1) corresponds to the ideal case where all plant matrices are known. In

reality, these matrices are unknown and are identified through various methods. The

state matrix A can be determined through experiments fairly accurately, such as wind-

tunnel tests for aircraft frame. C is well known as well since the relation between

measured outputs and states is well defined. The input matrix B, in contrast, may

not be accurate as the net effect of control inputs are subjected to perturbations. We

address two of the dominant issues in this section.

The first source of uncertain perturbations we consider is the unknown structural

stiffness, compliance or weight distribution change. In most cases, this effect can be

modeled as an additive term 0*T<D(x) where <D(.) : R' -+ R' is a known nonlinear

function regressor and e* E Rhxm is an unknown parametric uncertainty. The second

source of uncertainties that we consider is actuator anomalies caused by electronic

power surge or control surface damage. This is modeled as an unknown multiplicative

factor A* E Rmxm. Together, both uncertainties lead to a modified plant model given

by

= Ax + BE*T<(x) + BA*u (2.2)

y = Cx

The class of plant model as in (2.2) is generic and can model a variety of real dy-

namics. For example, it can model the response of vertical acceleration of aircraft

when elevators move, in which case E* are the uncertainties in the CG position of the

aircraft [18, Chapter 21. Another example is the response of pitch/roll/yaw angles

of a quadrotor when some of its motors change power output, which is summarized

below.

Example 2.1. [31]The 6 DOF dynamics of quadrotor helicopters around a hover

orientation can be described by a linear model that belongs to (2.2) as

i=go, j=-gop, =(U1+ AU)
S ++(2.3)

e=y(Ui + AU1), = (U3+ AU3), y (U3+ AU4)
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where variables w, y, z are the positions of CG in the inertial frame; Variables <), 0, '

are the Euler angles of the body frame; Constants m, I, Iy, 1z are the mass and

moments of inertia of the quadrotor, respectively; Constant L is the length of rotor

arm; Variables U1 , U2 , U3 , U4 are the collective, roll, pitch and yaw forces generated

by the four rotors, and AU 1 , AU 2 , AU3 , AU4 are their associated uncertainties caused

by motor/propeller deficiency.

Another example is the response of cart position when the mounted inverted

pendulum is pushed, as summarized below.

Example 2.2. The dynamics of cart position around the unstable equilibrium 0 = 0,

po = 0, where 0 is the angle between the bar and the vertical line, p is the horizontal

displacement of the cart, belongs to the class of (2.2) and can be written as

0 1 0 0 p 0 0

00 g 0 P M M

0 0 0 1 0 0 0

0 0 g(M+m) 0 # (2.4)

A x B

y =[P]= 1 0 0 0 1X

C

where u is the force input and e* are the uncertainties in the weights of cart or point

mass at the tip of pendulum.

In all the cases discussed above, <D(x) can be as simple as x, and A* are the

uncertainties in the control effectiveness due to motor or control surface damage.

Detail assumptions on the class of plant models (2.2) will be discussed in the beginning

of each control design section. Among these assumptions, the relative degree of the

plant model is the major topic of this thesis.
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2.2 VFA Model

This section will show that a generic VFA model, if linearized around a trim, also

belongs to the class of MIMO plant models presented in (2.2). Our starting point

is a nonlinear VFA model including its complete rigid body dynamics and flexible

component dynamics, which is derived in [8I using the virtual work method as

MFF MFB 1FF CFB 1
MBF MBB ] CBF CBB J

+ KFF ] = [BFFload (2.5)
0 0 b BB

assuming:

Assumption 2.1. The coupling between rigid body and flexible elements are caused

by inertia and compliance property change only;

Assumption 2.2. Control surfaces span the entire wing;

Assumption 2.3. Properties of aircraft vary slowly with respect to the rigid body

position and orientation;

Assumption 2.4. External loads weakly depend on body acceleration;

Assumptions 2.1 and 2.4 implies that aerodynamic coupling is negligible. e are

states of the flexible wing with elements being states of each discretized flexible seg-

ments, and b = # are states of rigid body with # being velocities and b being po-

sitions/orientations. KFF is the stiffness of the joints. Define Jh,(c, b) = $and
Jhb(e, b) = SL as the Jacobian matrices with h(e, b) being the lumped coordinate

transformation effects integrated along wing span. Since h, = 92 + -2Lb and

jhb = 2+ b, the compliance matrices C.)(.) are functions of (e, e, b,/3). More
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specifically,

MFF(e) = JhMeJhe, MBF(c) = JhbMeJhe

MFB(E)= JhMeJhb, MBB(E) =J7MeJhb + MRB

CFF(E, ,73) = Jh MeJhc + Ce, CBF(E, ,# ) = JhiMeJhe (2.6)

CFB(E, 0,) = J Me B Jhb + 2JMe jhb

CBB(E, ,0) fbMeQBJhb+ 2JhbMejhb+ CRB

BF(E) = Jhe, BB(E) = Jhb,

where M(.) is the effective inertia, C(.) is the effective compliance, Fload( e, E, 03, /, uS)

is the aerodynamic load (see 181 for detail derivations), and u. is the control surface

input. Since Assumption 2.3 holds, J(.)(.), M(.)(.) and B(.) are only function of E, and the

compliance matrices C(,)(.) are only functions of c, , /3. The generalized aerodynamic

loading Fload are calculated locally at wing segments and then summed along the

wing span. It is noted that because inertia, compliance and external load effects are

all subject to local coordinate transformation, M(.)(-), C(.)(.) and B(.) all have Jhb or

Jh, as their leading factors.

To design a controller for a trim [Eo, o, Eo, )o, ouo]T, we first define deviation

states and inputs as x= - - - 0]T E Rn and up = (us - uo) c R",

respectively, and perform model linearization (ignoring high-order error terms), which

generally leads to a linear parameter varying (LPV) plant as

Q1.4 = Q 2x, + Q3 up, (2.7)

where Q, includes inertia matrices, Q2 includes compliance and stiffness matrices and

both are functions of (do, o, o, 1%, #o) (see 181 for detail derivations). Q3 is a function

of (eo,30, uo). Control of the LPV plant requires gain scheduling [321 with respect

to (O, 7o, ,0o, o, u0 , O), which faces difficulties since only (60, /30, uo) are measurable,

while (EO eo, &3) are not. The controller has to calculate its parameters using an

assumed trim point (0, 0, co,0, 0o), which can be far away from the actual trim. This
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introduces model uncertainties as

Qi = Q(0, 0, eo,,!o) + AQ(o, ,/3o)Q1 -UO71607700 +AQV070 M(2.8)

Q2=Q 2(0,0,o,0,#0)+AQ(Eooo). (.

where Q1 and Q 2 are the known to the controller as well as Q3, while AQ* and AQ*

are the unknown to the controller. Eq.(2.8) transforms the plant (2.7) into a special

form as specified in Lemma 2.1, whose proof can be found in Appendix A.

Lemma 2.1. The nonlinear VFA model (2.5)(2.6) that satisfies Assumptions 2.1 to

2.4, has the unknown AQ* and AQ* that can be parametrized as

AQ* = Q3 *7(20, 0,30), AQ(* = Q3e*(j0, 0, !O), (2.9)

and the model can be linearized around an unknown trim (O , eo, 60, /37, 11uo), produc-

ing an uncertain LPV plant as

= (AP + BPE;*T)xp + BpA*u(
P P P(2.10)

yp = Cpxp

where AP(e 0 , b, uO) = Q Q2 Bp(c0 , f00, UO) = Q3 are known plant parameters,

while q*T =* 9q,- Ap --q Bqj *q2, where *= (I + Q 31Q3) j *T, and

A* = A*, where A* = (I - * Bp), are unknown.

Eq. (2.9) implies that the local body inertia and compliance changes caused by local

wing deformation can be approximated by similar changes caused by external loads.

In realistic applications, A* can include control effectiveness loss A* as A* = A*A*

where A* can be present due to possible control surface damage. Eq.(2.10) is the

actual uncertain LPV plant model when aircraft flies through different trims. If we

assume that

Assumption 2.5. All aircraft properties vary slowly around a trim,

then all matrices in Eq.(2.10) are constant and Eq.(2.5 becomes a linear time

invariant model, which belongs to the class of plant models in (2.2). The following
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two subsections present two VFA model examples that belong to the generic VFA

model class (2.10).

2.2.1 3-Wing VFA Model

Consider a simple VFA comprised of three rigid wings with elastic pivot connections

adjoining them [5]. The longitudinal and vertical dynamics of the 3-wing VFA is

coupled with the dynamics of rotational movement of outer wings with respect to the

center wing about the chord axis, as shown in Figure 2-1. The angle between the two

wing planes is denoted as wing dihedral (,q).

Figure 2-1: The illustration of 3-Wing VFA

The platform captures essential flexible wing effects and can be viewed as building

blocks of large VFA. A 6-state nonlinear model has been developed in [5, Eq.s (45) and

(46)] including aircraft's pitch mode and dihedral dynamics. Define V as airspeed, a

as the angle of attack, 0 as pitch angle and q as pitch rate. The nonlinear model can

be rewritten in the form of (2.5) with e = r and 3 = [V, c, q]T:

d3(7) sacq 0 0 _k - -_c_ s17 cqca 0 17sca 7

0 m 0 0 + 0 0 0 g V

0 0 mV 0 L 0 0 0 0 a

0 0 0 CI -+ C2s 27 2C2c?7s7q 3 c2 C77sa0 0 3c2 C77s q

kk 0 0 0 7e Cs? c7c

0 0 0 -g f Vdt 0 0 6  
,

0 0 0 0 f adt 0 0 6
0 0 0 0 0 c2 C7sa

where s(-) = sin(.), c(.) = cos(-) and 6, and 6a are properly scaled. Parameter ci

and c 2 are inertia constants that depends on aircraft physical properties, and d3 (7)
is the rotation inertia about longitudinal axis and therefore a function of q (see [51).

Measurements are vehicle vertical acceleration A2, r and q. Other states, a and i/,

are unmeasurable and are unavailable for control. The nonlinear model was trimmed
at 30ft/sec airspeed, 40,000 ft altitude and different dihedrals, and the corresponding

linearized models with respect to each dihedral were obtained 15] and were used as

our design model. For example, the linearized model around the trim at = 100 can
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be written as

V -0.279 3.476 -32.2 -0.015 0.514 0.525 V -2.57 -6.47

a -0.070 -4.104 0 1.013 0.193 0.100 a -0.795 -0.079

9 0 0 0 1 0 0 8 0 0 [ e
q 0 -54.04 0 0.255 1.845 21.41 q 5.991 -6.363 (a

1 0 0 0 0 0 1 0 0

L 0.002 0.044 0 0.819 -0.075 -6.518 L I 0.195 -0.034

_ 0 0 0 1 0 0
[ 7 ~I 0 0 0 0 1 0

where three aileron are bundled as one control 6a and three elevators are bundled as

one control 6e. The pitch mode is stable for this trim. Local stability analysis shows

that when the dihedral is above 15', the pitch mode becomes unstable [5]. Let's

consider the uncertainties that may exist in the plant model. First, there might be a

control surface damage that reduces control effectiveness to 10% (A* = 0.1). Second,

since the outer elevators are connected to the outer wings, their control effectiveness

is locally linearly proportional to q and therefore is a function of e*x (in which

case, the regressor 4D(x) = x). To verify the model form of (2.10) in the presence

of uncertainties, we obtained the linearized model for 71 = 160 and 2 = 0.2 deg/sec,

which can be parametrized with in the form of (2.12) with (Ap, Bp, Cp) for 27 = 10'

and 6 = 0 deg/sec, and

A* = 0.1; T= [ 0.02 -31.94 0.12 0.91 9.1 -9.28 . (2.13)

2.2.2 Vulture VFA Model

Recently, a large VFA platform, denoted as Vulture, has been under development

to meet the goals of HALE maneuvers. Vulture is an experimental aircraft with a

wingspan of 400ft. Its entire wing is made of light low-yield material and is flexible to

deform. 3-wing VFA example shown in the previous subsection represents building

blocks of the Vulture VFA. One can consider the wings of the Vulture as hundreds

of 3-wing segments adjoined together. The huge wings are in junction with 4 long

booms in the middle of wingspan and 2 end devices at the tips, as shown in Figure

2-2.
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Figure 2-2: The illustration of Vulture VFA

A large dimension model has been developed for Vulture with 707 states, 21

control inputs and 212 outputs, representing the VFA trim at a nominal HALE flight

condition at a cruise speed of 34.6 ft/sec, an altitude of 66,000 ft, and with zero

dihedral [2]. The 21 inputs includes 15 engine propellers evenly placed across the

wingspan and 6 tail elevators at the end of each boom (see Ref. [2] for details). If

dividing the 707 states into three groups, i.e. 12 rigid body dynamics states XRB for

6 vehicle degrees of freedom, 340 flexible positions xf ex, and 340 flexible velocities

Vflex, the Vulture model manifests itself in the following block matrix form:

[ RB X * X H RB [

Iex 0 0 I xf lex + 0 Up+ 0 n + 0 6i

Vflex x x o\o vflex x x

P AP XP Bp

yP = x 0 0 x + DPUP + Din, + D2ii

Cp

(2.14)

where x represents dense entries, * represents sparse entries and o\o represents di-

agonal entries. Some observations are made. First, the flexible modes are strongly

coupled with rigid-body dynamics. Second, the control u only acts on flexible com-

ponent. Third, there are control rate Q, and control acceleration ii effects, which

represent aero-elastic-coupling between unsteady aerodynamics and flexible effects of

boom. These features imposes great control challenges. For the control design, we

will pretend that the itp and ii, terms are not present and therefore the resulting

model (called the design model) belongs to the class of MIMO plant models as in
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(2.10). For the actual simulation we will bring back the it, and fi, terms (called the

evaluation model).
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Chapter 3

Preliminaries

This section presents definitions and lemma that will be used to handle high relative

degree systems. Proofs of all results in this section are redirected to the corresponding

references. First we define index notations in superscript and subscript that are often

used in a zero polynomial.

Definition 3.1. No bracket is number of power operation, i.e.xf+l - X{n+1} n .

[ bracket is index for variable notation, for example,x[ 2 +11 X[31; and () bracket is

the number of derivative, for example X(2) -

Define s as the differentiation operator, i.e. st[-3 = [_] = [_](i), and define 7r (s)

as what follows.

Definition 3.2. Define 7r'(s) as a ith order polynomial in s with a" as the its coeffi-

cients, i.e.

7r'(s) = (s + aC 1)(s + a2 ) ... (s + aj) = a-si-j (3.1)
j=0

for i = 1, 2, ... , r, and ai E C; Define d. as the coefficients of differentiation operation,

i.e. sr(xy) = drx(r)y + drlX(r-1)y(1) + - + dxy(r).

Remark 3.1. In particular, s(-1)[] = f[-]dt. 7rr(s) arrange coefficients in a reverse way

(for example, iro(s) = a2, 7r'(s) = a s + a' and r 2(s) = a s 2 + a's + ao) so that

irk(s) . Sr~ + a csi = ir+1(s) (3.2)
j=0
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has a recursive property.

Consider a state space representation {A, B, C} with m inputs and p outputs.

Square systems have m = p while nonsquare systems have m 5 p. The notation

{A, B, C, D} is defined as the transfer function matrix G(s) = C(sI - A)- 1B + D.

The case when D = 0 is denoted as {A, B, C}. Degenerate systems are defined as

follows.

Definition 3.3. If for an m-input p-output linear system G(s) = C(sI- A)--1 B+D,

the rank of G(s) is strictly less than min(m, p) for any s E C, where C is the set of

complex number, then the system is degenerate.

Most real linear plant models are non-degenerate, whose transmission zeros can

be defined as follows.

Definition 3.4. [33] For a non-degenerate m-input and p-output linear system with

minimal realization A E R'X"n, B E R"x" , C E RPXn and D E RPxm, the transmission

zeros are defined as the finite values of z such that rank[R(s)] < n + min[m, p], where

zI -A B
R(s) = . (3.3)

C D

Transmission zeros represent a state trajectory that cannot be detected by any of

the outputs. Most non-square linear systems don't have transmission zeros; square

systems are more likely to lose rank and therefore more likely to have transmission

zeros [34]. Generally, for MIMO plants transmission zeros and individual transfer

function zeros are different. An example below illustrates the difference.

Example 3.1. In Example 2.2, the SISO plant model {A, B, C} has four poles at

g, M , " , - (M"m) and two zeros at a, - V. Suppose an additional mea-0, 0, Ml') I l ' VL'

surement of the tilt angle rate 0 is included in y as

y 0 x. (3.4)
0 0 0 1
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Then the resulting single-input-multiple-output does not have any transmission zeros.

However, choosing an additional mixing measurement as

p 10 0 0
y 1 (3.5)

- + + P 1 0 1 -

results in a plant model with a transmission zeros at . The ratio of mixing has to

be exact for the transmission zero to exist.

We part B into columns as B = [ bi, b2 , - , bm with bi corresponding to

the ith input ui. The input relative degree of the plant model is defined as following.

Definition 3.5. A linear square plant model {A, B, C} has

]Ta) input relative degree t = rl r2, - , rm E Nxi if and only if

i) Vi E {1, m}, Vk E 10, .-- rj - 2}1

CAk bj = Omxi, and (3.6)

ii) rank I CAr-b1  CAr2-1b2 ... CArmlbm =m; (3.7)

b) uniform input relative degree r E N if and only if it has input relative degree

r ri, r2, --- ,rm Iwith r = r1 = r2 =---=rm.

Remark 3.2. If {A, B, C} has ui of input relative degree ri, one needs to differentiate

ui rith time to make'ui shows up in the y equation, i.e.

C(sI - A) 1 bi - s = C(sI - A)- 1 Abi

(3.8)
C(sI - A)-Sbi- = C(sI - A)-'A- 1

C(sI - A)lbi. sri =C(sI - A)--1 Abi + CAri-lbi

where we have used Definition 3.5 and the identity (sI - A) 1 s = I + (sI - A) 1 A..

The term "relative degree" is referred to input relative degree in this paper.

Generically, any MIMO plant model has input relative degree since condition i)
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and ii) are generically satisfied. The input relative degree relates to the transmission

zeros of the plant model in the following Lemma (see [35, Corollary 2.6] for proof).

Lemma 3.1. For a square system { A, B, C} with uniform input relative degree r,

define

C

C A-
CA=, 93:=[B AB .. A-1B], (3.9)

C Ar-1

with C E R" m , (E RE x"" Y 9A Rx (n-"r) as the right null space of C such that

(EM = 0, and

9 = (TIT9R) -l9JT[In - ( E (n-mr)xn (3.10)

such that 919 = 0 and 91 = 1nmr. Then C93 is full rank, and the eigenvalues of

Z = XA931 E R (nmr)X(nmr) (3.11)

are the transmission zeros of the { A, B, C}.

Lemma 3.1 can be directly extended to the plant model with nonuniform relative

degree. It follows Lemma 3.1 that the number of transmission zeros are related to

the relative degree in the following way (see 135] for proof).

Corollary 3.1. The number of transmission zeros nz of a plant model with relative
T

degree r [ r1 , r 2 , ., rm ]Tsatisfies

nz = n - r. (3.12)

where r, = ri and n is the number of states.

Realization of a transfer function matrix is not unique. Two realizations of linear

time invariant systems are equivalent if they share a same transfer function. A spe-

cial state space realization, called "input normal form", will be used to write system
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matrices with respect to its relative degree, as stated in the Following Lemma, whose

proof can be found in [35, Theorem 2.41.

Lemma 3.2. [Input Normal Form] For plant models {A, B, C} with uniform relative

degree r, there exists an invertible coordinate transformation matrix

Tin = Ti-n D (3.13)

where 9N and It are defined in Lemma 3.1, that can transform the plant model into

0 --- 0 R1  V 1 I

2 Im --- 0 R 2 0 0

:0 + : u

& 0 .. Im Rr 0 0 (3.14)

S0 - 0 U Z I 7 0

Ain xin Bin

y = 0 0 CA-1B 0 xin

Cin

using xin = Tinx, Ain = TnAT-;n , B = TinB, and C = CT;, where Z C

R(n-3m)x(n-3m) has eigenvalues that are transmission zeros of { A, B, C}.

{A, B, C} and {Ain, Bin, Cin} are two equivalent realizations. Systems with differ-

entiator s added to inputs also have equivalent realizations, as stated in the following

Lemma, whose proof can be found in the Appendix B.

Lemma 3.3. Given a linear system {A, B, C} with uniform input relative degree r,

the following two realizations are equivalent:

i)

= Ax + B7rr-i(s)[u](.
r-1 (3.15)

y = Cx

where -rI1(s) is defined in (3.1) for i = 1, 2,- - , r - 1;
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ii)

= Ax' + B'u
r (3.16)

y = Cx'

where

B Z= A'- Ba-I-j = 7r- (A)B. (3.17)
j=0

and x' is a new state coordinate.

Remark 3.3. It is noted {A, Br, C} has relative degree i, and as a result, we name

B' as "the input path with relative degree i". It is noted that the implementation

of representation (3.15) usually requires differentiating input u first and therefore is

not feasible, while the implementation of (3.16) does not require differentiating u first

and is generally feasible. For this reason, we will design controllers using (3.16), and

will use (3.15) for analysis. Two state coordinates are related as

r

x - E (B si--)[u]. (3.18)
j=i+1

(3.15) differentiates inputs of a relative degree r system {A, B, C} (r - i) times,

which adds (r - i) transmission zeros to {A, B, C}, as stated in the following propo-

sition, whose proof can be found in the B.

Proposition 3.1. Define Z{} as the set of transmission zeros of transfer function

{} and ZfU as that of a polynomial []; if { A, B, C} and Br are given in Lemma 3.3,

then

Z{A, Br, C} = Z{A, B, C} U Z[7r2 _-(s)]

One special category of plant models with relative degree is the relative degree one

plant models. Relative degree one plant models have the following property, which is

a special case of Lemma 3.1 (see Ref. [29] for the proof).

Corollary 3.2. [291 For a square system {A, B, C} with CB full rank (uniform rel-

ative degree one), there exist matrices M G R n(n-") and N E R(n-m)xn such that
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NB = 0(n._)xm, CM = 0mx(nm), NM = I(nm)x(nm) and the eigenvalues of

(NAM) are the transmission zeros of { A, B, C}.

One special category of relative degree one transfer functions is a strictly positive

real (SPR) transfer function. This thesis uses Ref. [14, Definition 2.10] for the defini-

tion of SPR. Kalman-Yakubovich-Popov (KYP) lemma links the frequency domain

properties of an SPR transfer function to its realization.

Lemma 3.4. [KYP Lemma! A system { A, B, C} is strictly positive real if and only

if there exists a P = PT > 0 such that

PA + ATP < 0 (3.19)

PB = CT. (3.20)

An SPR {A, B, C} is a square system satisfying CB = BTPB = (CB)T > 0.

With the definition of N, Eq.(3.20) of KYP Lemma can be fully characterized as

following (see Ref. [36] for the proof).

Lemma 3.5. [36J Given a pair of B and C, if there exists a P = pT > 0 such that

PB = CT , then P E Y where

= {P > 0 | P = CT(CB) 1 C + NTWpN, W, > 0}, (3.21)

N is the right null space of B and W is an arbitrary symmetric positive definite

matrix.

Lemma 3.5 implies that given a pair of B and C such that CB = (CB)T > 0, a

P > 0 that satisfies PB = CT can be calculated using (3.21). From Lemma 3.2, it

can be concluded that having stable transmission zeros is a necessary condition for

the system to be SPR. This can be shown by pre and post-multiplying Eq. (3.19) with

MT and M, respectively, and appealing to Eq.(3.21), which yields

WNAM + MTATNTWP <0. (3.22)
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For Eq.(3.22) to hold for an symmetric positive definite (SPD) W,, NAM has to be

Hurwitz.

Another special category of plant models with relative degree is the relative degree

zero plant models {A, B, C, D}. Relative degree zero plant model can also have

SPR properties. The following states the multivariable case of Lefschetz-Kalman-

Yakubovich (LKY) Lemma regarding to SPR relative degree zero plant models.

Lemma 3.6. [26,37, 38]Assume (A, B, C, D) is a minimal realization of G(s); Then

G(s) is SPR if and only if a 'y > 0, a matrix P = PT > 0, a matrix L > 0, and

matrices W and K exist such that

PA+ ATP = -WTW - L (3.23)

PB = CT +.WT K (3.24)

KTK = D + DT (3.25)

Lemma 3.4 and Lemma 3.6 leads to a Corollary that states the close relation

between a SPR relative degree one plant model and a SPR relative degree zero plant

model.

Corollary 3.3. If a transfer function matrix { A, B, C} is SPR, then there exists a

a* > 0 such that the transfer function matrix { A, B', C, aCB}, where BO = aAB + B

is SPR for all a < *; and {A, B, C} and { A, BO, C, aCB} share a same P = pT > 0

that satisfies the results of Lemma 3.4 and the results of Lemma 3.6, respectively.

The following proposition provides formulation of parameter errors in the presence

of s, which will be used in parameter adaptation design and error model formulation.

The proof is rather straight forward and therefore is omitted here.

Proposition 3.2. Suppose s is the differentiation operator, #*T is a constant param-

eter matrix, O(t) is a function of time, w(t) is another function of time t, then

7r (s) [qT(t)w(t)] - #*T ir(s) [w(t)] = Irr(s) [T(t)w(t) (3.26)
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where qT(t) := cT(t) - $*T , and 7r'(s) is defined in (3.1) for i = 1, 2,--- , r.

The 2 1, Y2 and Y,, bound of a time series signal x(t) is defined in 114, Section

2.7].
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Chapter 4

Relative Degree One Design

This section presents the adaptive control design for relative degree one plant models,

and is organized as follows. Section 4.1 formulates the control problem in the context

of VFA. Section 4.2 presents the adaptive controller design and its SPR/LTR prop-

erties, and also includes stability analysis of the adaptive system. Section 4.3 demon-

strates the response of the resulting closed-loop system with the adaptive controller

using two numerical examples, including the 3-wing VFA model and the Vulture VFA

model [21 around a single flight condition.

4.1 Relative Degree One Problem Statement

Following the description in Chapter 2, an application-driven nominal plant model

with relative degree one is described as

x, = Apxp + Bpu

yP = CPxP (4.1)

z = C,2x, + Dp2u

where xP E R" are states, uP E R' are control inputs, and y, E RPP are measurement

outputs. In addition, tracking outputs z E Rd are also measured. An example

of z is the vertical acceleration measurement in aircraft. We assume np > pp and

p, + d > m > d. Since z typically includes non-strictly proper outputs such as
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accelerations, a constant matrix Dp, is assumed to be present. If in some cases, y,

includes non-strictly proper outputs, they are integrated to become strictly proper

outputs. C, E Rdxnp and D, c Rdxm and are assumed to be known.

While Eq.(4.1) represents a nominal plant model, the actual plant model consid-

ered in this section is written as

4= AXP + BA*[u + *T D(x)]

yp = CPX(4.2)

z = CZzX + DpzA*[u + E*Tb(Xp)1

where e*T4b(xp) and A* are unknown control perturbations. In particular for VFA

control as derived in Section 2.2, <D(xp) = x,, and E*T are the uncertainties in struc-

tural compliance caused by unmeasurable flexible effects, while A* are the uncer-

tainties in control effectiveness caused by unknown control surface damage. Since z

are usually measured in earth coordinate frame, they are subject to unknown coor-

dinate transformation caused by unmeasurable flexible effects and therefore has E*.
The underlying control problem is to design u(t) such that in the presence of the

uncertainties, z(t) follows a specified reference zm(t), i.e. reference tracking.

The adaptive controller that we will present in this section requires the following

assumptions regarding the plant model in (4.2):

Assumption 4.1. (Ap, Bp) is controllable and (Ap, Cp) is observable;

Assumption 4.2. { A,, Bp, Cp} has stable transmissions;

Assumption 4.3. {Ap, Bp, Cpz, Dpz} does not have a transmission zero at the origin;

Assumption 4.4. rank(CpBp) = m.

Assumption 4.5. A* is diagonal, full rank, bounded by a known value, I|A*|| < A*max

and the sign of each element sign(A*) is known;

Assumption 4.6. e* is bounded by a known value, ||e*1| < e*ax; (D(-) is globally

differentiable, and is globally Lipschitz continuous, i.e. there exists a finite constant
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14 E R such that VX1, x 2 E R n,

|1<D(x1) - b(x2)11 ! 14 |l1 - X211 (4.3)

Assumption 4.1 is standard. The fact that the underlying plant model is non-

square and typically has no transmission zeros [34] makes Assumption 4.2 reasonable.

Assumption 4.3 usually holds, especially when Dp, #0.

For nominal MIMO plant models satisfying Assumptions 4.1 to 4.3, a baseline

observer-based controller (such as LQG/LTR [9]) can be designed to achieve a satis-

factory tracking performance with adequate stability margins. Assumptions 4.4 to 4.6

are needed for the proposed adaptive controller. Of these, Assumption 4.4 is perhaps

the most restrictive one since it implies that all actuator dynamics are negligible and

sensors result in net integration of one, and can be viewed as the MIMO counter-

part of a relative degree one assumption (see Ref. [14, Chapter 5]). Assumption 4.5

implies that the actuator anomalies are bounded and independent from each other.

Assumption 4.6 is commonly satisfied for the aerial platforms with flexible wingshape

as they are usually approximated as a combination of different sinusoidal functions.

4.2 Relative Degree One Adaptive Control Design

with SPR/LTR Properties

This section presents the adaptive output-feedback controller. Section 4.2.1 first

introduces the architecture of the controller, which includes an observer that also

serves as a CRM. The adaptation law is also shown in this section. Section 4.2.2

presents the design of observer parameters and their SPR and LTR properties, as

well as stability analysis of the adaptive system. Section 4.2.3 summarizes the overall

design procedure, and Section 4.2.4 compares our design with other adaptive output-

feedback controllers recently proposed (see [18, Chapter 14] and [23,24]). The main

challenge in our controller design is in the selection of the observer parameters so as
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to ensure that an underlying transfer function matrix is SPR. This is carried out in

Section 4.2.2, and described in Lemmas 4.5 and Theorem 4.1.

4.2.1 Controller Structure

Following the design procedure in Ref. [18, Chapter 14], the controller is divided into

two parts, a baseline observer-based controller with an integral error modification,

and an adaptive component augmentation.

Addition of Integral Error

Suppose a piecewise continuous command Zcmd(t) is prescribed. For the purpose of

command tracking, we first introduce an integral error state ez = z - zcmd and

w~z :=f epdt, which leads to a modified plant model:

+ B A* [ + E*Tb(xp)] + Zc
j C 0 JL Dz -I

A x B B,

Cp 0

0

C

Z= XC 0 + [D4]A*[u + E*T4b(xp)].
ICz 0 o z

(4.4)

Eq.(4.4) can be written compactly as

x = Ax + BA*[u + e*T ((xp)] + Bz zend

y = Cx (4.5)

z = Czx + DzA*[u + E*T' b(xp)].

Define n := nr + r and p := pP + d. Then x E R" and y E RP. It is noted that the

augmented plant model in (4.5) manifests itself as the plant model we will address in

this thesis as discussed in (2.2) and has p > m. We note that (A, B) is controllable
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because of Assumptions 4.1 and 4.3, and (A, C) is observable because Assumption 4.1

holds and the additional error states are also measured. Moreover, rank(CB) = m

since Assumption 4.4 holds.

Augmentation Architecture

We choose the control input u in (4.5) as

U = Ubi + Uad, (4.6)

where Ubi is determined by a baseline observer-based controller and Uad by an adaptive

controller. The baseline control ubi is chosen as

Ubi = -Kxm (4.7)

where K is designed by applying the linear quadratic regulator (LQR) technique on

the nominal plant model {A, B, C}, and xm is the output of the state observer

= Axm + Bubi + BzZcmd + L,(y - yi)

Ym= CXm (4.8)

Zm = Czxm + DZUbl.

which also serves as a CRM [19,21,391. One can see the form of a CRM in (4.8) by

substituting ubi with Eq.(4.7). Eq.(4.8) serves two purposes, one of an observer, where

L, is equivalent to an observer gain, whose purpose is to provide state estimates, and

the other of a reference model, whose purpose is to provide a reference for the states.

While L, can be chosen using the LTR techniques when the uncertainties A* and 8*

are zero, its design in the presence of uncertainties will depend also on an underlying

SPR transfer function, which will be discussed in greater detail in Section 4.2.2 and

4.2.2.
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The adaptive component Uad is chosen as

Uad - -Ubl + AT (t)ubl- E(t)(xmp), (4.9)

where xmp is the first nP elements of xm, corresponding to the estimate of x,. AT(t)

and E) (t) are estimates of A* 1 and E*T, respectively, both of which are to be suitably

adjusted. To determine their adjustment, we derive the error model for e. = x - xm

by subtracting (4.8) from (4.5) as

eX = Ax + Bubi + BzZcmd + BA* [Uad + (I - A*-)ubl E-* D(x)]

-Axm - Bubi - BzZemd - L'(y - Yi)

= (A - LPC)ex +it(xp,xmp) + BA* [ATubi - 6T G (xmp)], (4.10)

where t(xp, Xmp) := BA*E*T[.(D(xp) - @(xmp)], AT(t) := AT - A*l1, and 6T(t)

ET(t) - e*T. The structure of (4.10) suggests the following adaptive laws,

0(t) = r0D(Xm'P)e TSTsign(A*)) ~(4.11)
A(t) = --FAUble TSTsgn(A*),

where F0 > 0, FX > 0 are update gains, ey = y - ym and S, C Rmxp is an output-

mixing matrix which will be designed together with LP in Section 4.2.2. The adap-

tation law in (4.11), which follows Ref. [18, page 430], uses state estimate xm(t) and

the output errors ey only, which enables output feedback adaptation. Under the SPR

conditions on an underlying transfer function matrix and with Assumptions 4.5 and

4.6, it can be shown that the adaptive controller given by (4.6)(4.7)(4.8)(4.9) and

(4.11) (shown in Figure 4-1) leads to global asymptotic stability and reference track-

ing. This is addressed in detail in Section 4.2.2, along with the design of LP and

Si.
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Figure 4-1: The architecture of the adaptive output-feedback controller: an adaptive

component is added to a baseline observer-based controller

4.2.2 SPR/LTR Design

LP in the observer/CRM (4.8) and Si in the adaptation law (4.11) will be chosen such

that an underlying transfer function matrix, which will be defined in this section, is

SPR. Section 4.2.2 presents the SPR design for a simpler case when e* = 0 in (4.5),

and Section 4.2.2 addresses the general case when e* # 0. The SPR designs for both

cases as well as the stability analysis of the adaptive system are presented in these

sections as well. The LTR properties of L, in the baseline controller are introduced

in Section 4.2.2. All proofs in this section can be found in the Appendix C.

Nominal SPR Design: e* 0

Since e* = 0, we choose 8(t) 0 and denote L, as L. The only uncertainty existing

in the plant model (4.5) is A*. Lemma 4.1 guarantees the stability of the adaptive

design under the SPR conditions of {(A - LC), B, S1C}. Define e, = x - Xm.

Lemma 4.1. For the uncertain plant model (4.5) with e* = 0, satisfying Assumptions

4.1 to 4.5, if a pair of L and S1 are chosen such that the underlying transfer function

{(A - LC), B, S1C} is SPR, the adaptive SPR/LTR controller (4.6), (4.7), (4.8),

(4.9), and (4.11) with L = L, and e(t) - 0, guarantees that i) the closed-loop system

has bounded solutions and ii) ex(t) - 0 as t -- 00.
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Since e=0 and L, = L, the error model (4.10) becomes

6X = (A - LC)ex + BA*T ubl. (4.12)

Eq. (4.12) reveals that the underlying transfer function {(A - LC), B, SiC} represents

the signal path from ATubl to Siey. The conditions of Lemma 4.1 imply that this

signal path is SPR, meaning that XTubl and Siey is always in the same direction [26]

(i.e. the phase between the two signals is bounded by 90). The directionality is

utilized in the adaptation law (4.11) to adjust parameters suitably.

The matrices L and S1 that make the required signal path SPR are referred to as

"SPR pairs" and are to be determined. Using Lemma 3.4 (KYP Lemma), the design

goal can be transformed into: given {A, B, C}, find an SPR pair such that there exists

a Q > 0 that can produce a solution P - pT > 0 to the following equations:

(A - LC)TP + P(A - LC) = -Q < 0 (4.13)

PB = CTST. (4.14)

The design in (4.13)(4.14) is the "feedback SPR design" that has been attempted

previously [23,24,36,40]. In contrast to the designs in Ref. [36,40] that requires CB >

0, the method in this section extends the results to non-square plant models with CB

being full rank. Comparison between our method and Ref. [23, 241 is discussed in

detail in Section 4.2.4. We now describe how an SPR pair can be designed.

First, a B is designed by appending B with a B, 1 E R" -"m, i.e.

B = [B, B,1] (4.15)

where B, 1 represents the pseudo-inputs that are designed to square-up the system

{A, B, C}. The following Lemma provides a constructive method to find the B,1

such that stable transmission zeros are produced, whose proof (by construction) can

be found in Appendix C (see [41] for a detail proof and a construction method).

Lemma 4.2. Given a system {A, B, C} satisfying Assumptions 4.1 to 4.4, a B,1 e
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Ix(p-r) can be constructed such that { A, E, C} has stable transmission zeros and

CB is full rank.

An output-mixing matrix S and C are designed as

S := [S1, S2 ] = (CE)T (4.16)

-0:= SC. (4.17)

Si E RmxP is a sub-matrix of S. A W* E R is chosen such that

0 < P* < jPmaxj (4.18)

where pmax is the maximum real part of the transmission zeros of {A, B, C}. An A

is designed as

q = A + p*I. (4.19)

A finite L is calculated as

L = ER-1 S (4.20)

where R- 1 is designed by applying the output-feedback SPR method [40] on {A, B, C}:

-1 = (CE 1((C AB)T + CAB)(CB)- + I >0.

The finite constant c in (4.21) should be chosen to be large enough such that

E > , i = max [El, E21

E, = Amax {(CB) 1 ((CAB)T + CAB)(CB) 1 }

62= Amax {(CB)l1HTQI1H(CB)-1}

where Amax(-) stands for the maximum real part of the eigenvalues and

H:= MANTF+ PTINA.

(4.21)

(4.22)

(4.23)

N is the null space of B and M is the null space of C satisfying NM = I (see Lemma
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3.2). Pi is the unique solution to a Lyapunov equation

PINAM + MT AT NT PI = -Qi. (4.24)

Once a Q, > 0 is chosen, a finite Pr > 0 can always be found since NAM is the zero

dynamics of {A, B, C} and hence is Hurwitz. It is noted that Q, scales PI. Different

from Ref. [40], we choose a Q, > 0 such that

P1 > Arnax { MT[I + ET(CEB-1B T]M I(n-r). (4.25)

Eq.(4.15) to Eq.(4.25) complete our design of L and S1. Numerical examples will

show L has a reasonable magnitude. It is noted that the pseudo-input matrix B2 is

only used to design L and not used as real control inputs (see also [18, page 426J).

Intuitively, in (4.12) a large enough LC, which is in the output-feedback direction

BR-1 , will overwhelm the error state dynamics and aligns the directions of AXTub

and Siey. This is formally summarized in Lemma 4.3.

Lemma 4.3. Given a MIMO plant model { A, B, C} that satisfies Assumptions 4.2

to 4.4, the finite pair of L G RfnXP as in (4.20) and S1 E RmXP as in (4.16) guar-

antees that Vy E R satisfying 0 < IL t*, the transfer function matrix {( A + I -

LC), B, S1C} is strictly positive real.

Lemma 4.3 extends the results in Ref. [40] to a non-square plant model with a

class of (A+pI). Lemma 4.3 (choosing /a = 0) and Lemma 4.1 complete the controller

design for the e* = 0 case.

Robust SPR Design: e* f 0

When 6* $ 0, the L, design in CRM (4.8) depends on the bound of T*, where * is

defined as

T* := -2A*E*TE*A*TS 1C. (4.26)
4

54



10 is defined as in (4.3), and Si is defined in (4.16). From Assumptions 4.5 and 4.6,

a bound of * can be calculated as

12

||4*"| <; A *A*axE)*ax S1 C|| = p*I'. (4.27)4

T* is finite and known. We introduce the following Lemma on the stability of the

adaptive system, which provides the guidelines for the design of Lp.

Lemma 4.4. For the uncertain plant model (4.5) satisfying Assumptions 4.1 to 4.6,

if a pair of LP and S1 are chosen such that the underlying uncertain transfer function

{(A + I + IBIF* - L C), B, S1C} is guaranteed to be SPR for some r7 > 0, the

adaptive SPR/LTR controller (4.6), (4.7), (4.8), (4.9), and (4.11) guarantees that i)

the closed-loop system has bounded solutions and ii) ex(t) -+ 0 as t -+ oo.

The error model for the general case * 5 0 has been presented in (4.10). Con-

ditions of Lemma 4.4 imply that the underlying directionality between ATubl (or

OT b(xmp)) and Siey can still be utilized to adjust the adaptive parameters. The di-

rectionality, however, becomes implicit because of the presence of the nonlinear term

U(xp, xm,) (see (4.10)). Previous adaptive output-feedback control designs [23] use

the directionality implicitly in proving the stability. Lemma 4.4 in this thesis reveals

the underlying directionality explicitly, and synthesizes observer parameter designs

with stability analysis, which is the central idea of our method. Lemma 4.1 is a

special case of Lemma 4.4 when 4* = 0. The case when <b(xp) = x, (as considered

in Ref. [23, 241), can be treated as a special case of Lemma 4.4 with IF* = A*O*,

(where e* should be augmented with additional r columns of zeros because of the

augmentation of integral errors), which is summarized in the following corollary with

proof omitted.

Corollary 4.1. Following the setup of Lemma 4.4 with plant model (4.5) and (D(xp) =

x,, if a pair of LP and S1 are chosen such that {(A+BT*-LC), B, S 1C} is guaranteed

to be SPR, the closed-loop system with the adaptive controller guarantees ex(t) -+ 0

as t -+ oo.
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We now present the design of an SPR pair for the case when E* $ 0. First, we

use Eq.(4.20) and Eq.(4.16) to design an SPR pair of L and S1. Then we introduce

an additional term to L as

LP = L + pBS = E(R-1 + pI)S (4.28)

where p is a design parameter that is chosen to be sufficiently large:

qj*2 xIS 12

P > p,* = *2 ax .(4.29)
2 *2 Amin(Q)Amin(STS)

* is chosen in (4.18), and Q is found using

Q=- NTH(CB)~C -CT(C) -1THN + T(R1 + EI)C + NTQ 1 N. (4.30)

Numerical examples will show L, has a reasonable magnitude. It is noted that e and

p has the same effect on LP, and La depends on I* instead of V*. In general, p*

in (4.29) can be chosen to be any scalars smaller than p*. Lemma 4.5 validates the

SPR design.

Lemma 4.5. Given an uncertain plant model (4.5) that satisfies Assumptions 4.1 to

4.6, the finite pair of LP G RnxP as in (4.28) and S1 C RrxP as in (4.16) guarantees

that Vy E R satisfying 0 < p < p* and VT E R" x bounded by 114111 5 *, the

uncertain transfer function matrix {(A+pI+ B'-'-L pC), B, S1C} is strictly positive

real.

With Lemma 4.5 (choosing y = p* and IQ = *) and Lemma 4.4 (choosing 'r = P*)

we are able to summarize the design, and realize the control goal, which is presented

in Theorem 4.1, whose proof can be found in Appendix C. Define ey(t) = y - ym and

eZ(t) = z - Zm.

Theorem 4.1. For an uncertain plant model (4.2) that satisfies Assumptions 4.1 to

4.6 and for any zemd(t) that is piecewise continuous, the adaptive controller (4.6),

(4.7), (4.8), (4.9), and (4.11), with Lp as in (4.28) and S1 as in (4.16), guarantees
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that i) the closed-loop system has bounded solutions, ii) ey(t) -+ 0 as t -+ oo and iii)

ez(t) -+ 0 as t -4 oo.

LTR Properties

The observer parameter LP as in (4.28) can replace the observer parameter in the

baseline observer-based controller. The following Lemma shows that the resulting

baseline controller approaches "full-state" LTR asymptotically. In what follows, the

notation A -+ B, where A and B are matrices of same size, implies that (o[A] -

u[B]) -+ 0, where c[-] denotes the minimum singular value of matrix [-.

Lemma 4.6. For a nominal plant model { A, B, C} (without uncertainties A* or 0*)

satisfying Assumptions 4.1 to 4.4, suppose that a LQR controller with a parameter K

has a loop gain at input L* (s) and a loop gain at output L*(s), and that the baseline

observer-based controller (4.7)(4.8) with K and L, as in (4.28), has loop gains Lu(s)

and L,(s); then as E -+ oc or p -+ oo, i)

L,(s) -+ L* (s) (4.31)

and ii)

Lo(s) -+ C [L*(s)] C(s, E) (4.32)

pointwisely for all finite non-zero s in the closed right half of the complex plain, i.e.

sE 9:={(s#0, sEC , IsI < +oo}, (4.33)

where Ct(sE) E RfnxP is a function of s and B satisfying OCt (s, E) = Ip.

Remark 4.1. Since i) is a standard LTR result [9] and ii) holds for any LQG/LTR

controllers using a squared-up B, Lemma 4.6 implies that L, retains the LTR proper-

ties of a LQG/LTR controller. LQR controllers can be designed to have a L* (s) that

yields good stability margins, and have a L*(s) that yields low output sensitivities at

the integral loops (see Ref. [18, Chapter 2 and Chapter 51). As a result, Lemma 4.6
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implies that once a large enough LP is chosen, the stability margins of the baseline

controller are guaranteed, and the output sensitivities at the integral loops can be

tuned by designing P and K together, which is currently under investigation. How-

ever, one should be cautious to use a large L, because L*(s) can have high output

sensitivities at some other loops and so can Lo(s).

Lemma 4.6 and Lemma 4.5 imply that the baseline controller and the adaptive

controller can share the same observer and the controllers can switch between each

other by simply turning Uad on or off. When Uad is off, the controller is denoted as

the baseline SPR/LTR controller. The Lp design as in (4.28) has been preliminarily

reported in Ref. [231. This thesis formally proves its SPR properties and its LTR

properties.

4.2.3 Design Procedure

The overall control design in this section can be summarized into the following step-

wise procedure:

Step 4.1. Given a plant model A, Bp, C,, CD,, check Assumptions 4.1 to 4.4;

Step 4.2. Add integral error states to the plant model and obtain A, B, C, C, D,

using (4.4);

Step 4.3. Design a baseline observer-based controller (4.7)(4.8) and choose K and

an observer parameter using the LQR and the LTR techniques, respectively;

Step 4.4. Pick a B,1 using Lemma 4.2 and produce a squared-up B as in (4.15);

Step 4.5. Design a p* using (4.18) and E using (4.22), then design a nominal SPR

pair L using Eq.(4.20) and S1 using Eq. (4.16);

Step 4.6. Calculate *ax using Eq. (4.27) and pick p using Eq. (4.29); then design a

L, using Eq. (4.28) and replace the observer gain in the baseline controller (4.8) with

LP;
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Step 4.7. Design parameter adaptation (4.11) and add the adaptive control (4.9) to

the baseline control (4.6).

Step 4.1 to Step 4.3 are conventional observer-based controller designs. Step 4.5

to Step 4.7 are for the adaptive component addition, which completes our adaptive

SPR/LTR control design. It is noted that for both the baseline controller and the

adaptive controller, the L, design is independent from the K design. We can generally

consider that K is designed for performance, and LP is designed for stability. It is

also noted that for the case that <b(xp) = x,, Step 4.5 can be simplified that A* is no

longer needed. The overall controller structure is shown in Figure 4-1.

4.2.4 Comparison with Other Adaptive Output-Feedback Con-

trollers

Previous sections have presented the complete design of the proposed adaptive con-

troller. The controller framework in Section 4.2.1 has been proposed in Ref. [18, Ch-

pater 141 and [18, 23, 24] but with different procedures for choosing L and S1 . We

now compare our SPR/LTR method described in Section 4.2.3 with the previous

approaches.

In order to carry out the comparison, we first return to the solution P of (4.13)

and (4.14) for the choice of Lp as in (4.28) and S1 as in (4.16). We rewrite the unique

solution P to (4.13) and (4.14) as

P = T(c)-T + N T P1N (4.34)

where P, > 0 is defined in (4.24) (see proof of Lemma 4.3 and Lemma 4.5). P

validates our SPR design.

An alternate procedure for choosing L and S1, denoted as the adaptive observer-

based LTR (OBLTR) control method, is presented in Ref. [18, Chapter 14]. The
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procedure is presented as follows. A B is first designed using (4.15), then the weights

Qv = QV + V + I fR ; R = v+ RvoV ~V V+1
(4.35)

are chosen using arbitrary constant matrices Qv, > 0 and Rvo > 0, and a sufficiently

small scalar v. The following ARE is solved

pV AT + A4P - PCTRCPv + Qv = 0. (4.36)

for a unique SPD solution P. We choose A using (4.19) in Eq.(4.36), which is similar

to Ref. [51, but with a bound that 0 < p* < IIpmaxI to ensure SPR properties (see

below). L is chosen to be Lv as

= PVC - (4.37)

and S1 is chosen to be W1 E R"P as

WRVO 2 = [W1,W 2 1 (4.38)

where W E RPXP is designed as

W = UvV,, UWAWV = svd(E1 C R 0 ) (4.39)

where svd stands for singular value decomposition. Combined with the control archi-

tecture in Section 4.2.1, the procedure from (4.35) to (4.39) completes the design of

the adaptive OBLTR controller. The OBLTR design has been shown in Ref. [18, The-

orem 13.21 to lead to

P = Po + O(v) (4.40)
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where P > 0 is an unknown SPD matrix satisfying

pOCT = WR 2 (4.41)

and O(v) represents an unknown symmetric matrix which approaches to zero as

v -+ 0, which further leads to

S=VCT R; - WRVO -+ ,00 as v -+ 0. (4.42)

and therefore retains the LTR properties asymptotically (see Section 4.2.2). Moreover,

the OBLTR adaptive design has been shown in Ref. [18, Theorem 14.11 to lead to the

existence of a v that guarantees bounded reference tracking for a plant model (4.5)

in the presence of uncertainties. The same OBLTR adaptive design has been shown

in Ref. [23] (see Theorem 3 and its proof in Ref. [23], and combine with (4.19) and

(4.36) in this thesis) to lead to the existence of a non-zero v that guarantees the SPR

property of {(A + p*I + *BT* - LvC), B, W1C} and in turn, guarantees asymptotic
A

reference tracking.

Now we compare our SPR/LTR method with the OBLTR method. Both methods

can produce a finite SPR pair of L and S1. From Section 4.2.2, one can conclude that

both methods lead to a L that retains the LTR properties of LQG/LTR controllers.

However, the OBLTR method relies on the existence of a small v for which the SPR

properties are guaranteed. In practice, it may not be easy to determine how small v

needs to be. In contrast, our method (see (4.28)) provides a closed-form solution for

both L and S1.

An alternative procedure of designing L and S, based on the linear-matrix-inequality

optimization techniques has been proposed in Ref. [24]. The parameter L is deter-

mined using a numerical procedure [24]; no closed-form solution for L or guaranteed

LTR properties of the baseline controller are provided, unlike our SPR/LTR method.
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4.3 Applications to VFA

This section presents the applications of the adaptive SPR/LTR controller on two

VFA platforms that are discussed in Section 2.2. Section 4.3.1 presents the 3-wing

VFA, whose low order model allows us to illustrate the LTR properties and the SPR

properties of the controller. Section 4.3.1 introduces the application on the Vulture

VFA, whose high order model demonstrates the numerical stability of the proposed

control design.

It should be noted that the adaptive SPR/LTR controller required Assumptions

4.1 to 4.6. It can be shown that all of these assumptions can be met by the VFA

models of both platforms considered below. Of these, Assumption 4.4 is the most

restrictive one, as it requires the aircraft sensors to include measurements of linear

velocities and angular velocities of the body components very close to actuators, and

neglects actuator dynamics altogether.

4.3.1 Vertical Acceleration Tracking of 3-wing VFA

This section applies the control design described in Section 4.2 on the 3-Wing VFA

model as in (2.12). The control goal is to use elevators J, to achieve the tracking

of a vertical acceleration command of the center wing while keeping the dihedral

regulated.

We performed sensitivity analysis (using the method in Ref. [421 Chapter 9) on

the linearized model (2.12) and found that the pitch mode and the dihedral dynamics

(pitch-dihedral dynamics) can be decoupled from the phugoid mode. Assuming that

the airspeed was maintained by auto-thrust, we truncated the phugoid mode from

the model and obtained a 4-state LTI model with states as xp = [a, q, i7, ], where

a is the angle of attack and q is the pitch rate. Measurements are vehicle vertical

acceleration (A-), and q. However, a, 77 and its rate i cannot be measured accurately

and are not available for control. For Step 4.1, we obtained a plant model for 27 = 100
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as

6 -4.104 1.013 0.193 0.100 0 a -0.795

-54.04 0.255 1.845 21.41 0 q 5.991

1 0 0 0 1 0 77 + 0 6e

i 0.044 0.819 -0.075 -6.518 0 0.195

AZ -123.12 0 0 0 0 vz -23.84

Y q 0 1 0 0 0 X

Vz 0 0 0 0 1

(4.43)

where we have augmented an integrated Az (V, the climb rate measurement) state for

command tracking. Eq.(4.43) is {A, B, C} by Step 4.2. The analysis of the potential

uncertainties in the HALE flight, as described in Section 2.2.1), leads to the following

uncertain model

= + BA*E*T)x + BA*u

A* = 0.1; E*T [- 31.94 0.91 9.1 -9.28 0 .

A* and e* are unknown to control design. The pitch mode of (4.44) is unstable and

therefore loosing control effectiveness is a threat to stability. The uncertain plant

model (4.44) belongs to the class of models in (4.5) satisfying Assumptions 4.1 to 4.6.

We now proceed to control design based on (4.44) with uncertain A* and *.

Some classical adaptive approaches can only handle a square system with all stable

individual zeros (Ref. [15, Chapter 9j), which is inapplicable here since the SISO

transfer function from 5e to V, has unstable zeros. The proposed controller in this

chapter can be applied here since the additional q measurement makes (2.12) a non-

square plant with stable transmission zeros. Now we present our control design step by

step. Step 4.3 used the LQR technique with a penalty diag [1 1 0.01 0.01 0.01

on the states and a penalty 10 on the input, which yielded

K = [ -0.9154 0.2534 0.1382 0.5614 -0.0316 . (4.45)

63



The following matrices are produced in Step 4.5:

B2 = 0 0.9699 0 0 0.2437 (4.46)

0.2437 -0.9699
S = (4.47)

0.9699 0.2437

We used (4.38) to design S. It was confirmed that {A,BC} has stable transmission

zeros and OB = (CB)T > 0. Using Eq.(4.20) with A A and E 10 yielded

-4.116 6.949

41.94 -52.53

L = 0 0 (4.48)

1.011 -1.708

-120.74 208.44

= 0.2437 -0.9699 . (4.49)

A P was found using Eq. (4.34) as

82.71 0.689 -139.7 -19.21 -2.741

* 0.9489 -1.372 -0.2030 0.2036

P = * * 963.9 140.3 5.462 (4.50)

* * * 26.70 0.8079

* * * * 0.1898

where * represents symmetric elements. Quick examination confirmed that P >

0, and that P, L and Si satisfy Eq.(4.13) and Eq.(4.14), which validates the SPR

properties of {(A - LC), B, SiC}.

We assumed the uncertainties A* and 0* can be bounded by A*a = 1.1 and

* = 32. Also, it was assumed that <b(x,) = x, and therefore l/ = 1 and T* =
max t

A*E)*. Step 4.6 produced Fm~nax = 11.9 and p* -1 4.92, and therefore p = 5 is chosen
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and

-5.084 10.80

53.94 -80.40

LP 0 0 . (4.51)

1.249 -2.655

-148.6 324.37

The same P as in (4.50) guarantees the SPR properties of {(A+BA*e* -LC), B, 1C}.

This completes our SPR/LTR control design.

For comparison, the design using the OBLTR method (4.37) with v = 0.0006,

QO = I and Ro = 100001 was also obtained as

-3.200 12.41

42.07 -94.32

LV = 0.286 -0.109 (4.52)

1.325 -3.187

-94.32 382.3

W = 0.2437 -0.9699 . (4.53)

To validate that the pair of L, and W produces an SPR {(A - LC), B, W1C}, we

propose a semidefinite programming procedure (see Ref. [43,44]) that can be added

to the OBLTR method: reduce v until a PO* can be found using

min Tr(WTWP) (4.54)

s.t. W, > 0,

(A - LVC)TP + P* (A - LVC) < 0,

and PO* E 3,

where ={ P > 0 P = C (Cw )-1w+NTWpN, Wp > 0}

where Tr stands for the trace of a matrix and Cm = WRI C. A parser, Yalmip [451,
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was used to execute the program (4.54) with L, as in (4.52) and W as in (4.53). A

P* was found as

41.72 0.3328 -1.5328 -2.162 -1.325

* 0.9457 -0.0177 -0.0194 0.2161

PO* = * * 16.35 2.881 0.0703 (4.55)

* * * 1.215 0.0772

* * * * 0.1398

which guarantees that {(A - LC), B, W1C} is SPR. However, to guarantee that

{(A + BA*6* - LvC), B, W1C} is SPR, we need to further reduce v, for which the

OBLTR method does not have a closed-form solution, whereas our SPR/LTR method

does. The total number of integrators used in our adaptive controller is shown in Table

6.1.

Figure 4-2 shows that the two designs, L, and Lo, were able to constrain the

phase of the target SPR transfer function within +90 degree, which is a necessary

condition of the SPR properties. Figure 4-3 shows that the uncertainties in (2.12)

broke the 90 phase condition, and that replacing L with LP was able to recover

the phase condition. It is observed in Figure 4-4 that the loop gain at input of the

baseline SPR/LTR controller almost overlays that of the LQR controller in terms

of both phase and magnitude. The gain margin and phase margin of the baseline

controller is [-44, 42]dB and 59 deg, respectively. Also shown in the Figure 4-4

is the baseline OBLTR controller. Both baseline controllers, as well as the LQR

controller, have adequate stability margins since their La(s) all avoid the unit circle

around -1 (where the gray dash line is a part of the unit circle around -1).

The uncertain VFA model (4.44) with different r was simulated with the baseline

SPR/LTR controller and with the adaptive addition. An actuator model with a

bandwidth 10 rad/sec was added in each simulation. The nominal case with the 100

dihedral plant model is shown in Figure 4-5a. Both controllers were able to maneuver

the aircraft following an A, command and eventually achieved zero tracking error.

Only small amount of control and control rates were used. The same controllers were
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used to control the 160 dihedral, whose results are shown in Figure 4-5b. In this

case, the baseline controller was not able to suppress the unstable pitch mode, while

the adaptive controller was able to do so. Figure 4-5c shows the adaptive controller

was robust in the presence of noise and random disturbance (white noise with 0.15

standard deviation) in all input and measurement channels. The total number of

integrators used in each of the controller is summarized in Table 6.1, which shows

that our new design uses significantly less integrators compared with the classical one.

The parameter trajectories are shown in Figure 4-12. After four step commands,

the parameters settled down to their steady states. If we freeze e(t) and A(t) at

different moments and use these instantaneous values in Uad (4.9), the resulting closed-

loop systems represent the "snapshots" of the adaptive system in the time history. The

examination in frequency domain confirmed that these "snapshot" closed-loop systems

approach the nominal closed-loop system as time evolves, as shown in Figure 4-6b.

4.3.2 Vulture VFA Bank-To-Turn Control

This section applies adaptive control design in Section 4.2 on the Vulture VFA model

described in Section 2.2.2. The desired maneuver is to bank the VFA to turn (BTT).

The controller needs to force the VFA to follow a roll angle while keeping the aircraft

oriented. In order to do so, we used tails to roll the aircraft and used engine thrusts

to keep the side slip angle at zero. The 6 tails were divided into two groups, 3 on

right and 3 on left. Same magnitude but opposite sign of movement was issued to

each group. 'The 15 engines were also divided into two groups with an even number

of engines in each group. This treatment reduced the number of input to 2, one for

engine and one for tail. Bp was suitably treated. The control rate and acceleration

effects were ignored in the design model and were brought back in the evaluation

model for simulation.

The high-order nature of the model necessitates a state-space reduced-order ap-

proach. Using the balanced realization method [46] (which is summarized in Appendix

C), we obtained a 80-state model. It is noted that the unstable modes in the origi-

nal Vulture model were separated from the plant before model reduction, and were
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Figure 4-5: The simulation results of the vertical acceleration tracking of the 3-

wing VFA using the adaptive output-feedback controller, compared with the baseline

SPR/LTR controller
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Figure 4-7: Comparison of the maximum and minimum singular values of the transfer

function matrix between the original Vulture VFA model and the reduced-order model

augmented back after. Figure 4-7 examines the maximum and minimum singular

values of the transfer function matrix for both the original model and the reduced

model. The 80-state plant model preserves sufficient input-output characteristics of

the original model in low frequencies smaller than 100 Hz. Further state decoupling

was not possible as the input-state sensitivity matrix, calculated by the method in

the reference, [42] was found to be fully coupled.

Using sensitivity analysis on the reduced model (see [42, Chapter 91), we deter-

mined the 12 independent outputs that yields CB full rank. They are roll rate, pitch

rate, yaw rate, longitudinal, lateral and vertical accelerations at the wingroot, and

corresponding angular rates and accelerations measured at tail number two. The

measurements at tail two are used to satisfy Assumption 4.4. After integrating non-

strictly proper outputs, we obtained a strictly proper LTI model with nr = 92 states,

m = 2 inputs and p, = 12 outputs.

We designed the adaptive controller based on the reduced-order model. Quick

examination confirmed that the reduced-order model satisfies Assumptions 4.2 to 4.4.

The effects of the dihedral drift and actuator anomalies were modeled by e*<b(xp)

and A*, respectively. Assumptions 4.5 and 4.6 are satisfied with l, = 10. The state-

feedback gain K was found using a penalty of 1.45 on each of the outputs and a

penalty of 1 on each of the inputs. The gain matrix Lp and S1 were found with

* 0.01,6 6= 50 and p = 10. Figure 4-8 shows the poles and transmission zeros of

the baseline controller with LP.
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Figure 4-9: The frequency domain analysis of the closed-loop system using the base-
line SPR/LTR controller on the Vulture VFA model, compared with a LQR

To show the robustness of the baseline controller, the "Gang-of-Six" transfer func-

tions [47] are examined in Figure 4-9. The ideal LQR controller is also shown in

the figure for comparison. The figure shows that the loop gain at input La(s) of the

baseline SPR/LTR controller almost recovers that of a LQR; gain margin and phase

margin are found to be [-5.04, 4.75]dB and +25 deg, respectively. The crossover

frequency of La(s) is around 0.1 rad/sec. The output sensitivity function S0(s) (only

the integral loops are shown in the figure) has low magnitude. The magnitude of the

noise-to-control transfer function gradually rolls off at high frequencies.

Three controllers, i.e. the LQR controller, the baseline SPR/LTR controller, and
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the adaptive SPR/LTR controller were simulated on the original Vulture model. We

included control rate and control acceleration effects in the evaluation model for

simulation. Also, second-order actuators with a natural frequency of 50 rad/sec and

a damping ratio of 0.6 were introduced to all control channels. Magnitude saturation

of 10 deg and rate saturation of +40 deg/s were imposed on the tail. Magnitude

saturation of [-50,40] lbs and rate saturation of 20 lbs/s were imposed on the

engine. For additional robustness, a projection algorithm [48] was incorporated into

the adaptation law (4.11)

E(t) = proj[E; V, E; Fe D(xmp)e TSfsign(A)]
Y 1 (4.56)

A(t) = proj [A; 9, E; -1FAuble Sfsign(A)]

to bound 6(t) and A(t) without altering the stability and tracking results in Theorem

4.1. Previous analysis shows that the projection algorithm improve the robustness of

the controller over nonparametric uncertainties [49]. The projection parameters were

set as F0 = 0.011, F, = 0.011 t9 = 10 3 I and e = 10-3J.

The simulation results of the nominal plant model (without uncertainty) is shown

in Figure 4-11a. All three controllers had exactly the same performance and achieve

perfect command tracking for both roll angle and side slip angle. The non-minimum-

phase behavior in the responses were caused by the flexible effect of booms and by the

interaction between wing sections. Figure 4-11b shows the performance of controllers

in the presence of uncertainties. At the start of the simulation, we let the aircraft

settle down to a different dihedral angle, emulating turbulence-driven dihedral drift.

10ft dihedral on the outer wing was present at t = 0, as shown in the wing shape

evolution Figure 4-10b. Correspondingly, <b(x) was a parabolic function with suitable

coefficients to represent the concave wingshape. Also, there was a power surge in all

actuators with A* = 1.5. In the presence of uncertainties, neither LQR or the baseline

SPR/LTR controller was able to stabilize the aircraft, as shown in the Figure 4-11a

and 4-11b, . On the other hand, the adaptive controller not only stabilized the aircraft

but also recovered the reference performance (as that in Figure 4-11a). The adaptive

controller did so by actively reducing its control gains and therefore using much less
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Figure 4-10: The flight path and flexible wing shape of the Vulture VFA in the BTT
maneuver, controlled by the adaptive SPR/LTR controller.

control rates than the other two controllers.

Figure 4-11c shows the same uncertain case with gust wind (white noise with

a standard deviation of 10--3) and measurement noise (white noise with a standard

deviation of 10--3) in all 12 measurement channels. It is shown in the figure that

adaptive controller is robust under these adversities.

Figure 4-12 shows the parameter trajectories in this simulation. The 89 adap-

tive parameters settled down to steady-state values after three step commands. The

smooth trajectories show that the noise and disturbance was attenuated by the con-

troller. Figure 4-10a shows the flight path and attitude of the VFA in 3D space. The

rendered aircraft represents the center section of the VFA, and the roll angle of the
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Figure 4-11: The tracking of roll angle (/) and side-slip angle (#) in the BTT maneu-

ver of the Vulture VFA through thrust (T1 ) and tail (51) using the adaptive controller,

compared with the baseline controller and a LQR.
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down to steady-state values after three

wing section in the figure only represents the local roll angle very close to the center

wingroot (only about 1 deg). The actual dihedral shape of the entire wingspan was

found by recording the flexible positions of the wing and is shown in Figure 4-10b.

The dihedral was trimmed at a parabolic shape at t = 0 sec and ended at a nonlinear

form at t = 80 sec. After that it gradually returned to the trim value (not shown in

the figure). The total number of integrators used in each of the controller is summa-

rized in Table 6.1, which shows that our new design uses significantly less integrators

compared with the classical one.
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Chapter 5

Relative Degree Two Design

An adaptive control design for relative degree one plant (referred as relative degree one

adaptive controller hereafter) has been developed in Chapter 4. This chapter extends

the control design to relative degree two plant models where first-order actuator

dynamics are present. This chapter is organized as follows. Section 5.1 formulates a

generic control problem motivated by VFA control challenges. Section 5.2 develops an

adaptive controller and presents the stability analysis. Section 6.4 presents simulation

results.

5.1 Relative Degree Two Problem Statement

In Chapter 4, the plant model as we considered in (4.5) ignore all actuator dynamics.

In this section, we consider a plant model as

= Apx, + BpA* [u + ;*T xp]

yp = Cpx, (5.1)

z = Cx+ DpzA* [up + E*TxP]

(see Section 4.1 for descriptions) that is subject to first order actuator dynamics as

ip + c(I + 9*T)uP = CU (5.2)
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where c is the nominal actuator time constant and 0* E Rmxm are its uncertainties.

For command tracking, we augment the plant model (2.10) with integral tracking

error states wz f(z - zcnd)dt. The augmented plant is shown as

2A Bp 0 xp Bp

wi = 0 -CI 0 e W + 0 A**T x

z LC_ z Dz 0 1Lwz J LDzAj
. . A x B1-

0 0

+ cI A* [U + *T A*- w] + 0 ZCd (5.3)

0 JL-IJ

B2 _B,

C 0 0
Y =1 0 ,Z= Cp D 0 ]x + DA*E)*T x.

C

which is rewritten in a compact form as

& =Ax+B1*Tx + pB2 Xx+ B2A*u + Bzzm. = A + Bl + B2 2 qj TX. cnd(5.4)

y =Cx, z =C, x+D,,* x

It is noted that the plant model (5.4) belongs to the class of (2.2). There exists another

class of relative degree three plant models that include relative degree one plant

dynamics, no actuator dynamics and first order sensors, which can also be written as

(6.47) (with some slight modifications, see Appendix D). In this section, we consider

that the plant model has linear parametric uncertainties Blip*T x and B2JTX for

simplicity. For extension to nonlinear parametric uncertainties, the reader is referred

to the relative degree one case in Section 4.1 and Section 4.2. wu are scaled actuator

states defined as wu = A*up. x E R are augmented states, u E Rm are new control

inputs, and y E Rm are augmented measurement outputs. Matrices A E R

B1 c RnXM, B 2 E Rnx m, C E RPXf, Bz = RnXd, Cz E R dxn and D, E Rdxm are

known. Uncertainty matrices have the form of IJ*T =- 0 *T 0 0 ] E R m
xn, j*T=
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[ 0, A*E*TA*l, o ] E Rm xn, and A* E Rmxm and they include unknown elements.

Bi1XF*T are uncertainties in the plant dynamics and B2 I*JT are the uncertainties in

the actuator dynamics. The control goal is to design u such that z tracks a trajectory

zm from a reference model.

The adaptive controller that we will present requires the following assumptions

regarding the plant model (5.4):

Assumption 5.1. (A, B2 , C) is a minimal realization;

Assumption 5.2. All { A, B2 , C} 's transmission zeros (a total of nz) are stable and

satisfies (n - nz - 2m) > (p - m);

Assumption 5.3. { A, B 2 ,C} has uniform relative degree two;

Assumption 5.4. B1 can be spanned by a linear combination of B2 and AB 2 ,

Assumption 5.5. V* satisfies Xp*T B 2 = 0;

Assumption 5.6. I* and T*I are bounded by a known value, i.e. ||T*|| <Pmax and

||T2*11 < Tmaxy,

Assumption 5.7. A* is symmetric positive definite and bounded by a known value,

i.e. IIA*|| < Amax.

Assumption 5.1 and 5.2 is always satisfied if (Ap, B,, C,) and {A , , B,, Cpz, Dz} are

minimal realizations and have stable transmission zeros (see Section 4.1 for justifica-

tions). The fact that (A, B2 , C) is non-square makes Assumption 5.2 reasonable [341.

Assumption 5.5 is always satisfied if the plant model has the structure as in (5.3), in

which case B1 = IAB2 + B 2 and ql*T = [x, 0, 0]. (This is further explained using a

SISO case in Proposition 6.1). For nominal plant models satisfying Assumptions 5.1

and 5.2, a robust baseline observer-based controller (such as LQG [9]) can be designed

to achieve the control goal.

For adaptive control, additional assumptions on the plant model are needed. For

(5.3), Assumption 5.3 implies [(CBp,)T, DT] has column rank m (see [251 for justifica-

tions and [50] for the relaxation to rank deficiency). The inequality (n - n, - 2m)
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(p - m) allows a squaring-up method to be carried out. Assumption 5.6 is commonly

satisfied for aerial platforms with physical constrains on the maximum structural

deformation rate. Assumption 5.7 is satisfied if E*' has a small magnitude, which

implies that inertia properties of aircraft varies slowly, and A* is positive definite and

diagonal, which implies that control surface damage should be independent from each

other.

5.2 Relative Degree Two Adaptive Control Design

This section will develop an adaptive controller for the relative degree two plant

model. The adaptive controller is developed in Section 5.2.1 and its parameters are

designed in Section 5.2.1 to guarantee the SPR properties of an underlying SPR error

model shown in Section 5.2.2. Adaptive law and stability analysis can be found in

Section 5.2.3. The overall design procedure is summarized in Section 5.2.4. Analysis

of the limiting case when the actuator dynamics is negligible is presented in Section

5.3. Proofs of all lemmas and theorems in this section can be found in Appendix D.

5.2.1 Control Design

The control design will extend the design in Section 4.2 to relative degree two plant

models by adding one transmission zeros as (als + ao) to the error model without

explicitly differentiating given signals. We choose the control input u as

U = Ubl + Uad (5.5)

where UbI is determined using a baseline observer-based controller and Uad by an

adaptive controller. The baseline control Ubi is chosen as

Ubi = -KTXm (5.6)
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where KT E Rmxn is designed by the linear quadratic regulator (LQR) technique.

Uad is designed as

Uad = -Ubl + (als + al) QT(t)((t), (5.7)

where al > 0 and ao > 0 are free to choose, and

QT(t) = [AT, 7,Xp]

T - -UTXT'1 2(5.8)

QT(t) is an estimate of Q*T = [A* 4  W* T, T ] where T* and T*T will be defined

in Section 5.2.2. xm are the states of a modified closed-loop reference model (CRM,

based on [391) as

= Axm + B2ub1 + B 2 (als + a) [/i(t)-iS]

+BzZdmd + L(y - ym) (5.9)

ym = Cxm, zm = Czxm + Dzubl

where blT(t) E RmxP is an estimate of V;1 , which is a linear function of T*T and

will be defined in Section 5.2.2, and

e8 : R-1 ,Se and ey:=y-ym. (5.10)

Signals denoted as () are a filtered version of signals (-) as

1 al a1
Ubl = Ubl, xm 1 0 Tm, esy s 0 esy. (5.11)

j, s+a 1  as + a, as + al

Control parameters L, R and S will be designed in Section 5.2.1 to guarantee the SPR

properties of an underlying error model shown in Section 5.2.2. Adjustable parameters

QT(t) and V14T(t) will be adapted online by prescribing their time derivatives, which

will be presented in Section 5.2.3.
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Design of L and S

The design of L in (5.9) and S in (5.10) will eventually guarantee a SPR property

and therefore will be based on a square system, which necessitates a squaring-up

procedure being carried out on {A, B2 , C} as discussed in Lemma 5.1 (see Appendix

D for the proof and a construction method).

Lemma 5.1. For plant models satisfying Assumptions 5.1 to 5.3, there exists a B,1 -

Rx (P-m) such that { A, B 2 , C}, where B 2 = [B2 , B 1 ], has stable transmission zeros

and nonuniform input relative degree as ri = 2 for i = 1, 2,..- , m and ri = 1 for

i = m + 1, m + 2, ... , p.

B,1 will only be used to design L and S, which are

B1 = AB 2aI + B2 a0 , _B = [B2, Bs1 ] (5.12)

S = (C1)T, C0:= SC, (5.13)

R-1= (CB) [CA + (CA )T] (COB)-1 + EI (5.14)

L = ER-1(E)S. (5.15)

where E > 0 is chosen to be large enough as

E > K, E max [1, 7 21

E1 = Amax {-(CB fCAB +(CABl)T (CB 1}

= Amax {(CB')-2 a2 CAB 'I2nax + H2] (5.16)

Hmax = (1 + 2Famax lIPII) IIPIII N1AE1

+(1 + a + aRmax)'max) + IjcAMI.

where a = a1/ao, N1 = (MTM)-lMT I - B C -11 , M is the null space of

C , P, is a solution of PIN1 AM + (NlAM)TP, = -I (see Lemma 3.1 for its ex-

istence), max = Tmax 9N1 , and Rmax = I(C) -1ABll, where ET -

CT (CA)T I , [ 2 AW 2  and 9) is the null space of C (see Lemma

3.1). The solution of 2 is derived from Lemma 4.5, which can be applied here since
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{A, PB, C} has uniform r = 1. is so designed to guarantee the SPR properties of an

underlying error model as will be shown next. Numerical examples will show L has

a reasonable magnitude.

5.2.2 Underlying SPR Error Model

This section will present the analysis of underlying error model and its SPR properties.

The error model is derived by subtracting (5.9) from (5.4) as

eX = A% ., + B2a 1L4*Tesy + B1 iF*T X + B 2 j*TXm

+ B 2A*(ubi + Uad) - B2Ub1 - B2 (als a?) @1T(t)E (5.17)

where ex x - xm are state errors, A* A* - L*C and A* = A + B1 I*T + B2 I*T

Define

L* = Bi*R-1(E)S (5.18)

Bl* = [Bl*, B81], B1* = A**.B 2a + B2a?. (5.19)

It is noted that -B5* is invariant for VL*. L* is needed for the SPR property of

{A*,2 *, SC} that has uniform r = 1 (see Lemma 4.1). The difference between L*

in (5.18) and L in (5.15) can be parameterized using a recursive property of B', as

stated in Lemma 5.2, whose proof can be found in Appendix D.

Lemma 5.2. [Recursive Properties of B'I The difference between B1* and Bi can be

parameterized as

B1* - B1 = B /0*T  (5.20)

and therefore

L* - L = [(Bl* - B'), 0] R-'S = B2z*T R-I S (5.21)

where B2 = B2a}, and 0p*T and =i 1*T =_*T are a linear function of

* 22 OM.(P M
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Remark 5.1. If * = 0, then V4* = 0 and 7)* = 0; as a result, we can choose 2/4(t) = 0

in the CRM (5.9).

The uncertainties is shown to lie in the range of B2 and hence the name "recursive".

Substituting Uad with (5.7) and L with (5.21), and applying (5.10)(5.11), the error

model (5.17) can be derived as

X = A ex + B1*A*W*Tz + B 2A*I*T m
L 2 1 Xm 2  2 Xm

+ B2A* (as + ao) [AT(t)Ubl - 'Jt)Xm - J2jt)m]

- B 2 (als + al) (t)SY (5.22)

where 2/T(t) = 2/4T(t) - -/*T are parameter estimation errors and we have used an

equality that B 1 4*T + B 2 IJT = B'*A*WIT + B2A*W*T; Such parametrization always

exists since Assumption 5.5 and Lemma 5.2 hold. Substituting Uad in (5.22) with

(5.7) and applying Lemma 3.3 with (5.19) yields

emx = A** emx - B1* 2 esy + B'*A*6'T (5.23)

ey = Cemx = CeX (5.24)

where emx = ex + B 2 [-1 (see Lemma 3.3 for a detail expression), 2T(t) = QT(t) - Q*T

are parameter estimation errors. It is noted that (5.24) holds because CB2 = 0. Eq.s

(5.23) and (5.24) are our underlying error model.

Proposition 3.1 implies that transmission zeros are added at (-ao/al) through

using the filtered signals [.] as in (5.11), and therefore {A*, Bl*, C} has all stable

transmission zeros. The following Lemma states that e in (5.16) is so designed such

that L* and S guarantee a SPR property. Proof of Lemma 5.3 can be found in

Appendix D.

Lemma 5.3. Given Assumptions 5.1 to 5.7, the finite pair of L* E Rnxm as in

(5.18) and S E Rrxr as in (5.15), with e chosen in (5.16), guarantees that the

transfer function {( A* - L*C), E 2, SC} is strictly positive real.

Define partition ST = [S2j, S'] with S2 E Rmxp and S1 E R(P-m)xp. Lemma 5.3
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also implies that {(A* - L*C), B1*, S2C} is also SPR.

5.2.3 Adaptive Law and Stability Proof

This section will present the adaptive law for the adjustable parameters in Uad (5.7)

and im (5.9). The structure of the SPR error model (5.23) suggests that the uncer-

tainty estimates Q(t) and Jm(t) should be adjusted using

Q(t) = TeS2
(5.25)

,01 ) r z,, E _S2

where rp, > 0 and rem > 0 are adaptation gains. The following theorem guarantees

the stability and tracking performance of the adaptive system, whose proof can be

found in Appendix D. Define e.(t) = z - zm as tracking errors.

Theorem 5.1. For an uncertain MIMO plant model (5.4) that satisfies Assumptions

5.1 to 5.7, and for any zmd(t) that is piecewise continuous, the adaptive controller

(5.5), (5.6), (5.7), (5.9), and (5.25), with L and S designed in (5.15), guarantees

that i) the closed-loop system has bounded solutions, ii) ey(t) -+ 0 as t -+ oc, and iii)

ez(t) -+ 0 as t -+ oo.

5.2.4 Design Procedure

The overall control design in this section can be summarized into the following step-

wise procedure:

Step 5.1. Given a plant model (A, B, C, C, Di), check Assumptions 5.1 to 5.7;

Step 5.2. Add integral error states to the plant model using (5.3);

Step 5.3. Design a baseline observer-based controller (5.6)(5.9) (without adaptive

terms) and choose K and an observer parameter using the LQR and the LTR tech-

niques, respectively;

Step 5.4. (For nonsquare plant models only). Pick a B,1 using Lemma 5.1 and

produce a squared-up B2 ;
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Step 5.5. Design a E using (5.16), then design a SPR pair L using Eq. (5.15) and S1

using Eq. (5.13), and replace the observer gain in the baseline controller (5.9) with L;

Step 5.6. Design parameter adaptation (5.25) and add the adaptive portion (5.7) to

the baseline control (5.5) and to the CRM.

Step 5.1 to Step 5.3 are conventional observer-based controller designs. Step 5.5

to Step 5.6 are for the adaptive component addition, which completes our adaptive

control design. It is noted that for both the baseline controller and the adaptive

controller, the L design is independent from the K design. We can generally consider

that K is designed for performance, and L is designed for stability. The overall

controller structure diagram is shown in Figure 4-1.

5.3 With Negligible Actuator Dynamics

In the limiting case that the actuator dynamics in the relative degree two plant model

(5.4) is eligible, the plant model can be written as

Ax + B,1I*Tx + B 2 x*'x + B'*A*u + Bz z(.6
2 2 (5.26)

y = Cx.

where B1* is defined in (5.19) and is relative degree one input path. Using the relative

degree two adaptive controller presented in Section 5.2, the error model becomes

V) 1 T)-.Si0

= A*e - B2j* [j/(t)EsJ + B'*A* (als + ai) [(.
x L 2 1 2 1(5.27)

e, =Ce'

Performing another coordinate transformation using Lemma 3.3 as

emx := e - B2*A*ai [ (5.28)
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yields

emx = 2A* emx - B1* [" 1(t)z] + BO*A* [jUT ]

= Ce', = Cemx + CB'*A*al [UTi]

(5.29)

(5.30)

where B'* = aiAB'* + a'B'*. It can be shown that relative degree two our adaptive

controller can still stabilize the plant model and achieve bounded command tracking,

as stated in the following corollary, whose proof can be found in Appendix D.

Corollary 5.1. For the plant model (5.26) that follows the notation and the assump-

tions of (5.4), the relative degree two adaptive controller (5.5), (5.6), (5.7), (5.9),

and (5.25) guarantees that e,(t) is bounded as t -+ o.

5.4 Applications to VFA

In Section 4.3, we applied an adaptive controller on VFA models around a single trim
while ignoring all actuator dynamics. This section implements an adaptive controller
for the 3-wing VFA model with first-order actuator dynamics. One control challenge is
that maneuvers of VFA requires navigation through multiple trims, which necessitates
additional gain scheduling design. The goal is to use center elevators Je and outer
ailerons 6 , to track A, command and regulate 77 in the meantime. The nonlinear
model as described in (2.11) is linearized around each of 25 trim points defined by
Vo = 30 ft/sec, ao = 0 deg, 9o = 0 deg, q = 0 deg/sec, q7o E [10,12] deg with a step
of 0.5, and o E [-0.2,0.2] deg/sec with a step of 0.1. Exemplary numerical values of
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the linearized model for rm0 = 10 deg and ilo = 0 deg/sec is shown as
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Zq

Zcmd

B 2  B,

0 0 0 1 0 0 0 0 0 0
=0 0 0 0 0 0 0 0 1 0 x,

. .0 0 0 0 0 0 0 0 0 1

C

which includes first-order actuator dynamics with nominal time constant of 1 sec. e
are elevator commands and ua are aileron commands to the actuators. It is verified
that plant model in Eq.(2.10) holds for all trims with (A, B, C) shown in (5.31). For
example, the linearized model for the trim at r70 = 10 deg and o = 0.2 deg/sec can
be approximated using

, [ 0.06 -4.52 0
[ 0.01 1.83 0

0.05 0.041 1.47 1
-0.02 -0.035 -0.59

which only generates an error of 2.6% of the actual 1|A,11 and 1.8% of the actual IIBpI|,
respectively. The pitch mode of the VFA when r > 110 is unstable.

For control design, first we designed control parameters for each trim. For ex-
ample, L and S 2 for the linearized model (5.31) are found using a' = 0.2, ao = 1,
e=100, Amax = 2 and Qmax = 30:

-34.23 64.10 49.35

-11.54 55.96 2.23

-5.46 31.86 -2.82

60.32 -11.47 -33.51

L -49.09 286.3 -25.20 S2 -0.817 0 -0.585 (5.32)
-0.118 20.27 -2.26 0.585 0 -0.811

30.12

45.32

-4.88

-50.70

-716

138.9

28.50

-45.95

21.78

-72.34

-2.51

218
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The L design for this particular trim generate adequate stability margin in the baseline

controller in the absence of uncertainties, as shown in Figure 5-3 (see legend "nom").

The following relation holds as al/a -+ 0 and E -+ oo:

B B - B2, L - 2R-(E)S ---> oo. (5.33)

which implies loop transfer recovery (see Lemma 4.6). We schedule the control pa-

rameters [321 using real-time r measurements. The total number of integrators used

in our adaptive controller is shown in Table 6.1. For the baseline controller with-

out adaptation, the resulting controller is an observer-based gain scheduling linear

controller (referred as the baseline controller).

The time domain simulation results with the nonlinear VFA model are shown in

Figure 5-1. Three actuators were simulated, one with a nominal time constant of

1 sec, one with a time constant of 2 sec, and the other 4 sec. Besides the baseline

controller, two adaptive controllers were tested: one is relative degree one as developed

in Section 4.2, which pretends the actuator dynamics is not present; the other is the

relative degree two shown in Section 5.2 based on a nominal actuator model as in

(5.31). With a nominal actuator, all three controller were able to achieve stable

command tracking with almost identical transient performance. When actuator time

constant slows down to 2 sec, both adaptive controllers were able to achieve tracking

goals while the baseline controller failed to do so, as shown in Figure 5-1a. When

actuators further slow down as shown in Figure 5-1, only relative degree two adaptive

controller can achieve stable command tracking, whose parameter trajectories are

shown in Figure 5-2. The total number of integrators used in each of the controller

is summarized in Table 6.1, which shows that our new design uses significantly less

integrators compared with the classical one.

Suppose we freeze the adaptive parameters IA(t) and 'Tm(t) at the end of the sim-

ulation, the resulting "snapshot" closed-loop system consists of an uncertain LTI plant

and a linear observer-based controllers. The Frequency domain analysis [18, Chapter

5], as illustrated in the Figure 5-3, shows that at t = 0 sec the uncertainties reduce the
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Figure 5-1: The tracking of r7 and A, using the relative degree two adaptive controller
for the nonlinear 3-wing VFA model
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Figure 5-2: The parameter trajectories of the relative degree two adaptive controller

in the simulation shown in Figure 5-1b for the nonlinear 3-wing VFA model
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Figure 5-3: The frequency domain analysis of the snapshot closed-loop system shows

that adaptation mitigates the effects of model uncertainties on the robustness of the

"snapshot" closed-loop systems for the 3-wing VFA model
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gain margin from the nominal value (i.e. the baseline controller without uncertain-

ties) of [-15.7, 27.1]dB to [-2.0,2.6]dB, and phase margin from 57.1' to +14.8 ;

The "snapshot" closed-loop systems at t = 600 sec recovers them to [-9.4,15.3]dB

and to 48.9', respectively.
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Chapter 6

Relative Degree Three Design

This chapter extends the adaptive control design in previous chapters to plant models

with relative degree three. In particular, this chapter will address a plant model

together with a second-order actuator dynamics. Section 6.1 motivates the control

design using a SISO relative degree three transfer function as an example and presents

the complete design and stability analysis for this particular case. The main problem

we want to address in this thesis is presented in Section 6.2 where a relative degree

three MIMO plant model, which is motivated by VFA flight control, is considered.

The SISO adaptive control design is then extended in Section 6.3 to address the

solution for MIMO plant models. Section 6.4 demonstrates the adaptive controller

on a nonlinear VFA model navigating multiple equilibrium flight conditions.

6.1 Relative Degree Three SISO Control Design Ex-

ample

To show the main concept of the relative degree three control design, this section

describes the new adaptive controller when applied on a SISO plant with relative

degree three. Section 6.1.1 describes the SISO control problem relevant to flight

control. The control design solution is presented in Section 6.1.2 along with error

model analysis. Parameter adaptation is discussed in Section 6.1.3 along with stability

93



proof. In this section, analysis is presented where appropriate to show the design is

motivated. For the summary of the design, the readers are referred to Section 6.3.1

where a MIMO case is used.

6.1.1 Relative Degree Three SISO Plant Model

A dynamic behavior of aircraft, such as the response of roll rate x, to aileron deflection

up, can be described by a SISO first order model with an unknown pole and gain as

, = (-a, - 6*)xp + bphuA (6.1)

where ap is a nominal pole location and bp is a nominal high-frequency gain. 0* is

the uncertainty in the aircraft weight and A* is the uncertainty in the control surface.

(See Section 5.1 and 5.2 for the extension to parametric uncertainties with a nonlinear

regressor). In this section, the elevator input up is driven by a motor, which is modeled

as a second-order actuator as

ii, + (2w(, + 6*)i, + (W2 + *,)up = W2A*u (6.2)

where u is the command to actuators, ( is the nominal damping ratio and wn is

the nominal natural frequency, and 0* and 9* are their corresponding uncertainties.

Define wu = A*un. Then the overall plant model can be written in the state space
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-a, bp x

wu 0 0 I W U

f)u 0 -W 2 -2(Wn WU J

A x

0

+ 0 0 -OW -0* x +
,p*T

b3

Y= 1 0 0 ]x

CT

bp

+ 0 -O* 0 0 x

0 7P*T
L J

bi

0

p a

b3

(6.3)

which can be rewritten concisely as

where A, bl, b3 and c are fully known, while ?/*T, 3T and A* contains the unknowns.

Define

A* =A+ b1b*T + b3O*T (6.5)

and note that

cT(sI - A*)-lb 3 -

p*s(s) := [s + (ap + 6*)] [s 2 + (2(w + 0* )s + (w2 + 6,)]
(6.6)

The control goal is then to design u such that y will track a reference trajectory y,.

which will be prescribed by a reference model. From (6.3), it is noted that /*Tb 3 =

*T A*b3= 0, since O*T only affects the pole in the original plant pole location. By

Definition 3.5, b3 is a relative degree three input path with cTb3 = cTA*b3 = 0 and

cTA*2 b3 = bPw2 $ 0. b1 is a relative degree one input path with cTb1 = bp. The

following Proposition specifies the relation between b1 and b3, whose proof can be
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[

= (A + b1 O*T + b3 O*T) x + b3A*u

y = CT x
(6.4)



found in the Appendix E.

Proposition 6.1. For plant model (6.3), b1 can be linearly spanned in the space

(b 3, A*b3 , A*2b3).

Proposition 6.1 is a result of the fact that

cT(sI - A*)-bi b (6.7)
s + (ap + *)

6.1.2 Control Design and Error Model Analysis

First a CRM is designed as

A =Amxm+l(y- ym) +f(ey;s) - fxm(ey;s). M M = ~ m 7(6.8)
ym = cTzm

where ym is a reference output trajectory y needs to track, ey = y - ym is the output

error, and Am = A - b3 kT is designed using LQR techniques and therefore is Hurwitz.

Control parameters 1, along with fi(ey) and fxm(ey), will be designed later in Section

6.1.2 and 6.1.2. The error model e, = x - xm then is found to be

= (A* - lcT) ex - fi(ey) + bi /*TXm + b3 /*TXm + b3 A*u + fxm(ey) (6.9)

e = cTex

where 01 *T = <*T + kT. The goal of this section is to transform (6.9) into a SPR

error model, which is defined as follows.

Definition 6.1. A SPR error model is defined as

eY (t) = W3l*()4 T (t)W(t) (6.10)

where i/t(t) = 0(t) - ?)* is the parameter error between adjustable parameter 4'(t)

and the actual uncertain parameter 0*, w(t) is a known regressor, and W3'*(s) is a

SPR transfer function.
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Wl* (s) being SPR implies that W3
1* (s) is relative degree one, which in turn implies

that we need to add two transmission zeros in both the CRM and u. Zeros addition

in CRM, along with 1 and fi(ey), will be addressed in Section 6.1.2. Zeros addition

in u, along with fxm(ey), will be addressed in Section 6.1.2. In both sections, we will

use Lemma 3.3 and Remark 3.3 extensively to design u and CRM that do not require

differentiating input signals, and use its equivalent realization with zero addition for

error model analysis.

Add Zeros in CRM: Design 1 and fi(eY)

Zero addition in CRM can be realized by utilizing Lemma 3.3, which uses different

state coordinates and b matrices as

bl* =A*2 b 3 + A*b 3 .- 2 + b33 2* (6.11)
b* = A*b 3 + b3 - 2

These b'* yield zeros in the error model analysis (6.9) as

cT(sI - A*)-lb= '' bw(s2 + 2s + 1)3 P;*(') (6.12)
cT(sI - A*)-lb * = bPW(s+ 2 )

where p*(s) is defined in (6.6). As a result, b'* is an input path with relative degree

i. Without loss of generality, we chosen coefficients of (6.11) in such a way that in

(6.12) two identical zeros as in (s+1)2 are generated. It is noted that CT(sI -A*)~lbl*

has relative degree one and cT(sI - A*)~lb * has relative degree two. The following

Lemma states that there exists a l* such that an underlying SPR property can be

guaranteed in the error model, whose proof can be found in Lemma 4.3 and Lemma

4.5.

Lemma 6.1. For the plant model (6.3), there exists a 1* as

1* = eb'*bpw , (6.13)
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and a scalar constant 0 < E* = *(A*, b*, cT, Amax, 'max) < 00 such that for VE > e*,

the transfer function

bpw 2(s + 1)
W1 *(s) = cT(sI - A* + l*cT)l b-* - bn__(s + 1)2 (6.14)p* (s) + E(b22)2 (s + 1)2

where p*(s) is defined in (6.6), is SPR.

Numerical examples will show l* has a reasonable magnitude. It is noted that l*

uses unknown b*, and therefore in CRM (6.8) we choose to use 1, a known relative of

1*, as

1 = Eblbpw2 (6.15)

where b" is a known version of b'* as

bl = A 2b3 + Ab3 - 2 + b3b~=A~3 Ab3 2 b3 (6.16)

b = Ab3 + b3 - 2

It is noted that E* (see Lemma 4.3 for a explicit equation) includes (A*, bl*) and there-

fore is unknown. A known upbound of E* can be derived using -=(A, bl, cT, Amax, 4max)

with Amax > JA*l and Vpmax > j[4jjj, and guarantees F > E*, for which the reader is

directed to Section 6.3 for a detail equation. Then if we choose E > r, the SPR prop-

erty in Lemma 6.1 can be guaranteed. The difference between b* and b'* still needs

to be addressed, as shown in the following Lemma, whose proof can be found in the

Appendix.

Lemma 6.2. [Recursive Properties of bj For the plant model (6.3), b as in (6.16)

and b3* as in (6.11) satisfy

b1* - bl = b *01* + b 0p* (6.17)

*- = b* (6.18)

where jb* = -0, 0 2* = 0, + 2(oW6n' are elements of b.

It is noted that the (b'* - b') lies in the range of b l]* (with bi = b3 ) and hence
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the name of "recursive". Using (6.15) and (6.17), one can rewrite (6.9) as

= (A* - l*cT) ex + bi*.*esy + b34'*esy - fi(e,)

+bil *TXm + b3 /4*TXm + b3 A*u + fxm(ey) (6.19)

ey = cTex

where esy = b Y Using (6.12) and (6.14), (6.19) can be rewritten as

ey(t) W3*(s) [(s + 2)Vl*esy + *esy] + W3'b(s) [-fy(ey)]

+W3b(s) [bi7*TXm + b3 *TXm] + W3*b(s) [b3A*u + fxm(ey)] (6.20)

where Wb*(s) = cT(sI -A*.)-1, A*, = A* - l*cT and p*,c1 (s) := p*(s)+E(bpw) 2 (s+ 1)2

is its corresponding pole polynomial, i.e.

W*(s) - bw - cT(sI - A*.)-lb 3 = W3*b(s)b3 . (6.21)
Psc(s)

The goal is to have all parameter terms coming through (s+1)2 so that W3(s)(s+1)2

W3'*(s) as in (6.14) becomes SPR. Define filters as

Ill] s+2 -[21 1 (.2
VYs2+2s+l Y eO' s2 + 2s + 1 eq (6.22)

where the superscript (.)14] indicates that up to ith derivative is available for control,

which transforms (6.20) into

e[(t) = W*(s) (s + 1)2 1* + *2 + cT(sI - A*.)- 1 [-f(ey)]

+Wb(s) bi O*TXm + b3 V4*TXm ] + W3*b(s) [b3 A*u + fxm(ey)] (6.23)

Now it is clear that fi (ey) deals with the uncertainties in 03*, and u and fxm (ey) deal

with the uncertainties in O*T and 01 *T. In this subsection, we address the design of
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fi(ey) first as

f,(ey)

f3 ( b3, C )

= f(,)l + f3(0 )

= (b3 s+ b3) [v3(t)T O,] + b3 (s + 1)2 T(t)[

= b3(s + 1)2 [V)2T(jy [2]

(6.24)

where

60 : s2 +2s + e-s (t)[] (6.25)

with e, generated in (6.22), and 4'l(t) and V)2(t) are estimates of 01* and 2*,

respectively. In (6.24), we assume that up to the second derivative of 0/(t) and

'bj(t) are available for control, which will be realized in Section 6.1.3 using a high

order tuner. It is noted that e is available for control and hence the index ()[.

f3(Qi(, [2 ) is designed following Proposition 3.2 and is used to deal with 2*A2 in

(6.23). f2(01,-E) is used to deal with 0 *11 as stated in the following Lemma,

whose proof can be found in the Appendix E.

Lemma 6.3. [Recursive Adaptation] For plant model (6.3), f3 , )
yields a SPR error model in (6.23) as

cT(sI - A*.)- [b 3(s + 1)23* , - f ( ) = W *(s) [P3(t)

as in (6.24)

(6.26)

where 3(t) = 01(t) - 4,l* is parameter error.

It is noted that f3( 3, ey) only used T and was able to produce (s+1)2 (t)4

in the error model analysis (at the cost of using - 21) and hence the name "recursive

adaptation". Lemma 6.3 transforms (6.23) into

eYtt) =W3*(s) [-(t) T' - -(t)z -1

+W3b(s) [bi*TXm + b3 V*TXm] + W3*b(s) [b3A*u + fx (ey)] (6.27)

We will address bi/O*T + b30' *T using u in the following section.
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Add Zeros in u: Design u and fxm(ey)

Section 6.1.2 used recursive adaptation to address the uncertainties b * I4* that comes

from 1*. The remaining uncertainties bi O*T + b3s*T in (6.27) can be reparameterized

in b'* as stated in the following proposition 6.2. For the proof, the reader is direct to

the proof of Lemma 6.3 in the MIMO case.

Proposition 6.2. For plant model (6.3), there exists 01, i and * such that

b1/*T + b *T = bl*A*;z/T + b ** + b *T (6.28)

where b* is defined in (6.11) and = x 0 0].

Proposition 6.2 transforms the error model (6.27) into

e()=W*()(t) - 1 (t)-[] 21 -2

+W3*(s)A*(s + 1)2 [T m +

+W3*b(s) [b3A*u + fm(ey)] (6.29)

where we have used (6.12) and the filter design as

T[11 = s+2 x [21 = x..(.)
S2+2s+1 , M s2+2s+l (6.30)

The error model (6.29) implies that u = (s + 1)2 [/T(t)Xm], which is not imple-

mentable since zm is not accessible (see Xm design in CRM (6.8)). Alternatively, we

design u as

U = Ui+U 2

U1 = -(s + )2 [OT(t)yM'1 + O(t)y'21] (6.31)

U2 = = - ((s + 2) . s- [41(t)]) eo -- (s + 1)2 [O(t)vm] (6.32)

where 0 1(t), 0 2(t), 0 3(t) are estimates of ;*(t), 4*(t), ?*(t), respectively, whose

derivatives will be realized in Section 6.1.3 using a high order tuner. ui deals with
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the j'(t) and N(t) terms in (6.27) using Proposition 3.2. 12 deal with ,*(t) terms

in (6.27), where O[(t) adopted a similar structure of O*T = x j 0 as

4(t)=[x 0 0]. (6.33)

Vm(t) is an artificial signal with artificial derivatives as

(s 2 Vm) := A 2Xm - Aley (6.34)

(si - Vm) := AXm, (s0 - Vm) := Xm

which are accessible parts of zm and dm. The inaccessible parts of :m are dealt with

using eg, which defined as

e o ley(T)dT, (6.35)

and fxm(ey), which is designed using recursive adaptation in Lemma 6.3 as

fxm(ey) = f T(A,1 o) - (b -s + b3 ) [A(t)E' 0 ] + b,(s + 1)2 [l(t)[] (6.36)

since e is required in error model analysis but only is available for control:

s += S2  [- - ( t )e y( .
______2~l 1 (6-37)~[1][21 1 

1 XtT1 0

-/Y 5 2 
2s+1 P

A(t) is an estimate of A*. The following Lemma, which uses the results of Lemma 6.3,

shows that U2 and fxm(ey) produces a SPR transfer function in (6.27), whose proof

can be found in the Appendix E.

Lemma 6.4. For plant model (6.3) and CRM (6.8), u2 as in (6.32) and fxm (ey) as

in (6.36) produces a SPR error model as

cT(sI - A*.) {b 3A* (s+1)2 m +u 2 + fxm(ey)} (6.38)

=W3*(s) [-*T XM+ A 0 + 1 [1)[21
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where 0 1 (t) = 4'1 (t) - 4* and A(t) = A(t) - A* are parameter errors.

Plugging u (6.32) and the results of Lemma 6.4 into (6.27) yields

el (s) =W*(s) W3 1 [ - +12 Th[ q1

- W3*(s)A* 7lXM + *T[ + * . (6.39)

At this point, we have achieved a SPR error model as in (6.39). The minimal real-

ization of (6.39) can be written as in the following Lemma, whose proof has already

been presented in this section.

Lemma 6.5. For the plant model (6.3), CRM design (6.8) with fi(ey) in (6.24),

fx,(ey) in (6.36) and u in (6.32), the error model

emx = A*.em + bl*A* [ibf(t)Xm +- - (6.40)

ey = c emx

where cT(sI - A*.)-lbl* = W3*(s) is a SPR error model.

Some extra terms similar to 4 'j(t)Xm in (6.40) are omitted without loss of gener-

ality. The expression for emx can be found using Lemma 3.3, of which the details can

be found in Lemma 6.8, its counterpart in MIMO cases. Without loss of generality,

we will proceed using the error model in (6.40) for our following stability analysis.

6.1.3 High Order Tuner and Stability Proof

In the previous sections, we have assumed that up to the second derivatives of 01(t)

(and oi(t) and '(t), etc.) are accessible. In this section, we will realize 01(t) and

01(t) through a high-order tuner [511 as

.h = (Ahxh + bh'T(t)) g(xm)

g(xm) = (1+ piiXTm), 1(t) = -xmey (6.41)

pT(t) = CTXh, 4T(t) = C 1 X, OT(t) = CT 2 X
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where
0 1 0

Ah= , bh=
-1 -2 1 (6.42)

c=[ 1 0 ],c =[ 1 , ch,2 = -1 -2].

(6.41) consists of
1

ch(sI - Ah )-lbh s 2 +2s+ (6.43)

and a varying input gain g(xm). The following theorem guarantees the overall stability

of the closed-loop system, whose proof can be found in the Appendix E.

Theorem 6.1. For plant model (6.3) and the CRM (6.8), u is designed as in (6.32)

with its parameter adjusted as in (6.41), such that i) the closed-loop system has a

bounded solution and, ii) ey(t) -+ 0 as t -+ 00.

As ey(t) - 0, fi(ey) -+ 0 and fxm(ey) -+ 0 as t -+ oc, and therefore CRM (6.8)

recovers its open-loop reference model form as t -+ oc. As a result, the tracking goal

is achieved. The formal proof of tracking results is presented in Theorem 6.2 where

a MIMO case is used.

6.2 Relative Degree Three MIMO Problem State-

ment

This section describes a class of MIMO plant model that we want to address in

this thesis: a plant model with relative degree three as motivated by VFA control

challenges. Our starting point is a linearized model derived in Section 2.2 around a

single equilibrium flight condition, which has the form as in (2.10). In the plant model,

XP E R"p are states, up C R' are control inputs, yp = Cpxp E RPP are measurement

outputs and z E Rd are tracking outputs. We also define tracking outputs

z = CZx, + Dze;TXP + DzA*up (6.44)
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where CP, E RdX"P and D, E Rdxm are known. The number of inputs and number of

outputs are assumed to satisfy p, + d > m. A* is unknown actuator anomalies, and

E)* is unknown state-dependent flexible effects with x, being linear regressors (see

Section 4.1 and Section 4.2 for relaxation to nonlinear regressors). It is assumed that

CpB, is full rank and therefore the plant model has relative degree one (see Section

4.1 for justification). For mechanical plant models, the relative degree one assumption

requires that the plant has velocity measurements available for control and ignores

actuator dynamics all together. Adaptive control design for relative degree one plants

has been developed in Section in Chapter 4 and is able to achieve asymptotic tracking.

While relative degree one assumption is relaxed in Chapter 5 to allow a first order

actuator, this chapter focuses on a class of relative degree three or higher plant models.

The problem we want to address in this chapter is a relative degree three plant

model that includes uncertain second order actuator dynamics as

fii + (D(, + e*) i, + (D' + E*T) u, = D"u (6.45)

where DC, and D, are diagonal matrices with nominal damping ratios and natural

frequencies for each actuator, respectively, and E)j E Rmxm and E*T E Rmxm are

their uncertainties. For command tracking we define integral error states epz = Z-Zcmd

and w. := f epzdt. Define wu := A*up. Including wz and wu as states, the augmented

plan model can be written as
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Ap Bp 0 0 xp

0 0 I 0 wU

0 -DW -DCw 0 7bu

Cpz Dz 0 0 wz

A x

0

e*T E)* W] + 0
7i) DW

0

B3

CP 0 0 0

[0 001 x

C

z= Cpz Dz 0 0 ]x + DzE*x,,

Cz

which can be rewritten in a compact form as

= A + B 1,*T + B3 @*T) x + B3 A*u + BzZemd

y=Cx, z=Czx+Dzk*TX
(6.47)

where x E R' are augmented states, u E Rm are new control inputs, y E RP are

augmented measurement outputs. The plant model is nonsquare (p = p, + d > m).

It is noted that (6.46) and (6.47) are the extension of (6.3) and (6.4), respectively.

There exists another class of relative degree three plant models that include rela-

tive degree one plant dyanmics, first order actuators and first order sensors, which

can also be written as (6.47) (with some slight modifications, see Appendix E).

Matrices A C R"'X" B1 , B3 E Rnxm, C E Rmxf, Bz = R"x, Cz E Rdx" and

Dz E Rxm are known. A* E Rxm,4J ET 0 0 0 E Rmxn and I* T =

(D 1  e*f e8 0 E R xn are unknown. B, 19*Tx are the uncertainties from

the original plant model, and B3 Xp*Tx are the uncertainties in the actuator dynamics.

(See Section 5.1 and 5.2 for the extension to parametric uncertainties with a nonlinear
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regressor). The MIMO plant model (6.47) is a generalized version of the SISO plant

(6.4) presented in Section 6.1.1.

The control goal is to design u such that z tracks a trajectory zm from a reference

model despite the presence of uncertainties. The adaptive controller that we will

present requires the following assumptions regarding the plant model (7.1):

Assumption 6.1. (A, B3 , C) is a minimal realization;

Assumption 6.2. { A, B3, C} has stable transmission zeros;

Assumption 6.3. { A, B3, C} has uniform relative degree 3;

Assumption 6.4. B1 can be spanned by a linear combination of {B3, AB3 , A 2B3 };

Assumption 6.5. ** satisfies IF*T AB] = [ 01;

Assumption 6.6. JI||*1 are bounded by a known value, respectively, i.e. ||11| <

imax for i = 1, 2;

Assumption 6.7. A* is diagonal and IIA*II is bounded by a known value, |A*II < Amax

and sign(A*) is known.

It can be shown that the relative degree three plant model (6.46) and (6.4) satisfy

all these assumptions, with r = 3. Assumption 6.4 is always satisfied if the plant

model has the structure as in (6.46), i.e.

B1 = D3 1A 2B3 + DCD 1 AB3 + B3 (6.48)

(see Proposition 6.1 for derivations). Assumption 6.1 is standard. Assumption 6.2 is

ubiquitous for adaptive control. It is noted that plant models with stable transmis-

sion zeros do not require zeros of each individual transfer functions to be stable as

shown in Example 3.1. For nominal MIMO plant models satisfying Assumptions 6.1

and 6.2, a baseline observer-based controller (such as LQG/LTR [9]) can be designed

to achieve a satisfactory tracking performance with adequate stability margins. For

adaptive control, additional assumptions on the plant model are needed. Assump-

tion 6.3 implies [ (CPBP)T DT ] is full rank. Assumption 6.7 implies that actuator
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anomalies are physically bounded and independent from each other. Assumption 6.6

is commonly satisfied for aerial platforms with physical constrains on the maximum

amount of flexible deformation and deformation rate [521.

6.3 Relative Degree Three MIMO Adaptive Control

Design

This section extends the adaptive controller presented in Section 6.1 to the relative

degree three MIMO plant model (6.46). A complete adaptive control design is pre-

sented in Section 6.3.1. An error model is derived with guaranteed SPR properties

in Section 6.3.2. Stability proof, along with a high order tuner, is derived in Section

6.3.3. For simplicity, we first design controller assuming p = m, i.e. (6.47) is square.

Extension to nonsquare plant models is discussed in Section 6.3.4. A step-wise design

procedure is summarized in Section 6.3.5.

6.3.1 Control Design

The control design will extend the design in Section 4.2 to relative degree three plant

models by adding two transmission zeros as

7rio(s) = a 2, 7r'(s) = a 2S + a',2r)~ 2 2 2(6.49)

7r2(s) = als2 + a's + ao,

to the error model without explicitly differentiating given signals. The coefficients

a2, without loss of generality, are chosen as the polynomial expansion coefficients of

(as + 1)2 = a2s2 + a's' + ao for some a > 0. We choose the control input u as

U = Ubi + Uad (6.50)
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where Ubl is determined using a baseline observer-based controller and Uad by an

adaptive controller. The baseline portion nbl is chosen as

Ubl = -KTXm (6.51)

where KT E Rn' is designed by the linear quadratic regulator (LQR) technique. xm

are the states of a modified closed-loop reference model (CRM, based on Ref. [19-211)

as
Xm = Axm + B3ubl + Bz Zmd + L(y - ym) + FL (ey) - Fx.(ey) (6.52)

YM = Cxm, zm = CzXm

where L is designed as

S = (CB3)T, C SC, (6.53)

R-1()= (CB)-1[CAB1

+ (CAB )T ](CB1)-' + 1 I (6.54)

L = B R- 1(E)S. (6.55)

E > 0 is chosen to be large enough as

E > , -E= max[[l1, E21

E, = Amax {-(CB3)-1 [CAB3 + (CAB')T ] (CB3)-1}

2= Amax { (CB )-[2 ||CBj|| 2 (Wmax + Rmax) + H 2ax]}

Hmax (1 + 21max I|Pu||) IPI|| - (IN1AB || + a axRmax + a'RmaxRwax

+|CAMII + ||CB| 11max

(6.56)

where N' = (MTM)-lMT [I - B3(B')~], M is the null space of C , P, is a

solution of P1N'AM + (NlAM)TP - I (see Lemma 3.1 for its existence), qmax =

[ax 9A , and Rmax = ||(M )-1A2B||, where LT = [CT (CA)T (CA 2 )T

m = [B3 AB3 A2 B3 Iand 9A is the null space of E (see Lemma 3.1). E is so chosen

that an underlying SPR condition is guaranteed in Section 6.3.2. Numerical examples
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will show L has a reasonable magnitude. FL(eY) and Fp(e,) are designed as

FL (eY) = F2(ViT + F( )+F (6.57)

Fxm(ey) = F3(AT(t)E(1 0 ) + F3(O T(t)E ) (6.58)

Fj(w) for i = 2, 3 and some w(t) E Rm are defined as

F3(x) = (B3s + B3 a') [w]
2 (6.59)

F3 (W) = B37r2(S) [W]

where B' is defined as

B31= A2 B3a + AB3a + B3 a(

B = AB3a + B3a, B3 = B3a

which are relative degree ith input paths through {A, B', C}. 0.T(t) C Rm
x

m and

bT(t) E Rmxm are estimates of 0*T(t) E Rmxm and @b*T(t) E Rmxm, which are

elements of T* and will be defined in Section 6.3.2. A(t) is the estimate of A*. We

have assumed that A(t), 4'(t) and 4' (t) are accessible, which will be realized using

a high-order tuner in Section 6.3.3. Signals TU are outputs of a series of filters as

esy := R-Sey, where ey := y - ym
[1] = r(s) _[21 = (s(6.61)

where R and S is designed as in (6.53) and (6.54), respectively. It is noted that jth

derivative of Efare available for control. Signals e _L are outputs of a series of

filters as

ego := f Ley(T)dT

= e s (t)ey] (6.62)

[1[ = -~s s [AT(t)[ .

It is noted that the jth derivative of 1 j'1 'V are available for control.

OY 'l'i y-
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The FL term in CRM deals with the uncertainties introduced when using a known

L as in (6.55) to guarantee an underlying unknown SPR model (see Section 6.3.2).

The Fxm term will be used to deal with the inaccessibility of Xm (see CRM (6.52)),

which is used to address the uncertainty B1 If*TX in the plant model. We have put

the equivalent realization of the inaccessible parts of zm in F, (using Lemma 3.3)

and putting the rest accessible parts of Xm in Uad as

Uad = -Ubl + 1F2( [AT tb4l - XPf (t)V 2 t) 3-ty2

2

- 1 ad (t)eyO (6.63)

where vm are artificial signals with artificial derivatives defined as

S2 -Vm = A 2Xm + ABzZcmd + Bzicmd - ALey

S - Vm = Axm + Bz zemd (6.64)

Vm = xm

It is noted that s' - Vm are parts of x$2 . The adjustable parameters AT(t) and TI(t)

are estimates of A* and i , respectively, which will be defined in Section 6.3.3.

The derivatives A(t) and 4hi(t) will be realized using high-order tuner in Section 6.3.2.

In particular, we design Ti(t) as

qi'f(t)= x o o ] (6.65)

which matches the structure of qI*T as Assumption 6.5 holds. Signal ( is a filtered

version of signal (-) as

- 1 -E _r(s) -[2] = i(s) (6.66)Ubl ~ 7F2(S) Ubl , Xm 2(S) m7 72 (

It is noted that up to ith derivatives of ) are available for control.
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6.3.2 Error Model Analysis

The following paragraphs show that the control design in the previous section yields

an underlying SPR error model. The error model is derived by subtracting the CRM

(6.52) from the plant model (6.47), which yields

eX = (A* - LC)e, - FL (ey; s) + Fx,(ey; s)

+ B1*TXm + B2 *TXm + B3P*T Xm

+ B3A*(ubl + Uad) - B3ub. (6.67)

where

A* = A + B, *T + B3 j*. (6.68)

The input path of relative degree i corresponding to A are B', for i = 1, 2, 3, as defined

in (6.60) and they are known; the input path of relative degree i corresponding to A*

are B'*, which are defined as

B1* = A*2 B3a2 + A*B3a + B0a
3 2 2 B~a2(6.69)

B * = A*B3a2 + Baa, B3* B3a ,

and they are unknown. Define

A* = A* - LC. (6.70)

Bj* are also the relative degree i system input paths for {A*, B'*, C}, i.e. B'* are

invariant for any L E Rnxm

The following error model analysis will be a direct extension of its counterpart in

the SISO case in Section 6.1.2, and therefore only a few important Lemma will be

provided for the MIMO case while some intermediate steps are omitted. The following

Lemma guarantees a SPR transfer function, which is an extension of Lemma 6.10,

whose proof can be found in the Appendix E.
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Lemma 6.6. With R(e) as in (6.55) and e as in (6.56), W'*(s) = SC(sI - A* +

L*C)-lBj* is SPR, where L* = B'*R-l(e)S.

The goal of this Section is to formulate the SPR error model as in Definition 6.1.

To realize L* in W3*(s) while using L in CRM, we need to address the difference

between B' and B'*, which can be parametrized using the following Lemma (an

extension of Lemma 6.2). The proof can be found in the Appendix E.

Lemma 6.7. [Recursive Properties of B] For plant model {A, B 3, C} satisfying As-

sumptions 6.3 and 6.5, B' as in (6.60) and B'* (6.69) satisfies

B1* - B1 = B *o1 *T + B3*o2*T
2* 3 3 

3 3 3(6.71) -B2 = B *$b*T, B3* - B3 = 0

for i = 1, 2, 3 where uncertain terms 'M* are elements of T*

The difference between B' and B * can be written in terms of B i1* and hence

the name "recursive". FL(ey) as in (6.57) deals with L*C, while Fxm(e,) as in (6.58),

together with uad, deals with Bi 'p*TXm for i = 1, 3. First Bi *TXm can be written in

terms of B'* using the following Proposition (an extension of Proposition 6.2), whose

proof can be found in the Appendix.

Proposition 6.3. For plant model { A, B3 , C} satisfying Assumptions 6.3 and 6.4,

there exists '*, T* and C such that

B11*T + B3 *T = B1*A*T + B *A*-T + B3A*IT, (6.72)

where B3* is defined in (6.71) and = x 0 0 0

Then all uncertainties in the error model lie in the range of B3*. Both of FL(e.)

and Fxm (ey) use an equivalent realization of zero addition (see Lemma 3.3) to generate

zeros in error model analysis, as summarized in the following Lemma (an extension

of Lemma 6.3), whose proof is shown in the Appendix E.
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Lemma 6.8. [Recursive Adaptation/ Suppose an error model

eX = A*ex + B *$*Tw(t) - F(t)
L 3 (6.73)

ey = CeX

where A* = A* - LC with any L E Rnxrn, B 2* defined in (6.69), { A, B3, C} satisfies

Assumptions 6.3 to 6.5, 0* is unknown constant parameters, w(t) is a known regressor

with W>(t) inaccessible, and F(t) is free to choose, then F(t) can be chosen as

F(t) = F2(#T (t)ZU[1I(t))+ F3(O.T (t [ 1[2 I(t)) (6.74)

where F.' is defined in (6.59), 0(t) is an estimate of 0* with q(t) accessible, 01(t)

is an estimate of 4$l* as in (6.71) with '(t) accessible, and Z[i (t) for i 1, 2 is a

filtered version of w(t) as

l (t) = Wi(s) _ 
[1]2](t) = r2(s) . S [#T(t)jl](t)] , (6.75)

7r' (S) 7rFs

such that the error model can be transformed into

' = A*e' - B - B * 2
X 3 = C' 3(6.76)

ey =Ce

where (t) = Ot) - #*, 3 = ?)(t) - ?/j* and

e'= ex + B3*0*Tw(t) _ B 3 *oT# %t

+ [B2* + B *s] T(t)jl[(t) + [B32* + B3 *s] 3jTj[1][2)(t) (6.77)

Remark 6.1. If T* = 0, then T*3 = 0 and therefore 01* = 0; as a result, we can choose

01(t) = 0 and all terms with [1l][2] will be zero in F(t).

Lemma 6.8 is used in deriving the SPR error model shown in the following Lemma

(an extension of Lemma 6.5), whose proof can be found in the Appendix E.

Lemma 6.9. For the plant model (6.47) satisfying Assumptions 6.1 to 6.7, with the
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CRM as in (6.52) and u as in (6.50)(6.51)(6.63), the error model e, = x - xm is a

SPR error model as

(6.78)enx = A* emx + Bd* bDT + B'*A*QT T

Se, = SCemx

where A*. = A* - L*C, Bl* defined in (6.69) and

~bl -
Xme

-7[1] 1 IJ

_y[2]L

Q*T [A*-1 xj1*T

QT.[T T

-T [ A T1

(DT[ T V)

[1] ...[1][2] [1][2]
g,~ -e 0 s

[2]

-11

2T

2T

3

2 3

A*]

AT]

AT]

I

where : E R m+3n)x1 and T E R3mx1

At this point, we have generated a SPR error model.

6.3.3 High Order Tuner and Stability Proof

In this section, a high order tuner adaptive law [511 is used to generate 2(t) and <>(t)

so that the control (6.63) and the CRM (6.52) is realizable. The design is very similar

to (6.41) in SISO case and therefore only key equations are presented below. The

adjustable parameters QT(t) E Rmx(m+3n) and (DT(t) E Rmx 3m are outputs of tuners

as
k= (AHXQ + BHQ'T)g(l;

k4 = (AHXT + BH 4'T ) g(-F; AVI),

QT(t) = CHXn

41T(t) = CHX,
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where XQ E R2mx(m+3n) and X E R2 mx3m are augmented matrices with columns

being the states of the tuner. AH E R2mx2, BHE R2x"m and CHE R x2m are

block diagonal matrices with Ah, bh and Ch as their diagonal elements, respectively.

{ Ah, bh, Ch} chosen as

Ah=
0

-al/a ] 0 r
bh a/ , Ch

2 /2
1 0 (6.81)

i.e. ch(sI - Ah)- 1 bh = ) Then the derivatives of adjustable parameters can be

obtained by

!T(t) = C QX"(t) =CXf2

(>T(t) = Cj X., iT (t) = CX ,

where CH c Rm x 2 m and CH (E Rmx 2m are block diagonal matrices with ch = 0 1]

and c2 = 1 0 a ] as their diagonal elements, respectively. The varying gain

function g(x; pu) is defined as

(6.83)

where jI for each equation of (6.80) chosen to be

o= IIH||IAmax
-llPHAH2BH II

= ICH II
YIPH AHBHI

_ 4(m+3n SC 112 1CH 112
f2AQ6H

=4.3mlISCI 2 11CH112

PVflAQJ5L

(6.84)

PH is a solution matrix for the equation PHAH + A'TPH= -I and AQ is the smallest

eigenvalues of Q, which is defined as

Q = NT H(CB'*)-lC - T(CBi )-1H T N1T + eC + NiT N' (6.85)
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where H = MTATCT + PINAB' and E is defined in (6.56). The input to the tuner

are adjusted using

2'(t) = -FCe STsi gn(A*)
Y IF-e TST(6.86)

i't ) = -FTve|ST

where F = -I > 0 are adaptation gains. The following theorem guarantees the global

stability and asymptotic tracking of the adaptive system, whose proof can be found

in the Appendix E. Define ez(t) = z - zm as tracking errors.

Theorem 6.2. For the plant model (6.47) that satisfies Assumptions 6.1 to 6.7, and

for any Zead(t) that is piecewise continuous, the adaptive controller (6.50), (6.51),

(6.63), (6.52), and (6.86), with L and S designed in (6.55)(6.53), guarantees that

i) the closed-loop system has bounded solutions, ii) ey(t) -- 0 as t -+ oo, and iii)

ez(t) -+ 0 as t --+ oc.

6.3.4 Extension to Nonsquare Plant Models

This section extends the control design in 6.3 to a plant model whose number of

outputs exceeds that of inputs, i.e. p > m. Define nz as the number of transmission

zeros in the plant model (6.47). The overall method integrates a squaring-up pro-

cedure (see Section 5.2 for details), which requires an additional assumption on the

plant model (6.47).

Assumption 6.8. Dimensions of B3 E Rnxr and C E RPXn satisfy (n - nz - 3m) >

(p - M).

All the equations for design in 6.3.1 are still valid except that the design of L

needs to be modified as

L = B R-1(E)S, S = (CB l)T (6.87)

- = A 2E 3 a2 + AB3a1 + iR3 a0

E > rr= E(A, Is 1C, Amax, i max)
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where B 3 E R"XP is a squared-up B 3 as defined in the following Lemma, whose proof

is very similar to the proof of Lemma 5.1 and therefore is omitted here.

Lemma 6.10. For plant models satisfying Assumptions 6.1 to 6.3 and 6.8, there exists

a B,1 E Rnxm, such that {A, B3 , C}, where B3  [B3, B,1], has stable transmission

zeros and nonuniform input relative degree as ri 3 for i = 1, 2, m and ri = 1

fori= m + 1, m + 2,7.. ,p.

Then L as in (6.87) guarantees the SPR property of { A**, * SC} where B1* =

A*2 R 3 a2 + A*2sai + B 3a'. Partition of S as

ST = [sT', S] (6.88)

with S3 E R'XP, guarantees the SPR properties {A , B1*, S3C} (using KYP Lemma).

As a result, Lemma 6.6 holds. Also, Lemma 6.7 holds with B1 and B1* as well as _B
an -1* -13-Cnrlsgau

and B3. Since L is designed using B3, FL(ey) is designed using B3. Control signal u

still goes into plant through B3 and therefore F, is designed using B3. The rest of

design and analysis follows exactly Section 6.3.2 and Section 6.3.3. It is noted B 3 is

only used in CRM.

6.3.5 Design Procedure

The overall control design in this section can be summarized into the following step-

wise procedure:

Step 6.1. Given a plant model (A, B, C, C, D,), check Assumptions 6.1 to 6.7;

Step 6.2. Add integral error states to the plant model using (6.46);

Step 6.3. Design a baseline observer-based controller (6.51)(6.52) (without adap-

tive terms) and choose K and an observer parameter using the LQR and the LTR

techniques, respectively;

Step 6.4. (For nonsquare plant models only). Pick a B,1 using Lemma 6.10 and

produce a squared-up B 3;
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Step 6.5. Design a e using (6.56), then design a SPR pair L using Eq. (6.55) and S1

using Eq. (6.53), and replace the observer gain in the baseline controller (6.52) with

L;

Step 6.6. Design high order tuners as in (6.80) and prescribe parameter adaptation;

(6.86)

Step 6.7. Add the adaptive portion (6.63) to the baseline control (6.50) and add

adaptive portion (6.57) and (6.58) to the CRM.

Step 6.1 to Step 6.3 are conventional observer-based controller designs. Step 6.5

to Step 6.7 are for the adaptive component addition, which completes our adaptive

control design. It is noted that for both the baseline controller and the adaptive

controller, the L design is independent from the K design. We can generally consider

that K is designed for performance, and L is designed for stability. The overall

controller structure diagram is shown in Figure 4-1.

6.4 Applications to VFA

This section applies the relative degree three adaptive controller on the nonlinear 3-
wing VFA model as shown in Section 2.2.1. The nonlinear model is linearized around
each of 25 trim points defined by V = 30 ft/sec, ao = 0 deg, 9o = 0 deg, q = 0
deg/sec, r7o E [10, 12 deg with a step of 0.5, and 4O E [-0.2, 0.2] deg/sec with a step
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of 0.1. Exemplary numerical values of the linearized model is shown below as

V

&

ae

eA -

-0.279

-0.070

0

0

0

0.002

0

0

0

0

0

0

3.476

-4.104

0

-54.04

0

0.044

0

0

0

0

0

-123.12

-32.2

0

0

0

0

0

0

0

0

0

0

0

-0.015

1.013

1

0.255

0

0.819

0

0

0

0

1

0

0.514

0.193

0

1.845

0

-0.075

0

0

0

0

0

0

0.525

0.100

0

21.41

1

-6.518

0

0

0

0

0

0

0

0

0

0

0

0

1

0

-1

0

0

0

0

0

0

0

0

0

0

1

0

-1

0

0

-2.57

-0.795

0

5.991

0

0.195

0

0

-1.4

0

0

-23.84

-6.47

-0.079

0

-6.363

0

-0.034

0

0

0

-1.4

0

-2.376

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0.

V

a
6

q

0

6
e

w7

wAz

A

0 0 0 0

0 0 0 0

0 0 0 0
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+0 0 U 0 0 [q
0 0 ' O 0 0 ZAz

o 0 0 0
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1 0 0 0
0 1 0 0
0 0 1 0

. 0 0 0 1

B2  
Bz

q 0 0 0 1 0 0 0 0 0 0 0 0

W = 0 0 0 0 0 0 0 0 0 0 1 0 x

WAz - 0 0 0 0 0 0 0 0 0 0 0 1

C
(6.89)

for 7 = 10 deg and 2o = 0 deg/sec, where we have included 2nd-order actuator
dynamics with nominal natural frequency w, = 1Hz and nominal damping ratio
(= 0.7. ue are elevator commands and ua are aileron commands to the actuators. It
is verified that Eq. (2.10) holds for all trims in the range 7o E [10, 12] deg. For example,
the linearized model for 2o = 10 deg and 2o = 0.2 deg/sec can be approximated using

0.06 -4.52 0 0.05 0.041 1.47 A = 0.91 0.53
0.01 1.83 0 -0.02 -0.035 -0.59 0.52 0.79

within an error of 2.6% 11A,1 and 1.8% IIB,1|, respectively. The pitch mode of the

VFA when 1 > 110 is unstable.

For control design, we designed control parameters for the trim of (6.89). L and
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S3 are found using a2 = 1, al = 2, a= 1,e = 10, Amax = 2 and max =30:

-44.83 -123.56 64.29

1.416 3.290 8.712

-0.339 -0.194 -0.007
529.9 985.3 -21.85

14.99 8.600 0.329

L -93.98 -8.302 -2.089 S3 -0.045 -0.888 -0.457 (6.90)
-10.93 -105.4 -4.762 0.084 0.453 -0.887

5.970 51.85 -4.127

15.32 147.5 6.667

-10.82 -74.00 5.72

-3.151 -1.806 -0.069

-20.56 62.48 260.0

For the baseline controller without adaptation, the resulting controller is an observer-

based linear controller (referred as the baseline controller). The L design for this

particular trim generate adequate stability margin in the baseline controller in the

absence of uncertainties, as shown in Figure 6-5 (see legend "nom"). The following

relation holds as a2/aO -+ 0, a'/aO -+ 0 and e - oo:

13 -+ B3, L -+ B3 R- 1 (E)S -+ oo. (6.91)

which implies loop transfer recovery (see Lemma 4.6) for the loop gain at the input,

as shown in Figure 6-5 (see the legend "nom").

We schedule the control parameters [32] using real-time q measurements. The

time domain simulation results with the nonlinear VFA model are shown in Figure

6-1. Three actuator models were simulated, including a nominal one with w, = 1Hz

and ( = 0.7, a bumpy one with wr = 2Hz and ( = 0.5, and a slow one with Wo = 0.5Hz

and ( = 2. Besides the baseline controller, two adaptive controllers were tested: one

is relative degree one as developed in Ref. [25], which pretends the actuator dynamics

is not present; the other is the relative degree three shown in Section 6.3 based on

a nominal actuator model as in (6.89). The number of integrators required for each

controller are listed in Table 6.1, which shows that the number of integrators used

in the adaptive relative degree three controller is an order of magnitude smaller than

that of the classical one [14].

With nominal actuators, all three controllers almost has the same ideal perfor-
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Adaptive Adaptive Adaptive
Baseline relative relative relative Classical
observer- reaine reative degree adaptive

based degree one degree two three controller
controller 4.2) 5.2) (Section [141

4 5.2) 6.3)

3-Wing VFA 6 18 48 169 1328
(6 states)

Vulture VFA 122 366 412 2162 68,238
(122 states)

Table 6.1: Total number of integrators required for each controller

mance, as shown in Figure 6-1a. Notice that the VFA navigates through r7 = 11, 12

deg where the pitch mode is unstable. It is also noted that the individual transfer

function from 6 e to A, has unstable zeros, which still can be accommodated by our

design since Assumption 6.2 only asks for stable transmission zeros. With fast actua-

tors, both adaptive controllers were able to achieve tracking goals while the baseline

controller failed to do so, as shown in Figure 6-1b. When actuator dynamics was

slow as shown in Figure 6-1c, only relative degree two adaptive controller can achieve

stable command tracking, whose parameter trajectories are shown in Figure 6-2.

The spectrum of the aileron 6 , trajectories, as shown in Figure 6-3, illustrates

that the adaptive relative degree three controller requires more effort from actuator

in low frequency range, less than 5Hz, compared with the adaptive relative degree

two controller. The additional effort can be realized by an ordinary motor, whose

bandwidth is usually around 30Hz.

Suppose we freeze all the adaptive parameters Ti(t), V/4(t) and A(t) at the end of

the simulation, the resulting "snapshot" closed-loop system consists of an uncertain

LTI plant and a linear observer-based controllers. Figure 6-4 shows the frequency

response of the snapshot closed-loop system for the relative degree three adaptive

controller at the end of the simulation, and the effects of the initial conditions of

Ti(0), '(0) and A(O). All trajectories tend to converge to the nominal closed-loop

system (without uncertainties), except when initial conditions are large (too far away

from TI).
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Figure 6-1: The tracking of q and A, using the relative degree three adaptive controller

on the nonlinear VFA model
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Figure 6-2: The parameter trajectories of the relative degree three adaptive controller

in the simulation shown in Figure 6-1b for the nonlinear 3-wing VFA model
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Figure 6-5: The frequency domain analysis of the snapshot closed-loop system shows

that adaptation mitigates the effects of model uncertainties on robustness for the

3-wing VFA model

The gang-of-six frequency domain analysis [18, Chapter 5], as illustrated in the

Figure 6-5, shows that at t = 0 see the uncertainties reduce the gain margin from the

nominal value (i.e. the baseline controller without uncertainties) of [-14.8, 13.2]dB

to [-2.2, 1.8]dB, and phase margin from 47.9 to 9.60; The "snapshot" closed-loop

systems at t = 600 sec recovers them to [-24,14.2]dB and to 55.0 , respectively.

The trade off is that the output sensitivity of the "snapshot" system increases to

9.1dB after adaptation is complete, which increases the sensitivities to the measure-

ment noise. Loop transfer function also has a spike at around 1.5 rad/sec at the

end of adaptation, which implies sensitivities to input disturbance. To examine the

robustness of the adaptive system over disturbance/ noise, we introduce sinusoidal

disturbance/ noise of magnitude 0.2 with frequency ranging from 0.1 to 4 rad/sec in

all input channels and all output channels for the simulation of bumpy actuators as in

Figure 6-1b. Three exemplary time domain responses of 77 and Ja are plotted in Fig-

ure 6-6a for disturbance/noise at three different frequencies, i.e. 0.3, 2 and 3 rad/sec,

and show that disturbance/noise is amplified at 2 rad/sec. The mean of the moving

window standard deviation, with a window size of 10, of q and J, is calculated and

plotted against the frequencies of disturbance/noise in Figure 6-7 and shows that the
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largest amplification occurs around 1.5 rad/sec, which is consistent to our gang-of-six

analysis in Figure 6-5. To mitigate the effects of disturbance/noise, a a modification

is used in place of the adaptation law (6.86) as

=-FeT'STsign(A*) - oQ'(t)
-Y (6.92)

>'(t) = -Fi7e'TST - O'(t)

with a = 0.001. The stability proof will be very similar to the proof of Theorem

6.2 and therefore is omitted here. The same simulation was carried out with the o

modification and the three exemplary time domain responses of 'r and 6
a all show

improvement in their magnitude oscillations, as presented in Figure 6-6b. The miti-

gation of oscillations across the frequency range of 0.1 to 4 rad/sec is shown in Figure

6-7. The trade-off is that since parameter adaptation with a modfications will not

converge to steady state values, the tracking performance is compromised, as shown

in Figure 6-6b.
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Chapter 7

Arbitrary Relative Degree Design

This section extends the MIMO design in Section 6.3 to plant models with arbitrary

relative degree r. The control problem motivated by VFA includes high order actuator

dynamics or sensor dynamics, and is presented in Section 7.1. Key steps of design

and Lemma for stability analysis, which are direct extensions of its counterpart in

Chapter 6, are presented in Section 7.2.

7.1 Arbitrary Relative Degree Problem Statement

This section focuses on the main problem we want to address in this thesis: a class of

MIMO plant model with uniform input relative degree r E N+ as motivated by VFA

control problem. The class of plant models we want to address is plant models with

higher order actuator dynamics or additional sensor dynamics, which has a similar

structure of (6.46) and can be written as

x = (A+ Er-1 BklI*T) x + BrA*u + Bzem(
k k Zcmd(7.1)

y = CX

where r is its input relative degree. The plat model (7.1) is a generalized version of

the MIMO plant (6.47) and (6.4), in which r = 3. Linear parametric uncertainties

Bk T*Tx are considered in this section, and the reader is referred to Section 4.1 and

4.2 for the extension to parametric uncertainties with a nonlinear regressor.
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The control goal is to design u such that z tracks a trajectory zm from a reference

model despite the presence of uncertainties. The adaptive controller that we will

present requires the following assumptions regarding the plant model (7.1):

Assumption 7.1. (A, Br, C) is a minimal realization;

Assumption 7.2. { A, Br, C} has stable transmission zeros;

Assumption 7.3. {A, Bi, C} has uniform relative degree i, for i = 1, 2, - - - , r;

Assumption 7.4. CA- 1 Bi has full rank, Bi can be spanned by a linear combination

of {Br,7 ABr, A~r-')B,} for I = 1, 2, - - - (r - 1);

Assumption 7.5. IF* satisfies T Br AB, - A B] = 0 0 --- 0

fori= 1,2,.-- ,(r- 1);

Assumption 7.6. ||TIJ| are bounded by a known value, respectively, i.e. ||I'if <

I9*max for i = 1, 2, -- r;

Assumption 7.7. A* is diagonal and IIA*II is bounded by a known value, ||A*II < Amax

and sign(A*) is known.

It can be shown that the relative degree three plant model (6.46) satisfy all these

assumptions, with r = 3. The reader is directed to Section 6.2 for the justifications

of these assumptions.

7.2 Extension of Control Design to Arbitrary Rela-

tive Degree

Since the control design for relative degree r plant model is a direct extension of the

design in Section 6.3, only key design steps and Lemma for analysis are presented in

this section, as well as the final equations for the control and CRM.

The design of L and S in (6.55), as well as u, can be extended while guaranteeing

the SPR property of {ALe, B *, SC} with

r--ij~r

Br= a- ri-}Br, i = 1, 2, - r. (7.2)
j=0
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The design of FL and Fxm in CRM, on the other hand, requires two key Lemma,

Lemma 6.7 and Lemma 6.8, to be extended to relative degree r. Define A* = A +

Z,_, BkIJ* . We will first show the difference between Br and

r -i

B = ar-jA*r-i}Br, i = 1, 2,- r, (7.3)
j=0

the true input path to a relative degree system {A*, B'*, C}, in the following Lemma,

whose proof is omitted here due to its high similarity of Lemma 6.7.

Lemma 7.1. [Recursive Properties of BrJ For plant model { A, Br, C} satisfying As-

sumptions 6.3 and 6.5, Br as in (7.2) and Br* (7.3) satisfy

B * B - B[ +B*?pi*T + - -+ Br*$14-i*T (7.4)

for i = 1, 2, ... , r with uncertain terms Or* being elements of r* .

Lemma 7.1 is the extension of Lemma 6.7. In (6.71), terms with index [i+ 1] > r

and [r - i] < 1 are zeros. Define

7ri1(s)= ai, z-- _1 (s) = ajjs 3  (7.5)
j=0 j=0

such that the recursive property (3.2) holds as 7r'_i(s) - sr-i- + I7_~I- 1(s) = ir;_-(s)

and

Fr(x) = B s 1 [x] + BrZr- [x] (7.6)

Then we will show the extension of Lemma 6.8 as follows, whose proof can be found

in Appendix F.

Lemma 7.2. [Recursive Adaptation] Suppose an error model

e, = A*e, + Br*4*Tw(t) - F(t)
L (7.7)

ey = Cex

for i = 1, 2,- ,r, where A* = A* - LC with any L E R"'x", B * defined in (6.69),
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{ A, B3 , C} satisfies Assumptions 6.3 to 6.5, 0* is unknown constant parameters, w(t)

is a known regressor with >(t) inaccessible, and F(t) is free to choose, then F(t) can

be chosen as

F(t)=

r-1-i

+ ( [Fi+jg (Oj (tD--1] [i-1+jl

j=1
r-i-j

+ Fi+j+k(kT(t)[i-1][i-1+jl[i-1+j+k(t)) + - (7.8)
k=1

where the sequence stops when the last index of ZJ[I reaches [r - 1]; F,' is defined as in

(7.6), D[l (t) for i = 0, 1,- - , (r - 1) is a filtered version of w(t) as

,-1-i(s)

a (t) rs_ se r oa
Tr_1(S)

and ji'l .. ] k](t) for (j + 1) :5k <(r - 1) is a filtered version Of wli] ... U1(t) as

7r, I (s ) S [q (t) j l .. 1t)]

such that the error model can be transformed into

' = A* e' + B1*0 (t)aV7-lI(t)

+B * ~- Ta7[i-1][i-1+j](t

+ r--j 4kT (t)aj[i-1][i +ji][i-1+j+k(t) +

ey =Ce

where the sequence stops when the last index of JI1 reaches [r - 1].

(7.10)

(7.11)

Detail expression of e'/ can be found using Lemma 3.3. Following Lemma 7.2,
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FL(ey) and Fxm (ey) are designed as

FL(eY) = ((iITTV1 )+P (7.12)
i=2

r-1-i [] 1T [i-l 3]()

j=1
r-1 i-1

Fx,(ey) = (A F l ATE +
i=2 1=0

S+ r -) + - } (7.13)
j=1

where UI and T [i-+lli-ji are defined similarly in (6.62) and (7.10), and Uad is

designed as

Uad = -Ubl + 7r1 _(s) [AT(t)I - T (t)22] - (t)]

r-2 r-1

-- _1 k Jk)T(t) [V -kI -l ][k

i=1 j=1 k=1

r-2 r-1-k r-l i

-E E a i K S )(te- (7.14)
k=1 1=1 j=i-3+1

where

= A xm - A'Ley (7.15)

!il = (s) j-1 XM (7.16)

= -ALeY(t) (7.17)

(terms are zero if index (i - 1) is negative) are artificial signals available for control.

The rest follows the error model derivations in Section 6.1.2 and Section 6.3.2 where

recursive adaptation is used to -address uncertainties that lies in the range of Br* and

generate a SPR error model. Stability analysis is highly similar to Lemma 6.2 and

therefore is also omitted here due to space limitations. The reader is also referred to
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Section 6.3 for the extension to nonsquare plant models.
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Chapter 8

Conclusions

This thesis develops a new adaptive output feedback controller for a class of nonsquare

MIMO plant models with parametric uncertainties and arbitrary relative degree. The

new design includes a baseline controller based on observers and parameter adaptation

based on a closed-loop reference model, and therefore uses significantly less number of

integrators compared with classical adaptive approaches. Conditions are delineated

under which global stability and asymptotic tracking is guaranteed. The overall

design is validated using simulation results on high-fidelity VFA model with high-

order actuators.

8.1 Future Work

Although simulation results in all sections show the smoothness of the transient per-

formance, the Y1, 2 or Y,, bound on the tracking error should be derived and

should show their dependence on the control parameters or adaptation gains, which

could provide the guidance of parameter design.

Although simulation study has been conducted on the robustness of the new

adaptive controller over input disturbance and measurement noise, theoretical re-

sults should be provided to guarantee the stability of the overall closed-loop system

in the presence of these adversities, which are commonly seen in real applications.

Applications to large dimension VFA models with high order actuator dynamics
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should also be provided to show the numerical viability of the parameter design. The

dependency of the magnitude of L on the locations of added transmission zeros should

be further investigated.
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Appendix A

Proof for Results in Chapter 2

Proof of Lemma 2.1

Proof: Define ()i. = ? I[. as partial differential variables. Linearizing (2.5)

around a trim point [ o, o, co, , Oo , Ao, uo]T yields

0 0 0 0 0

0 (MFF) o (MFB) eo + 0 AMFF AMFB

0 (MBF)Eo (MBB)Eo 0 AMBF AMBB

Q1(o/O E0,0,00) AQ*(EOiO,)

0

-(KFF)Eo )OF)cd

0

I

[
0

ci
i3J

-0e (JD ,EoF)

0 -CRB + /(b3OF0

2 (O,,oEo,,S0o)

0 0 0]

+ AKFF ACFF ACFBE AKBF ACBF ACBB J

Aq.2 EO",so,) /

0

+ BFuo p A-1)

p LBBuo

XP Q3
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where, following the definition of terms in (2.6), the unknown deviation terms are

A MFF - h(JTF)oad AMFB ~~J70)loFad

AMB0 F AMBB hb oF

Z\BFAO h= (J)EF0" ZBBAO hb (J70Fod

AKFF = MFFO O + MFB/ 0/o

,sKBF = MBF60 o + MBB/ 0/
3 o (A.2)

ACFF = -(CFFxO - CFFIso6 - CFBso!3  ()F d

ACBF = -(CBF)xo - CBFIo6O - CBBiOIO + (Jhb)EOF ad

ACFB =-CFB)xO - CFF13o6 - CFB/Ao/0

ACBB -(CBB)xo - CBF10o6 - CBB/30/0

BF/uo = (Jh) 0 F )od and BB/u0 = (JTb),EoF)d, which also have J(.) as their leading

factors as Assumption 2.2 holds. Without loss of generality, we scale each input so

that F loa= I. In realistic application, only [60, fi, U0 ]T can be measured accurately

and therefore variables that depend on them can be well calculated. [o, o, 1%, Ao]T

cannot be measured accurately and therefore variables that depends on them are

generally unknown. As a result, Q1, Q2 and Q3 are known but AQ* and AQ* are

unknown. Examination on (A.2) using (2.6) shows that

0

AQ*= [ Fad Floa ] =Q3 *T (A.3)

0 qj
L - CO
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and

AQ2=

01

Jh~

I Me (__ i 3) Me (he + J

Me (Jhb + Djhe+ &jhb

+ 19h

= Q3 E*

which is used to rewritten (A.1) as

(1 +Q*!) Q3 = (2 + Q3e*2) xp + Q3up.

(A.4)

(A.5)

Assume that Q, (Q1 + Q3(*T) and (I + E*TQ Q3) are invertible around the equi-

librium. Taking inverse on both sides, and noting

(A.6)(Q1 + (3* ) -= 1 - Q00 3(I + q* I Q3) qj Q1
e 1

yields

Lb = Q1- Q Q3 eg*Q) (Q2 + Q3E*T) xP

= ( 21+- 1Q 3 e -gTQ21) Q3u -

(E)* _ -1T - -g*T-1Qr= 1Q Q+-eqQi 1Q 2 1112 Qj 1 q2 )] P

(A.7)

(A.8)

-1Q~(

A e + B ( - g*TAP - g*TBPE*)

O;T

xp+ BI - 4* Bp) up

A;

with AP = Q11Q2 , Bp = Q IQ3. CP as in y, = Cx, is the selection matrix that picks

out measurable states from x,.
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Appendix B

Proof for Results in Chapter 3

Proof of Lemma 3.3

Proof: It is noted from the definition of B' in (3.17) that B, = BaI 1j and

B = AB'+1 + Bra-. (B.1)

Then substituting (3.18) and applying Eq.(B.1) converts the system (3.15) to (3.16).

The reverse is also true. Since {A, B, C} has uniform relative degree r, CA'B = 0

for j = 0, 1,- ,r - 2 and therefore CB3 = 0 for j = i - 1,i, ... , r, which leads to

y = Cx = Cx'.

Proof of Proposition 3.1

Proof: The proof follows Definition 3.4. It is noted that the second column of

R(s)=
zI - A

C

(zz Ar-'-aBa-~-i

0
(B.2)
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can be replaced by multiplying the first column with I -Ar--Ba--j and using

the fact that CArl'-j--B = 0, i.e.

rank zI - A

C

(zi Ar-i-Bar--3

0

rank

1=
zI - A

C

Ar-i-i-iBa~- jz)

0

Keep repeating this process yields

C

zI - A
rank

C

0 ,) I
(z- Ar'-i--1Ba,- -z)

0

zI - A (-z Ba-jzr-i-j

then the results follows.

Proof of Corollary 3.3

Proof: We will prove the SPR properties using Lemma 3.6. Since {A, B, C} is

SPR, by Lemma 3.4 there exists a P = pT > 0 and a Q = QT > 0 such that

PA + ATP = -Q < 0

PB = CT

(B.5)

(B.6)

Taking K = vr2aCB satisfies

KT K = aCB + a(CB)T = 2aCB (B.7)
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zI - A

rank

(B.3)

+ BaV- z

rank
C 0 I(B.4)

0

-i -i--Bar-l z



since CB = (CB)T > 0. Then taking WT = aPAB(CB)-2 satisfies

PBaO = aPAB + PB = aPAB(2aCB)-2(2aCB)I + PB WTK + T (B.8)

Then taking

a< \l2 I|Q|| (B.9)
min(CB)|1P AB||2

yields that Va < a*,

PA + ATP = -Q < - PAB(2aCB)-1 BT AT P = WTW (B.10)
2

Then the results follows.
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Appendix C

Proof for Results in Chapter 4

Proof of Lemma 4.1

Proof: The goal is to show e.(t) -+ 0 as t -+ oo. Since we have designed an

SPR pair of L and Si such that {(A - LC), B, S1C} is SPR, there exists a P = PT > 0

such that Eq. (4.13) and Eq. (4.14) hold for a Q > 0. We propose a Lyapunov function

candidate using the P as

V = ejPe, + Tr(XTA XA*I) + Tr(eTFyle IA*I) > 0 (C.1)

where Tr stands for the trace of a matrix. Using Eq.(4.10), V has a derivative as

V = eT((A - LpC)TP + P(A - LC))ez + 2eT'PBA*e*T [((x,) -- <D(x )]

+ 2eiPBA* uNl - 2efPBA*6 T b(xm,) + 2Tr(AT A JA) + 2Tr(ET IF E JA)

(C.2)

= eT((A - LpC)TP + P(A - LpC))ex + 2eTPBA*E* T [ (Xp) - <(Xmp)]

+ 2ei [PB - CT]SIA* AUNl - 2e' [PB - CTSIA*eT (xmp). (C.3)

To achieve (C.3), we used the property of trace and adaptation law (4.11). By far,

the derivation is general for e* / 0. For the special case E* = 0, we choose e(t) = 0,

then e(t) = 0. Also, L = Lp. As a result, the error model (4.10) has a form of (4.12).
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Then the derivative of Lyapunov function (C.3) becomes

V = eT((A - LC)TP + P(A - LC))ex + 2eT[PB - CTS]A*Tubl . (C.4)

Using Eq.(4.13) and Eq.(4.14) turns (C.4) into

V = -e Qex < 0. (C.5)

As a result, ex, A and e are bounded. Moreover, V exists and is bounded and

Barbalat's Lemma implies ex(t) -+ 0 as t --+ o, which proves ii). Consequently,

the Lp(y - yi) term in (4.8) approaches to zero as t -+ oc and the observer/CRM

(4.8) approaches to a open loop reference model (as it becomes standalone without

feedback of y). It follows that when t -+ oo reference states xm are bounded (by the

design of K). This in turn implies x is bounded. It then can be concluded that all

signals in the system are bounded, which proves i).

Proof of Lemma 4.2

Proof: We will prove by construction. Definition 3.4 states that the transmis-

sion zeros depend on R(s), the Rosenbrock matrix. R(s) of the given plant model

{ A, B, C} can be written in the observer canonical form R(s) as

sIp - All -A12 B11

(S)- (s) -A21 slnfp - A 22 B 21  (C.6)

IP 0 0

where T-- = [C-R CL is an invertible coordinate transformation matrix sat-

isfying CCR = Ip and CC' = Opx(n-p). Since transmission zeros are invariant

under coordinate transformation, Z[R(s)] coincide Z[R(s)]. The goal then is to de-

sign B 12 EE RP'(p-r), f$22 E R(n-p)x(p-m) and $ 2 E RPx(prm) such that the squared-up
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plant model R(s) as

sI) - All

R(s) =-A21

I,

-A 12

81n-P - A 22

0

satisfies two conditions: i) R(s) only loses rank at a set of finite s that lie in the

open left haft of the complex plane, and ii) Eq.s(3.6) and (3.7) holds for some f =

ri, r2 , , rm, ... , r . The use of D2 depends on the choice of -, which

will be discussed separately in the following discussion. Define Z[-] as the set of

transmission zeros.

Case I: this case introduces new inputs with relative degree zero, which requires

D2 -f 0. This case does not solve the problem in Lemma 4.2, and therefore only

introduced here as a reference for the use in higher relative degree cases. Since B has

rank m, with some permutations we can put all independent rows of B in B11 and

perform row elimination on (C.7) as

sI - All

x

Im

0

-A 12

sIn-m - A 2 2

0

C22

B11 b 1 2

0 B 22

0

0

(C.8)
0

f)22

D21 1 r 1 where022 = F 1
where b 2 = ,D 2 1 =0,and[ I 0 =C 0 0;J22 0022] pr

A 2 2 = A 22 - B 21B- 1 A 12 and B 2 2 = $ 2 2 - B21B-1 . It is noted that this mode only

requires rank[C] = m < p. It follows that Z[R(s)] = Z[R 1 (s)] = Z[R(s)] where

- ( s In-p - A 22  B 22

L C22 D22
(C.9)

is a submatrix of R,(s). With an invertible D 22 , the transmission zeros of R1(s)

is the eigenvalues of A 22 - B 22 D2 1C22. It can be shown that (A 22 , C22) must be a
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detectable pair and its unobservable mode is the pre-existing transmission zeros of

R(s) (following Ref. [411). The complete procedure of squaring-up for Case I is as

follows:

pick any $ 12 E RPx(P-m) (C.10)

pick D 2 2 s.t. rank B11  =p (C.11)
b22

A 2 2 = A 2 2 - B 21B- 1 A 12  (C.12)

WT = lqr(A2, C2) (C.13)

b22 = WD 2 2  (C.14)

f322 = b22+ B 2 1Bj 1  (C.15)

It is noted that (C.12)-(C.15) are used to satisfy Condition i), while (C.11) guarantees

Condition ii) with r = [1, 1, 1, ... , 0, 0, 0], where r includes m + r relative degree one.

Case II: this case introduces new inputs with relative degree one, which requires

b2= 0 and then is used prove Lemma 4.2. The dual form of this case has been solved

in the Ref. [27,41] and is adopted here by performing a transpose. With b2 = 0 and

some row elimination, Z[R(s)] = Z[-R(s)] where

SIP- Al -A 12  Bn 312

R,1(s) = x sI_, - A22 0 0 (C.16)

IP 0 0 0

and A 22 = A 22 - B2 Bj- 1A 12 , B2 = [BB1  B22 , and B1=[ B 1  b 12 . B1 is

invertible since B12 = (null(Bii))T where null(-) stands for the null space of (-).

Then it is clear that Z[R1(s)] are the eigenvalues of A 2 2 . As a result, the complete
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procedure for Mode 1 is as follows:

B 12 = (null(B1 ))T s.t. B1 = B 1  b 1 2 I is invertible (C.17)

A*,2 = A 2 2 - ['B21 0] Bi1A12  (C.18)

[ j= B-1A 1 2, E* E R(P-m)x (n-p)(C.19)
E* 1(C19

$2 = lqr(A* , E*T ) (C.20)

It is noted that (A*2 , E*) must be a detectable pair and its unobservable mode is the

pre-existing transmission zeros of R(s) (see [411 for a proof). (C.17) guarantees that

Condition i) is satisfied with r = 1, and (C.18)-(C.20) guarantees that Condition ii)

is satisfied. Let fs31 B 1 2  and transform $si to the original coordinate, which
B22

yield B,1 . U

Proof of Lemma 4.3

Proof: The proof follows the idea in Ref. [40j, but uses a different approach.

First, we will show that {(A - LC), B, S1C} is SPR, where A = A + pu*I. We note

that {A, B, C} has stable transmission zeros. A weight R- 1 is chosen in (4.21) and a

weight Q (different from Ref. [401) is chosen as

Q = -NT H(CBY)-i - CT(CB)-1H T N + EZ + NT QIN (C.21)

where H is defined in (4.23) and e is chosen in (4.22). N is the null space of B and M

is the null space of Z satisfying and NM = I. We will show that the finite constant

e chosen in inequality (4.22) guarantees R- 1 > 0 and Q > 0. R- 1 > 0 because

E > e, where ei is defined in (4.22). To show Q > 0, it is equivalent to show that

TA'QTB > 0, where

TP = [M,5] (C.22)
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is an invertible matrix. Examination on TTQT3 yields

T- MTQM MTQB ][ I -H >0. (C.23)BQTB3 BQM B T QB -H T  c(CB)CB

The inequality is guaranteed to hold using Schur complement and the fact that E > E2,

where E2 is defined in (4.22), and therefore Q > 0 is guaranteed.

Propose a P as

P = T(CE )-1T + NT PIN (C.24)

where P, > 0 is the unique solution to Eq.(4.24) and therefore P > 0. We will show

because of the L design in (4.20) and Si design in (4.16), the P as in (C.24) satisfies

(A - LC)TP + P(A - LC) = -Q - CR- 1C < 0 (C.25)

and Eq.(4.14) simultaneously. First, let's show Eq.(C.25) holds. Using L as in (4.28)

and the fact PB = C , Eq.(C.25) can be rewritten as

{0} := (A - BR 1 C) TP + P(A - BR'C) + CT R-1C + Q. (C.26)

To show {0} = 0, it is equivalent to show T'{O}Tf= 0. Examination on the block

elements of TB'{O}Ti reveals

[MT{0}M MT {0}B
TT{o}T = _ 0. (C.27)

FBT {L}M BT{ }B

Eq.(C.27) holds since CM = 0, NB = 0, PW = OT, PM = NTP , R 1 is chosen

in (4.21) and Eq.(4.24) holds. This proves Eq.(C.25). The choice of P as in (C.24)

implies PB = CT. Then proper partition as in Eq.(4.16) and (4.15) allows element-

wise equality (4.14). This implies that {(A - LC), B, SiC} is SPR.

Now, we note that for any /t satisfying 0 < p 5 p*, (p* - p)P > 0. Following
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(C.25), it is clear that

( A + I - LC)T p + P( A + pI - LC) = -i - -OR-1 - 2( p* - l)P < 0. (C.28)

Eq.(C.28) and Eq.(4.14) implies that {(A + pI - LC), B, S1C} is SPR. Because E is

finite, L is finite. This completes the proof of Lemma 4.3.

An additional result, Amin(P) > 1, will be used later and therefore is proved here.

With the proposed solution P in (C.24), it can be shown that

-iTPI - MT M
Tj{P - I}TB PMTMBfP-l~f -BTM

Applying Schur complement shows that since P,

and therefore P > I.

-MTW

Jf.
(C.29)

satisfies (4.25), Tf{P - I}1T > 0

0

Proof of Lemma 4.4

Proof: Given that we have designed an SPR pair of LP and S1 for the system

{(A + nI + 1BT* - L C), B, SC} with some n > 0, there exist a P > 0 such that

1 1
(A+I + -BT* - LPC)T P+ P( A+I + -BT* - LPC) =

17 1
-Qp< 0(C.30)

and Eq. (4.14) hold simultaneously for a Q, > 0. Without loss of generality, we assume

Amin(P) > 1, which can always be satisfied by scaling Q, and S1 (as we did at the

end of proof of Lemma 4.3).

A Lyapunov function V as in (C.1) is proposed using the P in Eq.(C.30)(4.14),

and therefore V is as in Eq.(C.3). Since e* f 0, e. is as in Eq.(4.10) and the second

term of the right hand side of Eq.(C.3) is no longer zero. By Assumption 4.6, the
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non-zero term can be bounded as

ei PBA*0*T[4(x,) - 4b(xm,)] e jPBA*e*T lX QeK

1e PBA*)*T| Tpe

e~ PB A* *T E*A*BT Pex + eT 77Pex(C.31)
471x

Substituting the definition of kF* (4.26) and Eq.(4.14) into Eq.(C.31) yields

T **[DXTex PBA*e*T[4(x ) - I(Xmp)] < ex -PBT* ex + ex riPex. (C.32)

Using inequality (C.32), the derivative of Lyapunov function (C.3) can be bounded

as

V eT((A - L C)TP + P(A - LpC))ex + T2 eiPBI*ex + eTri Pex

+2e T[PB - CTS]A*JTu bl - 2eTj[PB -C ]A* (xm,)

=eT (A+ 77I + IBqP* - L C)x ~77
Tp + P(A + 771 + 1 BxF* - LPC))ex

71

+ 2e T [PB - CTST ]A* AT ubl - 2eT [PB - CTST ]A* 6T5I(xmp)

Substituting Eq.(C.30) and Eq.(4.14) turns Eq.(C.4) into

< KejQpex < 0.

(C.33)

(C.34)

(C.35)

Thus, Eq.(C.1) is indeed the Lyapunov function of the system. Following the last

part of the proof of Lemma 4.1, it can be concluded that ex(t) -+0 as t -+ oo, which

proves ii) and x, ex, A and e are bounded, which proves i). U

Proof of Lemma 4.5

Proof: We will show that with the L, design (4.28), the P that guarantees the

SPR properties of {(A + MI - LC), B, SIC} also guarantees the SPR properties of
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{(A+ I+ -LBP-LpC), B, S1 C} for VT that | IF I*ax and Vp that 0 < p < p*.

Since {(A + I - LC), B, S1C} is SPR by design (see Lemma 4.3), Eq.(C.28) and

Eq.(4.14) holds for a P > 0 and Q in (4.30). Therefore, the following equation also

holds:

11
(A+pI+ B9I - LC)p+PP(A+ pI-BI - LC)

S-Q P+ B + IT =- + CS19T+ S+CT (C.36)
p*p* p* P * 1

where Q = Q + CR-- > 0. Because of the extra CS1IT term, the right hand side

of (C.36) may not be negative definite. Adding an extra term 2pCTSTSC on both

sides of Eq.(C.36) yields

(A + yI + B'B - LpC)TP + P(A + uI + LBT - LpC)
1A

-Q + 1 CSJT + I TSTCT - 2pCTSTSC A QP (C.37)
Y* f 1

with LP defined in Eq.(4.28). We will show that the p chosen in (4.29) will always

produce a negative definite Qp. Consider the following block matrix

-pST S -_-SiTj
M(p) = A* . (C.38)

L IL 1 -Q -

S< 0 since Lemma 4.3 holds for the L and Si. Using Schur complement, it can be

proved that when p is picked using inequality (4.29), M(p) < 0 for any T bounded

by 1j'I1I 5 *max. Perform a transformation on M(p) using a tall matrix Tc

TC = C (C.39)
Inx1
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shows that

-2pSTS -1SIpT C
Q = TM(p)Tc [CT I J' < 0. (C.40)

The last inequality holds because M(p) < 0 and TC does not have a right null space.

Combining Eq.(C.37)(C.40) and (4.14) proves that {(A+ pI+ BI-L C), B, SiC}

is SPR. Finally, it is noted that Eq. (4.16) ensures the boundedness of S and S1. T*ax

in (4.27) is finite. p* is non-zero. As a result, a finite p* always exists, so does a finite

Lp. U

Proof of Theorem 4.1

Proof: Choosing p = p* and T = I* in Lemma 4.5 proves that the Lp (4.28)

and S1 (4.16) guarantees the SPR properties of {(A +p*I+ -LBx* - L C), B, S1C}.

Therefore, the results of Lemma 4.4 holds: i) all signals in the system, including

AT(t) = AT(t) - A*- 1 and ET(t) = eT(t) - E*T, are bounded and; ii) state error

ex(t) -+ 0 as t - oo, which implies e,(t) -+ 0 as t -+ oc.

To prove iii), similar to eP2(t) = z(t) - Zcmd, denote emz(t) = Zm(t) - Zcmd + LCex

where L, is the corresponding rows of Lp. f epz(t)dt is a state of x and f emz(t)dt is

a state of xm (see Section 4.2.1). As a result, the fact ex(t) -+ 0 as t -+ oo implies

that

[ ePz(t)dt - f emz(t)dt] -+ 0, as t + oo. (C.41)

Substituting the definitions of epz(t) and emz(t) transforms (C.41) into

[z(t) - Zcmd]dt - Zm(t) - Zcmd + LeCex]dt - 0, as t -- oo. (C.42)

Since Zmd is piecewise continuous and both z(t) and zm(t) are integrable, Eq.(C.42)

can be simplified as

fez(t)dt -+ LeC / exdt < oo, as t -+ oo. (C.43)
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where e,(t) = z - z,. On the other hand, using the definition of z in (4.5) and

definition of zm in (4.8), ez(t) has the following expression

ez = Czer + DzA*O*T[D(xp) - (I>(xmp)] + DzA*[ATubl - T4(Xmp)] (C.44)

whose derivative is

ez = Cze, + DzA*E* T [4$,, - 4 xm.P.Ip]

*:T -*T
+F DzA*[A ub + Ai -l- e - e xm ] (C.45)

where () stands for --. Because all signals in the system are bounded and 4

is globally differentiable, ez is bounded. Applying Barbalat's Lemma shows that

ez(t) -+ 0 as t -- oc, which proves iii). 0

Proof of Lemma 4.6

Proof: In this proof, the matrix notation A -+ B is defined as (I[A] -r[B) -÷ 0

where q[-] denotes the minimum singular value of matrix [-]. Define Op(s) = (sI -

A,)-1, #(s) = (sI-A)-1 , 4(s) = (s1-A+BK)-1 and L(S) = (sI-A+BK+LpC)-1 .

Denote = R-1 + pI. As e -+ oo or p - oo, W -+ oo and

L = BR S -+ oo. (C.46)

For loop gain at input, we can treat the error integrator (introduced in Section 4.2.1)

as a part of the plant. The loop gain at input for a LQR controller is

L* (s) = KOB (C.47)

The loop gain at input for a observer-based controller with a L, and the same K is

Lu(s) = K[sI - A + BK + LpC]- 1 LpC#B (C.48)
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To prove i), define K E RPx as

K = (C.49)
K 0(p-m)xn 

)

such that BK = BK. The asymptotic relation (C.46) implies

L,(s) K K[sI - A + BK + LPC]-1 LPC$B (C.50)

K[sI - A+ BK + LPC]- 1LPCo5I (C.51)

-+ F#(C.52)

pointwisely for s E 5. Given (C.51), the proof of (C.52) can be found in Ref. [9],

which can be applied here because CO(s)B is square and has stable transmission zeros

and therefore C#(s)B is invertible for all s c 9 (see Definition 3.3 and 3.4). The

partition (C.49) and (4.15) shows that element-wise convergence of (C.52) holds, i.e.

the submatrix L,

Lu(s) A K[sI - A + BK + LPC]- 1 LPCOB -+ KOB (C.53)

pointwisely for s e 9 as E -+ oc or p -÷ oo, which proves i).

For loop gain at output, we have to remove the error integrators from the aug-

mented plant model (4.5) and treat them as a part of our controller. Consider s E 9.

Divide K = [Kp, Kj] where KE Re'X"" and Ki E Rmxd. For a LQR controller, the

loop gain at output is

L*f(s) = O #(s)Bp + K, Ki (C.54)

Divide LP= [Lp, Lj] where Lp E Rn*PP and Li Rnxr . Define

Ak= [- { Bk = , Ck K 0]. (C.55)
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For the LQG controller, the transfer function of the controller is Ck(sI - Ak)- 1 Bk

and the loop gain at output is

L, (s)= ( ] Op(s)Bp + [ Ck(sI -Ak)-lB (C.56)

- O(s)Bp + K L 1 L] (C.57)
CPZ Dpz

From (C.56) to (C.57), we used the identity

(sI-1 [- = OLL .]
0 1

To prove ii), we need to use an asymptotic relation

LLP [01 + LPC]Lp (C.58)

= [I + LpC]- Lp (C.59)

= 0[1 + BK$ + LPC#]- 1LP (C.60)

= #{I+7[K+ R-1SCh#}-1E RlS (C.61)

= $B #{I + [K + R 1SC]EB} -1R 1S (C.62)

-+ #5[C#E]-1 (C.63)

pointwisely for s C 9 as c -+ oc or p -+ cc. From (C.59) to (C.63), we used the

equality q = 0[1 + BKO]-1 , the design LP, the equality BK = BK, the matrix

equality X[I + XY]- 1 = [I + YX]- 1 X, and the asymptotic relation (C.46). It has

been proved that C#(s)B is invertible for all s E -. Now we proceed to prove ii).

Since #EB[C#El]- 1 is a right inverse matrix of C, we can write

_. - 1  CP(s 7 ) !M](s, ()
Ct (s, B) := B[C#B]-1 = 8 (C.64)

L 0 I,. j
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where C(s, P) satisfies CpCt(s,B) = Ip,. and Mp(s,B) E RPPxd satisfies CMP(s,3)=

Opxd. Since 0 < Isj < +oo, when Lp -+ 00,

KOL(s) [ L, Li] Kp, Kj Ct(s,B) (C.65)

pointwisely for s c 9. Combining (C.57) and (C.65) yields

C]

CPZ
[Kp K] Ct (s, )

= C[L*(s)]Ct(s,P)

(C.66)

(C.67)

pointwisely for s EE as c -+ oo or p -+ oc, which proves ii). 0

Summary of Balanced Realization [46]

A balanced realization approach was used to reduce the order of the model. Briefly,

this method can be described as

ApT
-p

Dp

[All

A21

LC1

A 12  B1

A 22 i 2

C2 D

Eq. (C.69) Cr [Ar

Cr

Br

Dr

A =Al -A 12AA 21

Br = B 1 - A 12 A-3 2

Cr, = C1 - 0 2A A 21

(C.68)

(C.69)

Dr = b - O2A $ 2

where a coordinate transformation T is used to transform Gp into its balanced re-

alization 0p, with A,= T-ApT, $, = T- 1 Bp, C, = CpT, 1, = Dp, in which

the states are ranked using a metric named Hankel Singular Value (HSV) defined as
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c-i A (Ai(PQ)) 1 / 2 , where P is the controllability gramian and Q is the observability

gramian of GP. Appropriate cut off values ocrtf f will part all matrices in d according

to the rank of HSV, where A, E Rnrxnr, 3i E Rnrxm and O1 E RPxnr. The rest of

n - n, states were residualized using Eq. (C.69) and the reduced-order model G, was

therefore derived. For the Vulture model, setting Oatoff = 415 selected the reduced

model order to be n, = 80.
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Appendix D

Proof for Results in Chapter 5

Another Class of Relative Degree Two Plant Model

Another class of relative degree three plant models are those with no actuator dy-

namics and first-order sensors. The first order sensors are modeled as

74 + (Ds +,g*T)wy = Dsy, (D.1)

with D, > 0 is diagonal and known, and E*T E RPXP are its uncertainties. Also, for

command tracking we define integral error states epz = Z - Zcmd and w: f epzdt.

Define w, := A*up. The augmented plan model is square and can be written as
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x AP 0 0 XP Bp 0

m,=C,-, , + 0 E)*T, x+ I o --T

zbz Cpz 1 0 JLwz J LDz jL0J

A -x B1 B2

Bp 0

+ o A*u+ 0 Zmd

LDz j L-1

-B1 Bz

0 I 0
y 0 1jx, z=[CP 0 0 x+DzA*U.

Cz
C

(D.2)

Proof of Lemma 5.1

Proof: Since the plant has uniformly relative degree two, i.e. r 2, the

observer canonical form (C.6) of R(s) (see Definition 3.4 and proof of Lemma 4.2 in

Appendix C), has the form of

sIP - Al1

R(s) = -A 21

L I

-A 12

sln-p - A 2 2

0

0 B1 2

B2 1 B 2 2

0 0

(D.3)

with B12 = 0 and A 12 B2 2 of full rank. It is noted that Z[R(s)] = Z[,(s)] where

_ [sIn_ - A 2 2 B2 1 b22
R, (s) =

-A12 0 B12

(D.4)

is a submatrix of N(s). Since A 12B21 is full rank, the problem is reduced to the Case

I, as presented in proof of Lemma 4.2 in Appendix C: squaring up a plant model

{A2 2 , B2 1, A 12} so that it has relative degree one. Using Case I of the proof of Lemma
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4.2 generates a B 12 and a B 2 2 such that Z[R,(s)] are stable and I A 1 2 B 2 1 B 12 I is

full rank. In this case, we have added (p - m) inputs of relative degree one and the

squared-up plant model has [n - r, - (m - p)] stable transmission zeros.

Proof of Lemma 5.2

Proof: The proof will be performed in a transformed coordinate. Similar to

B 2 , we part CT = CT CT . For a square plant model that has nonuniform input

relative degree two, there exists an invertible transformation Tin = ,
T;,= [1 93 ], where CT = [CT ATOT C ,]C , = [B2 AB2 Bs 1 ] (see

Lemma 3.1), that transforms (5.4) into the input normal form coordinate (see Lemma

3.2). In this proof, matrices in input normal form coordinate will be denoted with

the subscript (), as in Xin = TinX, Ain = TinAT, B2,in = TnB 2 (and therefore

B2,in = TinB2 and B 1 ,in = TinB81), B1,in = TinB1, Bz,in = TinBz, Cin = CTij 1,

1 1*T = l*TT1 and jp = qI*TT1. The input normal form of the plant model1, 1 in 2,in 2 ininuplt
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o0 R2,1

I R2,'2

V2

0

0R, 1 1R1, 1j V

0 U2 U1 z

+

Im

0

0

0

A*u

xin B2,in

+ ~ [ *T 4 2*T ol*T O/(n-rq)*T] 1.+ B2,in [ *)2 2* 21 * $ '* Xin

2,in

Im

+ V) o * **T )(n-rs)*T xin + Bz
0

B1,in

C .

It is noted that B1,in =

x x ] since Assumption 5.5 holds.

x and 1*Ti-; =

Define A* = Ain + B1,inF*Tn + B2,jn *,i = T- A*Ti-;l. Examination of the el-
-1 --d 1* -1* -1 -- 1

ements of , and B which are defined as = TinB2 , and B2,in= TinB 2 ,

respectively, shows that

-1 [
B 2,in = [ ,in B, 1 ,in ]=

a01.1m 0

alIm 0

0 ImS

0 0

(D.6)
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where r.

10 x

= Z ri. ]TX 0 0 1



-1*i 1
B In - inj B81,in I

alIm + al 2*T

alIm

0 Im,

0

where B i=TinB2, B51,in =TB, and B * Bl*. It is noted that C,,= n in B1 8l Tn2i ndBn =Tn 2 82,in

CinRin = a1CAB2 CB.1 J has full rank by Assumption 5.3 and Lemma 5.1.

Examination on elements of 'n and 1 shows that

-1 *
B2,in (D.8)B2 ,in +B2,inai4 .

where
-1*T p*T 1E R'xP

V) 2 i2 Om x(p-m) I ~~ (D.9)

where ?/)*T is a subset of the elements in T*',in as shown in (D.5). It is noted that

(D.7) also holds for (Ai - LinCn) for VLin E Rnxm. Transformation back to the

original coordinate proves the Lemma. U

Proof of Lemma 5.3

Proof: To prove Lemma 6.6, It is equivalent to show {(A* -L* Ci) 7 1*
s ,in rin SCin

is SPR, where A* = TnA*T 1-n and *-B Dein Ci - SCinBn2 i -=TinB.Deiei- in

Mi = I 0 0
ioo]M 0= 001] (D.10)

which is the null space of Cin, and

Nj* = (MZMin)-M [I - B*,i (inB*(')-i, (D.11)
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0

0
(D.7)

0



which is the null space of RB*2, (see Lemma 3.1). Then propose a Pj*n as

P*T=- -1C*B C+Nil*Tp*Nil*,
Pi~n = Ci(C'inB2,i) 10i + n

s.t. P*B2 , = C

where P* is the unique solution of a Lyapunov equation

P*Nil*A Mn + (NlrA* M)Tp*= -I

-1*
which always exists since A i 2,in, Cin} has stable transmission zer

tion 3.1 and Lemma 3.1). Define

{0}: AinPi*n + P* A* - P* Bl* R- 2p* + Qir,

os (see Proposi-

(D.14)

where

Q*= -Nl*THi T(C -- - HN*T

+ Ecinc + Nl*TNl*

- i (CAB]) ACAB AB (inB *)-Cin

ACAB = CiAn Bin - CA B = (Cin BinC B,in ,*a

Hjn = MT A *T- + P,* * Ali B*'i in 'in +D*I- iTin*A*n

(D.15)

(D.16)

(D.17)

b 1*T  1
and B1, = TinB1, and p*' -= 2 . It has been proved [22, 251 that

2in = 2 [ga ,l* T  bl* T J
once E in L* is large enough, {0} = 0 holds for PF* > 0, Q* > 0 and R-1 > 0 and

therefore Pi*, guarantees the SPR properties of {(A*n - L*iC), Bj1*,, Si Ci}. We

will show that one lower bound for such e is e in (6.56).

Using the definition of R in (6.54), the equality (D.16) and the transformation
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matrix TB = [Min, Bj*,], it can be shown that

TB{O}TB =
MiT{O}Min

B*T{} Mi

which implies that {0} = 0 and that P*, satisfies

( - L;nDin)T F P*+ Pi*X(A'n - Li'nCin) = -Q*'n -- Gin;C

P*Bl* = n)
in in Qin Ci n i

where L* = B2*R-l(E)S. Now we will show that R- 1 > 0 and Q* > 0. Since e > el

R > 0. To show Q* > 0, equivalently we will show TTQ* TB > 0. It is noted

that

TBQO TB
- I

E(inB n ) 2 _ [A*CAB L*CAB
I.(D.19)

Since 0nB),*, n= C B),n = CBn* and CA*B2* C in B * it follows E > E2 that

EI ;> (sB )- (sB )TC B qj*T, + *T7( B )T CB),, (-B1, -)
2 (Cn ,i Cn ,n a + n a (Cin Bin )Cin 2',in I(iB2 ,in)ci (Cin ',in)1 2(in 2nT n~ in~ i j n 1 1 ] 1 -1

+(Gin B,in) -H2nax(n B in) (D.20)

> (CinB* - 1 [AC AB CA (inB)* + (CinB*- 1 H [H)n(CinBiP)21)

From (D.20) to (D.21), we used the fact that

(D.22)||H|nI| < i; Ni* AinB'*n + IC0inAnMinl

Nl* A ,B* = Ni1
11 Am Bi

+ [-(aO + aiR 2 )bl* T

0

- *T

0 I
CinA*nMin = CinAinMin

+ [ 0 CAB2 0pn-rs)*T + CB1 oVnra)*T

(D.23)

(D.24)
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and the sensitivity of Lyapunov equation solutions [53, Example 1] as

||Pf1* (1 + 2'imax IPI|) |P1I|| (D.25)

where P, is a nominal solution to (D.13) without uncertainties. By Schur's comple-

ment, the fact that inequality (D.21) holds implies that TBTQ* TB > 0 and therefore

Q* > 0.

Proof of Theorem 5.1

Proof: We propose a Lyapunov function candidate

V =e X +P*em +Tr [QTIQ IA*I] +Tr I

0

(D.26)

where P* = p*T > 0 is the matrix that guarantees the SPR properties of {A*, B*, SC},

satisfying

P*A*. +A*.P* = -Q* < 0

P*7E * = CTST,

(D.27)

(D.28)

for a Q*= Q*T > 0. Partition on both sides of (D.28) yields

P* [Bi*B1 ] = CT [ S32 (D.29)

By appealing to (5.23)(5.24)(5.25)(D.27)(D.29), the derivative of V has the following

bound

V = emx [A*LP* + P*A*] emx

- 2e x[P*B* - C ] Sf|A*QT - 2emx[P*Bl* - CTST] 1Ty

= -eTXQ*emx < 0. (D.30)
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Then emx(t), Q(t) and 2(t) are bounded as t -+ o, which proves i). Applying

Barbalat's Lemma (using the fact that emx(t) is bounded) shows that emx(t) -+ 0 as

t -* 00, which proves ii). From (5.24) and (5.11), the fact emx(t) -+ 0 implies that

ey(t) -* 0, e8,(t) -+ 0 and Es,(t) -- 0 as t - oc, which in turn implies that xm, as

well as 7m and Ubl, is bounded. Further, denote

epz(t) = z - Zcmd, emz(t) = Zm - Zcmd. (D.31)

From (5.3), it is noted that f epz(t)dt is an element of x. From (5.9), it is noted that

f (emz(t) - Liey)dt is an element of xm where L, are the rows of L corresponding to

emz dynamics. As a result, emn(t) -+ 0 as t -+ oo, which, together with the definition

of emx as

emx ex + B2A*ailJ 1m + B2a (t)Es, - B2A*atQTi, (D.32)

implies ex(t) -÷ f(B 2[.])dt and therefore

J (epz - emz + Lley)dt -f (B 2,I[-])dt = 0 (D.33)

as t - oo (since B2,1, the rows of B2 corresponding to wz dynamics, is zero).

Eq.(D.33), together with the fact that

ez(t) = z - Zm = epz - emz (D.34)

implies

J ez(t)dt -+ - f(Ley )dt (D.35)

which has a bounded limit as t -+ oo (since ey(t) -+ 0). Further, from (5.3) and (5.9),

ez(t) is bounded as t -+ oo. Applying Barbalat's Lemma shows that e,(t) -+ 0 as

t -+ 00, which proves iii). U
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Proof of Corollary 5.1

Proof: It is noted that by Lemma 5.3, {A B*, SC} is SPR, and therefore

by Corollary 3.3 {A* BO*, SC, SCB'*} is also SPR. By Corollary 3.3, there exists a

P* = P*T > 0 that satisfies the results of Lemma 5.3 as

P* B* = CT T (D.36)

results of Lemma 3.6 as

P*A** + A *P* = -WTW - L

PBO* = CTST + WT K

KT K = alS2CB'* + ai(S2CB *)T

(D.37)

(D.38)

(D.39)

for a W, a K and a L = LT > 0. Propose a Lyapunov function candidate

V = e2 bP*emx+ Tr [672TF Q|A*|] + Tr [ iT -1 IA*|] (D.40)

whose derivative is

V = e7, [P*A* + A*P*] emx - 2emx[P*Bl* - CTST] 1T

+ 2e Tx[P* BO* - CT SflA*QT

- [jT ]T A*T [2a' (S2 CB2*)T S2CB'*] A*QT

- - [-WTW - L] emx + 2eJX[WTK]A*QT

A*T [KT K] A* QT ; 0. (D.41)

The above proof shows that emx(t) -+ 0 as t -+ oc, which implies that ey(t) E L. as

t -+ oo.
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Appendix E

Proof for Results in Chapter 6

Another Class of Relative Degree Three Plant Model

Another class of relative degree three plant models are those with first-order actuators

and first-order sensors. The first order actuators are modeled as

tp + (Da + *T) up = Dau. (E.1)

where Da > 0 is diagonal and known, and E)*T E Rmx' are its uncertainties. The

first order sensors are modeled as

7by + Dwy = Djyp (E.2)

with D, > 0 is diagonal and known. Also, for command tracking we define integral

error states e = z - Zmd and w, := f epzdt. Define wu := A*up. The augmented

plan model is square and can be written as
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Ap Bp 0 0

0 -Da 0 0

0 -Ds 0

x,

wu

WY
+

L Cpz Dz 0 0 ] L wz I
A x

0

Da
+ A*u

0

L0J

B3

0K 0 I 0

y=0 0 0 I1,

C

Proof of Proposition 6.1

Proof: Since

A*b 3 = -

A *2b =3 -

can + s[*a

b, can be spanned by [b3, A*b,A A*2 b3] as

0

0

0

I

2(Wn + 0*()

2(n + 0(*)

) + (2(Wn + 0(w)2

1 (2(wn + 0* (A) + *)b1 =A*2b3 - + A*b 3  2 '+ b 3 (n 2
n Wn Wn

m
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l,

Wu

Wz

Cp
E*Tfx +

0

I

0

0

[ T I ] wu

B

0

0

[ Dz J

B
2

0o

L -'11
B,

z= Cpz Dz 0 ] x.

Cz

(E.3)

2win

S2wn
(E.4)

(E.5)

Zcmrn



Proof of Lemma 6.2

Proof: From (6.3), it can be shown that

0

A b3 = I

L- (2(Wn) -

Wn, A 2 b3 =

bp

-(2(Un) ng

) + (2(n )2

Their differences from b'* (E.4) can be written as

A*2b3 - A 2 b =

0

-6w ] wi
0* + 4(w,6;* + o*2

A

(E.7)= A*b 3 (-0* ) + b3 (0, + 2(wL0n,)

0

*b3 - A b3 = 0 W 2 = b3 (-0*
--

Then it is found that

= A*b 3 (- W*,) + b3 (O* + 2(wn9*) + b3 -2 (-0*

= b * (-0* ) + b3 (, + 2(w,0*,)

= b3 (-0)

The results follows.

Proof of Lemma 6.3

Proof: Using Lemma 6.2, Eq.s (6.6) and (6.12), it can be shown that

CT(sIA*1f2( 1) - W*(s) ((s +

(E.8)

(E.9)

0

+ (s + 1)2 [V I

(E.10)
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b 2* -b 2
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Plugging in the definition of T[1][2] in (6.25) yields

cT (sI - A7*.)-f32 (01,7,) = W*(s)(s + 1)2 O - .=41][2] + Oi-[ ll2]

Then apply (3.2) and the results follow.

Proof of Lemma 6.4

Proof: With (6.34), u2 as in (6.32) can be rewritten as

U = -/)(t) [A 2Xm Aley] - (2#T(t) + 2PT(t)) [Axm]

( T(t)+ 2PT(t) + /T(t) [xm] - (s2 + 2s) [(t)] eyo

Since we design 01 (t) as in (6.33), the following relation holds

1 (t)b = 0,

which leads to

bT(t) m = 5T (t) [Axm - len]

'( t>m = 4T(t) [A2 - Aley - 16y]

This, together with e o in (6.35), in turn transforms (E.12) into

u = -(s + 1)2 [4T(t)xM] - /[(t)leo - [2V4(t) + 241(t)] 6.

- ((s2 + 2s) [Op(t)]) eo

Applying the chain rule of derivative yields

u = -(s + 1)2 [pf(t)xm] - (s +2)- s
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0

(E.12)

(E.13)

(E.14)

(E.15)

(E.16)

(E.17)



Applying (6.37) yields

u = -(s + 1)2 [}T (t)xm + T1

which, together with (6.37), yields

cT(sI - A*.)- 1 {b 3 [(s + 1)2 (* T ) + u 2] + fm(el)} =

Wi*(s)A* [-*Txm - W *(s)A*cES + cT(sI - A*)-1fxm(ey; s)

Now we will show that fxm (ey; s) addresses A*TS . Since T-1 is not directly avail-

able to us, we have to design fxm(s) using Lemma 6.3 as in (6.36), which yields

- W3*(s)A*T!l]o + cT(sI - A*)-1fxm(ey; s)

= WV*(s) [(s + 1)2 [A(t)] ] + W3*(s) [ i*s A(t) + (s + 1)2 [ (t)-

where we have applied the definition of 2[1112] in (6.37). This directly leads to the

results.

Proof of Theorem 6.1

Proof: For the high order tuner (6.41), define an error coordinate Zh as

Zh = Xh + A-1bh V T (E.21)

which allows its output as

C zh = ?k(t) - O'T (t) (E.22)

whose dynamics are

Zh(t) = Ahg(xm)Zh + A'bh T(t). (E.23)
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(E.19)

- ,*E +1J(t)E]+ (E.20)

0

=3(S) (S +1)2[A(t)T[11 Y



Now we will prove the stability results of Theorem 6.1.

function as

V = emxP*emx + (1 - *)2 + Z7P hZh

where emx is the states of error model, P* satisfies

P* (A* - l*cT) + (A* - l*CT)T P* - -Q* < 0

P* bl* = c

which are the results of SPR properties of (6.40), and Ph satisfies

PhAh+ AhPhT = -I.

Using (6.40) and (E.23), V is found to be

= -emxQ*em + 2P*b* A*( 1

-2eyA* (0'
T
1Xm -77. [ 4 ' Izh] g (x,) 277.- [ThAKhheyx,,].7

which, combined with (E.25), yields

V = -eixmQ*emx - q - [ zi ] 9(Xm)

+2eyA* (01 - Xm+ 277 - [zPhAh bheyxm]

which is equivalent to

V = -eixQ*em. -,q - [Z Z] - 7 - /I [Z 2

+2eyA*cjznx, + 2rz Tz/ PAjbhexm]

using (E.22). Then we pick

|ChI| Amax

PlPhAh-bh'

2 IIc|| 2 Ich||2 A2

= Amin,Q* 77
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(E.24)

(E.25)

(E.26)

+ (w'1 - Dxm

(E.28)

(E.29)

(E.30)

We propose a Lyapunov



where IA*| I Amax, which leads to

Y < -Amin,Q* ||emII - 7 _ [Z-'Zh] -q 7 Y IIZhXm I2

+4 Ilcl Iemxi| Amax IlchII IZhXI| (E.31)

and therefore

V - [z7Zh - (.min,Q* 1 emx -~ /' iZhXm I I). (E.32)

As a result, emx(t), Zh(t), 7'(t) are all bounded as t -+ oc, and therefore xm(t)

is bounded in the CRM, which proves i). This in turn implies Zh as in (E.23) is

bounded. Applying Barbalat's Lemma yields that Zh(t) -+ 0 as t -÷ oo, which in

turns implies that in (E.32) emx(t) -+ 0 as t -+ oo. Then the results of ii) follows. 0

Proof of Lemma 6.6

Proof: The proof will be very similar to the proof of Lemma 5.3 and therefore

only key steps are shown in this proof. The input normal form of the plant model
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0 0 R1 V 1

Im 0 R 2 0

0 Im R3 0 __

0 0 U Z L J

Xirn

Im

0
+ 0 ol~*T v)p2*T

0 3 2

L0J

B3,in

+

x

X [o 0 4 ,3*T Vbn- 3 m)*TI i
0 0 * n -s)-r in

x,
0i*T

B1,in

4 ,3*T o~~n-3m)*T ]x
3,in

+B 3,inA*u + Bin,zZcmd

Y= 0 0 CA 2 B 3 0 Xin

Cin

(E.33)

using in =TinX, Ain = TinATI;1, B3,in = TinB3 , B1,in = TinB1 Bin,z = TinBz, Cin =

C X7;1, p**j = F*T T-;1,q; = p *T *T.-l and RT RT Rj T -- ( -1(A2B)T,

where Tin is defined in (3.13). It is noted that (TinB1 )T = x x x 0 ] since

Assumption 6.4 holds, and that in = [ 0 0 x x since Assumption 6.5 holds.

All equations in this proof are valid in both coordinates, and matrices in input norm

form coordinate will be denoted with subscript (H-)

To prove Lemma 6.6, It is equivalent to show {(A* - L* Cin), B3,*n, SCin} is SPR,

where A = Tin A*Ti-l and B'*n = TinB*. Define Cin = SCin,

MTI H
0

0

I

0

0

0

0

0

0

I]

(E.34)

which is the null space of Cin. The rest of the proof is exactly following the proof of
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Lemma 5.3 and noting

A* = (CinB )T CYDB1X*T (E.35)

where T*T = (1i* + al/a2) + (,p3*T + R3) and

||Hin|| <; ||P 1|||Nl*AinB,*n|| + ||IinAinMinII

N*qA*nB7'* = Nz'1 AinB2n

(a2R3 + alR2 + aORi)((#b*) 2 +

+ (a2R3 + alR2)/l*

0

Cin A* Min = CnAinMin

+ [0 0 CA2B 3 ( n-3 m)*T

(E.36)

@2*T)

(E.37)

(E.38)

0

Proof of Lemma 6.7

Proof: The proof is carried out in the input normal form as in (E.33) where

* = *T
4,2*T b 3*T o(n-3m)*T].

Following the definition of B * in (6.69) it can be shown that

B* B * B3* ]3 3 i 2

a 2

0

0

0

a pi*T + a'

a2
a 2

0

0

a2 ('bp1*2 + p2*T) + a}/o*T + a2

a2l 4*T + a'

a2a2

0
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Similarly, following the definition of B3 in (6.60), it can be shown that

B3 B1

a2 a2 a2

0 a2 al

0 0 a2

0 0 0

(E.41)

Then the results follows after some algebra. U

Proof of Proposition 6.3

Proof: Then performing rearrangement on the uncertainties terms I*, T* and

3; as

[ B3 0 B1 [3

0

*T I

A*

B * B1* A*

A* L7q*T

T*T
2f

(E.42)

Such parametrization always exists since in the input normal form,

S*,and [ B,* B * B1* .3* 3 1i

x x x

0 x x

0 0 x

0 0 0
(E.43)

(see Assumption 6.5), and

x

x .

x

(E.44)

x 0

I B3

x

0 B1

0 0 x

0 0 x

0 0 0

Tp*T
3

xp*T
1it-[in 0 0 x

0 0 x

x X X
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The rearranged uncertainties in the input

ture of
[W*T

[-*T
T2

normal form coordinate also have a struc-

0

0

xun
0

0

x

x x

x x

(E.45)

0

Proof of Lemma 6.8

Proof: The proof is very similar to the proof of Lemma 6.3, noting that

C(sI - A*)- 1 F(t) = C(sI - A**)- 1 [(B3s + B )#T(t)Z[ + 7r2(s) (V1(t)[ 1I[2 (t))]

= W3*(s)ir2(s) (OT(t){I] + j (t)JI[I(t)) (E.46)

where we have used the property of B2 in Lemma 6.7, the equivalent realization of

B2* in Lemma 3.3, and the definition of [1][2] (t) in (6.75). It is noted that each time

Lemma 3.3 is used to generate zeros in the error model analysis, Eq.(3.18) has to be

used to change the state coordinate, which yields (6.77). U

Proof of Lemma 6.9

Proof: The proof will be a direct extension of the derivation in Section 6.1.2

and therefore only a brief step is shown below. The first portion of the proof follows

the proof of Lemma 6.8. Replacing L with

L* = B *Rl-S (E.47)
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in the error model (6.67), using Eq.(6.71) to specify the difference and applying

Proposition 6.3 yields

ex = (A* - L*C)ex

+ B1*i*Tesy + B3*02*Tesy - FL(ey; s)

+ B'*A*T *T xm + B *A*T*TXm + B 3*A**Txm

+ B3 A*(ubI + Uad) - B3ub1 + Fxm(ey; s) (E.48)

Plugging in (6.59) and applying Lemma 6.8 transforms (E.48) into

e' = A*.e - BlOr * J[1 + e 1[1 - B1* 72 2

+ B *A* xm + B *A*V*T xm+ B *A* 1*Tx

+ B3A* [-A*-1 ub + Ubi + Uad] + Fxm(ey; s). (E.49)

Applying Lemma 3.3 and substituting (6.66) yields

S- B *-2 + T [ -B*

+ B3A*7rj(s) [A*-1I + + +

+ B3 A* [Ubi + Uad] + Fx (ey; s). (E.50)

The rest of the proof follows that of Lemma 6.4. Since 41i(t) has a special structure

as in (6.65), 1 (t)FL(eY; s) = 0 and XI T(t)Fxm(ey; s) = 0 and therefore

XIT(t)_m = IpT(t) [Axm + BmZemd - Len]

XT(t). = XFT(t) [A 2X, + ABZemd - ALey + Bm4emd - L6y] (E.51)
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All terms, except LeY, in (E.51) are available for control and therefore are put in Uad.

Expansion of the compact form of Uad as in (6.63) shows

Uad = UbI + 7F2(S) [I~ t~ - Ib )[I ~ ' (t)31 ]

- a XdT J(t) [A 2Xm + ABmZcmd - ALey + B em>c]

- (a d1 2 1(t)+ (0dit) [Axm + BmZcmd]

(a d i(t) + ald'If(t)+ I(t) [xm]

- (a d s 2 + ald's) [XIp(t)] e 0 (E.52)

Applying Eq.(E.51), substituting the definition of e in (6.62), applying the chain

rule of derivative yields

Uad = - +r (s) [AT(t)-[I - WIT(S)Xm - kI(t) 1j -X(t)m ]

- (a s + a') -s [pT(t)e 0 (E.53)

Substituting Uad (E.52), Fxm(ey; s) (6.58) in (E.50), and applying Lemma 6.8 yields

e = A*emx - B1* + 2 - B 2]

+ B *A* [IT-P21 - T (t)X -Tn I

+ B3*ATTI]O + B1* 0 (E.54)

Grouping terms, and noting that Lemma 6.6 guarantees that {A2c, B1*, SC} is SPR,

yields the results. U

Proof of Theorem 6.2

Proof: Without loss of generality, we consider the error model as

e * = A +emx B'*A* QT4  (E.55)

ey = Cemx.
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The following proof will be very similar to the proof of Lemma 6.1 and therefore only

brief steps are listed. First we define a new tuner state as

Z 2= X2 + AH BH Q'T

whose dynamics are

ZQ = AH ZQg(l; 1k) + AH BHQ'T. (E.57)

and g is defined in (6.83). Then the difference between Q and Q' can be written as

QT -Q'T = CHZE2 (E.58)

since CHAH BH = -I.

Let P* be the matrix that guarantees the SPR properties of {A B*, SC} as

P*A* *+ A*fP* -Q* < 0

P*B1* = CTST

We propose a Lyapunov function

(E.56)

V = e P*e, + Tr [(Q' - Q* )F-1 (Q- - Q*) IA*I]

+6 -Tr [ZoTPHZn] > 0

whose derivatives are derived by applying (E.55)(E.59) as

m+3n

V < - S jT zj

j=1

- 4 |ISCII CHII I emx| zj + Q
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(E.61)

(E-.59)

m+3n

-e e2

j=1 +3.m



where z' is an element of Zq

ZQ = [ z2 ... [ zm+3n] , (E.62)

and we have used the fact that Q > Q*. Plugging in the definition of J and 6, yields

m+3n m+3n - - 2

As a result, all signals in (E.60) are bounded and therefore signals in CRM are also

bounded, which proves i). One can follow the proof of Theorem 6.1 and shows that

ex(t) -4 0 and e,(t) - 0 as t -- oc, which proves ii).

Following the derivation of recursive adaptation as in (6.77), ex and emx is related

as

enx = ex + [B * + B *s] [ 2T - (E.63)

where some terms similar to UTE are omitted. It is noted that since all signals in

V are bounded and in particular, zn(t) -+ 0 as t -+ oo, [B * + B *S] QT is guar-

anteed to be bounded. It is also noted that f(z - zcmd)dt is an element of x and

f [(Zm - Zcmd) + Lie,] dt, where L, is the rows of L corresponding to zm, is an el-

ement of Xm. It follows emx(t) -+ 0 and xm is bounded that ex is bounded, and

therefore f(z - zm)dt is bounded. Also it is noted that zm is bounded and therefore

(z - Zm)(1) is bounded. Applying Barbalat's Lemma proves iii). 0
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Appendix F

Proof for Results in Chapter

Proof of Lemma 7.2

Proof: Lemma 3.3 says that

= A*ex + Bi*#*Tw(t) - F(t)

ey = Cex

7

is equivalent to

e = A*e' + Br#*T 1r_-T-(s) [w(t)] - F(t)

ey = Cex
(F.1)

in terms of transfer function matrix.

Step 1: Substituting the definition of Z[-l] (t) yields

e = A*e' + Br #*T7r-j(s) [W-[iI(t)] - F(t) (F.2)

Step 2: Substituting the definition of F(t) and Fr in (7.6) applying Proposition 6.7
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yields

e = A*e" + B, #*T7r2(S) [B3i-iJ~t)] - 37r2(s) [#T(t)Z7[i-(t)]

r-i

+ EBrO]*7r -jij(S) si-1 [# T (t)i-(t)]
j=1

r-1-i

- [Fi +j(jT(t)ji-1][i-1+j]

j=1

+ E Fi+j+k(kT(t)[i-1][i-1+j][i-1+j+kt) + - I (F.3)
k=1I

Substituting the definition of 0[-1I[i1+j](t) as in Eq.(7.10) and applying Proposition

3.2 yields

e= A*e - B7r -- (s) Ipt)w t iilt)x Lx rr-1\ L[i-1+()
3-i

- + Oj* r (,q) [[i-1][i-+jj))
j=1

j=1

r -i-j

+ Fi+j+k ?kTr ggli-1][i-l+jl[i-l+j+k](t)+ (F.4)
k=1 J

Then repeating Step 1-2 on G[i1][-1+j](t) and so on until the last index of a[i].U[k]

hits [r - 1], will yield the results. 0
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