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Abstract

Climate change is among the most critical challenges that are facing the human

race in the 21s' century. One of the major factors that leads to climate change is the

increasing consumption of fossil fuels, driven by industrialization and economic growth

at an unprecedented pace. For a secure and sustainable future of energy and the

environment, new clean and efficient energy technologies are in urgent need.

Thermoelectric materials are a group of materials that can directly convert heat into

electricity. Being solid state, clean, reliable and without moving parts, thermoelectric

energy conversion holds great promise as a candidate technology to harvest energy from

thermal sources, such as the sun and terrestrial heat sources, as well as improve the

efficiency of existing energy systems by recycling the inevitable waste heat. The

bottleneck that prevents large-scale deployment of thermoelectric modules so far,

however, is the relatively low efficiency and high cost.

A good thermoelectric material needs to conduct electricity well and conduct

heat poorly to attain high efficiency. Remarkable progress has been made in the past

decade to decouple the charge and heat transport and thus improve the material

performance. Most of the progress has been based on a more detailed understanding of

the transport and interaction of fundamental energy carriers, such as electrons and

phonons in most semiconductors, and magnons in magnetic materials. These

understandings have been achieved through the development of both first-principles

simulations and experimental spectroscopic tools, in particular for phonon transport and

phonon-phonon interaction, which have enabled calculations and measurements at the

single-phonon-mode level. Information gained from these studies formed the foundation
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of the successful engineering efforts of designing nanostructured thermoelectric

materials. Although the nanostructuring approach has been able to reduce the thermal

conductivity of thermoelectric materials down to proximity of the amorphous limit, it has

been realized by the community that further improvement of thermoelectric materials

requires breakthroughs in boosting the electrical transport properties, including the

electrical conductivity and the Seebeck coefficient. Despite several existing strategies, a

prerequisite for systematic improvement is, again, insight into the transport and

interaction of fundamental carriers, particularly involving electrons, at the single-mode

level. This insight has largely remained lacking in terms of electrons, both on the

simulation side and on the experimental side.

This thesis aims to develop both simulation and experimental tools to study

nanoscale electron, phonon and magnon transport and their interactions, with a particular

emphasis on understanding the electron-phonon interaction at the single-mode level. This

is among the most important forms of carrier interactions and determines the intrinsic

electron transport properties of most conductors. Regarding phonon transport, we applied

first-principles lattice dynamics to study phonon-phonon interaction and lattice thermal

conductivity in a strongly-correlated thermoelectric compound FeSb 2. On electron-

phonon interactions, we studied from first-principles the intrinsic electrical transport

properties of phosphorene, which are limited by electron-phonon interactions, analyzed

its anisotropy and evaluated its potential as a thermoelectric material; we studied how

free carriers can in turn scatter phonons through the electron-phonon interaction and

reduce the lattice thermal conductivity; to verify this finding, we designed an ultrafast

photoacoustic spectroscopic technique to directly detect the damping of a single phonon

mode due to electron-phonon interaction. On phonon-magnon interactions, we applied

the coupled Boltzmann equation to analyze coupled phonon-magnon diffusion and

proposed a novel magnon cooling effect. These fundamental discoveries can potentially

lead to new design principles for more efficient thermoelectric materials in the future.

Thesis Supervisor: Gang Chen

Title: Carl Richard Soderberg Professor of Power Engineering
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Chapter 1

Introduction

1.1 Basics of Thermoelectrics

The possibility of converting thermal energy directly to electricity holds promise of

improving the efficiencies of current power systems as well as future sustainable energy

systems1 . Solid-state thermoelectric (TE) materials2 can be used for direct heat to

electricity conversion via the celebrated Seebeck effect, where a temperature gradient

drives the thermal diffusion of charge carriers, giving rise to a counterbalancing electrical

voltage. The reverse (Peltier) effect, where a drift electrical current carries heat along, can

deliver cooling power without any moving parts or (potentially hazardous) working

fluids3. Attractive as it is, the application of thermoelectrics (TEs) has long been limited

by their low efficiency.
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Figure 1-1 (a) Schematic of a typical configuration of a thermoelectric device, where
two semiconductor materials (n-type and p-type) are connected thermally in parallel
and electrically in series. (b) Photo showing a real thermoelectric module, where
thermoelectric legs are sandwiched between two ceramic plates. Image from the

website of FerroTec, Inc. (c) A zT roadmap showing the long-term increase of
thermoelectric figure of merit zT over the past 60 years. There has been a boom in
zT progress since 1990s, when nanotechnology was introduced into thermoelectrics.
Figure adapted from Ref. 4.

The efficiency of a TE device is proportional to the nondimensional figure of

merit zT S2 T/(C +K ) where S is the Seebeck coefficient defined as the ratio of the

open circuit voltage to the applied temperature difference (S=--AV/AT), a is the

electrical conductivity (the combination S2u is usually called the power factor), T is the

absolute temperature, and K, and K, are the electron and phonon contributions to the

thermal conductivity, respectively. Figure 1-1 shows the typical configuration of a
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thermoelectric device and the progress made in enhancing zT in the past decades. The

low zT, and thus the low efficiency, stems from the fact that the relevant material

properties are intertwined and usually show opposite trends in a single material. For

example, the Seebeck coefficient measures the average entropy transported by charge

carriers, and prefers nonsymmetric transport properties of charge carriers above and

below the Fermi level (carriers above the Fermi level transport positive entropy, while

carriers below the Fermi level transport negative entropy). For this reason the Seebeck

coefficient S is usually high when the Fermi level is inside a band gap (nondegenerate

semiconductors), degrades when the Fermi level moves into a band (degenerate

semiconductors), and becomes negligibly small in a metal. On the other hand, the

electrical conductivity a is proportional to the carrier concentration and thus follows the

opposite trend. This general correlation between the Seebeck coefficient and the electrical

conductivity is commonly known as the Pisarenko relation5 , which implies that

increasing the carrier mobility is crucial for boosting the power factor. Moreover, the

electronic thermal conductivity usually grows with an increasing electrical conductivity,

as indicated by the Wiedemann-Franz law (ice= LTu, where L is a proportionality

constant called the "Lorenz number"6), due to the fact that heat and electricity are

transported by the same group of carriers in this case. Furthermore, although the phonon

thermal conductivity does not directly connect to the electronic properties, the

conventional methods of reducing the phonon thermal conductivity, such as by

introducing defects and alloying, also increase the scattering of electrons, and deteriorate

the electrical conductivity. From the above discussion, it is clear that an ideal TE material

should possess a combination of properties of nondegenerate semiconductors (a high
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Seebeck coefficient), metals (a high electrical conductivity), insulators (a low electronic

thermal conductivity) and amorphous materials (a low phonon thermal conductivity).

NSULATOR

SEMICONDUCTOR

SEMIMETAL

METAL

S CY
S ZT

k

Carrier
Concentration

Figure 1-2 Schematic showing how the thermoelectric properties in simple model
solids depends on the carrier concentration. The opposite trends of the Seebeck
coefficient and the electrical conductivity poses a fundamental challenge to
improving the thermoelectric performance.

These observations have placed fundamental difficulties in improving zT. As a

more specific sample, Figure 1-2 displays the typical dependence of the thermoelectric

properties on the carrier concentration. Since the control of the carrier concentration

through doping is the most readily accessible knob that is used to tune the thermoelectric

properties of a material, the opposite trends of the Seebeck coefficient and the electrical

conductivity with increasing carrier concentration result in an optimum doping level,

which seems to limit the best thermoelectric performance one can expect. One thing to

note here, however, is that in realistic materials, the properties of the energy carriers are

more complex than the simple model used in Fig. 1-2, and indeed a detailed

understanding of the transport and interaction properties of energy carriers, combined

with advanced nanotechnology and material synthesis capabilities 7, has led to a range of
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successful strategies for better thermoelectric materials in the past decade8 . In the next

section, I summarize the existing successful strategies and the working principles behind

them. As will be clear, the driving force for all these strategies has roots in the

understanding of fundamental microscopic carrier transport and interactions, which is the

motivation and focus of this thesis.

1.2 Strategies to Improve zT

From the definition of the figure of merit zT, it is clear that there are two main

routes for improvement: by increasing the thermoelectric power factor (S 2 ), or by

reducing the thermal conductivity ic. Both routes have led to successful examples, and

there have been recent efforts of combining these two (by the so called "panoscopic"

approach9 ). In this section I briefly review the existing strategies along both paths.

1.2.1 Improving Electronic Properties

The dilemma presented in Fig. 1-2 stems from the assumptions of simple

electronic structures and transport characteristics, for example, a parabolic band and a

constant electron relaxation time 0 . In reality, special electronic structures and/or electron

scattering profiles, either natural or by design, often lead to exceptional thermoelectric

performance much beyond what simple models predict. One seminal example was

proposed by Hicks and Dresselhaus11"2 in the early 1990s, when they discovered that

low-dimensional materials, such as thin films, nanowires and quantum dots, can lead to

better thermoelectric performance than their 3-dimensional counterparts. In those

structures with certain lengths smaller than the electron coherence length, electrons are

confined to a physical space with smaller size, and the resulting density of states exhibits

21



sharper transitions with respect to energy and is desirable for increasing Seebeck

coefficient. This effect can be explained using the Mott formula for the Seebeck

coefficient6

S 2 kB k TIdD(E) 1 d(v2 )(E)
3 q D dE v2  dE

where kB is the Boltzmann constant, q is the electronic charge, D is the electronic

density of states, E is the electron energy, EF is the Fermi energy, v is group velocity

and r is the electronic relaxation time (or reciprocal of the scattering rate). From the

Mott formula, it is seen that the Seebeck coefficient is enhanced if there are sharp

changes of either the density of states or the relaxation time around the Fermi level. This

observation is consistent with the "asymmetric transport" picture described in the

previous section. This idea is further quantified and mathematically formulated by Mahan

and Sofo 3, where they showed via a variational calculation that the best electronic

structure for a thermoelectric material is a 8 -function-shaped density of states, and low-

dimensionality provides a natural way to introduce sharp features in the density of states

through the "quantum confinement effect". Although this quantum confinement effect

was later observed in various low-dimensional systems, such as quantum dots' 4 , quantum

wells 1, superlattices 1617, nanowires and a 2-dimensional electron gas confined in a

single-layer oxide' 9 , these structures are not easily scalable and hence not suitable for

practical applications requiring larger-scale operation.

In addition to the size and dimensionality modification, the quantum confinement

effect has also been applied to adjusting the relative positions of the electronic bands for

20better thermoelectric performance, first proposed in a GaAs/AlAs superlattice structure
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Since the Seebeck coefficient benefits from sharp changes of the density of states with

respect to the carrier energy near the Fermi level, aligning the edges of multiple bands

can lead to a largely enhanced density of states and an enhanced Seebeck coefficient

without sacrificing the carrier mobility. This "band convergence" idea has later been

generalized and realized experimentally by the rational alloying of bulk materials with

different band gaps21-26, as shown in Fig. 1-3. The concept of band convergence has also

been recently identified to be the reason behind some of the presently known good

conventional thermoelectric materials, such as the skutterudites.

Another way to introduce sharp features in the density of states is by doping. It is

found that certain dopants when added to a specific matrix material can form impurity

states that are resonant with the band continuum and can lead to a locally enhanced

density of states 28. Prominent examples include thallium-doped PbTe29 and indium-doped

SnTe3 0, as shown in Fig. 1-4. A typical signature of the formation of resonant levels is the

deviation of the Seebeck coefficient versus carrier concentration from the conventional

Pisarenko plot: instead of a monotonically decreasing trend, in certain doping range the

Seebeck coefficient is anomalously enhanced, as demonstrated for indium-doped SnTe as

shown in Fig. 1-4(c).

As is clear from the previous discussion of the Mott formula, another way to

improve Seebeck coefficient is to introduce sharp features in the electronic relaxation

time. Beyond atomic defects, nanoscale domains (or nanoparticles, nanoprecipitates etc.)

provide more degrees of freedom into control through scattering engineering, such as the

particle size, shape, composition and spatial distribution. Unlike normal non-resonant

atomic defects, whose characteristic size is much smaller than the electron wavelength
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and thus invoke Rayleigh-type scattering with a monotonic dependence of the scattering

strength on the electron energy3, nanoscale domains have comparable sizes to the

electron wavelength. Their scattering characteristics are thus analogous to Mie scattering

of electromagnetic waves, where the interference effect is important and results in much

richer features in the scattering strength. In this regime, the partial wave method33 can be

used for exact calculations of the scattering cross section of single nanodomains with

regular shapes, and this approach has been applied to designing nanoparticles with

desired scattering features436, including electron filtering, where a cutoff energy is

established below which carriers are much more strongly scattered3 8-40 than those above.
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Figure 1-3 Schematic showing the concept of band convergence in a PbTe/PbSe
alloy. (a) the position of hole pockets at the L (orange) and I (blue) points in the
Brillouin zone of PbTe; (b) the change of energies of the L and I bands of PbTe
with temperature. At a certain temperature (-500K), the two bands converge and
give rise to an enhanced power factor. Alloying with PbSe can raise the band
convergence temperature and leads to higher zT at higher temperatures. Adapted
from Ref. 21.
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Figure 1-4 (a) Schematic showing how the resonant impurity level distorts the

density of states and creates a local maximum. Adapted from Ref. 29. (b) Calculated

density of states of indium-doped SnTe compared with bare SnTe and bismuth-

doped SnTe from first-principles. A peak near the valence band edge is clearly seen

in the case of indium-doped SnTe. (c) The Pisarenko plot of indium-doped SnTe,

compared with other dopants and a two-band model. In indium-doped SnTe, the

Seebeck coefficient is anomalously enhanced above the normal Pisarenko relation.

(b) and (c) are adapted from Ref. 30.

In addition to the abovementioned strategies for enhancing the Seebeck

coefficient, there are alternative approaches to boosting the thermoelectric power factor

by increasing the carrier mobility, such as the modulation doping 41 ,4 2 and invisible

doping43 44 , to which I contributed in my Master of Science thesis prior to starting my

PhD program.
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1.2.2 Reducing Thermal Conductivity by Nanostructures

One of the most successful strategies for improving the thermoelectric

performance is by reducing the thermal conductivity with nanostrucutures, such as

nanograin boundaries, nanoscale precipitates and particles. Nanoscale interfaces impose

strong boundary scatterings on phonons and suppress the thermal conductivity (the

classical size effect, or the "Casimir effect"). Reducing the phonon thermal conductivity

of thermoelectrics by engineering phonon scattering dates back to the very early stages of

thermoelectrics, when researchers used alloying to interrupt the observed phonon

propagation effects. The prominent example is the Si/Ge alloy, the best thermoelectric

material for high-temperature (> 900 K) applications for a long time, deployed by NASA

for radioisotope thermoelectric generators for space missions in the 1970s4 5 . A related

concept is to introduce "filler" impurity atoms into complex compounds with cage-like

structures, such as skutterudites4 6-50 , where the filler atoms "rattle" inside the cage

structure and disrupt the phonon propagation due to the mismatch of natural frequencies.

Both alloying and "filler-rattler" approaches introduce atomic scale disorders that are

effective in scattering shorter-wavelength phonons, but less effective in scattering

phonons with longer wavelengths that are the major heat carriers in most thermoelectric

materials. Starting from the 1990s, the ultralow thermal conductivity in semiconductor

superlattices (lower than corresponding bulk alloys) with nanoscale periods was observed

experimentally5 1-54. It was later recognized 55'56 that the non-Fourier behavior in

superlattices is largely due to the ballistic phonon transport in each layer and phonon

scatterings at the interfaces, recently quantified by first-principles simulations 7 . This

insight led to the later development of bulk nanocomposites58 consisting of compact
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nanograins with a high density of grain boundaries acting as effective filters for phonons

with long wavelengths and mean free paths. The manufacturing process usually includes

ball milling and hot pressing (or spark plasma sintering, SPS), and is cost-effective. This

strategy has been successfully applied to reduce the thermal conductivity of a wide range

of thermoelectric materials.

To understand the effectiveness of nanostructures in scattering phonons, first-

principles techniques based on density functional theory (DFT) and density functional

perturbation theory (DFPT) have been developed in recent years to study phonon

dispersion and phonon-phonon anharmonic scatterings in detail1 9 60 . These simulations

reveal that phonons in real materials have mean free paths that span a range of length

scales6 1, as shown in Fig. 1-5, and thus hierarchical structures of different length scales

are needed to maximally block the phonon flow.
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Figure 1-5 Calculated phonon mean free path distribution and the corresponding

contribution to the total thermal conductivity, from first-principles techniques.

Adapted from Ref. 61.
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To verify the calculated phonon mean free path distribution, ultrafast optical

spectroscopic techniques were developed to probe the length-scale-dependence of

63--65quasiballistic phonon transport . When the length scale of the heat source (laser beam

size63 or the period of a thermal grating64) becomes comparable to the phonon mean free

path, the phonon heat transport become partially ballistic and the measured effective

thermal conductivity becomes lower than the bulk value. The combination of simulation

and experimental tools has led to mode-by-mode understanding of phonon transport in

real materials, and has directly contributed to the success of nanostructured

thermoelectrics.

In comparison, the understanding of electron transport has largely lagged behind.

On the simulation side, the ability to calculate intrinsic electrical transport properties

limited by electron-phonon interaction has just been developed recently 66, and has not

been utilized to study a wide range of materials and transport problems. On the

experimental side, there have not been tools that can directly probe electron-phonon

interaction at the single-mode level. These are the issues that this thesis aims to address,

and the end goal of the investigations along this line is to eventually guide material

search and design based on the understandings gained from fundamental research.

1.3 Spin Caloritronics

Spin caloritronics 67,68 is a nascent field of study that looks into the interaction

between heat and spin. In addition to providing ways of thermally manipulating

magnetization and magnetic domain walls 69-71 as supplements to conventional

spintronics, it also holds promise of novel energy harvesting and cooling applications

owing to the recent discovery of the spin Seebeck effect (SSE) 72- 7 6 and its reciprocal spin
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778
Peltier effect (SPE) . Despite existing debates on details, it has been widely recognized

that the aforementioned spin caloritronic effects are consequences of the interactions

between phonons, electrons and spins79 8 2 . From this perspective, spin caloritronics is a

natural extension of both thermoelectrics and spintronics. Phonons are responsible for

heat conduction in most solids; in metallic and semiconducting materials, electrons are

carriers of charge, heat and spin; in magnetic materials, magnons8 3 - the collective

excitations of spins - also participate in transporting spin 4 and heat . In the spin

Seebeck effect, a thermal gradient drives a net spin flow across the boundary between a

magnetic material and a metal with strong spin-orbit interaction, such as platinum, where

the pure spin current is converted to an electrical voltage through the inverse spin Hall

effect, as illustrated in Fig. 1-6.
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Figure 1-6 (a) Schematic showing the mechanism of spin Seebeck effect. Here T,,

T, and TW are the temperature distributions of electrons, phonons and magnons,

respectively. (b) A real device configuration of longitudinal spin Seebeck effect.
Adapted from Ref. 86.
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Despite existing controversy on the nature of the effect, it has been proposed that

the spin Seebeck effect can be a candidate for efficient thermal energy harvesting due to

the decoupled electrical and thermal transport. In addition to participating in the spin

Seebeck effect, magnons can also transport heat8 7'88 , just as phonons and electrons. As an

exploratory part of this thesis, I study how phonon-magnon coupling can lead to a novel

magnetic cooling effect. Now with more players on the field (electrons, phonons and

magnons), the fundamental studies of spin caloritronics, especially the interplay among

different carriers, can potentially benefit thermoelectric research.

1.4 Scope and Organization of Thesis

The focus of this thesis is to develop and apply first-principles simulation and

experimental tools to study transport and interaction of electrons, phonons and magnons

in real solid state materials, with a particular emphasis on electron-phonon interaction,

which can hopefully lead to mode-by-mode level information that can benefit future

design and engineering of thermoelectric materials.

The thesis is organized as follows. In Chapter 2, the general formulation of carrier

transport and interaction is introduced, as well as the basic processes of first-principles

simulation. Chapter 3 presents two examples of applying first-principles simulation tools

to study phonon-phonon interaction (in FeSb2, a strongly correlated low temperature

thermoelectric material), and electron-phonon interaction (in phosphorene, a newly

discovered two-dimensional material). Chapter 4 elaborates on a combined

simulation/experimental effort to understand how electrons scatter phonons through

electron-phonon interaction and reduce the lattice thermal conductivity in

semiconductors, which has been largely ignored in previous studies. Chapter 5 covers an
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exploratory project, where the Boltzmann transport equation is applied to coupled

phonon-magnon diffusion and leads to the discovery of a novel magnon cooling effect.

Chapter 6 summarizes the thesis and points to potential future directions.
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Chapter 2

Carrier Transport and Interaction:

General Formulation

2.1 Elements of First-Principles Simulation

In this section we review the ingredients and basic process for first-principles

simulations of electron and phonon transport properties. Ever since the foundations of the

density functional theory (DFT) were established by Hohenberg, Kohn and Sham8 9'90,

this computational technique for materials' electronic structure and related equilibrium

properties has evolved at a remarkable pace. DFT-based first-principles calculations of

the electron and phonon band structures have now become routine even for materials
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with complicated unit cells. To calculate thermoelectric properties, however, one has to

go beyond the standard DFT band structure calculations, and take into account various

scattering processes. There developments are highly nontrivial in terms of both

programming complexity and computational cost. To make the calculations tractable,

usually only the lowest order scattering process that is captured by the Fermi's golden

rule, is calculated. When dealing with electron-phonon interactions in particular, a

necessary simplification, namely the Born-Oppenheimer approximation, is used to

decouple the electronic and ionic coordinates. Combining the information from band

structure calculations with the scattering information, the Boltzmann transport equation

can be solved at various levels for the thermoelectric transport properties. In principle this

whole process is parameter free, and the only input is the crystal structure and atomic

composition of the material. The complete process is illustrated in Fig. 2-1.

Harmonic (Noninteracting) Properties:
Density Functional Theory (electrons)

Dynamic Matrix Theory (phonons)
Density Functional Perturbation Theory (phonons)

q Anharmonic (interacting) Properties:

k Time-dependent Perturbation Theory (Fermi's Golden Rule)

Wk, = g(k,k',q) 2 'k Iq(E - E, ho)k-q

(a=-ef v2D(E) fdE Transport Properties:
IE Boltzmann Theory

K =Green-Kubo Theory
C vA

Figure 2-1 Flow chart illustrating the basic process of DFT-based first-principles
simulations of thermoelectric transport properties.
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2.1.1 Boltzmann Transport Theory

We start with the transport theory as a roadmap of ingredients that are needed

from first-principles simulations. There are mainly two categories of transport theories.

The first one adopts more of a wave-like point of view, starts directly from the governing

dynamic equations of carriers (Schr5dinger equation for electrons, and lattice dynamical

equations for phonons), and the time evolution of the carriers' states, usually in the form

of wavefunctions, is then investigated using Green's-functions-based techniques91,92

Because the exact time evolution of wavefunctions is solved, this method has the ability

to capture interference effect of wavefunctions, or in other words, the effect of coherence.

On the other hand, the interactions among carriers are added to the calculation usually as

perturbations. This method has been applied to study quantum transport of electrons in

nanoscale conductors93, phonon transport across interfaces94 and coherent phonon

95,96transport in superlattices . In realistic thermoelectric materials, however, interactions

of carriers among themselves and with impurities are often strong and the coherence

effect is suppressed. In this case, it is more convenient to start from the fully incoherent

limit, namely the particle picture, where energy carriers are treated as quasiparticles and

their wave nature is only invoked in particular situations, such as the reflection and

transmission at an interface. This perspective of transport is conveniently formulated in

the framework of the Boltzmann transport equation

af(r,p,t) + af(r,p,t) af(r,p,t) a (2.1)
at ar ap at ) o

where f(r,p,t) is the distribution function in phase space that represents the number (or

the probability, depending on normalization) of particles occupying a certain state with
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real-space position r and momentum p at time t, while v is the group velocity of the

carrier and F is the external force exerted on the particle. The left hand side of Eq. (2.1)

depicts the motion of carriers in phase space under the influence of an external force

field, while the right hand side, the so-called "collision term", deals with the change of

the distribution function due to scattering processes, either among carriers or with

impurities. The Boltzmann transport equation is a reduced form of the Liouville equation

that is commonly studied in many-particle statistical physics, where the unknown is a

many-particle distribution function f(r,p1,r2 ,P2 ... ). In the weak interaction regime,

meaning the scattering length (square root of the scattering cross section) of the carrier

interactions is much smaller than the average spacing between the carriers, the Liouville

equation can be reduced through a formal procedure named Bogoliubov-Born-Green-

Kirkwood-Yvon (BBGKY) hierarchy 97 to an equation of single-particle distribution

function and a collision term involving a two-particle distribution function. Further

invoking the so-called "molecular chaos approximation", which breaks down the two-

particle distribution function into a product of two single-particle distribution functions,

the Boltzmann equation can be derived98. With the molecular chaos approximation, the

coherence between particles is abandoned and this approximation directly leads to

entropy generation and the Boltzmann's H-theorem97. In other words, the collision term

on the right hand side of the Boltzmann equation includes all information about the

carrier interaction, whose exact form is unknown in most practical situations. Different

levels of approximations are developed to devise a physically reasonable form of the

collision term.

36



The simplest approximation of the collision term is the relaxation time

approximation (RTA)

- =f-f, (2.2)

where fo(r,p) is the equilibrium distribution function (namely the Fermi-Dirac

distribution for fermions, the Bose-Einstein distribution for bosons and the Boltzmann

distribution for classical particles) and r is the relaxation time of a specific state due to

scattering processes. The physical meaning of this form of the collision term is clear: the

scattering processes tend to bring the system back to equilibrium, with a time scale set by

the relaxation time. In certain scenarios this physical picture is not accurate, for example

the phonon normal scattering processes conserve phonon momentum and cannot damp

the system towards equilibrium 6. Nevertheless, RTA often leads to reasonably accurate

quantitative predictions for engineering applications, and more importantly, RTA gives

an intuitive physical picture of transport that can guide material analysis and design. In

some special cases where the phonon normal scattering processes actually dominate the

Umklapp scattering processes, such as in certain two-dimensional materials9 9 , an iterative

self-consistent solution of the Boltzmann equation is needed.

With RTA, the Boltzmann transport equation can be readily solved'o, and the

particle number and energy flux can be calculated with the solved distribution function.

In the case of electrons, the two fluxes depend linearly on both the applied electric field

and temperature gradient when the applied field and temperature gradient are weak, and

the linear coefficients are directly related to the thermoelectric transport properties. A

detailed discussion of the formulation of coupled-transport is postponed till Chapter 5 on
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the coupled diffusion of phonons and magnons, which is fully analogous to the coupled

electron transport.

The thermoelectric transport properties have the following forms from the

Boltzmann transport equation with the RTA:

0 = -e Ve 2
TD (E) dE, (2.3)

a E

S = (E - E)V,2eD,(E) dE, (2.4)
aT aE

Ke = E- Ef) v,, dE - TS2, (2.5)
T aE

/,= 1 hoD,(w) dA, (2.6)

where subscripts e and p refer to electron and phonon properties, respectively, and f0

and no represent the Fermi-Dirac and the Bose-Einstein distributions. It is noted here that

the use of the density of states in the above equations is not necessary for first-principles

calculations, where the integration with respect to electron energy or phonon frequency is

replaced by a summation over all electron and phonon states. Nevertheless we keep the

equations written in terms of the density of states here, because it is one of the most

important material properties when thermoelectric materials are analyzed.

Now it is clear from Eqs. (2.3) to (2.6) that the information needed from first-

principles calculations includes: the energy (frequency), group velocities and the

relaxation times of electrons and phonons. The first two properties can be readily

calculated with standard DFT, and the real challenge here is to accurately and efficiently
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calculate the relaxation times of electrons and phonons from first-principles. In section

2.1.2, we will briefly introduce DFT and the band structure calculations, and we dedicate

section 2.2 to introducing the formalism of relaxation time calculations.

2.1.2Electron and Phonon Band Structures and Density Functional

Theory

The first step in studying carrier transport is to look for the carrier states that exist

in a given material. In the case of electrons, a Schrdinger equation with a periodic ionic

potential needs to be solved6. Due to the periodicity of a crystal lattice (or discrete

translational symmetry), this Schridinger equation can be projected into different crystal

momenta k in the reciprocal space, and at each k point a smaller scale equation needs

to be solved. While this calculation at the single-electron level is trivial, it is important to

properly include electron-electron interactions to accurately model real materials.

Different levels of approximations of electron-electron interactions were developed for

realistic calculations 100"0 1. The first level is the Hartree method, where for a given

electron, the effect of all other electrons is smeared out as a Coulomb interaction with a

continuous charge distribution. There are two major effects missing from this calculation:

electron exchange and correlation. The exchange interaction stems from the Pauli

exclusion principle, which determines that electrons with the same spin tend to expel

each other in real space and the Coulomb energy between them is lowered by this

expulsion. The correlation effect refers to the error introduced when smearing out

discrete and moving electrons into a static continuous charge distribution, and in practice

just includes all other deviations from single-electron results aside from the exchange

interaction. The second-level of approximation is the Hartree-Fock method, where the
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exchange interaction is treated exactly by using an antisymmetrized Slater determinant as

the trial function in a variational solution of the many-particle Schrodinger equation. In

1964, Hohenberg and Kohn proved in their seminal paper8 9 that all ground-state

properties of a many-electron systems are solely determined by the ground-state charge

density distribution. In other words, it is sufficient to solve for the ground-state charge

density distribution, which is a single scalar in space, instead of the full wavefunction

with the coordinates of every electron. Based on this observation, Kohn and Sham90

derived a group of single-particle equations that can be solved in an iterative self-

consistent way. This group of equations was later named "density functional theory"

(DFT), and the key component of DFT is the introduction of an exchange-correlation

functional E,[p] of the charge density distribution p. Although the exact form of this

exchange-correlation functional is unknown, many effective approximations have been

devised, among which the most widely used is the local density approximation (LDA):

E, [ p ] = fp(r) -c, (p dr, (2.7)

where e, (p) is the exchange-correlation energy of a uniform interacting electron gas

that can be numerically calculated to a high precision. And thus, LDA consists of the

physical approximation of dividing an arbitrary charge density distribution into a

combination of uniform electron gases within small volumes. A systematic extension of

LDA is the generalized gradient approximation (GGA), where the exchange-correlation

energy also depends on the spatial gradient of the charge density distribution.

Another crucial piece of practical DFT simulation is the use of pseudopotentials.

Pseudopotentials are artificially designed ionic potentials of the valence electrons that
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include the effects of both the atomic nuclei and the inner-shell core electrons. With

pseudopotentials, the number of electrons one needs to simulate in a real material is

largely reduced, and thus so is the computational cost also reduced. To generate a

pseudopotential, typically a full DFT simulation of a single atom is first carried out, and

the wavefunctions of the inner-shell electrons are processed to generate an effective

potential that keeps the scattering cross section of the valence electrons unchanged 0 2.

This is usually done by calculating the logarithmic derivative of the wavefunctions of the

valence electrons at a certain cut-off radius to ensure that the logarithmic derivatives are

the same when the real core electrons are included or when the effective potential is used

instead. This type of pseudopotential is called "norm-conserving" pseudopotentials, and

is the main type used in this thesis.

DFT has become a standard technique in chemistry and material science

nowadays, and there are commercial as well as open-source computer programs available

for electron and phonon band structure calculations. The DFT engine used in this thesis is

Quantum Espresso , an open-source package written in Fortran; and post-processing of

the DFT data was mostly carried out by home-made computer codes, except for the

Wannier interpolation program EPW104 that will be introduced later.

As examples, Figure 2-2 displays the electronic band structures of phosphorene

and FeSb2, the two materials studied in detail in later chapters. The electronic band

structures provide several crucial parameters that determine the electron transport: the

energy band gap, the effective masses and the group velocities. It is well known that DFT

calculation underestimates the band gaps, and in practice the bands are often rigidly

shifted to match the experimental band gap. The effective masses are defined through the
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second derivative of the energy dispersion relation m*=h2
(ak 2)

, which is an

important parameter in evaluating the thermoelectric performance: a large effective mass

leads to large density of states, and often benefits the Seebeck coefficient, while a smaller

effective mass is good for a high mobility and thus benefits the electrical conductivity.

The group velocities are defined as the derivative of the energy dispersion relation

v = -VkE
h

and directly enters Eqs. (2.3) to (2.6) for calculating transport properties.
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Figure 2-2 Examples of DFT calculation of electronic band structures. (a) The

electronic band structure of phosphorene, a two-dimensional semiconductor. Large
anisotropies of both the conduction and valence bands are observed near the band

edges at the F point. (b) The electronic band structure of FeSb 2. Experimentally a
semiconductor, FeSb 2 is found to be a metal from DFT calculation, a well-known
problem of DFT for underestimating the bandgaps.
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To calculate the band dispersion of phonons, the interatomic forces need to be

calculated. Since the atoms in a solid are "glued" together by the electron cloud, the

interactomic forces are the cost of the total electron energy with respect to displacements

of atoms. In general, these forces can be calculated by two means: by manually

displacing atoms from their equilibrium positions and using DFT to calculate the forces

exerted on all the atoms, the so-called "frozen-phonon" approach 0 5; or by solving the

o3p
linear response of the charge density with respect to atomic positions directly in an

3R

extended DFT framework, the so-called "density functional perturbation theory"

(DFPT) O'. The two approaches are mathematically equivalent, and the only difference is

that one works in real space, while the other works in the reciprocal space. With the

interatomic forces calculated through either of the two methods, the lattice dynamical

equations of the atoms can be solved for the phonon dispersion relations' 0. Figure 2-3

shows the phonon dispersion relation of FeSb 2 calculated using DFT and the "frozen

phonon" approach.
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Figure 2-3 Calculated phonon dispersion relation of FeSb 2 using DFT and the
frozen phonon approach.
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2.2 Scattering and Fermi's Golden Rule

It is clear from discussions in the previous sections that the real challenge of

calculating the electron and phonon transport properties from first-principles is to deal

with the scattering processes, or in other words, to calculate the relaxation time r

accurately in a computationally tractable way. In this section we describe the general

formalism of calculating scattering rates of various processes and the strategies to reduce

the computational cost in practice. A more comprehensive introduction is given in a

review article10 8 coauthored by the author of this thesis.

In the transport regime that we are usually concerned with, the carrier interaction

(scattering) can be safely treated using perturbation theories. Starting with the electron

and phonon band structures as the unperturbed states, the interaction among the carriers

or between carriers and impurities are introduced as a perturbation Hamiltonian AH.

Depending on the nature of the interactions, AH can be either time-independent (the

impurity scattering) or time-dependent (electron-phonon, and phonon-phonon

interactions). In the framework of time-dependent perturbation theory1 09, the eigenstates

of the unperturbed system will not evolve independently any more, and instead

transitions happen among the eigenstates. The rate of the transtions from the initial state

Ii) to the final state If), in the lowest perturbation order, is give by the Fermi's golden

rule:

W = (iI AHf)1 2 (Ei- Ef, (2.8)
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where W is the transition rate, E and Ef are the energies of the initial and final states.

The 8 function imposes the energy conservation in the case of a time-independent

perturbation. If the perturbation has a time-harmonic form instead, the energy of the final

states no longer has to be the same as the initial state, and instead 3(E, -E, - ho)

should be used in Eq. (2.8). In the following subsections, we introduce the forms of AH

in cases of the different scattering processes studied in this thesis.

2.2.1 Phonon-Phonon Anharmonic Scattering

If the interatomic potential U in a real solid is expanded in a Taylor series of the

atomic displacements from the equilibrium positions {u }

U = IX pu iU + X I ijuiuuk + ... (2.9)
2 ij 3 ijk

the first order terms vanish because the displacements are measured from the equilibrium

32 U
position, the second order (harmonic) force constants Og = defines the phonon

aui aui

dispersion, and the higher order (anharmonic) force constants, most importantly the third

order force constants yfjk = cause phonons to scatter among themselves and
au. au i auk

thus create the thermal resistance in a real solid. Both harmonic and anharmonic force

constants can be calculated by the "frozen phonon" method and DFPT. With the third

order force constants being the perturbation, the Fermi's golden rule for phonon-phonon

anharmonic processes is given as" 0
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'( o,, + o q\A -Oj("" +nq,% )O(Wq; - - Oq% ) 0
q-qI-q2-G

1 7r 2 \ (2. 10)

where Tpl-h is the relaxation time of a phonon mode with wave vector q and branch

index A , no is Bose-Einstein distribution, (0 is the phonon frequency, G is a

reciprocal lattice vector and Vq, 1 A2 .2 is the three-phonon interaction matrix elements

given by

h 32 ei(q,R+q 2,R 2 ) r T 2Y

Vq, q =AA2 - YROrRr1,R2 T2 M (q( i 2 ) 2 /)2 Riria; M rM , Ms T20 1- qA 0%

where R denotes the coordinate of a unit cell and T is the coordinate of an atom inside

the unit cell, {a,,y} labels the coordinate directions, M, is atomic mass and e' is one

component of the porization vector of the phonon mode {q,A}. The two 6 -functions in

Eq. (2.10) impose the energy conservation as well as the crystal momentum conservation

due to the crystal periodicity. With Eqs. (2.10) and (2.11), the phonon relaxation time due

to phonon-phonon anharmonic interaction can be calculated, and together with Eq. (2.6),

the lattice thermal conductivity can be calculated.

2.2.2 Electron-Phonon Interaction

Electron-phonon interaction has been well known to create major resistance to

electron transport in metals and semiconductors. The coordinates of electrons and atomic

nuclei represent the most common degrees of freedom in a solid. The full quantum

mechanical treatment of the excitations in a solid thus require the solution of the
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Schrdinger equation involving the coordinates of all electrons and atomic nuclei, which

appears intractable in most cases. A widely applied simplification, the Born-

Oppenheimer approximation", makes use of the fact that the electrons' mass is much

smaller than that of the nuclei, and the electrons respond to the motions of the nuclei so

quickly that the nuclei can be treated as static at each instant. Under the Born-

Oppenheimer approximation, the coordinates of the nuclei enter the electronic

Schridinger equation as external parameters, and in turn the electronic ground-state

energy acts as part of the interaction energy between the nuclei given a specific

configuration, with which the quantized excitations of the atomic nuclei, namely the

6phonons, can be investigated separately from the electrons . It is important to note,

however, that the Born-Oppenheimer approximation does not separate the electronic and

atomic degrees of freedom completely, and a remaining coupling term can cause

transitions between the eigenstates of the electron and phonon systems1 0. This electron-

phonon interaction problem was first studied by Bloch 112, and later understood as the

main source of resistance to electrical conduction in metals and semiconductors at higher

temperatures 1 , and played the key role in the microscopic theory of

113
superconductivity

In the case of electron-phonon interaction, the perturbation Hamiltonian is the

change of the total electron energy with respect to atomic displacements, and the Fermi's

golden rule can be derived accordingly as

1 21r 2 ('+n)(E, - E,+O) k+,,k'+G Vk k (2.12)
= --- (k'|a qV1 k)| I -

(k) + +(I+(n, -,)6(Ek -E,- h o)8k-k'+G 1 I,
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where r" is the relaxation time of electrons due to electron-phonon interaction, k and

k' are the wave vectors of initial and final electron states, 3aqV is the change of electron

total energy with respect to a phonon perturbation with wave vector q and band index A.

that can be obtained from DFPT calculations, and the term 1 - Vk, Vk considers the

fact that large-angle scatterings are more effective in creating resistance to electron

transport than small-angle scatterings. Thus the defined relaxation time is also called the

"momentum relaxation time", in contrast to the "energy relaxation time" without the

1 - Vk Vk factor 93. Equation (2.12) implies that the strength of electron phonon

scattering depends on: 1) the strength of the coupling, represented by the magnitude of

the matrix elements; 2) the available phase space for the scattering events to happen,

determined by the energy and momentum conservation requirements; 3) the available

final electron states, since Eq. (2.12) sums over all possible final states. We will discuss

the impact of the three factors on the electron-phonon scattering in phosphorene in detail

in Chapter 3.

Electron-phonon interaction can affect phonon transport as well. We will discuss

this effect in semiconductors in detail in Chapter 4, and here we only provide the Fermi's

golden rule for the phonon relaxation time due to electron-phonon scattering 10

=- 27 gc1 19 , (k,q J)2 , (E , k+q - h ) , (2.13)
qX mnk

where m and n are the indices of electron energy bands,

g (k,q) = (h/2mo )12 (m,k + q; VIn,k) is the electron-phonon coupling matrix

48



element (m is a convenient reference mass in practical calculations, and real atomic

masses are absorbed into the matrix elements).

2.2.3 Interpolation with Maximally Localized Wannier Functions

In the preceding subsections, we have presented the ingredients needed for

calculating the relaxation times of electrons and phonons due to electron-phonon and

phonon-phonon interactions. These ingredients can all be obtained from standard DFT

and DFPT calculations. The calculations of phonon-phonon interactions can be readily

carried out with these ingredients. For electron-phonon interactions, however, there is

another technical obstacle: because the phonon energy scale (tens of meV) is much

smaller than the electron energy scale (-eV), usually a very dense sampling mesh of the

Brillouin zone is required for a converged calculation, which can be computationally

costly. One way to get around this obstacle is to use interpolation: first carry out the

calculations on a coarse mesh, and then interpolate to a sufficiently dense mesh required

for convergence. Although the idea is straightforward, it is nontrivial to find an accurate

and systematic interpolation method in this case. Intuitively, interpolation in the

reciprocal space is equivalent to the extension of the distance of interaction in real space

that is included in the calculation. In this vein, a clear path is that the calculations first on

the coarse mesh should cover interactions in real space up to a cut-off distance, beyond

which the interactions are weak and can be safely ignored. Then with the interaction

matrix elements on a real space basis, interpolation to an arbitrarily dense mesh in the

reciprocal mesh should be accurate because the artificially excluded long-range

interactions are small. This method has actually been widely used in phonon-phonon

scattering calculations already, where the real space interatomic force constants are
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usually cut-off at a certain distance (or "neighbor shell"), beyond which the interatomic

force constants are set to zero. In the case of electron-phonon interaction, however, this

method is not as straightforward because there is no apparent real space basis to use to

describe the interactions in real space.

In fact, there is a real space correspondence to the Bloch wavefunctions in

reciprocal space, called the Wannier functions6 . Wannier's observation was that the

Bloch wavefunctions yfnk (r) = u,, (r) ek, where ufl, (r) is a periodic function in r, are

2ff
also periodic in k with a period of - with a being the lattice constant, and thus a set of

a

real space wavefunctions can be defined as a spatial Fourier transform of the Bloch

wavefunctions with respect to k

V
9flRr) Idke~" 2.d U,,Ik(r), (2.14)(2f) 3 

. BZ M 1

where V is the unit cell volume, J is the number of electron bands, and Uk) is an

arbitrary unitary matrix. The Wannier functions 9pnR (r) are reminiscent of atomic

orbitals, and indeed are the atomic orbitals in the simple case of a tight binding model6 . In

a real material, however, the Wannier functions TpnR (r) can take on random shapes and

may not even be localized. The degrees of freedom in choosing the unitary matrix Ulk,

however, makes it possible to computationally search the optimum, in this case

114maximally localized, Wannier functions . Pioneered by N. Marzari and D.

Vanderbilt 1 5, efficient computational methods have been developed to calculate the

maximally localized Wannier functions in real materials. Figure 2-4 illustrates both the
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concept of Wannier functions and the calculated maximally localized Wannier functions

in silicon.

With the maximally localized Wannier functions as the proper real space basis,

the electron-phonon interaction matrix elements can be transformed into real space, and

the long-range interactions can be cut off in real space beyond a certain distance. This so-

called "Wannier interpolation" scheme was first developed by F. Giustino and S. Louie at

UC Berkeley" 6 , and a computer program named EPW'0 4 has been developed for this

interpolation scheme. This program is also used in this thesis with extensive

modifications in terms of integration methods (discussed in the next section) and the

capability of calculating transport properties.

(a) Bloch functions

Wk 4X)

WX 
2(X)

Wannier functions

w2(x)

Figure 2-4 Illustrations of Wannier functions. (a) Schematic comparing the

extended Bloch functions and localized Wannier functions. (b) Calculated

maximally localized Wannier functions for silicon, using the four valence bands.

Adapted from Ref. 114.
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2.2.4 Integration Methods of the Scattering Rates

To carry out the sums in the Fermi's golden rule equations (2.10), (2.12) and

(2.13), special treatments are needed due to the presence of the two 3 -functions. One

straightforward way to numerically treat the 3 -functions is to replace them with

Gaussians with a finite width. In this case the widths of the Gaussians (the "degauss"

parameter) need to be compatible with the sampling mesh density, and both parameters

need to be tested for convergence. Simple to implement, it is cumbersome to test

convergence and more importantly, and some fine features in the calculation can be

washed out by the Gaussian broadening. An alternative is to use the so-called "tetrahedral

method" 1 7. The idea is to divide the three-dimensional Brillouin zone into a large

number of small tetrahedra, and assume linear energy dispersion within each tetrahedron

E = ak, +bk, +ckz +d, (2.15)

where the linear coefficients a , b , c and d can be uniquely determined by the

calculated energies at the four vertices of the tetrahedron. When the tetrahedra are

sufficiently small, the linear interpolation has only higher-order errors. With the

interpolated linear energy dispersion relations, the Fermi's golden rules with 3 -functions

can be analytically integrated. In this case, the convergence of calculation only needs to

be tested on the sampling mesh density, and sharp features in either the electronic band

structure or the scattering profile can be captured. In two-dimensional calculations, an

analogous triangular method" 8 can be used. Tetrahedral and triangular methods are used

in this thesis, except for the phonon-phonon scattering calculation, where the

convergence issue is not as critical as the electron-phonon scattering calculation. Figure
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2-5 shows the electronic density of states of phosphorene calculated using the triangular

method, where sharp features near the band edges are well resolved.

4.5

$ 4

. 3.51-

2.5
C/)

1.5--
0Cis

0

-1 0 1 2 3
Electronic Energy (eV)

Figure 2-5 Electronic density of states of phosphorene calculated with a triangular
integration method.

2.3 Fundamentals of Magnons

Another type of energy carriers studied in this thesis is magnons. Magnons, or

quantized spin waves, are quantized excitations of a magnetic system, just as phonons are

quantized excitations of a crystal lattice. On the physical origins, both phonons and

magnons are Goldstone modes from broken continuous symmetries: the continuous

translational symmetry in the case of phonons, and the continuous rotational symmetry in

the case of magnons. Figure 2-6(a) illustrates the propagation of a magnon: spins on each

lattice site possess a different phase of precession. The dynamics of the magnons is

described by the Heisenberg Hamiltonian
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H=Fh = Ji. -J., (2.16)

where F is the exchange energy between two spins Ji and J1 . In a ferromagnet, through

a formal manipulation named "Holstein-Primakoff transformation" 19, the Heisenberg

Hamiltonian can be expanded in a series analogous to the Taylor expansion Eq. (2.9).

The first term in the series is the ground state energy HO = NFJ2 
, where N is the

number of sites, and J is the spin quantum number. The second term in the series is

H2 = ho(k)a& ^k, where o(k) gives the magnon dispersion relation, and a^ and ak

k

are creation and annihilation operators of magnons, respectively. In the simplest one-

dimensional spin chain, the magnon dispersion relation is 0(k) = -17(1 - coska), where

a is the lattice constant. This dispersion is shown in Fig. 2-6(b). In the small k regime,

the dispersion is quadratic, in contrast to the linear dispersion of phonons. The next term

in the series represents 4-magnon scattering processes. Unlike phonons, there are no

three-magnon processes, due to the conservation of total angular momentum. And thus,

although magnons are bosonic quasiparticles, their number is conserved when they only

interact among themselves, and for this reason Bose-Einstein condensation of magnons

120
has been observed

One important and interesting feature of magnons is that their energy can be

controlled by an external magnetic field through the Zeeman effect. Under an external

magnetic field, the magnon dispersion is modified to ( (k) = co (k) +gpBB, where g is

the Lande g factor, YB is the Bohr magneton, and B is the external magnetic field.

Given the temperature, the energy of magnons directly affects their population, and this

effect is analogous to electron transport, where the electric field also changes the energy
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of electrons. With this observation, in Chapter 5 we develop a Boltzmann theory of

magnon transport and describe a novel magnon cooling effect driven by an

inhomogeneous magnetic field.

(a)

(b)

4J

hw

S1I

0
k

Ir/a

Figure 2-6 (a) Illustration of spin wave (magnon) propagation. Picture from

internet: http://www.unimuenster.de/Physik.AP/Demokritov/en/Forschen/Forschung
sschwerpunkte/mBECwam.html. (b) Magnon dispersion in a one-dimensional spin

chain.
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Chapter 3

Understanding Electron and Phonon

Transport in Thermoelectrics from First-

Principles

In this chapter we apply the first-principles simulation tools described in Chapter 2 to

study the phonon-phonon interaction in a low-temperature thermoelectric material FeSb2

and the electron-phonon interaction in a newly discovered two-dimensional

semiconductor phosphorene. The most important transport properties we can extract from

these calculations are the mean free path distributions of electrons and phonons, which

provide practical guidelines in designing nanostructures to engineer the electrical and

thermal transport properties of these materials.
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3.1 Phonon-Phonon Interaction in FeSb2 *

3.1.1 Background

Thermoelectric materials ar& useful not only for generating electric power from

heat, but also for providing cooling power by passing through an electric current'2,3,5,121-

126 . Thermoelectric materials are especially attractive as refrigerating materials for being

reliable, noiseless, and without any moving parts 3. Recently, the compound FeSb2 has

attracted a significant amount of research interest as a promising thermoelectric material

for cooling applications at cryogenic temperatures since it was experimentally found to

show an ultra high Seebeck coefficient (S -42 mV/K), and thus a large power factor

(PF ~ 2300 pWK-2 cm-1 ) at T = 12 K 127. Subsequent work was done for a better

understanding of this material, and improving its thermoelectric efficiency' 28 -3 . The

origin of the high Seebeck coefficient is still under debate. FeSb2 has been characterized

to be a strongly correlated semiconductor136-1 38, or more specifically, a Kondo

insulator 139' 140, where a small hybridization gap (-10 meV) is formed at low temperatures

as a result of the interaction between localized f- or d-orbitals (d-orbitals of Fe atoms in

this case) with itinerant energy bands. Since f- and d-bands are in general quite flat, the

resulting electronic structure is known to give large Seebeck coefficients141. This

mechanism was recently verified in a model study of Kondo insulator nanowires using

the dynamic mean-field theory142. Tomczak et al. studied the electronic structure and the

corresponding Seebeck coefficient of FeSb2 in detail from first-principles 143. They

obtained the electronic ground state of FeAs 2 and FeSb 2 including many-body effects

B. Liao et al., Physical Review B, 89, 035108 (2014)
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using DFT with the GW approximation, and managed to reproduce temperature

dependence of the Seebeck coefficient that was in good agreement with experiments in

the intermediate temperature range but failed to explain the large peak of the Seebeck

coefficient at lower temperatures for FeSb2. On the other hand, Pokharel et al. 144"145

studied the correlation between the thermal conductivity and the Seebeck coefficient of

FeSb2 samples with different grain sizes, and suggested that the phonon-drag effect

should be mainly responsible for the abnormal Seebeck coefficient.

Despite its high power factor, the single crystal FeSb2 shows low zT due to its

high lattice thermal conductivity (k ~500 W/mK at 12K)"' . Thus it is the key for

improving its thermoelectric performance to understand the thermal transport in FeSb2

and to reduce its thermal conductivity accordingly. Compared to the abundant

investigations of its electronic properties, only a handful of studies thus far looked into

the thermal properties of FeSb 2. Lazarevi et al. 146 calculated the phonon dispersion

relation of FeSb 2 using density functional perturbation theory (DFPT) and studied some

specific phonon modes using Raman spectroscopy experimentally. Diakhate et al. 147 also

studied the harmonic properties of phonons and the lattice heat capacity using DFPT. No

work so far, however, has been focused on the anharmonic properties of the lattice, and

the phonon-phonon interactions, which largely controls the thermal transport properties

of FeSb2.

We here apply the first-principles formalism for the thermal conductivity

calculation based on DFT and real-space lattice dynamics to FeSb2 in order to understand

its intrinsic phonon-phonon interactions and more importantly, to provide information on

the phonon mean free path distribution, which is important in guiding the nanostructuring
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strategy for effectively reducing its thermal conductivity ,122128 The electronic

structure is first obtained by DFT given the crystal structure, and then the interatomic

forces can be calculated by DFT after directly displacing specific atoms from their

equilibrium positions by a small amount according to the crystal symmetry. Provided the

atomic displacements and the corresponding interatomic forces, in addition to the linear

constraints imposed by symmetry, a least-square fitting procedure is invoked to extract

the harmonic and anharmonic force constants' 5 , within which the phonon harmonic and

anharmonic properties are encoded. The phonon dispersion relation, the phonon-phonon

scattering rates, the lattice thermal conductivity and the mode-specific phonon mean free

paths can then be calculated based on the force constants information6 0.

3.1.2 Calculation Details

136
FeSb2 crystalizes in an orthorhombic marcasite structure (space group Pnnm)

with 2 iron atoms and 4 antimony atoms in one unit cell, as shown in Fig. 3-1. Each iron

atom is surrounded by 6 antimony atoms that are arranged in a deformed octahedron. The

low symmetry of the crystal structure and the complexity of the unit cell render it a

computationally challenging task to reliably attain the force constants of FeSb2.

(a (b)

Brown: Fe atom , Blue: Sb atom

Figure 3-1 Crystal structure of FeSb 2. Adapted from Ref. 136.
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We used the Quantum ESPRESSO package 103 for the DFT calculation, with

norm-conserving Perdew-Zunger local density approximation (LDA) pseudopotentials 48 .

We chose the plane-wave cut-off energy as 120 Ryd and a 16 x 16 x 16 k-mesh for the

self-consistent field (SCF) calculation to guarantee well-converged interatomic forces.

The crystal structure was fully relaxed, and the resulting lattice parameters were

a = 5.743 A, b = 6.414 A and c = 3.102 A, ~I% smaller than the experimental values at

T =20 K 136. To obtain long-range force constants, supercells with distinct sizes

(2 x 2x 2, 1x Ix 4, 1x 4 xI and 4 x Ix 1) were constructed. Specific atoms in a unit cell

were displaced systematically by amounts of 0.01A, 0.02A and 0.04A along different

coordinate directions from their equilibrium positions, and the interatomic forces were

calculated for each configuration. Several configurations with random atomic

displacements were added to improve the quality of the dataset for fitting the force

constants. In the least-square fitting procedure, 18 neighbor shells were included for the

harmonic (second-order) force constants, and 9 neighbor shells for the anharmonic (third-

order) force constants, which amounted to 200 second-order and 1365 third-order

independent force constants. It is worth noting that due to the low symmetry of the crystal,

the 18th neighbor shell is only ~ 6.4 A away from the atom at the origin, and the 9 th

neighbor shell goes to ~ 5.2 A away. The absence of longer-range interactions due to the

limitation of the computing resource might contribute to the errors and uncertainties in

the simulation result, as will be discussed later.

3.1.3 Results and Discussion

After the harmonic force constants were extracted, the phonon dispersion

relations could be calculated by solving for the eigenvalues of the dynamical matrix
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constructed from the harmonic force constants 60, as shown in Fig.2-3. Our calculated

phonon dispersion relations were in very good agreement with other calculations1 46,14 7

using DFPT, indicating that the extraction of the harmonic force constants was reliable. It

is relatively harder to validate the anharmonic force constants. The mode-specific

Griineisen parameters, y, d n (" q where Onw is the frequency of a specific phonon
dInV e

mode, and V the volume of the crystal, quantify the anharmonicity of the lattice at a

60microscopic level, and can be computed directly from the anharmonic force constants .

Being hard to measure in experiments, the Griineisen parameters manifest themselves in

all other measurable quantities that resulted from the lattice anhamonicity, for example

the bulk thermal expansion coefficient 60'"49 a = " , where F is the averaged Grilneisen
3B

parameter weighted by the mode-specific heat capacity, c, the total heat capacity and B

the bulk modulus. We first calculated the bulk thermal expansion coefficient and

compared it to the experimental data' 36, as shown in Fig.3-2. Good agreement was

achieved at very low temperatures, while at higher temperatures, deviations from the

experimental data were observed. As discussed by Petrovic et al'36, the peak structure in

the thermal expansion coefficient can possibly be attributed to the Shottky peak in the

electronic specific heat associated with narrow band gap semiconductors, which can not

be captured in our simulation.
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Figure 3-2 The calculated and experimental thermal expansion coefficient of FeSb 2.

The experimental data is extracted from Ref. 136.

Moreover, we calculated the mode-specific GrUneisen parameters via two

different approaches and compared the results in order to check the self-consistency of

our simulation. One approach was to manually scale up the size of the crystal by a small

amount (0.0 1% in this case) and to recalculate the phonon dispersion relations so that the

mode specific Grineisen parameters could be computed by the finite difference method

from the definition; the other approach was to compute the GrUneisen parameters directly

from the anharmonic force constants. The results are plotted in Fig. 3-3. No perfect match

was observed due to the absence of contributions from higher order force constants and

farther away atomic layers that were not included in the simulation when calculating the

Grdneisen parameters directly from the anharmonic force constants. Especially the

deviations in the acoustic modes were caused by the fact that the size of the supercells

that could be handled was very limited given the complexity of the unit cell. Nevertheless
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the general trend and the range of the dispersion of the numerical values were consistent

between the two approaches, indicating that a reasonable degree of convergence in terms

of the number of neighbor shells and the force constants was reached in our calculation.

2.5
FD
Direct

0 '
E 1.51~ 0 ... ;! *M

0. 0

M :0 $0 0 0 o
a.00 1*. 0

000

0 1

0. 0

F Z T R F X S U F Y

Figure 3-3 The comparison of mode-specific Grfineisen parameters calculated with
two different approaches: finite difference (FD) and direct calculation from third

order interatomic force constants.

Of great interest are the phonon-phonon scattering rates that can be calculated

from the extracted force constants using Fermi's golden rule6 0 . The scattering rates for

both normal processes and Umklapp processes at T = 20 K are plotted in Fig.3-4. The

scattering rates of the acoustic modes and optical modes are plotted separately. A

quadratic dependence of the normal scattering rates of acoustic phonons on frequency can

be seen from the plot, while the scattering rates of the acoustic phonons for Umklapp

processes seem to scale as 0) , a fact that is quite similar to silicon 60. It is noticed that at

T =20 K the phonon scattering rates are in general quite low, and the phonon mean free
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paths can be comparable to the sample size, implying that boundary scattering should be

included when calculating the thermal conductivity.

102 102

TA1 TA1
TA2 TA2

LA LA
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Figure 3-4 The calculated phonon-phonon scattering rates due to (a) normal

processes and (b) UPbklapp processes in FeSb2 at 20K.

A finite mesh when sampling the Brillouin zone leads to errors in calculating the

lattice thermal conductivity, due to the missing contributions of phonon modes with very

long wavelengths. This numerical artifact can be compensated by extrapolating the

results of calculations with a finite mesh of different sizes according to the following

relation60, 15

"T) = I - +0 2 (3.1)
K (T) n, n

where the coefficient c(T) can potentially depend on temperature (at higher

temperatures, the phonon-phonon dominant thermal conductivity K 0 (T) - T', leading to

a temperature-independent c . Otherwise c(T) will depend on the temperature), n, is

the number of sampling points in one dimension, K,, is the corresponding calculated

lattice thermal conductivity, and K- is the extrapolated lattice thermal conductivity
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corresponding to infinite sampling points. Calculations with 6 x 6 x 6 , 8 x 8 x 8 and

lOxlOx10 sampling meshes were conducted for extrapolation. The extrapolation is

illustrated in the inset of Fig. 3-5, where the linear relation Eq. (3.1) is found to hold at

different temperatures, and c(T = 20K) is distinct from those of higher temperatures as

expected, since the scaling K0 (T)~ T 1 starts at higher temperatures. The extrapolated

thermal conductivity is plotted in Fig. 3-5, and is compared to the experimental data from

Bentien et al.' 27 and Sun et al. 31 . Our calculation overestimates the thermal conductivity

of FeSb2, and it is understandable and expected because at the temperature range that we

are interested in, the sample boundary scattering and impurity scattering play important

roles compared to the phonon-phonon scattering under investigation. We can incorporate

these two effects using model relaxation times via Matthiessen's rule. We use the Casimir

model for the sample boundary scattering, i.e. I= , where 'rBS is the relaxation
TBS

time due to sample boundary scattering, v is the mode dependent group velocity and I is

the characteristic size of the sample that we chose as a fitting parameter. We also add a

Rayleigh-type term accounting for the impurity scatteringi12, -= AwD 4 , where A is
Iis

used as another fitting parameter. The consideration of boundary scattering and impurity

scattering in this manner is not from a first-principles approach and provides less

essential information on phonon transport in FeSb2 since these procedures are sample-

dependent, but we chose to adopt the two models for data fitting just to show that they

were still insufficient to explain the experimental data even with the extra two scattering

mechanisms. One such fit is shown in Fig. 3-5. The fitting parameters in this case are

1 = 0.5 mm and A = 3.7x 10-' s3 . While one could bring down the calculated thermal

66



conductivity to the experimental level at lower temperatures, the deviations at higher

temperatures are still apparent. In fact, our calculations follow the typical T-' trend for a

phonon-phonon dominant system quite well, whereas the experimental values fall on a

T- 7 fit at higher temperatures. Although the exclusion of the contributions from longer-

range atomic interactions and higher-order force constants could result in errors in our

calculations, their inclusion would not alter the l/T temperature-dependence. Thus we

suspect that this deviation is caused by the omission of other scattering mechanisms

specific to the FeSb2 system, either due to electron-phonon interactions (the phonon drag

effect) or to electron correlations. It is also worth noting that the way the lattice thermal

conductivity was extracted from the experiments was to subtract the electronic

contribution from the measured total thermal conductivity, and the electronic contribution

was estimated using the Wiedemann-Franz law with a metallic Lorenz number

LO = 2.44 x 10-8 WQK- 2 in both the references 12 7,1"31 . And as commented in the

references 2 7,3 1 , the electronic contribution has a significant magnitude compared to that

from the phonons at temperatures above 100 K. Given the strong correlation among

electrons, it is probable that the Wiedemann-Franz law, or the metallic Lorenz number

are no longer valid in this system. Furthermore, the strongly correlated electron dynamics

could also lead to different phonon behaviors via the phonon-electron interactions. These

complications still require further investigations in the future.

To further examine the thermal conductivity, we decomposed the total thermal

conductivity into contributions from different modes, as shown in Fig. 3-6. Below 50K,

the acoustic phonons dominate the thermal conduction since the population of the optical

modes is very small. At higher temperatures, however, the contributions from the optical
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modes gradually become significant, taking up to -33% at 200K. Optical phonons

typically do not contribute much to the total thermal conductivity due to their low group

153
velocities and short mean free paths' . In FeSb2, the hybridization of the optical phonon

bands with the longitudinal acoustic (LA) mode and among themselves results in

significant band dispersion and higher group velocities, as can be observed in the phonon

dispersion plot in Fig. 2-3, which is one reason for the significant contribution from

optical modes at higher temperatures.
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Figure 3-5 The comparison between the calculated and experimental thermal

conductivity of FeSb 2. The magenta line represents the calculation result with only

phonon-phonon interactions, and the brown line represents calculation result

including boundary and impurity scatterings. The inset illustrates the linear

extrapolation to compensate for the finite sampling mesh problem.

In Fig. 3-7 the thermal conductivities along different crystal axes are plotted. The

thermal conductivity along c axis is about half of those along a and b axes at low

temperatures, and this anisotropy diminishes at higher temperatures. The low-temperature

anisotropy can be possibly attributed to two causes: the group velocity anisotropy and the
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phonon-phonon scattering anisotropy. The former can be ruled out by the calculated

sound velocities by Diakhate et al.1 , where the average sound velocities do not show

significant direction-dependence. To check the latter, we present in Fig. 3-8 the

correlation between the total relaxation time and the group velocity components of the

acoustic modes that dominate the low temperature thermal conduction. It is observed that

those phonon modes with large group velocities along c axis mainly reside in the short-

relaxation-time region, whereas the modes with the longest relaxation times also possess

large group velocity components along a and/or b axes. This result confirms that the

origin of the lower temperature anisotropy lies in the anisotropic phonon-phonon

scattering.
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Figure 3-6 The contributions of different phonon modes to the total thermal

conductivity of FeSb2 at different temperatures.

69



k
aa

10- k bb

k cc

Z

*0

102
E

101 102
Temperature (K)

Figure 3-7 The thermal conductivity of FeSb2 along different directions, showing the

anisotropic thermal transport.
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Figure 3-8 The correlation between the group velocity directions and the total
relaxation time, illustrating that the anisotropic thermal transport is due to
anisotropic scattering.

Although no perfect match was achieved with the experimental data, we believe

the simulation still provides valuable information on the lattice dynamics in FeSb2 as a
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first attempt to understand the anharmonic processes from first principles of a crystal

with a complex structure and possible strong electron correlations, and thus could serve

as a basis for future theoretical and experimental investigations. In Fig. 3-9 we present

the accumulated thermal conductivity with contributions from phonon modes with

different mean free paths due to the phonon-phonon scattering alone. From Fig. 3-9, the

phonon mean free paths are quite long at T = 20 K , and concentrated in the range I~200

tm, indicating that it could be an effective way to reduce the lattice thermal conductivity

of FeSb2 by introducing nanostructures, such as grain boundaries and nanoinclusions,

with characteristic sizes smaller than I pm, which has been readily verified in the work of

Zhao et al. 12 8
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Figure 3-9 Phonon mean free path distribution in FeSb 2 and their accumulated
contribution to the total thermal conductivity, at different temperatures.

In summary of this section, we studied the thermal transport properties of FeSb2

using a first-principles formalism based on DFT and real-space lattice dynamics.

Calculations of the electronic structure, the phonon dispersion relation, the phonon-

phonon scattering rates, the lattice thermal conductivity and the phonon mean free path
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distribution were presented, which could be of value for future theoretical and

experimental studies of FeSb2. The discrepancy with the experimental data suggests that

more work needs to be done in the future to better understand the thermal transport in

FeSb 2. This could include looking into the possible effect of strong electron correlations,

electron-phonon interactions and higher order anharmonic processes on the thermal

transport which has not before been systematically investigated to the best of our

knowledge.

3.2 Electron-Phonon Interaction and Thermoelectric

Transport in Phosphorenet

3.2.1 Background

20 years ago, Hicks and Dresselhaus predicted that low dimensional conductors

could have better thermoelectric performance compared with their 3-dimensional bulk

counterparts, mainly owing to the quantum confinement effect"" 2 . In particular, the

electronic density of states in low-dimensional systems usually exhibit sharp changes

with respect to the carrier energy, which is of significant benefit for improving the

Seebeck coefficient. In the past two decades, researchers have widely utilized the much-

advanced nanotechnology to boost the thermoelectric performance using various

approaches 4
2 2

,. Experimentally, artificial low-dimensional structures, such as quantum

dots1 4, quantum wells'5 , superlattices 16'1, a 2-dimensional electron gas' 9 and

nanowires."'.55 have all been studied for enhancing thermoelectric properties. These

t B. Liao et al., Physical Review B, 91, 235419 (2015)
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structures, however, are difficult to scale up due to the complexity of the fabrication

process and the high cost.

Immediately after the first successful isolation of graphene'", a stable monolayer of

carbon, the look into natural low-dimensional conductors for good thermoelectrics

started, in the hope that these materials are easier to obtain at a lower cost157-159.

Unfortunately, graphene itself turns out to be a not-so-good thermoelectric material,

because of 1) the high electron-hole symmetry and the absence of a bandgap, which

results in large detrimental bipolar conduction; 2) the linear dispersion for low-energy

excitations, which leads to a smooth quadratic density of states without the preferred

sharp features; and 3) an ultra-high lattice thermal conductivity" 6 , in part coming from

the large contribution of the less-scattered flexural phonon mode6 2 (there have been

theoretical works suggesting that the classical size effect in nanostructured graphene can

largely reduce its lattice thermal conductivity1""). Along these lines, natural 2-

dimensional materials with a sizable bandgap, quadratic low-energy dispersion, and

suppressed flexural phonon modes have been sought as better candidates for

thermoelectrics, in addition to the generally preferred high carrier mobility. Some

subsequently synthesized/isolated 2-dimensional materials usually fit some of the above

criteria, but for most cases they also possess serious drawbacks. For example, a

monolayer of the transition-metal dichalcogenide MoS2 comes with a bandgap while

being limited by its relatively low carrier mobility"'; silicene and germanene,

monolayers of silicon and germanium atoms arranged in honeycomb lattices, possess

similar low-energy electronic structures as that of graphene, but with very small band

gaps (a few meV), which only arise from spin-orbit coupling'6 7 ".
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Recently, a new member of the 2-dimensional-material family, single layers of black

phosphorus dubbed "phosphorene", has emerged and attracted intense research

169- 176
interest' . In a phosphorene layer, phosphorus atoms are arranged in a puckered

honeycomb lattice' 77 with low symmetry and high anisotropy, as illustrated in Fig. 3-10.

1 3 *Side View

Top View

Figure 3-10 The puckered honeycomb structure of a single layer of black
phosphorus, or phosphorene. Adapted from Ref. 169.

This hinge-like puckered structure leads to intriguing mechanical properties, such

as a negative Poisson ratio' 7 8 . The resulting electronic structure is also highly anisotropic,

with a fundamental bandgap of 2 eV17 9 that can be potentially tuned either by changing

number of layers169 , controlling the edge termination and the width of a ribbon1'80 or

imposing a strain 18,182. The low-energy dispersion is quadratic with very different

effective masses along armchair and zigzag directions' 7 9 for both electrons and holes.

This anisotropic electronic structure is useful for thermoelectric materials, since in the

direction with a smaller effective mass, the carrier mobility and thus the electrical

conductivity can be high, while the larger effective mass along the other direction

contributes to an overall large density of states that improves the Seebeck coefficient.

Moreover, few-layer black phosphorous has been experimentally found to exhibit high

169-171,183,184
carrier mobility, especially for holes while the theoretical calculations on

179,185single-layer phosphorene have suggested even higher values' , and the possible
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tunability via applying a strain186 187 . These features have stimulated lots of research

efforts in evaluating the potential thermoelectric performance of phosphorene. Qin et al.

simulated the lattice thermal conductivity of phosphorene from first-principles1 88 , showed

that the thermal transport was also highly anisotropic, and revealed that the much reduced

lattice thermal conductivity compared with graphene could be largely attributed to the

suppressed flexural mode. Jain et al. refined the lattice thermal conductivity calculation

using the full iterative solution of the Boltzmann transport equation 8 9. Fei et al. pointed

out that the directions with higher electrical and thermal conductivity, respectively, in

phosphorene are orthogonal to each other, which leads to a promising thermoelectric

figure of merit along the armchair direction, exceeding 2 at 500K 79.

Although aforementioned works have studied the thermoelectric properties of

phosphorene in some detail, the treatment of electron-phonon interaction in phosphorene

has been limited to the constant relaxation time approximation for calculating the

Seebeck coefficient, and limited to the deformation potential approximation for

calculating the electrical conductivity. In particular, the existing deformation potential

calculations'7 9' 185 obtained separate deformation potentials for different transport

directions by deforming the lattice along that direction. The validity of such an approach

is questionable because the deformation along one direction will scatter electrons going

in all directions. In the present work we study the electron-phonon interaction in

phosphorene fully from first-principles. We find that the deformation potential

calculations tend to overestimate the carrier mobility, and we fully assess the potential of

phosphorene as a thermoelectric material based on our simulation results.
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3.2.2 Methods and Details of the Calculation

We first carry out the standard density functional theory calculation of the

electronic structure of phosphorene after obtaining a fully relaxed crystal structure using

the Quantum Espresso package 0 3 and a norm-conserving pseudopotential with the

Perdew-Wang exchange-correlation functional within the local density approximation190 .

We use a 200 x 200 k-mesh and the triangular integration method" 8 to generate an

accurate electronic density of states. The phonon dispersion and the electron-phonon

scattering matrix elements are calculated within density functional perturbation theory10 6,

initially on a coarse lOx 10 q-mesh, and then along with the electronic structure on a

coarse 10x10 k-mesh, are interpolated using the EPW package' 0 4,"' 6 to a dense

300 x 300 k-mesh covering half of the Brillouin zone centered around the F point and a

300 x 300 q-mesh in the full Brillouin zone using maximally localized Wannier

functions" 4 for calculating the electronic relaxation time due to the electron-phonon

interaction, which is given by the Fermi's golden rule" 0 Eq. (2.12). The summation is

performed using the triangular method" 8 to improve the convergence, and to eliminate

the need of choosing the Gaussian broadening parameter when doing the summation

using Gaussian functions to approximate the delta functions. The calculated electronic

relaxation times are then plugged into the standard formulae of the transport properties

based on the Boltzmann transport equationi, Eqs. (2.3) to (2.5), except in this case the

sums are taken directly over all individual modes, and the density of states is not used. A

similar calculation scheme has been applied by other researchers to studying the electron-

191,192phonon interactions in graphene ',. The power of this ab initio approach lies in the

fact that individual carrier states can be analyzed separately in terms of the time and
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length scales associated with their transport, given by the electron-phonon relaxation time

r7 (k) and the carrier mean free path 17P(k) Tr7 (k)vkI that characterizes the average

length a carrier can travel before getting scattered by a phonon, respectively. This

information provides crucial guidance in designing nanostructured thermoelectric

materials, as will be discussed in a later subsection.

3.2.3 Results and Discussion

The electronic band gap is underestimated to be 0.8 eV, and is a well-known problem

of density functional theory. The more accurate band gap of 2 eV from the GW

calculation' 9 is imposed in the following calculations by rigidly shifting the bands. The

electronic density of states is shown in Fig. 2-5, where well-defined step-like features

specific to 2-dimensional quadratic bands are observed, as well as quasi-I-dimensional

peaks near the band edges as a result of the high anisotropy, since both the lowest

conduction band and the highest valence band are very flat along the zigzag direction,

resembling 1-dimensional bands along the armchair direction, which signals a high

Seebeck coefficient. This feature is reminiscent of the quasi-2-dimensional bands in good

bulk thermoelectrics, such as PbTe and PbSe'93 .

We proceed to calculate the scattering rates and mobility for free carriers in

phosphorene as limited by electron-phonon interactions. We exclude contributions from

the flexural phonon modes for two reasons: 1) out-of-plane vibrations do not contribute

to the first-order electron-phonon interactions in 2D materials due to the inversion

symmetry with respect to the material plane, as in the case of graphene 192,194 (although

the flexural phonon modes in phosphorene have small in-plane components as well, their

contributions are negligibly small); 2) so far in most experiments phosphorene samples
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are studied on a substrate, by which the flexural phonons will be largely suppressed. The

scattering rates are presented in Fig. 3-11, and compared with the deformation potential

calculation using parameters from Qiao et al. 18. At each electronic energy, electrons with

different wavevectors in general have different scattering rates due to the direction-

dependence of the electron-phonon scattering, and thus the plotted scattering rate is

multi-valued at each electron energy. Although the deformation potential approximation

is not rigorously applicable in this case due to previously mentioned reasons, in general it

gives reasonable estimates of the average strength of the electron-acoustic-phonon

interactions in phosphorene, except for the case of holes in the zigzag direction, where

the predicted scattering rate using the deformation potential approximation is 3 orders of

magnitude lower than our result, and a hole mobility of 26,000 cm 2/Vs was predicted

185accordingly' . Our results indicate that the contributions from optical phonons are not

negligible, especially for carriers slightly away from the band edges. More importantly,

we observe peak structures of the scattering rates near the band edges, similar to the

density of states. This can be explained by the high anisotropy of the band structure.

According to Eq. (2.12), the scattering rate of a specific carrier state depends on the

available phase space for the final states. In other words, the large number of carrier

states along the zigzag direction provides a large number of available final states to be

scattered to for carriers traveling along the armchair directio. In this way the carrier

transport along the two directions are coupled through the electron-phonon interaction

and the electron-phonon scattering rates follow the trend of the total density of states.
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Figure 3-11 The comparison of the calculated electron-phonon scattering rate of (a)
electrons and (b) holes to the deformation potential calculation in Ref. 185. The
black arrows mark the peak structures of the scattering rates near the band edges.

The peak structures of the scattering rates near the band edges are expected to

have a major impact on the carrier mobility since carriers near the band edges contribute

the most to the carrier transport. We show here in Fig. 3-12 the carrier mobilities of

electrons and holes along armchair and zigzag directions at 300K, with respect to the

carrier concentration. We simulate the effect of carrier concentration by rigidly shifting

the Fermi level, assuming the electronic band structure is not greatly affected by free
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carriers. We predict that the phonon-limited carrier mobility of phosphorene is ~170

cm2/Vs for both electrons and holes along the armchair direction at 300K and that there is

a moderate anisotropy between the two transport directions. Experimentally Xia et al.'

measured the hole mobility of a 15 nm thick (~30 atomic layers) black phosphorous

sample to be -600 cm 2 /Vs and that of an 8 nm thick (-15 atomic layers) sample to be

-400 cm 2/Ns, and more recently Xiang et al."8 measured the hole mobility of a 4.8 nm

thick (-8 atomic layers) sample to be -200 cm 2 /Ns, all measured along the armchair

direction. The decreasing trend of the hole mobility with decreasing number of atomic

layers was previously attributed to the sample quality degradation17 1 . As shown by Qiao

et al.' 85, the hole effective mass along the zigzag direction increases from 0.89 to 6.35 as

the number of atomic layers decreases from 5 to 1, while the hole effective mass along

the armchair direction stays unchanged. As we discussed in the previous section, the high

anisotropy and large effective mass along the zigzag direction provides a large phase

space for the electron-phonon scattering processes and gives rise to the peak structures of

the scattering rates near the band edges. Therefore our finding suggests that the

drastically increased anisotropy with decreasing number of atomic layers' 85 could also

contribute to the observed reduction of the carrier mobility, and thus the single-layer

phosphorene may not be the best option for high-mobility applications.
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Figure 3-12 The calculated carrier mobility for electrons (solid line) and holes

(dashed line) for phosphorene: (a) along the armchair direction and (b) along the

zigzag direction at different temperatures; all plotted versus the carrier

concentration.

In Fig. 3-13 we show the calculated Seebeck coefficient and thermoelectric power

factor along the armchair direction for both p-type and n-type phosphorene, at various

carrier concentrations and temperatures. In calculating the electrical conductivity, the

thickness of the phosphorene sheet is chosen as the interlayer distance in bulk

phosphorous, 0.55 nm 1. Although this conventional choice seems somewhat arbitrary, it

will not affect the thermoelectric figure of merit zT because the same factor appears in

the thermal conductivity as well. Owing to the special features of the electronic structure
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mentioned above, the Seebeck coefficient is high, and the thermoelectric power factor

reaches -70 tW/cm-K2 in p-type phosphorene at room temperature. This number is

comparable to that in state-of-the-art bulk thermoelectric materials, such as BiTeSb

alloy5 8 (the arbitrariness of choosing the film thickness may render this comparison

unfair, to some extent).

600 100
-200K -200K

300K 90- 300K

-500K 80 500K

~2. 400E 70

40

200 50

4 0
UU

3V 00 -5
G30

4)4 ~~0
100 a 20

10

0 -- 0 - - (b)
10 10 10 10 101 1013

Carrier Concentration (cm- 2) Carrier Concentration (cm-2

-50 70
-- 200K 20

-100 300K 300K
-400K 60 3-00K

-150 -- 500K 60 4 00K
> - 5 00

.- 200 5e 

-250

~40
(D-300 - 30 -

-350 - -
I20

(n-
40 0 

-

-450 10

-500 12 (c) 0 -(d)
10 10 10

Carrier Concentration (cm-2) Carrier Concentration (cm'2

Figure 3-13 The calculated (a) Seebeck coefficient and (b) thermoelectric power
factor for p-type and (c) Seebeck coefficient and (d) thermoelectric power factor for
n-type monolayer phosphorene versus the carrier concentration along the armchair
direction at different temperatures.

With the recently reported phonon thermal conductivity of phosphorene

calculated from first-principlest 8889, we have all the ingredients for calculating the

thermoelectric figure of merit zT, and the results are shown in Fig. 3-14 for p-type and n-

type phosphorene along the armchair direction at temperatures up to 500K. The optimal

82

._a74f_' '__4)"_"' - Wqr----



zT is -0.06 at 300K and -0.14 at 500K for p-type, with the optimal carrier concentration

around 5 x 1012 cm- 2 at 300K and 8 x 1012cm- 2 at 500K. These values are for impurity-

free phosphorene and should be regarded as an upper limit for the thermoelectric

performance of phosphorene.

A common strategy to improve the thermoelectric performance is to introduce

nanoscale grain boundaries or precipitates58,62 to strongly scatter phonons and suppress

the thermal conductivity. The success of this nanostructuring approach relies on the

separation of the transport length scales of electrons and phonons: in typical

thermoelectric materials, the phonon mean free paths 61 are much longer than the electron

mean free paths66, so that nanostructures with characteristic sizes in between can

effectively block the phonon flow while leaving the electrons intact. Therefore, whether

this nanostructuring approach is effective for a certain material and what should be the

proper length scale of the nanostructures depends on the detailed information of the mean

free path distributions of electrons and phonons in that material.

To evaluate the potential effectiveness of the nanostructuring approach5 8 for

further improving zT of phosphorene, we calculate the accumulated contribution to the

transport properties along the armchair direction from individual carrier states with

respect to their mean free paths, as shown in Fig. 3-15, where we choose the optimal

carrier concentration 5 x 1012 cm- 2 at 300K. The calculated accumulated contribution

represents fictitious values of the transport properties if carriers with mean free paths

longer than a certain value are strongly suppressed by nanostructures (removed from the

calculation), which is then normalized by the corresponding bulk values. In doing so, we

first sort the carrier states with respect to their mean free paths, and then calculate the
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transport properties using Eqs. (2.3) to (2.5), but only including in the summations carrier

states with mean free paths below a certain value. For example, from Fig. 3-15(a), we can

tell that holes with mean free paths below 6 nm contribute to about 40% of the total

electrical conductivity and the power factor, and about 25% to the electronic thermal

conductivity. Figure 3-15 indicates that the major contribution to the transport comes

from carriers with mean free paths below 10 nm at 300K, or in other words,

nanostructures with characteristic sizes above 10 nm do not have a strong impact on

electron transport in phosphorene. Since the phonon thermal conductivity has

contributions from phonons with mean free paths up to I [tm ,189, nanostructures with a

characteristic size of -10 nm can significantly reduce the phonon thermal conductivity

(down to about 1 W/mK according to reference189) and preserve the electronic properties.

In this ideal case, the figure of merit zT at 300K can be improved to around 1 in p-type

phosphorene along the armchair direction(in reality phonons with mean free paths longer

than I Onm still conduct some heat, just with shorter mean free paths). We note here that a

more realistic evaluation of the effectiveness of the nanostructuring approach is to study

the scattering of phonons and electrons with the grain boundaries using, for example,

atomic Green's function method94 . In practice, however, since the atomic details of the

grain boundaries can vary in numerous ways, a first-principles treatment has not been

practical so far. Nevertheless, the mean free path distributions provide practical guidance

for experimentalists in designing nanostructrures with proper length scales to achieve

improved thermoelectric performance of phosphorene.
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Figure 3-14 Thermoelectric figure of merit zT versus the carrier concentration for

(a) p-type and (b) n-type phosphorene along the armchair direction at different

temperatures, limited by the electron-phonon scattering.
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Figure 3-15 Accumulated contribution to transport properties ( u : electrical

conductivity, S,,: Seebeck coefficient, K,: electronic thermal conductivity) along

the armchair direction from individual carrier states with respect to their mean free

paths in (a) p-type and (b) n-type phosphorene. The carrier concentration is at

5 x 1012 cm 2 and the temperature is at 300K for both cases.

In summary of this section, we study the potential thermoelectric performance of

phosphorene via first-principles calculation of the electron-phonon interactions. Our

calculation finds that previous deformation potential calculations overestimate the carrier

mobility due to the high anisotropy and the large contributions from optical phonons. We

further calculate the figure of merit zT for phosphorene and the carrier mean free path
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distribution, which, in comparison to the phonon mean free path distribution, indicates

that nanostructuring can effectively enhance the thermoelectric performance of

phosphorene.

86



Chapter 4

Effect of Electron-Phonon Interaction on

Phonon Transport

In this chapter we study an electron-phonon interaction effect that has largely been

ignored in semiconductors in previous studies, namely, how electrons act back on

phonons through the electron-phonon interaction and affect the lattice thermal

conductivity. We first present a study of this effect in silicon from first-principles

calculations, where we show that the lattice thermal conductivity can indeed by largely

reduced by electron-phonon interaction when the carrier concentration gets above 1019

cm-3, in contrast to previous beliefs. Then we present an experimental study to verify that

this effect is correct using ultrafast photoacoustic spectroscopy. In this experimental

study we find that a 250-GHz acoustic pulse can be significantly suppressed by

photoexcited carriers. We further quantify this effect, and find the linear dependence of
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the phonon scattering rate due to the electron-phonon interaction on the carrier

concentration, in agreement with the theoretical calculation.

4.1 First-principles Simulation of the Phonon Scattering

due to Electrons in Silicon*

4.1.1 Background and Introduction

While the effect of the electron-phonon interaction on electron transport has been

widely studied in great detail and has become standard content in textbooks 10'3 1 110 its

effect on phonon transport has received much less attention. In our opinion the reason is

twofold. First of all, the carrier concentration in semiconductors for conventional

microelectronic and optoelectronic applications is typically below 1019 cm-3 195, and as we

shall show later, the impact of the electron-phonon interaction on phonon transport in this

concentration range turns out to be too small to invoke any practical interest. On the other

hand, in metals with a typical carrier concentration greater than 1022 cm 3 , the thermal

conduction is dominated by electrons, and in most cases phonons contribute less than

10% to the total thermal conductivity196 . Most of the existing work that were related to

the effect of electron-phonon interaction on the lattice thermal conductivity looked into

metals, pioneered by Sommerfeld and Bethe197, and subsequently by Makinson 98 and

Klemens'99 . The main conclusion is that the phonon thermal conductivity in metals is

limited by electron-phonon interaction only at low temperatures. The classical treatment

of this problem in semiconductors was provided by Ziman' ,200,201 , where simplified

B. Liao et al., Physical Review Letters, 114, 115901 (2015)
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models for the phonon dispersion, the electronic structure and the interaction matrix

elements were used for a closed-form analytic formula with limited accuracy and

applicability (only valid at low temperatures in degenerate semiconductors). Again the

common wisdom was that the electron-phonon interaction would only be important on

the phonon transport at low temperatures, partly due to the fact that most of the studies

analyzed samples with carrier concentrations below 1018 cm-3. A detailed discussion of

202the aforementioned models was given by Asheghi et al.

In the past two decades, the field of thermoelectrics has been revived after the

introduction of nanotechnology. Most of the best thermoelectric materials synthesized so

far have been heavily-doped semiconductors, or in some cases, semiconductors with

intrinsic off-stoichiometry defects, usually with carrier concentrations well above 1019

cm- 3 or even 1020 cm-3 (e.g.203 for BiSbTe, 204 for Si/Ge, 21,62 for PbTe, 30 for SnTe etc.).

Moreover, a large portion of the efforts for enhancing the thermoelectric efficiency have

56,58,62been focused on reducing the lattice thermal conductivity via nanostructuring . In

this context, how the lattice thermal conductivity is affected by electron-phonon

interaction with the carrier concentration in the range of 1019 cm-3 to 1021 cm 3 has

become an important question yet to be answered in detail. So far only Ziman's formula

was used in modeling this effect in heavily-doped thermoelectrics 205-212, and this formula

is apparently insufficient for achieving an adequate modem understanding. Here we

attempt to answer this question more accurately with calculations done fully from first-

principles.
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4.1.2 Calculation Details

The phonon scattering rate due to electron-phonon interaction can be calculated

using Fermi's golden rule Eq. (2.13). This expression is related to the imaginary part of

the phonon self-energy rl" in treatments of the electron-phonon interaction using field

1v 213
theories: = - v 213. Given that the phonon energy scale is much smaller than the

hf h

electron energy scale, 4, - f .. ,, = "hCOq = -f,, (1 - f,) k q , and Eq. (2.13) agrees
qV ,kBank B

with that used by Ziman". The electron-phonon interaction matrix elements can be

calculated ab initio within standard density functional perturbation theory (DFPT)106 .

Although the matrix elements obtained this way have been used to calculate the effect of

214-21the electron-phonon interaction on electronic transport2 16, the phonon mesh density

required for a converged electron-phonon interaction calculation can be rather

demanding. Thanks to the recent development of an interpolation scheme using

maximally-localized Wannier functions 11, electron-phonon interaction calculations with

very fine meshes have become possible. After the electron-phonon interaction matrix

elements are obtained, Eq. (2.13) can be integrated over the first Brillouin zone to

generate the phonon lifetimes.

To fully evaluate the effect of the electron-phonon interaction on the lattice

thermal conductivity, the intrinsic lattice thermal conductivity that is limited by the

phonon-phonon scattering processes must also be calculated from first-principles and

used as the baseline. Here this calculation is done with the first-principles framework

based on DFT and real-space lattice dynamics, as presented in previous chapters of this

thesis6 0 0, 5 . The lifetimes due to both the phonon-phonon interaction and the electron-
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phonon interaction are finally combined using Mattiessen's rule 10 , and the lattice thermal

conductivity can be calculated as the sum of contributions from all the phonon modes

IC = I I C"vqvq where Cqv is the mode-specific heat capacity, vqv is the group
3qv Vvq

velocity and rqv is the total lifetime.

We use the Quantum Espresso package10 3 for the DFT and DFPT calculations,

with a norm-conserving pseudopotential with Perdew-Burke-Ernzerhof exchange-

correlation functiona 217. The electron-phonon interaction matrix elements are first

calculated on a 12 x 12 x 12 k-mesh and a 6 x 6 x 6 q-mesh, and later interpolated to

finer meshes using the Electron-Phonon-Wannier (EPW) code'04 . The original code was

later modified to carry out the Brillouin zone integration using the tetrahedra method 1 7 to

improve the convergence. The convergence of the phonon lifetimes due to electron-

phonon interaction with respect to the k-mesh density has been checked. Results shown

later are calculated on a 60 x 60 x 60 k-mesh and a 60 x 60 x 60 q-mesh. The details of

the phonon-phonon calculation follow those in Ref.60 . All calculations are performed at

the room temperature (300K).

4.1.3 Results and Discussion

The scattering rates of all phonon modes due to electron-phonon interaction (by

either electrons or holes) at the carrier concentration of 1021 cm-3 are given in Fig. 4-1.

Several general features can be observed here. First of all, phonons near the zone center,

both acoustic and optical ones, are strongly scattered by both the electrons and holes in

intravalley processes. Since the phonon energy scale is much smaller than that of the

electrons, phonons with larger wavevectors are less likely to be scattered by electrons,
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and the corresponding scattering phase space restricted by the energy and momentum

selection rules is much smaller. This is reflected in the low scattering rates of phonons

with intermediate wavevectors. For phonons near the zone boundary, the scattering rates

due to electrons or holes are very different. In the case of scattering with electrons, the

phonons near the zone boundary can efficiently participate in intervalley processes,

moving electrons among the 6 equivalent pockets near the bottom of the conduction band

of silicon, and the resulting scattering rates are comparable to those of the phonons near

the zone center. In the case of scattering with holes, however, the intervalley processes

are absent due to the sole hole-pocket, and thus the scattering rates of the phonons by

holes near the zone boundary are very low.

15 15
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Figure 4-1 The scattering rates of phonons in silicon due to electron-phonon

interaction by (a) electrons and (b) holes. The carrier concentration is 1021 cm 3 . The

color denotes the scattering rates, and the white region indicates that either there is

no phonon mode, or the scattering rates are below the threshold rate of the

calculation.

Since it is very difficult, if not impossible, to isolate the contributions of the

electron-phonon interaction to the lattice thermal conductivity experimentally, we are not

able to directly verify our calculations via comparing with any previous experimental

data (our calculation is indeed verified by an photoacoustic measurement for a single
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phonon mode, as will be elaborated in the next section of this thesis). As a benchmark,

we study the asymptotic behavior of the scattering rates of phonons near the zone center,

and we compare our results with an analytic model. At the long wavelength limit, the

effect of phonons on the lattice approaches a uniform strain, and thus the matrix elements

(mk + qi a,, VI nk) can be replaced by a constant deformation potential: Daq for acoustic

phonons and Do for optical phonons3 1. The presence of q in the acoustic case is due to

the fact that the deformation potential is proportional to the spatial derivative of the

atomic displacement, while in the optical case, it is proportional to the atomic

displacement per se31. With this deformation potential approximation (DPA), the

asymptotic behavior of Eq. (2) can be derived without further approximations in the

nondegenerate regime as

1 (27cm*)1/ 2 Di 2_v_

exp -/n(E2f)q, for acoustic modes and (4.1)
qv (kB) gdpv B

1 r2rcm* D2___ hoj m*wl -
Ie= kBT D 0 sinh t2 n(Ef)exp- (h)' for optical modes, (4.2)
qv kB gdP~O kB )B $

where m* is the density-of-state effective mass of the carriers, p the mass density, g

the number of equivalent carrier pockets, v, the sound velocity, n(Ef) the carrier

concentration with Ef being the Fermi level, and co the optical phonon frequency (-15

THz in silicon). Equations (4.1) and (4.2) supplement Ziman's formula in the

nondegenerate regime at higher temperatures. In Fig. 4-2 we show the comparison

between the calculated scattering rates and the analytic predictions Eqs. (4.1) and (4.2)

for longitudinal acoustic (LA) and optical (LO) phonons scattered by electrons or holes
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(the shear strain induced by transverse phonons is a second-order effect in the DPA

formalism3 ' and thus does not fit in the discussion here). A 60 x 60 x 60 q-mesh is used

for this calculation. As predicted by Eq. (4.1), the scattering rates of LA modes scale

linearly with the phonon frequency near the zone center, and the slope in turn depends

linearly on the carrier concentration. As the carrier concentration approaches the

degenerate regime, the scattering rates saturate. In the case of LO modes, the scattering

rates depend on the magnitude of the wavevector in a more complex manner. Due to the

anisotropy of the electron pockets, the electron-phonon interaction scattering rates near

the zone center are more scattered compared to holes. Good agreements between the

calculated scattering rates and the DPA prediction are observed with DA 5.2 eV ,

Do ~ lx 108 eV/cm for electrons and DA~ 4.8 eV, Do ~ l x 109 eV/cm for holes, all in a

reasonable range compared to literature3 1 values except for Do for electrons, of which

we could not find reliable data in the literature.
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Figure 4-2 The asymptotic behaviors (lines) of the phonon scattering rates due to the

electron-phonon interaction, calculated from DPA, are compared with data

obtained from first-principles (dots) for (a) LA modes and (b) LO modes scattered

by electrons and (c) LA modes and (d) LO modes scattered by holes. A 60 x 60 x 60

q-mesh is used in this calculation.

Upon gaining confidence in our calculation, we proceed to compare the

scattering rates of phonons due to electron-phonon interaction (at carrier concentrations

of 102l cm-3 ) to the intrinsic phonon-phonon interactions, as shown in Fig. 4-3. The

electron-phonon interaction scattering rates are at least two orders of magnitude lower

than the intrinsic phonon-phonon scattering rates when the carrier concentration is below

10I cm 3 , and above 1019 cm-3, the electron-phonon interaction scattering rates start to be

comparable to the intrinsic phonon-phonon scattering rates within the low-frequency

region, and in fact can surpass the phonon-phonon scattering rates for the low-frequency

phonons when the carrier concentration reaches 102 cm3 as shown in Fig. 4-3. This is
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expected to have a major impact on the lattice thermal conductivity, since most of the

heat is carried by phonons with the lowest frequencies.
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Figure 4-3 The phonon scattering rates due to electron-phonon interaction with (a)
electrons and (b) holes at the carrier concentration of 1021 cm~3 and the intrinsic
phonon-phonon interaction. This calculation is carried out on a 60 x 60 x 60 q-
mesh, mainly limited by the phonon-phonon interaction calculation.

Figure 4-4 shows the calculated lattice thermal conductivity of silicon taking into

account both the electron-phonon interaction and the phonon-phonon interaction. As

expected, when the carrier concentration is below 1018 cm-3 , the effect of the electron-

phonon interaction on the lattice thermal conductivity is negligible, whereas the electron-

phonon interaction significantly reduces the lattice thermal conductivity when the carrier

concentration goes above 10 1" cm 3 . In particular, holes are more efficient in scattering

phonons than electrons, which is probably due to the isotropic hole pockets in contrast to

the anisotropic electron pockets (this finding is consistent with experimental facts where

boron-doped p-type silicon has a lower thermal conductivity than phosphorous-doped n-

type silicon with similar doping concentrations at the room temperature 202,218), and the

lattice thermal conductivity can be reduced by as much as 45% when the hole

21 3
concentration reaches 10 cm-
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Figure 4-4 The lattice thermal conductivity versus the carrier concentration, taking

into account both the electron-phonon interaction and the phonon-phonon

interaction. The calculation is done on a 60 x 60 x 60 q-mesh for both electron-

phonon and phonon-phonon calculations.

To further analyze the effect of the electron-phonon interaction on phonon

transport, we also calculate the change of the phonon mean free paths when the electron-

phonon interaction is considered and the carrier concentration is at 1021 cm- 3. In Fig. 4-5

we compare the phonon mean free paths with and without the electron-phonon

interaction. Electrons and holes can efficiently scatter phonons with mean free paths

longer than 100 nm, which is a group of phonons that carries ~70% of the total heat in

silicon at 300K.
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Figure 4-5 Phonon frequency dependence of the phonon mean free paths with and
without electron-phonon interaction: (a) phonons scattered by electrons and (b)
phonons scattered by holes. The carrier concentration is 102 cm3 in both cases.

In summary of this section, we carry out a first-principles calculation of the lattice

thermal conductivity of silicon considering both phonon-phonon and electron-phonon

interactions, and we predicted a large reduction (up to 45%) of the lattice thermal

conductivity due to the electron-phonon interaction at the room temperature, an effect

previously overlooked in most cases. This finding not only fills the gap of understanding

of how the electron-phonon interaction affects the lattice thermal conductivity in

semiconductors when the carrier concentration is in the range of 1019 cm-' to 10" cm-,

but also has a profound technological impact on the field of thermoelectrics. Although

higher carrier concentrations also mean higher electronic thermal conductivity, this effect

is in general much smaller than the reduction of the lattice thermal conductivity in the

considered range of carrier concentrations (a simple estimation using the Wiedemann-

Franz law and experimental data for the electrical conductivity of heavily-doped

silicon yields values below I W/mK for carrier concentrations above 102 cm-3 at room

temperature).
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4.2 Photoacousctic Spectroscopy of Phonon Damping by

Photo-excited Carriers

4.2.1 Backgound and Introduction

The electron-phonon interaction is among the most important interactions of

(quasi)particles in condensed matter physics. Given its paramount importance, numerous

experimental techniques have been developed to probe the electron-phonon interaction in

various materials directly or indirectly, with most of them examining the effect of the

electron-phonon interaction on electrons. For example, the collective effect of the

interactions among all phonons and electrons that participate in transport can be inferred

from electrical transport experiments 110,220. Alternatively, the average electron-phonon

coupling strength can be directly measured by investigating the timescale of equilibration

221-224of electrons and phonons in ultrafast optical pump-probe experiments . In these

experiments, electrons are first heated up by absorbing a femtosecond laser pulse to a

temperature much higher than the lattice (phonon) temperature, and the subsequent

equilibration of the electrons and phonons is recorded through measuring the change of

either the reflectance or transmission of the sample by a probe pulse. The cooling rate of

the electrons is directly related to the electron-phonon coupling constant A 225, which

indicates the average strength of the interactions between electrons near the Fermi level

and all phonons. Furthermore, angle-resolved photoemission spectroscopy (ARPES) can

directly map out the electronic band structure near the material surface and the linewidths

of the electronic states provide specific information of the interaction strength between a

single electron state with all the phonon modes226
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On the other hand, the effect of the electron-phonon interaction on phonons has

been much less studied experimentally. Previous measurements on metals usually apply a

high magnetic field to "freeze out" the electrons and then measure the change of the

thermal conductivity227 . Usually the change is small due to the small energy scale of

typical magnetic fields, and most measurements were thus far done at cryogenic

temperatures with large uncertainties. An alternative way to probe the phonon-specific

information of the electron-phonon interaction in metals would be through

superconducting tunneling spectroscopy (STS) 228. From STS the Eliashberg function225

a 2F(o) can be extracted, which reflects the interaction strength of electrons near the

Fermi surface with phonons having a specific frequency o. However it is limited to

superconductors and cannot resolve individual phonon modes. Early experiments on

semiconductors mostly focused on the effect of carriers introduced by doping on the

221-241thermal conductivity . One difficulty of these experiments is to separate the

contributions to the phonon scattering from the carriers themselves and from the

impurities introduced by doping. The same difficulty stands in inelastic neutron scattering

(INS) measurements of the phonon linewidths for doped semiconductors24 2

The recent advancement of thermoelectrics has revived the research interest of the

effect of the electron-phonon interaction on phonons, since most thermoelectric materials

are heavily doped semiconductors with carrier concentrations in the range of 10" to 102

cm-3, and it was shown in the previous section 243 that the lattice thermal conductivity of

silicon can be reduced by 45% due to the electron-phonon interaction at a carrier

concentration of 1021 cm-3, through first-principles simulation. Although this effect is

significant in the simulation, it is challenging to verify in experiment due, again, to the
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difficulty of separating the contributions from carriers and impurities if the carriers are

introduced by doping. Despite the difficulty, experimental evidence of this effect is

highly desirable, not only to corroborate the theory and the simulation in the previous

section 243, but also to demonstrate the necessity of including this effect in the design,

analysis and engineering of thermoelectric materials in the future.

In the next subsection we describe an experimental technique developed to

directly measure the phonon scattering by free carriers, in this case excited by ultrafast

laser pulses. Since the carriers are introduced optically without atomic impurities, the

effect of the electron-phonon interaction should be easily isolated.

4.2.2 Design and Calibration of Experimental Setup

The new experimental technique is built upon ultrafast photoacoustic

244-246spectroscopy . In conventional ultrafast photoacoustic spectroscopy, an acoustic

strain pulse is launched in a thin sample first by an ultrafast optical pump pulse. This

optical pump pulse is absorbed by electronic transitions, and the deformation potential of

the excited electrons causes strain in the sample, and an acoustic strain pulse is then

released by the relaxation of the carriers with the emission of phonons. Then this acoustic

strain pulse travels back and forth inside the thin sample and is recorded by an ultrafast

optical probe pulse. The optical response in the probe pulse is generated either through

the strain of the material244 , or through the Brillouin oscillation24 6, which aroses from the

interference of light reflected from the sample surface and from the strain pulse. In the

former case, usually a broadband signal is detected with peak frequencies corresponding

to the thickness resonances of the thin sample, while in the latter case, a narrow band

signal can be obtained with a peak frequency (Brillouin frequency fB) determined by the
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longitudinal speed of sound vL, the refractive index n of the sample and the probe

wavelength / according to

2nv
fB- . (4.3)

In silicon with a 400nm probe pulse, the Brillouin frequency is ~250 GHz. Figure 4-6

shows the Brillouin oscillation superposed with the acoustic pulses recorded in a 370nm-

thick silicon membrane. By comparing the amplitudes of the frequency components of

the pulses, the damping of the phonon pulse due to losses during the propagation inside

the membrane, can be quantified. In the conventional pump-probe setup, the phonon

damping is caused by phonon-phonon interaction in the bulk of the sample and to surface

244.246losses

C

.01

C/)

0 50 100 150

Time (ps)
200 250 300

Figure 4-6 Typical acoustic pulses and Brillouin oscillations observed in an ultrafast

photoacoustic measurement. In this case the measurement was done in a 370nm-

thick silicon membrane. Acoustic pulses convoluted with the Brillouin oscillation

were observed. The background signal resulted from the carrier generation and

diffusion. Adapted from Ref. 246.
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In order to measure the phonon damping caused by free charge carriers, we

introduce another optical pulse to generate carriers inside the sample. We choose to use

800nm optical pulses for this purpose and a 1.7 pm -thickness silicon material as the

sample. At 800nm, the optical penetration depth of silicon is -8 pm , so that

approximately the carriers are generated uniformly within the membrane. For pump and

probe pulses, we choose 400nm wavelength, at which the penetration depth is only

-50nm. The experimental setup is illustrated in Fig. 4-7. This experimental setup is in

Prof. Keith Nelson's laboratory in the Department of Chemistry of MIT.

Color
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Figure 4-7 Schematic of the experimental setup. Unlabeled components are regular
mirrors.

The output laser beam from the amplifier is at 800 nm with a repetition rate of

275 kHz. It is then separated by a polarizing beam splitter into a pump beam and a probe
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beam. The pump beam is subsequently modulated by an acousto-optic modulator (AOM)

at a modulation frequency of 95 kHz. After going through a frequency-double crystal

(bismuth borate, BBO), the generated second harmonic (400 nm) beam is separated from

the remaining 800nm beam by a dichroic mirror. The two beams are then focused onto

the sample plane with lenses. The extra path the 800 nm beam takes than the 400 nm

beam is ~6 cm long, corresponding to a delay of ~260 ps. The choice of this delay time

will be explained later. Two thin film polarizers are placed in the path of the 800nm beam

to continuously control its power without deflecting the beam. The diameters of both

beams at the sample plane (also the focal planes of the corresponding lenses) are

measured with a razor blade to be ~60 pm. On the other hand, the probe beam goes

through a delay stage, which gives a maximum delay of -5 ns compared to the 400 nm

pump beam. Then the probe beam is frequency-doubled via a BBO crystal, and the

residual 800 nm beam is filtered out by a color filter. The 400 nm probe is then focused

onto the sample plane with a lens (beam diameter -20 pm). The reflected probe beam

from the sample is directed into a photodiode via a beam splitter, which is then read out

by a lock-in amplifier at the modulation frequency of the AOM (95 kHz).

Since we use a pulsed laser to generate carriers, the timing of the three pulses is

crucial. We design the pulse sequence as follows: at t=0 ps, the 400 nm pump pulse hits

the front side of the sample, and launches an acoustic strain pulse. It takes -210 ps for the

strain pulse to traverse the 1.7 pm -thick membrane and be recorded by the 400 nm probe

beam on the back side of the sample. After that, this acoustic strain pulse is reflected

from the sample surface and starts the second round trip inside the membrane. In our

design, the 800 nm pulse arrives at t=260 ps, right after the first acoustic pulse is
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recorded. The 800 nm pulse generates free electron-hole pairs uniformly inside the

membrane. Since silicon is an indirect-gap semiconductor, the recombination time is

relatively long. And thus, the generated electron-hole pairs remain in the membrane for

up to a few ns, and will damp the acoustic strain pulse during its second round trip. At

t=620 ps, the second echo is recorded by the probe beam when the strain pulse reaches

the back side of the membrane again. The decay of the phonon mode at the Brillouin

frequency 250 GHz can now be quantified by comparing the frequency components at

250 GHz of the spectra of the first and second echoes. Furthermore, the contribution to

the phonon damping from the photo-excited carriers can be isolated from the phonon-

phonon scattering and boundary loss by comparing the total damping rate with and

without the 800 nm excitation beam. One important advantage of this design is that only

the ratio, not the absolute amplitudes, of the two echoes matters, so that the fluctuations

on larger time scales, such as due to laser power, and ambient temperature, will not affect

the measurement.

There are several technical considerations. Firstly, the amount of laser power

needed for sufficient carrier concentration needs to be estimated. At 275 kHz repetition

rate, 10 mW of measured laser power translates to a single pulse energy of 73 nJ (a factor

of two takes into account the square-wave modulation of the AOM). The absorptance of

the membrane at 800 nm is measured to be 25% to 30% depending on the location. Given

the phonon energy of 1.55 eV at 800 nm, and the beam diameter of 60 pm, the generated

concentration of electron-hole pairs can be estimated to be 1.8 x 10'9 cm-3. At this carrier

concentration, we expect from Eq. (4.1) that the 250 GHz phonon lifetime due to

electron-phonon interaction is a few hundred of picoseconds, on the same order of the

105



intrinsic phonon life time ~250 ps, and thus, the extra damping of the phonon mode due

to carriers should be able to be observed. Secondly, the heating caused by the 800 nm

beam needs to be minimized. Given the single pulse energy of 73 nJ, and the volumetric

specific heat of silicon ~1.6x 106 J/K-M 3, the instantaneous temperature rise due to

absorption of a single 800 nm pulse can be estimated to be -3 K. This is significantly

smaller than the Debye temperature of silicon (645 K) and thus has negligible effect on

phonon damping. The limited heat dissipation capability, however, of the silicon

membrane also leads to an accumulated steady-state temperature rise. We estimate this

temperature rise in a COMSOL simulation to be -15 K at the maximum power (~15 mW)

that we use in the experiment. This temperature rise is still not expected to have an

observable effect on phonon damping, also verified by the experimental fact that the

amplitude of the first echo is not affected by the presence of the 800 nm excitation.

Thirdly, the 400 nm pump pulse also generates carriers. Although their contributions to

the phonon damping is subtracted out when we compare the total damping with and

without the 800 nm excitation, we do not want the carriers generated by the 400 nm

pump to dominate those generated by the 800 nm excitation. The typical power of the

400 nm pump beam we use in the experiment is 13 mW, -60% of which is measured to

be reflected by the membrane. Since the photon energy at 400 nm is twice that at 800 nm,

the number of photons in a 400 nm beam is smaller than that of an 800 nm beam given

the same power. Due to the shallow absorption length (-50 nm) at 400 nm, an extremely

high (-5 x 1020 cm-3) carrier concentration is initially generated within the thin 50-nm

layer. At this carrier concentration, Auger recombination takes over and the

recombination time is below 100 ps195 . Therefore, the carrier concentration will drop
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significantly before the acoustic pulse reaches the back-side of the membrane for the first

time, and further reduced by the diffusion of the carriers. With an average carrier

diffusivity of 24 cm 2/s in silicon, the carriers will diffuse out to a layer of-700 nm in 200

ps, and combined with a recombination time of 100 ps, the carrier concentration is

estimated to drop below Ix 1018 cm-3, much lower than that generated by the 800 nm

excitation. To test this conclusion, we measured the intrinsic 250 GHz phonon lifetime

with different 400 nm pump power from 6 mW to 15 mW at a same location on the

membrane, and we did not see any systematic reduction of the intrinsic phonon lifetime

with increasing pump power at 400 nm, as shown in Table 4-1. The large uncertainty at

the lower pump power is due to the reduced signal amplitude and thus to the associated

signal-noise ratio.

Table 4-1 The measured intrinsic phonon lifetime with different power of the 400
nm pump pulses, at the same location on the membrane.

400 nm Pump 6 9 12 15
Power (mW)
Intrinsic 238.3 57.9 224.9+26.1 234.3 23.5 248.2+3.5
Lifetime (ps)

To calibrate the alignment of the three beams, we first measured the response of a

40-nm gold film, and fine-tuned the alignment of the three beams to maximize the signal.

The result is shown in Fig. 4-8. Two peaks are observed at 0 ps and 260 ps, respectively,

corresponding to arrival of the 400 nm and 800 nm pump pulses. The 800 nm signal is of

much lower intensity, because gold is 97% reflective at 800 nm and 40% reflective at 400

nm.
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Figure 4-8 Response of a 40-nm gold film. The two peaks at 0 ps and at 260 ps signal
arrivals of the 400 nm and 800 nm pump pulses, respectively.

The next calibration step is to measure the response of the silicon membrane with

only the 800 nm excitation beam and the 400 nm probe beam. This is to verify the carrier

generation as we expected, as well as make sure that the response of the 800 nm

excitation does not spectrally interfere with the 250 GHz Brillouin oscillations. The

results are shown in Fig. 4-9. The responses are caused by the instantaneous carrier

generation. As shown in Fig. 4-9, higher power corresponds to a larger change in the

reflectance signal at 260 ps, indicating higher carrier concentration. The decay of the

signal with time indicates the carrier recombination process. The recombination process

is faster for higher carrier concentration, as expected, but the lifetime is still sufficiently

long to ensure that the carrier concentration does not drop significantly within the

measurement window (indicated by the dashed lines, 260 ps to 620 ps). The wiggles on

the decay curves are the lowest-order thickness resonances of the membrane at 2.5 GHz,
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corresponding to the -400 ps acoustic round-trip time, which is far separated from the

250 GHz Brillouin oscillation. The decay curves drop below the baseline for higher

excitation power due to the reflectance change of silicon caused by the slight temperature

rise.
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Figure 4-9 The response of a 1.7-pm silicon membrane with only the 800 nm

excitation beam and the 400 nm probe beam. The 800 nm excitation power is varied
from 5 mW to 17 mW. The responses are caused by carrier generation, with
different carrier concentrations and lifetimes at different excitation powers.

4.2.3 Results and Discussion

In Fig. 4-10 we show the profiles of the second acoustic echo, given different

powers of the 800 nm excitation beam. It is clearly seen that the fast Brillouin oscillation

is incrementally suppressed by the 800 nm excitation pulse, giving a clear evidence of

phonon damping by the photo-excited electron-hole pairs.
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Figure 4-10 The recorded profiles of the second acoustic echo, given different

powers of the 800 nm excitation beam.
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Figure 4-11 Comparing the Fourier spectra of the first and second echoes with

different powers of the 800 nm excitation beam. The blue lines are the spectra of the

first echoes, and the orange lines are the spectra of the second echoes.

To quantify the phonon lifetime due to electron-phonon interaction, Fourier

transforms of the first and second echoes are carried out and are compared quantitatively,

as shown in Fig. 4-1l. As expected, the amplitude of the frequency component at 250
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GHz of the second echo is clearly suppressed by the 800 nm excitation beam, even down

to the noise level when the 14 mW of 800 nm excitation beam is used. Measurements

beyond this power is thus not possible.

To calculate the 250 GHz phonon scattering rate (reciprocal of the lifetime) due to

the electron-phonon interaction, we use Matthiessen's rule to separate the contributions

from electron-phonon interaction, phonon-phonon interaction and boundary loss. The

scattering rate due to the electron-phonon interaction y, can be calculated as

A1
Yep [2 ln I At11 At2  , (4.4)

A2 'ri Iri

where A and A2 are the amplitudes of the first and second echoes, At, =50 ps is the

delay time after the first echo but before the 800 nm pulse arrives, At2 = 360 ps is the

rest of the round-trip time, ri ~ 250 ps is the intrinsic phonon lifetime measured when

the 800-nm excitation beam is turned off, including contributions from the phonon-

phonon interaction and boundary loss. To eliminate the error caused by laser fluctuations,

we did reference measurements without the 800 nm excitation before and after each

measurement with the 800 nm excitation, and we made sure the intrinsic lifetime does not

change appreciably in the two reference measurements.

The 250 GHz phonon scattering rate due to the electron-phonon interaction

calculated from Eq. (4.4) is plotted in Fig. 4-12, along with the theoretical prediction of

Eq. (4.1) without any fitting parameters. The reported data were measured on three

different locations of the membrane, and each data point represented an average of 10 to

30 measurements, depending on the signal-noise ratio required. The error bars are the

standard deviations of the measurement results that are averaged. Given the
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approximations made in data processing, and the possible errors in estimating the carrier

concentrations, the agreement between experiment and theory is reasonable. Not only is

the linear trend observed as predicted, but also the numerical values are in reasonable

agreement.
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Figure 4-12 The measured 250 GHz phonon scattering rate due to the electron-
phonon interaction, compared to the theoretical prediction of Eq. (4.1). The yellow
dashed line labels the intrinsic phonon scattering rate due to phonon-phonon
interaction and boundary loss.

We emphasize here that the estimation of the carrier concentration given the

power of 800 nm excitation is rough, due to uncertainties in measuring the beam sizes,

absorptance, and the slight change of carrier concentration during the measurement

window, as shown in Fig. 4-9. In particular, the measured scattering rate is lower than the

theoretical prediction for lower carrier concentrations.

In summary of this section, we developed an experimental technique based on

ultrafast photoacoustic spectroscopy to directly measure the damping of a single phonon
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mode by free charge carriers for the first time. The measured results agree well with

theoretical prediction quantitatively. We envision this method can be used to characterize

electron-phonon interaction for a wide range of relevant materials, such as

thermoelectrics and superconductors.
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Chapter 5

Magnon Thermal Transport and Magnon

Cooling Effect*

In this chapter we explore a Boltzmann transport theory of magnons in ferromagnetic

insulators. Since magnons can be driven either by temperature gradient or by magnetic

field gradient, a coupled transport theory analogous to that of electrons can be

established. Considering the interaction between phonons and magnons, we also propose

a novel magnon cooling effect that can potentially realize wireless cooling applications.

5.1 Background

Electron, phonons and magnons are the major energy carriers studied in this

thesis. Coupled to these carriers are thermodynamic forces that drive their flows 247: the

gradients of temperature, electrochemical potential and non-equilibrium magnetization248

* B. Liao et al., Physical Review Letters, 113, 025902 (2014)
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For conditions close to equilibrium, it is particularly convenient to treat the coupled

transport phenomena within the phenomenological framework of irreversible

thermodynamics 247, where the Onsager reciprocity relation serves as the link between

concurrent flows. Routinely used in studying the coupled transport of electrons and

phonons10 ,247,24 8, the method of irreversible thermodynamics has also been utilized in

analyzing the coupled transport of heat and charge with spins248 -25 2

In this thesis we limit our discussion to ferromagnetic insulators without free

conducting electrons. Further steps to understanding the spin caloritronic effects require

microscopic models that provide quantitative information of the transport processes, for

247
example the kinetic coefficients that connect the driving forces to the corresponding

fluxes. For studying thermoelectrics, the coupled transport processes are typically treated

within the framework of Boltzmann transport equation (BTE)10 , which in the diffusion

regime gives quantitative kinetic coefficients, and is capable of delineating ballistic

transport5 6 when solved with proper boundary conditions. It is particularly a natural way

to describe thermally induced transport processes where coherent contributions are not

important. On the other hand, the spintronics community often uses the Landau-Lifshitz-

Gilbert (LLG)25' equation for the dynamics of magnetization. Compared with BTE, LLG

adopts more a "wave-like" point of view, where the coherent dynamics is important and

the thermal relaxation acts as a damping factor. Indeed the long wavelength magnons

have been shown to exhibit macroscopic coherence lengths at room temperature 25 4, and

LLG is necessary to account for their behaviors. For the thermal transport, however,

magnons with a wide range of wavelengths and coherent lengths will be excited, and

LLG seems no longer a particularly convenient description. A recent work by Hoffman et
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al. 5 applied a "semi-phenomenological" stochastic LLG equation to modeling the

longitudinal SSE, where the temperature effect was incorporated via a thermally

fluctuating Langevin field. Since a linear phonon temperature distribution was presumed

in their work, it did not fully solve the coupled phonon-magnon transport problem. An

alternative approach to this problem adopts a more "particle-like" picture. The pioneering

work by Sanders and Walton 256 treated the coupled phonon-magnon thermal diffusion

process with a two-temperature model, where phonons and magnons were modeled as

two gases of bosons, each locally in thermal equilibrium with different temperatures, and

the local energy exchange rate between them is proportional to the temperature

difference. This model was later used to explain the spin Seebeck effect7 9, and was

recently extended to take into account the boundary heat and spin transfer2 7 . It also

served as a modeling tool for interpreting dynamic measurements of the thermal

conductivity of spin ladder compounds8 7,25 8 and the static direct measurement of the

magnon temperature 25 9, and has been applied to other carrier systems such as electron-

260 261
phonon and acoustic-phonon-optical-phonon

In their original formulation, Sanders and Walton did not consider the associated

magnetization flow with the magnon heat flow. On the other hand, Meier and Loss262

showed that the magnon flow could also be generated by a non-uniform external

magnetic field, but they did not look into the thermal aspect of this transport process.

More studies also discussed the similarity between field-driven magnon transport and

electron transport263-267. In a recent work by Kosevich and Gann268, both quantum and

semiclassical dynamics of a field-driven magnon flow was thoroughly studied. We then

attempt to combine the two paths, one from the thermal perspective and the other from
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the magnetic perspective, and to then give a unified description of the coupled phonon-

magnon diffusive transport of both heat and magnetization, which is also applicable when

the external magnetic field is non-uniform, with a special focus on the thermal effect

associated with the field-driven magnon flow.

5.2 Formulation of Coupled Phonon-Magnon Diffusion

Magnons are (in most cases 87) bosonic excitations, and in equilibrium they obey

the Bose-Einstein distribution:

f0 (r,k) - (5.1)
[ho.(k)+g BB(r Iexp -

.kBT (r

where ho(k) is the magnon energy83,253 without external magnetic field, g is the Lande

g-factor, yB is the Bohr magneton (-gpB, combined represents the amount of magnetic

moment carried by a single magnon 262), T, is the magnon temperature and B is the

external magnetic field. Here we neglect the magnetic dipolar interaction and magnetic

anisotropy for simplicity. Although magnons can reach a quasi-equilibrium state with a

finite chemical potential under parametric pumping 2 0 , here we treat magnons with

vanishing chemical potential for local equilibrium is here assumed. Next we write down

the steady-state Boltzmann transport equation within the relaxation time approximation

(RTA):

SV-Vffo (5.2)
Tm
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where f(r,k) is the non-equilibrium distribution function of magnons, v(k) is the

group velocity of magnons, r, = + + 1 I is a lumped relaxation time
m-m m-p,ela m-imp)

of magnons including effects of magnon-magnon scattering 269, elastic magnon-phonon

scattering and elastic magnon-impurity scattering 271. The inelastic magnon-phonon

scattering is responsible for the local energy exchange between magnons and phonons270

and in general cannot be written in a relaxation-time form' . Thus we follow Sanders and

Walton 2 56 here and consider the energy exchange process separately in the conservation

laws later. We emphasize that the validity of this separation requires that the phonon-

magnon interactions be much weaker than the magnon-magnon interactions.

After obtaining the non-equilibrium distribution function f(r,k) , we can

calculate the local magnetization and heat flows carried by magnons. The magnetization

Sd3k
flow is Jm = -gkB 3 fv , where the minus sign accounts for the fact that the

(27r)

excitation of magnons reduces the total magnetization1 19: M(r) =M, - gpBnum, where

MS is the saturation magnetization, and n, is the number density of magnons. To

calculate the magnon heat flow, we start with the thermodynamic relation of a magnet2 4 7:

dE = dQ + BdM = dQ - BgpB ~dn,,, where E is the total energy of the magnet and the

interaction energy (BM ) between the magnet and the magnetic field, and thus is field-

independent 272, corresponding to hw (k) microscopically (in contrast hwo(k)+gpBB

corresponds to the field-dependent "spectroscopic energy" 272). Differentiating the above

relation with respect to time, we get the magnon heat flux
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d3 k
Jq,,, =J -BJ =f k 3 (ho+gPBB)fv, where Jq, is the magnon heat flux, Je is the

magnon energy flux. The term BJ,, describes the transport of the magnetic interaction

energy associated with the magnetization flow, analogous to pJ, in the case of electrons,

where (p is the electro-static potential and JC is the electrical charge flux. Combining the

above expression with Eqs. (5.1) and (5.2), we arrive at the constitutive equations for the

magnon transport:

-Jm = LVB+ L 2 (-VTm), (5.3)

Jqm = L 2 T,,VB+ L2 2 (-VT), (5.4)

with the kinetic coefficients given by (assuming an isotropic magnon dispersion):

L1(= B) 2  
2 0 D(w)d, (5.5)

3 D(hd)

L12 = 4B(ho) + )BB)r,.v2 _ o D(w dw, (5.6)
3T,, co Ohw )

L22 1 f(ht+gBB)2 Tv2 Oo D(w)do, (5.7)
3T j(hm)

where D(w) is the magnon density of states. We can interpret L,, as the isothermal

magneto-conductivity o-m and L2 2 as the uniform-field magnon thermal conductivity K,

and define L 2 as a magneto-thermal coupling coefficient g,. Note that the Onsager

reciprocity relation manifests itself explicitly in Eqs. (5.3) and (5.4). It can be shown

using the Cauchy-Schwartz inequality that LHL22 > TmL 2
2 (in the case of electron
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transport, this inequality implies a positive zero-current thermal conductivity 0 ), which

guarantees the net entropy generation in this system is non-negative. Eqs. (5.3)-(5.7) are

reminiscent of electron transport, and the external field B seems to play a similar role as

the electrochemical potential of electrons. We need to point out here, however, that a

critical difference between electrons and magnons. The number of electrons is conserved,

thus the electrochemical potential includes the contribution of a finite chemical potential

that can be "self-adjusted" during the transport process, whereas the number of magnons

is not conserved, and the B field does not contain a similar contribution as the chemical

potential of electrons (given that the magnetic dipolar interaction is negligible).

With the constitutive equations (5.3) and (5.4), we still need conservation laws to

complete the formulation. We first look at the phonon system. At a steady state, the

phonon energy can either be transported by the phonon heat flux or transferred to the

magnon system. Thus in the spirit of Sanders and Walton's original work, the phonon

energy conservation states:

V-Jqp CMCP T , -TTP g(TT), (5.8)

where Jq, is the phonon heat flux, T, is the phonon temperature, C, and C, are the

volumetric specific heat of magnons and phonons, rmp is a phenomenological time scale

characterizing the inelastic interaction between phonons and magnons, and we define g,

as a lumped coefficient of phonon-magnon energy exchange. It is worth mentioning that

Eq. (5.8) is the result of inelastic phonon-magnon scattering and in principle can be

derived from a full version of BTE, similar as in the case of electron-phonon coupling 0 .

Another conservation law has to do with the energy input from an external power source.
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When the magnetization of the magnet changes, an electromotive force (EMF) is induced

in the electromagnet (e.g., a solenoid). To maintain the magnetic field, the current

running through the electromagnet has to overcome this EMF and thus to do work. It can

be shown27 2 that the work done by the current in this process is precisely equal to BdM.

Hence the local creation and annihilation of magnons enables the energy exchange

between the system (including the ferromagnet itself and its interaction with the magnetic

field) and the external power supply. A local version of the above statement can be

translated to V- (J,+ BJ, + J,,) = BV -J,,,, or more explicitly:

V. -qm+VB-J,,= g,(Tp-T,). (5.9)

Now combining Eqs. (5.8), (5.9) with (5.3) and (5.4), and the normal Fourier law for

phonon heat conduction: Jqp =-I VT, (K, is the phonon thermal conductivity), the

governing equations for the temperature distributions of magnons and phonons read

(considering 1-dimentional situations):

-KC a2 mP 9 (m - 7), (5.10)

2T + B T, + 2 B B 2(511

- an x"'+ 2 , +x ax n 2 T, - a-, -- =g) ,- ,,p 51

Here we assume the applied temperature and magnetic field gradients are small and thus

the transport coefficients are averaged values that do not explicitly depend on T or B.

Eqs. (5.10) and (5.11) reduce to the original Sanders-Walton model when the external

magnetic field is uniform, even though in this case the magnetization flow is present (

Jm =-mVT ).
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5.3 Magnon Cooling Effect

More interesting phenomena emerge when a non-uniform external magnetic field

is applied. We expect a non-uniform external field will drive magnon flow, which is

associated with a magnon heat flow, and cause temperature redistribution of both

magnons and phonons due to the phonon-magnon coupling. Without a concise analytic

solution with the coupling terms, we turn to numerical solutions for clarity, before which

we first estimate the kinetic coefficients based on information in the literature on yttrium

iron garnet (YIG). Since the magnetic energy scale is pretty small (gB = 1.3 K/T, for

g = 2 in YIG), we expect the predicted effect to be more pronounced at low

temperatures. Thus we use the low temperature expansion of the magnon dispersion

hwo(k) = Dk 2 a 2 , where D ~1.8 meV273 , and the lattice constant a = 12.3A for YIG 24.

For a similar reason, we neglect the field dependence of the kinetic coefficients in the

following discussion. Further assuming a constant relaxation time 'r,, we obtain the ratio

a- g11 4(1.5) - x'ex
-"= =1.304 K/T with (t)= xe dx , which is analogous to the
g, kB 4(2.5) o (ex 1)2

inverse of the Seebeck coefficient in the electron case. The value of Zrm is highly

controversial 79, and here we adopt a value of m ~1 ns, which leads to the calculated

uniform-field magnon thermal conductivity ic,, =8 W/mK at 20K with zero field that is

at least of the reasonable order of magnitude compared with the experiment 5 . With the

same relaxation time, we obtain -m 0.25 W/mT2 , and gm ~0.19 W/mTK . For

phonons, we choose K, =50 W/mK 275 At 20K, the specific heat of magnons and

phonons are on the same order of magnitude (~10 4 J/m 3K)276. Different claims on the
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value of rMP exists, ranging from below a few nanoseconds 257,27 7 to longer than a few

hundred nanoseconds 79,278-280 at 300K. At lower temperature, this relaxation time will be

longer, and we tentatively choose 'r,, ~100 ns due to the large uncertainty of available

data.

Given the above parameters, we study numerically an experimentally realizable

case: a strip of YIG (100 um long) connected to a thermal reservoir at 20K with one end,

and the other end isolated. If part of the YIG strip is covered by a magnetic shielding

material with high magnetic permeability, a step-like magnetic field can be realized

within YIG just by applying a uniform field. We model this step-like magnetic field as a

smeared-out Fermi-Dirac function as shown in Fig. 5-1(a) (the length scale of the

smearing is chosen to be much larger than the mean free paths of magnons to avoid the

complication of ballistic transport, which in principle can still be fully captured by the

BTE), and we calculate the phonon temperature at the isolated end. In this case we apply

adiabatic boundary conditions for magnons at both ends (J e Jqn + BJm = 0). A phonon-

temperature-drop of ~56 mK is predicted under a step field varying from 0.5T to 1.5T,

with the temperature distribution of both phonons and magnons shown in Fig. 5-1(b).

This temperature drop can be further amplified by increasing the field gradient as

illustrated in Fig. 5-1(c). We would like to emphasize that the estimation here is very

rough due to the lack of information, and is only intended to demonstrate a probable

order of magnitude of this effect. The calculation above indicates that this magnon

cooling effect may be detected under currently available experimental resolution. In

passing we note that the predicted effect differs from the conventional magnetocaloric

effect 281, such as adiabatic demagnetization, in that the magnetocaloric effect utilizes

124



thermodynamic properties of the magnet (i.e. the field-dependent specific heat) in

equilibrium, and a uniform field is often applied.
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Figure 5-1 (a) The step-like magnetic field, smeared out as a Fermi-Dirac function.
B0 is fixed to be 0.5T in the following calculation. (b) The temperature distribution

of phonons and magnons when B, = 1.5 T. One end of the sample (x = 0) is

thermally connected to a reservoir at 20K, and the other end is isolated. (c) The
dependence of the phonon temperature difference between the two ends on the
difference of the magnetic field when B0 is set to 0.5T.

We provide another example where the magnon cooling effect is set up in close

analogy to a thermoelectric Peltier cooling unit and we calculate the coefficient of

performance (COP) and effective zT. In this example the YIG strip is sandwiched

between two thermal reservoirs with temperatures T > T., when a step field (as in Fig. 5-

1(a)) is applied. The temperature profiles when T, = 20 K , T, - T. = 30 mK and

(B0,B )= (0.5 T,1.5 T) are plotted in Fig. 5-2(a), and it is clearly shown that heat is

moved from the cold source to the hot source. The COP can be calculated via
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COP = ' , and is plotted in Figs. 5-2(b) and 5-2(c) against varying
W - BV J ,, dx

temperature and field difference. At the fixed temperature difference of 30 mK (Fig. 5-

2(b)), the optimal COP is around 2, corresponding to an equivalent thermoelectric

module with ZT=0.01. From Fig. 5-2(c), the maximal attainable temperature difference is

~60 mK when (B 0,B,) (0.5 T,1.5 T), where the COP drops to zero.
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Figure 5-2 (a) The temperature profiles of phonons and magnons when T 20 K,

T, - T. = 30 mK and (BO,BI)=(0.5 T,l.5 T). (b) COP versus the change of magnetic

field when the temperature difference is fixed at 30mK. The hot-side temperature is
fixed at 20K. (c) COP versus the temperature difference when the hot-side

temperature is fixed at 20K and the magnetic field is fixed at (B,B>)=(0.5 T,l.5 T).

In summary of this chapter, we have developed a semi-classical transport theory

for coupled phonon-magnon diffusion. The merit of this work lies in the fact that we

apply the techniques widely used in the field of thermoelectrics to the study of

magnetization transport, utilize the analogy between field-driven electron and magnon

transport, and combine the thermal effect with the field-driven magnon transport in a
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natural way. Our theory takes into account that magnon flow can be driven by a non-

uniform magnetic field, and predicts that the heat carried by magnons associated with

their flow can result in a cooling effect. In real materials, non-ideal effects such as

magnetic dipolar interactions and the magnetic anisotropy need to be considered as a

refinement to this work. We have estimated the magnitude of the magnon cooling effect

in YIG, to show it is large enough so that it can be verified by experiments. For practical

uses, however, it is necessary to search for more suitable materials (preferably with lower

thermal conductivities, and strong phonon-magnon interaction), and thereby to optimize

the material properties via engineering efforts. We envision this new effect could

supplement the conventional magnetocaloric effect in cryogenic applications in the

future.
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Chapter 6

Summary and Future Work

6.1 Summary of Thesis

Transport and interaction of microscopic energy carriers in solid-state materials is

an old subject, in the sense that it has been one of the cornerstones of modern condensed

matter physics, and grandmasters such as L. Landau, N. Mott, P. Anderson, J. Ziman etc.,

all contributed to laying its foundations. The recent advancement of nanofabrication

technology, modern spectroscopic techniques and first-principles simulation tools,

however, has revived this old subject and brought in new possibilities and opportunities.

With these new tools, transport and scattering processes are no longer abstract concepts,

but rather can be intuitively understood in simulations, and directly observed in

experiments, even at the single-mode level. These unprecedented understandings then in

turn serve as guiding principles in materials innovation. This process is now gradually

becoming a standard cycle in many branches of material science research.
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This thesis contributes, specifically, to understanding the microscopic processes

of transport and interactions occuring in thermoelectric materials. In light of the recent

remarkable progress of phonon simulation and spectroscopic tools, and relatively lagged-

behind understanding of electron transport, the central goal of this thesis has been to

develop simulation and experimental tools to study electron transport, in particular

electron-phonon interaction, at the single-mode level. There are two main products of this

thesis. Firstly, a computer program has been co-developed by the author, which takes the

output of a DFT engine and the Wannier interpolation program EPW 104, calculates the

mode-by-mode scattering rates of both electrons and phonons due to electron-phonon

interactions, in three-dimensional or two-dimensional materials, and outputs the

thermoelectric transport properties. In Chapter 3, this program is applied to investigate

intrinsic electrical transport properties limited by electron-phonon interactions in a newly

discovered two-dimensional semiconductor phosphorene, and to evaluate its potential as

a thermoelectric material. The power of this tool is not only that it predicts all

thermoelectric properties from scratch, but also that it provided mode-by-mode

information that enables nanoscale engineering efforts. In Chapter 4, this program is

applied to study the effect of the electron-phonon interaction on phonon transport in

silicon. This is a previously overlooked problem, and our study now reveals that it is an

important effect in studying thermoelectric materials. Secondly, an experimental

technique has been developed and tested, which extends the conventional ultrafast

photoacoustic spectroscopy to be able to measure the damping of a single phonon mode

due to free charge carriers. In Chapter 4, this technique is described in detail, and applied

to study a silicon membrane. This experimental technique fills the gap of directly
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detecting phonon damping by free carriers without introducing dopant impurities, and

opens up an avenue towards single-mode level spectroscopy of the electron-phonon

interaction.

As an exploratory project, this thesis also looks into magnon thermal transport.

Spin caloritronics is a field still in its infancy. One of the main challenges in such a new

interdisciplinary subject is the different languages and perspectives that people with

different background knowledge use and understand. The main contribution of our work,

elaborated in Chapter 5, is to combine the fields of thermoelectrics and spintronics, and to

introduce the Boltzmann transport theory as a unifying language in dealing with the

transport of magnons. The theoretical framework we developed puts magnons on the

same stage with electrons and phonons, and thus contributes to understanding magnon

transport from analogies.

We would like to emphasize that the contributions of this thesis are not limited to

applications in thermoelectric materials. Many energy conversion technologies face the

same challenge and opportunity of understanding the microscopic carrier transport and

interaction. One example is photovoltaics, where another group of players, namely

photons, also join the field, while control of the electron-phonon interaction is also a

major challenge. We believe the fundamental understandings obtained in this thesis will

benefit a wide range of energy conversion technologies and material researches.

6.2 Future Directions

Whereas the aim of this thesis is to investigate the microscopic interaction

processes with as high a spatial and temporal resolution as possible, I have also realized

that most of the existing modeling and experimental tools fall short of capturing, in

131



realistic energy materials, the microscopic transport and interaction processes, mostly

with lengthscale of nanometers (e.g., electron and phonon mean free paths) and with

timescale of femtoseconds (e.g., the electron-phonon scattering time): First-principles

simulation tools are currently only suitable for simple single crystalline materials;

ultrafast optical spectroscopy is limited in its spatial resolution by the diffraction limit,

while standard electron microscopes cannot resolve dynamics with sub-nanosecond

duration. How to really reach down to the nanometer and femtosecond spatial-temporal

resolution to study the fundamental building blocks of energy transport and conversion

processes in realistic energy materials? This is the question I intend to answer through

research in the future.

I will continue along this path as a postdoctoral scholar in Prof. Ahmed Zewail's

laboratory in California Institute of Technology, where ultrafast electron microscopic

techniques are being developed. With optical pulses as pumps and electron pulses as

probes, these new tools can break the optical diffraction limit while maintaining the

femtosecond temporal resolution. Combining ultrafast electron microscopy with the

recent development of time-dependent DFT (TDDFT) simulation tools, I believe my

future research will lead me down to the extreme spatial and temporal scales, where

transport and interaction of individual electrons and phonons can be visualized and

understood, and hopefully these understandings will eventually contribute to innovative

material design and engineering in the future.
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