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ABSTRACT

Reciprocal frame (RF) structures consist of linear members that are mutually supporting within a
closed circuit, enabling spans that are much greater than the length of an individual member. Also
known in literature as 'nexorades', these geometrically complex structures offer unique
architectural and structural advantages.

This thesis explores the topic of structural optimization for a planar RF floor/roof framing
structure, focusing on the triangular RF topology. The relative structural performance of the grids
is computed and plotted against the geometric parameters for various load cases. The two key
parameters studied are the rotation angle of the members which defines the geometry, and the total
number of members in the grid which defines the grid density. The load cases modelled include
both symmetric and asymmetric loading scenarios on a hypothetical surface supported by the grid,
and therefore the loads are distributed to the members based on tributary areas. The goal of this
thesis is to determine whether certain geometries will be more favorable across multiple load cases,
or whether the optimal geometry would vary greatly. The structural performance is defined by the
total strain energy in the grid.

Results show that smaller rotation angles at the unit RF level produce more structurally efficient
RF grids. Depending on the grid density and load case, the optimal angle lies between 4 and 8.2
degrees. It is found that the optimal angle remains relatively unchanged for a given grid density

between the symmetric and asymmetric load cases.
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1. Introduction

Reciprocal frame (RF) structures consist of linear members that support one another within a

closed circuit, hence the origin of the term "reciprocal". This mutually supporting nature of the

structure enables spans that are much greater than the length of an individual member. RF

structures have also been referred to in literature as 'nexorades', where each member is termed a

'nexor', meaning 'link' in Latin (Baverel 2004).

1.1. Background

As Larsen (2008) suggests in her work "Reciprocal Frame Architecture", it is difficult to pinpoint

exactly when the first RF structure was built. Evidence of historic structures that bear similarity to

RF principles can be found in both Japanese and Western architecture, dating as early as the 1 2 th

century. For example, 1 3 th century medieval architect Villard de Honnecourt created sketches of a

planar floor beam grillage that closely resembles a planar rectangular RF grid (see Figure 1-1).

Honnecourt's sketches reflect a solution to resolving the problem of spanning a space with

members shorter than the required span, as buildings became increasingly larger.

t~2~ . 9 I ~ fl

Figure 1-1 - Honnecourt's planar grillage assembly (sketched by A.E. Plroozfar) (Larsen 2008)..

An RF structure can often be decomposed into a basic repeating unit, which will be referred

to in this thesis as the "unit RF". A unit RF is comprised of at least three members arranged in a

radial manner such that they circumscribe a polygon, hence forming the closed "circuit".

Depending on the arrangement of the members, this polygon may be regular or irregular, as seen
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in Figure 1-2. Therefore, it is possible to have RF structures with varying geometries, and with

varying complexity depending on the regularity of the polygon and tessellation (see Figure 1-2).

A further level of complexity can be created in "complex Rs", where smaller unit RFs are

embedded within larger units. The connection between members in a simple reciprocal frame is

facilitated by pressure and friction, but in practical applications the members are often tied or

notched (Larsen 2008).

(a) (b) (a) (b)

Figure 1-2 - Regular unit RFs (a); Irregular unit RFs Figure 1-3 - Regular RF grids (a); Irregular RF grids

(b) (Kohlhammer and Kotnik 2011). (b) (Kohlhammer and Kotnik 2011).

Figure 1-4 - Example of a complex RF (Larsen 2008).

Reciprocal frames are often sloped by its reciprocal nature, as the stacking of members on

top of each other naturally creates a gradient. The offset distance between the centerline of two

connected members is also known as the "eccentricity". The sloped nature of RF structures makes

them particularly suitable in roof applications, though flat RF structures are also possible through

notching. In the flat configuration, the members primarily transfer loads in bending, while in an
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eccentric configuration, loads are transferred through both axial and bending. Built examples of

RF structures commonly employ timber, as it is an inexpensive material that is easy to work with

during construction due to its smaller size, is easily notched, and has generally good behavior in

bending (Larsen 2014).

The Seiwa exhibition hall in Japan is an excellent built example of both sloped and flat RF

structures, utilizing timber as the structural material (see Figure 1-5 and Figure 1-6). Upon entering

the exhibition hall, one would find themselves underneath multiple RF structures: first, there are

the 12 spiraling roof beams, which are in turn supported by another two sets of flat RF beams that

spiral in opposite direction (Larsen 2008).

Figure 1-5 - Interior of the Seiwa exhibition hall

(Larsen 2008).

Figure 1-6 - Section drawing of the Seiwa exhibition

hall (drawn by Tadashi Hanauzu) (Larsen 2008).

In addition to having obvious architectural benefits, reciprocal frame structures also offer

advantages structurally. The polygonal and circular nature of RF structures produces plan forms

that depart from traditional rectangles, and curved forms can be generated with straight members.

The latter is particularly advantageous, given that curved timber members are often difficult to

manufacture. Connections in an RF structure are relatively low-tech and highly repetitive in

symmetrical grids, thus simplifying construction. The repetition of short members of equal length

are also advantageous from both a cost and constructability perspective. Finally, studies have
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shown that complex RF structures have a high degree of redundancy, as load tests to failure

demonstrated their ability to find alternative load paths (Larsen 2014).

The unique characteristics of RF structures have made them of interest in applications

beyond conventional structures, such as in the design of recreational pavilions and emergency

deployable structures. The Kreod Pavilion constructed for the London 2012 Olympic Games is an

example of how a timber RF structure is a great fit for structures that need to be easily constructed

and disassembled (see Figure 1-7). With the connections inspired by those from furniture,

assembling and disassembling the joints was greatly simplified, while simultaneously achieving

an aesthetically pleasing and curvaceous geometry (Larsen 2014).

Recognizing the compatibility of timber as an inexpensive structural material for RF

structures, and the ability of RF structures to be quickly constructed from identical members of

equal length, Larsen (2013) explored the possible use of RF structures as emergency structures.

Her research proposed three possible typologies of emergency RF structures: a deployable "arch"

type system; a "planar" frame system, and a "hanging" type system. In the "arch" type system, a

series of arches would be individually assembled and then connected to each other by cables and

fabric. Upon tensioning the cables, the structure would unfold and create an enclosed space (see

Figure 1-8). In the "planar" frame system, a rectangular shelter would be created with walls, floors,

and ceilings constructed from a planar RF grid (see Figure 1-9). Finally, the "hanging" type system

consists of hanging an RF grid from a series of supports to create an overhead shelter (see Figure

1-10). All of these systems benefit from the simplicity of connections, use of low-tech equipment,

and repetition of member sizes and lengths.

16
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Figure 1-9 - A "planar" type emergency RF structure
(Larsen and Lee 2013).

Figure 1-8 - An "arch" ype deployable emergency RF
structure (Larsen and Lee 2013).

2 V

Figure 1-10 - A "hanging" type emergencv RF structure
(Larsen and Lee 2013).
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1.2. Problem Statement

The topic of structural optimization has garnered interest in recent years, which can be attributed

to the increased awareness of environmental sustainability in structural design, and how efficient

structures can reduce the carbon footprint through minimizing material quantities. The latter is

particularly powerful when faced with the statistic that more than 50% of a structure's total carbon

footprint during its lifetime can be the embodied carbon of its structure (Kaethner and Burridge

2012).

Given that RF structures can come in a wide variety of topologies, geometries, and forms,

what constitutes as an "optimal" RF structure is not well understood yet. The motivation behind

this topic is to benefit the practical application of RF grids as a floor or roof framing structure,

with the aim of generating results that will serve as useful rules of thumb for designers who are

contemplating the use of a planar RF grid in their structure. Therefore, the question is whether

there is a particular RF grid geometry for the triangular topology that is optimal across both

symmetric and asymmetric load cases.

This thesis continues research on how geometry impacts the structural efficiency of an RF

structure. The thesis focusses on a planar RF grid with a triangular topology, which consists of 3

members at the unit RF level. The goal is to determine what the optimal geometry is for various

load cases, and whether this optimal would vary greatly across the different load cases. The

geometry of an RF grid is defmed by two variables; the rotation angle of the members, which

dictates the size of the engagement window (see Figure 1-11), and the density of the grid, which

dictates the number of members comprising the grid. The three smallest possible grid densities are

explored: the first with 12 members in total, or 6 unit RFs; the second with 42 members (24 unit

RFs), and the third with 156 members (96 unit RFs). In this thesis, the grid densities are referred

to by the number of unit RFs they consist of (i.e. N = 6, N = 24, N = 96).

The load cases considered have been chosen based on possible real-world loading

scenarios, on the assumption that the RF structure will be supporting a flat roof or floor surface.

Both symmetric and asymmetric load cases are analyzed, which are summarized in Table 1-1 and

represented in Figure 1-12. All load cases include the self-weight of the members. The area loads

are applied on the members as discretized point loads and distributed by tributary area, and the

self-weight is applied as a uniform line load on the members. The joints between members are
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assumed to be notched connections and therefore are pin connections. The boundary support

conditions are rollers, except for one pin for lateral resistance. Lateral loads and torsion are not

considered in this thesis, and only linear elastic behavior is assumed in the analysis. Since the grid

is planar, the primary structural action is in bending.

, V

A

j

~

-. 4

W

7< \ <-~

V
Figure 1-11 - N = 24 grids with varying rotation angles.

The engagement window is highlighted with a dotted triangle.

Symmetric Load Cases LC 1. Uniform area load + self-weight

LC 2. Uniform area load with concentrated load at center + self-

weight

Asymmetric Load Cases LC 3. Uniform area load with concentrated load at midpoint

between center and support + self-weight

LC 4. Uniform area load on half of grid + self-weight

Table 1-I - Sumnaiv of load cases.

LC 2 LC 3 LC 4

Figure 1-12 - Schematic of applied loads, as shown on the N = 24 Grid.
Shaded area indicates extent of area load; point indicates location of concentrated load.
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2. Literature Review

Despite being a structural system that has been around for centuries, reciprocal frame structures

have not been commonly adopted in practice. Researchers suggest that it is likely because their

structural behavior was never well understood. Structural systems are often selected for a given

design problem on the basis of appropriateness given the loading conditions, span requirements,

and architectural goals. As Parigi & Kirkegaard (2013a) note, it is unclear under what

circumstances would a reciprocal frame be a good fit as a structural system. Therefore, several

studies in recent decades have sought to better understand the structural behavior of RF structures.

Gelez, Aubry & Vaudeville (2011) studied planar RF grids with the rectangular topology,

with the aim of better understanding their structural behavior in order to facilitate their design. In

their study, they proposed two mathematical formulas pertaining to the structural analysis of a

given RF grid: one that provides the value of maximum bending moment, and another that provides

the value of bending moment and deflection at any location. The loads applied were vertical point

loads (see Figure 2-1). They also compared the structural behavior of the RF grid to an equivalent

flat grid, and found that the RF grid was not competitive with respect to bending moments and

deflections. However, the distribution of bending moments was more even in the RF grid, and

when subjected to an irregular perimeter geometry, the RF grid performed better in terms of

distributing the support reactions (see Figure 2-2). Therefore, they concluded that despite the

disadvantages of the rectangular RF grid in terms of required stiffness and strength, there are

benefits to their application in certain situations that require irregular perimeters, and low

sensitivity to settlements, local thermal loads, or global thermal loads.

I Reactions Bending moments

Figure 2-1 - Example of an RF grid with rectangular
topology studied by Gelez et al (2011).

21

Figure 2-2 - Comparison between an RF grid and a
regular grid/for an irregular perimeter (Ge/eZ, Auby,

and Vaudeville 2011).
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Parigi & Kirkegaard (2013a) studied the structural efficiency of various 2D and 3D RF

configurations with the triangular topology. Their research is the most relevant to this thesis, as

they were also interested in exploring the effect of geometric parameters on structural

performance. Parigi & Kirkegaard studied 8 different RF geometries, both in 2D as flat grids and

also in 3D by varying the eccentricities of the members (see Figure 2-3). The structural efficiency

of each was taken as the value of maximum stress and displacement, and the two load cases

consisted of a uniform line load

each member (asymmetric).

Ile

on each member (symmetric), or a uniform line load on half of

1-~

'74--I

r-

>~

r~-~

Figure 2-3 - Planar RFgrid configurations studied by Parigi and Kirkegaard (2013a).

Although this thesis is similar in principle to the research performed by Parigi &

Kirkegaard (2013a), it addresses some of the points for future work that was suggested in their

research, and therefore differs by a few key aspects. The first is the use of global values such as

total strain energy in assessing the structural performance, as opposed to the local values of

maximum stress and displacement. Using global values would better capture the efficiency of the

structure as a whole, because it would account for the contributions each member has in the

performance of the grid. A downside to considering simply the value of maximum stress in the

grid is that it only reflects what is happening at a single member level, and does not reflect the

stress distribution among other members. Therefore, the evaluation of structural efficiency
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utilizing the total strain energy is expected to produce more representative results on the

performance of the entire structure.

The second suggested point for future work that is addressed in this thesis is the

consideration for pin connections between elements. In their research, Parigi & Kirkegaard

(2013a) only modelled the joints between members as fixed, which would unlikely be the case in

reality as there would be some rotational freedom between the members.

A final difference in the methodology is the modelling of the loads. In this thesis, load

cases that represent possible loading scenarios in reality are considered, as the structure is

considered to be a hypothetical structural floor framing system. The loads are therefore distributed

onto the members by tributary area, which contrasts with previous work as the members would

receive non-uniform linear loads.

Kirkegaard and Parigi (2013b) also explored the topic of robustness for reciprocal frame

structures. They hypothesized that RF structures would be prone to progressive collapse due to the

mutually supporting nature of the members; however, the results from their research proved

otherwise. They found that RF structures are capable of redistributing the loads when subject to a

loss of a member or a support, but that the sensitivity of a structure to a failure depends on where

the failed member occurs. With the requirement of robustness being specified in most building

codes across the globe, the application of an RF as a structural system could therefore constitute

as a method of addressing this requirement, since it involves "selecting a structural form that can

survive the accidental removal of an individual member or limited part of the structure" - one of

the robust design principles outlined in the Eurocode.
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3. Methodology

This section outlines the methodology used to generate the parameterized structural analysis

models of the reciprocal frame structures. Although the geometry of RF grid structures may appear

complex, parameterizing the structural analysis model of a regular RF grid is a relatively

straightforward task, and is summarized with a flow chart in Figure 3-1. Grasshopper, a graphical

algorithm editor for Rhino, a 3-D modelling software, is the primary software utilized in this thesis

(Robert McNeel & Associates 2016). Custom components created through the GhPython plugin

for Grasshopper are also used extensively, and are comprised of custom scripts written in the

Python programming language (Robert McNeel & Associates 2014). Structural analysis is

performed using the Karamba plugin for Grasshopper (Preisinger 2016). A hand calculation

procedure used to verify the Karamba analysis outputs is also described in this section. The hand

calculation is done to ensure the credibility of the computer analysis outputs.

Initialize unit RF

Generate Voronoi
diagrams from
nodes to create
tributary areas

Calculate loads

Generate RF grid
with desired number

of members

Reconnect nodes
with members

Remove loads from
perimeter beams

Scale RF grid to
maintain desired

surface area

Discretize members
to smaller segments

to generate nodal
load locations

Analyze model
using Karamba

Figure 3-1 - Sequence of methodologv used to generate parameterized model.
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3.1. Generating Typology

The first step is to generate the unit RF, which is initialized as an equilateral triangle. Each side of

the triangle represents a member, and each vertex is considered to be the starting point of one

member. To generate the reciprocity, the members are rotated clockwise by an equal angle about

its starting point (see Figure 3-2). This reduces the size of the "triangle" within the unit RF, known

as the engagement window as mentioned in Section 1.2. The side length of this triangle is defined

as the engagement length. By increasing the rotation angle, the engagement length decreases. This

rotation angle will serve as the key variable in the optimization process; the resulting geometries

will be defined by this rotation angle. The rotation angles considered are 0 to 30 degrees in 0.1

degree increments. In addition, the engagement length for each rotation angle will normalized in

this thesis and presented as an "engagement ratio", since the engagement length would scale

according to the size of the initial unit RF; we are only interested in the ratio of this length to the

overall member length.

Figure 3-2 - Generating the unit RF.

A rotation angle of 150 is pictured The overhanging portions are trimmed after rotating the members.

Once the unit RF is generated, the RF grid typology with the minimum number of members

can be created using a polar array. As depicted in Figure 3-3, the length of a member that is outside

of the engagement window is named the "outer length". Rotating this outer length 60 degrees

counter-clockwise about the vertex of the engagement window would pinpoint the center of the

array. Once the center is found, the unit RF is then arrayed 60 degrees apart until a full circle is

achieved - which means that the smallest RF grid is comprised of 6 unit RFs. This is due to the

nature of RF grids needing to form closed circuits. Larger grids can then be created using the same

procedure of polar arraying successively larger grids, as demonstrated in Figure 3-4. Three

separate models are created to explore the three different grid densities (Figure 3-16).
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Figure 3-3 - Diagrammatic procedure of generating the N = 6 Grid.
A unit RF with the "outer length " highlighted (left,): Outer length rotated by 60 degrees to get center of array'

(center), Grid generation following polar array (right).

7" 1
/

W /

/
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Figure 3-4 - Diagrammatic procedure of generating the N = 24 Grid.

The total number of RF units (N) in a grid can be calculated from Equation 1, based on the

number of rotational arrays (n) needed to attain the grid. For example, the next grid size up from

the base N = 6 grid would be N = 24, since two arrays are needed (first to generate the N = 6 grid,

and second to generate the N = 24). The N = 96 grid is therefore generated from three arrays.

N = 6 * 4 l1 (1)

Due to the self-supporting nature of a reciprocal frame, a connection point between two

members result in one of the members being supported or supporting the other. In an RE grid with

triangular topology, the supported vs. supporting conditions for each connection point in a given

member is straightforward, as there are only two types of members. An interior member is always

supported on its ends and supporting two along its span, and the exterior members connecting to

the supports are always supported on both ends and supporting one member along its span (see

Figure 3-5). A plan view schematic of the supported vs. supporting conditions at each joint is

shown in Figure 3-6. For any given vertical load on a member, the load will be resisted in bending
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and travel to the nearest supporting member, continuing this process until it reaches a boundary

support at the outermost members.

Exterior Member

Interior Member

Figure 3-5 - Support conditions of members in an RF grid.

Figure 3-6 - Plan view of N = 6 grid showing the support conditions for each member.
Note which members are on top at each connection point. Circles indicate boundary supports.

Examples of the N = 24 grid at various rotation angles are shown in Figure 3-7. Note the

decrease in the size of the engagement window (decrease in engagement ratio) as the rotation angle
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increases; this relationship

densities.

between rotation angle and engagement ratio remains for all grid

Angle: 00
Engagement Ratio: 1.00

Angle: 150
Engagement Ratio: 0.67

Angle: 50
Engagement Ratio: 0.91

Angle: 19.10
Engagement Ratio: 0.56

Angle: 100
Engagement Ratio: 0.79

Angle: 200
Engagement Ratio: 0.54

Angle: 250 Angle: 300
Engagement Ratio: 0.42 Engagement Ratio: 0.00

Figure 3-7 - Examples of the N = 24 grid at various rotation angles.

It can be observed that a rotation angle of 0, 19.1, or 30 produces a structure that does not

behave in a reciprocal manner, since the members would either align with one another and

therefore not support each other in a complex manner (at 0 and 19.1 degrees), or multiple members

would converge at a single node (at 30 degrees) which also would not permit reciprocal behavior.

These results are referred to as non-reciprocal grids and are omitted from the possible range of

rotation angles.
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3.2. Maintaining Desired Surface Area

The third step is to scale the RF grid to obtain the desired surface area of the floor or roof framing

structure. This is because for a given initial length of members at the unit RF level, the surface

area of the RF grid changes as the rotation angle changes. Therefore in order to maintain a constant

coverage area, the parameterized model needs to be scaled to the correct size for each rotation

angle, after the polar arraying process.

In this thesis, the surface area is the area bounded by the perimeter beams (see Figure 3-8).

The area is taken to be the equivalent of a circular space with a radius of 5 m, which leads to an

area of 78.54 m2 . The resulting span is approximately 10 m. The surface area is maintained across

all grid densities in order to compare the effect of grid density for a fixed floor or roof area.

Figure 3-8 - Diagram indicating the surface area of a grid (shaded).

3.3. Discretization of Members for Loading

The fourth step is the discretization of members to smaller segments. This step is needed due to

complications in utilizing the Mesh Load component in Karamba to translate area loads into

distributed line loads on members (Preisinger 2016). As a result, distributed loads are discretized

as closely spaced point loads. In order to apply point loads along the length of a member in

Karamba, a physical node must exist at the point load location. Hence, the members are divided

into segments of equal length to generate the nodes, and a custom component is coded to re-draw

the members between the nodes. The node spacing is set to 0.1 m, as it was found that nodes too

close together could lead to bugs when generating Voronoi diagrams, which are needed for proper

calculation of the tributary areas. The bug causes the tributary areas to overlap, which leads to an

improper calculation of the tributary areas (see Figure 3-9).
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Figure 3-9 -Example of the Voronoi bug.
Note the overlapping of tributary areas at certain locations.

The custom component of re-drawing the members is a key part of thie parameterized

model, as it requires properly indexing which members one connects to, and the locations at which

the connection happens. The re-drawing is also necessary as it ensures that the connection between

two members is appropriately modelled with a node that is shared between the two - otherwise the

Karamba analysis would not work.

Depending on the rotation angle, the node which connects a member with another may lie

very close to one of the discretized nodes on the supporting member (see Figure 3-10). This may

once again lead to glitches in generating the Voronoi diagrams as mentioned previously. Therefore,

a custom component was written such that one of the nodes among the two within close proximity

would be removed.
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Figure 3-10 - Example showing the removal of nodes in certain cases.

Once the points in the model are generated, they are input into the Voronoi component in

Grasshopper to generate Voronoi diagrams, which delineate the tributary areas of each respective

point (see Figure 3-11) (Robert McNeel & Associates 2016). For the case of area loads, the

magnitudes of the loads to be applied is determined by multiplying each tributary area by the load

per unit area. The result is an approximated distributed load on the members that has been

discretized as point loads and is non-uniform (see Figure 3-12). Nodes from perimeter beams that

span between support points are also included in the Voronoi component in order to properly

determine the tributary area of the members, but the structural analysis of the beams are omitted

in the results. This is because we are only interested in the performance of the grid itself.

Figure 3-11 - Tributarv areas.
The hexagonal perimeter nodes are on/y ised to generate the tributarv areas and have no applied loads.

The analvses of the perimeter beams are neglected.
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Figure 3-12 - Discretized distributed loads.

3.4. Generating Different Load Cases

For the different load cases, the procedure for applying the loads remains similar. In the case of

applying a concentrated load, the relevant tributary areas are trimmed from the entire Voronoi

diagram (see Figure 3-13), and the magnitude of point load to be applied on each node is calculated

based on the proportion of its tributary area to the total trimmed area. The calculated loads are then

added to the load of the relevant node in the base Voronoi diagram.

In the case of a partial area load, a similar process of trimming the entire Voronoi diagram

is used. For load case 4 where only half of the gird surface is loaded, a kinked dividing line

following the member paths is utilized instead of dividing the grid in half with a straight line (see

Figure 3-14). This is due to the nature of the applied loads being indexed to the discretized nodes

along the members; following the members would allow the nodes with removed or reduced loads

to be easily indexed. The resulting sum of the forces applied on the trimmed half segment remains

very close to 50% of the sum in the entire area case, with only a maximum difference of

approximately -0.11% depending on the rotation angle.
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Figure 3-13 - Trimmed Voronoi diagram ftr
distributing the concentrated load in Load Case 3.

Figure 3-14 - Trimmed Voronoi diagram tor Load
Case 4.

3.5. Dimensioning and Self-Weight of Members

The self-weight ofthe members is applied as a uniform line load on the members (see Figure 3-15),

which is calculated based on the cross-sectional area multiplied by the material density. The

material density is 6.0 kN/m 3, based on the default value for wood in Karamba (Preisinger 2016).

The members are assumed to be solid wood members with a constant cross-section across its

length.

Figiurc 3-15 - Uniform line loads for self-weight.

The cross-section dimensions for each grid density vary because the members have been

sized according to the maximum moment of all load cases at any rotation angle (i.e. for each grid

density they are sized for the least-optimal rotation angle of the highest load case). This is done to
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avoid errors in the computer analysis, as the results could be erroneous if the utilization of a

member (which is primarily due to bending) greatly exceeds 1.0. Another benefit to maintaining a

constant cross-section across all rotation angles is that the optimization process can be linearized,

as the "optimal" would only be defined by geometry and not also the self-weight.

The member sizes for each grid density are shown in Table 3-1. The width has been held

constant, while the depth changes according to the maximum moment for any rotation angle in

load case 2 (the highest loading demand). Therefore, the members have been sized according to

strength requirements. The required width is calculated from Equation 2, where Mr is the required

moment resistance, Fy is the tensile yield stress of the material, and b is the member width. The

tensile yield stress is 13 MPa, based on the default value for wood in Karamba (Preisinger 2016).

This value corresponds roughly to the tensile strength parallel to the grain of a type C22 softwood

species in EN 338-2003, which contains the strength properties of structural timber (European

Committee for Standardization 2003). The cross-section size is the same across the entire length

of the members.

6 * Mr

h= F r* (2)

N = 6 Grid N = 24 Grid N = 96 Grid

Member Width [in] 6 6 6

Member Height [in] 28 30 17

Table 3-1 - Member dimensions for each grid density.

As it is found that the bending moment tends to increase greatly towards higher rotation

angles for the two denser grids, the maximum moment used for sizing is capped off at around 27

degrees, beyond which it increases much greater than the typical increment.

Since the chosen dimensions have an impact on the self-weight of the members, which in

turn impacts the magnitude of the bending moments in the members, the results could be affected

as the sizing for each rotation angle is not optimized for its own bending demand (i.e. an

unnecessarily high self-weight moment could skew the efficiency of a geometric configuration).

To ensure this is not the case, the member depth for the rotation angle with the lowest maximum

bending moment in load case 2 (4.7 degrees) was optimized for its own maximum moment, and
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this value was compared with its maximum moment under the non-optimized dimension. Load

case 2 is utilized because it is the expected worst-case. It would not be rational to optimize a

member under load case 4 since it would have lower moments.

The result in Table 3-2 shows that the self-weight has minimal effect on the maximum

moment for a given rotation angle, as the difference in moments between the optimized and non-

optimized dimensions is less than 10%. This means that the size of the members has a small impact

on the optimum angle. Although the member depths appear large, they are somewhat arbitrary as

they are affected by the defined span and the material properties. Similar results would be obtained

with smaller sections if the span was reduced or if a different species of timber was used.

Non-Optimally Sized Optimally Sized Difference

Member Depth [in] 30 17

Max. Moment (without 51.3 51.3

self-weight) [kNm]

Max. Moment (incl. self- 61.1 56.9 -7.47%

weight) [kNm]

Table 3-2 - Effect of self-weight on the max. bending moment at 4.7 degrees (N = 24 grid).

Finally, although the parameterized structural model is a stick model where the members

have been idealized as lines without thickness, it is important to note the implications of member

width on possible geometries. For certain rotation angles where the connection points are in close

proximity, the member width must be taken into account in reality as the members cannot overlap.

However, since the actual member widths have been arbitrarily chosen in this thesis and could

vary in reality, the rotation angles leading to an overlapping of members are still included in the

results. Overlapping does not negatively affect the analysis results since the analysis model is a

stick model - the cross-sections are only used to compute strength, deflections, and weight.
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3.6. Summary of Loads

The magnitudes of the applied loads for all load cases are tabulated in Table 3-3 and Table 3-4.

The live loads are based on un-factored load values for the critical expected occupancy, which is

assumed to be a floor framing structure supporting an assembly area. The values are referenced

from the Minimum Design Loads for Buildings and Other Structures, ASCE 7-10 (American

Society of Civil Engineers 2013).

LC 1 - Uniform Load 4.8 kPa (100 psf)

LC 2 - Uniform Load + Concentrated Load 4.8 kPa (100 psf) + 8.9 kN (300 lbs)

LC 3 - Uniform Load + Concentrated Load 4.8 kPa (100 psf) + 8.9 kN (300 lbs)

LC 4 - Uniform Load on Half 4.8 kPa (100 pst)

Table 3-3 - Magnitude of live loads for all grid densities.

N = 6 Grid N = 24 Grid N = 96 Grid

Self-Weight [kN/m] 0.650 0.697 .0.395

Table 3-4 - Magnitude of dead loads for each grid density.

3.7. Structural Analysis

The final step is to analyze the parameterized structural model, utilizing finite element analysis

implemented via the Karamba plugin for Grasshopper (Preisinger 2016). Inputs that are needed to

assemble the structural model include the geometry, boundary support conditions, joint conditions,

loads, member cross-section, and material properties. The joints at the member connections are

modelled as pins, as it would be difficult to achieve full fixity of the connection in reality. The

boundary support conditions are also pins.

The total strain energy of the model is then calculated using Equation 3, where E is the

modulus of elasticity, and I is the moment of inertia for the strong axis. E is taken as 10,500 MPa,

based on the default value for wood in Karamba (Preisinger 2016). Since the cross-section size is

held constant across the entire member length at every rotation angle for a given grid density, El

would be constant, and consequently the strain energy is only proportional to the sum of the

maximum moments squared in each member (Equation 4). The sum of the maximum moments

squared is therefore the metric for structural performance, and is referred to as the Strain Energy
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Factor. It is independent of the material cross-section, and is solely dependent on geometry. Note

that a lower value for the Strain Energy Factor corresponds to a more efficient geometry.

Strain Energy = Mmax2

2EI

Strain Energy Factor = Mmax2

L

(3)

(4)

AIA

Figure 3-16 - Structural model of the 3 different grid densities.
The arrows at the on the members indicate the support locations.

I
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3.8. Categorization of Member Types

Due to the symmetry of the RF grid, certain members have an identical load distribution when the

structure is loaded symmetrically. For example, the N = 6 grid has two types of members, where

the members of each type receive identical loading (see Figure 3-17). Therefore, it is possible to

categorize members in an RF grid based on their load distribution, which corresponds to their

relative location and topology. As grids become progressively denser, the number of different

member types would increase: for the N = 24 grid, there are 7 member types, and for the N = 96

grid, there are 26.

I

/

-7

1' /

I

/

Figure 3-17- Member types in an N 6 Grid. Figure 3-18 - Member types in an N = 24 Grid.

Under symmetric loading, the value of maximum moment for each member type is the

same, with the centermost member types receiving the highest values of maximum moment. This

may be counterintuitive as one may expect the outermost members to have the highest maximum

moments, since it would "accumulate" all the loads from the center and bring it to the supports.

However, the behavior of the entire grid can be thought of as a simply supported beam, with the

highest moments at the midspan.

Taking an example from the N = 24 grid, the distribution of the 7 member types is shown

in Figure 3-18. Type 7 is supporting types 7 and 6; type 6 is supporting 7 and 4; type 5 is supporting

6 and 1; type 4 is supporting 5 and 3; type 3 is supporting 5 and 2; type 2 is only supporting type

4; and type 1 is supporting only type 3. If you trace from type 7 the members that each are

supporting, it is observed that the outer member types receive less load because they are supporting
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members that carry less load. Due to symmetry, a majority of members have identical tributary

areas and are supporting two members each, with the exception of the outermost members

connected to the support points (type 1 and 2) - they are only supporting one member and have a

different tributary area. As a consequence, members that support member type 1 and 2 (types 3

and 5) would subsequently receive less load than those further away from the outside, and in that

sense the "accumulation" of loads is actually reversed in the case of an RF grid.

The ability to categorize members based on their loading distribution can be beneficial in

terms of generating material savings, as the member size can be optimized based on their expected

maximum load under symmetric and asymmetric loading.

3.9. Hand Calculation Verification

To verify the structural analysis results generated by the Karamba plugin, a hand calculation using

Excel is performed (Microsoft 2016). As we are only interested in verifying the accuracy of the

numerical results generated by the software, the simplest N = 6 grid with the uniform area load

(neglecting self-weight) is chosen as the case to verify against. The values that are verified against

the computer model are the Strain Energy Factor, and the values of maximum moment and shear.

Since the N 6 grid only has two member types (refer to Figure 3-17), only two members need to

be analyzed in Excel as the remaining members would be identical in behavior to one of the two.

The first step is to import from Grasshopper the tributary areas for each node on the two

members. The magnitude of the force on each node is then calculated by multiplying the areas by

the applied area load. Type 1 members have 3 unknown forces, and type 2 members have 4

unknown forces (see Figure 3-19). The type 1 member is analyzed first as it is statically

determinate: one of the unknowns is the reaction force (Ay), which can be solved due to symmetry

(each reaction is equal to the total vertical force on the grid divided by the six supports). Therefore,

two equations of equilibrium can be used to solve for all the remaining forces; sum of moments

about point B to solve for Cy (Equation 5), and sum of vertical forces to solve for By (Equation 6).

- j(Applied Loads * Moment Arms to B) - (A, * Length AB) (5)
Length BC

By = -(AAy +Cy - Applied Loads) (6)
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Figure 3-19 - Unknown forces on the two member types.
The known applied loads along the members are not shown for claritv.

Due to symmetry, the magnitude of the unknown Cy in member type 1 is equal to Cy in

member type 2: this reduces the unknowns in member type 2 to two (Dy, Ey) and enables us to

solve for the forces in a similar manner using Equations 7 and 8. After all the unknown forces are

resolved, the shear and moment values at each node can be calculated. The moment values are

then used to calculate the Strain Energy Factor in each member type, using Equation 2.

X(Applied Loads * Moment Arms to D) + (C, * Length CD) - (By * Length BD)

Length DE

D= - (By - C+ Ey - Applied Loads)

(7)

(8)

The results of the hand calculation are compared with the Karamba output in Table 3-5.

Since the difference in the comparison values remain under 10%, the numerical results produced

through the parameterized model can therefore be accepted with confidence. Refer to Appendix A

for the spreadsheet of the hand calculations.

Hand Calculation Karamba Analysis Difference

EMmax [kNm2I 2.17 x 106 2.30 x 106 -6.18%

Maximum Moment [kNm] 106 110 -3.11%

Maximum Shear [kNI 67.5 68.2 -1.10%

Table 3-5 - Comparison of hand calculation with Karamba output.
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3.10. Summary of Methodology

The methodology of creating the parameterized structural analysis models was first discussed. The

parameterization used Grasshopper, Karamba, and Rhino (Robert McNeel & Associates 2016,

Preisinger 2016). The first step was to initialize the unit RF, from which we generated the three

respective grid densities through a succession of polar arrays. The grids were then scaled to the

appropriate size in order to maintain a constant surface area. Next, the procedure detailing how the

member loads have been distributed based on tributary areas was described; this distribution of

loads is a key contribution of this thesis to the research of planar reciprocal frames and their

behavior under various load cases. The rationale behind the member sizing was discussed, and the

Strain Energy Factor was introduced as the metric of structural performance for each geometry.

Finally, a method of categorizing the members in an RF grid based on their load distribution and

topology was presented. The methodology section concluded with a hand calculation procedure

that was performed to verify the credibility of the Karamba analysis results.
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4. Results

The general trend across all grid densities and load cases is that the more structurally efficient grids

are those with a smaller rotation angle, and therefore larger engagement length. A common pattern

is that the Strain Energy Factor initially decreases to a minimum at a rotation angle between 4 and

9 degrees, then increases for rotation angles beyond. Recall from Section 3.7 that a lower value

for the Strain Energy Factor corresponds to a greater efficiency. The exact value of rotation angle

at which the optimal structural performance exists varies between the different grid densities and

load cases.

It is important to note that the results from the structural analysis are based on several

assumptions. Buckling out of plane due to bending, and the effect of stress concentrations at the

joints due to the assumed notching of members are not considered. Since certain rotation angles

have joints that are closer together, the stress concentrations at these areas could have an effect on

the efficiency of the structure that is not captured in the strain energy.

4.1. Organization of Results Section

The first part of the results section discusses the removal of certain data points due to possible

errors from the structural analysis. The remaining sections summarize the analysis outputs, which

have been organized in two ways: first, by grid density (Sections 4.3 to 4.5), which enables the

comparison of results between load cases for a given density; and second by load case (Sections

4.6 to 4.9), which enables the comparison of results between grid densities for each load case.

Primary discussion of the results are included in Sections 4.3 to 4.5 under each grid density. All

presented graphs are scatter plots of the data points at each rotation angle. The results section

closes with a comparison of a particular RF grid geometry with a similar non-reciprocal grid.

4.2. Filtering of Results

Upon reviewing the data points across the possible range of rotation angles, results from certain

rotation angles were removed due to possible errors in the structural analysis.

The first errors are manifested through the member utilization: at small rotation angles for

the N = 6 grid, the maximum member utilization would jump to values beyond 1.0, with many at

3000 - despite the fact that the value of maximum moment for those angles are less than those at
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a higher, less optimal rotation angle. Although the bending moments corresponding to these

erroneous utilization values appear to correlate with the trend of the moment values, these results

are omitted due to possible errors. A similar problem occurs at the upper limit of rotation angles.

In general, the glitch is not present between the rotation angles of 2 and 28 degrees. It is plausible

that extremely high (and obviously erroneous) shear values may be contributing to the errors, even

though the maximum shear utilization output by Karamba is still less than that of the bending

utilization.

The second group of errors are from the grids with removed nodes. Recalling Section 3.3,

certain rotation angles required the removal of closely spaced nodes in order to avoid problems

with the Voronoi diagrams. However, it is found that this removal of nodes adversely affects the

results, as it leads to a sharp decrease in the Strain Energy Factor, which does not follow the general

pattern. Strain Energy Factors from rotation angles before and after those that have removed nodes

correlate with the trend, which suggests that the values with the removed nodes cannot be trusted.

These results are therefore removed from the results.

Depending on the grid density, the locations where results have been removed vary. Since

the removed results represent a small portion of the total number of results, it is justified as it does

not significantly affect the results.

4.3. N = 6 Grid Results

Key analysis outputs of the optimal rotation angle for the four load cases are tabulated in Table

4-1. The Strain Energy Factor for each rotation angle is plotted in Figure 4-1. The geometry at

the optimal angles of 8.2 and 6.4 are shown in Figure 4-2.

At Optimal: LC 1 LC 2 LC 3 LC 4

Rotation Angle [Deg.] 8.2 8.2 8.2 6.4

IMmax 2 [kNm2 ] 2.67 x 10 6  2.91 x 106  1.27 x 106  8.69 x 10,

Engagement Ratio 0.82 0.82 0.82 0.86

Maximum Moment [kNm] 111 118 115 72.9

Deflection Ratio L/364 L/347 L/353 L/607

Table 4-1 - Analysis outputs of the optimal angle for each load case in the N = 6 Grid.
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Structural Performance vs. Rotation Angle (N = 6 Grid)
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Figure 4-1 - Structural performance vs. rotation angle of all load cases for the N = 6 Grid.

Rotation Angle: 8.20
Engagement Ratio: 0.82

Rotation Angle: 6.40
Engagement Ratio: 0.86

Figure 4-2 - Optimal geometries for the N = 6 Grid.

45

3.OE+06

z
- 2.5E+06
0

2.OE+06

1.5E+06

1.0E+06

5.0E+05

0.0 E+00
0 20 25 30

-wo .",*.



4.3.1. Variation of Maximum Moments for N = 6 Grid

Figure 4-3 shows the value of maximum moments at each rotation angle for the two member types

under symmetric loading (load case 1). Figure 4-4 shows the member type maximum moments

under the most asymmetric loading (load case 4).

Maximum Moments for LC 1 (N = 6 Grid)

,
z
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Type 1

0 5 8.2 10 15
Rotation Angle [Deg.]

20 25 30

Figure 4-3 - LC I maximum moments for each member type in the N = 6 Grid.

Maximum Moments for LC 4 (N = 6 Grid)

15
Rotation Angle [Deg.]

Figure 4-4 - LC 4 maximum moments for each member type in the N = 6 Grid.
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4.3.2. Discussion of Results for N = 6 Grid

The results show that the change in structural performance over rotation angles remains relatively

consistent for both symmetric and asymmetric load cases; the higher the rotation angle, the less

efficient the geometry. Beyond a rotation angle of approximately 19 degrees, the structural

performance flattens out, which suggests that there is little compromise in efficiency between those

rotation angles. The structural performance generally follows the same curve as the value of global

maximum moment in the grid, which in this case is of member type 2. The optimal geometry does

not lie at an extremity of the range of rotation angles, but rather at a minimum at 8.2 degrees for

load case 1-3 and 6.4 degrees for load case 4.

Since load case 1 and 2 are both symmetric load cases, it was expected that their optimal

geometries would remain similar. However, even under asymmetric loading in load case 3, the

optimal angle remained the same. With load case 4 being the most asymmetric load case, it was

anticipated that the optimal rotation angle would be very different. However, the difference in only

1.8 degrees show that asymmetric loading has little impact on the efficiency of the grid geometry.

In terms of maximum moments, it is observed that the trend of the moments remains the

same for both symmetric and asymmetric load cases, except in the asymmetric load case the

difference in moments between type 1 and type 2 is decreased. Note in both graphs that the optimal

rotation angle does not lie at the location of smallest maximum moment (type 2 minimum).

It is observed that the global maximum moment continues to increase up to a rotation angle

of 19.1 degrees, before decreasing slightly and then increasing again. This is due to the location of

the connecting members for a given rotation angle: as the rotation angle approaches 19.1 degrees,

the point at which a member is supporting another moves towards the center of the beam, which

translates to a larger lever arm for the moment. After 19.1 degrees, the two connection points for

a given interior member crossover, switch respective locations, and begin to move closer to the

supports again.

However, despite the lever arm being reduced as the rotation angle continues to increase

beyond 19.1 degrees, the value of maximum moment is seen to increase again towards the upper

end of rotation angles. This is likely because the total tributary area of the nodes along the central
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span are larger, therefore increasing the magnitude of the applied loads along the center of the

beam.

4.4. N = 24 Grid Results

Key analysis outputs of the optimal rotation angle for the four load cases are tabulated in Table

4-2. The Strain Energy Factor for each rotation angle is plotted in Figure 4-5. The geometry at the

optimal angles of 4.2 and 4.0 degrees is shown in Figure 4-6.

At Optimal: LC 1 LC 2 LC 3 LC 4

Rotation Angle [Deg.] 4.2 4.2 4.2 4.0

EMmax2 [kNm 2 ] 1.20 x 106  1.31 x 106  1.27 x 106  4.40 x 105

Engagement Ratio 0.92 0.92 0.92 0.93

Maximum Moment [kNm] 56.1 61.1 57.8 37.5

Deflection Ratio L/710 L/673 L/690 L/l 176

Table 4-2 - Analysis outputs of the optimal angle for each load case in the N = 24 Grid.
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Structural Performance vs. Rotation Angle (N = 24 Grid)
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Figure 4-5 - Structural performance vs. rotation angle of all load cases for the N = 24 Grid.

Rotation Angle: 4.20
Engagement Ratio: 0.92

Rotation Angle: 4.00
Engagement Ratio: 0.93

Figure 4-6 - Optimal geometries for the N = 24 Grid.
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4.4.1. Variation of Maximum Moments for N = 24 Grid

Figure 4-7 shows the value of maximum moments at each rotation angle for the seven member

types under symmetric loading (load case 1). Figure 4-8 shows the member type maximum

moments under the most asymmetric loading (load case 4).
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Figure 4-7 - LC I maximum moments for each member type in the N = 24 Grid.
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Maximum Moments for LC 4 (N = 24 Grid)
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Figure 4-8 - LC 4 maximum moments for each member type in the N
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4.4.2. Discussion of Results for N = 24 Grid

Similar to the N = 6 Grid, the optimal rotation angle does not lie at an extremity but at 4.2 or 4.0

degrees. Although the optimal rotation angle for load case 4 is 0.2 degrees off from the other 3

load cases, the relative difference in the Strain Energy Factor for 4.2 and 4.0 degrees is only 0.06%

in load case 4, which can be considered negligible in terms of compromised efficiency. Note that

the Strain Energy Factor is relatively flat for low rotation angles up to about 7 degrees; this

correlates with the small difference in values between 4.2 and 4.0 degrees, and suggests that this

range of rotation angles all produce similarly efficient geometries.

Similar to the N = 6 grid results, the maximum moment and structural performance graphs

are closely correlated. However, the shapes of the graphs are dramatically different from the N =

6 grid: although a minimum is still found at a rotation angle that is not the smallest possible, the

values increase at a much more rapid rate as the rotation angle increases, in contrast with the N

6 grid where the values flatten out after about 19 degrees.

In terms of member type maximum moments, the trend is similar to the N = 6 grid in the

sense that an asymmetric loading case brings the moment values between members in closer

proximity. The member types also appear to be grouped according to their maximum moments:

types 1 and 2 are close to one another; types 3. 4 and 5 are close to one another; and types 6 and 7

are close to one another. This makes sense when we revisit Section 3.8 and note the relative

locations of the member types radially from the center. An interesting observation is the crossing

over of maximum moments between certain member types: for example, the maximum moment

of member type 3 crosses over member type 4 at about 12.5 degrees. Finally, in line with the

structural performance graph, the graph of maximum moments is relatively flat for member types

3 to 7 for low rotation angles.
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4.5. N = 96 Grid Results

Key analysis outputs of the optimal rotation angle for the four load cases are tabulated in Table

4-3. The Strain Energy Factor for each rotation angle is plotted in Figure 4-9. The geometry at the

optimal angles of 4.1 degrees is shown in Figure 4-10.

At Optimal: LC 1 LC 2 LC 3 LC 4

Rotation Angle [Deg.] 4.1 4.1 4.1 4.1

EMmax 2 [kNm2 ] 6.32 x 105  6.82 x 105  6.73 x 10' 2.37 x 10'

Engagement Ratio 0.91 0.91 0.91 0.91

Maximum Moment [kNm] 28.5 31.9 29.4 19.6

Deflection Ratio L/248 L/207 L/240 L/414

Table 4-3 - Analysis outputs of the optimal angle for each load case in the N = 96 Grid.
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Rotation Angle: 4.10
Engagement Ratio: 0.91

Figure 4-10 - Optimal geometry for the N = 96 Grid.

4.5.1. Variation of Maximum Moments for N = 96 Grid

Figure 4-11 shows the value of maximum moments at each rotation angle for the twenty-six

member types under symmetric loading (load case 1). Figure 4-12 shows the member type

maximum moments under the most asymmetric loading (load case 4).
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Maximum Moments for LC I (N = 96 Grid)
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Maximum Moments for LC 4 (N = 96 Grid)
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4.5.2. Discussion of Results for N = 96 Grid

Similar to the two previous grid densities, the optimal rotation angle does not occur at an extremity

but at 4.1 degrees, and in this case is the optimal for all load cases. In addition, the angle is very

similar to that of the N = 24 optimal (4.2 degrees).

As expected, the structural performance and maximum moment graphs generally correlate.

In addition, the graphs also appear to return to the likeliness of the N = 6 grid results: the Strain

Energy Factor increases up to around 19 degrees, then flattens out. For the maximum moments,

they increase up to 19 degrees, then decrease like the N = 6 grid. Furthermore, the curve of

maximum moments in the type 1-4 members closely resembles that of the type 1 members in the

N = 6 grid.

Finally, the maximum moments are also grouped in a similar manner like the N = 24 grid:

types I to 4 are one group, followed by types 5 to 7; types 8 to 11; types 12 to 14; types 15 to 17;

types 18 to 21; and types 22 to 26. The crossing over of maximum moments between member

types is also evident in this grid density.

Based on the results for all grid densities, it can be concluded that the most efficient

geometry for symmetric loading is also relatively efficient for asymmetric loading. The

implications of this result is positive as it suggests that for a given RF grid structure with any

particular geometry, it would not be performing in a greatly inefficient manner when subject to

asymmetric loading.
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4.6. Load Case 1 Results

The results are now presented according to load case, in order to compare the impact of grid

density on the structural performance. Key analysis outputs in this load case for the optimal

angle in the three grid densities are shown in Table 4-4.

At Optimal: N = 6 Grid N = 24 Grid N = 96 Grid

Rotation Angle [Deg.] 8.2 4.2 4.1

EMmax 2 [kNm 2] 2.67 x 106 1.20 x 106 6.32 x 10'

Engagement Ratio 0.82 0.92 0.91

Maximum Moment [kNm] 111 56.1 28.5

Deflection Ratio L/364 L/710 L/248

Table 4-4 - Analysis outputs from the optimal geometry for Load Case 1.

The results suggest that denser grids are more efficient, as they have a lower Strain Energy

Factor. This makes sense as the maximum bending moments in the members are reduced due to

the shorter spans (shorter member lengths). Furthermore, the two denser grids appear to share a

similar optimum, with a difference in optimal rotation angle of only 0.1 degrees. Despite having a

lower overall strain energy, the deflections of the N = 96 grid appear to be larger. This is likely

due to the fact that more members are involved in spanning across the grid, and therefore there is

a greater accumulation of each individual member deflection.

The much lower deflection ratio for the N = 24 grid is likely due to the oversizing of the

members for that particular geometry. As mentioned in Section 3.5 the members had to be sized

for the least optimal bending moment in load case 2, and for the N = 24 case the bending moments

increase dramatically with increasing rotation angle.
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4.7. Load Case 2 Results

Key analysis outputs in this load case for the optimal angle in the three grid densities are shown

in Table 4-5.

At Optimal: N = 6 Grid N = 24 Grid N = 96 Grid

Rotation Angle [Deg.] 8.2 4.2 4.1

EMmax2 [kNm2] 2.91 x 106 1.31 x 106 6.82 x 105

Engagement Ratio 0.82 0.92 0.91

Maximum Moment [kNm] 118 61.1 31.9

Deflection Ratio L/347 L/673 L/207

Table 4-5 - Analysis outputs from the optimal geometry for Load Case 2.

Note that for the N = 96 grid, the deflection ratio exceeds a typical deflection limit of L/240, which

means that deflection would govern the sizing of the members for this grid density.

4.8. Load Case 3 Results

Key analysis outputs in this load case for the optimal angle in the three grid densities are shown

in Table 4-6.

At Optimal: N = 6 Grid N = 24 Grid N = 96 Grid

Rotation Angle [Deg.] 8.2 4.2 4.1

IMmax 2 [kNm 2] 1.27 x 106 1.27 x 106 6.73 x 105

Engagement Ratio 0.82 0.92 0.91

Maximum Moment [kNm] 115 57.8 29.4

Deflection Ratio L/353 L/690 L/240

Table 4-6 - Analysis outputs from the optimal geometry for Load Case 3.
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4.9. Load Case 4 Results

Key analysis outputs in this load case for the optimal angle in the three grid densities are shown

in Table 4-7.

At Optimal: N = 6 Grid N = 24 Grid N = 96 Grid

Rotation Angle [Deg.] 6.4 4.0 4.1

EMmax 2 [kNm 2] 8.69 x 105  4.40 x 10' 2.37 x 10'

Engagement Ratio 0.86 0.93 0.91

Maximum Moment [kNm] 72.9 37.5 19.6

Deflection Ratio L/607 L/ 176 L/414

Table 4-7 - Analysis outputs from the optimal geometry for Load Case 4.
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4.10. Comparison with Non-Reciprocal Grid

To compare the structural performance of the RF grid with a conventional planar grid, the non-

reciprocal N = 24 grid at a rotation angle of 19.1 degrees is compared with the N = 24 grid at 18.6

degrees. This was chosen to ensure a comparison between structural frames that remain similar in

geometry, and to avoid an overlap of the members at the joints based on the assumed member

width.

The key difference in a non-reciprocal grid is in the requirement of the members and

connections: if pinned connections are desired, then long members spanning the entire span would

be needed in one direction in order to support members in the other direction; otherwise, moment

connections would be required for all the joints between short members, which could be

impractical. Alternatively, all moment connections could also be used in the long member case.

The comparison will use the case where all the short members are moment connected with each

other. The member cross-sections and material properties are the same as described for the N = 24

grid in Section 3.5, and load case 1 is used.

Figure 4-13 - Example of a non-reciprocal grid with
geometry similar to an RF grid.

Figure 4-14 - RF Grid at a rotation angle of 18.6
degrees.

RF Grid Non-Reciprocal Grid

EMmax2 [kNm 2 ] 2.05 x 106 1.20 x 106

Maximum Moment [kNm] 92.9 64.3

Deflection Ratio L/482 L/1041

Table 4-8 - Comparison of analysis outputs between an RF Grid and Non-RF Grid.
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The Strain Energy Factor for the non-reciprocal grid is lower than that of the RF grid,

which means that the non-reciprocal grid is more efficient according to our definition. This finding

correlates with the comparison performed by Gelez et al. (2011), between an RF grid of rectangular

topology and a conventional grid: the RF grid is not able to compete in terms of maximum bending

moment and deflection, and therefore has more total strain energy. However as noted in the

literature review, an RF grid remains advantageous in terms of robustness achieved through

redundancy, constructability through the use of shorter members and simple pin connections, and

adaptability to irregular perimeters.
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5. Conclusion

The results from this thesis complement the relatively small body of work that has been done in

investigating the structural efficiency of reciprocal frame structures. With many possible

geometries for a given topology of a reciprocal frame structure, few studies have been conducted

on whether an optimal geometry exists for multiple load cases. Furthermore, despite offering

architectural, structural, and constructability benefits, researchers have noted that built examples

of reciprocal frame structures continue to be rare as much of their structural behavior remains to

be understood (Parigi and Kirkegaard 2013a). By exploring how the efficiency of an RF grid

changes with geometry, this thesis furthers the understanding of how the structural behavior of an

RF is impacted by geometry.

Building on past research performed by Parigi & Kirkegaard (2013a), this thesis models

the behavior of a planar reciprocal frame with triangular topology as a hypothetical roof or floor

framing structure, by taking into account the distribution of gravity load by tributary areas. This is

in contrast with all past research on the structural behavior of RF grids, where all members receive

identical uniform loading. Furthermore, the metric of structural performance in this thesis was

derived from the global strain energy, which better portrays the efficiency of a reciprocal frame as

a whole.

The results show that for a given grid density, the optimal geometry for the symmetric load

case does not lie far from the asymmetric load case. The optimal rotation angle of the N = 6 grid

for all load cases is 8.2 degrees, with the exception of load case 4 (the most asymmetrical load

case), where it is 6.4 degrees. The optimal angle of the N = 24 grid is 4.2 degrees, with the

exception of load case 4 where it is 4.0 degrees. The optimal angle of the N = 96 grid is 4.1 degrees

for all load cases. The optimum geometry of each grid density for load case 1 (a symmetric load

case) is shown Figure 5-1. As a general rule of thumb, the efficiency of a planar RF grid decreases

as the rotation angle increases (or as the engagement ratio decreases), and increases as the grid

density increases.
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N = 6 Grid
Rotation Angle: 8.20

Engagement Ratio: 0.82

N = 24 Grid
Rotation Angle: 4.20

Engagement Ratio: 0.92

N = 96 Grid
Rotation Angle: 4.10

Engagement Ratio: 0.91

Figure 5-1 - Optimal geometries for load case 1.

The results are promising as they suggest that planar RF structures are a good fit for cases

where asymmetric loading may occur frequently, since their geometric configuration would not be

much less efficient than if it was loaded symmetrically. Given that asymmetric loading often

occurs for a floor or roof framing structure, the results suggest that a planar RF structure is a good

fit for that application.

C.i. i Uur Wory

Potential for future work includes expanding the research to additional RF topologies. For

topologies where the geometry cannot be described in terms of a rotation angle (for instance the

rectangular topology), the size of the engagement window can be used to compare results between

different topologies. It would be valuable to determine whether the structural performance of the

rectangular topology decreases as the engagement window becomes smaller, and whether the most

efficient geometry under symmetric loading would also be close to the efficient geometry for

asymmetrical loading.

Another area of interest for further development is in the optimization of members based

on their member type, as mentioned in Section 3.8. It would be interesting to evaluate the material

savings that can be realized if each member type was optimized for their expected maximum

loading under both symmetric and asymmetric load cases.
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Appendix A

This appendix contains the spreadsheet of the hand calculation verification discussed in Section

3.9. The equations used to solve for the unknown forces shaded in light grey are found in Section

3.9. The shear force at a node is calculated from summing the shear force at the previous node

with the applied force on the node. "dM" represents the change in bending moment between two

nodes, which is calculated from the area of the shear diagram between two nodes. The value of

moment at a given node is therefore the sum of the moment at the previous node and the change

in moment (dM).
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HAND CALCULATION VERIFICATION
Global Parameters
Rotation Angle [Deg.] 15 E [kN/m2 ] 1.05E+07
Area Load [kPa] -4.8 b [in] 6.00 b [m] 1.52E-01

h [in] 28.00 hi [m] 7.11E-01
1 [M4

] 4.57E-03
*Positive force indicates upwards force; positive moment indicates counterclockwise moment.

Node Trib. Area Force
ID [M 2] [kN]

Member 11
(Type 1)
Ay
A

By
B

C
Cy

841
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
324
324
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
887

Shear
[kNI

dM

2.297461
0.012734
0.025469
0.038204
0.050939
0.063674
0.076409
0.089144
0.101879
0.114618
0.127349
0.134043
0.120875
0.106182
0.091489
0.07679

0.057673

0.028092
0.032085
0.060075
0.068926
0.077769
0.086611
0.095453
0.104294
0.113136
0.121978
0.130819
0.139661
0.148503
0.157344
0.166186
0.174988
0.177028
0.174091
0.171172
0.168251
0.165326

0.1624
0.159475
0.156435
0.141204

0.11767
0.094135

0.0706
0.04706

0.023372
0.040216

Moment
[kNm]

47
0

-0.06112
-0.12225
-0.18338
-0.24451
-0.30564
-0.36676
-0.42789
-0.48902
-0.55017
-0.61128
-0.64341
-0.5802

-0.50967
-0.43915
-0.36859
-0.27683
-58.2018
-0.13484
-0.15401
-0.28836
-0.33084
-0.37329
-0.41573
-0.45817
-0.50061
-0.54305
-0.58549
-0.62793
-0.67037
-0.71281
-0.75525
-0.79769
-0.83994
-0.84973
-0.83564
-0.82163
-0.8076

-0.79356
-0.77952
-0.76548
-0.75089
-0.67778
-0.56482
-0.45185
-0.33888
-0.22589
-0.11219
-0.19304
34.5386

0

Dist. from A
[im]

0
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.7

1.72
1.82
1.92
2.02
2.12
2.22
2.32
2.42
2.52
2.62
2.72
2.82
2.92
3.02
3.12
3.22
3.32
3.42
3.52
3.62
3.72
3.82
3.92
4.02
4.12
4.22
4.32
4.42
4.52
4.62

Moment about B
[kNm]

-79.9000
0.0000
0.0978
0.1834
0.2567
0.3179
0.3668
0.4034
0.4279
0.4401
0.4401
0.4279
0.3860
0.2901
0.2039
0.1317
0.0737
0.0277
0.0000
0.0000

-0.0031
-0.0346
-0.0728
-0.1195
-0.1746
-0.2383
-0.3104
-0.3910
-0.4801
-0.5777
-0.6838
-0.7984
-0.9214
-1.0530
-1.1927
-1.2916
-1.3537
-1 .4132
-1.4698
-1.5236
-1.5746
-1.6228
-1.6670
-1.5724
-1.3669
-1.1387
-0.8879
-0.6144
-0.3164
-0.5637

68

47.00
47.00
46.94
46.82
46.63
46.39
46.08
45.72
45.29
44.80
44.25
43.64
42.99
42.41
41.90
41.47
41.10
40.82

-17.38
-17.52
-17.67
-17.96
-18.29
-18.66
-19.08
-19.54
-20.04
-20.58
-21.17
-21.79
-22.46
-23.18
-23.93
-24.73
-25.57
-26.42
-27.26
-28.08
-28.88
-29.68
-30.46
-31.22
-31.97
-32.65
-33.22
-33.67
-34.01
-34.23
-34.35
-34.54

0.00

4.70
4.69
4.68
4.66
4.64
4.61
4.57
4.53
4.48
4.42
4.36
4.30
4.24
4.19
4.15
4.11
4.08
0.00

-0.35
-1.77
-1.80
-1.83
-1.87
-1.91
-1.95
-2.00
-2.06
-2.12
-2.18
-2.25
-2.32
-2.39
-2.47
-2.56
-2.64
-2.73
-2.81
-2.89
-2.97
-3.05
-3.12
-3.20
-3.27
-3.32
-3.37
-3.40
-3.42
-3.43
0.004.62 100.8527

SUM 0.0000

0.00
4.70
9.39

14.08
18.74
23.38
27.99
32.56
37.09
41.57
45.99
50.36
54.65
58.90
63.09
67.23
71.34
75.42
75.42
75.07
73.31
71.51
69.68
67.82
65.91
63.95
61.95
59.89
57.78
55.60
53.35
51.03
48.64
46.17
43.61
40.97
38.24
35.43
32.55
29.58
26.53
23.41
20.21
16.95
13.63
10.26
6.86
3.43
0.00
0.00

SUM
EM 2/(2EI)

0.00
22.09
88.25

198.12
351.15
546.52
783.22

1060.00
1375.41
1727.77
2115.21
2535.65
2987.13
3468.75
3979.92
4520.29
5089.80

5688.91
5636.18
5373.98
5113.90
4855.66
4599.05
4343.92
4090.21
3837.92
3587.16
3338.10
3091.01
2846.27
2604.34
2365.80
2131.34
1901.78
1678.33
1462.44
1255.58
1059.22
874.85
703.95
548.02
408.54
287.21
185.65
105.24
47.03
11.80
0.00
0.00

104883
1.0932

SUM



Member 0
(Type 2)
By
B

Cy
C

Dy
D

E
Ey

Dist. from B
[m]

Node Trib. Area Force
ID [m 2] [kN]

324 58.2018
324 0.028092 -0.13484
325 0.023372 -0.11219
326 0.04706 -0.22589
327 0.0706 -0.33888
328 0.094135 -0.45185
329 0.11767 -0.56482
330 0.139294 -0.66861
331 0.149621 -0.71818
332 0.15801 -0.75845
333 0.1664 -0.79872
334 0.174089 -0.83563
335 0.167748 -0.80519
336 0.155981 -0.74871
337 0.144213 -0.69222
338 0.132445 -0.63574
339 0.115708 -0.5554
340 0.085668 -0.41121
652 -34.5386
652 0.035398 -0.16991
341 0.04335 -0.20808
342 0.072507 -0.34803
343 0.072516 -0.34808
344 0.072518 -0.34809
345 0.072518 -0.34809
346 0.072518 -0.34809
347 0.072518 -0.34809
348 0.072518 -0.34809
349 0.072518 -0.34809
350 0.072518 -0.34809
351 0.072516 -0.34808
352 0.072507 -0.34803
353 0.04335 -0.20808
605 -67.2168
605 0.035398 -0.16991
354 0.085668 -0.41121
355 0.115708 -0.5554
356 0.132445 -0.63574
357 0.144202 -0.69217
358 0.155976 -0.74868
359 0.167748 -0.80519
360 0.179515 -0.86167
361 0.191282 -0.91815
362 0.188155 -0.90314
363 0.164738 -0.79074
364 0.141204 -0.67778
365 0.11767 -0.56482
366 0.094135 -0.45185
367 0.0706 -0.33888
368 0.04706 -0.22589
369 0.023372 -0.11219
370 0.040216 -0.19304

67.4814
SUM 0.0000

[kNm]
0
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.7

1.72
1.82
1.92
2.02
2.12
2.22
2.32
2.42
2.52
2.62
2.72
2.82
2.92
2.94
2.94
3.03
3.13
3.23
3.33
3.43
3.53
3.63
3.73
3.83
3.93
4.03
4.13
4.23
4.33
4.43
4.53
4.63
4.63 114.0436

SUM 0.0000

TOTAL yM
2 2170074.3

TOTAL STRAIN ENERGY OF ENTIRE GRID 22.62
Mmax [kNm] 106.39

Vmax [kN] 58.20
Vmin [kN] -67.48
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M ome nt about D Shear dM
[kN]

Moment
[kNm]

I
-171.1134

0.3964
0.3186
0.6189
0.8946
1.1477
1.3782
1.5646
1.6087
1.6231
1.6294
1.6211
1.4816
1.3028
1.1352
0.9790
0.7998
0.5510

42.8279
0.2107
0.2539
0.3898
0.3550
0.3202
0.2854
0.2506
0.2158
0.1810
0.1462
0.1114
0.0766
0.0418
0.0042
0.0000
0.0000
-0.0370
-0.1055
-0.1844
-0.2699
-0.3669
-0.4751
-0.5946
-0.7253
-0.8038
-0.7828
-0.7388
-0.6721
-0.5829
-0.4710
-0.3366
-0.1784
-0.3262

58.2018
58.0670
57.9548
57.7289
57.3900
56.9382
56.3734
55.7048
54.9866
54.2281
53.4294
52.5938
51.7886
51.0399
50.3477
49.7119
49.1565
48.7453
14.2067
14.0368
13.8287
13.4807
13.1326
12.7845
12.4365
12.0884
11.7403
11.3922
11.0441
10.6960
10.3479
9.9999
9.7918

-57.4250
-57.5949
-58.0061
-58.5615
-59.1972
-59.8894
-60.6381
-61.4433
-62.3049
-63.2231
-64.1262
-64.9170
-65.5947
-66.1596
-66.6114
-66.9503
-67.1762
-67.2884
-67.4814

0.0000

5.81
5.80
5.77
5.74
5.69
5.64
5.57
5.50
5.42
5.34
5.26
5.18
5.10
5.03
4.97
4.92
4.87
0.00
0.28
1.38
1.35
1.31
1.28
1.24
1.21
1.17
1.14
1.10
1.07
1.03
1.00
0.20
0.00

-5.18
-5.80
-5.86
-5.92
-5.99
-6.06
-6.14
-6.23
-6.32
-6.41
-6.49
-6.56
-6.62
-6.66
-6.70
-6.72
-6.73
0.00

0
5.81

11.60
17.38
23.11
28.81
34.45
40.02
45.51
50.94
56.28
61.54
66.72
71.82
76.86
81.83
86.74
91.62
91.62
91.90
93.28
94.63
95.94
97.22
98.47
99.67

100.85
101.99
103.09
104.16
105.20
106.20
106.39
106.39
101.21
95.41
89.55
83.63
77.64
71.58
65.44
59.20
52.88
46.47
39.98
33.42
26.80
20.14
13.45
6.73
0.00
0.00

SUM
EM 2/(2EI)

0.00
33.72

134.61
301.89
534.26
829.89

1186.47
1601.26
2071.56
2594.60
3167.45
3787.11
4451.34
5158.45
5907.02
6695.87
7524.52

8393.95
8445.47
8701.55
8954.87
9205.14
9452.10
9695.46
9934.98

10170.40
10401.48
10627.97
10849.65
11066.29
11277.68

11319.31
10243.20
9102.71
8019.55
6994.35
6028.48
5123.62
4281.76
3505.19
2796.55
2159.44
1598.24
1116.80
718.38
405.68
180.81
45.28

0.00
0.00

256796
2.68


