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Abstract

Folding as a subject of mathematical, computational, and engineering study is rel-
atively young. Most results in this field are hard to apply in engineering practice
because the use of physical materials to construct folded structures has not been
fully considered nor adequately addressed. I propose a three-fold approach to the
design of folded structures with physical consideration, separating for independent
investigation (1),the computational complexity of basic folding paradigms, (2) the
automated accommodation of facet material volume, and (3) the design of folded ge-
ometry under boundary constraints. These three topics are each necessary to create
folded structures from physical materials and are closely related.
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Chapter 1

Introduction

In 2016, modern technology enables us to design and fabricate many beautiful and

complex devices. It is the age of computer controlled machining: CNC machine tools,

the 3D printer, the water jet, the laser cutter. These tools are built to fabricate a single

part or assembly, and they do so magnificently. However, the future of fabrication lies

not in the creation of better parts, but the design of single parts that can transform

for many applications. The future is transformers.

Transformers have existed in the realm of science fiction for decades. Hollywood

would have us believe that these transformers are made from big blocks of metal

that can take the shape of your choice of vehicle and humanoid robot. But machines

that change between two states is quite limited. We would prefer the liquid metal

from Terminator, able to transform fluidly into any object, giving rise to the study of

self-assembly: many simple particles that can assemble by themselves into complex

shapes. However such a system has drawbacks, namely the system might be much

too unconstrained. How would the particles interact or even stay together? Perhaps

the set of particles could be locally constrained to each other in some way, forming

a network of connections that could then transform locally to construct the global

object. Perhaps a sheet of connections would suffice?

Imagine owning not a 3D printer, but a physical 3D display. It is not a flat display

hung up on the wall that you look into. It is not a 3D hologram that gives the illusion

of the presence of an object. Instead, imagine a programmable sheet of material that

13



Figure 1-1: Images of transformers in popular culture. The left is Optimus Prime

from the Transformers series, an(l the right depicts a T-1000 from the Terminator

series.

can take the shape of any form that you wish to imagine. Such a device would be

the pinnacle of rapid prototyping. You wouldn't need to wait for a machine to cut

through material. or a tool head to traverse a voxel grid. The sheet simply transforms

in parallel. assembling ini seconds into the object you desire. Fully reshapeable, fully

reusable: the ultimate modular design. How does one accomplish such a grand vision?

The answer is folding.

1.1 Scope

This thesis presents multiple results in the field that is now often referred to as

copII)UtatioTwI o'rf1ami, in the direction of computing and designing transformable

structures using folding.

Ch apter 2 analyzes the computational complexity of many folding related paradigmis

that are applicable to engineering design. In particular, multiple decision problems

related to both flat foldinq. creating folded states that lie in a plane. and simple fold-

lng, creating folded states that may only be folded along a single line at a time., are

14



shown to be NP-complete, improving and correcting major results in the field.

Chapter 3 introduces the offset crease method, a new technique compensating for

material volume in flat-foldable crease patterns. This method exchanges an increase

in degrees of freedom to allow for facets to be separated in the folded state, while

allowing for a full range of motion to the "flat" state. A software implementation of

the algorithm, and physical models were produced to demonstrate the technique.

Lastly, Chapter 4 presents a new paradigm for designing crease patterns from pre-

scribed boundary conditions. This technique is quite broad in its scope, generalizing

different formulations of Fold-and-Cut, the Universal Molecule, and even tesselation

generation. The main result is a necessary and sufficient condition for an isometry

to exist for a given boundary condition, and a procedure for producing any isometry.

For a very specific model, we also explore crease patterns that can fold to multiple

boundary conditions, and use the result to generate terrains.

1.2 Background

People have folded sheets of material to create new forms for thousands of years, an

activity most notably associated with the ancient paper folding tradition known as

origami (l# t in Japanese). While the word origami refers specifically to folding

paper (4k), folding as a transformational procedure can naturally be applied to any

sheet-like surface. For most of its history, origami has comprised a static repertoire

containing a handful of traditional forms. However in recent years, modern origami

has exploded into an expressive art form, in large part due to the growth of folding

into its own rich mathematical and computational field, with mechanical engineering

exploring its applications. Already, the study of folding mechanisms has influenced a

diverse set of disciplines, as summarized in the following paragraphs.

Folding has long been employed in manufacturing, with applications in packag-

ing and sheet metal bending. Current packaging research investigates optimal layout

for die-cut unfoldings [40] as well as path planning for how to fold complex wrappings

without self-intersection [61]. Similar concerns are studied with respect to sheet
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metal [60] in addition to work modeling and accounting for the elasto-mechanical

properties of folding metal [241. While there is exciting current work in building

multi-armed robots to bend sheet metal into complex three-dimensional shapes [56],
most sheet metal folding still uses traditional straight-line mechanical brakes. This

type of folding is called simple-folding because facets are restricted to fold around a

single straight line at a time, which are much easier to produce than more complex

folds. Robots have been developed specifically to perform simple folds [6].

Recently the fields of MEMS and robotics have both used folding as a tool

to build self-assembling three-dimensional structures, where traditional fabrication

and assembly techniques are difficult to apply. Folding has been used to create a

variety of MEMS components such as electrostatically actuated mirrors [261, capaci-

tors [351, and meta-materials [5]. A feature of folding three-dimensional structures on

the micro-scale is the possibility of forming a high density of structural and electrical

connections which are not possible with relatively planar fabrication techniques, al-

lowing the construction of intricate circuitry [31] for advanced computing hardware.

After patterning electronics on a foldable surface, micro-robots can self-assemble along

predefined fold lines [25], while actuating embedded folding linkages [27]. Such fold-

ing motions are an active area of research in motion-planning [50]. Printable robotics

has emerged as its own field in the creation of affordable, even disposable micro-

robots [451. On the other hand, programmable surfaces dream of creating a single

generic material that can reconfigure and update its own hardware [281, similar to

software updates today.

Folding also has application in biology and the design of biomedical devices.

Biological structures such as proteins [431 and DNA [47] [21] each fold as a one-

dimensional chain with three-dimensional connections to itself. While the study

of folding is certainly closely tied to these structures, the work proposed here will

focus on building three-dimensional structures from two-dimensional surfaces, not

one-dimensional chains. Such structures are already being investigated to design

expandable stents [37], medical implants conforming to specific geometry [41], and

scaffolds upon which replacement organs might be grown [34].
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The versatility and aesthetic nature of folded forms also lends itself to the field

of design, especially as applied to architecture and deployable structures in trans-

portation and space. Folding is being used to design transformable spaces [14] and

dynamic, parametric buildings [421 that can adapt according to style or function.

Folding has immediate military application when designing deployable shelters 157]

and constructing temporary adaptable bridges [3]. The design of automotive airbags

has been aided by modeling collapsed states as folded structures [13]. Sending ma-

chines to outer space requires very constrained design. Equipment must fit into a

relatively small rocket before either being assembled or deployed in space. Because

space walks and robotic assembly is dangerous and expensive, automatic deployment

using folding mechanisms has become ubiquitous in the design of new large aperture

telescopes [22] and solar panel arrays [491.

This thesis focuses on folding two-dimensional surfaces. Folding one-dimensional

chains (linkage folding) has a long history in engineering and manufacturing; on the

other hand, folding two-dimensional surfaces has only recently begun being studied

quantitatively, the added new dimension of constraints and complexity creating a

modern field ripe for exploration. Young fields like surface folding are where small

advances can make a big impact on a wide variety of applications like those described

above. Each application requires the design of folded structures that satisfy three

main requirements:

- [Intersection] foldings do not cause collision of material with itself or its sur-

roundings.

- [Material] foldings can accommodate and be fabricated using available mate-

rials;

- [Geometry] foldings adhere to some starting sheet and final shape criteria;

While it is tempting to try and tackle all three design requirements at once within

a single framework, the complexity of conforming to each individually suggests sep-

arating them into modular components which may be solved, and then ultimately
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reassembled to solve a particular problem. Of course, all three requirements are nec-

essary for the construction of real, physical folded structures, though for different

applications, some requirements may more important than others. For example, the

design of a deployable solar sail or orbital telescope may have very specific geomet-

ric and material requirements in order to function, but may allow folding panels to

mechanically cross, provided the nature of the interactions can be precomputed. Al-

ternatively, an implantable medical device for releasing chemicals at a constant rate

may require a non-crossing watertight seal out of biocompatible materials, but the

geometry may be allowed to take many forms. Origami design itself is concerned with

producing precise geometry without cutting the material, though often the material

properties of paper may safely be ignored. One would like to develop general tools to

address each requirement in turn in order to tailor a design to a specific application.

This section analyzes each requirement in isolation, exploring the existing ap-

proaches, solutions, and difficulties involved with each. Then, novel research paths

toward addressing each requirement will be proposed. The narrative behind this pro-

posal is not structured around tackling a single application, but instead hopes to

develop general algorithms that may be combined together to design and fabricate

complex and realizable physical folded structures.

1.2.1 Intersection

The main reason that folding is such a difficult problem is that different parts of

complicated two-dimensional folding linkages may collide, and checking for such non-

local intersections can be computationally intractable. In addition to the geometry

of folded structures (the location of each vertex and edge in space), facets in a fold-

ing that touch also must be prescribed a layer ordering in order to fully define the

topology of the folding. Little is known about efficiently constructing folded states

with valid layer orderings where intersections between facets are forbidden.

If we take a flat-folded structure and unfold it, the creases left behind form a

flat-foldable crease pattern (a crease pattern referring to a straight-line embedding of

a planar graph). It is known that checking each part of the crease pattern for local
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intersections is easy to compute [33]. However, given a crease pattern, optionally

assigned with each crease labeled either mountain (the paper folds backwards) or

valley (the paper folds forwards), the flat-foldability problem asks whether the crease

pattern comes from some flat folding. This decision problem was shown to be NP-

complete for both assigned and unassigned crease patterns [9]. However, it is unknown

if the flat-foldability problem is solvable in polynomial time for even very simple

classes crease patterns. We show that this problem is still NP-complete for box-

pleated crease patterns (angles between creases restricted to multiples of 450, with

application to programmable grids for transformable robotics [28]).

Of course finding a motion folding a flat surface to a non-intersecting folded state

that avoids self-intersection along the way is an even more difficult problem. While the

study of general non-intersecting rigid motions of folded structures is an attractive and

notoriously difficult topic of current research [51], a more restricted problem studies

a subset of flat-folding with direct application to manufacturing: that is simple-

foldability, deciding whether a two-dimensional crease pattern can be folded by a

sequence of simple folds without self-intersection. Informally, a simple fold can only

rotate paper around a single rotation axis before returning the paper back to the

plane. Arkin et al. [4] introduced many models of simple-folds, proving that deciding

simple-foldability is weakly NP-complete for some of them, and that simple-foldability

can be solved in polynomial time for rectangular paper with paper-aligned orthogonal

creases. We prove these models strongly NP-complete, in addition to proving hardness

for additional models. However, in order to fabricate flat-folded structures from

physical materials, we must consider the possibility that the paper might have non-

negligible thickness.

1.2.2 Material

While the design of specific geometry may produce outputs that satisfy provided

geometric criteria, there can be problems when applying these algorithms when their

outputs assume a structure folded from zero-thickness, zero-volume materials. In

engineering, structures must be built using physical materials where the volume of
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the surface cannot safely be ignored. For example, when designing a complex electric

circuit with many layers of components folded on top of one another, the components

and the substrate on which they reside have thickness that must be considered and

aligned. At a larger scale, architectural and astronautical folded structures made of

thick structural materials must be handled. There are many existing approaches to

account for material thickness when designing folding structures, each with their own

strengths and weaknesses. These techniques are discussed in Chapter 3.

We present a new method for accounting for material volume that widens creases

in a systematic way without relying on flexible materials. While such a technique

might not preserve the exact structure of the input crease pattern, it could create

a structure that might be easier to fabricate than other techniques described above.

Facet surfaces in the produced structure's unfolded state could be made coplanar,

allowing for straightforward fabrication in a layer-by-layer manufacturing processes.

These same surfaces could be made parallel in the produced structure's folded state,

allowing any surface mounted components to mate naturally.

The approach converts flat-foldings into facet-separated foldings by replacing each

flat crease in the input crease pattern by two parallel creases symmetrically offset

about the original at a distance proportional to an assigned crease width satisfying

certain properties of the original crease pattern. Instead of one crease folding flat

with a turn angle of 180', the two new creases would have final turn angles of 900.

This crease widening creates difficulties at crease pattern intersections since the offset

creases would no longer converge to a point. Material in the vicinity around each

crease pattern vertex is discarded to accommodate crease widening. While such a

modification creates holes in the material, the process introduces new degrees of

freedom, allowing the widened creases to fold.

Because of their reliance on perfectly thin materials, most (if not all) of the algo-

rithms developed to design folded structures have not been useful in designing struc-

tural mechanisms out of physical materials, likely because the existing techniques

discussed above restrict range of motion and are difficult to fabricate in practice.

The introduction of this new method that accommodates material thickness while
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addressing these two issues can open the door to the application of existing geomet-

ric design algorithms, allowing for the practical engineering design of physical folded

structures. However, it is not sufficient to simply accommodate material thickness.

One must also be able to generate a folding that adheres to given design parameters.

1.2.3 Geometry

This section explores existing algorithmic design techniques for creating folded struc-

tures satisfying certain requirements. Not surprisingly, there is no single approach

that is appropriate for every application, and each available method for producing

folded structures conforms to very specific inputs and outputs, while new algorithms

will likely be similarly constrained. It is interesting to note that each existing approach

presented in this section deterministically provides a unique output for a given valid

input, optimizing over some tightly constrained space. While some may interpret this

property as a desirable, engineering and design often are not so tightly constrained.

It could be more useful to find a more general framework for producing families of

folded structures that could then be adjusted or optimized based on the requirements

of a specific application.

Discussed in this section are three folding design algorithms that are subtly related.

The first two, tree theory and fold-and-cut both design flat-foldings, structures that

lie in a single flat plane in their folded state. The third is Origamizer, an algorithm

for producing three-dimensional polyhedral surfaces. Each of these methods share a

common thread: each requiring a partition of the surface to be folded into regions,

and then filling these regions with creases so that the boundary of each region folds in

a pre-specified manner. To be consistent with the literature, I use the word "paper"

to refer to the planar surfaces that are to be folded, keeping in mind that the design

algorithms are readily applicable to other materials.

Tree theory is a method proposed by Lang for designing flat-foldable structures

that each represent an underlying stick figure [38][39]. Given a sheet of paper and

a weighted tree, the algorithm constructs a uniaxial base, informally a folding of the

paper corresponding to the tree comprising independent flaps connected in the same
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topology and proportion as the tree. The algorithm works by modeling each edge

of the input tree by a strip of paper with constant width, and arranging them on

the paper without overlap using a non-convex optimization maximizing scale. This

optimization partitions the paper into smaller convex regions called molecules. Then

creases are filled into each molecule using the universal molecule, a unique set of

creases folding the boundary of each molecule onto a single line consistent with the

input tree as desired [10]. The universal molecule is constructed by insetting every

side of the paper at constant speed, with the output creases formed by the trace of

polygon vertices during the sweep. While it is conjectured that this algorithm always

provides folded structures that do not self-intersect, such questions are notoriously

difficult to prove. Thus we discuss self-intersection detection separately.

The fold-and-cut problem questions how to fold a piece of paper upon which a

polygon (or more generally some straight-line graph) is drawn so that a single straight

cut can be made, cutting precisely the lines drawn and nothing more. Two methods

are known for solving this problem, but only one is applicable generally. The first

method proposed by Demaine et. al. creases the paper along the straight skeleton of

the graph drawn, along with some additional perpendicular creases [16]. This method

is easy to fold, but is not applicable generally; an infinite number of creases must be

introduced in order to fold some instances. The second method proposed by Bern et.

al. instead decomposes the faces of the graph drawn into triangles and quadrilaterals

with nice properties, and then orients and manipulates the flaps to align only the

drawn line segments together [8]. Impressively, they were able to show that there

always exists a layer ordering for output flat-foldings that avoids self-intersection of

the paper [20]. In both algorithms, solutions found are uniquely determined, and

both require the alignment of polygonal boundaries into specified geometry.

The third design algorithm is used to construct general three-dimensional surfaces.

Origamizer, designed by Tachi takes as input a triangulated connected polyhedral

surface, lays out the individual triangles onto a convex paper by solving an optimiza-

tion problem, and then fills in creases on the paper between the triangles that brings

the triangles together [531. Again, it is conjectured that the produced folded structure
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can be arranged in a way that avoids self-intersection, but the claim has not yet been

proven. However, the algorithm has been used successfully to construct very complex

surfaces. Similar to tree theory, this algorithm has two stages: a layout /optimization

stage, and crease generation stage. When generating creases, the paper between the

surface triangles must fold so that the boundaries of the inputs facets are brought

into alignment with each other.

A common thread running through each of these design algorithms is the problem

of mapping the boundary of the paper to some specified folded configuration. In

tree theory, the boundary must be mapped onto a doubly-covered stick figure, in the

fold-and-cut problem the drawn segments must be made collinear, while Origamizer

must fold triangle boundaries onto the wireframe of the input model. Each of these

subproblems then can be thought of as a special case of a more general problem called

the hole problem: given a sheet of paper and a prescribed folding of its boundary,

is there a way to fold the paper's interior without stretching so that the boundary

lines up with the prescribed boundary condition?

A solution to the hole problem might be used to solve many of the above results

in a novel way, as well as address some new applications. For example, when trying

to combine separately designed parts of a folded structure, a solution to the hole

problem could be used to design an interface between them. We present a necessary

and sufficient condition for a solution to exist, and give a procedure for generating

any isometry consistent with the boundary condition. The idea is to approach crease

filling in a manner similar to the construction of the universal molecule, but instead

of insetting the entire perimeter in tandem, only insetting a single vertex at a time

to break up the polygon into smaller and smaller subproblems. A feature of this

approach is that it is able to produce many solutions for creasing the paper to satisfy

a provided boundary condition. Instead of a unique solution provided by existing

algorithms, a family of solutions can be explored tailoring to the specifications of

the application. One could imagine that among a vast family of solutions, finding

one that avoids self-intersection might be tractable, though we have not yet been

able to find any nontrivial necessary or sufficient conditions to avoid self-intersection.
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Our approach applies to both flat-foldings as well as more general three-dimensional

structures.
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Chapter 2

Complexity

This chapter relates to results that have been previously published. Section 2.1 rep-

resents joint work with Akitaya et al. [1] accepted for publication in the conference

proceedings of JCDCGG 2015. Section 2.2 represents joint work with Akitaya et

al. [2]. This work has been presented at multiple venues, but .the detailed proofs

provided here have not yet been published.

2.1 Box-Pleating is Hard

In their seminal 1996 paper, Bern and Hayes initiated investigation into the com-

putational complexity of origami [9]. They claimed that it is NP-hard to determine

whether a given general crease pattern can be folded flat, both when the creases have

or have not been assigned crease directions (mountain fold or valley fold). Since that

time, there has been considerable work in analyzing the computational complexity of

other origami related problems. For example, Arkin et al. [4] proved that deciding

foldability is hard even for simple folds, while Demaine et al. [18] proved that optimal

circle packing for origami design is also hard.

While the gadgets in the hardness proof presented in [9] for unassigned crease

patterns are relatively straightforward, their gadgets for assigned crease patterns are

considerably more convoluted, and quite difficult to check. In fact, we have found

an error in even their unassigned crossover gadget where signals are not guaranteed
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to transmit correctly for wires that do not cross orthogonally, which is required in

their construction. Part of the reason no one found this error until now is that there

was no formal framework in which to prove statements about flat-folded states. We

attempt to provide such a framework.

At the end of their paper, Bern and Hayes pose some interesting open questions

to further their work. While most of them have been investigated since, two in

particular (problems 2 and 3) have remained untouched until now. First, is there

a simpler way to achieve a proof for assigned crease patterns (i.e. "without tabs")?

Second, their reductions construct creases at a variety of unconstrained angles. Is

deciding flat foldability easy under more restrictive inputs? For example, box pleating

involves folding creases only along on a subset of a square grid and the diagonals

of the squares, a special case of particular interest in transformational robotics and

self-assembly, with a universality result constructing arbitrary polycubes using box

pleating [7].

In this section we address both these questions. We prove that deciding flat

foldability of box-pleated crease patterns is NP-hard in both the unassigned and

assigned cases, using relatively simple gadgets containing no more than 25 layers at

any point.

2.1.1 Definitions

In general, we are guided by the terminology laid out in [20] and [46]. An isometric

flat folding of a paper P is a function f : P -+ R2 such that if -y is a piecewise-

geodesic curve on P parameterized with respect to arc-length, then f () is also a

piecewise-geodesic curve parameterized with respect to arc-length. It is not hard to

show that under these conditions f must be continuous and non-expansive. Let Xf

be the boundary of a paper P together with the set of points not differentiable under

f. Then one can prove that Xf is a straight-line graph embedded in the paper [46],
with vertex set V and edge set Cf, the creases of our folding f. A vertex or crease

in Vf or Cf is external if it contains a boundary point of P, and internal otherwise.

Subtracting Xf from P results in a disconnected set of open polygons Ff we call
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faces. For any face F E Ff, f(F) is either an isotopic transformation in R2, or the

transformation involves a reflection and is anisotopic. Define uf : P \ Xf -+ {-1, 1}

such that uf(p) = -1 if the face containing p is reflected under f and uf(p) = 1

otherwise. We call uf (p) the orientation of the face containing p. Every point in P

is in exactly one of Vf, Cf, or Ff. We call this partition of P the isometrically flat

foldable crease pattern Ef = (Vf, Cf, Ff) induced by f. We call a folding box pleating

if every vertex lies on two dimensional integer lattice, and the creases are aligned at

multiples of 450 to each other.

We say two disjoint simply connected subsets of P are adjacent to each other if

their closures intersect; we call such an intersection the adjacency of the adjacent

subsets. We say a simply connected subset of P is uncreased under f if f is injective

when restricted to the subset. We say two simply connected subsets of P overlap

under f if the interiors of their images under f intersect. We say two simply con-

nected subsets of P strictly overlap under f if their images under f exactly coincide.

It is known that the set of creases adjacent to an internal vertex of a crease pattern

obey the so called Kawasaki-Justin Theorem: the alternating sum of angles between

consecutive creases when cyclically ordered around the vertex equals zero [20]. This

condition turns out to be necessary sufficient: given a paper P exhaustively parti-

tioned into a set of isolated points V, open line segments C, and open disks F such

that every point in V is adjacent to more than two segments in C, then (V, C, F) is

an isometrically flat foldable crease pattern induced by a unique isometric flat folding

if and only if (V, C, F) obeys the Kawasaki-Justin Theorem.

Let a function Af : P x P -> {-1, 1} be a global layer ordering of an isometric

flat folding f if it obeys the following six properties.

Existence: Af satisfies existence if Af(p, q) is defined for every distinct pair of

points p and q that strictly overlap under f and at least one of p or q is not in Xf;

otherwise Af(p, q) is undefined. Informally, order is only defined between a point on

.a face and another point overlapping it in the folding.

Antisymmetry: Af is antisymmetric if Af (p, q) = -Af(q, p), where Af is defined.

Informally, if p is above q, then q is below p.
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Figure 2-1: Topologieally different loeal interactions within an isometric flat folding.

Forbidden configuirations are shown for Faee-Crease and Crease-Crease Non-Crossing.

Transitivity: Af is transitive if A 1 (p, q) = Aj (q, r) implies A1 (p. r) =A (p. q),

where Af is defined. Informally, if q is above p and i is above q. then r is above p.

Consistency (Tortilla-Tortilla Property): For any two lnereased simply con-

nected subsets 01 and 0) of P that strictly overlal) under f. Af is consistent if

Aj (pi P) has the same value for all (Nip2) (E 01 x 02., where Af is defined. See

Figure 2-1. Inforally. if two regions coin)letely overlap in the folding, one must be

entirely above the other.

Face-Crease Non-crossing (Taco-Tortilla Property): For any three un-

creased sii)ly conneeted subsets 01. 02. and O: of P such that 01 and O3 are

adjaeent and strictly overlap, and 02 overlaps the adjaeen(v between 01 and O

under f, A1 is facc-creasc non-crossng if Af(pp2) = -Af(p. p) for any points

(N. P2, p3) E 01 x 02 x Qj. where Af is defined. See Figure 2-1. Informally, if a re-

gion overlaps a nlona(ljaeent internal crease, the region ('aniot be between the regions

adjacent to the crease.

Crease-Crease Non-crossing (Taco-Taco Property): For any two adjacent

pairs of inireased simply eonneeted subsets (01 02) and (03. O4-) of P such that every

pair of subsets strictly overlap and the adjaeeney of 01 and 02 striCtly overlaps the

adjaceney of O3 and 0.1 under f. Aj is (;'case-c'tase non-c'rossing if either {Af (pi. )

A 1 (ip) 4). A 1f(p2 . p). A1 (pi) } are all the same or half are +1 andl half are -1, for

any points (P .P2, P3. P.) E 0I x 02 x 03 x 0.1. where Af is defined. See Figure 2-2.

Informally, if two creases overlaj) in the folding, either the regions ineident to one

erease lie entirely above the regions incident to the other (all same), or the regions

iiident to one crease nest inside the regions incident to the other (half-half).
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All same Half-half Odd one out

Adtjacent NetdIntersecting

Figure 2-2: Local interaction between overlapping regions around two (listinct creases.

If there exists a global layer ordering for a given isometrically flat foldable crease

pattern. we say the crease pattern is qiobally flat foldable. Consider an isometrically

flat foldable crease pattern Ej.containing two adjacent uncreased simply connected

subsets 01 and 02 of P that stric(tly overlap under f. and let j) and q be points

in 01 and 02 respectively that overlap under f. 01 and 02 are subsets of disjoint

adjacent faces of the crease pattern imutually bounding a crease. If Af is a global flat

folding of ,j. then it induces a 'moanfain. valley assignment (A, (c) = u(p)Aj-(p.q)

for each crease point c in the adjacency of 01 and 2. This assignment is unique by

consistency. We call a crease point c a valley fold (V) if CAj (c) 1 and a moan taIn,

fold (M) if' o (c) = - 1. In the figures, mountain folds are drawn in red while valley

folds are drawn in blue. By convention. if A1 (p. q) = -1 we say that ) is above q, and

if Af(p, q) = 1 we say that p is below q.

Given an isometrically flat foldable crease pattern E , the UNASSIGNED-FLAT-

FOLDABILITY problem asks whether there exists a global laver ordering for f. Al-

ternatively. given an isometrically flat foldable crease pattern Ef and an assignment

0 : Cf -- JAI. Vli mapping creases to either mountain or valley, the AssI(G.NEiD-FLAT-

FOLDABILITY problem asks whether there exists a global layer ordering for f whose

induced Iountain valley assignment is consistent with ).

We now prove the following implied properties of globally flat foldable crease

patterns relating the layer order between points contained in multiple overlapping

faces. Inforinally. Pleat-Consistency says if a face is adjacent an(l overlapping two

larger faces. then the creases between them must have different NI V assignment.

forming a pleat. Path-Consisteney says that a face overlapping creases connecting an

29
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adjacent sequence of faces is either above or below all of them.

Lemma 2.1.1. (Pleat-Consistency) If Ef is a globally flat foldable crease pattern

containing disjoint uncreased simply connected subsets 01, 02, and 03 of P with

02 adjacent to both 01 and 03 such that 02 strictly overlaps subsets O C O1 and

03 C 03, and the interiors of 01 and 03 overlap the adjacencies of 02, 03 and

01,02 respectively, then Af(P1,P2) = Af(P2,P3) for any pairwise overlapping points

(P1,P2,P3) E 01 x 02 x 03.

Proof. Taco-Tortilla applied to 03 which overlaps the adjacency of strictly overlapping

sets 02 and 0' implies Af(p2 ,p3 ) -Af(P 3 ,Pi). Similarly, Taco-Tortilla applied

to 01 which overlaps the adjacency of strictly overlapping sets 0 and 02 implies

Af (P3, Pl) = -A(pl, P2), so Af (pi, p2) = Af (P2 , P3 ).

Lemma 2.1.2. (Path-Consistency) If Ef is a globally flat foldable crease pattern

containing uncreased simply connected subset T of P and a disjoint sequence of adja-

cent uncreased simply connected subsets 01, ... , O, of P such that O strictly overlaps

some subset T of T and the interior of 0 overlaps the adjacency of each pair O and

Oi+1 for i = {1,. .. , n-1}, then Af(tj, pj) = Af(tk, pk) for any two pairs of overlapping

points (tj,pj) G T x Oj and (tk,pk) C Tk X Ok for j, k G {1,... ,n}.

Proof. If some O and Oi+1 overlap, Taco-Tortilla and Consistency ensure that Af (ti, pi) =

Af (ti+l, pi+l) for (ti, pi) c T x O and (ti+1, pi+1 ) E Ti+1 x Oi+1. Alternatively, O

and Oi+1 do not overlap and the closure of O U Oi+1 is an uncreased region for which

Af (ti, pi) = Af (ti+1 , Pi+1) by consistency. Applying sequentially to each pair of faces

proves the claim. l

The proofs in Section 2.1.4 and 2.1.5 contain many examples of the application

of these properties. When proving the existence of a global layer ordering Af, it is

often impractical to define Af between every pair of points. Frequently Af is uniquely

induced by a M/V assignment, consistency, and transitivity. When it is not, we

will provide Af between additional point pairs so that it will be. We present crease

patterns with this implicit layer ordering information and encourage readers to fold

them to reconstruct the unique layer orderings they induce.
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2.1.2 Bern and Hayes and k-Layer-Flat-Foldability

Two crossover gadgets are presented in the reduction to UNASSIGNED-FLAT-FOLDABILITY

provided in [9]. For each, they claim that the M/V assignment of the crease pair in-

tersecting one edge of the gadget deterministically implies the M/V assignment of the

crease pair on the opposite side. This claim is true for their perpendicular crossover

gadget, but is unfortunately not true for the other for wires meeting at 45'. The

gadget as described requires an exterior 450 angle between incoming wires that is

the smallest angle at a four-crease vertex, forbidding the wires to be independently

assigned by Pleat-Consistency. For completeness, we have also checked the family of

possible gadgets of this form, with a rotated internal parallelogram, and no choice of

rotation allows the gadget to function correctly as a crossover. Our proof to follow

only uses the perpendicular crossover, avoiding this complication.

Also in [9], they define k-LAYER-FLAT-FOLDABILITY to be the same as UNASSIGNED-

FLAT-FOLDABILITY or ASSIGNED-FLAT-FOLDABILITY but with the additional con-

straint that f maps at most k distinct points to the same point. They claim that their

reduction implies hardness of UNASSIGNED-k-LAYER-FLAT-FOLDABILITY for k = 7.

But in fact their perpendicular crossover gadget requires nine points to be mapped

to the same point. Our reduction uses the same gadget as a crossover, so we re-

confirm that UNASSIGNED-k-LAYER-FLAT-FOLDABILITY is NP-complete for k > 9,

even for box pleated crease patterns. Also, because of the complexity of their assigned

crease pattern reduction, they were unable to bound the number of layers in their

reduction. We explicitly provide gadgets for the assigned case to prove AssIGNED-k-

LAYER-FLAT-FOLDABILITY is NP-complete for k > 25, even for box pleated crease

patterns.

2.1.3 SCN-Satisfiability

Our reductions will be from the following NP-complete problem [48].
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Figure 2-3: SCN Gadgets. ILefti A Complex Clause Gadget constructed from the Not-
All-Equal clause on varia)les v. u, and y of a NAE3-SAT instance on six variales.

IRightj The five elemental SCN Gadgets.

Problem 2.1.1. (Not-All-Equal 3-SAT) Given a collection of clauses oaci con-

tanlng' three 'variables, NoT-ALL-EQUAL 3-SAT (NAE3-SAT)l asks if variables can

be assigned True or False so that no clause contains variables of only one assignment.

We can construct a planar directed graph G embedded in R 2 from an instance

A' of' NAE3-SAT. For each clause, construct a Conplex Clause Gadget as the one

shown in Figure 2-3. The motivation behind the Complex Clause Gadget is to encode

the bipartite graph implicit in N in a planar grid embedding that can be iodularly

connected. Each directed edge of the Complex Clause Gadget is associated with a

different variable, and we associate a different color with each variable. Soime variables

do not participate in the clause and siniply forn a straight chain of directed segments

from left to right. However. the three variables participating in the clause are rerouted

to intersect at the black (lot. We construct a Complex Clause Gadget for each clause

in the instance of NAE3-SAT and chain them together side by side, so the arrows

exiting the right side of one enter the left side of another. Graph G has vertices that

'This problet is sometimes ca1led -positive* 0a variables coannot appear negated within clauses.
however 'We follouw the 'naming conventhon fron /481.
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are adjacent to edges associated with exactly one, two, or three variables. We call

these vertices split, cross, and clause vertices respectively. In the figures, they are

labeled with white circles, crossed circles, and black circles respectively. We call such

a directed graph G a Split-Cross-Not-All-Equal (SCN) graph.

Problem 2.1.2. (SCN-Satisfiability) Given a SCN graph, SCN-SATISFIABILITY

asks if variables can be assigned True or False so that no clause vertex is adjacent to

edges associated with variables of only one assignment.

The authors introduce SCN-Satisfiability as a useful intermediate problem be-

cause it is equivalent to NAE3-SAT but its embedding is planar, lies on a grid, and

is constructed only by a small number of local elements. SCN-SATISFIABILITY is

equivalent to NAE3-SAT because the bipartite graph connecting SCN variables to

clause vertices is exactly the bipartite graph representing K by construction. How-

ever, G has useful structure for many problems. It is planar, the embedding contains

edges with only four slopes, and the edges are directed meaning that a variable can

be represented locally with respect to that direction. Further G is constructed from

only a small number of local elements: a variable gadget, two split gadgets, a cross

gadget, and a clause (simple) gadget as shown in Figure 2-3. We call these the five

elemental SCN Gadgets. If we can simulate each of these gadgets in another context,

proving that edges of the same color in each gadget must all have the same value,

and edges adjacent to a clause vertex do not all have equal value, we can prove other

problems NP-hard. This will be our strategy in the following sections.

Theorem 2.1.1. If a problem X can simulate the elemental SCN gadgets such that

edges of the same color in each gadget have the same value and edges adjacent to a

clause vertex do not all have equal value and if the correspondent gadgets in X can

be connected consistently, then X is NP-Hard.

2.1.4 Unassigned Crease Patterns

In this section we present gadgets simulating the elemental SCN gadgets with unas-

signed crease patterns. They are shown in Figure 2-4.
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Figure 2-4: Elemental SCN Gadgets simulated with unassigned crease patterns.

We define a variable gadget to be a pair of parallel creases placed (lose together

having an direction as shown in Figure 2-4. By pleat-consistency and transitivitv.

Aj (a, b) = Af (b, c) = A (a, c) so. local to the gadget., it has exactly two globally flat

foldable states. We say the variable is True if the face to the fight of the variable

direction is above the face to left (A 1 (a. c) = 1), and False otherwise.

Lemma 2.1.3. The anass'iqned crossover qadye t is a globally flat /oidablc crease pat-

tern if and only if opposite vcriables are equal.

Proof Refer to Figure 2-4. Assume global flat foldability. Let A. B, C, D. E. F be

the maximal subsets of the faces respectively containing points a, b, c, d, c, such that

every pair strictly overlap. First assune that Af(a. b) = Aj(c. d). By Taco-Taco

with respect to adjacencies A. C and B, D, Af (a, d) Aj(c. b). By Taco-Taco with

respect to adjacencies A, B and C. D. Aj (a. c) = -Aj(b. d). By Pleat-Consistency on
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A, C, E, Af(a, c) = Af(c, e). By Pleat-Consistency on B, D, F, Af(b, d) = Af(d, f).

So Af(c, e) = -Af(d, f). By Taco-Taco with respect to adjacencies C, D and E, F,

Af(c, f) = -Af(d, e). By Taco-Taco with respect to adjacencies C, E and D, F,

Af(c, d) Af (e, f). Thus because Af(a, b) = Af(e, f), the variable on the left has the

same value as the one on the right. Alternatively if Af(a, b) = -Af(c, d), the same

series of arguments yields that Af(c, d) = -Af(e, f), so Af(a, b) = Af(e, f). Thus if

global flat foldability holds, opposite variables are equal. Now assume that opposite

variables are equal. The M/V assignment in Figure 2-4 completely induces Af, along

with consistency and transitivity. The path shown is a linear order on the faces

satisfying global layer ordering. Further, every other assignment of variables can be

represented by a reflection of this crease pattern. LI

Lemma 2.1.4. The unassigned split gadget is a globally flat foldable crease pattern

if and only if its three variables are equal.

Proof. Refer to Figure 2-4. Assume global flat foldability. Let A and B be the

faces containing points a and b respectively. The region highlighted in the figure

and A must satisfy Path-Consistency, so Af (a, b) = Af (a, c). Since the crease pattern

is symmetric, Af(b, a) = Af(b, c). Then, by antisymmetry, Af(a, b) = Af(c, b), and

therefore all variables are equal. Now assume all variables are equal. The path shown

in Figure 2-4 is a linear order on the faces satisfying global layer ordering. Further,

every other assignment of variables can be represented by a reflection of this crease

pattern. 0

Lemma 2.1.5. The clause gadget is a globally flat foldable crease pattern if and only

if its three variables are not all equal.

Proof. Refer to Figure 2-4. Assume for contradiction the clause gadget is global flat

foldable and all variables are equal. By consistency Af(a, b) = Af(b, c) = A)f(c, a).

By transitivity, Af (a, b) = Af (a, c). By antisymmetry, Af (a, b) = -Af (c, a), a contra-

diction. Thus the variables are not all equal. Now assume all variables are not all

equal. The paths shown in Figure 2-4 are linear orders on the faces satisfying global
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layer ordering. Further, every other assignment of variables can be represented by

the negation of one of these (M/V) assignments.

Theorem 2.1.2. UNASSIGNED-FLAT-FOLDABILITY is NP-complete, even for box

pleated crease patterns.

Proof. Given Af as our certificate, we can check in polynomial time whether it satisfies

all conditions for global flat foldability, therefore UNASSIGNED-FLAT-FOLDABILITY

is in NP. By Lemma 2.1.3, Lemma 2.1.4, and Lemma 2.1.5, UNASSIGNED-FLAT-

FOLDABILITY can simulate the SCN-SATISFIABILITY gadgets. It remains to check

if the gadgets can be consistently connected. Let the width of a variable be the

distance between its parallel creases. The crossover gadget connects variables of the

same width while the clause and split gadgets both connect variables whose ratios

differ by a factor of v'2. Setting the width of one variable in any gadget induces

the width of the other variables in the gadget. Fixing the width of one variable in

the Complex Clause Gadget (Figure 2-3), a consistent unique width for all other

variables is induced, resulting in the same width for each variable intersecting a left

or right edge. Therefore, by Theorem 2.1.1, UNASSIGNED-FLAT-FOLDABILITY is

NP-Hard. l

2.1.5 Assigned Crease Patterns

In this section we present gadgets simulating the elemental SCN gadgets with assigned

crease patterns. They are shown in Figure 2-5.

We define a variable gadget as a set of parallel creases placed close together hav-

ing a direction and a crease assignment as shown in Figure 2-5. By Taco-Tortilla,

Af(a, c) = Af(b, c) = Af(a, d) = Af(b, d), so, local to the gadget, it has exactly two

globally flat foldable states. We say the variable is True if the faces to the right of

the variable direction are above the faces to left (Af(a, c) = 1), and False otherwise.

Lemma 2.1.6. The assigned crossover gadget is a globally flat foldable crease pattern

if and only if opposite variables are equal.
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Proof. Refer to Figure 2-5. Assume global flat foldability. Let A, B, C, D be the

maximal subsets of the faces respectively containing points a, b, c, d such that every

pair strictly overlap. By transitivity on subset of Af induced by the M/V assignment

shown, Af(a, d) = Af(b, c) = -1. By Taco-Taco with respect to adjacencies A, C

and B, D, Af(a, b) = -Af(c, d). Repeating this argument for adjacent rows of faces

all the way down implies Af(a, b) = -Af(c, d) = Af(e, f) = -Af(g, h) = Af(i, j).

Thus, the variable on the top edge of the gadget has the same value as the one on

the bottom. First assume Af(g, a) = Af(a, b). Then previous implications imply

Af (g, a) = -Af (g, h). By transitivity and antisymmetry, Af (g, a) = Af (h, b). Thus,

the variable on the left side of the gadget has the same value as the one on the right.

Alternatively, assume -Af (g, a) = Af (a, b) so Af (c, i) = Af (d, c). Then previous

implications imply Af(c, i) = Af(i, j). By transitivity and antisymmetry, Af(c, i) =

Af (d, j). Thus, the variable on the left side of the gadget has the same value as the one

on the right. So, if globally flat foldable, opposite variables are equal. Now assume

that opposite variables are equal. One can fix a unique Af by choosing a subset of

Af in addition to the subset induced by the M/V assignment and consistency. The

path shown in Figure 2-5 is a linear order on the faces satisfying global layer ordering.

Further, every other assignment of variables can be represented by a reflection of this

crease pattern. R

Lemma 2.1.7. The assigned split gadget is a globally flat foldable crease pattern if

and only if its three variables are equal.

Proof. Refer to Figure 2-5. Assume global flat foldability. Let A and B be the

faces containing points a and b respectively. The region highlighted in the figure

and A must satisfy Path-Consistency, so Af (a, b) = Af (a, c). Since the crease pattern

is symmetric, Af(b, a) = Af(b, c). Then, by antisymmetry, Af(a, b) = Af(c, b), and

therefore all variables are equal. Now assume all variables are equal. The path shown

in Figure 2-5 is a linear order on the faces satisfying global layer ordering. Further,

any other assignment of variables can be attained by a reflection. 0
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Lemma 2.1.8. The assigned clause gadget is a globally flat foldable crease pattern if

and only if its three variables are not all equal.

Proof. Refer to Figure 2-5. Assume for contradiction the clause gadget is global flat

foldable and all variables are equal. By consistency Af (a, b) = Af (b, c) = Af (c, a). By

transitivity, Af (a, b) = Af (a, c). By antisymmetry, Af (a, b) = -Af (c, a), a contradic-

tion. Thus the variables are not all equal. Now assume all variables are not all equal.

The paths shown in Figure 2-5 are linear orders on the faces satisfying global layer

ordering. Further, any other assignment of variables can be attained by reversing the

arrows in the figure. L

Theorem 2.1.3. ASSIGNED-F LAT-FOLDABILITY is NP-complete, even for box pleated

crease patterns.

Proof. Given Af as our certificate, we can check in polynomial time whether it sat-

isfies all conditions for global flat foldability and if it is consistent with the crease

assignment, therefore ASSIGNED-FLAT-FOLDABILITY is in NP. By Lemma 2.1.6,

Lemma 2.1.7, and Lemma 2.1.8, ASSIGNED-FLAT-FOLDABILITY can simulate the

SCN-SATISFIABILITY gadgets. It remains to check if the gadgets can be consis-

tently connected. Let the width of a variable be the distance between its two parallel

mountain creases. By the same argument as in the proof of Theorem 2.1.2, widths

of variables can be assigned consistently. Therefore, by Theorem 2.1.1, ASSIGNED-

FLAT-FOLDABILITY is NP-Hard. l

2.1.6 Generating Instances

We wrote a program to automatically generate crease pattern constructed in the

reductions presented. The program was written in coffeescript and can be found

at http://jasonku.scripts.mit.edu/box-hard. Figure 2-6 and Figure 2-7 show crease

patterns automatically generated by the software.
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Figure 2-6: A crease pattern generated by our software for an unassigned Complex
Clause Gadget. The gadget relates the yellow red, and green variables with a satis-
fying M V assignment, (yellow = True, red = False, green = false).
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2.1.7 Remarks

Table 2.1 overviews our results and open problems. We proved UNASSIGNED-FLAT-

FOLDABILITY and ASSIGNED-FLAT-FOLDABILITY are NP-complete, even for box

pleated crease patterns containing no more than 9 and 25 layers respectively. Are

these problems still hard for even more restricted inputs? The computational com-

plexity of ASSIGNED-FLAT-FOLDABILITY is still open when the crease pattern is

a m x n square grid called a map [4]. Between box pleating and map folding is

orthogonal folding, with crease patterns restricted to orthogonally aligned creases.

General Box Pleating Orthogonal Map

Unassigned Hard [9] Hard (Ours) Poly [4] Always True
Assigned Hard [9] Hard (Ours) Open Open

Table 2.1: Overview of our results and open problems. 'Hard' and 'Poly' designate
problems that are NP-complete or solvable in polynomial time respectively.

2.2 Simple Folding is Hard

As discussed in the previous section, perhaps the most researched subset of origami

studies flat foldings-folded states that lie in the plane, with multiple non-overlapping

layers.

In this section, we study simple foldability, deciding whether a 2D crease pattern

can be folded by a sequence of simple folds. Informally, a simple fold can only rotate

paper around a single rotation axis before returning the paper back to the plane.

This restriction is motivated by practical sheet-metal bending, where a single robotic

tool can fold the sheet material at once. We build on the work of Arkin et al. [4].

They introduce many models of simple folds, proving that deciding simple foldability

is weakly NP-complete for some of them, and that simple foldability can be solved in

polynomial time for rectangular paper with paper-aligned orthogonal creases. We ab-

breviate this restriction on the input (rectangular paper and paper-aligned orthogonal

creases) as ( M ) crease patterns, and will abbreviate other restrictions similarly. We

also introduce a new model of simple folding, namely the infinite simple folds model
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where simple folds must fold at least one layer everywhere the paper intersects the

fold axis, which is a more accurate model of existing machine tools like mechanical

brakes.

We prove strong NP-completeness for every model proved weakly NP-complete in

[4], namely that simple foldability is hard for:

1. orthogonal paper with paper-aligned orthogonal creases (abbreviated EP) with

crease assignment in the one-layer, some-layers, and all-layers models, even to

approximate the number of possible simple-folds; and

2. square paper with paper-aligned creases at multiples of 450 (abbreviated )
with crease assignment in the some-layers and all-layers models.

Additionally we prove strong NP-completeness deciding simple foldability of:

3. M crease patterns without crease assignment in the some-layers and all-layers

models; and

4. EP crease patterns with or without crease assignment in the infinite one-layer

and some-layers models.

We also point out some errors in the unassigned weakly NP-complete reduction

in Arkin et al. folding orthogonal polygons with assigned unconstrained creases, but

we do not comment further as the result is subsumed by result (3) above. In the

last section, we extend the polynomial-time result from [4] to the infinite simple folds

models, proving the infinite and non-infinite models are equivalent for F crease pat-

terns. Table 2.2 shows the computational complexity of simple-foldable decidability

in various models.

2.2.1 Definitions

In general, we are guided by the terminology laid out in [4], though for this paper

we restrict our discussion to folding two-dimensional paper. We will operate in R3

containing a folding plane IP congruent to R2 with a surface normal vector ft. A
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Model Assigned Unassigned
F N EP [K HZ

One-layer weak - strong open poly open open poly

Some-layers weak - strong weak -+ strong poly open strong poly

All-layers weak - strong weak - strong poly open strong poly

Inf. One-layer strong open poly strong open poly

Inf. Some-layers strong open poly strong open poly

Inf. All-layers open open poly open open poly

Table 2.2: Computational complexity of simple folding problems, either open, solvable
in polynomial time (poly), or strongly/weakly NP-complete (strong/weak). Bold
results are new in this paper. Rows list simple folding models while the columns
list restrictions on the input: orthogonal paper/ orthogonal creases ( HZ ), square
paper/ 450 creases ( X ), or rectangular paper/orthogonal creases ( ).

two-dimensional paper is a connected polygon in P, possibly with holes. We denote

the boundary of P by &P. We call the side of a paper pointing in the ft direction

the top and the opposite side the bottom. A crease is a line segment on a paper. A

crease pattern (P, E) is a paper P and a set of creases E contained in the paper, no

two of which intersect except at a common endpoint. A facet of a crease pattern is

a connected open set in P \ E whose boundary is a subset of 9P U E. Two crease

pattern facets are adjacent if their boundaries share a common crease.

A flat fold isometry (P, E, f) is a crease pattern (P, E) together with an isomet-

ric embedding f of the paper into P such that (1) each facet of the crease pattern is

mapped to a congruent copy, (2) connectivity is preserved between facets and creases,

and (3) for every pair of adjacent facets, exactly one of the facets is reflected in the

embedding. If a crease pattern has a flat fold isometry, we call the crease pattern

locally flat-foldable, which is checkable in polynomial time [9]. If a flat folding exists

it is unique, with E induced by f, so we will use (P, E, f), (P, f), or (P, E) inter-

changeably to denote flat fold isometries and locally flat-foldable crease patterns. We

denote the preimage of U C f(P) as f-1 (U) C P.

A flat folding (P, E, f, A) is a flat fold isometry (P, E, f) together with a layer

ordering [39], a partial ordering A on crease pattern facets such that (1) points in the
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same facet have the same layer order, (2) facets whose images intersect in the flat

fold isometry have different layer order, and (3) for any crease, no facet whose image

intersects the crease's image in the flat fold isometry is between the facets adjacent to

the crease in the layer ordering. We say a point with higher layer order than another

is above, with the other point being below. If a crease pattern has a flat folding, we

call the crease pattern globally flat-foldable.

The flat-foldability decision problem takes as input a locally flat-foldable crease

pattern and asks if it is globally flat foldable. If no other information is given, the

problem is called unassigned. A common variant of the decision problem also provides

in the input an assignment a : E -- {M,V} of the creases to either mountain or valley,

and the question asks if a flat folding exists satisfying the assignment according to

the following definitions. Given a fiat folding, we call a crease a mountain (M) if, of

the two facets adjacent to the crease, the facet with lower layer order is reflected in

the flat fold isometry; and a valley (V) if the facet with higher layer order is reflected.

This definition adheres to the intuition that a valley folds with the top surface inside

while a mountain folds with the top surface outside. Arbitrarily assigning mountain

or valley to the creases of a flat fold isometry may be consistent with zero, one, or

multiple flat foldings. If a is given, the decision problem is called assigned.

2.2.2 Description of a Simple Folding

A simple folding (P, E 2, f2, A2 ) of an input flat folding, (P, El, fi, A,), is itself a flat

folding parameterized by a fold axis (a line f(a, b C P) = {ax + blx E R}) and a folded

region (a subset U C P) satisfying the following conditions.

(1) Points on the boundary of the folded region are either in the boundary of the

paper or the preimage of the fold axis, (2) the folded region does not contain points

in the preimage of the fold axis but does contain the rest of its boundary points, (3)

points not in the folded region are unchanged, (4) everything in the folded region

moves to a reflected point across the fold axis, (5) the folded region is appropriately

above or below points not in the folded region in the input layer ordering, (6) the

output layer ordering of the folded region is exactly the opposite the input layer
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ordering, (7) points in the folded region lie appropriately above or below points not

in the folded region in the output layer ordering, and (8) the creases of the new flat

folding contain the creases of the old one. Formally:

1. &U c OP u (f n f,(P));

2. Ufnf-'(f nfi(P)) 0 and DU \f7-1(f nfi(P)) c U;

3. f2(p) = fi(p) for p P \ U and A2 (p) = A(p) for p E P \ (U U E 2);

4. f2 (u) = 2(fi(u)+(fi(u) -b) a)+fi(u) for uE U;

5. Aj(u)(>, <)Aj(p) for u E U,p E f 1(fi()) \ U, (u - b) x a (>, <)O;

6. A 2(u)(>,=, <)A 2 (v) if and only if Al(u)(<,=, >)Al(v) for u,v G U;

7. A2(U) (>, <) A2(P) for u E U, p E P \ U, sgn ((u - b) x a) (>, <) sgn ((v - b) x a);

8. and E1 ; E 2.

A simple fold is then a rotation of a folded region in a flat folding about a fold axis

back into the plane to form a new flat folding that is a simple folding as described

above. Conditions (1) and (2) of a simple folding ensure the rotation is isometric

during folding; conditions (3) and (4) ensure that folding occurs exactly in the folded

region; condition (5) ensures that the paper does not intersect itself; conditions (6)

and (7) ensure the layers of the output are consistent; and condition (8) ensures that

existing creases do not unfold.

We define different models of simple folding that limit the choice of U. Let L =

f n f (P) be the intersection of fold axis f and input flat folding (P, E , fi, A), and

let #+(q) =f 1 (q) \ (3P U E1 )1, the number of foldable layers at q E L. Then the

function # : L -+ {0,... , #+} denotes the number of layers that are folded in a simple

fold at every point along the fold axis, specifically #(q) = I(f-'(q) n U) \ (8P u E 1)1

for q E L. Table 2.3 defines our models of simple folding based on restrictions on #

that limit the choice of folded region. Of particular interest is the infinite all-layers
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Figure 2-8: Example folding steps demonstrating the differences between simple fold-

ing models. L is a directed dotted line in the direction of a, U is textured, and the

fold line f -1 (L) n aU is a thick line with the number of layers # specified.

Simple Folding Model Restriction on # for q E L Foldable Example Steps

Some-layers no restriction (1), (2), (3), (4), (5), (6)

One-layer #(q) E {0, 1} (1), (5)

All-layers #(q) E (0, #+(q)} (1), (2), (3)

Infinite Some-layer #(q) > 1 (1), (3), (4)

Infinite One-layer #(q) = 1 (1)

Infinite All-layers #(q) = #+(q) (1), (3)

Table 2.3: Definitions for different models of simple folding
on the number of layers that must be folded along the fold

shown in Figure 2-8.

according to restrictions
axis. Example steps are
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model which corresponds to folding everything on one side of the fold axis to the

other side, a model which has practical applications in manufacturing.

If we put no restriction on the number of layers that may be folded in a simple

fold, then we are in the some-layers simple folds model. If we require the folding of

zero or one layer(s) in a simple fold, with #(q) E {O, 1} for all q E L, then we are

in the one-layer simple folds model. If we require the folding of either zero or all

layers, with #(q) c {0, If-(q)I} for all q E L, then we are in the all-layers simple

folds model. If we require the folding of exactly one layer, with #(q) = 1 for all

q G L, then we are in the infinite one-layer simple folds model. If we require the

folding of one or more layers, with #(q) > 1 for all q E L, then we are in the infinite

some-layers simple folds model. Lastly, if we require the folding of all layers along

the fold axis, with #(q) = f 1 (q) for all q E L, then we are in the infinite all-layers

simple folds model.

Given locally flat-foldable crease pattern (P, E, f), we say that it is simply-foldable

or equivalently flat-foldable via a sequence of simple folds in some model, if the crease

pattern can be folded by a sequence of m simple folds into a series of flat foldings

Si = (P, E, fi, Aj) for i E {1, . . . , m} such that Si is the original unfolded paper with

Ei = 0, each flat folding Sai is a simple folding of Si, and Sm = (P, Em = E, fn

f, Am) is a flat folding of the input.

If it is hard to decide simple-foldability, a natural question arises: how close can

we estimate the number of possible simple folds that can be performed? Define

MAXFOLD, the natural optimization version of the decision problem asking for the

maximum number of simple folds that can be folded given a locally flat-foldable crease

pattern (P, E), or formally, the maximum length sequence of simple folds to fold any

simply-foldable crease pattern (P, E') with E' C E.

2.2.3 Orthogonal Paper/Orthogonal Creases

In this section we prove that the simple-foldability decision problem of an orthogonal

piece of paper with a M/V assigned paper-aligned orthogonal crease pattern ( EP )
is strongly NP-complete in the one-layer, some-layer, and all-layer models of simple
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folding. This result is the same as Theorem 6.3 from 14], but proves strong NP-

completeness because we reduce from a strongly NP-complete problem. Additionally,

we prove that it is hard even to approximate the associated natural optimization

problem.

Theorem 2.2.1. The assigned simple-foldability decision problem for orthogonal pa-

per with paper-aligned orthogonal creases EP is strongly NP-complete in the one-layer,

some-layers, and all-layers models.

Proof. The proof is by reduction from 3-PARTITION. Given an instance of 3-PARTITION

with integers A = {ai,... , an} to be partitioned into n/3 triples each with sum

E A/(n/3) = t, construct an orthogonal polygon with M/V assigned paper-aligned

orthogonal creases as shown in Figure 2-9 (the width of the polygon is one every-

where). We assume each ai is close to t/3 and divisible by 2n: if not, add a large

number to each and multiply by 2n so that they are.

There are five main functional sections of the polygon, as shown in Figure 2.2.3.

On the left is the Bar, a section whose convex hull is a 5 : 2oc rectangle of paper

without creases that is very long (oc = 10nt). Attached to the middle of the Bar

is a ! + 1 long strip extending to the right which we call the Arm. The Staircase

encodes the ais in order as a series of steps with height equal to their value plus one.

Step i contains two creases c2i- 1, c22 that when both folded raise the Bar by exactly

2ai. The Wrapper section is a horizontal rectangle of length 2n/3 with vertical valley

creases di (di being the right most crease) dividing the Wrapper into unit squares.

The Cage on the right bounds a polygonal area whose the left vertical edge we call

the Column.

The construction forces the Bar to wrap inside the Cage n/3 times, each time

shifted up by distance 2t (note that oc is chosen large to ensure that the Staircase

never intersects the Cage polygon while wrapping). To prove the claim, we first prove

the Wrapper must fold its vertical creases in order from right to left. If this were not

the case, then there exists some first crease di to be folded whose right neighbor di-1

has not yet been folded. But di has at least two squares of unfolded paper to its
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Figure 2-9: An orthogonal simple polygon with orthogonally aligned mountain-valley

creases (drawn in red and blue respectively) constructed from an instance of 3-
PARTITION that can be folded using simple folds if and only if the instance of 3-
PARTITION has a solution.
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Figure 2-10: Process to check the Partition solution: 1) pleat variables to change
height of bar by 2t, 2) fold along the rightmost, wrapper crease around the colun, 3)
fit the bar through the cage folding the bar to the left along the next wrapper crease.,
4) repeat until u/3 triples adding to 21 have been checked.
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left that will cover di_ 1 when folded, making di_ 1 impossible to fold using simple

folds without violating the M/V assignment, contradicting our model. Because the

Wrapper executes its folds from right to left, the Bar must pass through the Cage

n/3 times sequentially from the rightmost slot to the leftmost, with each subsequent

slot shifted up by 2t.

If the 3-Partition instance has a positive solution, then the polygon has a simple

folding: just pleat the creases associated with the ais in one of the satisfying triples,

then fold the Bar through the Cage along the next Wrapper creases, and repeat.

Because all folds in the Wrapper are all valley, the Arm will go around the Column

and never cross it. Further, if the polygon has a simple folding, the 3-PARTITION

instance has a positive solution because the Staircase must be folded on both creases

from exactly three ais between each wrap. To prove this, all ais are close to t/3 so

in order to shift by 2t, exactly three ai sections must be flipped from their original

orientation. Further, because each ai is divisible by 2n, no one unit section between

ais can flip if the total height is to raise by t, since t is also divisible by 2n. So the

ais flipped at each step correspond to triplets of the 3-PARTITION instance that sum

to t.

Folded in this way, each simple fold can be performed in the one-layer and some-

layers models because the construction only ever folds through one layer of paper at

a time. And because creases only ever exist in a single layer, the all-layers model

also applies. The reduction is polynomial because the entire constructed polygon

is bounded by a 30nt x 4n rectangle. Lastly, the problem is in NP because given

a certificate of the crease folding order, each fold can be simulated and checked in

polynomial time.

2.2.4 Inapproximability

The optimization version of the decision problem is even hard to approximate.

Theorem 2.2.2. Given an orthogonal paper with paper-aligned orthogonal creases

E admitting a maximum sequence of m simple folds, approximating MAXFOLD to
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within a factor of m 1 - for any constant c> 0 is NP-complete in the some-layers and

all-layers models.

Proof. Construct a crease pattern similar to Figure 2-9, but with the Wrapper mod-

ified in the following way: add 6 horizontal lines of creases all the way through the

Wrapper, with each horizontal line composed of 2n/3 +1 collinear creases alternating

M/V assignment in each section between vertical creases, splitting each of the 2n/3

vertical creases into 6 + 1 collinear vertical valley creases.

For a positive instance of 3-PARTITION, the proof of Theorem 2.2.1 implies that

the 8n/3 original creases may be folded as simple folds, then allowing 6 more simple

folds to be performed by folding along each line of horizontal of creases from top

to bottom in the some-layers and all layers models. None of the added horizontal

creases can be folded before all vertical creases in the Wrapper are folded due to M/V

alternation along the line. This construction is thus simple-foldable via a sequence of

m = 8n/3 + 6 simple folds.

For a negative instance of the 3-PARTITION problem, there exists at least one line

of vertical Wrapper creases that cannot be folded, reducing the number of possible

simple folds to strictly less than 8n/3.

Setting 6 = (8n/3) 1/' - 8n/3, Theorem 2.2.1 implies it is NP-hard to distinguish

the case where m folds are possible from the case where at most 8n/3 = m' are

possible. The reduction is polynomial since both 6 and m are O(nl/) for constant

E.I

2.2.5 Assigned Square Paper/45' Creases

Arkin et al. adapt their PARTITION reduction to square paper with M/V assigned

paper-aligned creases at multiples of 450 ( Z ) by constructing an approximation

of their orthogonal construction from a square. Unfortunately their modification

cannot be applied to our 3-PARTITION reduction in the all-layers model because

their construction requires folds along the long construction end which may (will)

overlap other parts of the paper during construction.
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Figure 2-11: Turn gadgets for assigned case. Red "blue lines represent the NI V

assignment.

Instead. we use a similar idea to construct an orthogonal polygon approximation

fron a square but with a different turn gadget that enforces the order of construction

while only making folds local to the gadget that works in both the some-layers and

all-layers models.

Theorem 2.2.3. The ass iqed simple-foldability decision pr) blem for square paper

uith paper-aligned creases at multiples oJ 450 X is strongly NP-complete in the soic-

layers and all-layers models.

Proof The proof is by reduction from the decision problem in Theorem 2.2.1. Given

such an orthogonal polygon with M V assigned paper-aligned orthogonal creases., we

construct a crease pattern on a square that folds using simple folds if and only if the

original orthogonal crease pattern is siiply-foldable.

We start by constructing a long rectangle from the starting square of appropriate

aspect ratio in the same way as 141. double the width of the orthogonal polygon we

want to create. Then we use turn gadgets to shape the long rectangle into the target

orthogonal polygon. Figure 2-11 depicts crease patterns for our turn gadgets, Same

and Flip. along with drawings depicting their valid flat foldings. We call creases

located oii the horizontal center line halfway between the edges of the paper axial

creases. These crease patterns have the property that the axial crease extending the

right edge (the output) cannot be folded unless all creases in the gadget have already

been folded.
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When folded, both gadgets align the edges of the original long rectangle to one

side. Having both the Same and Flip gadgets allows us to combine them in one

long strip to turn right or left no matter which side the original edges are on. The

Same gadget turns the paper to the same side as the original edges, while the Flip

gadget turns the paper to the other side. If chained in a sequence, turning in the

same direction as the previous turn necessitates a Same gadget, while the Flip gadget

turns the paper in the opposite direction.

The construction is as follows. We trace the path of the target orthogonal polygon

starting at the cage end. Wherever a turn is needed, apply the appropriate turn

gadget. The creases of the target crease pattern are overlaid to be foldable only

after the appropriate section has been folded in half. If the orthogonal polygon is

simply-foldable, we can then fold the remaining creases.

Now we prove the orthogonal polygon can be folded if the square crease pattern

is simply-foldable. Before any section can be folded along axial creases, all creases

behind the axial crease must have already been folded. The gadgets can be folded

using only valley folds, so the paper will never self intersect. Further, creases local

to a turn gadget do not overlap other paper because gadgets are far from each other.

In particular, no crease of the target crease pattern may fold before the cage is

constructed. Once the cage has been constructed, no Wrapper crease may fold until

the Bar has been constructed completely because any uncreased paper will be too

large to fit through the cage.

The reduction is polynomial because the side of the input square is bounded by

O(nt) and the number of creases is bounded by 0(n2 ). Lastly, the problem is in NP

because given a certificate of the crease folding order, each fold can be simulated and

checked in polynomial time.

2.2.6 M/V Unassigned Square Paper/45' Creases

M/V unassigned crease patterns are naturally less restrictive than M/V assigned

crease patterns. This freedom can make collision avoidance easier, providing a choice

folding direction at each crease. However when proving hardness for M/V unassigned
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Figure 2-12: Figure 18 from [41. Corrections marked in red

and c. on the covering flap. and trimming the covering flaps

intersect v) or Ill within the covering flap.

creating reflections of ce
so that ci and c.) do not

crease patterns. one cannot use crease direction to enforce fold ordering or layering

and must restrict then using other techniques. Arkin et al. provide a weakly NP-

hard reduction for orthogonal polygons with unconstrained creases without crease

assignment in Theorem 7.1. but their proof has two errors.

The first error in the proof of Theorem 7.1 in 14] is that Arkin et al. claim that

their reduction for the M 'V assigned case can be used directly to prove hardness of

the M V unassigned all-layers model, saying, "in the all-layers case, as soon as two

layers of paper overlap they are 'stuck' together." However, this claim is not true

under their definition of the all-layers model.

The second error is a fixable problem in the creases shown in Figure 18. Their

construction modifies their PARTITION reduction by adding pleats to force the folding

direction of creases vi and t'2 claiming the added cross pleats must fold first to enforce
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Figure 2-13: (Top-left) Crease patterii for the Wrapper in the unassigned model.

Red lines show unassigned creases. (Top-right) Creases are colored according to their

folding order. (Bottom) Folding sequence showing the creases that are being folded.

v() and vi to fold in the same direction. However. pleating co before c and C2 locks the

latter two creases to paper containing no creases, preventing them from ever folding.

Adding mirrored creases on the cover fixes this probleml. Further, the position of

ceases ci and (:2 lock tHie layers containing c() and cl to overlapping uncreased paper

neant to enforce folding direction. Trimming problematic extra paper can fix tile

proof. We do not elaborate further as we prove stronger results that subsume Theorem

7.1. namely Theorems 2.2.4 and 2.2.5.

Theorem 2.2.4. The UUnassigned srmpie-Joidability decision problem for orthoonal

paper with paper-alijned creases at multiples of 45 is strongly NP-complete in the

some-layers and all-layers models.

Proof. The proof of Theoren 2.2.1 still holds using the same construction with unas-

signed crease patterns except for two points: (1) the argument ensuring that the

creases of the Wrapper fold in order from right to left does not apply without crease

assignment; and (2) tHie argument ensuring that the b1ar folds througlh the cage each

time requires every vertical fold in the Wrapper to either be all iountain or all valley.
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To fix problem (1), we modify the Wrapper paper to be two units tall and replace

the Wrapper creases with the creases shown in Figure 2-13. These creases have the

property that the new creases Ei+1 \ Ei added in any sequence of simple folds resulting

in a simple folding of the Wrapper is uniquely defined in the all-layers model, namely

each simple fold Si can only be folded if all simples folds Si for j < i have already

been folded. In the some-layers model, the order on simple folds is not quite unique

since some strict subset of creases in some of the Ei+1 \ EZ above may fold out of

order, but it remains that for any crease in E to fold, some nonempty subset of EZ

must have already been folded for j < i, enforcing the new Wrapping creases to fold

in order from right to left. The ordering is given in the figure and follows from the

observation that a simple fold can only occur when the subset of creases to be folded

divides the paper, with creases collinear in the flat folding.

To fix (2), we must ensure that the vertical Wrapper creases are either all mountain

or all valley in any flat folding reachable as a sequence of simple folds. The Arm in

the original construction (not useful for the original theorem) is included to enforce

this requirement. After the rightmost vertical Wrapper crease has been fold first,

the Arm will overlap the Column. Since the order is enforced by (1), the second

vertical Wrapper crease will fold next while to the right of the Column. If it folds

with assignment opposite the first, the Arm would intersect the Column contradicting

the simplicity of the fold. This argument holds inductively for the remainder of the

vertical Wrapper creases, so they must all fold with the same assignment in any

sequence of simple folds.

Having addressed these two problems, the arguments of Theorem 2.2.4 directly ap-

ply under both the some-layers and all-layers models, since the order and assignment

of the Wrapper creases are forced in both models. LI

Theorem 2.2.4 goes beyond Theorem 7.1 from [4] by both proving a stronger notion

of hardness and restricting creases to only multiples of 45'. The following is an even

stronger result, showing that the problem is still hard even when the orthogonal

polygon is a square.
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Figure 2-14: Unassigned turn gadgets. Creases must be folded according to color

order on left. Input and output creases are labeled witi arrow heads. forward signals

in black and retiurn signals in red.

Theorem 2.2.5. The anassi'gned simple-foldability decision probiem for square paper

with paper-aligned creases at multiples of 45' ' is strongly NP-complete in the some-

layers and all-layers models.

Proof. We will use the same techniques from the proof of Theorem 2.2.3 to build

an approximation (small corners missing) of an orthogonal polygon from a square.

propagating a signal along the paper to force construction parts of the orthogonal

polygon. and then invoke the proof of Theorem 2.2.4. However, since both the Arm

and the Cage are necessary for the arguments of the latter proof. we will need to

enforce construction of the entire orthogonal polygon before Wrapper creases can

execute, not just the Cage. We force the entire orthogonal polygon to be constructed,

first by propagating a signal throughout the length of the polygon. and then back to

the Wrapper using the eight turn gadgets shown in Figure 2-14.

Just as for the assigned gadgets in Figure 2-11, the relevant creases in each gadget

have a fixed order that ensure the output crease(s) of a signal may only fold if the input

crease(s) have already been folded. When chained together. these signals enforce the

order in which turns are constructed and completed.

We split the gadgets into three groups: Simple turns (Same, Flip). Double turns
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Same Same-Flip Flip-Flip Flip-Same Same-Same Reflect
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Figure 2-15: Exaniple collection of turn gadgets connected in series demonstrating
forward and return signal propagation.

(2-Same. 2-Flip) and 2-Way turns (Same-Same. Same-Flip. Flip-Same. Flip-Flip).

Simple and Double turns encode only a forward signal and are completed once the

output has been folded, the only difference being that the Double turns are folded

in half twice. Alternatively 2-Way turns encode both forward and return signals.

respective outputs only foldable if' respective inputs have been folded, the return

signal folding after the forward signal. The forward signal is propagated along the

center axial crease as in the Same gadgets., while the return signal is propagated on

the sides. The naming of the 2-Way gadgets are analogous to the Simple gadgets:

Same-Flip neaning the original edge of the long rectangle is on the same side as the

turn when propagating the signal forward, with the original edge opposite the turn

upon the return. An example assembling many of these gadgets coupled in a series

is shown in Figure 2-15.

Note that we can trivially connect Double and 2-Way turns together, while Single

turns may also interface with them by adding additional folds as shown in Figure

2-15. Figure 2-15 also depicts a Reflection gadget that turns the forward input signal

around, propagating from the ceniter to the return outputs on the outside. In this

example. the only creases foldable using simple folds from the start are the set of
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diagonal creases C shown as bold lines in the crease pattern, the folded result shown

in the left diagram. Note that these creases don't all have to be folded at the same

time, but each must be folded before a forward signal may past through them. Because

of the inputs and outputs of each gadget are chained, the first simple fold not in C

that may fold contains the crease labeled "In", which when folded will unlock a series

of simple folds to propagate the forward signal to the reflect gadget as shown in the

middle diagram. The return signal folds may then be executed, ending with the

simple fold labeled "Out". The final flat folding is shown in the right diagram.

Now we follow the same construction from the proof of Theorem 2.2.3, constructing

an appropriately long rectangle of width four units to be shaped into an approximation

of the orthogonal polygon in Figure 2-10, with Wrapper modified to be two units high

as in Figure 2-13. We begin construction from the tip of the Arm using Double turns

all the way to the top of the Staircase, allowing appropriate space between gadgets so

that the constructed polygon has the correct dimensions. The paper will not overlap

where creases are folded because the constructed polygon is always three units away

from the rest of the polygon already constructed. The Wrapper can be constructed

double the width by switching to Single turns on the ends. The construction proceeds

to fold the rest of the cage using 2-Way gadgets with a reflect gadget at the end, with

the return signal ending by folding the right edge of the wrapper.

The crease pattern resulting from this construction can only fold in the order

enforced by the chain of connected gadgets, by the analysis of the gadgets above.

Recall that the first crease to fold of the modified Wrapper from Figure 2-13 is a

diagonal crease terminating on the right edge of the wrapper which will reflect across

the last crease of the return signal, and won't be foldable unless the entire orthogonal

polygon approximation has been constructed. Then the same argument as the proof

of Theorem 2.2.4 proves the claim directly. E

2.2.7 Infinite, Orthogonal Paper/Orthogonal Creases

In the infinite one-layer or some-layers models, a simple fold must fold one (or more)

layer(s) everywhere in the intersection of the fold axis and the valid flat folding. This
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Figure 2-16: An orthogonal simple polygon with mountain-valley assigned paper-

aligned orthogonal creases (drawn in red and blue respectively) constructed from an

instance of 3-PARTITION that can be folded in the infinite one-layer model if and

only if the instance of 3-PARTITION has a solution.

is more restrictive than the one-layer model as foldability in the infinite one-layer

model implies foldability in the one-layer model but not the reverse.

Theorem 2.2.6. The assigned simple-foldability decision problem for orthogonal pa-

per with paper-aligned orthogonal creases E is strongly NP-complete in the infnite

one-layer and infinite some-layers models.

Proof. The proof is again a reduction from 3-PARTITION. Given an instance of 3-

PARTITION with integers A = {ai,... , a,} to be partitioned into n/3 triples each with

sum E A/(n/3) = t, construct an orthogonal polygonal paper P with paper-aligned

orthogonal creases E and assignment a : E - {M, V} as shown in Figure 2-16, with

width one everywhere. For our construction we assume each ai is sufficiently close to

t/3: if not, add a large number to each so that they are.

There are three functional sections of the polygon. The paper above crease h,

called the Pleater, encodes the integers on the right, and the sets to be satisfied on

the left using a pair of creases for each. The paper between creases h, and h2 , called

the Base, is uncreased paper used to exploit the one-layer infinite model. Without

loss of generality, we assume the Base remains fixed during folding. The paper below

crease h 2 , called the Checker, can only be completely folded if the input 3-PARTITION

instance has a solution. The 2n creases on the right of the Pleater encode each ai
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with two vertical creases, one mountain and one valley separated by distance aj, each

pair separated from the others by distance t + 1. Call this set of creases V containing

creases vi labeled i E {1, ... , 2} increasing from left to right. The 2n/3 creases

on the left of the Pleater come in pairs bounding small distance 6 = A, each pair

separated from each other by 2t + 26. Call this set of creases S containing creases sj

labeled j E {1, .... , 2n/3} from right to left. Lastly, let C be the set of 2n/3 creases

in the Checker alternating M/V, containing creases c3 labeled j E {l, ... ,2n/3} from

right to left.

First, if the 3-PARTITION instance has a solution, then (P, E, a) is foldable under

the infinite one-layer model. Fold explicitly using the following procedure. First fold

the two horizontal creases h, and h2 . Then choose a triple of ais in the 3-PARTITION

solution and pleating their corresponding creases v2i- 1 and v 2i. These three pairs are

foldable under the infinite one-layer model by folding first v2i then v 2i 1- for each ai

in the triple. Pleating all creases corresponding to a valid triple moves the creases

in S to the right by exactly 2t, aligning si and S2 with ci and c 2 respectively. Now

aligned, these creases then be pleated together, moving creases c3 , c4 , S3, and S4 to

the locations where ci, c2 , si, and S2 used to be respectively, serving as an invariant.

Repeating this process n/3 - 1 more times successfully folds all creases.

Second, if (P, E, f) is foldable under the infinite one-layer model, then there exists

a solution to the 3-PARTITION instance. We first prove two intermediate results: (1)

each crease in C can only fold if aligned and folded with some crease in S; and (2)

creases si and S2 must be the first and second creases in S to fold, and must fold

aligned with creases ci and c2 respectively.

Proof of (1). By construction, the infinite line induced by each crease ci will always

overlap some part of the Base (which contains no creases) for any folded or partially

folded configuration. Thus in order to fold ci, some other crease must align with ci

on top of the Base. Clearly ci cannot align with any crease in V or any other crease

in C, so it must align with some crease in S. So for any valid folding, there exists a

bijection between creases in C and S.

Proof of (2). Suppose for contradiction si / si is the first crease in S to be folded.
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Then one of two cases apply. Either si folds without aligning with some crease in C,

a contradiction by (1); or si is folded aligned with some crease in C by folding some

subset of creases V' C V, with si not yet folded and strictly to the right of all creases

in C. But since the creases in V' cannot be unfolded, the distance between si and

any crease in C can only increase further, and s, will never align with a crease in C,

a contradiction.

Further, since the horizontal position of si is purely a function of the folded state

of creases V and only integral distances exist between folds in V, the horizontal

position of si can only change by integral amounts. The only crease of C that is an

integral horizontal distance from si is ci, so they must fold together. Additionally

after si and ci are folded, S2 and c2 are also aligned and must be the next creases to

be folded. Suppose for contradiction they were not. We cannot fold any other crease

in C or S since no other pair are aligned with each other; and folding some crease in

V prevents S2 from ever aligning with a crease in C, a contradiction.

Now we prove the claim. By (1), creases si and s2 fold before all other creases in

S, aligned with creases ci and c2 respectively. In order to align these creases, some

subset of V must have been folded to shift si to the right by exactly 2t. With si and

S2 so aligned, no t + 1 section between ai sections can be flipped from their original

orientation or else si would have shifted to the right by more than 2t. Further, since

ais are close in value to t/3, exactly three ais that sum to t must have been flipped,

i.e. v2i1- and v2i must have been folded from some triple of ais that sum to t.

Once si and S2 have been folded, the paper now represents a smaller instance

of 3-PARTITION with three fewer ais that sum to t with identical structure. The

remaining creases of S have shifted to the right by 2t +26 and the remaining creases

of C have shifted to the right by 26; in particular, S3 , s 4, c3 , and c4 are in exactly the

same horizontal locations respectively that si, S2, ci, and c2 used to be. (2) continues

to apply recursively, constraining the next crease pair to fold only after new ai triples

summing to t have been identified and folded. Thus, if (P, E, f) is foldable in the

infinite one-layer model, there exists a solution to the 3-PARTITION instance.

The theorem follows directly. The reduction is polynomial since the construction
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is bounded by a 4tn/3 x 8 rectangle with 2n + 4n/3 creases. Further, solutions can be

checked naively in 0(n2) time by performing each simple fold in order while checking

for self intersection after each fold.

This reduction only applies in the infinite one-layer model; in the one-layer model,

the constructed crease pattern folds trivially. Surprisingly, none of the above argu-

ments relied on knowing the M/V assignment of the creases. For creases C to ever

fold, creases h, and h2 must be folded in the same direction; the creases in V must

pleat ai intervals with alternating crease assignment, and the same is true of the

creases in S and C. Thus, the theorem also holds in the unassigned case.

Theorem 2.2.7. The unassigned simple-foldability decision problem for orthogonal

paper with paper-aligned orthogonal creases EP is strongly NP-complete in the infinite

one-layer and infinite some-layers models.

2.2.8 Infinite, Rectangle Paper/Orthogonal Creases

For assigned crease patterns on rectangular paper with paper-aligned orthogonal

creases, Arkin et al. show that determining simple-foldability can be decided in

polynomial time in the one-layer, some-layers, and all-layers models, noting that the

answer is automatically no in the one-layer model for crease patterns containing both

horizontal and vertical creases. Note that when unassigned, all rectangular paper

with paper-aligned orthogonal creases ( ) can be produced by folding the horizon-

tal folds in order alternating mountain and valley, followed by similarly pleating the

vertical folds. We prove the same results apply in the infinite one-layer, infinite some-

layer, and infinite all-layer models, because the corresponding non-infinite models are

equivalent for ( E ) crease patterns.

Theorem 2.2.8. Concerning simple-foldability of rectangular paper with paper-aligned

orthogonal creases , the infinite (one, some, all)-layer models are equivalent to

the (one, some, all)-layer models respectively.

Proof. The only difference between the infinite and non-infinite versions of simple

folds models is that the infinite versions must fold at least one layer everywhere
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paper exists along the fold axis, while the non-infinite versions do not. Assume for

the sake of contradiction that the models are not equivalent so that in a given valid

flat folding (P, f, A) a simple fold may occur that folds paper U C P about the fold

axis f for which f(U)n f does not equal f(P) nf. Let q be a point on the boundary of

the former but on the interior of the latter which exists since f(P) n t is line segment.

Some p exists in the preimage f-1'(q) that is not the endpoint of an already folded

crease or else the paper would be discontinuous. Then the crease containing p bounds

two facets, of which one facet F intersects U but is not contained in U or else q would

not be a boundary point. But rotating F n U without rotating F \ U would violate

isometry, a contradiction. l

We have shown many results known previously only to be weakly NP-complete

to be strongly NP-complete, namely the simple-foldability decision problem under

the one-layer, some-layers, and all-layers models. Moreover we prove the result holds

even for square paper with creases at multiples of 450 in the some-layers and all-layers

models; and for orthogonal paper with orthogonal creases in the infinite one-layer and

infinite some-layers models. With the formalization of the infinite simple folds models,

we also argued their equivalence with respective non-infinite models when folding

rectangular paper with orthogonal creases. In doing so, we largely characterize the

space of simple folds, though we pose the remainder of the space as open problems

for the future.
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Chapter 3

Material Thickness

This chapter builds on joint work with Demaine 1361 published in the proceedings of

the 2015 ASME 39th Mechanisms and Robotics Conference.

While much of the research in computational origami applies to folded surfaces

with zero. thickness (particularly structures that fold flat), modeling folding surfaces

with nonzero thickness is of practical interest for mechanical engineering. Design

approaches for folding thick material have many varied applications from kinetic ar-

chitecture [541 and solar panel deployment [491, to robotics [6] and nano-fabrication

[5]. These applications have motivated research into the mathematics and mechan-

ics of rigidly folding thick materials [32, 44, 52]. We discuss some of the existing

techniques for taking into account material thickness in the following section.

In this section, we propose a new approach for accommodating thickness that

modifies certain existing crease patterns into new planar folding patterns, preserving

some structure of the old crease pattern while folding a form whose facets are sep-

arated from one another in the final state. We describe a systematic and broadly

applicable algorithm to transform an input flat-foldable crease pattern into a new

crease pattern having a facet-separated, nearly flat folded state.

Our approach for converting flat foldings into facet-separated foldings replaces

each flat crease in the input crease pattern by two parallel creases symmetrically offset

about the original at a distance proportional to an assigned crease width satisfying

certain properties of the original crease pattern. Instead of one crease folding flat
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with a turn angle of 1800, the two new creases have a turn angle of 90'. This crease

widening creates difficulties at crease-pattern intersections since the offset creases

no longer converge to a point. Material in the vicinity around each crease-pattern

vertex is thus discarded to accommodate crease widening. While this modification

creates holes in the material, it introduces extra degrees of freedom that can allow

the widened creases to fold. Additionally the algorithm identifies and removes some

surface material on one side of creases to avoid self-intersections.

We provide conditions on input flat folded states for the algorithm to produce a

thickened crease pattern avoiding local self intersection, namely that crease-pattern

faces are convex and creases do not touch the insides of other creases in the input.

We also provide bounds for the maximum thickness that the algorithm can produce

for a given input. We demonstrate our results in parameterized numerical simulations

and physical models.

3.1 Existing Techniques

There are many existing approaches that seek to account for material thickness in

folding applications, each with their own strengths and weaknesses. We discuss the

techniques below, which are also illustrated in order in Figure 3-1.

3.1.1 Hinge Shift

The hinge shift strategy shifts hinges out of plane to accommodate material thick-

ness [30]. While readily useful in creating one-dimensional foldings of thick material,

this technique is harder to apply to 2D crease-pattern networks. Hinges start out of

plane so cannot build on existing design techniques starting from a coplanar folding

pattern. In addition full range of folding motion is restricted. A recent approach

extends the idea of hinge shifting to higher degree crease pattern vertices, but this

method is geometrically restrictive in the angles and thicknesses allowed [11].
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Figure 3-1: Some existing thick folding techniques: (A) Hinge Shift, (B) Volume

Trimming, (C) Offset Panel, and (D) Offset Crease.
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3.1.2 Volume Trimming

The strategy presented in [54] trims the edges of a thickened surface to overcome many

of the difficulties of the hinge shift technique. However, this method also suffers from

decreased range of motion and the slanted surfaces can be difficult to fabricate in

practice.

3.1.3 Offset Panel

The offset panel technique [23] is probably the most promising in application because

it is very flexible while accommodating full range of motion. This method retains

hinges at the folding plane but shifts the thick material away from the folding plane.

While promising, fabricating such structures can be difficult requiring robust standoffs

to connect thick material to hinges.

3.1.4 Offset Crease

In this paper we expand on the ideas presented in [621 which accommodates ma-

terial thickness by widening creases with flexible material, creating a hinge from a

two-dimensional region of material. We propose a modification of the offset crease

technique that widens creases in a systematic way, replacing each crease with two ideal

hinges without relying on flexible materials. While this technique does not preserve

exact structure of the input crease pattern, it creates a structure that can be easier to

fabricate than other techniques. Additionally, the proposed technique allows original

facets to be parallel in both flat and folded configurations, potentially allowing for

alignment of surface mounted components. We describe this technique in detail in

the following sections, concentrating first on definitions and then the algorithm itself.

Related to the proposed method are a few other methods for accommodating

material thickness. A patent by Hoberman [29] offsets creases in a non-parallel way

to accommodate thickness, but also suffers from decrease range of fold angle and does

not natural handle crease patterns with internal vertices. Still other methods involve

adding degrees of freedom by allowing faces to slide longitudinally along creases, but
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can be quite difficult to fabricate [58].

3.2 Definitions

We would like to take as input a surface that has been folded flat and output a

"thickened" version. In order to perform this task, we must first specify the input

precisely, namely the flat folded state. We will describe input flat folded states by

way of crease patterns and non-wrapping layer ordering graphs.

Let a crease pattern E be a finite straight-line planar graph embedding in R2.

Call crease-pattern edges boundary edges if they bound the exterior face, and call

them creases otherwise. Similarly, call crease-pattern vertices exterior if they bound

the exterior face with all other vertices interior. When we speak of angles around

an interior vertex v, we are referring to the cyclically ordered set of angles between

adjacent edges connected to v. A crease pattern is said to be locally flat-foldable if

the alternating sum of angles around every interior vertex is zero. As discussed later,

we will also restrict locally flat-foldable crease patterns to have only convex interior

faces.

Certainly if we are given as input a flat folded surface, the network of creases on

the unfolded surface define a crease pattern which will be locally flat foldable. The

next thing to pin down is the ordering of layers in the folded state.

Given a locally flat-foldable crease pattern E, a flat mapping function fhE E -+ R2

is a piecewise isometric mapping under which each interior face of . is congruent,

interior faces that share an edge in B share the same edge in fE(B), and exactly one

of any two adjacent interior faces in fE(B) is reflected from its orientation in E (i.e.

each crease has been folded). This function uniquely exists for a locally flat-foldable

crease pattern up to isometry (see Figure 3-2).

Here we adapt the work on layer ordering presented in [39]. Given an existing flat

folded surface with crease pattern B a layer ordering graph A is a directed graph on

the faces of E with an edge between faces A and B if and only if there exists some

points a E A and b E B such that fE(a) = fE(b) (the faces overlap in the folding).
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Figure 3-2: From left to right: (1) generic crease pattern E, (2) locally flat foldable

crease pattern E with layer ordering graph A, (3) with reduced layer ordering graph

F, and (4) flat folding fB(E).

The direction of the edges in the directed graph are given by arbitrarily calling the

surface normal of some face in the flat folding 'up' and drawing edges to point to

the face on top of the other. Such a layer ordering may not be well defined if faces

are not convex (parts of a face may exist above and below another); as such we will

restrict ourselves to crease patterns with convex faces for the remainder of the paper.

Additionally, constructing the desired face offset folded state will be impossible if the

faces of the layering ordering graph contains a directed cycle because some faces could

not be ordered. We will thus restrict to only flat folded surfaces with acyclic layer

ordering graphs whose faces can be partially ordered.

Layer ordering graphs can be very complicated, typically containing edges on the

order of the squared number of crease-pattern faces. However, they often contain

significant redundancy with respect to providing layer ordering information. For

example, consider an edge of a layer ordering graph (A, B) from crease-pattern face

A to B (B is on top of A), for which there exists some other directed path L from A

to B. Transitivity ensures that L enforces the ordering condition imposed by (A, B),

so edge (A, B) is redundant and can be removed from the graph without losing any

layer ordering information. We then implicitly construct the reduced layer ordering

graph F from the layer ordering graph A by identifying any such redundant edge and

removing it from the graph. This process terminates and results in a unique output

since it, is a transitive reduction.

Lastly, we define a flat folded state (B, F) as a locally flat-foldable crease pattern
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together with a reduced layer ordering graph free from self-intersection. Specifically,

for any crease bounding faces A and B and a third face C which strictly intersects

,no directed path exists in the reduced layer ordering graph F between faces A and

B visits face C (face C does not intersect crease ). This object will serve as the input

to our thickening algorithm. Note that a flat-folded state implies a crease assignment

to each crease (either mountain or valley) by comparing the orientation and order of

faces according to the flat mapping function fE and F. Further, we call the reflex side

of a creased surface the outside of the crease, and similarly we call the convex side of

a creased surface the inside of the crease.

A restriction on our approach is if two creases in a crease pattern wrap around

each other in the flat folded state, specifically if one crease touches the inside of

another crease, self intersection can become a problem. We will go into more detail

as we describe the algorithm, but for now we will call an input flat folded state

non-wrapping if no crease or boundary edge point of the input touches the inside of

another crease.

3.3 Algorithm

The goal of this paper is to construct a thickened version of a given a non-wrapping flat

folded state (E, F). The strategy is to offset crease-pattern faces from their flat folded

state consistent with their layer ordering and create new creases to accommodate the

offset. First, we must define an offset distance between every pair of faces which

implies a width for each crease. Second, we construct scalable polygons at each

interior crease-pattern vertex from which material will be removed to accommodate

widened creases. Third, we refine the polygons to ensure that each effective vertex

does not exhibit local self intersection. Fourth, we calculate a range for allowable

scale factors such that vertex polygons do not intersect. Fifth, we lay out the new

crease pattern with holes having a non-flat folded state according to a chosen scale in

the allowable range. Last, we address constructing the thickness of each face based on

avoiding local self intersection. Additional adjustments may then be made to account
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for global self intersections.

3.3.1 Crease Width

The first goal of the algorithm is to specify a width for each crease in a flat folded state

(7, F), with all mutually consistent with the layering order of offset faces. Intuitively,

we want to separate the layers of the input by nonzero amounts and assign a crease

width based on the distance between adjacent faces. If crease widths are chosen

small, we can think of the desired output as an "almost flat" version of the original

that allows for nonzero space between layers. The concept of crease width is related

to the same term applied to the one-dimensional stamp folding problem [59J, but we

apply it to 2D flat-foldable crease patterns with sortable layer orderings. For our

purposes, given reduced layer ordering graph F it suffices to choose a positive weight

for each directed edge such that given any two interior crease-pattern faces A and B,

every path from A to B in F has the same weight sum. We will call such a weight

assignment w : E 7 --+ R+.

Such a weight assignment always exists; particularly one can be constructed by

choosing an arbitrary linearization of the partial order prescribed by F to create a total

order, and defining the weight along a crease to be the absolute difference between

the layer ordering numbers of the crease's incident faces. By giving a weight to each

crease of F, we can calculate a crease width for every crease of . by summing the

total weight along any path from one face incident to the crease, to the other.

The choice of w can be viewed as a design choice for the algorithm implementer.

One might strive to choose an w that optimizes some natural metric such as mini-

mizing the maximum thickness of any crease, but the work in [591 and [17] seem to

suggest such questions may be NP-hard even for one-dimensional graphs. As such,

we do not attempt to optimize the choice of w here, and leave the exploration in this

area as an open problem.

Once we have assigned a crease width to each crease, the construction involves

replacing each crease in the input crease pattern with two parallel creases symmet-

rically offset about the original, separated at a distance proportional to the assigned
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Figure 3-3: Polygon construction. A generic internal crease pattern vertex showing
relationship between offsets and angles.

crease width. This replacement creates difficulties at crease intersections since the

offset creases will no longer converge to a point. Naterial in the vicinity around each

crease-pattern vertex will need to be discarded to accommodate the widened creases.

Next, we will discuss the construction of the region to be discarded.

3.3.2 Polygon Construction

Now that crease widths have been defined. we must interface widened creases with

each other in the vicinity of crease-pattern vertices. For each vertex, we construct

a polygon that will interface with widened crease lines around the vertex. These

polygons will be scalable based on how thick we would like to make the material with

respect to the crease pattern. up to a point. We will deal with the allowable range of

scaling factor later. First, we uust define the geometry of these vertex polygonis so

they will align with all the crease widths around the vertex.

We want a vertex polygon to contain one vertex per face adjacent to the crease-

pattern vertex at a distance from each adjacent crease proportional to the crease width

of the crease. Consider crease-pattern vertex c with face A adjacent to it. bounded

by adjacent creases { ?I, c} and { . w} with crease widths 2a and 2b respectively. Let

the angle between these creases be 0. Then the location of the polygoni vertex 1) ill
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Figure 3-4: A non-simple vertex polygon and refinement by clipping crossings.

this face must be a distance a fron crease {u c} and distance 1) fron crease {'v, 'w}.

This point is uniquely defined and can be parameterized by the length h of segment

{ . p} and the angles (A and i3 between this segment and creases { u, I'} and {v, w}

respectively (see Figure 3-3). Some trigonometry reveals that these angles are given

by

sin 0 sin 0
t al( b/ + cos 0 - a/b + cos 0 (31)

with domains o. /3 E [0. 7]. and h = a/ sin t = b/ sin 13. Repeating this procedure

for each face adjacent to an interior crease-pattern vertex constructs points that

when connected based on facet adjacency form a polYgon. For exterior crease-pattern

vertices, the same construction applies except we include the original vertex and

intersections between crease width lines and boundary edges in our polygons. We

call the regions in each face bounded by offset creases rcluccd faces (shown iin blue in

the figures). Unfortunately, edges of a constructed vertex polygon may properly cross

as in Figure 3-4. However, we can easily modify the vertex polygon to be weakly

simple, or even convex. by clipping any facet sector crossing the polygon. More

specifically taking the convex hull of the vertex polygon. mark each vertex whose

adjacent reduced face does not, properly intersect the convex hull. Trimming the

intersecting reduced faces against the convex hull of the marked vertices results in am
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Figure 3-5: Trimming intersecting region.

appropriate convex vertex polygon. though in some cases it may suffice to remove less

material (see the middle diagram in Figure 3-4). Note that crossings can only arise

if two adjacent vertex angles sum to imore than 1800. The reduced faces of these two

angles cannot properly intersect the convex hull of the vertex polygon. so at least two

marked vertices exist.

Locally, this polygon divides the area around the vertex into three region types:

the polygon. widened creases. and reduced faces (the cardinality of the latter two

equaling the number of creases adjacent to the crease-pattern vertex). We will use

this terminology to talk about these regions in the following sections.

3.3.3 Refinement

The newly constructed creases and polygons in the previous sections serve to locally

satisfy isometry between offset faces by removing material at a, vertex and adding

new creases to accomm odate the offset. However, creases vith larger crease width

require more paper to be absorbed into widened crease regions, reducing the size of

surrounding reduced facets. The interaction of this tradeoff between different regions

creates the potential for intersection between widened creases and reduced facets. We

fix this type of self intersection by checking each widened crease reduced facet pair

for intersection. If they intersect. trim the reduced facet along the widened crease
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Figure 3-6: Unbounded intersection for inside touching creases in input flat folded
state.

boundary and refine the vertex polygon to reflect this change (see Figure 3-5).

There is a worry that this procedure could remove iiaterial that is not a bounded1

distance from the vertex. For example. the crease pattern shown in Figure 3-6 con-

tains two creases that when widened have an intersection that extends to infinity.

Fortunately, this type of situation only occurs locally when some crease of the in-

put touches the inside of another crease, which we have forbidden by requiring a

non-wrapping input. Reduced facets can only be trinnned a finite nunber of times

because trimming cannot increase the number of intersections, thus the refinement

terminates.

3.3.4 Scale Factor

After creating vertex polygons and local widened crease reduced facet regions that

locally do not self intersect, we can determine how large these polygons can he before

intersecting each other. Each widened crease edge is bounded on either side by a

vertex polygon. Consider crease with length is d. Then each widened crease edge

of is shorter than d according to the size of each incident vertex polygon. Let

(h,. (V) and (hb. 3) define the locations of the vertex polygon vertices on either side

of contained in the same face F. If we let the size of all vertex polygons scale by
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Figure 3-7: Scale factor calculation showing relevant quantities.

a factor s. then the length f, of the widened crease segment in F is given by the

following function of s (see Figure 3-7):

(d s(h c0s + h" + 0s bC ). (3.2)

For (h( cos (t + hb cos 3) negative. lI(s) > 0 for all s > 0 so this crease does not

restrict scale. For (h, cos ho 0i+b cos ) positive. there exists some s strictly positive for

which f (se) 0. This event corresponds to neighboring vertex polygons intersecting

which we would like to forbid. Taking the mininum over all creases H E E yields

a strictly positive upper bound s* on scale factors by which vertex polygons can be

scaled without overlap. Note that for s = 0. the crease pattern is not offset at all and

facets remain coplanar. and the folded form cannot be produced with material of any

finite thickness. Strictly positive s, such as s* calculated above. allow the modified

pattern to acconmnodate some finite thickness, with a larger s acconnodating a

larger thickness relative to the geometry of the input crease pattern. Of course this

scale s* only insures that vertex polygons do not interact. It is possible that with

this calculated scale, global intersection between faces of the folding can still arise.

Nonetheless, we show the following:

Theorem 3.3.1. Givce a non-wrapping fiat folded state (E, F) and weight assignment

w : EE -- R+, there exists some positivc non-zero scale s for which the above con-
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struction globally contains no strict intersection between faces in the three-dimensional

folded state.

Proof. Suppose for contradiction that the construction produces intersecting faces for

every positive non-zero scale s. Intersection cannot occur between reduced polygon

faces because they are offset from each other in a way consistent with the input non-

wrapping reduced layer ordering graph containing no self-intersection. Thus, any face-

face intersection must exist between a widened crease face and some other face. Let

be the original crease corresponding to some widened crease face strictly interesting

another face F. Because the input is non-wrapping containing no self-intersection,

does not intersect F in the input non-wrapping flat folded state. Increasing the scale s

from 0 and performing the above construction results in a continuous parameterized

family of three-dimensional foldings. More importantly, let d(s) be the minimum

distance between the widened crease associated with crease in a construction with

scale s and the reduced polygon formed from face F. Then d(s) is positive for s-= 0

and varies continuously and weakly monotonically with s. Thus there exists some

positive non-zero scale s' c (0, s*) for which d(s') is also positive. But this is true

for every intersection involving a crease, so there must exist some scale where no

intersection occur, a contradiction.

LI

3.3.5 Final Construction

Now given a flat folded state (, F) and width assignment w, we can calculate the

upper bound s* on scale to forbid vertex polygon intersection and choose a scale s' in

the range (0, s*) to construct a modified crease pattern that avoids self intersection.

Quite simply the construction is placing vertex polygons scaled by s' and adding

widened crease lines parallel to the original creases between vertex polygons. The

entire process is shown in Figure 3-8: first the input non-wrapping flat folded state,

offset facets, and finally the offset polygons, together with their counterparts in the

folding domain.
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Figure 3-8: Construction process.
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Theorem 3.3.2. Given a non-wrapping flat folded state (, ) and weight assignment

w : E -+ R+, the construction above terminates in polynomial time.

Proof. Given the weight assignment, the vertex polygons are each bounded, con-

structed as described in Step 2 by offsetting the original geometry by finite amounts

and connecting vertices, which can be constructed directly in linear time. Clipping

ensures the vertex polygons are weakly simple and can be performed naively by com-

paring each vertex-edge pair in quadratic time. Trimming in Step 3 can also be

implemented in quadratic time by checking each pair of faces locally around a vertex.

Local intersections of the faces around a vertex are thus removed in the trimming

step by construction. Calculating the scale upper bound s* guaranteeing that vertex

polygons do not intersect requires a constant-sized evaluation per edge, while cal-

culating an appropriate s' can be computed by evaluating the appropriate scale for

each possible intersection pair in at most quadratic time, and choosing the minimum

scale. Thus the procedure can be implemented to terminate in quadratic time which

is polynomial. D

3.3.6 Adding Thickness

The above construction creates a modified thin crease pattern that separates faces in

the folded form to make room for thick panels. Adding material to the constructed

thin surface is relatively easy. In general, if crease widths are chosen arbitrarily, facets

can be assigned a range of thicknesses to either side that can be accommodated by the

crease widths. However, a simpler and more practical assignment might be to assign

the same max thickness to the entire crease pattern as many manufacturing processes

could benefit from this kind of uniformity (nano-fabrication, sheet metal construction,

etc.). We can simply define the max panel thickness tmax as the smallest crease width

assigned to the flat folded state.

However, this panel thickness cannot be added everywhere or material would self-

intersect. For example, if finite panel thickness exists everywhere on adjacent faces

on the inside valley side of each crease, the crease would not be able to fold at a
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right angle without the added material intersecting when folded. There are many

ways to solve this problem by removing material. We suggest keeping full panel

thickness on widened crease regions to strengthen these traditionally weak interfaces,

and removing material from the adjacent face incident to the crease. To accommodate

widened crease panel thickness on both sides, we must remove a strip of material of

width tmax/2 on either side of the widened crease from the reduced facets adjacent

to the crease, only on the crease's inside surface. This modification will ensure that

material in the vicinity of creases do not locally self-intersect.

The problem of global material self intersection during a folding motion is a more

difficult computational task, though there are existing computational methods for

addressing this issue. The offset panel techniques of [23] also point out this problem.

We are looking into more efficient techniques to perform global folding motion collision

detection to aid real-world design applications.

3.4 Models

3.4.1 Implementation

We wrote a program to implement the algorithm presented for generating modified

offset crease patterns from input flat-foldable crease patterns. The program was

written in coffeescript and can be found at http://jasonku.scripts.mit.edu/thick. The

input is a vertex set and an ordered list of faces. The program then allows the user to

adjust the distance between faces by pressing arrow keys, allowing the user to view

the how the crease pattern changes in real time. Figure 3-9 shows a screen shot of

the implementation.

3.4.2 Simulations

We developed numerical and physical models to demonstrate the algorithm presented

above. We used the algorithm described to modify two existing rigid-foldable flat-

foldable crease patterns, the traditional bird base and a modified rigid foldable flap-
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Figure 3-9: A screenshot of our offset crease implementation in action. The model

shown is a traditional bird base with uniform thickness offset.
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- II

Figure 3-10: Numerical folding simulation of two thickened crease patterns using

Freeform Origanmi.

ping bird designed by Robert Lang as shown in Figure 3-10 (bird base on top, and

flapping bird on bottom). On the left the original and modified crease patterns are

shown, followed by snapshots of each crease pattern folding. These modified crease

patterns were input into a numerical origamli simulator called Freefori Origami [551.
This simulator is able to fold a crease pattern incrementally through rigid folding

configuration space while seeking to maintain developability and planarity constraints

converging iteratively to within double precision. Folding these crease patterns in the

simulator demonstrated multiple rigid folded states throughout the folding process

to very high accuracy. These simulations provide evidence that a path through the

configuration space exist for complex crease patterns between the unfolded and folded

states produced by this algoritlun. Such a mnovenient, seems possible for single-vertex

crease patterns because the number of degrees of freedom of the modified structure

should in general increase.

We also used a Mathematicai model shown in Figure 3-11 to apply the algorithm to

single-vertex crease patterns to try and find a path in the folding configuration space

between the unfolded and folded states produced by this algorithm. The model allows

the user to change the parameters of the system. namely fold angles between creases

and splitting ratios between offset crease pairs, in order to satisfy closure. While
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Figure 3-11: Parameterized thick single vertex construction in Mathematica.

we have not found an analytic closure constraint, relating fold angles and splitting

ratios, we have been able to achieve closure numerically to double precision for a

range of inputs. Our results in this area are preliminary, but we have experimental

evidence to support that single-vertex crease patterns thickened with this algorithm

have a rigid foldable path between unfolded and folded states. We conjecture that the

state space for thickened single-vertex crease patterns is a sphere embedded in the

multidimensional parameterized space and will leave further discussion in this area

to future work.

3.4.3 Physical

Lastly, a physical model of a thickened version of the traditional bird base was fabri-

cated using both acrylic and aluminum on either side of a Tyvek hinge layer. Some

views of the physical models can be seen in Figure 3-12 and Figure 3-13. The compo-

nents of the model were machined using a laser cutter for the acrylic and Tyvek, and

a water jet for the aluminum. Hexagonal through holes were machined in the facet
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Figure 3-12: An acrylic physical model constructed using the offset crease technique

presented.

material into which hexagonal threaded standoffs were inserted. Finally. the layers

were assembled and secured together with machine screws.

The folding action observed with this model agrees well with the folded states

of numerical simulation, and the motion feels tightly constrained in contrast to the

folding iechianisms described in 1621. Empirically fixing the diliedral angle between

sector faces while adjusting the angle ratio at one crease, a continuous adjustment

of the other crease ratios was observed. also supporting the spherical configuration

space coijecture.

87



Figure 3-13: An acrylic physical model constructed using the offset crease technique

presented.
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3.5 Remarks

The algorithm proposed has many benefits over existing thick folding techniques.

Facet surfaces in the produced structure's unfolded state are coplanar allowing for

ease of fabrication in layer-by-layer manufacturing processes. These same surfaces

are parallel in the produced structure's folded state allowing any surface mounted

components to mate naturally. Panel thicknesses can be adjusted according to ma-

terial and scale within bounds provided by the algorithm. Further, every finite area

of the algorithm's produced surface may be assigned non-zero thickness, allowing for

the production of strong and tightly constrained mechanisms.

The offset crease method provides a thickened folded state suggesting a full range

of folding motion as well as parallel facets when fully folded. Assigning crease widths

to comply with the acyclic layer ordering of the input flat folded state provides a

flexible design space for varied applications, while still constructing one non-trivial

folded state with planar facets. While it is still open whether a path of rigid folded

states exists through the configuration space in general, there is evidence that one

exists for single vertex crease patterns given our numerical models. While compen-

sating for material thickness is not as difficult for non-flat foldings, because faces do

not meet each other when folded, we are exploring ways of extending this method for

non-flat foldings, particularly those containing face-to-face contact in their non-fiat

folded form.
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Chapter 4

Geometry

This chapter builds on joint work with Demaine [191 published in the Origami6 col-

lection from the 6th International Meeting on Origami in Science, Mathematics and

Education in 2014. Some developments were also presented at the 2016 Joint Math-

ematics Meetings AMS Special Session on Origami Methods and Applications.

Many problems in origami require the folder to map the perimeter of a piece of

paper to some specified folded configuration. In the tree method of origami design,

circle packing breaks the paper up into polygonal molecules whose perimeter must be

mapped to a specific tree. The fold-and-cut problem inputs a set of polygonal silhou-

ettes whose perimeters must be mapped onto a common line. These two problems are

well studied; one solution to the molecule folding problem is the universal molecule

[38] while a solution to the fold-and-cut problem lies in the polygon's straight skele-

ton [16][8]. Both of these problems can be considered as specific versions of a more

general problem: the hole problem.

Given a crease pattern with a hole in it (an area of the paper with the creases

missing), can we fill in the hole with suitable creases? More precisely, given a sheet

of paper and a prescribed folding of its boundary, is there a way to fold the paper's

interior without stretching so that the boundary lines up with the prescribed boundary

folding? This hole problem was originally proposed by Barry Hayes at 30SME in 2001

with the motivation of finding flat-foldable gadgets with common interfaces satisfying

certain properties, such as not-all-equal clauses for an NP-hardness reduction [9j.
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Figure 4- 1: (Left) A boundary mapping that might be used to design a color-change

checker board model. (Right) An unfinished crease pattern with parts of the crease

pattern unknown.

This problem formulation can be transformed to solve several existing problems, as

well as somne new applications (see Figure 4-1). If we map the boundary to a line, the

polygonl is now a molecule to be filled with creases or one half of a fold- and-cut problem

cutline. The hole problem can also address problemns where the boundary is not

mapped to a line, i.e. mappings into the plane or into three dimensions, potentially

leading to the algorithmnic design of multi-axial bases. color-chbanges. or complex three-

dimensional tessellation or mnodulars. When trying to combine separately designed

parts of an origamii model. a solution to the hole problem could be used to design an

interfacing crease pattern between themi.

In this chapter, wAe s)how that the hole problem always has a, solution for polygonal

input boundaries folded at finitely many points under the obvious necessary condition

that the input folding is nonexpansive, and present a polynomnial-timie algorithml

to find one. We restrict ourselves to isomietry and ignore self- intersection. leaving

layer ordering (if possible) as an open problem. Section 4.1 introduces notation and

defines the problem. Section 4.1.1 discusses the necessary condition which will turn

out, to be sufficient. Section 4.1.2 constructs vertex creases satisfying local isometry.

Section 4.1.3 propagates the creases. Section 4.1.4 describes partitioning polygons.

Section 4.2 describes the algorithmn. We continue with a modification of the algorithmn

that can access all possible isometries satisfying the boundlary condition, though as
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crease patterns exist with super-polynomial complexity with respect to the number

of folded boundary points, this extended algorithm cannot in general terminate in

polynomial time. Lastly, we analyze some simple hole boundaries with the goal of

satisfying more than one boundary condition.

4.1 Definitions

First some notation and definitions. Let 11-11 denote Euclidean distance. Given a set

of points A C B C R', c E Z+ and mapping f : B - Rd, d E Z+, we say that A is

(expansive, contractive, critical) under f if IIu - v (<,>,=)I f(u) - f(v)II for every

u, v E A, with (nonexpansive, noncontractive, noncritical) referring to respective

negations. Critical is the same as isometric under the Euclidean metric, but because

we will use the term "isometry" to refer to isometric maps under the shortest-path

metric [201, we use a different term for clarity. We say two line segments cross if their

intersection is nonempty. We now prove two relations on crossing segments under

certain conditions using the above terminology, including a generalization of Lemma

1 from [12].

Lemma 4.1.1. Consider distinct points p, q, u, v E R 2 with p, u, v not collinear, line

segment (p, q) crossing line segment (u, v), and a mapping f : {p, q, u, v} -+ Rd. (a) If

{q, u, v} is critical and {p, u, v} is nonexpansive under f, then {p, q} is nonexpansive

under f. (b) If {u, v} is critical, and {p, u, v}, {q, u, v} are nonexpansive under f,

then {p, q} is nonexpansive under f; additionally if {p, q} is critical under f, then

{p, q, u, v} is also.

Proof. (a) Consider the following d-dimensional balls: So centered at f(q) with radius

|lp - qII, Si centered at f(u) with radius flp - ull, and S2 centered at f(v) with radius

I p - vII (see Figure 4-2). {p, u, v} nonexpansive under f implies f(p) E s1 n S 2.

{q, u, v} critical and (p, q) crossing (u, v) implies Si n S2 C So. Because f(p) E So,

{p, q} is nonexpansive under f.

(b) Let x = u + t(v - u) be the intersection of (p, q) and (u, v) and let xf = f(u) +

t(f(v) - f(u)). Repeated application of Lemma 4.1.1(a) yields IIx - Z ;> II x - f(i)II
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f (q)

Figure 4-2: Points f('u), f(c), f(q). f(p) with spheres So. S1, S2 . The shaded area

Si n S 2 C So is the region in which f(p) may exist if {jp , '} is nonexpansive under

.f.

for i E {p, q}. Combining with ||- - p h + |x - qj| = J|p - q1I and the triangle inequal-

ity. I -f (p) Il + ILr - f(q) ;> I f(p) - f(q) I yields {p. q} Inonexpansive under f.

Further. if {p, q} is critical under f., then so is {p, q. xj-}. Segments (f(p). f(q)) and

(f (u), f ()) are coplanar crossing at .f such that {. p} expansive implies {, q} con-

tractive under f. Since {p. q. u. v} is nonexpansive., {). q. v, 'v} must 1)e critical under

1.D

We will consider a polygon P to he a 1)ounded closed figure in R 2 bounded by

finitely nany line segments connected in a simple cycle. with non-touching boundary.

This definition restricts polygons to topological disks, and allows adjacent edges to

be collinear. Let V(P) denote the vertices of P. OP denote the boundary of P, with

V(P) c OP C P. An edge of P is a line segment in OP with endpoints at adjacent

vertices. We say that a point p C P is 'visible from a vertex c C V(P) if the line

segmnent from p to v is in P. With the terminology in place. we can now state the

prob)lei (see Figure 4-3).

Problem 4.1.1. Given a polygon P 'in the plane 'with a boundary 'mapping f : OP -

R(, find an iso'metric mapping : P -- R" such that g(P) = f(OP).
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f(p)
p G V(P)

Figure 4-3: Input and output to the hole problem showing notation. Given polygon
P C R' and mapping f : OP - R. find isometric c : P -- Rd such that g(P)
f(OP).

If one exists, we call g a solution to the hole problem. Mapping P into R requires

infinitely many folds, so we restrict to d > 2 for the remainder.

4.1.1 Necessary Condition

In this section. we define ualid boundary mappings and give a necessary condition for

the hole problem under the weak assumption that the polygon boundary is folded at

finitely many points.

Definition 4.1.1. P - Rd, define f to be valid if UP is nonexpcans.Ve under f and

adjcent certies of P are critical under f.

Lemma 4.1.2. Consider an instance of the hole problem with input polygon P and

boundary mapping f : UP -+ Rd nonstraliht at finitely many boundary points. If f is

not valid then the instane has 'no solution.

Proof. Modify 11V(P) to include boundary points nonstraight under f (vertices adja-

cent to collinear edges are allowed), so that f is straight for UP \ V(P). Assume a

solution g exists and f is not valid. Then either two points a, b E UP are expansive
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under f, or two adjacent vertices u, v E V(P) are noncritical. If the former, then

{a, b} is also expansive under g, so g cannot be isometric. If the latter, then f(p) is

nonstraight for some p on the edge from u to v, a contradiction. D

To determine the validity of f, checking expansiveness between all pairs of points

in OP is impractical. Instead it suffices to show that the set of vertices is nonexpansive

under f, and edges of P map to congruent line segments.

Lemma 4.1.3. Given polygon P and boundary mapping f : aP - Rd, f is valid

if and only if V(P) is nonexpansive and edges of P map to congruent line segments

under f.

Proof. If f is valid, V(P) is nonexpansive under f since V(P) C OP, and edges map

to congruent line segments because adjacent vertices are critical and points interior

to edges are nonexpansive with endpoints. To prove the other direction, if edges of P

map to congruent line segments, adjacent vertices are critical and pairs of points on

the same edge are nonexpansive (indeed critical) under f. To show that points from

different edges are nonexpansive under f, consider vertex p and point q interior to

the edge from vertex u to v. By Lemma 4.1.1(a), {q,p} is nonexpansive under f for

any vertex p. Now consider point q' E OP not on the edge from u to v. By the same

argument as above, {q', u, v} is nonexpansive under f, so by Lemma 4.1.1(a), {q, q'}

is also nonexpansive. E

4.1.2 Bend Lines

When the interior angle of the polygon boundary at a vertex decreases in magnitude

under a valid boundary mapping, the local interior of the polygon will need to curve

or bend to accommodate. For simplicity, we consider only single-fold solutions to

satisfy such vertices, which will still be sufficient to construct a solution. We call

these creases bend lines made up of bend points.

Definition 4.1.2. (Bend Points and Lines) Given polygon P with valid boundary

mapping f : OP -+ R d and vertex v E V(P) adjacent to two vertices {u, w} contractive
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Figure 4-4: The bend points of (P, f, v) showing relavent angles {0, # 3}, points
{u, v, wp, f(u). f(v), f(w), q}, and sets {R, S}. The upper figures show only the

boundary mapping, while the lower images show filled, locally satisfying mappings of

the interior.

under f, define p G P to be a bend point of (P, f,v) if there exists some q e R' (called

a bend point image of p) for which ||p - i| = 1|q - f (i)\1 for i E {u, , w} and p is

visible from v. Further, define a bend line of (P, f, v) to be a maximal line segment

of bend points of (P, f, v), with one endpoint at v and the other in &P; and let a bend

line image be a set of bend point iniages of the bend points in a bend line, congruent

to the bend line.

A bend point corresponds to a point in the polygon such that triangles Apvu and

Apvw isometrically map to triangles Aqf(v)f(u) and Aqf (v)f(w) respectively. Bend

lines correspond to single folds of P that locally satisfy isometry for the boundary

from u to w through v. Lemma 4.1.4 represents bend points explicitly (see Figure 4-4).

Lemma 4.1.4. Consider polygon P with valid boundary mapping f : OP - Rd and

vertex v adjacent to two vertices {u,w} contractive under f. Let 0 = Zuvw be the

internal angle of P at v; let = Zf(u)f(v)f (w); and let
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R =Jp 1 P { Zpvu E [0-0 0, ]

p visible from v p visible from v

Then the set of bend points of (P, f, v) is R if d = 2, and S otherwise.

Proof. A point p E P visible from v is a bend point of (P, f, v) only if triangles

Apvu, Apvw are congruent to Aqf (v)f (u), Aqf(v)f(w) respectively for some bend

point image q by definition. Let / = Zpvu. If d = 2, Apvu and Apvw must be

coplanar. Then the internal angles of both triangles at v must sum to 0, and the

magnitude of their difference 1(0 - /) - /3f must be #. This condition is satisfied only

when / E { , P}. Thus for d = 2, the set of bend points of (P, f, v) is R.

For d > 2, triangles Aqf(v)f(u), Aqf(v)f(w) need not be coplanar. Because

{u, w} is contractive under f, # > 10 - 2/1, so - < < +, and points in P \ S

cannot be bend points. It remains to show that for each point p C S there exists a

satisfying bend point image q C Rd. For a given p, q must lie on two hyper-cones

each with apex v, one symmetric about the segment from f(v) to f(u) with internal

half angle /, and the other symmetric about the segment from f(v) to f(w) with

internal half angle 0 - /. These hyper-cones have nonzero intersection H because

(0 - /) + / > # and # > max(0 - /, /) - min(0 - /, /). The intersection of two

hyper-cones with common apex v is a set of rays emanating from v, so H intersects

the (d - 1)-sphere centered at f(v) with radius Ip - vll. Any point in this intersection

satisfies all three constraints of a bend point image for any p E S.

For every d > 2, the set of bend points of (P, f, v) is the same, but the set of

bend point images increases with dimension. The set of bend point images is a ruled

hypersurface of bend line images emanating from f(v). In the case of d = 2 above,

hyper-cones are simply two rays, leading to disjoint line segments of bend points. For

d = 3 the set of bend points is a standard cone-like surface. Mapping generally to

Rd, the set is a ruled hypersurface of rays emanating from a point.
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4.1.3 Split Points

Bend lines locally satisfy the boundary around a vertex with a single crease. We

want to find the bend point on a bend line farthest from the vertex that remains

nonexpansive with the rest of the boundary. We call such a point a split point.

Definition 4.1.3. (Split Points) Given polygon P with valid boundary mapping f

OP -+ Rd and vertex v, contractive under f with every visible nonadjacent vertex,

adjacent to two vertices {u,w} contractive under f, define p to be a split point of

(P, f, v), q to be its split point image, and x to be its split end if

1. p is a bend point of (P, f, v), with q its bend point image;

2. 1|p - il > ||q - f (i)|1 for i G V(P);

3. 1|p - x| = ||q - f (x)1| for some x E V(P) \ {u, v, w}; and

4. p is visible from x.

Lemma 4.1.5. Given polygon P with valid boundary mapping f : OP - R d and

vertex v adjacent to two vertices {u, w} contractive under f with v contractive under f

with any visible nonadjacent vertex, there exists a split point/image end triple (p, q, x)

for every bend line/image pair (L, Lf) of (P, f, v) with p C L and q C Lf.

Proof. Given bend line/image pair (L, Lf) we construct (p, q, x). Parameterize L so

that p(t) is the unique point in L such that I p(t) - v I = t for t C [0, f] where f is

the length of L; and let q(t) be the corresponding bend point image of p(t) in Lf.

For any t E [0, f] and vertex x, let d(t, x) = 11p(t) - xHl - ||q(t) - f(x)H1. Let t* be the

maximum t E (0, f] for which d(t, x) > 0 for all x E V(P), and let X be the set of

such vertices x E V(P) \ {u, v, w} for which d(t*, x) = 0, and d(t* + 6, i) < 0 for all

6 c (0, E] for some E > 0. If we can prove there exists some x E X from which p(t*) is

visible, then p = p(t*) is a split point with q = q(t*) its split point image, satisfying

the split point conditions by construction.

Suppose for contradiction that t* does not exist so that for all t E (0, f], d(t, x) < 0

for some x C V(P). Because d is continuous and d(0, x) > 0 for all x E V(P), there
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Figure 4-5: Visibility of p. If x E X is not visible from v, one of {a,

be.

exists a vertex x' E V(P) \ {u, v. w} not visible from and critical with v under f such

that d(6, x') < 0 for all 6 E (0, E for some E > 0. Either x' is in the infinite sector

C induced by Zuvw or not. If the former, the line segment from v to x' must cross

some edge (a, b) of P and {a, b, x', v} is critical under f by Lemma 4.1.1(b). Since

neither a nor b can be visible from v, then u and w must be in Aabv, and {u, v, w}

must be critical, contradicting {u, w} contractive under f. Alternatively x' is not in

C, and for every 6 E (0, E] for some E > 0, the line segment from p( 6 ) to x' crosses

either (v, u) or (v, w). By Lemma 4.1.1(b), d(6, x') > 0, a contridiction, so t* exists.

We now prove that p is visible from some x c X. Suppose for contradiction that

p is not visible from any x E X so that for each x there exists point c E 8P, the

boundary crossing closest to p on the segment from p to x. c cannot be strictly

interior to edge (v, u) or (v, w) because Lemma 4.1.1(b) implies I|p(t* + 6) - xII =

IIq(t* + 6) - f(x)II for all d E (0, E for some E, a contridiction. And c cannot be v or

else lp(t) - x I = IIq(t) - f(x)II for all t E [0, f]. So c crosses some other edge (a, b)

(see Figure 4-5). Then Lemma 4.1.1(b) implies I|p - iII = Iq - f(i)lI for i E {a, b},

and the contrapositive of Lemma 4.1.1(a) implies for at least one vertex i E {a, b},

p(t* + 6) - ill < IIq(t* + 6) - f(i) I for all 6 C (0, E] for some E > 0. Without loss of
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generality assume i = a. Because a E X, p cannot be visible from a. Let d E 4P

be the boundary crossing closest to p on the segment from p to a. There must exist

some vertex y in triangle Aacp from which p is visible because the boundary of the

polygon entering the triangle at d must return to a without crossing edge (c, p). By

the same argument, at least one of {y, b} is in X, and since p is visible from y, b E X.

Replacing (b, e, z) for (a, d, y) in the argument above, one of {y, z} is in X. But p is

visible from both, a contradiction. El

Lemma 4.1.6. Given polygon P with valid boundary mapping f : OP - R d and

vertex v, contractive under f with every visible nonadjacent vertex, adjacent to two

vertices {u, w} contractive under f, a split point/image/end triple of (P, f, v) exists

and can be identified in 0(d|V(P)|) time.

Proof. This result follows directly by choosing any bend line/image pair of (P, f, v)

according to Lemma 4.1.4, then constructing the split point/image/end triple spec-

ified by Lemma 4.1.5. Choosing a bend line/image pair can be done in O(d) time.

Constructing the split point/image/end triple requires a d-dimensional comparison

at each vertex yielding total construction time O(dlV(P)1).

4.1.4 Partitions

To find an overall solution to the hole problem, we will repeatedly split a polygon

in half, solve each piece recursively, and then join the pieces back together. Specifi-

cally, we want to find a partition consisting of two partition polygons together with

respective boundary mappings such that: the partition polygons exactly cover the

original polygon; the partition polygons intersect, and only on their boundaries; each

partition function maps the partition polygon boundaries into the same dimensional

space as the original function; the original boundary mapping of the polygon bound-

ary is preserved by the partition functions; the intersection of the partition polygons

map to the same place under both partition functions; and the partition functions

are valid.
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Definition 4.1.4. (Valid Partition) Given polygon P and valid boundary mapping

f : aP -4 Rd, define (P1, P2 , fi, f2) to be a valid -partition of (P, f) if the following

properties hold:

(1) P1 , P2 polygons with P =P1 U P2 ; (2) P1 n P2 = aPi n aP2 = L 7  0;

(3) fi : aP1 4 Rd, f 2 : P2 -+Rd; (4) f,(p) p E P n 9P,

f2 (p) otherwise;

(5) fi(p) = f2(p) for p E L; (6) fi, f2 valid.

4.2 Algorithm

Theorem 4.2.1. Given polygon P and boundary mapping f : (P - R' d > 2

nonstraight at finitely many boundary points, an isometric mapping g : P -+ Rd

with g(aP) = f(aP) exists if and only if f is valid. A solution can be computed in

polynomial time.

The theorem implies that the necessary condition in Lemma 4.1.2 is also sufficient.

Our approach is to iteratively divide P into valid partitions and combine them back

together. We partition non-triangular polygons into smaller ones differently depend-

ing on which of two properties (P, f) satisfies. First we show that (P, f) satisfies at

least one of these properties.

4.2.1 Existence

Lemma 4.2.1. For every polygon P with |V(P)| > 3 and valid boundary mapping

f : P -4 R , either (a) there exist two nonadjacent vertices {u, v} critical under f

and visible from each other, or (b) there exists a vertex v C V(P) adjacent to two

vertices {u, w} contractive under f, or (c) both exist.

Proof. Suppose for contradiction that there exists some (P f) such that no two non-

adjacent vertices critical under f are visible from each other and no vertex is adjacent
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to two vertices contractive under f. Consider any vertex v which, by the contrapos-

itive of the latter condition, will be adjacent to two vertices {u, w} critical under f.
Since JV(P)J > 3, u and v are nonadjacent and cannot be visible from each other,

so there must be at least one other distinct vertex x interior to Auvw visible from

vertex v. But since x is nonexpansive with {u, v, w} under f, {x, u, v, w} must be

critical under f, a contradiction.

4.2.2 Constructing Partitions

Lemma 4.2.2. Consider polygon P with valid boundary mapping f : OP -+ Rd con-

taining nonadjacent vertices {u, v} critical under f with u visible from v. Construct

polygon P from the vertices of P from u to v, and P2 from the vertices of P from v

to u. Construct boundary mapping functions f1 : OP1 -+ R , f2 : OP2 4 Rd so that

fi(x) = f (x) for x E V(P), f2(x) = f (x) for x E V(P2), with fi, f2 mapping edges

of P1, P2 to congruent line segments. Then (P, P2, fl, f2) is a valid partition.

Proof. Because P and P2 are constructed by splitting P along line segment L C P

from u to v, P = P1 UP2 and L = PinP2 = OP1 mOP2 , satisfying properties (1) and (2)

of a valid partition. Property (3) is satisfied by definition. Property (4) holds because

f is valid, {u, v} is critical, and points in L are nonexpansive with points in OP1 and

OP2 by Lemma 4.1.1(a). Property (5) holds by construction. Lastly, Property (6)

holds because fi, f2 satisfy the conditions in Lemma 4.1.3 by construction. 0

Lemma 4.2.3. Consider polygon P with valid boundary mapping f : OP 4 Rd and

vertex v c V(P), contractive under f with every visible nonadjacent vertex, adjacent

to two vertices {u, w} contractive under f. Let (p, q, x) be a split point/image/end

triple of (P, f, v). Construct polygon P1 from p and the vertices of P from v to x, and

P2 from p and the vertices of P from x to v. Construct boundary mapping functions

fi : aPi - Rd, f2 : OP2 - Rd so that fi(x) = f(x) for x C V(P) \ p, f2 (x) = f(x)

for x G V(P2) \p, fi(p) = f2(p) = q, with f1, f2 mapping edges of P1, P2 to congruent

line segments. Then (P1, P2 , fl, f2) is a valid partition.
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Proof. Because P1 and P2 are constructed by splitting P along two line segments fully

contained in P, P = P1 U P2 and Pin P2 = aPi n OP2 , satisfying properties (1) and (2)

of a valid partition. Property (3) is satisfied by definition. Property (4) holds because

(P, f) is valid, V(P) and V(P2) are nonexpansive, with adjacent vertices critical

under f by definition of a split point/image, and points in the new line segments are

nonexpansive with points in OP1 and aP2 by Lemma 4.1.1(a). Property (5) holds

by construction. Lastly, Property (6) holds because fi, f2 satisfy the conditions in

Lemma 4.1.3 by construction. l

4.2.3 Triangles

Next, we establish the base case for our induction. Specifically a triangle with a valid

boundary mapping of its boundary has a unique isometric mapping of its interior

consistent with the provided boundary condition.

Lemma 4.2.4. Given polygon P with |V(P)| = 3 and valid boundary mapping f

OP -+ Rd, there exists a unique isometric mapping g : P -+ Rd such that g(B) =

f(B).

Proof. Because f is valid, the vertices of P are critical under f. OP and f(aP)

are congruent triangles, so their convex hulls are isometric. Specifically, if P with

vertices {u, v, w} is parameterized by P = {p(a, b) = a(v - u) + b(w - u) + u I a, b E

[0, 1], a + b < 1}, then the affine map g: P - Rd defined by

g(p(a, b) E P) = a[f (v) - f (u)] + b[f (w) - f (u)] + f (u)

is a unique isometry for g(B) = f(B). LI

4.2.4 Combining Partitions

Lastly we show that we can combine isometric mappings of valid partitions into larger

isometric mappings.

Lemma 4.2.5. Consider polygon P with valid boundary mapping f : OP -+ Rd, with

valid partition (P1 , P2, fl, f2). Given isometric mappings g1 : P1 -+ Rd, g 2 : P2 -4 Rd
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with g1(OP1) = f 1 (aP1), g2 (aP2 ) = f2(aP2), the mapping g : P -+ R d defined below is

also isometric, with g(aP) = f(aP): { 1(p) p EP1,
g(p E P) =

92(p) otherwise.

Proof. First, g(OP) = f(&P) because the partition is valid. Consider the shortest

path K between points p, q e P composed from a finite set of line segments. Suppose

for contradiction that g(K) is not the same length as K. Every point in K either lies

in P1, P2, or both by property (1) of a valid partition. Split K into a connected set

of line segments, each segment fully contained in either P or P2 with endpoints in

P n P2. Because gi and 92 are isometric, these line segments remain the same length

under g. Further, the endpoints of adjacent segments map to the same place under

gi and 92 by definition of a valid partition. The total length of g(K) is the sum of

the lengths of the intervals, the same length as K, a contradiction. E

Now we are ready to prove the theorem.

Proof. Lemma 4.1.2 implies that f is valid if g exists. We show g exists for valid

f by construction. Partition (P, f) with JV(P)J > 3 as follows. If (P, f) contains

two nonadjacent vertices {u, v} critical under f and visible from each other, divide

using Routine 1: partition using the construction in Lemma 4.2.2. Otherwise divide

using Routine 2: partition using the construction in Lemma 4.2.3, applying Routine

1 to each partitioned polygon immediately after. Note that both polygons generated

by the construction from Lemma 4.2.3 are guaranteed to contain two nonadjacent

vertices critical under f and visible from each other, namely {u, p} and {w, p}, so

each can be divided using Routine 1. Recursively fill each partitioned polygon with

an isometric mapping of their interior and combine them into a mapping g : P -+ Rd

using the construction in Lemma 4.2.5. Since the partitions are valid, g is isometric

with g(DP) = f(&P). Construct isometries for triangular polygons, the base case of

the recursion, according to Lemma 4.2.4.
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To show the recursion terminates, consider state i where P is partitioned into a

set of ni polygons Pi = {P1, ... ,P}. Define potential i = E (V(P)I - 3)

with (o = IV(P) - 3. Partitioning a polygon using Routine 1 yields state i + 1 with

i+1 = (Di - 1: Lemma 4.2.2 adds two vertices, the number of polygons increases by

one, and 2-3 = -1. Partitioning a polygon using Routine 2 also yields Di+1 = i-1:

Lemma 4.2.3 adds four vertices, Lemma 4.2.2 adds two vertices with each application,

the number of polygons increases by three, and 4 + 2 x 2 - 3 x 3 = -1. Lemma 4.2.1

ensures that one of the routines can always be applied to any non-triangular polygon.

When 4i = 0, all partitioned polygons are triangles and no polygon can be partitioned

further. The iteration terminates after 4o calls to either routine.

Let n be the number of vertices IV(P) in the input polygon. At the start of the

algorithm, all critical vertex pairs can be identified naively in O(dn2) time. Appli-

cation of either routine requires at most O(dn) time, and both routines can update

and maintain new critical vertex pairs in partition polygons at no additional cost.

Each routine is called no more than 0(n) times. Only a linear number of triangles

are produced and the construction of each gi takes constant time. The running time

of the entire construction is thus 0(dn2), which is polynomial. E

4.2.5 Edge Insetting

The algorithm described above terminates in quadratic time because at each step,

the hole is split either along a critical path or by insetting a single crease from a

boundary vertex. Of course not all isometries satisfying a boundary condition can

be generated using such a procedure. Figure 4-6 shows a few examples of some

isometries for which no folded boundary point has only a single crease adjacent to it,

so the algorithm described would not be able to find these solutions.

Insetting a vertex v to a split point p has the property that p is critical with vertex

v, both vertices u and w adjacent to v, and some fourth vertex x visible from p; see

Figure 4-7. Thus, the triangles Avpw and Af(v)f(p)f(w) are congruent. Instead of

insetting v all the way to point p, we can instead choose to inset v to some point q on

the interior of Avpw, with f(q) mapping to the analogous point in Lf (v)f (p)f (w).
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Figure 4-6: Not all isometries are accessible with vertex insetting. Here are two

simple crease patterns that cannot be generating using vertex insetting. The first is

inaccessible because no folded point on the boundary has only a single crease adjacent

to it. While the second example has a single crease adjacent to each folded point on

the boundary, none are inset all the way to a split point with another boundary point.
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Figure 4-7: Insetting fromn a~n edge to a non-split point.

In fact. point q and f'(q) simnplyI define a new inset direction for vertex v. Insetting r

along line vq will eventually becomne criticcal withi somne third vertex r' resulting in a

new split point p', critical withi v. wl, and .r' but riot critical withi u.

Of course we need not inset all the way to p'. We mnay instead choose to inset

in the direction of rq and f(c)f(q) by any distance s tip to distance 1cp'l. This

Chioice of 1). q, and s defines a three-dimiensional space of solutions. Chioosing a

point in tIs solution space togethier withi the points 'r and u, define thec set of all

possible triangles that miay be adjacent to edge uum in any isomietr-y. Chioosing suchi

a point and partitioning the boundarly into thei triangle A'rpw and thec remnainder,

we call this process cedge inscttNg,~. Edge insetting breaks up the original polygon

into two nonlexpansive boundaries thiat formn a valid partition. We (-an thien repeat

Hie procedure until the entire hiole is filled. Given a, target isomietry satisfying thie

boundary condition. we can simiply paint thle triangles fromn the boundar-y inward

using edge insetting. This level of flexibility yields a ver~y permnissive procedure to

explore satisfying isomectries, and thec following universality result.

T heorem 4.2.2. Giuen a paper and a nonexpansI'iie folding Qf its boundary, evecry

115isomtry of/ the paper sattsfyrnq the boundary conditilon cant be constructed by edge

'InS ct ting.
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Figure 4-8: A three-dimensional abstract tessellation formed by tiling five different
square units, each corner in either a binary low or high state. Units were designed
using this algorithm having common boundaries, connected to form single sheet tes-
sellations.

Of course in general, a sequence of edge insetting procedures does not have to

terminate. Each time we use the edge inset procedure, we will not have reduced

the complexity of the boundary; indeed, the number of boundary vertices typically

increases by one. However not all isometries satisfying a folding of the boundary have

finite complexity., so a procedure that has the power to construct such isometries

cannot hope to complete in finite time.

4.3 Implementations

Much of the intuition for this algorithm was developed while working on the design

of various three-dimensional tessellations, specifically while working on Maze Folding

115] and a private commission designing an origami chandelier for Moksa, a restaurant

in Cambridge, MA (see Figure 4-8). A version of this algorithm was implemented for

flat folds (d = 2) in 2010 using MATLAB (see Figure 4-9).

In 2015 we wrote a program to implement the full algorithm for isometries in three

dimensions (d = 3). The programi was written in coffeescript and can be found at
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Figure 4-9: Various solutions for the samne input pOl~ygon and boundar~y mapping
found by our MIATLAB implementation for d = 2.

littp:,, jasonku. script s. mit. edu, /hole. The input can be specified as anl OBJ1 file and

the user can step through the solution space, making decisions at each step of the

algorithmn. The polynomial time algoithmn can be accessed by pressing spacebar to

find a single solution, but both vertex insetting and edge insetting (,an be accessed

via, the interactive controls. Figure 4-10 shows a screenshot of the implementation.

4.4 Remarks

We have proposed aln algorithmn for finding isometric mnappings consistent with pre-

scribed boundary mnappings thart run1s ill polynomial timie. This algorithin was Ill-

spired by the universal molecule constructionl; instead of insetting anl input polygon

perimeter at a constant, rate from all edges at, once. our algorithmn insets each vertex

serially as far as possible. Our construction cannot, find all possible isometric solu-

tions. though the algorithmn provides a, rich family of solutions given choice of benid

line and linage wvith each application of Routine 2: two choices when d = 2 and ani

109



-77

p 4

Figure 4-10: A screenshot of the hole filling implementation in action. The top left

image shows the input flat paper with a nonexpansive boundary folding in three

dimensions. The remaining figures show three solutions found by the algorithm using

a random search through the configuration space. showing the crease pattern as well

as the isometry satisfying the boundary condition.
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infinite set of choices for d > 2. This algorithm can be generalized by not insetting

vertices all the way to split points, and by solving vertices locally with more than

one crease at a vertex. We conjecture that adding such flexibility would allow con-

struction of the entire space of isometric solutions following a similar procedure to

our construction.

Recall that the proposed algorithm does not address self intersection and cannot

guarantee the existence of a valid layer ordering for the isometries found; however,

because the space of solutions is large for a generic input, one might be able to

construct non-self-intersecting solutions by directing the algorithm's decisions ap-

propriately through the solution space. Additionally, the proposed algorithm only

addresses instances for f folded at finitely many points. It is conceivable that a

similar algorithm could be used to design curved foldings. We leave these as open

problems.

4.5 Folded Quadrilateral Boundaries

In this section, we analyze single crease patterns that can fold to multiple prescribed

folded boundaries and flat-foldable states. We restrict our study to folding two di-

mensional paper into two and three dimensions.

4.5.1 Flat Foldability

Theorem 4.5.1. Given a four cornered paper, the exists a single vertex crease pattern

folding through each corner of the paper that folds flat.

Proof. A single degree-four vertex in a flat-foldable crease pattern must obey Kawasaki's

theorem, that the sum of opposite angles sum to 7r. From this condition, one can

derive a condition on possible positions (x, y) of the single vertex. We can parameter-

ize any simple quadrilateral with cyclically ordered points a = (-1, 0), b = (xi, yi),

c = (1, 0), and d = (X 2, Y2), where y, is positive and Y2 is negative, and the line from

a to c is a visible diagonal. The condition on the location of a flat-foldable vertex is
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then given by the following cubic equation:

x(yi + y 2)(x
2 + y 2 - 1) - y(X1 + X2) (x2 + y 2 + 1) +

(4.1)
(X1y2 + X2y1 )(y2 _ 2 + 1) + 2xy(1 + xIX2 -y1y2) = 0-

The curve defined by this equation passes through each corner of the paper, as can

be readily verified. However, we must prove that the curve passes through the interior

of the paper. It suffices to show that the tangent to the curve at one of the vertices

passes between its two adjacent edges. Taking partial derivatives of Equation 4.1, one

can show the tangent to the curve at Pa has the same direction the following vector:

VT ( (X1 + 1)(X2 + 1) -1y2, y1(X2 + 1)+ y2(X1 + 1 ) - (4.2)

The edges adjacent to Pa have directions vb ( i + 1, Y2) and Vd = (X2 + 1, Y2)

respectively. Taking magnitude of the cross products in the 2 direction out of the

plane yields the following relations:

(VT X Vb) - = + Xi)2 + Y2 )Y2; (4.3)

(VT X Vd) Z=-(+X2) +y 2 ly1. (4.4)

Because Y2 is always negative, the first condition is always positive, so the top

edge is a left turn from the tangent line. Because yi is always positive, the second

condition is always negative, so the bottom edge is a right turn from the tangent line,

so local to Pa, the curve must intersect the quadrilateral, completing the proof. l

In the special case of a kite quadrilateral where each edge is adjacent to an edge of

the same length, Equation 4.1 degenerates into a line and circle. This can be shown

by imposing the condition x, = X2 and yi = -Y2. The result is as follows:

Y I+ 2+y Y22 1 + X2+y2 2

y - +y 2 +1--(1+ + 1 )2) =0. (4.5)2x, 2x,

Even more special for a squa're when X1 = X2 = 0 and yi = -Y2 = 1, the solution

space is simply the horizontal and vertical lines:

xy = 0. (4.6)
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4.5.2 Boundary Condition and Flat Foldability

Now we turn to satisfying boundary conditions and flat foldability. The previous

section proved that there always exists isometries that satisfy a set of boundary

conditions. For quadrilaterals, the solution space of single vertex crease patterns

satisfying a folding of the boundary results in an ellipse on the interior of the paper.

The equation of this ellipse in general is quite complicated. However, in the case of

kite quadrilaterals, the ellipse is axis aligned with the diagonals, and for squares the

ellipse is center is fixed, and has a particularly simple form. Let the corners of the

square be (-1, 0), (0, 1), (1, 0) and (0, -1). We parameterize the folding of the square

boundary by the distances between the two diagonals, distance 2 1 - a2 along the x

axis and distance 2v/1 - b2 along the y axis; this parameterization will simplify the

equations later on. Using this parameterization, the equation of the ellipse of crease

pattern vertices satisfying the boundary condition (a, b) is as follows:

+ = a2 + b2. (4.7)
a2(1 - b2) b2 (1 - a2 )

Figure 4-11 shows ellipses corresponding to two different boundary conditions.

Since the ellipse is centered at the origin, it must cross the x and y axes four times

except in the degenerate cases where the ellipse becomes a line or a point, specifically

when a or b equal 1 or 0. When both a and b equal 0, the square is flat in the folding.

When a or b equals 0, the diagonal is critical and the isometry is unique. When a or

b equals 1, a line segment of solutions exist. And when both a and b equal 1, the only

solution is the center of the paper. Thus we arrive at the following:

Theorem 4.5.2. Given a square of paper and a folding of its boundary folded only

at the corners so that opposite corners are contractive under the folding and not the

same point, there are exactly four single-vertex flat-foldable crease patterns satisfying

the boundary condition.

If we choose a crease pattern by fixing (x, y), Equation 4.7 defines a quartic func-

tion on a and b defining the one degree of freedom mechanism of the crease pattern.
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Figure 4-11: Ellipses corresponding to the space of possible single vertex locations

corresponding to crease patterns that fold to the corresponding boundaries.
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Figure 4-12 shows a plot of this state space for one such crease pattern. The bottom

right corner corresponds to the flat state. The bottom curve

4.5.3 Two Boundary Conditions

Now we wish to examine crease patterns that can fold to two different boundary

conditions at the same time. For simplicity, we examine squares, using the same

parameterization as before.

Single Vertex Crease Patterns

Theorem 4.5.3. Given a square of paper and two foldings (a1, b1 ), (a2, b2) of its

boundary folded only at the corners, then if the intervals [a1, b1] and [a2, b2] overlap,

then there exists a single vertex crease pattern that folds exactly to both boundaries.

Proof. The proof is by construction. The approach will be to calculate the set of

possible crease patterns with one interior vertex that folds to each boundary, and

show that the two sets have crease patterns in common when the intervals [ai, bl] and

[a 2, b2] overlap.

We have already shown that the solution space for each boundary condition is an

ellipse given by Equation 4.7. Given two such ellipses parameterized by (ai, bi) and

(a2, b2), they can be made to intersect as long as the smaller major radius is larger

than the minor radius of the other since the roles of a and b are interchangeable under

boundary mappings. Specifically, the following must hold:

((I - a 2) ((1 - b 2) -(1 - b 2) (a 2 + b 2)) -(1 -a 2) ((1 - b 2) -(1 - b 2) (a 2 + b 2)))

((I - b 2) ((1 - a 2) - a 2-) (a 2 + b 2)) -(1 - b 2) ((1 - a 2) - ( 2-a) (a 2 + b 2))) < 0.

(4.8)

A simple yet tedious case analysis shows that this equation holds when intervals

[a,, b1] and [a2, b 2] overlap. The converse statement is not true as there are points

when the intervals do not overlap such that the inequality is still true. Figure 4-13

depicts the relevant regions of the configuration space over a,, bi, a2, b2. E
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Figure 4-12: The state space of a single vertex crease pattern, plotting a vs. b, and
two folded states for a single value of a. The orange state has a high value of b so the
top and bottom points are close together. The blue state has a low value of b so the
bottom points are far apart.
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Figure 4-13: Plots showing regions where single vertex crease patterns do not exist.

For a fixed (ai, bi), the plot at the corresponding coordinate ranges over possible

values of (a 2 , b2 ). The orange region represents the values of (a 2 , b2 ) such that the

intervals [a1 , bi] and [a2 , b 2] overlap, as provided by the claim. The blue region indi-

cates the values of (a 2 , b 2 ) that prescribe an ellipse which completely surrounds the

ellipse prescribed by (a1, bi) or lies completely inside the ellipse prescribed by (a., b1 ).
The white region indicates values not covered by the rule of thumb that actually do

admit a solution.

117

J



Two-Vertex Crease Patterns

Theorem 4.5.4. Given any two nonexpansive boundary foldings of a square paper

folding at its vertices, there exists a one or two-vertex crease pattern that can fold

rigidly to meet both boundary conditions.

Proof. The proof is by construction. The approach will be to calculate a subset of

possible crease patterns with two interior vertices that folds to each boundary, and

show that the two sets have crease patterns in common.

We will parameterize a subset of two-vertex crease patterns in the special case

where one vertex resides on a diagonal. We will let s be the distance between this

vertex p and point (-1, 0). Solving the distance equations again yields the equation

of an ellipse, this time of the following form:

(-X o ) 2 + y2
1 = 0. (4.9)

r2 r2

However, this time there are two possible ellipses for each choice of boundary

condition: one when the crease from (-1, 0) to p is a valley fold, and one when the

crease is a mountain fold. The parameters of the ellipse in each case are given by:

sb 2(1 + b2 )
2(a2  b2)((1-s) + b 2) 2sb/1 - a2 a2+ b2 '

rx b I - a2  sb2 (1 - b2 )
a2 + b 2  2(a2 + b2 )((I _s) + b2 ) 2sb 1 - a2 2b2' (4.11)

r =a 1 - 2  (4.12)
a2 + b 2  (a2(1-s)+b2) b,1 - a2 Va2+ b2

When s = 0, these parameters reduce Equation 4.9 to Equation 4.7. Figure 4-14

shows a plot of this state space for one such crease pattern. The bottom right corner

corresponds to the flat state. The bottom curve

The equations continue to define an ellipse as long as ry does not become negative.

If the ellipse corresponding to (ai, bi) and (a2, b2) do not intersect at s = 0, then that

means both rx and ry are larger for one and not the other because xO is zero. Without

loss of generality, assume a, > a2 and b1 > b2. ry is zero precisely when:
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Figure 4-14: The state space of a two vertex crease pattern,
folded states for a single value of a.

plotting a vs. b, and four

1 -a 2

sr=0) = 1 b .2 (4.13)Y O a2 + b2

Since ry is symunetric about 1 for any (a, b), this means ry for (a, bi) and ry for

(a2 , b2) must be equal form some s. If they are equal, their corresponding ellipses

must intersect, which corresponds to a two vertex solution. Figure 4-15 shows how

xo, r, and r, vary with respect to s. Figure 4-16 shows a crease pattern that folds

to two prescribed boundary conditions.
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Figure 4-15: Graphs of how To, r,, and ry vary
(blue) and (a2, b 2 ) = (0.95,0.95) (orange).

with respect to s for (a,, bi) = (0.3, 0.3)
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Figure 4-16: A crease pattern that satisfies two boundary conditions for (ai, bi) =
(0.3, 0.3) (blue) and (a 2 , b 2 ) = (0.95. 0.95) (orange), along with the foldings that
satisfy the constraints.
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Chapter 5

Conclusion

This thesis has sought to further the dream of a transformable world. Folding is an

important mechanism that must be harnessed to make the modular, reusable, trans-

formable structures and devices of the future. I have presented fundamental analysis

into key problems in computing foldability, both for box-pleated crease patterns and

simple folding motions in many models, motivating the design of surfaces with more

structure and coherence. I have shown how one can compensate for material volume

when building transformable surfaces from real materials. And I have presented a

very general method for designing folded surfaces from one or multiple boundary con-

straints. While there is still much work to be done in order to achieve the vision of

real transformers, I hope that the work in this thesis can be expanded upon so that we

can make many more beautiful and efficient, complex and transformable structures

far into the future.
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