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Abstract

The development of chemical reaction models aids system design and optimization,
along with fundamental understanding, in areas including combustion, catalysis, elec-
trochemistry, and biology. A systematic approach to building reaction network models
uses available data not only to estimate unknown parameters, but to also learn the
model structure. Bayesian inference provides a natural approach for this data-driven
construction of models.

Traditional Bayesian model inference methodology is based on evaluating a mul-
tidimensional integral for each model. This approach is often infeasible for reaction
network inference, as the number of plausible models can be very large. An alternative
approach based on model-space sampling can enable large-scale network inference, but
its efficient implementation presents many challenges. In this thesis, we present new
computational methods that make large-scale nonlinear network inference tractable.

Firstly, we exploit the network-based interactions of species to design improved
“between-model” proposals for Markov chain Monte Carlo (MCMC). We then intro-
duce a sensitivity-based determination of move types which, when combined with
the network-aware proposals, yields further sampling efficiency. These algorithms are
tested on example problems with up to 1000 plausible models. We find that our new
algorithms yield significant gains in sampling performance, with almost two orders of
magnitude reduction in the variance of posterior estimates.

We also show that by casting network inference as a fixed-dimensional problem
with point-mass priors, we can adapt existing adaptive MCMC methods for network
inference. We apply this novel framework to the inference of reaction models for
catalytic reforming of methane from a set of ≈ 32000 possible models and real exper-
imental data. We find that the use of adaptive MCMC makes large-scale inference of
reaction networks feasible without the often extensive manual tuning that is required
with conventional approaches.

Finally, we present an approximation-based method that allows sampling over
very large model spaces whose exploration remains prohibitively expensive with ex-
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act sampling methods. We run an MCMC algorithm over model indicators and for
each visited model approximate the model evidence via Laplace’s method. Limited
and sparse available data tend to produce multi-modal posteriors over the model
indicators. To perform inference in this setting, we develop a population-based ap-
proximate model inference MCMC algorithm. Numerical tests on problems with
around 109 models demonstrate the superiority of our population-based algorithm
over single-chain MCMC approaches.

Thesis Supervisor: Youssef M. Marzouk
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Detailed chemical reaction networks are a critical component of simulation tools in

a wide range of applications, including combustion, catalysis, electrochemistry, and

biology. In addition to being used as predictive tools, network models are also key

to developing an improved understanding of the complex process under study. The

development of reaction network models typically entails three tasks: selection of

participating species, identification of species interactions (refered to as reactions)

and the calibration of unknown parameter values. Combustion chemistry has a rich

history of building reaction models. Large reaction models with sometimes thou-

sands of reactions are well known [28, 67]. In other areas such as systems biology,

catalysis, and electrochemistry, the construction of network models can frequently

be extremely challenging due to the limited understanding of the operating reaction

pathways. For instance, there exist a number of competing hypotheses about H2 and

CO oxidation mechanisms for a solid-oxide fuel cell [62]. Reconstruction of biolog-

ical networks involved in cell signalling, gene regulation and metabolism is one of

the major challenges in systems biology due to the specificity of species interactions

17



[2, 17, 44, 65]. A standard approach to building models in such a case is to postulate

reaction networks and to compare them based on their ability to reproduce indirect

system-level experimental data. Data-driven approaches to network learning involve

defining a metric of fit, e.g., penalized least-squares, cross-validation, model evidence,

etc. and selecting models that optimize this metric. As such, the development of

models involves not only the identification of the right model structure, but also the

estimation of underlying parameter values given available data.

Bayesian model inference provides a rigorous statistical framework for fusing data

with prior knowledge to yield a full description of model and parameter uncertain-

ties [13, 46, 111]. The application of Bayesian model inference to reaction networks,

however, presents a significant computational challenge. Model discrimination in

Bayesian analysis is based on computing model probabilities conditioned on available

data, i.e., posterior model probabilities. Formally, the posterior model probability of

a model 𝑀𝑛 is given by

𝑝(𝑀𝑛|𝒟) =
𝑝(𝑀𝑛)𝑝(𝒟|𝑀𝑛)∑︀
𝑛 𝑝(𝑀𝑛)𝑝(𝒟|𝑀𝑛)

,

where

𝑝(𝒟|𝑀𝑛) =

∫︁
· · ·
∫︁
𝑝(𝒟|𝑘𝑛,𝑀𝑛)𝑝(𝑘𝑛|𝑀𝑛)𝑑𝑘𝑛

is known as the model evidence, 𝑘𝑛 is the parameter vector of model 𝑀𝑛, and 𝒟

refers to the available data. An approach to Bayesian model inference is to assume

that the relationship between species is described by linear or discrete functionals and

model parameters take conjugate priors, thereby making the calculation of individ-

ual posterior model probabilities analytically tractable. It is, however, often widely

believed that species interactions are more appropriately defined by the law of mass

action. The law of mass action gives the rate of a chemical reaction (say 𝑋+𝑌 → 𝑍)

as the product of a reaction-specific rate constant 𝑘 with reactant concentrations [𝑋]

18



and [𝑌 ]:

Rate = −𝑘[𝑋][𝑌 ]. (1.1)

Under quasi-steady-state assumptions, the law of mass action produces reaction rate

expression for enzymatic reactions that are known as Michaelis-Menten functionals

[91]. The reaction rate for an enzyme 𝐸 binding to a substrate 𝑆 to produce product

𝑃 (𝐸 + 𝑆 → 𝐸 + 𝑃 ) by Michaelis Menten kinetics is given by

Rate = 𝑘𝑐𝑎𝑡[𝐸]0
[𝑆]

𝑘𝑀 + [𝑆]
, (1.2)

where 𝑘𝑐𝑎𝑡 denotes the rate constant, [𝐸]0 is the enzyme concentration, [𝑆] the sub-

strate concentration, and 𝑘𝑀 the Michaelis constant. Using the law of mass ac-

tion to define reaction rate produces a system of differential equations such that the

parameter-to-observable map (forward model) is typically nonlinear. These equations

can be further embedded into differential equation models that describe convective

and diffusive transport, surface interactions, and other physical phenomena that af-

fect experimental observations. Rigorous computation of posterior model probabilities

then requires evaluation of a high-dimensional integral for each model. A number of

sampling-based methods exist in the literature for this purpose [26, 47, 94], but they

are computationally taxing. When the number of competing models becomes large,

the above methods actually become computationally infeasible.

Reaction network inference is particularly prone to this difficulty, since the number

of plausible models can grow exponentially with the number of proposed reactions. A

systematic approach to network inference requires appraising a combinatorially large

number of models: instead of a few model hypotheses, one might start with a list of

proposed reactions, for example, and form a collection of plausible models by consid-

ering all valid combinations of the proposed reactions. Alternatives such as Laplace’s

method and Bayesian information criterion have been suggested [21, 82, 109], but they

involve approximations of the posterior distribution. Across-model sampling offers a

19



solution in cases where the number of models is large [24, 57, 73]. These methods

work by making the sampler jump between models to explore the joint posterior dis-

tribution over models and parameters. Model probabilities are estimated from the

number of times the sampler visits each model. The prohibitively high cost of model

comparisons based on the computation of evidence for each model is avoided as the

sampler visits each model in proportion to its posterior probability. Efficient across-

model sampling, however, is challenging and require a delicate design of proposals for

between-model moves. Many practical applications of across-model sampling meth-

ods have relied on pilot posterior explorative runs to get a rough idea of the posterior

distribution, although a few automated methods do exist in literature [56, 110]. The

effective use of across-model sampling methods continues to be a challenge, especially

for problems where the parameter-to-observable map is nonlinear.

1.2 Background on reaction network inference

The general problem of network inference has been tackled in the past with various

modeling choices and inferential approaches. The modeling of species interactions has

spanned from simple Boolean networks to detailed physics-based differential equations

and stochastic models. The Boolean network approach relies on simple ON/OFF

switches and standard logic interactions to describe species interactions. Additive

linear or generalized linear models take an intermediate approach in terms of com-

plexity and reliability. The differential equations based network interactions are at

the other end of the complexity spectrum, but being rooted in mechanistic models

hold the promise of better understanding and improved predictions. From an algo-

rithmic standpoint, a large number of inference methods, both from a Bayesian and

a non-Bayesian standpoint, have been proposed. We review here a few network in-

ference approaches and refer the readers to some detailed reviews for the complete

story [44, 96, 98].
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1.2.1 Non-Bayesian reaction network inference

Many non-Bayesian methods for network inference have been published in the chemi-

cal and biological engineering literature. Gardner et al. adopted an ODE formulation

and developed a technique known as Network Identification by Multiple Regression

(NIR) [43]. Their approach constructs a first-order model of regulatory interactions

and uses multiple linear regression to infer species interactions. Bansal et al. developed

an algorithm known as the Time Series Network Identification in which they assumed

a linear ODE model for species interactions and inferred the network topology by a

combination of interpolation and principal component analysis [10]. Bonneau et al.

use L1 shrinkage to identify transcriptional influences on genes based on the integra-

tion of genome annotation and expression data [18]. Margolin et al. have proposed

another technique called ARCANE that adopts an information-theoretic approach

in which they identify candidate interactions by estimating pairwise species mutual

information [84]. Nachman et al. utilize dynamic Bayesian network models and the

structural EM algorithm for network identification [92]. Another technique, correla-

tion metric construction, suggested by Arkin et al. is based on the calculation and

analysis of a time-lagged multivariate correlation function of a set of time-series of

chemical concentrations [7]. Burnham et al. propose a statistical technique relying

on t-statistics and 𝑅2 for the inference of chemical reaction networks governed by

ordinary differential equations [22].

1.2.2 Bayesian reaction network inference

The Bayesian approach to network inference has seen increasing applications in ar-

eas such as protein signalling modeling, gene regulation reconstruction, combustion

chemistry etc. The inference methods for signalling topologies and gene regula-

tion pathways have principally been developed with linear or discrete formulations

[40, 90, 107, 116]. Using Gaussian or multinomial likelihood functions and conjugate

priors with these formulations leads to model evidence being available in closed form.
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In spite of the cheap analytical evaluation of evidence, the exponential explosion of

the number of networks given species and their possible interactions precludes direct

enumeration of model evidence. Thus, sampling based approaches have been devel-

oped for large-scale network inference in such contexts [37, 39]. At the same time,

ODE-based species interaction models (mass-action kinetics) are also being incorpo-

rated into inference frameworks. The use of ODE-based forward models oftentimes

results in nonlinear parameter-observable dependency—network inference then has

to be based on the computation of model evidence numerically. Xu et al. applied

Bayesian model inference with nonlinear ODEs for the elucidation of ERK signalling

pathway [118]. Braman et al. used Bayesian methodology for the comparison of

syngas chemistry models [19]. However, the methods used above for numerical com-

putation of evidence are limited to applications with a small number of hand-crafted

models. Large-scale network inference with nonlinear forward models has seen very

limited work. Oates et al. applied Bayesian model selection for the comparison of

systematically generated models derived from ODE-based species interactions [95].

They used reversible-jump Markov chain Monte Carlo algorithm, a general across-

model sampling method, for the simultaneous sampling of network topologies and

their underlying parameters. As discussed in 1.1, the use of vanilla across-model

sampling methods are generally known to perform poorly. There is a need for the

development of efficient large-scale network inference methods that would allow a

systematic comparison of exponentially large number of networks, but one that in-

corporates nonlinear forward models emerging from ODE-based species interaction

formulations.

1.3 Thesis contributions

In this thesis, we present methods for efficient large-scale Bayesian inference of non-

linear chemical reaction networks. We develop algorithms that exploit structural
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properties of chemical reaction networks to improve exploration of posteriors over

a large number of reaction networks in comparison to existing methods. Further,

we develop a model-space sampling approach that makes approximations of the pa-

rameter posterior, and thereby allows sampling over very large model spaces whose

exploration remains intractable with exact sampling methods.

More specifically, we operate in the across-model sampling framework and make

four contributions:

1. Network inference with adaptive MCMC

The rate of a chemical reaction is given by the law of mass action and the

net species production rate a species is given by the species production rate

from all reactions [77]. The species production rates further feed into forward

models that describe convective and diffusive transport, surface interactions,

and other phenomena affecting experimental obsevations. Nevertheless, the

additive structure of the net species production rate means that reaction inclu-

sion/exclusion can be controlled by setting the rate constants to non-zero/zero

values. In spite of the overall nonlinear dependency of the observables on the

rate constants. This indirect control of network topology by assigning specific

values to the rate constants means that the plausible networks are statistically

nested. Nested models provide a natural between-model move construction.

Nested models can further allow the use of fixed-dimensional Markov chain

Monte Carlo (MCMC) algorithms. Adaptive MCMC in which the parameter

proposals adapt to posterior samples are known for fixed-dimensional MCMC

algorithms and improve sampling efficiency without manual tuning. We exploit

the nested structure of reaction network problems and develop an adaptive

MCMC algorithm for network inference. The developed algorithm is used to

learn reaction networks for steam and dry catalytic reforming of methane on

rhodium from a set of 15 proposed reactions and real experimental data.

2. Network-aware sampling
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Chemical reaction networks can quickly become very complex [28, 108]. The

network of species interactions, however, has a special structure hidden in it.

The production/destruction of a species is directly linked to the concentration

of other species it is participating in a reaction with. Therefore, the rate of

production/destruction of a species will necessarily be zero if those other species

are absent from the system. From a data-analytic perspective, the available data

cannot inform the presence of reactions with zero reaction-rate. Many species

in a reaction network such as catalysts or enzymes play a fundamental role

in the operation of reactions, but do not get consumed. Moreover, practically

feasible experiments yield data that is sparse—data is only linked to a few of the

species. Sparsity of data and presence of catalyst/enzymes can further render

some reactions ineffective in influencing the observables. Thus, the inclusion

of these reactions is also not informed by data. We develop a network-aware

across-modeling sampling algorithm that recognizes the effective networks being

inferred and exploits this knowledge to design efficient parameter proposals for

moves between models. This translates into superior sampling performance

and low-variance posterior estimates. The recognition of effective networks also

allows derandomization of some conditional expectations and thereby yields

further variance reduction.

3. Sensitivity-based network-aware sampling

Not all reactions in a network are equally important in influencing the observ-

ables. The identification of reactions that have a sharper impact on observables

can be critical in designing improved across-model samplers. We develop a local

sensitivity-based metric to identify key reactions and use this to develop better

between-model move proposals for the reversible jump MCMC algorithm. Com-

bining the sensitivity-based proposal construction along with network-aware

sampling produces a highly improved nonlinear network inference algorithm.

We apply the algorithm for the inference of network topology from a set of 1024
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systematically generated networks that were obtained from a subset of proposed

reactions for the activation of the extracellular signal-regulated kinase pathway

by epidermal growth factor [118].

4. Network inference with approximation

The network inference methods in Contributions 1, 2, and 3 are exact sampling

methods, i.e., they are guaranteed to converge to the correct posterior distri-

bution asymptotically as sampling proceeds. Exact inference methods over the

joint space of models and parameters are essential for consistency of poste-

rior estimates and their development is an important goal. However, for very

large model spaces, exact sampling may still be very expensive. We develop

an approximation-based network inference approach by using Laplace’s method

to approximate model evidences and using Markov chain Monte Carlo to ex-

plore the posterior distribution only over model indicators. Nonlinearity of the

forward model and limited available data results in the posterior distribution

over models being multimodal. To explore multimodal posterior distributions,

we extend the approximate posterior inference to a population-based network

inference algorithm. The developed algorithm is then used to infer signalling

networks from a space of 109 plausible networks.

This thesis is organized into 6 chapters. Following the introduction in Chapter 1,

Chapter 2 gives a detailed overview of the motivations for model inference, contrasts

different model inference approaches, highlights Bayesian model inference, and dis-

cusses existing numerical methods for Bayesian model inference. Chapters 3, 4, and 5

present the four main contributions of this thesis. We summarize and discuss future

work in Chapter 6.
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Chapter 2

Model inference: formulation and

numerical approaches

An integral component of scientific research is the construction of models for the

physical process under study. Models are created for two main reasons: they enable

an easy understanding of a complex process by breaking it down into more readily

interpretable modules, and models can be used for making predictions of unobserved

quantities. Development of reliable models is often very hard because one may only

get to observe a few noisy realizations of the physical process—referred to as data.

Utilizing the available data and any background information about the process, the

job of a model developer is to construct a consistent set of equations that relate the

model inputs and model parameters to the quantities of interest. Historically, models

have been built by empiricism and experimental investigation. More recently, first-

principles calculations have also been used to aid model development in disciplines

such as chemistry and biology. However, the development of faster computers and

the availability of high-quality data has now allowed the use of rigorous statistical

techniques in the model development phase. Given a set of plausible models and

some data, tools from statistical inference can be used for a systematic evaluation

of all models to identify the “best” set of models. In this chapter, we discuss the
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motivations for model inference, present a popular philosophy for effective learning

of models from data, outline common approaches for model inference, introduce the

Bayesian paradigm for model learning, and discuss some numerical techniques for

Bayesian model inference.

2.1 Model inference

Model inference can be defined informally as the assessment of models to ascertain

the degree to which each is supported by available data. A prerequisite for model

inference is the availability of (i) plausible models and (ii) relevant data to discriminate

among the models. Very often, we also have a great deal of background information

about the quality of competing models and the values of their underlying parameters.

This knowledge—termed as prior information—can be incorporated in the model

inference framework. It is important at this stage to distinguish model inference from

the common practice of model reduction in chemical kinetics [14, 97]. Model reduction

refers to a systematic reduction in the size of a large kinetic model so as to reproduce

model outputs within a specified tolerance. Such a procedure, however, assumes that

an accurate model (i.e., the full kinetic model) is already known and fixed. And,

crucially, it does not take experimental data into account during reduction.

A model of a physical process describes a specific collection of input-output re-

lationships. In particular, a model describes how some pre-specified quantities of

interest are related to input variables. As a result, a model may preclude the de-

scription of quantities for which it has not been specifically built. Figure 2-1 shows a

typical process model. This model—consisting of governing equations expressing con-

servation laws, reaction network models, and thermo-kinetic parameters—may relate

inputs such as concentration 𝐶𝑖𝑛, temperature 𝑇𝑖𝑛, pressure 𝑃 , and applied voltage

∆𝑉 to observables such as concentration 𝐶𝑜𝑢𝑡, ignition delay 𝜏𝑖𝑔𝑛, and current 𝐼.
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Inputs
C𝑖𝑛/T𝑖𝑛/P/ΔV

Process model
governing equations

reaction network model
parameters

Quantities
of interest
C𝑜𝑢𝑡/t𝑖𝑔𝑛/I

Figure 2-1: A process model

2.2 Goals of model inference

To be able to prescribe a set of rules that determine the best or the most likely

model, we need to precisely define the purpose of model inference. Model inference

is performed primarily for two purposes: interpretation and prediction. Frequently,

the models being compared during inference are physics-based. In such cases, the

selected model can be used to gain valuable insight into the operating mechanism.

This kind of insight is often used for experimental design. The other main objective

of model inference is to make predictions of the quantities of interest.

The selection of the best model based on available data and prior information

is essentially a statistical problem. As the amount of data grows, the precision of

inference improves and our confidence in the selected model grows. However, in most

practical situations, the amount of data required to strongly discriminate between

models is unavailable. This engenders significant uncertainty in the inferred results.

Thus it is imperative—for reliable inference and accurate quantification of prediction

uncertainties—that the model inference method provide means to quantify model

uncertainty.

In the next section, we discuss commonly used criteria for model inference and

highlight Occam’s razor, which is a powerful approach for model discrimination based

on the intuitive idea of balancing model fit with complexity.
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2.3 Approaches for model inference

Having presented a few motivations for model inference, we now proceed to discuss

three approaches for model choice. Since the data we would be using to infer the

best model will necessarily be noisy, it would be incorrect to try to fit exactly to all

available data. If we maximize the quality of fit to the available data, it is the most

complex model—model with the largest degrees of freedom—which typically would

best fit the data. As we discuss in the following paragraphs, such a strategy would

be sub-optimal since the objective is to select models that peform well for all data,

not just the observed data.

2.3.1 Model selection based on estimation of prediction error

Model inference is sometimes performed in a data rich situation. In such settings, the

available data can be used to compute an estimate of prediction error known as the

empirical prediction error [64]. To begin with, the available data is split into three

parts: a training set, a validation set, and a test set. The training set is used to fit the

models; the validation set is used to estimate the prediction error for model selection;

the test set is used for the assessment of the generalization error of the final chosen

model. In a slightly data deficient situation, test set can be used to select the model

as well as estimate the prediction error. In such cases, the final chosen model will

necessarily underestimate the prediction error [64].

2.3.2 Cross validation

Cross-validation is another method that is used often to estimate the prediction error.

A 𝐾-fold cross-validation procedure begins by splitting the available data into 𝐾 sets.

Then a model is trained using data from 𝐾 − 1 sets as the training data and the

prediction error computed on the 𝐾th set as the test set. This process is repeated

for all 𝐾 sets and then the average prediction error computed. By performing these
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operations for all 𝑀 competing models, one can select the most well supported model

or rank the competing models. Mathematically, we let 𝑠 : {1, ..., 𝑁}| → {1, ..., 𝐾} be

an indexing function that indicates the partition to which data point 𝑛 is allotted.

We denote by 𝑓−𝑠(𝑥) the fitted function, computed with the 𝑠𝑡ℎ part of the data

removed. Then the cross-validation estimate of the prediction error is

𝐶𝑉 =
1

𝑁

𝑁∑︁
𝑛=1

𝐿(𝑦𝑛, 𝑓
−𝑠(𝑛)(𝑥𝑛)) (2.1)

When 𝐾 = 𝑁 , the cross-validation method is referred to as leave-one-out cross vali-

dation [64].

2.3.3 Goodness-of-fit and complexity penalty

A well known observation pertaining to the fitting of model parameters to available

data is that the goodness-of-fit generally improves as the model complexity grows.

Though the mismatch between model predictions and available data decreases as the

model complexity increases, we would not expect our future predictions to be very

accurate. This is because by increasing model complexity we begin to fit to the noise

in the data. This problem is known as the problem of overfitting in statistics. Thus,

a common strategy is to adopt a model inference criterion such that the mismatch

between model predictions and available data is agreeable and at the same time model

complexity is limited. This two-fold objective is also described by the bias-variance

tradeoff [64]. As the complexity of the model grows, the variance of the inferred

parameters would be high, and as a result, the expected prediction error of the model

tends to be high. On the contrary, simpler models tend to have higher bias, and so

fit poorly to available data and have high prediction error (Figure 2-2).

The best models tend to be ones that balance bias with variance. Therefore,

a popular approach to model selection is one that rewards good agreement with

available data, but also penalizes model complexity. This guiding principle for the
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Figure 2-2: Bias-variance tradeoff curve

assessment of models, first suggested by William of Ockham, is encapsulated by the

Occam’s razor [82]. The Occam’s razor principle is suitable irrespective of whether

the objective model inference is interpretation or prediction. The explanation for

prediction is clear from the discussion from the last paragraph. Even in cases where

the goal of model inference is interpretation, it makes sense that we determine model

strength not just based on fit to available data. In this thesis, we work with methods

that balance bias with variance. In such cases, the key is to determine the penalty

term that would penalize model complexity appropriately.

2.4 Balancing goodness-of-fit with model complexity

The goal of this section is to discuss methods that balance the quality of fit to available

data with the complexity of the fitted model. The cross-validation (CV) method

presented in the last section is most suitable when the amount of available data is

plentiful [8, 64]; in a data-poor context, the cross-validation metric is noisy and its

results highly variable. A method that explicitly incorporates an Occam’s razor is

more useful for the data-deficient case one typically encounters in reaction network

inference.
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In statistics in general, there are two main viewpoints for the identification of

likely models and their underlying parameter values from data. The frequentist ap-

proach to learning treats the models and parameters as fixed unknown quantities that

are determined by techniques that aim to produce good estimation over all possible

data sets. The Bayesian approach, in contrast, regards the models and parameters as

random variables whose distributions conditioned on available data are determined

by the consistent application of the rules of probability theory. Model selection ap-

proaches in the frequentist setting, such as 𝐶𝑝-statistic, Akaike information criterion,

etc, impose an Occam’s razor by selecting models based on the following optimization

problem:

𝑀* = arg min
𝑀
||𝒟 −𝐺𝑀(𝑘𝑀)||+ 𝛼|𝑀 |,

where 𝑀* is the optimal model, 𝐺𝑀 is the prediction with model 𝑀 , 𝑘𝑀 are the

parameters of model 𝑀 , 𝒟 the observed data, ||𝒟 − 𝐺𝑀(𝑘𝑀)|| is the data misfit,

|𝑀 | is the model complexity, and 𝛼 is the penalty on model complexity. The problem

with the above optimization based approaches is that they tend to be ad hoc, due to

a lack of a clear guideline about the right value for the penalty 𝛼 [12].

2.5 Bayesian approach to model inference

Bayesian statistics provides a rigorous inference framework to assimilate noisy and

indirect data, a natural mechanism to incorporate prior knowledge from different

sources, and a full description of uncertainties in parameter values and model struc-

ture. It is based on Bayes’ rule of probability:

𝑝(𝑘|𝒟) =
𝑝(𝒟|𝑘)𝑝(𝑘)

𝑝(𝒟)
(2.2)
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Here, 𝑘 is the parameter being inferred, 𝑝(𝑘|𝒟) is the posterior probability den-

sity of 𝑘 conditioned on data 𝒟, 𝑝(𝒟|𝑘) is the likelihood of observing 𝒟 given the

parameter value, and 𝑝(𝑘) is the prior probability density of parameter 𝑘. 𝑝(𝒟),

commonly refered to as evidence or marginal likelihood, is the marginal distribution

of data. Sampling the posterior enables description of posterior uncertainty and the

estimation of posterior summaries such as the mean and standard deviation. Posterior

exploration by sampling is seldom directly feasible except for conjugate prior distri-

butions. For nonlinear forward models and/or non-conjugate prior distributions, one

has to rely on an indirect sampling approach, such as importance sampling or Markov

chain Monte Carlo [3, 51]. Application of Bayesian parameter inference to physical

models has received much recent interest [9, 74, 89, 113], with applications ranging

from geophysics [35, 55] and climate modeling [71] to reaction kinetics [53, 78, 99].

Applying Bayes’ rule to models 𝑀 , we get

𝑝(𝑀 |𝒟) =
𝑝(𝒟|𝑀)𝑝(𝑀)

𝑝(𝒟)
. (2.3)

Comparing the posterior of any two models, 𝑀𝑖 and 𝑀𝑗, yields the posterior odds:

𝑝(𝑀𝑖|𝒟)

𝑝(𝑀𝑗|𝒟)
=
𝑝(𝒟|𝑀𝑖)𝑝(𝑀𝑖)

𝑝(𝒟|𝑀𝑗)𝑝(𝑀𝑗)
(2.4)

Assuming that all models are equally probable before the observation of data, we get

𝑝(𝑀𝑖|𝒟)

𝑝(𝑀𝑗|𝒟)
=
𝑝(𝒟|𝑀𝑖)

𝑝(𝒟|𝑀𝑗)
. (2.5)

The quantity on the right-hand side of Equation 2.5 is known as Bayes factor and is

the traditional metric used to compare the probabilities of different models [13, 46,

75]. A key advantage of this Bayesian formulation is an implicit penalty on model

complexity in the model evidence—an automatic Occam’s razor that guards against

overfitting [82]. Computation of Bayes factor, however, is expensive as it relies on the

evaluation of high-dimensional integrals. Specifically,
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𝑝(𝒟|𝑀𝑖)

𝑝(𝒟|𝑀𝑗)
=

∫︀
𝑝(𝒟|𝑘𝑖)𝑝(𝑘𝑖|𝑀𝑖)𝑑𝑘𝑖∫︀
𝑝(𝒟|𝑘𝑗)𝑝(𝑘𝑗 |𝑀𝑗)𝑑𝑘𝑗

(2.6)

where 𝑘𝑖 and 𝑘𝑗 are model-specific multidimensional parameters. Alternatives such

as Laplace approximation method and Bayesian information criterion have been sug-

gested in the literature [21, 82, 109], but they all involve making approximations

about distributions. The standard approach presented above becomes infeasible for

an exhaustive comparison of a large number of models because of the high computa-

tional cost involved. As mentioned in Chapter 1, in this thesis, we focus on developing

tractable network inference methodologies when the number of plausible models is

large. The underlying rate parameter uncertainties would come “for free" as a natural

byproduct of the model inference results.

The Bayesian posterior model probabilities also have the advantage of being eas-

ily interpretable. Having computed the posterior probabilities of the models, it is

straightforward to understand the degree to which the different models are supported

by available data based on their posterior probabilities. The Bayesian model inference

procedure has another favorable property in that it is consistent. Consistency is a

property that if the true model is among the set of models being compared, then the

posterior probability of the true model converges to 1 in probability as the size of the

data set goes to infinity.

2.6 Numerical methods for Bayesian computation

The generation of samples from posterior distributions is a central problem in Bayesian

statistics. Integration of functions with respect to posterior distributions in high-

dimensions is most efficiently performed by Monte Carlo sampling. Formally, the
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posterior distribution can be defined over a general state space

Θ ∈
⋃︁
𝑀

{𝑀} × 𝑘𝑀 , (2.7)

where 𝑘𝑀 ⊆ R𝑀 are parameter spaces and each parameter space 𝑘𝑀 could have a

different dimensionality. 𝑀 here acts as an indicator of the individual parameter

spaces. The posterior distribution over Θ is again given by Bayes’ rule:

𝑝(𝑀,𝑘𝑀 |𝒟) =
𝑝(𝒟|𝑘𝑀 ,𝑀)𝑝(𝑀)𝑝(𝑘𝑀 |𝑀)∑︀

𝑀

∫︀
𝑘𝑀

𝑝(𝒟|𝑘𝑀 ,𝑀)𝑝(𝑀)𝑝(𝑘𝑀 |𝑀)
. (2.8)

Note, in relation to models and parameters discussed in the previous section, 𝑀 would

correspond to model indicators and 𝑘𝑀 then are their respective parameter vectors.

The posterior distribution over 𝑀 and 𝑘𝑀 are related through a marginalization:

𝑝(𝑀 |𝒟) =

∫︁
𝑘𝑀

𝑝(𝑀,𝑘𝑀 |𝒟) (2.9)

When the forward model is nonlinear or the prior distributions are non-conjugate,

the sampling of the posterior distribution 𝑝(Θ|𝒟) using standard Monte Carlo is

infeasible. In such cases, one has to resort to advanced Monte Carlo methods, the

most widely useful of which are a general class of algorithms known as the Markov

chain Monte Carlo methods.

In the following sections, we discuss various Monte Carlo methods that enable

computation of posterior model probabilities and in many cases also produce samples

from parameter posterior distributions. We begin with a brief discussion of an algo-

rithm used for fixed-dimensional posterior sampling known as the Metropolis-Hastings

algorithm.
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2.6.1 Metropolis-Hastings algorithm

In many problems of interest, the model structure is assumed to be well known.

Thus the target of the inference procedure is only the posterior distribution over the

underlying parameters of the model. Sampling in such a fixed-dimensional setting,

when direct sampling is infeasible, is commonly performed using the Metropolis-

Hastings algorithm. The Metropolis-Hastings algorithm is an iterative algorithm

that produces a Markov chain whose limiting distribution is the posterior distribution

𝑝(𝑘|𝒟). At each step of the algorithm, a sample from a distribution 𝑞(𝑘|𝑘𝑛) known

as the proposal distribution is generated. The proposed sample is accepted as the

new state of the chain with a probability that depends on the posterior and proposal

distributions. If the proposed sample is rejected, the current state of the chain is

retained as the new state. The steps of the Metropolis-Hastings algorithm are given

in Algorithm 1.

Algorithm 1 The Metropolis-Hastings algorithm
1: Given: Data 𝒟, prior density 𝑝(𝑘), likelihood function 𝑝(𝒟|𝑘), proposal density
𝑞(𝑘|𝑘𝑛), number of steps 𝑁

2: Initialize 𝑘0

3: for 𝑛 = 0 to 𝑁 − 1 do
4: Sample 𝑢 ∼ 𝒰[0,1]
5: Sample 𝑘* ∼ 𝑞(𝑘|𝑘𝑡)
6: if 𝑢 < 𝛼(𝑘𝑡,𝑘*) = min

{︁
1, 𝑝(𝑘

*|𝒟)𝑞(𝑘𝑡|𝑘*)
𝑝(𝑘𝑡|𝒟)𝑞(𝑘*|𝑘𝑡)

}︁
then

7: 𝑘𝑛+1 = 𝑘*

8: else
9: 𝑘𝑛+1 = 𝑘𝑛

10: end if
11: end for

Under mild conditions, the above algorithm guarantees convergence of the distribution

of the Markov chain state 𝑘𝑛 to the posterior distribution and the existence of limit

theorems [105]. The sequence of Markov chain iterates yield estimates
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𝑓 =
1

𝑁

𝑁∑︁
𝑛=1

𝑓(𝑘𝑛). (2.10)

that converges almost surely to
∫︀
𝑓(𝑘)𝑝(𝑘|𝒟)𝑑𝑘 by the strong law of large numbers.

In contrast to standard Monte Carlo sampling, the sequence of iterates produced

by the Metropolis-Hastings algorithm are correlated and thus the posterior estimates

have a higher variance. Special cases of the general Metropolis-Hastings algorithm are

obtained by considering specific choices of the proposal distribution 𝑞(𝑘|𝑘𝑛). If the

proposal is independent of the current location of the chain, we get the Independence

Metropolis-Hastings algorithm. Another very popular algorithm is obtained by con-

sidering proposals that consist of independent perturbations about the current state.

Specifically, the proposal is of the form 𝑘* = 𝑘𝑛+𝜖𝑛, where 𝜖𝑛 ∼ 𝑞 is independent of

𝑘𝑛. The resulting algorithm is then known as the random-walk Metropolis-Hastings

algorithm.

2.6.2 Computing the posterior model probabilities

The evaluation of posterior model probabilities in the Bayesian framework is often a

challenging computational problem. The computation of model evidence is seldom

analytically tractable. When the forward model is linear, the use of conjugate priors

permits closed form solutions for model evidence. However, in many practical sit-

uations, we encounter a nonlinear parameter-observable dependency. The evidence

is then obtained by resorting to numerical techniques. Formally, the objective is to

approximate the posterior model probability distribution 𝑝(𝑀 |𝒟). For any model

𝑀𝑖,

𝑝(𝑀𝑖|𝒟) ∝ 𝑝(𝒟|𝑀𝑖)𝑝(𝑀𝑖), (2.11)

where
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𝑝(𝒟|𝑀𝑖) =

∫︁
𝑝(𝒟|𝑘𝑖,𝑀𝑖)𝑝(𝑘𝑖|𝑀𝑖)𝑑𝑘𝑖, (2.12)

and 𝑝(𝑀𝑖) is the prior probability of model 𝑀𝑖 and 𝑘𝑖 is the vector of unknown

paramters in model 𝑀𝑖. The computation of the above multidimensional integral

is carried out by numerical methods. In low-dimensional settings, it is sometimes

efficient to compute the integral by numerical quadrature schemes [29, 48]. But for

moderate to high-dimensional integrals, sampling-based methods are necessary. We

provide a brief overview of some of the commonly used sampling-based methods for

Bayesian model inference.

2.6.3 Computing the evidence via model-specific Monte Carlo

simulations

Many existing methods in literature compute posterior model probabilities by esti-

mating the model evidence (2.12) individually for all competing models.

Standard Monte Carlo and importance sampling

A simple approach to estimating the model evidence for a model 𝑀𝑖 is to evaluate

the Monte Carlo sum by sampling from the prior distribution 𝑝(𝑘𝑖). The estimate

𝑝(𝒟|𝑀𝑖) =
1

𝑁

𝑁∑︁
𝑛=1

𝑝(𝒟|𝑘𝑛𝑖 ), (2.13)

where 𝑘𝑛𝑖 ∼ 𝑝(𝑘𝑖), is guaranteed to converge almost surely to the true model evidence

by the strong law of large numbers [105]. Although very simple, this approach is highly

inefficient as most samples are drawn from regions of the parameter space where the

likelihood tends to have a low value. Practically, this manifests into high variance in

evidence estimates.

An improvement to the above estimator is to use importance sampling. Impor-

tance sampling involves generating samples from a different distribution 𝑞(𝑘𝑖) known
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as the proposal. Under some general conditions, a simulation consistent estimate is

given by

𝑝(𝒟|𝑀𝑖) =
1

𝑁

𝑁∑︁
𝑛=1

𝑤𝑛𝑝(𝒟|𝑘𝑛𝑖 ) (2.14)

where 𝑤𝑛 = 𝑝(𝑘𝑛𝑖 )/𝑞(𝑘𝑛𝑖 ) and 𝑘𝑛𝑖 ∼ 𝑞(𝑘𝑖) [49]. The precision of importance sampling

estimates hinges on 𝑞(𝑘𝑖) being a good approximation of 𝑝(𝑘𝑖|𝒟) and thus good

proposal distributions 𝑞(𝑘𝑖) are a priori hard to design in complex multi-dimensional

settings.

Posterior harmonic mean estimator

Newton et al. [94] suggested another importance sampling estimator for the estimation

of model evidence. In contrast to the standard importance sampling estimator (2.14),

an alternative simulation consistent importance sampling estimator is given by

𝑝(𝒟|𝑀𝑖) =

∑︀𝑁
𝑛=1𝑤𝑛𝑝(𝒟|𝑘𝑛𝑖 )∑︀𝑁

𝑛=1𝑤𝑛

. (2.15)

Here again 𝑤𝑛 = 𝑝(𝑘𝑛𝑖 )/𝑞(𝑘𝑛𝑖 ) and 𝑘𝑛𝑖 ∼ 𝑞(𝑘𝑖) [49]. The advantage of this estimator

is that the proposal need only be known upto an unknown constant. Newton et al.

[94] noted that the posterior distribution 𝑝(𝑘𝑖|𝒟) is an efficient proposal distribution

and if we simulate samples approximately from the posterior, substitution into (2.15)

yields an estimate of 𝑝(𝒟|𝑀𝑖),

𝑝(𝒟|𝑀𝑖) =

{︃
1

𝑁

𝑁∑︁
𝑛=1

𝑝(𝒟|𝑘𝑛𝑖 )−1

}︃−1

, (2.16)

called the harmonic mean estimator. The simulation of posterior samples may be

performed by Markov chain Monte Carlo or sequential-importance-resampling meth-

ods [3]. It can easily be verified that the estimator (2.16) converges almost surely

to the correct model evidence. The drawback of the harmonic estimator is that it
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can be unstable because 𝑝(𝒟|𝑘𝑖)−1 is often not square integrable with respect to the

posterior distribution.

Marginal likelihood from the Gibbs and the Metropolis-Hastings output

Another set of approaches proposed by Chib [25] and Chib et al. [26] involves expand-

ing the model evidence in terms of the likelihood, prior, and the posterior density at a

parameter value 𝑘*
𝑖 and then estimating the posterior density value at 𝑘*

𝑖 using sam-

ples generated from the posterior distribution. The evidence being the normalizing

constant is given by

𝑝(𝒟|𝑀𝑖) =
𝑝(𝒟|𝑘*

𝑖 )𝑝(𝑘
*
𝑖 )

𝑝(𝑘*
𝑖 |𝒟)

. (2.17)

If 𝑝(𝑘*
𝑖 |𝒟) is a posterior estimate, then the estimate of model evidence on the loga-

rithm scale is

log 𝑝(𝒟|𝑀𝑖) = log 𝑝(𝒟|𝑘*
𝑖 ) + log 𝑝(𝑘*

𝑖 )− log 𝑝(𝑘*
𝑖 |𝒟). (2.18)

When the posterior conditionals 𝑝(𝑘𝑖|𝒟, 𝑧) and 𝑝(𝑧|𝒟,𝑘𝑖) are available, Chib [25]

propose using the output from the Gibbs sampler {𝑘𝑛𝑖 , 𝑧𝑛}𝑁𝑛=1 to obtain a Monte

Carlo estimate of 𝑝(𝑘𝑖|𝒟) =
∫︀
𝑝(𝑘𝑖|𝒟, 𝑧)𝑝(𝑧|𝒟)𝑑𝑧 given as

𝑝(𝑘*
𝑖 |𝒟) = 𝑁−1

𝑁∑︁
𝑛=1

𝑝(𝑘*|𝒟, 𝑧𝑛). (2.19)

Chib et al. [26] extend the method to cases when full conditionals are intractable and

posterior samples are simulated using the Metropolis-Hastings algorithm. If {𝑘𝑛𝑖 }𝑁𝑛=1

are samples from the posterior 𝑝(𝑘𝑖|𝒟) and {𝑘𝑚𝑖 }𝑀𝑚=1 samples from the proposal

𝑞(𝑘𝑖|𝑘*
𝑖 ,𝒟), a simulation-consistent estimate of the posterior density is

𝑝(𝑘*
𝑖 |𝒟) =

𝑁−1
∑︀𝑁

𝑛=1 𝛼(𝑘*
𝑖 |𝑘𝑛𝑖 ,𝒟)𝑞(𝑘*

𝑖 |𝑘𝑛𝑖 )

𝑀−1
∑︀𝑀

𝑚=1 𝛼(𝑘𝑚𝑖 |𝑘*
𝑖 ,𝒟)

. (2.20)
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Here

𝛼(𝑘′
𝑖|𝑘𝑖,𝒟) = min

{︂
1,
𝑝(𝒟|𝑘′

𝑖)𝑝(𝑘
′
𝑖)𝑞(𝑘𝑖|𝑘′

𝑖,𝒟)

𝑝(𝒟|𝑘𝑖)𝑝(𝑘𝑖)𝑞(𝑘′
𝑖|𝑘𝑖,𝒟)

}︂
(2.21)

is the Metropolis-Hastings acceptance probability.

Path sampling

Methods that generalize the importance sampling algorithm by introducing a sequence

of intermediate distributions between two densities whose normalizing constants are to

be determined have existing in the computational physics literature for a few decades.

The acceptance ratio method and thermodynamic integration are routinely used in

statistical physics to compute free energies differences. More recently, Meng et al.

[87] and Gelman et al. [47] reinterpret the acceptance ratio method as an instance of

bridge sampling and more generally bridge sampling and thermodynamic integration

as instances of the path sampling algorithm. Recall that model evidence can be

written using Bayes’ rule as

𝑝(𝒟|𝑀𝑖) =
𝑝(𝒟|𝑘𝑖)𝑝(𝑘𝑖)
𝑝(𝑘𝑖|𝒟)

(2.22)

More generally, the normalizing constant 𝑧(𝜃) of an unnormalized density 𝑞(𝑘𝑖|𝜃) may

be written as

𝑧(𝜃) =
𝑞(𝑘𝑖|𝜃)
𝑝(𝑘𝑖|𝜃)

, (2.23)

where 𝑝(𝑘𝑖|𝜃) is a probability density function. Taking logarithms and then differen-

tiating both sides of (2.23) with respect to 𝜃,

𝑑

𝑑𝜃
log 𝑧(𝜃) =

∫︁
1

𝑧(𝜃)

𝑑

𝑑𝜃
𝑞(𝑘𝑖|𝜃)𝜇(𝑑𝑘𝑖) (2.24)

42



= E𝜃

[︂
𝑑

𝑑𝜃
log 𝑞(𝑘𝑖|𝜃)

]︂
, (2.25)

where E𝜃 denotes the expectation with respect to 𝑝(𝑘𝑖|𝜃).

Let

𝑈(𝑘𝑖, 𝜃) =
𝑑

𝑑𝜃
log 𝑞(𝑘𝑖|𝜃). (2.26)

Integrating (2.25) from 0 to 1 yields

𝜆 = log

[︂
𝑧(1)

𝑧(0)

]︂
=

∫︁ 1

0

E𝜃[𝑈(𝑘𝑖, 𝜃)]𝑑𝜃. (2.27)

If we consider 𝜃 as a random variable with a uniform distribution, the right hand side

of (2.27) can be considered as the expectation of 𝑈(𝑘𝑖, 𝜃) over the joint distribution

of (𝑘𝑖, 𝜃). More generally, introducing a prior density 𝑝(𝜃) for 𝜃 ∈ [0, 1] we get

𝜆 = E
[︂
𝑈(𝑘𝑖, 𝜃)

𝑝(𝜃)

]︂
, (2.28)

where the expectation is with respect to the joint density 𝑝(𝑘𝑖|𝜃)𝑝(𝜃). Identity (2.27)

immediately suggests an unbiased estimator of 𝜆:

�̂� =
1

𝑁

𝑁∑︁
𝑛=1

𝑈(𝑘𝑛𝑖 , 𝜃
𝑛)

𝑝(𝜃𝑛)
(2.29)

using 𝑛 draws (𝑘𝑛𝑖 , 𝜃
𝑛) from 𝑝(𝑘𝑖, 𝜃). The choice of the prior density 𝑝(𝜃) and the

number of discretizations of 𝜃 detemine the particular variant of importance sampling

algorithm. Bridge sampling involves a single intermediate distribution, whereas the

path sampling or thermodynmic integration involve a continuous discretization of 𝜃.

Another method which fits into the path sampling framework utilizes powers of

the posterior densities in (2.25) to yield formulas for the model evidence that make

use of MCMC sampling and numerical integration [41].
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Annealed importance sampling

Neal [93] has presented another importance sampling based technique for the com-

putation of model evidence called the annealed importance sampling. The method

relies on using an importance proposal over a multidimensional state space with the

aid of Markov chain transition kernels with specific invariant distribution. Firstly, a

series of tempered posterior distributions

𝑓 𝑙(𝑘𝑖) = 𝑓(𝑘𝑖|𝒟)𝛽𝑙𝑓(𝑘𝑖)
𝛽𝑙−1, (2.30)

where 1 = 𝛽0 > 𝛽1 > ... > 𝛽𝑛 = 0, 𝑓(𝑘𝑖|𝒟) is the unnormalized posterior probability

density and 𝑓(𝑘𝑖) is the prior probability density of 𝑘𝑖, are defined. The algorithm

starts by generating a sample 𝑘𝑛𝑖 from 𝑓(𝑘𝑖). Thereafter, starting from 𝑓𝑛−1(𝑘𝑖)

samples 𝑘𝑙𝑖 are drawn from 𝑓 𝑙(𝑘𝑖) with a Markov kernel 𝑇 𝑙(𝑘𝑖|𝑘𝑙+1
𝑖 ) that keeps 𝑓 𝑙(𝑘𝑖)

invariant. These Markov kernels are constructed in the usual Metropolis-Hastings

or Gibss sampling fashion such that the detailed balance condition is satisfied. This

process is repeated 𝐽 times to generate sequence of 𝑛-dimensional samples. Let

𝑤𝑗 =
𝑓𝑛−1(𝑘

𝑛−1
𝑖 )

𝑓𝑛(𝑘𝑛−1
𝑖 )

𝑓𝑛−2(𝑘
𝑛−2
𝑖 )

𝑓𝑛−1(𝑘
𝑛−2
𝑖 )

...
𝑓1(𝑘

1
𝑖 )

𝑓2(𝑘
1
𝑖 )

𝑓0(𝑘
0
𝑖 )

𝑓1(𝑘
0
𝑖 )

(2.31)

be importance weights. The average
∑︀
𝑤𝑗/𝑁 converges to the model evidence.The

efficiency of the algorithm increases with the number of tempered distributions.

2.6.4 Across-model Markov chain Monte Carlo

The use of the above model-specific Monte Carlo methods becomes practically infeasi-

ble when the number of possible models is large. Common examples include variable

selection problems, autoregressive time series modelling, and network inference. In

such cases, Monte Carlo methods that simultaneously traverse the space of models

and parameters are most favourable. These across-model sampling methods work by

making the MCMC sampler jump between models to explore the joint space of models
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and parameters. Model probabilities are estimated from the number of times the sam-

pler visits each model. The prohibitively high cost of model comparisons based on the

computation of evidence for each model is avoided as the sampler visits each model

in proportion to its posterior probability. The challenge in the use of across-model

sampling schemes, however, is that the design of efficient model-switching proposal

distributions can often be hard. This thesis focuses on the across-model sampling

framework and we provide here a brief background on existing methodologies.

Product space approach

Carlin et al. [24] introduced an across-model MCMC algorithm by transforming the

transdimensional problem into one that is of constant dimension. The central idea

is that they assume complete independence of parameter vectors {𝑘𝑗}𝑀𝑗=1 given the

model indicator 𝑀𝑖 and choose ‘pseudopriors’ 𝑝(𝑘𝑗 |𝑀𝑖 ̸=𝑗). From the conditional inde-

pendence assumptions, the joint distribution of data 𝒟 and {𝑘𝑗}𝑀𝑗=1 when the model

is 𝑀𝑖 is

𝑝(𝒟, {𝑘𝑗}𝑀𝑗=1,𝑀𝑖) = 𝑝(𝒟|𝑘𝑖,𝑀𝑖)

{︂ 𝑀∏︁
𝑗=1

𝑝(𝑘𝑗 |𝑀𝑖)

}︂
𝑝(𝑀𝑖) (2.32)

Assumming all full conditional distributions given by

𝑝(𝑘𝑗|𝑘𝑘 ̸=𝑗 ,𝑀,𝒟) =

⎧⎪⎨⎪⎩𝑝(𝒟|𝑘𝑗 ,𝑀𝑗)𝑝(𝑘𝑗|𝑀𝑗), 𝑀 = 𝑀𝑗

𝑝(𝑘𝑗|𝑀 ̸= 𝑀𝑗), 𝑀 ̸= 𝑀𝑗

(2.33)

can be sampled and

𝑝(𝑀𝑗|{𝑘𝑗}𝑀𝑗=1) =

𝑝(𝒟|𝑘𝑖,𝑀𝑖)

{︂∏︀𝑀
𝑗=1 𝑝(𝑘𝑗|𝑀𝑖)

}︂
𝑝(𝑀𝑖)∑︀𝑀

𝑘=1 𝑝(𝒟|𝑘𝑖,𝑀𝑖)

{︂∏︀𝑀
𝑗=1 𝑝(𝑘𝑗|𝑀𝑖)

}︂
𝑝(𝑀𝑖)

(2.34)

a Gibbs sampler can be used to generate samples from the joint posterior distribution

𝑝(𝑀, {𝑘𝑗}𝑀𝑗=1). Specifically,
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𝑝(𝑀𝑗|𝒟) =
number of 𝑀𝑛

𝑗

total number of samples
, j=1,...,M (2.35)

gives simulation-consistent estimates of posterior model probabilities. The drawback

of the above method is that it requires simulation from pseudopriors at each iteration

and as such the choice of pseudopriors has a direct impact on the simulation efficiency.

Carlin et al. [24] note that a good pseudoprior 𝑝(𝑘𝑗|𝑀𝑖 ̸=𝑗) is the conditional posterior

distribution 𝑝(𝑘𝑖|𝑀𝑖). Dellaportas et al. [30] proposed a ‘Metropolised’ version of the

above approach, altering the model selection step into first proposing a move to a

model and then accepting the move with Metropolis-Hasings acceptance probability.

Reversible jump Markov chain Monte Carlo

Reversible jump MCMC (RJMCMC) is a general framework for posterior exploration

when the dimension of the state space is not constant [56, 57]. Consider the space

of candidate models ℳ = {𝑀1,𝑀2, ...,𝑀𝑁}. Each model 𝑀𝑗 has an 𝑛𝑗-dimensional

vector of unknown parameters 𝑘𝑀𝑗
∈ ℛ𝑛𝑗 , where 𝑛𝑗 can different values for different

models. The reversible jump MCMC algorithm simulates a Markov chain whose in-

variant distribution is the joint model-parameter posterior distribution 𝑃 (𝑀,𝑘𝑀 |𝒟).

Each step of the algorithm consists of proposing a new vector of model-parameter

values and accepting the proposed values according to an acceptance probability that

also depends on the current model-parameter value vector. At any point of the state

space, many different proposal moves can be constructed. Generally, the moves can

be classified as between-model and within-model moves. The within model move

involves using the Metropolis-Hastings proposal. A between model move involves

proposing a move to a different model and the corresponding set of parameter values.

The necessary conditions for the reversible jump MCMC to be ergodic with the pos-

terior distribution as the invariant distribution is that the transition kernel resulting

from the chosen proposal is irreducible and aperiodic [57]. Further, ensuring that the

posterior distribution over the models and parameters is the invariant distribution of
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the Markov chain is accomplished by satisfying the detailed balance condition. The

detailed balance condition is enforced by constructing moves between any two models

𝑀 and 𝑀 ′ according to a bijective map 𝑓 from (𝑘𝑀 ,𝑢) to (𝑘𝑀 ′ ,𝑢′), where 𝑘𝑀 and

𝑘𝑀 ′ are parameters of models 𝑀 and 𝑀 ′, 𝑢 and 𝑢′ known as dimension matching

variables are such that dim(𝑘𝑀 ′) + dim(𝑢′) = dim(𝑘𝑀) + dim(𝑢) and have densities

𝑞(𝑢) and 𝑞(𝑢′), respectively, and 𝑓 and 𝑓−1 are differentiable (i.e., 𝑓 is a diffeomor-

phism). The choice of the distribution of 𝑢 is part of the proposal construction and

in addition to an appropriate 𝑓 is key to an efficient reversible jump MCMC simu-

lation. At each step of the simulation, given the current state (𝑀,𝑘𝑀) a move to a

new model 𝑀 ′ is first proposed according to a chosen distribution 𝑞(𝑀 ′|𝑀). Next,

to move to (𝑀 ′,𝑘𝑀 ′) from (𝑀,𝑘𝑀) involves generating a sample of 𝑢 according to

𝑞(𝑢|𝑘𝑀) and accepting the proposed move with probability:

𝛼(𝑘𝑀 ,𝑘𝑀 ′) = min{1, 𝐴}, (2.36)

where

𝐴 =
𝑝(𝑀 ′,𝑘𝑀 ′ |𝒟)𝑞(𝑀 |𝑀 ′)𝑞(𝑢′|𝑘𝑀 ′)

𝑝(𝑀,𝑘𝑀 |𝒟)𝑞(𝑀 ′|𝑀)𝑞(𝑢|𝑘𝑀)
|det(∇𝑓(𝑘𝑀 ,𝑢))| , (2.37)

and (𝑘𝑀 ′ ,𝑢′) = 𝑓(𝑘𝑀 ,𝑢). The reverse move from (𝑘𝑀 ′ ,𝑢′) to (𝑘𝑀 ,𝑢) is performed

according to 𝑓−1 and has an acceptance probability min{1, 𝐴−1}. The complete

reversible jump MCMC algorithm we use is given in Algorithm 2.

The selection of a good map 𝑓 and the design of proposal distribution 𝑞(𝑢|𝑘𝑀)

is challenging and often chosen based on pilot runs of the reversible-jump MCMC.

The high cost and typically poor performance of the pilot-runs based RJMCMC has

prompted the development of methods for automatic proposal construction [1, 20,

36, 38, 59, 58]. All the above methods attempt to increase the acceptance rate of

between-model moves at the cost of some additional computational expense and have

shown to improve performance in a number of cases.
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Algorithm 2 Reversible jump MCMC
1: Given: A set of models 𝑀 ∈ℳ with corresponding parameter vectors 𝑘𝑀 , pos-

terior densities 𝑝(𝑀,𝑘𝑀 |𝒟), proposal for between-model move 𝑞(𝑀 ′|𝑀), pro-
posal density 𝑞𝑀→𝑀 ′(𝑢|𝑘𝑀), jump-function 𝑓 , and Metropolis-Hastings proposal
𝑞(𝑘′

𝑀 |𝑘𝑀).
2: 𝛼 ∈ (0, 1): probability of within-model move
3: Initlialize starting point (𝑀0,𝑘𝑀0)
4: for 𝑛 = 0 to 𝑁𝑖𝑡𝑒𝑟 do
5: Sample 𝑏 ∼ 𝒰[0,1]
6: if 𝑏 ≤ 𝛼 then
7: Sample 𝑝 ∼ 𝒰[0,1]
8: if 𝑝 ≤ 𝐴(𝑘𝑛𝑀𝑛 → 𝑘

′

𝑀𝑛) = min
{︂

1,
𝑝(𝑀𝑛,𝑘′𝑀𝑛 |𝒟)𝑞(𝑘𝑛𝑀𝑛 |𝑘

′
𝑀𝑛 )

𝑝(𝑀𝑛,𝑘𝑛𝑀𝑛 |𝒟)𝑞(𝑘′𝑀𝑛 |𝑘𝑛𝑀𝑛 )

}︂
then

9: (𝑀𝑛+1,𝑘𝑛+1
𝑀𝑛+1) = (𝑀

′
,𝑘

′

𝑀 ′)
10: else
11: (𝑀𝑛+1,𝑘𝑛+1

𝑀𝑛+1) = (𝑀𝑛,𝑘𝑛
𝑀𝑛)

12: end if
13: else
14: Sample 𝑀 ′ ∼ 𝑞(𝑀 ′|𝑀𝑛)
15: Sample 𝑢 ∼ 𝑞𝑀𝑛→𝑀 ′(𝑢|𝑘𝑀𝑛)
16: Sample 𝑝 ∼ 𝒰[0,1]
17: if 𝑝 ≤ 𝐴 = min

{︁
1,

𝑝(𝑀 ′,𝑘𝑀′ |𝒟)𝑞(𝑀𝑛|𝑀 ′)𝑞(𝑢′|𝑘𝑀′ )
𝑝(𝑀𝑛,𝑘𝑀𝑛 |𝒟)𝑞(𝑀 ′|𝑀𝑛)𝑞(𝑢|𝑘𝑀𝑛 )

⃒⃒⃒
𝜕𝑓(𝑘𝑀𝑛 ,𝑢)
𝜕(𝑘𝑀𝑛 ,𝑢)

⃒⃒⃒}︁
then

18: (𝑀𝑛+1,𝑘𝑛+1
𝑀𝑛+1) = (𝑀 ′,𝑘𝑀 ′)

19: else
20: (𝑀𝑛+1,𝑘𝑛+1

𝑀𝑛+1) = (𝑀𝑛,𝑘𝑛𝑀𝑛)
21: end if
22: end if
23: end for
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Other across-model samplers

Godsill [52] introduced a composite framework that allows interpretation of the prod-

uct space approach and the reversible jump sampler as special cases of the same

general approach. Recall that in the product space approach of Carlin et al. [24],

sampling is performed over a space {ℳ, {𝑘𝑗}𝑀𝑗=1)} of fixed dimension. The posterior

distribution 𝑝(𝑀,𝑘|𝒟) can be expressed as

𝑝(𝑀𝑖,𝑘|𝒟) =
𝑝(𝒟|𝑀𝑖,𝑘𝑗)𝑝(𝑘𝑗|𝑀𝑗)𝑝(𝑘−𝑗 |𝑘𝑖,𝑀𝑖)𝑝(𝑀𝑖)

𝑝(𝒟|𝑀𝑖)
. (2.38)

Sampling over the fixed dimensional space {𝑀,𝑘} in a Metropolis-Hastings frame-

work using appropriate pseudopriors 𝑝(𝑘−𝑗|𝑘𝑖,𝑀𝑖) and proposal distribution 𝑞(𝑘′|𝑘),

Godsill et al. obtain the product space approach and the reversible jump sampler as

special cases.

Before the development of the reversible jump algorithm, Grenander et al. [60]

introduced a sampling method known as jump diffusion that involved between-model

jumps and within-model diffusion. This method, if corrrected by accept-reject step

like in MCMC methods would have been an example of reversible jump.

Certain trandimensional problems can be viewed as marked point processes [112].

In these problems, the variables whose number varies are regarded as marked points.

Using the birth-and-death simulation idea of Preston [100] and Ripley [103], Stephens

[112] developed a point-process approach for finite mixture analysis. Cappé et al. [23]

further extended the point-process idea to compare the reversible jump algorithm

with the continuous time birth-and-death samplers.

2.7 Model averaging

As was discussed in Section 2.2, full description of parameter and model uncertainties

is necessary for reliable decision-making and quantification of prediction uncertainties.

The Bayesian inference methodology provides a natural mechanism for the quantifica-
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tion of all uncertainties. A direct consequence is that future predictions can be based

on all models weighted by their posterior probabilities. Making predictions based on

all models typically has the effect of lowering bias and improve predictive capability

[21]. Further, posterior predictions based on a selected model can be shown to always

underestimate prediction uncertainty [27, 102].

Consider that there is a set of M plausible models that are available for the predic-

tion of a quantity of interest ∆. Given the data 𝒟, the posterior model probabilities

of each model 𝑚, 𝑃 (𝑚|𝒟) is obtained by Bayes’s rule. Now, the posterior distribution

of the quantity of interest, ∆, is obtained by Bayesian model averaging as:

𝑝(∆|𝒟) =
𝑀∑︁
𝑖=1

𝑝(∆|𝑀𝑖,𝒟)𝑝(𝑀𝑖|𝒟). (2.39)

If we use a log-loss scoring rule, where the loss function for distribution, 𝑞(∆), is given

by:

𝐶(∆, 𝑞) = −𝐴 log 𝑞(∆) +𝐵, 𝐴 > 0, 𝐵 > 0, (2.40)

the expected loss of approximating the true posterior distribution 𝑝(∆|𝒟) with 𝑝(∆|𝑀𝑖,𝒟)

is given by −E𝑝(Δ|𝒟)[log 𝑝(∆|𝑀𝑖,𝒟)]. Since the Kullback-Leibler divergence between

any two distributions is always non-negative, it follows that

𝐷𝐾𝐿(𝑝(∆|𝒟)‖𝑝(∆|𝑀𝑖,𝒟)) ≥ 0, 𝑖 = 1, ....,𝑀 (2.41)

Consequently,

− E𝑝(Δ|𝒟)

[︁
log

𝑀∑︁
𝑖=1

𝑝(∆|𝑀𝑖,𝒟)𝑝(𝑀𝑖|𝒟)
]︁
≤ −E𝑝(Δ|𝒟)

[︁
log 𝑝(∆|𝑀𝑖,𝒟)

]︁
. (2.42)

The expected loss of approximating the uncertainty in ∆ based on any single model

is always greater than the quantifying the uncertainty by averaging over all plausible
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models. Thus, a full description of prediction uncertainty is obtained by the posterior-

weighted-average of model predictions of the quantity of interest ∆.
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Chapter 3

Network inference with adaptive

MCMC

We now present the details of a new framework for large-scale inference of chemical

reaction networks that transforms the network inference problem into a fixed dimen-

sional sampling problem and uses adaptive Markov chain Monte Carlo for improving

sampling efficiency. Viewing network inference as a fixed-dimensional problem allows

us to adapt existing fixed-dimensional adaptive MCMC algorithms for network infer-

ence. Adaptive MCMC methods adapt proposals based on previous posterior samples

and produce improved MCMC simulations without manual tuning. The material of

this chapter elaborates on one of our publications [42].

3.1 Reaction networks are nested

As we saw in Chapter 1, the law of mass action gives the rate of a chemical reaction

(say 𝑋 + 𝑌 → 𝑍) as the product of a reaction-specific rate constant 𝑘 with reactant

concentrations [𝑋] and [𝑌 ].

Rate = −𝑘[𝑋][𝑌 ]. (3.1)
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The rate constant 𝑘 is expressed in Arrhenius form as

𝑘 = 𝐴𝑇 𝑛 exp

(︂
− 𝐸𝑎

𝑅𝑇

)︂
, (3.2)

where 𝐴 is the pre-exponential factor, 𝐸𝑎 is the activation energy, 𝑛 is the temperature

exponent, 𝑅 is the universal gas constant, and 𝑇 is temperature. In this thesis, we

treat 𝑘 as the combined unknown parameter; it is also possible to infer 𝐴, 𝐸𝑎, and

𝑛 separately (given observations over a range of temperatures) but we leave such a

treatment for subsequent work.

In any chemically reacting process, the rates of the individual elementary reactions

in the reaction network together determine the values of the observables. And reacting

flow models are seldom linear; that is, the observables depend nonlinearly on the

elementary reaction rates and on the rate constants. Interestingly though, the net

species production rate is additive, i.e., the total production/destruction rate of a

species is the cumulative sum of the production/destruction rates of the species from

all reactions it participates in. From a statistical perspective, this implies that the

set of plausible networks given a set of proposed reactions and a noise model, are

𝑛𝑒𝑠𝑡𝑒𝑑. Specifically, a reaction can be eliminated from the network simply by setting

the corresponding rate constant to zero. The nested structure of reaction network

inference is exploited in two ways in this thesis.

First note that an across-model sampler for nested models can be constructed even

with a posterior sampler that operates over a space of fixed dimension. For example,

consider a setting where we have 𝑁 = 5 postulated elementary reactions with rate

constants 𝑘1, 𝑘2, 𝑘3, 𝑘4, and 𝑘5. Thus we wish to compare 25− 1 networks that are a

priori plausible. The key idea is to recognize that switching from a network 𝑀𝑖 (for

instance, comprising reactions 1, 2, and 5) to a network 𝑀𝑗 (for instance, comprising

reactions 3 and 4) requires that the parameter vector 𝑘 ≡ (𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5) change

from (𝑎, 𝑏, 0, 0, 𝑐) to (0, 0, 𝑑, 𝑒, 0), where 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 are nonzero rate constants

for each reaction. Second, the nested structure of network inference naturally leads
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to proposing moves between networks such that the rate constants of reactions that

are common to the networks retain their parameter values.

The first step in developing a sampling scheme that assigns zero-value to rate

constants is to impose point-mass mixture priors on the rate constants 𝑘𝑖 [73, 88]. For

simplicity, in the subsequent numerical demonstrations we will take the priors to be

independent in each dimension (i.e., for each reaction), such that 𝑝(𝑘) =
∏︀𝑁

𝑖=1 𝑝𝑖(𝑘𝑖).

We note, however, that priors can certainly be designed to reflect any additional

information, i.e., knowledge that necessitates the joint inclusion and exclusion of

reactions. In any case, a point-mass mixture prior is given by

𝑝𝑖(𝑘𝑖) = 𝑤0,𝑖𝛿(𝑘𝑖) + 𝑤1,𝑖 𝒞𝑖(𝑘𝑖), (3.3)

where 𝑤0,𝑖 and 𝑤1,𝑖 = 1 − 𝑤0,𝑖 are weights of the two prior components. 𝛿(𝑘𝑖) is

a probability atom (a point with unity probability mass) at zero and 𝒞𝑖(𝑘𝑖) is the

continuous component of the prior distribution. The continuous component of the

prior probability distribution describes any prior information about the values that the

rate constant can take and is often elicited from experts. If no such information exists,

𝒞𝑖(𝑘𝑖) may be a uniform or log-uniform distribution over all positive real numbers (an

‘uninformative’ prior). In any case, Bayesian inference and indeed our framework

allow the model developer significant flexibility in setting the prior distribution based

on his or her subjective belief or any pre-existing information. The weights 𝑤0,𝑖

and 𝑤1,𝑖 are prior beliefs about reaction 𝑖 being included or excluded, respectively,

from the inferred model. The model developer may use these weights to impose prior

information about the importance of this reaction in modeling the reacting flow model

output.

It is instructive to discuss two specific cases. First, if the model developer has

no prior preference for the inclusion or exclusion of a reaction, then an appropriate

choice for the weights is an indifference prior setting of 𝑤0,𝑖 = 𝑤1,𝑖 = 0.5. In contrast,

if the model developer believes that reaction 𝑖 should definitely be part of the inferred
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model, then he/she can set 𝑤0,𝑖 to zero and 𝑤1,𝑖 to one. Note that if all the reactions

are assigned a prior inclusion probability of 𝑤1 = 1.0, then the model inference

framework reduces to the familiar Bayesian parameter inference problem.

Letting 𝒟 denote the available data, an application of Bayes’ rule to the parameter

vector 𝑘 yields

𝑝(𝑘|𝒟) ∝ 𝑝(𝒟|𝑘)𝑝(𝑘). (3.4)

Here 𝑝(𝒟|𝑘) is viewed as a function of 𝑘: it is the likelihood function, which reflects

the discrepancy between the data 𝒟 and the model prediction at the specified 𝑘. The

precise form of the likelihood function depends on the noise model used to describe

the data. For instance, in the examples of Section 4.4, we use an additive Gaussian

model, yielding

𝒟 = 𝐺(𝑘) + 𝜖. (3.5)

Here 𝐺(𝑘) is the prediction of the forward model (the chemically reacting flow model)

at the specified parameter value 𝑘, and 𝜖 reflects a combination of observational noise

and model errors. We assume that every component of 𝜖𝑗 of 𝜖 is independent with

mean zero and variance 𝜎2, 𝜖𝑗 ∼ 𝒩 (0, 𝜎2). Because the prior distribution on each

𝑘𝑖 is a point-mass mixture (3.3), the resulting posterior distribution of 𝑘 is also a

mixture distribution over the product space of all reactions, where each component

of the mixture contains a different set of non-zero rate constants and thus represents

a different model. Sampling the posterior distribution of 𝑘 implies visiting posterior

mixture components in proportion to their probabilities. Therefore, a scheme that

samples 𝑝(𝑘|𝒟) will not only provide a full description of uncertainties in rate constant

values, but will also yield estimates of the posterior model probabilities proportional

to the number of times each posterior mixture component is visited.
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3.2 Posterior exploration by Markov chain Monte

Carlo

The multi-dimensional posterior distribution of the parameter vector 𝑘 obtained in

the last section cannot be sampled directly; because of the nonlinear forward model

𝐺(𝑘), the likelihood does not have a standard form and certainly is not conjugate

to the prior distribution. However, simulating posterior samples is possible using the

independence Metropolis-Hastings (MH) algorithm [105, 114]. In an independence

Metropolis-Hastings algorithm, the proposal distribution at each step is independent

of the current location of the chain. Algorithm 3 describes the independence sampler

using pseudocode. We note that another commonly-used class of MCMC algorithms,

random-walk Metropolis-Hastings, is not suitable for our problem because its chains

will tend to remain “stuck” in the point mass component of a parameter posterior

unless the support of the continuous component is very close to zero.

Algorithm 3 The independence Metropolis-Hastings algorithm
1: Given: Data 𝒟, prior density 𝑝(𝑘), likelihood function 𝑝(𝒟|𝑘), proposal 𝑞(𝑘),

number of steps 𝑇
2: Initialize 𝑘0

3: for 𝑡 = 0 to 𝑇 − 1 do
4: Sample 𝑢 ∼ 𝒰[0,1]
5: Sample 𝑘* ∼ 𝑞(𝑘*)

6: if 𝑢 < 𝒜(𝑘𝑡,𝑘*) = min
{︁

1, 𝑝(𝑘
*|𝒟)𝑞(𝑘𝑡)

𝑝(𝑘𝑡|𝒟)𝑞(𝑘*)

}︁
then

7: 𝑘𝑡+1 = 𝑘*

8: else
9: 𝑘𝑡+1 = 𝑘𝑡

10: end if
11: end for

The Metropolis-Hastings algorithm’s efficiency in exploring the posterior distribution

rests on the design of an effective proposal distribution. “Efficiency” in this context

refers to how effectively the Markov chain explores the posterior—i.e., how nearly

independent its states are—which translates directly into the Monte Carlo error of
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a sample-based posterior estimate. A good proposal distribution will require fewer

posterior density evaluations to achieve a given error. Recall that computation of

the posterior density 𝑝(𝑘|𝒟) for a proposed parameter value involves evaluating the

likelihood 𝑝(𝒟|𝑘), which in turn requires solving the forward model. Restricting the

number of forward model solves is especially important in the present application

context, because detailed models of chemically reacting flow are computationally

expensive.

Since the marginal posterior distribution of each parameter 𝑘𝑖 is a mixture of a

point mass and continuous components, the proposal distribution for each 𝑘𝑖 is taken

to be an independent point-mass mixture distribution of the form:

𝑞(𝑘𝑖;𝜓𝑖) = 𝑏𝑖,0𝛿(𝑘𝑖) +
𝑀∑︁

𝑚=1

𝑏𝑖,𝑚𝑞𝑚(𝑘𝑖; 𝜃𝑖,𝑚). (3.6)

In the above equation, 𝛿(𝑘𝑖) is a point mass at zero, 𝑞𝑚(𝑘𝑖; 𝜃𝑖,𝑚) are continuous compo-

nents of the proposal distribution, and 𝜓 ≡ (𝑏𝑖=1:𝑁,𝑚=0:𝑀 , 𝜃𝑖=1:𝑁,𝑚=1:𝑀) comprises all

the parameters describing the proposal distribution. Recall that 𝑁 is the number of

proposed reactions, and thus the dimension of the posterior distribution. The number

of continuous components 𝑀 in each dimension is a choice left to the user. Increasing

𝑀 can potentially improve the approximation of the posterior by the proposal, espe-

cially if the continuous part of the posterior distribution is itself multimodal. This is

desirable, because a good proposal distribution for independence Metropolis-Hastings

is generally one that approximates the posterior as closely as possible. But higher

values of 𝑀 increase the number of parameters needed to describe the proposal dis-

tribution, which can affect the cost and convergence rate of the proposal adaptation

scheme discussed in Section 3.2.1. Choosing an independent proposal distribution for

each parameter 𝑘𝑖 means that the joint proposal distribution is given by

𝑞(𝑘;𝜓) =
𝑁∏︁
𝑖=1

𝑞(𝑘𝑖;𝜓𝑖). (3.7)
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It is interesting to note that the above fixed-dimensional Metropolis-Hastings al-

gorithm is in fact a particular choice of the more general reversible jump MCMC

described in Section 2.6.4.

3.2.1 Adaptive MCMC by online expectation maximization

As noted above, efficient sampling suggests that we choose the proposal parameters

𝜓 so that (3.7) closely approximates the posterior. Of course, the true posterior

distribution is not characterized a priori; its exploration is in fact the goal of MCMC.

A useful strategy for improving sampling efficiency is, then, to continuously adapt the

proposal parameters based on past samples from the MCMC chain. Algorithms of

this kind are known as adaptive MCMC and require additional theoretical analysis to

guarantee convergence to the target distribution [105]. A commonly used adaptation

criterion is to tune the proposal parameters to minimize the Kullback-Leibler (KL)

divergence from the posterior distribution to the proposal distribution [4, 73]. We

adopt this strategy here and detail the adaptive independence Metropolis-Hastings

algorithm as follows.

Formally, the optimal proposal parameters are given by

𝜓* = arg min
𝜓

𝒟𝐾𝐿

(︀
𝑝(𝑘|𝒟)‖𝑞(𝑘;𝜓)

)︀
= arg min

𝜓

∫︁
𝑝(𝑘|𝒟) log

(︂
𝑝(𝑘|𝒟)

𝑞(𝑘;𝜓)

)︂
𝑑𝑘. (3.8)

Since this objective function involves integration over the posterior distribution 𝑝(𝑘|𝒟),

finding a solution before exploring the posterior is difficult. An effective strategy is

to use a stochastic approximation method [104, 79] that couples posterior exploration

with the solution of the minimization problem. A generic stochastic approximation

method for problem (3.8) involves iteratively (i) simulating a batch of samples from

the posterior distribution to estimate the KL divergence above, then (ii) using those

results to update the proposal parameters. Under conditions explained by [5], the

proposal parameters converge to the optimal solution of (3.8) asymptotically. Within
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this general procedure, one could consider two possible instantiations. The first is

stochastic gradient descent: simulate a finite number of samples from the posterior

distribution and use them to compute a noisy estimate of the gradient of the objec-

tive in (3.8) with respect to 𝜓; then take a step in the negative-gradient direction

to update the parameters in each iteration. This approach is detailed in the paper

by [73]. The second approach involves solving (3.8) using a method called online

expectation maximization (EM) [4]. Online EM alternately uses posterior samples

to update estimates of the expectation of the logarithm of complete-data likelihood

(E-step) and then directly adapts the proposal parameters using analytical expres-

sions (M-step). We found the online EM approach to be more robust in practice, and

have thus adopted it for this work. (See A.0.3 for more details on the complete-data

likelihood.)

Here, we describe the expressions used to update the proposal parameters using

the online EM algorithm. A detailed derivation of the online EM algorithm applied to

point-mass mixture priors can be found in A. We consider the case where the reaction

rate parameter vector is𝑁 -dimensional, i.e., 𝑘 = (𝑘1, 𝑘2, . . . , 𝑘𝑁), where 𝑇 samples are

simulated from the posterior distribution 𝑝(𝑘|𝒟) between each proposal parameter

update, and where the 𝑀 continuous components of the proposal distribution are

Gaussian, resulting in a proposal of the form:

𝑞(𝑘𝑖;𝜓𝑖) = 𝑏𝑖,0𝛿(𝑘𝑖) +
𝑀∑︁

𝑚=1

𝑏𝑖,𝑚𝒩𝑚(𝑘𝑖; 𝜃𝑖,𝑚). (3.9)

A non-adaptive component 𝑞 must also be added to the proposal distribution to satisfy

conditions for the convergence of the adaptive MCMC algorithm to the posterior

distribution (see A.0.3 for details). Thus, the overall proposal in each dimension is

given by

𝑞𝑠(𝑘𝑖) = 𝜆𝑖𝑞(𝑘𝑖,𝜓𝑖) + (1− 𝜆𝑖)𝑞(𝑘𝑖;𝜓𝑖), (3.10)

where 0 < 𝜆𝑖 < 1 and 𝜓𝑖 is a fixed set of proposal parameter values. At each step 𝑛
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of the online EM algorithm:

1. Simulate 𝑇 samples 𝑘1, 𝑘2, . . ., 𝑘𝑇 from the posterior 𝑝(𝑘|𝒟) using an inde-

pendence Metropolis-Hastings algorithm with the current proposal parameter

values.

2. Compute (for all parameters 𝑖 = 1 . . . 𝑁)

For 𝑚 = 0 to 𝑀 :

𝑂𝑖,𝑚 =
1

𝑇

𝑇∑︁
𝑡=1

𝛾(𝑧𝑡𝑖,𝑚),

For 𝑚 = 1 to 𝑀 :

𝑃𝑖,𝑚 =
1

𝑇

𝑇∑︁
𝑡=1
𝑘𝑡𝑖 ̸=0

𝛾(𝑧𝑡𝑖,𝑚), 𝑄𝑖,𝑚 =
1

𝑇

𝑇∑︁
𝑡=1
𝑘𝑡𝑖 ̸=0

𝛾(𝑧𝑡𝑖,𝑚)𝑘𝑡𝑖 , 𝑅𝑖,𝑚 =
1

𝑇

𝑇∑︁
𝑡=1
𝑘𝑡𝑖 ̸=0

𝛾(𝑧𝑡𝑖,𝑚)(𝑘𝑡𝑖)
2,

where

𝛾(𝑧𝑡𝑖,𝑚) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if 𝑘𝑡𝑖 = 0 and 𝑚 = 0

0 if 𝑘𝑡𝑖 = 0 and 𝑚 ̸= 0

0 if 𝑘𝑡𝑖 ̸= 0 and 𝑚 = 0
𝑏𝑖,𝑚𝒩 (𝑘𝑡𝑖 ;𝜇𝑖,𝑚,𝜎2

𝑖,𝑚)∑︀𝑀
𝑚′=1 𝑏𝑖,𝑚′𝒩 (𝑘𝑡𝑖 ;𝜇𝑖,𝑚′ ,𝜎2

𝑖,𝑚′ )
if 𝑘𝑡𝑖 ̸= 0 and 𝑚 ̸= 0.

(3.11)

3. Set 𝜂𝑛 = 1/𝑛 and update the running posterior summaries as

𝑆𝑂𝑖,𝑚
𝑛 = 𝑆

𝑂𝑖,𝑚

𝑛−1 + 𝜂𝑛(𝑂𝑚 − 𝑆
𝑂𝑖,𝑚

𝑛−1 )

𝑆𝑃𝑖,𝑚
𝑛 = 𝑆

𝑃𝑖,𝑚

𝑛−1 + 𝜂𝑛(𝑃𝑖,𝑚 − 𝑆
𝑃𝑖,𝑚

𝑛−1 )

𝑆𝑄𝑖,𝑚
𝑛 = 𝑆

𝑄𝑖,𝑚

𝑛−1 + 𝜂𝑛(𝑄𝑖,𝑚 − 𝑆
𝑄𝑖,𝑚

𝑛−1 )

𝑆𝑅𝑖,𝑚
𝑛 = 𝑆

𝑅𝑖,𝑚

𝑛−1 + 𝜂𝑛(𝑅𝑖,𝑚 − 𝑆
𝑅𝑖,𝑚

𝑛−1 ). (3.12)
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4. Solve for new proposal parameters:

𝑏𝑖,𝑚 =
𝑆
𝑂𝑖,𝑚
𝑛∑︀𝑀

𝑚′=0 𝑆
𝑂𝑖,𝑚′
𝑛

𝜇𝑖,𝑚 =
𝑆
𝑄𝑖,𝑚
𝑛

𝑆
𝑃𝑖,𝑚
𝑛

𝜎2
𝑖,𝑚 =

𝜇2
𝑖,𝑚𝑆

𝑃𝑖,𝑚
𝑛 − 2𝜇𝑖,𝑚𝑆

𝑄𝑖,𝑚
𝑛 + 𝑆

𝑅𝑖,𝑚
𝑛

𝑆
𝑃𝑖,𝑚
𝑛

. (3.13)

3.2.2 Random-scan AIMH for nested models

A straightforward application of the adaptive independence MH algorithm described

so far has one important inefficiency. In the parameter sampling step of Algorithm 3,

all the parameters are proposed jointly and then passed through an accept-reject step.

This approach can lead to a very high rate of rejection that consequently renders the

adaptation ineffective. The alternative is to use a componentwise independent MH

approach, wherein only a single component (or a small block of components) of the

parameter vector 𝑘 is proposed at a time while the other parameters are kept fixed,

and the resulting parameter vector is immediately passed through an accept-reject

step. We use a random-scan variant of the componentwise MH scheme which ran-

domly selects a block of components to be updated. Proposing to update only a few

parameter values while keeping the other parameter values fixed is a natural choice for

nested models and generally produces good exploration of the posterior distribution.

Updating only one or a few components at a time also provides the practical bene-

fit of a local search, since this amounts to making small jumps in the model space.

Algorithm 4 summarizes the overall algorithm we use to generate samples from the

posterior distribution. In implementing this algorithm for the following examples, we

choose 𝑇 = 1000 and 𝑙 = 1 or 2.
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Algorithm 4 Model inference by the adaptive independence Metropolis-Hastings
algorithm
1: Given: Data 𝒟, prior density 𝑝(𝑘), likelihood function 𝑝(𝒟|𝑘), proposal distri-

butions 𝑞𝑠(𝑘𝑖) = 𝜆𝑖𝑞(𝑘𝑖;𝜓𝑖) + (1− 𝜆𝑖)𝑞(𝑘𝑖;𝜓𝑖), number of proposal updates 𝑁𝑖𝑡𝑒𝑟,
number of samples 𝑇 between proposal updates

2: Initialize starting point 𝑘0 and proposal parameters 𝜓0

3: for 𝑛 = 1 to 𝑁𝑖𝑡𝑒𝑟 do
4: for 𝑡 = 1 to 𝑇 do
5: Select the number of parameters 𝑙≪ 𝑁 to be updated.
6: Randomly select 𝑙 parameter indices: 𝑟1, 𝑟2,. . ., 𝑟𝑙 < 𝑁
7: Sample 𝑢 ∼ 𝒰[0,1]
8: for 𝑝 = 1 to 𝑙 do
9: Sample 𝑘*𝑟𝑝 ∼ 𝑞𝑠(𝑘

*
𝑟𝑝)

10: end for
11: Set 𝑘*𝑟𝑝 = 𝑘𝑡−1

𝑟𝑝 for 𝑟𝑝 ∖ {𝑟1, 𝑟2, . . . , 𝑟𝑙}
12: if 𝑢 < 𝒜(𝑘𝑡−1,𝑘*) = min{1, 𝑝(𝑘

*|𝒟)𝑞𝑠(𝑘
𝑡−1)

𝑝(𝑘𝑡−1|𝒟)𝑞𝑠(𝑘
*)
} then

13: 𝑘𝑡 = 𝑘*

14: else
15: 𝑘𝑡 = 𝑘𝑡−1

16: end if
17: end for
18: Update summary statistics 𝑆𝑂1:𝑁,0:𝑀

𝑛 , 𝑆𝑃1:𝑁,1:𝑀
𝑛 , 𝑆𝑄1:𝑁,1:𝑀

𝑛 , and 𝑆𝑅1:𝑁,1:𝑀
𝑛

19: Update proposal parameters 𝜓𝑛: 𝑏1:𝑁,0:𝑀 , 𝜇1:𝑁,1:𝑀 , and 𝜎2
1:𝑁,1:𝑀

20: Store 𝑘1:𝑇 and reset 𝑘0 ← 𝑘𝑇

21: end for

3.3 Numerical demonstrations: catalytic reforming

of methane

We demonstrate the approach formulated in the preceding sections on three example

problems. In particular, we infer chemical kinetic models for steam and dry reforming

of methane catalyzed by rhodium. The first problem uses synthetic data to demon-

strate the consistency of the Bayesian model inference procedure, while the second

and third examples use experimental data drawn from the literature. Methane reform-

ing is an important process because it provides an effective route for the industrial

production of syngas (CO+H2). Catalytic reforming of methane has been studied
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previously, and a few kinetic models have been proposed [33, 86, 85, 63]. The de-

velopment of these models has proceeded by collecting possible elementary reactions

and making educated guesses about the appropriate pathways, with the selection of

rate parameter values based on existing literature or fits to experimental data.

One of the most common experimental configurations for studying catalytic reac-

tions is a stagnation flow reactor. Stagnation flow reactors provide favorable fluid-

mechanical properties that enable measurement of the gas-phase boundary layer near

the catalytic surface. Hence we use gas-phase measurements from stagnation flow re-

actors as data for our inference procedure. Recall that experimental data enters the

Bayesian inference formulation through the likelihood function 𝑝(𝒟|𝑘) (Section 3).

The likelihood function must also therefore incorporate a detailed numerical model

of the stagnation flow reactor in order to compare the data with predictions based on

any candidate kinetic model. We begin by discussing this reactor model.

3.3.1 Stagnation flow reactor model

The boundary layer flow equations in a stagnation flow reactor (schematic in Figure 3-

1) can be modeled as a one-dimensional axisymmetric flow using similarity reduction

[77]. The stagnation-flow reactor boundary layer equations have been used by a

number of authors in studies of catalytic surface reactions [33, 86, 85]. The governing

equations are:

𝑑(𝜌𝑢)

𝑑𝑧
+ 2𝜌𝑉 = 0 (3.14)

𝜌𝑢
𝑑𝑉

𝑑𝑧
+ 𝜌𝑉 2 = −Λ𝑟 +

𝑑

𝑑𝑧

(︂
𝜇
𝑑𝑉

𝑑𝑧

)︂
(3.15)

𝜌𝑢𝑐𝑝
𝑑𝑇

𝑑𝑧
=

𝑑

𝑑𝑧

(︂
𝜆
𝑑𝑇

𝑑𝑧

)︂
−

𝐾𝑔∑︁
𝛼=1

𝜌𝑌𝛼𝑉𝛼𝑐𝑝𝛼
𝑑𝑇

𝑑𝑧
−

𝐾𝑔∑︁
𝛼=1

ℎ𝛼𝑊𝛼�̇�𝛼 (3.16)

𝜌𝑢
𝑑𝑌𝛼
𝑑𝑧

= − 𝑑

𝑑𝑧
(𝜌𝑌𝛼𝑉𝛼) +𝑊𝛼�̇�𝛼, (𝛼 = 1 . . . 𝐾𝑔) (3.17)

�̇�𝛽 = 0, (𝛽 = 1 . . . 𝐾𝑠) (3.18)

64



𝑝 = 𝜌𝑅𝑇

𝐾𝑔∑︁
𝛼=1

𝑌𝛼
𝑊𝛼

(3.19)

In the above equations, the axial spatial coordinate 𝑧 is the independent variable,

while the axial velocity 𝑢, the scaled radial velocity 𝑉 , the fluid temperature 𝑇 , and

the species mass fractions 𝑌𝛼 are the dependent variables. The pressure-gradient

eigenvalue is

Λ𝑟 =
1

𝑟

𝑑𝑝

𝑑𝑟
. (3.20)

N.E. McGuire et al. / Chemical Engineering Science 64 (2009) 5231 -- 5239 5233

Fig. 2. (a) Illustration of the stagnation-flow reactor. (b) Detail of the heated,
catalytically active stagnation surface positioned above the porous frit.

catalyst geometries, such as porous-foam or channel-monolith
structures. In the technologically practical geometries, the catalyst
surfaces are experimentally inaccessible. Because of small pores
and narrow channels, it is not practical to experimentally probe the
near-catalyst boundary layer structure. However, the fundamental
information gathered from stagnation-flow experiments can be
incorporated directly into models that provide quantitative design
insight for the practical configurations (Raja et al., 2000; Zhu et al.,
2007).

The catalyst is coated onto a castable ceramic (Cotronics Rescor
780) structure that has embedded 24-gauge Ni–Cr resistance heaters.
The integrated catalyst-heater structure is bonded into a removable
ceramic housing (Fig. 2a). Three embedded thermocouples measure
the catalyst surface temperature. A heater controller is used to main-
tain a specific catalyst surface temperature (typically between 665
and 800 ◦C).

Hot oil (approximately 130 ◦C) circulates through the reactor
housing to control wall temperature. It is important to prevent wa-
ter condensation on the reactor walls, especially for reforming ex-
periments that incorporate high steam concentrations.

The reactor is designed to operate at slightly sub-atmospheric
pressures. Reducing pressure tends to increase boundary-layer

Fig. 3. Process flow diagram of the experimental setup.

thickness, which facilitates resolving boundary-layer profiles. The
experiments reported in this paper are conducted at pressures of
40kPa (300Torr).

A microprobe (approximately 50!m opening) is used to sam-
ple species-composition profiles within the boundary layer below
the stagnation surface. As species react catalytically at the surface,
the boundary-layer profiles are affected. For example, consider steam
reforming of methane. Both steam and CH4 are consumed at the
surface, with H2 and CO being formed as reaction products. Because
species both diffuse and convect within the boundary layer, the
boundary-layer profiles are affected directly by the reaction chem-
istry at the surface. By measuring the profiles, a great deal can be
learned about the surface chemistry. This is especially the case when
computational models are used to assist in interpretation of the ex-
perimental observations.

2.4. Boundary-layer measurements

Fig. 3 is a process flow diagram illustrating major features of the
experiment. A steady flow of reactant gases is supplied from cylin-
ders at rates specified via mass-flow controllers. After mixing, wa-
ter is added to the gas stream with a precision milliGAT micropump
that dispenses water in the range of 0–100!L per minute. The fed
gases pass through a heated damping reservoir that is designed to
damp out any fluctuations associated with the water pump. Follow-
ing water introduction, heating tape is used to maintain all lines at
approximately 135 ◦C. The heated lines assure that all the H2O re-
mains in the vapor phase as it enters the reactor.

The quartz microprobe is used to sample gas composition within
the boundary layer. As gases enter the probe itself, they are expanded
rapidly to vacuum conditions which quench any further reaction.
Water vapor is removed from the sampled gases (Drierite desiccant)
before entering the mass spectrometer (SRS RGA 200).

The probe is positioned with a precision stepping motor. Be-
ginning at the stagnation surface, the probe is moved downward
through the boundary layer. Upon arriving at each new measure-
ment position, the probe is held stationary. The flow field achieves
steady state conditions after approximately 2min following probe
movement. Once the flow has achieved steady state, the gas-phase
composition is measured via the mass spectrometer. A boundary-
layer profile typically consists of eight measurement points, span-
ning approximately 5mm below the stagnation surface.

Once a boundary-layer profile is measured for a certain set
of operating parameters, the operating conditions are adjusted

Figure 3-1: Stagnation flow reactor; figure
reproduced from [86].

The perfect gas equation (3.19) re-

lates the pressure 𝑝 to the temperature

𝑇 , density 𝜌, and the species mass frac-

tions at any point. In equations (3.14)–

(3.18), 𝜇 is the fluid dynamic viscosity, 𝜆

is the thermal conductivity, 𝑐𝑝 is the mix-

ture specific heat, 𝑐𝑝𝛼 are species specific

heats, ℎ𝛼 are species specific enthalpies,

and 𝑊𝛼 are the molecular weights of the

species. �̇�𝛼 denotes the molar produc-

tion rate of the gas-phase species indexed

by 𝛼, and �̇�𝛽 the production rate of the

surface species, indexed by 𝛽. There are 𝐾𝑔 gas-phase species and 𝐾𝑠 surface species.

A detailed chemical kinetic model is used to compute the species production rates �̇�𝛼

and �̇�𝛽.

We assume that every candidate detailed chemical kinetic model involving 𝑁

reactions among these species can be represented in the general form

𝐾𝑔+𝐾𝑠∑︁
𝑗=1

𝜈 ′𝑗,𝑖𝑋𝑗 ←→
𝐾𝑔+𝐾𝑠∑︁
𝑗=1

𝜈 ′′𝑗,𝑖𝑋𝑗, (𝑖 = 1 . . . 𝑁), (3.21)
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where 𝜈𝑗,𝑖 are integer stoichiometric coefficients and 𝑋𝑗 is the chemical name of the

𝑗th species. The molar production rates �̇�𝛼 and �̇�𝛽 are summations over all reactions:

�̇�𝛼 =
𝑁∑︁
𝑖=1

𝜈𝛼,𝑖𝑞𝑖, �̇�𝛽 =
𝑁∑︁
𝑖=1

𝜈𝛽,𝑖𝑞𝑖, (3.22)

where

𝜈𝛼,𝑖 = 𝜈 ′′𝛼,𝑖 − 𝜈 ′𝛼,𝑖, (3.23)

and similarly for 𝜈𝛽,𝑖. The rate of progress 𝑞𝑖 of the 𝑖th reaction, which is assumed to

obey mass-action kinetics, is the difference between the forward and reverse reaction

rates:

𝑞𝑖 = 𝑘𝑖,𝑓

𝐾𝑔+𝐾𝑠∏︁
𝑗=1

[𝑋𝑗]
𝜈′𝑗,𝑖 − 𝑘𝑖,𝑏

𝐾𝑔+𝐾𝑠∏︁
𝑗=1

[𝑋𝑗]
𝜈′′𝑗,𝑖 . (3.24)

The form of the concentrations [𝑋𝑗] in (3.24) depends on whether the species is in

gas phase or on the surface. Also, it is known from earlier work [85] that species

production rates due to purely gas-phase reactions are negligible at normal operating

conditions. Thus we omit purely gas-phase reactions when evaluating �̇�𝛼 in our

differential equation model.

The species diffusion velocities are computed using a multicomponent diffusion

model as

𝑉𝛼 =
1

𝑋𝛼�̄�

𝐾𝑔∑︁
𝑗 ̸=𝛼

𝑊𝑗𝐷𝛼,𝑗
𝑑𝑋𝑗

𝑑𝑧
− 𝐷𝑇

𝛼

𝜌𝑌𝛼

1

𝑇

𝑑𝑇

𝑑𝑧
. (3.25)

Here 𝑋𝛼 and 𝑋𝑗 are the species mole fractions, �̄� is the mean molecular weight, 𝐷𝛼,𝑗

are multicomponent diffusion coefficients, and 𝐷𝑇
𝛼 are thermal diffusion coefficients.

At the reactor inlet, boundary conditions are

𝑢 = 𝑈𝑖𝑛, 𝑉 = 0, 𝑇 = 𝑇𝑖𝑛, 𝑌𝛼 = 𝑌𝛼,𝑖𝑛, (3.26)
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and at the catalytic stagnation surface, the boundary conditions are

𝑢 = 0, 𝑉 = 0, 𝑇 = 𝑇𝑠, 𝜌𝑌𝛼𝑉𝛼 = 𝐹cg�̇�𝛼𝑊𝛼. (3.27)

The boundary condition in (3.27) states that the gas-phase species diffusion flux at

the stagnation surface is balanced by species consumption by catalytic reactions.

The boundary condition also contains a parameter 𝐹cg, which specifies the effective

catalyst area. Since the catalyst particles are dispersed in a porous medium, the

effective catalyst area 𝐴catalyst is much greater than the geometric area 𝐴geometric of

the stagnation surface. The parameter 𝐹cg is defined as

𝐹cg =
𝐴catalyst

𝐴geometric
(3.28)

The steady-state stagnation flow axisymmetric boundary layer equations form a sys-

tem of ordinary differential equations. These equations are discretized using a finite

difference method and the resulting algebraic equations are solved using a combi-

nation of pseudo-time marching and Newton’s method [77]. We use the chemically

reacting flow software package Cantera 2.0.2 [54] to compute species production rates

and to solve the steady-state stagnation flow axisymmetric boundary layer equations.

3.3.2 Proposed elementary reactions

Beginning with the work of Hickman et al. [68], kinetic models for reactions of methane

on rhodium have been developed via a combination of theoretical methods, fits to

available experimental data, and previous analyses of related species. [33, 85, 63].

Activation energies for surface reactions are often estimated using the semi-empirical

unity bond index-quadratic exponential potential (UBI-QEP) method. The determi-

nation of pre-exponential factors, however, has largely relied on fits to observed data

or the assignment of nominal values. The uncertainty associated with these rate de-

termination techniques and limited understanding of the associated catalytic reaction
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pathways make this system a good candidate for Bayesian model inference.

The set of proposed elementary reactions we use in our inference demonstrations

is taken from a comprehensive model proposed by McGuire et al. [85] recently and

is shown in Table 3.1. The reaction set consists of 42 irreversible elementary reac-

tions involving 12 surface-adsorbed species and gas-phase species. We retain the rate

parameters given by McGuire et al. [85] as base values for all reactions, except the

following two:

CO* + H* → HCO* + *

HCO* + * → CH* + O*

The pre-exponential factor of the first reaction above is changed from 5.0×1019 to 5.0×

1018, while that of the second reaction is changed from 3.7×1024 to 3.7×1023. These

changes yield minor improvements in agreement with data at the nominal parameter

values. The pre-exponential factors were previously assigned nominal values. The

activation energies were estimated by UBI-QEP method, which has an expected error

of 1–3 kcal/mol [63].

The surface reactions shown in Table 3.1 are of two different types: adsorp-

tion/desorption of gas-phase species and reactions among surface intermediates. In

this work, we do not consider the adsorption/desorption reactions (Reactions 31–42)

to be uncertain; rather, they are included in all models inferred. In the table, the

adsorption/desorption reactions are shaded pink, while the surface reactions we con-

sider to be uncertain are shaded green. In the three examples to be presented below,

we treat the thermodynamic properties of the surface species as fixed (i.e., not un-

certain). Although the thermodynamic properties are not precisely known, they are

fixed indirectly through the individual forward and reverse rate constants. The base

values of the forward and reverse rate constants, 𝑘𝑓 and 𝑘𝑏, were originally established

to satisfy approximate thermodynamic reversibility. Therefore, with the thermody-

namic properties fixed, we need only to specify the prior distribution and apply the
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model inference framework on the forward reactions. The reverse rate constant of

each reaction is then

𝑘𝑏 =
𝑘𝑓
𝐾𝑒𝑞

=
𝑘*𝑏
𝑘*𝑓
𝑘𝑓 , (3.29)

where 𝐾𝑒𝑞, the equilibrium constant of the reaction, is a function of the thermody-

namic properties of the species participating in the reaction. In the above equations,

𝑘𝑓 and 𝑘𝑏 are the perturbed rate constants of the reactions while 𝑘*𝑓 and 𝑘*𝑏 are the

base rate constants.

3.3.3 Setup of the Bayesian model inference problem

Before discussing the three model inference examples individually, we describe the

choices we make for the likelihood function and prior distribution in our Bayesian

formulation. In the following, we use 𝑘 to refer to the rate constants of the reactions

that are treated as uncertain and 𝑘 to denote the rate constants of reactions that are

kept fixed. By “fixed,” we mean that a particular reaction is always included in the

model and that its rate constant is not a target of the inference procedure.

Likelihood function

As described in Section 3.1, evaluating the posterior probability in the Bayesian

approach requires evaluating the likelihood function 𝑝(𝒟|𝑘), where 𝒟 are the data

and 𝑘 = (𝑘, 𝑘) are the reaction parameters. We employ an i.i.d. additive Gaussian

model for the difference between model predictions and observations; thus the data

are represented as

𝒟 = 𝐺(𝑘, 𝑘) + 𝜖𝑛, (3.30)

where 𝜖𝑛 ∼ 𝒩𝑛(0, 𝜎2𝐼𝑛), 𝑛 is the number of observations, 𝐼𝑛 is an 𝑛-by-𝑛 identity

matrix, and 𝐺(𝑘, 𝑘) is the prediction of the forward model at the given value of the

reaction parameters. We let the noise standard deviation 𝜎 be 0.005. The determinis-

tic predictions 𝐺(𝑘, 𝑘) are obtained with the stagnation flow reactor model explained
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Reaction 𝐴 𝐸𝑎 Uncertainty applied†

1 H* + O* → OH* + * 5.0× 1022 83.7 log10 𝑘 = log10 𝑘
* + 𝒰 [−2, 2]

2 H* + OH* → H2O* + * 3.0× 1020 33.5 log10 𝑘 = log10 𝑘
* + 𝒰 [−2, 2]

3 OH* + OH* → H2O* + O* 3.0× 1021 100.8 log10 𝑘 = log10 𝑘
* + 𝒰 [−2, 2]

4 CO* + O* → CO2* + * 5.5× 1018 121.6 log10 𝑘 = log10 𝑘
* + 𝒰 [−2, 2]

5 CH4* + * → CH3* + H* 3.7× 1021 61.0 log10 𝑘 = log10 𝑘
* + 𝒰 [−2, 2]

6 CH3* + * → CH2* + H* 3.7× 1024 103.0 log10 𝑘 = log10 𝑘
* + 𝒰 [−2, 2]

7 CH2* + * → CH* + H* 3.7× 1024 100.0 log10 𝑘 = log10 𝑘
* + 𝒰 [−2, 2]

8 CH4* + O* → CH3* + OH* 1.7× 1024 80.34 log10 𝑘 = log10 𝑘
* + 𝒰 [−2, 2]

9 CH3* + O* → CH2* + OH* 3.7× 1024 120.31 log10 𝑘 = log10 𝑘
* + 𝒰 [−2, 2]

10 CH2* + O* → CH* + OH* 3.7× 1024 114.5 log10 𝑘 = log10 𝑘
* + 𝒰 [−2, 2]

11 CH* + * → C* + H* 3.7× 1021 21.0 log10 𝑘 = log10 𝑘
* + 𝒰 [−2, 2]

12 CH* + O* → C* + OH* 3.7× 1021 30.13 log10 𝑘 = log10 𝑘
* + 𝒰 [−2, 2]

13 C* + O* → CO* + * 5.2× 1023 97.9 log10 𝑘 = log10 𝑘
* + 𝒰 [−2, 2]

14 CO* + H* → HCO* + * 5.0× 1018 108.9 log10 𝑘 = log10 𝑘
* + 𝒰 [−2, 2]

15 HCO* + * → CH* + O* 3.7× 1023 59.5 log10 𝑘 = log10 𝑘
* + 𝒰 [−2, 2]

16 OH* + * → H* + O* 3.0× 1020 37.7 𝑘 = 𝑘*16𝑘1/𝑘
*
1

17 H2O* + * → H* + OH* 5.0× 1022 106.4 𝑘 = 𝑘*17𝑘2/𝑘
*
2

18 H2O* + O* → OH* + OH* 3.0× 1021 171.8 𝑘 = 𝑘*18𝑘3/𝑘
*
3

19 CO2* + * → CO* + O* 3.0× 1021 115.3 𝑘 = 𝑘*19𝑘4/𝑘
*
4

20 CH3* + H* → CH4* + * 3.7× 1021 51.0 𝑘 = 𝑘*20𝑘5/𝑘
*
5

21 CH2* + H* → CH3* + * 3.7× 1023 44.1 𝑘 = 𝑘*21𝑘6/𝑘
*
6

22 CH* + H* → CH2* + * 3.7× 1021 68.0 𝑘 = 𝑘*22𝑘7/𝑘
*
7

23 CH3* + OH* → CH4* + O* 3.7× 1021 24.27 𝑘 = 𝑘*23𝑘8/𝑘
*
8

24 CH2* + OH* → CH3* + O* 3.7× 1021 15.06 𝑘 = 𝑘*24𝑘9/𝑘
*
9

25 CH* + OH* → CH2* + O* 3.7× 1021 36.82 𝑘 = 𝑘*25𝑘10/𝑘
*
10

26 C* + H* → CH* + * 3.7× 1021 172.8 𝑘 = 𝑘*26𝑘11/𝑘
*
11

27 C* + OH* → CH* + O* 3.7× 1021 136.0 𝑘 = 𝑘*27𝑘12/𝑘
*
12

28 CO* + * → C* + O* 2.5× 1021 169.0 𝑘 = 𝑘*28𝑘13/𝑘
*
13

29 HCO* + * → CO* + H* 3.7× 1021 0.0 𝑘 = 𝑘*29𝑘14/𝑘
*
14

𝜃*𝐶𝑂 50.0𝑏
30 CH* + O* → HCO* + * 3.7× 1021 167.5 𝑘 = 𝑘*30𝑘15/𝑘

*
15

31 H2 + * + * → H* + H* 1.0× 10−2𝑎 0.0 -
32 O2 + * + * → O* + O* 1.0× 10−2𝑎 0.0 -
33 CH4 + * → CH4* 8.0× 10−3𝑎 0.0 -
34 H2O + * → H2O* 1.0× 10−1𝑎 0.0 -
35 CO2 + * → CO2* 4.8× 10−2𝑎 0.0 -
36 CO + * → CO* 5.0× 10−1𝑎 0.0 -
37 H* + H* → H2 + * + * 3.0× 1021 77.8 -
38 O* + O* → O2 + * + * 1.3× 1022 355.2 -

𝜃*𝑂 -280.0𝑏
39 CH4* → CH4 + * 1.9× 1014 25.1 -
40 H2O* → H2O + * 3.0× 1013 45.0 -
41 CO2* → CO2 + * 4.1× 1011 18.0 -
42 CO* → CO + * 3.5× 1013 133.4 -

𝜃*𝐶𝑂 -15.0𝑏 -
†Arrhenius rate expression for 𝑘*(base value): 𝑘* = 𝐴 exp(−𝐸𝑎/𝑅𝑇 )
𝑎Sticking coefficient
𝑏Coverage-dependent activation energy
𝑏Forward-backward reaction pair I consists of reactions I and I+15

Table 3.1: Proposed reactions for reforming of methane
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in Section 3.3.1. The likelihood function is thus given by

𝑝(𝒟|𝑘) = 𝒩𝑛(𝒟|𝐺(𝑘, 𝑘), 𝜎2𝐼𝑛)

=
𝑛∏︁

𝑡=1

𝒩 (𝒟|𝐺(𝑘, 𝑘), 𝜎2)

=
𝑛∏︁

𝑡=1

1√
2𝜋𝜎2

exp

(︃
−(𝑑𝑡 −𝐺(𝑘, 𝑘))2

2𝜎2

)︃
, (3.31)

where 𝑑𝑡 are components of the data vector 𝒟.

Prior specification

The prior distribution in Bayesian analysis should encapsulate information about

models and parameters that is available before assimilation of the data presently at

hand. Often the priors come from known scientific principles and physical constraints

on the parameters. In the context of chemical kinetics, the continuous component of

the prior distribution may also derived from previous investigations of the reactions.

Furthermore, as described in Section 3.1, priors may also be shaped by expert elic-

itation [45] or chosen to reflect relative ignorance about the rate parameter values.

In our demonstrations we will choose relatively uninformative priors by allowing the

rate constants 𝑘 to vary by two orders of magnitude above and below their base val-

ues. Other prior choices, e.g., an exponential distribution or a uniform distribution

between zero and some positive upper bound, would also be reasonable. In the same

way, prior information about model structure—applied in the form of prior weights

on reaction inclusion or exclusion—can also be designed to reflect an investigator’s

belief about the role or importance of particular reactions in the chemical process.

To illustrate the impact of the prior, we consider three different prior specifications

in our numerical demonstrations:

∙ Prior 1: 𝑝(𝑘𝑖,𝑓 ) = 0.2𝛿(𝑘𝑖,𝑓 ) + 0.8𝒞(𝑘𝑖,𝑓 ),

∙ Prior 2: 𝑝(𝑘𝑖,𝑓 ) = 0.5𝛿(𝑘𝑖,𝑓 ) + 0.5𝒞(𝑘𝑖,𝑓 ),
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∙ Prior 3: 𝑝(𝑘𝑖,𝑓 ) = 0.8𝛿(𝑘𝑖,𝑓 ) + 0.2𝒞(𝑘𝑖,𝑓 ),

The prior distributions above are imposed identically on each reaction. Since reaction

rate constants must be positive, while their uncertainties may multiple orders of

magnitude, we take the continuous component of each prior distribution to be a

bounded uniform distribution on the logarithm of the rate constant. Specifically, we

set each 𝒞(𝑘𝑖,𝑓 ) to

𝒞(𝑘𝑖,𝑓 ) : log10 𝑘𝑖,𝑓 ∼ 𝒰(log10 𝑘
*
𝑖,𝑓 − 2, log10 𝑘

*
𝑖,𝑓 + 2), (3.32)

where each 𝑘*𝑖,𝑓 above is the base value of the 𝑖th forward rate constant. For simplicity,

the priors used here are all of same family and width, but in general, one could

certaintly endow each of the 15 rate constants with distinct priors. One could even

encode prior correlations among the rate constants.

The three prior specifications above reflect different prior beliefs in the size and

sparsity of the reaction mechanism. Prior 1, with a weight of 0.8 on the continuous

component, has a tendency to favor kinetic models with more reactions. Prior 2 is

the indifference prior with no preference for inclusion or exclusion of reactions; it

is equivalent to a uniform prior distribution on the space of all 2𝑁 possible models,

and thus allows the data to completely determine the most probable set of reactions.

Prior 3 favors smaller models, and is an example of a sparsity-promoting prior. Such

priors introduce additional parsimony in model structure, over and above the penalty

on model complexity automatically imposed by the Bayesian Occam’s razor. By

using priors that favor reaction exclusion, the posterior distribution over models is

biased towards simpler reaction network structures; this has the potential of improving

prediction accuracy over unobserved data [64].
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3.3.4 Example 1: Steam reforming of methane with synthetic

data

In this first example, we infer kinetic models for steam reforming of methane from

data generated using a known model. The goal of this example is to demonstrate

the consistency of the Bayesian model inference process and to examine the impact

of varying amounts of data. We create four synthetic (nested) data sets increasing in

size from 10, 20, 40, to 60 points. The data are mole fractions of gas-phase species

(H2, H2O, CH4, CO, and CO2) measured at different locations inside the stagnation

flow reactor, at up to three different catalyst surface temperatures 𝑇𝑠. Data set 1

consists of mole fractions 0.1 mm and 0.7 mm from the catalyst surface, while data

sets 2, 3, and 4 contain measurements performed 0.1 mm, 0.7 mm, 1.3 mm, and 2

mm from the catalyst surface. Further details on each data set are given in Table 3.2.

We generate the data using a kinetic model that contains all the reactions shown in

Table 3.1, except reaction pairs (4)–(19) and (6)–(21). Samples of Gaussian noise with

mean zero and standard deviation 𝜎 = 0.005 are added to these model predictions

to simulate noisy experimental observations. For the purpose of this example, we

allow only four reaction pairs to have uncertain parameters and to be candidates for

inclusion/exclusion. The other reactions are kept fixed at their base values for the

likelihood calculation. The uncertain reaction pairs are shown in Table 3.3.

Data set Number of data points Catalyst temperatures
1 10 740∘C
2 20 740∘C
3 40 740∘C, 790∘C
4 60 740∘C, 790∘C, 840∘C

Table 3.2: Synthetic data sets for Example 1.

Because we consider only four reaction pairs to have inclusion/exclusion uncer-

tainty, the number of possible models in the present example is 24 = 16. We employ

the indifference prior (Prior 2) described in the previous section. 200 000 samples are
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Reaction pair† Reaction
1 (1)–(16) H* + O* ↔ OH* + *
2 (4)–(19) CO* + O* ↔ CO2* + *
3 (5)–(20) CH4* + * ↔ CH3* + H*
4 (6)–(21) CH3* + * ↔ CH2* + H*
†Reaction pair numbering in the leftmost column is specific to Example 1.

Table 3.3: Proposed reactions for inference in Example 1.

then simulated from the posterior distribution of 𝑘, using adaptive MCMC, for each

of the four data sets. We begin adaptation after generating the first 20 000 samples

and discard the next 20 000 samples as burn-in, while the proposal parameters adapt.

The most probable models and their probabilities are computed using the remaining

160 000 samples; these are shown in Table 3.4.

Data set 1 Data set 2

Reaction pairs included Probability Reaction pairs included Probability

1, 3 0.281 1, 3 0.375

1, 4 0.256 1, 3, 4 0.197

1, 3, 4 0.165 1, 4 0.195

1 0.146 1 0.082

1, 2, 3 0.056 1, 2, 3 0.073

Data set 3 Data set 4

Reaction pairs included Probability Reaction pairs included Probability

1, 3 0.482 1, 3 0.525

1, 2, 3 0.316 1, 2, 3 0.253

1, 3, 4 0.122 1, 3, 4 0.152

1, 2, 3, 4 0.072 1, 2, 3, 4 0.070

1, 4 0.006 1, 4 0.001

Table 3.4: The five most probable models and their probabilities, from Example 1.

We see from the inference results that the data-generating model (i.e., the “true”
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model) is selected with highest posterior probability for every data set. Although it

is possible in principle for the true model not to be assigned the highest posterior

probability for finite data [16], we notice here that the true model is always preferred

and moreover that its probability increases with more data. This trend also demon-

strates the diminishing impact of the prior distribution as more data are included.

Indeed, Bayesian model inference is known to be asymptotically consistent, i.e., the

posterior concentrates on the true model given infinite data [12], provided that true

model is within the set of models being considered.

3.3.5 Example 2: Steam reforming of methane with real data

The second example considers inference of chemical kinetic models for steam reform-

ing of methane using real experimental data from a stagnation flow reactor apparatus

[86]. The operating conditions of the experiment are given in Table 3.5; further

specifics on the experimental data set (e.g., species and measurement locations) can

be found in [86].

In this example, we consider all three prior specifications (Section 3.3.3) imposed

on all 15 of the uncertain reaction pairs in Table 3.1. Using the adaptive MCMC

procedure of Section 3.2.1, we generate 200 000 samples from the posterior distribution

of 𝑘. Again, we begin adaptation after generating the first 20 000 samples and discard

the next 20 000 samples as burn-in. Posterior model probabilities are estimated from

the remaining 160 000 samples.

Table 3.6 shows the ten most probable models for each prior specification, and their

corresponding frequency (in a total population of 160 000 samples). As expected, the

sparsity of the most probable models increases with the weight on the 𝛿-component in

the prior. In the case of Prior 1, the model that includes all the reactions is strongly

preferred. For Prior 2, the most probable model includes all the reactions except pairs

6–21, 12–27, and 14–29. The exclusion of these three reaction pairs, particularly in

the case of an indifference prior, is an example of the Bayesian Occam’s razor in

75



action. Prior 3 results in extremely sparse models. Reaction networks corresponding

to the highest probability models for the three prior settings are shown in Figure 3-2.

Condition Value

Inlet composition (by mole fractions) 4.3% CH4 and 5.9% H2O (balance Ar)

Inlet temperature 135∘C

Catalyst surface temperature 740∘C

Inlet velocity 1.3 m/s

Reactor pressure 300 Torr

𝐹cg 20

Table 3.5: Experimental operating conditions for Example 2, from [86].

We also show in Figure 3-3 the posterior marginal inclusion probability of each

reaction pair. Since the marginal inclusion probability of a reaction is the average of

its inclusion indicator over all possible models in the posterior, it provides a measure

of how strongly an individual reaction is supported by the available data. In all three

panels of Figure 3-3, we note that the posterior inclusion probability of reaction pair

3–18 is identical to its prior inclusion probability. Reaction pairs 14–29 and 15–30

(reactions involving species HCO*) also have a negligible difference between their

prior and posterior inclusion probabilities. These results suggest that the data are

not informative about these reactions; in other words, these reactions seem to have

an insignificant effect on the level of agreement between model predictions and the

available data. Invoking a further principle of parsimony, it may thus be prudent

to exclude reaction pairs 3–18, 14–29, and 15–30 from the predictive model, or to

reassess their importance by collecting more data.

Figure 3-3 also shows that the posterior marginal inclusion probabilities of reaction

pairs 1–16, 2–17, 4–19, and 13–28 remain close to one for each prior specification; these

reactions are thus the most strongly supported by available data. The inclusion of

reaction pair 4–19 with probability one in all the inferred models is confirmation that
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(c) 𝑝(𝑘𝑖,𝑓 ) = 0.8𝛿(𝑘𝑖,𝑓 ) + 0.2𝒞(𝑘𝑖,𝑓 )

Figure 3-2: Reaction networks of the highest posterior probability models for steam
reforming of methane (Example 2), under different prior specifications. Edge thick-
nesses are proportional to reaction rates calculated using posterior mean values of the
rate parameters.
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the inference procedure is working well, in that it does not exclude reactions that

are absolutely necessary for production of the observed product species. Among all

the uncertain reaction pairs, reactions 4 and 19 are the only pair containing CO*
2,

and their inclusion ensures that the model produces CO2 as one of the products. In

general, the near-unity posterior probabilities suggest that all four of these reaction

pairs are critical to explaining the steam reforming behavior of methane.

It is important to note, however, that the marginal inclusion probabilities shown

in Figure 3-3 do not capture correlations among the values of the reaction rate param-

eters or patterns of joint inclusion/exclusion. The joint posterior probability distri-

bution of the rate parameters, which we have sampled using MCMC, in fact contains

much more information. In particular, it contains information about combinations of

reactions and how well particular combinations are supported by the current data.

Reaction prior probability Reaction prior probability Reaction prior probability

0.2𝛿(𝑘𝑖,𝑓 ) + 0.8𝒞(𝑘𝑖,𝑓 ) 0.5𝛿(𝑘𝑖,𝑓 ) + 0.5𝒞(𝑘𝑖,𝑓 ) 0.8𝛿(𝑘𝑖,𝑓 ) + 0.2𝒞(𝑘𝑖,𝑓 )

Freq Excluded pairs† Freq Excluded pairs† Freq Excluded pairs†

16157 – 521 6, 12, 14 4221 3, 5, 7, 9, 12, 14, 15

4894 7 496 6, 8, 10, 12, 14 3533 3, 5, 9, 10, 12, 14, 15

4845 6 493 7, 11 3447 3, 5, 6, 7, 11, 14, 15

4545 12 477 7, 9, 11, 14 3379 3, 5, 6, 10, 11, 14, 15

4326 9 464 3, 6, 12, 14 3340 3, 5, 7, 9, 11, 14, 15

4237 10 457 3, 6, 10, 11, 14 3318 3, 5, 6, 7, 12, 14, 15

4168 11 454 6, 10, 12, 14 3153 3, 6, 8, 10, 12, 14, 15

3954 3 451 6, 12 3033 3, 7, 8, 9, 12, 14, 15

3908 15 451 7, 11, 15 2878 3, 5, 9, 10, 11, 14, 15

3902 14 441 6, 10, 11, 15 2640 3, 7, 8, 9, 11, 14, 15
†Reaction pairs are denoted here by the number associated with the forward reaction

Table 3.6: The ten models with highest posterior probability in Example 2, for each
choice of prior.
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(a) Prior: 0.2𝛿(𝑘𝑖,𝑓 ) + 0.8𝒞(𝑘𝑖,𝑓 )
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(b) Prior: 0.5𝛿(𝑘𝑖,𝑓 ) + 0.5𝒞(𝑘𝑖,𝑓 )
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(c) Prior: 0.8𝛿(𝑘𝑖,𝑓 ) + 0.2𝒞(𝑘𝑖,𝑓 )

Figure 3-3: Posterior reaction inclusion probabilities of all reactions for the three
prior specifications in Example 2. The red line indicates the prior reaction inclusion
probability.
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(c) Pathway 3

Figure 3-4: Reaction pathways for steam reforming of methane on rhodium (Example
2). Pathway 1 involves both species C* and HCO*, Pathway 2 excludes HCO*, and
Pathway 3 excludes C* species. All other reactions that are treated as uncertain and
that do not involve C* and HCO* are dotted. Reactions involving gas-phase species
are shown as regular lines. 80



One way of interrogating the joint information embedded in the posterior distri-

bution is to focus attention on particular pathways in the reaction network. Looking

at the reaction network in Figure 3-2a (which contains all the proposed reactions),

it is possible to discern three clear pathways for the conversion of reactants H2O and

CH4 into products CO2, CO, and H2. The first pathway includes both C* and HCO*

species, the second pathway excludes HCO* and retains C*, and the third pathway

excludes C* but retains HCO*. The three possible reaction pathways are shown

schematically in Figure 3-4. We use samples from the joint posterior distribution to

quantify the degree to which each of these pathways is supported by available data.

The posterior probability of each pathway is obtained by computing the fraction of

posterior samples (i.e., candidate models) that contain the pathway. It is important to

note that the probabilities obtained in this fashion correctly account for uncertainties

in the other reactions (i.e., reactions not part of the pathway under consideration) by

marginalizing over them. This contrasts with a method that simply compares three

models, one corresponding to each pathway, while arbitrarily fixing or excluding all

the other reactions. Given the data produced by the steam reforming experiments

of McGuire et al. [86], the estimated posterior probabilities of the three pathways

are shown in Table 3.7. We observe that the dominant pathway is the C* pathway.

The HCO* pathway has nearly zero probability. This conclusion supports the view

commonly held in the literature that steam reforming of methane operates through

the C* pathway and that the inclusion of HCO* in the kinetic model is superfluous

[86, 85].

Pathway Prior 1 Prior 2 Prior 3
Prior Posterior Prior Posterior Prior Posterior

1 (both C* and HCO* present) 0.536 0.643 0.177 0.249 0.026 0.039
2 (only C* present) 0.302 0.343 0.529 0.733 0.633 0.961
3 (only HCO* present) 0.162 0.010 0.294 0.012 0.340 0.000

Table 3.7: Prior and posterior pathway probabilities for steam reforming of methane,
Example 2.
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3.3.6 Example 3: Dry reforming of methane with real data

In the third application of our inference framework, we infer chemical kinetic models

for dry reforming of methane using experimental data from a stagnation flow reactor

reported in [85]. Operating conditions for the experiment are given in Table 3.8,

and further specifics on the experimental data set (e.g., measured species and their

locations) can be found in [85]. All three prior specifications discussed in Section

3.3.3 are again considered. As in the previous example, 200 000 posterior samples are

simulated from a distribution encompassing all 15 uncertain reaction pairs given in

Table 3.1, for each prior specification.

Table 3.9 shows the ten most probable models for each prior specification and

their corresponding frequencies in 160 000 posterior samples. The highest posterior

probability model obtained with Prior 1 includes all the reactions; as in the previous

example, the weight specification of Prior 1 naturally favors larger models. With

Prior 2, i.e., the indifference prior, the posterior excludes many reactions, slightly

more than in Example 2. This reduction is again a demonstration of the penalty

on model complexity built into evaluations of the marginal likelihood. The sparsity-

promoting prior (Prior 3) pushes the posterior towards even smaller models, as seen

the third column of Table 3.9. Reaction networks corresponding to the highest-

frequency models for the three prior settings are illustrated in Figure 3-5.

Condition Value

Inlet composition (by mole fractions) 10% CH4 and 15% CO2 (balance Ar)

Inlet temperature 25∘C

Catalyst surface temperature 800∘C

Inlet velocity 0.9 ms−1

Reactor pressure 300 Torr

𝐹cg 56

Table 3.8: Experimental operating conditions for Example 3 [85].
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Marginal posterior inclusion probabilities of all reaction pairs for the three prior

specifications are shown in Figure 3-6. We see that the posterior inclusion probabilities

of all the reactions deviate from their prior inclusion probabilities, in contrast to

Example 2. This suggests that the experimental data used for this dry reforming

example is influenced by—and thus contains information about—every single reaction

pair. As in steam reforming, the inclusion of reaction pair 4–19 with probability one

confirms that the inference procedure is working well.

Reaction prior probability Reaction prior probability Reaction prior probability

0.2𝛿(𝑘𝑖,𝑓 ) + 0.8𝒞(𝑘𝑖,𝑓 ) 0.5𝛿(𝑘𝑖,𝑓 ) + 0.5𝒞(𝑘𝑖,𝑓 ) 0.8𝛿(𝑘𝑖,𝑓 ) + 0.2𝒞(𝑘𝑖,𝑓 )

Freq Excluded pairs† Freq Excluded pairs† Freq Excluded pairs†

7616 – 537 1, 2, 5, 9, 11, 14 4635 1, 3, 5, 10, 11, 12, 13

4950 6 488 1 10, 11, 12 3507 1, 2, 9, 10, 11, 14, 15

4800 5 484 1, 5, 10, 11, 14 3314 3, 5, 6, 10, 11, 12, 13

2892 7 445 1, 2, 5, 11, 14 3245 1, 2, 5, 9, 10, 11, 12, 13

2559 2, 6 401 1, 2, 5, 11 2608 1, 2, 9, 10, 11, 12, 13

2393 1 396 5, 6, 7, 14 2428 1, 2, 9, 10, 12, 14, 15

2107 12 392 5, 6, 7, 11, 14 2370 3, 5, 9, 10, 11, 12, 13

2023 15 391 5, 6, 10, 12, 15 1607 1, 3, 5, 7, 12, 14, 15

1889 9 369 5, 6, 7, 11 1511 3, 5, 6, 7, 12, 14, 15

1884 14 365 5, 6, 7, 14, 15 1448 1, 3, 7, 8, 12, 14, 15
†Reaction pairs are denoted here by the number associated with the forward reaction

Table 3.9: The ten models with highest posterior probability in Example 3, for each
choice of prior.

We also compute the posterior probabilities of the three distinct pathways shown

in Figure 3-7. Pathway 1 includes both C* and HCO*, pathway 2 excludes HCO* and

retains C*, and pathway 3 excludes C* and retains HCO*. The posterior probabilities

of the three pathways are shown in Table 3.10. Compared to the corresponding results

for steam reforming (Table 3.7), the present results suggest that the HCO* pathway
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(c) 𝑝(𝑘𝑖,𝑓 ) = 0.8𝛿(𝑘𝑖,𝑓 ) + 0.2𝒞(𝑘𝑖,𝑓 )

Figure 3-5: Reaction networks of the highest posterior probability models for dry
reforming of methane (Example 3), under different prior specifications. Edge thick-
nesses are proportional to reaction rates calculated using posterior mean values of the
rate parameters.
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is not unimportant to dry reforming. In other words, it is possible that dry reforming

of methane is realized through the generation of HCO*. With an indifference prior,

the HCO*-only pathway has a posterior probability of 8%. With a sparsity promoting

prior, the posterior probability of pathway 1 decreases dramatically and the posterior

places 23% of its mass on the HCO*-only route. That said, the C* pathway remains

very much the dominant pathway given the current data. Pathway 1 also has strong

support except in the case of the sparsity-promoting prior, which effectively forces

the posterior to “choose” between the two more parsimonious options. A clearer

conclusion can only result from collecting more data and repeating this analysis.

Pathway
Prior 1 Prior 2 Prior 3

Prior Posterior Prior Posterior Prior Posterior

1 (both C* and HCO* present) 0.536 0.596 0.177 0.244 0.026 0.034

2 (only C* present) 0.302 0.347 0.529 0.677 0.633 0.732

3 (only HCO* present ) 0.162 0.056 0.294 0.080 0.340 0.234

Table 3.10: Posterior pathway probabilities for dry reforming of methane, Example
3.

3.3.7 Efficiency of posterior sampling

To verify the numerical results reported in the preceding sections, we performed three

independent MCMC runs for each example problem and each prior specification, with

different initial guesses for the rate parameters 𝑘 in each case. Overall, the three repli-

cate runs yielded very similar results; the independent chains were able to identify the

high posterior probability models and accurately reproduce their probabilities. Yet

the quality of these posterior estimates, of course, depends on the number of posterior

samples employed—i.e., the length of the MCMC chains. Because the forward models

𝐺(𝑘, 𝑘) in this setting are computationally expensive, it is practically important to
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(b) Prior: 0.5𝛿(𝑘𝑖,𝑓 ) + 0.5𝒞(𝑘𝑖,𝑓 )
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(c) Prior: 0.8𝛿(𝑘𝑖,𝑓 ) + 0.2𝒞(𝑘𝑖,𝑓 )

Figure 3-6: Posterior reaction inclusion probabilities of all reactions for the three
prior specifications in Example 3. The red line indicates the prior reaction inclusion
probability.
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(c) Pathway 3

Figure 3-7: Reaction pathways for dry reforming of methane on rhodium (Example
3). Pathway 1 involves both species C* and HCO*, Pathway 2 excludes HCO*, and
Pathway 3 excludes C* species. All other reactions that are treated as uncertain and
that do not involve C* and HCO* are dotted. Reactions involving gas-phase species
are shown as regular lines.
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Figure 3-8: Autocorrelation at lag s of the log-posterior of the MCMC chains.

limit the number of samples. As described in Section 3.2, the variance of a poste-

rior estimate for a fixed number of samples depends on how well the chain is mixing

[3, 105]. The adaptive MCMC scheme employed here has been shown to significantly

improve mixing over non-adaptive schemes [73], but it is nonetheless important to

assess the quality of its sampling.

A useful diagnostic for the quality of MCMC mixing is the empirical autocorre-

lation of the chain. In particular, we compute the correlation between samples as

function of lag time. A steep decay in this autocorrelation means that successive

samples are less correlated and more nearly independent. While one could compute

the empirical autocorrelation for each reaction parameter individually, we instead

summarize MCMC mixing by computing the autocorrelation of successive values of

the log-posterior density. This is reported in Figure 3-8, for Examples 2 and 3 with

all three prior specifications.

The decay of the autocorrelation is relatively good in both cases, though the

MCMC chains mix more quickly in Example 2 than in Example 3. This difference

can be ascribed to differences in posterior structure. In Example 2, the C* pathway

is largely dominant, while in the dry reforming case of Example 3, both the C* and

HCO* pathways have appreciable posterior probabilities. The MCMC chain in Exam-

ple 3 thus has to switch between pathways more frequently, and each switch requires
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the inclusion and exclusion of multiple reactions. Even with the present adaptive

proposal distribution, this coordinated inclusion and exclusion is a relatively “large”

jump in the model space. Thus, while mixing is adequate in the current example, a

more computationally efficient approach—i.e., one that could achieve similar results

with fewer samples—might involve correlated proposal mechanisms that can learn not

just the marginal structure of the posterior in each parameter direction but the joint

structure of posterior. The design of such proposal mechanisms is a topic of ongoing

research.

3.3.8 Posterior parameter uncertainties

Thus far, we have focused our analysis on the posterior description of uncertainties in

model structure. But the across-model Bayesian inference framework also automat-

ically produces a full description of uncertainties in rate parameter values. In other

words, for every model in the posterior distribution, MCMC samples describe the

joint probability distribution of the rate parameters that are included in that model

(i.e., that are non-zero). Quantifying these parameter uncertainties is important when

developing a rigorous assessment of uncertainties in model predictions.

Here we provide one example of the posterior parameter uncertainties obtained

using our inference framework. Figure 3-9 shows 1-D and 2-D marginal distributions

of the rate constants of the highest-probability model for steam reforming (Example

2), using Prior 3. This model includes 8 of the 15 possible reactions (as described in

Table 3.6), and thus the continuous distribution over rate parameter values is sup-

ported on an eight-dimensional space. The diagonal of Figure 3-9 shows the marginal

probability density function of one parameter at a time, while the off-diagonal ele-

ments show the joint probability density of each pair of parameters (marginalizing

out the other six). The prior probability density was uniform over each box, and

thus the more focused contours indicate a significant reduction in prior uncertainty.

There is also some complex (and certainly non-Gaussian) structure in each pairwise
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marginal. This is the uncertainty given the experimental data at hand. Further re-

duction in parameter uncertainty would require the injection of additional data into

the inference process.
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Figure 3-9: 1-D and 2-D posterior marginals of the rate constants of the highest-
posterior-probability model for steam reforming (from Example 2), beginning with
the prior 𝑝(𝑘𝑖,𝑓 ) = 0.8𝛿(𝑘𝑖,𝑓 ) + 0.2𝒞(𝑘𝑖,𝑓 ). The logarithms here are base 10.
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Chapter 4

Network-aware inference

The network interaction of species in reaction models induces a special structure to

the network inference problem. The production/destruction of a species in a chemical

reaction model is directly linked to the concentrations of other species with which it

reacts. Therefore, the rate of production/consumption of a species is necessarily zero

if those other species are absent from the system. Practically, this means that by

excluding a reaction from a network, many other reactions are effectively eliminated

(i.e., have zero reaction rate). The rate constants of reactions whose rate is zero do

not affect the likelihood function and thus cannot be informed by the available data.

Another common difficulty with network inference problems is that the available

data is often sparse—data are directly linked to only a few chemical species. For

example, in applications of catalytic chemistry, only gas-phase species measurements

are practically feasible. While inferring protein signalling networks, only a few protein

concentrations may be measurable. The sparsity of data can mean that in spite

of a reaction being active (i.e., having non-zero rate), it has no influence on the

observables. Again, the rate constant values of these reactions are not informed by

data. In this chapter, we present methods that exploit the network-based species

interactions to improve the sampling efficiency of across-model network samplers.

The central theme of our network-aware MCMC methods is that the network
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structure of species interactions can be exploited to engineer improved between-model

parameter proposals. Firstly, we analyze the reaction network given a set of proposed

reactions to identify reactions that actually impact the observables. In other words, we

identify the smallest subset of the proposed reactions that would produce an identical

value of the marginal likelihood as the proposed set of reactions. This information is

then incorporated in the design of improved proposal distributions. Identification of

networks with identical marginal likelihood further allows variance reduction through

analytical computation of some conditional expectations. The second contribution

of this chapter is due to the recognition that between-model proposals can benefit

from designing better move types. For example, proposing good moves between two

networks in many instances requires updating even the rate constants of reactions

present in both networks. We present a method to identify “key” reactions whose rate

constants are also included in the between-model parameter proposals. This step is

then combined with the first idea to further enhance sampling efficiency.

4.1 Chemical reaction network structure

4.1.1 Reaction network elements

A chemical reaction network generally consists of two different elements. Chemical

species S and the interaction between species given by reactions R. Consider a simple

reaction network shown schematically in Figure 4-1. The reaction network consists

of 6 nodes denoting the chemical species and 6 edges corresponding to reactions.

An alternative representation of the reaction network involves writing the list of all

reactions:

1. Reaction 1: 1 → 2

2. Reaction 2: 2 → 3

3. Reaction 3: 3 → 4
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Figure 4-1: A simple reaction network

4. Reaction 4: 1 → 5

5. Reaction 5: 5 → 6

6. Reaction 6: 6 → 4

From a data-analytic perspective, we will classify all species into three categories.

Species initially present in the data-generating system are shown in green (Figure

4-2a), species produced only during the operation of the system are shown in blue

(Figure 4-2b), and species that are either directly observed, or are directly linked

to the observed data—referred to as observables—are shown by red nodes (Figure

4-2c). Next we discuss some common species interaction elements (reactions) present

in reaction networks.

Figure 4-2e depicts an irreversible reaction in which 𝐴 and 𝐵 are the reactants

and 𝐶 and 𝐷 are the products. Figure 4-2f shows a reversible reaction involving

with 𝐸 and 𝐹 the reactants and 𝐺 and 𝐻 the products. Figure 4-2g denotes
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Figure 4-2: Common reaction network elements
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an irreversible reaction between 𝐾 and 𝐽 , with 𝐼 acting as an enzyme/catalyst.

Enzymes are chemical species that are needed for the reaction to proceed, but do not

get consumed or produced during the course of the reaction. All species interactions

(reactions) are defined by ordinary differential equations, with the corresponding rate

expressions obtained by the law of mass action or Michaelis-Menten kinetics.

4.1.2 Effective reaction network
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Figure 4-3: Reaction network with all reactions

A reaction network may contain reactions that may not be active or reactions that

are active and yet incapable of impacting the observables due to the network-based
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interactions of all species. Consider, for example, a set of proposed reactions given

by the full reaction network in Figure 4-3. Two possible reduced reaction networks,

obtained by removing reactions 3 and 6, respectively, from the full reaction network

4-3 are shown in Figure 4-4. We define the effective network of a reaction network to

be the smallest subset of all reactions in the network that produces an identical value

of the observables as the given reaction network. This implies that the additional

reactions in a network compared to the effective network do not affect the observable

value for any parameter setting, and the reaction network has the same marginal

likelihood value as the effective reaction network. Both reduced networks shown in

Figure 4-4 have the same effective network (Figure 4-5). In reaction network 1, the

non-production of species 6 renders reactions 4, 5, 6, and 9 inactive, and thus the

value of the observable 8 is independent of their rate constant values. In case

of reaction network 2, although reactions 3, 4, 5, and 9 are active, they are linked

to the observable 8 through species 1 and 11 , which are enzymes. Recall that

catalyst/enzyme concentration is not affected by the reaction in which it participates.

Thus, the observable is again independent of the rate constants of reactions 3,4,5, and

9. Given a set of proposed reactions, one can obtain all the plausible reaction networks

and their corresponding effective networks.

4.1.3 Determining effective networks from proposed reactions

Before we begin sampling over the space of models and parameters, we first deter-

mine the effective networks of all plausible networks. If 𝑁 is the total number of

proposed reactions, the set of possible networks may be 2𝑁 , although incorporating

prior knowledge to eliminate highly unlikely models may also be a practical choice.

In either case, if the number of possible networks is very high, one may choose to

determine effective networks online only for models visited by the sampler. Our pro-

cedure to determine the effective network given a set of reactions and observables is

given by Algorithm 5. The approach we employ to determine the effective network
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Figure 4-4: Two reaction networks with the same effective network
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Figure 4-5: Effective reaction network
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involves first identifying all reactions that are active given all species with nonzero

initial concentration and then testing all active reactions to check if they actually

influence the observables. The steps involved in checking whether a particular active

reaction influences the observables are given by Algorithm 6.

4.1.4 The space of model clusters

Given a set of proposed reactions, we can determine the effective reaction networks

for all reaction networks using the algorithm in the last section. We are now in a

position to define clusters of models. A cluster is defined as the collection of all models

with the same effective network. Thus, assuming the models have been assigned a

prior distribution 𝑝({𝑀𝑗}), the cluster prior probability is given by

𝑝(𝐶𝐾) =
∑︁

𝑀𝑚∈𝐶𝐾

𝑝(𝑀𝑚). (4.1)

Further, the set of clusters has the following property:

𝐶𝐾 ∩ 𝐶𝐽 = ∅ for 𝐾 ̸= 𝐽 (4.2)

and

⋃︁
𝐾

𝐶𝐾 =ℳ, (4.3)

whereℳ is the complete space of all networks.

4.2 Reversible jump Markov chain Monte Carlo

In Chapter 3, we described a fixed-dimensional adaptive MCMC algorithm for model-

space sampling. Here we work in the more general reversible-jump MCMC (RJM-

CMC) framework which affords greater flexibility in proposal constructions. However,

98



Algorithm 5 Effective reaction network from a set of reactions
1: Given: 𝑅𝑝𝑟𝑜𝑝: proposed reactions; 𝑆𝑖𝑛 species initially present;
2: 𝑅𝑒: reactions in effective network, 𝑅𝑒 = ∅; 𝑆𝑒: species in the effective network,
𝑆𝑒 = 𝑆𝑖𝑛

3: 𝑟𝑖: reactants of reaction 𝑖; 𝑝𝑖: products of reaction 𝑖; 𝑎𝑖: enzymes of reaction 𝑖
4: 𝑛

′
𝑒 = 0, 𝑡′𝑒 = 0

5: while 𝑛′
𝑒 ̸= |𝑅𝑒| and 𝑡′𝑒 ̸= |𝑆𝑒| do

6: 𝑛
′
𝑒 = |𝑅𝑒| and 𝑡′𝑒 = |𝑆𝑒|

7: for 𝑖 = 1 to |𝑅𝑝𝑟𝑜𝑝| do
8: if Reaction 𝑅𝑖 irreversible then
9: if (𝑟𝑖 ∪ 𝑎𝑖) ∈ 𝑆𝑒 then

10: 𝑅𝑒 = 𝑅𝑒 ∪𝑅𝑖 and 𝑆𝑒 = 𝑆𝑒 ∪ 𝑝𝑖
11: end if
12: else if Reaction 𝑅𝑖 is reversible then
13: if (𝑟𝑖 ∪ 𝑎𝑖) ∈ 𝑆𝑒 or (𝑝𝑖 ∪ 𝑎𝑖) ∈ 𝑆𝑒 then
14: 𝑅𝑒 = 𝑅𝑒 ∪𝑅𝑖 and 𝑆𝑒 = 𝑆𝑒 ∪ 𝑝𝑖 ∪ 𝑟𝑖
15: end if
16: end if
17: end for
18: end while
19: 𝑅𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑅𝑒

20: for 𝑖 = 1 to |𝑅𝑒| do
21: Inf ← Algorithm 6 (𝑅𝑎𝑐𝑡𝑖𝑣𝑒, 𝑅𝑖)
22: if Inf==0 then
23: 𝑅𝑒 = 𝑅𝑒 ∖ {𝑅𝑖}
24: end if
25: end for

the ideas discussed here can be applied to the adaptive MCMC framework too. Re-

call that the reversible jump MCMC is a general across-model sampling algorithm

that jointly samples the space of models and their corresponding parameters (Section

2.6.4).

4.2.1 Parameter proposals for RJMCMC

The sampling efficiency of reversible jump MCMC simulation hinges on the choice

of the map function 𝑓 , the parameter proposal distributions 𝑞(𝑢|𝑘𝑀) and 𝑞(𝑢′|𝑘𝑀 ′),

and model-move proposal distribution 𝑞(𝑀 ′|𝑀). The model-move proposal 𝑞(𝑀 ′|𝑀)
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Algorithm 6 Algorithm to check if reaction 𝑅𝐼 influences the observables
1: Given: Active reactions 𝑅𝑎𝑐𝑡; Observables 𝑂
2: 𝑆𝑖𝑛𝑐: collection of species, 𝑆𝑖𝑛𝑐 = 𝑟𝑖∪𝑝𝑖; 𝑅𝑖𝑛𝑐: collection of reactions, 𝑅𝑖𝑛𝑐 = 𝑅𝑖

3: 𝑡
′
𝑖𝑛𝑐 = 0

4: while 𝑡′𝑖𝑛𝑐 ̸= |𝑆𝑖𝑛𝑐| do
5: 𝑡

′
𝑖𝑛𝑐 = |𝑆𝑖𝑛𝑐|

6: for 𝑗 = 1 to |𝑅𝑎𝑐𝑡| do
7: if 𝑅𝑗 ̸∈ 𝑅𝑖𝑛𝑐 then
8: if 𝑟𝑗 ∪ 𝑎𝑗 ∈ 𝑆𝑖𝑛𝑐 or 𝑝𝑗 ∈ 𝑆𝑖𝑛𝑐 then
9: 𝑅𝑖𝑛𝑐 = 𝑅𝑖𝑛𝑐 ∪𝑅𝑗

10: end if
11: end if
12: end for
13: for 𝑗 = 1 to |𝑅𝑖𝑛𝑐| do
14: 𝑆𝑖𝑛𝑐 = 𝑆𝑖𝑛𝑐 ∪ 𝑝𝑗 ∪ 𝑟𝑗
15: end for
16: end while
17: if 𝑂 ∈ 𝑆𝑖𝑛𝑐 then
18: Inf=1
19: end if

is generally chosen so that every move adds or delete one reaction. This choice is made

due to the difficulty in constructing effective parameter proposals in high dimensions.

The selection of the jump function 𝑓 and the parameter proposals 𝑞 is based on the

goal of improving between-model acceptances for both the forward (𝑀 → 𝑀 ′) and

reverse (𝑀 ′ →𝑀) model moves. Higher between-model acceptance rates may be ob-

tained by “aligning” densities between the posterior and the proposals corresponding

to the two models between which moves are proposed. As an example, consider moves

between a one-dimensional model 𝑀1 (unnormalized posterior density: 𝑝(𝑘1|𝒟)) and

a two-dimensional model 𝑀2 (unnormalized posterior density: 𝑝(𝑘2,1, 𝑘2,2|𝒟)) shown

in Figure 4-6, accomplished with proposal 𝑞(𝑢|𝑘1). By choosing the function 𝑓 and

the shape of the proposal 𝑞(𝑢|𝑘1) such that the regions of high density and low density

in the two spaces ((𝑘1, 𝑢) and (𝑘2,1, 𝑘2,2)) are mapping to each other, respectively, and

the joint densities 𝑝(𝑘1|𝒟)𝑞(𝑢|𝑘1) and 𝑝(𝑓(𝑘2,1, 𝑘2,2)|𝒟) are similar in value in the two

spaces, high between-model acceptance rates may be achieved. Intuitively, the above
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construction is attempting to choose 𝑓 and 𝑞 so as to make the acceptance rate close

to 1 for all moves between the two spaces.

𝑘1 𝑘2,1

𝑘2,2

𝑢

Model 1: 𝑝(𝑘1|𝒟) Model 2: 𝑝(𝑘2,1, 𝑘2,2|𝒟)

Proposal: 𝑞(𝑢|𝑘1)

Figure 4-6: Efficient RJMCMC: align densities on (𝑘1, 𝑢) to (𝑘2,1, 𝑘2,2) accurately

The selection of a good map 𝑓 and the design of proposal distribution 𝑞(𝑢|𝑘𝑀) in

RJMCMC is challenging and often chosen based on pilot simulations. The high cost

and typically poor performance of the pilot-run based RJMCMC has prompted the

development of methods for automatic proposal construction [1, 20, 36, 38, 58, 59]. All

the above methods attempt to increase the acceptance rate of between-model moves

at an additional computational expense, and have shown to improve performance in

a number of cases. Brooks et al. [20] provide a general framework to understand and
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construct efficient reversible-jump proposals based on an analysis of the acceptance

probability. Our work fits in their their 𝑛𝑡ℎ-order condition proposal framework and

we briefly review it here.

Centered 𝑛𝑡ℎ-order condition based proposals

The 𝑛𝑡ℎ-order (𝑛 ≥ 1) proposal conditions of Brooks et al. [20] is based on setting a

series of derivatives (with respect to 𝑢) of the acceptance ratio 𝐴 (2.37) for proposal

moves between models 𝑀 and 𝑀 ′ to the zero vector at a specific point 𝑐𝑀→𝑀 ′(𝑘𝑀)

known as the centering point :

∇𝑛𝐴[(𝑀,𝑘𝑀), (𝑀 ′, 𝑐𝑀→𝑀 ′(𝑘𝑀))] = 0 (4.4)

The centering point 𝑐𝑀→𝑀 ′(𝑘𝑀) is taken to be the equivalent point of parameter

vector 𝑘𝑀 in model 𝑀 ′. Centering the proposal 𝑞(𝑢|𝑘𝑀) at the conditional maximum

of the posterior density 𝑝(𝑓(𝑘𝑀 ,𝑢),𝑀 ′) is one intuitive choice and aims to increase

the frequency of moves between models. In addition to the 𝑛𝑡ℎ-order condition, Brooks

et al. [20] also introduce the zeroth-order condition in which the acceptance ratio

is set to 1 at the centering point. Note the traditional random-walk Metropolis

algorithm for posterior distribution on R𝑚 satisfies the zeroth-order condition at a

central move corresponding to a step of size 0. Similarly, Langevin algorithms satisfy

both the zeroth-order and first-order conditions at the above central move. The zeroth

and 𝑛𝑡ℎ order conditions aim to adapt proposal parameters on the current state of

the chain (𝑀,𝑘𝑀), instead of relying on constant proposal parameters for all state

transitions. Brooks et al. [20] further show that for a simple two model case, the

𝑛𝑡ℎ-order conditions are optimal in terms of the capacitance of the algorithm [80].
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4.3 Network analysis for improved sampling efficiency

We now explain how we use the effective reaction networks obtained using our Algo-

rithm 5 to design more efficient across-model samplers. We propose two methods for

performance improvement. First, we use network information to determine improved

parameter proposal densities 𝑞(𝑢|𝑘𝑀). Secondly, we demonstrate how one may use

sensitivity of observables to individual reactions to choose efficient between-model

moves. The above network-aware parameter proposals are then used along with the

sensitivity-based move types. We end by explaining how the analysis of network

structure can be used to derandomize conditional expectation calculations, leading

to further variance reduction.

4.3.1 Constructing parameter proposals

For nested models, as is the case in the reaction network inference problem, a natural

choice of the jump function 𝑓 is to choose the identity function. Thus, when proposing

a move from a lower-dimensional model 𝑀 to a higher dimensional model 𝑀 ′, the

rate constants of the newly added reactions is proposed according to 𝑞(𝑢|𝑘𝑀) and

the values of the rate constants of reactions common to the two models are kept fixed

(henceforth 1 : 𝑖). Therefore,

𝑓 := (𝑘1:𝑖
𝑀 ′ ,𝑘1:𝑎

𝑀 ′ ) = (𝑘1:𝑖
𝑀 ,𝑢1:𝑎

𝑀 ). (4.5)

and the acceptance probability is given by

𝛼(𝑘𝑀 ,𝑘𝑀 ′) = min
{︂

1,
𝑝(𝑀 ′,𝑘𝑀 ′ |𝒟)𝑞(𝑀 |𝑀 ′)

𝑝(𝑀,𝑘𝑀 |𝒟)𝑞(𝑀 ′|𝑀)𝑞(𝑢|𝑘𝑀)

}︂
. (4.6)

The reverse move in this case is deterministic. Let the proposal 𝑞(𝑢|𝑘𝑀) be given by

𝑞(𝑢|𝑘𝑀) = 𝒩 (𝑢;𝜇,Σ). (4.7)
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To improve the chance of proposal acceptance we center the proposal distribution at

the conditional mean of the posterior distribution. Next, we construct an approxima-

tion to the posterior distribution by setting the covariance of the Gaussian to be the

Hessian of the conditional posterior density. In other words, we construct a Gaussian

approximation to the conditional posterior distribution. In the framework of Brooks

et al. [20], the above construction is equivalent to the centered second-order condi-

tions. In the scheme described above, the mean vector 𝜇 is set to the conditional

maximum:

𝜇 = arg max
𝑢

𝑝(𝑀 ′, (𝑘𝑀 ,𝑢)|𝒟). (4.8)

A proposal centered at the posterior conditional maximum satisfies the first order

condition:

∇ log𝐴(𝑀,𝑘𝑀 →𝑀 ′,𝑘𝑀 ′)
⃒⃒
𝜇

= ∇ [logℒ(𝒟;𝑘𝑀 ,𝑢) + log 𝑝(𝑘𝑀 ,𝑢)− log 𝑞(𝑢;𝜇,Σ)]
⃒⃒
𝜇

= 0. (4.9)

Further, setting the second-derivative of the acceptance ratio at the conditional max-

imum 0, we obtain the second order condition as:

∇2 log𝐴((𝑀,𝑘𝑀)→ (𝑀 ′,𝑘𝑀 ′)) = ∇2 [logℒ(𝒟|𝑘𝑀 ,𝑢) + log 𝑝(𝑘𝑀 ,𝑢)− log 𝑞(𝑢;𝜇,Σ)]

= 0. (4.10)

Taking ℋ to be the Hessian of the conditional posterior density at 𝜇, (4.10) yields

ℋ
⃒⃒
𝜇

+ Σ−1 = 0 =⇒ Σ = −ℋ−1
⃒⃒
𝜇
. (4.11)

4.3.2 Network-aware parameter proposals

The above proposal construction for between-model moves in which the parameter

proposals adapt to conditional posterior densities typically lead to improved reversible
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jump simulations [20, 36, 38, 52]. Effectively, the above proposal construction is

attempting to increase the chance of proposed moves between models to get accepted.

In addition, with the first and second order conditions, the idea is to make acceptance

ratio uniformly high for all transitions. However, the direct application of the centered

second-order conditions for between-model moves in the context of reaction network

inference has a major drawback. As discussed earlier, many reaction networks can

have the same effective network. In such a case, if the proposed move is between two

networks with the same effective network (i.e., the two networks belong to the same

cluster), the parameter proposal adapts to the prior distribution of the newly added

reaction (Figure 4-7). We propose a network-aware approach in which, because we

have determined the effective networks, we design parameter proposals that adapt to

the difference between the effective networks of the two networks. When the proposed

move is between two networks belonging to different clusters, we construct a proposal

that approximates the conditional posterior distribution of the rate constants of all

reactions not included in the two effective networks.

Formally, suppose that the sampler proposes a move from a lower-dimensional

model 𝑀 to a higher-dimensional model 𝑀 ′. Let the effective networks of the two

models 𝑀 and 𝑀 ′ be 𝑀𝑒 and 𝑀 ′
𝑒, respectively. Following our choice of the proposal

𝑞(𝑀 ′|𝑀), dim(𝑀 ′) = dim(𝑀)+1. Suppose the proposed move is such that 𝑀 ′
𝑒 ̸= 𝑀𝑒,

i.e., the effective networks of the current and the proposed networks are different. In

our network-aware sampler, because we know the effective networks 𝑀 ′
𝑒 and 𝑀𝑒 of

the two models 𝑀 ′ and 𝑀 , respectively, we construct the following proposal:

𝑓 := (𝑘1:𝑖
𝑀 ′

𝑒
,𝑘1:𝑎

𝑀 ′
𝑒
,𝑤1:𝑗

𝑀∖𝑀𝑒
) = (𝑘1:𝑖

𝑀𝑒
,𝑢1:𝑎

𝑀𝑒
,𝑘1:𝑗

𝑀∖𝑀𝑒
), (4.12)

where 𝑢1:𝑎
𝑀 ∼ 𝒩 (𝜇𝑀 ,Σ𝑀) and 𝑤1:𝑗 ∼ 𝑝(𝑘1:𝑗

𝑀∖𝑀𝑒
|𝑀). The proposal mean 𝜇𝑀 :

𝜇𝑀 = arg max
𝑢1:𝑎

𝑝(𝑢1:𝑎|𝑘1:𝑖
𝑀𝑒
,𝑀 ′

𝑒,𝒟) (4.13)
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network 1 network 2

network 3network 4

Figure 4-7: Model move from network 1 to 2 and 2 to 3 in the standard approach leads
to the proposal adapting to the prior. Only the final move from 3 to 4 incorporates
the likelihood function
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Algorithm 7 Network-aware reversible jump MCMC
1: Given: A set of models 𝑀 ∈ℳ with corresponding parameter vectors 𝑘𝑀 , pos-

terior densities 𝑝(𝑀,𝑘𝑀 |𝒟).
2: 𝛽 ∈ (0, 1): probability of within-model move
3: Initlialize starting point (𝑀0,𝑘𝑀0)
4: for 𝑛 = 0 to 𝑁𝑖𝑡𝑒𝑟 do
5: Sample 𝑏 ∼ 𝒰[0,1]
6: if 𝑏 ≤ 𝛽 then
7: Metropolis-Hastings within-model move
8: else
9: Sample 𝑀 ′ ∼ 𝑞(𝑀 ′|𝑀𝑛 = 𝑀); 𝑀 ′

𝑒=eff(𝑀 ′) and 𝑀𝑒=eff(𝑀)
10: if |𝑀 ′

𝑒| > |𝑀𝑒| then

𝜇𝑀 = arg max
𝑢1:𝑎

𝑝(𝑢1:𝑎|𝑘1:𝑖
𝑀𝑒
,𝑀 ′

𝑒,𝒟), Σ𝑀 = −
[︀
∇2 log 𝑝(𝑢1:𝑎|𝑘1:𝑖

𝑀𝑒
,𝑀 ′

𝑒,𝒟)
]︀−1 ⃒⃒

𝜇𝑀

11: Sample 𝑢1:𝑎
𝑀 ∼ 𝒩 (𝜇𝑀 ,Σ𝑀)

12: Set (𝑘1:𝑖
𝑀 ′

𝑒
,𝑘1:𝑎

𝑀 ′
𝑒
,𝑤1:𝑗

𝑀 ′∖𝑀 ′
𝑒
) = (𝑘1:𝑖

𝑀𝑒
,𝑢1:𝑎

𝑀 ,𝑘1:𝑗
𝑀 ′∖𝑀 ′

𝑒
)

13: 𝛼((𝑀,𝑘𝑀), (𝑀 ′,𝑘′
𝑀 ′)) = min

{︁
1,

𝑝(𝑀 ′
𝑒,𝑘𝑀′

𝑒
|𝒟)𝑞(𝑀 |𝑀 ′)

𝑝(𝑀𝑒,𝑘𝑀𝑒 |𝒟)𝑞(𝑀 ′|𝑀)𝒩 (𝑢1:𝑎
𝑀 ;𝜇𝑀 ,Σ𝑀 )

}︁
14: else if |𝑀 ′

𝑒| < |𝑀𝑒| then

𝜇𝑀 ′ = arg max
𝑢1:𝑎

𝑝(𝑢1:𝑎|𝑘1:𝑖
𝑀𝑒
,𝑀𝑒,𝒟), Σ𝑀 ′ = −

[︀
∇2 log 𝑝(𝑢1:𝑎|𝑘1:𝑖

𝑀𝑒
,𝑀𝑒,𝒟)

]︀−1 ⃒⃒
𝜇𝑀

15: Sample 𝑤1:𝑗
𝑀 ′∖𝑀 ′

𝑒
∼ 𝑝(𝑘1:𝑗

𝑀 ′∖𝑀 ′
𝑒
|𝑀 ′)

16: Set (𝑘1:𝑖
𝑀 ′

𝑒
,𝑢1:𝑎

𝑀 ′ ,𝑘
1:𝑗
𝑀 ′∖𝑀 ′

𝑒
) = (𝑘1:𝑖𝑀𝑒

,𝑘1:𝑎
𝑀𝑒
,𝑤1:𝑗

𝑀 ′∖𝑀 ′
𝑒
)

17: 𝛼((𝑀,𝑘𝑀), (𝑀 ′,𝑘′
𝑀 ′)) = min

{︁
1,

𝑝(𝑀 ′
𝑒,𝑘𝑀′

𝑒
|𝒟)𝑞(𝑀 |𝑀 ′)𝒩 (𝑢1:𝑎

𝑀′ ;𝜇𝑀′ ,Σ𝑀′ )

𝑝(𝑀𝑒,𝑘𝑀𝑒 |𝒟)𝑞(𝑀 ′|𝑀)

}︁
18: else
19: Sample 𝑤1:𝑗

𝑀 ′∖𝑀 ′
𝑒
∼ 𝑝(𝑘1:𝑗

𝑀 ′∖𝑀 ′
𝑒
|𝑀 ′)

20: Set (𝑘1:𝑖
𝑀 ′

𝑒
,𝑢1:𝑎

𝑀∖𝑀𝑒
,𝑘1:𝑗

𝑀 ′∖𝑀 ′
𝑒
) = (𝑘1:𝑖

𝑀𝑒
,𝑘1:𝑎

𝑀∖𝑀𝑒
,𝑤1:𝑗

𝑀 ′∖𝑀 ′
𝑒
)

21: 𝛼((𝑀,𝑘𝑀), (𝑀 ′,𝑘′
𝑀 ′)) = 1

22: end if
23: Sample 𝑝 ∼ 𝒰[0,1]
24: if 𝑝 < 𝛼((𝑀,𝑘𝑀), (𝑀 ′,𝑘′

𝑀 ′)) then
25: (𝑀𝑛+1,𝑘𝑛+1

𝑀𝑛+1) = (𝑀 ′,𝑘𝑀 ′)
26: else
27: (𝑀𝑛+1,𝑘𝑛+1

𝑀𝑛+1) = (𝑀𝑛,𝑘𝑛𝑀𝑛)
28: end if
29: end if
30: end for
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is obtained by solving an 𝑎-dimensional optimization problem, where 𝑎 is the dif-

ference between the number of reactions in the effective networks 𝑀 ′
𝑒 and 𝑀𝑒. The

proposal covariance Σ𝑀 :

Σ𝑀 = −
[︀
∇∇ log 𝑝(𝑢1:𝑎|𝑘1:𝑖

𝑀𝑒
,𝑀 ′

𝑒,𝒟)
]︀−1 ⃒⃒

𝜇𝑀
, (4.14)

is determined numerically using a finite-difference approximation at the proposal

mean. Note 𝑝(𝑘1:𝑗
𝑀∖𝑀𝑒

|𝑀) is the prior probability density of reactions not in the

effective network of 𝑀 . The acceptance probability of the proposed move is given by

𝛼((𝑀,𝑘𝑀), (𝑀 ′,𝑘′
𝑀 ′)) = min {1, 𝐴} , (4.15)

where

𝐴 =
𝑝(𝑀 ′

𝑒,𝑘𝑀 ′
𝑒
|𝒟)𝑞(𝑀 |𝑀 ′)

𝑝(𝑀𝑒,𝑘𝑀𝑒|𝒟)𝑞(𝑀 ′|𝑀)𝒩 (𝑢1:𝑎
𝑀 ;𝜇𝑀 ,Σ𝑀)

. (4.16)

The reverse move has an acceptance probability min{1, 𝐴−1}. The idea behind the

construction of our network aware proposals is that by solving for the conditional

maximum of the joint posterior density of the reactions 𝑀 ′
𝑒 ∖𝑀𝑒 and determining the

Hessian approximation at that point, we are building a Gaussian approximation of

the conditional probability density 𝑝(𝑘′
𝑒|𝑘𝑒,𝑀 ′

𝑒). In contrast, the standard network-

unaware approach would not; in particular the second-order condition of Brooks et

al. [20] produces a proposal that is the product of prior densities for 𝑑𝑖𝑚(𝑀 ′
𝑒) −

𝑑𝑖𝑚(𝑀𝑒)− 1 rate constants and the conditional posterior distribution of the final 𝑎𝑡ℎ

rate constant.

Method 𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙

Network unaware 𝑞𝑛𝑢(𝑘′
𝑒 ∖ 𝑘𝑒) ≈

∏︀𝑎−1
𝑖=1 𝑝(𝑘

𝑖)𝑝(𝑘′
𝑒 ∖ 𝑘1:𝑎−1|𝑘1:𝑎−1,𝑀 ′

𝑒,𝒟)

Network aware 𝑞𝑛𝑎(𝑘
′
𝑒 ∖ 𝑘𝑒) ≈ 𝑝(𝑘′

𝑒|𝑘𝑒,𝑀 ′
𝑒,𝒟)

Table 4.1: Cluster switching parameter proposals
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Mathematically, the two proposals are shown in Table 4.1. The steps of our

network-aware reversible jump MCMC algorithm are given in Algorithm 7. If we

think of the cluster {𝑀𝑒,𝑘𝑒} as the state space, the between-model moves that pro-

pose moves within the same cluster have an acceptance probability 1 with both the

network-aware and the network-unaware approaches. However, when the proposed

move is between two distinct clusters, our network aware approach chooses a proposal

that approximates the joint conditional posterior density and hence leads to improved

alignment between the densities 𝑝(𝑘𝑒|𝒟)𝑞(𝑢|𝑘𝑒) and 𝑝(𝑘′
𝑒|𝒟) of the two spaces. Here

𝑝(𝑘𝑒|𝒟) and 𝑝(𝑘𝑒|𝒟) are the unnormalized densities of the rate constants of the two

effective networks.

4.3.3 Sensitivity-based network-aware proposals

Between-model moves with deterministic reverse moves are a natural choice for nested

models. However, in many cases, MCMC mixing may be improved by adopting non-

deterministic reverse move types. In the context of reaction network inference, it is

sometimes observed that a maximum-a-posteriori rate constant value for a reaction

common to two networks differs substantially in the two networks. For example,

consider the two networks in Figure 4-8. The most likely values for the rate constant

of reaction * could differ significantly for the two networks. In such a case, keeping

the rate constant of * fixed when proposing moves between the two networks leads

to very poor acceptance rates. We propose a method to improve sampling efficiency

of the network inference problem by identifying critical reactions common to the

current and the proposed network and using a proposal distribution 𝑞 for their rate

constants in moves between the two networks. In other words, the reverse move

from a high-dimensional effective network to a low-dimensional effective network is

no longer deterministic. The move between the networks takes the following form:

(𝑘𝑀 ′
𝑒
,𝑢′

𝑒) = 𝑓(𝑘𝑀𝑒 ,𝑢𝑒). (4.17)
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*

Right pathway

*

Both pathways

Figure 4-8: Two networks with different pathways

The question we answer next is how one could identify “key” reactions whose inclusion

in the proposal would improve MCMC mixing at a limited computational overhead.

Given a set of observables and the current and proposed network, a useful strategy is

to identify the reactions to which the posterior density is most sensitive. To determine

the sensitivity of the posterior density to individual reactions given a network, we em-

ploy local sensitivity analysis. Say, we have network 𝑀 with reactions 𝑅1, 𝑅2, ..., 𝑅𝑀 .

We determine the expected local sensitivity index E
[︁⃒⃒⃒

𝜕 log 𝑝(𝑘𝑖|𝒟,𝑘−𝑖)

𝜕𝑘𝑖

⃒⃒⃒]︁
of reaction 𝑖

with 𝑘*
−𝑖 given nominal values and the expectation taken with respect to the prior

distribution 𝑝(𝑘𝑖|𝑀). In practice, since the expectation is usually not analytically

tractable, we settle for a noisy estimate of the expectation by evaluating the local

sensitivity at a few realizations from the prior distribution and taking their average.

Having determined the sensitivity of the log-posterior of the current and the proposed

reaction network, we select a random number of high sensitivity reactions common to

the two networks and include proposals for their rate constants in the forward and the

reverse moves. The choice of the number of reactions to be included in the proposals

is based on a Poisson distribution whose mean is kept at a small value. Choosing
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to include only a few common rate constant into the proposal is again based on the

understanding that constructing effective proposals in high dimensions is generally

hard. Thus, as the jump function for moves between models 𝑀 and 𝑀 ′ we have

𝑓 := (𝑘1:𝑖
𝑀 ′ ,𝑘1:𝑎

𝑀 ′ ,𝑘1:𝑐
𝑀 ′ ,𝑢′1:𝑐) = (𝑘1:𝑖

𝑀 ,𝑢1:𝑎
𝑀 ,𝑢1:𝑐,𝑘1:𝑐

𝑀 ). (4.18)

Here, {1 : 𝑖} are indices of reactions whose parameter values are kept fixed during

moves between models 𝑀 and 𝑀 ′, {1 : 𝑎} are indices of reactions that are in model

𝑀 ′ but not in 𝑀 , and {1 : 𝑐} are reactions that are present in both models but whose

rate constant values are determined according to respective proposal distributions.

Next, the parameter proposals 𝑞(𝑢1:𝑎
𝑀 ,𝑢1:𝑐|𝑘1:𝑖

𝑀 ) and 𝑞(𝑢′1:𝑐|𝑘1:𝑖
𝑀 ′) are again chosen

as Gaussian approximations of the conditional posteriors 𝑝(𝑘1:𝑎
𝑀 ′ ,𝑘1:𝑐

𝑀 ′ |𝑘1:𝑖
𝑀 ′ ,𝒟) and

𝑝(𝑘1:𝑐
𝑀 |𝑘1:𝑖

𝑀 ,𝒟), respectively. Note, this construction of parameter proposals improves

alignment between densities 𝑝(𝑘1:𝑖
𝑀 ′ ,𝑘1:𝑎

𝑀 ′ ,𝑘1:𝑐
𝑀 ′ |𝑀 ′,𝒟)𝑞(𝑢′1:𝑐) and 𝑝(𝑘1:𝑖

𝑀 ,𝑘1:𝑐
𝑀 |𝑀,𝒟)𝑞

(𝑢1:𝑎
𝑀 ,𝑢1:𝑐) and produces efficient reversible jump proposals. The above construction

of reversible jump proposals satisfies the second-order conditions of Brooks et al

[20]. The foregoing discussion has focused on a network-unaware approach, where

the effective networks are not known apriori. As we discussed in Section 4.3.2 on

network-aware proposals, for the network inference problem, improved proposals that

approximate the joint posterior conditionals of the rate constants of the difference in

reactions between the current and proposed effective networks can be constructed by

determining the effective networks of proposed networks. We combine the network-

aware scheme of the previous section with the sensitivity-based determination of move

types to yield the the sensitivity-based network-aware proposals. The sequence of steps

for our sensitivity-based network-aware reversible jump MCMC algorithm are given

in Algorithm 8.
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Algorithm 8 Sensitivity-based network-aware reversible jump MCMC
1: Given: A set of models 𝑀 ∈ℳ with corresponding parameter vectors 𝑘𝑀 , posterior densities

𝑝(𝑀,𝑘𝑀 |𝒟).
2: 𝛽 ∈ (0, 1): probability of within-model move
3: Initlialize starting point (𝑀0,𝑘𝑀0)
4: for 𝑛 = 0 to 𝑁𝑖𝑡𝑒𝑟 do
5: Sample 𝑏 ∼ 𝒰[0,1]
6: if 𝑏 ≤ 𝛽 then
7: Metropolis-Hastings within-model move
8: else
9: Sample 𝑀 ′ ∼ 𝑞(𝑀 ′|𝑀𝑛 = 𝑀); 𝑀 ′

𝑒=eff(𝑀 ′) and 𝑀𝑒=eff(𝑀)
10: 𝑟1 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(1.5) and 𝑟2 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(1.5)
11: {1 : 𝑐}=reactions with top 𝑟1 and 𝑟2 sensitivities of 𝑀𝑒 and 𝑀 ′

𝑒, respectively, and common
to 𝑀𝑒 and 𝑀 ′

𝑒.
12: if |𝑀 ′

𝑒| > |𝑀𝑒| then

𝜇𝑀𝑒
= argmax

𝑢1:𝑎,𝑢1:𝑐

𝑝(𝑢1:𝑎,𝑢1:𝑐|𝑘1:𝑖𝑀𝑒
,𝑀 ′

𝑒,𝒟), Σ𝑀𝑒
= −

[︁
∇2 log 𝑝(𝑢1:𝑎,𝑢1:𝑐|𝑘1:𝑖𝑀𝑒

,𝑀 ′
𝑒,𝒟)

]︁−1 ⃒⃒
𝜇𝑀

𝜇𝑀 ′
𝑒
= argmax

𝑢1:𝑐

𝑝(𝑢1:𝑐|𝑘1:𝑖𝑀𝑒
,𝑀𝑒,𝒟), Σ𝑀 ′

𝑒
= −

[︁
∇2 log 𝑝(𝑢1:𝑐|𝑘1:𝑖𝑀𝑒

,𝑀𝑒,𝒟)
]︁−1 ⃒⃒

𝜇𝑀′

13: Sample 𝑢1:𝑎,𝑢1:𝑐 ∼ 𝒩 (𝜇𝑀𝑒
,Σ𝑀𝑒

)

14: Set (𝑘1:𝑖𝑀 ′
𝑒
,𝑘1:𝑎𝑀 ′

𝑒
,𝑘1:𝑐𝑀 ′

𝑒
,𝑢′1:𝑐) = (𝑘1:𝑖𝑀𝑒

,𝑢1:𝑎,𝑢1:𝑐,𝑘1:𝑐𝑀𝑒
)

15: else if |𝑀 ′
𝑒| < |𝑀𝑒| then

𝜇𝑀𝑒
= argmax

𝑢1:𝑐

𝑝(𝑢1:𝑐|𝑘1:𝑖𝑀𝑒
,𝑀 ′

𝑒,𝒟), Σ𝑀𝑒
= −

[︁
∇2 log 𝑝(𝑢1:𝑐|𝑘1:𝑖𝑀𝑒

,𝑀 ′
𝑒,𝒟)

]︁−1 ⃒⃒
𝜇𝑀

𝜇𝑀 ′
𝑒
= argmax

𝑢1:𝑎,𝑢1:𝑐

𝑝(𝑢1:𝑎,𝑢1:𝑐|𝑘1:𝑖𝑀𝑒
,𝑀𝑒,𝒟), Σ𝑀 ′

𝑒
= −

[︁
∇2 log 𝑝(𝑢1:𝑎,𝑢1:𝑐|𝑘1:𝑖𝑀𝑒

,𝑀𝑒,𝒟)
]︁−1 ⃒⃒

𝜇𝑀′

16: Sample 𝑢1:𝑐 ∼ 𝒩 (𝜇𝑀𝑒
,Σ𝑀𝑒

)

17: Set (𝑘1:𝑖𝑀 ′
𝑒
,𝑢′1:𝑎,𝑢′1:𝑐,𝑘1:𝑐𝑀 ′

𝑒
) = (𝑘1:𝑖𝑀𝑒

,𝑘1:𝑎𝑀𝑒
,𝑘1:𝑐𝑀𝑒

,𝑢1:𝑐)

18: else 𝜇𝑀𝑒
= ∅, 𝜇𝑀 ′

𝑒
= ∅, Σ𝑀𝑒

= ∅, Σ𝑀 ′
𝑒
= ∅

19: end if
20: Sample 𝑘1:𝑗𝑀 ′∖𝑀 ′

𝑒
∼ 𝑝(𝑘1:𝑗𝑀 ′∖𝑀 ′

𝑒
|𝑀 ′)

21: Sample 𝑝 ∼ 𝒰[0,1]

22: if 𝑝 < min
{︂
1,

𝑝(𝑀 ′
𝑒,𝑘𝑀′

𝑒
|𝒟)𝑞(𝑀𝑛|𝑀 ′)𝒩 (𝑢′;𝜇𝑀′

𝑒
,Σ𝑀′

𝑒
)

𝑝(𝑀𝑒,𝑘𝑀𝑒 |𝒟)𝑞(𝑀 ′|𝑀𝑛)𝒩 (𝑢;𝜇𝑀𝑒
,Σ𝑀𝑒 )

}︂
then

23: (𝑀𝑛+1,𝑘𝑛+1
𝑀𝑛+1) = (𝑀 ′,𝑘𝑀 ′)

24: else
25: (𝑀𝑛+1,𝑘𝑛+1

𝑀𝑛+1) = (𝑀𝑛,𝑘𝑛𝑀𝑛)
26: end if
27: end if
28: end for
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4.3.4 Derandomization of conditional expectations

The above Algorithms 7 and 8 lead to gains in sampling efficiency compared to a

reversible jump MCMC algorithm that does not use information on network structure

in designing between-model moves and parameter proposals. Identifying clusters of

models can be further used for additional variance reduction. With the knowledge

that all models belonging to the same cluster have identical model evidence, we

can compute some expectations analytically and thereby obtain posterior averages of

features with lower variances.

General formulation

Let us assume we performing model inference with 𝐹 as one the quantities of interest.

Generally, we may be interested in quantities such as the posterior model probabilities,

reaction inclusion probabilities of reactions, or pathway probabilities. The Monte

Carlo estimate of 𝐹 from posterior samples can be written as:

𝐹 = 𝑝(𝐹 = 1|𝒟)

=

∫︁
𝑝(𝐹 = 1|𝐶)𝑝(𝐶|𝒟)𝑑𝐶

=

∫︁
𝑝(𝐹 = 1|𝑀)𝑝(𝑀 |𝐶)𝑝(𝐶|𝒟)𝑑𝑀𝑑𝐶

=

∫︁
E𝑝(𝑀 |𝐶) [𝑝(𝐹 = 1|𝑀)] 𝑝(𝐶|𝒟)𝑑𝐶

=
1

𝑁𝑠

𝑁𝑠∑︁
𝑖=1

E𝑝(𝑀 |𝐶𝑖) [𝑝(𝐹 = 1|𝑀)] ,

where 𝐶 refers to model clusters, 𝑁𝑠 is the number of posterior samples and 𝒟 the

available data. In the above equation, E𝑝(𝑀 |𝐶𝑖)[𝑝(𝐹 = 1|𝑀)] is the expected value of

𝑝(𝐹 = 1|𝑀) conditioned on the generated sample 𝐶𝑖. Knowing the cluster to which

each sample belongs and the dependence of the feature on the models included in
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the cluster, the above expectation can be computed analytically and allows variance

reduction. In contrast, in the network-unaware approach, the expectation is computed

through Monte Carlo sampling.

Example: model probability estimates

Consider that the feature of interest is the probability of model 𝑚. Thus, applying

the above formula to the estimation of model probability, we get

�̂�𝑚 = 𝑝(𝑀𝑚 = 1|𝒟)

=

∫︁
𝑝(𝑀𝑚 = 1|𝐶)𝑝(𝐶|𝒟)𝑑𝐶

=

∫︁
𝑝(𝑀𝑚 = 1|𝑀)𝑝(𝑀 |𝐶)𝑝(𝐶|𝒟)𝑑𝑀𝑑𝐶

=

∫︁
E𝑝(𝑀 |𝐶)[𝑝(𝑀𝑚 = 1|𝑀)]𝑝(𝐶|𝒟)𝑑𝐶

=
1

𝑁𝑠

𝑁𝑠∑︁
𝑖=1

E𝑝(𝑀 |𝐶𝑖) [𝑝(𝑀𝑚 = 1|𝑀)]

=
1

𝑁𝑠

𝑁𝑠∑︁
𝑖=1

𝑝(𝑀𝑚|𝐶𝐾)1𝐶𝐾
(𝐶𝑖), (4.19)

where 𝐾 : 1𝑀𝑚∈𝐶𝐾
(𝑀𝑚) = 1 and 1 is the indicator function. In our network aware

schemes, 𝑝(𝑀𝑚|𝐶𝐾) can be computed analytically. For example, for a cluster 𝐶𝐾

with 𝑁𝐾 models, taking the prior distribution over models to be uniform, the model

probability estimate is

�̂�𝑚 =
1

𝑁𝑠

𝑁𝑠∑︁
𝑖=1

1

𝑁𝐾

1𝐶𝐾
(𝐶𝑖) (4.20)

In contrast, with a standard reversible-jump algorithm, the model probability esti-

mate is

114



�̂�𝑚 =
1

𝑁𝑠

𝑁𝑠∑︁
𝑖=1

1𝑀𝑚(𝑀 𝑖)1𝐶𝐾
(𝐶𝑖) (4.21)

4.4 Results

We present four example problems and demonstrate the efficiency of our network-

aware sampling approaches compared to the network-unaware second-order approach

of Brooks et al [20]. The observables in our examples are species concentrations

and the concentration evolution is modeled using the law of mass action/Michaelis-

Menten functionals. The resulting nonlinear system of ordinary differential equations

are solved using the multistep BDF integrator available in the SUNDIALS suite [69].

4.4.1 Setup of the Bayesian model inference problem

Before discussing the four model inference examples individually, we describe the

choices we make for the likelihood function and prior distribution in our Bayesian

formulation. In the following, we use 𝑘 to refer to the rate constants of the reactions

that are treated as uncertain and 𝑘 to denote the rate constants of reactions that are

kept fixed. By “fixed,” we mean that a particular reaction is always included in the

model and that its rate constant is not a target of the inference procedure.

Likelihood function

As described in Section 3.1, evaluating the posterior probability in the Bayesian

approach requires evaluating the likelihood function 𝑝(𝒟|𝑘), where 𝒟 are the data

and 𝑘 = (𝑘, 𝑘) are the reaction parameters. We employ an i.i.d. additive Gaussian

model for the difference between model predictions and observations; thus the data

are represented as

𝒟 = 𝐺(𝑘, 𝑘) + 𝜖𝑛, (4.22)
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where 𝜖𝑛 ∼ 𝒩𝑛(0, 𝜎2𝐼𝑛), 𝑛 is the number of observations, 𝐼𝑛 is an 𝑛-by-𝑛 identity

matrix, and 𝐺(𝑘, 𝑘) is the prediction of the forward model at the given value of the

reaction parameters. The specific values of the noise standard deviations 𝜎 are given

later. The deterministic predictions 𝐺(𝑘, 𝑘) are obtained with the ODE integrator.

The likelihood function is thus given by

𝑝(𝒟|𝑘) = 𝒩𝑛(𝒟|𝐺(𝑘, 𝑘), 𝜎2𝐼𝑛)

=
𝑛∏︁

𝑡=1

𝒩 (𝒟|𝐺(𝑘, 𝑘), 𝜎2)

=
𝑛∏︁

𝑡=1

1√
2𝜋𝜎2

exp

(︃
−(𝑑𝑡 −𝐺(𝑘, 𝑘))2

2𝜎2

)︃
, (4.23)

where 𝑑𝑡 are components of the data vector 𝒟.

Prior specification

Since reaction rate constants must be positive, while their uncertainties may span

multiple orders of magnitude, we take the prior distribution to be an independent

log-normal distribution on each rate constant. That is,

𝑝(𝑘𝑖) : log10 𝑘𝑖 ∼ 𝒩 (𝜇𝑝,𝑖, 𝜎
2
𝑝,𝑖). (4.24)

One could even encode prior correlations among the rate constants. The model prior

distributions 𝑝(𝑀) in the following examples are uniform unless explicitly mentioned

otherwise.

4.4.2 Example 1: linear Gaussian network inference

In our first example, we consider a six-dimensional reaction network (Figure 4-9) in

which the species interactions are modeled as linear Gaussian functions, i.e.,
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Reaction 1

Reaction 2

Reaction 3

Reaction 4

Reaction 5

Reaction 6

Figure 4-9: 6 uncertain reactions; species 1 has non-zero initial concentration, species
2, 3, 5, and 6 are produced in operation, and species 4 is observed.

𝑐𝑖 =
∑︁
𝑗

𝑎𝑗𝑐𝑗 + 𝜖𝑖. (4.25)

Here, 𝑐𝑖 is the concentration of species 𝑖 and 𝑐𝑗 is the concentration of species 𝑗 that

𝑖 directly depends on. 𝑎𝑗 are the unknown rate constants. We take species 4 as

the only observable and generate 10 i.i.d. data points with {𝑎𝑖} = {0, 0, 0, 2, 1, 2}

and noise model 𝜖4 = 𝒩 (0, 2). All other variances 𝜖𝑖 are identically set to zero.

Taking a Gaussian prior distribution on {𝑎𝑗} and a Gaussian noise model 𝜖𝑖 yields

a posterior distribution on {𝑎𝑗} that is a multivariate Gaussian. In addition, the

marginal likelihood of data 𝒟 in this case is available in closed form. Specifically,

for the present example we impose independent Gaussian priors on 𝑎𝑖s with a mean

vector 𝜇𝑝 = (0, 0, 0, 0, 0, 0, 0) and variance vector 𝜎2
𝑝 = (10, 10, 10, 10, 10, 10). The

noise variance for the likelihood function, as in the data generating process, is taken
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Method† 𝑝(𝑀)𝑎 �̄�𝑏
𝑀 �̄�𝑐

𝐶 ESS𝑑 ESS/min
Network unaware 0.401 0.450 0.121 57 44.4
Network aware 0.402 0.479 0.169 482 210.0
†: Performance is averaged over 10 replications
𝑎: Posterior probability of the data-generating model
𝑏: Between-model acceptance rate
𝑐: Between-cluster acceptance rate
𝑑: Effective sample size for 10000 samples

Table 4.2: Summary statistics of MCMC simulations (Example 1).

as 𝜎2 = 2.

We compare the sampling efficiency of our proposed network-aware algorithm

(Section 4.3.2) to the network-unaware second-order method of Brooks et al [20]. We

simulated 10 MCMC chains of 300000 samples using both the approaches. All simu-

lations produce similar posterior inferences, thereby indicating MCMC convergence.

Table 4.2 shows the acceptance rates of between model and between-cluster moves

for the two schemes. A high model-switching acceptance rate with the same posterior

inference is usually regarded as an indication of superior mixing. We find that the

acceptance rates are higher with our network-aware proposals. Effective sample size

(ESS) calculation for statistics that retain interpretation throughout the simulation is

another diagnostic for MCMC mixing. Effective sample size gives the equivalent num-

ber of independent samples to the dependent MCMC samples obtained in terms of

learning the particular statistic. We take the number of reactions in the models as the

quantity whose ESS is compared. Again in Table 4.2 we see that our network-aware

scheme has an ESS that is roughly nine times the ESS obtained using the network-

unaware approach and hence provides a more efficient posterior simulation. A more

useful comparison of the two schemes would be to compare the number of effective

samples per unit time because it also incorporates the computational time. In last

column of Table 4.2, we give the ESS per minute and again find our network-aware

is also computationally efficient.
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Figure 4-10: Variance of the eight highest posterior model probability estimates in
Example 1

Further in Figure 4-10, we present the variance of the estimated posterior model

probabilities. The variance estimates are calculated based on 10 chains. The results of

the network-aware sampler are compared to the network-unaware approach, with and

without derandomization. Derandomization in the network-unaware approach refers

to performing the MCMC sampling without acknowledging the network structure, but

using that knowledge only as a post processing variance reduction method. We see

clear benefit in using out network-aware sampling approach compared to the standard

method with a 3–4 times reduction in variance.
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Figure 4-11: A reaction network with 5 (reactions 3, 4, 5, 6, and 7) uncertain reactions.
BRaf is the observable.
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4.4.3 Example 2: five-dimensional nonlinear network infer-

ence

As our second example, we consider a five-dimensional nonlinear network inference

problem where the species interactions are governed by the law of mass action (Figure

4-11). The law of mass action gives the rate of a chemical reaction (say 𝑋 + 𝑌 → 𝑍)

as the product of a reaction-specific rate constant 𝑘 with reactant concentrations [𝑋]

and [𝑌 ]:

Rate = −𝑘[𝑋][𝑌 ]. (4.26)

Under some assumptions, the law of mass action produces Michaelis-Menten reaction

rate expression

𝑅𝑎𝑡𝑒 =
𝑘[𝑆]

𝑘𝑀 + [𝑆]
, (4.27)

or when enzyme concentration is taken into account [91]:

𝑅𝑎𝑡𝑒 = 𝑘[𝐸]0
[𝑆]

𝑘𝑀 + [𝑆]
, (4.28)

where 𝑘 denotes the rate constant, [𝐸]0 is the enzyme concetration, [𝑆] the substrate

concentration, and 𝑘𝑀 the Michaelis constant.

In the present example, we consider a subset of reactions (15 species and 12

reactions) proposed for a protein-signalling network of the activation of extracellular

signal-regulated kinase (ERK) by epidermal growth factor (EGF) (Figure 4-11) [118].

The ODE forward model governing the evolution of species concentrations is described

in detail in Appendix B.1. We keep reactions 1, 2, 8, 9, 10, 11, and 12 fixed (denoted

by thick lines in the reaction graph 4-11 and shaded pink in Table 4.3) and thus they

are included in all the inferred models. The rate constants of all fixed reactions and

Michaelis constants of all reactions are set to their base values (Table 4.3). Reactions
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3, 4, 5, 6, and 7 are taken to be uncertain and the concentration of BRaf is taken to

be the observable. With the above five uncertain reactions, the number of potential

models is 32. And with only BRaf as the observable, the number of clusters is 5. The

resulting problem is a nonlinear network inference problem for which the marginal

likelihood is not analytically computable.

Reaction log10 𝑘
*𝑎 𝑘𝑏𝑀 Prior uncertainty

1 BEGFR → DEGFR 0.0 - −
2a EGF + UEGFR → BEGFR 1.5 - −
2b BEGFR → EGF + UEGFR 0.0 - −
3 inactiveC3G+BEGFR → activeC3G+BEGFR 0.5 3386.3875 log10 𝑘 = 𝒩 (1.1, 0.2)
4 activeC3G → inactiveC3G 2.0 - log10 𝑘 = 𝒩 (1.4, 0.2)
5 inactiveRap1+activeC3G → activeRap1+activeC3G 2.0 3566 log10 𝑘 = 𝒩 (2.6, 0.2)
6 BRaf+activeRap1 → BRafPP+activeRap1 0.4 17991.179 log10 𝑘 = 𝒩 (1.0, 0.2)
7 activeRap1+Gap → inactiveRap1+Gap 1.0 6808.32 log10 𝑘 = 𝒩 (0.4, 0.2)
8 BRaf+activeRas → BRafPP+activeRas 0.5 7631.63 −
9 activeRas+Gap → inactiveRas+Gap 0.0 12457.816 −
10 inactiveRas+activeSOS → activeRas+activeSOS 0.5 13.73 −
11 activeSOS → inactiveSOS 4.0 9834.13 −
12 inactiveSOS+BEGFR → activeSOS+BEGFR 2.5 8176.56 −
𝑎 logarithm (base rate constant value)
𝑏 Base value of Michaelis constant (Obtained from Xu et al. [118])

Table 4.3: Proposed reactions for Example 2

We generated 20 i.i.d. data points with noise model 𝒩 (0, 4) and rate constants

and Michaelis constants set to their base values (Table 4.3). We impose independent

Gaussian priors on the rate constants of the uncertain reactions with means and

variances as shown in Table 4.3. The above prior amounts to roughly three orders

of magnitude prior uncertainty in the rate constants. All models are assigned a

uniform prior probability. The noise variance for the likelihood function, as in the

data generating process, is taken as 𝜎2 = 4.

We compare the sampling efficiency of our network-aware algorithm (Section 4.3.2)

to the network-unaware 2𝑛𝑑 order proposal of Brooks et al [20]. We simulated 5

replications of 400000 samples using both the approaches. 30000 samples each were

discarded as burn-in. All simulations produce similar posterior inferences, thereby

indicating convergence. Figure 4-12 shows samples generated from the posterior dis-

tribution using the two approaches color coded according to the pathway they belong.
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(a) Network-unaware proposal

(b) Network-aware proposal

Figure 4-12: MCMC trace plots for Example 2: posterior samples from models with
both pathways in orange and samples from models with only the left pathway in blue
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Blue points are posterior samples from all models that belong to the left pathway,

i.e., models that do not contain any of reactions 3, 5, and 6. Orange points are poste-

rior samples from models that operate with both—left and right branch—pathways,

i.e., models that necessarily include reactions 3, 5, 6, 8, 10 and 12. The higher fre-

quency of moves between the left pathway models and both pathways models with

the network-aware approach is a sign of faster posterior exploration and consequently

better MCMC mixing. Table 4.4 shows the acceptance rates of between models

moves and between-cluster moves for the two approaches. High model-switching and

cluster-switching acceptance rates with the same posterior inference is an indication

of superior mixing of the network-aware approach. In Table 4.4, we also present the

ESS for the number-of-reactions-in-model statistic. The network-aware scheme has a

ten-fold higher ESS compared to the network-unaware approach. The ESS per minute

diagnostic in the last column of Table 4.4 confirms favourability of the network-aware

approach with the computational cost taken into account. The absolute value of ESS

per minute depends on the relative and absolute tolerance settings of the ODE solver.

In particular, we chose very tight tolerances, but higher ESS/min can be obtained

with loose tolerances. Nonetheless, the relative values of ESS/min demonstrate the

advantage of using the network-aware sampling approach.

Method† 𝑝(𝑀)𝑎 �̄�𝑏
𝑀 �̄�𝑐

𝐶 ESS𝑑 ESS/min𝑒

Network unaware 0.7545 0.19 0.015 10 0.175
Network aware 0.7544 0.22 0.034 110 0.301
†: Performance is averaged over 5 simulation runs
𝑎: Posterior probability of the data-generating model
𝑏: Between-model move acceptance rate
𝑐: Between-cluster move acceptance rate
𝑑: Effective sample size for 10000 samples
𝑒: The absolute values depend on the tolerances chosen for the ODE solver

Table 4.4: Summary statistics of MCMC simulations (Example 2).

Finally, in Figure 4-13, we present the variance of the estimated posterior model
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Figure 4-13: Variance of the eight highest posterior model probability estimates in
Example 2

probabilities. The variance estimates are calculated based on 5 independent chains.

The results of the network-aware sampler are compared to the network-unaware ap-

proach, with and without derandomization. We can see two-orders of magnitude lower

variance values using our network-aware sampling approach, further supporting the

merit in adopting the network-aware approach.

We compared the network-aware and network-unaware approaches on another

problem for which the posterior samples are shown in Figure 4-14. The setup of this

problem is identical to the Example just presented, except with a different prior on the

rate constants. Again the blue points correspond to posterior samples from models

belonging to left pathway and orange points correspond to samples from models

that has both—left and right—pathways. Visually, we can see that mixing with

the network-unaware approach is poor, whereas with the network-aware approach
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continues to be good.

4.4.4 Example 3: six-dimensional nonlinear network inference

In our third example, we consider a six-dimensional nonlinear network inference prob-

lem where species interactions are governed by law of mass action (Figure 4-15). Once

again, we consider a protein-signalling network consisting of 15 species and 12 po-

tential species interactions (Figure 4-15). The ODE forward model governing the

evolution of species concentrations is described in detail in Appendix B.1. We keep

reactions 1, 2, 4, 7, 9, and 11 fixed (denoted by thick lines in the reaction graph 4-15

and shaded pink in Table 4.5), and thus they are included in all the inferred models.

The rate constants of all fixed reactions and Michaelis constants of all reactions are

set to their base values. Reactions 3, 5, 6, 8, 10, and 12 are uncertain and the con-

centration of BRaf is again the observable. With the above six uncertain reactions,

the number of potential models is 64. However, with only BRaf as the observable,

the number of clusters is 4.

We generated 20 i.i.d. data points with noise model 𝒩 (0, 0.25) and all rate con-

stants and Michaelis constants set to their base values (Table 4.5). We impose inde-

pendent Gaussian priors on the rate constants of the uncertain reactions with means

and variances as shown in Table 4.5. The above prior amounts to roughly two orders

of magnitude prior uncertainty in the rate constants. The prior probability distribu-

tion over models is set such that all models except one are given uniform probability

and the model with all uncertain reactions included a prior probability five times the

other models. This choice is made to ensure that model with all reactions included

(thus with both pathways active) does not have insignificant posterior probability.

The noise variance for the likelihood function, as in the data generating process, is

taken as 𝜎2 = 0.25.

Samplers that did not use sensitivity-based proposals show very poor mixing.

Figure 4-16 shows samples generated (after a burn-in of 30000 samples) from the pos-
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(a) Network-unaware proposal

(b) Network-aware proposal

Figure 4-14: MCMC trace plots for Example 2-additional: posterior samples from
models with both pathways in orange and samples from models with only the left
pathway in blue
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Figure 4-15: A reaction network with 6 (reactions 3, 5, 6, 8, 10, and 12) uncertain
reactions. BRaf is the observable.
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(a) Network-unaware proposal

(b) Network-aware proposal

Figure 4-16: MCMC trace plots for Example 3 without sensitivity-based proposals:
the generated posterior samples are only from models with both pathways
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(a) Sensitivity-based network-unaware proposal

(b) Sensitivity-based network-aware proposal

Figure 4-17: MCMC trace plots for Example 3 with sensitivity-based proposals: pos-
terior samples from models with both pathways in orange and samples from models
with only the left pathway in blue

130



Reaction log10 𝑘
*𝑎 𝑘𝑏𝑀 Prior uncertainty

1 BEGFR → DEGFR 0.0 - −
2a EGF + UEGFR → BEGFR 1.5 - −
2b BEGFR → EGF + UEGFR 0.0 - −
3 inactiveC3G+BEGFR → activeC3G+BEGFR 0.5 3386.3875 log10 𝑘 = 𝒩 (1.2, 0.1)
4 activeC3G → inactiveC3G 2.0 - −
5 inactiveRap1+activeC3G → activeRap1+activeC3G 2.0 3566 log10 𝑘 = 𝒩 (2.7, 0.1)
6 BRaf+activeRap1 → BRafPP+activeRap1 0.4 17991.179 log10 𝑘 = 𝒩 (1.1, 0.1)
7 activeRap1+Gap → inactiveRap1+Gap 1.0 6808.32 −
8 BRaf+activeRas → BRafPP+activeRas 0.5 7631.63 log10 𝑘 = 𝒩 (0.5, 0.1)
9 activeRas+Gap → inactiveRas+Gap 0.0 12457.816 −
10 inactiveRas+activeSOS → activeRas+activeSOS 0.5 13.73 log10 𝑘 = 𝒩 (0.5, 0.1)
11 activeSOS → inactiveSOS 4.0 9834.13 −
12 inactiveSOS+BEGFR → activeSOS+BEGFR 2.5 8176.56 log10 𝑘 = 𝒩 (2.5, 0.1)
𝑎 logarithm (base rate constant value)
𝑏 Base value of Michaelis constant (Obtained from Xu et al. [118])

Table 4.5: Proposed reactions for Example 3

Method† 𝑝(𝑀)𝑎 �̄�𝑏
𝑀 �̄�𝑐

𝐶 ESS𝑑 ESS/min𝑒

Sensitivity-based network unaware 0.022 0.236 0.0035 342 1.921
Sensitivity-based network aware 0.022 0.358 0.0076 932 5.608
†: Performance is averaged over 5 simulation runs
𝑎: Posterior probability of the data-generating model
𝑏: Between-model move acceptance rate
𝑐: Between-cluster move acceptance rate
𝑑: Effective sample size for 10000 samples
𝑒: The absolute values depend on the tolerances chosen for the ODE solver

Table 4.6: Summary statistics of MCMC simulations (Example 3).

terior distribution using our network-aware algorithm (Section 4.3.2) and the network-

unaware 2𝑛𝑑 order proposal of Brooks et al. [20], which are color coded according to

the pathway they belong. Blue points are posterior samples from all models that

belong to the left pathway, i.e., models that do not contain any of reactions 3, 5,

and 6. Orange points are posterior samples from models that operate with both—

left and right branch—pathways, i.e., models that necessarily include reactions 3, 5,

6, 8, 10 and 12. We see that even after 400000 samples are generated, the sam-

plers remain confined to the models with both pathways without ever switching to

models belonging to the left pathway. Next, we compare the sampling efficiency of

our sensitivity-based network-aware algorithm (Section 4.3.3) to the sensitivity-based
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network-unaware approach. We simulated 5 replications of 500000 samples using both

the approaches. 30000 samples each were discarded as burn-in. All simulations pro-

duce similar posterior inferences, thereby indicating convergence. Figure 4-17 shows

samples generated from the posterior using the two approaches color coded according

to the pathway they belong. The higher frequency of moves between the left path-

way models and both pathways models with the network-aware approach is a sign of

faster posterior exploration and consequently better MCMC mixing. Table 4.6 shows

the acceptance rates of between models moves and between-cluster moves for the two

approaches. High model-switching and cluster-switching acceptance rates with the

same posterior inference is an indication of superior mixing of the network-aware ap-

proach. In Table 4.6, we also present the ESS for the number-of-reactions-in-model

statistic. The network-aware scheme has an ESS that is roughly three times ESS of

the network-unaware approach. The ESS per minute diagnostic in the last column

of Table 4.6 confirms favourability of the network-aware approach with the computa-

tional cost taken into account. The absolute value of ESS per minute depends on the

relative and absolute tolerance settings of the ODE solver. In particular, we chose

very tight tolerances, but higher ESS/min can be obtained with loose tolerances.

Nonetheless, the relative values of ESS/min demonstrate the advantage of using the

network-aware sampling approach.

Finally, in Figure 4-18, we present the variance of the estimated posterior model

probabilities. The variance estimates are calculated based on 5 independent chains.

The results of the sensitivity-based network-aware sampler are compared to the

sensitivity-based network-unaware approach, with and without derandomization. We

can see roughly an order of magnitude lower variance values using our network-aware

sampling approach compared to the network-unaware approach with derandomiza-

tion and two orders of magnitude lower variances compared to the network-unaware

approach without derandomization.
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Figure 4-18: Variance of the eight highest posterior model probability estimates in
Example 3

4.4.5 Example 4: ten-dimensional nonlinear network inference

Our final example is a large scale nonlinear network inference problem with 10 uncer-

tain reactions. Once again, we consider a protein-signalling network consisting of 15

species and 12 potential species interactions (Figure 4-19). The ODE forward model

governing the evolution of species concentrations is described in detail in Appendix

B.1. We keep only reactions 1 and 2 fixed (denoted by thick lines in the reaction

graph 4-19 and shaded pink in Table 4.7) and thus they are included in all the in-

ferred models. The rate constants of all fixed reactions and Michaelis constants of

all reactions are set to their base values (Table 4.7). Reactions 3–12 are uncertain

and the concentration of BRaf is again the observable. With the above ten uncer-

tain reactions, the number of potential models is 1024. And with only BRaf as the

133



BEGFR

DEGFR EGF

UEGFR

inactiveC3G

activeC3G

activeRap1

BRafBRafPP

activeRas

Gap

inactiveRap1inactiveRas

activeSOS

inactiveSOS

Reaction 1

Reaction 2

Reaction 3

Reaction 4

Reaction 5

Reaction 6

Reaction 8

Reaction 7
Reaction 9

Reaction 10

Reaction 11

Reaction 12

Figure 4-19: A reaction network with 10 (reactions 2–12) uncertain reactions. BRaf
is the observable.
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observable, the number of clusters is 24.

We generated 30 i.i.d. data points with noise model 𝒩 (0, 0.04) and all rate con-

stants and Michaelis constants set to their base values (Table 4.7). We impose inde-

pendent Gaussian priors on the rate constants of the uncertain reactions with means

and variances as shown in Table 4.7. The prior probability distribution over all plau-

sible models is taken to be uniform. The noise variance for the likelihood function,

as in the data generating process, is taken as 𝜎2 = 0.04.

Reaction log10 𝑘
*𝑎 𝑘𝑏𝑀 Prior uncertainty

1 BEGFR → DEGFR 0.0 - −
2a EGF + UEGFR → BEGFR 1.5 - −
2b BEGFR → EGF + UEGFR 0.0 - −
3 inactiveC3G+BEGFR → activeC3G+BEGFR 0.5 3386.3875 log10 𝑘 = 𝒩 (1.2, 0.1)
4 activeC3G → inactiveC3G 2.0 - log10 𝑘 = 𝒩 (2.0, 0.1)
5 inactiveRap1+activeC3G → activeRap1+activeC3G 2.0 3566 log10 𝑘 = 𝒩 (2.7, 0.1)
6 BRaf+activeRap1 → BRafPP+activeRap1 0.4 17991.179 log10 𝑘 = 𝒩 (1.1, 0.1)
7 activeRap1+Gap → inactiveRap1+Gap 1.0 6808.32 log10 𝑘 = 𝒩 (1.0, 0.01)
8 BRaf+activeRas → BRafPP+activeRas 0.5 7631.63 log10 𝑘 = 𝒩 (0.5, 0.1)
9 activeRas+Gap → inactiveRas+Gap 0.0 12457.816 log10 𝑘 = 𝒩 (0.0, 0.01)
10 inactiveRas+activeSOS → activeRas+activeSOS 0.5 13.73 log10 𝑘 = 𝒩 (0.5, 0.1)
11 activeSOS → inactiveSOS 4.0 9834.13 log10 𝑘 = 𝒩 (4.0, 0.01)
12 inactiveSOS+BEGFR → activeSOS+BEGFR 2.5 8176.56 log10 𝑘 = 𝒩 (2.5, 0.1)
𝑎 logarithm (base rate constant value)
𝑏 Base value of Michaelis constant (Obtained from Xu et al. [118])

Table 4.7: Proposed reactions for Example 4

Samplers that did not use sensitivity-based proposals show very poor mixing. Fig-

ure 4-20 shows samples generated (after a burn-in of 300000 samples) from the poste-

rior distribution using our network-aware algorithm (Section 4.3.2) and the network-

unaware 2𝑛𝑑 order proposal of Brooks et al. [20], which are color coded according

to the pathway they belong. Blue points are posterior samples from all models that

belong to the left pathway, i.e., models that do not contain any of reactions 3, 5,

and 6. Orange points are posterior samples from models that operate with both—

left and right branch—pathways, i.e., models that necessarily include reactions 3,

5, 6, 8, 10 and 12. We see that even after 2 million samples are generated, the

samplers remain confined to the models from the left pathway without ever switch-

ing to models with both pathways. Next, we compare the sampling efficiency of
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(a) Network-unaware proposal

(b) Network-aware proposal

Figure 4-20: MCMC trace plots for Example 4 without sensitivity-based proposals:
the generated posterior samples are only from models with only the left pathway
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(a) Sensitivity-based network-unaware proposal

(b) Sensitivity-based network-aware proposal

Figure 4-21: MCMC trace plots for Example 4 with sensitivity-based proposals: pos-
terior samples from models with both pathways in orange and samples from models
with only the left pathway in blue
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our sensitivity-based network-aware algorithm (Section 4.3.3) to the sensitivity-based

network-unaware approach. We simulated 5 replications of 2 million samples using

both the approaches. 300,000 samples each were discarded as burn-in. Figure 4-21

shows samples generated from the posterior distribution using the two approaches

color coded according to the pathway they belong. We observe that the frequency

of moves between the left-pathway models and both-pathways models is higher with

the network-aware approach, indicating faster posterior exploration. Table 4.8 shows

the acceptance rates of between-model moves and between-pathway moves for the

two approaches. High model-switching and pathway-switching acceptance rates with

the same posterior inference is an indication of superior mixing of the network-aware

approach. In Table 4.8, we also present the ESS for the number-of-reactions-in-model

statistic. The network-aware approach has an ESS that is roughly three times the

ESS obtained using the network-unaware approach. The ESS per minute diagnostic

in the last column of Table 4.8 also supports the use of the network-aware approach.

Method† 𝑝(𝑀)𝑎 �̄�𝑏
𝑀 �̄�𝑐

𝑃 ESS𝑑 ESS/min𝑒

Sensitivity-based network unaware 0.145 0.095 0.0013 86 3.37×10−3

Sensitivity-based network aware 0.157 0.145 0.0027 275 8.66×10−3

†: Performance is averaged over 5 simulation runs
𝑎: Posterior probability of the data-generating model
𝑏: Between-model move acceptance rate
𝑐: Between-pathway move acceptance rate
𝑑: Effective sample size for 1000000 samples
𝑒: The absolute values depend on the tolerances chosen for the ODE solver

Table 4.8: Summary statistics of MCMC simulations (Example 4).
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Chapter 5

Network inference with

approximation

In Chapters 3 and 4, we presented exact methods which converge to the true pos-

terior distribution asymptotically. Many times, however, when the number of plau-

sible models is very large (> 104), the need for also proposing parameter values for

between-model moves could render exact model-space sampling methods very ex-

pensive. In this chapter, we propose an approximation-based approach to nonlinear

network inference problems. Asymptotic inference methods such as Laplace’s method

and the Bayesian information criterion are popular alternatives to an exact Bayesian

approach [75]. By making assumptions about the structure of parameter posterior

distribution, these methods allow computationally efficient Bayesian model inference.

Specifically, the model evidence is approximated by solving a high-dimensional opti-

mization problem and evaluating a Hessian matrix for each model. If, however, the

number of models is very high, the enumeration of model evidences for all models is

again prohibitively expensive. We propose simulating a Markov chain Monte Carlo

algorithm with only the model indicator 𝑀𝑖 in the state space and for each visited

model approximating the model evidence using Laplace’s method. For linear mod-

els with conjugate priors, the Laplace approximation produces exact evidence, and
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MCMC over model indicators is often used for variable selection and inference of

graphical models [83]. For general non-conjugate models, approximations in MCMC

simulations have been used in the past [32, 34, 61]. In particular, Guihenneuc et al.

[61] provide theory on the error induced in posterior distributions while employing

Laplace approximations in MCMC simulations.

The inference of reaction networks governed by nonlinear species interactions

(thus nonlinear parameter-to-observable maps) with limited and sparse experimental

data leads to posterior distributions that are multimodal. The standard single-chain

MCMC approach when used on multimodal posteriors has a tendency to get stuck in

one of the modes. We extend the above approximation-based network inference ap-

proach to a population-based MCMC scheme, which involves running parallel Markov

chains that exchange information among themselves to ensure all posterior modes are

adequately traversed. We show the superiority of the population-based scheme in

exploring a posterior distribution over a space of 𝑂(109) reaction networks in com-

parison to a single chain simulation. This method allows systematic exploration of

posterior distributions over nonlinear networks when exact sampling of networks is

infeasible.

5.1 Laplace’s method

Recall the application of Bayes’ rule to models {𝑀𝑖} gives

𝑝(𝑀𝑖|𝒟) =
𝑝(𝒟|𝑀𝑖)𝑝(𝑀𝑖)

𝑝(𝒟)
. (5.1)

Here, 𝑝(𝑀𝑖|𝒟) is the posterior probability of 𝑀𝑖 conditioned on data 𝒟; 𝑝(𝒟|𝑀𝑖),

also called the model evidence, is the marginal likelihood of observing 𝒟; and 𝑝(𝑀𝑖)

is the prior probability of model 𝑀𝑖. Specifically,
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𝑝(𝒟|𝑀𝑖) =

∫︁
𝑝(𝒟|𝑘𝑖,𝑀𝑖)𝑝(𝑘𝑖|𝑀𝑖)𝑑𝑘𝑖, (5.2)

where 𝑘𝑖 is a model-specific multidimensional parameter. Laplace’s method ap-

proximates (5.2) by computing a Gaussian approximation to the posterior density.

Let the joint density of 𝒟 and 𝑘𝑖 conditioned on model 𝑀𝑖 be 𝑙(𝑘𝑖): 𝑙(𝑘𝑖) =

log(𝑝(𝒟|𝑘𝑖,𝑀𝑖)𝑝(𝑘𝑖|𝑀𝑖)). The Laplace’s method involves finding the posterior mode:

�̃�𝑖 = arg max
𝑘𝑖

log(𝑝(𝒟|𝑘𝑖,𝑀𝑖)𝑝(𝑘𝑖|𝑀𝑖)), (5.3)

and computing a second-order Taylor expansion of 𝑙(𝑘𝑖) about �̃�𝑖. Exponentiating

the quadratic yields an approximation to 𝑝(𝒟|𝑘𝑖,𝑀𝑖)𝑝(𝑘𝑖|𝑀𝑖), which has the form for

a normal density with mean �̃�𝑖 and covariance matrix Σ̃ = (−∇2𝑙(�̃�𝑖))
−1. Integrating

the approximation gives

𝑝(𝒟|𝑀𝑖) = (2𝜋)𝑑/2|Σ̃|1/2𝑝(𝒟|𝑘𝑖,𝑀𝑖)𝑝(�̃�𝑖|𝑀𝑖), (5.4)

where 𝑑 is the dimensionality of 𝑘𝑖. Kass et al. [76] give conditions under which

as 𝑛𝑑𝑎𝑡𝑎 → ∞, 𝑝(𝒟|𝑀𝑖) = 𝑝(𝒟|𝑀𝑖)(1 + 𝑂(𝑛−1
𝑑𝑎𝑡𝑎)). Plugging 5.4 into 5.5 gives the

approximate posterior model probability:

𝑝(𝑀 |𝒟) =
𝑝(𝒟|𝑀)𝑝(𝑀)

𝑝(𝒟)
. (5.5)

5.2 Large-scale approximate model inference

The systematic application of Laplace’s method to all models when the number of

models is very high is computationally prohibitive. Using a Markov chain Monte

Carlo scheme to explore the approximate posterior distribution over models provides
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a simulation-consistent estimate of approximate model posteriors. Thus, we simulate

𝑀𝑛 ∼ 𝑝(𝑀 |𝒟) to get estimates of posterior model probabilities as

𝑝(𝑀𝑖|𝒟) =
1

𝑁

𝑁∑︁
𝑛=1

I𝑀𝑖
(𝑀𝑛). (5.6)

Since each model has a network structure and the data may be sparse, we have

𝑝(𝒟|𝑀𝑚) =

∫︁
· · ·
∫︁
𝑝(𝒟|𝑘𝑖,𝑀𝑖)𝑝(𝑘𝑖|𝑀𝑖)𝑑𝑘𝑖

=

∫︁
· · ·
∫︁
𝑝(𝒟|𝑘𝑒,𝑖,𝑀𝑒,𝑖)𝑝(𝑘𝑒,𝑖|𝑀𝑒,𝑖)𝑑𝑘𝑒,𝑖,

where 𝑀𝑒,𝑖 is the effective network corresponding to 𝑀𝑖 and 𝑘𝑒,𝑖 are the parameters

of the effective network (Chapter 4). Thus, we apply Laplace’s method directly to the

effective networks. The sequence of steps in large-scale approximate model inference

are given in Algorithm 9.

Algorithm 9 Approximate model inference MCMC
1: Given: A set of models {𝑀𝑖} with corresponding parameter vectors {𝑘𝑖}, likeli-

hood functions {𝑝(𝒟|𝑀𝑖,𝑘𝑖)}, parameter prior densities {𝑝(𝑘𝑖)}, and model prior
distribution 𝑝(𝑀).

2: Initlialize starting point (𝑀0,𝑘𝑀0); 𝑀0
𝑒 =eff (𝑀0)

3: for 𝑛 = 0 to 𝑁𝑖𝑡𝑒𝑟 do
4: Sample 𝑀 ′ ∼ 𝑞(𝑀 ′|𝑀𝑛 = 𝑀); 𝑀 ′

𝑒=eff (𝑀 ′)
5: Determine approximate model evidence 𝑝(𝒟|𝑀 ′

𝑒) of 𝑀 ′
𝑒

6: Sample 𝑝 ∼ 𝒰[0,1]
7: if 𝑝 < 𝐴(𝑀,𝑀 ′) = min{1, 𝑝(𝒟|𝑀 ′

𝑒)𝑝(𝑀
′)𝑞(𝑀𝑛|𝑀 ′)

𝑝(𝒟|𝑀𝑛
𝑒 )𝑝(𝑀𝑛)𝑞(𝑀 ′|𝑀𝑛)

} then
8: 𝑀𝑛+1 = 𝑀 ′

9: else
10: 𝑀𝑛+1 = 𝑀𝑛

11: end if
12: end for
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5.2.1 Setup of the Bayesian model inference problem

Likelihood function

We employ an i.i.d. additive Gaussian model for the difference between model pre-

dictions and observations; thus the data are represented as

𝒟 = 𝐺(𝑘) + 𝜖𝑛, (5.7)

where 𝜖𝑛 ∼ 𝒩𝑛(0, 𝜎2𝐼𝑛), 𝑛 is the number of observations, 𝐼𝑛 is an 𝑛-by-𝑛 identity

matrix, and 𝐺(𝑘) is the prediction of the forward model at the given value of the

reaction parameters. The specific values of the noise standard deviations 𝜎 are given

later. The deterministic predictions𝐺(𝑘) are obtained with the ODE integrator. The

likelihood function is thus given by

𝑝(𝒟|𝑘) = 𝒩𝑛(𝒟|𝐺(𝑘), 𝜎2𝐼𝑛)

=
𝑛∏︁

𝑡=1

𝒩 (𝑑𝑡|𝐺𝑡(𝑘), 𝜎2)

=
𝑛∏︁

𝑡=1

1√
2𝜋𝜎2

exp

(︂
−(𝑑𝑡 −𝐺𝑡(𝑘))2

2𝜎2

)︂
, (5.8)

where 𝑑𝑡 are components of the data vector 𝒟.

Prior specification

Since reaction rate constants must be positive, while their uncertainties may have

multiple orders of magnitude, we take the prior distribution to be a lognormal distri-

bution on the rate constant. Specifically, we set each 𝑝(𝑘𝑖) to

𝑝(𝑘𝑖) : log10 𝑘𝑖 ∼ 𝒩 (log10 𝑘
*
𝑖 , 𝜎

2
𝑖 ), (5.9)

where each 𝑘*𝑖 above is the base value of the 𝑖th rate constant.
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5.2.2 Example 1: 10 dimensional reaction network

We demonstrate the large-scale approximate model inference approach on a 10 dimen-

sional example with synthetic data. Consider the reaction network shown in Figure

5-1. The set of reactions shown in this network are a subset of a larger model pro-

posed for the activation of the extracellular signal-regulated kinase (ERK) pathway

by epidermal growth factor [118]. The ODE forward model governing the evolution

of species concentrations is described in detail in Appendix B.1. We keep reactions 1

and 2 fixed (denoted by thick lines in the reaction grap 5-1 and shaded pink in Table

5.1) and thus they are included in all the inferred models. The rate constants of all

fixed reactions and Michaelis constants of all reactions are set to their base values

(Table 5.1). Reactions 3–12 are taken to be uncertain and the concentration of BRaf

is taken to be the observable. With the above ten uncertain reactions, the number

of potential models is 1024. And with only BRaf as the observable, the number of

clusters is 24.

Reaction log10 𝑘
*𝑎 𝑘𝑏𝑀 Prior uncertainty

1 BEGFR → DEGFR 0.0 - −
2a EGF + UEGFR → BEGFR 1.5 - −
2b BEGFR → EGF + UEGFR 0.0 - −
3 inactiveC3G+BEGFR → activeC3G+BEGFR 0.5 3386.3875 log10 𝑘 = 𝒩 (1.2, 0.1)
4 activeC3G → inactiveC3G 2.0 - log10 𝑘 = 𝒩 (2.0, 0.1)
5 inactiveRap1+activeC3G → activeRap1+activeC3G 2.0 3566 log10 𝑘 = 𝒩 (2.7, 0.1)
6 BRaf+activeRap1 → BRafPP+activeRap1 0.4 17991.179 log10 𝑘 = 𝒩 (1.1, 0.1)
7 activeRap1+Gap → inactiveRap1+Gap 1.0 6808.32 log10 𝑘 = 𝒩 (1.0, 0.1)
8 BRaf+activeRas → BRafPP+activeRas 0.5 7631.63 log10 𝑘 = 𝒩 (0.5, 0.1)
9 activeRas+Gap → inactiveRas+Gap 0.0 12457.816 log10 𝑘 = 𝒩 (0.0, 0.01)
10 inactiveRas+activeSOS → activeRas+activeSOS 0.5 13.73 log10 𝑘 = 𝒩 (0.5, 0.1)
11 activeSOS → inactiveSOS 4.0 9834.13 log10 𝑘 = 𝒩 (4.0, 0.01)
12 inactiveSOS+BEGFR → activeSOS+BEGFR 2.5 8176.56 log10 𝑘 = 𝒩 (2.5, 0.1)
𝑎 logarithm (base rate constant value)
𝑏 Base value of Michaelis constant (Obtained from Xu et al. [118])

Table 5.1: Proposed reactions for Example 1

We simulate 30 i.i.d. data points with additive noise model 𝒩 (0, 4) and all rate

constants and Michaelis constants set to their base values (Table 5.1). We impose

independent Gaussian priors on the logarithm of rate constants of the uncertain re-

actions with means and variances as shown in Table 5.1. The prior probability dis-
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Figure 5-1: Reaction network of Example 1
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tribution over all plausible models is taken to be uniform. The noise variance for the

likelihood function, as in the data generating process, is taken as 𝜎2 = 4.

Posterior probabilities
Effective network Enumeration Sampling†

1,2,3,5,6,7,8,10,12 0.435 0.434
1,2,3,4,5,6,7,8,10,12 0.463 0.465
1,2,3,5,6,7,8,10,11,12 0.101 0.101
†: Averaged over 3 MCMC replications

Table 5.2: Summary of posterior probabilites for Example 1 by enumeration and
sampling

We generate 1 million samples using the approximate posterior Markov chain Monte

Carlo algorithm and in Table 5.2 show that the posterior probabilities agree with

the values obtained by enumeration of model evidences of all plausible models. The

enumeration of model evidences involves computing an approximate model evidence

using the Laplace’s method for each model. The example presented here has a space of

210 models. In the following sections, we present examples with 230 models, for which

the exhaustive evidence calculation is infeasible. As we scale the dimensionality of

the problem, we further find that the posterior distribution for the nonlinear network

inference problem are multimodal. To explore the multimodal posterior, we have

developed the population-based approximate model inference algorithm.

5.2.3 Consistency of approximate model inference

Bayesian model selection (BMS) is consistent, i.e., given enough data and the data-

generating model among the set of models being compared, the true model is selected

by BMS [12]. The methods presented in this chapter construct an approximation of

the evidence and thus estimate approximate posterior model probabilities. However,

since the error of the Laplace’s method goes down as 𝑂(𝑛−1
𝑑𝑎𝑡𝑎), the consistency of BMS

can be expected to be retained by the approximate posterior based model selection

method. To investigate the consistency of the approximate model inference algorithm,
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we evaluate posterior model probabilities for the networks considered in Example 1

with steadily increasing data sets. Note Example 1 infact compares the same set of

networks as in Example 4 of Chapter 4, but with a different noise model. In order to

also compare the result we obtained using the approximate model inference approach

to the exact sampling approach of Chapter 4, we perform the consistency study with

the noise model (𝜎2 = 0.04) employed in Chapter 4. The data in each case are gener-

ated with a network consisting of all proposed reactions. The details of the size of the

data sets and the obtained posterior probabilities are presented in Table 5.3. Firstly,

we find that the results obtained for the data set with 30 points are very different using

the approximate model inference and exact sampling approaches. Specifically, we find

that the posterior probability of the data-generating model (effective network with

reactions 1–12) using the approximate model inference approach is ≈ 0.0, whereas

in Chapter 4 it was ≈ 0.15. In addition all the posterior mass is concentrated over

models with both the left and right pathways included in the approximate approach.

In contrast in Chapter 4, we found that models that only contain the left pathway of

the reaction network have sizable probability. This discrepancy between exact sam-

pling and approximate inference results is not surprising, since the inference results

with the two methods can be quite different with a small data set. As the amount of

data increases, however, we find that the posterior probability of the data-generating

model increases and ultimately converges to 1. Thus the data-generating model is

selected by the approximate model inference approach given sufficient data.

5.3 Population-based Markov chain Monte Carlo

Posterior distributions with multiple modes arise in many areas of applied statistics,

e.g., gene clustering [66] and population genetics [101], and their exploration is well

known to be a challenging sampling problem. To define multimodality in the present

context of network inference, one needs to first introduce a notion of distance metric.
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Posterior probabilities
Effective network 𝑛𝑑𝑎𝑡𝑎 = 30 𝑛𝑑𝑎𝑡𝑎 = 880 𝑛𝑑𝑎𝑡𝑎 = 3840

1,2,3,5,6,8+ Sampling Enumeration Sampling Enumeration Sampling Enumeration
7,9,10,11,12 0.013 0.013 0.000 0.000 0.000 0.000
7,10,11,12 0.087 0.089 0.000 0.000 0.000 0.000
9,10,11,12 0.163 0.162 0.000 0.000 0.000 0.000
9,10,12 0.098 0.098 0.000 0.000 0.000 0.000
10,11,12 0.238 0.236 0.000 0.000 0.000 0.000
10,12 0.083 0.082 0.000 0.000 0.000 0.000
7,9,10,12 0.011 0.012 0.001 0.001 0.000 0.000
7,10,12 0.306 0.308 0.022 0.025 0.000 0.000
4,7,10,12 0.000 0.000 0.002 0.002 0.000 0.000
4,7,10,11,12 0.000 0.000 0.004 0.005 0.000 0.000
4,7,9,10,12 0.000 0.000 0.156 0.159 0.001 0.001
4,7,9,10,11,12 0.000 0.000 0.808 0.814 0.999 0.999

Table 5.3: Consistency of posterior probability estimates

A natural measure of distance between networks is the number of distinct reactions

in the networks. Thus two networks with a small number of distinct reactions may be

considered “close” to each other, whereas two networks with a large number of distinct

reactions would be “far” from each other. What we find in nonlinear network inference

is that in many examples, the posterior distribution is concentrated over models that

are separated by a large distance—posterior distribution is multimodal. Using the

standard approach of proposing “local” moves in model space—moves between nearby

models—in such cases leads to very poor posterior exploration. In particular, the

sampler often fails to explore all posterior modes.

Population-based Markov chain Monte Carlo methods provide an approach for

efficient exploration of multimodal distributions. These methods involve running

parallel MCMC chains over a sequence of closely related distributions and exchanging

information between the chains as samples are generated. Geyer [50] first introduced a

population-based MCMC method known as parallel tempering in which the sequence

of distributions included the target posterior distribution and tempered versions of

the posterior distribution. The central idea is that the more tempered distributions

are able to traverse the multimodal sample space easily and by exchanging samples

between the chains, the chain corresponding to the target distribution is able to jump

between disparate modes. A similar approach was also simultaneously proposed in the
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physics literature by Hukushima et al [70]. Jasra et al. [72] review recent developments

in population-based methods. We give here a brief overview of general population-

based MCMC methods.

In order to sample from the posterior distribution 𝑝(𝜃|𝒟), a new target distribu-

tion is defined in population-based MCMC as

𝑝(𝜃1:𝑆) =
𝑆∏︁

𝑗=1

𝑝𝑗(𝜃𝑗), (5.10)

where at least one of 𝑝𝑗(𝜃𝑗) is taken as 𝑝(𝜃|𝒟). By designing a transition kernel

that is 𝑝(𝜃1:𝑆)-irreducible, aperiodic and has 𝑝(𝜃1:𝑆) as the invariant distribution, a

population-based MCMC method is constructed. The method consists of a population

of chains, where each chain corresponds to one of the distributions 𝑝𝑗(𝜃𝑗) and the

state of the chains updated according to a set of possible move types. Many different

choices of the sequence of distributions 𝑝𝑗(𝜃𝑗) can be made. We describe two common

choices; see [72] for a complete discussion.

5.3.1 Sequence of distributions

Identical

One choice of the sequence of distributions is to take each of them to be the target

posterior distribution 𝑝(𝜃|𝒟). Although simple, the effectivity of this sequence relies

on the original single chain sampler being efficient in exploring the target distribu-

tion. This approach was used by Warnes et al. [115], where they update the state

of the chains according to a proposal that is a Gaussian approximation of the target

distribution constructed with samples from all the chains. Robert and Casella [105]

note that this approach may not work well for high-dimensional targets due to poor

density estimation in high dimensions.
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Tempered

The tempered approach consists of taking the sequence of distributions to be tempered

versions of the target distribution [81]. Thus, one possible choice is to take

𝑝𝑗(𝜃𝑗) ∝ 𝑝(𝜃|𝒟)
1
𝑇𝑗 𝑝(𝜃), (5.11)

where {𝑇𝑗} is interpreted as a temperature ladder. The idea is that as the temperature

rises, the corresponding distribution becomes less peaky and the respective chain can

traverse the space faster. By defining a large number distributions in the sequence, the

chains at higher temperatures explore the state space efficiently and by exchanging

information between chains, the chains at lower temperatures can jump between

distinct modes. Note one of the chains always has 𝑇𝑗 = 1 and corresponds to the

target distribution. The choice of the temperature schedule (𝜁𝑗 = 1
𝑇𝑗

) is discussed in

Jasra et al [72].

5.3.2 Population moves

At each step of the simulation, we choose among a set of possible population moves.

Move types ranging from simple Metropolis-Hastings to more non-standard moves

such as exchanging samples can performed and we give details of these here.

Mutation

The mutation population move consists of selecting one of the distributions 𝑝𝑗(𝜃𝑗)

and performing a Metropolis-Hastings move on that distribution. Formally, a chain

𝑡 ∈ {1, 2, ..., 𝑆} is selected, a proposal 𝜃′𝑡 is made according to a proposal distribution

𝑞𝑡(𝜃
′
𝑡|𝜃𝑡), and the proposal is accepted with probability:

𝛼𝑝𝑟𝑜𝑏(𝜃
′|𝜃) = min

{︂
1,
𝑝𝑡(𝜃

′
𝑡)𝑞𝑡(𝜃𝑡|𝜃′𝑡)

𝑝𝑡(𝜃𝑡)𝑞𝑡(𝜃
′
𝑡|𝜃𝑡)

}︂
, (5.12)
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Exchange

The Exchange population move is one way to swap information between chains. The

move consists of selecting two chains at random and proposing an exchange of the

states of the two chains. Say two chains 𝑡1 and 𝑡2 are selected with a uniform proba-

bility, their state values 𝜃𝑡1 and 𝜃𝑡2 are exchanged with probability:

𝛼𝑝𝑟𝑜𝑏(𝜃
′|𝜃) = min

{︂
1,
𝑝𝑡1(𝜃𝑡2)𝑝𝑡2(𝜃𝑡1)

𝑝𝑡1(𝜃𝑡1)𝑝𝑡2(𝜃𝑡2)

}︂
. (5.13)

5.4 Population-based approximate model inference

We now proceed to explain our population-based approximate model inference MCMC

approach for large-scale network inference. With limited and oftentimes sparse avail-

able data, the large-scale approximate nonlinear network inference by Algorithm 9 was

seen to show poor mixing. The investigation of the reason for poor mixing revealed

that the posterior was almost always multimodal. The use of our population-based

approximate model inference approach was able to resolve the difficulties and explore

the approximate posterior distrbution efficiently.

The population-based approximate model inference scheme consists of expanding

the state space to a product of the original target space {𝑀𝑖} and defining a se-

quence of tempered posterior distributions on {𝑀𝑖}1:𝑆. Thus, the population target

distribution is taken as

𝑝1:𝑆(𝑀1:𝑆) =
𝑆∏︁

𝑗=1

𝑝𝑗(𝜃𝑗), (5.14)

where 𝜃𝑗 = 𝑀(model indicator) and we take 𝑝𝑗(𝜃𝑗) ∝ 𝑝(𝒟|𝑀)𝜁𝑗𝑝(𝑀). The guidelines

for appropriate number of distributions and the temperature schedule 𝜁𝑗 are discussed

in Jasra et al. [72] and we adopt those in our simulations. The population-based

approximate model inference here extends the population-based MCMC of Section

5.3 to approximate model posteriors. The steps of the population-based approximate
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Algorithm 10 Population-based approximate model inference MCMC
1: Given: A set of models {𝑀𝑖} with corresponding parameter vectors {𝑘𝑖}, likeli-

hood functions {𝑝(𝒟|𝑀𝑖,𝑘𝑖)}, parameter prior densities {𝑝(𝑘𝑖)}, and model prior
distribution 𝑝(𝑀).

2: Define a population (of size S) distribution over models: 𝑝1:𝑆(𝑀1:𝑆) =∏︀𝑆
𝑗=1 𝑝𝑗(𝑀𝑗), where

𝑝𝑗(𝑀𝑗) ∝ 𝑝(𝒟|𝑀)𝜁𝑗𝑝(𝑀).

3: eff(M): effective network
4: Initlialize starting point (𝑀0

1:𝑆,𝑘𝑀0
1:𝑆

); 𝑀0
𝑒,1:𝑆=eff(𝑀0

1:𝑆)
5: for 𝑛 = 0 to 𝑁𝑖𝑡𝑒𝑟 do
6: 𝑝 ∼ U[0, 1]
7: if 𝑝 ≤ 0.5 then
8: Mutation move:
9: Select a chain 𝑡 to update

10: Sample 𝑀 ′
𝑡 ∼ 𝑞(𝑀 ′

𝑡|𝑀𝑡); 𝑀 ′
𝑒,𝑡=eff(𝑀 ′

𝑒,𝑡)
11: Determine approximate model evidence 𝑝(𝒟|𝑀 ′

𝑒,𝑡) of 𝑀 ′
𝑒,𝑡

12: Sample 𝑝𝑝 ∼ U[0, 1]

13: if 𝑝𝑝 ≤ min{1, 𝑝(𝒟|𝑀 ′
𝑒,𝑡)

𝜁𝑡𝑝(𝑀 ′
𝑡)𝑞(𝑀

𝑛
𝑡 |𝑀 ′

𝑡)

𝑝(𝒟|𝑀𝑒,𝑡)𝜁𝑡𝑝(𝑀𝑡)𝑞(𝑀 ′
𝑡|𝑀𝑛

𝑡 )
} then

14: 𝑀𝑛+1
𝑡 = 𝑀 ′

𝑡

15: else
16: 𝑀𝑛+1

𝑡 = 𝑀𝑛
𝑡

17: end if
18: else
19: Exchange move:
20: Select two chains 𝑡1 and 𝑡2 uniformly
21: Sample 𝑝𝑝 ∼ U[0, 1]

22: if 𝑝𝑝 ≤ min{1, 𝑝(𝒟|𝑀𝑛
𝑒,𝑡2

)
𝜁𝑡1 𝑝(𝒟|𝑀𝑛

𝑒,𝑡1
)
𝜁𝑡2

𝑝(𝒟|𝑀𝑛
𝑒,𝑡1

)
𝜁𝑡1 𝑝(𝒟|𝑀𝑛

𝑒,𝑡2
)
𝜁𝑡2
} then

23: 𝑀𝑛+1
𝑡1 = 𝑀𝑛

𝑡2
and 𝑀𝑛+1

𝑡2 = 𝑀𝑛
𝑡1

24: else
25: 𝑀𝑛+1

𝑡1 = 𝑀𝑛
𝑡1

and 𝑀𝑛+1
𝑡2 = 𝑀𝑛

𝑡2

26: end if
27: end if
28: end for
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model inference method are detailed in Algorithm 10. Again focusing on the network

inference problem with possibly sparse data, we calculate approximate evidence by

first determining the effective network and then apply the Laplace’s method on the

parameters of the effective network.

5.4.1 Example 2: 30 dimensional reaction network with a sin-

gle species observable

We demonstrate our population-based approximate model inference approach on an

example with 30 proposed reactions. Consider the reaction network shown in Figure

5-2. The set of reactions shown in this network are the union of all reactions considered

to explain the activation of extracellular signal-regulated kinase (ERK) by epidermal

growth factor by Xu et al [118]. The concentration of ERK taken as the observable.

We generate 30 i.i.d. data points with the noise model 𝒩 (0, 4) and all rate constants

and Michaelis constants set to their base values (Table 5.4). We impose independent

Gaussian priors on the logarithm of the rate constants of the uncertain reactions with

means and variances as shown in Table 5.4. The prior probability distribution over

all plausible models is taken to be uniform. The noise variance for the likelihood

function, as in the data generating process, is taken as 𝜎2 = 4.

We generate 1 million samples using the single-chain approximate model inference

and the population-based approximate inference algorithms. The proposal distribu-

tion for the single-chain sampler is taken to be a Poisson distribution Pois(1.0) for

the number of reactions 𝑟 to be added/deleted, coupled with a uniform selection of

the 𝑟 reactions to be added/deleted. In case of the population-based algorithm we

take a population of 40 chains and the sequence of distributions corresponding to the

40 chains given by:

𝑝𝑗(𝜃𝑗) ∝ 𝑝(𝒟|𝑀)𝜁𝑗𝑝(𝑀), (5.15)
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Figure 5-2: Reaction network of Example 2
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Reaction log10 𝑘
*𝑎 𝑘𝑏𝑀 Prior uncertainty

1 inactiveSOS + boundEGFR → activeSOS + boundEGFR 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
2a EGF+unboundEGFR → boundEGFR 1.0 - log10 𝑘 = 𝒩 (1.0, 0.1)
2b boundEGFR → EGF + UEGFR 1.0 - log10 𝑘 = 𝒩 (1.0, 0.1)
3 activeSOS → inactiveSOS 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
4 inactiveRas+activeSOS → activeRas + activeSOS 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
5 activeRas+Gap → inactiveRas+Gap 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
6 cRaf+activeRas → cRafPP+activeRas 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
7 cRafPP → cRaf 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
8 MEK+cRafPP → MEKPP+cRafPP 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
9 MEKPP → MEK 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
10 ERK+MEKPP → ERKPP+MEKPP 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
11 inactiveSOS+ERKPP → removedSOS+ERKPP 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
12 activeSOS+ERKPP → removedSOS+ERKPP 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
13 cRaf+PKA → removedcRaf+PKA 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
14 inactivePKA+ PKAA → PKA + PKAA 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
15 inactivePKA+Cilostamide → PKA + Cilostamide 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
16 PKA → inactivePKA 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
17 inactiveEPAC +EPACA → EPAC + EPACA 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
18 inactiveEPAC +Cilostamide → EPAC + Cilostamide 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
19 EPAC → inactiveEPAC 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
20 inactiveRap1 + EPAC → activeRap1 + EPAC 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
21 activeRap1 + Gap → inactiveRap1 + Gap 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
22 BRaf + activeRap1 → BRafPP+activeRap1 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
23 BRafPP → BRaf 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
24 MEK + BRafPP → MEKPP + BRafPP 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
25 inactiveC3G+boundEGFR → activeC3G + boundEGFR 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
26 activeC3G → inactiveC3G 1.0 - log10 𝑘 = 𝒩 (1.0, 0.1)
27 inactiveRap1+activeC3G → activeRap1+activeC3G 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
28 BRaf+activeRas → BRafPP+activeRas 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
29 ERKPP → ERK 1.0 1.0 log10 𝑘 = 𝒩 (1.0, 0.1)
30 boundEGFR → degradedEGFR 1.0 - log10 𝑘 = 𝒩 (1.0, 0.1)
𝑎 logarithm (base rate constant value)
𝑏 Base value of Michaelis constant

Table 5.4: Proposed reactions for Example 2 and 3

where

𝜁𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1.0 if 𝑗 = 1

0.99 if 𝑗 = 2

𝜁
5/4
𝑗−1 if 𝑗 = 3 to 40

(5.16)

The proposal for the mutation move is taken identical to the single-chain proposal.

For the exchange move, we only permit exchange of samples between adjacent chains.

Three realizations each of the two samplers are shown in Figure 5-3. We see that

with the single-chain approximate model inference algorithm, the sampler gets stuck

in one of the lower posterior modes, whereas the population-based sampler explores

multiple modes and quickly identifies the high-posterior modes. Thus there is a clear
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advantage with the population-based approximate model inference algorithm over the

standard single-chain approximate model inference algorithm. In this example, we

find that there are two effective networks with log(𝑝(𝒟|𝑀)𝑝(𝑀)) ≈ 68. All others

effective networks have log(𝑝(𝒟|𝑀)𝑝(𝑀)) < 50.

5.4.2 Example 3: 30 dimensional reaction network with mul-

tiple species observables

As our second example, we consider once again the set of proposed reactions used in

Example 2, but now with multiple observables: ERK and inactiveSOS concentrations.

We generate 30 i.i.d. data points each of ERK and inactiveSOS measurements with

the noise model 𝒩 (0, 4) and all rate constants and Michaelis constants set to their

base values (Table 5.4). We impose independent Gaussian priors on the logarithm of

rate constants, with means and variances as shown in Table 5.4. The prior probability

distribution over all plausible models is taken to be uniform. The noise variance for

the likelihood function, as in the data generating process, is taken as 𝜎2 = 4.

We generate 4 million samples using the single-chain approximate model infer-

ence and the population-based approximate model inference algorithms. We choose

the proposal distribution for the single-chain sampler to be a Poisson distribution

Pois(1.0) for the number of reactions 𝑟 to be added/deleted and uniformly select the

𝑟 reactions to added/deleted. In case of the population-based algorithm, we take a

population of 40 chains and the sequence of distributions is the same as in Example

2. The proposal for the mutation move is taken identical to the single-chain proposal.

For the exchange move, we only permit exchange of samples between adjacent chains.

Three realizations each of the two samplers are shown in Figure 5-5. The population-

based model inference samplers can be seen to have converged. We see that with the

single-chain approximate model inference algorithm, the sampler gets stuck in one

of the low posterior modes, whereas the population-based sampler explores multiple

modes and quickly identifies the high-posterior mode to which it converges. Thus
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(f) Population-based MCMC 3

Figure 5-3: Three realizations of single-chain approximate model inference MCMC
and population-based approximate model inference MCMC algorithms for Example
2. For the population-based algorithm, we are showing the posterior samples for the
chain corresponding to the target distribution 𝑝(𝑀 |𝒟)
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Figure 5-4: Reaction network of Example 3
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(f) Population-based MCMC 3

Figure 5-5: Three realizations of single-chain approximate model inference MCMC
and population-based approximate model inference MCMC algorithms for Example
3. For the population-based algorithm, we are showing the posterior samples for the
chain corresponding to the target distribution 𝑝(𝑀 |𝒟)
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once again we find that there is a clear advantage with the population-based approx-

imate model inference algorithm over the standard single-chain approximate model

inference algorithm. For the population-based scheme, the total number of models

visited is only 160000. With ERK and inactiveSOS as the observables, the number of

effective networks visited was 12000. By employing a sampling-based approach, we

have therefore managed to characterize the posterior distribution over 109 models by

evaluating the evidence of only 12000 models. In contrast, the brute-force approach

of evaluating the evidence of all models is infeasible. In general, the combination

of approximation of model evidence with Laplace’s method and a population-based

sampling method can explore very large model spaces that is infeasible by exhaustive

evaluation of all evidences and very expensive with exact sampling methods.
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Chapter 6

Conclusions and future work

This thesis focuses on the development of tractable numerical methods for Bayesian

inference of nonlinear chemical reaction networks. Inference of reaction network mod-

els is important in areas such as biology, combustion, and catalysis. The traditional

approach to inference of model structure in the Bayesian paradigm relies on eval-

uating a multidimensional integral for every plausible model. When the number

of models is large, however, this approach is infeasible. The inference of chemical

reaction networks can require the consideration of large model spaces since the num-

ber of plausible models grows combinatorially with the number of proposed reactions.

Across-model samplers that jointly explore the parameter spaces of all models can en-

able large-scale network inference. However, the effective use of existing across-model

samplers continues to be a challenge. In this thesis, we develop efficient across-model

samplers for large-scale inference of reaction networks.

6.1 Conclusions

In the third chapter, we presented a fixed-dimensional interpretation of the network

inference problem. Recognizing that the set of possible models in the network in-

ference problem are nested allows us to tackle the network inference problem as a
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fixed-dimensional inference problem, and to adapt existing fixed-dimensional adap-

tive MCMC for efficient network inference. Adaptive methods allow automatic tuning

of proposals in contrast to the conventional approach of manual tuning of between-

model parameter proposals by pilot simulations. We employed our methodology to

infer reforming models of methane on rhodium with real and synthetic data. Our ex-

amples indicate that efficient large-scale nonlinear network inference is feasible with

adaptive methods even in settings where little is known about the parameter poste-

riors of the proposed models. Our general fixed-dimensional adaptive MCMC frame-

work for network inference provides myriad information, including the most probable

models, full uncertainty in parameter values, and the dominant pathways.

The network-based interaction of species in reaction networks translates into clus-

ters of networks such that networks belonging to a cluster all have identical effective

networks. We show in Chapter 4 how determining the effective networks of proposed

networks in an across-model sampler can enable the construction of more effective

between-model parameter proposals. The nonlinearity of chemical reaction networks

means that keeping the rate constants of reactions that are commmon to the cur-

rent and the proposed networks in across-model samplers can often produce poor

parameter proposals. To develop better proposals in such cases, we have further de-

veloped sensitivity-based network-aware proposals that identify critical reactions and

include a network-aware parameter proposal for their rate constants when proposing

moves between networks. The developed methods when tested on a range of exam-

ple problems show clear advantage in exploiting network topology and sensitivity of

observables to network elements while designing between-model parameter proposals.

Finally, we have developed an approach for very large-scale model inference—

settings when the number of models is so large that exact sampling methods are pro-

hibitively expensive. By incorporating a Laplace approximation for model evidence,

we run an MCMC simulation only over model indicators. Approximating the evi-

dence of all models visited by the sampler eliminates the need for developing effective
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parameter proposals for between-model moves and thus reduces the overall cost of the

simulation. The conventional single-chain Markov chain Monte Carlo simulations over

model indicators still find it difficult to explore model posterior distributions, which

are typically multimodal. For this, we have developed a population-based approxi-

mate model inference algorithm that involves running a population of MCMC chains

which exchange information among themselves to explore the posterior distribution

over models. We applied our algorithm to network inference problems from biology

with spaces of around 109 networks. The population-based approximate model in-

ference approach is seen to outperform the single-chain approximate model inference

algorithm.

Large-scale nonlinear network inference is an important goal that could help im-

prove our fundamental understanding of many processes and enable better predictions

with quantified uncertainties. To this end, the development of efficient across-model

samplers is critical. Effective across-model samplers would allow a systematic compar-

ison of all plausible networks in contrast to the conventional approach of comparing a

few hand-crafted models or using simplified linear models. This thesis provides some

ideas on efficient across-models samplers for nonlinear network inference.

6.2 Future work

Our work in this thesis suggests some areas of future work for further development

of network inference algorithms. We outline a few ideas here:

1. Exact approximations to model evidences: A key challenge to efficient

across-model sampling that has been addressed in this thesis is the design of

good between-model parameter proposals. The ideas presented in Chapter 3 and

4 are definite improvements over existing methods, but further advancements

may be possible. One in particular is to consider using an exact approximations

of model evidence when proposing moves between models. A recent algorith-
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mic development in the MCMC literature called pseudomarginal MCMC is one

such approach [6, 11]. The idea behind these exact approximations is to use

an ensemble of samples to approximate the evidence of the model to which a

move is proposed. As a result, the alignment of densities, which is key to good

sampling performance of the methods discussed in this thesis, is circumvented.

Note, in contrast to approximation based methods discussed in Chapter 5 of

this thesis, the exact approximation Monte Carlo converges asymptotically to

the true posterior distribution. How a good exact approximation may be con-

structed is a subject of ongoing research, but expoiting network-based species

interactions as in Chapter 4 is something that can be immediately incorporated

for network inference problems.

2. Hybrid across-model samplers: We presented adaptive MCMC methods for

network inference in Chapter 3. It is well known, however, that the performance

of adaptive MCMC methods for finite samples depends on initially having a

nonadaptive MCMC algorithm with a fairly good sampling performance. To

this end, we have developed methods that improve the performace of between-

model proposals. One interesting idea could be to combine the ideas from

Chapter 3 and 4 by using network-aware parameter proposals and adapting the

model-move proposals 𝑞(𝑀 ′|𝑀) based on previous posterior samples.

3. Network-aware forward models: The exclusion of a reaction from a net-

work has been implemented in this thesis by setting the corresponding rate

constant to zero. As a result, the forward model solve still has a computational

complexity 𝑂(𝑁𝛼
𝑠 ), where 𝑁𝑠 is the total number of species in a network with

all proposed reactions, even when the actual number of species in the network

is much smaller. For large problems, superior computational performance may

be derived by turning the forward model also network aware, i.e., the forward

model need only perform computations on the species that are part of the cur-
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rent network.

4. Limiting the size of between-model moves: The network-aware methods

of Chapter 4 design between-model parameter proposals based on the current

and proposed effective networks. Currently there is no limit on the size of

allowed difference between the effective networks. For large network inference

problem, proposed moves may often be between effective networks that differ

greatly in their sizes. As has been discussed in this thesis, in general, it is hard

to construct efficient proposals in high dimensions. Therefore, one idea that can

be incorporated in across-model samplers for network inference is to limit the

difference in sizes of the effective networks between which proposals are made.

5. Approximation-based methods with better asymptotic performance:

The Laplace’s method discussed in this thesis has an 𝑂(𝑛−1
𝑑𝑎𝑡𝑎) approximation

error. Future work could look at approximation schemes that have faster asymp-

totic convergence rates. This may require considering higher-order Taylor ex-

pansions and/or incorporating more information about the structure of the net-

work inference forward models, priors, etc, into in the evidence approximation.
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Appendix A

Online expectation-maximization for

proposal adaptation

Here we present a derivation of the online EM algorithm applied to a general point

mass mixture proposal:

𝑞(𝑘𝑖;𝜓𝑖) = 𝑏𝑖,0𝛿(𝑘𝑖) +
𝑀∑︁

𝑚=1

𝑏𝑖,𝑚𝑞𝑚(𝑘𝑖; 𝜃𝑖,𝑚). (A.1)

The marginal proposal distribution 𝑞(𝑘𝑖;𝜓𝑖) shown in (A.1) can also be rewritten as

𝑞(𝑘𝑖;𝜓𝑖) =
∑︁
𝑧𝑖

𝑞(𝑘𝑖, 𝑧𝑖;𝜃𝑖), (A.2)

and taking 𝑞(𝑘𝑖;𝜓𝑖) to be independent for each 𝑘𝑖, the joint proposal distribution for

an 𝑁 -dimensional problem follows:

𝑞(�̄�;𝜓) =
∑︁
𝑧

𝑞(�̄�, 𝑧;𝜓) =
𝑁∏︁
𝑖=1

∑︁
𝑧𝑖

𝑞(𝑘𝑖, 𝑧𝑖;𝜃𝑖). (A.3)

Here, 𝑧𝑖 is a latent variable that takes one of 𝑀+1 values corresponding to the 𝑀+1

components that could generate the posterior sample. 𝑞(�̄�, 𝑧) is the joint distribution
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of 𝑧 and �̄� and is referred to as the complete-data likelihood. Expanding (A.2) by

the product rule of probability gives:

𝑞(𝑘𝑖;𝜓𝑖) =
∑︁
𝑧𝑖

𝑞(𝑘𝑖|𝑧𝑖)𝑞(𝑧𝑖)

= 𝑞(𝑧𝑖 = 0)𝛿(𝑘𝑖) +
𝑀∑︁

𝑚=1

𝑞(𝑧𝑖 = 𝑚)𝑞𝑚(𝑘𝑖|𝑧𝑖 = 𝑚; 𝜃𝑖,𝑚); (A.4)

Comparing (A.4) to (A.1), we see that

𝑞(𝑧𝑖 = 0) = 𝑏𝑖,0 and 𝑞(𝑧𝑖 = 𝑚) = 𝑏𝑖,𝑚. (A.5)

After the steps for a general point mass mixture proposal have been established,

we will obtain specific expressions for the case when the continuous components of

the above proposal distribution (3.9) are all Gaussian.

A.0.1 KL divergence minimization yields a maximum likeli-

hood problem

Recall that our goal is to update the proposal distribution 𝑞(�̄�;𝜓) iteratively based on

samples from the posterior distribution 𝑝(�̄�|𝒟) so as to minimize the KL divergence:

𝐷𝐾𝐿(𝑝(�̄�|𝒟‖𝑞(�̄�;𝜓)) =

∫︁
𝑝(�̄�|𝒟) log

(︂
𝑝(�̄�|𝒟)

𝑞(�̄�;𝜓)

)︂
𝑑�̄� (A.6)

w.r.t. the proposal parameters 𝜓. Note that minimizing the KL divergence in (A.6)

is equivalent to maximizing the cross entropy
∫︀
𝑝(�̄�|𝒟)𝑞(�̄�,𝜓)𝑑�̄�. Thus the objective

function can be rewritten as

𝜓* = arg max
𝜓

∫︁
𝑝(�̄�|𝒟) log(𝑞(�̄�;𝜓))𝑑�̄�. (A.7)
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The integral in (A.7) can be approximated by a Monte Carlo sum using 𝑇 samples

from the posterior distribution 𝑝(�̄�|𝒟) as

𝐼 =
1

𝑇

𝑇∑︁
𝑡=1

log(𝑞(�̄�𝑡;𝜓)) =
1

𝑇
log

(︃
𝑇∏︁
𝑡=1

𝑞(�̄�𝑡;𝜓)

)︃
. (A.8)

Now, if we think of �̄�𝑡=1:𝑇 as pseudo-data and 𝑞(�̄�𝑡;𝜃) as a likelihood, cross entropy

can be interpreted as a log-likelihood under infinite data and (A.7) as a maximum

(log-)likelihood problem. Mathematically (A.7) can also be written as

𝜓* = arg max
𝜓

lim
𝑇→∞

1

𝑇
log

(︃
𝑇∏︁
𝑡=1

𝑞(�̄�𝑡;𝜓)

)︃
(A.9)

A.0.2 Classical EM algorithm

Suppose we are given 𝑇 independent samples (�̄�1, �̄�2, . . . , �̄�𝑇 ) distributed according

to 𝑝(�̄�|𝒟). The solution of the maximum log-likelihood problem

𝜓* = arg max
𝜓

1

𝑇

𝑇∑︁
𝑡=1

log
(︀
𝑞(�̄�𝑡;𝜓)

)︀
(A.10)

can be obtained by taking the derivative of the log-likelihood and solving the resulting

nonlinear equations. The nonlinear equations thus obtained seldom have a closed-

form solution and thus are solved by numerical optimization.

An alternative known as expectation-maximization algorithm exists for the solu-

tion of the maximum log-likelihood problem [31, 15]. The EM algorithm often results

in simple analytical expressions and avoids the difficulties of gradient-based optimiza-

tion approaches. The EM algorithm consists of two steps, known as the E-step and

M-step, that are solved iteratively to obtain the optimal parameter values under mild

regularity conditions [117]. The two steps are given by

E-step
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𝑄(𝜓,𝜓𝑛−1) =

∫︁
log

(︃
𝑇∏︁
𝑡=1

𝑞(�̄�𝑡, 𝑧𝑡;𝜓)

)︃(︃
𝑇∏︁
𝑡=1

𝑞(𝑧𝑡|�̄�𝑡,𝜓𝑛−1)

)︃
𝑑𝑧1 . . . 𝑑𝑧𝑇

= E𝑧1...𝑧𝑇

[︃
log

(︃
𝑇∏︁
𝑡=1

𝑞(�̄�𝑡, 𝑧𝑡;𝜓)

)︃]︃
(A.11)

M-step

𝜓𝑛 = arg max
𝜓

𝑄(𝜓,𝜓𝑛−1) (A.12)

The E-step in the above equations evaluates the expectation of the logarithm of

the complete-data likelihood, where the expectation is taken with respect to the

latent variables conditioned on available (sampled) rate parameters. In the M-step,

an updated set of parameter values are computed by maximizing the expected log-

likelihood from the E-step. The EM algorithm as described in (A.11) and (A.12) is

applicable if all the observed samples (�̄�𝑡=1:𝑇 ) are available a priori and the samples

are independent.

Our problem is different from the above case since we are generating samples

from 𝑝(�̄�|𝒟) in batches. Moreover, the generated samples are not independent as

they are coming from an MCMC scheme. Thus we use a sequential variant of the EM

algorithm known as the online EM algorithm and specify conditions under which the

resulting adaptive MCMC algorithm converges to the posterior distribution, 𝑝(�̄�|𝒟).

A.0.3 Online expectation maximization

We begin our discussion of the online EM algorithm by assuming that the proposal

distribution 𝑞(�̄�, 𝑧;𝜓) can be represented in the form

𝑞(�̄�, 𝑧;𝜓) = exp(⟨𝑠(�̄�, 𝑧),𝜑(𝜓)⟩ −𝐴(𝜓)). (A.13)

Distributions that can be cast in the above form are known to belong to the expo-

nential family [13]. Here, 𝑠(�̄�, 𝑧) is a vector of sufficient statistics, 𝜑(𝜓) refers to the
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natural parameters, and 𝐴(𝜓) is the log base distribution. The operator ⟨·⟩ is the

standard inner product. Plugging the above expression for 𝑞(�̄�, 𝑧) into (A.11) and

(A.12), we get

E-step:

𝑄(𝜓,𝜓𝑛−1) =

∫︁ 𝑇∏︁
𝑡=1

𝑞(𝑧𝑡|�̄�𝑡;𝜓𝑛−1)
𝑇∑︁
𝑡=1

(︀
⟨𝑠(�̄�𝑡, 𝑧𝑡),𝜑(𝜓)⟩ −𝐴(𝜓)

)︀
𝑑𝑧1 . . . 𝑑𝑧𝑇 ,

(A.14)

M-step:

𝜓𝑛 = arg max
𝜓

𝑄(𝜓,𝜓𝑛−1). (A.15)

The above expectation and maximization steps can be recast in terms of sufficient

statistics as

E-step:

𝑆𝑇𝑛 =
1

𝑇

𝑇∑︁
𝑡=1

E𝜓𝑇
𝑛−1

[︀
𝑠(�̄�𝑡, 𝑧𝑡)|�̄�𝑡

]︀
, (A.16)

M-step:

𝜓𝑇𝑛 = Γ{𝑆𝑇𝑛}, (A.17)

where Γ{𝑆𝑇𝑛} = arg max
𝜓

(⟨𝑆𝑇𝑛 ,𝜑(𝜓)⟩ −𝐴(𝜓)). Letting 𝑇 → ∞, the EM iterations

are

E-step:

𝑆𝑛 = E𝑝(�̄�|𝒟)

(︁
E𝜓𝑛−1

[︀
𝑠(�̄�, 𝑧|�̄�)

]︀)︁
(A.18)

M-step:

𝜓𝑛 = Γ{𝑆𝑛} (A.19)
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Thus our overall goal of solving (A.7) is equivalent to locating the solutions of

E𝑝(�̄�|𝒟)

(︀
EΓ{𝑆}

[︀
𝑠(�̄�, 𝑧|�̄�)

]︀)︀
− 𝑆 = 0 (A.20)

If we now take 1
𝑇

∑︀𝑇
𝑡=1 EΓ{𝑆}[𝑠(�̄�𝑡, 𝑧𝑡)|�̄�𝑡] to be a noisy estimate of E𝑝(�̄�|𝒟)

(︀
EΓ{𝑆}

[︀
𝑠(�̄�, 𝑧|�̄�)

]︀)︀
,

application of the Robbins-Monro stochastic approximation algorithm results in the

online EM algorithm [4, 104]. The online EM iterations are given by

E-step:

𝑆𝑛 = (1− 𝜂𝑛)𝑆𝑛−1 + 𝜂𝑛

(︃
1

𝑇

𝑇∑︁
𝑡=1

E𝜓𝑛−1
[𝑠(�̄�𝑡, 𝑧𝑡)|�̄�𝑡]

)︃
(A.21)

M-step:

𝜓𝑛 = Γ{𝑆𝑛} (A.22)

𝜂𝑛 here is a sequence of decreasing positive step sizes and satisfies the following two

conditions:

∞∑︁
𝑛=1

𝜂𝑛 =∞ and
∞∑︁
𝑛=1

𝜂2𝑛 <∞ (A.23)

We take 𝜂𝑛 = 1/𝑛 in our work. We now return to the complete-data likelihood of the

point-mass mixture proposal distribution ((A.2, A.3)). Assuming that the continuous

parts of the proposal distribution for each rate parameter 𝑘𝑖 are Gaussian distributions

with arbitrary initial means and variances and recalling that the proposal for each 𝑘𝑖

is independent, we obtain the complete-data log-likelihood as

log 𝑞(�̄�, 𝑧|𝜓) =
𝑁∑︁
𝑖=1

𝑀∑︁
𝑚=0

𝑧𝑖,𝑚 log 𝑏𝑖,𝑚 +
𝑁∑︁
𝑖=1

𝑀∑︁
𝑚=1

𝑧𝑖,𝑚 log𝒩 (𝑘𝑖;𝜇𝑖,𝑚, 𝜎
2
𝑖,𝑚). (A.24)

It can be easily be shown that (A.24) can be cast in the form of (A.13) and that the

corresponding sufficient statistics are given by:
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For i = 1 to 𝑁

For 𝑚 = 0 to 𝑀 :

𝑂𝑖,𝑚 =
1

𝑇

𝑇∑︁
𝑡=1

𝛾(𝑧𝑡𝑖,𝑚),

For 𝑚 = 1 to 𝑀 :

𝑃𝑖,𝑚 =
1

𝑇

𝑇∑︁
𝑡=1
𝑘𝑡𝑖 ̸=0

𝛾(𝑧𝑡𝑖,𝑚) 𝑄𝑖,𝑚 =
1

𝑇

𝑇∑︁
𝑡=1
𝑘𝑡𝑖 ̸=0

𝛾(𝑧𝑡𝑖,𝑚)𝑘𝑡𝑖 𝑅𝑖,𝑚 =
1

𝑇

𝑇∑︁
𝑡=1
𝑘𝑡𝑖 ̸=0

𝛾(𝑧𝑡𝑖,𝑚)(𝑘𝑡𝑖)
2

where 𝛾(𝑧𝑡𝑖,𝑚) = 𝑝(𝑧𝑡𝑖,𝑚|𝑘𝑡𝑖 ;𝜓𝑖) is given by

𝛾(𝑧𝑡𝑖,𝑚) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if 𝑘𝑡𝑖 = 0 and 𝑚 = 0

0 if 𝑘𝑡𝑖 = 0 and 𝑚 ̸= 0

0 if 𝑘𝑡𝑖 ̸= 0 and 𝑚 = 0
𝑏𝑖,𝑚𝒩 (𝑘𝑡𝑖 ;𝜇𝑖,𝑚,𝜎2

𝑖,𝑚)∑︀𝑀
𝑚′=1 𝑏𝑖,𝑚′𝒩 (𝑘𝑡𝑖 ;𝜇𝑖,𝑚′ ,𝜎2

𝑖,𝑚′ )
if 𝑘𝑡𝑖 ̸= 0 and 𝑚 ̸= 0.

(A.25)

Thus the online EM iterations consist of the following two steps

E-step:

𝑆𝑂𝑖,𝑚
𝑛 = 𝑆

𝑂𝑖,𝑚

𝑛−1 + 𝜂𝑛(𝑂𝑖,𝑚 − 𝑆
𝑂𝑖,𝑚

𝑛−1 )

𝑆𝑃𝑖,𝑚
𝑛 = 𝑆

𝑃𝑖,𝑚

𝑛−1 + 𝜂𝑛(𝑃𝑖,𝑚 − 𝑆
𝑃𝑖,𝑚

𝑛−1 )

𝑆𝑄𝑖,𝑚
𝑛 = 𝑆

𝑄𝑖,𝑚

𝑛−1 + 𝜂𝑛(𝑄𝑖,𝑚 − 𝑆
𝑄𝑖,𝑚

𝑛−1 )

𝑆𝑅𝑖,𝑚
𝑛 = 𝑆

𝑅𝑖,𝑚

𝑛−1 + 𝜂𝑛(𝑅𝑖,𝑚 − 𝑆
𝑅𝑖,𝑚

𝑛−1 ) (A.26)
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M-step:

𝑏𝑖,𝑚 =
𝑆
𝑂𝑖,𝑚
𝑛∑︀𝑀

𝑚′=0 𝑆
𝑂𝑖,𝑚′
𝑛

𝜇𝑖,𝑚 =
𝑆
𝑄𝑖,𝑚
𝑛

𝑆
𝑃𝑖,𝑚
𝑛

𝜎2
𝑖,𝑚 =

𝜇2
𝑖,𝑚𝑆

𝑃𝑖,𝑚
𝑛 − 2𝜇𝑖,𝑚𝑆

𝑄𝑖,𝑚
𝑛 + 𝑆

𝑅𝑖,𝑚
𝑛

𝑆
𝑃𝑖,𝑚
𝑛

(A.27)

We have thus arrived at the steps of an adaptive MCMC algorithm that involves

simulating a batch of 𝑇 samples from the posterior distribution in each iteration

and updating the proposal parameters based on (A.26) and (A.27). Because online

EM adjusts proposal parameters based on all the past samples, standard proofs that

guarantee asymptotic convergence of non-adaptive MCMC methods do not apply

here. [4] provide rigorous technical conditions that guarantee a law of large numbers

and a central limit theorem for the online EM algorithm. These conditions also require

that one include a non-adaptive fixed component in the proposal distribution; we do so

in our simulations in the form of a multi-dimensional Gaussian with fixed parameters

𝑞(�̄�;𝜓). [106], in contrast, develop simpler conditions that ensure convergence of

the adaptive MCMC scheme to the target distribution and provide a law of large

numbers. The first is known as diminishing adaptation, which requires that the

magnitude of adaptation is continuously decreasing. The online EM-based adaptive

MCMC approach described above satisfies this condition since the step size 𝜂𝑛 → 0.

The second condition, known as bounded convergence, is satisfied as long as the non-

adaptive component 𝑞(�̄�;𝜓) has sufficiently heavy tails or the support of �̄� is compact

[73].
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Appendix B

Reaction networks: reactions,

reaction rates, and species production

rates

B.1 12-dimensional reaction network

Here we present the details of the set of proposed reactions, the corresponding reaction

and species production rate ODE expressions for the 12-reaction network used in

example problems of Chapters 4 and 5 of this thesis.

B.1.1 Reactions

1. 𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅→ 𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑𝐸𝐺𝐹𝑅

2. 𝐸𝐺𝐹 + 𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅↔ 𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅

3. 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺+ 𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅→ 𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺+ 𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅

4. 𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺→ 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺

5. 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1 + 𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺→ 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1 + 𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺
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BEGFR

DEGFR EGF

UEGFR

inactiveC3G

activeC3G

activeRap1

BRafBRafPP

activeRas

Gap

inactiveRap1inactiveRas

activeSOS

inactiveSOS

Reaction 1

Reaction 2

Reaction 3

Reaction 4

Reaction 5

Reaction 6

Reaction 8

Reaction 7
Reaction 9

Reaction 10

Reaction 11

Reaction 12
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6. 𝐵𝑅𝑎𝑓 + 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1→ 𝐵𝑅𝑎𝑓𝑃𝑃 + 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1

7. 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1 +𝐺𝑎𝑝→ 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1 +𝐺𝑎𝑝

8. 𝐵𝑅𝑎𝑓 + 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠→ 𝐵𝑅𝑎𝑓𝑃𝑃 + 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠

9. 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠+𝐺𝑎𝑝→ 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠+𝐺𝑎𝑝

10. 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠+ 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆 → 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠+ 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆

11. 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆 → 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆

12. 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆 + 𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅→ 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆 + 𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅

B.1.2 Reaction rates

1. 𝑘1[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]

2. 𝑘2𝑓 [𝐸𝐺𝐹 ][𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]− 𝑘2𝑟[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]

3.
𝑘3[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

𝑘
′
3 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

4. 𝑘4[𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

5.
𝑘5[𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

𝑘
′
5 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

6.
𝑘6[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1][𝐵𝑅𝑎𝑓 ]

𝑘
′
6 + [𝐵𝑅𝑎𝑓 ]

7.
𝑘7[𝐺𝑎𝑝][𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

𝑘
′
7 + [𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

8.
𝑘8[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠][𝐵𝑅𝑎𝑓 ]

𝑘
′
8 + [𝐵𝑅𝑎𝑓 ]

9.
𝑘9[𝐺𝑎𝑝][𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

𝑘
′
9 + [𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

10.
𝑘10[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

𝑘
′
10 + 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠

11.
𝑘11[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
11 + [𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

12.
𝑘12[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
12 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]
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B.1.3 Species production rates

1. ˙[𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅] = −𝑘2𝑓 [𝐸𝐺𝐹 ][𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅] + 𝑘2𝑟[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]

2. ˙[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆] = −𝑘12[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
12 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

+
𝑘11[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
11 + [𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

3. ˙[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠] = −𝑘10[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

𝑘
′
10 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

+
𝑘9[𝐺𝑎𝑝][𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

𝑘
′
9 + [𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

4. ˙[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1] =
𝑘7[𝐺𝑎𝑝][𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

𝑘
′
7 + [𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

− 𝑘5[𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

𝑘
′
5 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

5. ˙[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅] = 𝑘2𝑓 [𝐸𝐺𝐹 ][𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]− 𝑘2𝑟[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]− 𝑘1[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]

6. ˙[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆] =
𝑘12[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
12 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

− 𝑘11[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
11 + [𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

7. ˙[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠] =
𝑘10[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

𝑘
′
10 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

− 𝑘9[𝐺𝑎𝑝][𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

𝑘
′
9 + [𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

8. ˙[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1] =
𝑘7[𝐺𝑎𝑝][𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

𝑘
′
7 + [𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

+
𝑘5[𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

𝑘
′
5 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

9. ˙[𝐸𝐺𝐹 ] = −𝑘2𝑓 [𝐸𝐺𝐹 ][𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅] + 𝑘2𝑟[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]

10. ˙[𝐵𝑅𝑎𝑓𝑃𝑃 ] =
𝑘6[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1][𝐵𝑅𝑎𝑓 ]

𝑘
′
6 + [𝐵𝑅𝑎𝑓 ]

+
𝑘8[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠][𝐵𝑅𝑎𝑓 ]

𝑘
′
8 + [𝐵𝑅𝑎𝑓 ]

11. ˙[𝐵𝑅𝑎𝑓 ] = −𝑘6[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1][𝐵𝑅𝑎𝑓 ]

𝑘
′
6 + [𝐵𝑅𝑎𝑓 ]

− 𝑘8[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠][𝐵𝑅𝑎𝑓 ]

𝑘
′
8 + [𝐵𝑅𝑎𝑓 ]

12. ˙[𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺] =
𝑘3[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

𝑘
′
3 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

− 𝑘4[𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

13. ˙[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺] = −𝑘3[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

𝑘
′
3 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

+ 𝑘4[𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

14. ˙[𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑𝐸𝐺𝐹𝑅] = 𝑘1[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]

15. ˙[𝐺𝑎𝑝] = 0
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B.1.4 Initial species concentrations

All simulations using the above reactions are performed with the following initial

concentrations:

1. [𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]0 = 500

2. [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]0 = 1200

3. [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]0 = 1200

4. [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]0 = 1200

5. [𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]0 = 0

6. [𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]0 = 0

7. [𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]0 = 0

8. [𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]0 = 0

9. [𝐸𝐺𝐹 ]0 = 1000

10. [𝐵𝑅𝑎𝑓𝑃𝑃 ]0 = 0

11. [𝐵𝑅𝑎𝑓 ]0 = 1500

12. [𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]0 = 0

13. [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]0 = 1200

14. [𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑𝐸𝐺𝐹𝑅]0 = 0

15. [𝐺𝑎𝑝]0 = 2400

B.2 30-dimensional reaction network

Here we present the details of the set of proposed reactions, the corresponding reaction

and species production rate ODE expressions for the 30-reaction network used in

example problems of Chapter 5 of this thesis.
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B.2.1 Reactions

1. 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆 + 𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅→ 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆 + 𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅

2. 𝐸𝐺𝐹 + 𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅↔ 𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅

3. 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆 → 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆

4. 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠+ 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆 → 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠+ 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆

5. 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠+𝐺𝑎𝑝→ 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠+𝐺𝑎𝑝

6. 𝑐𝑅𝑎𝑓 + 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠→ 𝑐𝑅𝑎𝑓𝑃𝑃 + 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠

7. 𝑐𝑅𝑎𝑓𝑃𝑃 → 𝑐𝑅𝑎𝑓

8. 𝑀𝐸𝐾 + 𝑐𝑅𝑎𝑓𝑃𝑃 →𝑀𝐸𝐾𝑃𝑃 + 𝑐𝑅𝑎𝑓𝑃𝑃

9. 𝑀𝐸𝐾𝑃𝑃 →𝑀𝐸𝐾

10. 𝐸𝑅𝐾 +𝑀𝐸𝐾𝑃𝑃 → 𝐸𝑅𝐾𝑃𝑃 +𝑀𝐸𝐾𝑃𝑃

11. 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆 + 𝐸𝑅𝐾𝑃𝑃 → 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑆𝑂𝑆 + 𝐸𝑅𝐾𝑃𝑃

12. 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆 + 𝐸𝑅𝐾𝑃𝑃 → 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑆𝑂𝑆 + 𝐸𝑅𝐾𝑃𝑃

13. 𝑐𝑅𝑎𝑓 + 𝑃𝐾𝐴→ 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑐𝑅𝑎𝑓 + 𝑃𝐾𝐴

14. 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴+ 𝑃𝐾𝐴𝐴→ 𝑃𝐾𝐴+ 𝑃𝐾𝐴𝐴

15. 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴+ 𝐶𝑖𝑙𝑜𝑠𝑡𝑎𝑚𝑖𝑑𝑒→ 𝑃𝐾𝐴+ 𝐶𝑖𝑙𝑜𝑠𝑡𝑎𝑚𝑖𝑑𝑒

16. 𝑃𝐾𝐴→ 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴

17. 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶 + 𝐸𝑃𝐴𝐶𝐴→ 𝐸𝑃𝐴𝐶 + 𝐸𝑃𝐴𝐶𝐴

18. 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶 + 𝐶𝑖𝑙𝑜𝑠𝑡𝑎𝑚𝑖𝑑𝑒→ 𝐸𝑃𝐴𝐶 + 𝐶𝑖𝑙𝑜𝑠𝑡𝑎𝑚𝑖𝑑𝑒

19. 𝐸𝑃𝐴𝐶 → 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶

20. 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1 + 𝐸𝑃𝐴𝐶 → 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1 + 𝐸𝑃𝐴𝐶

21. 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1 +𝐺𝑎𝑝→ 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1 +𝐺𝑎𝑝

22. 𝐵𝑅𝑎𝑓 + 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1→ 𝐵𝑅𝑎𝑓𝑃𝑃 + 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1

23. 𝐵𝑅𝑎𝑓𝑃𝑃 → 𝐵𝑅𝑎𝑓

181



24. 𝑀𝐸𝐾 +𝐵𝑅𝑎𝑓𝑃𝑃 →𝑀𝐸𝐾𝑃𝑃 +𝐵𝑅𝑎𝑓𝑃𝑃

25. 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺+ 𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅→ 𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺+ 𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅

26. 𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺→ 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺

27. 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1 + 𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺→ 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1 + 𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺

28. 𝐵𝑅𝑎𝑓 + 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠→ 𝐵𝑅𝑎𝑓𝑃𝑃 + 𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠

29. 𝐸𝑅𝐾𝑃𝑃 → 𝐸𝑅𝐾

30. 𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅→ 𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑𝐸𝐺𝐹𝑅

B.2.2 Reaction rates

1.
𝑘1[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
1 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

2. 𝑘2[𝐸𝐺𝐹 ][𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]− 𝑘2𝑟[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]

3.
𝑘3[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
3 + [𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

4.
𝑘4[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

𝑘
′
4 + 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠

5.
𝑘5[𝐺𝑎𝑝][𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

𝑘
′
5 + [𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

6.
𝑘6[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠][𝑐𝑅𝑎𝑓 ]

𝑘
′
6 + [𝑐𝑅𝑎𝑓 ]

7.
𝑘7[𝑐𝑅𝑎𝑓𝑃𝑃 ]

𝑘
′
7 + [𝑐𝑅𝑎𝑓𝑃𝑃 ]

8.
𝑘8[𝑐𝑅𝑎𝑓𝑃𝑃 ][𝑀𝐸𝐾]

𝑘
′
8 + [𝑀𝐸𝐾]

9.
𝑘9[𝑀𝐸𝐾𝑃𝑃 ]

𝑘
′
9 + [𝑀𝐸𝐾𝑃𝑃 ]

10.
𝑘10[𝑀𝐸𝐾𝑃𝑃 ][𝐸𝑅𝐾]

𝑘
′
10 + [𝐸𝑅𝐾]

11.
𝑘11[𝐸𝑅𝐾𝑃𝑃 ][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
11 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

12.
𝑘12[𝐸𝑅𝐾𝑃𝑃 ][𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
12 + [𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]
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13.
𝑘13[𝑃𝐾𝐴][𝑐𝑅𝑎𝑓 ]

𝑘
′
13 + [𝑐𝑅𝑎𝑓 ]

14.
𝑘14[𝑃𝐾𝐴𝐴][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴]

𝑘
′
14 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴]

15.
𝑘15[𝐶𝑖𝑙𝑜𝑠𝑡𝑎𝑚𝑖𝑑𝑒][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴]

𝑘
′
15 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴]

16.
𝑘16[𝑃𝐾𝐴]

𝑘
′
16 + [𝑃𝐾𝐴]

17.
𝑘17[𝐸𝑃𝐴𝐶𝐴][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶]

𝑘
′
17 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶]

18.
𝑘18[𝐶𝑖𝑙𝑜𝑠𝑡𝑎𝑚𝑖𝑑𝑒][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶]

𝑘
′
18 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶]

19.
𝑘19[𝐸𝑃𝐴𝐶]

𝑘
′
19 + [𝐸𝑃𝐴𝐶]

20.
𝑘20[𝐸𝑃𝐴𝐶][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

𝑘
′
20 + 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1

21.
𝑘21[𝐺𝑎𝑝][𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

𝑘
′
21 + [𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

22.
𝑘22[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1][𝐵𝑅𝑎𝑓 ]

𝑘
′
22 + [𝐵𝑅𝑎𝑓 ]

23.
𝑘23[𝐵𝑅𝑎𝑓𝑃𝑃 ]

𝑘
′
23 + [𝐵𝑅𝑎𝑓𝑃𝑃 ]

24.
𝑘24[𝐵𝑅𝑎𝑓𝑃𝑃 ][𝑀𝐸𝐾]

𝑘
′
24 + [𝑀𝐸𝐾]

25.
𝑘25[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

𝑘
′
25 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

26. 𝑘26[𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

27.
𝑘27[𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

𝑘
′
27 + [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

28.
𝑘28[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠][𝐵𝑅𝑎𝑓 ]

𝑘
′
28 + [𝐵𝑅𝑎𝑓 ]

29.
𝑘29[𝐸𝑅𝐾𝑃𝑃 ]

𝑘
′
29 + [𝐸𝑅𝐾𝑃𝑃 ]

30. 𝑘30[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]
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B.2.3 Species production rates

1. ˙[𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅] = −𝑘2[𝐸𝐺𝐹 ][𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅] + 𝑘2𝑟[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]

2. ˙[𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑐𝑅𝑎𝑓 ] = 𝑘13[𝑃𝐾𝐴][𝑐𝑅𝑎𝑓 ]

𝑘
′
13+[𝑐𝑅𝑎𝑓 ]

3. ˙[𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑆𝑂𝑆] = 𝑘11[𝐸𝑅𝐾𝑃𝑃 ][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
11+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

+ 𝑘12[𝐸𝑅𝐾𝑃𝑃 ][𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
12+[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

4. ˙[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆] = −𝑘1[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
1+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

+ 𝑘3[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
3+[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

−𝑘11[𝐸𝑅𝐾𝑃𝑃 ][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
11+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

5. ˙[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠] = −𝑘4[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

𝑘
′
4+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

+ 𝑘5[𝐺𝑎𝑝][𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

𝑘
′
5+[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

6. ˙[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1] = −𝑘20[𝐸𝑃𝐴𝐶][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

𝑘
′
20+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

+𝑘21[𝐺𝑎𝑝][𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

𝑘
′
21+[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

−𝑘27[𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

𝑘
′
27+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

7. ˙[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴] = −𝑘14[𝑃𝐾𝐴𝐴][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴]

𝑘
′
14+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴]

− 𝑘15[𝐶𝑖𝑙𝑜𝑠𝑡𝑎𝑚𝑖𝑑𝑒][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴]

𝑘
′
15+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴]

+ 𝑘16[𝑃𝐾𝐴]

𝑘
′
16+[𝑃𝐾𝐴]

8. ˙[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶] = −𝑘17[𝐸𝑃𝐴𝐶𝐴][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶]

𝑘
′
17+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶]

− 𝑘18[𝐶𝑖𝑙𝑜𝑠𝑡𝑎𝑚𝑖𝑑𝑒][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶]

𝑘
′
18+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶]

+ 𝑘19[𝐸𝑃𝐴𝐶]

𝑘
′
19+[𝐸𝑃𝐴𝐶]

9. ˙[𝑐𝑅𝑎𝑓𝑃𝑃 ] = 𝑘6[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠][𝑐𝑅𝑎𝑓 ]

𝑘
′
6+[𝑐𝑅𝑎𝑓 ]

− 𝑘7[𝑐𝑅𝑎𝑓𝑃𝑃 ]

𝑘
′
7+[𝑐𝑅𝑎𝑓𝑃𝑃 ]

10. ˙[𝑐𝑅𝑎𝑓 ] = −𝑘6[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠][𝑐𝑅𝑎𝑓 ]

𝑘
′
6+[𝑐𝑅𝑎𝑓 ]

+ 𝑘7[𝑐𝑅𝑎𝑓𝑃𝑃 ]

𝑘
′
7+[𝑐𝑅𝑎𝑓𝑃𝑃 ]

− 𝑘13[𝑃𝐾𝐴][𝑐𝑅𝑎𝑓 ]

𝑘
′
13+[𝑐𝑅𝑎𝑓 ]

11. ˙[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅] = 𝑘2[𝐸𝐺𝐹 ][𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]−𝑘2𝑟[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]−𝑘30[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]

12. ˙[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆] = 𝑘1[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
1+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

− 𝑘3[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
3+[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

− 𝑘12[𝐸𝑅𝐾𝑃𝑃 ][𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

𝑘
′
12+[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]

13. ˙[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠] = 𝑘4[𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

𝑘
′
4+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

− 𝑘5[𝐺𝑎𝑝][𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

𝑘
′
5+[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]

14. ˙[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1] = 𝑘20[𝐸𝑃𝐴𝐶][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

𝑘
′
20+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

− 𝑘21[𝐺𝑎𝑝][𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

𝑘
′
21+[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

+ 𝑘27[𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

𝑘
′
27+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]

15. ˙[𝑃𝐾𝐴] = 𝑘14[𝑃𝐾𝐴𝐴][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴]

𝑘
′
14+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴]

+ 𝑘15[𝐶𝑖𝑙𝑜𝑠𝑡𝑎𝑚𝑖𝑑𝑒][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴]

𝑘
′
15+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴]

− 𝑘16[𝑃𝐾𝐴]

𝑘
′
16+[𝑃𝐾𝐴]

16. ˙[𝑀𝐸𝐾𝑃𝑃 ] = 𝑘8[𝑐𝑅𝑎𝑓𝑃𝑃 ][𝑀𝐸𝐾]

𝑘
′
8+[𝑀𝐸𝐾]

− 𝑘9[𝑀𝐸𝐾𝑃𝑃 ]

𝑘
′
9+[𝑀𝐸𝐾𝑃𝑃 ]

+ 𝑘24[𝐵𝑅𝑎𝑓𝑃𝑃 ][𝑀𝐸𝐾]

𝑘
′
24+[𝑀𝐸𝐾]

17. ˙[𝑀𝐸𝐾] = −𝑘8[𝑐𝑅𝑎𝑓𝑃𝑃 ][𝑀𝐸𝐾]

𝑘
′
8+[𝑀𝐸𝐾]

+ 𝑘9[𝑀𝐸𝐾𝑃𝑃 ]

𝑘
′
9+[𝑀𝐸𝐾𝑃𝑃 ]

− 𝑘24[𝐵𝑅𝑎𝑓𝑃𝑃 ][𝑀𝐸𝐾]

𝑘
′
24+[𝑀𝐸𝐾]

18. ˙[𝐸𝑅𝐾𝑃𝑃 ] = 𝑘10[𝑀𝐸𝐾𝑃𝑃 ][𝐸𝑅𝐾]

𝑘
′
10+[𝐸𝑅𝐾]

− 𝑘29[𝐸𝑅𝐾𝑃𝑃 ]

𝑘
′
29+[𝐸𝑅𝐾𝑃𝑃 ]
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19. ˙[𝐸𝑅𝐾] = −𝑘10[𝑀𝐸𝐾𝑃𝑃 ][𝐸𝑅𝐾]

𝑘
′
10+[𝐸𝑅𝐾]

+ 𝑘29[𝐸𝑅𝐾𝑃𝑃 ]

𝑘
′
29+[𝐸𝑅𝐾𝑃𝑃 ]

20. ˙[𝐸𝑃𝐴𝐶] = 𝑘17[𝐸𝑃𝐴𝐶𝐴][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶]

𝑘
′
17+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶]

+ 𝑘18[𝐶𝑖𝑙𝑜𝑠𝑡𝑎𝑚𝑖𝑑𝑒][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶]

𝑘
′
18+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶]

− 𝑘19[𝐸𝑃𝐴𝐶]

𝑘
′
19+[𝐸𝑃𝐴𝐶]

21. ˙[𝐸𝐺𝐹 ] = −𝑘2[𝐸𝐺𝐹 ][𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅] + 𝑘2𝑟[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]

22. ˙[𝐵𝑅𝑎𝑓𝑃𝑃 ] = 𝑘22[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1][𝐵𝑅𝑎𝑓 ]

𝑘
′
22+[𝐵𝑅𝑎𝑓 ]

− 𝑘23[𝐵𝑅𝑎𝑓𝑃𝑃 ]

𝑘
′
23+[𝐵𝑅𝑎𝑓𝑃𝑃 ]

+ 𝑘28[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠][𝐵𝑅𝑎𝑓 ]

𝑘
′
28+[𝐵𝑅𝑎𝑓 ]

23. ˙[𝐵𝑅𝑎𝑓 ] = −𝑘22[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1][𝐵𝑅𝑎𝑓 ]

𝑘
′
22+[𝐵𝑅𝑎𝑓 ]

+ 𝑘23[𝐵𝑅𝑎𝑓𝑃𝑃 ]

𝑘
′
23+[𝐵𝑅𝑎𝑓𝑃𝑃 ]

− 𝑘28[𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠][𝐵𝑅𝑎𝑓 ]

𝑘
′
28+[𝐵𝑅𝑎𝑓 ]

24. ˙[𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺] = 𝑘25[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

𝑘
′
25+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

− 𝑘26[𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

25. ˙[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺] = −𝑘25[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅][𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

𝑘
′
25+[𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

+ 𝑘26[𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]

26. ˙[𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑𝐸𝐺𝐹𝑅] = 𝑘30[𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]

27. ˙[𝐸𝑃𝐴𝐶𝐴] = 0

28. ˙[𝐺𝑎𝑝] = 0

29. ˙[𝑃𝐾𝐴𝐴] = 0

30. ˙[𝐶𝑖𝑙𝑜𝑠𝑡𝑎𝑚𝑖𝑑𝑒]

B.2.4 Initial species concentrations

All simulations using the above reactions are performed with the following initial

concentrations:

1. [𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]0 = 500

2. [𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑐𝑅𝑎𝑓 ]0 = 0

3. [𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑆𝑂𝑆]0 = 0

4. [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]0 = 1200

5. [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]0 = 1200
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6. [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]0 = 1200

7. [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑃𝐾𝐴]0 = 1000

8. [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐸𝑃𝐴𝐶]0 = 1000

9. [𝑐𝑅𝑎𝑓𝑃𝑃 ]0 = 0

10. [𝑐𝑅𝑎𝑓 ]0 = 1500

11. [𝑏𝑜𝑢𝑛𝑑𝐸𝐺𝐹𝑅]0 = 0

12. [𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑂𝑆]0 = 0

13. [𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑠]0 = 0

14. [𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑎𝑝1]0 = 0

15. [𝑃𝐾𝐴]0 = 0

16. [𝑀𝐸𝐾𝑃𝑃 ]0 = 0

17. [𝑀𝐸𝐾]0 = 3000

18. [𝐸𝑅𝐾𝑃𝑃 ]0 = 0

19. [𝐸𝑅𝐾]0 = 10000

20. [𝐸𝑃𝐴𝐶]0 = 0

21. [𝐸𝐺𝐹 ]0 = 1000

22. [𝐵𝑅𝑎𝑓𝑃𝑃 ]0 = 0

23. [𝐵𝑅𝑎𝑓 ]0 = 1500

24. [𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]0 = 0

25. [𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐶3𝐺]0 = 1200
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26. [𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑𝐸𝐺𝐹𝑅]0 = 0

27. [𝐸𝑃𝐴𝐶𝐴]0 = 1000

28. [𝐺𝑎𝑝]0 = 2400

29. [𝑃𝐾𝐴𝐴]0 = 1000

30. [𝐶𝑖𝑙𝑜𝑠𝑡𝑎𝑚𝑖𝑑𝑒]0 = 1000
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