Computation of Nonlinear Hydrodynamic Loads on

Floating Wind Turbines using Fluid-Impulse Theory

by
Godine Kok Yan Chan

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mechanical Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2016

MASSACHUSETTS INSTITUTE
. _OF TECHNOLOGY

“JUN 02 2016

“LIBRARIES

ARCHIVES

(© Massachusetts Institute of Technology 2016. All rights reserved.

Signature redacted

Author . ..o

Department of Mechanical Engineering
May 3, 2016

Signature redacted

Certified by . ... e e

Paul D. Sclavounos
Professor
Thesis Supervisor

Signhature redacted

Accepted by ... ~ -

Rohan Abeyaratne
Chairman, Department Committee on Graduate Students






Computation of Nonlinear Hydrodynamic Loads on Floating
Wind Turbines using Fluid-Impulse Theory
by
Godine Kok Yan Chan

Submitted to the Department of Mechanical Engineering
on May 3, 2016, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Mechanical Engineering

Abstract

Wind energy is one of the more viable sources of renewable energy and offshore wind
turbines represent a promising technology for the cost effective harvesting of this
abundant source of energy. To capture wind energy offshore, horizontal-axis wind
turbines can be installed on offshore platforms and the study of hydrodynamic loads
on these offshore platforms becomes a critical issue for the design of offshore wind
turbine systems.

A versatile and efficient hydrodynamics module was developed to evaluate the
linear and nonlinear loads on floating wind turbines using a new fluid-impulse for-
mulation — the Fluid Impulse Theory(FIT). The new formulation allows linear and
nonlinear loads on floating bodies to be computed in the time domain, and avoids
the computationally intensive evaluation of temporal and spatial gradients of the ve-
locity potential in the Bernoulli equation and the discretization of the nonlinear free
surface. The module computes linear and nonlinear loads — including hydrostatic,
Froude-Krylov, radiation and diffraction, as well as nonlinear effects known to cause
ringing, springing and slow-drift loads — directly in the time domain and a stochastic
seastate. The accurate evaluation of nonlinear loads by FIT provides an excellent al-
ternative to existing methods for the safe and cost-effective design of offshore floating
wind turbines.

The time-domain Green function is used to solve the linear and nonlinear free-
surface problems and efficient methods are derived for its computation. The body
instantaneous wetted surface is approximated by a panel mesh and the discretization
of the free surface is circumvented by using the Green function. The evaluation of the
nonlinear loads is based on explicit expressions derived by the fluid-impulse theory,
which can be computed efficiently.
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Title: Professor
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Chapter 1

Introduction

The energy industry continues to make new strides in constructing and deploying
offshore wind turbines with the goal to expand modern society’s energy portfolio and
provide clean energy for today’s ever growing economy. Offshore wind shows great
potential as one of the future’s prominent energy source due to a variety of reasons.
For one, wind is inexhaustible and environmental friendly. The horizontal-axis wind
turbine is a mature technology, which allows industries to harvest wind energy at
utility scale at low cost. The logistics of the offshore environment favor large multi-
megawatt turbines in the 6- to 10-MW range for efficient energy production. These
turbines can be easily assembled, transported to, and installed at the offshore wind
power plant site. The support structure of offshore wind turbines can be either a
bottom-mounted structure in shallow waters or a floating platform if the water is
deeper than about 50 m. With much of the worldwide energy demand located at
coastal regions, it is imperative to utilize the vast wind resources in the offshore en-

vironment.

Fortunately, there exists a vast wind resource potential in deeper water in the
USA, China, Norway, Japan and many other countries ([8], [10], [21]). In recent
years, the offshore wind industry continues to experiment with different designs of
floating offshore wind turbines to be deployed in deeper oceans to capture these wind

resources [1]. To be able deploy wind turbines on floating support structures for wind
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energy production, wave loads exerted on these floaters by ambient sea states over
the life of an offshore wind turbine must be properly modeled and predicted to ensure

the structure to be safe and cost-effective.

The wave-body problem

The wave-body interaction problem of an offshore floating structure can be sum-
marized as follow. In most seastates, linear wave theory captures most of the leading
order aspects of hydrodynamic wave loads on offshore structures. This was theorized
by St. Denis and Pierson [6] as an offshore structure’s response to a random sea can
be estimated by superposing the response to each wave frequency component in the
wave spectrum. This allows a reliability-index-based design method for a given sea
spectrum to capture most of the leading order effects in a mild sea condition. There-
fore, to avoid possible large load responses, offshore floating wind turbines platforms
are often designed to have their natural frequencies to be higher or lower than the

dominant ocean wave frequencies.

In extreme and severe sea states or large-amplitude body motions, nonlinear ef-
fects are of greater importance and interest in addition to the linear effects. Examples
of nonlinear effects include nonlinear hydrostatic load by large-amplitude wave eleva-
tions, nonlinear Froude-Krylov force and ringing load by steep large-amplitude waves,
and nonlinear wave force by large-amplitude body motions. Large amplitude waves
causes extreme wave loads which requires more load bearing capability. When en-
countering steep waves, ringing loads may occur and excite the floating structure
which leads to potential system failure due to fatigue of the tower (|7}, [29]). Among
the nonlinear effects, nonlinear hydrostatic force and nonlinear Froude-Krylov and
disturbance forces are of greatest concern because they govern limits of the state of
loads on tethers and anchors. For certain offshore wind turbine floater design such
as the Tension-Leg Platforms (TLP), the nonlinear extreme wave loads may lead
to tether overload and tether slack which are undesirable for the foundation design.

Therefore, these nonlinear effects should be taken into consideration when designing
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an offshore floating structure for wind turbines, as the energy of these nonlinear ef-
fects can reside about the natural frequency of the structure, typically around 1.7-1.8
rad/sec, causing failure of the structure both in the short term and in the long run.
This require an efficient and accurate method for analysis of nonlinear wave loads
on floating structures for their safe and cost-effective design, making it the primary

objective of this work.

Modeling Hydrodynamic Loads

There had been significant advancement in hydrodynamics/wave-body interaction
theory in recent years. The scientific community together with the offshore industries
had come a long way since Froude [9] and Krylov [16] first established a theoretical

approach to the hydrodynamic analysis of a floating body’s motion.

Currently, the evaluation of the wave loads on offshore platforms is typically car-
ried out either by Morison’s equation or by frequency-domain panel methods with
appropriate time-domain transforms for transient analysis. Morison’s equation is a
strip theory- based time-domain method for slender structures first theorized by Mori-
son, O’Brien, Johnson and Schaaf [20]. The method accounts for fluid inertia, added
mass, and viscous effects by selecting appropriate added mass and drag coeflicients.
Viscous effects can also be accounted for by equipping appropriate drag and inertia

coeflicients derived from experiments.

For large-volume platforms, frequency domain boundary element method based
on the potential flow theory has recently become one of the most popular tools be-
cause of its efficiency and reliability. The first application of BEM was pioneered
by Hess and Smith [11] and later adapted in wave-body problems by Newman and
other scholars ([3], [23], [24]). This method is primarily based on linear theory and
model linear and nonlinear potential-flow effects by solving first- and second-order
free-surface problems. This leads to the computation of linear and quadratic transfer

functions (QTFs). Recent developments in three dimensional time-domain methods
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has resulted in several useful computational methods, an example being the commer-

cial code WAMIT, started here at the MIT Ocean Engineering Department [18].

Previous studies have carried out simulations for floating wind turbines using
Morison’s equation and frequency-domain methods. Investigators carried out com-
putations of the loads and responses of TLP floating wind turbines and documented
them in ([2], [32], [34]). Simulations for the Hywind Spar floating wind turbine struc-
ture based on Morison’s equation were reported by [25]. For the International Energy
Agency Offshore Code Comparison Collaboration (IEA OC3) Spar, simulations were
reported by [13]. For the semisubmersible WindFloat structure, simulations were
presented by [28]. In [26], simulations for the IEA OC3 Continued (OC4) semisub-
mersible were documented. The conclusions from the simulations reported in these
and other studies are summarized here. There is good agreement between meth-
ods predicting the linear potential-flow loads from Morison’s equation or frequency-
domain methods. The accuracy of Morison’s method deteriorates as the wavelength
of the ambient wave decreases and becomes comparable to the diameter of a cylindri-
cal floater. The agreement between various methods is less satisfactory for predicting
the nonlinear low- and high-frequency loads and responses partly because the un-
derlying modeling assumptions differ and partly because the accurate computation
of the sum- and difference-frequency QTFs is a complex and time-consuming task.
Additional limitation of a frequency domain analysis based on the linear wave and
linear dynamics theory is that the amplitudes of ambient wave and body motions
have to be small compared to the ambient wavelength. The linearity assumptions on
the wave and motion amplitudes hamstrings investigations of crucial hydrodynamic
interactions between waves and bodies in severe seas. Excessive computational cost
involved with the complexity of fluid and body interaction also limits the develop-
ment of the three-dimensional fully nonlinear numerical schemes. An alternative to
the methods discussed above are time-domain potential flow methods for the com-
putation of second order loads. The nonlinear time-domain solvers have yet to reach

the maturity for demanded by the industry.
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The Fluid-Impulse Method

The goal of this work is to explore and develop a new versatile, accurate and ef-
ficient time-domain potential flow method for the treatment of nonlinear wave-body
interaction in irregular waves in the time-domain. The new method, the Fluid-Impulse
Theory (FIT), is based on new expressions for nonlinear hydrostatics, Froude-Krylov,
and radiation and diffraction loads derived by Sclavounos [30]. Further description of

the theory is presented in the theory section of this thesis.

The time-domain fluid-impulse method bridges the gap between long-wavelength
approximations in the time-domain Morison’s equation and frequency domain meth-
ods. It can be used for both slender and large volume offshore structures and allows
for the modeling of higher-order transient nonlinear effects in the vicinity of the wa-
terline. In addition, the fluid impulse method allows the evaluation of second-order
and higher-order nonlinear effects via compact force expressions that circumvent the
discretization of the free surface by taking advantage of the analytical structure of

the time-domain Green function.

Overview

The rest of this thesis is organized as follows. Chapter 2 presents theoretical for-
mulations: the boundary value problem for a hydrodynamic wave-body interaction,
the force and moment components in FIT formulation, the solution of the disturbance
potential by solving a set of integral equation using the transient free-surface Green-
function method and the source formulation, and detailed derivation on solving the
free-surface impulse component in FIT. Chapter 3 presents numerical algorithms and
simulation results: the wave loads obtained by FIT formulation using the Perturbation
Theory, the treatment of surfaces and generation of body mesh, the representation of
surfaces with constant-strength source elements, verification and comparison studies
between FIT and WAMIT, several test cases obtained by FIT for buoy of different
sizes, and numerical results obtained by the simplified FIT formulation using the

small Ka approximation. Chapter 4 discusses the results and contributions of this
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thesis and suggested future work.
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Chapter 2

Theory

This chapter discuss the theory behind the computation of hydrodynamic loads using
the Fluid-Impulse Theory (FIT). The goal of FIT is to provide a formulation for
the computation of nonlinear hydrodynamics loads in the time-domain for body of
any size in the ocean. This chapter starts by summarizing the formulation of FIT
and discusses the different force and moment components in the formulation. In
the formulation, as the ambient wave is assumed to be known, the only unknown
is the Radiation and Diffraction (RD) potential, or the disturbance potential. The
solution of the disturbance potential is obtained by solving a set of integral equations
using the transient Green function and the source formulation. The transient Green
function and the source formulation are described theoretically and numerically in
their respective subsections. A theoretical framework on expressing the completely
nonlinear term, the free-surface impulse force and moment components in surge, heave
and pitch, with respect to known body surfaces is then presented for the efficient
application of FIT. This allows FIT to be applied efficiently without the need of
discretizing the ambient wave free-surface, while accounting for the nonlinear load
contributions from the ambient irregular seastate. Finally, a summary on a simplified
FIT formulation using the small Ka approximation for surge wave loads on cylinders

is presented at the end of this chapter.
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2.1 Fluid-Impulse Theory Formulation

Fig. 2-1 illustrates a platform floating on a free surface interacting with a nonlinear
ambient wave assumed to be irregular. The reference coordinate system (X,Y, Z)
is fixed in space with its origin located on the calm water surface with the positive
Z-axis pointing upward. The free-surface elevation resulting from the ambient wave is
denoted by the solid line. The dashed line defines a horizontal plane intersecting the
Z-axis at the local elevation of the ambient wave profile. The acceleration of gravity

is g and the water density is p.

The ambient wave velocity potential is denoted by ¢;(X,Y, Z,¢) and assumed to

be irregular and traveling in deep water:

igA; . s ; i
(polychromatic) ¢;(x, vy, 2,t) = §R{ Z 194 e,,jz—wy'mcosﬂj—wwsm/31+twjt+lxj}
P (2.1)

2
where v; = w;/g.

And the disturbance radiation and diffraction potentials are denoted by ¢(X, Y, Z, ).

oo ey geibhiconnd 4 4L T Y . a1 f1..* 1 1. -l e
15 al€ BUbJeCu L0 Lile LiaplaCe egudtiuil 111 LIe 11uld aolillalll as

()2¢ 62¢ a2¢
ox: Tavr Tz =Y (22

On the instantaneous position of the body boundary Sg(t), the normal velocity
of the radiation potential is equal to the normal velocity of the body boundary U,
because of its oscillatory motions
9

I U,, on Sg. (2.3)

In the diffraction problem, the diffraction potential offsets the ambient wave nor-

mal velocity on Sg(t)
9¢ 01
—_— = - . 24
on on " Sz (24)
For notational simplicity, the radiation and diffraction (RD) potentials are here-
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after denoted by the same symbol, with the body boundary conditions from (2.3) and
(2.4) applying for each potential, respectively.
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Sp(t)

Figure 2-1: Free-surface interaction with floating body

24



The Fluid Impulse Theory (FIT) derived by [30] is capable of accounting the fully
nonlinear free-surface by taking applying a fully nonlinear dynamic and kinematic
free-surface condition in the boundary value problem. As this work focuses on study-
ing the leading order nonlinear effects of a wave-body problem, the disturbance RD
potential ¢ in FIT was linearized about the ambient wave surface S;(t) exterior to
the body waterline as ‘

%i—f + g-g% =0, on S;. (2.5)

The conventional definition of the force and moment acting on the body follows

from the integration of the hydrodynamic pressure obtained from Bernoulli’s equation

over the instantaneous body wetted surface

F= —p/( (%: ?) 4 V(¢> +¢)- V(b +¢) +gZ)nds

o (2.6)
M = ——p/ ( (¢Id:_ 9) + V(¢>I +¢)-V(gr+¢) + gZ) (X X ﬁ)ds.

SB

The evaluation of the nonlinear hydrodynamic force and moment given by (2.6)
requires the computation of the partial time and space derivatives of the disturbance
potential over the instantaneous wetted surface of the body. This computational task
requires fine panel meshes that lead to slow convergence in the evaluation of nonlinear

forces.

The FIT formulation circumvents the computation of gradients of the disturbance
potential by deriving new expressions for the hydrostatic and hydrodynamic forces
summarized in the following sections. The total force and moment in (2.6) can be
represented as the sum of four components as described in (2.7): 1) nonlinear buoy-
ancy force and moment; 2) Froude-Krylov impulse force and moment; 3) radiation
and diffraction body impulse force and moment; and 4) radiation and diffraction
free-surface impulse force and moment.

F=Fy+ Fo_x+ Fp+ Frs

B - B . B (2.7)
M = A’IH + AIF_K + MB + A"IFS-
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These force and moment expresssions are discussed in further details in the following

subsections.

2.1.1 Nonlinear Buoyancy Force and Moment

The hydrostatic force and moment acting on the body takes the following form

ﬁH = ngpV}vi; = —pg / Ziids (28)
Sp+Sw
My = —pg / Z(X X ﬁ)ds (2.9)
Sp+Sw

In (2.8) and (2.9), k is the unit vector pointing in the positive Z-direction and
Vw (t) is the volume enclosed by the body wetted surface Sp(t) and the nonlinear
ambient wave surface interior to the body Sy (t), defined in Fig. 1. The nonlinear
hydrostatic force given by (2.8), then, always points upward. In the classical definition
of the nonlinear body force obtained by integrating the hydrodynamic pressure from
Bernoulli’s equation in (2.6), the nonlinear hydrostatic force depends on the shape
of the body wetted surface and does not necessarily point upward. (2.8) extends the
classical Archimedean buoyancy force in calm water to the unsteady case of nonlin-
ear wave body interactions via the introduction of a time-dependent displacement
bounded by the body wetted surface and a dynamic water plane area defined by the

ambient wave.

2.1.2 Froude-Krylov Impulse Force and Moment

This force and moment takes the following form

. d .
Fr_g = —PEE / ¢rmids (2.10)
Sp+Sw
o d 2
Mp_x = Py / 1 (‘X x n)ds (2.11)
Sp+Sw
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The surface integrations in (2.10) and (2.11) are carried out over the instantaneous
intersection of the body boundary and the ambient wave profile, which is assumed
to be known with the unit normal vector pointing inside the body. An additional
integration is carried out over the ambient wave free surface interior to the body. An
application of Gauss’s theorem provides an alternative definition of the Froude-Krylov
impulse as the integral of the ambient wave velocity vector over the volume internal to
the body wetted surface and its dynamic water plane area. The evaluation of the new
Froude-Krylov force and moment requires knowledge of only the velocity potential of
the ambient wave over the body boundary and not its partial time derivative or its

spatial gradients.

2.1.3 Radiation and Diffraction Body Impulse Force and Mo-

ment

This force and moment takes the following form

=—hy / ¢fids (2.12)

—p—/cb X P n (2.13)

The integrations in (2.12) and (2.13) are carried out over the instantaneous body
wetted surface defined by its intersection with the ambient wave profile. Again the
evaluation of the forces and moments requires only the RD velocity potentials over

the body boundary and not their partial time derivative or spatial gradients.
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2.1.4 Radiation and Diffraction Free-Surface Impulse Force

and Moment

The remaining nonlinear free-surface force and moment invovles integrals of the ra-

diation and diffraction disturbances over the ambient wave free surface S;(¢).

# d [ _ .
Frg=— pEE/gbn,ds — pgk/Cds
St

Sy

(2.14)
d 1,0
- Pzﬁ/ [§V(¢1 +¢) + 5% ﬁv(% + ) + ] ds
St
Mpg = — p% ¢(X' x ﬁ)ds — pg/g()z’ x K)ds
. % (2.15)

_ ,,%S/ {g[)? x V(¢r + ¢)] + %g?a%[f x V(¢ + ¢)] + ...}ds

Further derivation of this force and moment is discussed in Section 2.4.

2.1.5 Summary

In summary, the nonlinear hydrodynamic force acting on a body floating in an ambient
irregular wave of large amplitude has been derived as the sum of a nonlinear buoyancy
force pointing upward and the time derivative of a sequence of impulses. The Froude-
Krylov nonlinear impulse involves an integral of the ambient wave velocity potential
over the instantaneous body wetted surface and the interior water plane area defined
by the ambient wave elevation. The body RD nonlinear impulse involves an integral
of the RD velocity potentials over the body wetted surface. The free-surface RD
nonlinear impulse involves integrals of the RD disturbances over the infinite ambient
wave free surface exterior to the body waterline. The forces discussed in this section
are based on the assumption that the RD velocity potentials satisfy the linear free-
surface condition over the ambient wave free-surface profile. Higher-order nonlinear
effects can be accounted for by invoking the fully nonlinear free-surface condition and

introducing quadratic and cubic nonlinearities as forcing terms in the right-hand side
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of the linear free-surface condition in (2.5) via the perturbation theory.
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2.2 Integral Equation for the Disturbance Potential

As discussed in Section 2.1, the ambient wave velocity potential ¢;(X,Y, Z,t) is as-
sumed to be known a priori. To compute the forces and moments presented using
FIT, the disturbance potential ¢(¢) is the only unknown.

The disturbance potential ¢(t) satisfies the linearized free-surface condition in
(2.5) on the ambient wave surface illustrated in Fig. 1. The horizontal dashed planar
surface illustrated in the figure intersects the Z-axis at the ordinate (;(0,0,t) = ¢;(¢).
To take advantage of the analytical properties of the time-domain Green function,
the free-surface condition (2.5) is hereafter assumed to be valid on the planar surface
Z = (4(t). This assumption is justified by the small slope of steep waves in a sea
state. Introduce the new coordinate system centered on the dashed planar surface as

follows

=X
y=Y (2.16)

z(t) = Z = ¢1(2)

The Laplace equation maintains its original form relative to the new coordinate
system. The free-surface condition, satisfied by the disturbance potential relative to
the new coordinates ¢(z = X,y =Y,z = Z — (;(t),t) = ¢(X, Y, Z,t), follows from

these identities

9¢(t) _ Op(t) | Op(t) 0z _ asa(t _é (f)aw(t)
8t o 6t (9z 8t I (2 17)
O°(t)  Pelt) ( ) 6@( ) \Po(t) '

Introducing (2.17) in (2.5), the free-surface condition relative to the new coordi-
nate system becomes

32@(t)

590(1‘)

() v + C3(t) o =0,2=0 (2.18)

For ambient waves of small steepness, terms involving the time derivatives of the
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incident wave elevation are of the order of § = K A relative to the leading order
terms, where A is the characteristic amplitude of the ambient wave and K is the
characteristic wave number. Consequently, the free-surface condition relative to the

new coordinate system, with relative errors of O(6), becomes the following:

Wﬂﬂ+g&ﬁ):0

o o ,2=0 (2.19)

The body boundary conditions in (2.3) and (2.4) maintain their form because
they involve only spatial derivatives. They are enforced on the instantaneous wetted

surface of the body defined relative to the new coordinate system.

From the preceding analysis, it follows that the free-surface condition in (2.19)
is enforced on the planar z = 0 surface at each time step. Relative to this plane
the body wetted surface is more submerged below z = 0 when (;(t) > 0 and less
submerged when (;(t) < 0. The vertical coordinate of a point of the body wetted
surface is given by z = Z — (;(t), where Z is the vertical coordinate relative to the

earth-fixed frame.

The boundary value problem for the disturbance potential becomes a body non-
linear time-domain free-surface problem subject to the linear free-surface condition.
Invoking the time-domain Green function, a time-convolution integral equation can
be derived for the disturbance potential along the lines of [33], [35]. The disturbance
velocity potential is represented by a distribution of sources over the instantaneous

wetted surface of the body, as follows

. 1 - 1 1
hod —_ (= —_— e —
@ t) =~ [ dsol&n(=-)
Sp(t)
. (2.20)
+/dr//ds O'(E,T)HT(f,g,t -7)
0 Sg(t)

The unknown source strength distribution 0(5, t) for ¢t > 0 is determined from the

solution of the integral equation obtained by enforcing the body boundary condition
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as follows

- Vo(Z,t) = 3857(:) Zﬁ.v[ //dsa(f,t)(—%)(%":—,)

Sp(t)

t (2.21)
+/dT/ ds o(gT)Hf(ig’t_T)]

0 Sgp(r)

The left-hand side of (2.21) is a known normal velocity on the body wetted surface

for the RD problems via (2.3) and (2.4), respectively.

Invoking the following notation,

7= (z,y,%)
£=(&n.¢
&m0 - (2.22)
r=[x—&*+y—n?+ (-
v =z - &%+ (y—n?+ (2 + Y
the time-domain Green function is defined as follows
Oz dHo L (1_1
GE ) 47r(r r’) ‘
H(Z,€t) = —57? / dk /gke®#*9) sin[y/gkt] Jo(kR) (2.23)
0

R=[(— €&+ (y— )"

The integral equation in (2.20) through (2.23) is solved by discretizing the instan-
taneous body wetted surface with planar panels and advancing the time-convolution

integral ahead in time starting at ¢t = 0.

The velocity potential of the incident wave (&, t) is based on the standard repre-
sentation of an irregular wave train in a sea state. The solution of the integral equation
in (2.21) provides the disturbance velocity potential over the instantaneous position
of the wetted surface via (2.20). The substitution of the incident and disturbance

potentials in (2.10) to (2.13) allows the evaluation of the fluid-impulse Froude-Krylov
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and body forces. This is carried out by first integrating the velocity potentials over
the body wetted surface and then taking the time derivative of the resulting time-
dependent integral. The evaluation of the partial time derivative and spatial gradients
of the ambient and disturbance potentials is circumvented. The free-surface impulse

force in Eqgs. (2.14) and (2.15) is evaluated in Section 2.4.
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2.3 The Transient Wave Part of the Green Function

The transient wave part of the Green function (2.23) described by Wehausen &
Laitone [35] can be evaluated in several different ways. Its formulation is listed again

below as:

(o9}

HoZ, 6t — 1) = _51; / dk /gRe* sin[y/gh(t — 7)]Jo(kR)

r=[z-8+ @y -0+ (-
==+ -+ (z+
Z=(:+)

R=[(x—&+ @y —n)""

(2.24)

In this work, the wave part of the Green Function was computed numerically by
two methods: 1) by solving the ordinary differential equation as described by Clement

[5]; or 2) by the methods described by Newman [22].

2.3.1 Clement

As derived by Clement [5], the wave part of the Green function HT(f,g,t - 7)
stated above can be evaluated by solving an ordinary differential equation. Rewriting

H.(Z, Et— T) as:

HAZ, 6t —71)=F(r,Z,t —1) = _%\@ / dk Vke* sin[/gk(t — )] Jo(kR)
0
(2.25)

Let 71 = V72 + Z2, with a change of variable (kr;y — A), Jami [12] showed that
the memory part of the Green function can be expressed as a function of two variables

(1, T)

1 _ g
F(r,Z,t =) = —5-v/gn 2R, T). (2.26)
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with

F(u,T) = /d)\ Ve ™ sin[VAT] Jo(Ay/1 — p?)

(2.27)
where p=—-Z/r1 and T =./g(t—T1)/\/1.
F satisfies the following fourth-order differential equation:
A4 O 4 (L2 @ T gy 9F
B 4 prFO 4 (272 4+ 4u) FO 4 < FO 4 2F =, (2.28)
4 4 4
with the initial conditions
F@(u,0) =0, FO"*D(4,0) = (=1)*(k + D)!Pepa(p); k=0,1,..  (2.29)

where F'(®) denotes the kt"-order differentiation of F with respect to 7.
Further study by Chuang et. al [4] stated that a Taylor series expansion method can
be applied to solve the differential equation (2.28) with low computational cost. Eq.

(2.28) is rewritten as:

KQ +urKS + ( +A )K 2+ BrKY + CKp =0
7 3 (2.30)
where A =4, B-—Z C=- for Kp=F.
Introducing the expression:
Kp(r)=ao+ Y an(r — 7)™ (2.31)

n=1
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Based on the work of Chuang et. al [4], the coefficients a,, can be obtained using

the closed form solution:

ag = —ﬁq((ﬁlﬁgdg + 2K2a2 + Kgay + Kgag)

Qpyq = o (Un+30n43 + Ynt20n+2 + Yni1Gni1 + Yun), for n=1,2,3,..

where

Ynpa = k1(n+D(n+3)(n+2)(n+1) (2.32)

Yn+3 = "53(774 + 3)(77: + 2)(n + 1)
Ynt2 = Ko(n + 2)(n+ 1)n + kg(n + 2)(n + 1)
Yns1 = k5(n 4+ 1)n + rg(n + 1)

Yn = kqn(n — 1) + £rn + K.

Once these coefficients are obtained, F can be computed and therefore the wave
part of the Green function can be evaluated very efficiently from the computational
perspective.

To compute the derivate of F for the evaluation of the derivative of the Green function,
by the extension of the Taylor series method presented by Chuang et. al [4], the

differential equation can be solved by taking (2.30) with new constants:

21 ~
A=6; B=—; C’:? for Kp=K. (2.33)

36



2.3.2 Newman

Another way of evaluating the transient wave part of the Green function is described
in Newman [22]. Transforming (2.24) using the spherical coordinates (r1,8), with the
angle 6 measured from the negative vertical axis.

Nondimensionalize the phusical parameters again with repect to g and r;:

6 = arccos(u) = arccos(—Z/ry), T = /g(t —7)/\/T1. (2.34)

The transient wave part becomes

- 1 . _3 N
H(@Et—1) = (= = )gtr *R{FO.T)}

where (2.35)

F= —4i/w2ei“’T_“’2°°soJ0(w2 sinf)dw; w = k'/?
0
The computational domain is now (0 < T < 00,0 < 6 < 7/2).

For large value of T, asympototic expansion was derived in [22]. The function can

now be decomposed into two parts:

F=fo+ fi+ fo (2.36)

The first part of the integral, integrating F' in (2.35) up to ¢T/2, can be expanded

using Watson’s Lemma, and can be expressed as:

for—4>" MT‘““”PACOS 9) (2.37)
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The second part of the integral, f; was proven to be exponentially small for all
values of 6, and through a series of transformation outlined in [22], f, can be rewritten

mto:

—43 12,00 w T \" —Om—9n  —i
f2 ~ me T ig+id Z (w) Z dnmwé 2m 2ne im@ (238)
m=0

where dop = 1, doy, = 0 for m > 0, and for n > 1

_ (2m+42n - 2)!
drum = Cn (2n — 2)122mm] (2.39)
and
_ [P +3° (2.40)
" ronpl
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2.4 Free-Surface Impulse Force

Linearing the equations (2.14) and (2.15) above the free-surface using linear FSC
(2.5):
¢ = —:(-]——, on Sr. (2.41)

Keeping terms up to leading order quadratic effects, the free-surface impulse force

and moment expressions become:

da¢

Fpg = —pd—/qbndb + pk / —ds+p P V((ZSI + ¢)ds (2.42)

Sy

- d = op - =
Mps = —pé/d}(/\’ X ’fi)ds-l—p/—a—?(X X k)ds

S S

! af [X x V(ér + ¢)]

(2.43)
- p

S[

The unit normal vector to the ambient wave free surface may be expressed in terms

of the gradients of the free-surface elevation. Denoting by J the order of magnitude

of the ambient wave slope obtains the following, with errors quadratic in the wave

slope

V(Z B Cl(Xv Yat)) . _ZCIX —;CI)— + ];"

VZ-aX YOl iig v (2.44)

= (i1, — jlr +K)[1 + O(6%)]

7=

Invoking again the linear FSC (2.41), and keeping the leading order unit normal

vector:

_ (16%1 10%¢; 1) (2.45)

"=\yaxar goavar
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Substituting (2.45) in (2.42) and (2.43), the force in the surge and heave are

respectively:

(2.46)

= pd 2¢1 3¢ 0
Froqg=-22 pa

F§-1 gd/ oxo1 % dt | 510X (91 +9)|d
S

99 0
at EXZ

—(¢r + ¢)} ds (2.47)

By moving the derivative of the first term of the force expression inside of the
integral and keeping terms to the leading order, the first term of the heave force
expression can be shown to cancel with the second term, thus leaving only the last

term of the force expression to be computed:

ﬁpss =2 d / (gf BdZ (or + ¢)) (2.48)

Sy

In the pitch direction, following (2.44), the cross product between the position
vector and the unit normal vector and the gradient of velocity potentials X x 7,

X x E_, X x Vi and X x Vy in the pitch direction are respectively:

(

o
X
-~
2

i) = (21 —2)] + O(6);

(f " E)"’ - (2.49)
(X xVer), = (z%‘?é ?2) |
The pitch moment is thus:
Mpss = —~pjt /qb(z([x - :v)ds I %(—x}ds
o o (2.50)

o] (o= 5) e -5 ) oo
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For small wave steepness, the pitch moment is evaluated on z = 0, the remainder

of the first and second integral cancels and the moment expression is reduced to:

Toee = P4 [, 00061 09
Mrss == | “5 (az + az) ds (2.51)
Sy

The fluid-impulse force and moment in (2.14) and (2.15) involves quadratic and
cubic products of the incident and disturbance potentials. This section described
the transformation of the expressions using the lienar FSC as well as assuming small
ambient wave steepness. To further simplifed the expressions, the ambient wave free-
surface can be linearized locally at the ambient wave waterplane at the body. Thus

all integral over the ambient free-surface are evaluated at z = 0 with z = Z — (;(¢).

The following subsections discuss the free-surface impulse force futher based on

these assumptions.

Before starting the derivations of the free-surface impulse force and moment in
the surge, heave and pitch direction, the definitions of the incident wave velocity po-

tential and the disturbance potential are revisited here:

@y in irregular waves in deep water, according to (2.1), is:

(pOlychrOmatic) I (1:, Y, %, t) = §R{ Z Zg_Ajeujz—iuj:c cos 6j“7:ijSin,8j+int+in}
— W
J

vj = wj/g.
(2.52)
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And the disturbance velocity potential is:

o(z,y,2,t) = 0 (z,y,2,t) + o™ (2,9,2,1)
- 1 1
V’(O)(if:y, Z,t) = / d860(€7t) (_ - "')

Sp(r) ror
t
W@zt = [ar [ dto@nm@ i)
Sp(r)
o (2.53)

L - i Ser0)
H.(Z,§,t—71) = 5 Z/dki Vgk;e¥i S sin[\/gk;(t — 7)]Jo(k; R)
i

1 Ty 2 211/2
where Jy(k;R) = %/ etifteostidg,. R =[(x — &)+ (y —n)*"/?

-7

and z— &= Rcosy; y—n= Rsiny

Again with small wave steepness approximation, ¢ (z,y,0,¢) = 0, ¢t > 0 by

definition. Thus 2@ (z,y,0,t) =0, t > 0.

t
¢(2,9,0,t) = ¢M(z,y,0,t) = /dT/ déo(&,m)Ho (%, 8,1 — 7)
0 SB(T) . N
o (2.54)
N 1 e
H.(#,6,t—71)= ~5- Z/dkj Vak;e¥i ¢ sin[\/gk;(t — )] Jo(k; R)
J 0

The analysis proceeds by evaluating the free-surface impulse force on z = 0; -

The function H, can be rewritten as:

let wu; = kjcosvy;; v;=kjsiny;; thus dujdv; = k;dk;dy;

) . m 00 | o (2.55)
Ho(#,6t=7) = =75 > / 0 / dk; \/gk;C sinly/gk;(t — T)Je s eosts
o I x 0
Let 0; = v; — vy, df;=dy;, kI=ul+ok
eiijcosej — eiu]'(w-ﬁ)-i-i’uj(y—fl) (256)
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H, is then:

HAZ,Et—7) = e Z// dujdv; 4 /——e kiCsin[/gk; (t — 7))etui (@ E+iv; (y=m)

(2.57)

2.4.1 Free-surface impulse force in Surge

The X-direction free-surface impulse force (2.46) can be rewritten into two terms: an
ID term which involves cross-products of the incident and disturbance potentials, and

a DD term which involves a quadratic product of the disturbance potential:

Fps1 = Frsi—ip + Frsi-pp

d 02 Op O
FFSl D= S (cp L. —(p——ﬂ) ds
220

gdt oxot Ot Ox

2 pd Jdp Opr
Froci_pp = E= droer
Fs1-bDb gdt / (8t or )ds

z=0

(2.58)

For the first term, the ID component in (2.58), the ambient wave free-surface Sy (¢)
can be split into the difference between the infinte free-surface S, (f) and the ambient

wave surface inside of the body Sw (t):

d*p;  Opdpr
Frsi- ID—‘;zzz(/ /)( Yocot ~ ot oz )™

_d])p Ppr  Op(t) Opr p Por  Opdpr
~Et—{g/((p6m8t ot ax)ds /( Yorot 0t ox )ds

Sw Soo

(2.59)
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The impulses for this force expression can then be identified to be an integral over
Sw(t) and another over Sy (t), which is equivalent to a 2D infinite integral over the

x- and y-direction:

. d -
Frsi_ip = EIFS,I—ID

= i Op 0
Tesiinsy, =2 / (o2 - 9290n)y,

¥
Jx0t Ot Ox
0) Vo (2.60)
, ___p_oo o Opdery ,
Irsi-1p,s. = g // ((’Oamat ot Oz )d:vdy

This utilizes the property that both the incident wave and both components of
the disturbance potential and their time partial derivatives are continuous across the
body waterline and over the z = 0 plane. The first impulse over the finite surface
Sw (t) can be evaluated numerically directly by quadrature with information about all
components inside the integral obtained with the expression of ;(t) and ¢(t) listed
in (2.52) through (2.57) and by taking their spatial and time derivatives. Note that

the value and the time derivative of the impulsive part of the disturbance potential

2O (t) are zero on z = 0 as disct

"+ 4 22 Qs L

1
¥
o
p
4
L
I3
3
k.
¢
P
o
o
¢
=
P
[
<
.
=

disturbance potential p*)(t) contributes to the surface integral over Sy (t).

The second integral in (2.60) is over the entire z = 0 plane and its computation by
numerical means would be time consuming if computed directly. An efficient way of
computing this integral in the time-domain can be derived by taking advantage of the
Green function and its analytical representation listed in (2.54) and (2.57). Again,
the value and the time derivative of the impulsive part of the disturbance potential
©O(t) are zero on z = 0 and only the memory part of the disturbance potential

©M)(t) contributes to the surface integral.
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Substituting (2.52) through (2.57) in the second integral in (2.60) and invoking

the definitions of the delta functions:

dze™ Vi) — ong (uj — vj cos B;)

dyeiy(vj—vj sinf;) — ong (v; — v sin Bj)

/
=, (2.61)
/

(o9}
// dxdye™m— Wi cosBitivsy=iviysinG; — 4n25(y; — v;cos B;)8(v; — vysinB;)  (2.62)
—00

and the relation:

&'IQ'

: 0/F(T)d?‘ = F(t) (2.63)

The final expression for ﬁps,l_ 1p(t) can be expressed as:

ﬁFS,l-ID

_ P d 8290] 0()0 a(PI . 3. pMwitt+ix;

= ;?ﬁ [(’06‘1875 = 3 e ]ds - p§R2j: Ajw;j cos fje XK (v, B8j,t) (2.64)
SVV

where K (v;, §j,t) = / déo (&, t)erst it cos By mivmsin s
S

For detailed steps on the mathematical derivations please see Appendix A.
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For the second term, the DD component in (2.58) contains an integration of a
quadratic product of the disturbance potential of the z = 0 plane outside the body
waterline. The time derivatives maybe transferred under the integral sign by utilizing

the Reynolds transport theorem:

d (00 By O (265)
P oy P pop
== | =|==—|d dl U,—
g/dt(é)t@x) S+g,7{ ot dz

z Cyv

The last integral over the body waterline in (2.65) involves the normal oscillatory
velocity of the body which is of the same order as the disturbance potential, therefore
it is of cubic order and is omitted. Note that for a ship advancing with a significant
forward speed, this integral is of the same order as the first term and should be
considered when computing free-surface impulse force.

Performing a formal differentiation of the terms under the integral sign in (2.65)

gives:
d 9y 3(,9\ %
dt \ 0t 9z | - o2

£ 10 9y’ (2.66)
gr \ gt/

Upon substitution in (2.65) the DD component of the free-surface impulse force

can be expressed as:

= p [, [ Pedp p [& Ppoyp dp\2
Fooi np=F5 . crZy_r Fas+ L
Fe1I=Db =y / de [ dy ot? Oz 012 9z 3, 29 diri (81‘) (2.67)
—00 -0 bW Cw

The Stokes’ theorem was invoked over the z = 0 plane in (2.67) to reduce the
integral of the x-derivative in the last term of (2.66) to an integral over the body
waterline. The integral of the first term in the right hand side of (2.66) over the
body interior waterplane area was also added and subtracted. The second and third
term in (2.67) can be evaluated directly using the definition (2.54) of the disturbance

potential over the according surface and waterline.
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For the evaluation of the infinite integral in (2.67), invoke the free surface condition
(2.19) satisfied by the total disturbance potential and introduce the velocity potential
decomposition into the instantaneous and memory components:

Podp _ _ Opdp __ 0p00pth | 000000 (2.68)

2 oz Yoz0: Y 0z oz 9z O

(2.68) was obtained by utilizing the property that the value and the x-derivative
of the velocity potential component ¢(® is zero on the z=0 plane at all times. The

infinite integral in (2.67) is therefore:

, o oo 82cp099 o, /°° /°° | 9o G Gp(0) (M)
g /dw Wopm o2 oz g( 9) | dz [ dy Oz ox + 0z Oz (2.69)

—00 —00

The memory component of the disturbance velocity potential is harmonic in the
lower half space for z<0 and it vanishes at infinity. Therefore, by utilizing the familiar
vector identity over a closed surface bounded by the z = 0 plane and a semi-spherical

surface at infinity over which the integrand vanishes:

o0 (e.¢]
M) 1., ,
/dcﬂ/dy( (gn V) — 2n<,o(M)-cp(M)) =0 (2.70)

T T 18000 gpn
/da:/dy( on Or )_0 (2.71)

Combining (2.69) and (2.71) gives:

p ro7 Fpo 7 7 dp® 9p(M)
. _/da‘/(yat2 5 —p/dx/dy 5 o (2.72)



The Rankine source 1/r its image 1/r and their Z-derivatives follows the following

Fourier representations on the z = 0 plane

1 1 o (2a21/2], e ;. _

= duy dvy e~ Wit P le=Gltiu (=€) +ivi (y—m)

T 2n )
0 /1 d /1 1 o : 24 ,291/20, 15 ;
— (= - _—_—[= - _ dun dus (u? 24172 (ui+vi) 2Gtiug (g =& ) +ivr (y—m)
0z (7“)1:0 0z (T’)r:O 2w //_oo udvy(u +vy) e

(2.73)

Note that the infinite integrals over « and v are subjected to a summation series
for polychromatic waves. Since the final expression for the DD component does not
involve the incident wave velocity potential, the effects of irregular waves are implied
to be included when computing source strength ¢ at any time and thus the summation
is skipped for simplicity in this derivation.

Combining (2.73) with the definition of the impulsive velocity potential ¢ in

(2.53), the z-derivative of the impulsive potential is:

Ip®
8‘/ (x7 y? 07 t)
== 119 //oo duydvy ('lLt‘l) + ‘L"f))l/g / d§10(f—£, t)e(“fﬂ’f)1/2(1+iu1(w~£1)+‘iv1(y—m)
4= J -0 JSB(t)
(2.74)
The first partial x-derivative of the disturbance potential at z = 0 is:
8€0(1W)
9 (z,9,0,t) =
¢ oQ
1 o . 1 dein (e ivo (1
- / dr / d6>0(&2,7) / / duadvs iuse®<?, g sin[y/ gka(t — T)]e“"z(“‘_&)Jr“'Z(*"’""z)
4r? Sg(T) —00 ko
a (7)
(2.75)

48



Substituting (2.74) and (2.75) into (2.72) and invoking the identity for delta func-

tions again:

/ / dadye’ ettty — 47250y, 4 uy)d(vy + va) (2.76)

—0C

Using also the properties of the delta function:

// (l’ll:f_)d‘UzF(’ng, UQ)d(Ul + ’llvz)é(’Ul -+ ’02) = F(—Ul, —’Ul) (2.77)
where
Fluy, ve) = —iug 4/ ki sin[/gh; (¢t — 7)]ekrserimsrtim (2.78)
1

The final expression for the DD component of the free-surface impulse force in
surge is:

= = 8290(1\4) (53 t)
Frsi-pp=p / dssld(&,t)—*—@‘g—

Sgp(t)

p 82(’9(1\4) a(p(]u) o a(p(]\f) 2
_f ds + 2 ( ) dl
g o2 Oz s 2¢ ot ™ (2.79)
SW CW'
t
where cp(M)(&,t):/ dr _/ dsg,0 (&2, TVH (&1, &2, — T)
0
Sgp(7)

For detailed steps on the mathematical derivations please see Appendix A.

The free-surface RD impulse force and moment is then evaluated using the ex-

pression (2.64) and (2.79) and the results are shown in the next chapter.

49



2.4.2 Free-surface impulse force in Heave

The Z-direction free-surface impulse force in (2.48), like the surge force, can be rewrit-
ten into two terms: an ID term which involves cross-products of the incident and
disturbance potentials, and a DD term which involves a quadratic product of the

disturbance potential:

Frss = Frss—ip + Frss—pp

~ d Op O
Fpss—1p = 53{ / ( (;: ;f)ds
5 - Us (2.80)
3 _rd [900p
Frsa-op = gdt / (é)t 0z ) s
St

First consider the ID term, applying the linear free-surface condition for both the

incident and the disturbance velocity potential:

Opr _ 10%

= 2.81
Frss_ip(t) becomes
= p d dp FPor
Frss-ip=—5— [ | 57 d 2.82
FS8-ID g?dt/ (0t oz | % (2:82)
St

Similiar to the surge force, the ambient wave free-surface S;(¢) can be rewritten
into the difference between the infinte free-surface S, (¢) and the ambient wave surface

inside of the body Sw(t).
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Thus this force expression can then be identified to be an integral over Sy (t) and

another over S, (t):

Fps3 ID_BZIFSB —I1D
. dp Py
Inss-ipsw =% | (%
PS3-IDSw = 3 / (5 7 ) s (2.83)
8 9?
IFSJ ID,Soe = __'// af 8:;1 zdy

The first impulse over the finite surface Sy (¢) can again be evaluated numerically
directly by quadrature and the second integral is evaluated using the Green function
and its analytical representation similar to the surge force. Invoking the definitions

of delta functions (2.61), the impulse over the infinite surface can be simplified as:

Irss_ips.

:—/ﬁ*{/ ar | «jwje”ﬂ*%coswg—w—THKJ'("J"BJ"”]} (2.84)

where K (V]7B]7 / dé‘o-(g T)el’g( ;€ cos Bj—iv;nsin By

Sg(T)

Therefore the ID component of the heave direction free-surface impulse force is:

Frss_ip

P dp &y
2

—d—- — ds
dt ot 0Ot2
S (2.85)

t

d : wwit+ix; ”
oo dT?R{ Z [zAjwje i cos|/gui(t — ) K (v;, Bi, 7')} }
J

0

For detailed mathematical derivations please see Appendix B.
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The second part DD, transforming the equation with the linear FSC (2.81) and
rewriting the integral over the ambient wave free-surface S;(t) into the difference
between the infinte free-surface S.(t) and the ambient wave surface inside of the

bOdy S W (t) :

_ d Op 0
Frss-pp = L / ( 89; ;0) ds

Sr

d dp 0%p dp Oy
dt{ Bt ot s + 0208

Sw Sco

The first integral over the finite surface Sy/(t) can be evaluated by quadrature
using the expression of the disturbance potential obtained by solving the integral
equations on the surface as described in Section 2.2. For the second integral over the
infinite free-surface S (t), seperate the derivative inside the integral over S, into
two parts by eliminating ©(©(t) and its derivative on z = 0 as their values are zero

as discussed in (2.53) and (2.54):

8_@6_@ _ a(p(M) a(p(O) N &P(M) 8g0(M)

) N o

N N W)
ot 0z Ut oz ot Uz

(2.87)

Assuming small wave steepness, the integral over S, can be evaluated on z = 0.
Transforming the z derivative of the impulsive potential to a time derivative using

the linear FSC:

8(,0(M ) 3¢(0) 1 agp(M 3299(0)

aH 0z g ot o

(2.88)

Recalling that the time partial derivative of impulsive part of the wave potential

%go((’)(t) is zero, the second integral of 2.86 is now reduced to:

., o (M) o (M) a (M) o (M)
Irss-pps. =2 / = <p / / L'O ('O )d:l?dy (2.89)
g Seo 8t

~
A/
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The spatial and temporal derivative of the memory potentials can be found by

taking the partial derivative of the disturbance potential in (2.54).

By substituting the expressions for the spatial and temporal derivative of the
memory potentials into (2.89) and applying definitions of the delta function again,

the impulse over the surface integral on z = 0 becomes:

Irss—pp Soo

dT1/ o(&,7) /d’Fz/ (€3, 72)
T an? / S5(m) Sp(r2) (2.90)

% /d@/k(lk. /g 76k((1+€2)cos[ /gk(t—ﬁ)]sin( /gk(t_Tz))eichose

—1 0

Using trigonometric identities:

cos[/gR(t — )] sin( /(¢ — ) = ;{ sn(/GE(ry — ) +sinl /(2 — (1 + sz}

(2.91)
(2.90) can then be rewritten as:
fFS:s—DD \Seo
¢ ¢
= g/(l’ﬁ/ dS&O'(gl,Tl /dT2/ d8520(€2,72)
Sp(r1) Sg(12)
0 0
0 - o
[ (6,60, — o) + Ho(61,62,2t — (11 + Tz))] (2.92)
5‘(1

where H,(&1,6,T)

/d]\ 1/ ek(C1+C2)Sln / T ik R cos 6

\

2

—m
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The final expression of the DD component of the heave free-surface impulse force

is then:
ﬁFS,i%—DD
_d)p [Op&y
ot ot Ot?
Sw
(2.93)

—-*/dT1/ d8§10'(€1,7'1 /de/ dS{z fg,’/’g)
Sp(r1) Sp(72)

0{1[ (‘51,52771 T2) + H; (51752,215— (71+T2))]}

For detailed mathematical derivations please see Appendix B
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2.4.3 Free-surface impulse force in Pitch

Following the derivation in (2.51), the pitch moment can be split into:

Mgss = Mpss—ip + Mpss-—pp

- pd Op O%pr
Mpss_ip =22 7
o= | ( o ) (2.9
5 :
- p d Op &y
MFpss-pp = 9—2%/ (igw ds
Sr

Similiar to surge and heave free-surface impulse force, rewriting again the free-
surface integral as the difference between the impulse over the infinite free-surface

and the ambient free-surface inside of the body, the ID component is:

i _pdf [ 9¢ D1
Messin = & dt( / / ) (w Lo ) as (2.95)
'Soc Sw

The ID impulse in (2.95) can be then be expressed as the sum of two impulses:

— d - -
Mpss_1p = 7 (IFS,vaD,Sw + IFS,S—ID,SOQ);

sts ID,S :—-ﬁ/ xa—(p-a%ol ds
W WO g‘) at 8t2 (2.96)

= o | dp O¢r
Irss ips. = = o dzd
FESTIDS T g // (”E ot ot ) v

Sw

%)



Consider the second part of ID impulse over the infinte free-surface in (2.96).
Substituting the partial derivatives of the definition of the impulsive and memory

potential in (2.52) and (2.53):

t
. 1 . .
Trss-ps. = 2(= gz) R [ar [ dseo(@r)(cigaw)e
’ g\ Am® ) Sa()

oo

. // dudv <“2+"2)“/0)Cco&»[g(l/?)(u +03) (¢~ 7)e *W&ivn]

[o 0]

X // dl‘dy xezr:(u—-ucosBH—w(y——usmﬁ)]}

(2.97)
Let
Flu,v) = @+ ag[g1/D) (32 4 o)V (¢ — 7)]etus—ion (2.98)
Applying the definition of the delta functions:
/ dz 2 e8) = _9mif' (u — v cos B)
B (2.99)
/ dy ¥ VS0P — 9n§(y — v sin B)
(2.97) becomes:
fps,s—m,soa 4 5 { /dr/ )(igAw)et
4 Sp(7)
(2.100)

X (—4n?) // dudv f(u,v)8" (u — v cos 8)6(v — vsin /)’)}

56



Utilizing again property of delta functions:

/ dudv f (u, v)d'(u — veos B)5(v — vsin B) = — f'(v cos B, v sin ) (2.101)

Thus the impulse over S (t) is:

t

I—'p5,5_m.5m = pAw%{em/dT/ dsso(g, T)I:— f’(vcosﬁ,usinﬁ)]} (2.102)
Sg(r)

The free-surface pitch ID moment is then:

- pd 8@8“4,01

Mpss_ip = ——5— d
FS,5~ID 7 dts ( 5 o |8

w

t
+ pAw%{eiwt / dT/ ng()'(g, 7_) [Ql + QQ + Q3] el/C—iu{cosﬂ—iunsinﬁ}
Sg(r)

where (2'103)

Q1 = —(cos Beos[\/gu(t — 7)];
Q2= -;-\/-%'cos B(t — 7)sin[y/gu(t — 7)};
Qs = i€ cos[\/gu(t — 7)].

For detailed steps on the mathematical derivations please see Appendix C.

The second part of the free-surface pitch moment is the DD component in (2.94).
Similiar to the heave forec, rewriting the integral over the ambient wave free-surface
Sy(t) into the difference between the infinte free-surface S..(t) and the ambient wave

surface inside of the body Sw(t):

S pd Op Op
Frss pp=—LL d
Mrss-p0 = =5 / ("” ot a~> °

St

(2.104)
__4_{ p [, 000%, RILES }

a)l g/ Tor Fi Yot 0=

Sw
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Recalling again 9¢(?) /0t = 0, the impulse of the DD component is then:

- p 899(1\’1) a(p(ju) f/ SO(M) ago(jw)
Irsspp=—L =-£ L edy (2.
FS,5-DD 7 ‘/Soo T 55 )dfcdy (2.105)

Substituting the partial derivatives of 2.54 into the impulse:

p M) 9 (M)
/5 T 5 57 ds

t

= /dTl/ dse U{l,ﬁ /dTQ/ ds&o(gz,Tg)
Sp{n) Sp(rs)
0
// duldvl Fl(ll,l, Ul // dUQdU‘) Fz(U) Ug)

—00

X // dxdy petutuz)zti(vitue)y
—00

where:

(2.106)

Fl (Uly‘vl) — e(ul+vl)(1/2)<1 COS[9(1/2) (ui + 1J%)(1/4)(t _ Tl)]e—im{l—ivlm

F2(u27 ,02) — e(u%+v%)(1/2}ggg(1/2) (’U;% 4 Ug)(1/4) sin[(g(1/2) (Ug + ,Ug)(1/4) (t = 7_2))]6—1}11.2&—2'1’27,2

(2.107)
Invoking the identity:
7da: ]ody gelnru)atiitv)y — 47206 (4 + up)0(vy + vs) (2.108)
Using also the properties of the delta function:
7/ duydvy Fy (uq, v1)0 (uy + u2)d(vy + v2) = —F{(—us, —vs) (2.109)

—00
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The impulse can then be expressed as:

(M) §p(M)
_P / Op 00 4
9Js at 0z

t t
~o(gm) 1) [an [ dsaoln) [in [ aseo@m) 0

0 SB(‘rl) 0 SB(T’_))

//d'lbgdl)z Fy(us, v2)< Fl(—ug, — ’U2)>

The impulse is then:

A M) (M)
Lo [ eant,
s

g ot 0z
/dﬁ / dS&O'(fl,Tl)/dTg / ngZO’(é,Tg)
Y Sp(71) Sp(m2)

x { - %%[Hxslé,n —72) + He(§,65,2t — (n + 7))

2.111)

2AT1) / d¢— (951 (5,52,71 —72) + HT(éiaéé) 2t —(n + T‘E))] (

+ ézl“'éa [Hr(g—i;é.;,Tl - TZ) + H’r(gia €;72t - (Tl + TQ))] }

where H,(£,6,T)

1 s 00 ‘ ' -‘
= ——m / do / dk /gkek(C1+<2)sin[ ng]eszcoa()
- 0
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The DD free-surface pitch moment is then:

. d p 850 9%
Mpss_pp = —4 — L [ 22252
{rss-pp dt{ 2] Tot atzd
Sw
. ¢
p/dﬁ / ds&o'(é;,n)/d'rg / ds&a(gg,ﬁ)
0 Sp(m1) 0 Sp(r2)
L. L (2.112)
{ C21 oE, [ H.(&,86,m1 — 1) + He(&,8,2t — (11 + Tz))]

‘7A / Cla&a ~ (ﬁz,f—éyﬁ—T2)+Hr(§:7§;,2t—(T1+7'2))]

+ 52—1 5 Hr(@,6,m = )+ Ho(6,602 = (n + 72”]}}

For detailed steps on the mathematical derivations please see Appendix C.
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2.5 Nonlinear loads on a vertical cylinder in irregu-

lar waves of small Ka

This section discuss the method presented by Sclavounos [31] on computing nonlinear
surge force acting on a vertical circular cylinder in irregular waves.

For a vertical cylinder fixed in space (a diffraction problem), the Fluid-Impulse
Theory can be used to approximate nonlinear loads to leading order by the 2D croos-

flow potential.

The ambient waves are assumed to be irregular. The expressions presented in
this section are valid for small values of Ka, where K is a characteristic wavenumber
and a is the cylinder radius.

The characteristic wavelegnth in a seastate is often large relative to the cylinder
diameters of offshore structures and wind turbines. In such cases Ka is a small param-
eter and the diffraction potential near the cylinder may be approximated to leading

order by the 2D cross-flow potential:

e(r,6) = —ulgcos 0, w = (9(,01(] = 0) (2.113)

Recalling the incident wave velocity potential in irregular waves in deep water as:

(polychromatic) ¢r(z,y,2,t) = ?R{ Yy = WGA5 vyoivyzcosss —wfysmﬁﬁzw]wm}
~ Wj
J

(2.114)

In uni-directional waves:

d iy
g = a“i r=0) { Z Ajwje”f““‘wﬂ*‘h} (2.115)

And 4 (2)].=0 as:

U1(2)]e=0 = SR{ ZzAJw 6V}Z+'iwjt+m} (2.116)

J
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Substituting (2.113) into F-K and RD disturbance body force, the expressions
become equal in the limit of small Ka and their sum is:
¢r ) 8< f

E\’,F—K + FX,D = 2/)7'['(1,2/ dzul(z)lzzo + 2p7ra E OIUIIGJ:O,Z:CI (2.117)
. T =

For the free-surface impulse force, introduce (2.113) into (2.58), the DD term
vanishs identically. The ID component is then the leading order force. The force

expression therefore becomes:

RS o 53]
Fxps = 2;07“12/ dz(wiuig + ustr,) — pra’ususle—o =¢;; Uz = % + Ul—‘ci§
-T ot oz
(2.118)

where at x = 0 and in unidirectional waves:

43
—1A; Vs o
Uiy = %{ E — ¥ +“‘th+”‘3}

J

A3 (2.119)
Uy, = §R{ Z :._j_l/jel’j2+iwjt+’ix'j}
— 4
J
and
aCr et
J (2.120)

%—% = %{ Z —z‘AjVjei‘”J”i"‘f}
7

By applying the small Ka approximation, the full FIT expression which can com-

pute nonlinear loads for finite Ka was reduced from 2D surface integrals to a 1D

integral for numerical evaluation of nonlinear wave loads. This drastically reduces

computational resources and provide an efficient method for the computation of non-

linear wave loads for slender vertical cylinders in the ocean.
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Chapter 3

Numerical Analysis and Results

This chapter discusses the methods used in numerical analysis and results obtained
using FIT with its theory described in Chapter 2. The results in this chapter aims
to verify the accuracy of FIT and study its efficiency and effectiveness in computing

nonlinear wave effects.

Numerically, the Fluid-Impulse Theory offers the advantage of only requiring the
discretization of the instantaneous body surface Sg(t) and the ambient wave surface
inside of the body Sy (t) for the computation of linear and nonlinear force and moment
in all directions. The forces and moments in the formulation of FIT were described
by a summation of several time derivatives of impulses over these surfaces. Therefore
when computing force and moment using FIT, only these two surfaces needed to be
discretized. This allows FIT to compute nonlinear wave loads efficiently. It is also a
versatile method, as the FIT is not limited by the small wave amplitude, small wave

steepness, or long wavelength assumption.

This chapter is structured as follow: First, Section 3.1 describe the application
of the perturbation theory to simplify the fully nonlinear FIT formulation into lin-
ear and leading order nonlinear effects for numerical computation; Section 3.2 then
describes the treatment of body meshes in discrete formulations; Section 3.3 further

explains the application of quadrilateral constant-strength source elements on body
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surfaces for numerical computation; After reviewing discrete formulations and appli-
cation of appropriate numerical methods, Section 3.4 presents a verification study
between linear FIT and frequency-domain method WAMIT, and a comparison be-
tween the computation of surge 2nd order quadratic hydrodynamic force between
FIT and WAMIT; Convergence studies on different perimeters when computing 2nd
order quadratic solutions from FIT is presented in Section 3.5, and a mesh conver-
gence study is also presented between FIT and WAMIT in Section 3.6; To further
study FIT numerically, computation results for buoys of different sizes are then pre-
sented in Section 3.7; Finally, a numerical study on the simplified FIT formulation

using the small Ka approximation is presented in Section 3.8.
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3.1 Perturbation Theory

Recalling the force formulation of FIT in Chapter 2:
F=Fy+Fp_ g+ Fp+ Frg (3.1)

By assuming a small steepness for the ambient surface wave, which is a reasonable
assumption due to the high gravitational force, the following perturbation expansion

for the velocity potential and free-surface elevation can be assumed as

1 (2 3
or =0 + o + o + ..

G=¢+¢P + ¢+

For the inclusion of only first order potentials, the formulation of FIT can be
seperated into 1st order and 2nd order force and moments. In the surge direction, by
applying the perturbation theory in (3.1), 1st order body forces includes only Froude-

Krylov impulse force and RD body impulse force over the mean body surface Sp:

. . . d . d -
B = B+ B} = =0 [ Pmds— o [o0ds gy
S s

B

Using the Taylor-series expansion, 2nd order forces includes components from
Froude-Krylov, RD body over the differential surface AS and linearized ambient
wave free-surface inside of the body Sy (t), as depicted in Figure 3-1, as well as free-

surface forces described in section 2.4:
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(2 2 2 5(2) .
FP = Fed ey + Fgh + Fgos
52 2
Fy i+ Fig)

__ M0z a
pdtfc pdt]soz

CW S w

6{ (1 (1)_, (3.4)
=05 —=—ds — dt j[ C '\ dl

2 2 2
Fzgs)w“'F()l ID+FIE‘S)'1 DD

with both ID and DD component evaluated with ¢! and O,

The heave force and pitch moment follow the same derivation.
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Figure 3-1: Surfaces and vectors included in numerical analysis using FIT
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3.2 Treatment of surfaces and Generation of body

Mesh

In FIT, the body boundary condition is imposed on field points on the exact body
surface, which is often referred to as collocation points. For a vertical cylinder, these
points locate on the vertical wall as well as the bottom surface. An accurate eval-
uation of influence coefficients between source points and field points is required to
determine strengths of source panel-elements upon the body boundary condition. The
evaluation of influence coefficient becomes tricky when the field point is in the prox-
imity of or identical with the source point. To prevent a singularity in the numerical
computation, a source point is designed to be located a little off a field point as illus-
trated in the figure below for the vertical wall of the cylinder. The source point on
the bottom surface is simply located at a vertical depth with a slight smaller draft
than the full draft. This method enhances the computational stability and provides

an accurate solution.

Figure 3-2: Top view of a cylindrical body and numerical panel elements
surrounding the body surface (Simplified in terms of the number of panel elements)

Several body sizes were studied in this work, the MIT/NREL TLP body was stud-

ied with three mesh density for initial convergence studies, presented in Subsection
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3.5.3, while two slenderer bodies were computed with converged meshes generated
with the knowledge of mesh convergence on the MIT/NREL TLP. The cylindrical
MIT/NREL TLP buoy with a radius of 9 m and a draft of 47.89 m was represented
by a body mesh of 720 panels, with 24 azimuthal, 41 vertical, and 9 bottom panels
(Fig. 3-3); 1440 panels, with 36 azimuthal, 31 vertical, and 9 bottom panels (Fig.
3-4); and 2,400 panels, with 48 azimuthal, 41 vertical, and 9 bottom panels (Fig.
3-5). The ambient wave free-surface inside of the body Sw use the same mesh as
the bottom surface but located at z = 0. The two slenderer cylinders are of radius
3m and 1.75m, with a 43.2m draft and a 30m draft respectively. The buoy with 3m
radius was represented by a body mesh of 936 panels, with 18 azimuthal, 42 vertical,
and 9 bottom panels (Fig. 3-6), while the buoy with 1.75m radius was represented
by a body mesh of 684 panels, with 18 azimuthal, 30 vertical, and 9 bottom panels
(Fig. 3-7).
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3.3 A Quadrilateral Constant-Strength Source Panel

Element

A quadrilateral constant-strength source element is presently taken as the 3D Panel
element to represent the floating body boundary in order to model its hydrodynamic
interaction with surface waves. At each quadrilateral element the singularity strength
is uniformly distributed over each element. The strength of this element is the primary
unknown and a panel code using N elements can be constructed to solve for those
N constants based on the body boundary condition presented in the previous and

subsequent chapters.

Z
A o 2% 3. 2)
(x2,¥2,0) y
(x1,¥1,0) (x3,¥3,0)
S
(JC4, y41 0) o

Figure 3-8: A Quadrilateral uniform-strength source element

Consider a surface element with a uniform-strength source distribution o per area
bounded by four straight lines as shown in Fig. 3-8. The four corner points of
the element are denoted as (z,y1,0), (z2,y2,0), (z3,93,0), (24,y4.0). The velocity

potential at a point P(z,y,2) in the 3D domain due to this element is

—a 1
e(z,y,2) = —47] (\/(x_m)“(yyﬂ)uﬁ)db (3.5)

s
And the velocity components can be obtained by differentiating the velocity po-
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tential:

_(Op Op Oy
('U,, 'U,'LU) - (%7 _65’ —a;) (36)

The closed form solution of the velocity potential and velocity components in x,y
and z due to the quadrilateral constant-strength source element is taken from Section
10.4.1 in Katz [15].

When the point P is sufficiently far from the center of the element (zo,yo,0),
the quadrilateral source element of an area A can be approximated by an equivalent
point source and this will help to increase the computational efficiency and lower the
computational cost. When the point is far from the element, the velocity potential
can be approximated as follows.

—0

A
oo =32 Vi@ =02+ (y —y0)? + =) &0

Thus the velocity components are the differential of the potential:

2} oAz — zo)
U( ' Y5 ) 47.‘.[(1: _ .1?0)2 + (y — y0)2 + 22]3/2
_ aA(y — Yo)
v(x,y, Z) = 47_‘_[(1' — xo)z + (y IR y0)2 + 22]3/2 (38)
(o, 2) = cA(z — z)

drf(z — z0)2 + (y — yo)? + 22]3/2

A far field analysis was performed by Lee [19] and it was found that the approxi-
mations above are valid if the distance is more than approximately 1 panel diameter

either in horizontal or vertical direction.
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3.4 Comparsion of wave-loads between FIT and WAMIT

The solutions for the diffraction problem (also known as the wave-excitation problem)
was first obtained by FIT and the results were analyzed and compared with the
potential-flow method of FAST’s HydroDyn module [14], based on frequency-domain
solutions from WAMIT and converted to the time domain through frequency-to-time
domain transforms [17]. The cylindrical MIT/NREL TLP buoy with a radius of 9 m
and a draft of 47.89 m was treated in a random severe sea state with a 6-m significant
wave height and a 12-sec peak-spectral wave period as shown in Figure 3-9 and 3-10,
the time-series of wave elevation is plotted in Figure 3-11. A body mesh of 2,400
panels, with 48 azimuthal, 41 vertical, and 9 bottom panels was selected for FIT
and a body mesh of 32,400 panels was selected for WAMIT and a comparison was
made between the solutions of FIT and WAMIT. The panels were taken to be flat
and the source strengths were assumed to be constant on each panel as discussed in
Section 3.3 (also the low-order method in WAMIT). The time step of the time-domain
simulations in FIT was 0.1 sec with a memory interval in the solution of the linear time
convolution equation of 18 sec. For the convergence studies on different perimeters
used in FIT, please refer to Section 3.5. The WAMIT solution uses a time step of 0.1
s for the frequency-to-time-domain transforms of the WAMIT solution. The WAMIT
solution, in turn, is based on the pressure-integration method considering the first-
order and full quadratic interaction of first-order terms, including the full difference-
and sum-frequency QTFs but not including the second-order potential, based on a
frequency discretization of 0.05 rad/s. The WAMIT solutions were computed at
NREL courtesy of Dr. Jonkman.
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3.4.1 1st Order Solutions

The linear solutions between FIT and WAMIT were first compared for a verification
study.
The linear formulation of FIT was described in Section 3.1. First order solution

of WAMIT can be found in Chapter 2 of WAMIT Theory Manual by Lee [18]:

. o)
FO = —pg / Ziids — p 8a—ﬁd8; where @M =l + o0 (3.9)

The time-marching solutions and fitted PSDs of the surge, heave and pitch lin-
ear solutions are plotted in the following pages. The solutions obtained by FIT and
WAMIT were found to be in very good agreement. This verifies the accuracy of the
linear solution of the FIT module, and suggested that the computation of source
strength and velocity potentials to be correct in the FIT theory. This provides confi-
dence in the computation of velocity potentials using FIT in the numerical code and
allow the code to be used to computed linear and second order solutions, as discussed

in the following sections.
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3.4.2 Hydrodynamic Force in Surge Comparison Between FIT
and WAMIT

One of the primary mode of motion for an offshore platform is in the surge direction,
assuming uni-directional wave coming in from the surge direction. This subsection

presents the surge solutions comparison between FIT and WAMIT.

The cylindrical MIT/NREL TLP buoy was treated again in the random severe sea
state shown in Figure 3-9 and 3-10. The same body meshes and frequency-to-time
domain transform were used in this section as Subsection 3.4.1. The body is fixed
in space and the problem was treated as a diffraction problem of a fixed cylinder in

irregular waves.

The first order solution was discussed Subsection 3.4.1. The second order solution
excluding the second-order incident-wave potentials (1st order potentials only) for a
diffraction problem in FIT was obtained and analyzed according to the perturbation

theory in Section 3.1.

According to Lee [18], second order surge quadratic force for a stationary truncated

cylinder in WAMIT is:

. 1
O~ _, / §V<1>(1) - VeWn,ds (3.10)
S

B

A series of time-marching graphs and their respective PSDs are plotted in this
subsection, including a comparison of total (Fig. 3-18 to 3-20), 1st order (Fig. 3-21
to 3-22), and 2nd quadratic surge hydrodynamic forces (Fig. 3-23 to 3-25) between
FIT and WAMIT.
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The numerical solutions for the total hydrodynamic force obtained by FIT and
WAMIT were in good agreement as shown in Figure 3-18, with the solution from
FIT capturing larger responses at the peaks over the time-marching solution, as well
as displaying some higher order nonlinearities. The PSD analysis of the total hy-
drodynamic forces between FIT and WAMIT in Figure 3-19 and 3-20 confirms the
observation from the time-marching solution, as FIT produced responses with larger
amplitude at the leading order wave frequency at about 0.53 rad/sec, and also cap-
tured more nonlinear effects at sum- (1.4 to 1.8 rad/sec) and difference- (0.3 to 0.4
rad/sec) frequency range. Same with results presented in Subsection 3.4.1, the lin-
ear solutions match perfectly as demonstrated in the linear time-marching and PSD
comparison in Figure 3-21 and 3-22. Plotting the 2nd order time-marching solutions
(Fig. 3-23) and PSDs (Fig. 3-24 and 3-25) further revealed that aside from capturing
more nonlinearities at sum- and difference frequency ranges, significant nonlinear ef-
fects were present at other frequency ranges. The nonlinear effects computed by FIT
scatter across the entire frequency spectrum between 0 to 3 rad/sec, and was capable
of capturing contributions between 2 to 3 rad/sec in which WAMIT did not produce

any wave loads.
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3.5 Convergence Tests on FIT 2nd Order Surge Quadratic
Solution

This section summarizes the convergence tests performed on the computation of 2nd
order quadratic surge hydrodynamic force. In summary, convergence were achieved
with different perimeters for the efficient computation of nonlinear loads using FIT.

The different perimeters are listed as follow:

Subsection 3.5.1 describes the memory time convergence for the FIT solutions.
It was found in the convergence study that the memory function and its derivative
decays towards zero as time increases. It was found that pass 18 seconds of memory
time interval, the magnitude of the memory function and its derivative is sufficiently
close to zero, leading to the conclusion that 18 seconds of memory time is sufficient

for numerical solutions obtained using FIT.

Subsection 3.5.2 describes the size of time step (At) convergence for the FIT so-

lutions. It was found that 0.1 seconds is sufficient for converged solutions.

Subsection 3.5.3 describes the mesh convergence for the FIT solutions. It was

found that 2400 panels are sufficient for converged solutions.
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3.5.1 Memory Time Convergence
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Figure 3-26: Convergence study for memory time length t = 0 to 100s

720 panels with 24 azimuthal elements, dt=0.1 sec

8 T T T T T T TaaT
—Memory time = 5secs

—Memory time = 15secs
—Memory time = 36secs

N i 1 1 1 ! i 1 1 1
t?UO 410 420 430 440 450 460 470 480 490 500
time [s]

Figure 3-27: Convergence study for memory time length t = 400 to 500s
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Figure 3-29: Contribution of memory effects from each time step on derivative of
Memory function, (z=0)
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3.5.2 Size of Time Step Convergence
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Figure 3-34: Convergence study for At t = 0 to 100s
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Figure 3-35: Convergence study for At t = 400 to 500s

Note that dt=0.2s or larger time steps does not lead to a converged solution.
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3.5.3 Mesh Convergence for FIT
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Figure 3-36: Convergence study for mesh density t = 0 to 100s
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Figure 3-37: Convergence study for mesh density t = 400 to 500s



3.6 Mesh Convergence between FIT and WAMIT on
2nd order solutions

The rate of mesh convergence was compared between the 2nd order quadratic surge

solutions obtained using FIT and WAMIT.

In this study, only the mesh convergence between FIT and WAMIT was compared,
as the two sets of simulations were ran on different platforms with different computer
system specifications and hardware. By studying the rate of mesh convergence be-
tween the two methods, the comparison provides a preliminary understanding of the
efficiency on computing nonlinear effects between the time-domain method FIT and
the frequency-domain method WAMIT. It was found that FIT requires less panels
on meshes than WAMIT to achieve convergence of nonlinear solutions. This suggests
that for computation of nonlinear effects, FIT is efficient in discretization of surfaces

and can conserve computational resources when applied appropriately.
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3.7 Numerical Solutions from FIT

Following the linear verification between FIT and WAMIT, a series of simulations
computing surge hydrodynamic forces was carried out to further understand the per-
formances and capabilities of FIT. The wave-body problem was treated to be a cylin-
der fixed in space and the diffraction problem was solved. Two test cases were carried
out with the MIT/NREL TLP (9m radius and 47.89m draft) and a slenderer buoy
(1.75m radius and 30m draft) treated in a random severe sea state produced ac-
cording to the JONSWAP spectrum with a 6-m significant wave height and a 12-sec
peak-spectral wave period as shown in Figure 3-9 and 3-10. Another test case was
carried out with a cylinder (3m radius and 43.2m draft) treated in an irregular sea

state obtained in OC5 [27] shown in Figure 3-40 and 3-41.

For each case, the results are presented in the following order:

e Time-marching comparison between the total, 1st and 2nd order surge hydro-

dynamic force
e PSD comparison between the total, 1st and 2nd order surge hydrodynamic force

e Time-marching comparison between 1st order surge hydrodynamic force com-

ponents
e PSD comparison between 1st order surge hydrodynamic force components

e Time-marching comparison between 2nd order surge hydrodynamic force com-

ponents
e PSD comparison between 2nd order surge hydrodynamic force components

e Time-marching comparison between 2nd order surge free-surface impulse force

components

e PSD comparison between 2nd order surge free-surface impulse force components
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Figure 3-41: Phase of the irregular wave in OC5
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3.71 MIT/NREL TLP r=9m, T=47.89m

This subsection provides detail results obtained from numerical analysis as described
in the introduction of this Section. First, the cylindrical MIT/NREL TLP buoy with
a radius of 9 m and a draft of 47.89 m, which was used in numerical simulation in the
previous sections, was treated in the random severe sea state generated according to
JONSWAP with a 6-m significant wave height and a 12-sec peak-spectral wave period
as shown in Figure 3-9 and 3-10. The characteristic wave frequency for this spectrum
is w, = 0.525rad/sec and the non-dimensionalized perimeter Ka, where K = w?/g is
the characteristic wave number and a is the radius of the buoy, is Ka = 0.253 which
is in a finite value range. The 720 panels mesh (Fig. 3-3) was selected to be used in
this study. The time step of the time-domain simulations in FIT was 0.1 sec with a

memory interval in the solution of the time convolution equation of 18 sec.

In summary, results in this study shows that both linear and nonlinear wave
loads are important for a buoy with intermediate size in severe sea state. The time-
marching solutions of the comparison of total, 1st and 2nd order surge force and its
PSD analyses, as shown in Figure 3-42 to 3-44, shows that linear analysis was able
to capture wave loads at the dominant wave frequency range (0.5 to 0.8 rad/ sec),
while nonlinear analysis provides the 2nd order solution which helps understand wave
loads at other frequencies, especially at sum- (1.4 to 1.8 rad/sec) and difference- (0.3
to 0.4 rad/sec) frequency range and when frequency is larger than 2rad/sec. The
comparison between 1st order surge hydrodynamic force components in Figure 3-45
and 3-46 shows that both F-K and body disturbance forces are important for linear
analysis, with body disturbance force having slightly higher amplitude than its F-K
counterpart. The next set of plots shows the comparison between 2nd order surge
hydrodynamic force components in Figure 3-47 and 3-48, and the results suggested
that 2nd order quadratic effects are significant for all 2nd order components in FIT.
It was found that the F-K and body impulse force provide contributions at sum-

and difference frequencies, while the free-surface impulse force captures nonlinear
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responses at other frequencies, notably with a significant group of energy at frequency
larger than 2 rad/sec. The final set of results for the comparison of 2nd order surge
free-surface impulse force components as shown in Figure 3-49 and 3-50 illustrates
the contributions from the two components, ID and DD, in the free-surface impulse
force in FIT. It was found that for this test case, wave loads from the DD component
of the free-surface impulse force counteracts the ID component, which is expected
as described in the theory section. It was also found that the ID component has a
larger magnitude compared to the DD component, and together the two components
provide nonlinear wave loads at two frequency ranges, a first group of energy at 0.6 to
1.4 rad/sec, and a second group at 2 to 2.6 rad/sec. These free-surface impulse forces
were found to reside at a different frequency ranges from the sum- and difference

frequency range.
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Figure 3-42: Surge hydrodynamic force from FIT, r—=9m, T=47.89m
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Figure 3-45: 1st order surge hydrodynamic force components from FIT, r=9m, T=47.89m
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Figure 3-49: 2nd order surge free-surface impulse force components from FIT, r=9m, T=47.89m
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3.7.2 r=3m, T=43.2m

After numerical simulations on the cylindrical MIT/NREL TLP buoy, a slender buoy
with a radius of 3 m and a draft of 43.2 m was studied. The buoy was treated in a
different wave spectrum, an irregular sea state according to OCS5 as shown in Figure
3-40 and 3-41. The characteristic wave frequency for this spectrum is w, = 0.4rad/sec
and the Ka = 0.0459 is small. The 936 panels mesh (Fig. 3-6) was selected to be used
in this study. The time step of the time-domain simulations in FIT was 0.1 sec with a

memory interval in the solution of the time convolution equation maintained at 18 sec.

In summary, results in this simulation suggested that both linear and nonlinear
wave loads are important for a slender buoy in severe sea state. The time-marching
solutions of the comparison of total, 1st and 2nd order surge force and its PSD
analyses, as shown in Figure 3-51 to 3-53, shows that linear analysis is able to capture
wave loads at the dominant wave frequency range (0.4 to 0.6 rad/sec), while nonlinear
analysis provides the 2nd order solution which helps understand wave loads at sum- (1
to 1.6 rad/sec) and difference- (0.3 to 0.4 rad/sec) frequency range. The comparison
between 1lst order surge hydrodynamic force components in Figure 3-54 and 3-55
shows that both F-K and body disturbance forces are important for linear analysis,
with body disturbance force almost resembles the amplitude and phase of its F-K
counterpart. This corresponds to the theory suggested by G.I. Taylor in which the F-
K and disturbance forces are close to equal to each other in the case of a slender body
(long-wavelength approximation). The next set of plots which shows the comparison
between 2nd order surge hydrodynamic force components in Figure 3-56 and 3-57
suggests that 2nd order quadratic effects are significant for all 2nd order components
in FIT at sum- and difference frequencies, with the F-K, body and free-surface impulse
forces providing comparable contributions to nonlinear wave loads. The final set of
results for the comparison of 2nd order surge free-surface impulse force components
as shown in Figure 3-58 and 3-59 demonstrates that for a buoy with small Ka values,

the contributions from the ID components dominates the DD component as suggested
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in [31].
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Figure 3-58: 2nd order surge free-surface impulse force components from FIT, r=3m, T—43.2m
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3.7.3 r=1.75m, T=30m

Another slender buoy with a radius of 1.75m and a draft of 30m was studied. This
study was carried out to verify the slender buoy results obtained with the previous
buoy of 3m radius and to provide a comparison to the MIT/NREL TLP as this set
of results were obtained using the same JONSWAP spectrum with a 6-m significant
wave height and a 12-sec peak-spectral wave period as shown in Figure 3-9 and 3-10.
The characteristic wave frequency for this spectrum is again w, = 0.525rad/sec, and
in this study Ka = 0.0492, a small value. The 684 panels mesh (Fig. 3-7) was selected
to be used in this study. The time step of the time-domain simulations in FIT was
0.1 sec with a memory interval in the solution of the time convolution equation of 18

sec.

In summary, results in this simulation again suggested that both linear and non-
linear wave loads are important. The time-marching solutions of the comparison of
total, 1st and 2nd order surge force and its PSD analyses, as shown in Figure 3-60
to 3-62, shows that linear analysis is able to capture wave loads at the dominant
wave frequency range (0.5 to 0.8 rad/sec), while nonlinear analysis provides the 2nd
order solution which helps understand wave loads at sum- (1.2 to 2 rad/sec) and
difference- (0.3 to 0.4 rad/sec) frequency range. The comparison between 1st order
surge hydrodynamic force components in Figure 3-63 and 3-64 shows that both F-K
and body disturbance forces are important for linear analysis, with body disturbance
force almost resembles the amplitude and phase of its F-K counterpart, again agree-
ing with the theory suggested by G.I. Taylor. The next set of plots which shows
the comparison between 2nd order surge hydrodynamic force components in Figure
3-65 and 3-66 suggests that 2nd order quadratic effects are significant for all 2nd
order components in FIT at sum- and difference frequencies, with the F-K, body and
free-surface impulse forces provide comparable contributions to nonlinear wave loads.
The final set of results for the comparison of 2nd order surge free-surface impulse

force components as shown in Figure 3-67 and 3-68 demonstrates that for a buoy
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with small Ka values, the contributions from the ID components dominates the DD

component as suggested in [31].
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Figure 3-65: 2nd order surge hydrodynamic force components from FIT, r=1.75m, T=30m
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3.8 Comparison between Small Ka with FIT full ex-
pression

In addition to the numerical study of the FIT full expression in the previous sections,
a study on the performance of the FIT small Ka approximation as described in Sec-
tion 2.5 and [31]. This study was inspired by the results obtained in the previous
sections in which the ID component of the free-surface impulse force was found to be
much larger than its DD counterpart for slender cylinder. It was therefore hypothe-
sized that the DD component can be omitted when computing nonlinear wave loads
for slender cylinder with small Ka. The goal of this study is then to understand if
the small Ka approximation improves the computational efficiency of the linear and
nonlinear wave loads for slender cylinders while retaining the capability of capture
nonlinear contributions from the free-surface impulse force. The advantage of the
small Ka approximation is that the method does not require the discretization of sur-
faces, as it is a slender body method and only require integrations over the vertical

direction, which greatly reduces computational cost.

The results are presented as follow. The total surge hydrodynamic force, including
the Ist and 2nd order F-K, body impulse and free-surface impulse force, was compared
between FIT full expression and its small Ka approximation. The time-marching
results and PSDs for the MIT/NREL TLP and for the slender buoys of radius 3m
and 1.75m were plotted in the Subsection 3.8.1. The results obtained for the FIT
full expression are obtained through the simulations described in Section 3.7, while
the results for the small Ka approximation were computed according to the theory
presented in Section 2.5. The free-surface impulse force between the two methods
on all three buoys were then compared between FIT full expression and its small Ka

approximation in Subsection 3.8.2.
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3.8.1 1st + 2nd Order Surge Force Comparison

In summary, the small Ka approximation was found to be able to capture the majority
of wave loads computed by FIT full expression. The comparison between FIT full
expression and small Ka approximation for the two simulations suggests that FIT
full expression still captures more nonlinearities at the peaks of the responses in the
time-marching solutions in Figure 3-72 and 3-75. The PSDs in Figure 3-74 and ??
agrees with the time-marching solutions and showed that overall the magnitude of
the wave loads captured by the full expression is slightly higher than the small Ka
approximation over all wave frequencies. Both FIT full expression and small Ka
approximation was able to capture nonlinear wave loads at high frequencies. For
the comparison between FIT full expression and small Ka approximation for wave
loads on the MIT/NREL TLP, which has a an intermediate diameter and a finite Ka
value, the approximation becomes less accurate as it over estimate responses at higher
frequencies as shown in Figure 3-69 and 3-70. The important conclusion drawn from
this study was that for slender cylinders with small Ka, a simplified expression which
was reduced to a 1D integral was able to capture the majority of linear and nonlinear
wave loads in irregular seastates, allowing efficient evaluation of nonlinear wave loads

on slender cylinders using FIT.
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Figure 3-69: Total surge hydrodynamic force between FIT full expression and small Ka approx., r=9m, T=47.89m
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3.8.2 Free-Surface Surge Force Comparison

For the free-surface impulse force, the small Ka approximation falls short on accu-
rately capturing nonlinear wave responses when compared to the FIT full expression
for finite Ka, as expected from the theory. It can be seen in Figure 3-77 that the
correspondence between time-marching solutions obtained by the two methods are in
little agreement. In the PSD graph, Figure 3-78, the FIT full expression was able to
capture nonlinear effects over all frequency range while the small Ka approximation
provided only wave loads at sum- and difference- frequency. The two numerical com-
parison between FIT full expressions and small Ka approximation with cylinders with
small Ka (slenderer buoy of radius 3m and 1.75m) in Figure 3-79 to 3-82 performs
better than finite Ka. The comparisons for the two slender cylinders suggest that al-
though FIT full expression captures more nonlinearities at the peaks of the wave loads
in the time-marching solution when compared to the small Ka approximation, both
methods were able to capture wave loads at the same sum- and difference- frequency

range for nonlinear load analysis.
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Figure 3-77: Free-surface surge hydrodynamic force between FIT full expression and small Ka approx., r=9m, T=47.89m
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Figure 3-81: Free-surface surge hydrodynamic force between FIT full expression and small Ka approx., r=1.75m, T=30m
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Chapter 4
Discussion and Future Work

This chapter discusses the numerical methods obtained in Chapter 3 and suggests

possible future research directions.

The Fluid-Impulse Theory (FIT) was explored theoretically and numerically for
the computation of linear and nonlinear hydrodynamic loads on offshore bodies. The
objective was to provide a new computation method for the solution of hydrodynamic

loads on offshore bodies in the time-domain.

Theoretically, the original fully nonlinear formulation for the computation of hy-
drodynamic loads from FIT was linearized with the linear free-surface condition for
the computation of leading order nonlinear effects. The derivation was performed only
under the assumption of a small wave steepness of the ambient wave, which is valid
in an offshore environment for wave-body interaction. This allowed the identification
of the linear and 2nd order body and free-surface wave-load components in FIT. The
equations were then further derived to express hydrodynamic load as a function of
the time-domain Green function with integrals over known body surfaces for efficient
numerical computation. The discretization of the free surface was circumvented by
taking advantage of the analytical structure of the time-domain Green function. The
derivations were discussed in detail in the Theory chapter with mathematical formu-

lation attached in the appendices.
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Following the theoretical analysis, a three-dimensional time-domain potential-
based hydrodynamics solver was developed for simulations of linear and leading order
nonlinear wave-body interactions based on the time-domain Green-function method

in irregular sea states.

Time domain simulations were carried out on studying hydrodynamic loads on
cylindrical offshore floating wind turbine platforms. Several bodies were studied,
including the MIT/NREL TLP buoy with 9m radius and 47.89m draft, and two slen-
derer cylinder with 3m and 1.75m radius with 43.2m and 30m draft respectively. The
offshore bodies were treated in a JONSWAP spectrum, which is a random severe sea
state with a 6-m significant wave height and a 12-sec peak-spectral wave period, as
well as in an irregular sea state obtained from the OC5 experiments. Linear and 2nd

order results were separated according to perturbation theory for numerical analysis.

Numerical verification was first performed between 1st order solutions of FIT and
the frequency-domain method WAMIT. The results showed that linear comparison
between FIT and WAMIT on the MIT/NREL TLP demonstrates very good agree-
ment, which verified the application of the source formulation and the solution of
integral equations for the disturbance potential using the impulsive and transient

Green functions for numerical computation using FIT.

Following the verification of linear solutions between FIT and WAMIT, the sec-
ond order surge quadratic solution computed by FIT was studied. Convergence tests
were performed to determine the convergence of different perimeters to ensure solution
convergence for all simulations in this work. Perimeters studied in the convergence
studies included density of meshes, size of time steps and amount of memory time
kept in time-marching simulations. In addition to the FIT convergence studies, a
comparison of mesh convergence between FIT and WAMIT was performed and FIT

was found to be able to achieve convergence with less panels than WAMIT. This
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suggested that FIT has the potential to conserve computational cost as discretizing
body surfaces with less panels drastically reduces the requirement of computational

resources.

After the convergence tests, FIT was applied to compute linear and nonlinear
surge responses for cylinders with various sizes. The performances of FIT on comput-
ing wave loads can be summarized as follow. Both linear and 2nd order surge wave
loads were important when analyzing surge responses on a cylinder in sever sea states,
and the loads were adequately captured by FIT. At the 1st order wave frequencies,
FIT captured the leading order wave loads which are dominant at that frequency
range, while nonlinear wave loads were captured by the module at other frequencies
for second order analysis. For 1st order wave loads, FIT correctly depicted the F-K
and disturbance solutions in the cases of slender buoys as the two forces coincided
with each other at the same frequency ranges with slightly different magnitudes. This
corresponded to G.I. Taylor’s theory on the F-K and disturbance effects being close
to equal to each other under the long-wavelength approximation for slender cylinders.
FIT showed that in the case where long-wavelength approximation is no longer valid,
i.e. when Ka is finite, disturbance effects has a higher magnitude than F-K effects

but occurs at a narrower band of frequencies.

For second order effects, FIT was found to be able to capture leading order sec-
ond order wave loads at high frequencies. In addition, FIT was found to be able
to capture more nonlinear wave loads when compared to frequency-domain method
WAMIT. In general, FIT captures more nonlinearities as it computed larger F-K and
disturbance body forces at the sum- and difference- frequencies when compared with
WAMIT. In addition, FIT suggested that for a buoy with intermediate diameter, the
completely nonlinear term, the free-surface impulse force, is crucial when analyzing
nonlinear wave loads. It was found that aside from 2nd order F-K and disturbance
body forces which occurs at sum- and difference frequency, there exist an additional

free-surface impulse force which scatters across the frequencies from 0 to 3 rad/sec,
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with peaks at the sum-, diff- and a higher frequency peaking around 2.3rad/sec. For
slender buoys, the 2nd order free-surface impulse forces were found to reside at the
sum- and difference- frequency range, coinciding with the F-K and disturbance body
forces. This difference in behavior could be attributed to the size of the waterplane
area inside of the body Sy-, which is related to the buoy’s radius, as the free-surface
impulse force depends directly on the size of Sy . As the size of the water plane area
Sw increases, the free-surface impulse force breaks away from the sum- and difference-
frequency range and move to other frequencies. This can be an important consid-
eration when designing offshore floating wind turbines as it presents energy at the
body’s natural frequency ranges, with offshore floating wind turbines typically having
1st flexural modes at around 1.7 rad/sec, causing fatigue of the system or interfering

with the tower bending mode frequencies .

By further studying the free-surface impulse force, which has original theoretical
formulation consisting of integrals over the ambient wave free-surface, it was found
that both ID and DD component on Sy grows larger as the radius of the body be-
comes larger, and the behavior of the ID component on S, also changes as radius
increases. The free-surface impulse force breaks away from the sum- and difference-
frequency range and moves to other frequencies as the size of Sy increases. The
total ID term was found to be larger than their DD counterpart, suggesting the cross
product between incident wave and disturbance potential to be more important on
the free-surface. Within the DD term, the components on S, was found to be small
compared to contributions from the waterplane are Sy, indicating that this term is
more important for buoys with intermediate to large waterplane areas rather than

slender buoys.

Overall, the free-surface impulse force obtained by FIT was found to be compa-
rable in magnitude to their F-K and disturbance body counterparts, and the total
nonlinear wave loads were found to be significant at higher frequencies for floating

cylinder of difference sizes. This suggests that applying the FIT when performing
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wave-loads analysis on offshore floating wind turbines can be beneficial to the design
of the system as it provides an efficient way to compute nonlinear effects for the study
of nonlinear system responses such as ringing, springing and slow-drift loads to ensure

the system’s safety and cost-effectiveness over the life span of deployment.

To potentially improve the performance of the FIT module, by concluding from
the previous studies that the ID component of the free-surface impulse force is much
larger than the DD component for slender buoys, a simplified FIT formulation for
cylinder with small Ka was studied. The results obtained from this approximation
was compared with the results obtained from the FIT full expression. The approxi-
mation was found to be in good agreement with full numerical solutions from FIT for
computing total surge hydrodynamic forces as well as free-surface impulse forces for
slender buoys. It was found that the PSDs of the solutions matched well, with the
small Ka approximation slightly underestimating the magnitude of nonlinear loads.
There are room for improvement in the simplified formulation to allow the model to
capture the full magnitude of the nonlinearities. Further study in this area can prove

beneficial to further increase the efficiency of the current FIT module.

In summary, the FIT formulation was explored theoretically for efficient computa-
tion of nonlinear wave loads on offshore floating wind turbines. A new hydrodynam-
ics module for the computation linear and nonlinear wave responses using FIT was
successfully developed and the module demonstrated that FIT allows computation
of important nonlinear wave loads for design of offshore wind turbines. Agreement
was found between FIT and frequency-domain method WAMIT for the evaluation of
second-order wave loads while FIT computed larger nonlinear wave loads over a wider
span of frequencies, especially at frequency ranges close to the typical offshore float-
ing wind turbine’s natural frequency of 1.7rad/sec. The module also achieved mesh
convergence with less panels when compared to frequency-domain method, as it is a
momentum-based method rather than a pressure integration based method, allowing

potential savings in computation resources. The new module provides a new time-
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domain method for the analysis of nonlinear wave load in severe irregular seastates for
the safe and cost-effective design of offshore floating structure, especially for offshore
floating wind turbines. Finally, an early exploration of a small Ka approximation
method provides potential to further improve efficiency in computing nonlinear wave

effects using FIT in the future.

Suggestions for future research topics are as follows. Continued development of
the module on computing nonlinear wave loads in other degree of freedoms, including
heave and pitch, on the free surface impulse force and moment components to further
understand the capability of the FIT formulation is recommended. Further compar-
isons of the FIT method and numerical modules using other numerical programs,
including both time-domain and frequency-domain methods, for future verification
studies. The validation of nonlinear wave loads of the floating wind turbine through
full-scaled or modeled design experiments would be useful. Viscous forces on the
floater can also be added as Morrison like terms functions of the relative wave and
body kinematics in future studies. As another application of the present wave-load
model based on the Fluid Impulse Theory, sea-keeping problems of ships in extreme
wave conditions can be studied further to confirm the applicability of the Fluid Im-

pulse Theory in a wide range of problems in ocean engineering.
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Appendix A

Free-surface impulse force in Surge

The X-direction free-surface impulse force (2.46) can be rewritten into two terms: an
ID term which involves cross-products of the incident and disturbance potentials, and

a DD term which involves a quadratic product of the disturbance potential:

Frsy1 = Frpsi-1p + Frsi-pp

F - _Bi / 01 _ a_w?f{ ds
Fs1-10 =" | \¥oz0t ~ ot o (A1)
=0
d dp O
Frsi pp = pL (%%)ds
z=0 ’

The ambient wave free-surface Sy(¢) can be split into the difference between the

infinte free-surface S, (¢) and the ambient wave surface inside of the body Sy (t):

F =22 / / Lo Opder)
FS1-1D gdt 81’01‘ dt Ox

_dfp [ Per Op(t)Oery, g/ Por  pdpr
N dt{g / (598:1781‘/ ot Oz )dS ("’arat 9t Ox )ds
Soo

Sw

(A.2)
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The impulses for this force expression can then be identified to be an integral over

Sw(t) and another over So.(t):

= d -
Frsi-ip= —Irsi-ip
dt

Ips1-1psw = = ot o)™
F8,1-ID,Sw g / (Saaxat ot Ox )dé

Sw

. P 82901 (()SO 8901 o
Ipsi-Ip,s. = g / (9781*01‘, Ot Or >CL5

See

(A.3)

Assuming small wave steepness, ¢ and its derivative can be assumed to be eval-

uated at z =

(PI(:E, v, 0, f) — %{ Z ng4j 6—iujxcosﬁ,—z’ujysinﬁj+iwjt+ixj}

j J

a0 =l S ek
J

& igA; , Bttt
o (2,,0,8) = 3?{ > 5 (i) (—iw cos ﬁj)e-wCosﬁb-‘stmﬁﬁww}
7

i J

And the disturbance velocity potential is:

o, y, 2, t) = oz, y, 2,t) + oM (2,9, 2,1)

- 1 1
W(O)(w,y,;,t) — / dsea(€,1) (__ _ _)
Sg(T)

roor

t
Lp(]&"[)(zx’ Y, Z,t) — /dT/ dfO’(g, T)Hr(fygyt — T)
Sg(7)
J 5 (A.5)

J

- 1 7 (i~ .
H(Z,§t—7)= ~3= Z/dk’f gk; e sin[\/gk; (t — )] Jo(k; R)
0

where JO(k_]R) = .21_/ eiijcosBjdej; R = [(.17 o 5)2 + (y _ ,,7)‘2]1/‘2

T J_r

and z —¢= Rcosy; y—n= Rsiny

156



Again with small wave steepness approximation, »®(z,y,0,t) = 0, ¢t > 0 by
definition. Thus %Lp(o)(z,y,o,t) =0,t>0.

(@, 9,0,1) = o™ (2,5,0,¢) = / dr /S IRCGULACIIEE
o 7 (A.6)

g L[ s
H.(z,§,t—71)= —ﬁZ/dkﬂ' Vgk;e¢ sin[\/gk;(t — )] Jo(k; R)
J 0

The analysis proceeds by evaluating the free-surface impulse force on z = 0;

The function H, can be rewritten as:

let wu; =kjcosy;; v; = kjsinvy;;  thus  dujdv; = kjdk;dy;

=2 & 1 h i k¢ o ik; R cos 0; (A7)
H.(z,§,t—7)= ~ Z df; [ dk; \/gk;e"* sin[\/ gk;(t — T)]e* 7%
J - 0
Let 0, = v; —;, db;=dvy;, ki=ul+02:
eik]'RCOSGJ‘ — eiuj(m—§)+ivj(y—n) (A8)

H, is then:

- 1 o o .
H(Z,&t—71)= ) Z // dujdv; /%ekﬂ( sin[y/gk;(t — 7)]et (TOF =)
joroTe ’
(A.9)

The first partial time derivative of the disturbance potential at z = 0 is then:

DD
ot

t
: / ./
— dr déo(&, T
472 5 Sp(r) > ) (AlO)

00 ) ,
X E [/ d'led'Uj ekf(;1 / %\/gkj COS[\/ gkj (t d T)]eiuj (x—&)+iv;(y—n)
j —0Q J

(z,9,0,t) =
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Substituting A.4 and A.10 into A.3, the integral over S., becomes:

. p T O*pr Oy Opr
I _ = —— d d/ -
FS1-ID,Sec g// z y(‘paxat ot &fc)

oc t
1
- —3//dmy {— —Z/dT déo(€, )
9 am Sp(r)
—00 0
X Z / / dujdv; | /h—?—e"'fC sin[y/gk;(t — 7)™ (@8 Fivily=n)
J —00 J

% SR[Z ngj (‘iwj)(—'il/j COS ,Bj)e—il/jfbCOSBJ‘—'iijSiIlﬁj+int+in] }
w

: J

-{- Ilw‘Zo/th /SB(T) déa(€,7)

X Z // dujdv; ekfﬂ /%»\/gkj cos[\/gk;(t — 7)]e" @t lu=m)
g VI i

igA; . N —ipa vy sin B i tbiv s
X %[ E J(“'l.yj cos 3j)e ;i cos B 1V1y5111f3j+2w1t+sz]}}
Wi
7

J
(A.11)
Reorganizing (A.11):
Ips,1-1D,5x
1 t
=2 " g /dT/ déo(€,7)
g 4m? ) Sa(r)
oo , ZgA] i @\ ki CHiwttix
X ;/[x dudv o (—iv; cos Bj)e Tt TN (A.12)

X (ig sin[/gk;(t — )] — g cos[\/gk;(t — ’r)])
x // d.ldy I:eiuj(:lrfﬁ)~iujwcosﬁj+i1?j(yAn)fiz/jysin[:o’j] }
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Applying the definitions of the delta dunctions:

dpe®ui—vicosh) — 2w (u; — v; cos ;)
(A.13)

dyeVi=is885) = on§(v; — v;sin B;)

/
/

[oe]
// dadye™s= =iz cosBitiviy=ivyysinB; — An25(y; — v;cos B;)0(v; — visinB;)  (A.14)
-0
Substituting (A.13) into (A.12) and performing the infinite integrals over the delta
functions:
IFs1-1D,5

t
1
471'2%{ O/dT/s:B(T) déo(&, 1)

% E 4‘7T26~il/-j€ cos 3j—iw;nsin 8 (—l v; cos ,8]) ZgAj GUj§+iwj t+ix;
: J

.y
g

2

X g(i sin[y/gv;(t — )] — cos[\/gv;(t — 7‘)])}

- gm{de/SBm déa(€,7)

x Z(_i’/j cos ﬁj)zi)_A.j'@ng-ijt‘HXj e—ivjﬁcosﬂj—il/jnsin Bj (_g)e—i1 VT (»t-—T)}
: J
J

t
— p% Z ng]VJ cos I[jjeixjeiwjt/dTe——iwj(t—T) / dﬁo(ﬁ, T)et/jg’——iujfcosﬁj——il/j-qsinﬁj
wj 5 Sp(T)

j J

t

— _pm{ Z Ajwj cOS ,Bjei)(j /dTeiij/ dﬁa(f, T)eujC—iVjEcosﬁj—iujnsinﬁj}
; Sp(r)
2

0

(A.15)
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Applying the relation:

%/F(T)dT = F(t) (A.16)

The final expression for FS-1 ID is derived as:

ﬁFs,1_ID(t)

_pd PPpr(t)  dp(t) dpi(t) :
T ogdt [ ®) oxdt Ot Oz ]ds‘pﬁz

Sw () J

where I((Vja/Bjyt) = / dso-(g, t)el/j(—il/jfCosﬂj—iujnsinﬁj
Sp(t)

{Ajwj cos B;€“ N K (), B;, t)}

(A.17)

The second integral invovles an integration of a quadratic product of the distur-
bance potential of the z = 0 plane outside the body waterline. Invoking the Reynolds
transport theorem the time derivatives maybe transferred under the integral sign

- d Oy O
Frg1-pp = L ( d kp\ds

gdz‘., \5"@33/

#=0

p Op dp jg O Oy
= - ds dl U,—
g/dt(@t (91') +g Cw Vst ot Oz

z=0

(A.18)

The last integral over the body waterline involves the normal oscillatory velocity
of the body which is of the same order as the disturbance potential, therefore it is of
cubic order and is omitted. This would not be the case for a ship advancing with a
significant forward speed in which case this integral is of the same order as the first
term.

A formal differentiation of the terms under the integral sign leads to

d[0pdp\ &pdp 109 r9p\2
(atar)‘atz 8:c+2d( ) (A.19)
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Upon substitution in (A.18) we obtain

o0

» [ 8% 9% 0 Dy ?
FFs,l—DD=§/dm dy (’D—g—— 9P s +£ dl (a(f) (A.20)

ot? Oz Ot Oz 2g

SW

In (A.20) Stokes’ theorem was invoked over the z=0 plane to reduce the integral
of the x-derivative in the last term of (A.19) to an integral over the body waterline.
Also the integral of the first term in the right hand side of (A.19) over the body
interior waterplane area was added and subtracted. The second and third term to
the right of the equal sign in (A.20) are easy to evaluate using the definition (4.2) of
the disturbance potential. The evaluation of the infinite integral in (A.20) is discussed
next.

Invoking the free surface condition (2.5) satisfied by the total disturbance poten-
tial and introducing the velocity potential decomposition into the instantaneous and

memory components we obtain

0% Oy Onp o M 9l 9p(® gip(M)

o2 0z Yoz or Yoz or Y o: oz

2

=0 (A.21)

The second equality in (A.21) made use of the property that the value and hence |
the x-derivative of the velocity potential component vanish on the z=0 plane at all

times. We therefore are led to the evaluation of the infinite integral

. o o0 90 e _/3 7 7 D) G §r(0) G(M)
g / dT/ dy 01"’ - g de [ dy bz or | 0: oz (A.22)
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The memory component of the disturbance velocity potential is harmonic in the
lower half space for z<0 and it vanishes at infinity. It therefore satisfies the familiar
vector identity over a closed surface bounded by the z = 0 plane and a semi-spherical

surface at infinity over which the integrand vanishes

T T M) n 1. o ,
/clx / dy( Son VM) _ —5n<,o(M) -go(M)> =0 (A.23)

The unit vector 7 points in the vertical direction. The x-component of (A.23)

reads

7 i a¢(N1) a(p(M)
/d:c/dy( on  Or )_0 (A.24)

Combining (A.22) and (A.24) it follows that

p [ . P0dp [ [ 0o a5
;/dm/dyéﬁézc—::—p/d:c dy . (A.25)

The Rankine source 1i/r its image i/r and their Z-derivatives admit the foliowing
Fourier representations on the z = 0 plane

1 1 e a2 231/2) . . _ o
e d'lL]d'Ule (uf+vi)/ 2lz=C1 [+iur (2 —E€1) +ivi (y—m)
r o 2 JJ)

9 (1 9 (1 1 * 2 21/2_(u24+02) V20 +iug (z—€1 ) +iv (y—1,
(), 0= 52 (5), o= g [ dudentad et et

(A.26)
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Note that the infinite integrals over « and v are subjected to a summation series
for polychromatic waves. Since the final expression for the DD component does not
involve the incident wave velocity potential, the effects of irregular waves are implied
to be included when computing source strength ¢ at any time and thus the summation
is skipped for simplicity in this derivation.

Combining (A.26) with the definition of the impulsive velocity potential ¢ in

(A.5), the z-derivative of the impulsive potential is:

390(0)

(z, y,O t)
=—— // duldul(ul —|—172)1/2/ d&”(fl f)e(u1+v HY2¢ +iug (m—£1) +Hive (y—m)
dn $5(1)

(A.27)

Following (A.10), the first partial x-derivative of the disturbance potential at z = 0
is:

(M)

— [ a7 / d&>0 (6, 7) / / duadvs iuge® | L sin[y/gka(t — 7)]etv2(@ =) Fiva(y—m2)
47T Sp(r) ko

(A.28)
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Substituting (A.27) and (A.28) into (A.25):

oo [o.0]

p P dp
— . d I —
g /da‘/ y@tz oz

T L[ e b (o) oo

JJ 42 JJ s Sp(®)

1 / o0
X —-Z—;;/dT/S ( )dfga({-;,’r) // dusdv, iuzekm’ /%Sin[\/g/\b(t - T)]ei'“z(“‘@)*“’?(y_m)}
B\T —00 g
0

t
= (- ;1;1;){ / a6t 0/ ar |  den(@m

o
L Y [ —
x // dudvy klehC‘ w11 —tv1m
o

o0
X // duadvs iug, lki sin[v/ gko(t — 'r)]ek?@"i“’*’@‘“’2"’2

o
X // dxdyei(u1+’ltz):v+i(v1+'u2)y}
—0

(A.29)

Invoking the identity for delta functions again:
7 dzdyeittuetilviteay 4720 (uy + ug)d(vy + vg) (A.30)

Using also the properties of the delta function:
7/ dusdva F(uz, v2)0(uy + us)d(vy + v2) = F(—uy, —v1) (A.31)

where

Fug, v2) = —tuy 4/ Zq— sin[y/ghky (t — 7)]eFréztindetivim (A.32)
1

164



(A.29) becomes:

t ,

1 . -

- _p_,)/ d§1a(€1,t)/d7/ €20 (&2, 7)
4 Sg(t) A Sg(7)

X // duydvy (—iug)ky l%sin[\/gkl(t - T)]ek‘(ﬁ““@)—m‘(51'52)_“’1("‘_"’2)
V k1

—0Q

t

1 - — )

= _pﬂ/ dﬁla(fl,t)/dT/ d§20.(£'277-)
T JSp(t) 0 Sp(r)

2 00
X —a—— // duqdvy 9 sin[, / gk (t — 7—)]6’\71(C1+C2)—i"'1(51—52)_7:‘01(771 —172)
06101 JJ o V k

t
- . 52 o
= ,O/SB(t) d§10’(§1,t)b/d7 /SB(T) déso( mT)mHT(ghgz’t_T)

(A.33)

Therefore the final expression for the DD component of the free-surface impulse

force in surge is:

ﬁFS,1~DD(t)
- e (E )
— ds o ¢ Jt _____._’
P/SB(t) 60(61,t) 96,00,
2 (M) 5, (M) (M) 2 A4
p/i?w 010 1L P (390 )nldl (A.34)

Ty o 0z 29 Jopw \ O

Sy (t)

t
Where LP(IU) (617 t) = / dT / d5520'(€2’ T)HT(Ela 627 t— T)
0 Sp(7)
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Appendix B

Free-surface impulse force in Heave

Start by using the force expression presented in [30] and (2.42). Taking the free-

surface impulse force in the Z-direction up to second order:

o d > [ Op(t)
Frgs(t) = — p— i,d: k —d:
rs.3(t) pdt (t)i.ds + p / ot s
Sr(t) S1(¢)

s [ (gag—?%mww(t»)ds

Si(t)

(B.1)

By moving the derivative of the first term of the force expression inside of the
‘integral and keeping terms to the leading order, the first term of the force expression
can be shown to cancel with the second term, thus leaving only the last term of the

force expression to be computed:

Fesalt) = 25 [ (5";—?%(@1&“@&»)@ (5.2

Sr(t)
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The Z-direction free-surface impulse force can be rewritten into two terms: an ID
term which involves cross-products of the incident and disturbance potentials, and a

DD term which involves a quadratic product of the disturbance potential:

ﬁFS,3(t) = ﬁFs,s—ID(t) + FFS,SvDD(t)

= pd Oyp(t) i (t)

P a_ i P p— —_—

Fs3—1p(t) .t / ( 5 8z ds
Sr(t)

ﬁFS,:,,_DD(t):Bil. / (6‘P_(t)8<{9(t)>ds

(B.3)

g dt ot 0z
Si(t)

Applying the linear free-surface condition for both the incident and the distur-

bance velocity potential:
dp1(t) 18%p4(t)

9z g o (B.4)
Frss_1p(t) becomes:
a __pd Op(t) 0%pi(t)
Frss rp(t) = T / ( pra ol L (B.5)

Si{t)

The ambient wave free-surface S;(t) can be rewritten into the difference between

the infinte free-surface S, (t) and the ambient wave surface inside of the body Sy (¢):

UNAIEE D

ot ot?
Seo(t)  Swi(t)
: 2 32 :
{_p_ Do) Perlt) , _ p [ Delt) Peult) ds}

Frss_ip(t) = —

Ul

(B.6)

g> ot ot? g> gt ot?
Sw(t) Soo(t)

4
dt
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The impulses for this force expression can then be identified to be an integral over

Sw(t) and another over S..(t):

d

ﬁpg’3~1D(t) fFS,3—ID(t)

T at
. p dp(t) pr(t)
IFS3—ID Sw (t) =3 ( ds
y ? g 6t at2
Sw(t) (B7)

B L p dp(t) oy (t)

Irss-1p,5.. (1) = 72 Ot ot? ds

Sao(t)

Again, for a polychromatic wave the incident wave velocity potential is:

(polychromatic) ¢(z,y, z,t) :ER{Z71—76’”“"”]‘Cosﬁz—%l']ys-nﬁa+*wat+ﬁ>ca} (B.8)
i

J

The first and second partial time derivative of ¢; are:

6521 (CL', Y, 2, t) = §R{ Z ZgAj (in)eyjz_'iij cos B —ivjysin fj+iwjt+ix; }
;Y

(B.9)
(92<p1 lgAJ . 2 V'”-—'il/'avcosﬂ—'iu»'ysinﬁ--;—w~t+z‘x»
W(x,y,z,t):é}t ZT(ij) e AN 3 FUd; j
7 J
And the disturbance velocity potential is:
(p(l', Y, 2, t) = ﬁp(o) (17, Y, Z, t) + (,O(A{) (1', Y, 2, t)
- 1 1
QO(O)(.’II,y, Z,t) = / dS{O’(f,t)(—- — _I)
Sp(r) ror
t
(B.10)

0y 50) = [dr [ dgo€nH @ é-n)
SB(T)
0

. L f 40
H.(Z,&,t—71)= ~5- Z/dkj gk;e® O sin[\/gk; (t — 7)) Jo(k;R)
J 0
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The analysis proceeds by evaluating the free-surface impulse force on z = 0;

The function H, can be rewritten as:

let w; = kjcosvy;; vy =kjsiny;;  thus  dujdvy = kjdkdy;

) . ™ o0 N _ _(B.a1)
HAZ 6t =7) = =75 / 405 / dk; \/gk;ets sinl\/gk;(t — )]e™iFeosts
4T
J —r 0
Let Hj =% — wjﬁ dOJ = d’)/ja k;z - u.? + (UJL?:
gikiReostj _ yiuj(z—€)+iv;(y—n) (B.12)

H_ is then:

—

1 oo ra : :
Hr(f,g, t— T) = ‘"""4';;2‘ Z // d'ltjd'l)j %‘ekjc Sin[\/ gk.} (t — T)]ezuj(w—§)+zvj(y—n)
g 7
(B.13)

The first partial time derivative of the disturbance potential at z = 0 is then:

Dy _ 90 . Op(M) ) 9p©
E(I,y,ﬂ,t)— pn (z,9,0,t) + T (z,9,0,t) with e =0.
S

o (2.9,0,8) =

(B.14)

_ 4;2 Oj dr /g | deolem)

X Z// dujdv; "¢, /{L gk; cos[\/gk;(t — 1))es e+ v
jouuTe !
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Substituting into B.7, the integral over S, becomes:

Ap(t) Pt
Ipsg ID,Sx(t) = //d dy ( gt) gt12())

o
& 1945 (i1 20 vy sin B;+iw; tHix
= —?‘//dxdy{%{z wjﬂ(,twj)"e i cos B w]ysn/i,-kzwjt—{—zxj}

x _ﬁ dT/ déo(§, 7 Z// du;dv; e¢ \/gk cos| gk — 7)) i‘uj(r—£)+iuj(y~n)}
i Sp(r) V k;

(B.15)
Reorganizing B.15:
7 P
IFS,S—ID,Sm(t) "’5_ {/d'l’/ dé-O' f,
Sp(r)
VC WA N2 iwtting
X Z du,dv g gv; cos|\/gv;(t — 7)) (tw;)*e™ XJ]
Wi
% // dl‘dy ew_,(.r— )~wj:Lcosﬂj+i17j(y—1/)—iyjysinﬁj]}
(B.16)

Applying the definitions of the delta dunctions:
dre™i 75885 — 97§ (u; — v; cos B;)

dyc“’(” j—visingy) 2'7['5(1’3' -V sin ,B_,)

]
=, (B.17)
/

// dadyets®wieosbitivgy=iviysinh; — 4n25(y,; — v, cos B;)6(v; — vjsin B;)  (B.18)
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Substituting into B.16 and performing the infinite integral, the equation becomes:

Ipsa—rp,s..(t) = —2F%{/d7/ déa(&,7)
T Sp(r)

o igA;
x 4> Z [ev.;-s—sz cos B —iv;n sin B +iw;t+ix; /Ui\/g—l/? cos[y/guj(t — )] Li},J (in)Q] }
j J J

(B.19)

Simplifying:
Trs3-1D,5. (1)

¢
= —p?R{ /dT Z [iAjwjei“’f”‘iX" cos[\/gUj(t — 7)] déo (€&, T)erss i cos ﬁj_'i”j”S’inﬂj] }
J

o Sp(r)
t
= —P%{ / dry [iAjwjeiwthX" cos[\/gu;(t — 7)1 K(v;, B, 7 )]}
o j
where K;(v;, 3;,7) = / déo (&, T)e”jc_i”jgCosﬁf_i”fT’Si"ﬁj
Sp(T)
(B.20)
The final expression for ﬁpg,g_ rp(t) is therefore:s
ﬁFS,:i—ID(t)
_ﬁd 9p(t) Per(t) |
T gdt at oz
Sw(t) : X (B‘21)

t
d e o
~Pat /dﬁﬁ{ 2 [ZAMG P cos|\/gus(t — T)K(v4, By, T)] }
0 J
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Rewriting the DD integral in (B.3) over the ambient wave free-surface S;(t) into
the difference between the infinte free-surface S, (¢) and the ambient wave surface

inside of the body Sw(t):

d dp(t) Dp(t)
-a( - [ ) (20 B2

Soa(t)  Swi(t)

. _dfop Op(t) O%p(t) . p / dp(t) Op(t)
“dt{g2 o Bty ot oz ©
Sw (1) Soc(t)

Seperating the derivative inside the integral over S, into two parts:

dp(t) dp(t) 9 () B (1) + M () DM (t)
at 0z ot 0z ot 0z

(B.23)

Assuming small wave steepness, the integral over S,, can be evaluated on z = 0.
Transforming the z derivative of the impulsive potential to a time derivative using

the linear FSC:

0pM(E) DpO() _100M(1) 300

B.24
ot 0z g Ot ot? ( )
Recalling:
9 (t)
= B.25
o 0 (B.25)
Thus the 2nd integral of B.22 is now reduced to:
(M) () G (¢
N B sl OF s OP (B.26)

g Seo at 82‘

173



The spatial and temporal derivative of the memory potentials on z = 0 are:
let w=~kcosy; v==ksiny; thus dudv= kdkdy

t
(P(AI)(;”C,y, Z,t) — /dT/ dSSO'(é: T)Hr(ivé:t - T)
Sp(7)

H(Z,&t — // dudv ekg\/ism[v gkt — 7)]e™lem =)

(M) t
(’Oa—() /dﬁ/ dse,0 (51,7'1)
Sg(m1)

__2> // duydv, TSt /g_ /gkl cos[ /g/ﬁ(t _ Tl)]eiw(I—£1)+iv1(y—m)
1

S0(1\1) .
/ dry / dse,0 (&2, T2)
Sp(r2)

by // dusdvy €22k —sln [V gka(t — T2)]e up(z—§2)+iva{y—n2)
vy

(B.27)
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Substituting the expressions into impulse B.26

p [ 9001 M)

Seo 0z
=2 / dxdy

/dTI/ fbﬁ)
Sg(r1)

4 ) // duydv 6’”‘@‘/ s gky cos[\/gki(t — 7 )]etrEE)Fy—m)
T

X /dT;»/ dS@U(,é,Tz)
d Sp(r2)

——2—) / / duadv, kzekm’ / ki sin(\/ gka(t — 7'2))ei“?(“‘_&)ﬁvz(3”_"2’)
2
>

t
1 \2 . )
=o( ) [on [ dseo@m) [an [ dsot@m)
" 0 S5(n) 0 Sp(72)
X // duydvy €1 cos[v/ gk (t — 7)]e 11 —Rm

X / / dusdvy €22/ gk sin(~/ gka(t — ) )e U2t
—00

X //oo d.”cdy Gi(ul“i_“?)x'{“‘i(‘vl-i-vz)y
-0

(B.28)
Invoking the identity:
f dzr / dye'i(‘ul+1t2)1‘+i(’U1+’112)y = 471-25(“1 + UIQ)(S('Ul + 1)2) (B.29)
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Using also the properties of the delta function:

/ duydvy F(uy,v1)0(u; + u2)d(v1 + v2) = F(—us, —vs) (B.30)

—00

where
F(ug, vy) = etd+oD2a cos[gM? (u2 + v2) VD (t — 7p)|e b1 —iam (B.31)

Rewriting in B.28 terms of us = u and v, = v:

o JACLET
9Js., Ot 0z

1 2 :
B(— 4— (47?) /dn/ dsg, (1, 71) /de/ ds¢,0 (&2, T2)
g SB(T]) SB(TQ)

8 / / dudv g1/ (u? + v*) W A (w07 D (G 4a)

x cos[gD (u? + v?) (¢ — 7)) sin(gP (u? + v}) VD (¢ — 1)) et(E—E)Hivlm =)

d7‘1/ dse, 0 51,71)/d7’q/ ng,,O'(fg,Tg)
-171'2 / Sp(11) ' Sp(2)

X // dudv \/ghe® T cos[\/gk(t — 1) sin(y/gk(t — 1,))etu(E1 ) +ivlm—m)
(B.32)
With

—& = Rcosvy;  m — ’T]:'.Z Rsiny;
u=~kcosy; wv=~ksinvy, dudv=~kdkdy, 0=~—1; db=dy; (B-33)

= ei-u(§1—52)+iv('r]1—n2) — e’ichos(w—-w) — eichos9
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The impulse becomes:

po[ 96M0@) 9p0() |
9 Js, ot 0z

t t
p / - -
= drl/ ds cr(ﬁ,’r)/dTg/ dsg,0(&2, T
47r2 A SB(TI) 4 b 0 SB(TQ) 2 ( 2 2) (B-34)

Ky

X / do / kdk +/ gkek(q’%) cos[v/ gk(t — 1)) sin( gl.:(t—rz))e“"RCOS"
0

-

Using trigonometric identities:

o/ 7] sin 3R~ ) = 3 i/ — ) s/ — 47 |

(B.35)
Thus:
p () M (1)
- - ds
9 J8S ot Oz
t ¢
= —p/dn/ dsflo(fl,ﬂ)/d’rz/ ds&a(ﬁ;,ﬁ)
Sg(m1) Sp(r2)
0 0
(B.36)

1 1 0 [ r 5 L k(C4+C2) on X ikRcos®
. 5( — Zﬁ)a_gl{ /dé)/dk Vgke sin(v/gh(n1 — 72))e

- 0

da/dk /gkek.(‘:1+g2) Sill[ /gk(gt _ (7.1 + 7_2))]81'ch050}
0

T

+

~—

-7
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S

2 [ 26000,

g ot 0z
t
B g/dﬁ/ dsg0(€1,7) /dT‘Z/ dse,0(E2, 72)
- 0 Sp(m) Sg(r2)
8C I:II (51352, T — »Tz) + H 61,52’ 2t — (Tl + TZ))] (B.37)

where HT (é{ ’ é-;ﬂ T)

do gk k(C1+C2)sin[ ng] eich030

The final expression for FFS’.S pp(t) is then:

F rs3—-pp(t)

_d)p / Op(t) Pelt) |
dt | ¢2 ot o

Sw(t)
o | / (B.38)
N 3 /dTl [ Lo dsf.lo-(gla Tl) /dTQ [ o (15520'(62’ 7—2)
oo e AL ICY

X

%[HT(Q,G n = 7o)+ H(€,6,2t - (71+T2))]}
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Appendix C

Free-surface impulse force in Pitch

Start by using the moment expression presented in [30] and (2.43). Taking the free-

surface impulse pitch moment up to second order:

Mrsolt) = — ps / olt) (X ) ds + p / ﬁggﬂ(mz)ds
S1(t) Sr(t)
ol / [19@()? X <V<,of<t)+w<t>))]ds

dt g Ot
Si(t)

(C.1)

For small wave steepness, the normal vector to the ambient wave free-surface
maybe expressed as:

= V(Z - CI(‘Xa Yv t)) _ "Clx?-’ - Clyj + k - (_Clei*_ ny.;'\l’ E)[l + 0(62)]

IV(Z - CI(‘Yv Yrv t))l B /1+ CIQ‘( + C%Y

(C.2)
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X x i1, X x i?, X x Vr and X x Vi in the pitch direction are respectively:

(X X ﬁ)s = (2, — x);+ 0(5%);

(X: X 1?)5 = —aj;
o1 (C.3)
(% xvor), = (5% 57 )7
> 0 0
(¥ ve),= (55 ~+52)

Substituting C.3 into C.1:

tipss(t) = o2 [ o0 (st s +p [ 22D (yas

S1(t) Si()
d Do) (1 0 9 d ) (C4)
P ha Yr  0¥r o¢ ¥
Ty / [ ot (("aX ‘Taz>+( X az))]d +0(%)

S1(t)
For small wave steepness, the pitch moment is evaluated on z = 0 , the remainder

of the first and second integral cancels and the moment expression is reduced to

, d dp(t ( dor O \
Mpsa(t) =24 [ 5 90() L2 ) ds (C.5)
gat J \()A 0 (e
Sr(t)
Applying the linear FSC:
‘ 1 2 . 1 2
Op; _ 10° 28 9o _ 10% (C6)
0z g ot? 97 g ot?
The pitch moment can be split into:
Mpss(t) = Mpss_ip(t) + Mpss-pp(t)
- d Op(t) Py (t
Messim(t) = 15 22N Terll) ) g,
dt ot ot 7
Sr(t) ( . )
- pd dp(t) Pp(t)
) A A A I
Mpss_pp(t) = e p7 (a‘ ot or 8
Sy(t)
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Rewriting the ID integral as the difference between the impulse over the infinite

free-surface and the ambient free-surface inside of the body:

p(t) i (t)
Mypss-1p(t) = de( / / )( Aukadl )ds (C.8)

Soo (t) Sw (t)

The ID impulse in (C.8) can be split into:

. d /- .
Mrpss_1p(t) = =\ Irss—ip,sw (t) + IFss—1p,s.(t) });
dt

- , Op(t) O%pr(t
IFS,5——ID,S(,V (t) = ——pg— T—F Lgi ) gtIQ( ) S
g (C.9)
Sw (t)
Op(t) 0% (t
IFS5 D5 (t) = / cp( ) gtlz( )d's
Sao(t)

Focusing on the second integral over the infinte free-surface:

Substituting into the impulse over S, in C.9:

Op(t) O?pr(t
IFq5 ID,Sec t)———-—/ ds d ( (’gt) ‘gtfo( ))

[e o]

— %//drdy{xm ( )2 —ivz cos B— wysmﬁ+uut}
X s dT/ dsgo(f T) /dudv ekC[\/ k cos[\/gk(t — T)]e iu(z— §)+w(y—n)}
Sp(1)

47r2
0

(C.10)
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Reorganizing (C.10):

t
/, P 1 & . iwt
Irss-mps. () =L - )R ) (—igA
FS5-1D,50 (1) g( 47r2> {U/d"r /SB(T) dsea(€,7)(—igAw)e

o

X // dudv [e(“uvz)(l/z)c cos[g/D (u? + v?) M (¢ — T)}e‘iuﬁ’i”"]

-—0Q

X // dxdy[meim(u—ycosﬁ)+i1.(y—usinﬁ)]}

—0

Let

Flu,v) = @ HPC 012 (42 4 v?) D (¢ — 7)]e e

Applying the definitions of the delta dunctions:
oC
/ dr ze®™vesB) — _971i§ (u — v cos f5)
—0o0
o
J/ dy e¥TvsnB) — 978(v — vsin B)

—0o0

(C.11) becomes:

t
T P 1 4 . iwt
Ipss_ t)==({-—= R d ds , A
F8,5-1D.Se0 () g(4ﬂ2) {0/ T/SB(T) seo(€,7)(igAw)e
X (—4m%) // dudv f{u,v)d'(u — v ecos )d(v — vsin ﬁ)}
Applying again properties of delta functions:

// dudv f(u,v)8'(u — vcos 8)d(v — vsin B) = — f'(v cos 3, v sin )
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(C.14) becomes:

t

fps,s—m,sm (t) = pAw%{ei‘”t / dr/ dsw({, T) [ — f'(vcos B, vsin ﬂ)] } (C.16)
, Sa(r)

f'(u,v) is:
8 a (‘u2+112-)(l/2)4 (1/2) 2 9 (1/4) —iuf—ivn
ol o) = 5-{e cos[g®/? (u? + v2) VD (¢ — r)]e )
U u
= (aie(uz-}—vz)(l/?){) COs[g(l/z) (u2 + 02)(1/4)@ . T)]e"i“{_iml
U

(7

9 —tug—ivr uZ402)(/2¢ 9 9 9
-+ (-517@ uf ')e( 24u2)(1/2¢ Cos[g(l/o)(uo + 107)(1/4)@ —7) (0.17)
(u242)(1/2)¢ 4 o
= (QECC;—“—)H—/T) 008[9(1/2)<u2 + UQ)(1/4) (t _ T)]e—zuﬁ—wn
(72 v = ‘

i (—u\/§(t —7) sin[g(l/z) (u2 + '02)(1/4)(t - T>]>e(“2+v2)(1/2)gei’“f‘ivﬂ
2(u? + v2)/4)
+ ( - i&e‘i“‘g”i”") eI oo5[g1/ (u? 4 v?) VD (8 — 7)]
f'(vcos B, vsin () is then:
— (C COS,B@VC) COS[\/'_g—I_/-(t _ T)]e—iuﬁcosﬁ—im/sinﬁ
1 e
+ ( _ 5\/%008,3(15 o 7_) Sin[\/‘g—]—;(t _ 7_)])euge—wﬁcmﬁ—wnamﬁ (018)
+ ( _ igev'ivfcosﬂ—iunsinﬂ>eu( COS[\/g_I/(t o 7_)]
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(C.16) becomes:

t
fFS,5—ID,SOO (f) = pAw%{eM’ / dr / ngO'(g, T)
Sgp(T)
0

X [ — ( cos /3 COS[\/gy(t — T)]evc—iuscosﬁ—'iunsiuﬁ

1 (C.19)
+ 5\/—97—003 B(t — 7)sin[/gu(t — 7)]e*¢ e cosfivnsing
124
i cos[y/Gu(t — )]s iveenoivmsing] }
The free-surface pitch ID moment is then:
7 p d Ap(t) 020 (t)
A{ — A T e — 7 d,
rss-ipl) = =g (1 a o )©
Sw(t)
£
+ pAw%{ei‘*’t / dT/ ds§a(§—: T) [Ql + Qs+ Q3] eVC—?TVECosB—iunsinﬁ}
Sp(r)
0
where (C.20)

Q1 = —( cos B cos[y/gu(t — 7));
Q2= %\/%cos B(t — 7)sin[y/gr(t — 7));

r4

Qs = i€ cos[\/gu(t — T)].

184



Rewriting the DD integral over the ambient wave free-surface S;(t) into the dif-
ference between the infinte free-surface S (¢) and the ambient wave surface inside of

the body Sw’(t)i

Y _prd 9op(t) Ip(2)
Mpss-pp(t) = gdt <$ ot 0z ds
Sr(t)

_pd dp(t) 9¢(t)
"‘g‘d‘t( /-] )(‘U—é'{“ oz )ds (C.21)

Soo(t)  Sw(?)

_ df dp(t) D*p(t) ,  p Op(t) Oip(t)
linear FSC|= dt{ o / z ot Of ds g T ot 0Oz ds
Sw(t) Sao(t)

Same with the heave free-surface impulse force, as 9p(© /9t = 0, the 2nd integral

in (C.21) can be reduced to:

P dpM(2) 9™ (2)
g/m$ 5 P ds (C.22)
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Substituting the expressions of the derivatives of the memory potentials into

(C.22):

(M) (4) §p(M)
_g/ L2200 0701)
g ot Oz

t t
12 . S
= -—p( —_ ———1 2) /dTl/ d8§10'(€1,7'1) /dTQ/ d.ngO'(fg,TQ)
R Sp(n) ] Sp(r2)

X // duydvy €< cos[v/gk1(t — Tl)]e_iulgl"il’l”l
—0o0

X / / dusdvy €22/ gy sin(y/ gha(t — 12))e "2 iv2me
—00 (C.23)

o
X // d:[‘dy :I:ei(ul'{-uz)l’-l—i(vl—}-vg)y

—0o0
t

1\2 / - -
= —p( - —4 2) dTl ds&a(«f],n) dT2 ds§20'(£2,"r2)
T 0 Sp(m1) o Sp(r2)

X // duyduy Fl(ul,vl)// dusduvy Fy(us, vs)

—00
oo}
Lara Yo tdla, Laro Vs
ug lr+i{v)

¥ ¥ dfagy o
X // dxdy e ' TvzsY
—0C
where:

Fl (ul» Ul) — e(u%+'u%)(l/2)c1 Cos[g(l/ﬁ) (ull! + ll%)(1/4)(f = Tl)]e—iulﬁl—i‘vlnl

Fo(ug,vp) = (3 +3) /D (1/2) (u2 + v2) VD sin[ (gD (12 + v2) VD (t — 75))| e u2t2 iz

(C.24)
Invoking the identity:
/ dr / dy Iei(ul+uz)a:+'i('u1+'vz)y — __47‘.21-6/(“1 + ’uz)é(?h + 'Ug) (025)
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Using also the properties of the delta function:

(&9}

/ duldvlFl(ul, 'Ul)(;’(ul + ’u,2)5('v1 -+ '1)2) — —Fl'(—-uQ’ __,02) (026)

— 0

Fl(uy,v1) is:

B_C?__Fl'(ul’ Ul) = bi {e(u%+v%)(l/2)c COS[g(l/Q) (ufl" + ,v%)(l/él) (t _ Tl)]e—iulfl—ivml}
Uq Uq

Ui Geui+oDPa
+ (_ul\/g(t - Tl) Sin[g(l/z) (’lL% + U%)OM) (t - TI)])e(urf—Hr‘f)“/z)Cle—iulfl—ivml
2(uf + v?)B/4).

+ ( - i&e‘i“‘&'“’ml)e“”“’“ﬁu/ PG cos[gM (u? + v2) VIt — 7))

) coslgM/2 (u? + v2) A/ (¢ — p)|e-urr—tm

(C.27)

F|(—uga, —09) is then:

— (et G
h ( (uZ + 12)072)

uz\/g(t — 1) sin[g/D (w3 + v3) V(¢ — 7y)] (@ +) /D¢ g viven (C.28)
+ 3 (371 ezt e
2('1.[,2 + 1’2)( / )

b (= gyt ) O3B ol 443 4 o) — 1)

) coslg®/D (u2 + v2) VA (¢ — )] eiuebrivam

Revisiting the impulse:

oM (1) M) (¢
_g/ 1,0@_ (t)asol () ;.
9 Js., ot Oz

t t
1 \2 2. > >
= —d47i d ds d d £, T
p(47‘('2) ( ™ Z)O/ 1 LB(TI) bflo(glle)Z T2 /S:B(TQ) 3620(‘52»7;) (029)

o0

X // dusduvy Fg(ug,vg)( — Fi(—uz, —‘Ug))

—00
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For Fy(us,ve)F|(—us, —v2), simplify it into 3 seperate terms and reduce the ex-

pressions with u = us and u? + v? = k%

Fy(u, v)F{_{(—u, —v)
—ulye@ )G
- ( (u? + v2)(1/?

> C('u2+'02)<1/2)C2g(1/‘2)(UZ) + Uz)(1/4) sin[(g(l/z)(uz + ,Uz)(jl/4)(t o TQ))]e—m{g—ium
= —u \/%ek@ﬁ@) cos[\/gk(t — 71)] sin[/ghk(t — 7p)]e(&r ) +iwin—m)
1\ 0 ~ | ,
= () - {1251 cosl /g s/t — )l eE-eoin-m}

__a 9 \/Eek@wcz)@z‘u(sl—sz)m(m—nﬂ
i o6\ V&

X %{ sin(v/gk(ry — 7)) + sin[\/gk(2t — (11 + Tz))]}}

— _Qi \/_E_ek(CHCz)eiu(€1—€2)+‘iv(771 —n2)
21 051 k

X { sin(/gk(r — 72)) + sin[v/gk(2t — (1 + 72))]}}

) COS[g(l/Q) (,uz + v?)(1/4) (t _ T] )]G’iil-fl+i'l)’rll

(C.30)
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Fy(u, v)F{_y(—u, —v)

(u\/?(t — 1) sin[g/?) (u? + %)Vt — Tl)]) (@20 (/D¢ iy +ivny
- : e e
2(u2 + v2) B/

% 6(1),24—1)2)(1/2)(29(1/2) (u2 + 02)(1/4) Sin[(g(1/2)(u2 + v2)(1/4) (t _ Tz))]eﬂiu&—ivng

- %(t — 7p)ekCHe) Sm[\/;;;(t —7)] sin[\/ﬁ(t — )] tul&1—&)+iv(m—nz)

1 a u g k( ; _ i _
= (=)= 2Lt — )G+ ) piul€i—E2)+iv(m—mn2)
(iu) 6{1{21:.( m)

X %{ cos[\/gk(r1 — 72)] — cos[\/EE(Qt — (1 + 7‘2))]}}

T 206 | k

10 {g (t _ 7_1)ek(C1+C2)6iu(§1—Ez)+‘iv(111-Tl‘z)
k

2\\/gk

= — =t = 7)) = | L P QHC) piu(Er—E2)+iv(m —12)
4 agl{( Tl)k.\/;e ¢

X {56?;2- sin[/gk(r — )] + ‘(9872 sin[v/gk(2t — (11 + TQ))}}}

X %{ (———1——) 3872 sin[‘\/—fﬁ(ﬁ —T)] — <":\/;—z> % sin[\/ﬁ(zt —(m + Tz))]}}

(C.31)
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Fy(u, v) Fi_3(—u, —v)
= ( ~ iﬁlei““"l“‘"”l)e(“2+”2)(1/2)<1 cos[g"? (u® + )V (t — 7y)]
% e(u2+v2)<1/2)czg(l/2)(u2 +0?) VD gin[ (g1 (u? + ?) V(¢ — T5))|e Tz v

= —it1y/ghe ) cos|\/gh(t — )] sin{y/g(t — )6~ &)

1\ O R :
— 3 ) — k E(C1+C2) piu(E1—Ea)+iv(n—12)
zgl(k)acl{\/g e e

X %{ sin(v/gk(m — 72)) + sin[y/gk(2t — (1, + TQ))]}}

_ 1 9 ) ]9 k() gin—€2) ivim—m)
2001 Vk

X { sin(v/gk(r1 — 7)) + sin[/gk(2t — (r + TE))]}}

(C.32)
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The impulse now becomes:

(M) (M)
wf’./ L9 (t)&P. (t)ds
9 Js. ot 0z

i

¢
i N -
= —p(—z)/dﬁ/ d8510(§1,T1)/dT2/ dsg,0(§2,72)
dn Sg(n) Sp(r2)
0 0
X /f dudv {

— C_li ‘\/'g‘ek(41+€2)ei“(§1-52)+i‘l’(711—"72)
2 06 k

X { sin(y/gk(m — 72)) + sin[\/gk(2t — (11 + 7—,_,))]}} (C.33)
19 1 g k(G1+¢) jiu(&r—€2)+Hiv(ni—n2)
+4i5§1{(t Tl)k.\/;6 e

X {8172 sin[v/ gk(m — 72)] + 82-2 sin[v/gk(2t — (r1 + TZ))]}}

& 0 \/E R (C1HGa) (€ ~E)Hiv(m —m2)
2 0\ V%

X {sin(\/ﬁ(n —T2)) + sin[\/gﬁ;(% —(n+ 7'2))]}}}
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¢ t
i . -

= _p(zl——z—)/dTl/ ds&o(ﬁl,ﬁ)/d’rg/ - dsg,0(&2, )
T o Sp(n) o Sp(rz)

« [ as /kdk{
- 0

— C_li \/—éek(CI'FCz)eichose

X { sin(\/%(’rl —Ty)) + sin[\/ﬁ(Qt — (1 + Tz))]}}

19 L /9 k(ci+¢a) ikRecoso
iy O = [ L k(Ci4Ca) pikR cos
+4i8§1{( Tl)k\/;e ¢

X {()%_2 sin[\/%(ﬁ — )|+ %sin[@(?t — (1 + 7'2))]}}

___Z_g..l._g_ \/Eek(C1+C2)eich059
2 9G k

X { Sill(\/g_k(ﬁ — 7)) + sin[\/ﬁ(Qt —(n+ 72))]}}}

(C.34)
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—p/dTlf dS& fl,Tl /dTQ/ d8§20‘(€2,7'2)
Sp(T1) Sp(m)
42/M/M{

{ \/‘_‘ek(gl—f—gg) _tkRcos@

2 2S!

< (s, - ) sy o+ )} |

(C.35)
10 1 . K{(C1+C2) kR cosf
115G {(t TV gheT T e

X {8072 sin[y/gk(r — 72)] + %Sin[\/ﬁ@t = (n+ sz}}

+_

...Z_{ A / e’»(@l-l-Cz)eichosO

20
X {sin(\/;)E(Tl — 1))+ sin[\/g—k(Qt —(n+ 7'2))]}}}
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The impulse is then:

P DM () 0 M (t)
/ ot P

t . t
:p/dTI/ ds&lg(éaTl)/dT2/ d5£20(€;,7'2)
Sp(m) ) Sp(72)

X { ilagl.[ Ho(61, 82,71 — 7o) + Ho(€1,&, 2t — (1 + 72))]

TI) /d(_.lagl 51152771 — 1)+ H (51,52, 2t — (1 + 7-2))] (C.36)

+ %f[ Ho(8,6,m = 72) + Ho(6,63, 2 — (11 + 72))] }

where H,(£,&,T)

LT ” ,
= —m/dﬁfdk gheF €+ gin[\/gkT) et eos?
- 0 )

The DD free-surface pitch moment is then:

., d P E)go t) O%p(t)
Mpss—pp(t) = AR, T U(b &\tg ds
L Sw(t)

¢ ¢
+/)/d’T1/ ngla(f_;,Tl)/dTgf dé‘gzO'(gE;,Tg‘)
, 0 Sp(r1) 2 Sp(r2)

X { - %aif] [HT(€:7€;7 - 7-2) + HT(£:7€;7 2t — (Tl + TQ.))]

(C.37)

(t Tl) /dgldSI H (&1, &, — 7o) + H(&,6,2t — (1 +T2))]

+ %d—d (HA(6, 6,7 = 7) + Ho(&1, 6,2t — (r +72))] } }
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Appendix D

Nonlinear loads on a vertical cylinder

in irregular waves of small Ka

This section discuss the method presented by Sclavounos [31] on computing nonlinear
surge force acting on a vertical circular cylinder in irregular waves.

For a vertical cylinder fixed in space (a diffraction problem), the Fluid-Impulse
Theory can be used to approximate nonlinear loads to leading order by the 2D croos-

flow potential.

The ambient waves are assumed to be irregular. The expressions presented in
this section are valid for finite values of Ka, where K is a characteristic wavenumber
and a is the cylinder radius.

The characteristic wavelegnth in a seastate is often large relative to the cylinder
diameters of offshore structures and wind turbines. In such cases Ka is a small param-
eter and the diffraction potential near the cylinder may be approximated to leading

order by the 2D cross-flow potential:

o(r,0) = —ulg— cosf, u; =——(r=0) (D.1)
T
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For a polychromatic wave the incident wave velocity potential is:

(polychromatic) QOI(SE,y, Z,t) — m{ E :Lg_Jeujg—wA,.vcos,B]—wjysmB_,-+szt+zxj} (DQ)
X Wy
J

The first x-derivative of p; in deep water is:

6991 — { Z ZQAJ ('“'?:Vj CoS [j»j)Esz—iuj;vcosBj—*iu]'ysinﬁj+iwjt+ixj}

(D.3)
— §R{ Z Ajwj cos ﬁjeujz~iujaz cos,Bj-iujysinﬁjﬁ—'i@jt—kixj}
J
With uni-directional waves:
d it
Uy = _gfcl r= O) = %{ Z .-4jwj€llj~+1w]t+zx'7} (D4)
i

Substituting (D.1) into F-K and disturbance body force, the expressions become

equal in the limit of small Ka and their sum is:

¢r .0
Fer s+ Fyp = 2pra / dzity ()| oo + 2pm~-5<ti wilemoig (D)

T &

The time derivative of wu, is:

J

0 Ovr igA; . )
e ¥ =R gAa; —iv: cos 8:)iw. eyr-—zuj.vc%ﬁ]——wjysmﬁj-f-zw]t—f-zxj
J J J
(D.6)
— { § Z/{ijz oS /Bjeujz—z.uj-wcosﬁj—zuijIHﬂj+qujt+zxj}

J

At £ = 0 and in unidirectional waves:

J

1(2)] a0 = *R{ ZAw} (D.7)
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The wave elevation of irregular waves can be expressed as:

CI — QR{ Z Aje—'il/jivCOSﬁj—iijSinﬂj+'iWJt+in} (D8)

J

The time derivative of ( is:

BQ . —iv;x C i—iviysin B +iwt+ix
E:%{Zm@e 5% cos By ivjysin Pt J'J’"‘J} (D.9)

J

Atz =0:
Crle=0 = §R{ Z Ajeiwjt+-i?(j}
’ (D.10)
¢
QI n—O _ {214 0 ezwjt-l-wj}
Numerically:
Nirtep)
{-FX,F——-K + FX,D}C = 2;0770/2{ Z Af‘:m'ilflm
No (D.11)
+ §R{ Z 1Ajw, e“"l‘“‘w} { Z Ajw, e"*’ﬂ“\;}}
j 1 C
Introducing (D.1) into (2.58), the DD term vanishs identically.
ID is then the leading order force. It becomes:
Fxrpg = 2p7ra2/ dz(uyuig + ugug,) — p7ra2u1u3|w=0,2:41; Uz = Bctl +u ai’
-T
(D.12)
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1gA,; ) i iy sin B i i
U, =R E wj(—wj cos 3;)(—iv; cos B;) e it cosh ’”’ys“‘ﬁ-'”“"»"t*”w}

J

_ SR{ Z —-7A V 0032 Bjel/jz'_‘il/jwCOSSj*iijSill,(3]+iwjt+'in}
(D.13)
— §R{ - COS ﬂj)(yj)el}]” wjx cos B Aiujysin[3j+zk.u_,-t+ixj}
= §R{ Z COb B eViz W T cos B —le]ySIH,B]-f-lef-I-t\}}
At x = 0 and in unidirectional waves:
—1 4]1/ ) N
Uy =R —— LI puztittixg
s
. (D.14)
14‘71/‘;3 i b s
up, = N Z — L erirttt
—~ 9
j
The x-derivative of (; is:
aCI - R i A . —ivjx cos B —iwjy sin Bj+iwt+ix; D.1
B = Z—zx jV;j cos Bje (D.15)
;
At z = 0 and in unidirectional waves:
¢ b
—ast{ = %{ Z iAjwj'elw*it+L*\J}
o ! (D.16)
T 7
Numerically:
Neriep)
E\',FS'C :{207”12 [ Z A/::m(ululz + u3ulz)7n] - pﬂag{'u“luli}lw:l),z:()} (D17)
m=1 c
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