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Abstract

Wind energy is one of the more viable sources of renewable energy and offshore wind
turbines represent a promising technology for the cost effective harvesting of this
abundant source of energy. To capture wind energy offshore, horizontal-axis wind
turbines can be installed on offshore platforms and the study of hydrodynamic loads

on these offshore platforms becomes a critical issue for the design of offshore wind

turbine systems.
A versatile and efficient hydrodynamics module was developed to evaluate the

linear and nonlinear loads on floating wind turbines using a new fluid-impulse for-
mulation - the Fluid Impulse Theory(FIT). The new formulation allows linear and
nonlinear loads on floating bodies to be computed in the time domain, and avoids
the computationally intensive evaluation of temporal and spatial gradients of the ve-
locity potential in the Bernoulli equation and the discretization of the nonlinear free
surface. The module computes linear and nonlinear loads - including hydrostatic,
Froude-Krylov, radiation and diffraction, as well as nonlinear effects known to cause
ringing, springing and slow-drift loads - directly in the time domain and a stochastic
seastate. The accurate evaluation of nonlinear loads by FIT provides an excellent al-
ternative to existing methods for the safe and cost-effective design of offshore floating
wind turbines.

The time-domain Green function is used to solve the linear and nonlinear free-
surface problems and efficient methods are derived for its computation. The body

instantaneous wetted surface is approximated by a panel mesh and the discretization
of the free surface is circumvented by using the Green function. The evaluation of the

nonlinear loads is based on explicit expressions derived by the fluid-impulse theory,
which can be computed efficiently.

Thesis Supervisor: Paul D. Sclavounos
Title: Professor
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Chapter 1

Introduction

The energy industry continues to make new strides in constructing and deploying

offshore wind turbines with the goal to expand modern society's energy portfolio and

provide clean energy for today's ever growing economy. Offshore wind shows great

potential as one of the future's prominent energy source due to a variety of reasons.

For one, wind is inexhaustible and environmental friendly. The horizontal-axis wind

turbine is a mature technology, which allows industries to harvest wind energy at

utility scale at low cost. The logistics of the offshore environment favor large multi-

megawatt turbines in the 6- to 10-MW range for efficient energy production. These

turbines can be easily assembled, transported to, and installed at the offshore wind

power plant site. The support structure of offshore wind turbines can be either a

bottom-mounted structure in shallow waters or a floating platform if the water is

deeper than about 50 m. With much of the worldwide energy demand located at

coastal regions, it is imperative to utilize the vast wind resources in the offshore en-

vironment.

Fortunately, there exists a vast wind resource potential in deeper water in the

USA, China, Norway, Japan and many other countries ([8], [101, [211). In recent

years, the offshore wind industry continues to experiment with different designs of

floating offshore wind turbines to be deployed in deeper oceans to capture these wind

resources [1]. To be able deploy wind turbines on floating support structures for wind
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energy production, wave loads exerted on these floaters by ambient sea states over

the life of an offshore wind turbine must be properly modeled and predicted to ensure

the structure to be safe and cost-effective.

The wave-body problem

The wave-body interaction problem of an offshore floating structure can be sum-

marized as follow. In most seastates, linear wave theory captures most of the leading

order aspects of hydrodynamic wave loads on offshore structures. This was theorized

by St. Denis and Pierson 161 as an offshore structure's response to a random sea can

be estimated by superposing the response to each wave frequency component in the

wave spectrum. This allows a reliability-index-based design method for a given sea

spectrum to capture most of the leading order effects in a mild sea condition. There-

fore, to avoid possible large load responses, offshore floating wind turbines platforms

are often designed to have their natural frequencies to be higher or lower than the

dominant ocean wave frequencies.

In extreme and severe sea states or large-amplitude body motions, nonlinear ef-

fects are of greater importance and interest in addition to the linear effects. Examples

of nonlinear effects include nonlinear hydrostatic load by large-amplitude wave eleva-

tions, nonlinear Froude-Krylov force and ringing load by steep large-amplitude waves,

and nonlinear wave force by large-amplitude body motions. Large amplitude waves

causes extreme wave loads which requires more load bearing capability. When en-

countering steep waves, ringing loads may occur and excite the floating structure

which leads to potential system failure due to fatigue of the tower (171, 1291). Among

the nonlinear effects, nonlinear hydrostatic force and nonlinear Froude-Krylov and

disturbance forces are of greatest concern because they govern limits of the state of

loads on tethers and anchors. For certain offshore wind turbine floater design such

as the Tension-Leg Platforms (TLP), the nonlinear extreme wave loads may lead

to tether overload and tether slack which are undesirable for the foundation design.

Therefore, these nonlinear effects should be taken into consideration when designing
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an offshore floating structure for wind turbines, as the energy of these nonlinear ef-

fects can reside about the natural frequency of the structure, typically around 1.7-1.8

rad/sec, causing failure of the structure both in the short term and in the long run.

This require an efficient and accurate method for analysis of nonlinear wave loads

on floating structures for their safe and cost-effective design, making it the primary

objective of this work.

Modeling Hydrodynamic Loads

There had been significant advancement in hydrodynamics/wave-body interaction

theory in recent years. The scientific community together with the offshore industries

had come a long way since Froude [9] and Krylov [16] first established a theoretical

approach to the hydrodynamic analysis of a floating body's motion.

Currently, the evaluation of the wave loads on offshore platforms is typically car-

ried out either by Morison's equation or by frequency-domain panel methods with

appropriate time-domain transforms for transient analysis. Morison's equation is a

strip theory- based time-domain method for slender structures first theorized by Mori-

son, O'Brien, Johnson and Schaaf [201. The method accounts for fluid inertia, added

mass, and viscous effects by selecting appropriate added mass and drag coefficients.

Viscous effects can also be accounted for by equipping appropriate drag and inertia

coefficients derived from experiments.

For large-volume platforms, frequency domain boundary element method based

on the potential flow theory has recently become one of the most popular tools be-

cause of its efficiency and reliability. The first application of BEM was pioneered

by Hess and Smith [11] and later adapted in wave-body problems by Newman and

other scholars ([31, [231, [24J). This method is primarily based on linear theory and

model linear and nonlinear potential-flow effects by solving first- and second-order

free-surface problems. This leads to the computation of linear and quadratic transfer

functions (QTFs). Recent developments in three dimensional time-domain methods
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has resulted in several useful computational methods, an example being the commer-

cial code WAMIT, started here at the MIT Ocean Engineering Department [18].

Previous studies have carried out simulations for floating wind turbines using

Morison's equation and frequency-domain methods. Investigators carried out com-

putations of the loads and responses of TLP floating wind turbines and documented

them in ([2], [32], [34]). Simulations for the Hywind Spar floating wind turbine struc-

ture based on Morison's equation were reported by [25]. For the International Energy

Agency Offshore Code Comparison Collaboration (IEA OC3) Spar, simulations were

reported by 113]. For the semisubmersible WindFloat structure, simulations were

presented by [28]. In [26], simulations for the IEA OC3 Continued (OC4) semisub-

mersible were documented. The conclusions from the simulations reported in these

and other studies are summarized here. There is good agreement between meth-

ods predicting the linear potential-flow loads from Morison's equation or frequency-

domain methods. The accuracy of Morison's method deteriorates as the wavelength

of the ambient wave decreases and becomes comparable to the diameter of a cylindri-

cal floater. The agreement between various methods is less satisfactory for predicting

the nonlinear low- and high-frequency loads and responses partly because the un-

derlying modeling assumptions differ and partly because the accurate computation

of the sum- and difference-frequency QTFs is a complex and time-consuming task.

Additional limitation of a frequency domain analysis based on the linear wave and

linear dynamics theory is that the amplitudes of ambient wave and body motions

have to be small compared to the ambient wavelength. The linearity assumptions on

the wave and motion amplitudes hamstrings investigations of crucial hydrodynamic

interactions between waves and bodies in severe seas. Excessive computational cost

involved with the complexity of fluid and body interaction also limits the develop-

ment of the three-dimensional fully nonlinear numerical schemes. An alternative to

the methods discussed above are time-domain potential flow methods for the com-

putation of second order loads. The nonlinear time-domain solvers have yet to reach

the maturity for demanded by the industry.
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The Fluid-Impulse Method

The goal of this work is to explore and develop a new versatile, accurate and ef-

ficient time-domain potential flow method for the treatment of nonlinear wave-body

interaction in irregular waves in the time-domain. The new method, the Fluid-Impulse

Theory (FIT), is based on new expressions for nonlinear hydrostatics, Froude-Krylov,

and radiation and diffraction loads derived by Sclavounos [30]. Further description of

the theory is presented in the theory section of this thesis.

The time-domain fluid-impulse method bridges the gap between long-wavelength

approximations in the time-domain Morison's equation and frequency domain meth-

ods. It can be used for both slender and large volume offshore structures and allows

for the modeling of higher-order transient nonlinear effects in the vicinity of the wa-

terline. In addition, the fluid impulse method allows the evaluation of second-order

and higher-order nonlinear effects via compact force expressions that circumvent the

discretization of the free surface by taking advantage of the analytical structure of

the time-domain Green function.

Overview

The rest of this thesis is organized as follows. Chapter 2 presents theoretical for-

mulations: the boundary value problem for a hydrodynamic wave-body interaction,

the force and moment components in FIT formulation, the solution of the disturbance

potential by solving a set of integral equation using the transient free-surface Green-

function method and the source formulation, and detailed derivation on solving the

free-surface impulse component in FIT. Chapter 3 presents numerical algorithms and

simulation results: the wave loads obtained by FIT formulation using the Perturbation

Theory, the treatment of surfaces and generation of body mesh, the representation of

surfaces with constant-strength source elements, verification and comparison studies

between FIT and WAMIT, several test cases obtained by FIT for buoy of different

sizes, and numerical results obtained by the simplified FIT formulation using the

small Ka approximation. Chapter 4 discusses the results and contributions of this
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thesis and suggested future work.
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Chapter 2

Theory

This chapter discuss the theory behind the computation of hydrodynamic loads using

the Fluid-Impulse Theory (FIT). The goal of FIT is to provide a formulation for

the computation of nonlinear hydrodynamics loads in the time-domain for body of

any size in the ocean. This chapter starts by summarizing the formulation of FIT

and discusses the different force and moment components in the formulation. In

the formulation, as the ambient wave is assumed to be known, the only unknown

is the Radiation and Diffraction (RD) potential, or the disturbance potential. The

solution of the disturbance potential is obtained by solving a set of integral equations

using the transient Green function and the source formulation. The transient Green

function and the source formulation are described theoretically and numerically in

their respective subsections. A theoretical framework on expressing the completely

nonlinear term, the free-surface impulse force and moment components in surge, heave

and pitch, with respect to known body surfaces is then presented for the efficient

application of FIT. This allows FIT to be applied efficiently without the need of

discretizing the ambient wave free-surface, while accounting for the nonlinear load

contributions from the ambient irregular seastate. Finally, a summary on a simplified

FIT formulation using the small Ka approximation for surge wave loads on cylinders

is presented at the end of this chapter.
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2.1 Fluid-Impulse Theory Formulation

Fig. 2-1 illustrates a platform floating on a free surface interacting with a nonlinear

ambient wave assumed to be irregular. The reference coordinate system (X, Y, Z)

is fixed in space with its origin located on the calm water surface with the positive

Z-axis pointing upward. The free-surface elevation resulting from the ambient wave is

denoted by the solid line. The dashed line defines a horizontal plane intersecting the

Z-axis at the local elevation of the ambient wave profile. The acceleration of gravity

is g and the water density is p.

The ambient wave velocity potential is denoted by 0b(X, Y, Z, t) and assumed to

be irregular and traveling in deep water:

(polychromatic) #j(x, y, z, t)=R igiyezivjxcos jiivysinj+iwt+ix1

J (2.1)

where vj = W]/g.

And the disturbance radiation and diffraction potentials are denoted by #(X, Y, Z, t).

1JOUL potenitials are suUject u Ut LaplaCe tequation in bite HuiM doinain as

02 + 02 + Z0. (2.2)

On the instantaneous position of the body boundary SB(t), the normal velocity

of the radiation potential is equal to the normal velocity of the body boundary U,

because of its oscillatory motions

UTI on SB- (2-3)
On

In the diffraction problem, the diffraction potential offsets the ambient wave nor-

mal velocity on SB (t)

-= -- , on SB. (2.4)
On On

For notational simplicity, the radiation and diffraction (RD) potentials are here-
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after denoted by the same symbol, with the body boundary conditions from (2.3) and

(2.4) applying for each potential, respectively.
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Figure 2-1: Free-surface interaction with floating body
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The Fluid Impulse Theory (FIT) derived by [301 is capable of accounting the fully

nonlinear free-surface by taking applying a fully nonlinear dynamic and kinematic

free-surface condition in the boundary value problem. As this work focuses on study-

ing the leading order nonlinear effects of a wave-body problem, the disturbance RD

potential # in FIT was linearized about the ambient wave surface S1 (t) exterior to

the body waterline as
a2o 00
Ot2 + Y aZ = 0, on S 1. (2.5)

The conventional definition of the force and moment acting on the body follows

from the integration of the hydrodynamic pressure obtained from Bernoulli's equation

over the instantaneous body wetted surface

F = -J V0 + +4) -V(O1 + 0) + gZj rds

SB (2.6)

a=- +-2V(Oi + )V(01 +0) +gZ x (X x n ds.

SB

The evaluation of the nonlinear hydrodynamic force and moment given by (2.6)

requires the computation of the partial time and space derivatives of the disturbance

potential over the instantaneous wetted surface of the body. This computational task

requires fine panel meshes that lead to slow convergence in the evaluation of nonlinear

forces.

The FIT formulation circumvents the computation of gradients of the disturbance

potential by deriving new expressions for the hydrostatic and hydrodynamic forces

summarized in the following sections. The total force and moment in (2.6) can be

represented as the sum of four components as described in (2.7): 1) nonlinear buoy-

ancy force and moment; 2) Froude-Krylov impulse force and moment; 3) radiation

and diffraction body impulse force and moment; and 4) radiation and diffraction

free-surface impulse force and moment.

F = FH + F-K + B + FS

-. # (2.7)
A - ' + A I F-K + MB + MFS-
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These force and moment expresssions are discussed in further details in the following

subsections.

2.1.1 Nonlinear Buoyancy Force and Moment

The hydrostatic force and moment acting on the body takes the following form

FH = pgVwk -pg J Zds (2.8)
SB+SW

PH-pg Z(X x n dS (2.9)
SB+SW

In (2.8) and (2.9), k is the unit vector pointing in the positive Z-direction and

Vw(t) is the volume enclosed by the body wetted surface SB(t) and the nonlinear

ambient wave surface interior to the body Sw(t), defined in Fig. 1. The nonlinear

hydrostatic force given by (2.8), then, always points upward. In the classical definition

of the nonlinear body force obtained by integrating the hydrodynamic pressure from

Bernoulli's equation in (2.6), the nonlinear hydrostatic force depends on the shape

of the body wetted surface and does not necessarily point upward. (2.8) extends the

classical Archimedean buoyancy force in calm water to the unsteady case of nonlin-

ear wave body interactions via the introduction of a time-dependent displacement

bounded by the body wetted surface and a dynamic water plane area defined by the

ambient wave.

2.1.2 Froude-Krylov Impulse Force and Moment

This force and moment takes the following form

FF-K =-P J ilds (2.10)

SB-~SW

F-K ~ I, X n-)s(2.
SB+SW
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The surface integrations in (2.10) and (2.11) are carried out over the instantaneous

intersection of the body boundary and the ambient wave profile, which is assumed

to be known with the unit normal vector pointing inside the body. An additional

integration is carried out over the ambient wave free surface interior to the body. An

application of Gauss's theorem provides an alternative definition of the Froude-Krylov

impulse as the integral of the ambient wave velocity vector over the volume internal to

the body wetted surface and its dynamic water plane area. The evaluation of the new

Froude-Krylov force and moment requires knowledge of only the velocity potential of

the ambient wave over the body boundary and not its partial time derivative or its

spatial gradients.

2.1.3 Radiation and Diffraction Body Impulse Force and Mo-

ment

This force and moment takes the following form

FB P Jpds (2.12)
SB

IB ~ -~ (X xn (2.13)
SB

The integrations in (2.12) and (2.13) are carried out over the instantaneous body

wetted surface defined by its intersection with the ambient wave profile. Again the

evaluation of the forces and moments requires only the RD velocity potentials over

the body boundary and not their partial time derivative or spatial gradients.

27



2.1.4 Radiation and Diffraction Free-Surface Impulse Force

and Moment

The remaining nonlinear free-surface force and moment invovles integrals of the ra-

diation and diffraction disturbances over the ambient wave free surface S1 (t).

d CFFS - qn'ds - pgk] ds

Si Si

(2.14)

-p f CV#+0) + '(2 ZV( 1+0) +.. ds

SI SI SI(2.15)
d f 1( a

-- pt X X V(#r +0)] + OZ X V(OI + 0)]+. ds

S.1

Further derivation of this force and moment is discussed in Section 2.4.

2.1.5 Summary

In summary, the nonlinear hydrodynamic force acting on a body floating in an ambient

irregular wave of large amplitude has been derived as the sum of a nonlinear buoyancy

force pointing upward and the time derivative of a sequence of impulses. The Froude-

Krylov nonlinear impulse involves an integral of the ambient wave velocity potential

over the instantaneous body wetted surface and the interior water plane area defined

by the ambient wave elevation. The body RD nonlinear impulse involves an integral

of the RD velocity potentials over the body wetted surface. The free-surface RD

nonlinear impulse involves integrals of the RD disturbances over the infinite ambient

wave free surface exterior to the body waterline. The forces discussed in this section

are based on the assumption that the RD velocity potentials satisfy the linear free-

surface condition over the ambient wave free-surface profile. Higher-order nonlinear

effects can be accounted for by invoking the fully nonlinear free-surface condition and

introducing quadratic and cubic nonlinearities as forcing terms in the right-hand side
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of the linear free-surface condition in (2.5) via the perturbation theory.
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2.2 Integral Equation for the Disturbance Potential

As discussed in Section 2.1, the ambient wave velocity potential #1 (X, Y, Z, t) is as-

sumed to be known a priori. To compute the forces and moments presented using

FIT, the disturbance potential 0(t) is the only unknown.

The disturbance potential 0(t) satisfies the linearized free-surface condition in

(2.5) on the ambient wave surface illustrated in Fig. 1. The horizontal dashed planar

surface illustrated in the figure intersects the Z-axis at the ordinate (1(0, 0, t) = (r(t).

To take advantage of the analytical properties of the time-domain Green function,

the free-surface condition (2.5) is hereafter assumed to be valid on the planar surface

Z = ((t). This assumption is justified by the small slope of steep waves in a sea

state. Introduce the new coordinate system centered on the dashed planar surface as

follows

x X

y Y (2.16)

z~)= Z -1t

The Laplace equation maintains its original form relative to the new coordinate

system. The free-surface condition, satisfied by the disturbance potential relative to

the new coordinates p(x = X, y = Y,z Z - (I(t), t) = #(X, Y, Z, t), follows from

these identities

0#(t) 00(t) OBP(t) Oz OW(t) - V(t)
= + =r - (iM)at at + z at at Oz (217)

a2#(t) 02p(t) 92p (t) +p t - 2 p t (2.t)
at2 - 2(azat- (t) a Z ( 2

Introducing (2.17) in (2.5), the free-surface condition relative to the new coordi-

nate system becomes

02 (t) .. W(t) 02 P(t) - 2 p(2
at2  + (Ig ((t )] - 2 1(t) azat + (;(t) = 0, z = 0 (2.18)

For ambient waves of small steepness, terms involving the time derivatives of the
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incident wave elevation are of the order of 6 = KA relative to the leading order

terms, where A is the characteristic amplitude of the ambient wave and K is the

characteristic wave number. Consequently, the free-surface condition relative to the

new coordinate system, with relative errors of 0(6), becomes the following:

t
2 (+g =z 0, z = 0 (2.19)

The body boundary conditions in (2.3) and (2.4) maintain their form because

they involve only spatial derivatives. They are enforced on the instantaneous wetted

surface of the body defined relative to the new coordinate system.

From the preceding analysis, it follows that the free-surface condition in (2.19)

is enforced on the planar z = 0 surface at each time step. Relative to this plane

the body wetted surface is more submerged below z = 0 when (I(t) > 0 and less

submerged when ( 1(t) < 0. The vertical coordinate of a point of the body wetted

surface is given by z Z - (I (t), where Z is the vertical coordinate relative to the

earth-fixed frame.

The boundary value problem for the disturbance potential becomes a body non-

linear time-domain free-surface problem subject to the linear free-surface condition.

Invoking the time-domain Green function, a time-convolution integral equation can

be derived for the disturbance potential along the lines of [331, [35J. The disturbance

velocity potential is represented by a distribution of sources over the instantaneous

wetted surface of the body, as follows

($, t) = Jds o , t)( ,-1)

SB(t)

+ s(2.20)

+ J dTr JJ ds U($,T) H(Y~, t - T)

0 SB()

The unknown source strength distribution u( , t) for t > 0 is determined from the

solution of the integral equation obtained by enforcing the body boundary condition
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as follows

n 
V(,) -s-(

x On iV sa t)( 417 r r'

S -B M(2 .2 1 )

+ jdT ds o(,T)Hr(, ,t T)1
0 SB(T)

The left-hand side of (2.21) is a known normal velocity on the body wetted surface

for the RD problems via (2.3) and (2.4), respectively.

Invoking the following notation,

x (x, y, z)

(2.22)
r [(x - )2 + (y - 77)2 + (z - ()211/2

r [(x -- )2 + (y - q)2 + (z + ()2]1/2

the time-domain Green function is defined as follows

G (0) (z,5)=

HT(s, -, t) - dk /gek(z+) sin[V/gkt]Jo(kR) (2.23)

0

R = [(x - )2 + (y - rq)2]1/2

The integral equation in (2.20) through (2.23) is solved by discretizing the instan-

taneous body wetted surface with planar panels and advancing the time-convolution

integral ahead in time starting at t = 0.

The velocity potential of the incident wave W(', t) is based on the standard repre-

sentation of an irregular wave train in a sea state. The solution of the integral equation

in (2.21) provides the disturbance velocity potential over the instantaneous position

of the wetted surface via (2.20). The substitution of the incident and disturbance

potentials in (2.10) to (2.13) allows the evaluation of the fluid-impulse Froude-Krylov
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and body forces. This is carried out by first integrating the velocity potentials over

the body wetted surface and then taking the time derivative of the resulting time-

dependent integral. The evaluation of the partial time derivative and spatial gradients

of the ambient and disturbance potentials is circumvented. The free-surface impulse

force in Eqs. (2.14) and (2.15) is evaluated in Section 2.4.
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2.3 The Transient Wave Part of the Green Function

The transient wave part of the Green function (2.23) described by Wehausen &

Laitone [35] can be evaluated in several different ways. Its formulation is listed again

below as:

00

HT(?, ,t - ) - dk VfgkekZ sin[Vgk(t - T)]Jo(kR)

0

r [(x - )2 + (y - 1)2 + (z - ()211/2

' [(x - )2 + (y - q) 2 + (z + ()2]1/2 (2.24)

Z z + ()

R =[(X - )2 + (y 71)2]1/2

In this work, the wave part of the Green Function was computed numerically by

two methods: 1) by solving the ordinary differential equation as described by Clement

[5]; or 2) by the methods described by Newman [22].

2.3.1 Clement

As derived by Clement [5], the wave part of the Green function HT(, f, t - T)

stated above can be evaluated by solving an ordinary differential equation. Rewriting

Hr(X,,t T) as:

CO

Hr(X, , t - T) = F(r, Z, t -Tr) = - f dk V/k-ekZ sin[Vdh(t - T)]Jo(kR)
0

(2.25)

Let r1  r2 + Z 2 , with a change of variable (krl -+ A), Jami [12] showed that

the memory part of the Green function can be expressed as a function of two variables

(p, T)

F(r, Z, t - T) = - ?(rJ3/2F(p, T). (2.26)
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with

F(t, T) fdA ve-A/ sin[VXT] Jo(A /1 - p2) (2.27)
0

where = -Z/ri and T= Fg(t - T)/f/rj.

F satisfies the following fourth-order differential equation:

+ IT + (2 + 41) + 4 + F = 0. (2.28)

with the initial conditions

P( 2 k)(, 0) = 0, p(2k+1)(p, 0) = (-1)k(k + 1)!Pk+((p); k = 0, 1, ... (2.29)

where P(k) denotes the kt-order differentiation of F with respect to T.

Further study by Chuang et. al [41 stated that a Taylor series expansion method can

be applied to solve the differential equation (2.28) with low computational cost. Eq.

(2.28) is rewritten as:

K ()+TK( + (T2 +Ap K + BTK(P + CKF 0
7(9 (2.30)7 9

where A=4; B- , C= for KF -

Introducing the expression:

K-

KF (r)= a0 + a3 a,(T - TIYL (2.31)
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Based on the work of Chuang et. al [4], the coefficients a., can be obtained using

the closed form solution:

1
a4 1- (6K 3a3 + 2K2a2 + K 8a1 + Kgao)24K1

1
a,,+4 =:' 1 (yn+3an+3 + yn+2an.+2 + yn+ian+1 + ynan), for n 1, 2, 3,...

where

Yn+4 = K1(n + 4)(n + 3)(n + 2)(n + 1) (2.32)

Yn+3 = K3 (n + 3)(n + 2)(n + 1)

Yn+2 = K2 (n + 2)(n + 1)n + K6((n + 2)(n + 1)

Yn+1 = 5 (n + 1)7 + K8 (n + 1)

yn = K4n(n - 1) + K-n + r'.

Once these coefficients are obtained, P can be computed and therefore the wave

part of the Green function can be evaluated very efficiently from the computational

perspective.

To compute the derivate of F for the evaluation of the derivative of the Green function,

by the extension of the Taylor series method presented by Chuang et. al [4], the

differential equation can be solved by taking (2.30) with new constants:

11 21
A=6; B--; C=- for KF -K. (2.33)

4 4
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2.3.2 Newman

Another way of evaluating the transient wave part of the Green function is described

in Newman [221. Transforming (2.24) using the spherical coordinates (ri, 0), with the

angle 6 measured from the negative vertical axis.

Nondimensionalize the phusical parameters again with repect to g and ri:

0 = arccos(p) = arccos(-Z/ri), T =f - (2.34)

The transient wave part becomes

HTF, f, t -F) = ( - girT {(0,T)}

where 
(2.35)

00

F = -4i w2eiw-wT2cos Jo (w2 sin 0)dw; w - k1/2

0

The computational domain is now (0 < T < oc, 0 < 0 < 7r/2).

For large value of T, asympototic expansion was derived in [22]. The function can

now be decomposed into two parts:

S= f + f1 + f2  (2.36)

The first part of the integral, integrating P in (2.35) up to iT/2, can be expanded

using Watson's Lemma, and can be expressed as:

f -4 (2n+ 2 )! T-2n-3Pn(COS 0) (2.37)
n=O
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The second part of the integral, fi was proven to be exponentially small for all

values of 0, and through a series of transformation outlined in [22], f2 can be rewritten

into:

f 2 
s-4 i

2 si n9
24

(2.38)si j n YdnmW2-2m-2n.-imOsin) m
M=O

where doo = 1, dom = 0 for m > 0, and for n > 1

dnm = Cn (2m + 2n - 2)!
(2n - 2)!22mm!

and

[Cf(n + ]2
Un 7r2nn!
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2.4 Free-Surface Impulse Force

Linearing the equations (2.14) and (2.15) above the free-surface using linear FSC

(2.5):
1 &q#

on S1 . (2.41)
g at

Keeping terms up to leading order quadratic effects, the free-surface impulse force

and moment expressions become:

d 8# d f10#
FFJ=+ds + pJ -+V(oi+ O)ds (2.42)

Si S1 SI

MFS =-P + Xx -) ds+pJ (X x kPds
S1  d 100 S (2.43)

P_ g 8t$x V(OI+4) ds

SI

The unit normal vector to the ambient wave free surface may be expressed in terms

of the gradients of the free-surface elevation. Denoting by 6 the order of magnitude

of the ambient wave slope obtains the following, with errors quadratic in the wave

slope

V (Z - ((1( XY1t 0) -iC1, - JC1, + k

|V(Z - (1(XY,t) 1 + (2.44)

= (-iC1 x - Jj1, + k)[1 + 0(62)]

Invoking again the linear FSC (2.41), and keeping the leading order unit normal

vector:

( 1 &2 q, (2.45)
g aX at' g Oy at'

39



Substituting (2.45) in (2.42) and (2.43), the force in the surge and heave are

respectively:

PFFSl J - 2+1 (0+)ds (2.46)
FyS1 gdl j aXatds g dt a t OX(+4 s2.6

SI Si

d ( p pd #
FFS,3 = -P- j ds + p Jds + K- I Y ( H+ ds (2.47)

SI SI SI

By moving the derivative of the first term of the force expression inside of the

integral and keeping terms to the leading order, the first term of the heave force

expression can be shown to cancel with the second term, thus leaving only the last

term of the force expression to be computed:

-. p d (0 apFFS,3 g dt __t Z( $ ds (2.48)

In the pitch direction, following (2.44), the cross product between the position

vector and the unit normal vector and the gradient of velocity potentials X x n',

X x k, X x VW1 and X x VW in the pitch direction are respectively:

Z ) (z(} - x) 0(62)

( X V k ) - (2.49)
Xx r =Xo x8Z1

xV) = z -x O

The pitch moment is thus:

d 00 foA'IFS,5 ~ -P- J (z( - x ds + p (-xds

+ 0j S91 __ +))] o(2) (2.50)
pd SI

+ dt a t a x Z +z a x Z Oz+ (
S1 -
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For small wave steepness, the pitch moment is evaluated on z = 0 , the remainder

of the first and second integral cancels and the moment expression is reduced to:

p d 0p 0p1 490
AFS,5 = t J X + ds (2.51)

S1

The fluid-impulse force and moment in (2.14) and (2.15) involves quadratic and

cubic products of the incident and disturbance potentials. This section described

the transformation of the expressions using the lienar FSC as well as assuming small

ambient wave steepness. To further simplifed the expressions, the ambient wave free-

surface can be linearized locally at the ambient wave waterplane at the body. Thus

all integral over the ambient free-surface are evaluated at z = 0 with z = Z - (I(t).

The following subsections discuss the free-surface impulse force futher based on

these assumptions.

Before starting the derivations of the free-surface impulse force and moment in

the surge, heave and pitch direction, the definitions of the incident wave velocity po-

tential and the disturbance potential are revisited here:

'pi in irregular waves in deep water, according to (2.1), is:

(polychromatic) 'p (x, y, z, t) = evjz-ijx cos 3j -vjysin j+iwjt+ixj

V3 = W(2g.

(2.52)
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And the disturbance velocity potential is:

y(X, y, z, t) = P(0)(x Y, z, t) + p(AI)(x, y, z, t)

IP(X y, ^z, t) J (0 dsco-(, t)

(I) (X, y, /, Jt) =

(1

HT,7,t-T) = -

where Jo(kjR)= j

J dkj gkjek(z+) sin[
0

e ikRcosOidO;

Ngk(t - T)]Jo(kjR)

R = [(x - ( )2 + (y - 77)211/2

and x - = R cos'; y - r = Rsin @

Again with small wave steepness approximation, p(0)(x, y, 0, t) = 0, t > 0 by

definition. Thus 9 (O)(x, y 0,t) = 0, t > 0.

V(x, y, 0,t) = (A)(x y, 0, t)

H,(Y, t - T) = d
2-/To

I
dr <u(-T)(-, H(,, t - T)

kj 1gekj (sin[ gk(t - T)]Jo(kjR)

The analysis proceeds by evaluating the free-surface impulse force on z = 0;

The function H, can be rewritten as:

let uj = k cos -}j; -j = kj sin j;
7r 00

thus dudvj = kdkjd-y

(2.55)

J dk gkjekj sin[ g k(t - T)1CikincoCs0i
0

eikjRcosOj - eiuj(x-C)+ivj(y-r1)
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dT f d((, r)HT(, , t - T)

00 (2.53)

(2.54)

-1H,(z ft - 7r E j d
i -. 7r

Let Oj = -yj -0j5, d6j = dy, 

(2.56)

k_ + t) 2:i



H, is then:

HT(, , t - r) = - dujdv3 g eki sin[. gk(t - T)]eiui(x-s)+iV(y-r7)

(2.57)

2.4.1 Free-surface impulse force in Surge

The X-direction free-surface impulse force (2.46) can be rewritten into two terms: an

ID term which involves cross-products of the incident and disturbance potentials, and

a DD term which involves a quadratic product of the disturbance potential:

FFS,1 FS,1-ID + FS,1-DD

-. 1 p d J j - OPo d
FFS,1 ID ds

g d= Oxot &t Ox

FFS,1-DD N--f(&'oa~ s
z=O

(2.58)

For the first term, the ID component in (2.58), the ambient wave free-surface SI(t)

can be split into the difference between the infinte free-surface S,,(t) and the ambient

wave surface inside of the body Sw(t):

__#p d (f 2 o1 ,oapi"\ ds
JFS,1-ID - at Ox J

So. SW

d p [O2<p W 2p(t W__ OW __

dt g J xot Ot x ) OxOt It Ox
Sw S"

(2.59)
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The impulses for this force expression can then be identified to be an integral over

Sw(t) and another over So,(t), which is equivalent to a 2D infinite integral over the

x- and y-direction:

FFS,1-ID ciFS,1-ID

IFS,i-IDSw - (2 .0s

9 g11 axot at ax (2.60)

IFS,1-IDS = -x
g_0 axot at Ox

This utilizes the property that both the incident wave and both components of

the disturbance potential and their time partial derivatives are continuous across the

body waterline and over the z = 0 plane. The first impulse over the finite surface

Sw (t) can be evaluated numerically directly by quadrature with information about all

components inside the integral obtained with the expression of pI(t) and V(t) listed

in (2.52) through (2.57) and by taking their spatial and time derivatives. Note that

the value and the time derivative of the impulsive part of the disturbance potential

p(0 )(t) are zero onz=0as discussed before. Therefore only the memory part of the

disturbance potential yp(^)(t) contributes to the surface integral over Sw(t).

The second integral in (2.60) is over the entire z = 0 plane and its computation by

numerical means would be time consuming if computed directly. An efficient way of

computing this integral in the time-domain can be derived by taking advantage of the

Green function and its analytical representation listed in (2.54) and (2.57). Again,

the value and the time derivative of the impulsive part of the disturbance potential

(0) (t) are zero on z = 0 and only the memory part of the disturbance potential

(P(AI) (t) contributes to the surface integral.
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Substituting (2.52) through (2.57) in the second integral in (2.60) and invoking

the definitions of the delta functions:

dxeix(uiuv cos 3i) = 27r6 (uj - vj cos 3 j)

(2.61)

dyeiy("-i -jsin fli) = 27r6(vj - vj sin O3)

-00

an dxdyeiujx ivjx s i+ivjy-ivjy sin - = 4rel a(U -i oS nO : j

and the relation:

t

+ I F()dT = F(t)
dt

0

The final expression for FFs,1-1D(t) can be expressed as:

FFS,1-ID

p pd 2 P I

- gdt OxLa~t -
SW

where K(vj, /3 , t)

0 0 &0 i] ds

JSB <or(4

{ A wj cos 3j eitixi K(vj,
3i , t)}- p!R

For detailed steps on the mathematical derivations please see Appendix A.
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(2.64)
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For the second term, the DD component in (2.58) contains an integration of a

quadratic product of the disturbance potential of the z = 0 plane outside the body

waterline. The time derivatives maybe transferred under the integral sign by utilizing

the Reynolds transport theorem:

pd f V ( <p0p\
F S,1-DD ~~-- x

g d t Z = t O X 
( . 5

pf d - 09 p 096"pOPds + - dl Un
g dt Ot Ox 9 "Ot OX

=O Cw

The last integral over the body waterline in (2.65) involves the normal oscillatory

velocity of the body which is of the same order as the disturbance potential, therefore

it is of cubic order and is omitted. Note that for a ship advancing with a significant

forward speed, this integral is of the same order as the first term and should be

considered when computing free-surface impulse force.

Performing a formal differentiation of the terms under the integral sign in (2.65)

gives:

~ (2.66)
at at Ox) OtP Ox ox aUt

Upon substitution in (2.65) the DD component of the free-surface impulse force

can be expressed as:

p fT O2 <p p pf0 2 p0p p f OW 2
FFS,1-DD x- 1x didyt llat 2 -ds+-

gj 1 O x Ox 2g \akt /
-oo -o Sw Cw

The Stokes' theorem was invoked over the z = 0 plane in (2.67) to reduce the

integral of the x-derivative in the last term of (2.66) to an integral over the body

waterline. The integral of the first term in the right hand side of (2.66) over the

body interior waterplane area was also added and subtracted. The second and third

term in (2.67) can be evaluated directly using the definition (2.54) of the disturbance

potential over the according surface and waterline.
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For the evaluation of the infinite integral in (2.67), invoke the free surface condition

(2.19) satisfied by the total disturbance potential and introduce the velocity potential

decomposition into the instantaneous and memory components:

_2 P 0 (M) 0 (M) OP(O) OjP(M)= -g - Z-g z=0 (2.68)
0t2 Ox Oz x Oz Ox Oz Ox

(2.68) was obtained by utilizing the property that the value and the x-derivative

of the velocity potential component yp(O) is zero on the z=0 plane at all times. The

infinite integral in (2.67) is therefore:

0 0 00 (A0l
p f 2  O<r ( ) 0 tpNI) a<po) v0p P]dx dy---- (-g) dx dy. + (2.69)g jOt 2  x g J O x OZ O x

-00 -00 -00 -0

The memory component of the disturbance velocity potential is harmonic in the

lower half space for z<0 and it vanishes at infinity. Therefore, by utilizing the familiar

vector identity over a closed surface bounded by the z = 0 plane and a semi-spherical

surface at infinity over which the integrand vanishes:

00 00

[d~d( ~(~f) (AI) A-1 ) .(M))
dx _ dy ( Vp 2 p -p 0 (2.70)

-0 -00

The unit vector I' points in the vertical direction. The x-component of (2.70) is:

dx dy = 0 (2.71)

Combining (2.69) and (2.71) gives:

p 0 2 (0,OW(0) O V(A)
- dx J dy =t2 -p dx dy- (2.72)

-00 -00 -00 -00

47



The Rankine source 1/r its image 1/r and their Z-derivatives follows the following

Fourier representations on the z = 0 plane

1 1 0[J[ ve-(u2+,)1/ 2 1z-(i I+iui (x-J)+ivI(y-J1)

r 2,r 00 dul_ v

)- j dudv ( + v2) 1/2e (u +V )1/2(1+iU (x- I)+iv1(y- 7)
z r' 'r= 27J2.3

(2.73)

Note that the infinite integrals over i and v are subjected to a summation series

for polychromatic waves. Since the final expression for the DD component does not

involve the incident wave velocity potential, the effects of irregular waves are implied

to be included when computing source strength - at any time and thus the summation

is skipped for simplicity in this derivation.

Combining (2.73) with the definition of the impulsive velocity potential 0(0) in

(2.53), the z-derivative of the impulsive potential is:

0 0(0) X ,00
Oz

- 4 [ du1dv1 (U + ,2)1/2
'I'l J J -00 JSB(t)

(2.74)

The first partial x-derivative of the disturbance potential at z = 0 is:

1(X y, 0 )

d0

0

d 2a( 2, T)] dudv2 iu ek2. sin[ (t - T)]ei"I-2)i2(-2

(2.75)
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Substituting (2.74) and (2.75) into (2.72) and invoking the identity for delta func-

tions again:

00

iI dxdye i(U1 U2)X+i(V1 V2)Y - 47r 26(Ui + u2)6(VI + V2 )
-cc

(2.76)

Using also the properties of the delta function:

i U2 dV 2 F(u 2 , v 2)6(Ui + u2 )6(vi + v2 )= F(-ui, -v 1 )
-00

(2.77)

where

F(U 2 , v 2 ) = --iai 2 -sin[ gk(t - T)]eki(2+iUis2+iV1i12

The final expression for the DD component of the free-surface impulse force in

surge is:

FFS,1-DD p J
SB(t)

p f 02(P(M) O0 P(M) nfi P O~(AI) ) 2jd

- O &t2  9X ds+ g nd
Sw Cw

where WiA(6,t)
tIdTr

(2.79)

I
SB (T)

For detailed steps on the mathematical derivations please see Appendix A.

The free-surface RD impulse force and moment is then evaluated using the ex-

pression (2.64) and (2.79) and the results are shown in the next chapter.
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2.4.2 Free-surface impulse force in Heave

The Z-direction free-surface impulse force in (2.48), like the surge force, can be rewrit-

ten into two terms: an ID term which involves cross-products of the incident and

disturbance potentials, and a DD term which involves a quadratic product of the

disturbance potential:

FF S,3 =FFS,3-ID + FFS,3-DD

p d f9a OV1 , d
FFS,3-ID = - O 0- s

g d Ot DZ (2.80)SI

p d OV OV dFFS,3-DD = --
g dt I t OZI

SI

First consider the ID term, applying the linear free-surface condition for both the

incident and the disturbance velocity potential:

- = -- 2  
(2.81)

Oz g Ot2

p d 0 0 02 0
FFS,3-ID d 2 ds (2.82)

g 2 dt O t at2,
SI

Similiar to the surge force, the ambient wave free-surface S1 (t) can be rewritten

into the difference between the infinte free-surface S.(t) and the ambient wave surface

inside of the body Sw(t).
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Thus this force expression can then be identified to be an integral over Sw(t) and

another over S,,(t):

FFS,3-ID dt'FS,3-ID

IFS,3-ID,Sw 2g J\U ati (2.83)

IFS,3-ID,Soo = 2 l 2 )dxdy
-00

The first impulse over the finite surface Sw (t) can again be evaluated numerically

directly by quadrature and the second integral is evaluated using the Green function

and its analytical representation similar to the surge force. Invoking the definitions

of delta functions (2.61), the impulse over the infinite surface can be simplified as:

IFS,3-ID,So

r tO[,-~~ -1)]'j(j
- -p / dT > i 4jweiwjit+ixi cos[ 3(t -- T)]JK(vJ, /3 , T (2.84)

t0 i

where Kj (vj, I , T) J do-( ,T)eij-/ cos 3 j -iv sin 3

SB(T

Therefore the ID component of the heave direction free-surface impulse force is:

FFS,3-ID

p d f O02 0,

g2 dt j t t2 ds (285)

P d dTR {Z 4[Ajwjeiwit+ixicos[ Vigj(t-T)]K(vj I , T)]}

0 m

For detailed mathematical derivations please see Appendix B.
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The second part DD, transforming the equation with the linear FSC (2.81) and

rewriting the integral over the ambient wave free-surface S1 (t) into the difference

between the infinte free-surface So(t) and the ambient wave surface inside of the

body Sw(t):

p d O p ds
FFS,3-DD = -a

S' ( 
(2.86)

d p j 9 OW2 p p g

dt g2 at at2 g at Oz
Sw S.o

The first integral over the finite surface Sw(t) can be evaluated by quadrature

using the expression of the disturbance potential obtained by solving the integral

equations on the surface as described in Section 2.2. For the second integral over the

infinite free-surface So(t), seperate the derivative inside the integral over S" into

two parts by eliminating p(I)(t) and its derivative on z = 0 as their values are zero

as discussed in (2.53) and (2.54):

0<p a<p _ <(0') Oa (0) 0a (A ) a(M) 87)

UT UZ (T UZ (i1 UZ

Assuming small wave steepness, the integral over S, can be evaluated on z = 0.

Transforming the z derivative of the impulsive potential to a time derivative using

the linear FSC:

Op(M) OW(O) 1 OW(M) 2 W(0) (2.88)
8t az g at at2

Recalling that the time partial derivative of impulsive part of the wave potential

is zero, the second integral of 2.86 is now reduced to:

P eP (M) Pp(M) if (M) (I)
IFS,3-DD,Sat ds ( dxdy (2.89)

g a. t az 9 -00 at 0-
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The spatial and temporal derivative of the memory potentials can be found by

taking the partial derivative of the disturbance potential in (2.54).

By substituting the expressions for the spatial and temporal derivative of the

memory potentials into (2.89) and applying definitions of the delta function again,

the impulse over the surface integral on z = 0 becomes:

IFS,3-DD,So

t t

= I dT1 dsCF (1,T 1 I 2dT2 ds, 2u($2 ,r 2 )4-r2' S B(7-1) j9 S."(T2) 2 2
0 0

x dO f kdk _.k~ 2 cs kt-Ti)] Sin(V/gk(t -T 2 ))eikcs

-lr 0

(2.90)

Using trigonometric identities:

cos[V/gk(t - Ti)] sin( /gk(t - T2)) = sin( gk(T 1 - T2 )) + sin[Vgk(2t - (T1 + T2))}

(2.91)

(2.90) can then be rewritten as:

IFS,3-DD,S,

t

=-f drJ dsg1 a(&1ui
0 SB(T1)

x a [H(, 6,L - T2) +

where HT(6, , T)

4r2 df dkJ
7r 0

dT 2 sB(T2 )

(2.92)

/gkek((j1+(2)i gkT ]eikRcosO
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The final expression of the DD component of the heave free-surface impulse force

is then:

FFS,3-DD

d p

dt g2 OJ 0 2(p ds
3 Ovw2

t

ds 1 r,a TO) J dT2

0
iSB(T2)

ds9 oQa (, T2 )

x H(, , T1 - T2 ) + Hr(&, 2, 2t - (Tr +T2))

For detailed mathematical derivations please see Appendix B.

}
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2.4.3 Free-surface impulse force in Pitch

Following the derivation in (2.51), the pitch moment can be split into:

MFS,5 = FS,5-ID + MFS,5-DD

p f ( 2VI
AIFS,5-ID = at J ) ds

_92 dt SIot (2.94)SI

p d I ( p 02
,AIFS,5-DD ~ 2- at )2 ds

SI

Similiar to surge and heave free-surface impulse force, rewriting again the free-

surface integral as the difference between the impulse over the infinite free-surface

and the ambient free-surface inside of the body, the ID component is:

'iFS,5-ID = 2 2 ds (2.95)
S.o Swj'

The ID impulse in (2.95) can be then be expressed as the sum of two impulses:

d
-A1FS,5-ID + (FS,5-ID,Sw + IFS,5-ID,S.';,

t 

( &, ) FS,5-ID,Sw - J S t ) d, (2.96)

Sw

FS,5-ID,So f o~
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Consider the second part of ID impulse over the infinte free-surface in (2.96).

Substituting the partial derivatives of the definition of the impulsive and memory

potential in (2.52) and (2.53):

t

dT

0
ISB(T)

x dudv [e(U2e1,2)(1/2)( cos[g( 1 / 2)(U 2 +

-00

-00

T)1e-'-iv,]

(2.97)

Let

f ('1, v) = e(u2
+V

2
)(1/

2
)( cos [g(1/ 2 ) (, 2 + v 2 )( 1/ 4 ) (t - T)e-*it-'1I

Applying the definition of the delta functions:

(2.98)

dx xe ix(-vcos3) -2iii'Y(u -v cos 3)

(2.99)

eiy(v-vsin,) = 2w6(v - v sin 3)

(2.97) becomes:

IFS,5-

t

x (-472i) ifd, advf(u, v)6'(u - ii cos 13)6(,v -

00
dy

JB (T)

dsT(, T )(igAw)et

(2.100)

v sin /3)

56

-FS,5-ID,Soo dsg0a( , T )(-"g Aw jeiut



Utilizing again property of delta functions:

00

Jfdudf (u, v) '(u - v cos 3)6(v - v sin/3) = -f'(v cos 3, v sin 0)

-00

Thus the impulse over S00 (t) is:

FS,5-ID,S w e I dT B J T)

0 t sr

dsto(, T) - f(v cos 3, v sin 3)} (2.102)

The free-surface pitch ID moment is then:

p d j___2_
KIFS,5--ID g 2  dt Ot a2 d

Sw

+ pAwR eiwt dT J
SB(T)

dso(,T)Q1 + Q2 + Q3] e" iv*co-si"}

(2.103)where

Q, = -(cos cos[ Fgv(t- )];

Q2 = -cos /(t - T) sin[ igv(t- T)];
2 i

Q3 = COS[Vg(t - T)].

For detailed steps on the mathematical derivations please see Appendix C.

The second part of the free-surface pitch moment is the DD component in (2.94).

Similiar to the heave forec, rewriting the integral over the ambient wave free-surface

SI(t) into the difference between the infinte free-surface S00 (t) and the ambient wave

surface inside of the body Sw(t):

p d 0 0OW dMFS,5-DD - -I ( a) ds

SI

x ds - pxaV ads
dt9g2]at at2 s gato a

SW S",

(2.104)
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Recalling again O<p(0 )/&t = 0, the impulse of the DD component is then:

'FS,5-DD - x O ds = -( x ) Oz) dxdy

Substituting the partial derivatives of 2.54 into the impulse:

- -? x O P ds
O t 01z

= -p( 472)

00f u

tI dT1 ISB (TO)
0

fd 2
ISB(r 2)

00

F(, (t1v) ifdzt2dV2 F2(U2, iV2)

-00

ds 2o-(6, T)

(2.106)

x dxdy xei(u1 u2)x+i(V1+'2)Y

where:

F 1 ('ui, v ) = e(U2+V)(1/2)(1 cos[g(1 / 2)(u2 + 2) (1/4) (t - T1 )]ei"11-iV11

F 2 (t 2 , v2) = e 2) C2 9(1/2)( t,2 + V2)(1/4) sin[(g( 1 /2 )(a! + 2f)( 1/ 4 )(t - T2 ))le-i2u2-sL2?2

(2.107)

Invoking the identity:

00 00

I dx J dy xe i(Ul U2) i(1 V2)Y

-00 -00

Using also the properties of the delta function:

00

iI dia1 di.1F1 (ui, v1)6'(u1 + 12 )6(v 1 + v2 ) = -F'(-U 2 , -v 2 )
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= -47 2i'(u1 + Lt 2)6(v1 + v2 ) (2.108)

(2.109)

ds ,Uo( I, 71)



The impulse can then be expressed as:

JP X c(M) 0P(M) ds
81" t Oz

t

1 4)2  2 4 Z dT
= - (-rr2 d i I ds , o(&, ri)

0 SB (T1)

t

J dr2

0 I
5B (72)

ds 2 a(6, T2)

x du2 dv 2 F2 (u 2 ,v 2 )

The impulse is then:

Pja O( (M) ds

9 SO at Oz d

- F1( -u 2 , -v 2 )

P I dT

0 SB (r1)

ds ,o-(6,T1) dr2 f
0 SB(T2)

-- a [Hr(6,(,T - T2) + H, ( , ,2t - (TI +

d(i 1 HT2 [H,(6 2, T, 1 - T2 ) + H,(ji, 6, 2t

[Hr(, 2, T1 - T2) + Hr( ,, 2, 2t - (T1 + T2))

where H,(6, 2, T)

1 d
4-,T2

0

dk gkek( +2 )sin[ VgT]eikcosO
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x

ds 2 0-(6 , T2)

+ (t i)

+ a

T2))]

- (Ti + T2))] (2.111)



The DD free-surface pitch moment is then:

p

sI

ds

+ Pj dTi ds 1 or TI)

0 SB(-r)

Jd2 I
0 SB(T2)

ds 2 0( 2 , T2)

x 2 8 1 [H(, 71 -T2 )- + -H(1, 2 ,2t - (T1 + T 2 ))2a0

(t -Tri) 8
a2k dT 1 , ( , T, 719r) +TH (, ,2t -(T + T2))]

+ H(6 -T2) + H(, , 2t - (Ti + r2)

(2.112)

For detailed steps on the mathematical derivations please see Appendix C.
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2.5 Nonlinear loads on a vertical cylinder in irregu-

lar waves of small Ka

This section discuss the method presented by Sclavounos [311 on computing nonlinear

surge force acting on a vertical circular cylinder in irregular waves.

For a vertical cylinder fixed in space (a diffraction problem), the Fluid-Impulse

Theory can be used to approximate nonlinear loads to leading order by the 2D croos-

flow potential.

The ambient waves are assumed to be irregular. The expressions presented in

this section are valid for small values of Ka, where K is a characteristic wavenumber

and a is the cylinder radius.

The characteristic wavelegnth in a seastate is often large relative to the cylinder

diameters of offshore structures and wind turbines. In such cases Ka is a small param-

eter and the diffraction potential near the cylinder may be approximated to leading

order by the 2D cross-flow potential:

P(r, 0) = -U1 COS 0, U1 = (r = 0) (2.113)
r Ox

Recalling the incident wave velocity potential in irregular waves in deep water as:

(polychromatic) (x, y, z, t)= R >3 evz-izjx COS -ivjySil 13j+iwt+ix}

(2.114)

In uni-directional waves:

31 (r 0) = R Apcwjejzp+iwit+ixi (2.115)

And i 1 (z)|x=o as:

1 (z)v=e R iAp +t~ixi } (2.116)
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Substituting (2.113) into F-K and RD disturbance body force, the expressions

become equal in the limit of small Ka and their sum is:

FX,F-K + FX,D = 2pwa2 j dzit 1(z)= + 2plra20I u1 1  (2.117)

For the free-surface impulse force, introduce (2.113) into (2.58), the DD term

vanishs identically. The ID component is then the leading order force. The force

expression therefore becomes:

FX,FS- 2pra 2 dZ(aux + U3Ulz) - pwa 2Uu3  =z=(; 3  1 -;
JT at ax

(2.118)

where at x 0 and in unidirectional waves:

(2.119)

'Uiz z AKjz+' t }'
9

and

=R i Apje'wjt+',xj

(2.120)

=( R -iAj1veiwjt+"xj
ax

By applying the small Ka approximation, the full FIT expression which can com-

pute nonlinear loads for finite Ka was reduced from 2D surface integrals to a 1D

integral for numerical evaluation of nonlinear wave loads. This drastically reduces

computational resources and provide an efficient method for the computation of non-

linear wave loads for slender vertical cylinders in the ocean.
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Chapter 3

Numerical Analysis and Results

This chapter discusses the methods used in numerical analysis and results obtained

using FIT with its theory described in Chapter 2. The results in this chapter aims

to verify the accuracy of FIT and study its efficiency and effectiveness in computing

nonlinear wave effects.

Numerically, the Fluid-Impulse Theory offers the advantage of only requiring the

discretization of the instantaneous body surface SB(t) and the ambient wave surface

inside of the body Sw(t) for the computation of linear and nonlinear force and moment

in all directions. The forces and moments in the formulation of FIT were described

by a summation of several time derivatives of impulses over these surfaces. Therefore

when computing force and moment using FIT, only these two surfaces needed to be

discretized. This allows FIT to compute nonlinear wave loads efficiently. It is also a

versatile method, as the FIT is not limited by the small wave amplitude, small wave

steepness, or long wavelength assumption.

This chapter is structured as follow: First, Section 3.1 describe the application

of the perturbation theory to simplify the fully nonlinear FIT formulation into lin-

ear and leading order nonlinear effects for numerical computation; Section 3.2 then

describes the treatment of body meshes in discrete formulations; Section 3.3 further

explains the application of quadrilateral constant-strength source elements on body
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surfaces for numerical computation; After reviewing discrete formulations and appli-

cation of appropriate numerical methods, Section 3.4 presents a verification study

between linear FIT and frequency-domain method WAMIT, and a comparison be-

tween the computation of surge 2nd order quadratic hydrodynamic force between

FIT and WAMIT; Convergence studies on different perimeters when computing 2nd

order quadratic solutions from FIT is presented in Section 3.5, and a mesh conver-

gence study is also presented between FIT and WAMIT in Section 3.6; To further

study FIT numerically, computation results for buoys of different sizes are then pre-

sented in Section 3.7; Finally, a numerical study on the simplified FIT formulation

using the small Ka approximation is presented in Section 3.8.
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3.1 Perturbation Theory

Recalling the force formulation of FIT in Chapter 2:

FH+FF +FD+F (3.1)
= + F-K + D + FS 31

By assuming a small steepness for the ambient surface wave, which is a reasonable

assumption due to the high gravitational force, the following perturbation expansion

for the velocity potential and free-surface elevation can be assumed as

_0=P + P + +.

-P = O(1) + 0(2) + W(3) + (3.2)

Q I +Q +3

For the inclusion of only first order potentials, the formulation of FIT can be

seperated into 1st order and 2nd order force and moments. In the surge direction, by

applying the perturbation theory in (3.1), 1st order body forces includes only Froude-

Krylov impulse force and RD body impulse force over the mean body surface SB:

_MA) d _ (1 P d (1)
F1 =-K, + ,1j 1) 1jds P Ids (3.3)

9B 9B

Using the Taylor-series expansion, 2nd order forces includes components from

Froude-Krylov, RD body over the differential surface AS and linearized ambient

wave free-surface inside of the body Sw(t), as depicted in Figure 3-1, as well as free-

surface forces described in section 2.4:
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F(2) (2) -(2) (2)
F1 F-K,1 + B, FS,1

f(2) f;(2)
F-K,1 B,1

- df

cw

Pdfj
~dtJ 1) 1,=A dsPI Ox

P(2) _ (2) (2)
FS,1 - FS,1-ID FS,1-DD

with both ID and DD component evaluated with p1 and spW.

The heave force and pitch moment follow the same derivation.
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Figure 3-1: Surfaces and vectors included in numerical analysis using FIT
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3.2 Treatment of surfaces and Generation of body

Mesh

In FIT, the body boundary condition is imposed on field points on the exact body

surface, which is often referred to as collocation points. For a vertical cylinder, these

points locate on the vertical wall as well as the bottom surface. An accurate eval-

uation of influence coefficients between source points and field points is required to

determine strengths of source panel-elements upon the body boundary condition. The

evaluation of influence coefficient becomes tricky when the field point is in the prox-

imity of or identical with the source point. To prevent a singularity in the numerical

computation, a source point is designed to be located a little off a field point as illus-

trated in the figure below for the vertical wall of the cylinder. The source point on

the bottom surface is simply located at a vertical depth with a slight smaller draft

than the full draft. This method enhances the computational stability and provides

an accurate solution.

.----

,7 /Body Surface

Panel Surface
(Source elements)

Collocation
points

Figure 3-2: Top view of a cylindrical body and numerical panel elements
surrounding the body surface (Simplified in terms of the number of panel elements)

Several body sizes were studied in this work, the MIT/NREL TLP body was stud-

ied with three mesh density for initial convergence studies, presented in Subsection
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3.5.3, while two slenderer bodies were computed with converged meshes generated

with the knowledge of mesh convergence on the MIT/NREL TLP. The cylindrical

MIT/NREL TLP buoy with a radius of 9 m and a draft of 47.89 m was represented

by a body mesh of 720 panels, with 24 azimuthal, 41 vertical, and 9 bottom panels

(Fig. 3-3); 1440 panels, with 36 azimuthal, 31 vertical, and 9 bottom panels (Fig.

3-4); and 2,400 panels, with 48 azimuthal, 41 vertical, and 9 bottom panels (Fig.

3-5). The ambient wave free-surface inside of the body Sw use the same mesh as

the bottom surface but located at z = 0. The two slenderer cylinders are of radius

3m and 1.75m, with a 43.2m draft and a 30m draft respectively. The buoy with 3m

radius was represented by a body mesh of 936 panels, with 18 azimuthal, 42 vertical,

and 9 bottom panels (Fig. 3-6), while the buoy with 1.75m radius was represented

by a body mesh of 684 panels, with 18 azimuthal, 30 vertical, and 9 bottom panels

(Fig. 3-7).
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Figure 3-3: Body mesh with 720 panels for MIT/NREL TLP, r=9m, T=47.89m
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Figure 3-4: Body mesh with 1440 panels for MIT NREL TLP, r=9m, T=47.89m
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Figure 3-5: Body mesh with 2400 panels for MIT NREL TLP, r=9m, T=47.89m
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Figure 3-6: Body mesh with 936 panels, r=3m, T=43.2m
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Figure 3-7: Body mesh with 684 panels, r=z1.75m, T=30m
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3.3 A Quadrilateral Constant-Strength Source Panel

Element

A quadrilateral constant-strength source element is presently taken as the 3D Panel

element to represent the floating body boundary in order to model its hydrodynamic

interaction with surface waves. At each quadrilateral element the singularity strength

is uniformly distributed over each element. The strength of this element is the primary

unknown and a panel code using N elements can be constructed to solve for those

N constants based on the body boundary condition presented in the previous and

subsequent chapters.

z
, P(x, y,z)

(x2, y2, 0)

(x1, y1, 0) (x3, y3, 0)
S

(x4,y4,O) X

Figure 3-8: A Quadrilateral uniform-strength source element

Consider a surface element with a uniform-strength source distribution o- per area

bounded by four straight lines as shown in Fig. 3-8. The four corner points of

the element are denoted as (x. , yl, 0), (12, Y2, 0), (X3, y3, 0), (14, y4 0). The velocity

potential at a point P(x, y, z) in the 3D domain due to this element is

~, Z) =ds (3.5)
4r ( (x - Eo)2 - (y - yo) 2 + Z2

S

And the velocity components can be obtained by differenitiatinig the velocity po-

7 5



tential:
&y 8p O89

(u, v, w) - , , (3.6)

The closed form solution of the velocity potential and velocity components in x,y

and z due to the quadrilateral constant-strength source element is taken from Section

10.4.1 in Katz [15].

When the point P is sufficiently far from the center of the element (XO, yo, 0),

the quadrilateral source element of an area A can be approximated by an equivalent

point source and this will help to increase the computational efficiency and lower the

computational cost. When the point is far from the element, the velocity potential

can be approximated as follows.

o(x yAz) = (3.7)' 'XZ)= 47r ( -O)2 + (y - yo) 2 + Z2

Thus the velocity components are the differential of the potential:

u(x, y, z) = oA(x - xO)
47r[(x - XO) 2 + (y - yo) 2 + z2] 3/ 2

o-A(y - yo)
'yz ' 47[(x - XO) 2 + (y - yo) 2 + z2]3/2

w(x, y, z) = oA(z - zo)
47r[(x - XO) 2 + (y - yo) 2 + z2]3/ 2

A far field analysis was performed by Lee [191 and it was found that the approxi-

mations above are valid if the distance is more than approximately 1 panel diameter

either in horizontal or vertical direction.
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3.4 Comparsion of wave-loads between FIT and WAMIT

The solutions for the diffraction problem (also known as the wave-excitation problem)

was first obtained by FIT and the results were analyzed and compared with the

potential-flow method of FAST's HydroDyn module [141, based on frequency-domain

solutions from WAMIT and converted to the time domain through frequency-to-time

domain transforms 117]. The cylindrical MIT/NREL TLP buoy with a radius of 9 m

and a draft of 47.89 m was treated in a random severe sea state with a 6-m significant

wave height and a 12-sec peak-spectral wave period as shown in Figure 3-9 and 3-10,

the time-series of wave elevation is plotted in Figure 3-11. A body mesh of 2,400

panels, with 48 azimuthal, 41 vertical, and 9 bottom panels was selected for FIT

and a body mesh of 32,400 panels was selected for WAMIT and a comparison was

made between the solutions of FIT and WAMIT. The panels were taken to be flat

and the source strengths were assumed to be constant on each panel as discussed in

Section 3.3 (also the low-order method in WAMIT). The time step of the time-domain

simulations in FIT was 0.1 sec with a memory interval in the solution of the linear time

convolution equation of 18 sec. For the convergence studies on different perimeters

used in FIT, please refer to Section 3.5. The WAMIT solution uses a time step of 0.1

s for the frequency-to-time-domain transforms of the WAMIT solution. The WAMIT

solution, in turn, is based on the pressure-integration method considering the first-

order and full quadratic interaction of first-order terms, including the full difference-

and sum-frequency QTFs but not including the second-order potential, based on a

frequency discretization of 0.05 rad/s. The WAMIT solutions were computed at

NREL courtesy of Dr. Jonkman.

77



E

~6
C

04

03
LO

(D

E<C 1

nL

-

-- I

. /

0.2

\'

\

\

0.4 0.6 08 1 1.2 1.4 1.6 1.8 2

Frequency, o (rad/s)

Figure 3-9: Wave spectral density of the JONSWAP seastate

6.2832 - *. .

4.7124 -

o 3.1416-
IS)

1.5708 - . + . 4

1~ I ,~,,I,... I I I I I I

0.2 0.4 0.6 0.8 1 1.2

Frequency, oD (rad/s)
1.4 1.6 1.8 2

Figure 3-10: Phase of the JONS\VAP irregular wave

78

- -Z -

| I i i I i i I I I e i i I i I I i ' ' ' ' ' 1 i I



67

E 3-
c
0 --

0 50 100 150 200 250
Time, sec

6-

E 3-

0
0

250 300 350 400 450 500
Time, sec

Figure 3-11: Wave elevation of the JONSWAP seastate



3.4.1 1st Order Solutions

The linear solutions between FIT and WAMIT were first compared for a verification

study.

The linear formulation of FIT was described in Section 3.1. First order solution

of WAMIT can be found in Chapter 2 of WAMIT Theory Manual by Lee [18]:

F() = -pg Zn'ds - p f at nds; where (PD1) = (1) + <p4) (3.9)

9B 9

The time-marching solutions and fitted PSDs of the surge, heave and pitch lin-

ear solutions are plotted in the following pages. The solutions obtained by FIT and

WAMIT were found to be in very good agreement. This verifies the accuracy of the

linear solution of the FIT module, and suggested that the computation of source

strength and velocity potentials to be correct in the FIT theory. This provides confi-

dence in the computation of velocity potentials using FIT in the numerical code and

allow the code to be used to computed linear and second order solutions, as discussed

in the following sections.
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3.4.2 Hydrodynamic Force in Surge Comparison Between FIT

and WAMIT

One of the primary mode of motion for an offshore platform is in the surge direction,

assuming uni-directional wave coming in from the surge direction. This subsection

presents the surge solutions comparison between FIT and WAMIT.

The cylindrical MIT/NREL TLP buoy was treated again in the random severe sea

state shown in Figure 3-9 and 3-10. The same body meshes and frequency-to-time

domain transform were used in this section as Subsection 3.4.1. The body is fixed

in space and the problem was treated as a diffraction problem of a fixed cylinder in

irregular waves.

The first order solution was discussed Subsection 3.4.1. The second order solution

excluding the second-order incident-wave potentials (1st order potentials only) for a

diffraction problem in FIT was obtained and analyzed according to the perturbation

theory in Section 3.1.

According to Lee [18], second order surge quadratic force for a stationary truncated

cylinder in WAMIT is:

F1 = -p V40) - V<D 1 )nids (3.10)

9B

A series of time-marching graphs and their respective PSDs are plotted in this

subsection, including a comparison of total (Fig. 3-18 to 3-20), 1st order (Fig. 3-21

to 3-22), and 2nd quadratic surge hydrodynamic forces (Fig. 3-23 to 3-25) between

FIT and WAMIT.
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between FIT and WAMIT,

The numerical solutions for the total hydrodynamic force obtained by FIT and

WAMIT were in good agreement as shown in Figure 3-18, with the solution from

FIT capturing larger responses at the peaks over the tine-marching solution, as well

as displaying some higher order nonlinearities. The PSD analysis of the total hy-

drodynamic forces between FIT and WAMIT in Figure 3-19 and 3-20 confirms the

observation from the time-marching solution, as FIT produced responses with larger

amplitude at the leading order wave frequency at about 0.53 rad/sec, and also cap-

tured more nonlinear effects at sum- (1.4 to 1.8 rad sec) and difference- (0.3 to 0.4

rad/sec) frequency range. Same with results presented in Subsection 3.4.1, the lin-

ear solutions match perfectly as demonstrated in the linear time-marching and PSD

comparison in Figure 3-21 and 3-22. Plotting the 2nd order time-marching solutions

(Fig. 3-23) and PSDs (Fig. 3-24 and 3-25) further revealed that aside from capturing

more nonlinearities at sum- and difference frequency ranges, significant nonlinear ef-

fects were present at other frequency ranges. The nonlinear effects computed by FIT

scatter across the entire frequency spectrum between 0 to 3 rad/sec, and was capable

of capturing contributions between 2 to 3 rad sec in which WAMIT did not produce

any wave loads.
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3.5 Convergence Tests on FIT 2nd Order Surge Quadratic

Solution

This section summarizes the convergence tests performed on the computation of 2nd

order quadratic surge hydrodynamic force. In summary, convergence were achieved

with different perimeters for the efficient computation of nonlinear loads using FIT.

The different perimeters are listed as follow:

Subsection 3.5.1 describes the memory time convergence for the FIT solutions.

It was found in the convergence study that the memory function and its derivative

decays towards zero as time increases. It was found that pass 18 seconds of memory

time interval, the magnitude of the memory function and its derivative is sufficiently

close to zero, leading to the conclusion that 18 seconds of memory time is sufficient

for numerical solutions obtained using FIT.

Subsection 3.5.2 describes the size of time step (At) convergence for the FIT so-

lutions. It was found that 0.1 seconds is sufficient for converged solutions.

Subsection 3.5.3 describes the mesh convergence for the FIT solutions. It was

found that 2400 panels are sufficient for converged solutions.
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Figure 3-27: Convergence study for memory time length t 400 to 500s

92

I

3.5.1 Memory Time Convergence

10e i

6

4

2

0
LL

-2

-4

_6

I 
F A

FAST
-Memory time = 5secs

6- Memory time = 15secs
-Memory time = 36secs

4-

2-

0-

-2-

-6--

LL



5 10 15
Memory Time M*6t (sec)

Figure 3-28: Contribution of memory effects from each

function, (z-)
time step on Memory

5 10
Memory Time

15
M*6t (sec)

Figure 3-29: Contribution of nemnory effects from each time step on derivative of

Memory function, (z' 0)

93

10-

5S

E

-a)

-5 %

-10

-15.

-20
0 20

0.8

0.6

0.4

'0' 0.2

E 0

-0.2

-0.4-

-0.6

-0.8-

-1
0 20



5 10 15
Memory Time M*6t (sec)

Figure 3-30: Contribution of imeinorv effects from cach time step on Nlemory

function, (z

5

1 2draft)

10 1
Memory Time M*6t (sec)

Figure 3-31: Contribution of memory effects from each time step on derivative of

\Iemory function, (z 1/ 2draft)

94

2

1.5

0
E
S-0.5

-1.5

-2

-2. 5
0 20

E

0.06

0.04

0.021

0

-0.021

-0.04

-0.06- 5 20



0
E

-0.2

-0.4

-0.6

-0.8

-1 --
0 5 10 15 20

Memory Time M*St (sec)

Figure 3-32: Contribution of memory effects from each tine step on Memory

function, (z draft)

10 1
Memory Time M*6t (sec)

5 20

Figure 3-33: Contribution of memory effects from each time step on derivative of

Memory function, (z (draft)

95

0.8

0.6

0.4-

n02

(
t * I

0.015

E

C

0.01/

0.005,

0

-0.0057

-0.017
0 E



3.5.2 Size of Time Step Convergence
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3.5.3 Mesh Convergence for FIT
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Figure 3-36: Convergence study for mesh density t 0 to 100s
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Figure 3-37: Convergence study for mesh density t = 400 to 500s
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3.6 Mesh Convergence between FIT and WAMIT on

2nd order solutions

The rate of mesh convergence was compared between the 2nd order quadratic surge

solutions obtained using FIT and WAMIT.

In this study, only the mesh convergence between FIT and WAMIT was compared,

as the two sets of simulations were ran on different platforms with different computer

system specifications and hardware. By studying the rate of mesh convergence be-

tween the two methods, the comparison provides a preliminary understanding of the

efficiency on computing nonlinear effects between the time-domain method FIT and

the frequency-domain method WAMIT. It was found that FIT requires less panels

on meshes than WAMIT to achieve convergence of nonlinear solutions. This suggests

that for computation of nonlinear effects, FIT is efficient in discretization of surfaces

and can conserve computational resources when applied appropriately.
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3.7 Numerical Solutions from FIT

Following the linear verification between FIT and WAMIT, a series of simulations

computing surge hydrodynamic forces was carried out to further understand the per-

formances and capabilities of FIT. The wave-body problem was treated to be a cylin-

der fixed in space and the diffraction problem was solved. Two test cases were carried

out with the MIT/NREL TLP (9m radius and 47.89m draft) and a slenderer buoy

(1.75m radius and 30m draft) treated in a random severe sea state produced ac-

cording to the JONSWAP spectrum with a 6-m significant wave height and a 12-sec

peak-spectral wave period as shown in Figure 3-9 and 3-10. Another test case was

carried out with a cylinder (3m radius and 43.2m draft) treated in an irregular sea

state obtained in OC5 [27] shown in Figure 3-40 and 3-41.

For each case, the results are presented in the following order:

" Time-marching comparison between the total, 1st and 2nd order surge hydro-

dynamic force

" PSD comparison between the total, 1st and 2nd order surge hydrodynamic force

" Time-marching comparison between 1st order surge hydrodynamic force com-

ponents

" PSD comparison between 1st order surge hydrodynamic force components

* Time-marching comparison between 2nd order surge hydrodynamic force com-

ponents

" PSD comparison between 2nd order surge hydrodynamic force components

" Time-marching comparison between 2nd order surge free-surface impulse force

components

" PSD comparison between 2nd order surge free-surface impulse force components

100



100

75

C-)
U)
U)

('4E

U)a
U)

C-)
U)a-
U)
U)
Co

a
U)
-o
E

2 1.4 1.6 1.8 2

Figure 3-40: Wave spectral density of the OC5 seastate

1416r

1.5708

0

.5708k

-3.1416
0 0.2 0.4 0.6 0.8 1 1.2

omega, rad/sec
1.4 1.6 1.8

Figure 3-41: Phase of the irregular wave in OC5

101

0

5

0 0.2 0.4 0.6 0.8 1 1.
omega, rad/sec

5

2

3.

Co

uS
U)
Co

a-

-1

-2
2

W



3.7.1 MIT/NREL TLP r=9m, T=47.89m

This subsection provides detail results obtained from numerical analysis as described

in the introduction of this Section. First, the cylindrical MIT/NREL TLP buoy with

a radius of 9 m and a draft of 47.89 m, which was used in numerical simulation in the

previous sections, was treated in the random severe sea state generated according to

JONSWAP with a 6-m significant wave height and a 12-sec peak-spectral wave period

as shown in Figure 3-9 and 3-10. The characteristic wave frequency for this spectrum

is w, = 0.525rad/sec and the non-dimensionalized perimeter Ka, where K = W,/g is

the characteristic wave number and a is the radius of the buoy, is Ka = 0.253 which

is in a finite value range. The 720 panels mesh (Fig. 3-3) was selected to be used in

this study. The time step of the time-domain simulations in FIT was 0.1 sec with a

memory interval in the solution of the time convolution equation of 18 sec.

In summary, results in this study shows that both linear and nonlinear wave

loads are important for a buoy with intermediate size in severe sea state. The time-

marching solutions of the comparison of total, 1st and 2nd order surge force and its

PSD analyses, as shown in Figure 3-42 to 3-44, shows that linear analysis was able

to capture wave loads at the dominant wave frequency range (0.5 to 0.8 rad/sec),

while nonlinear analysis provides the 2nd order solution which helps understand wave

loads at other frequencies, especially at sum- (1.4 to 1.8 rad/sec) and difference- (0.3

to 0.4 rad/sec) frequency range and when frequency is larger than 2rad/sec. The

comparison between 1st order surge hydrodynamic force components in Figure 3-45

and 3-46 shows that both F-K and body disturbance forces are important for linear

analysis, with body disturbance force having slightly higher amplitude than its F-K

counterpart. The next set of plots shows the comparison between 2nd order surge

hydrodynamic force components in Figure 3-47 and 3-48, and the results suggested

that 2nd order quadratic effects are significant for all 2nd order components in FIT.

It was found that the F-K and body impulse force provide contributions at sum-

and difference frequencies, while the free-surface impulse force captures nonlinear
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responses at other frequencies, notably with a significant group of energy at frequency

larger than 2 rad/sec. The final set of results for the comparison of 2nd order surge

free-surface impulse force components as shown in Figure 3-49 and 3-50 illustrates

the contributions from the two components, ID and DD, in the free-surface impulse

force in FIT. It was found that for this test case, wave loads from the DD component

of the free-surface impulse force counteracts the ID component, which is expected

as described in the theory section. It was also found that the ID component has a

larger magnitude compared to the DD component, and together the two components

provide nonlinear wave loads at two frequency ranges, a first group of energy at 0.6 to

1.4 rad/sec, and a second group at 2 to 2.6 rad/sec. These free-surface impulse forces

were found to reside at a different frequency ranges from the sum- and difference

frequency range.
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3.7.2 r=3m, T=43.2m

After numerical simulations on the cylindrical MIT/NREL TLP buoy, a slender buoy

with a radius of 3 m and a draft of 43.2 m was studied. The buoy was treated in a

different wave spectrum, an irregular sea state according to OC5 as shown in Figure

3-40 and 3-41. The characteristic wave frequency for this spectrum is W, = 0.4rad/sec

and the Ka = 0.0459 is small. The 936 panels mesh (Fig. 3-6) was selected to be used

in this study. The time step of the time-domain simulations in FIT was 0.1 sec with a

memory interval in the solution of the time convolution equation maintained at 18 sec.

In summary, results in this simulation suggested that both linear and nonlinear

wave loads are important for a slender buoy in severe sea state. The time-marching

solutions of the comparison of total, 1st and 2nd order surge force and its PSD

analyses, as shown in Figure 3-51 to 3-53, shows that linear analysis is able to capture

wave loads at the dominant wave frequency range (0.4 to 0.6 rad/sec), while nonlinear

analysis provides the 2nd order solution which helps understand wave loads at sum- (1

to 1.6 rad/sec) and difference- (0.3 to 0.4 rad/sec) frequency range. The comparison

between 1st order surge hydrodynamic force components in Figure 3-54 and 3-55

shows that both F-K and body disturbance forces are important for linear analysis,

with body disturbance force almost resembles the amplitude and phase of its F-K

counterpart. This corresponds to the theory suggested by G.I. Taylor in which the F-

K and disturbance forces are close to equal to each other in the case of a slender body

(long-wavelength approximation). The next set of plots which shows the comparison

between 2nd order surge hydrodynamic force components in Figure 3-56 and 3-57

suggests that 2nd order quadratic effects are significant for all 2nd order components

in FIT at sum- and difference frequencies, with the F-K, body and free-surface impulse

forces providing comparable contributions to nonlinear wave loads. The final set of

results for the comparison of 2nd order surge free-surface impulse force components

as shown in Figure 3-58 and 3-59 demonstrates that for a buoy with small Ka values,

the contributions from the ID components dominates the DD component as suggested
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3.7.3 r=1.75m, T=30m

Another slender buoy with a radius of 1.75m and a draft of 30m was studied. This

study was carried out to verify the slender buoy results obtained with the previous

buoy of 3m radius and to provide a comparison to the MIT/NREL TLP as this set

of results were obtained using the same JONSWAP spectrum with a 6-m significant

wave height and a 12-sec peak-spectral wave period as shown in Figure 3-9 and 3-10.

The characteristic wave frequency for this spectrum is again W, = 0.525rad/sec, and

in this study Ka = 0.0492, a small value. The 684 panels mesh (Fig. 3-7) was selected

to be used in this study. The time step of the time-domain simulations in FIT was

0.1 sec with a memory interval in the solution of the time convolution equation of 18

sec.

In summary, results in this simulation again suggested that both linear and non-

linear wave loads are important. The time-marching solutions of the comparison of

total, 1st and 2nd order surge force and its PSD analyses, as shown in Figure 3-60

to 3-62, shows that linear analysis is able to capture wave loads at the dominant

wave frequency range (0.5 to 0.8 rad/sec), while nonlinear analysis provides the 2nd

order solution which helps understand wave loads at sum- (1.2 to 2 rad/sec) and

difference- (0.3 to 0.4 rad/sec) frequency range. The comparison between 1st order

surge hydrodynamic force components in Figure 3-63 and 3-64 shows that both F-K

and body disturbance forces are important for linear analysis, with body disturbance

force almost resembles the amplitude and phase of its F-K counterpart, again agree-

ing with the theory suggested by G.I. Taylor. The next set of plots which shows

the comparison between 2nd order surge hydrodynamic force components in Figure

3-65 and 3-66 suggests that 2nd order quadratic effects are significant for all 2nd

order components in FIT at sum- and difference frequencies, with the F-K, body and

free-surface impulse forces provide comparable contributions to nonlinear wave loads.

The final set of results for the comparison of 2nd order surge free-surface impulse

force components as shown in Figure 3-67 and 3-68 demonstrates that for a buoy
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with small Ka values, the contributions from the ID components dominates the DD

component as suggested in [311.
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3.8 Comparison between Small Ka with FIT full ex-

pression

In addition to the numerical study of the FIT full expression in the previous sections,

a study on the performance of the FIT small Ka approximation as described in Sec-

tion 2.5 and [311. This study was inspired by the results obtained in the previous

sections in which the ID component of the free-surface impulse force was found to be

much larger than its DD counterpart for slender cylinder. It was therefore hypothe-

sized that the DD component can be omitted when computing nonlinear wave loads

for slender cylinder with small Ka. The goal of this study is then to understand if

the small Ka approximation improves the computational efficiency of the linear and

nonlinear wave loads for slender cylinders while retaining the capability of capture

nonlinear contributions from the free-surface impulse force. The advantage of the

small Ka approximation is that the method does not require the discretization of sur-

faces, as it is a slender body method and only require integrations over the vertical

direction, which greatly reduces computational cost.

The results are presented as follow. The total surge hydrodynamic force, including

the 1st and 2nd order F-K, body impulse and free-surface impulse force, was compared

between FIT full expression and its small Ka approximation. The time-marching

results and PSDs for the MIT/NREL TLP and for the slender buoys of radius 3m

and 1.75m were plotted in the Subsection 3.8.1. The results obtained for the FIT

full expression are obtained through the simulations described in Section 3.7, while

the results for the small Ka approximation were computed according to the theory

presented in Section 2.5. The free-surface impulse force between the two methods

on all three buoys were then compared between FIT full expression and its small Ka

approximation in Subsection 3.8.2.
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3.8.1 1st + 2nd Order Surge Force Comparison

In summary, the small Ka approximation was found to be able to capture the majority

of wave loads computed by FIT full expression. The comparison between FIT full

expression and small Ka approximation for the two simulations suggests that FIT

full expression still captures more nonlinearities at the peaks of the responses in the

time-marching solutions in Figure 3-72 and 3-75. The PSDs in Figure 3-74 and ??

agrees with the time-marching solutions and showed that overall the magnitude of

the wave loads captured by the full expression is slightly higher than the small Ka

approximation over all wave frequencies. Both FIT full expression and small Ka

approximation was able to capture nonlinear wave loads at high frequencies. For

the comparison between FIT full expression and small Ka approximation for wave

loads on the MIT/NREL TLP, which has a an intermediate diameter and a finite Ka

value, the approximation becomes less accurate as it over estimate responses at higher

frequencies as shown in Figure 3-69 and 3-70. The important conclusion drawn from

this study was that for slender cylinders with small Ka, a simplified expression which

was reduced to a 1D integral was able to capture the majority of linear and nonlinear

wave loads in irregular seastates, allowing efficient evaluation of nonlinear wave loads

on slender cylinders using FIT.
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3.8.2 Free-Surface Surge Force Comparison

For the free-surface impulse force, the small Ka approximation falls short on accu-

rately capturing nonlinear wave responses when compared to the FIT full expression

for finite Ka, as expected from the theory. It can be seen in Figure 3-77 that the

correspondence between time-marching solutions obtained by the two methods are in

little agreement. In the PSD graph, Figure 3-78, the FIT full expression was able to

capture nonlinear effects over all frequency range while the small Ka approximation

provided only wave loads at sum- and difference- frequency. The two numerical com-

parison between FIT full expressions and small Ka approximation with cylinders with

small Ka (slenderer buoy of radius 3m and 1.75m) in Figure 3-79 to 3-82 performs

better than finite Ka. The comparisons for the two slender cylinders suggest that al-

though FIT full expression captures more nonlinearities at the peaks of the wave loads

in the time-marching solution when compared to the small Ka approximation, both

methods were able to capture wave loads at the same sum- and difference- frequency

range for nonlinear load analysis.
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Chapter 4

Discussion and Future Work

This chapter discusses the numerical methods obtained in Chapter 3 and suggests

possible future research directions.

The Fluid-Impulse Theory (FIT) was explored theoretically and numerically for

the computation of linear and nonlinear hydrodynamic loads on offshore bodies. The

objective was to provide a new computation method for the solution of hydrodynamic

loads on offshore bodies in the time-domain.

Theoretically, the original fully nonlinear formulation for the computation of hy-

drodynamic loads from FIT was linearized with the linear free-surface condition for

the computation of leading order nonlinear effects. The derivation was performed only

under the assumption of a small wave steepness of the ambient wave, which is valid

in an offshore environment for wave-body interaction. This allowed the identification

of the linear and 2nd order body and free-surface wave-load components in FIT. The

equations were then further derived to express hydrodynamic load as a function of

the time-domain Green function with integrals over known body surfaces for efficient

numerical computation. The discretization of the free surface was circumvented by

taking advantage of the analytical structure of the time-domain Green function. The

derivations were discussed in detail in the Theory chapter with mathematical formu-

lation attached in the appendices.
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Following the theoretical analysis, a three-dimensional time-domain potential-

based hydrodynamics solver was developed for simulations of linear and leading order

nonlinear wave-body interactions based on the time-domain Green-function method

in irregular sea states.

Time domain simulations were carried out on studying hydrodynamic loads on

cylindrical offshore floating wind turbine platforms. Several bodies were studied,

including the MIT/NREL TLP buoy with 9m radius and 47.89m draft, and two slen-

derer cylinder with 3m and 1.75m radius with 43.2m and 30m draft respectively. The

offshore bodies were treated in a JONSWAP spectrum, which is a random severe sea

state with a 6-m significant wave height and a 12-sec peak-spectral wave period, as

well as in an irregular sea state obtained from the OC5 experiments. Linear and 2nd

order results were separated according to perturbation theory for numerical analysis.

Numerical verification was first performed between 1st order solutions of FIT and

the frequency-domain method WAMIT. The results showed that linear comparison

between FIT and WAMIT on the MIT/NREL TLP demonstrates very good agree-

ment, which verified the application of the source formulation and the solution of

integral equations for the disturbance potential using the impulsive and transient

Green functions for numerical computation using FIT.

Following the verification of linear solutions between FIT and WAMIT, the sec-

ond order surge quadratic solution computed by FIT was studied. Convergence tests

were performed to determine the convergence of different perimeters to ensure solution

convergence for all simulations in this work. Perimeters studied in the convergence

studies included density of meshes, size of time steps and amount of memory time

kept in time-marching simulations. In addition to the FIT convergence studies, a

comparison of mesh convergence between FIT and WAMIT was performed and FIT

was found to be able to achieve convergence with less panels than WAMIT. This
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suggested that FIT has the potential to conserve computational cost as discretizing

body surfaces with less panels drastically reduces the requirement of computational

resources.

After the convergence tests, FIT was applied to compute linear and nonlinear

surge responses for cylinders with various sizes. The performances of FIT on comput-

ing wave loads can be summarized as follow. Both linear and 2nd order surge wave

loads were important when analyzing surge responses on a cylinder in sever sea states,

and the loads were adequately captured by FIT. At the 1st order wave frequencies,

FIT captured the leading order wave loads which are dominant at that frequency

range, while nonlinear wave loads were captured by the module at other frequencies

for second order analysis. For 1st order wave loads, FIT correctly depicted the F-K

and disturbance solutions in the cases of slender buoys as the two forces coincided

with each other at the same frequency ranges with slightly different magnitudes. This

corresponded to G.I. Taylor's theory on the F-K and disturbance effects being close

to equal to each other under the long-wavelength approximation for slender cylinders.

FIT showed that in the case where long-wavelength approximation is no longer valid,

i.e. when Ka is finite, disturbance effects has a higher magnitude than F-K effects

but occurs at a narrower band of frequencies.

For second order effects, FIT was found to be able to capture leading order sec-

ond order wave loads at high frequencies. In addition, FIT was found to be able

to capture more nonlinear wave loads when compared to frequency-domain method

WAMIT. In general, FIT captures more nonlinearities as it computed larger F-K and

disturbance body forces at the sum- and difference- frequencies when compared with

WAMIT. In addition, FIT suggested that for a buoy with intermediate diameter, the

completely nonlinear term, the free-surface impulse force, is crucial when analyzing

nonlinear wave loads. It was found that aside from 2nd order F-K and disturbance

body forces which occurs at sum- and difference frequency, there exist an additional

free-surface impulse force which scatters across the frequencies from 0 to 3 rad/sec,
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with peaks at the sum-, diff- and a higher frequency peaking around 2.3rad/sec. For

slender buoys, the 2nd order free-surface impulse forces were found to reside at the

sum- and difference- frequency range, coinciding with the F-K and disturbance body

forces. This difference in behavior could be attributed to the size of the waterplane

area inside of the body Sw, which is related to the buoy's radius, as the free-surface

impulse force depends directly on the size of Sw. As the size of the water plane area

Sw increases, the free-surface impulse force breaks away from the sum- and difference-

frequency range and move to other frequencies. This can be an important consid-

eration when designing offshore floating wind turbines as it presents energy at the

body's natural frequency ranges, with offshore floating wind turbines typically having

1st flexural modes at around 1.7 rad/sec, causing fatigue of the system or interfering

with the tower bending mode frequencies .

By further studying the free-surface impulse force, which has original theoretical

formulation consisting of integrals over the ambient wave free-surface, it was found

that both ID and DD component on Sw grows larger as the radius of the body be-

comes larger, and the behavior of the ID component on S, also changes as radius

increases. The free-surface impulse force breaks away from the sum- and difference-

frequency range and moves to other frequencies as the size of Sw increases. The

total ID term was found to be larger than their DD counterpart, suggesting the cross

product between incident wave and disturbance potential to be more important on

the free-surface. Within the DD term, the components on So was found to be small

compared to contributions from the waterplane are Sw, indicating that this term is

more important for buoys with intermediate to large waterplane areas rather than

slender buoys.

Overall, the free-surface impulse force obtained by FIT was found to be compa-

rable in magnitude to their F-K and disturbance body counterparts, and the total

nonlinear wave loads were found to be significant at higher frequencies for floating

cylinder of difference sizes. This suggests that applying the FIT when performing
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wave-loads analysis on offshore floating wind turbines can be beneficial to the design

of the system as it provides an efficient way to compute nonlinear effects for the study

of nonlinear system responses such as ringing, springing and slow-drift loads to ensure

the system's safety and cost-effectiveness over the life span of deployment.

To potentially improve the performance of the FIT module, by concluding from

the previous studies that the ID component of the free-surface impulse force is much

larger than the DD component for slender buoys, a simplified FIT formulation for

cylinder with small Ka was studied. The results obtained from this approximation

was compared with the results obtained from the FIT full expression. The approxi-

mation was found to be in good agreement with full numerical solutions from FIT for

computing total surge hydrodynamic forces as well as free-surface impulse forces for

slender buoys. It was found that the PSDs of the solutions matched well, with the

small Ka approximation slightly underestimating the magnitude of nonlinear loads.

There are room for improvement in the simplified formulation to allow the model to

capture the full magnitude of the nonlinearities. Further study in this area can prove

beneficial to further increase the efficiency of the current FIT module.

In summary, the FIT formulation was explored theoretically for efficient computa-

tion of nonlinear wave loads on offshore floating wind turbines. A new hydrodynam-

ics module for the computation linear and nonlinear wave responses using FIT was

successfully developed and the module demonstrated that FIT allows computation

of important nonlinear wave loads for design of offshore wind turbines. Agreement

was found between FIT and frequency-domain method WAMIT for the evaluation of

second-order wave loads while FIT computed larger nonlinear wave loads over a wider

span of frequencies, especially at frequency ranges close to the typical offshore float-

ing wind turbine's natural frequency of 1.7rad/sec. The module also achieved mesh

convergence with less panels when compared to frequency-domain method, as it is a

momentum-based method rather than a pressure integration based method, allowing

potential savings in computation resources. The new module provides a new time-

151



domain method for the analysis of nonlinear wave load in severe irregular seastates for

the safe and cost-effective design of offshore floating structure, especially for offshore

floating wind turbines. Finally, an early exploration of a small Ka approximation

method provides potential to further improve efficiency in computing nonlinear wave

effects using FIT in the future.

Suggestions for future research topics are as follows. Continued development of

the module on computing nonlinear wave loads in other degree of freedoms, including

heave and pitch, on the free surface impulse force and moment components to further

understand the capability of the FIT formulation is recommended. Further compar-

isons of the FIT method and numerical modules using other numerical programs,

including both time-domain and frequency-domain methods, for future verification

studies. The validation of nonlinear wave loads of the floating wind turbine through

full-scaled or modeled design experiments would be useful. Viscous forces on the

floater can also be added as Morrison like terms functions of the relative wave and

body kinematics in future studies. As another application of the present wave-load

model based on the Fluid Impulse Theory, sea-keeping problems of ships in extreme

wave conditions can be studied further to confirm the applicability of the Fluid Im-

pulse Theory in a wide range of problems in ocean engineering.
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Appendix A

Free-surface impulse force in Surge

The X-direction free-surface impulse force (2.46) can be rewritten into two terms: an

ID term which involves cross-products of the incident and disturbance potentials, and

a DD term which involves a quadratic product of the disturbance potential:

FFS,1 = FFS,1-ID + FFS,1 DD

-FS,d-ID ( dsFFS,. g gdt I jOxOt at Ox)
z=O

FS,-DD =--ds
g t =Ot OX

Z=O

(A.1)

The ambient wave free-surface SI(t) can be split into the difference between the

infinte free-surface Sc(t) and the ambient wave surface inside of the body Sw(t):

p d a2 1 00ao
.FS,1-ID (f-- 'I (ax at 09Xds

g J Oxt (1 -1J)s
S. SwJ'

d p f (D2 pI oP(t) OI - 2 (PI ' Ox ) ds
dt g \ xot at 9x 9 ox(tA2)Sw Sx.

(A.2)
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The impulses for this force expression can then be identified to be an integral over

Sw(t) and another over So(t):

IFS,1-ID

-FS,1--ID,Sw

-IFS,1-ID,Soo

FS,1-ID

9 I xot tax )d

Sw

xot O a0 ) d,
Soc

(A.3)

Assuming small wave steepness, yI and its derivative can be assumed to be eval-

uated at z = 0.

(I(x, y, 0, t)

O (x, y, 0, t)

0 2 'O, t )

=e ivj e Cs 13-ivy SilO+iW t+iX }
= { ( v cos # )e -ensjxcOs js-v jYsi

= R(iw)(-vsCos #5)e-iI"P'OS13-

(A.4)nj S+in 1 3t+ix j

ivjy sin 3j+iojt+i x.

And the disturbance velocity potential is:

P(X, y, 0,t = O(0) (X, y, Y , 0) + O 1) (X, y, Y, I)

= dT

0 (A.5)

T) - 7 J dk- eg eksz+) sin[ gk(t

j 0

where Jo(kjR) =
27r

7I7 ikjR cosOJ dOj;

- T)] Jo(kj R)

R = [(X - )2 + (y - 7/)2]1/2

and x - = R cos Y; y - r = Rsin i
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Again with small wave steepness approximation, W(O) (x, y, 0, t) = 0, t > 0 by

definition. Thus Io(0 )(x, y, 0, t) = 0, t > 0.

t

V(x,Y y, 0) = O(^) (X, y, 0, ) = i

0

H,(Y7, ,t - T ) =- dkj
1 0

dT j d(r-(, T)H,(X, , t - T)

gkjek- sin[ Vgk(t - T)]Jo(kjR)

(A.6)

The analysis proceeds by evaluating the free-surface impulse force on z = 0;

The function H, can be rewritten as:

let uj - k3 cos }j;
7r 00

HV, ,(,t - T ) = 2 0
S_7r 0

dk2 gkekCC sinf[ gk(t - TF)]eikjRcos'i

Let 03 = - #b,

e ikjRcosO - eiuj(x-)+izj(-,/)

H1, is then:

- 4w 2  dudv
47

ekjC sin[ gk(t - T)ej e-0+' (X,j (y-q)

(A.9)

The first partial time derivative of the disturbance potential at z = 0 is then:

0 0 ( A ) ( Iy , 0 , 0)

d<((, T) (A.10)

x du dvj ekV gk, cos[ gk3 (t - T)]eiui(x- )0+ i(Y-71)

C k
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7j = k sin yj;; thus dujdvj = kdk&y 3d

(A.7)

(A.8)

2- d J T

d6j = d- j, k~j = 11 + tj:

H (YIt- =



Substituting A.4 and A.10 into A.3, the integral over S,, becomes:

oCC

TFS,1ID.S

= - ~Jdxdy{
-O

f

dxdy ( 2(I apap

0
t

' 4 2JdTJ f d< 01( , T)
ir 0 B(T)

x d ff dutdvj 7 ek ill sin[ gk3 (t -
uV-k0

(,Ioj)(-v cos /j)e-jijcOsIj-

.I-i2B (T)

-)]e iuj ( - w3 j(y- rj )

iv y Sill 3j+iwj t+ixjI

d<or(, T)

xff du dv' ' 9 \/g cos[ gk(t - T)]e ( -0+ y-

x &KZ Cos 13 e - -iv COS 0 - y Sill ol+iwjt+ixkj }

Reorganizing (A. 11):

IFS1-ID,S,,,

gR f
0

xE~
a

dT f do-(T, T)

dudv i CA3 (-vWoj 3 ek(ii~x

x (igsin[ gk3 (t - T)] - gcos[ gk3 (t - T)])

-00
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4 i JdT

0

}
(A.11)

(A.12)

}



Applying the definitions of the delta dunctions:

Jdxex(uji-vi cos 13) 2 rT6(uj - vj cos 3j)

-00

I dye'y(vi - i si",3) =2'r6(3v - vj sin 13j)

-00

JJ dxdyeiux-x ~COS 3 j+iZ~j-vjYsrj = 42 6( - vjcos 13) 6(vj - vj sin 13)

-00

(A.13)

(A.14)

Substituting (A.13) into (A.12) and performing the infinite integrals over the delta

functions:

-IFS,1-.ID,Soo.

/ t

g 47r2 J
0

da( , T)
i/sB (T)

2  CO cos /3-j sin j - vj cos 3 eVj<+iwjtixj

x g (i sin[V/vj (t - T)] - cos[gVj(t - T)]

P R dTJ
9 sB(T)0

do-( , T)

}x E(-ivj cos pj) l~evy +'wjt+'xse- v-cos 13j -i sin, g )__e -j(t -)

= i pR cos 13ei c eiwit dTie t fBT

-pR Ap w cos 3 CeIxi

}
J dre wj J B dgc-( , T )e" v vit cos

3j -irisin 13j

(A.15)
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Applying the relation:

t

d F(r)dr= F(t)

The final expression for FS-1 ID is derived as:

(A.16)

FFS,1-ID(t)

Spd J [(t)02'I(t) - 0p(t) oPI(t)]d - p 1A cosjeniwjt+ixjIK(v , /,t)
g dt SwMOxot Ot Ox- I cofi

Sw(t)

where K(vj, 3, t)= d to-(, t)j-i"A cos 1
3j-itV3 77SfiOj

(A.17)

The second integral invovles an integration of a quadratic product of the distur-

bance potential of the z = 0 plane outside the body waterline. Invoking the Reynolds

transport theorem the time derivatives maybe transferred under the integral sign

FFS,1-DD -- 0 s

Z=O

p d OP ds+ dlU,
g Jdt Ot Ox w t OX

(A.18)

The last integral over the body waterline involves the normal oscillatory velocity

of the body which is of the same order as the disturbance potential, therefore it is of

cubic order and is omitted. This would not be the case for a ship advancing with a

significant forward speed in which case this integral is of the same order as the first

term.

A formal differentiation of the terms under the integral sign leads to

d (Oo -p O2 + 1 _ _09W2

dt Ot Ox Ot2 Ox 2Ox Ot
(A.19)
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Upon substitution in (A.18) we obtain

FFS,1-DD j f 0' 23 P g J 0ft d J0  dln-((P) (A.20)

-00 -o Sw

In (A.20) Stokes' theorem was invoked over the z=O plane to reduce the integral

of the x-derivative in the last term of (A.19) to an integral over the body waterline.

Also the integral of the first term in the right hand side of (A.19) over the body

interior waterplane area was added and subtracted. The second and third term to

the right of the equal sign in (A.20) are easy to evaluate using the definition (4.2) of

the disturbance potential. The evaluation of the infinite integral in (A.20) is discussed

next.

Invoking the free surface condition (2.5) satisfied by the total disturbance poten-

tial and introducing the velocity potential decomposition into the instantaneous and

memory components we obtain

2 O = - a O- = -g - g z 0 (A.21)
&t2 &x &z Ox &z &x o Ox

The second equality in (A.21) made use of the property that the value and hence

the x-derivative of the velocity potential component vanish on the z=O plane at all

times. We therefore are led to the evaluation of the infinite integral

O 000 00 OnA) ~M p 0)O(I

- dx dy----- ( g) dx dy + (A.22)
-jt2 OX -) z OX Oz OX
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The memory component of the disturbance velocity potential is harmonic in the

lower half space for z<O and it vanishes at infinity. It therefore satisfies the familiar

vector identity over a closed surface bounded by the z = 0 plane and a semi-spherical

surface at infinity over which the integrand vanishes

00 00

dx d(M) (AII) (Ai))\_
dx j dy (On (V ) _ p() .( 0 (A.23)

-00 -00

The unit vector n points in the vertical direction. The x-component of (A.23)

reads

-00 -00

Combining (A.22) and (A.24) it follows that

00 00 DO 00

p 2 I' a,(o) 0o,( M)
- fdx dy =P 0 -p dx] dy W (A.25)
- -00O -00 -00O

The Rankine source 1/r its image i/r and their Z-derivatives admit the following

Fourier representations on the z = 0 plane

r 27r _c

0 1- -1u dv(U2 + V2)1/2e(U2+V2)1/2(+iU,(X-6l)+iVi(Y_-in)
~Y ()r=O~ 1 ()ro Jf~ dttidv,~tOZ r= r=0 27

(A.26)
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Note that the infinite integrals over u and v are subjected to a summation series

for polychromatic waves. Since the final expression for the DD component does not

involve the incident wave velocity potential, the effects of irregular waves are implied

to be included when computing source strength a at any time and thus the summation

is skipped for simplicity in this derivation.

Combining (A.26) with the definition of the impulsive velocity potential W(O) in

(A.5), the z-derivative of the impulsive potential is:

ay(0)z(x, y,0, t)

- Jf cludud 1 (,u + 11) 1/ 2  ( d -(1, t)e (U+vi + 1)+iV1(y-ni)
472 -0 1-o JsBW)

(A.27)

Following (A.10), the first partial x-derivative of the disturbance potential at z = 0

is:

O(P(M) I 00

t

- d sJdTJ d 2 u-(0,) Jj2du2 dv2 ig 2e22 sin[ gk2(t - T)]eiu2(x- 2)+iV2(Y-T/2)

0

(A.28)
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Substituting (A.27) and (A.28) into (A.25):

dx dy =
9-00 -00Ot2O

-00 dxdy

1'
x - 72

0

- 1 2 Jf du1 dv 1k1
JSB(t)

dT d 2Or( 2 ,T)/ da2dv 2 iusek 2C

- ~( 2 2

SB(t)
<1a t)fT I(- < 2 ( 2 , T)

X duldvi kle k1(1-iuj(1- vinij

x II du2 dv 2  Z12 r- sin[ gk 2(t -)]e k212-inU22-iV212

x - 0 0

X jff dxdye(U1 u2)-'C+i(Vl L2)Y}

-00j

(A.29)

Invoking the identity for delta functions again:

JJ dxdye(u1+U2) X+i(Vl+o2)Y = 47r 2 6 (I + u9)5(vl + v'2)

Using also the properties of the delta function:

JJd2dv2F (U2 , v 2 )a(U1 + u2 )6(vi + v 2 )= F(-ui, -v 1 )
-00

where

F(1 2 , V 2 ) = -ilt sin[ /g 1 (t - T)]eeki2+ili2+i172
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sin[
gk 2 (t - T)]

(A.30)

(A.31)

(A.32)

<{1( ,- t e eki1+iu1(x--e1)+iv1(y-,r1)

e iU2 (X- 2)+i2(Y-12)



(A.29) becomes:

ISB(t)

t

<{1 o,t) I dr <(2 02,T)

'SB (r)

x d'uidvl (-isi)ki n si[u gk(t - r)]ek,(11+(2) -iUI(ti-2)-iVI(r1-r2)

<~20-( 2, T)
'SB (T)

T9 sin[v/gk (t - r)]eki(C+( 2 )-i'1 ( i- 2)-ivi (hi -7/2)x 2 dui dv

t

d1o(r , t)
-

<2Ta(-, T) H(', 6, t - T)

Therefore the final expression for the DD component of the free-surface impulse

force in surge is:

FFS,1-DD (t)

=- 02p(AI(gt)

IS(t) t)

- ( 9 ) (m) ds + -
g j t 2  Ox 2 cw(t)

sw(t)

where o( (6, t) = I dtJ0d ( ds 2 (2, T)Hr(I, 2, t - T)

(0;!M) )n1dl
at)
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= p )JSB (t)

(A.33)

(A.34)

=P -472

=-p P12
Jss_ W 1o )jd

dfSB (r)
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Appendix B

Free-surface impulse force in Heave

Start by using the force expression presented in [301 and (2.42). Taking the free-

surface impulse force in the Z-direction up to second order:

FFS,3(t) ~ - p __ds + p ds

SIM )/ (B.1)

+ p dts ( g at 0z4-1 ()+<W(O) ) ds

Sj(t)

By moving the derivative of the first term of the force expression inside of the

integral and keeping terms to the leading order, the first term of the force expression

can be shown to cancel with the second term, thus leaving only the last term of the

force expression to be computed:

FFS,3(t) I ata + f ds (B.2)

SI(t) a
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The Z-direction free-surface impulse force can be rewritten into two terms: an ID

term which involves cross-products of the incident and disturbance potentials, and a

DD term which involves a quadratic product of the disturbance potential:

FFS,3(t) FFS,3-ID( + FFS,3-DD(t)

p d tJ t Op d(t)
FFS,3-ID~t ds

g tSI( ) at 0Z(B.3)

p d f p ~ot) O~p(t )
FFS,3-DD~t ds

S1(t)

Applying the linear free-surface condition for both the incident and the distur-

bance velocity potential:
a01 (t) 102 p 1(t) (B.4)

a Z g t2(

FFS,3-ID(t) becomes:

p f 0 0(t) 02 (pI(t )
FFS,3-ID(t) ~~ 2 d at t2 ds (B.5)

Sr(t)

The ambient wave free-surface S1 (t) can be rewritten into the difference between

the infinte free-surface S,,(t) and the ambient wave surface inside of the body Sw(t):

p d F<p(t)s02 (f- M
FS,3-ID 2 &t at2

S"' (t) Sw (t) 
(B.6)

d p f ap(t) a 2 01 (t) 0 a(t) a2 1(t)
dt g 2 j at Ot2 s 7 J at Ot2

Sw (t) S.,Itt)
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The impulses for this force expression can then be identified to be an integral over

Sw(t) and another over S,,(t):

FFS,3-ID(t)

IFS,3-ID,Sw (t)

IFS,3-ID,S,,o (t

pf
2J

Sw(t)

aP(t) 02 PI(t
(9t Ot 2 (B.7)

p S p(t) ) 02p,(t d
92 -t at p2

s.o W

Again, for a polychromatic wave the incident wave velocity potential is:

(polychromatic)

The first and second partial time derivative of WI are:

(izw )eviz-i'Vn cos pivjy sin /iswt+ix,
Ii f

(B.9)
'igA j (i . ) 2

,v2-i ix cos3j a - vUjy sin / 7iw t+ x }
.7 Wi

And the disturbance velocity potential is:

yp(x, y, z, t) = P(0)(x, y, z, t) + p(AI(x, y, z, t)

ISB(-r)
dso-( , t) r -1

yjp( (x y zt)
S d sB(T)

(B.10)
d~o(), )H,(X, , t - T)

00

dk3  gkjekj(z+() sin[ gkj(t

0

- T)] Jo(k- R)
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=gA j / z -ivx cos O -ivy sin Pj +iwjt+iXj } (B.8)

at

(x, y,
a t2 x , y ,

>1
.7

z,t) = R

z, t)= R

27

d FS,3-ID~t)

<pI (X, y, z, t)

(P(O) (X, y, Z, t) =

H-zf t -Tr)



The analysis proceeds by evaluating the free-surface impulse force on z = 0;

The function H, can be rewritten as:

let u3 = klcos yj; vj = kj sin m; thus dujdv = kdkdyj

Hr(,, t - T) =4721f dJ dk
j I-7 0

gkjekj( sin[ gk 3(t - T)]eiJcos'i

Let 0. = - #O,

H1, is then:

H,(i, (, t - r) 2- dw2d J g ekijsin[ g73 (t -

(B.13)

The first partial time derivative of the disturbance potential at z = 0 is then:

=_ 0( , y, 0, t) + (x, y,0, t)

-h d

0

0 0(0)
with = 0.

d<(, T)
fBT1

x f du dvj ekA gk cos[ Mgk(t - T )]eiu(x-)+ivi (Y1-)

170

(B.11)

eikj R cos Oj - eiuj(x-)+vj(y-7) (B.12)

at(xY,1,0) (B.14)

dO, = d-y,, tt2 + V 2:i i

T)]e iuj (X-0)+i (Y-TI)

t(X, Y,10, t)



Substituting into B.7, the integral over S,, becomes:

IFS,3-ID,So (t) ~ g2J

-00

-f Jdxdy R

dxdy ( O(P(t)
at

E2 (iwj)e-ivj cos Oi -ivjy sin 
3j+iwit+ix}

t

x -4J

0

dT j 00 dujdvj eki r~ g kj
,j

cos[ gk (t -

Reorganizing B.15:

IFS,3-ID,Soo (t)
p 1 I

2 47r2

x du d'vj [ev
-00

vj gi(t -
- 9ViCOS[ gV1 (t r)1 ] (iWj )2ewt+ixW

Wi

x dxdy eiui (x- )-ivjx cos 3j+itV3 (y-7)-ivjy sin /3]

-00

(B.16)

Applying the definitions of the delta dunctions:

70dxeix(u--vi cos/ 3 ) = 27rJ(tt - vj cos /3)

-00

00

I dyeiY(vj-v- sin 3i) 2,r6 (vj - vj sin /3)

00

if ye iux -ivxcos O~ivjyivjysin 1i =4i7 26(,It. -j cos,3)(
-00
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(B.15)

R {JdT

0
ISB (T)

du( , T)

(B.17)

- vi sin 3 j) (B.18)

2

T) ] e iU (x - ) + i v ( - j I



Substituting into B.16 and performing the infinite integral, the equation becomes:

t

g 4 2 ' '
9 24r I SB(T

do ( , r)

x< 4 72 y [ev~j-izjcos 3
j-itjlSilIj+iw~itli,

v Vj ~gvjCos[ Vg7 (t - T) (iwj)2

(B.19)

Simplifying:

IFS,3-ID,So M)

1i4 wewitjixj COS[Vy j(t - )]

i iApeXjt+ix cos[ V/gvj(t - T) 1A]K(vj, /3 , T)

d<o-( , T)eja iv- "OS co3- -izJ sin /] }
}

where K (v, 13 , T) = SB(T)

(B.20)

The final expression for FFS,3-ID(t) is therefore:s

FFS,3-ID(t)

pd f
g2 dt

Sw(t)

0

ap(t 02&pI(t) ds
at Ot 2

d R{ >3 [iApLujewut+ixJ cos[ fgvj(t - 3j) , /3s , T)] }
3
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0

0

dTE

dTZ

J

(B.21)

IFS,3-ID,So. M

d<Or (, r)evi(-i cosOj-ivjasin,3j



Rewriting the DD integral in (B.3) over the ambient wave free-surface S1 (t) into

the difference between the infinte free-surface S, (t) and the ambient wave surface

inside of the body Sw(t):

FFS,3-DD(t)
pd 

I
sI(t) ( aW(t) a(t)

) ds

p d ( f _(fg dt J J
S. (0 swV(0)

( OW(t) O<(t)
at a Z

linear FSC = d p jdt g2J
swv(t)

aW(t at02 p(t)
at at2 s

S, (t)

0<p(t) 0<p(t d
at az Z

Seperating the derivative inside the integral over S, into two parts:

(B.23)a<p(t az _ (^a (t az) (t) + a(^0 t z) 0<(^ (t)
at all- at a Z t a z

Assuming small wave steepness, the integral over S, can be evaluated on z = 0.

Transforming the z derivative of the impulsive potential to a time derivative using

the linear FSC:

at az (B.24)1 a p(^) (t) 02(p(O)(t)
g at Ot2

Recalling:

(0)(t) = 0
at

Thus the 2nd integral of B.22 is now reduced to:

p 0 p(-")(t)8<t0t____ _dsa 
s9. t) aoz)(t

(B.25)

(B.26)
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) ds
(B.22)



The spatial and temporal derivative of the memory potentials on z = 0 are:

let u = k cos -y; v = k sin -y; thus dudv = kdkd-y

p$A)(Xyt

I
0

dT ds (, T)H (X, t - T)
SB(T-)

- 1 2 Jf dudv ek k sinl gk(t -

d-r ISB (TO)ds ,o-($i, ri)

x - 7 -

&<p(^I) (t)
t

= d0 2

0

d'uidv1 ek gk1 cos[ 9k1 (t - Tl) eiU1(x-1)+iv1(Yi))

iSB(T2)
ds 2 g 2, T2)

2 IdU 2dv2 , k~2(2 k2 - sill[
x 4172 )jj T-

gk2(t - T2 )]eiU2(X-12)+iV2(Y-T2)

(B.27)
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O (A) (t)
at

=

T)]C iqI(x- )+iv(Y-Tj)



Substituting the expressions into impulse B.26

9

0 1() (VM) Md

at azds

dxdy

t

X f d'r

0
SB (71)

-42)
-00

ek1 , cos[ 9 k1 (t - Tl)]eCi"(x-1)+iv1(Y?1)

x< dT2 f

0 sB(T2)

ds au( 2, T2 )

sin( /gk 2(t - T2 ))eiU2(X- 2)+iV2(Y-2)

-
1

2 ) 2 f fdT )
4r 0 S B(TI)

d (i, Tf d-T2 JSB(7
2 )0

x du1dv1 ek1I cos[ gki(t - T1 )]e-iU1 1-iv1r1

x dU2dV2 ek22 gk 2 sin( gk 2(t - T2 ))eiU2 2it27

X dxdy ei(Ui +t2)X+i(VI+Y2)Y

(B.28)

Invoking the identity:

dx dyei('11+u2)X+i(v1 +V2)Y = 47r 26(Ui + u 2 )3(v1 + v2 )

-00 -00
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00

- 4J2) J d'uedv2

-00

ds 2C7( 2, T2 )

(B.29)



Using also the properties of the delta function:

C*

iI d'uidv1F(ui, v1)6(7tj + u2 )3(vI + V2)= F(-u 2 , -v 2 )

-00

where

F(u1, v1 ) = e(+v,)(/2) cos[g(1 /2)(u! + i)(1/4)(t - T1 )]e-i1i-ivinqh

Rewriting in B.28 terms of U2 it and v2 = v:

p j (t) M ds
s'. dt

t

- 4)
2 (4 2) JdT1

0

I ds ,ou( I,Ti)
SB (T1)

t

0 dq SB (72)

ds 2 ( 2 , T2)

-00X cog(1/2) 2 2) (1/4) (2+V2)(1/
2 )('1+(2)

x COS[g (1/2) (,t2 + V 2)(1/41)( t - ri)] Sill(g(1/2) (,2 + t,2 (1/4)(t 2)i(1-2+en-2

SP
4 2 j dT1 JsB(1

00

xJJf dudv
-00

dsi or(1, T1) I
0

gkek((1+C2) cos[ g(t - Ti)] sin( gk(t -T2))eiu('1-2)+ii(i-2)

(B.32)

With

6i - 2= R cos@; '/i - 'q2= Rsin<;

a = k cos '; v = k sin -y; dudv = kdkdy;

-> eiU( I-2)+iV(i-/ 2
) = eikRcos(-) - eikRcosO

176

(B.30)

(B.31)

dT 2 JSB(T2) dsg9a( 2 , 72 )

0 = -- ; (10 = dy (B.33)

P(
9



The impulse becomes:

p s
t

ds , o-,Ti) / dT2 ISB (72) dsC2 u( 2 , T2)

x Jd J dk gkek(<1+<2) cos[g(t - T1 )] sin(
sigr 0

Using trigonometric identities:

cos[Vgk(t - Ti)] sin(Vgc(t - T)) = sin(
2

dT1 IS5 ( TO ds 1(&, TO)P fd 2 ISB (T2)

x~ ~~ 7 () - ~)~{JOd kk((1 2)

2 
0

dO J dk gk((1 (2) si[f gk(2t - (,Ti

-It 0

ds23 (T 2, T2 )

(B.36)
Sin( gk-(T1 - T2 ))eikRcosO

+ T2 ))]eikRcosO}

177

a(p(M) (t ) g ds
at OZI

0
ISB (1) (B.34)

k(t - .2 ))eikRcosO

Thus:

Vgk(ri - 72)) + sin[gk(2t - (TI

p
9

+ T2))1]

(B.35)

'sc
(A)(t) (M) ds
at 0 z



ap(I)(t) <p(^")(t)

at OZI ds

=-j dTrj
2 SB (TO)

dstiu(o , Ti) / d 2 J ds 2o( 2 , T2 )

x H(I, 2,- T 2) + Hr(6, S
2 , 2t - (TI + 7 2 ))J

where H(,, 2, T)

= w 2 J dO Jdk gkek(c1+c2 gkTeik cosO

7r 0

The final expression for FFS,3-DD(t) is then:

FFS,3-DD(t)

dt g2J
Sw(t)

p

p(t a2<(t ds
at Ot2

dscua(6, T)d0i

x [HT (&, 16, T1 - 72 ) +

t

0

dT2 f ds 2 C( 2, 72)

H( , 2, 2t - (T1 + T2

178

(B.37)

(B.38)



Appendix C

Free-surface impulse force in Pitch

Start by using the moment expression presented in [30] and (2.43). Taking the free-

surface impulse pitch moment up to second order:

NMFS,5(t) =- p

sd(t)

S1 (t)

<p(0 (X x ' )ds + p

1W(t) X
g at (

I
S1 (t)

x (Vy+(t) +V p()) ds

For small wave steepness, the normal vector to the ambient wave free-surface

maybe expressed as:

=V(Z - (1(X, Y, t)) _-C -1 J + k.

V(Z -C(X, Y, t))|+< + y

'j+ k)[1 + 0(62

(C.2)
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)K x )ds

(C.1)



Z x it, X x k, Z x VyI and X x VVp in the pitch direction are respectively:

ZX X n) = (z(", - xg + 0(62)

( x k) -xj;

x V 1) (z
Z~~ xOX

(C.3)

Substituting C.3 into C.1:

d {
AlFS,5 (t) -p

SI(t)

+ p(d
g t) at

(p(L) z,

(
- x ds+p f ao(-x)ds

S1 (t)

+ z

For small wave steepness, the pitch moment is evaluated on z = 0 , the remainder

of the first and second integral cancels and the moment expression is reduced to:

A'IS.5(t) . I
y at J

Si (t)

X p(t)
at O,, +AOZ

a ds
aZ (r ;

Applying the linear FSC:

az
102

g at2
(C.6)

The pitch moment can be split into:

'FS,5(t) = FS,5-ID(t) + FS,5-DD(t)

AIFS,5-ID (t)

A'IFS,5-DD(t)

p d
;2df

S1(t)

p d
2

SI(t)

X9 Opt) 02(p,(t) d
at ad2

( a(t at2

(C-7)

) ds
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xW) ds +0(62)

(C.4)

- a ;

- xIV

-x ,

O i I a2 W

OZ g at2



Rewriting the ID integral as the difference between the impulse over the infinite

free-surface and the ambient free-surface inside of the body:

p d
MFS,5 -ID(t) 2 (C.

S" (t) Sw (t)

The ID impulse in (C.8) can be split into:

MFS,5-ID (t)

'FS,5-ID,Sw (t)

d (+ (FS,5-ID,Sw (t)

Sat

+ IFS,5-ID,S(

S ds
at2

Sw(t)

p C ap(t) 02 p,(t)
IFS,5-ID,Sx0 (t) 2 ds

S a(t)

(C.9)

Focusing on the second integral over the infinte free-surface:

Substituting into the impulse over S,, in C.9:

00tur
iJ dxdy x

dxdyOp(t) 02<p,(t)
atd O t g2

igA (iw )2e -vx cos O-ivysin

dsgo-(, T) Ji d dv g sg - T)1eiU(-)+iv(y-7)}

(C.10)
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p
9

x - 47F2

13+iwt}

J dT0 JB(T)

Wp(t ) a2 p,(t) d
2 -1t O (C-8)

IFS,5-ID,S, (t



Reorganizing (C.10):

dT ISB(T)

4'

-00

dud [e(U2+V2)(1/2) cos[g( 1/ 2 )(U 2 + V2)(1/4

x> dxdy [xeix(u-

-00

LV cos3)+iv(y- sin8)] }
Let

f(u, v) = (U+t2) cos[g( 1/2) (it 2 + v2)(1/4) (t - T)]e- "'

Applying the definitions of the delta dunctions:

J dx xe (u-vcos)
-00

I yeiy(Lv-vsin 13)

-00)

= -2,ri6'(u - v cos 3)

= 2r6(v - v sin 3)

(C.11) becomes:

p
g

t

( 42
dT ISB( -) dsgr a, T) (ig Aw)ew

00

x (-4r2 i ) dudv f (u, v) '(u - 1/ cos 13)3(v - v sin /3)

-00 }
Applying again properties of delta functions:

00

iI duadvf (a, v)Y'(u - v cos 03)6(v - v' sin /)-f'(v cos /3, vi sin /3)
-00

182

dscT T) (-igAw eiwt

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

-IFS,5- ID,Soo, (t

IFS,5-ID,S,.o, (t)

t

P
g .12)R

0

T)]C-iu 
-imj I



(C.14) becomes:

IFS,5-ID,S, t A r dg - T) c s 0 in 13 C.16)
p~w R e f d SB (T-) d~, -fCS

f'(u, v) is:

O ) f{e(U 11))(= Ou cos[g( 1/ 2 )(u 2 + -)(/4(

( e(u2v2)(1/2) cos[g( 1 / 2 ) 2 - 2 )(1/ 4) -- t)vi-u (i +Z

+ ( cos[g(1/ 2) (a 2 + V2)(1/4)(t - T)]) e(u2+v02)(/ 2
)(e-ii 7?

au

+ -" e (u2+v2)(C1/2) cos[g( 1/ 2) 2 + v2 )(1/ 4)(t T)] (C.17)

( u (1 ) /2)( 
g ( )]( 

- 7

((U2 ) cos[g( 1/ 2 ) 2 + v2 )( 1/4)(t -

(U2 + V2)(1/2)

+-V (t - T) sin[g(1/ 2) ( 2 + v 2 )(1/ 4) (t - T)]) e(U2+-2)(1/2)eiv -im
2(u 2 + v2 )(3 /4 )

+ - ie e(U2t2)(1/2 ( cos[g( 1/ 2)(U 2 + v2 )(1/4)(t - T)]

f'(v cos, sin3) is then:

= (Ccos/3ev) cos[ fv(t - T)]e-ivcoS1-isin

+( - cos(t - T) sin[g-v(t - T)])eV(e-iocs/COS0-iv7n sC.1i>

+ ( - igeiv~cos e-v" 13) e"' cos[/i(t - T)]

183



(C.16) becomes:

IFS,5-ID,S(t) = pAwR{ e j dT

0

dSBa( ,T)
SB(7)

x [- cos cos[ gv(t - T)] e"

+ cos 3(t - T) sin[ 2gv(t -'T)]eI-"coIivrsinI
2 v

+ i cosr ,gv(t - T.)]eV LV' s3-ivrsin/j

The free-surface pitch ID moment is then:

p d IAIFS,5-1D (t) = 2 dt
Sw it ) ( 3 at 0t2

+ pAwR ewt

where

J dT
0

dsgc-(, T) [Q1 + Q2 + Q 3 1 eCv-i cos13-iv 7sinf0

Qi = -(cos 1 cos[ gv(t - T)];

Q2 = 2icos 0(t - T)sin[V/(t - T)];

Q3 = it COS[ Vg2(t - T )].

184

(C.19)

) ds

(C.20)



Rewriting the DD integral over the ambient wave free-surface S1 (t) into the dif-

ference between the infinte free-surface So (t) and the ambient wave surface inside of

the body Sw(t):

M1FS,5-DD(t) ( a<(t ) aYgt)) dsOZI )
pd

sI(t)

Sp d f _ )g dt J
S."(t) sw (t)

&<pt) azp(t J
a t 0 z )s

linear FSC

Sw(t) s0(t)

a p(t) a((t)d}
xat az /s

Same with the heave free-surface impulse force, as asp( 0)/at = 0, the 2nd integral

in (C.21) can be reduced to:

p
9 so

(C.22)x az ds
at Oz

185

(C.21)

O<p(t) 02Wp(t)
x _8 t ds



Substituting the expressions of the derivatives of the memory potentials into

(C.22):

- (t (t d s
g s " t OZ

1)2

00

x< JJ ditldv1

JdTi

0

e1kj1 cos[ g-k(t - Ti)])e6d a

00

x Jj dU 2 dv 2 ek22 gk2 sin( gk2 (t - T 2 )eiU2 2-t272

-00

x>< fj 0 dxdy ,xe i('ul +U2-)X+i(V1 V2)Y

- -p - 1 2 )2JdT
47 2 J 7dsu-(i, a Ti)sB(Ti) . s (72)

00 00

x dui dv1 F1(ui, v 1 ) f du 2 dv 2 F 2 (u 2 , 'v 2)

-00-0

" dO dy x e-ay ,,

where:

F1 (ai, vi) = e(ui+1y) c1 cos[g( 1 /2 U + V)( 1/4) (t - 1 )]eiu11iv/1

F 2 (1u 2 , 'v2) = e(u2+ s)(/ 2 9g(1/2) (u2 + V2)(1/4) sin[(g( 1 /2)(uj + 2v )( 1/ 4)(t -2))]e

(C.24)

Invoking the identity:

00 00Jdx fdy xeu 2 v 2 ) -4'wi''t + U2 )6(V1 + 'V 2)

-00 -0

(C.25)
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JSB (Ti ds 1o(6,i) jd 2
Is3(T 2)

ds 2ca( 2, T2)

(C.23)

ds 2 o( 2 ,r2 )

iU2 2 -iV2 12



Using also the properties of the delta function:

Jfduidv1F1(ui, vi)'(ui + u 2 )6(vi + v2 )= -F{(-u 2 , -v 2 ) (C.26)
-00

Fj(ui, v1 ) is:

F (1 = Vie(u + ) C cos[g( 1/ 2)(ul + vi - r I1)Ie- i"i }
,( e(U2+,2)ok

COS [g( 1/ 2 )U 2 2)( 1/4 )(t - T )] e ii1 iv 1Ii
(2 + V2)(1/2)

Vi f (t - r1) sin[g (1/2)(It2 + V2)(1/4)(t - ri)] 2(u+V2)(1/2 -i)-ii,

\a 2u + V2)( 3/ 4) /

+ ( - e (U2+V2)(1/ cos[g(1 / 2 )(U2 + v2)(1/ 4)(t - Ti)]

(C.27)

Fj(-u2 , -" 2 ) is then:

2(le(u 2+v )2 4

U 2 2 )(1/2) C s[g(/2)(u2 + -)(1/4)(t T1)]eiU2 I+iV2/I
\ 2u + V2)(1/2) 2

+ (U 2 /9(t - Ti) Sin[g( 1/ 2)(t + vI)(1/4)(t - Ti)]) (?
2v2 ) 4

kiU 21 +iV 2 71i (C.28)
2(u2 + v)( 3/ 4) e

+ - i1ei1i27)1 )(Ut)(1/2) 1 cos[g( 1/ 2 )(u2+ v )( 1/ 4)(t - Ti)]

Revisiting the impulse:

p j ap(AI)(t) av(")(t)d

9 Js0 at oz
t t

-p (-4() r2i dT ds1 o-(6,ri) dT 2 dseo-(5,T2 ) (C.29)

x du2 dv2 F 2(T2 - F ( -C. -9) x jjdU2dV2F2 (U2, 'V 2) (~ -F(- U2, -'V 2 ))
-00

187



For F9 (U 2 , v 2 )F,(-U2 , -v 2 ), simplify it into 3 seperate terms and reduce the ex-

pressions with a = 2 and u2+t2 = k 2

F2)(u, v) Fj 1 (-u, -v)

_U j (U2+V2)(1/2)(:,

(~U 2 ,V
2

)(
1 /

2 ) cos[g( 1 /
2 ) (,12 + V2) (1/4) (t - T 1)i Cj +i'v i+

(a
2  + V2 )( 1 /

2
) )

X u
2+v 2 )("/ 2 )(2g(l/ 2 ) (i 2 + 2 (1/4) sn(( 1/2 ) ( 2 v2 ) (1/4) (t - T2 ))] e iL(2-i72

-U(1_ ek(CI+2) Cos

-( ek1 e

gk(t - Ti)] sin[ gk(t - r 2 )]eiU( 1-2)+i (rI-r2)

('1+2) cos[ gk(t - T1)] sin[ gk(t - ){ V ek( ?I+(2)e i( -2)+iV(rli -712)

x sin( /gk ( 1 - 72 )) + sin[V gk(2t - (71 + T2))]

(1 { sin ek(( +(2) U( I -2)+i( - (/2)

x f sin(v g (71 - 72,)) + sin[ V/_gb(2t - (r1 +T.2))]

(C.30)

188



F(U, IV) F-2(-U, -V)

(ut/g(t -Ti) sin[g(i/2)(U 2 + - 2)(1/4)(t _ e (u
2

+v
2

)(1/
2
)ieiu6i+i71

2(,t2 + V2)(3/4)

x e(I2+v
2 )(1/ 2)(2 g( 1/ 2) (U2 + v 2 )(1/ 4 ) sin[(g( 1/2)(U 2 + v 2 )( 1/ 4)(t - T2))]e-inb-ion2

U9 -(( -(2 \1 t-2)iV(r1-J2)

(t - Tl)e sin[ gk-(t - Ti)] sin[ gt-- -T2)Ieu(-2 i-

{ g (t - Ti)ek((1+(2)eiU(6 -2)+iV(Mi-r/2)

2 k

x1 cos[V gk(Ti - T2 )] - cos[V/gk(2t - (T 1 + T2))]

a 2 (t - T1)ek((1+2)eiU(ti-12)+iV(711-T/2)

2i k1 k

x{ ) sin[./-g-h(71 -T2)]sin[ gk(2t -7T T9)] (/gk )07 2

(t - Ti)- ek((+ 2)eiU(i - 2)+iv(ri-r2)

kk

x jy-'sin[f g(rT - T2 )] + sin[OT2 aT2
Vgk(2t - (Ti + T2))]}}

(C.31)
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ia

(71 + T 2))]

= (.1 a
iu ( 1



P2(u, v)Fj'-3(-'t, -'V)

= ( - ki(eii+ivri e(u2+v2)1 cos[g( 1/2) (2 + v 2)(1/ 4)(t _ l)]

x e (112+V2)(1/ 2)(2g(1/2) (it2 + v2 )(1/ 4) sin[(g(1/ 2 )(, 2 + v 2) (1/4)(t - -2))]ei'12-i-I2

= _j~ -ik((1+ 2) cos[ gk(t - ri)] sin[ gk(t -

x sin( gk(Ti - T2 )) + sinifgk(2t - (T1 + T2)

) - 1 k((1+0)ein((- 2)+iV(71 -q2)
2 061 Vk

x { sin(y gk(r - T 2)) + sin[ Vgk(2t - (TI + T2))]1}

(C.32)
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The impulse now becomes:

p OVp(M) (t ) O p(M) Md
gJ fS t Oz

t t

-J dr1 j ds10(,, Ti) dT 2  ds'B 2) ~(d2, T 2 )

0 0

x dudv

-00

(1 a ek((1+C2) iu( i-2)+iV(r/i-T/2)

2i 0 1 'Vk

x { sin(/g k(Ti - 72 )) + sin[ gk(2t - (Ti + T2))] (C.33)

+ (t - T) Iek((1+(2)eiU(I1-2)+iv(I-72)

x sin~/gb~r1-T2)1 + si /g(T--(1+ 2)

- ek(1+2eit-2+on-2
24(O1 k

x { sin(N/gk(Ti - T2 )) + sin[ Vg(2t - (Ti T 2 ))]
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t t

--- {) jdTj dsg 1 u~ ,, T1 JT2 f d2 9 ~( 2 ,T 2

00

x dO kdk

7r 0

X Si T&- 2 S iT
-- T1 k +k(1 iekikRcosO

x { si( gk(Ti - T2 )) + sin[ gk(2t - (T i + T 2  (C.34)

10 1 qek(Ti- 2) S ik co -
+ - (t - TO e(1(2ekcs

{ s in[ vlgk (T- T2)1+ a sin[V-(2-(T+T)]
0T2  9'2 0 T91

2 06i { k

x { siii(/gk(Ti - T2)) sin[ VgkA(2t - (Ti + T2 ))]}}}
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t

- p drj
0

t

dsg o (6, T1) J
0

dT2 j ds2 , or, T2)

x dofdk
-7r 0

Ci ' 9 el k(1+(2)eikRcosO

2 801

x {sin(V gk(Ti -T 2 )) + sin[ gk(2t - (Ti +T2))]

+ 1 - (t -) 1 gkek((1+2)eikRcos0
4 061 k

x 09 sin[V/"gk(T - T 2 )] + sin[V/gk(2t - (T 1 + T2))]
IOTI OT2 g(t

+ 01a kek(1+(2)eikRcosO
2 06i

x { sin(V gk(Ti - T2 )) + sin[ /gk(2t - (Ti + T 2 ))]
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The impulse is then:

p

9
p (A)(t) az )

JsO X.__ t Iz al- ds

ds , a1 T1) f dm iSB(T
2)

ds 2o( 2, 72 )

- 06 HT(, , T1 -(2) + H( , , 2t - (T1 + T2))

+ t T Jd~aa[ (9~ 2 - T2)
2k d( J 1 Ht(H, lT, T 1 -+ 2)+

+ H0 6 1, , T1 - T2) + Hzr( 1,6,12t -

(C.36)
H,(T , , 2t - (T1 + T2)

(rI + T72))]

where H,( , 2, T)

4- J dJ dk gkek(c1+(2)sin[ V/gkT]eikRcos0

-sr 0

The DD free-surface pitch moment is then:

MFS,5-DD(t)
d

,L L
p [

Sw (t)

< tL ) Zip
Ut (J-

dse ac(6 , T1)
sB(T)

t

JdT2

0

ds, o( 2, T2)

HT1 H((1, 2 1 - T2 ) + HT(6, 2, 2t - (TI
(C.37)

+ T2))]

+ (t -T Jd(1a H(&,,1

4! a
[HIT((6,~l , - 72 ) + HT(
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Appendix D

Nonlinear loads on a vertical cylinder

in irregular waves of small Ka

This section discuss the method presented by Sclavounos [311 on computing nonlinear

surge force acting on a vertical circular cylinder in irregular waves.

For a vertical cylinder fixed in space (a diffraction problem), the Fluid-Impulse

Theory can be used to approximate nonlinear loads to leading order by the 2D croos-

flow potential.

The ambient waves are assumed to be irregular. The expressions presented in

this section are valid for finite values of Ka, where K is a characteristic wavenumber

and a is the cylinder radius.

The characteristic wavelegnth in a seastate is often large relative to the cylinder

diameters of offshore structures and wind turbines. In such cases Ka is a small param-

eter and the diffraction potential near the cylinder may be approximated to leading

order by the 2D cross-flow potential:

(r, 0) = -U, cos 6, u1 = (r = 0) (D.1)
r O
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For a polychromatic wave the incident wave velocity potential is:

(polychromatic) p (X, y, z,)=iA evjz-ivsx cs Cos -ivsy Sill 3+i(t+ix

The first x-derivative of wl in deep water is:

a<pi __ A*1 (-iuv cos j 3evizivixcosCi-ivysin)3j+iwit+ixj

= Z Awj cos I3jevz-2lxc s 3Y-ivysirlI3+iwit+ix}

With uni-directional waves:

-4pwevjz+" jt+'xa}
Substituting (D.1) into F-K and disturbance body force, the expressions become

equal in the limit of small Ka and their sum is:

IX,F-K + Fx,D = 2pwa2
dzit1(z)l x= + 2prXa2 0(j 1 0 ,z=(,

_-Ttx=

The time derivative of i 1 is:

0 aw {>3 igA V ivj j cos #Q) (iw ) eViz-sp COS /-j Vy sin /3+U4t+ixj
Ot Ox Wi

= E3 iAjp cos 3 eviz--jos xCOS-iv iy sin !3j+iwjt+ixj

At x = 0 and in unidirectional waves:

iqj(z)IX= ij weviz+iWit+iXi
b) }
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}
(D.3)

(D.4)

(D.5)

}
(D.6)

(D.7)

Owl 8 (r= 0) = R



The wave elevation of irregular waves can be expressed as:

R Aje-'vi cos 1j-ivjy sin 1j+iLst+ixj

The time derivative of (I is:

=t { iAwie-

(11X=0 =R (

ivjx cosOj-ivjy sin fj+iWt+ixj

Ajeiwit+ixi } S(D.10)
at|-=

i Apw eiwjt+ixj

Numerically:

{ FX_<,FK + FX,D}c -

( N(T+ 1 )

2pira2  
M

rn=1

Nq

+ E,1{>3 iA wpe'wjc+x j
j=1

(D.11)

A wje 1wjt+ixY I
Cj=1

Introducing (D.1) into (2.58), the DD term vanishs identically.

ID is then the leading order force. It becomes:

(I

F[X,FS = 2pra2 I- dz(i 1ux + U3'iz) - pra2alu3I=O,z=(i at Ox
(D. 12)
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At x = 0:

(D.9)



Ujx = v j Ai(-ivy cos 3j)( -iv cos /j)evz-ivx cs 3 iv y sin3j +iwit+ix,j

_ cos 2 !3 ev z-'iwx cos Oi3. - jY sin !8 +iwjt+ix}

.9

gA(- v1j cos f3)(vj)ev_,z-,i. cos
3
j -ivjysinl,+iojt+ix,

Wi

t t
lz

cos /3euz-wj s OS-i co s ysinOjs+iwjt+ixj }
}

At x = 0 and in unidirectional waves:

9

1 = S A ez+iWt+ix}
9

The x-derivative of (I is:

R t-4Av cosxje--v0a iuside-ivcytsinioa+i aet+ixs:

At x = 0 and in unidirectional waves:

;= R

=at

5 iApwjeiwt+ixj

( i.Aj vjei t+',xsS }
Numerically:

FXFSjc ={2pwa2 [
N(T 1I)

Er=
Amarn (ul1 X + 'U3Utlz)ml - pra 2 u}IU z=o,}=O

C

198

(D.13)

(D.14)

(D.15)

(D.16)

(D.17)



Bibliography

[1] A. Arapogianni, A-B. Genachte, and the members of the European Wind En-
ergy Association's (EWEA) Offshore Wind Industry Group (OWIG) Task Force
on deep offshore and new foundation concepts. Deep water - the next step
for offshore wind energy. Technical report, European and Energy Association,
www.ewea.org/report/deep-water, 2013.

[2] E.E. Bachynski, M. Etemaddar, M. Kvittem, C. Luan, and T. Moan. Dynamic
analysis of floating wind turbines during pitch actuator fault, grid loss and shut-
down. Energy Procedia, 35:210-222, 2013.

13] S.R. Breit, P.D. Sclavounos, and J.N. Newman. New generation of panel pro-
grams for radiation-diffraction problems. Report No.: AD-A-159487/8/XAB,
Massachusetts Institute of Technology, Department of Ocean Engineering, Cam-
bridge, MA, 1985.

141 J.M. Chuang, W. Qiu, and H. Peng. On the evaluation of time-domain green
function. Ocean Engineering, 34:962-969, 2007.

[51 A. H. Clement. An ordinary differential equation for the green function of
time-domain free-surface hydrodynamics. Journal of Engineering Mathematics,
33:201-217, 1998.

[6] M. St. Denis and W.J. Pierson. Motions of ships in confused seas. In Annual
Meeting of the Society of Naval Architects and Marine Engineers, volume 61,
pages 280-357, New York, 1953.

[7] 0. M. Faltinsen, J.N. Newman, and T. Vinje. Nonlinear wave loads on a slender
vertical cylinder. Journal of Fluid Mechanics, 289:179-198, 1995.

[8] B. Fox. The offshore grid: The future of america's offshore wind energy potential.
Ecology Law Quaterly, 42(3):651-698, 2015.

[9] W. Froude. On the rolling of ships. Transactions of the Institute of Naval
Architecture, 2:180-229, 1861.

[10] A.R. Henderson, R. Leutz, and T. Fujii. Potential for floating offshore wind
energy in japanese waters. In ISOPE Conference, pages 505-512, Kitakyushu,
Japan, 2002.

199



[11] J.L. Hess and A.M.O. Smith. Calculation of non-lifting potential flow about
arbitrary three-dimensional bodies. Report No. E.S. 40622, Douglas Aircraft
Company, Inc., Long Beach, CA, 1962.

[121 A. Jami. Etude Thiorique et Numirique de Ph'nomenes Transitoires en Hydro-
dynamique Navale. These de Doctorat es Sciences. PhD thesis, Paris, ENSTA,
1981.

[131 J. Jonkman and W. Musial. Offshore code comparison collaboration
(OC3) for IEA wind task 23 offshore wind technology and deployment.
NREL/TP-5000-48191, National Renewable Energy Laboratory, Golden, CO,
2010.

[14] J.M. Jonkman, A.N. Robertson, and G.J. Hayman. HydroDyn User's Guide and
Theory Manual (Draft). National Renewable Energy Laboratory, Golden, CO,
2014.

[15] J. Katz and A. Plotkin. Low-Speed Aerodynamics. McGraw-Hill, 1991.

[161 A. N. Krylov. A new theory of the pitching motion of ships on waves, and
the stresses produced by this motion. Transactions of the Institution of Naval
Architectures, 37:326-359, 1896.

[17] C.-H. Lee and J.N. Newman. Computation of Wave Effects Using the Panel
Method. Numerical Models in Fluid-Structure Interaction. WIT Press, South-
hampton, UK, preprint edition, 2004.

[18] C.H. Lee. WAMIT theory manual. Massachusetts Institute of Technology. De-
partment of Ocean Engineering, Cambridge, Mass., 1995.

[191 S. Lee. A Nonlinear Wave Load Model for Extreme and Fatigue Responses of
Offshore Floating Wind Turbines. PhD thesis, Massachusetts Institute of Tech-
nology, 2012.

[201 J. R. Morison, M.P. O'Brien, J. W. Johnson, and S. A. Schaaf. The force exerted
by surface waves on piles. Journal of Petroleum Technology, 189:149-154, 1950.

[21] W. Musial and S. Butterfield. Future for offshore wind energy in the united

states. In Energy Ocean Proceedings, Palm Beach, FL, 2004. (NREL/CP-500-
36313) Golden, CO. : National Renewable Energy Laboratory.

[22] J.N. Newman. The approximation of free-surface green functions. In F. Ursell,
P.A. Martin, and G.R. Wickham, editors, Wave asymptotics : the proceedings

of the meeting to mark the retirement of Professor Fritz Ursell from the Beyer

Chair of Applied Mathematics in the University of Manchester, chapter 7, pages
107-135. Cambridge University Press, New York, 1992.

200



[231 J.N. Newman and P.D. Sclavounos. The computation of wave loads on large
offshore structures,. In 5th International Conference on the behavior of Offshore
Structures (BOSS), Trondheim, Norway, 1988.

[24] J.N. Newman and E.O. Tuck. Current progress in the slender-body theory of
ship motions. In Proceedings of the 5th symposium naval hydrodynamics, pages
129-167, 1964.

[25] F.G. Nielsen, T. Hanson, and B. Skaare. Integrated dynamic analysis of floating
offshore wind turbines. In OMAE, Hamburg, Germany, 2006.

[26] A. Robertson, J. Jonkman, W. Musial, F. Vorpahl, and W. Popko. Offshore
code comparison collaboration continued. Phase II results of a floating semi-
submersible wind energy system. In OMAE, San Francisco, CA, 2014.

[27] A. N. Robertson, F. F. Wendt, J. M. Jonkman, W. Popko, F. Vorpahl, C. T.
Stansberg, E. E. Bachynski, I. Bayati, F. Beyer, J. B. de Vaal, R. Harries, A. Ya-
maguchi, H. Shin, B. Kim, T. van der Zee, P. Bozonnet, B. Aguilo, R. Bergua,
J. Qvist, Q. Wang, X. Chen, M. Guerinel, Y. Tu, Y. Huang, R. Li, and L. Bouy.
OC5 Project Phase I: validation of hydrodynamic loading on a fixed cylinder. In
ISOPE, Kona, Hawaii, 2015.

[28] D. Roddier, C. Cermelli, A. Aubault, and A. Weinstein. Windfloat: A floating
foundation for offshore wind turbines. Journal of Renewable and Sustainable
Energy, 2(3):033104, 2010.

[29] P. D. Sclavounos. On the quadratic effect of random gravity waves on a vertical
boundary. Journal of Fluid Mechanics, 242:475-489, 1992.

[30] P. D. Sclavounos. Nonlinear impulse of ocean waves on floating bodies. Journal
of Fluid Mechanics, 697:316-335, 2012.

[31] P. D. Sclavounos. Nonlinear loads on a vertical circular in irregular waves. Pre-
sented at the 31st International Workshop on Water Waves and Floating Bodies,
Plymouth, Michigan, April 2016.

[32] P.D. Sclavounos, S. Lee, J. DiPietro, G. Potenza, P. Caramuscio, and G. De
Michele. Floating offshore wind turbines: Tension leg platform and taught leg
buoy concepts supporting 3-5 MW wind turbines. In European Wind Energy
Conference (EWEC), Warsaw, Poland, 2010.

[33] J. J. Stoker. Water waves : the mathematical theory with applications. Wiley-
Interscience, New York, 1957.

[34] E.N. Wayman, P.D. Sclavounos, S. Butterfield, J. Jonkman, and W. Musial. Cou-
pled dynamic modeling of floating wind turbine systems. In Offshore Technology
Conference, Houston, TX, May 2006.

201



[35] J. V. Wehausen and E. V. Laitone. Surface waves. In Encyclopaedia of Physics,
Vol. IX, pages 446-778. Springer Verlag, New York, 1960.

202


