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Abstract

As the electric industry is preparing to embrace competition in a deregulated envi-
ronment, a savvy owner of a BTU converter (or a generator) is more interested in risk
management and economic efficiency. The thesis identifies significant economic value
in the day to day management of risks like fuel exposure. The financial firms do not
have expertise or resources to help in this area and is solely the arena of plant owner
or operator. The strategies, tools developed in this thesis can assist in managing the
fuel exposure for a higher profitability by considering the expected payoffs across the
commodity markets the BTU converter is dealing with.

The “Spot Energy Price” or “Lambda” model is built as an Auto Regressive
Moving Average (ARMA) transfer function noise model with hourly pool load as
external input. The model is easy to maintain and uses inputs that can be easily
tracked. It bypasses the need for expensive production cost models with enormous
and hard to maintain data bases for daily operations such as generator commitment
and fuel nomination. An unit commitment algorithm, with inputs such as the day
ahead forecasts generated by the A model, unit dispatch price, operational constraints
etc., is developed to economically dispatch a generator. The combination of the A
model and unit commitment algorithm formed a powerful tool to forecast day ahead
fuel usage. It also provided a means to evaluate the performance of current methods
of fuel exposure management.

A general framework of bid/ask convenience spreads and penalty/discount struc-
ture of intra day gas markets is developed for gas/electricity arbitrage and assessing
fuel exposure impact.

Thesis Supervisor: A. Denny Ellerman
Title: Exec. Director, Center for Energy and Environmental Policy Research
Senior Lecturer, Sloan School of Management
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Chapter 1

Introduction

The role of an electric generator in the evolving spot market for electricity will be that
of a BTU converter — with fuel as input and electricity generated as output. However,
the fuel and electricity are two separate markets, and an energy producer must manage
the risks associated with both markets. Moreover, for a profit maximizing power
producer the marginal benefit from electric power and fuel must be roughly equal.

This is a relatively new way of conducting business and certainly a far cry from
the way an electric utility, considered as a natural monopoly, operated with a given
reture: on investment as set by the regulating agency. The cost based recovery system
in which operating units are compensated at the replacement cost of fuel is changing
into a bid based system where the units are compensated at either the unit’s bid price
or market clearing price at that instant. The bid price itself need not be justified on
a cost basis. This decoupling of value of power (unit earnings) from operational costs
creates new opportunities tu increase efficiency and cut costs.

The ideas developed here, though applicable to other kinds of power generation,
are primarily tested for a natural gas powered unit. The reasons are two fold. One
reason is that natural gas is increasingly used for power generation world wide. The
second reason, probably more important, is that the newer gas powered generators
are more flexible in their operation with only a few hours of minimum run/down time
requirements.

However, unlike other fuels such as coal and oil, natural gas is generally supplied
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to the generator site via pipelines and it is not common to store gas on-site. Some
pipeline operators need as much as 24 hours advance notice of the amount of gas
transported through their pipeline. Hence, the concern for fuel exposure is greater
for a gas powered unit. Fuel exposure results when there is a discrepancy between
the gas nominated for burns ahead of time and the actual usage.

Wall Street firms, with their expertise in financial risk management and com-
modity trading, are equipping the industry with powerful tools. Over a longer time
horizon, fuel exposure and other risks' can be managed using various instruments
such as long term OTC? contracts, NYMEX futures contracts, commodity swaps etc.
In the day to day operation, there is a lot of potential for gas/electricity arbitrage
that increases the economic value of a BTU converter. The financial firms do not
have expertise or resources to help in this area and is solely the arena of plant owner

or operator., The three common ways to manage the daily fuel exposure are to
e “must run” the generator according to a specific schedule set ahead of time

¢ buy or sell gas on the intra day market?, usually at a premium over the inter

day spot index, as discrepancy arises during the day

e change dispatch price for the generator during the day in order to control the

number of hours the unit runs economically

Section 1.4 discusses the performance of these above methods as currently used
for fuel management. Over shorter time periods, managing the physical risk can
take precedence over other risks such as price. However, the bigger goal here is to
maximize overall profitability of the BTU converter. Managing the fuel exposure
alone with out consideration to the economic value of using the gas available at hand

may result in lower profits. A comparison is to be made between the expected payoffs

lother risks include basis, transportation or pipeline capacity, gas quantity, embedded options
etc. These are discussed in the following sections.

2Qver The Counter or customized

3unlike the inter day spot market where gas is priced today for tomorrow’s physical delivery, intra
day market is for same day delivery
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in the electricity and gas markets. The tools developed in the thesis can assist in this
regard.

An introduction to gas unit operation is presented in Section 1.1. Then, the
changing landscape of electric industry, as it is deregulated, is examined and rele-
vant issues are briefly discussed in Section 1.2. The economic implications of the fuel
exposure management methods, beyond the sole function of matching gas flows, are
brought out in Section 1.3. New strategies that methodically consider gas/electricity
arbitrage and other economic costs are then identified. Section 1.5 is dedicated to
detailed discussion of gas markets as they operate today. While Section 1.5.1 dis-
cusses the formation of gas prices, Section 1.5.2 goes into the details of inter day
and intra day gas markets and sets up a general framework of convenience spreads
and penalty/discount structure to deal with fuel exposure impact assessment and

gas/electricity arbitrage.

1.1 Gas Fired Generator Operation

This section is a lead to the generator operation and covers issues related to formation
of dispatch prices, gas nomination and timing etc. The hypothetical generator is
located in the New England area of Eastern United States.

Each generator prepares a form called NX-12A that contains unit specific char-
acteristics. The form reports the generator’s rated Summer and Winter capacity in
MW, the minimum and maximum loading levels the unit is allowed to operate, ramp
times, minimum run time, down time and start-up time from cold, hot conditions etc.
Also given are the block heat rate data, start-up heat input and other fixed costs for
hot/cold start-ups, maximum number of starts allowed per week etc.

The NX-12A form can be updated by the owner of the plant when necessary. Some
of the operational constraints data such as the minimum down and run times, mini-
mum loading are not necessarily due to the physical characteristics of the generator

but are a result of optimization involving:

e unit start-up costs from cold and hot conditions
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e plant cycling, wear and tear and longevity

e profit/loss function of expected gain during the on-peak hours and any loss

during off-peak hours

e emission allowance for the unit. The NOx emissions are higher during start-up

and when operating in lower loading blocks

The NX-12A data are used by the computer models that perform economic dis-
patch for the power pool. The economic dispatch models take into account the fuel
cost ($/MBtu) along with the unit characteristics in determining the least cost way
to meet the load or demand. The fuel purchases themselves can be either firm or

spot.

1.1.1 Formation of The Dispatch Price

A spot price is synonymous with a floating market price. For example, an inter day
spot contract is priced today for tomorrow’s physical delivery. The alternative form
of purchase called firm contract provides the buyer a fixed amount of gas at a fixed
price for each day of the contract, the price and quantity being set at the time of
contract purchase. The most common firm contract is a monthly contract priced with
respect to the corresponding NYMEX gas futures contract price. In other situations,
the utility may contract a fixed pipeline capacity to transport the traded spot or firm
gas. Further discussion on gas markets and prices is deferred until Section 1.5.1.

In any case, once the gas price is determined, dispatch price ( $/MBtu) for the
following day for each generator is calculated as = gas price 4 any dispatch adders.
A common adder is due to emission limits. The dispatch price for the following day
has to be quoted to NEPEX* by 2 P.M. today. The quoted dispatch price remains in
effect for the whole day.

Along with the dispatch price calculated as above, usually up to two additional

dispatch prices can also be submitted. Historically, these additional dispatch prices

4New England Powe. Exchange, the central dispatch group for New England utilities power pool
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are allowed to accommodate dual fuel units that are capable of switching between
alternate fuels during the day. One price can be for firmn gas contract while another for
spot. Or alternatively, one price can be the inter day spot price while the other two
prices are expected intra day gas prices. This option to quote multiple dispatch prices
for a single generator is a powerful tool to actively engage in intra day gas/electricity
arbitrage and minimizing the fuel exposure impact. The Section 1.3 further explains

the use of this option.

1.1.2 Gas Nomination and Timing Issues

Natural gas, as mentioned earlier, is supplied via gas pipelines to the generator site.
The pipeline companies set up proper volumes and pressures so that the right amount
of gas flows to the correct site. The gas user or trader submits a gas nomination to
the pipeline operator with the following information: Date, the (upstream) contract
delivering gas to the pipeline, the quantity of gas, and the delivery point where the
gas is intended to flow to.

Gas nominations for the following Gas day® are required by 10 AM today for the
Algonquin (AGT), Iroquois (IRQ), ANR SW leg (ANR), and Appalachia Columbia
(TCO) pipeline companies, by 11 AM for the Tennessee (TN) and 12 noon for Trans
Canada (TCPL) pipeline companies. Additional nomination updates during the day
are accepted by Algonquin which enables intra day transactions between partics con-
nected through them.

The fuel department surveys the gas market by calling various marketers till
around 9 AM. After market survey, the fuel department gathers gas usage needs from
plant operators who sense the plant operation for the following day. After making
their owr. assessment of the day ahead plant operation, fuel department seils excess
firm gas® in the spot market or buys additional spot gas and submits nomination

information to the pipeline company.

5Gas day is also a 24 hour day but runs from 8 A.M. of one calendar day to 8 A.M. of the
following calendar day.
6if there is a firm contract in force as described in Section 1.5.1
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The end-user is strongly encouraged to use the nominated quantity with out fail.
Overdrawing by more than a small percentage of the nominated quantity is discour-
aged through penalties besides outright impossible at times. Thus, there is an high

incentive to predict the gas usage accurately.

1.2 Restructuring of The Electric Industry — Im-
plications

The fundamental change is the creation of a electricity spot market that is bid based
rather than cost based. In a bid based system, the economic dispatch is based on
individual generator’s bid price. The compensation for a successful unit, i.e. when
the unit is committed or called for generation, could be either the unit’s bid price
or the market clearing price at that instant. The market clearing price or tlie spot
energy price is the bid price of the next unit of generation at this moment in time.
Either way, the price of power is no longer based directly on the recovery cost of
investment. The significant change to notice is that the earnings potential for a nnit
is dependent on market characteristics as captured by the market clearing price.

In the current system of cost based unit dispatch, system lambda (denoted by A)
is the incremental cost of the next unit of generation at this moment in time and is
measured in dollars per Mega Watt Hour (§/MWH). The hourly system lambda is
expected to be highly representative of the market clearing price or the spot energy
price in the future system of bid based unit dispatch’. The dispatch cost calculated
from the dispatch price and block heat rates is similar to generator bid price. The
difference being that the generator bid price can be any arbitrary number that does
not have to be based on the dispatch price (or fuel cost). This difference introduces a
whole new dimension of gaming, market power and manipulation issues in regards to
quoting the best generator bid price. These gaming issues are currently investigated

by the industry to develop appropriate policies and business practices that curb such

7In the state and federal filings by electric utilities, certain justifications of expected future
electricity prices are based on the historical system lambda data.
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opportunities.

Another relevant issue at unit level is regarding multiple dispatch (or bid) prices
and option to switch dispatch prices intra day. This option, now practically free,
gives tremendous flexibility to take advantage of any arbitrage opportunities that
arise during the day besides allowing efficient management of fuel exposure. The bid
based system may impose limitations on the exercise of this free option or impose a
fee or both. However, if only one generator bid price is allowed, then the fuel exposure
may be covered by transacting in the intra day gas market.

On the financial side of the new power markets, electricity future contracts and
market indices allow the unbundling of physical and financial aspects of power trans-
actions. Power swaps and options, power basis swaps and other tools are engineered

to manage various identified risks.

1.3 Thesis Objectives

As the electric industry is preparing to embrace competition in a deregulated envi-
ronment, various strategies and tools are developed for risk management of power
generators. While majority of the tools are focused on performance over a time scale
of days to months or years, a plant owner would also be concerned with managing
the day to day risks like fuel exposure.

Table 1.1 summarizes various opportunities available and certain important fac-
tors to be considered for gas/electricity arbitrage over different time lengths. Various
combinations of these transactions can be used to build a specific strategy. For ex-
ample, a company with a long term firm pipeline capacity contract may be interested
to fully use the contracted capacity. The company might be interested in buying firm
gas long-term and utilize the pipeline capacity to sell on the daily spot market. Al-
ternatively, the company might be interested in selling firm gas + capacity long-term
while the company itself buys gas on the daily spot market to cover its positions and
needs. The end result in either case is similar to a natural gas swap.

The focus of this thesis is on the last two columns of Table 1.1. The three common
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Horizon of Interest
Year or longer | Month Inter day Intra day
I (day ahead) (hour to hour)
Buy oTC NYMEX | spot from marketers | spot from marketers
contracts contracts or end-users
Sell OTC NYMEX | spot to marketers spot to marketers or
contracts contracts end-users
Misc. | firm pipeline | futures daily market index | hourly power index
factors | capacity prices for gas, power
for seasonal long term | quoted dispatch | bid/ask convenience
consi- | storage fuel needs | prices spread
deration{ unit Market unit availability and | forced outages
maintenance | movement | weather forecasts

Table 1.1: Opportunities for Gas/Electricity Arbitrage

ways to manage fuel exposure, mentioned at the beginning of this chapter, also fall
under these two columns. The thesis develops strategies to improve on the current ad
hoc management® of fuel exposure. The thesis demonstrates that forecasting plant
dispatch is a tractable problem; a strategy based on fundamental economic principles
and simple computer models can aid the gas nomination process while reducing er-
ror. Improvement is achieved by methodically considering the opportunity costs and
convenience spreads associated with the commodity markets the BTU converter is

dealing with.

1.3.1 Strategies and Risk Management Tools for a Gas Fired

Generator

The strategy is best represented in a block diagram as in Figure 1-1. The owner of a
gas fired generator would normally procure the amount of gas expected to be burnt
day ahead in the inter day spot market. The dashed arrow represents the possibility
that the firm might have a long-term firm gas contract and might engage in selling

in the inter day market.

8The Section 1.4 discusses performance of the current methods.
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Intra Day Power
to
Pool/Market

Figure 1-1: Representation of Gas/Electricity Arbitrage

The quoted dispatch cost for each generator relative to the spot energy price
determines how much the specific unit is going to run and hence the amount of gas
burns. The BTU converter is making a profit when ever its dispatch cost is below
the spot price or the spark spread is positive. The process is illustrated through
Figure 1-2. The plot shown is of the hourly spot price for electricity. If DC,, is the
dispatch cost for the generator, ideally, the generator would be dispatched when ever
the market clearing price is above DC,,. While the dispatch cost indicates the value
of gas at hand, the spot energy price determines the payoff in the power market. The
payoff in the power market is given by £(A — dispatch cost) * MWH.

The “Spot Energy Price” or “Lambda” model is built in Chapter 2 to forecast
hourly spot prices for up to 48 hours ahead. These forecasts are used to project

unit commitment based on the heuristic “commit when pool A is greater than the
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Figure 1-2: Representation of Gas/Electricity Arbitrage

dispatch cost for the generator” or when ever the spark spread is positive and the
various operational constraints are met. In the simple case with a single dispatch
cost and no option to switch prices intra day, the projected unit dispatch would aid
in determining the amount of gas to be procured on the inter day spot market. Any
consequent fuel exposure would have to be offset by transacting in the intra day
gas market. This scenario with one dispatch cost is the subject of discussion for
Chapter 3.

Further improvement in the payoff is possible when multiple dispatch prices are
allowed and there is an option tc switch dispatch prices intra day. Changing the
dispatch price controls the unit operation and hence the volume of gas burned intra
day. Xffectively, moving the dispatch price up or down translates to volume of gas

into or out of the intra day gas market. The effect of switching to a higher or lower
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dispatch price is shown figuratively in Figure 1-3. Now it is possible to actively
take advantage of any intra day price swings by switching dispatch price to create
a under/over nomination condition and trade the resulting gas quantity for profit.
Thus it is possible to actively perform intra day gas/electricity arbitrage or control

the potential losses.

Gas -
DayAhead
Nomination

....< eynnm
//,//

Hour

/N

\\\DCJ

Hour

Gas -
DayAhead
Nomination

SMWH

DayAhead
Nomination

S'MWH
sessscsgyun

Figure 1-3: Representation of Gas/Electricity Arbitrage

When the intra day switching is unrestricted, it is possible to change to the best
dispatch price for any giver; market conditions. However, the current NEPOOL sys-
tem allows only up to three dispatch prices for each unit. Moreover, these three
prices are to be quoted by 2 A.M. the noon before. In Figure 1-2, DP,, DP, and
DP, are the three dispatch prices quoted for one day. DCj, DC,, and DC; are the
corresponding dispatch costs for the unit. The dispatch price spread can be adapted

constantly to track the bid/ask convenience spread. As discussed in Section 1.2, this
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multiple dispatch price option may be restricted in use or made available for a fee
only.

One implicit assumption made here has to do with the electricity revenues. Each
generator owner might have entered into certain committed load contracts with the
electricity consumers. The load contracts obligate the supplier to meet the demand
from the firm’s generators or otherwise. Now, when the dispatch cost is increased to
take advantage of the high intra day gas prices, the load obligation has to be met by
buying power in the market or from a power pool. The assumption then is that the
revenue generated by the load contract is approximately same as that paid to full fill
the contract. Strictly speaking, this is true only when the load contract is indexed to

the hourly electricity spot prices.

1.4 Managing the Fuel Exposure

Fuel exposure results because the firm is obligated to use all the gas nominated day
ahead while the actual usage can be different. In the current ad hoc process of gas
nomination and management, human intuition and mental models play a major role.
The current strategies employ the three methods mentioned in the beginning of this
chapter to either eliminate or reduce fuel exposure.

The discrepancy between the gas nominated and actual burns is totally eliminated
when a generator is “must-run.” With must-run, it is specified far in advance exactly
how the unit is to be committed during the day irrespective of what the dispatch
economics recommend. Then it is straight forward to procure the required amount of
fuel gas in advance. Besides, the current method to determine must-run schedule is
mostly by trial and error, and learning from the recent past mistakes. Other reasons

to must-run a generator include the following:
e limit the unit cycling, start-up costs, mechanical wear and tear etc.
e the unit could be needed for pool security and area protection

e the unit is undergoing compliance testing for emissions etc.
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However, this passive strategy does not necessarily maximize profit because the
flexibility to respond to changing economics during the day of operation is lost. The
must-run strategy is inefficient because it controls a redundant number of dispatch
variables while ignoring arbitrage opportunities to make profit or reduce losses. The
same task of offsetting the fuel exposure can be accomplished satisfactorily by con-
trolling only one variable like the dispatch price or meeting the gas needs intra day.

When the unit is marked for “economic dispatch” instead of must-run, the ac-
tual usage of gas in general differs from the amount nominated ahead of time. The
difference in quantities is covered by transacting in the intra day market. Alterna-
tively, the dispatch price for the generator is switched intra day in order to control
the number of hours the unit runs. Section 1.1.1 introduced how multiple dispatch
prices are allowed for generators. Switching to a higher dispatch price would price
the unit out of economics resulting in fewer hours of operation. Switching to a lower
dispatch price would have an opposite effect and increase the hours of operation. In
other words, the dispatch is adjusted to the nomination. At times, a combination of
intra day gas transactions and dispatch price switch is used.

After all these inethods to reduce fuel exposure, imbalances in the gas flows do
occur in practice due to various reasons such as a delay in communication between
the plant operators and fuel department that might bring the unit on-line sooner
than expected. Such imbalances between the actual gas burned and gas delivered are
cashed out at the end of each month as follows: Let the cumulative gas imbalance for
the month = (quantity delivered - quantity burned); a cash inflow equal to (imbalance
* cash-out gas price) is paid by the gas company when overnominated, where as a
cash outflow equal to (imbalance * cash-out gas price) + maximum interruptible
transportation cost is paid to the gas company when undernominated. The average
transportation cost charged is ~43 cents/MBtu of gas! The gas price used in the
cash-out is a weighted average of various published daily indices for the pipelines, gas
is transported through. This cash-out gas price calculated at the end of month can
differ from the gas price used initially in calculating the dispatch price. The settlement

policy of paying for transportation cost via. the longest route when undernominated
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could be an incentive to overnominate gas.

Sometimes, associated with the firm contract of pipeline capacity and physical
delivery, the pipeline companies may be extending embedded options that allow con-
siderable daily imbalances cashed out as above. The pipeline operators can accommo-
date such imbalances, for example, by packing the pipelines higher than usual. These
options would be highly valuable for a utility that tends to think of over nomination
as a form of contingency storage and hedge against unforeseen risks. The embed-
ded options are often not formal agreements and extended as business privilege to a
large customer. Alternatively, the gas pipeline company may have factored in a price
through a high demand charge in the fixed price contract for providing such flexibil-
ity. Either way, the option is not totally free because of the differences between the
price used for settlement and actual price paid, and the transportation charges. An
explicit, guaranteed option is likely to be expensive given the tightening demands for
pipeline capacity and its seasonal nature.

Figure 1-4 is a plot showing the distribution of daily gas imbalances over the entire
year 1994. The gas delivered is the amount of gas nominated day ahead (inter day)
plus any other intra day transactions made. The plot represents the performance
and end-result of current gas management methods.

The distribution has a mean ~150 MBtu, and a standard deviation of 5200
MBtu. The pipeline operators were somewhat lax and allowed considerable daily
imbalances® probably due to the firm capacity contract with the electric company.
In case of inter day spot deals, large deviations from the nominated quantity are not
possible. Interestingly, the imbalances in the plot are weighted towards overusage
as indicated by the long tail in the bottom half, positive skewness (1.233) and high
kurtosis (5.685 + 3) statistics. The monthly imbalances are calculated from the daily
data and presented in Table 1.2. The table shows a tendency of underuse in Summer
months and overuse other times. It also represents the extent to which embedded
options were used to cover gas flow imbalances each month. Further analysis presented

in Section 3.2 suggests that there may have been profit making opportunities that

9The cash-out gas price data are not available to estimate the total price of imbalance option.
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Month Imbalance

(MBtu)
February 0
March 0
April -3,361
May -10,441
June -20,104
July -22,116
August 33,155
September 38,342
October 16,988
November 32,065

Table 1.2: Gas Flow Imbalances by Month

were not exploited by the current system.

Of significant interest would be a comparison of the day ahead gas nomination
with daily burns. Unfortunately, the current procedures of book keeping does not
separate the day ahead nomination data from the intra day transaction data. If such
data were available, then one can look for any recurring biases in the nomination
process and create new policies to minimize such errors. For instance, if there is
a pattern or strong autocorrelation among the daily under/over nomination error
sequence and/or there is a strong correlation with the day-to-day price changes, the
nomination process would warrant scrutiny. A quick check of the final imbalances
in Figure 1-4 did not reveal any such covariances or autocorrelation. However, this
does not rule out the possibility of strong correlations in the day ahead prediction
error. Never the less, it is comforting that the intra day transactions or dispatch price

switching or combination of the both are offsetting any prediction biases.

1.5 The Gas Markets

The details of inter day and intra day gas markets, formation of gas index and storage

options for natural gas are discussed here in greater detail.
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1.5.1 The Gas Price

Ideally, Spot price in New England would be = Henry Hub'® index price 4 trans-
portation cost. But the New England price is rarely so because of the peculiarities
of local supply and demand for natural gas and the gas marketer’s profit margins.
The resulting difference in gas prices between the various index locations is referred
to as the basis differential. The basis differential is due to commodity risk as well as
transportation risk. While both risks are highly seasonal, the transportation risk is
significantly higher than commodity risk during Winter months. For example, inter-
ruptible contracts are almost unavailable during Winter when the capacity is always
used. It may happen that gas is available but transportation is not possible and vice
versa. For particular locations, these basis differentials can result in large bid/ask
convenience spread as further discussed in Section 1.5.2.

In order to mitigate some of these risks, the utility may sometimes enter into long
term firm pipeline capacity contracts. In this case, the utility would buy gas at the
well head and use the contracted pipe line capacity to transport the gas. Then the

gas price would be:

Gas price (§/ MBtu) = commodity price + demand charge +
fuel charge + other O&M associated costs

Commodity price (§/MCFD!!) is a charge determined at the well head. Most
commonly, this is a fixed price for each month. Demand charge,also a fixed amount,
is the cost of using pipeline capacity. The pipelines use compressors to maintain
pressures that support gas flows. The fuc' charge is accrued due to compressor’s use
of the gas transported as its fuel. Alternatively, gas and pipeline capacity n be

purchased or sold on the spot market as a bundle.

10designated delivery site for NYMEX natural gas futures
1 Million Cubic Feet per Day
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1.5.2 Inter Day, Intra Day Gas Markets, Penalty/Discount

Structure, Arbitrage and Price Impact

The inter day spot market is active with a large number of participants. Reliable
market indexes exist; one can buy or sell large quantities of spot gas inter day with
minimal or no impact on the price. On the other hand, intra day markets operate
over regions where pipeline companies can accommodate intra day gas movements.
A regional intra day gas market has fewer market players, has no published market
index, but never the less provides ample opportunities to manage fuel exposure and
arbitrage.

The high volatility of intra day gas market creates arbitrage opportunities of two
kinds. Firstly, there is a magnitude difference between the inter day and intra day
prices. This could reflect the utilities of various intra day market participants and
change in demand characteristics from day ahead to intra day at a particular location.
It is not uncommon when the intra day prices went up to as high as $12/MBtu when
the inter day spot index for the same day was only $3 or $4/MBtu. Of course, the
spot prices for the following day soared high indicative of the high forward correlation
between today’s intra day prices with tomorrow’s inter day prices.

Secondly, there is a gas convenience penalty/discount structure that reflects the
illiquid nature of the intra day market. Each day the intra day price goes up or down
or remains the same relative to the inter day price. Similarly, a fuel exposure may
occur or a perfect forecast is made and no exposure occurs. With no fuel exposure and
no price change, obviously, there is no action to be taken to realize higher profits or
reduce losses. If there is a fuel exposure, it is due to either under or over nomination.
With a fuel exposﬁfe but no change in prices, one simply off-sets the exposure by
transacting accordingly in the intra day market. Again profit is maximized. The
penalty/discount structure becomes important when there is a fuel exposure and a
price change.

The daily fuel exposure series and the inter to intra day price changes can each be
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random!?, but there can be a correlation (or dependency) between the price changes
and fuel exposure. This correlation is expected because a large proportion of natural
gas users are electricity producers, especially in Winter. Another reason for the
correlation can be the perceived price impact by a large generator operator.

When tne fuel exposure is due to undernomination (i.e. gas has to be bought to
off-set the exposure), and the price change is upwards (i.e. intra day price is higher
than the inter day price), then the gas is purchased at a premium price and the
generator owner is penalized. The day in which this happens is called a “penalty day”
or “premium day.” Perhaps the price change is downwards when the fuel exposure is
due to undernomination, then gas can be bought at a discount price and the generator
owner is making a profit. The day in which this happens is called a “discount day”
or “arbitrage day.” On a discount day, more gas is bought at a cheaper price to
produce more electricity, most likely for a profit in the electric market, thus making
a perféct gas/electricity arbitrage. Similarly, a discount day occurs when there is
overnomination and the price change is upwards; a penalty day occurs when there is
undernomination and the price change is downwards.

The final profit depends on the magnitude of price change, and the kind of days
generator sees often. If there is a price impact, it reduces the profit or even changes
an otherwise discount day to premium day provided the magnitude of price impact
is large. Similarly, multiple dispatch price option would minimize losses or change an
otherwise premium day to a discount day through dispatch price switching.

This penalty/discount structure can be understood as a bid/ask converience
spread. The convenience spread is the difference between inter and intra day prices
for gas. Each day the generator owner would be interested in either exclusively buying
or selling intra day gas. When gas is purchased, the spread is called bid spread; when
gas is sold, the spread is called ask(ed) spread. Thus on a arbitrage day, the generator
gains or enjoys the spread as a discount as if for providing the market liquidity. On a

penalty day, the generator incurs the spread as a cost for transacting in the intra day

12The forward correlation between today’s intra day prices with tomorrow’s inter day prices can
still subsist with purely random inter to intra day price changes.

27



Fuel Exposure Inter to Intra Day Price Change
Due to Upward "Downward
Undernomination | Premium or Penalty Day | Arbitrage or Discount Day
Bid spread paid Bid spread gained
Overnomination | Arbitrage or Discount Day | Premium or Penalty Day
Ask spread gained Ask spread paid

Table 1.3: Penalty/Discount Structure of Intra Day Markets

market. Hence the terminology bid/ask convenience spread. All these combinations
are represented in a matrix in Table 1.3.

Maintaining the price changes or convenience spreads as separate bid or ask spread
would allow us to analyze and arnswer questions regarding market or price impact,
symmetry of penalty/discount structure, etc. For example, it is useful to know if one
spread is wider than the other, or on average if the individual spreads are positive
or negative. Defining bid spread = (intra day bid price) - (inter day index), it is
profitable if the bid spread is negative on average. Simiiarly, defining ask spread =
(intra day ask price) - (inter day index), it is profitable if the ask spread is positive
on average. In Section 3.4.1, actual spreads are estimated from real transaction data
are used in assessing the impact of fuel exposure. These spreads are also useful in
training or adapting the strategies developed in Section 1.3 to maximize the expected
pay-offs.

The arbitrage oppertunities discussed so far are not pure arbitrage in the sense
that the same commodity is not bought cheap and sold high. Although such transac-
tions do occur, it is hard to imagine frequent opportunities like that exist in a market
of few players who are well connected in a small region. If intra day gas can be sold
at $2.5/MBtu and bought at $2/MBtu, it is a pure arbitrage opportunity irrespective
of what the inter day index is. Any such real spreads disappear quickly and are also
limited by the quantity available. One situation, such a spread can be seen is as a
price impact: When a major quantity of gas is offered for sale intra day, say due to
forced outage of the generator, the price procured for that quantity can be below the

current market price. But if the generator comes back on-line in a few hours and the
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gas has to be bought back, it may only be available at a highér price than it is sold
at. Some one else made pure arbitrage profit at the generator owner’s expense. This
is called moving the markets against oneself! Hopefully, such situations do not arise

often.

1.5.3 Storage for Natural Gas

On-site storage of natural gas fer power generation is rare and considered expensive.
Off-site Storages can be of duily or seasonal type. For New England utilities, both
seasonal and daily storages are available in NJ, PA, and TN.

Salt dome type seasonal storages typically inject/store during the cheap Summer
months and extracted during Winter. Storages are contracted similar to pipeline
capacity - firm or interruptible and are found to cost as much as $1.50/MBtu. Daily
storages are mostly used by marketers although some interruptible contracts can be
available for end users.

Another kind of gas storage is pipeline storage. Though pipeline storage sounds
attractive, it is least available when it is most needed during Winter. There is usually
no fixed demand charge for the storage capacity and is available on a first come first
served basis. Typical storage costs are 6 cents/MBtu for injection and extraction and
1 cent/MBtu per day of storage.

And finally, some industry experts consider dual-fuel and co-firing capabilities of
a generator as a form of storage. With the additional capability, one can switch fuel

or change the ratios of burns mixture to manage the quantity of fuel used.
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Chapter 2

Spot Energy Price Model

The “Spot Energy Price” or “Lambda” model is a model of system lambda, where
system lambda (denoted by 1) is the incremental cost of the next unit of generation at
this moment in time and is measured in dollars per Mega Watt Hour ($/MWH). This
number is updated every few seconds and originates from the NEPEX’s! automatic
economic dispatch system. NEPEX then calculates a single number for each hour,
from all the real-time lambdas generated during that hour, which is considered to
represent the cost of electricity for that hour. From here on, this hourly number is
referred as the “system lambda?” or simply A. NEPEX also files this A with FERC?
each year.

Figure 2-1 is a plot of actual hourly A (in $/MWH) and pool load (in MW) over a
week or 168 hours. From the definition of J, it is a function of the available generation
and load at that moment. The hourly load, of course, is a complex function of weather,
consumer characteristics, building properties etc. The cost of generation is dependent
on the participating generator’s fuel cost, unit characteristics such as heat rate curves,
ramp times, dispatchable or must take operation, scheduled, unscheduled cutages etc.

Electric utilities and power pools maintain an enormous data base of generator

characteristics, power contracts, load forecasts and other factors mentioned above.

!New England Power Exchange

2Refer to Section 2.4.1 for a discussion on limitations of this hourly A and other kinds of As used
occasionally in the industry.

3Federal Energy Regulatory Commission
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These data bases feed complex production cost models* that can simulate the eco-
nomic dispatch and estimate the hourly X. This A can be pretty good forecast provided
the inputs to the production cost model are accurate enough. However, the level of
effort necessary to update and maintain such a database is just hideous. Moreover,
detailed data as required may not be readily available for competitor’s generators.
Thus the challenge is to create a model that requires minimal maintenance,
uses factors that can be easily tracked yet produce forecasts of acceptable accuracy.
Though the literature search revealed no previous work carried out to model hourly
electricity spot prices, one can see the parallels with other fields® including stock
prices. The most recent I heard is about a company marketing neural network models
for predicting hourly spot prices. The following sections describe the model building
process in Section 2.2, discussion of various drivers of A in Section 2.1 followed by
model evaluation and testing in Section 2.3. The final section in this chapter, Sec-
tion 2.4 discusses the limitations due to various data used to build the model, and

the model itself.

2.1 Factors that Affect Lambda

Though it is tempting to include all the kiown A drivers in the model because it
produces a good fit on the historical data, a large number of input variables reduce
the forecasting power and widen the confidence band of predicted X. The minimum
factors that have a significant and direct impact on the marginal cost need to be
identified by reason, intuition, and by way of model statistics like t-stats, AIC, BIC
etc. One should be able to understand how a particular factor affects the variable
modeled, check the understanding against expert knowledge besides that it passes
the statistical tests. Such a factor will add value to the forecasts.

At a broad level, the drivers of A either fall under the demand or supply side.

The demand side factors are load and several variables that drive the load. These

4such as Polaris, ProdCost, ProSim
5There is significant amount of ongoing research to forecast hourly load; see bibliography for
some references
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are discussed in Section 2.1.1. The supply side factors include unit availability, unit

characteristics, outages etc. These are discussed in Section 2.1.2.

2.1.1 Demand Side Drivers

Looking at Figure 2-1 one can expect a high degree of correlation between the pool
load and A. The intuition is confirmed by Figure 2-2, which is a scatter plot of hourly
load and ), and the statistical estimates of covariance and cross-correlation coefficient

are given below:

Cov(A,load;) = 9.248
gy = 2.686, Oload = 4.639
Corr(\, load,) = 0.742

Weather is considered to be a prime driver of the hourly load and hence the gen-
eration cost. NEPOOLS, for example, stores over 30 years of data from 10 weather
stations. The weather is represented by raw measurements of temperature, humidity,
wind speed, cloud cover, dew point and derived variables like wind chill factor, av-
erage temperature, cold/hot Degree Days, temperature-humidity index etc. Simple
linear regression of lambda over these weather variables did not possess a significant
explanatory power.

Other factors like thermal properties of structures affect the load on a slightly
longer time scale. The thermal build-up of buildings, for example, can be captured
by a moving average of daily temperatures. However, the influence of these factors is
reflected in the actual hourly load data, and load forecasts generated by NEPEX.

One example is cloud cover — it had no significant t-stat in the simple regression
described earlier. However, some utility load models are said to use cloud cover with

a 5% weight in their models. Weather centers use cloud cover to calculate the amount

6New England Power Pool
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of Sun light(in lumens) reaching the surface of the earth. Overall, hourly pool load”

is the single variable used in actual model building.

2.1.2 Supply Side Drivers

A large number of generators of all kind, and size participate in a central economic
dispatch so that the current load can be met with the lowest cost of generation
available from the entire set of generators. There could be instances often when a
generator is running below its normal rating but the next cheapest available unit of
energy is not coming from this unit but from a different generator with competing
heat rate blocks. Although, the fine detail of unit characteristics and a myriad other
variables seem to play a role in determining the marginal cost, just as in the case of
weather driving the load, the current and past A reflect the influence of these factors.

In a large pool of generators, significant autocorrelation of the A data and a
high degree of cyclicity can be expected. Thus the complex production cost models
with hundreds of input variables 1y not be necessary to predict the day ahead
marginal costs with reasonable accuracy. A model that adaptively updates few model
parameters based on present and past A data are all that may be required. In fact
short term power marketers strike deals partly due to their intuitive understanding
of simple measures such as moving averages, trends, and expected load, unit outages.
More details on the forecasting power of such a model, and the statistics of A are
presented in the section on model building . The instances when such a model can
be inaccurate is when some thing happens suddenly with no prior indication — like
a major unit outage.

Unit outages can occur either scheduled or unscheduled. Scheduled outages are
mostly for reasons like unit maintenance or testing. An unscheduled or forced outages
occur usually because a unit trips due to a mechanical malfunction. A scheduled
outage or bringing online of a base loaded nuclear unit, say of 1000 MW, can move

the average daily A up or down by as much as $2§/MWH and remain there. A

TRefer to Section 2.4.2 for a discussion on limitations of this hourly load data
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forced outage of a major unit, on the other hand, can double or triple the hourly A
temporarily until a cheaper unit picks up the slack. The forced cutages are inherently
random which makes it impossible to model it with an hour to hour accuracy. Refer
to Section 2.4.3 for a discussion on how unit outages can be included in the model

and any limitations with the available data

35



=

: 1 1 \Vn‘ [\/J\

‘ |

| VAR AR AV
| \ Y \V v \

8

7

MY GMAYDA00 TTMAYBAMD 1BMAYOATT 1OMAYOI20 2IMAYOA00 Z2MAYOA:04
POT ——LAMBDA  — POOLLOAD

Figure 2-1: Typical hourly Lambda and pool load

36




LAMBDA

P~
=1

llll1|llll|l|ll'ljl"llllllllIlI'IOII'Illllllllllllj1llrllllIII

]

B

I | O O I |
POOLLOAD

Figure 2-2: Scatter plot of Lambda Vs. pool load

37




| Moments |

Number of observations | 8,760

Mean 19.569
Standard Deviation 4.639
Skewness 1.288

Kurtosis 4.70
Quantiles (Def=5)

Maximum 59.26
Median 18.975
Minimum 6.69
Mode 18.52

Table 2.1: Relevant statistics of hourly A in year: 1994

2.2 Model Description

The hourly system A is highly cyclical and has identifiable patterns that repeat with
day to week periodicity. Various drivers that influence A also exhibit same kind of
cyclicity. A part of the estimated spectrum of A is shown in Figure 2-3. Clearly, the
spectrum is dominated by the Period = 12 and 24 hour components. The complete
spectrum shows peaks of decreasing amplitude at hormonics of 12 hour period. Now,
Figure 2-4 is same as Figure 2-3 with the 12, 24 hour period components removed.
~There are hardly any other strong periodicities left now.

Statistics on A population are presented in Table 2.1 and Figure 2-5. The statistics
are estimated over the 8,760 data points in year 1994 and affirm the general intuition
of the short-term generation marketers that hourly A > $35/MWH is highly likely to
be an outlier; 3*the estimated standard deviation + mean is close to $35 from below.
This information is used in the one-stage model described in the model identification
Section 2.2.1. One statistic of interest can be the distribution of the hour-to-hour
changes in A. The standard deviation estimate of the hour-to-hour steps comes out
to be ~ 1.887. And almost always A > $35/MWH when ) changes more than 5.66°
from hour-to-hour. Figure 2-6 is the distribution of these AX = A — Ai—y,

85.66 = 3 * standard deviation of hour-to-hour jumps in a whole year.
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2.2.1 Model Identification and Estimation

The model is required to produce day ahead (48 hours ahead) forecasts X. Various
models for the the response series, A, were identified and tested to select the two final
models that differ in the way outliers are handled. One is a two-stage mode! where
the input series are included in two stages while the other one is a one-stage model.
The comparison of models is deferred until Section 2.3.

Both the A models are Auto Regressive Moving Average (ARMA) transfer function
noise models with other external series as inputs. The ARMA (p,q) model has a Auto
Regressive (AR) part of order p, and a Moving Average (MA) part of order q. For the
identified model, p = (1)(24) implies the A is modeled as an average value plus some
fraction of deviation from this average value 1 hour ago (recent effects), and 24 hours
ago (periodic effects), plus a random error; q = (1)(12) implies that observations 1
hour apart and 12 hours apart are correlated, so that the memory of the process is

just 12 periods. The mathematical form of the ARMA terms in the model is:

&(B)): = O(B)e, (2.1)

where A, is the response series

€ is the noise or innovation series

®(B) = (1 — ¢1B)(1 — ¢24B*') are the AR terms

O(B) = (1 — 6, B)(1 — 6,2B"?) are the MA terms

B is the lag operator i.e. § * B2X, = 6 * X,_, and

@1, 24, 01, 0,2 are the coefficient parameters

In addition to the past values of the response series (AR terms), and past errors

(MA terms), the models also use the current and past values of other input series.

Two-stage Model

Stage 1 of the two-stage model has three input series:

e current and lagged hourly pool load
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e a binary variable that is unity for weekend or holiday and zero otherwise
e a binary variable that is unity for a shoulder day (Fri, Mon) and zero otherwise

The effect of pool load on A is modeled as a linear function of the current and
past one hour lagged values of pool load along with the weekend and shoulder day

binary variables. The mathematical form of the model with the input series is:

(1—¢1B)(1—¢24 B*)A; = (10, B)(1-012B"?)es+(wi 0—w1,1 B) X1, 0 +w2 0 X2, +ws 0 Xa e
(2.2)
where X, is the hourly pool load input series

Xz, is the weekend binary variable

X3, is the shoulder day binary variable and

wy,0,W1,1;We,0,wsp are the coefficient parameters

For estimation of model parameters in Stage 1, the model uses actual hourly
load and lambda for the past seven days (168 hours). Conditional Least Squares
(CLS) method is used to estimate the model parameters that minimize the error
variance. CLS method assumes that the past unobserved errors are equal to zero.
Further details regarding the estimation algorithm can be readily found in SAS/ETS
User’s Guide or any advanced text book on time series analysis. See bibliography for
suggested references.

After Stage 1 estimation, a new input series is created using the model residual
series (residual = actual - fitted). The new binary variable takes on a value of one
whenever a calculated residual is outside 3%0,.5ig Where 0,44 is the standard deviation
of the residual distribution. When the new binary variable thus created is a non-zero
vector, i.e. some of the residuals are outside the 3 * o,.sq range, we reestimate the
model parameters in Stage 2, this time including the new input series. Otherwise, we
are ready to generate forecasts, X with the model from Stage 1. The idea is that any
residual outside the 3 * 0,.,iq band is probably due to an outlier; and the new dummy

variable marks out these outliers.
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The use of residual series for model diagnosis and the results from various tests
are presented in Section 2.3. The Stage 2 model is similar to the one discussed in
Stage 1 except for the addition of the new input series to isolate the effect of probable

outliers. The mathematical form of Stage 2 model is given by equation 2.3.

(1 - ¢1B)(1 - ¢24Bz4).\g = (1 - 013)(1 - 012312)Et + (wl,o - wuB)X,,t
twr Xzt + w3 X3y + waoXee (2.3)

where Xy, is the dummy variable indicating possible outliers and

wq 0 is the coeflicient parameter

One-stage Model

This model is essentially same as the Stage 1 of the two-stage model with the ad-
dition of another binary variable. This new binary variable takes on a value of one
whenever A > $35/MWH?®. Thus the mathematical form of one-stage model is same
as equation 2.3.

Another one-stage model was also tested where the outlier binary variable is unity
whenever the hour-to-hour jump in A is more than 5.66. This model, however, was

outperformed by the above two models.

2.2.2 Generating Forecasts

To generate ex-ante forecasts of the response series, A, say for up to 48 hours ahead,
‘we need to provide day ahead forecasts of the various input series to the model. The
NEPEX hourly load forecasts can be used for the pool load series. The weekend and
shoulder day series are deterministic and can be generated easily. The final input
series which flags possible outliers is set to zero for the prediction period. The 48

hour forecasts, and forecast confidence intervals are generated using CLS method.

9Refer to the beginning of Section 2.2 on why $35/MWH is chosen

41



Forecasts for periods greater than 48 hours can be generated but the reliability
will deteriorate rapidly. On the other hand, if the parameter estimation is carried out
on fewer than seven days (188 hours) of actual data, forecast accuracy can decrease

as well. Now we turn to the model evaluation and diagnostic checking using various

criteria.
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2.3 Diagnostic Checking and Model Testing

While model selection criteria like AIC and BIC help in determining the most ap-
propriate values of p and q, there is still a good deal of discretion and experience
of the model builder are necessary for model identification. AIC and BIC contain a
penalty factor for the number of estimated parameters which discourages over-fitting.
However, they do not provide guidelines on how to identify the actual AR or MA
factors. Identification of these factors is done using the ACC, PAC, IAC plots, spec-
tral analysis, t-statistics, guessing and basic understanding of the underlying process.
These steps were outlined in Section 2.2 earlier.

Two other important diagnostic checks are discussed here in Sections 2.3.1 and
2.3.2. One test makes use of the the model residuals calculated as residual error =
actual - fitted. The other utilizes the forecasts generated ex-post!®. The forecast or
prediction error is calculated as error = actual - (ex-post forecast) and should not to
be confused with residual error. More than a diagnostic check, the ex-post forecast

method is used to choose between alternative models.

2.3.1 Residual Tests

If the fitted model is adequate, the calculated residual series must be like a structure-

less white noise process. This implies that

1. the mean of the residuals should be close to zero,
2. the variance of the residuals should be approximately constant, and

3. the autocorrelations of the residuals should be negligible

These above conditions are tested and the results are shown in the following several
diagrams. For each day of forecast in year 1994, mean and standard deviation of the
model residuals are estimated. Figure 2-7 depicts the distribution of the estimated
means for the one-stage model, summary statistics of the means series for both the

models are presented in Table 2.2.

19forecasts of historical data that can be verified against the actuals
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- Moments
One-Stage Mode' | Two-Stage Model
Number of observations 357 357
Mean -0.0027 0.0025
Standard Deviation 0.039 0.038
Skewness 0.213 0.202
Kurtosis 3.246 | 3.940
Quantiles (Def=5) -,
Maximum 0.157 0.157
Median -0.002 -0.003
Minimum -0.147 -0.189
Mode -0.037 -0.039

Table 2.2: Relevant statistics for Distribution of Means of Model Residuals

Figure 2-8 depicts the distribution of the estimated standard deviation for the
one-stage model, Table 2.3 gives the summary statistics of the standard deviation
series for both the models. One-stage model shows slightly better stability. As will
be shown in the following Section 2.3.2, the performance is only slightly better.

The final Figure 2-9 is the autocorrelation plot of one sample residual series. It is

nice to see that the residual series is almost white noise indicating a good model fit.

2.3.2 Ex-post Forecasts

'The ex-post forecasting power of a model is one of the major criteria in choosing
between the alternative models. Day ahead (up to 48 hours ahead) forecasts of A
are generated for 357 days in the year 1994!!. Then the 48 hours ahead forecasts are
separated into 0 to 24 hours ahead and 24 to 48 hours ahead sets. The 0 to 24 hours
ahead forecasts are referred to as Day-1 forecasts, and 24 to 48 hours ahead forecasts
are referred to as Day-2 forecasts.

The following Figures 2-10, 2-11, and 2-12 show the hourly plots of actual A,
predicted A, and pool load for three selected days in 1994 from the final model.
Figure 2-10 is predicted ) for Day-1 or the following 24 hours while Figures 2-11,

g total of 8,568 hours

48



L Moments !
One-Stage Model | Two-Stage Model |
Number of observations 357 357
Mean 1.286 1.381
Standard Deviation 0.376 0.494
Skewness 0.854 1.004
Kurtosis 0.275 0.519
Probability the
distribution is Normal £§43 ]
Quantiles (Def=5) ]
Maximum 2.573 291
Median 1.221 1.275
Minimum 0.565 0.565
Mode 2.482 0.791

Table 2.3:

uals

Relevant statistics for Distribution of Standard Deviation of Model Resid-

Prediction Power

Forecast Period

One-stage Model

Two-stzge Model

Day-1 Day-2 | Day-1 Day-2
% of time |A — A] < $1/MWH | 56.20 52.27 | 56.10 51.84
% of time |A — A| < $2/MWH | 76.15 72.13 | 76.02 71.83

and 2-12 show the Day-2 or day ahead predictions. Plots like these give a visual clue

on the performance of various models. Further reference is made to these figures in

Table 2.4: Prediction Power of A Models Compared

Section 2.4.

On a macro level, one can look at the distribution of prediction errors for all the

8,568 hours. Figures 2-13 and 2-14 show such distributions for the one-stage model.

The predictive power of both these models is compared in Table 2.3.2.
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2.4 Conclusions

The A model turned out elegant, simple and as demonstrated through application to
generator dispatch in the following chapter, the prediction power is quite satisfactory.
To appreciate the model performance it is important to understand its limitations as
well. While some frailty can be attributed to the various data input or lack of key
data, certain errors point to other advanced modeling techniques which might further
improve the forecasting performance.

For example, in Figure 2-11 there is an upward drift in the pool load indicative
of unstationarity, while hourly A is showing a high variance as like in Figure 2-12.
Though the trend is reflected in the day ahead forecasts, the volatility of lambda is

poorly predicted. Broadly speaking, the reasons can be:
e enough information is not input to explain the variance and/or
e ARMA model’s assumptions of constant variance and mean are violated

In order to better capture the volatile behavior of A, a higher sampling rate can be
tried. Since A is available more frequently than once every hour, taking more samples
per hour might provide the necessary information. However, at times X itself may not
a reliable indicator of the true market value of electricity. These issues are addressed
in Section 2.4.1.

Other major problem is due to lack of hourly available capacity or unit outage
data that can bear significant impact, at least transiently, on the hourly operation
and hence the A\. This is the topic of discussion for Section 2.4.3. Finally, the pool
load data has its own peculiarities as discussed in Section 2.4.2.

Turning to statistical properties, the bursts of high volatility can be indicative of
swithching regimes or bubbles. Such variance shifts do cause problems for param-
eter estimation and subsequent forecasting. A class of models in time series called
GARCH (Generalized Autoregressive Conditionally Heteroscedastic) models are imost
appropriate to handle when variance is changing with time or is a function of another

time series. These are advanced models and are not tried to model lambda so far.
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2.4.1 Limitations of System Lambda and Other Lambdas

In general, the hourly system lambda is accepted to represent the marginal cost of
generation for that hour. However, it is necessary to know the limitations of this sys-
tem X. The limitations arise because not all the generators take part in the automatic
economic dispatch run by NEPEX. In general thermal units with Automatic Genera-
tion Control (AGC) mechanism and those units marked for automatic dispatch by the
pool participate in the economic dispatch. Units not marked for automatic dispatch
include those undergoing various tests, and the generators that are “must run.” Must
run units run according to a specific schedule set by the generator’s owner, usually
because the owner believes it is more profitable to do so. Then there are peaking units
that are manually dispatched during the peak hours of demand. These peakers are
typically Internal Combustion Units (ICU) with fast start up and shut down times
and run on diesel oil. When these expensive ICUs (with incremental cost as high as
$100 per MWH) are manually dispatched, the system A is not updated. This means
the system A errs to the low side.

Another situation when the A data are unreliable is during periods of capacity
deficiency when the pool is unable to carry the full level of operating reserves dictated
by the reliability criteria. In that situation NEPEX follows actions laid out in what
is referred to as Operation Procedure #4'2: Actions during capacity deficiency.

The actions include running steam turbines and ICUs to their Maximum Claimed
Capability (MCC), turn on emergency generation or load management resources
and/or reducing the level of reserve. Hydro and pumped storage units are suspended
from economic dispatch and temporarily committed to the fullest extent possible.
Since the fuel cost for hydro and pumped storage is reported as zero, the current A
during OP#4 drops to zero!. Note that the ICUs are running at MCC at the same
time. MCC is above the Reserve Claimed Capability (RCC) which is usually higher
than the Normal Claimed Capability (NCC) for a generator. NCC is the capacity

rating in MW where the generator usually operates most of the time, where as MCC

120P4t4 for short
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is usually above the name plate rating and it is not recommended to operate at this
level for extended periods of time. Although OP#4 arises several times a year but
rarely, if ever, sheds load.

However, these may not be serious drawbacks for the applications considered in
this thesis. For economical dispatch of a typical gas unit, it is important to know the
cross over point when the system marginal cost exceeds the unit’s marginal cost by
a certain extent; beyond that it is profitable to run the unit and it is not essential to
accurately know if the system A is $80 or $85 per MWH. This becomes more evident
in the later chapters where the applications are discussed in detail.

Several other s do exist and they represent a snap shot in time as opposed to
the one average number for the whole hour. For example, a hourly lammbda could
be the first lambda calculated every hour for each hour of the day. A very different
kind of A called “Ownload Lambda” is also calculated by each participating member
of NEPOOL. Although this number is important for the operation of power pools
today, it is irrelevant for the thesis purpose. The “Ownload Lambda” is a simulated
cost of last incremental unit for each individual member of the pool when the member
operates their own generators (using a production cost model on a computer) as if they
did not belong to the NEPOOL. In the future world of hourly bidding with a market
clearing price, the settlement of costs will not require the simulation of “Ownload
Lambda.” The hourly system lambda is expected to be highly representative of the
market clearing price in a bid based system and hence the spot energy price. In fact,
in the state and federal filings by electric utilities, certain justifications of expected

future electricity prices are based on the historical system lambda data.

2.4.2 Limitations of Hourly Pool Load

The actual load data'? is gathered real time by NEPEX. In the event of OP#4, the
load data are reconstructed off-line adjusting for any load reductions. A potential

limitation is that there is no understanding of if there is a time lag between the A;

133150 referred to as Log 9 data in the industry
14described in Section 2.4.1
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and load;,.

The model uses the 24 and 48 hour ahead pool load forecasts as generated by
NEPEX. The forecasts are made available around 8 A.M. each day followed by in-
frequent updates of the day ahead (or 48-hours ahead) forecasts during the current
day. The load foreacsts are generated on a “same weather day” principle. NEPEX
collected load curves from the past three years in a book and classified them accord-
ing to weather peculiarities. Up on receiving the latest weather forecast, human eyes
look for similar patterns in weather in the book and recognizes a same weather day
to generate a load forecast. This is how forecasts were done since several years and
used for calculating the net generation requirements, economic dispatch and system
operation.

The limitation is that the historical daily load forecast data are only saved as a
hard copy. This data was never entered electronically and hence the ex-post model
testing used the actual load data in place of forecasts. A reduction in the ex-ante
forecasting power of the model can hence be expected. This increase in error reflects
the inaccuracy of the hourly load forecast. Further discussion on this limitation is

presented while the model applications are considered.

2.4.3 Unit Outages and Limitations of Generation Data

The outage information can be captured in many ways. One approach is to track
the aggregated hourly generation by fuel type. The actual hourly generation (MWH)
data are available from NEPEX directly but the problem could be with forecasting
generation. Also, Phase II Hydro Quebec energy is not reflected in the generation
data by fuel type because NEPEX does not consider this as generation. NEPEX,
however, calculates the hourly net generation requirement as = (Forecasted load) -
(tie line inflows) - (pumped storage generation).

Another approach is to closely track the availability of certain major units or ag-
gregate capacity (MW) data by fuel type and input to the model. Aithough capacity
and generation data are quite similar, tracking MW data could be more intuitive to

those using the model because in day to day operation people think in terms of ca-
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pacity (MW) lost as opposed to generation (MWH) lost. The unit availability data'®
is collected via four satellite links for billing purposes. The Annual Maintenance
Schedule lists the planned outages of all major units while actual and forced outages
are reported in the daily “Morning Report”. Thus a outage factor called Unavailable
MW can be calculated as = Planned outage + Forced.

The outage factor, although considered as essential, is not included in the final
model because the historical data by fuel type, required for model building and testing,

could not be obtained in time.

153]50 referred io as Limitation and Constraint data
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Figure 2-9: Autocorrlation plot of a Sample Residual Series
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Figure 2-10: Predicted A, Actual ), and Pool Load
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Day 2 Lambda Forecast Performance for Year: 1934
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Chapter 3

Generator Dispatch and Fuel
Exposure Management with a

Single Dispatch Price

Fuel exposure results when there is a discrepancy between the gas nominated for
burns ahead of time and the actual usage during the day. Then Sections 1.2 and 1.3
discussed the implications of the bid based unit dispatch system and the possibility
that only one bid price may be allowed per generator. With a single dispatch price,
any resulting fuel exposure has to be off-set by transacting in the intra day gas market
unlike in the current system! with additional options to adjust the generator dispatch
to match fuel availability.

In this chapter, the forecasts generated by the A model are used to project the
hourly dispatch of a gas unit. The generator dispatch algorithm which uses only one
dispatch price per generator is developed in Section 3.1. Section 3.4 immediately
builds on the analysis to estimate the amount of day ahead fuel usage and develops
a fuel exposure management strategy.

The bigger goal here is to maximize the overall profitability of the BTU converter.

Managing the fuel exposure alone with out consideration to the economic value of us-

1The current strategies and the resulting performance in managing fuel exposure are reviewed in
Section 1.4.
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ing the gas available at hand may result in lower profits. A comparison is to be made
between the expected payoffs in the electricity and gas markets. The analysis pre-
sented in Section 3.2 suggests that there may have been profit making opportunities
that were not exploited by the current methods of manzging fuel exposure. The final
section in this chapter discusses the problems with various data available for testing,

benchmarking the strategy, and limitations of the strategy itself.

3.1 Economic Dispatch of a generator

Forecasts of hourly A are used to project unit commitment based on the heuristic
“commit when pool )\ is greater than the marginal cost of generation?.” Of course
various operational constraints specified in tke unit’s NX-12A3 need to be met. The
unit commitment algorithm takes into account the various operational constraints
and identifies the most profitable way to run the generating unit.

Recall that A (§/MWH) represents the market value of electricity at this moment
in time while the quoted dispatch price ($/MBtu) indicates the value of gas at hand.
The dispatch price multiplied by the unit’s heat rate (MBtu/MWH) is the dispatch
cost (3/MWH) for the unit; the spark spread (§/MWH) is the difference between
A and dispatch cost. When ever the spark spread is positive, the BTU converter is
making a profit and the above heuristic would commit the unit for generation.

These considerations are incorporated into the economic dispatch? algorithm through
the equations given below. Unit characteristics such as block heat rates, operational

constraints like minimum run/shut-down times, etc. are input to the algorithm along

with the hourly A to project the optimal hourly dispatch for the unit.

e at all times, the unit to be dispatched is assumed to be either generating (in

on-state) or not generating (in off-state).

2The assumption is that hourly pool A is independent of the dispatch of the single unit under
consideration.

3Gee Section 1.5 for definition.

4ED for short
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e the unit earnings are calculated at the market clearing price or A at that instant.

The earnings in the power market are then £¥A * MWH.

e at each hour, dispatch cost® is compared against hourly X to decide either to
continue in the current state or change state i.e. keep running when (:\ - dispatch

cost) > 0 or continue in off-state when (X - dispatch cost) < 0.

e when a change of state is advised at any hour because it is economical, first
the minimum run/down times are checked. If the run/down time requirements
are satisfied, the economics of changing state is evaluated over the minimum
run/down time. The unit will be committed if the profit/loss function is positive

for that period or else the unit is recommended for shut down.

profit/loss® = E?=1(5\,+_,- — dispcost, ;)

e the algorithm assumes no start-up cost for unit dispatch. This cost is recovered
at the end from unit earnings for all the start-ups incurred. Typical cost per

start-up includes a fuel expense of =400 MBtu and a fixed $ amount of = $5,600.

e when recommended for shut down or going to off-state, the losses incurred to
keep the unit operational at minimum-load until the next on-state are compared
with start-up cost. The unit is marked for shut down only when the start-up cost
is less than the accumulated losses of unit running at minimum load; otherwise

the unit is committed for minimum load operation.

e the unit reaches full load level in no time i.e. unit ramp up/down times’ are

ignored for simplicity.

e Summer capacity rating in effect from June 1 to September 30 and a higher

Winter capacity rating rest of the time.

Sdispatch cost ($/MWH) = FLAHR (MBtu/MWH) * Fuel Price (3/MBtu).
5Here, the minimum run time = minimum down time = 4 hours
"typical ramp up/down times are 6 MW /minute
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The affects of simplifying assumptions on unit commitment are easy to understand
and is the topic of discussion for Section 3.5.2. Albeit some of the ideal assumptions,
the ED algorithm is realistic and becomes a powerful tool for fuel nomination and
performance evaluation. First the algorithm is used to simulate dispatch of a gas
unit ex-post using actual A. This back-testing accomplishes two important tasks.
One, it establishes the accuracy of the algorithm. Two, on the assumption that the
ED simulation approximates economic optimum, it provides a basis to evaluate the
performance of current strategies and determine any potential lost profits or missed
arbitrage opportunities. Any competitive firm would want to determine whether
such opportunity existed and how best to exploit it. These issues are discussed in
Section 3.2.

The day ahead unit commitment can be projected when the ED algorithm is run
with predicted ) as input. The forecasting power of the spot energy price model and
unit commitment algorithm combination is established in Section 3.3. The ex-ante
forecast of unit commitment enables to estimate the fuel usage a. ' hence ways ta

manage fuel exposure.

3.2 Economic performance of current strategies

The ED algorithm is run using the actual hourly A to project hourly dispatch of a
gas unit over 357 days of 1994. Figure 3-1 is a plot of discrepancy between the actual
and simulated ED.

The upper half or negative values result when the unit is committed by the algo-
rithm but there is no operation in actual (or unit generating at a lower load) during
that time. The lower half or positive values result when the unit is not committed in
the simulated dispatch but there is actual generation.

The error extremities at 150,165, -150 and -165 bars in the Figure 3-1, accounting

for. approximately 15% of the total error are more interesting. The error bars at

-165 and -150 result when the unit is fully committed, up to the Winter or a lower

Summer rating, in the simulated dispatch where as there is no corresponding operation
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in actual during that time. The -105 error bar (~8%) is due to unit commitment
at minimum load in the simulated dispatch, while the unit is shut down in actual.
Similarly, the -60, and -45 error bars result when the unit is fully committed in the
simulated dispatch when the actual operation is at minimum load.

The error of the -15 MW bar in the chart (=11%) can be explained by actual
generator operation at full load, to the level permitted by the ambient temperature,
below the rated capacity. The small errors, between the extremities and zero-error
bar, are largely due to the deviation of simulation output (discrete with no ramp-
times) from real output which is continuous anywhere from 0 to fuli-load. The model
does switch the rated capacity to a Winter rating during Winter, and de-rate during
Summer; further sensitivity to ambient temperature changes are ignored.

Most of the discrepancy in Figure 3-1 is due to underconmitment and might
indicate missed profit opportunities. In particular, the generator tends to be under-
committed by over 235,000 MWH. Table 3.1 presents the cash flows, and start-ups
accumulated over the 8352 hours of operation. The cash flow calculations are based

on the following assumptions:

» Actual hourly X is taken as the market price of electricity for revenue calcula-

tions. Revenue = £(A * MWH).
o Cost of generation or fuel cost = L{FLAHR® * $/MBtu x MWH).

o The recovery cost per start-up is approximated to $5,000 + (400 MBtu * 2.25
$/MBtu) = $5,900

Table 3.1 is indicating that the actual dispatch may be ignoring opportunities for
further profit from what appears to be a tendency not to dispatch the unit as much
as would be warranted by the observed spark spread. Any profit maximizing firm
would be interested to find out if the actual operation is sub-optimal compared to

the simulated ED.

8Full Load Average Heat Rate in MBtu/MWH
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Dispatch Revenue($) Cost($) | Start-ups | Start-up($) | Profit(3)
Simulated 15,371,608 | 13,157,245 51 306,900 | 1,913,463
Actual 10,640,407 | 9,025,738 117 | 690,300 | 924,369
Simulated - Actual | 4,731,201 | 4,131,507 67| -389,400 | 986,004

Table 3.1: Cash Flows for Actual and Simulated Unit Dispatch

Figure 1-4 in Section 1.4 represents the fuel exposure as a result of the ad hoc
methods now used to deal with the problem. The current analysis is pointing out
that simply trying to match gas flows alone does not necessarily result in the besi
overall economics. The gas nomination methods should systematically consider the
estimated or observed spark spread.

There are arguments to debate if the potential lost profits are result of pure sub-
optimality or mostly noise and non-existent. The reasons in favor of sub-optimal
performance are given first succeeded by those favoring unreal profits. Unfortunately,
several of the arguments are unsubstantiated since relevant data necessary to quantify
the issues are not available; a discussion on these data limitations is differed until
Section 3.5.1.

The current system allows the generator owner to change the dispatch price to a
higher or lower price intra day. This option allows one to control the unit dispatch in
order to reduce the fuel exposure and take advantage of any arbitrage opportunities
in the intra day gas and electricity markets. From figure 1-4 and relevant discussion
in Section 1.4, the electric company enjoyed an embedded option tc carry on rela-
tively large gas flow imbalances. When the pipeline operators are lax to allow daily
imbalances, even with unfavorable intra day market conditions, there is less need to
force dispatch to match gas at hand. Thus more often than not, the dispatch price is
switched in actual to take advantage of arbitrage opportunities and realize a higher
profit. The simulated dispatch, on the other hand, does not allow such option to
switch dispatch price. Thus one can expect the simulated dispatch would be less
profitable than the actual instead of the other way round.

Another peculiarity of the discrepancies in dispatch is that they tend to occur in
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bunches. This effect would be more striking when looking at the daily error plots as
in Figure 3-2 generated by summing up the hourly data of Figure 3-1. For a unit of
~170 MW capacity, a discrepancy of 3,500 MW is roughly 20 hours of operation in
one day. It is hard to brush away such deviations as due to simplification of physical
constraints such as ignoring ramp-times in the ED algorithm. It could be insightful to
study the causes for such behavior since the implications can suggest improvements
in real-time dispatch operation.

Finally, the period over which start-up cost is recovered (or amortized) can greatly
influence the unit commitment. When using ED algorithm to simulate unit dispatch,
the start-up costs are deducted in the end as shown in Table 3.1. Since shorter
periods® over which start-up costs are recovered would reduce the number of hours of
operation (and start-ups), there can be a reduction in the magnitude of undercom-
mitment. However, changing the cost recovery criteria is likely to increase potential
profits while reducing disparity in the energy generated.

Turning to counter arguments, one can propose that the simulated dispatch is
done ex-post and hence superior performance is not a surprise. Irrespective of the
applicability of this argument!? here, it is valuable to identify the reasons for such
superior performance in the back tested strategy. An argument can be made that
in real-time, one does not have the perfect foresight to trade-off start-up cost Vs.
losses incurred for minimum load operation. The ED algorithm is run with out such
a trade-off and the results still indicate undercommitment by over 112,000 MWH and
corresponding potential lost profits amount to $270,720.

Another reason for undercommitment could be that in actual operation, the unit
loading level is dependent on the ambient temperature and at times may run below
its rated capacity. From figure 3-1, most of this discrepancy is indicated by the -
15 MW bar in the chart - undernomination by ~14,000 MWH of energy. That still
leaves the ~235,000 MWH of undercommitted energy unattributed to any simplifying

assumptions.

9The current NEPOOL policy regarding the horizon of interest is given in Section 3.5.2.
10via. the popular stock phrase “past performance is no guarantee for future results.”
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The aggregation of all real time lambdas during the hour to one number may
smooth out minute variations in the generator output due to unit ramp-times, tem-
perature sensitivities etc. Certain events'! in the actual operation may not be fully
reflected by the hourly A which can cause the actual dispatch to deviate from optimal
ED. Since the real system operation can only near simulation efficiency, somc of the
potential profits can be considered as cost of real business operation.

Overall, there are strong reasons to conclude that the ED algorithm approximates
the economic optimum and thus provide a more tractable basis for comparison. In
particular, the generator tends to be undercommitted by about 235,000 MWH and

the missed profit opportunities amount to about $1 Million.

3.3 Projecting the Unit Commitment

The unit commitment algorithm is used to project the hourly dispatch of a gas unit
over 357 days of 1994. Figure 3-3 shows the distribution of error between the optimal
(simulated) and the forecasted hourly ED for day ahead hours t+25 to t+48. The
plot highlights the day ahead forecasting power of the application ~83% as given by
the 0 error bar.

Other error bars are due to forecast ervors for unit operation at full-load, minimum-
load or no-load. These are explained earlier in Section 3.2. The assumption of zero
ramp-times and operation of 2 single unit in isolation from the pool imparts a highly
modal structure to the error distribution.

Figure 3-4 shows the distribution of error between the day ahead actual and
forecasted hourly ED. From the analysis presented in Section 3.2 and by comparison
with Figure 3-1, some of the error in Figure 3-4 can be attributed to reasons, other
than forecasting accuracy, such as sub-optimal actual performance.

One can also look at forecast performance for a closer time period than day ahcad.
Figures 3-& shows the distribut.on of error between the optimal (simulated) and fore-

casted operation for up to 94 hours ahead (hours 141 to t+24). As expected, the

“iiguch as OP##4 discussed in Section 2.4
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prediction power improved to ~85%,. However, going into hours much close to the
actual, importance of hourly generation data greatly increases. Thus lacking any gen-

eration data input to the medel, jooking ahead just few hours from the actual may

demonstrated.

3.4 Forecasting Day Ahead Gas Usage

Once the day ahead unit operation is forecasted as above, it js straightforward to
estimate the amount of day ahead gas usage for nomination. The amount of fyel
burned in any hour s ~AHR * MWH where AHR is the average heat rate!? jj
MBtu/MWH for that level of loading.

Plots of error distribution between the hourly optimal 8as usage and forecasted
8as usage will be identical to Plots 3-3 or 3-4 with a change of scale from MW to
MBtu. Since the inter day gas market operates more on a daily as opposed to hourly
basis, the daily gas usage is of more interest. This daily usage can Lte aggregated
from the hourly data. Plot 3-6 shows the distribution of error between the optimal

(simulated) and predicted gas usage for day ahead!3,

option to switch dispatch prices intra day, all the fuel exposure has to be off-set by

resulting gas imbalances.

'?The block heat rates are reported in the unit’s NX-124.
3The plots are shown for electric day instead of 8 a.in. to 8 a.m. gas day. For actua) implemen-
tation, 24 hour running totals can be used to match the gas day.
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Prediction
Error
Month (MBtu)
February 7,698 |
March 5,728
April 69,350
May 68,314
June -23,822
July -52,879
August -111,896
September -9,373
October -5,584
November -42,998

Table 3.2: Prediction Error by Month

The day ahead prediction error is between +5% and +10% of the initial day
ahead nomination quantity roughly 60% and 75% of the time respectively. Specifi-
cally, 217% of the time, more than 5% of the initial nominated quantity is burned
by the (siinulated) optimal dispatch, and ~22% of the time, more than 5% of the
initial nominated quantity is left unused. Figure 3-7 shows the distribution of these
percentages.

The prediction error or the daily under/over nomination error sequence showed
no correlation with day-te-day changes in the dispatch price. However, this does not
eliminate the possibility of correlation with convenience spreads (or the inter to intra
day price change). Table 3.2 presents the aggregated prediction error by month and
is indicating some autocorrelation among the nomination error. The is confirmed by
the estimated ACC of ~30%. The following Section 3.4.1 quantifies the impact due
to such exposures.

Section 1.5.2 formulated the gas market structure in Table 1.3. If actual intra day
transaction data are available, one can readily calculate the convenience spread and
find out exactly if each day is a penalty or a discount day. Lacking such actual data,
one can consider various scenarios to grasp the possible range of fuel exposure impact

by making assumptions about the bid/ask convenience spread.
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3.4.1 Assessing the Impact of Fuel Exposure

The problem is tackled as three scenarios. The first scenario estimates the possible
bounds for fuel exposure impact by using statistics estimated from the available actual
intra day transaction data. Then recognizing the forward correlation between today’s
intra day and tomorrow’s inter day prices, the second and third scenarios make a more
realistic assessment of the fuel exposure impact.

Actual intra day transaction data i.e. the quantity and price of intra day gas are
obtained for a total of 52 days over a six month period. A volume weighted price
index is constructed from the individual transactions on each day. This intra day
index has a mean = $3.51/MBtt and a ¢ = $2.3/MBtu. Of more interest are the
characteristics of convenience spreads. The convenience spread is calculated as the
difference between the day ahead gas index for a pipeline close to the plant and the
intra day index; convenience spread = intra day index - pipeline gas index. This inter
to intra day price change series has a mean = $0.299/MBtu and a o = $1.219/MBtu.
While the volume weighted average spread is = $0.119/MBtu.

One can also estimate the bid and ask spreads by separating the intra day transac-
tion data into purchases and sales. Such calculation resulted in a volume weighted bid
spread! = $-0.243/MBtu while the volume weighted ask(ed) spread*® is = $0.366/MBtu.
Two observations can be made from these assymetric spreads. The negative ask(ed)
spread indicates that on average there are more discount days than penalty days due
to overnomination. While the positive bid spread is indicative of more penalty days
than discount days on average due to undernomination. The assymetry in magnitude
($0.24 Vs. $0.36) can be due to reasons like price impact.

Using the above data it is possible to estimate bounds for fuel exposure impact.
The worst case possibility is when all of the off-setting transactions are against the
firm i.e. all days are penalty days. The best possibility then, is when all of the
off-setting transactions are in favor i.e. all days are discount days.

Accumulated from the daily prediction errors, there is a total undernomination of

14bid spread = bid price for gas - pipeline gas index
15a5k(ed) spread = ask(ed)price for gas - pipeline gas index
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Fuel Exposure due to
Bid | Ask(ed)
Spread | Spread | Undernomination | Overnomination

Market Structure | ($) (%) (%) (%)
Symmetric 0.15 0.15 67,948 97,637
Symmetric 0.25 0.25 113,264 162,729
Asymmetric 0.10 0.20 45,305 130,183
Asymmetric 0.35 0.25 158,570 162,729

Table 3.3: Fuel Exposure Impact when All Gas Flow Imbalances are Off-set through
Intra Day Trading

453,056 MBtu and overnominatica of 650,915 MBtu of gas over the year 1994. If the
convenience spread is $0.10/MBtu'®, and say the bid and ask spreads are symmetric
then the resulting cash flows due to the fuel exposure are presented in the first row of
Table 3.3. The cash flows for other convenience spread structures are also presented
in the table. In the worst case, a cash flow equal to the sum of last two columns for
each row can be incurred as cost due to the intra day market transactions. In the best
case, the same total cash flow can be additionz! profit. Realistically, the potential
cash flow due to the exposure can be anywhere between these two extremes.

Sometimes, the pipeline companies extend embedded options that allow over/under
drawing of gas up to a certain percentage of the initial nominated quantity. If 10%
slack is allowed, then the total under and overnominations accumulated from the
daily prediction errors are 374,657 and 559,228 MBtu respectively over the year 1994.
The impact of this fuel exposure is estimated in Table 3.4.

In order to estimate a more likely impact that lies between the above bounds,
one has to be able to nail down each day as either a penalty or discount day. This
is possible with the assumption that today’s intra day price can strongly influence
tomorrow’s inter day price. Since the inter day dispatch prices are available for all
of the days in the test year, it is possible to determine, ex-post, the leading change

in the dispatch prices. In mathematical formula, the lead change is L{disprice) =

1630.10 is between the volume weighted average and raw spreads
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Fuel Exposure due to
Bid | Ask(ed)
Spread | Spread | Undernomination | Overnomination

Market Structure | ($) (%) (%) (%)
Symmetric 0.15 0.15 56,198 83,884
Symmetric 0.25 0.25 93,664 139,807
Asymmetric 0.10 0.20 37,465 111,845
Asymmetric 0.35 0.25 131,129 139,807

Table 3.4: Fuel Exposure Impact when Embedded Option Covers Up to 10% of Slack
in Gas Flow Imbalances

(disprice,,, — disprice,), where “disprice” is the dispatch price for that day, and L{.)
is the lead operator. Assuming perfect correlation, the intra day price is given by
inter day dispatch price + [sign(L(disprice)) * convenience spread], where sign(.) is
the sign operator which is negative for negative arguments and positive for positive
arguments.

In words, while the magnitude by which the intra day price moves relative to the
dispatch price is given by the convenience spread, the actual direction of movement
is determined by the sign of the lead change in the dispatch prices. The convenience
spread is positive (or the intra day price went up relative to the dispatch price for that
day) when the lead change in the dispatch price is positive. Likewise, the convenience
spread is negative (or the intra day price went down relative to the dispatch price for
that day) when the lead change in the dispatch price is negative.

For the second scenario, the convenience spread is held constant as before but the
direction of movement is determined by the sign of lead change. The resulting impact
of fuel exposure is calculated in Table 3.5. In the last row of the table, the bid and
ask spreads are set to levels observed with the actual intra day data and the resulting
fuel exposure impact is a loss of $24,614. This small loss indicates the presence of
several arbitrage or discount days.

In the final scenario, the convenience spread is not held constant but allowed
to vary in tandem with the lead change in dispatch prices. So, intra day price =

disprice + L(disprice). In other words, intra day price is set equal to lead(disprice)
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Fuel Exposure due to
Bid | Ask(ed)
Spread | Spread | Undernomination | Overnomination

Market Structure | ($) (3) (%) (%)
Symmetric 0.15 0.15 -9,485 -1,488
Symmetric 0.25 0.25 -15,809 -2,481
Asymmetric 0.10 0.20 -6,323 -1,985
Asymmetric 0.35 0.25 -22,133.41 -2,481

Table 3.5: Fuel Exposure Impact when Intra Day Price = disprice + [sign( L(disprice))
* convenience spread|

or the next day’s dispatch price. Under this scenario, the intra day price series have
a mean = $2.49/MBtu and o = $0.91/MBtu, same as the dispatch price. The fuel
exposure impact due to undernomination adds up to -$37,997, while that due to
overnomination is -$4,171, a total loss of $42,168. Again, the resulting fuel exposure
impact by using the A forecaster and unit commitment algorithm combination is
quite small! However, the higher levels of volatility observed with the actual intra
day prices can hypothetically place the fuel exposure impact anywhere with in the
bounds established in the first sceanario. At the same time, invoking the embedded

options to absorb small imbalances would further reduce the fuel exposure impact.

3.5 Conclusions

The combination of the A model and unit commitment algorithm performed well.
The analysis suggests the current ad hoc manner of managing fuel exposure may
have resulted in actual dispatch that ignored opportunities for further profit. The
potential lost profits of ~$1 Million from Table 3.1, may *as well be considered to
represent the fuel exposure impact due to current practices. Then, quite a significant
improvement is demonstrated that almost all of these potential profits sans the fuel

exposure impact of few thousands!? is recoverable by employing the strategies and

1733 estimated in the previous Section 3.4.1
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tools developed here. This improvement is possible by methodically considering the
opportunity costs and convenience spreads associated with the commodity markets
the BTU converter is dealing with.

The limitations with various data or lack of it are mentioned in various parts of
the chapter. Section 3.5.1 summarizes the data problems in cne place. Several of the
implications of the assumptions made for the ED algorithm are already highlighted in
Section 3.2. These and other new issues are discussed in Section 3.5.2 in more detail
and possible causes are identified. Then Section 3.5.3 discusses probable reasons for

gas usage forecast errors.

3.5.1 Limitations of Unit Dispatch and Gas Data

The current system allows multiple dispatch prices to be quoted for a generator and
there is an option to switch among the quoted prices intra day. When the dispatch
price is changed to a lower or higher price, the unit dispatch and hence the generator
output are affected. Although the hourly generation data are recorded, no record of
the intra day change in the dispatch price is kept. Of course, the actual amount of
gas burnt is a function of generator operation. Hence, the generation data and burns
data are not appropriate for comparison with single dispatch price method.
Additionally, the inter day gas nomination data are not recorded separately, the
total gas delivered includes the amount of gas nominated day ahead (inter day) plus
any other intra day transactions made. Since the goal here is to improve the day ahead
predictions, the gas data as collected is not useful unless the two data are separated.
Also, keeping the intra day data separate would allow calculation of convenience

premiums.

3.5.2 Implications of Simplifying Assumptions for the Eco-
nomic Dispatch Algorithm

The algorithm assumes instant change in the loading level of a generator i.e. the gen-

erator is either not loaded (off-state) or can reach any of the pre-defined loading blocks
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in no time. The newer units typically have response rates of several MW /minute and
can reach full-load capacity in less than a half hour. While the assumption is not too
simplifying at hourly level, zero ramp-times and block loading level imparts discrete
states for the generator output while the actual output is more continuous.

Another reason that contributes to the finite state output, hence the highly modal
error structure in plots such as Figure 3-3, has to do with operating a single unit in
isolation from the pool. With only one unit under consideration, the next cheapest
incremental block of capacity available is going to be from the one unit itself. Whereas
with several units in the pool, the next block of capacity to be committed will be
the cheapest block across all the units in the pool. Though it sounds serious, it
is not an over simplification unless there are several similar units in the pool with
incremental heat rates (and fuel price) close enough to cause one unit to run below
full-load capacity. Thus we will see the unit will be either on at full-load (where it is
cheapest) or off at zero or minimum-load when trading-off with start-up cost.

Some of the simplifying assumptions, like start-up cost recovery or amortization,
can be relaxed. Just like start-up cost is compared to minimum-load operation when
recommended for shut-down, the recovery of start-up cost is critical when going to
on-state. The length of time period over which start-up cost needs to be recovered can
influence the economics of when to turn the unit on. As an extreme example, if the
policy is to recover all the start-up costs with in the first hour of operation, then a 170
MW unit with a start-up cost of $5,900 would be committed for generation whenever
the spark spread is greater than $35 + dispatch cost. There are probably a few on-
peak hours that satisfy such a constraint. While start-up cost amortization would
reduce the number of hours of operation (and start-ups) and hence undercommitment
discrepancy, further analysis is warranted to find out the best recovery period that
maximizes net profit. Currently, NEPOOL performs unit commitment on a day by
day basis using their Optimized Daily Forecast (ODF) algorithm. NEPOOL’s ODF
accepts pumped storage and hydro schedules and looks at 24 hour periods (one day-
ahead) for thermal unit commitment.

Further improvement in the ED projections could be possible by improving the

78



forecast accuracy of hourly X itself. Absolute prediction accuracy (as shown by Plots
3-5 and 3-3) close to 100% could be achieved by making the A model robust to mean
and variance changes in hourly A. The heteroscedastic nature of A causes the errors
to occur in bunches and, if not taken care of, could potentially throw an aggregated
forecast (like daily totals calculated from hourly data) far off. This is the reason for
decrease in the prediction power when comparing the hourly unit commitment plot 3-3

with the daily gas usage plot 3-6. These issues are also discussed in Section 2.4.

3.5.3 Limitations for Forecasting Gas Usage

The hourly plots of pool load, actual and predicted A are scrutinized for periods
including those days when the day ahead gas usage forecast error is extreme. One of
the most plausible reason for the extreme errors seems to be lacking any generation
input to the model. Actions such as peak shaving with hydro and/or forced outages
often alter the ED conditions substantially thus causing the generator to run much
different than anticipated. A major capacity loss intra day, such as a nuclear reactor
outage, can can double or triple the hourly A transiently until a cheaper unit picks up
the slack. It can also raise the daily average A by by as much as $2/MWH until the
base capacity is restored. Events such as this would result in day-ahead prediction
errors that persist for at least two days in a row.

At least one extreme error is found due to an incorrect data point (outlier) in the
hourly pool load data. Although, the reason for forecast error is now obvious, this
does suggest the need to incorporate routine checks for outliers in the data before

input to the model.



Error (MW)

Emor = mw rl - mw ed

mw H: actual houly generation
mw ed: opfimum (simulated) hourly generation
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Figure 3-1: Distribution of (Actual - Optimum) Hourly Generation
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Error (MW)

Eror = mw Al - mw ed
mw 1t actual daily generation
mw ed: optimum (Simulated) daily generation
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Figure 3-2: Distribution of (Actual - Optimum) Daily Generation
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Error {(MW)

Emor = mw ed - mw 62

mw ed: optimum (simulated) hourly genevation
mw 2j: Day-2 forecast of hourly generation
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Figure 3-3: Distribution of Prediction Error for Day Ahead Generation
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Emor = mwrl - mw &
mw 1i: actual hourly generation
i d2: Day-2 forecast o hourly generation
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Figure 3-4: Distribution of Prediction Error for Day Ahead When Compared to
Actual Generation
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Emor = mwod - mw di]

mw ed: optimum (simulated) houry generation

mw dij: Day-1 forecast of hourly generation
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Figure 3-5: Distribution of Prediction Error for Generation up to 24 Hcurs Ahead
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Error (MBtw)

Enor = g3 ¢d - g3 &
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Figure 3-6: Distribution of Prediction Error for Day Ahcad Gas Usage

85



Enor = {gs ed - gs d2igs

g8 ed: gas used in opimal generation (electric day)
g3 d2): Day-2 forecast of gas usage (electic day)
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Figure 3-7: Distribution of Prediction Error as a % of Day Ahead Nomination
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Appendix A

Tables of Statistics for Various

Distribuitons
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| Moments
Number of observations | 8,759
Mean 0.0004
Standard Deviation 1.887
Skewness 0.737
Kurtosis 18.19

‘ Quantiles (Def=5) |
Maximum o 25.34 |
Median -0.07
Minimum -17.14
Mode 0

Table A.1: Relevant statistics of AX = A, — A

_ Moments |
Forecast Period Day-1 | Day-2
Number of observations 8,568 8,520
Mean 0.064 0.078
Standard Deviation 2.710 2.927
Skewness 1.996 1.70
Kurtosis 15.822 | 12.866

Probability the
distribution is Normal 0.089 0.077

Quantiles (Def=5)

Maximum 35.30 | 34.610
Median -0.048 | -0.022
Minimum -12.224 | -10.749
Mode -12.224 | -10.749

Table A.2: Statistics of Interest for One-Stage Model
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| Moments

Forecast Period Day-1 | Day-2
Number of observations | 8,544 | 8,472
Mean 0.045 0.019
Standard Deviation 2.734 2.848
Skewness 1.853 1.334
Kurtosis 14.823 | 10.474

Probability the
distribution is Normal 0.087 0.068

Quantiles (Def=5)

Maximum 35.032 | 34.983
Median -0.044 | -0.043
Minimum -12.309 | -10.725
Mode -12.309 | -10.725

Table A.3: Statistics of Interest for Two-Stage Model

Moments
Number of observations 8,328
Mean -28.324
Standard Deviation 67.171
Skewness -0.599
Kurtosis 0.720

Probability the
distribution is Normal 0.301

Quantiles (Def=5)

Maximam 171
Median -0.08
Minimum -171
Mode 0

Table A.4: Relevant Statistics for Distribution of (Actual - Optimum) Hourly Gen-
eration
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Moments |

Number of observations 347
Mean -680
Standard Deviation 1,236
Skewness -0.707
Kurtosis 0.855

Probability the
distribution is Normal 0.861
Quantiles (Def=5)

Maximum 2,749
Median -164
Minimum -3,834
Mode 0

Table A.5: Relevant Statistics for Distribution of (Actual - Optimum) Daily Gener-
ation

Moments
Number of observations | 8,328
Mean -2.807
Standard Deviation 46.514
Skewness -0.216
Kurtosis 7.176

Probability the
distribution is Normal 0.426

Quantiles (Def=5)

Maximum 171
Median -0.0
Minimum -171
Mode 0

Table A.6: Relevant Statistics for Distribution of Prediction Error for Day Ahead
Generation
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Moments

Number of observations 347
Mean -570
Standard Deviation 6,441
Skewness -0.929
Kurtosis 7.794
Probability the

distribution is Normal 0.77

Quantiles (Def=5)

Maximum 28,696
Median 0
Minimum -34,370
Mode 0

Table A.7: Relevant Statistics for Distribution of Prediction Error for Day Ahead
Gas Usage
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