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Abstract

In this thesis, I aim to build an accurate fine-grained retail product recognition sys-
tem for improving customer in-store shopping experience. To achieve high accuracy, I
developed a two-phase visual recognition scheme to identify the viewed retail product
by verifying different types of visual features. The proposed scheme is robust enough
to distinguish visually similar products in the tests. However, the computation cost
of this scheme increases as the database scale becomes larger since it needs to verify
all the products in the database. To improve the computation efficiency, my sys-
tem integrates RFID as a second data source. By attaching an RFID tag to each
product, the RFID reader is able to capture the identity information of surrounding
products. The detection results can help reduce the verification scope from the whole
database to the detected products only. Hence computation cost is saved. In the ex-
periments, I first tested the recognition accuracy of my visual recognition scheme on
a database containing visually similar products for different viewing angles, and my
scheme achieved over 97.92% recognition accuracy for horizontal viewpoint variations
of less than 30 degree. I then experimentally measured the computation cost of both
the original system and the RFID-enhanced system. The computation cost is the
processing time to recognize a target product. The RFID-enhanced system speeds up
system performance dramatically when the scale of detected surrounding products is
small.

Thesis Supervisor: Sanjay E. Sarma
Title: Professor
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Chapter 1

Introduction

1.1 Motivation

Online shopping has revolutionized today's retail industry, and become more and

more prevalent. In the meantime, brick-and-mortar shopping has developed relatively

slowly. In many situations, in-store customers cannot confidently decide which item

to purchase like online shopping, which provides customers with sufficiently detailed

information and comparison analysis. Imagine traditional brick-and-mortar shopping

could take advantage of online shopping: it would be much easier for customers to find

the most suitable products and make buying decisions satisfactorily. The improved

shopping experience could increase sales revenues of retailers as well.

Inspired by this, I came up with a visual recognition solution for intelligent in-

store shopping systems. When shopping in a brick-and-mortar store, customers need

to point a phone camera towards the aisle. Then the system can automatically

recognize the product being viewed, and display all its related information, such

as its daily sales, customer reviews, coupon availability and comparison analysis with

other similar products. Such product recognition system and the improved in-store

shopping experience can drive the development of brick-and-mortar shopping.

13



1.2 Difficulties of retail product recognition

The aforementioned scenario shows the potential of intelligent in-store shopping sys-

tems for retail industry, but, to our knowledge, no such system has been developed

successfully. To build such a system, different types of technologies for database

management and retail product recognition are required. For database management,

researchers and scientists have developed leading-edge technologies for online shop-

ping systems, and we can take advantage of these techniques for in-store shopping

systems. For product recognition, even though object recognition is a well-established

problem in computer vision community, many factors make it still a difficult task for

various applications. I will summarize three major difficulties below.

First, the fine-grained product recognition identifies each specific item. Many

retail products under the same brand usually have similar visual appearance except

for some detailed features, such as characters and digits. However, general-purpose

object recognition algorithms cannot reliably distinguish products with similar visual

appearance. The visual similarity increases the difficulty of fine-grained product

recognition.

Second, robust object recognition algorithms are usually computationally expen-

sive due to their complexity. These algorithms compute and compare different types

of features between the product being viewed and the products in the database. De-

tection and extraction of different types of features involves significant computation,

which aggravates difficulties for real-time applications.

Third, computation cost varies along with the database scale. To recognize the

product being viewed, a system needs to verify all the products in the database.

Nowadays, a typical supermarket carries more than 40,000 different products on av-

erage 19]. Working with a huge database requires a large amount of computation

resources.

14



1.3 My solutions to retail product recognition

This thesis explores the engineering behind a prototype system that can recognize re-

tail products in an accurate and quick fashion. The ability to accurately and quickly

recognize products will facilitate the development of intelligent in-store shopping sys-

tems. In particular, I focus on the following aspects of our system and make contri-

butions.

First, I propose a method to distinguish similar looking products by focusing on

the detailed features that are significantly different among them. Such detailed fea-

tures serve as the identification marks of products, so I call them signature patterns.

My system locates and verifies the signature patterns by augmented normalized cross-

correlation and Support Vector Machine (SVM), respectively. The visual recognition

scheme that I developed makes normalized cross-correlation robust to geometric trans-

formation variation, and SVM robust to illumination variation.

Second, to increase computation efficiency, I designed a two-phase scheme to rec-

ognize the viewed product. In the first phase, I compare the general features between

the captured image and the candidates. Only the candidates with similar visual

appearance as the product being viewed can enter the second phase. Not all the

candidates can enter the second phase, so that computation efficiency is improved.,

In the second phase, I verify the signature patterns among similar looking products

for accurate recognition.

Third, I integrated RFID technology to reduce the verification scope in the database.

In our application scenario, I attached one passive RFID tag to each registered prod-

uct and mounted a camera onto the patch antenna of an RFID reader. The RFID

reader detects surrounding tagged products and passes the detection results to the

server. The server only verifies the detected products instead of the whole database to

identify the viewed product, which saves computation cost. One thing worth noting

is that we cannot rely only on RFID for product recognition, because RFID is not

able to precisely locate the tagged products.

15
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1.4 Other applications of product recognition

A well-performed retail product recognition scheme can be beneficial to other appli-

cations as well. For example, a product recognition system can benefit retailers. To

maximize sales, retailers place products in a way that matches the buying patterns

of customers. This layout is called planogram. However, verifying that the actual

products on shelves match planogram is time-consuming and laborious, so it is not

done frequently. A product recognition system can automate the planogram verifica-

tion process. Further, such a system can also help retailers detect out-of-stock and

misplaced products, so that retailers can restock and rearrange products properly to

avoid customer dissatisfaction and potential sales loss. Furthermore, a product recog-

nition system can improve the shopping experience of visually impaired individuals.

Today, 285 million people worldwide are visually impaired, and 90% of them live in

developing countries [31], which do not regularly provide accommodations. The visu-

ally impaired have to rely on sighted people to help them with their daily activities

like shopping. A visual recognition system could provide a low-cost way to help them

collect items on their shopping lists independently.

1.5 Summary

I first described an application scenario of intelligent in-store shopping systems, and

then discussed the main technical difficulties to develop such intelligent shopping

systems. After that, I summarized the main contributions of my work by dealing

with these difficulties, followed by other application scenarios of a product recognition

system.

To improve computation efficiency, I chose to use RFID to prune the search,

but this is not the only option. Some other techniques are also applicable for this

purpose. For example, a system can first use indoor location, and only verify the

viewing planogram instead of the whole database. The reasons why I choose RFID

are that it is a low-cost solution, and easy to implement.

16



The remainder of this thesis will cover more details about our RFID-based visual

object recognition system. Chapter 2 will discuss related work on object recognition.

Chapter 3 will describe the structure of our system. Chapter 4 will show a series of

tests and their corresponding results. Chapter 5 will present the final conclusions and

future work.
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Chapter 2

Related work

2.1 General-purpose object recognition techniques

Object recognition is a well-established problem, and computer vision researchers have

developed a number of algorithms for recognition tasks. Feature-based algorithms are

the most fundamental algorithms. They describe the appearance of an image by a set

of feature vectors. Implementation of feature-based algorithms generally includes two

steps. The first step is to detect the points that are scale-invariant within an image,

called keypoints. The second step is to compute a vector to represent the local visual

appearance around each keypoint by using the gradients of its neighboring region.

The keypoints and their corresponding feature vectors form the feature sets. The

basic steps of calculating image feature sets are shown in Figure 2-1.

Different feature-based algorithms have different approaches to extracting key-

points and computing feature vectors. Popular feature-based algorithms are Scale-

Invariant Feature Transform (SIFT) 139], Speeded-Up Robust Features (SURF) 112],
Oriented FAST and Rotated BRIEF (ORB) 141], Binary Robust Invariant Scalable

Keypoints (BRISK) [37], and Fast REtinA Keypoint (FREAK) [11]. A summary of

the key techniques of popular algorithms and their performance are shown in Table

2.1 and Table 2.2, respectively.

Based on the feature-based algorithms above, researchers have developed the bag-

of-visual- words model 119, 231 to improve performance speed. The bag-of-visual-

19



(a) 111 step: Keypoints detection (red dots)

gradients descriptor

(b) 2nd step: Descriptor extraction

Figure 2-1: Steps to detect keypoints and extract feature vectors 1391

w(mrds iodels can generate a long feature vector to represent the visual appearance

of an image 120, 47. 11. \hIule moag-of-visual-words nidels save coniputatioi cost.

they come at the cost of recognition accuracy. One solution is to calculate a ranked

list of object candidates by using bag-of-visual- words model. and then to perform

feature-based algorithins within this ranked list 1181.

Besides the bag-of-visual-words imodels, deep learning is anot her powerful tool for

object recognition and image classificatioi tasks. A deep learning 1odel takes as iII-

plit an1 iiage patIch and ()lt)ts a r)bability (list ribiition aniong different categories

1101. IKrizhevsky ct al. 136] developed a remarkable model by training a convolutional

neural network model to classify 1.2 million high-resolution images into 1000 different

categories in ImageNet LSV4RC- 2010 contest. Their model contains 60 million pa-

ramieters and 650.000 neurnis. Later, to achieve better limage classification accuracy.

Girshick ct a/. 1291 Prop)sed a region-iased coivolutional neural network (B-C'NN),

which is further iipi)ove(d bly Zlhang 0 (. 1481 for fine-grained object recognlitonll pur-

pose. However. a well-performmed deep learning model usually requires a lmge anilumit

20



Table 2.1: A summary of feature-based algorithms

Table 2.2: Computation time and

keypoints [15]

precision for different algorithms for 1000 SURF

of training samples.

2.2 Retail product recognition

Many techniques for general-purpose object recognition have been applied for retail

product recognition, and we will summarize related work below. In [38], Lin et al.

built a product image search engine by implementing a multi-stage search scheme.

They developed a dynamic weighting method to improve the recognition accuracy

for low-quality input images. But this system requires testing images to have similar

working conditions as training images, such as light conditions and viewing angles.

This requirement cannot always be satisfied for most real situations. In [27, 28],

George designed a system for identifying multiple retail products simultaneously in

a hierarchical manner. His system first filters some possible labels for the imaged

objects, and then obtains the final decision by minimizing an energy cost function.

However, this system is not robust enough to distinguish objects with similar appear-

21

Name Detector Descriptor Value in descriptor

SIFT LoG pyramid Gradient values Real value

SURF Box filter pyramid Haar wavelets Real value

ORB Oriented FAST Gradient Binary value

BRISK AGAST Moments Binary value

Descriptor SURF SIFT BRISK ORB

Run time (ms) 117.1 448.6 10.6 4.2

Precision (%) 51.3 53.3 52.7 49.5



ance. The same problem also exists for some commercial product search engines, such

as Flow [31 powered by Amazon. Flow tries to identify products and display related

information from Amzon.com. Flow achieves good performance for most textured

products, and one working example is shown in Figure 2-2. In [43], Varol and Kuzu

presented an approach to recognize retail products with high similarity in term of

shape and design. They first segment the products from the background by devel-

oping a cascade of boosted classifiers by computing Histogram of Oriented Gradients

(HOG) features, and then classify product logos by implementing a bag-of-visual-

words model. However, their system is not robust enough to deal with scaling and

rotation variation. Preprocessing, such as geometric distortion rectification, would

improve their system. Zhang et al. [49] proposed a weighting scheme to handle scal-

ing variations by adaptively assigning weights to different visual feature sets. They

experimentally showed that their scheme outperforms many existing feature-based

image retrieval approaches. But their scheme is computationally complex, since it

needs to extract visual features of the same image under multiple scales.

Retail product recognition can provide an automatic approach for retail manage-

ment as well. In [2, 6, 51, Carnegie Mellon University and Intel present a research

project, aiming to improve in-store retail operation efficiency. They built a robot,

called AndyVision, to detect out-of-stock, low-in-stock and misplaced products by

using computer vision techniques, and to perform the shelf compliance task auto-

matically. However, they only tested AndyVision in one campus store, and did not

publish any technical paper.

Vision-based retail product recognition also provides a low-cost approach for im-

proving the shopping experiences of visually impaired customers [45, 32, 13, 46]. In

[131, Bigham et al. present a system, called VizWiz::Locatelt, to enable visually

impaired individuals to use handheld devices with a built-in camera to find specific

products. Their system is robust to different kinds of variations, but requires remote

workers to outline the objects before the handheld device can localize them with

computer vision techniques. Involving human-powered services increases the cost

and decreases runtime efficiency. Another project toward real-time grocery product

22



Figure 2-2: A working example of Amazon Flow

detection for blind shoppers is presented in 1461. They developed Shc(fScanner, a mo-

bile system that can detect predefined items on a shopping list from video streams.

They implement an optical flow algorithm to deal with the scale variance problem,

and develop a multiclass naive-Bayes classifier to enhance recognition speed. How-

ever, their system is only useful when high-quality training data is available. and their

system cannot handle products with similar visual appearances.

Most of the aforementioned vision-based systems are single-phase systems. In my

approach, I implemented a two-phase scheme to verify signature patterns to distin-

guish visually similar products.

2.3 Senson fusion

One commnon disadvantage for all the vision-based retail product recognition systems

is that they need to verify all the itenms in the database to recognize the viewed prod-

23



uct, which is computationally expensive for a large database. To save computation

cost, a second data source might be integrated. RFID, as a low-cost wireless commu-

nication technology, is a good candidate to serve this purpose. It has been extensively

used in retail supply chain [26, 40, 34, 25], but I only focus on how to use RFID to

reduce the verification scope in the database. Research following this idea can be

found in [16, 14, 30, 35, 22]. In [14], Boukraa and Ando created an RFID-based

3D object recognition system, where RFID tags were attached to registered objects.

They associated stereo-models with the ID information of RFID tags in the database.

Their system downloads the 3D model for each detected RFID tagged object, and

verifies the object according to the 3D model. A similar result can be found in [30],
where Hontani et al. built a visual system to identify objects in the field of view.

They combined RFID and CAD models for recognizing and tracking objects. Their

system first estimates the initial pose and position of the detected object based on the

RFID detection result, and then tracks the object according to the pre-downloaded

CAD model. Both of above systems show how RFID benefits vision-based recogni-

tion tasks, but the authors only use geometric models in their work, which limits the

recognition accuracy since many objects share common geometrical shapes.

2.4 Summary

This chapter discusses related work about general-purpose object recognition, retail

product recognition, and the advantage of integrating RFID into a vision-based object

recognition system. In my system, I follow the same idea in [14] and [30] to reduce the

verification scope in the database by using RFID technology, but I used visual features

instead of geometric shape to achieve high recognition accuracy. Further, I developed

a robust scheme to recognize retail products, especially for visually similar products.

The next chapter will cover all the details about the structure of my RFID-based

retail product recognition system.

24



Chapter 3

The structure of the RFID-based

retail product recognition system

This chapter describes the structure of my retail product system. The system consists

of two different parts: the RFID detection and the visual recognition, and combines

their results to accurately recognize the product being viewed. To control these two

parts separately, I implemented two managers, the RFID manager and the computer

vision manager, as shown in Figure 3-1. The RFID manager controls the RFID reader,

fetches the detection results from it, extracts the data records of the detected products

from the database, and pushes them to the computer vision manager. The computer

vision manager verifies each of the detected candidates to identify the viewed product,

and displays the recognition result to users. The reminder of this chapter will discuss

RFID detection and visual recognition in detail.

3.1 RFID detection

An RFID framework includes RFID tags, an RFID reader and a host system, as shown

in Figure 3-2. The host system controls the reader to detect surrounding RFID tags.

The RFID manager in our system functions as the host system. In our application

scenario, we attach an RFID tag to each product. Then the RFID manager learns

about surrounding products by detecting the attached tags through the reader. This

25



Server

Database

RFID reader RID anag

ata for nearby object]

Camera
.-

Computer vision Display
manager resul

Figure 3-1: The structure of our system

section covers details about the RFID tag, the RFID reader and their communication

protocol in our system.

3.1.1 RFID tag

I used UHF passive RFID tags for my system. A passive RFID tag does not contain

any internal battery, and depends on RFID reader for operating power. The passive

RFID tag consists of two parts: IC chip and antenna. The IC chip stores an ID

Reader
Chip substrate

Antenna 9))tenn
sign

Host Tag

Figure 3-2: The framework of an REID system [8]
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4WO RFID tag-

(a) Front View (b) Top View

Figure 3-3: A product with a passive RFID tag attached on the top

number. The antenna is attached to the IC chip. and transmits data using radio

waves. In runtime, the tag is activated by radio waves of the RFID reader, and then

transmits its ID number back to the reader.

In my system. I used "SMARTRAC 292 2 Belt" UHF passive RFID tags with the

IC type of Inpinj Monza 5. and attached one tag to every product as shown in Figure

3-3. Once the ID number is detected, we know that the attached product is nearby

and it can potentially be the product being viewed. We cannot merely use RFID for

recognition since that the RFID reader detects the tags in different directions but

users can only view the products in one direction. The number of RFID detected

products is usually more than the number of viewed products.

B

3.1.2 RFID reader

An RFID reader is a device used to capture the ID numbers of surrounding RFID

tags. It is a radio transceiver, sending signals to the environment and receiving replied

signals from responding tags. As the radio transmitter. an RFID reader modulates

the carrier frequency with the desired baseband signal, and maintains the carrier

27



Figure 3-4: The prototype

signal at the desired frequency. As the radio receiver, an RFID reader can receive

and interpret signals from responding RFID tags.

I used an Impinj Speedway Revolution RFID reader together with a patch antenna

from Laird S9028PC series to detect tags. The Impinj Speedway Revolution RFID

reader is a stationary UHF RFID reader, and is connected to a network port for

data communication. The Laird S9028PC patch antenna provides directional pattern

coverage. Figure 3-4 shows how the RFID reader and the patch antenna are configured

ini my prototype. I mounted a Logitech C525 webcamn on top) of the patch antenna

for visual recognition.

3.1.3 RFID manager

The RFID manager is a program that connects my main system and the RFID reader.

It comnnunicates with the RFID reader by following the standard conunication

protocol, 'Low Level Reader Protocol' (LLRP). LLRP was ratified in 2007 to allow

28
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developers to have a common programmatic interface to RFID readers from different

manufacturers. Besides following LLRP, my RFID manager also uses APIs from the

SLLURP Library [7] for implementation. In runtime, the RFID manager fetches the

RFID detection results from the reader by extracting the content of two fields, 'EPC'

and 'LogTime', in standard LLRP messages. The 'EPC' contains the ID numbers

of all the detected tags, and the 'LogTime' contains the latest time that the reader

receives the respond from each corresponding tag. The RFID manager then keeps the

detected ID numbers in a temporary list implemented by MySQL. This temporary list

only maintains the ID numbers of the recent detected tags. Next, the RFID manager

extracts the visual data of the products in the temporary list from the database, and

pushes them to the computer vision manager for visual recognition.

3.2 Visual recognition

The computer vision manager receives a list of potential candidates from the RFID

manager and recognizes the viewed product from them. It computes and verifies

different types of visual features. The product being viewed is identified if it matches

all the features of a candidate. To increase the computation efficiency and recognition

accuracy, I developed a two-phase scheme for the visual recognition process.

3.2.1 Recognition pipeline

First of all, I introduce the pipeline of the visual recognition process. The com-

puter vision manager recognizes the product being viewed in two phases. In the first

phase, it compares the discriminative features between the viewed product and each

candidate. The discriminative features can be any feature-based algorithm. Only

the candidates with similar visual appearance as the viewed product can enter the

second phase. In the second phase, I verify detailed patterns to distinguish similar

looking candidates and make recognition decisions. The detailed patterns should be

significantly different among similar looking products, and I refer them as signature

patterns. One example of identifying the viewed product between two similar candi-
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dates is shown in Figure 3-5. In Figure 3-5, (a) and (e) are the first phase of each

recognition process. In this phase, we match the SURF features between the cap-

tured image and the candidate. The number of the matched SURF features is large

if the candidate has similar visual appearance as the viewed product. Otherwise this

number is small, close to zero. By setting a proper threshold, I can filter out products

with different visual appearance, and then only allows visually similar products to

enter the second phase. In the second phase, I locate and verify the signature pat-

terns of candidates for accurate recognition, as shown in Figure 3-5 (b) to (d) or (f)

to (h). Each product in the database stores a template of its signature pattern, and a

classification model for verification. The classification model is either an SVM model

or a deep learning model in my system. For the SVM model, it gives a positive only

to a pattern that matches its signature pattern, and a negative to any other image

pattern. Hence a positive classification result indicates the identity of the viewed

product, which is the case for Figure 3-5 (d). The following subsections will describe

each step of the visual recognition process.

3.2.2 Match general features

In the first phase, the discriminative features are extracted and matched between the

captured image and the potential candidates. The candidates with different appear-

ance as the viewed product have very few matched features, and the candidates with

similar visual appearance have many more matched discriminative features.

I choose SURF algoritlfm for this purpose, because it has a better tradeoff between

speed and accuracy for describing visual appearance. The SURF algorithm first

detects a set of keypoints, then creates a grid around each detected keypoint, and

divides the grid cell into sub-grids. Within each sub-grid, SURF algorithm calculates

its gradients and assigns them into a vector according to their orientations. This

vector is the SURF feature around the corresponding keypoint. SURF feature vectors

can be either 64 or 128 dimensional.

To find the matched SURF feature pairs between the viewed product and each

candidate, I implemented a k-Nearest Neighbor (kNN) based algorithm. For each
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(a) Matched feature exists (b) Matched feature doesn't exist

Figure 3-6: The illustration for feature matching

SURF feature of a calididate. I calculated the ratio between its Euclidian distances

to its closest and second closest SURF feature in the captured image. A ratio smaller

than the predefined threshold indicates the closest SURF feature as a match. This

process is graphically illustrated in Figure 3-6. For a feature a iii feature set A,

the computer vision ianager detects its closest two features (their distaices are

expressed as d, and d2 , respectively) in feature set B. It then calculates their ratio

(d1  d 2 ) amid keeps the d, as a match to a if the calculated ratio is less than a

predeterimined threshold. This ratio ranges from 0 to 1. In Figure 3-6 (a), a matched

descriptor I) exists. and the ratio is small (close to 0). Contrarily, in Figure 3-6 (b).

this ratio is relatively large (close to 1). and 11o matched feature exists. Increasing

the predeterinled ratio threshold introduces possible false positive feature pairs, and

decreasimig this ratio threshold leads to less matched feature pairs.

The candidates with similar visual appearance as the viewed product show much

more matched feature pairs than the caididates with differeit visual appearance.

Some examples are shown in Figure 3-7. The verification processes for visually dif-

fereit caimdidates are terminated early to save computatiom resource. In the second

phase. I will verify signature patterlns anmoig visually similar candidates for accurate
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Figure 3-7: Exaniples of different niinber of matched feature pairs

recognliti1o1.

3.2.3 Rectify geometric transformation

In the sec ase. I verify the sigature patterns of t he remaining candidates. Si-

natlire pattens are distinguishable among visually similar products. For example,

in Figure 3-7 (a) and (b). the signature pat tems of Iothi products are the inage

patches describilig their ingredients on the uliddle-right part. If the viewed product

has the same signature pattern as a candidate. then it is identified as this candidate.

I use nornalized cr1ss--Correlation to locate the most similar patterni of the signa-

ture pattern of a candidate from the viewed product. Norminalized cross-correlation is

rolabist to ihlhuninat ion variations.l but vilnerable to geometric transforimations. such

as rotation. scaling. and affine t ransforiatin. Ge umetic tranusfornations an intr(-

(lllced when we view plroducts fnm different distances and angles. Hence we need

t,( rectify all tIhe possil de geometric tralisfolrlatios 11efore aJlying the norimalized
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x is the displacement in

Translation [1 0 0 horizontal direction, and

T 10 1 01y is the displacement in

[x y 1i vertical direction

x is scale factor along

Scale X 0 01 the horizontal direction,

T = l y 0 and y is the scale factor

L 0 1 along the vertical

direction

x is the shear factor

01 along the horizontal

T = x 1 0 direction, and y is the

o 0 1] shear factor along the

vertical direction

Rotation cos (0) sin () 01 6 is the angle of rotation

T= -sin (6) cos (6) 0
0 0 1-

Figure 3-8: The basic homography transformations

cross-correlation.

In computer vision, the geometric relation between two images of the same planar

surface is captured by a homography. When representing the honography as a 3 by

3 matrix ( T), and an iiage point (x) as a three-dimensional vector in the form of

Ix. y, 1 1T, we can relate two corresponding points (xl and X2 ) in different images as

X2 - T x xj. Hence a new image under a specific geometric transformation can

be obtained from the original image by applying the same homnography matrix on

each point. Basic hoinography transformations include translation, scaling, shearing

and rotation (Figure 3-8). and complex transformuations can be expressed by combing

basic transformations.

When constructing our database, I extracted all the visual features from the front

face of each product. If we set the front face image as the basic inmage. an inage taken

under different viewpoints and distances is considered as applying a corresponding
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homography matrix to the basic image. Therefore if we want to obtain the basic

image from a random image, we only need to estimate the homography matrix, and

apply it to the image inversely. To compute the homography matrix, we used the

RANSAC algorithm [24] and the location information of the matched SURF features.

The geometric transformation rectification process is illustrated in Figure 3-5 (b) and

(c) separately.

3.2.4 Locate signature pattern

I use normalized cross-correlation to search for the most similar image pattern of

the signature pattern of a candidate from the rectified product. Normalized cross-

correlation is a standard way for pattern searching in computer vision. It slides a

pattern template across all the positions within an image, and calculates a correlation

score for each position. The correlation score is normalized to tolerate illumination

variation. The normalized score ranges from -1 to 1, and the position with the highest

score indicates the position of the most similar pattern of the template. However,

normalized cross-correlation is not robust to any geometric distortion, and that is the

reason we rectify geometric distortion before this step.

This process is graphically illustrated in Figure 3-9. A template pattern (a small

rectangular pattern, w ) is moved within an image, f , and a correlation score is

computed for each position (i, j) according to Equation 3.1, where i = 0, 1, ... , M-1,

j = 0, 1, ... , N-1; M and N are the height and width of the image; K and L are the

height and width of template pattern; x goes from left to right, and y goes from top

to bottom; wt and f(i, j) are the average value of the template and the patch of the

image within the sliding window, respectively. The size of template pattern should

be smaller than the image.

.O, _- EXO EY=O(w(x, y) - iv)(f(x + i, y + j) - f(i, j))
Ci) Z 1 1(w(x, y) - it)2\/ZE-l 1(f (X +i, y + j) - f(ij))2

Each product in the database stores a template of its signature pattern, and
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Figure 3-9: Norinalized cross-correlation process

iiorinalized cross-correiation uses tis template to locate its Itost similar pattern in

the rtectified product. The miost similar pattern is found at the position with the

highest correlation score. One examplol is shown in Figure 3-10. Normialized cross-

coirelation is reiablie for pattern searching once wi rectify geometric distortioin, but we

(8.1annot only Ise the correlation resiult for recognition since a faIse mateled pattern

1may also have a high cornrlation score. 1Or example, the correlationl scorn for the

tWie matched pattern is 0.732 in Figure 3-5 (C). and the correlation score for the false

matched pattern is .686 in Figure 3-5 (g). Both correlation scores are ligh. atnd hard

to distinguish. Further verification is najuir id.

3.2.5 Verify signature pattern

In this subsection. I will discuss the techniqies that I usCd for vrifying the located sig-

natrnc patterns. I implelllentied two types of classifiers for this purpose: til Support

Vector Machine (SVNI) a11nd the deep ieaxruing model. Ai SVM is a bitary classifier.

In my system, I trainsd one SVM model for each signature evrn and the SVM

model only gives a positive to the patterni that matches its correspoinding signature

pattern. Butt ai SVt M m1odel ndc(Ns a lot of spac to store its support v[1) Vctors. Later,

I found that nany signature )attertis wit different visual appearance belong to the
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(a) Cross-correlation scores

Figure 3-10: Locate the signature pattern based on normalized cross-correlatioii

same type, such as digital patterns, and it would be more spatially efficient if we

could use one model to verify all the patterns of the same type. Therefore, I imple-

mented a deep learning model to verify all the digital signature patterns. Training a

well-performed deep learing model requires a huge number of training samples, and

collecting themi is a laborious task. So I use a publicly accessible handwritten digits

dataset MNIST [41 to train my deep learning model. My current system onil has

one deep learning model for recognizing digital patterns due to the lack of training

dataset for other pattern types. In this subsection. I will discuss the procedure to

obtain well-performed SVM models and deep learning models. respectively.

SVM

An SVM model is formally defined as an optimized classifier that separates two cat-

egories of labeled training data (Figure 3-11). The SVNI classifier is found by max-

imizilg the margin I)etween two data classes. An SVM model takes vector data as

input, and all the input data must have the same dimension. In our case, the image

pattern that matches the corresponding signature pattern is a positive sample, and

other different image patterns are negative samples.
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Signature pattern 4

Negative samples

Positive samples

Fioure 3-11: An SVM model

To fit the SVM model, I choose HOG feature f21j to describe the visual appearance

of an image pattern, since the HOG feature is invariant to geometric and photometric

transformations. The HOG feature of an image patch is determined by three factors:

cell, block and stride, as shown iM Figure 3-12. A cell is a small-connected square

region. HOG algorithm generates a histogran for each cell by assigning the directions

of its gradients into discrete angular bins. Adjacent cells form a block. The angular

bins of each cell within a block are concatenated and normalized to generate a feature

vector for the block. Finally, all the block features are concatenated to generate a

complete feature vector of the image patch. The stride defines the pixel interval

between two adjacent blocks.

Training a well-performed SVM nodel requires the HOG features from sufficient

positive and negative training samples. In my case. the signature pattern of each

product is the positive sample, and other different image patterns with the same di-

mension are the negative samples. The well-trained SVM model should only generate

positive results to the patterns that match its corresponding signature pattern. In

the training process. I could collect negative training samples from any portion of

the product by cropping the patterns with the sane dimension as the correspond-
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Figure 3-12: The HOG feature
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Positive Samples

Negative Samples hOjOjjte Chip SSird

Figure 3-13: Training samples of Product a in Figure 3-5

ing signature pattern. To make the trained SVM model more robust to (listinguish

visually siilar products. I also icluded the signature patterns from other similar

looking products as the negative samples. However, the options for positive samlples

are very limited, since only the corresponding signature pattern can le the positive

samples. To obtain a robust classifier, I need to involve sufficient, positive samples

under various variations. A well- performed SVM model should be illumination invari-

ant in ny case., since I have rectified geometric transformation, and only illuiniuation

variation remains. Sufficient positive training sainples can be obtained by capturing

the signature patterns under different light conditions. But manually controlling the

light conditions to capture positive samples is very time- consuming and laborious. I

then proposed a way to artificially obtain a large enough positive training samples.

I convert the signature patterns fron the Red-Green-Blue (RGB) color space to its

Hue-Sat urat ion-Lightness (HSL) color space to decouple color and illumination. In

HSL color space, I imodify their Lightness values, and convert the modified signature

patterns back to the R1GB color space. Artificially creating training samples iin this

way saves a lot of time for data collection. Some training samples for Product a in

Figure 3-5 are shown in Figure 3-13.

The SVM miodel associated with each product gives a positive for a true matched

signature pattern (Figure 3-5 (d)). and a negative for a false matched signature pat-

tern (Figure 3-5 (h)). The positive verification result indicates the identity of the

viewed product. If the viewed product is not in the database, instead of giving an

incorrect result as standard image classification models. my system gives no positive

result.

40



Figure 3-14: Samnples in MNIST dataset,

Deep learning model

The deep learning mnodel is a po)werful tool for classification tasks. A deep learning

mod(el has mnultiple layers to learn the deep features fromi an input data, and outputs

" confidence distribution amiong different categories. In mny systemi, I imiplemiented

" Convolutional Neural Network (CNN) to classify a, digital pattern into one of ten

digit classes fromn 0 to 9. A well- performned CNN mnodel requires a huge amiount of

training samiples, so I use the MNIST dataset to facilitate the process. The IMNIST

is a public dataset. and contains 70,000 handwritten digit imiages. Each imiage is 28

pixels by 28 pixels. Figure 3-14 shows samiples in MINIST dataset,.

I imiplemiented an 8-layer CNN miodel (shown in Figure 3-15 with dimiensions

annotated) for the comnputer vision mianager. The first five layers of mny CNN miodel

consist of convolutional layers and pooling layers to extract the deep features of ail

input imiage. The RALU layer processes the deep features non-linearly by replacing

negative values with zero. and leaving positive values unchanged. The latter part, of

this CNN is a fully connected neural network to classify the deep features into ten

digit, classes.

I imiplemiented the Stochastic Gradient Descent (SGD) schemne to train this CNN

mnodel by shuffling the training dataset iteratively during the training process. Before
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Figure 3-15: The structure of the CNN digit recognizer

42

28

28

Input image

500



0.02 1 T r

0.018 -

0.016
c
0

B 0.014-

0

0.012 -
0

0.01

0.008'
1 2 3 4 5 6 7 8 9 10

The number of training samples -105

Figure 3-16: Error rate on validation dataset after each iteration

the training process, I initialized the model paraneters according to the stal(lard

Gaussian distriblution. During the training process, the model learns ol)timlal parani-

eters from an error back- p)ropagation process. I calculated the error rate of the CNN

model on validation lataset after each iteration process, and 1)lot them in Figure

3-16. The training process stol)s when the error rate stops decreasing, anid the valida-

tion error rate drops to 0.83% eventually. I used a GPU, CUDA toolkit and NVDIA

clDNN library to accelerate the training process.

Some p)reprocessing is required before we can semid a digital pattern to the trained

CNN model, since deep learning models are strict with the inpl)ut data diimension.

All the inl)ut data must have the same dimnensioni as the training data. which are 28

J)ixels by 28 p)ixels. To further increase recognition accuracy. we need to centralize

the digit becausc all the digits in the training samples are in the center. Lastly, we

lneed to norrmalize the input data by subtracting it with the mean image of training

sampl)les. A complete process of recognizinig a digit patterm is shown ii Figure 3-17.

43

SRO--



Calaes atofn conftdance of -sen- pa.

Digit feature pattern
localized by

cross-correlation

Preprocessing

n

It:

lbA
1W 4

CNN model

Figure 3-17: Pieprocessiiig beforc a located digital pattern iS selit to the f rained CNN

moi(del

44

$Ubtraclon



3.3 Summary

This chapter described the structure of my retail product recognition system. My

system combines RFID detection and visual recognition to identify the product be-

ing viewed. By attaching one RFID tag to each product, RFID reduces the visual

verification scope from the whole database to the detected products nearby. The

computation cost is then saved, especially for large databases. I also developed a

two-phase scheme to accurately and efficiently recognize the viewed product from all

the potential candidates. In the first phase, I match the SURF features between the

viewed product and candidates to check their visual similarity. Only the candidates

with similar visual appearance as the viewed product can enter the second phase. In

the second phase, I use normalized cross-correlation to locate the most similar pat-

tern of the signature pattern of each candidate, and verifies it by either SVM model

or deep learning model. The verification result indicates the identity of the viewed

product.
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Chapter 4

Experiments

I conducted three experiments to test my retail product recognition system, and show

their results in this chapter. In the first experiment, I tested the recognition accuracy

of my system on visually similar products. I also compared the result between my

system and other popular image recognition models, such as deep learning models and

bag-of-visual-words model. In the second experiment, I introduced viewpoint varia-

tions to test my system. Different viewing angles cause different geometric transfor-

mations on the viewed product. My system can rectify the geometric transformation

to some extent, and achieve high recognition accuracy when viewpoint variations are

not severe. In the third experiment, I quantitatively describe the advantage of in-

tegrating RFID into my system. To better show the advantage, I created a system

by following the same recognition algorithm as my system except that it does not

use RFID. I recorded and compared the processing time of two systems for different

number of surrounding products.

4.1 Experiment 1: Distinguishing visually similar prod-

ucts

This experiment tests the capability of my system to distinguish products with similar

visual appearance. I collected 12 products for this experiment. The 12 products can
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he divided into 6 sets. and each set include 2 products that are visually similar.

Samples of the 12 products are shown in Figure 4-1. and orange rectangles indicate

corresponding signature patterns. The signature patterns of product 3 and product

4 are digital signature patterns. and are verified by the CNN model. SVN Ioels

verify the signature patterns of all the other products.

Current ly. I pick the signature pat tern of each product manually for each prdulct
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in our system verifies the signature pattern of each candidate to identify each viewed

product. Verifying the signature patterns plays a significant role in distinguishing

products with similar visual appearance. To show the robustness of our algorithm,

I compare its recognition accuracy with other popular image classification models.

These models include vgg-s, vgg-m, vgg-f [171, vgg-verydeep-16 [42], caffe-reference

[33], AlexNet [361, and bag-of-visual-words models with different number of visual

words. Except the bag-of-visual-words model, all the other models are convolutional

neural network models with different structures. These convolutional neural network

models are the top performing models on the ImageNet ILSVRC challenge dataset

[441. I used their pre-trained versions to learn the deep features of the collected

samples of the 12 products, and trained a multiclass SVM classifier for each of them.

This experiment tested one product at a time under ideal working conditions. I

pointed the camera directly towards the test product, and kept this viewing angle

during the whole process. I changed the background each time and involved slight

scaling variations. I tested each product for 25 times for all the models, and calculated

their average recognition accuracy on each product. Figure 4-2 plots the resultant

average accuracy for each product for different models. My algorithm achieved 100%

recognition accuracy for all the test products; both vgg-s and AlexNet achieved 97%

accuracy on an average; all the other convolutional neural network models achieved

over 92% accuracy averagely; bag-of-visual-words method with 400, 500 and 600

visual words performed the worst with the average recognition accuracy of 83%, 87%

and 84%, respectively.

This test involves no variation, so that my algorithm could always locate the

signature pattern of the truly matched candidate, and send it to the well-trained

verification model. This stable performance benefits from the geometric transfor-

mation rectification process. The results of this experiment imply the feasibility of

my proposed approach to train robust SVM models by artificially creating sufficient

samples in HSL color space. However, the accuracy of my visual recognition ap-

proach decreases when the working condition involves severe variations, which will be

discussed in the next subsection.
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Figure 4-2: The recognition accuracy for different models

4.2 Experiment 2: Introducing viewpoint variations

This experiment involves horizontal viewpoint variations. The horizontal viewpoint

variations can be expressed as different values of 0 as shown in Figure 4-3. The view-

ing angle is an important factor in determining the recognition accuracy of a visual

recognition system. When the viewing angle changes, the visual appearance and geo-

metric shape of the viewed product change correspondingly. These changes influence

our system from two aspects. First, when the viewing angle changes, the number

of the matched SURF features between the viewed product and the true candidate

decreases. If the number of the matched feature becomes less than the predefined

threshold, my system would incorrectly consider that this candidate has different vi-

sual appearance as the viewed product, and terminate its verification process early.

Second, when the geometric shape of the viewed changes severely, it is difficult to rec-

tify the transformation completely. The remaining geometric transformation degrades

the pattern searching perforimance of normalized cross-correlation.

In my system, I tried to rectify the geometric transformation by implementing

the RANSAC algorithin to estimat~e the hoinography matrix, and warping the cap-

tured image inversely. To find the limit of my approach. I tested n system on 12
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products under different viewing angles. I increased the viewpoint variation from 0

degree to 60 degree with a step of 10 degree. A protractor under the test product

measures the angle change. For each viewing angle, I tested my system for 8 times

for each product, and recorded their average recognition accuracies. Figure 4-4 shows

the recognition results for different test products for different horizontal viewpoint

variations. When the viewpoint variations are small, my system is able to rectify the

geometric transformations, and maintain high recognition accuracy. The recognition

accuracy drops rapidly for the viewpoint variations of greater than 40 degree, since we

cannot rectify geometric transformations completely and missed some true matched

signature patterns.

Further, I compared the average recognition accuracy for each viewpoint between

my method and the aforementioned models. Figure 4-5 plots the comparison results

of all the models. Deep learning models recognized products more accurately than

bag-of-visual-words models, amid my method outperformed all the other models for

horizontal viewpoint variations of less than 40 degree. For viewpoint variations of

less than 30 degree, the recognition accuracy of my method is over 97.92%. To regain

high recognition accuracy for large viewpoint variations, one possible solution could
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Figure 4-5: The average recognition accuracy for different models

le to implement my visual recognition scheme on multiple faces of each product, and

to use other faces when one face suffers a severe viewpoint variation.

4.3 Experiment 3: The scale of surrounding detected

tags matters

In the third experiment. I quantified the performance improvement of integrating

RFID as a second data source for product recognition. Without RFID, a pure vision-

based product recognition system has to verify the whole database to identify the

viewed product. The computation cost increases as the database scale becomes larger.

With RFID, my systenm only needs to verify the detected surrounding products since
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only surrounding products can potentially be the viewed product. The computation

cost of my system is independent on the database scale, and only depends on the

scale of surrounding products. But when the scale of detected products approaches

the database scale, the benefit of involving RFID diminishes. To quantitatively de-

scribe this relationship, I created a vision-based system by following the same visual

recognition algorithm as my system for comparison purpose. I also extended the

database scale to 70 products to better obverse the relationship.

During the test, I recorded the processing time of both systems for recognizing the

viewed product. The elapsed time was recorded by counting the CPU ticks on the

server machine. I used a MacBook Pro with 2.6 GHz Intel Core i7 processor as the

server machine. To make the reader adjust automatically and dynamically according

to the environment and measured throughput, I used the '1001' LLRP mode offered

by Impinj Speedway Revolution for RFID detection. The transmit power of RFID

reader was set to 32.50 dbm (the maximum). I tested both systems on the 12 products

that I used in previous experiments. For each product, I recorded the recognition time

of both systems for different number of detected products. The computation time for

the original visual recognition system is measured according to Equation 4.1, where

Ti represents visual verification time for each candidate, and n is the total number

of products in the database. Since a pure vision-based system needs to verify all

the products in the database, its processing time should be nearly constant for each

product being viewed.

n

TwithoutRFID Ti (4.1)
i=1

k

TwithRFID = TRFIDdetection(k) + 5Ti (4.2)
i=1

The computation time for the RFID-enhanced recognition system is measured

according to Equation 4.2, where k represents the number of detected surrounding

products. TRFID-detection(k) represents the time that the RFID reader takes to detect

the target product when k surrounding interfering tagged products exist. It changes
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Figure 4-6: The processing time comparison between with and without RFID for

product 1 and product 2

nonlinearly for different k due to tag collision problems. Figure 4-6 to Figure 4-11

show the processing time for different product sets.

The processing time of the vision-based recognition systen is a summation of

the elapsed time for verifying each product in the database, so we can see that it

is independent on the scale of surrounding products and is nearly constant. On the

other side, the processing time of the RFID-enhanced system basicallv consists of

two) pmarts: the time for RFID detection and the time for visual recognition. We

can see that each product has a critical point that appears near the database scale.

Before the critical point, the RFID-enhanced system spends less tiie recognizing

the product being viewed. After that point, the RFID-enhanced system takes more

tinic for recognition. The extra time is due to the time for RFID detection, which

can he further increased by tag collision problems when the volume of surrounding

tags becomes larger. More benefits of integrating RFID can be gained when less

surrounding interfering RFID tags can be detected. One approach to achieve this

goal is to natch the detection area of the RFID reader to the field of view of the

camera. For my prototype, I found that when setting the transint power at 19.75

dbm, the gap region between these two areas is small, and the RFID detection range
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is about 1.5 meters in front of the system. which is also suitable for camera to capture

details of the viewed product. Another thing worth noting is that the database in

this experiment only contains 70 products. and the patterns in the plots could vary

when the database includes a lot more products.

4.4 Summary

This chapter describes three experiments and their corresponding results. First, when

no viewpoint variation is involved. my system outperforms many popular image clas-

sification models on the dataset containing visually similar products. Second. Our

method achieved over 97.92% recognition accuracy for horizontal viewpoint varia-

tions of less than 30 degree. Both of the experiments are biased experiments, since

I only tested on visually similar products. If I include more products with different

visual appearance. other methods may perform better. Last, I quantitatively show

the advantage of integrating RFID into our system. RFID helps increase computation

efficiency dramatically when the scale of surrounding interfering tags is small.
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Chapter 5

Conclusions and future work

5.1 Conclusions

In this thesis, I built a retail product recognition system aiming to improve customer

in-store shopping experience. My system consists of two parts: the RFID detection

and the visual recognition. The RFID detection is for increasing the computation

efficiency of the system. By attaching an RFID tag to each product in the database,

the RFID reader can detect surrounding registered products, and reduce the can-

didacy scope from the whole database to the detected products. To recognize the

viewed product from the detected candidates, I implemented a two- phase scheme. In

the first phase, I filter out visually different candidates, and only pass the candidates

with similar visual appearance as the viewed product to the second phase. In the

second phase, my system verifies the signature pattern of each remaining candidate

to accurately identify the viewed product. Verifying the signature pattern makes my

system robust to distinguish similar looking products.

I conducted a series of experiments to test the performance of my product recog-

nition system. In the first experiment, I tested the recognition accuracy of my system

under ideal working conditions. I then compared the result with other popular image

classification models, including deep learning models and bag-of-visual-words models,

on the same dataset under the same working conditions. My system outperformed

all the other models, and achieved 100% recognition accuracy in this experiment. In
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the second experiment, I involved horizontal viewpoint variations. For the viewpoint

variations of less than 30 degree, my system maintained over 97.92% recognition ac-

curacy, and outperformed other models for the viewpoint variations of less than 40

degree. However, when the viewpoint variation becomes severe, the recognition ac-

curacy of my system drops rapidly due to the difficulty of rectifying the geometric

transformation completely. In the last experiment, I quantitatively described the ad-

vantage of integrating RFID into my system by recording the processing time of my

system and a system without using RFID. This advantage is significant when the

database scale is large and the volume of surrounding product is small.

5.2 Future work

In the future, I will go beyond RFID. Currently, I use RFID to capture surrounding

information to reduce verification scope in the database. However, using RFID limits

the application scope, since there are some situations that objects cannot be tagged,

such as the products shown on websites, movies and magazines. These cases indi-

cate that a pure vision-based recognition system has a wider scope of applications.

We have discussed the computation efficiency problem of a vision-based fine-grained

recognition system in previous chapters, but it is possible to resolve this problem by

designing image classification models to obtain potential candidates, and then apply

our fine-grained recognition scheme just among these candidates. Deep learning is a

cutting-edge research topic and also a powerful tool for image classification tasks, so

I plan to develop my model based on it. However, due to their complexity, well- per-

formed deep learning models require a huge amount of labeled samples. So, designing

well- performed "light-weight" deep learning models is a challenging task. Further,

a deep learning model has fixed structure, and any structural change requires a re-

training process. Training complex models is a very time-consuming process, and

we do not hope this to happen frequently. However, for the retail industry, retailers

may sell new products or stop selling old products frequently to maximize their sales

revenues, which require the flexibility of reconstructing existing models. In current
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computer vision area, well-performed "flexible" deep learning models have not been

developed yet. In my future work, I plan to design a hierarchical structure to optimize

the output layers of conventional deep learning models. The hierarchical structure

is supposed to store the learned "deep features" at different levels. When changing

output classes, we only need to retrain a minor part of the model instead of the whole

structure to make a trained model flexible enough for retail applications.
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