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Abstract

Deployable and transformable structures are of broad interest for applications includ-
ing satellites and space exploration, temporary shelters, packaging, transportation,
robotics and medical devices. One emerging approach to scalable fabrication of such
structures involves the general concept of Origami-inspired design along with cutting,
folding, and fastening of sheet materials. However, contrasting the classical approach
of modeling Origami structures as having perfect hinges and rigid panels, consid-
eration of the finite bending and rotational stiffness of these elements is essential
to understand their constituent mechanics. Moreover, meta-materials and functional
structures having fundamentally new mechanical properties can be designed this way.
We present the design, fabrication and mechanics of a novel, deployable cellular ma-
terial, which we call Flexigami. The unit cell takes the form of two parallel regular
polygons, connected by a circuit of diagonally creased panels. Upon compression,
individual unit cells transform either gently or abruptly between two stable equilib-
rium states depending on the interplay between hinge and panel properties. The
mechanical behavior of each unit cell can be deterministically designed via geom-
etry, dimensions and topology of the panels and hinges. Individual unit cells can
collapsed reversible to less than 10% of their deployed volume. Within this transition
regime, the force-displacement curve of each cell can be tuned to exhibit a smooth
compression behavior or an instability followed by a self-reinforcing response. We use
finite-element models complemented by analytical and computational analysis of the
results to understand the importance of different mechanical properties of constituent
hinges and panels and also demonstrate the fabrication of flexigami cells and mech-
anisms in various structural materials. Finally we present different mechanisms and
their subsequent applications.
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Chapter 1

Introduction

1.1 Background and Motivation

Folding and flexing of thin materials, and their assembly into transformable structures

offers opportunity to engineer new capabilities in robotics ([6], [161, 131, [19]), space

structures ([331,[251,[27]), and in soft and lightweight actuators ([231,[34,[12],[21],[281).

Capabilities such as multi-stability, deployability, and weight-efficient motion trans-

mission are important to these applications but are often cumbersome to achieve

using traditional mechanisms comprising of discrete mechanical components. There-

fore, mechanical instabilities arising either from induced defects (171,[291,[341,[2],1181)

in the material or by prescribing geometrical constraints ([191,114],[17],[351) to a struc-

ture are of growing interest as a new way of engineering multi-functional materials

and structures.

Origami is one way of defining these geometrical constraints in a methodical way.

Once a crease pattern is defined in a plane, sequential folding along these creases

results in the desired final three dimensional form. Traditional rigid Origami as-

sumes behavior of the structure along a fold line to be that of an ideal hinge with

zero rotational stiffness and panels connecting these hinges to be perfectly rigid

. Though there are useful applications demonstrated in the literature with these

assumptions([8],[26],[24), Silverberg et.al. in his article [30] rightly points out that

the missing piece of phenomenology is that the real materials do in fact bend. In

17



this article they explored the mechanics of a single unit from the square-twist origaii

tessellation and concluded that there exists hidden degrees of freedom fron face bend-

Ing which results in non-trivial origai structures. Through subsequent studies (I5[),

it is understood that such configurations of a structure are consequences of funda-

mental incompatibility between the geometry of the predefined folds and non-planar

defornations of otherwise assumed rigid panels.

An equilibrium configuration of a folded structure can thereby be reached by

minimizing total energy of the system coniisisting of bending energy of the panels and

the energy at the crease. One of the simplest demonstration of this principle consists

of a square twist (I31[), where otherwise assumed rigid panels bend and propel its

transition between the two stable configuratiOns.

There have been many studies on rigidly foldable cylinders. Early studies include

that of Nojima (1201) where folding patterns were devised on thin flat membrane by

iiiodifying traditional Muira-Ori pattern resulting in spiral configurations (Figure. 1-

1).

Figure 1-1: Folding process of polypropylene thin circular tubes

R ecent works include that of Tachi et.al., 132! where they introduce the concept

of rigid-foldable collapsible cellular structure and present geometry of these families

of collapsible (Figure. 1-2) cylindrical and cellular structures. Thin walled foldable

18



Figure 1-2: Tessellation of a cylinder to produce a one DOF bi-directionally flat-

foldable cellylar structure

cylindrical structures can also be generated from Kresling pattern. Initial works on

this pattern was by S.D. Guest and S. Pellegrino (191 & 1101) where they concentrated

on developing a numerical model and designing experiments to test a type of foldable

cylindrical structure which consisted of triangular panels on a helical strip (Figure. 1-

3). In this work, triangulated cylinder is modeled as a simple pin-jointed truss and

the plate thickness is neglected and assumes creases offer no resistance to folding.

Figure 1-3: Folding sequence of triangulated cylinders from the work of S.D. Guest

and S. Pellegrino 191

More sophisticated understanding of this structure is presented in I 11, where the

authors discussed the bistable behavior of the cylinder aiialytically which was not

addressed in previous studies. But, all the analyses is based on the truss model of

the cylindrical shell.

This thesis is the study of mechanics of a. folded unit cell whose geonetry is sim-

ilar to the kresling pattern, Yet features cuts between each adjacent pair of triangles

around the outer surface of the cylinder. It represents a novel principle for a fold-

19
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able, reversibly collapsible unit cell which we call Flexigami. Owing to its geometric

construction and kinematic constraints, the Flexigami cell can be designed to have

mechanical behavior spanning from that of a soft spring, to reversible elastic collapse.

In what follows we describe the geometry and mechanics of the material as explored at

the macro-scale, understand the importance of mechanical properties of constituent

hinges and panels. Finally we show the assembly of Flexigami cells in series and

parallel gives rise to multi-stable force-displacement responses, and demonstrate a

rotary-linear actuator using Flexigami coupled with an accordion bellows.

1.2 Thesis Outline

Chapter 2: presents the geometrical construction of a unit Flexigami cell. It details

the importance of each of the geometrical parameter in shaping the overall behavior

of a unit cell.

Chapter 3: presents a numerical model of a Flexigami cell and develop insights into

the energetics of the system in a compression cycle and contributions from individual

structural elements.

Chapter 4: presents force-displacement responses of Flexigami cells to uni-axial com-

pression tension cyclic tests which are displacement controlled.

Chapter 5: presents the finite element model of a seven sided Flexigami unit cell and

details the contribution of each of the structural element to the overall behavior of

Flexigami.

Chapter 6: presents the role of different boundary conditions and their effects on the

response of a unit cell. We also explore the behavior of the Flexigami cells when

tiled in series and in parallel. Finally we present mechanisms for compact storage

and deployment of space structures made possible with Flexigami cells.

Chapter 7: summarizes findings of the thesis and presents key areas of extending the

current work.

20



Chapter 2

Geometry And Construction

A Flexigami unit cell is constructed from a N-sided polygon surrounded by diagonally

creased parallelograms, and can be cut from a single sheet of stock material (Figures2-

1). The cell geometry is defined by the geometric parameters of the regular polygon

prescribed by such an arrangement: the number of sides of the polygon N, its side

length L, and a planar angular fraction A. Each parallelogram is divided into a

pair of triangles by a diagonal crease which will be folded to form a valley fold(red

line, Fig.2-1). Blue lines denote common edge between either of the polygons and a

parallelogram and will be folded to form a mountain fold.

This chapter details the geometrical constraints imposed on a Flexigami unit

cell which results in the observed behavior and also the coupling between different

kinematic quantities.

2.1 Geometrical Constraints and Kinematic Coupling

The unit cell is formed by sequentially folding the planar pattern along the creases

indicated. As discussed later, individual rigidity of these creases influence the struc-

tural mechanics of a unit cell; in the present case of folded paper, the creases are

perforated when the sheet is cut into the unit cell pattern.

To further understand the coupling between the geometry and mechanics of Flex-

igami cell, we first define the geometric constraints that are imposed in the stress-free

21



L/

/A

BB

Figure 2-1: a: Flexigain unit cell is shown with edges marked in black. red lines
indicate Type I creases which are valley folds while blue lines indicate Type 11
creases which are mountain folds. b: photograph of un-folded Flexigaini unit cell
with N = 6, A = 0.8 c: Photograph of a folded Flexigami unit cell showing out of

plane defornat ions.

folded state

1. The top and bottom panels remain planar and are only permitted to rotate

about the vertical (Z) axis.

2. Diagonal creases folded to form valley folds are restricted to remain straight

and their lengths are preserved.

3. Free edges of triangular panels (4A', BB') can assume any three-dimensional

form, subject to the geometrical constraint of preserving its free length as all

the surfaces are considered to be developable.

22



In the folded yet fully open, stress-free configuration, circum-radius (R), diagonal

crease length (i), and area of 'the triangle (() formed by joining the three points

AA'B' or ABB' are given by

1 [r(N - 2)]
R =2- cos

L 2NJ

= 2R cos (I - A)'(N 2) (2.1)
1 2N

4R2O r(N -2) Co I rA"(N - 2)~ si r(N - 2)~S= 4R2 cos [i(~i2]cos [(1 - A N )1sin [x(A )
2N 2N _2N _

2.2 Variation in -y

Upon compression of the cell, the unconstrained top polygon rotates while being par-

allel to the bottom polygon, and the triangular panels must bend to accommodate the

change in ( while respecting the geometric constraints described above. Deviation of

triangular panels geometry from being plane is quantitatively expressed as fractional

change (-y) of the geometrical quantity (

( -,(2.2)

where, Ci: instantaneous area of the triangle AA'B' or ABB' and (o : Initial area

of the triangle AA'B' or ABB'

Figure. 2-3 depicts this variation for various values of A, when N = 7, L = 30.

Here we observe that the change in -y for all values of A is symmetric with respect

to the relative height of a unit cell during compression. We can also state that for

lower values of A (A ; 0.5), -y is less pronounced as compared to y at higher values

of A. But, as A increases, we see that y exhibits a clear global maximum (Ymax),
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0.6

N =4

N =5

N =6

N =7

N = 8

Figure 2-2: Array of Flexigami cells. Each row represents unit cells with the same N
and different A's corresponding to A = 0.5, 0.6, 0.7, 0.8, 0.9. First row represents
Flexigaii cells with N = 4, second row: N = 5, third row: N = 6, fourth row:
N = 7, fifth row: N = 8.

which increases nionotonically with A. Therefore, upon compression of a Flexiqami

cell, the fractional change in the planar triangular area (-y) is acconnodated by the

out of plane deformation of the panels. Hence, for a given N, L, the force required

to compress the unit cell (hence, its stiffness and peak force when bistable) increases

with A. Now, if A, L are kept constant and change N (Figure. 2-5), surprisingly we

see that 17II1(iX decreases with N, suggesting that the force required to compress the

cell decreases with N.

As the deformations are symmetric with respect to the relative height of a unit

cell during compression, so is the force required to compress the cell. Again, quali-
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Figure 2-3: Variation in 7 with A in a compression cycle. Y is synnetric with
respect to half the height of a unit cell in a conpression cycle. Variation in - becoies
more pronounced with increasing value of A.

tatively we can suggest that the force-displacement response of Flexigami cell should

resemble a bell shaped curve with clear global maximum. As the defined geometrical

quantities and kinematic constraints are satisfied in exactly two configurations corre-

sponding to completely opened and closed states, the existence of any intermediate

configurations requires material deformations, revealing hidden degrees of freedom of

the FIcigamai cell arising from the finite bending and rotational stiffness of panels

and hinges respectively.

It is also iniportant to understand how gaemma changes when A and L are kep

constant while changing N. Figure. 2-4 represents this variation for A = 0.9, L =

30mm and we change N from 4 to 8. As we have considered very high value of A we

see the full (levelopmin ent of the barrier in 7 in a comfpression cycle. The peak value of

- 7ma decreases with increasing N suggesting strong snapping or bi-stable nature
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Figure 2-4: Variation in -' with N in a compression cycle. -y is symmetric with

respect to half the height of a unit cell in a compression cycle. ',nax decreases with

increasing value of N
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for lower values of N rest being the same.

2.3 Variation in 0

0 0.5 1 1.5 2 0 0.5 1 1.5

23I

HH

.Number 
of Sides

Figure 2-5: Rotation of the top surface (0) with compression when A = 0.8 and for

N = 5, 6, 7, 8 and for N = 6 and A varying between 0.4 and 1

From the previous section we have understood that the rotation of the top panel is

necessary to maintain the prescribed kinematic and displacement boundary conditions

while keeping the bottom fixed in a compression tension cycle of a Flexigami unit cell.

This provides us of another way to convert linear motion to rotary motion and

vice versa which is generally achieved through rack-pinion assembly or through com-

plicated process of carefully designing and machining CAMS. Flexiganii towers are

capable of generating complex profiles of linear-rotary motion conversion through

their simple design and each curve is characterized by just three parameters N, A and

L. Figure. 2-5 represents selective few profiles of this conversion

27



THIS PAGE INTENTIONALLY LEFT BLANK

28



Chapter 3

Geometric Mechanics

The previous chapter detailed the important geometrical parameters which are neces-

sary and sufficient to completely define a unit cell and delved deeply into the analysis

of its geometry by understanding how each of the three defining parameters play a role

in determining the shape, size and behavior of a unit cell. We discussed the kinematic

coupling between the height of a tower and the rotation it induces in one of the two

polygonal surfaces when the other is held fixed. We observed that the geometrical

quantity -y exhibits a symmetric variation about half the maximum height (H) of a

unit cell. This symmetric variation in -y is hypothesized to be one of the contribution

factors why a Flexigami unit cell can exhibit snap through instability. To validate

the predictions from kinematic analysis and to model the behavior of a unit cell in

totality, we developed a numerical model of the unit cell. Here, we consider a unit

cell with N = 7, L = 30mm and A is varied to span the entire range. All surfaces are

assumed to be of uniform thickness t. Total energy of the system (ET) is the sum of

bending energy (EB) of panels and energy stored in the creases (Ec)

ET = EB + EC (3.1)

Following sections details the procedure of computing these individual components
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3.1 Bending of Triangular Panels

3.1.1 Isometric Deformations

The central problem in understanding the mechanics of a Flexigami tower is to find

the equilibrium shape of the triangular panels as a function of the tower compression.

Here we consider all the deformations of triangular panels to be isometric implying

in-plane strains remain zero everywhere along the center surface. All isometric defor-

mations can be characterized by a geometrical invariant of the surface called Gauss

curvature. We need to incorporate equations of elasticity into the geometrical anal-

ysis to derive equations governing the deformations of the triangular panels under

consideration.

In the Hookean elasticity, two dimensional strain along the center surface remains

small, and the raii of curvature of the plate are much larger than the thickness, t. We

keep the assumption of small displacement. Then the elastic energy per unit surface

area stored in the plate is given by ([22])

Et

2(1 - V 2 ) [(&xx + )2 -- 2(1 - v)3-2 - )2

Et3  (0 2W &2  2 W 2 W 2a
2 W (3.2)

+ -- + -- 2(1 - v)
24(1-v2) _ax2 2 2x2 &y2  xay))J

where

" E - Young's modulus

" t - Material thickness

* v - Poisson's ratio

" w - Out of plane deformations in the triangular panels

Isometric deformation of triangular panels have two parts to the calculation of the

stored elastic energy, where
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Et
Stretching Energy : ES 2 - _ zA)EY _E StrtchngEnegy: E =2(1 - v2) [(Exx + Eyy)2 2(1 -- ) I)Exyy-E mid-plane

(3.3)

Ft3  (&2 W &2W' jD 2 W 02 W (& 2WV
Bending Energy: EB - + - 2(1 - v)

24(1 - v2) 19X 2  Oy2  
V fX2 (y 2 - x~ y}

(3.4)

In the limit of isometric deformation, in-plane strain which is measured from the

change in length of curves drawn along the center surface is zero. Hence, the elastic

energy stored as stretching energy vanishes with this assumption. So, one hast o

consider bending energy of the plates. The isometric deformations where all the

surfaces are isometric to the plane are called develop-able surfaces. In these kind of

deformations

EX (X, y) - Exy (x, y) = eyy(x, y) = 0 (3.5)

Hence, the contribution of stretching energy to the isometric deformations of triag-

ular panels is zero. By minimizing the bending energies of these panels, one can derive

the equilibrium shape of the tower in a compression cycle.

3.1.2 Computing Bending Energy

Energy stored in the triangular panels as they bend in the process of tower compres-

sion constitute the bending energy component of ET.

Let the instantaneous height of the tower in a compression cycle be denoted by h.

Each side of a tower consists of two triangular panels and three creases as shown in

Figure 3-1. Co-ordinates of the points defining these two triangular panels are given

by

" Point A: [A,, Ay, Az; Point B: [B., By, B,];

* Point A' : [A', A',, AZ]; Point B' : [B', B', B']
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Figure 3-1: Displacement and traction boundary conditions on Flexigami
tower. Bottoni p)late of the tower fixed iii all six degrees of motion. Top plate is
allowed to rotate about and have dis)lacemlents along e 3 . Length of the diagolial
crease AB' is kep constant while the free edges AA' are allowe(d to (leforiml whose

space ciiivatiire is deteriiined. Diagonal valley folds, top an( l)ottonl mountain folds

are nodeled as torsional springs. Vertical displacement is ap)lied on the model an(l

total energy of the system is minimized.
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Space curve RAA'(s) is parameterized by the arc length s:

.3

RAA'(s) [IAA'Is, E asin(n7rs), 0 (3.6)
.n=1

in the co-ordinate system of (e', e/, e') . By co-ordinate transformation, represen-

tation of RAA'(s) in the co-ordinate system of (e1, g2, e3) is:

Q11 Q12 Q13 A JtA

RFE Q21 Q22 Q23 Asin(r7rt) + A'

P31 Q32 Q33 0 AZ

(3.7)

AA' s + Q12 1 assin(n7rs) + A'

Q211AAs + Q22 n_1 a1sin(n7rs) + A'

Q31A A'I s + Q32 n_ 1 ansin(n7rs) + A'Z

where the components of the transformation matrix Q are given by:

Qij = ei - el

Similarly, space curve RAB, in the co-ordinate system (e, e-, e-3) is given by:

B' + s( Ax - B' )

RAB(s) B' + s(A - B' (3.8)

B' + s( Az - BI )

Assuming isomeric deformations of the triangular panels, three dimensional sur-

face profile of the triangular panels at any instantaneous height (h) of a tower becomes

developable. This developable surface of the triangular panel (AA'B') is represented

as a ruling joining corresponding points on two space curves RAA,(s) and RAB'(s)
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and mathematically written as

RAA'B'(s, v) =(1 - v)RAA'(s) + vRAB'(s) (3.9)

Similarly, for the triangular panel formed by the three points BB'A, it can be

parametrically written as

RBB'A (S, v) - (1 -v)RBB'(s) + vRAB(s) (3.10)

For a surface to be developable, it must also satisfy the condition that

g(s) x -g(s) RAA(S) = 0; where g(s) = RAB'(S) - RAA'(s) (3.11)

In order to solve for the equilibrium shape of the panels, total energy of the

system which is sum of bending energy of panels and energy stored in the creases

should be minimized subjected to the above stated constraints. Since, the triangular

panels are modeled as developable surfaces, their bending energy is proportional to

the surface integral of mean curvature squared ([4],[15]). Each side of an N sided,

unit cell consists of two triangular panels (AA'B' and BB'A). So, the bending energy

associated with a single side is

Bending Energy= KB JJ [HA,B(sv) + HB2,A,(s,v)] ds dv (3.12)

where HAAIB' and HBBIA, represent the mean curvature of the two surfaces and

KB is the bending rigidity of panels which is a function of Young's modulus (E),

Poisson's ratio (v) and material thickness (t).
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3.2 Folding of Triangular Panels

For each of the N sides, we have three creases. Two corresponding to mountain folds

joining each of the triangular panels to either of the polygonal surfaces. One valley

fold which is the diagonal crease joining triangular panels. We consider the creases

to be linear elastic torsional springs ([131) whose torsional stiffness is denoted by K,

and non-zero rest state (0) corresponding to zero crease energy. This non-zero rest

state is the state in which a unit cell is fully open. Instantaneous fold angle of the

crease at a point (0h) is obtained from the normals drawn on the two surfaces joining

at that point. Following equations explain the procedure

e Gradient of RAA'B' with respect ot v is

(RAA'B')v = -RAA'(s) + RAB'(S)

(RAA'B'), (t,v) - -

Qii|AA'| t + Q12 = 1 ansin(n7rs) + A'1

Q21 IAA'I t+ Q22 Z=1 ansin(n7rs) + Ay

Q31IAA' t + Q32 = 1 asin(n7rs) + A' J

BI + s(Ax - B')

+ B' + s(Ay - B')

B' + s(Az - B')

(3.13)

e Gradient of RAA'B' with respect ot s is

Rs(s,v)= (1 -v) Q211AA

_ 311AA'

+ Q12 n= 1 nan7rcos(n7rs)

+ Q22 Zn= 1 nan7rcos(n7rs)

+ Q32 n= 1 na7rcos(n7rs)

Ax - BI

+ v Ay -B'

Az - B'

(3.14)

* Equation of normal (N) to the

(RAA'B') is given by

tangent plane at a point (s, v) on the surface

(3.15)NAA'B' =(RAAB')s X (RAA'Bt)t
| (RAA'B')8 X (RAA'B')tI
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* Similarly, equation of the normal (N) to the tangent plane at a point (s, v) on

the surface (RBB'A) is:

NBB'A - (RBBIA)S X (RBBA)t
(RBB'A)s X (RAAIB')tl

(3.16)

To compute crease energy of a crease, we need to track the change in the angle of

the crease along its length and integrate it. Following equations give the instantaneous

angle at each of the three creases and energy stored in them

e Energy stored in the crease A'B' at height h

CreaseEnergyAB, = KC j [(OA'B')h(O, v) - (OA'B')(O, v)]2 dv
2 A'

where

(OA'B')h(0, v) = acos ((NAA'B')h(0, v) 63)

* Energy stored in the crease AB' at height h

Crease EnergyAB, 2 IA [(OAB')h(S, 1) - (OAB')O(S, 1) 2 ds

(3.17)

(3.18)

where

(OAB')h(t, 1) = acos ((NAAB')h(s, 1) - (NBBA)h(s, 1))

* Energy stored in the crease AB at height h

CreaseEnergyAB = K B VOAB)h(0, v) - (OAB)0(0, v)] 2 dv (3.19)

where

(OAB)h(0, v) = acos ((NBBIA)h(0, v) ' 63 )

Crease Energy = CreaseEnergyA'B/ + Crease EnergyAB/ + CreaseEnergyAB (3.20)
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Ec = A [(OA'B') h(O, V) - (OA'B')(0,V)] 2dv

+ K I [(OAB')h(s, 1) - (OAB')O(S, 1)] 2 ds (3.21)
K IA

+ C [(OAB)h(O,V) - (OAB)0(0, )]2 dv

Therefore, for an N sided tower, total energy of the system

ET = N [EB + EC)

ET =NKB JJ [H AB'(sV) + HBBA,(s,v)] ds dv

+ N [(OA'B')h(0,V) (OA'B')o( 0 (,V) 2dv
2 JA'3.2

+N B' [(OAB')h(s, 1) - (OAB')ost, 1)]2 ds
2 IA

+N Ai B [(OAB)h(0, V) - (OAB)0(0, V)] 2 dv

3.3 Results and Discussion

By minimizing ET subject to prescribed kinematic and displacement boundary con-

ditions at every discretized height of the unit cell in a compression cycle, we solve

for the three coefficients [ai, a2 , a3]. This provides us with the space curves RAA, and

RBB' and thus with the equilibrium shape of the triangular panels RAAB' and RBB'A

respectively. Figure. 3-2 show these equilibrium shapes at five positions of h in a

compression cycle of a unit cell with N = 7, L = 30mm, A = 0.8.

Parametric analysis of Kb and K, helps us understand their individual roles in

shaping the energetics of the system. Here we see that for lower ratios of Kb/Kc,

implying for higher crease stiffnesses, the energy is continuously increasing (Figure. 3-

3) implying mono-stability of the system. But as we increase the ratio, there is a

gradual development of energy barrier(Figure 3-3) giving rise to two stable equilibrium
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Figure 3-2: Equilibrium shapes of the triangular panels in a compression
cycle. Total energy of the system Er is minimized to obtain the three coefficients

[ai, a2 , 031 which define the equilibrium shape of the triangular panels. Figures a-
e represent these equilibrium shapes in a compression cycle. Large out of plane
deformations are observed as we see formation of clear S very similar to the profile
observed in experiments.

positions and hence we can conclude that the system transitions from being mono-

stable to bi-stable.

So, there is a critical ratio of Kb/Ne below which the system exhibits mono-

stability and above which it exhibits bi-stability. This can be further intuitively

understood by observing the individual energy profiles of bending energy and crease

energy (Figure 3-4). Here we see that total bending energy has an energy barrier

while total systems crease energy increases monotonically. Thus by finely tuning

these individual bending and crease stiffnesses (Kb or K,), response of a flexigami

unit cell can be engineered to exhibit either mono-stability or bi-stability.
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Figure 3-3: ET: Total Energy Total energy of the system with two triangular panels

and three hinges for different ratios of bending stiffness (Kb) and crease stiffness

(K,). For lower values of Kb/KC, ET exhibits monotonic increase representing mono-

stability of the system. But as Kb/Kc increases, E develops an energy barrier which

represents development of bi-stability in the system.
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Figure 3-4: Profiles of Bending energy (Eb) and crease energy (E,) for two
values of Kb/K. For K/K, = 1., we see that Eb is two orders of magnitude smaller
than E,. While Eb has an energy barrier about H/2, E, is monotonically increases
and ET is dominated by E. But for KI/Kc = 700, Eb and E, are comparable and

hence the total energy ET exhibits a energy barrier representing bi-stability
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Figure 3-5: Phase diagram representing the transition between mono-stability to bi-
stability as a function of Kb/Kc and A for N = 7 and L = 30mm
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Figure. 3-5 shows the phase diagram of the transition between the mono-stability

and bi-stability for N = 7, L = 30mm as we change A and Kb/Kc.

3.4 Summary

Numerical model of a Flexigami unit cell provides us with the required understanding

of the role of material properties in determining the behavior of a unit cell. Bending

rigidity (KB) of the triangular panels depend on the Young's modulus (E), Poisson's

ratio (v) and panel thickness (t). Creases which are modeled as torsional springs

are governed by the torsional stiffness (Kc). Ratio of the stiffnesses of these two

structural components of the tower (K = K/Kc) is an important quantity and

also determines if a tower exhibits a bistable or monostable behavior. Total Energy

(ET) of the system which is the sum of bending (EB) and crease (Ec) energies is

dominated by Ec for higher values of Kc. Crease energy is always monotonically

increasing and hence when EC has major contribution towards ET, we observe that

the system exhibits mono-stability. But for higher values of K in which case bending

energy provides major contribution to ET, we have bi stability in the system.
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Chapter 4

Behavior of Flexigami Unit Cells

under Compression and Tension

A Flexigami unit cells offers very interesting kinematic coupling between the extent

through which it is compressed and the resulting rotation of one of the two polygonal

surfaces while the other is held fixed. Rotation as well as simultaneous compression

requires a custom made jig to hold the towers through a test. Here, in this chapter

we detail the procedure of testing different kinds of sample unit cells fabricated from

paper and understanding their force-displacement response when subjected to cyclic

uni-axial compression tension tests in a displacement controlled environment

4.1 Experimental Design

4.1.1 Sample preparation

CAD models of 2D cut pattern of individual Flexigami unit cells are prepared and

120 watt Epilog mini laser cutter is used to cut a sheet of Daler-Rowney canford

papers(150gsm or 901b) into desired previously prepared 2D pattern. Figure. 4-1 rep-

resents the 2D cut pattern of a seven sided Flexigami cell. Here lines are represented

using two colors. Black lines represent the outer boundary of the pattern and are cut

at 75% speed, 60% power and frequency of 120Hz. While blue and red lines represent
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creases and are formed by perforating the material along the lines at 80%) speed, 2/

power of the Epilog laser cutter and at 20Hz frequency. Once the sheet, is cut into

desired pattern, it is then folded sequentially along the creases with blue lines forming

mountain folds and red lines forming valley folds. Tabs on the triangular panels are

gbied to the polygonal surface to obtain a closed volume of single Flexigai unit cell.

Figure 4-1: This figure represents the crease pattern along which the perforations are

made using the epilog mini desktop laser cutter

4.1.2 Testing Apparatus and Procedure

A tensile testing machine (Zwick) is used to perform uniaxial teiision-com pression

tests. As described iii previous chapters, compression or tension of a FLe iqami unit

cell holding one polygonal surface fixed results in the rotation of the other polyg-

onal surface. In order to obtain the true response of a tower uder cyclic tensioii-

compression environment, it is important that the experimental set up allows for
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the free rotlatio of oue of the two polvgonlal surfaces while holding the other fixed.

To achieve this, we desiglied special jigs that aniii be attached to the Zwick testing

machine.

III
K

U 

U

rn.~ F P3~

~ ~I- ~
Figure 4-2: Zwick mechanical testing machine: This figure represents the me-
cliaiiical test iug iachine liused iil this study. Load cell is in series to the grips which
are labeled as top anid bottoii plateiis. Custom imaclineId jigs to 1old the tower in
place are claiiped to the machine grips in series. Tighteiiing the thmiiil) screws allows
us to dcynamiicallv restrict the motion of the rotating plate.

Figure. 4-2 shows the specially designed jig which consists of double row angular

contact ball beariig awd a shaft whose end is press fitted into a plate to which

towers are attacied.Thie process of comipressioli anid tensioi tests on a tower ill a

cyclic fashion results in off celitered loads on tie shaft attached to the bottoi plate.
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These kinds of loads results in the swigging of the shaft when regular single row ball

bearings are used. To avoid this, we used angular contact ball bearings which are

well designed to bear off-centered loads on the shafts and still not introduce any slack

into the system.

Figure. 4-2 shows the set up where the tower is fixed to the top and bottom plates

using four nylon nuts and bolts. While the top plate does not allow for any rotation,

bottom plate can be tuned to either allow free rotation or to not have rotation and

effectively act similar to the top plate

Before carrying out any tests using mechanical testing machines, it is important

to calibrate the machines and understand their hysteresis behavior as well as inertia

effects because of the heavy jigs being used to hold the samples in place. We want to

deal with these two effects independently.

To completely remove the hysteresis of experimental jigs and purely understand

the hysteresis of the machine as well as intrinsic hysteresis of the structure we designed

the following two experiments.

4.1.3 Effect of Strain rate

Here, we prepare two Flexigami cells whose geometry is defined by the following three

parameters : N = 4, L = 60mm and A = 0.9. We fold these two towers to result in

opposite chirality and glue them back to back resulting in two layer Flexigami cells.

Now, this stacked Flexigami tower is secured to the top and bottom platens of the

machine. Rotation of the bottom platen is restricted by tightening the thumb-screws

(Figure. 4-2). Now, the towers are subjected to multiple cycles of compression and

tension. These experiments are carried out in displacement controlled fashion. Rate

of compression is varied for each cycle from 10mm/min to 100mm/min. Force dis-

placement response of this tower structure under these varied strain rates is reported

in Figure. 4-3.

Here we see that the compression or strain rate has very minimal effect on the

peak force and all the force-displacement responses form a very nice tight band. But

in the second half of the cyclic test when the tower is under tension we see that the
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Figure 4-3: Effect of strain rate on the response of flexigami towers: Force
displacement response of two layer flexigami tower of opposite chirality when the

restriction of both the top and bottom platens are restricted to rotate and subjected

to uni-axial comlpression tension tests under varied strain rates going from 10mn min

to 100miminin. All the curves are overlapped on each other and they form a very

tight band.

force response is deviated from the response of the compression cycle and exhibits

large hysteresis and the observed hysteresis is independent of the strain rate.

In the next set of experiments we understand the inertial effects of the experinen-

tal jigs and their contribution to the force-displacement responses of the tower.

4.1.4 Inertial Effects of Customized Jigs

The jigs that are used to hold the towers in place are two orders of magnitude heavier

than the test samples itself and the bottom rotating plate is an order of magnitude

heavier than the test samples. If the bottom plate rotates in accordance with the

kinematic constraints of the tower compression behavior, we need to understand the

in detail how this effects the response recorded by the load cell which is in series with
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the towers and the jigs.
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Figure 4-4: Inertial effect of custom made jigs on the response of Flexigami
towers-Exp1: Force-displacement response of two layer Flexigami towers of oppo-
site chirality when rotation of bottom platen is allowed and subjected to uni-axial
compression tension tests under varied strain rates. All the curves are overlapped and
it is observed that they form a tight band and have good agreement among them.

To capture this effect, we modified the bouundary conditions of the previous experi-

ment and now we allow for the rotation of the bottom platen while still restricting the

rotation of the top platen. We now subject the tower to multiple cycles of compres-

sion and tension with different strain rates. Figure. 4-4 reports the force displacement

response of the tower.

Here we observe that again all the response neatly overlap on each other forming

a very tight band and the hysteresis is till large. To further confirm that the inertial

effects are negligible at the current operating strain rates, we now carry out exper-

iments on single layer towers having the same geometrical construction of N = 4,

L = 60111 and A = 0.9.

This result gives the second confirmation that the effect of jig inertia on the force-

48

l



8 - -- - - - -___ _ - -

1 00mm/min
200mm/min

6 50mm/min
-25mm/min

4
z

2
U-

0 ------ - --------------- ---- ------- --

-2-

0 H/2 H
Compression

Figure 4-5: Inertial effect of custom made jigs on the response of Flexigami
towers-Exp-2: Force-displacement response of single layer flexigami towers with
rotation of the bottoim plate allowed and subjected to uni-axial compression tension
tests under varied strain rates. All the curves are overlapped and they form a tight
band providing good agreement of response for varied strain rates.

displacement response of the towers is negligible at the current operating speeds. We

recurrently observe huge hysteresis in the towers, independent of the strain rate or

the rotation of the bottom platen. This strongly suggests that the observed hysteresis

is intrinsic to the tower structure is not a contribution from the machine's hysteresis.

4.1.5 Hysteresis of the tower

Till now we have understood the inertial effects of jigs and strain rate on the force-

displacement response of towers. In all these calibration tests, we have one recurrent

pIhenonenon of large hysteresis. We hypothesized that the hysteresis is an intrinsic

property of the tower and one of the contributing factors is the inter-panel contact

which taken into effect beyond compression of H/2. To confirm this hypothesis we

need to avoid this inter-panel contact and carefully observe the response of the tower.
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The only way to achieve this is to sequentially remove the towers till we reach the

situation where there is no panel-panel interaction. So, we first subject a single layer

8
- FourSides

ThreeSides
6 TwoSides

OneSide

4
z

20

-2

0 H/2 H

Compression

Figure 4-6: Understanding hysteresis of the tower: Force-displacement re-

sponses of single layer Flexigaii tower subjected to uni-axial compression tension

tests at strain rate of 25mm11 miin and allowing the rotation of bottom platen. Sides

of the Flexigaini tower are sequentially removed and the test is repeated. With de-

creasing number of sides, we observe reduction in the observed peak force and also

the amount of hysteresis in a, cyclic test confirming the role of paiiel-panel interaction

to be the cause of hysteresis

tower with geometrical properties of N = 4, L = 60mm and A = 0.9 and with all the

panels in-tact to a compression tension cycle at 25mmii/! miii . Next we remove one

of the sides and repeat the experiment. Next we remove alternate side, so we have

no panel-panel interaction and then finally we remove all the sides except one and

repeat the experiment.

Figure. 4-6 reports these results. We see that as the number of sides reduces, the

amount of hysteresis is also reduced and finally when we have just one side remaining,

we observe that the hysteresis is at its miniiiinmum. From this result we can affirmatively

state that the hysteresis is intrinsic property of the tower.
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4.2 Results and Discussion

ab

C
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Figure 4-7: Compression cycle of a flexigami unit cell: This represents a con-

pressioii cycle of a seven sided flexigami cell. Edges are marked green and the diagonal
crease is marked red. We clearly observe the development and die down of an S shape

as the tower is coml)ressed. The diagonal crease marked red remains straight through

out the compression cycle.

For A < A, the cell ol)ens and closes smoothly; upon compression, the force

increases gradually past relative displacement of H/2 and stiffens sharply only when

the folded panels contact one another. For A > Ac, the cell exhibits a snap)-through

behavior where it jumps from one stable equilibrium position to another. In this

case, the force first increases linearly until reaching a l)eak value (Figure. 4-8); at the
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Figure 4-8: Force displacement response of N = 7, L = 30mm and A is varied:
For lower values of A we observe monotonic increase of the force as the tower is
compressed. But as A is increased force barrier is developed which implies bi-stable
nature of the system and strength of the bi-stability increases with increasing A

52

I

Phase I

10
)

CO

-)

CO

8

6

4

2

z

0
LL 1~>

0

-2
0.9

"9
0.70.8

0.6

L



instant of the peak force (Fe), the cell snaps causing a negative slope in the force-

displacement curve. The force drops to a local minimum value, and then the cell

strengthens with continued compression. Figure 4-8 pictorially represents the process

of cell compression in a displacement controlled fashion. Here we clearly observe the

development of out-of plane deformations which take the form of a skewed S shape

in the initial stages of compression. These deformations becone more pronounced

resulting in peak force and start to die down in phase 11 (blue) of the force response

cycle where we see a decrease in the force with increasing compression. Negative

values of the force confirms the bi-stable nature of the unit cells which is absent when

A < Ac. Once the adjacent panels comes into contact, the we enter phase III (red),

where we observe strengthening of the force and its drastic shoot up as it is completely

compressed.

Next, we see the variation in the responses when A and L are kept constant while

changing N. Figure. 4-9 represents this variation.

Phase I

z5

" 0

H/H
HI2

0

6 5

Number of Sides 4

Figure 4-9: Force displacement response of flexigami towers with A 0.9
and L = 30mm and N is varied: Strong bi-stable nature is observed for all values

of N and value of the peak force is comparable.
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Important property to be investigated or understood of for any unit cell of a

cellular material is its stiffness and the maximum force it can withstand. Figure. 4-10

summarizes the peak force distribution of flexigami unit cells as a function of N and

A. Here we see that for any constant N, peak force increases with A

4

3.5 ~

N4
N7-=6

e- 2 N=- -=7

0'~ = 0.5
A =0.6

1.5 o A =0.7
\ o A =0.8

- A =0.9

0.5

0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Relative Density

Figure 4-10: Peak force distribution of flexigami single layer towers as function of A
and N for L = 30mm

Figure. 4-11 reports the distribution of stiffness values for the same set of unit

cells. Stiffness trend is similar to that of the peak force where we see decreasing value

with A for constant N, L. Compression at which peak force is attained for each of

the bi-stable towers is very close. As stiffness is computed as ratio of peak force and

the displacement (mm) at which this occurs, we see similar trend in both stiffness

and peak force variations across all the cells with varying N and A.

4.3 Summary

In this chapter we detailed the procedure of testing a Flexigami unit cell. Customized

jigs are designed and fabricated to allow for smooth rotation as well as to be able to fix

the bottom platen rigidly just by rotation of a thumb screw as the tower is subjected

to cyclic uni-axial compression and tension tests. Top platen is always rigidly fixed

independent of the boundary conditions offered by the bottom platen. Effect of the
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Figure 4-11: Stiffness distribution of flexigami
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single layer towers as function of A and

conpression and strain rate on the response of Flexigani cells is studied by subjecting

a cell to cyclic compression tension tests under varied strain rates. It is concluded

that the response of the tower is independent of the train rate in the measured range

of values. Samples of unit cells with varying N and A at L = 30mm are prepared

and subjected to cyclic uni-axial compression tension tests. Observed peak force

increases with A when N and L are kept constant. This conclusion is in agreement

with -' variations described in the Chapter 2. Peak forces and initial stiffnesses of

unit cell matrix (Fig. 2-2) is summarized in Figures 4-10 and 4-11. Similar increasing

trend of peak force as well as stiffness with A is observed for all cases of constant N

and L.
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Chapter 5

Finite-element Analysis

Finite-element analysis is a great tool to simulate the behavior of Flexigami unit cells.

It helps us look at individual contribution from each of the structural components

to the overall behavior of the structure. The dynamic opening and closing exhibits

snap through instability. To capture this unstable collapse, Modified Riks Algorithm is

implemented ([1]). This algorithm is generally used to predict unstable, geometrically

non-linear collapse of any structure. In this chapter we develop a finite-element model

of Flexigami unit cell. For the sake of simplicity we modeled only one side of a seven

sided cell. Each side consists of two triangular panels and three creases. Triangular

panels are modeled with thin shell elements while creases are modeled as special

torsional spring elements. Subsequent sections detail the procedure of developing

and interpreting the results from FEM.

5.1 Material Characterization

5.1.1 Assumptions

Paper is generally considered to be orthotropic material. The thickness of the paper

is much smaller compared to the other two in-plane directions. So, we can con-

sider this as a case of plane stress. Under plane stress condition only the values

of (Ei,E2 ,v1 2 ,G12 ,G13 and G 2 3) are required to define an orthotropic material. The
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Poisson's ratio v21 is implicitly given as v21 = (E 2/Ei)v 1 2 . The stress-strain relations

for the in-plane components of the stress and strain are of the form

El 11/Ei -V12/E 0 al

E2  =-V12Ei I/E2 0 22 (5.1)

'Y12 0 0 1/G12_ T12

To have a good estimate of the properties to be incorporated into the FE model, we

need to characterize the paper being used in the experiments. For this we estimated

the in-plane properties of the paper which is detailed in the following section.

5.1.2 Measurement of Mechanical Properties

It is very important to measure the properties of the paper that we are using as it

significantly affects the experimental results and provides a realistic estimate for its

in-plane properties. Here all through our experiments we use a single kind of paper

canford (150 gsm). We need to determine its two in-plane modulus (El, E2 ), Poisson's

ration v12 and the shear modulus G 12 . ISO1924-2 standards are followed to carry out

the required experiments

Papers are made from cellulose fiber and during the process of manufacturing,

the axes of the fibers tend to be aligned parallel to the paper flow through the paper

machine. This phenomenon leads to anisotropy in the mechanical properties of paper.

Specimens conforming to ISO standards were cut in three different orientations as

shown in Figure.5-1 using a desktop mini Epilog laser cutter. 10 samples are cut in

each direction with the specified dimensions and are speckled with silver sharpie to be

able to use Digital Image Correlation (DIC) technique for the estimation of in-plane

strains.

5.1.3 Testing Apparatus and procedure

In order to determine the in plane modulus and Poisson's ratio, we should have in-

formation about strains developed in the specimen in the longitudinal and transverse
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24 cm

CD 1 Cm

18 cm

Figure 5-1: Representative figure of the directions along which the samples are cut
from a Daler-Rowney Canford paper and the dimensions of the sample conforming to
ISO standards for paper testing.

directions. Since, attaching a strain gauge would significantly affect the properties of

paper and would result in only one data, point, we used the Digital Image Correla-

tion (DIC) which is a non-contact optical strain measurement technique. Tests were

conducted under displacement controlled conditions where the specimen was pulled

at a constant velocity of 20mm min with a 10KN load cell. A series of images of the

specimen being deformed are captured and analyzed with Vic-2D. This provides us

with the data of in-plane strains. All the samples that break within 10nm of the

clamping distance are rejected to meet with the ISO standards.

5.1.4 Results and Discussion

In-plane stress-strain curves of the Daler-Rowney canford (150gsm) paper are repre-

sented in figure. 5-2. Strong anisotropy of the paper is very clearly represented by

these stress-strain profiles. While the modulus along the Machine Direction (MD) is
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Figure 5-2: Figure representing the (a) sample in grips before the test (b) after

breakage and (c) representative set of longitudinal strains developed at the maximum

extension

the highest, modulus along the Cross Direction (CD) is the least.

1\odulus (GPa)

MD (E1 ) 6.83

CD (E2) 3.11

Gi L22.17

1/12 0.23

Table 5.1: M\Iean values of the modulus and Poisson's ratio

Figure. 5-3 shows the stress-strain response of the paper sample in the three

directions. We see that the material has highest toughness (area under stress-strain

curve) in the Machine Direction and lowest in the Cross direction. Table 5.1 lists

the average Young's modulus along the two major directions (Machine direction and

Cross direction) as well as shear modulus (G12) and measured Poisson's ration V 1 2
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Figure 5-3: Stress-strain response of the paper strips in the three measured directions

5.2 Developing Finite-Element model

Since our prinary objective is to understand the intricate details of the Flexigami

tower snapping mechanism and to delineate the contributions from each of the struc-

tural components we developed a finite-element model of the tower with one side.

Each side of a Flexigami tower is a combination of two triangular panels, one valley

fold and two mountain folds. Triangular panels are modeled as thin shell structures

whose behavior is defined by its shell thickness, Material density, and the six in-plane

material properties as detailed below. These properties also determine the individ-

ual bending rigidity (KW) of the triangular panels. Both mountain and valley folds

are modeled as linear elastic torsional springs whose behavior is determined by the

torsional spring constant (K,.). Element type of STRI3 in Abaqus/Standard is used

are used to mesh the triangular panels along with top and bottoml polygonal sur-

faces. The element has three nodes, each with six degrees of freedom. The strains are

based on thin plate theory, using small-strain approximation. Total of 13,960 STRI3

elements are used to mesh top and bottom plates, while, 6568 STRI3 elements are
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used to mesh each of the triangular panels. To nodel creases we use special purpose

spring elements whose associated action is defined by the specified degrees of freedoin

involved. Type I and Type II creases are discretized into 9 and 17 points where these

spring elements are acting.

Specimen is then subjected to vertical displacement while fixing bottom plane

(Figure. 5-5s) and imposing penalty to avoid node penetration between the two tri-

angular panels which would come in contact in the process of coipression. External

work done on the entire specinen and reaction forces at each and every node (from

individual frames) on top and bottom panels of the specimen are obtained as output

from the FE model. Vector suinnation of these reaction force components will result

in the Force-Displacement curve.

E'

C'

G

BB

Figure 5i-4: Geometry of the model used in FE Simulations

5.3 Results and Discussion

These simulations also allow us to extract reaction forces developed at each and every

node of the top and bottom polygonal surfaces. Vectorial addition of these individ-
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nal components over the entire mesh gives us instantaneous force and tracking this

instantaneous force results in the force-displacement profile of a single compression

cycle. Figure. 5-5 shows the process of a compression cycle and Mises stress developed

in the cell. Stresses in the triangular panels are an order of magnitude smaller than

stresses in the creases. We see stress concentrations mainly in the elements connected

to the springs. Creases are the regions of high stresses and strains and play an im-

portant role in moment transfer between the panels. To compare the results of these

a
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Figure 5-5: Mises stress in the cell in a compression cycle

simulations with experimental observations, we amplified the response by seven times

and overlapped with the corresponding experimental results as shown in Figure 5-6.

Here we are referring to the particular case of N = 7, A = 0.8. We see that the ini-
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tial stiffness of the system from finite-element simulations overshoots experimentally

observed stiffness. We know that paper can be plastically deforned over repetitive

cycles. The measured responses of the unit cells are from the samples that were

previously subjected to cyclic compression and tension over repetitive cycles. This

process reduces the stiffness of creases which in-turn affects the force-displacement

behavior recorded during the experiments. But, the predicted negative force from

FEM matches agreeably with the experimental results.

10
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U-

6

4

2

0

Experiment
- FEM prediction]

I I

-2-
0 H/2

Compression
H

Figure 5-6: Force displacement response of a Flexigami tower in a compression cycle

from FEM as compared to experimental results

I
5.4 Summary

Development of a finite-element model allows us to simulate the force-displacement

behavior of a unit cell. To model the behavior accurately, good estimation of naterial

properties is required. Hence, the paper which is used to fabricate the experimental

samples is characterized. Required orthotropic properties are estimated. Stresses and
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strains developed in each of the individual structural element can be easily visualized.

From the model, we understood that very high stress concentrations are developed

along the creases. Hence, yield strength of the material along the creases play an

important role in maintaining the structural integrity of the system. It should be

capable of withstanding high stresses over repeated cycles.
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Chapter 6

Stacked Flexigami cells and

Mechanisms

6.1 Flexigami cells in series

In the previous chapters we explored the mechanics of single Flexigami unit cells and

understood the role of individual structural components of the system in shaping its

iechanical response.

Figure 6-1: Sequential compression of Flexigami cells. This figure represents the

response of two flexigami cells of opposite chirality glued back to back and subjected

to iui-axial compression tests. Rotation of top platen is restricted while bottom

platein is allowed to rotate resulting in sequleltial coln)ression of the tower assembly.
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Now, we will inderstand the effect of boundary conditions and how changes in

them affects the response of tower assemblies. A simple assenbly of Flexigaini consists

of two towers attached back to back as showin in Figure 6-1.

10

8

6

4
0U _ W ithout

otation With Rotation
2

-2
0 H/2 H

Compression

Figure 6-2: Force displacement response of Flexigami cells in series un-
der different displacement boundary conditions.Configuration 1 represents the
boundary condition in which rotation of top and bottom platen is restricted resulting
in the simultaneous compression of both the towers resulting in a single peak. Con-
figuration 2 represents the bioundary condition in which rotation of the top platen is
restricted while bottom platen is allowed to rotate resulting in sequential comnpression
of the towers and thus having two peaks each corresponding to a tower in the series
assenbly.

Here we present the results when two towers with same geometrical parameters

(N = 7, L = 30mm., A = 0.8) folded to result in opposite chirality are attached back

to back. Fromi previous discussion, we understand that as a result of Flcxiqami's geo-

metrical construction, comIpression of a unit cell while fixing one of the two polygonal

surfaces results in the rotation of the other. In two cell assemblies we have three

surfaces (one surface being conmnon to both the towers when attached back to back).

While the top surface is always fixed, we can choose to not fix the bottomu surface
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and thus we have two different boundary con(litionls under which this assembly can

be conpressed.

6.1.1 Two Layer Cellular Structure With Rotation

Here we allow the rotation of the bottom surface. So, when the two tower assembly

is subjected to displacement controlled uni-axial compression, we observe sequential

collapse (Figure 6-1)of each of the towers. When bottom tower is being colnpresse~d.

niddle surface remains stationary ai(l results in the rotation of bottoni platen. Once

the bottoml tower is comnJpletelv collapsed, we see the comipres sion of top tower. Bot-

toi platen along with the compressed tower acts as a unit and rotates while the top

tower is being coinlpressed. Force displacement response (Figure (-2)of this particular

configuration has two peaks corresponding to each of the tower.

WAI

Figure 6-3: Simultaneous compression of Flexigami Cells. This figure repre-
sents the response of the two Flexigaii cells of opposite chirality glued back to back

aid subjected to niiaxial coml)ression tests. R.otation of top and bottomii plates is
restricted resulting iii simultaneous compression of the tower. Middle plane is rotated
in the process of compression iimaking it possible for both towers to have simultaneous
coipression.

6.1.2 Two Layer Cellular Structure Without Rotation

Here, we restrict the rotation of both the top and bottom platens. Now, when the two

tower assenbly is subjected to the same displacement comitrolled uni-axial coiipres-
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sion, we see that both the towers start to get compressed simultaneously (Figure 6-3)

as opposed to sequential compression observed in the previous case. As both top and

bottom plates are restricted to rotation, compression of either of the towers results

in the rotation of the middle common surface which in turn results in the compres-

sion of the other tower and as a result we observe simultaneous compression. Force

displacement response (Figure 6-2) of this configuration exhibits a single peak which

is in agreement with the observed behavior.

These two force displacement responses of a single structure when subjected to

different boundary conditions represent a strong case of Flexigami's capability to tune

its internal folding mechanisms to meet with different external boundary conditions

with out catastrophic failure of the structure. This also opens the pathway to the

idea of carefully engineering these configurations of cellular assemblies capable of re-

producing any given curve as their force response when different boundary conditions

are imposed.

6.1.3 Multi Layer Cellular Structure

More complex assemblies of unit cells are prepared by stacking unit cells of same

N = 7, L = 30mm and A = 0.5, 0.6, 0.7,0.8, 0.9. Out of 3125 possible combinations

of all these cells, we chose four representative combinations two of which are shown

in Figure 6-5.

Again we subjected these four assemblies to displacement controlled uni-axial

cyclic compression and tension tests. We observed that independent of the sequence

in which these individual unit cells are arranged to form a particular combination of

an assembly, their force displacement response is the same. They overlap on each

other very neatly. This response (Figure. 6-4) is a resultant of their individual peak

forces required to compress them.

In the previous sections we have seen that the peak force required to compress

a unit cell increases with increasing A for a constant N, L. So, when they are

stacked in series to form one single assembly and subjected to displacement controlled

compression, the unit cell which requires least amount of force gets compressed first
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Figure 6-4: Force displacement response of stacked Flexigami cells with
varying A. This figure re)resents the force displacement response of four different
configurations of Flexigami cells stacked in series with varying A and subjected to uni-
axial coimplression tension tests in a displacement controlledI manner. All the resl)onses
forni a very tight band and show good agreement with each other confirming that
the softer tower gets compl)ressed or opened up first irres)ective of the configuration
in which these unit cells are arranged
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Figure 6-5: Flexigaii cells stacked in series of constant N = 7 and L 30nin but A

is varied from 0.5 to 0.9. Here we present two representative configurations from the
total number of possible coilnbinations.
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and it will also be the first unit cell to open up in the tension. We also, observe that

the minimum amount of force recorded by the tensile testing machine in compression

only part of the cyclic test is zero but not negative which should correspond to the

snapping of individual unit cells. A unit cell subjected to cyclic compression tries

to resist the imposed compression resulting in the positive force recorded by the

tensile testing machine, but once it is compressed beyond a threshold limit, it is has

a greater tendency to move towards a completely closed state and hence it starts

to exert a pulling force which is recorded as negative force response by the tensile

testing machine. But, when these unit cells are stacked in series, we see that, while

resistance of a unit cell in the assembly to get compressed is recorded as positive force

response, its tendency to exert a pulling force which should be recorded as negative

force response is missing and that this pulling force of the cell being compressed is

compensated internally by immediate cells on either side.

6.2 Flexigami cells in parallel

This sections explores the properties of the Flexigami cells tiled in a plane. This be-

havior is similar to the behavior of springs in parallel. Here we present the results two

stacked towers are placed in parallel and subjected to compressive forces individually

and simultaneously.

Figure. 6-6 shows the response of the tower made from gluing two towers of oppo-

site chirality back to back subjected to uni-axial compression test with out allowing

the rotation of top and bottom platens. As discussed previously, this results in the

simultaneous collapse of the both the towers resulting in single peak in its force dis-

placement response.

In order to tile two towers in parallel, they should be having same free standing

height in a completely stress free state. To achieve this, we halved the dimensions

of the towers used in Figure 6-6 and now constructed a tower with four unit cell

with alternating chirality. When this configuration is subjected to the similar uni-

axial compression test conditions by restricting the rotation of both the platens, we
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Figure 6-6: Force displacement response of two Flexigamii cells when both the platens
are restricted to rotate and subjected to uni-axial compression tension test

observe two peaks in its force displacenent response as opposed to one peak that is

previously observed. This is the resultant of suiniltaneous compression of the towers

in two stages. Top and the bottoin most towers are compressed initially followed by

the compression of the two towers in the center.
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Figure 6-7: Force displacenient response of four Flexigaimi cells of alternating chirality
stacked in series and subjected to uniaxial compression tension tests when rotation
of both the top and bottom platens is restricted
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When these two kinds of towers are compressed in parallel keeping all the testing

conditions same, we observe that effective force displacement response of the system

to uni-axial compression is nothing but the sum of responses of individual towers.

10

8

6

0

LL

2

-2
0 H/2 H

Compression

Figure 6-8: Force displacement response of two Flexigami towers with unit cells

stacked in series are now placed parallel and subjected to uni-axial compression and

tension tests with both the top and bottoin platens restricted from rotating. We

observe that the force displacement response is sum of responses of individual towers.

6.3 Mechanisms

One of the several applications of stacked Flexigami unit cells is their ability to

be stored compactly and be deployed to cover very large distances. As explained be-

fore, because of the kinematic coupling between different geometrical quantities, axial

comnpression of a unit cells results in the rotation of the top surface when the bottom

surface is fixed. Turning this around, by providing a torque input to the bottoi

surface of Flexigami and preventing the top surface to rotate, results in the deploy-

nient of Flexigami. This is precisely denionstrated in Figure. 6-9. The single tube

structure is created by combining stacked six-sided Flexigami unit cells with bellow

structure made out of single sheet. Stacked Flexigaii cells are placed concentrically

and glued together at one end. Other end of the bellows is held constant. Figure 6-9

represents a completely stowed configuration. Rotating free end of Flexigami results

in the sequential opening of its constituent unit cells and thus deployment of bellows.
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Figure 6-9: Photographs representing working principle of Flexigami mechanisms

Figure 6-9 represents the completely deployed configuration. Mechanics of individual

components of this structure can be tuned to achieve fine control of its stiffness and

thus its deployability. Our study of Flexigami introduces a novel collapsible cellular

naterial and associated mechanisms. We discussed its unique mechanical proper-

ties and understood the contribution of individual structural components in shaping

the overall response of a unit cell as well as different assemblies of these unit cells.

This study highlights the effect of different boundary conditions on the response of a

cellular assembly with net zero rotation. Extensions of this work may explore differ-

ent cellular assemblies to result in huge structures which can be deployed at remote

locations as well as refine the concepts presented in this article.

6.4 Summary

In this chapter we presented various configurations of Flexigami cells. First we ex-

plored two layer configurations where cells with opposite chirality as placed l)ack to
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back and subjected to different displacement boundary conditions on one of the two

polygonal surfaces while the other is always held fixed. Depending on whether one

of the surfaces is allowed to rotate freely or held fixed we obtained different force-

displacement response. This provides initial data that force-displacement response of

Flexigami cells can be engineered. As the next step, we stacked cells with varying A

in different possible combinations resulting in the same force-displacement response.

A cell with lower stiffness will always be the first to get compressed to extended in-

dependent of its positioning in the arrangement. Tiling of cells in plane results in a

response which is sum of responses of individual unit cells. Next, we present mech-

anisms possible with cellular assemblies of unit cells which provide basis to explore

deployable structures.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis has explored the mechanics of Flexigami structures from understanding its

geometric construction to developing deep insights into the role of material properties

in defining the force-displacement responses of unit cells with different geometric

configurations. In this work we modeled surfaces and creases with finite bending and

crease rigidities which closely represent the properties of real materials as opposed to

ideal assumption of rigid surfaces and perfect hinge behavior of creases. This is an

important change from conventional method of understanding and modeling origami

structures and forms back-bone of the current work. Imposed geometric constraints

lead to interesting kinematic coupling between the tower height and rotation of the

top surface when bottom is held fixed. These geometric constraints are fully satisfied

only when the unit cell is fully opened or closed and thus forces the triangular panels

to bend at any intermediate position to be able to satisfy these constraints. These

deformations in the triangular panels are symmetric with respect to the total height

of a unit cell and form the basis of observed bi-stable nature.

Numerical model of the Flexigami cell provides landscape of energy variations

of the cell in a compression cycle. This model helps us understand the individual

contributions of panel bending and crease folding to the total energy of the system.

These individual contributions are dependent on the bending rigidity of panels and
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rigidity of the creases. While crease energy is always monotonically increasing, panel

bending offers an energy barrier. Careful tuning of these individual contributions has

the ability to change the behavior of a unit cell from monostable to that of bistable.

This proved to be an important tool in understanding the interplay between the two

energy components and how they shape overall behavior of the unit cell.

While numerical modeling of Flexigami behavior is a great tool for parametric

analysis of total energy variations in the system as well as individual contributions

from panel bending and crease folding, it falls short in determining the actual stresses

and strains developed in the structure in a compression cycle. To bridge this gap,

we performed finite-element analysis of one particular case when N = 7, L = 30mm

and A = 0.8. It is found that stresses and strains developed in the triangular panels

are small compared to the values along the creases. This is in agreement with the

assumption of developable surfaces used in numerical model. Material model used

in the FEM is obtained by characterizing the paper used in experimental sample

preparation. Though this characterization suffices in determining bending rigidity of

the panels, crease rigidity is yet to be found out with certainty and will be dealt in

the future work.

The work detailed in this thesis provides a basis and furthers the use of available

tools in understanding the mechanical responses of origami structures and modeling

their behavior as structures fabricated from real material with finite thickness and

anisotropic material properties. Moving forward, combination of finite-element tools

along with numerical modeling sets a stage for analysis of other complex origami

structures.

7.2 Future work

Origami as a tool to engineer functional structures and materials with interesting

macroscopic mechanical properties has gained interest in the recent past. Many find-

ings and applications of origami structures have been demonstrated. This thesis

attempts to understand one such unit cell of a novel origami construction which we
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call Flexigami. Some key questions have to be addressed and well understood before

full potential of Flexigami as a unit cell of cellular materialcan be realized.

" Initial results of tuning of force-displacement curve as a result of different config-

urations of Flexigami cellular assemblies are demonstrated in Chapter 6. These

results provide a promising start point for answering some of the important

questions:

- Can stiffness of each of the creases and panels be individually tuned to

provide greater flexibility in tuning the mechanics of a unit cell?

- Can assemblies of such unit cells with varying geometrical and mechanical

properties be created in a methodical way to meet user defined require-

ments of its mechanical response?

- Can any polynomial curve passing through the origin be recreated as force-

displacement response of Flexigami cellular assembly?

" How does a Flexigami cell behave under dynamic loading conditions of varying

frequency and amplitude? Especially oscillation of Flexigami around the point

of instability might provide us with great insights into some of the important

characteristics.

81



THIS PAGE INTENTIONALLY LEFT BLANK

82



Bibliography

[1] Abaqus documentation. Dassault Systems, Providence, RI, USA.

12] Katia Bertoldi, Pedro M. Reis, Stephen Willshaw, and Tom Mullin. Negative
poisson's ratio behavior induced by an elastic instability. Advanced Materials,
22(3):361-366, 2010.

13] Nadia G Cheng, Arvind Gopinath, Lifeng Wang, Karl Iagnemma, and Anette E
Hosoi. Thermally Tunable , Self-Healing Composites for Soft Robotic Applica-

tions a. pages 1-6, 2014.

[4] Marcelo a Dias. Swelling and folding as mechanisms of 3d shape formation in thin
elastic sheets. Ph.D. Thesis, University of Massachusetts Amherst, (September).

[5] Marcelo a. Dias, Levi H. Dudte, L. Mahadevan, and Christian D. Santangelo.
Geometric mechanics of curved crease origami. Physical Review Letters, 109:1-8,
2012.

[6] S. Felton, M. Tolley, E. Demaine, D. Rus, and R. Wood. A method for building
self-folding machines. Science, 345(i):644-646, 2014.

[71 Bastiaan Florijn, Corentin Coulais, and Martin Van Hecke. Programmable me-

chanical metamaterials. Physical Review Letters, 175503, 2014.

18] J.M. Gattas and Z. You. Geometric assembly of rigid-foldable morphing sandwich

structures. Engineering Structures, 94:149-159, 2015.

[91 S. D. Guest and S. Pellegrino. The Folding of Triangulated Cylinders, Part I: Ge-
ometric Considerations. Journal of Applied Mechanics, 61(December 1994):773,
1994.

[10] S. D. Guest and S. Pellegrino. The Folding of Triangulated Cylinders, Part II:

The Folding Process. Journal of Applied Mechanics, 61(December 1994):778,
1994.

[11] Cai Jianguo, Deng Xiaowei, Zhou Ya, Feng Jian, and Tu Yongming. Bistable
Behavior of the Cylindrical Origami Structure With Kresling Pattern. Journal

of Mechanical Design, 137(6):061406, 2015.

83



[12] By Arnaud Lazarus and Pedro M Reis. Soft Actuation of Structured Cylinders
through Auxetic Behavior. Advanced Engineering Materials, (c):815-820.

[13] F. Lechenault, B. Thiria, and M. Adda-Bedia. Mechanical response of a creased
sheet. Physical Review Letters, 112(24):1-5, 2014.

[14] Ying Liu, Julie K. Boyles, Jan Genzer, and Michael D. Dickey. Self-folding of
polymer sheets using local light absorption. Soft Matter, 8(6):1764, 2012.

[15] A. E. F. Love. A treatise on the mathematical theory of elasticity.

[16] Ramses V. Martinez, Jamie L. Branch, Carina R. Fish, Lihua Jin, Robert F.
Shepherd, Rui M D Nunes, Zhigang Suo, and George M. Whitesides. Robotic
tentacles with three-dimensional mobility based on flexible elastomers. Advanced
Materials, 25:205-212, 2013.

[17] Jiuke Mu, Chengyi Hou, Hongzhi Wang, Yaogang Li, Qinghong Zhang, and
Meifang Zhu. Origami-inspired active graphene-based paper for programmable
instant self-folding walking devices. Science Advances, (November), 2015.

[18] T. Mullin, S. Deschanel, K. Bertoldi, and M. C. Boyce. Pattern transformation
triggered by deformation. Physical Review Letters, 99(8):1-4, 2007.

[19] Jun-hee Na, Arthur a Evans, Jinhye Bae, Maria C Chiappelli, Christian D San-
tangelo, Robert J Lang, Thomas C Hull, and Ryan C Hayward. Programming
Reversibly Self-Folding Origami with Micropatterned Photo-Crosslinkable Poly-
mer Trilayers. Advanced Materials, pages 79-85, 2015.

[20] Taketoshi Nojima. Modelling of Folding Patterns in Flat Membranes and Cylin-
ders by Using Origami. JSME International Journal, 45:1050-1056, 2000.

[21] Johannes T. B. Overvelde, Tamara Kloek, Jonas J. a. DAA2haen, and Katia
Bertoldi. Amplifying the response of soft actuators by harnessing snap-through
instabilities. Proceedings of the National Academy of Sciences, 2015.

[22] Y Pomeau and B Audoly. Elasticity and geometry from hair curls to the non-
linear response of shells. Oxford.

[23] Daniela Rus and Michael T Tolley. Design, fabrication and control of soft robots.
Nature, 521, 2015.

[24] M. Schenk, S.D. Guest, and G.J. McShane. Novel stacked folded cores for blast-
resistant sandwich beams. International Journal of Solids and Structures, 51(25-
26):4196-4214, 2014.

[25] M Schenk, S G Kerr, a M Smyth, and Simon D Guest. Inflatable Cylinders for
Deployable Space Structures. Transformables, (September):1-6, 2013.

84



[26] Mark Schenk and Simon D Guest. Geometry of Miura-folded metamaterials.
Proceedings of the National Academy of Sciences of the United States of America,
110(9):3276-81, 2013.

[27] Mark Schenk, Andrew D. Viquerat, Keith a. Seffen, and Simon D. Guest. Review
of Inflatable Booms for Deployable Space Structures: Packing and Rigidization.
Journal of Spacecraft and Rockets, 51(3):762-778, 2014.

[28] J. Shim, C. Perdigou, E. R. Chen, K. Bertoldi, and P. M. Reis. Buckling-
induced encapsulation of structured elastic shells under pressure. Proceedings of
the National Academy of Sciences, 109:5978-5983, 2012.

[29] Jongmin Shim, Sicong Shan, Andrej Kosmrlj, Sung H. Kang, Elizabeth R. Chen,
James C. Weaver, and Katia Bertoldi. Harnessing instabilities for design of soft
reconfigurable auxetic/chiral materials. Soft Matter, 9(34):8198-8202, 2013.

[30] Jesse L Silverberg, Jun-hee Na, Arthur a Evans, Bin Liu, Thomas C Hull, Chris-
tian D Santangelo, Robert J Lang, Ryan C Hayward, and Itai Cohen. Origami
structures with a critical transition to bistability arising from hidden degrees of
freedom. Nature Materials, (March):1-5, 2015.

[31] Jesse L Silverberg, Jun-hee Na, Arthur a Evans, Bin Liu, Thomas C Hull, Chris-
tian D Santangelo, Robert J Lang, Ryan C Hayward, and Itai Cohen. Origami
structures with a critical transition to bistability arising from hidden degrees of
freedom. Nature Materials, (March):1-5, 2015.

[32] Tomohiro Tachi and Koryo Miura. Rigid foldable cylidnders and Cells. Journal
of the International Association for Shell and spatial Structures, pages 3-8.

[33] A Viquerat, M Schenk, B Sanders, and V Lappas. Inflatable Rigidisable Mast For
End-Of-Life Deorbiting System. European Conference on Spacecraft Structures,
Materials and Environmental Testing (SSMET), pages 1-10, 2014.

[34] Dian Yang, Bobak Mosadegh, Alar Ainla, Benjamin Lee, Fatemeh Khashai, Zhi-
gang Suo, Katia Bertoldi, and George M Whitesides. Buckling of Elastomeric
Beams Enables Actuation of Soft Machines. Advanced Materials, pages 1-5.

[35] Yihui Zhang, Zheng Yan, Kewang Nan, Dongqing Xiao, Yuhao Liu, Haiwen
Luan, Haoran Fu, Xizhu Wang, Qinglin Yang, Jiechen Wang, Wen Ren, Hongzhi
Si, Fei Liu, Lihen Yang, Hejun Li, Juntong Wang, Xuelin Guo, Hongying Luo,
Liang Wang, Yonggang Huang, and John a. Rogers. A mechanically driven
form of Kirigami as a route to 3D mesostructures in micro/nanomembranes.
Proceedings of the National Academy of Sciences, 112(38):201515602, 2015.

85


