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Abstract

In this thesis, I propose a set of general rules for creating self-consistent System Di-
agrams across multiple domains. A System Diagram Prototype is then constructed
and proposed for the specific use of diagramming robots. This robotic prototype is
useful for teaching robotics and several examples of how robots can be diagrammed
are given. The robotic prototype is then applied to creating sensors and generator
modules in the MICA Project. The MICA (Measurement, Instrumentation, Con-
trol, and Analysis) Project is an ongoing research effort in MIT's BioInstrumentation
Laboratory that aims to bring powerful, simple-to-use, wireless sensors and gener-
ators into the world of education. As education gets augmented by software-based
teaching, it is essential that hardware continues and expands into educational demon-
strations and lessons. A core tenet of the MICA project is that students learn best
through hands-on, measurement-driven education. Real-life experiments can provide
a deeper intuition and a stronger motivation, than purely abstract lessons. By having
a set of easy-to-use sensors and generators, individual students can quickly create an
experiment, measure the results, and then analyze the results. When coupling this
individualized hardware approach with software teaching methods, a new method for
teaching students of all ages and backgrounds is possible, one which embodies the
MIT motto, mens et manus, mind and hand.
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Chapter 1

Rules of System Diagramming

Block diagrams are a familiar tool used in engineering domains. When used in controls

theory, block diagramming has a rigid set of rules for how blocks interact with one

another. However, when used to design a system, a similar set of rules does not exist.

In this chapter, I propose a set of rules that allow diagrams to be consistent across

multiple domains thus enabling systems to be fully defined by their System Diagrams.

1.1 System Diagramming Operators

The fundamental unit of a System Diagram is a block, which represents an abstract

functioning piece of a system. Block inputs are represented by an arrow pointing

into the block, while outputs of the block are represented by arrows pointing away

from the blocks. Bidirectional connections can also exist, denoted by a line with an

arrow at both ends. By convention, inputs generally point into the left side of block

and outputs point out of the right side of the block. This convention is observed for

diagram readability, however it is the arrows that formally define the directionality

of a connection.
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Input Block A O

Figure 1-1: A block with a single input and a single output.

1.1.1 Connectors

Non-trivial system diagrams will contain more than one block. In order to get a two

block system to function, there must be a way of wiring the inputs and outputs of

one block to another. To do this, we can simply connect the output of Block A to

the input of Block B. A connection between two blocks, by this method, is called a

Lateral Connection. An example of a lateral connection is shown in Figure 1-2.

Block A Block B

Figure 1-2: The output from Block A is laterally connected to in the input of Block

B.

Lateral connections are useful when one wants to concatenate the functionality

of blocks. They are not useful in describing how a given block functions. For all

blocks, it is possible to analyze the block and learn how the block is taking its inputs

and converting them to outputs. This is analogous to taking the lid off a box and

seeing what is inside. These connections are called Vertical Connections. Vertical

connections are represented by a child block nested within a parent block. When a

vertical connection takes place, the child block of the parent is on a lower Level than

its parent. Blocks on different levels may not laterally connect to each other; rather

they must go through a port.
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Figure 1-3: Block B is vertically connected to its parent block, Block A.

Note that Block B in Figure 1-3 is not shown with ports. The existence of the

ports is implied, and in fact mandated. However, users may opt to keep blocks closed

and not represent any of the internal components. Given blocks A and B, how does

one know that block A has the ability to be connected to block B? This question

motivates the use of Ports.

1.1.2 Ports

Ports are the mechanisms by which connections enter and exit all blocks. Any time

that a connection crosses through the boundary of a block, it must do so through a

port. A port is represented by a nested block that shares one edge with its parent.

Ports must specify the directionality of the connection they accept as an inputs,

outputs, or bidirectional. By convention, input ports are on the left of blocks, output

ports are on the right blocks, and bidirectional ports are on the top and/or bottom

of blocks, as seen in Figure 1-4.

Bidirectional
Port

Input Output
Port Port

Block A

Figure 1-4: A block with three ports shown.

23

Block A

Block B



The directionality of ports imposes a set of constraints on the wires coming from

them. Revisiting the example depicted in Figure 1-2, if one was given blocks A and

B that had ports drawn on them, as in Figure 1-5, it is immediately apparent that

there is only one valid configuration for wiring the blocks.

Figure 1-5: Block A has only an output port, and Block B has only an input port,

meaning there is only one valid connection to be made.

However, in general, the directionality of a connection is not enough to tell whether

or not a connection can enter or exit a given port. In addition to the directionality,

the Type of the connection must match the Type of the port. Types can be arbitrary,

but are specified within a given domain. For System Diagrams representing electrical

circuits, for example, we will see that it is convenient to have two types, Signal

and Power. While not necessary, the use of dashed lines to represent types can

dramatically improve the readability of System Diagrams. Figure 1-6 shows a valid

connection to a port, and an invalid connection.

Type:1

Type:2

Type:2

Type:1

Figure 1-6: The block on the left is valid as the connection types match the port

types. The block on the right side is not valid as the connections do not match.
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1.1.3 Tunnel Operators

When blocks need to be connected between different Domains, a Tunnel connection is

used. Tunnel connections exist between two blocks that represent the same physical

object in two different domains. For example, an electromechanical device, such as a

power switch, will have a tunnel connecting its block in the electrical domain with its

block in the mechanical domain, shown in Figure 1-7. A Tunnel is represented by an

arrow pointing into, or out of, an ellipse, depending on the direction of the Tunnel.

The domain of the block that uses the Tunnel is written on the side of the arrow

opposite the ellipse. The domain that is being Tunneled into is written on the same

side as the ellipse.

Block A
Domain a

Block A
Domain 3

Figure 1-7: Block A exists in two domains, domain ce and domain #. The domains

are connected by a tunnel operator.

1.1.4 Block Operators

The last operator that exists in the system diagram is the block itself. A block can

convert the type of an input to a different type output. However, an input does

not necessarily change types just because it goes through a block, it depends on the

specific implementation of the block in question. Additionally, the inputs and outputs

of a block are not required to map in a one to one manner with the output. One

input of type A can map to an output of type A and an output of type B. Examples
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of this can be seen in Figure 1-8.

Type A Type A Type A Type B
Block - Block -A-- -0+

Type A Type A Type A Type B
Block Type B Type A Block

Figure 1-8: Block operators can change the type and number of connections passing

through them.

1.1.5 Operator Summary

A summary of the block diagram operators may be seen in Figure 1-9.

Operator Variable Connection Name Symbol

Block Type Block Block --

Connection Block Lqt.rn1 Location Location
(x1, y 1) (x2,Y 2 )

Port

Level n Level n-1
Port Level Vertical

Domain a
Tunnel Domain Tunnel

Domain p

Figure 1-9: The four operators of System Diagramming

1.2 Prototypes of a System Diagram

A major advantage of System Diagramming, beyond representing a system, is that

it can be used to speed up the design process through standardization. A System
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Diagram whose form gets used over and over again is well suited to be turned into a

System Diagram Prototype.

System Diagram Prototypes are placeholders for system diagrams that enforce

specific design restrictions. For an analogy to a System Diagram Prototype, imagine

a puzzle. The pieces of the puzzle are the blocks for the system, and the place that

the puzzle pieces fit into are the prototypes. Different puzzle pieces are characterized

by the color, or image, on them (the specific block they are representing) and their

shape (which prototype the piece fits into). In Figure 1-10, there are two puzzle

pieces, a red one and a blue one. Both of them fit into the puzzle piece place on the

left, but a different system is produced depending on which color piece is inserted.

Figure 1-10: The puzzle position on the left is analogous to a block prototype, and

the two puzzle pieces on the right are analogs to blocks that can fill the prototype.

Even though the two puzzle pieces can fill the same prototype, they are functionally

different, as represented by differing colors.

In system diagramming, prototypes define the inputs, outputs, and level that
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characterize a block, as well as establish the overall role the block plays within in

the larger system. Many blocks may be compatible with a given block prototype,

and a given block may be compatible with many block prototypes. It is up to the

system designer to create the desired functionality of a system based on the blocks

they choose to fill in the block prototypes.

The four operators that were described in the previous section have direct proto-

type analogs. Prototype operators are represented by double lines, where a standard

operator would have a single line. Prototype operators have the ability to be filled

with standard operators. The four prototype operators can be seen in Figure 1-11.

Operator Prototype Symbol

Block Block Prototype Block
IPrototype

Wire Wire Prototype

Port
IiProto I

Port Port Prototype

Tunnel Tunnel Prototype

Figure 1-11: Each of the standard operators has a corresponding prototype operator.

1.2.1 Block Prototypes

The most common prototype operator is the block prototype. In the top half of

Figure 1-12, there are two standard blocks, A and B, connected to a prototype block.

Recalling the puzzle piece analogy presented earlier, the prototype block represents a

puzzle position. In the bottom half of the example, there are three different blocks,

X, Y and Z, that are available to fill in the prototype block, which are analogous to

the puzzle pieces. Only blocks X and Z are suitable to fill in the prototype block,

because block Y has no output port, which is necessary to create the connection that
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goes to Block B.

A Prototype 1 B

x Y Z

v x v

Figure 1-12: The block prototype in the top half of the figure represents a puzzle piece

position. In the lower half, the three blocks represent the different puzzle pieces. Block

Y may not fill in the prototype block because it does not have the necessary ports to

connect to block B.

1.2.2 Connector Prototypes

When a block has the ability to connect to other blocks based on the designer's

preference, a Connector Prototype should be used. A connector prototype is indicated

by a double line with an arrow denoting directionality of the connection. As shown in

Figure 1-13, depending on which one of the two connector prototypes is filled in with

a connector, block A could be laterally connected to both, either, or neither of blocks

B and C. This is dependent on how the designer chooses to implement the system.

F r 1B

---- A

I C

Figure 1-13: Block A is connected to blocks B and C by a connector prototype.
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1.2.3 Port Prototypes

A port prototype can be used in a System Diagram when the designer wants to

incorporate a degree of flexibility around which inputs and outputs will branch off a

block. A port prototype is indicated by a double line port, seen in Figure 1-14.

Port
Proto

Figure 1-14: A port prototype is represented by a double line port. They can only

be located along the edge of a parent block.

1.2.4 Tunnel Prototypes

A block or block prototype may contain a Tunnel Prototype. If a block prototype

contains a tunnel prototype, it indicates that any block used to populate the block

prototype must contain a tunnel, and therefore connect to a different domain. If

a standard block contains the tunnel prototype, it indicates that the block has the

option of connecting to a different domain.

1.2.5 Prototype Summary

Prototypes are a crucial part of System Diagramming that allow designers to indicate

desired functionality without having to specify how systems achieve their functional-

ity. Figure 1-15 is an example of a prototype diagram that uses all four operators.

Below the diagram is a selection of blocks that can be used to populate the vari-

ous block prototypes. There is a tremendous amount of flexibility in populating the

various operators of the diagram, and different functionality can be achieved based

on the specific case. Only block D can satisfy the tunnel prototype requirement of

block prototype 4. Blocks A and C may be placed in positions 1, 2, or 3, although
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placement in positions 1 or 3 would restrict which ports could be used. Block B may

be placed in either position 1 or 3.

C D

Figure 1-15: (Top) An example prototype diagram that

type operators. (Bottom) A selection of blocks that may

uses all four types of proto-

be used to fill the prototype.

In Figure 1-16, the blocks were placed into the prototype. Note that not all block

prototypes were filled, and not all the connector or port prototypes were filled, both

of which are valid. The presence of a prototype does not change the functionality

of the resulting system diagram. Figure 1-17 is functionally identical to Figure 1-16,

even though all the prototype elements were removed.
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B D

C

Figure 1-16: The prototype of Figure 1-15 is filled in with blocks

Figure 1-17: The block diagram is functionally identical to Figure 1-16, regardless of

the prototype.
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1.3 Features of System Diagrams

1.3.1 Libraries

An invaluable aspect of designing with System Diagramming is building up a library

of blocks that can then be inserted into prototypes, and reused again and again. A

necessary requirement for compiling a library, is that all blocks have an associated

version number. As with any design, the ability to change, revise, and alter is crucial,

the mechanisms that facilitate this must be built into the system. Blocks that are

being inserted into prototypes need version numbers, but so do the prototype blocks

themselves. This is true at all levels, including the system level. Additionally, the

System Diagramming framework itself needs a version number to account for the

inevitable change of the framework rules. When a block has been placed into a library,

the system designers no longer have to concern themselves with how the expanded

block functions. They only need to look at the inputs, outputs, and a descriptions of

the block to know if it suitable for their purposes.

1.3.2 Block Groups

Block Groups can be used to organize multiple blocks on the same level within a

system diagram. This is distinct from creating a block that contains the target blocks,

as groups do not contain any ports. Therefore, any connections that go into groups

do not change levels. A block group is denoted in a system diagram by a dashed line

around a group of blocks, as seen in Figure 1-18. Groups can be either blocks, or

prototypes, indicated by a double dashed line, as seen in Figure 1-19. Groups can

be filled in from libraries, either by filling in the entire group, or by filling individual

blocks of the group, as in Figure 1-20. Groups can be collapsed (Figure 1-21) and

expanded just like blocks. The main purpose of block groups is to save space on

diagrams, and for logical organization. All blocks inside a group must be on the same

level.

33



Filter Group

Filter Subunit 1 Filter Subunit 2

-----------------------------------------------

Figure 1-18: A group of two blocks. The group is denoted by the dashed lines around

the blocks.

Filter Group Prototype

Filter Subunit I Filter Subunit 2

---. . . . . .. - -. - -

Subunit Library
High Pass Filter

Subunit

Low Pass Filter
Subunit

Band Pass Filter
Subunit

Notch Filter
Subunit

Figure 1-19: Double dashed lines represent a block group prototype. On the right is

a library of subunits that could be used to populate the subunit prototypes.

Filter Group Prototype

I Notch Filter High Pass Filter
Subunit Subunit

I 0--- al-. . . . . . . . . . . . a

Subunit Library
High Pass Filter Band Pass Filter

Subunit Subunit

Low Pass Filter Notch Filter
Subunit Subunit

Figure 1-20: Groups can be populated from libraries either as individual blocks, or as

an entire group. In this case subunits from the subunit library were used to populate

the subunit prototypes

34

0

I



|- -- -""" ----" ----------"- ------"

Filter Group
Il-I

11 If

---------------------------------------- I

Figure 1-21: A collapsed version of a group with two inputs and two outputs.

A group is distinct from a block in that it allows for collapsing various parts of

the diagram without changing the level of the connections. Consider the following

example, depicted in Figure 1-22. There are three filter subunit prototypes, with

prototypes two and three inside the group and prototype one outside. When the

prototypes are populated from the library, a resulting diagram could be Figure 1-23.

Which is the functional equivalent of Figure 1-24.

Filter Group Prototype

Filter Subunit 1 Filter Subunit 2 Filter Subunit 3

Subunit Library
High Pass Filter Band Pass Filter

Subunit Subunit

Low Pass Filter Notch Filter
Subunit Subunit

Figure 1-22: An example filter diagram with three prototype blocks. Blocks two and

three are inside a group prototype. Blocks can be filled from the library on the right.
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Filter Group Prototype

High Pass Filter High Pass Filter Low Pass Filter
Subunit Subunit Subunit

Figure 1-23: A filled in version of Figure 1-22

High Pass Filter High Pass Filter Low Pass Filter
Subunit Subunit Subunit

Figure 1-24: The functional equavalent of Figure 1-23, drawn without the group.

Now consider if a block prototype had been used instead of a group prototype.

The result, shown in Figure 1-25, is that what were intended to be Filter Subunits

two and three are now vertically connected to the Filter "Group" Subunit, meaning

that they are not on the same level as Filter Subunit 1. Connections from Filter

Subunit 1 pass through a port and must drop down a level. The result is that the

high pass filter and low pass filter subunit no longer fit into their intended spots, and

it is impossible to recreate the intended diagram of Figure 1-24.
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Filter "Group" Subunit

7717 777

Subunit Library
11 gn P;.~ Filter D'L-d Filter

Lcv PIr Filter Not rilter
r.Jbl- -: Subinit

Wire Groups

Figure 1-25: An incorrect use of a block prototype, where a group prototype should

have been used instead. None of the blocks in the library fit into Filter Components

one or two, as the library only contains subunits.

1.3.3 Connector Groups

Just like block groups, connector groups can be used for simplicity and space saving

reasons. Connector groups are denoted by a single connector with a slash and then

a number representing the number of connectors in the group. All connectors in a

group must be of the same type. Figure 1-26 could be drawn as a group (Figure 1-

27), which can be quite useful when the number of connectors gets large. Prototype

connector groups can be used as well, as in Figure 1-28.

Subunit 1 Subunit 2

Figure 1-26: Two blocks with four connections between them. To save space and time

the connectors could be drawn in a group, as in Figure 1-27
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Figure 1-27: Two blocks with a group of connectors between them. Equivalent to

Figure 1-26

A

4

Figure 1-28: Two block prototypes connected by a group of 4 prototype connectors.
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Chapter 2

System Diagramming for Robotics

While System Diagramming is a generic tool and not specific to any one subject, it is

highly useful for designing in the field of robotics. Before proceeding, it is necessary

to define "robotics". The definition that will be used in this paper is as follows:

A robot is a device that uses a combination of electrical, mechanical, and software

devices to produce a controlled output. This definition is sufficiently broad to include

machines traditionally thought of as robots, such as humanoid devices like Boston

Dynamics' Atlas robot [2], but also includes devices less typically considered robots,

like a turn-table microwave oven.

Presented in this chapter is a System Diagramming Prototype that can be used

to represent devices that meet the definition for a robot. The prototype is meant

to be general enough so as to not limit the designer's freedom, but simultaneously

provide guidelines and standardization that can enable good practices. A goal of

using System Diagramming for robotics is to have a diagram that fully represents the

system across the three domains in question: electronics, mechanics, and software.

Furthermore, once the system diagram has been created, it can be used as the input

to various CAD packages. For example, the electrical system diagram is exactly the

same as the electrical schematic that is used in an electronic CAD package. It is

often easier for designers to begin designing a device not by laying out the blocks

necessary for the machine to function, but rather by laying out the block prototypes.

A block represents a specific implementation of desired function, whereas a block
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prototype represents the desired functionality. By standardizing on a prototype, the

first step of designing a robot can be largely eliminated, allowing the designer to

begin populating the prototype design with blocks from a library. As new robots are

designed, the number of blocks in the library will grow allowing designers to reuse

more and more of their past designs. This growing library will speed up the overall

design process.

2.1 Robot Prototype

The robotic prototype will start with a single block prototype that represents the

final robot. The robot has prototype connections for the inputs and outputs for

the machine. Starting off, the initial collapsed prototype shown in Figure 2-1 is

incomplete, so it will be labeled as version 0.1.

Inputs Robot Prototype O"

Name: Robot Prototype vO.1
Parent: None

Figure 2-1: A collapsed block prototype that any robot block can populate.

Using the definition of a robot, expanding the robot prototype in Figure 2-1 should

show a block prototype in each of the three domains - mechanical, electrical, and

software. The level beneath the "Robot Level" is the "System Level". Therefore the

three block prototypes contained within the Robot Prototype (Figure 2-2) are the

Mechanical System Prototype, the Electrical System Prototype, and the Software

System Prototype, each belonging to their respective domain. These are added to

the expanded version of Figure 2-2.
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Robot Prototype

Mechanical
System

Prototype

Domain: Mechanical

Electrical
System

Prototype

Domain: Electrical

Software
System

Prototype

Domain: Software

Name: Robot Prototype vO.1
Parent: None

Figure 2-2: Based on the definition of the robot, the Robot Prototype must contain

three system level blocks, one for each domain - mechanical, electrical, and software

In the next sections, the three domains will be explored from the System Level,

down to the bottom-most level covered in the Robot Prototype: the Component

Level. In total there are six different vertically connected levels of the Robot pro-

totype, each one designated a color for clarity. From the top to bottom, the levels

are: Robot (magenta), System (red), Module (blue), Unit (green), Subunit (orange),

and Component (black). The different levels of the robotic prototype are shown in

Figure 2-3.

Robot
System
Module

Unit

Component

Figure 2-3: There are six

Prototype.

different vertically connected levels to the the Robotic
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2.2 Electrical prototype

In the proposed Robotic Prototype, the electrical system has by far the highest level

of granularity, and will be the system discussed first. System diagramming can be

thought of as the act of telling the story of the inputs and outputs. If one follows

the inputs through the various levels of a system, the inputs eventually come out on

the other side of the system as outputs. If all of the inputs and outputs are followed

through the system, then the system is fully defined. This means that to start laying

out any block or prototype block, the different types of inputs and outputs must be

defined.

A system diagram connection in the electrical domain represents an electrical

connection from one block to another. The state of the connector is the electrical

potential, and as a result, current flows through the connections. Two types of con-

nectors exist in the prototype, based on the relative magnitude of the current flowing

through them. For a relatively small current flowing, the connection is of type Sig-

nal, and for relatively large current the connection is of type Power. The magnitude

is relative to the block that is consuming current, but can be thought of as Signal

Connections delivering information, whereas Power Connections deliver energy.

2.2.1 Electrical System

In addition to the two types of connections in the electrical domain, there are three

different directions that a given connection can assume; an input, an output, or

a bidirectional line. As a result, there are six different combinations of types and

directions for electrical connectors. Connections can only enter a block through a

port of the matching type and direction meaning that the Electrical System must

have six ports. Expanding the Electrical System Prototype shown in Figure 2-2

reveals the six ports available, shown in Figure 2-4.
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Robot Prototype - Electrical Domain
System Level

Bidirectional Power Port
Power Power
In Port Out Port

Signal Signal
In Port Out Port

Bidirectional Signal Port

Name: Electrical System Prototype vO.1
Parent: Robot Prototype v1.0

Figure 2-4: There are two connection types (signal and power), and three directions

(in, out, bidirectional), meaning that there are six ports into the Electrical System

Prototype.

Now that the ports of the Electrical System are defined, the modules contained

within the system must be enumerated. A design constraint provided by the Robotics

Prototype is that each port within the system may only connect to one module. This

constraint ensures the routing of connections to one unique module once the connec-

tion has entered the system. It follows that there are six modules contained within

the electrical system. The modules in the power path are the Energy Module (power

in), the Actuation Module (bidirectional power), and the Power Module (Power Out).

The signal path modules are the Sensing Unit (signal in), the Communication Module

(bidirectional signal), and the Control Module (signal out). The prototypes of the

electrical modules are shown in Figure 2-5, along with the connection prototypes con-

necting the modules to their respective ports. These connection prototypes indicate

that the Energy Module is the only module that may connect to the Power In Port.

Once a connection is inside the Electrical System, there are no restrictions on which

modules the signal can be routed to. For example, if a connection of type power-in

came into the electrical system, it must go through the Power In Port, then the En-
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ergy Module, but after that the signal could reemerge from the Energy module and

be routed to any, or all, of the five other modules. By similar logic, if the connection

of type power needed to be routed out of the system, the connection would have to

go into the Power Module and then be routed out of the Power Out Port.

Robot Prototype - Electrical Domain
System Level

Power Power
In Port Actuation Port Out Port

Energy Actuation Power
Module Module Module

- Prototype Prototype Prototype

- Sensing Comm. Control
Module Module Module

Prototype Prototype Prototype

Signal Communication Port Signal
In Port Out Port

Name: Electrical System Prototype v1.0
Parent: Robot Prototype v1.0

Figure 2-5: Each of the six system ports has a corresponding module. Any connection

entering the Electrical System must be routed to the appropriate module based on

the connection's type and direction.

2.2.2 Electrical Modules

At an intuitive level, each module has a role in fulfilling the functionality of the

robot. The Energy Module is responsible for housing the energy storage device, e.g.

the battery for the robot, and supplying unregulated power to the rest of the modules.

A power-in connection to the robot's electrical system would be routed to the Energy

Module, where it would most likely recharge the energy storage device.

Internal to the electrical system, the Power Module is responsible for taking the

unregulated power output from the Energy Module and regulating the connection to

a usable level for the robot. This regulated power could then be routed to all of the

other modules. If a robot had a electrical power output connection to the outside

44



world, the connection must be coming from the Power Module.

The Actuation Module is responsible for supplying bidirectional power to a robot.

It is in this module that the robot actuators would reside. In order to effectively drive

the actuators, the Actuation Module must be able to both source and sink power,

hence the bidirectionality of the connection.

In the signal path, the Sensing Module receives all of the signal inputs. All of the

robot's sensors should reside in the sensing module, regardless of whether they are

sensing electrical signals or signals from different domains. If the signal originates in

a different domain, then the signal would connect to the Sensing Module through a

tunnel. The output from the sensor would usually be routed to the Control Module.

The Control Module is responsible for issuing commands to the rest of the elec-

trical system, and ensuring that the robot is behaving nominally. If a robot had

an electrical signal output, such as an LED display, the signal must exit the robot's

electrical system through the control module.

All messages sent to and from a robot must go through the Communication Mod-

ule. This includes all radio signals or tethered connections, like USB and Ethernet.

The Communication Module takes the information and reports to the Control Mod-

ule.

Each of the six electrical modules comes from the same Module Prototype. That

is, when expanded, all six Module Prototypes look identical. Modules can accept any

of the six types of connections (any combination of power or signal and in, out, or

bidirectional), implying that, just like the Electrical System, they have six ports. The

modules are each composed of six units, resulting in a pattern wherein each System-

Module looks the same as the Module-Unit, only at a different level. The six units

that make up a module have the same names as the six modules; Energy, Actuation,

Power, Sensing, Communication, and Control. Each of the six modules has the same

restrictions regarding ports as the modules do. The Power In Port may only connect

to the Energy Unit, the Signal Out Port may only connect to the Control Module,

etc. Inside a Module the units are all free to connect to one another. The prototype

for an Electrical Module is shown in Figure 2-6.
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Robot Prototype - Electrical Domain
Module Level

Power Power
In Port Actuation ort Out Port

Energy Actuation Power
Unit Unit Unit

Prototype ototype Prototype

Sensing, Comm. i Control
Unit Unit Unit

Protoype Prototype Prototype

Signal Communication Port Signal
In Port Out Port

Name: Electrical Module Prototype v1.0
Parent: Electrical System Prototype v1.0

Figure 2-6: Each module contains six units, one for each type and direction of connec-

tion. Units within the same module may be freely connected to each other, regardless

of connection type and direction.

2.2.3 Electrical Units

Each Electrical Module has six Electrical Units, meaning, for example, that the Con-

trol Module contains Energy, Actuation, Power, Sensing, Communication, and Con-

trol units. This leads to a built-in degree of redundancy that comes with the Robotic

Prototype. This redundancy can be utilized for more complex systems, or it can

be disregarded for simple systems. The unit that has the same name as its parent

module is considered the critical block of the parent. The Communication Unit is the

critical block of the Communication Module, just like the Energy Unit is the critical

block of the Energy Module. More generally, the critical block is defined as the child

block of a parent from which the parent block derives its core functionality. Blocks

that are not the critical block, but help the critical block achieve its functionality are

called support blocks. For example, in a robot in Chapter 3, the Energy Unit of the

Energy Module (the critical block) contains the battery for the robot, and the Power

Unit of the Energy Module (a support block) contains a reverse polarity protection
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circuit. In this case, the Energy Unit is the block that the Energy Module derives its

core functionality from, but the Power Unit provides additional support.

An expanded electrical unit prototype can be seen in Figure 2-7. Each unit con-

tains the six familiar ports for accepting each of the different types and directions

of electrical connections. Inside the unit, there is a departure from the standard six

blocks. Each unit is composed of one or more subunits. Because there are an arbitrary

number of subunits inside each unit there are no restrictions on which unit ports can

connect to any given subunit. For every non-trivial unit, there is one subunit that

acts as the critical block for the unit. Other subunits are support blocks.

Robot Prototype - Electrical Domain
Unit Level

Power Power
In Port Actuation Port Out Port

Elec. Elec. Elec.
Subunit Subunit Subunit

Prototype 1 Prototype 2 Prototype

Elec.
Subunit

Prototype n

Signal Communication Port Signa[
In Port Out Port!_

Name: Electrical Unit Prototype v1.0
Parent: Electrical Module Prototype v1.0

Figure 2-7: As each unit contains an arbitrary number of subunits, there are no

prototypical restrictions on which subunits can connect to the unit ports.

2.2.4 Electrical Subunits

Subunits have the six standard ports meaning that, in general, they can accept any

type and direction of connections. Each subunit is a group of one or more components

that, when given the appropriate inputs, can produce a desired output from the

critical component (Figure 2-8). There are no restrictions on which components

can connect to the subunit ports. A typical example of a subunit is one whose
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critical component is an integrated circuit (IC). The supporting components are the

components that come bundled with the IC, such as passives like bypass capacitors

and resistors. The subunit must be a fully functional set of components.

Robot Prototype - Electrical Domain
Subunit Level

Power Power
In Port Actuation Port Out Port

Elec. Elec. Elec.
Component Component Component

1 ... m

Signal Communication Port Signal
In Port Out Port

Name: Electrical Subunit Prototype v1.0

Parent: Electrical Unit Prototype v1.0

Figure 2-8: Subunits are composed of one or more components. Components are the

lowest level block in the Robot Prototype and represent discrete electrical items such

as integrated circuits, resistors, capacitors, and inductors.

2.2.5 Electrical Components

The component level is the bottom-most level described in the Robot Electrical Proto-

type. Components are discrete items such as integrated circuits, resistors, capacitors,

and inductors. It is worth noting that even though the prototype description stops

at the component level, this does not mean that a "subcomponent" level does not

exist. System Diagrams can be illustrated to an arbitrarily deep level. Because of

the potential for limitless level of depth of the blocks, it is conjectured that System

Diagramming can used to run physics simulations of the systems across multiple do-

mains. These types of multi-domain simulations could be aided tremendously by the

Cell Method developed by Tonti [41 [5].
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2.2.6 Finalized Electrical Prototypes

I
By substituting the expanded diagrams for the subunit prototypes back into the unit

prototypes, a more complete diagram can be see in Figure 2-9.

Robot Prototype - Electrical Domain
Unit Level

Power
In Port

Signal
In Port

Actuation Port

Communication Port

Power
Out Port

Signal
Out Port'.

Name: Electrical Unit Prototype v1.0
Parent: Electrical Module Prototype v1.0

Figure 2-9: A unit prototype diagram is drawn with expanded subunits.

Inserting the expanded unit prototype diagram of Figure 2-9 back into the diagram

for the module prototype yields Figure 2-10.
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Robot Prototype - Electrical Domain
Module Level

Power Power
In Port Actuation Port Out Port

Signal Communication Port Signal
In Port 1 Out PortL=

Name: Electrical Module Prototype v1.0
Parent: Electrical System Prototype v1.0

Figure 2-10: The result of substituting expanded units into Figure 2-6.

Finally, substituting Figure 2-10 into the system prototype results in the full

diagram from the Electrical System Prototype, as seen in Figure 2-11. Because of

the sheer number of blocks, drawing a fully expanded system diagram can take up a

considerable amount of space.

Robot Prototype - Electrical Domain
System Level

Power Power
In Port Actuation Port Out Port

Signal Communication Port Signal
In Port Out Port =

Name: Electrical System Prototype v1.0
Parent: Robot Prototype v1.0

Figure 2-11: The fully expanded system diagram for the electrical system prototype.
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2.3 Mechanical Prototype

Until this point, we have focused on System Diagrams for electrical systems. Now,

let us explore systems that have multiple domains. When the rules of System Dia-

gramming were introduced in Chapter 1, connections were defined as the inputs and

outputs of blocks, but it was never explicitly stated what those inputs and outputs

represented. In the electrical domain, a connection represents two blocks being held

at the same potential, with the difference between two potentials being a voltage,

and a current traveling through the connections. Voltage and current together rep-

resent the power variables of the electrical domain. This idea of power connections

being made between blocks is extremely reminiscent of Bond Graphs that Paynter

introduced in 1959 [3].

2.3.1 Bond Graphs

In Bond Graphs, power factors are separated into two different categories, Effort

and Flow variables. In the Electrical Domain, connections represented electrical

potentials and had two types: Signal and Power. The connections represent the

electrical Effort variable (voltage), and the item that travels through the connection

is the electrical Flow variable (current). In the Mechanical domain, the connection

represents the mechanical Effort variable (force) and the item that travels through the

connection is the mechanical Through variable (velocity). In the Electrical domain

the two types represented a relatively large current (power) and a relatively small

current (signal). The distinction between power and signal types are relative to

the device that is consuming the current. The current level of an IC is very small

compared to the current level of a motor, but in both cases the wires are of type Power

if they are delivering energy and not delivering information to the device. Once

a System Diagram in constructed, the analogous Bond Graph can be constructed

directly from the diagram. This means that the System Diagram can be used not

only for designing a system, but also obtaining state equations for a system, which is

crucial for simulation techniques.
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An example of a bond graph for a simple electrical circuit is shown at the bottom of

Figure 2-12, along with the corresponding System Diagram and electrical schematic.

In the Bond Graph, SE represents an Effort Source (the battery) and the "1 junction"

represents a junction in which the effort variables sum to zero, and the flow variables

are all equal (Kirchhoff's Voltage Law). A "0 junction" represents a junction in

which the flow variables sum to zero and the effort variables are all equal (Kirchhoff's

Current Law).

System Diagram
Power

Battery Resistor

Electrical Schematic
+

V1 - R

T
Bond Graph

E 

VB V' hR

B ir

Figure 2-12: The System Diagram, electrical schematic, and Bond Graph for a resistor

connected to a battery.

In the Mechanical Domain, wires represent mechanical connections, or forces. The

Flow variable is velocity. Similar to the Electrical Domain, there are two types of

wires - Static, which represent a relatively small flow (velocity), and Dynamic, which

represent a relatively high flow (velocity). Static connections are generally used for

structural connections that do not move, while dynamic connections are used for

motion coupling. The mechanical and electrical types are compared in Figure 2-13.

Note that a static connection does not imply that the force is static, but rather that

the block connected to that force does not move. Similarly, in a dynamic connection

the force is not necessarily dynamic, "dynamic" implies the the block moves.
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Domain Effort Flow
Variable Variable

Electrical Voltage Current

Mechanical Force Velocity
(Linear)

Mechanical Angular
(Angular) Torque Velocity

Figure 2-13: Comparison

Electrical domain

of the different connection types in the Mechanical and

In System Diagramming, moving between domains is achieved with the use of a

Tunnel Operator. In Bond Graphs, a tunnel is represented by either a transformer

or a gyrator. A transformer relates the flow variable in the first domain to the flow

variable of the second domain (and effort to effort), whereas a gyrator relates the

flow variable in the first domain to the effort variable in the second domain (and

effort to flow). In Bond Graphs, an electric motor is a gyrator, as it produces a

torque (mechanical across) that is proportional to the current (electrical through)

running through it, and a back EMF (electrical across) proportional to the velocity

(mechanical through). The System Diagram, schematic and Bond Graph of an ideal

DC motor driven by a current source and attached to a frictionless wheel is shown in

Figure 2-14.
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System Diagram

Current Power DC Motor DC Motor D Wheel
SourceWheSource--OMechanical ElectricaG..~

Electrical Domain Mechanical Domain

Electrical/Mechanical Schematic

iI M Vm

Electrical Domain Mechanical Domain

Bond Graph
V Kt

SFl .m GY I

Figure 2-14: The System Diagram, electrical schematic, and Bond Graph for a current

source driving a DC motor attached to a frictionless wheel.

Figure 2-14 is an ideal case, without any parasitic components. A more realistic

scenario is shown in Figure 2-15 where the inductance, electrical resistance, and fric-

tion of the DC motor are accounted for, and the motor is driven by a battery. In both

cases the System Diagram stays the same as the parasitics are accounted for inside

the DC motor block.
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System Diagram

Battery Powr DC Motor DC Motor D Wheel
-- O Mechanical Electrical

Electrical Domain Mechanical Domain

Electrical/Mechanical Schematic

+ L R +

VB M Vm

Electrical Domain Mechanical Domain

Bond Graph

Iv Kt T
SE -' 1i " -- GY -a 1 L I

{\R {Tf

R R

Figure 2-15: The System Diagram, electrical schematic, and Bond Graph for a battery

driving a non-ideal DC motor attached to a wheel with friction.

2.3.2 Mechanical System

The Mechanical system prototype has the same hierarchical structure as the elec-

trical system: System, Modules, Units, Subunits, and Components (Figure 2-3). In

the electrical case there were six modules, which comes from the fact that there are

two electrical connection types (signal and power) and three directionalities (in, out,

bidirectional) resulting in six combinations. In the Mechanical System, there are two

connection types (Static and Dynamic), but there is only one directionality (bidirec-

tional), which can be seen as an extension of Newton's Second Law. As a result,

there are only two Modules contained in the Mechanical system, the Static Module

and the Dynamic Module, as seen in Figure 2-16. Only the Static Unit can connect
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to the Static Port, and only the Dynamic Unit can connect to the Dynamic Port.

Robot Prototype - Mechanical Domain
System Level

Static Port

Static
Module

Dynamic
Module

Dynamic Port

Name: Mechanical System Prototype v1.0
Parent: Robot Prototype v1.0

Figure 2-16: The System prototype for mechanical systems. Only bidirectional con-

nections are allowed in the mechanical domain, meaning that there are fewer ports

and modules than in the Electrical domain.

2.3.3 Mechanical Modules

The two mechanical modules can be described as follows - the parts of the mechanical

system whose primary purpose is to move, such as the actuators and drive train,

belong in the Dynamic Module. The parts of the mechanical system whose primary

purpose is to provide structural support, such as a chassis or frame, belong in the

Static Module. The two modules can have both static and dynamic connections

between them. Each module is comprised of two subunits: the static unit and the

dynamic unit, shown in Figure 2-17.
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Robot Prototype - Mechanical Domain
Module Level

Statici Port

Static
Unit

Prototype

Dynamic
Unit

Prototype,
Dynamic Port

Name: Mechanical Module Prototype v1.O
Parent: Mechanical System Prototype v1.O

Figure 2-17: In the Mechanical Module Prototype, only the Dynamic Unit can connect

to the Dynamic Port, and only the Static Unit can connect to the static port.

2.3.4 Mechanical Units

The roles for the mechanical units are very similar to the roles that the modules play

in the system. The Dynamic Module's critical block, the Dynamic Unit, contains

the subunits that move, allowing the Dynamic Module to ultimately achieve its goal.

Located in the Dynamic Module's support block, the Static Unit, are the subunits

that are stationary, but support the moving subunits. For example, a robot's motor

would fall in the Dynamic Unit of the Dynamic module. However, the motor leads

that power the motor, but do not move, belong in the Dynamic Module's Static Unit

as support blocks. Each mechanical unit is composed of one or more mechanical

subunits, as seen in Figure 2-18. There are no restrictions on which subunits may

connect to either of the two ports.
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Robot Prototype - Mechanical Domain
Unit Level

Static Port

Mech. Mech.
Subunit Subunit

Prototype 1 Prototype 2

Mech. Mech.
Subunit Subunit

Prototype ... Prototype n
Dynamic Port

Name: Mechanical Unit Prototype v1.O
Parent: Mechanical Module Prototype v1.O

Figure 2-18: The Mechanical Unit Prototype is composed of an arbitrary number of

subunits. There are no restrictions on which subunits can connect the Unit's ports.

2.3.5 Mechanical Subunits

Subunits are a group of one or more components that collectively achieve a function,

as shown in Figure 2-19. There is a certain degree of freedom in choosing which com-

ponents belong to which subunit, but components such as nuts, bolts, and machined

parts that end up mating together should generally reside in the same subunit. There

are no restrictions on which components may connect to the ports of a subunit.
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Robot Prototype - Mechanical Domain
Subunit Level

Static Port

Mech. Mech.
Component Component

1 2

Mech. Mech.
Component Component

m
Dynamic Port

Name: Mechanical Subunit Prototype v1.O
Parent: Mechanical Module Prototype v1.O

Figure 2-19: The lowest level in the Mechanical System Prototype is the compo-

nent level. An arbitrary number of components make up the Mechanical Subunit

Prototype.

2.3.6 Mechanical Components

Components are the lowest level of the Mechanical Domain in the Robot Prototype.

Components are discrete items such as bolts, nuts, washers, or machined parts. Even

though the prototype stops at the component level, components can be broken down

further. For example, in Solidworks, a part would represent a component. The

features in the feature tree of Solidworks that defines the part could be the "subcom-

ponents".

2.3.7 Finalized Mechanical Prototype

By substituting Figure 2-19 back into the figure for the mechanical unit (Figure 2-18),

the expanded Mechanical Unit Prototype diagram can be seen (Figure 2-20).
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Robot Prototype - Mechanical Domain
Unit Level

Static Port

EJLIEX

E7 E

E

M M
Em17

Dynamic Port

Name: Mechanical Unit Prototype v1.O
Parent: Mechanical Module Prototype v1.O

Figure 2-20: Expanding each subunit results in the expanded unit diagram.

Substituting the expanded unit diagram into Figure 2-17 results in the expanded

Mechanical Module Prototype diagram, seen in Figure 2-21.

Robot Prototype - Mechanical Domain
Module Level

Static Port

M'h Mech

M-- S Me

_P'otp P--orpe

DynamiclPort

Name: Mechanical Module Prototype v1.O
Parent: Mechanical System Prototype v1.O

Figure 2-21: Expanding each unit results in the expanded module diagram.

And finally, substituting Figure 2-21 results in the expanded Mechanical System

Prototype, seen in Figure 2-22.
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Robot Prototype - Mechanical Domain
System Level

Static Port

Dynamic Port

Name: Mechanical System Prototype v1.O
Parent: Robot Prototype vl.0

Figure 2-22: Expanding each module results in the expanded system diagram.

2.4 Software Prototype

Unlike the Mechanical and Electrical domains, the Robot Software Prototype pro-

posed here is only defined down to the system level. The mechanical system for a

robot can be almost entirely independent of the electrical system. However, the same

is not true for the software system. In many cases the software system is tightly

coupled to the choice of controller in the electronics domain. Furthermore, even if the

same controller is used in different robots, multiple computer languages can be used

for the software. While this can be accounted for in the software system diagram, it

is overly burdensome to force all of the different variations into a single prototype.

In the software domain, a connection represents the passing of data, either through

a function call, or a variable assignment. The type of the connection is the data type,

e.g. int, float, void, etc. The tremendous number of data types is another reason why

fitting a software diagram into a prototype is difficult.
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Chapter 3

Modeling a Robot from the System

Diagramming Prototype

Representing a robot through its System Diagramming Prototype allows designers to

standardize their designs and organize the layout of a robot, regardless of the robot's

complexity. This can be a valuable tool for students first learning about robotics,

as well as for larger systems that need to coordinate between various teams. This

chapter walks through the basics of the robotic prototype and how it can be used to

represent simple systems and robots. More complex systems can then be built using

this prototype as a starting point.

3.1 Electrical System for a "Charging Robot"

The Robot Prototype proposed in the previous chapter includes three System Level

blocks, in accordance with the definition of a robot. For this first example, we will

focus on a robot that only has an Electrical System. The robot's sole purpose will be to

charge a battery when it is plugged in, and the robot will be nicknamed "ChargeBot".

Because of the extreme simplicity of ChargeBot, it does not meet the criteria to be

called a robot at all, because of its lack of Mechanical and Software Systems. Studying

it will be useful nonetheless, as this electrical system can easily be incorporated into a

full robot. The empty system diagram prototype of ChargeBot is given in Figure 3-1.
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ChargeBot

Mechanical Electrical Software
System System System

Domain: Mechanical Domain: Electrical Domain: Software

Name: ChargeBot v1.O
Prototype: Robot Prototype v1.O

Parent: None

Figure 3-1: Empty System Diagram Prototype for ChargeBot.

To start the System Diagram, we only need to pay attention to the inputs and

outputs, regardless of the level of the diagram. In ChargeBot's case, we will first begin

with the Electrical System, the highest level block that needs to be filled in. As stated

above, ChargeBot charges a battery when plugged in. Therefore, ChargeBot has two

inputs, the charger positive and negative terminals, and no outputs, assuming that

the battery is considered part of ChargeBot. Both of the input types are "Power".

The resulting diagram in shown in Figure 3-2.

ChargeBot - Electrical Domain

System Level

Battery Charger+

Type: Power
Battery Charger- Electrical

System

Name: Electrical System vl.0
Prototype: Electrical System v1.O

Parent: ChargeBot v1.O

Figure 3-2: Collapsed Electrical System block for ChargeBot.

Now that the system inputs and outputs are defined, we will expand the Electrical

System block and look inside it. Creating the system diagram for a robot can be
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thought of as the process of following the inputs through the system until they exit

the system as outputs, or in ChargeBot's case, terminate inside the system. Once all

of the input and outputs have been fully routed, the system diagram is complete.

Because of the type and directionality of the Battery Charger plus and minus

inputs (Power, In), the robotic prototype mandates that the connections be routed

through the System Power-In Port. From the Power-In port, there is only one possible

connection: to the Energy Module. This is shown in Figure 3-3.

ChargeBot - Electrical Domain

System Level
Battery Charger+ Actuatv

Type: Power - 0 ilL,
Battery Charger- Mdule MoE

Sensing Comm. Control
Module Module Module

Signal C uniCations Signal
in out

Name: Electrical System vl.0
Prototype: Electrical System v1.0

Parent: ChargeBot v1.0

Figure 3-3: Expanded Electrical System of ChargeBot. The battery charger inputs

may only be routed to the Energy Module based on their type and directionality.

Following the Battery Charger connections, the inputs must go through the Power-

In port of the Energy Module. Once inside the Energy Module, the inputs must

then be routed to the Energy Unit as, again, this is all the prototype allows for.

ChargeBot's Energy Module is shown in Figure 3-4.

The Robot Prototype does not contain any specific prototype blocks at the Unit

level, unlike the System and Module level, each of which contained exactly six blocks

- Energy, Actuation, Power, Sensing, Communication, and Controls. We are free to

use any subunit we desire to achieve the robot's intended functionality. However,

there is still a subunit prototype, but this is mostly to enforce the port conventions

that we have been following elsewhere in the Robot Prototype. Based on the initial

description of what we want our robot's functionality to be, we know that there must

be two subunits - a battery subunit, and a battery charger subunit. The Battery
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ChargeBot - Electrical Domain
Module Level

Battery Charger+ -n Poe-

Type: Power
Battery Charger- Et

Sensing Comm Control
Unit Unit Unit

Sgnal Conmunications Signal

Name: Energy Module v1.0
Prototype: Energy Module v1.0
Parent: Electrical System v1.0

Figure 3-4: Expanded Energy Module block for ChargeBot. The inputs routing to

the Energy Unit is mandated by the Robot Prototype.

Charger Subunit, which is responsible for charging the battery, is hooked up to the

Battery Subunit, (Figure 3-5). In the simple example of ChargeBot, the battery does

not actually supply power to any other device. Of course for any non-trivial robot

this would not be the case. In any practical system the Battery Subunit would then

be connected to the Energy Unit Power-Out port.

ChargeBot - Electrical Domain
Unit Level

Battery Charger+ r
In Act uation Power

Type: Power
Battery Charger "Chae t

Signal Communications Signa

Name: Energy Unit v1.0
Prototype: Energy Unit v1.0
Parent: Energy Module vl.0

Figure 3-5: Energy Unit of ChargeBot. Note how there are no longer the double lines

around the subunits, as there is no specific prototype that the two subunits are filling.

Now that we know where the Battery Charger subunit resides, as well as its inputs

and outputs, it is the job of the electrical system designer to source the necessary
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components and complete the Battery Charger subunit block. As usual, we start

with the inputs and output. The Battery charger inputs must be transformed from

a presumable unregulated source to a regulated Battery Charger output connection

that goes directly into the battery. Component blocks occupy the level nested inside

of subunits. Usually, components would be off-the-shelf (OTS) products such as

inductors, resistors, capacitors and integrated circuits, meaning the electrical system

designer has little to no control over the components' behavior. The designer does

however have complete control over which components to use and how to utilize

them. In this case we will design the Battery Charger subunit using, for example, an

LTC4065 Lithium-Ion battery charger IC, a 1 oF bypass capacitor, a 2.2 kQ resistor

to set the charging current, and an LED with a current limiting resistor to tell when

the battery is charging. This is shown in Figure 3-6 See the LTC4065 data sheet for

more information [1]. Given that we have an LED on board now, there is an output

from the Battery Charger Subunit that was not previously accounted for. The LED is

of type "Signal", and is of direction "Out." We must add this to the system diagram,

and we will have to follow the LED output until it exits the system.

ChargeBot - Electrical Domain
Subunit Level

Battery Charger+ t Battery Charger+

Type: Power Type: Power

IWatieryhargerr Battery Charger-
Li-on Charger

Type: Signal

FE LED Out

Name: Battery Charger Subunit v1.0
Prototype: Subunit v1.0

Parent: Energy Unit v1.0

Figure 3-6: The LTC4065 Battery Charger IC is the critical block of the Battery

Charging Subunit.

The Battery Subunit (Figure 3-7) contains a battery and two bypass capacitors.

Normally the output from the battery would leave through the Power-Out port and

power the rest of the robot, but not in the case of ChargeBot.
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ChargeBot - Electrical Domain
Subunit Level

Battery Charger+
Type: Power

Battery Charger-
i-nBatter

Sgnaj COMMuniCations Signa

Name: Battery Subunit v1.0
Prototype: Subunit v1.0
Parent: Energy Unit v1.0

Figure 3-7: The battery subunit of ChargeBot. Normally the battery would have an

output to power the rest of the system.

At this point, we will leave the subunit level and return to the Energy Unit.

Because there was an output from the Battery Charger Subunit, the LED output,

that was not previously accounted for, it is necessary to go back and update the

diagram for the Energy Unit (Figure 3-5). The LED signal needs to exit the robotic

system and be received by our eye, so we have to route the signal in a manner that

exits the system diagram. To begin, the LED signal leaves the Energy Unit through

the Signal-Out port, as seen in Figure 3-8.

ChargeBot - Electrical Domain
Unit Level

Battery Charger+ Power

Type: Power
Battery Charger sChge t

p SType: Signal
'gnal Communicat ons Signal LED O ut
gI in out~ J

Name: Energy Unit v1.1
Prototype: Energy Unit v1.0
Parent: Energy Module v1.1

Figure 3-8: Updated version of the Energy Unit (vl.1), now reflecting the LED output

signal.
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Leaving the Energy Unit and returning back to the Energy module, the LED

out signal must be routed out through the Signal-Out port. However, because of the

Robot Prototype, the only connection prototype that connects to the Signal-Out port

is from the Control Unit. Therefore there is no choice but to route the LED signal

to the Control Unit, before it can leave the Energy Module, as seen in Figure 3-9.

The constraints imposed by the prototype prove to be useful in larger systems, as it

provides for a more formulaic design that results in more consistent results.

ChargeBot - Electrical Domain
Module Level

Battery Charger+ I Poe*

Type: Power
Battery Charger- Ew

Uni t Uni Unit

Sn ng Control Type: Signal

Sgi ott S LED Out

Name: Energy Module v1.1
Prototype: Energy Module v1.0

Parent: Energy System vl.1

Figure 3-9: LED output must pass through the Control Unit before it can exit through
the Signal-Out port.

After expanding the Control Unit of the Energy Module, all that needs to be done

is route the LED Out Signal from the Signal-in port to the Signal-Out port, so LED

Out can exit through the Energy Module Signal-out port. There are no subunits

that the signal has to pass through, so a connection can be drawn directly from the

Signal-In port to the Signal-Out port, inside the Control Unit. This is what is called

a Pass-Through block, a block whose only purpose is to route signals from one port

to another port without first interacting with a block. The Control Unit can be seen

in Figure 3-10.
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ChargeBot - Electrical Domain
Unit Level

-Act at in ou

Type: Signal Type: Signal
Led Out Si muniction S-gnai Led Out

In out-
Name: Control Unit v1.1

Prototype: Control Unit v1.0
Parent: Energy System v1.1

Figure 3-10: A Pass-Through block. The LED signal passes through the Control Unit

so that it can be routed out of the Signal-Out Module port.

With the Control Unit of the Energy Module defined, all of the inputs and outputs

of the Energy Module are defined and routed accordingly, resulting in the Energy

Module being fully defined. We can now back out of the Energy Module and look at

the Electrical System. The LED Output connection has to be routed from the Energy

Module to the System Signal-Out port. Again, because of the prototype constraint,

the signal cannot be routed directly to the port as seen in Figure 3-11, but instead

has to go through the Control Module as seen in Figure 3-12.

ChargeBot - Electrical Domain
System Level

Battery Charger+
Type: Power - unb A cut

Battery Charger- "'e Atti Pe

[ing C tol Type: Signal
"Module"I Module I'ModuleI LED -Out

Sgnal Cunications Signal

Name: Electrical System v1.1
Prototype: Electrical System v1.0

Parent: ChargeBot v1.0

Figure 3-11: Incorrect routing of the LED Output signal. Signals may only exit

through the system Signal-Out port from the Control Module.

70



ChargeBot - Electrical Domain
System Level

Battery Charger P

Type: Power - mp A

Battery Charger- E T d

Sensing Comm. Control Type: Signal
Module Module Module .. . .. . - --

Sgna Communictins n

Name: Electrical System v1.1
Prototype: Electrical System v1.0

Parent: ChargeBot v1.0

Figure 3-12: Correct routing of the LED Output signal. In this case the Control

Module is a pass-through block.

Inside the Control Module, Figure 3-13, the signal must go in through the Sensing

Unit, then connect to the Control unit, where it can exit through the Control Module

Signal-Out port. There are no prototypical restrictions on which units can connect

to other units inside of the same module.

ChargeBot - Electrical Domain
Module Level

Actuatio out

Energy Actuation Power
- nt Unit Unit -

Type: Signal Sensing Comm Control Type: Signal
Led Out Led Out

Signal C nmmunicatir nsu u S gal

Name: Control Module v1.0
Prototype: Control Module v1.0
Parent: Electrical System v1.1

Figure 3-13: LED Out passing though the Control Module in order to exit the system.

This leaves us to define the Control Module's Sensing and Control Units. This is

quite easy as both blocks are Pass-Through blocks, as seen in Figures 3-14 and 3-15.

71



ChargeBot - Electrical Domain
Unit Level

Power

Actuation

Type: Signal Type: Signal

- Ld Out-gnal Communications Signal Led Out

Name: Sensing Unit v1.0

Prototype: Sensing Unit v1.0
Parent: Control Module v1.0

Figure 3-14: Pass-Through Sensing Unit to route out the LED connection.

ChargeBot - Electrical Domain
Unit Level

PoPwe

Actuation out

---Type: -SignalI.. -Type: -Signal

Led Out Sigal Comncations Signal Led Out
m out-

Name: Control Unit v1.0
Prototype: Control Unit v1.0
Parent: Control Module v1.0

Figure 3-15: Pass-Through Control Unit to route out the LED connection.

With the Control Module's Sensing and Control Units defined, the LED Out signal

can successfully leave the system. This means that all of the inputs and outputs are

defined, which results in the entire system being defined. The collapsed Electrical

system block for ChargeBot can be seen in Figure 3-16. It might seem like a lot of

effort went into routing the LED signal out, but this was just to satisfy the prototype

constraints of the system diagram, and did not make the physical system any more

complex. It is worth noting that there can be many different System Diagrams that

all describe the same physical system, that is, each physical system does not have a

unique System Diagram.
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ChargeBot - Electrical Domain
System Level

Battery Charger+
Type: Power

Battery Charger- Electrical
System

SystemT ype: S ignal

LED Out

Name: Electrical System v1.1
Prototype: Electrical System v1.0

Parent: ChargeBot v1.0

Figure 3-16: Complete Electrical System diagram. Note that this is version V1.1,

instead of V1.0 like Figure 3-2

3.2 A Functional Robot Example

In this next section, we will again use the robot prototype proposed in the previous

section to create a system diagram for a robot. This robot however, will actually

meet the definition of a robot, whereas ChargeBot did not. This simple robot will

consist of a chassis, motors, wheels, a battery and a circuit board (Figure 3-17). The

robot will be able to drive around based on inputs provided from a mobile device via

Bluetooth Low Energy (BLE). The robot will be named "DriveBot." To begin, we

will start with the blank robot prototype in Figure 3-18.

First, a system diagram is drawn without the Robot Prototype (Figure 3-19). At

this level, the robot contains the chassis group and two motor groups. Now, let's fit

this system diagram into the Robot Mechanical System Prototype.
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Slider Base & Motors Wheels

Figure 3-17: A CAD model rendering of the DriveBot.

DriveBot Prototype

Mechanical Electrical Software
System System System

Domain: Mechanical Domain: Electrical Domain: Software

Figure 3-18: Starting point for the DriveBot System Diagram - a blank robotic pro-

totype

Slider

Sta ii
Force

; Chassis
Group Static

Force

Left Motor Right Motor
Group Group

Dr~ --'_- rdo trx~t
Ir (..rc~p Il

Electric al Elcctrical Q

Dynar ic -
Forces

Wheel

Figure 3-19: A system diagram for DriveBot drawn outside the context of the Robotic

Prototype.
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We begin by seeing that there are three different forces that the robot exerts on

the external world. One occurs at the Slider on the front of the robot, and the other

two at each wheel. The Slider never moves relative to the robot, so this force must

exit the mechanical system through the static port. Therefore, the Slider must belong

to the Static Module. The Static Module prototype will be filled by a block named

Chassis Module, version 1.0. In contrast to the Slider, the wheels do move relative

to the robot, so the forces that the wheels exert on the external system (in this case,

a table) must exit through the Dynamic port, meaning that the wheels exist in the

Dynamic Module. We populate the Dynamic Module prototype with a block named

DC Motor Module, version 1.0. The motors must be held in position to the chassis,

so there must be static connections between the DC Motor Modules and the Chassis

Module. The Resulting diagram is shown in Figure 3-20.

DriveBot - Mechanical Domain
System Level

Static
Port

Slider Force, Static

Chassis
Module

L Motor V1.0 R Motor
Mounting Mounting

Type: Type:
Static DC Motor Static

Module
v1.0

D Wheel Forces, Dynamic
Dynamic

Port

Name: Mechanical System v1.0
Prototype: Robot Mechanical System v1.0

Parent: DriveBot v1.0

Figure 3-20: A system diagram for DriveBot in the context of the Robotic Prototype.

In general we can show that it takes at least two connections to fix one item relative

to another. Take, for example, the mechanism by which the front Slider is connected

to the base, shown in detail in Figure 3-21. There are a total of four components
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used to connect the Slider to the Base; the two components that we are connecting,

and two fasteners. The System Diagram of the connections is shown, independent

of any prototypes. Each block has two connections, resulting in a fully fixed system.

The top face of the base exerts a force on the head of the bolt, the external thread

of the bolt exerts a force on the internal thread of the nut, the top face of the nut

exerts a force on the thread holding feature of the Slider, and the Slider exerts a force

on the base, closing the loop. The system diagram for this, outside of any prototype

context, is shown in Figure 3-22.

Bolt
Base

Nut

Slider

Figure 3-21: A close up of the Slider on the front of the robot.

Base

Face

Bolt

Thread Slider Insert

Nut

Slider

Figure 3-22: System Diagram for the Slider to Chassis connection outside the context

of a prototype.

Let's return to the Robot Prototype and make complete the system diagrams for
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DriveBot. Diving into the Chassis and DC motor modules, we have several System

Diagrams, seen in Figure 3-23. For the Chassis module, nothing moves, so we imme-

diately know that the Dynamic Unit Prototype is left unpopulated. The Dynamic

Unit of the Static Module should be viewed as moving parts whose primary role is to

support items that should not move. The Static Unit of the Dynamic Module should

be viewed as non-moving parts that enable the moving parts to work correctly. The

Motors are statically mounted relative to the Chassis of the robot; therefore, the

connections from the DC Motor Unit need to go through the Static Unit. There are

no components in the Static Unit, meaning that it is a Pass-Though block. The DC

motors reside in the Dynamic Unit, as their primary purpose is to output a Dynamic

Force. Two forces exit the DC motor Unit, one for each wheel. These forces progress

through the entire system, and exit through the mechanical system Dynamic port.

DriveBot - Mechanical Domain DriveBot - Mechanical Domain
Module Level Module Level

Slider Out Motor Mounting Motor Mounting

Static ' Static
Port Port

Chassis Static
Unit 

Unit (Pass)v1.0I

Dynamic 
DC Motor

Unit Unit
v1.0

Dynamic Dynamic
Port Port

Wheels Out

Name: Chassis Module v1.0 Name: DC Motor Module v1.0
Prototype: Static Module v1.0 Prototype: Dynamic Module v1.0

Parent: Mechanical System v1.0 Parent: Mechanical System v1.0

Figure 3-23: The Static and Dynamic Modules of DriveBot, in the context of the

robotic framework.

Expanding the Chassis Unit, which occupies the static unit of the Chassis Module,

we see the subunits that begin to be recognizable parts of the robot. The Chassis unit

is composed of the Chassis, the Slider, and two Motor Upright subunits. The Slider

is fixed to the Base with two connections, and each of the uprights contains three
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connections - two for fixing the uprights to the Base, and one apiece for securing the

Motor Supports, as shown in Figure 3-24. This becomes clear when each subunit is

expanded to see the components within.

DriveBot - Mechanical Domain
Unit Level

Chassis Unit v1.0

Base Subunit v1.0

Slider L Motor Battery Support R Motor

Connections Upright Upright

Slider Subunit v1.0 Left Motor Upright Right Motor Upright
Subunit v1.0 Subunit v1.0

Slider Out L Motor R Motor

Name: Chassis Unit vl.0
Prototype: Static Unit Prototype vl.0

Parent: Chassis Module v1.0

Figure 3-24: System diagram of the Chassis Unit of the Chassis Module for DriveBot.

Once the Chassis subunits have been expanded (Figure 3-25), we can see all of the

individual components that make up the chassis. Every component must have at least

two connections to be fixed. There is a total of five connections that leave the Chassis

Unit; one from the Slider, which will work its way back up the System Diagram and

eventually exit through the Robot mechanical System Static port when it comes into

contact with the drive surface, and two from each Motor Upright subunit. The two

connections that exit from the uprights will go into the DC motor Unit and end up

fixing the DC motors to the Chassis.
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DriveBot - Mechanical Domain
Unit Level

Chassis Unit vI.0

Base Subunit v1.0

Base Battery
Support

Slider L Motor R Motor

Connections Upright Upright

Bolt Bolt Bolt

Nut Nut Nut

Motor Motor
Slider Upright Upright

Slider Subunit L Motor Upright R Motor Upright
v1.0 Subunit vl.0 Subunit v1.0

Slider Out L Motor Mounting R Motor Mounting

Name: Chassis Unit vl.0
Prototype: Static Unit Prototype v1.0

Parent: Chassis Module v10

Figure 3-25: Expanded subunit diagrams for the chassis of DriveBot.

The DC Motor Unit is split into two groups: the left motor group and the right

motor group. Each group contains a DC motor subunit and a Wheel subunit. Fol-

lowing the Left Motor (L Motor) and Right Motor (R motor) connections out of the

Chassis Unit in Figure 3-26, they go out of the Chassis Module, and into the DC

Motors module. There, they go through the Static Module, which is a Pass-Through

block, and finally into the DC motor Unit shown on the left. The DC motor subunit

contains a tunnel to the electrical domain, which is what enables the dynamic move-

ments. There is only one connection from the DC motor to the Wheel, which implies

that the wheel can move relative to the motor, which is true in this configuration, as

the wheel is press-fitted onto the motor shaft, and not constrained along the axis of

the shaft.
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DriveBot - Mechanical Domain
Unit Level

Motor DC Motor Unit Motor
Mounting Mounting

DC Motor DC Motor
Subunit v1,0 Subunit v1.0
ElectricalI--' ElectricalI-s

Wheel Wheel
Subunit v1.0 Subunit v1.0

Left Motor Group Right Motor Group
L Wheel Out R Wheel Out

Name: DC Motor Unit v1.0
Prototype: Dynamic Unit Prototype v1.0

Parent: DC Motor Module v1.0

Figure 3-26: System Diagram for the Dynamic Motor Unit, which occupies the Dy-

namic Unit of DriveBot mechanical system.

By expanding the DC Motor subunit in Figure 3-27, we can see that the two

motor mounting connections are made to the case of the motor. In this simple model

of a DC motor, there are six components: the case, the body, two leads, a stator, a

rotor, and an output shaft. We know that motors are multi-domain devices so, we

expect to see a tunnel inside them, connecting the electrical and mechanical domains.

In the case of the motor, there are two tunnels: one on the stator and one on the

rotor. The reasoning is as follows: both the stator and the rotor feel a force when

an input is provided in the electrical domain (i.e. a current). While the leads of the

motor play an integral role in carrying that current, no tunnel exists on the leads

because they never experience a force based on an action in the electrical domain

(within reasonable bounds). The Lorentz force generated by the current causes the

rotor to spin, and as a result, the shaft to spin. The output from the shaft is then

transferred to the wheel subunit, where it goes through the wheel body, and out the

tire. This force will work its way back up the system and eventually exit through

the system dynamic port. In the current system (DriveBot v1.0), there are no actual

means to illicit a force from the motors because there is no way to deliver a current to

the motors. By looking at the electrical system, this can be immediately discerned,
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I
as the only electrical components are the motors. This is reflected in the mechanical

system by seeing that there is nothing hooked up to the leads of the motor.

I
DriveBot - Mechanical Domain DriveBot - Mechanical Domain

Subunit Level Subunit Level
Type Star DC Motor Subunit Wheel Subunit

Motor Mouting Ty 'Sttc

Fi rc Body Motor Output

Type Dynarn c Wheel Body
Force

Stator Rotor
Eieuctrica ElectrcalV TreWheel Output

Motor Output

Name: DC Motor Subunit v1.0 Name: Wheel Subunit v1.0

Prototype: None Prototype: None

Parent: DC Motor Unit v1.0 Parent: DC Motor Unit v1.0

Figure 3-27: A basic motor and wheel diagram for DriveBot.

We will now look more closely at how we can represent the motors, outside the

robotic prototype, as in Figure 3-28. In the electrical domain, the connections are

straight-forward if we have two components: a battery and a DC motor. All that

needs to be done is to connect the two devices together. However, this electrical

system has no inputs or outputs. In the mechanical domain, the system is slightly

more complex, given that we now need to represent how the battery and motors

are connected with a component. In this case we will use alligator clips for the

connections. The alligator clips exert a force on the battery terminals and the DC

motor terminals. In the mechanical system, when there is an output from the system,

the output shaft will turn. This force is being generated from the tunnel connecting

the electrical and mechanical domain of the DC motor. The tunnels are drawn here

as unidirectional, but in reality they are bidirectional, as moving the DC motor as a

system input would generate a current that could charge the battery.
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Electrical Domain
Motor+

Battery Type DC Motor
Motor- - 0O Mechanical

Mechanical Domain
Battery Motor
Clip 1 Alligator Clip 1

clip Motor Output

Type Type DC Motor Forces
Battery Static Static Type

Alligator Electrical G-O- Dynamic

Battery Clip Motor
Clip 2 Clip 2

Figure 3-28: A comparison of a DC motor system in the Electrical and Mechanical

domains, outside of a prototype.

We want to include a battery and electrical connectors in our System Diagram

for DriveBot. First we will show these outside the robot prototype in Figure 3-29.

The diagram includes the battery and alligator clip groups. The battery has two

connections to each alligator clip group (one per clip), and has a connection to the

chassis group (more specifically, the Battery Support component of the Base Subunit

belonging to the Chassis Unit.)

DriveBot - Mechanical Domain
System Level

Battery Chassis Alligator Clip
Group Group vI.0

c c : Alligator
-- Clip 1

Clampen ciarreog.
-- -- Forces Fors

Left Motor Right Motor Alligator yIl
Group TypeGroup sTp C Type

Gr~r~iGrupl

Elec cal--- - EecurraI-9

-------------D yra urr --

Forces

Name: Mechanical System
Version: 1.1

Parent: DriveBot

Figure 3-29: Chassis, with battery, motors, and electrical connectors, outside of a

prototype context.

Now, we would like to fit the system diagram to our robot prototype. We will
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do this by making a new version of the Mechanical system, version 1.1, shown in

Figure 3-30. The only difference between the Mechanical System 1.1 and 1.0 is that

there is a fifth connection between the chassis module and DC motor module, which

is the battery mount. Expanding DC motor Module v1.1, we will replace the Pass-

Through block that was occupying the Static Unit prototype, with a new block, called

Motor support Unit v1. 1. This block will house the Battery and the alligator clips.

The reason for putting the battery in the Static Unit of the Dynamic module is that

the purpose of the battery is to help the motors accomplish their job of moving the

robot around. The motors belong to the Dynamic module, and any items whose

purpose is to support other blocks, should reside in the same Module.

Domain DriveBot - Mechanical Domain
DriveBot - Mechanical DModule Level

System Level Battery Mounting Motor Mounting (x4)

Static
Port

L ider Force, Static

Chassis
Module

L Motor V1.1 R Motor
Mounting attery Mount Mounting

Type: ateyType:
Static DC Motor Static

Module
v1.1

y i Wheel Forces, Dynamic
Dynum '

Port

Name: Mechanical System vl.1
Prototype: Robot Mechanical System v1.0

Parent: DriveBot v1.1

Static
Port

Motor
Support Unit

Motor vl.1 Motor
Leads (x4) Mounting (x4)

DC Motor
Unit
v1. 1

Dynamic
Port

Wheels Out

Name: DC Motor Module v1.1
Prototype: Dynamic Module v1.0
Parent: Mechanical System v1.1

Figure 3-30: The System level mechanical diagram with the DC motor Module ex-

panded.

Looking into the Motor Support Unit vl.1, we see the Battery and Alligator clips.

The motor leads connect directly to the DC motor subunits, shown in Figure 3-31.
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DriveBot - Mechanical Domain DriveBot - Mechanical Domain
Unit Level Unit Level

Motor DC Motor Unit Motor 1 -
Mounting Mounting Battery Mounting Motor

Motor Leads DC Motor DC Motor Motor Leads IBatteyI Subunrit v1.O Subunit v1. otrLed Bter
Electrical& - Eletr-icl( Subunit v .0

Wheel Wheel Alligator Alligator
Subunit v1 0 Subunit V1.0 Group v1.0 Group vI.0

Left Motor Group Right Motor Group Motor Leads
L Wheel Out R Wheel Out I g

Name: DC Motor Unit v1.1 Name: Motor Support Unit vl.1

Prototype: Dynamic Unit Prototype v1.0 Prototype: Static Unit Prototype v1.0

Parent: DC Motor Module v1.1 Parent: DC Motor Module v1.1

Figure 3-31: The two blocks contained within the DC motor Module. Note the

four Pass-Through connections that go through the Static Unit and into the Chassis

Module.

This results in the DC motor subunit v1. 1 (Figure 3-32). The only difference from

vl.0 is that Leads 1 and 2 are connected, whereas they were previously left open. At

this point, we have a complete mechanical system for DriveBot vl.1. We will now

work on diagramming the electrical system, which at this stage is trivial, consisting

of only a battery and two DC motors, Figure 3-33.

DriveBot - Mechanical Domain
Subunit Level

DC Motor Subunit

Motor Mouting Type.StaticForct
Case 

Body
Type. Dynamic

Force

Motor Leads

Stator Rotor
Electrical ElectricalG -

Shaft Motor Output

Name: DC Motor Subunit v1.1
Prototype: None

Parent: DC Motor Unit v1.1

Figure 3-32: DC motor subunit diagram with the motor leads connected to alligator

clips.
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Electrical Domain
Type:
Power DC Motor

Motor A+
- 0 Mechanical

Motor A-
Battery Motor B+

Motor B- DC Motor
-00 Mechanical

Figure 3-33: The electrical domain system diagram of DriveBot, outside the prototype

context.

At the system level, the Battery must go into the Energy module prototype, as

the battery is the device that provides energy to the system. Likewise, the DC motor

must go into the Actuation module prototype as shown in Figure 3-34.

DriveBot - Electrical Domain
System Level

Power
in Power

Actuation out

Battery DC Motors Power
Module Module Module

Sensing Comr Control
Module Module Module

Signal munications Signal
in out

Name: Electrical System v1.O
Prototype: Electrical System v1.O

Parent: DriveBot v1.1

Figure 3-34: Electrical system diagram for DriveBot, this time in the context of the

robot prototype.

Expanding the Battery Module in Figure 3-35, we have the six units of the En-

ergy Module prototype. Because we only have one component (the battery), it is

immediately known that the battery must go into the Energy Unit Prototype, the

critical block for the module. There are four connections coming out of the battery,

85

I



all of type power. These connections are going to the motors, which are in the Ac-

tuation Module Prototype, meaning that the connections leaving the battery must

exit the Energy Module. No choice is provided to us by the prototype as to how

this is achieved; the power connections must exit through the power port, meaning

that they must first go into the power unit. In the Actuation Module prototype, the

motors must be in the critical block, the actuation unit. The only way to get power

into the module is through the Power In port, which only connects to the Energy

Unit. Therefore, the Battery to Motor connections must pass through the Energy

unit, where they are free to connect to the Actuation Unit prototype.

DriveBot - Electrical Domain
Module Level

Power

Actuation -- P

Battery tion' Power
Unit Unit

v1.0 Unit (Pass)

Sensing Control
Unit Unit Unit

Signal m unications Signal
-in out

Name: Battery Module v1.O
Prototype: Energy Module vl.O
Parent: Electrical System v1.O

DriveBot - Electrical Domain
Module Level

Power
in Power

Actuation out

Energy DC Motors [ower
Unit Unit Unit

- (Pass) vi 1.

Sensing Comm. Control
Unit Unit Unit

Signal Communications Signal
in out--

Name: DC Motors Module v1.O
Prototype: Actuation Module vl.O

Parent: Electrical System v1.O

Figure 3-35: The Battery and DC motor electrical modules, inside the context of the

robot prototype.

Expanding the only two units that are not Pass-Through blocks, we can seen the

Battery subunit in the Battery unit, and the DC motor subunits in the DC Motors

Unit (Figure 3-36).
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DriveBot - Electrical Domain
Unit Level

Power Power
Actuation out

B Type.
Batte Power
Subunit Bate

Signal Communications Signal

Name: Battery Unit v1.O
Prototype: Energy Unit v1.O
Parent: Battery Module vl.O

DriveBot - Electrical Domain
Unit Level

Power Power

Actuation out

Left Motor
DC Motor

Typa Poun Subunit

Right Motor
DC Motor
Subunit

Signal Communications Signal
in out

Name: DC Motors Unit vl.O
Prototype: Actuation Unit

Parent: DC Motors Module v1.0

Figure 3-36: The critical electrical units for DriveBot v1.1.

Figure 3-37 shows the finished electrical system diagram for DriveBot v1.1. At

this point, we have a complete mechanical system and a complete, although extremely

simplistic, electrical system that will allow DriveBot to move over a surface. However,

DriveBot is still not a robot by our definition. It does not have controlled output,

and it does not have a software system. In order to provide a software system, we

must first upgrade our electrical system.

Slider

Wheels

DriveBot - Robot Level

Mechanical Electrical
System v1.1 System v1.0 Software

Electrical Mechanical

Domain: Mechanical Domain: Electrical Domain: Software

Name: DriveBot v1.1
Prototype: Robot v1.O

Parent: None

Figure 3-37: Finished System diagram for version 1.1 of DriveBot. Notice that the

Software system prototype is still empty, meaning that DriveBot is not yet a Robot.

DriveBot will meet the definition for a robot in a version presented later in this

chapter.
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3.3 Electrical System

To achieve the goal of driving DriveBot around based on inputs from a mobile device,

there needs to be a software system. The largest barrier to this in DriveBot v1.1 is

the lack of hardware to support software. A microcontroller, or suitable alternative,

must be incorporated. To achieve this, a Control Module is added to the electrical

system. The Control Module's critical block, the Control Unit, is populated with a

microcontroller subunit, as shown in Figure 3-38. The microcontroller subunit will

not be expanded here, but it contains all of the necessary passives, filters, and clocks

for the microcontroller component to function properly. As indicated in the diagram,

we must provide power to the microcontroller subunit, as well as a bidirectional

communication path and connections for controlling the motor.

DriveBot - Electrical Domain
Unit Level

Power Power

Power Out i e Actuation out

Microcontroller
Subunit v1.1

Battery
Measure Motor Control

Power LED Signal Signal Power LED

in out

Communications

Comm-Control

Name: Control Unit v1.1
Prototype: Control Unit v1.0
Parent: Control Module v1.1

Figure 3-38: A microcontroller is added in the Control Unit of the Control Module.

Moving up a level, the Control Module's role is to provide the necessary inputs and

outputs to its critical block, the Control Unit, which was defined in Figure 3-38. This

results in the Control Module as shown in Figure 3-39. In this simple robot only the

critical block is populated, with only pass-through blocks elsewhere in the module, a

theme that will appear again. Now that we have provided a microcontroller, there is
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a platform for the Software System, fulfilling a major step of reaching the criteria for

a robot.

DriveBot - Electrical Domain
Module Level

Power
in Power

Actuto out
Power Ou t Energy Actuation Power

--- (Pas Unit Unit -

Sensing CComm ControlM

(Passs)'
Power LED (Pass Power LED

ignal Communications Signal

Comm-Control

Name: Control Module v1.1
Prototype: Energy Module v1.0
Parent: Electrical System v1.1

Figure 3-39: The critical block of the Control Module is the Control Unit, which

contains a microcontroller. Only Pass-Through units are required elsewhere in the

Module.

Using the Control Module as a starting point, there are several options for which

blocks to populate next. The previous version of DriveBot was missing two features to

be considered a robot. The microcontroller allows for software to be incorporated, but

there is still the issue of creating a controlled output. In version 1.0, DriveBot would

move when the alligator clips were connected to the battery and motors, but there

was no way of controlling the velocity of the motors. Adding a microcontroller gives

us a platform for creating the signals necessary to control a motor, but the motors

take power connections, not signal connections. This means that the Actuation block

needs to include a block that transforms a signal connection into a power connection,

or in other words, we need a power amplifier. The critical Actuation Unit is shown

in Figure 3-40 with the power amplifier and two motors.
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DriveBot - Electrical Domain
Unit Level

Power Actuation Power
in out

Dual H-bridge
- - Power Amp

- - Subunit vI.1

Left Motor Right Motor
Subunit 1.1 Subunit 1.1

Mechanical Mechanical

Signal Communications Signal

in out

Name: Actuation Unit v1.1
Prototype: Actuation Unit v1.0
Parent: Actuation Module v1.1

Figure 3-40: A dual H-bridge power amplifier is used to drive

rectionally.

Energy Out

Power Out

Motor Control

DriveBot - Electrical Domain
Module Level

Power

Actuati on out

Energy Actuation Power
Unit (Pass) p2 .cs: 1 ,, Unit

Sensing [Emm. Control
Unit (Pass) Unit Unit

Signal Communications Signal
in out

Name: Actuation Module v1.1
Prototype: Energy Module v1.0
Parent: Electrical System v1.1

the two motors bidi-

Figure 3-41: Two pass-through units are needed to support the critical Actuation

Unit.

Following the connections to the Actuation Module in Figure 3-41, there is Motor

Control, which came from the Control Module, the Energy Out connections, and

the Power Out connections. Power Out is a regulated voltage for logic control, and
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Energy Out is an unregulated source that is connected to the main energy source.

Following the Power Out connection brings us to the Power Module. Jumping down

to the critical block, shown in Figure 3-42, the linear regulator subunit converts the

unregulated Energy Out input into the regulated Power Out.

DriveBot - Electrical Domain
Unit Level

Energy Out

Power Power
in Actuation out Power Out

Linear Regulator
Subunit v1.1

Power Indication
LED Subunit Power LED

V1 I-

Signal Communications Signal
i n out

Name: Power Regulation Unit v1.1
Prototype: Power Unit v1.0
Parent: Power Module v1.1

Figure 3-42: The Linear Regulator subunit produces a regulated output from an

unregulated input. A power indication LED is used to show when the robot is powered

on.

Energy Out

DriveBot - Electrical Domain
Module Level

Power
in Power

Actuation out

Energy Actuatio Power
Unit A i Regulation
Pass Unit Unit v1.1

Comm. Control
Sensing Comm Unit

Unit Unit I(Pass

Signal Communications Signal
in out

Name: Power Module v1.1
Prototype: Energy Module v1.0
Parent: Electrical System v1.1

Power Out

Power LED

Figure 3-43: The Power Module for DriveBot.
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Additionally, there is a second subunit in the critical Power Unit that shows when

the robot is on via an LED. The Power LED subunit could have equivalently been put

in the Control Unit of the Power Module, which would then need to be a pass-through

block. The Power Module diagram is shown in Figure 3-43.

The Energy Out connection has been seen several times now, so let us address

its origin. The critical Energy Unit contains the Battery Subunit. It is worth noting

that there there is an additional subunit in the Energy Unit: the Battery Connector

Subunit. This indicates that the battery is not permanently attached to the rest of the

electrical system, which is useful if the battery needs to be changed. Figure 3-44 also

shows the Energy Module's Power Unit, which is the first time that a non-critical, non-

pass-through subunit has been used. This unit provides two very important functions.

First, it contains a power switch that allows the user to turn the robot on and off. The

mechanical tunnel indicates that this is a mechanical switch, as opposed to a solid

state switch, such as a transistor. Secondly, the Power Unit provides reverse polarity

protection, which is crucial for any robust electronic system. Inserting the battery in

the incorrect orientation should not destroy sensitive electronics downstream. Using

the reverse polarity protection subunit in the Energy Module, as opposed to the Power

Module, ensures that the Energy Out connections can only be positive, which is safer

than doing the protection in the Power Module. The Energy Module, Figure 3-45,

contains no pass-through blocks, because we have used the reverse protection circuitry.

DriveBot - Electrical Domain DriveBot - Electrical Domain
Unit Level Unit Level

Power Power Power Power
we Actuation out Battery Ba Out BatteryOu % w Actuation out Ergy Out

connco Y
S bu nt -

5otch
Out

Battery Battery+ Type Power Switch Reverse Polarity
Suuntctt Pwer Subunit ottI ProtectionSubunit v1.1 Battery- M IG........ Subunit v1.1

Signal Communications Signal Signal Communications Signal
inout in nut

Name: Energy Unit v1.1 Name: Power Unit v1.1
Prototype: Energy Unit v1.0 Prototype: Power Unit v1.0
Parent: Energy Module v1.1 Parent: Energy Module v1.1

Figure 3-44: The battery, circuit protection, and power switch subunits.
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Power Out

DriveBot - Electrical Domain
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Figure 3-45: Completed energy module

DriveBot - Electrical Domain
Unit Level

Power Actuation Power
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Subunit v1.1
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Bluetooth T Comm-Control

Name: Communication Unit v1.1
Prototype: Communication Unit v1.0
Parent: Communication Module v1.1

Energy Out

Figure 3-46: The communication module enables a user to send commands via a

mobile device. The commands are then sent to the control module for execution.

There are two modules that have not been discussed: Sensing and Communica-

tion. In the Control Module, there were four bidirectional signal connections that

went to the Communications Module, so we will address the Communication block
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now. The primary purpose of the Communication Module for DriveBot is to receive

commands from a mobile device over Bluetooth. These commands are then sent to

the control module where they are acted upon. The Bluetooth Subunit inside of the

critical Communication Unit (Figure 3-46) needs a regulated power input, a Blue-

tooth antenna connection, and the four connections to the Control Module. The

resulting module is straightforward, with only one Pass-Through block, Figure 3-47.

DriveBot - Electrical Domain
Module Level

Power
in Power
SActuation out

Power Out Energy [cuati Power
Unit i i II

(Pass) Unit Unit

Ses omm Con
t Unit

Signal Signal
-in out

Communications

Bluetooth Comm-Control

Name: Conmmunication Module v1.1
Prototype: Energy Module v1.0
Parent: Electrical System v1.1

Figure 3-47: Only one pass-through block, supplying power, is needed for the Com-

munication Module.

At this point, the electrical system for DriveBot could be considered complete

based on the initial requirements, as it is fully functional. However, we will add a

simple sensing unit so that all six modules will be populated. The role of this simple

module will be to measure the battery's voltage level. As seen in Figure 3-48, the

Battery Measure Subunit takes in the output from the Energy Module, converts it to

a signal type, and sends it out to the control unit. The Sensing Module, Figure 3-49,

shows that two pass-through blocks are needed.
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Figure 3-48: The Battery Measure block converts a power type to a signal type.
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Name: Sensing Module vl.1
Prototype: Energy Module v1.0
Parent: Electrical System v1.1

Battery
Measure

Figure 3-49: Two Pass-Through blocks are required in the Sensing Module.

All of the modules and units have now been diagrammed, meaning that the Elec-

trical System diagram can be completed, as shown in Figure 3-50. There are only

two inputs and outputs from the electrical system. One is the Bidirectional Bluetooth

connection for receiving commands, and the second is the output from the power in-
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dication LED. There is no output from the Actuation Module, as one might expect,

because the motors are considered part of the electrical system. The output from

the motors comes from the mechanical domain, which is connected to the electrical

Actuation Module by way of a tunnel. Also, based on the inputs, it is apparent that

there is no way to charge this robot's battery, as the Energy Module does not have

any inputs. This functionality could be added by inclusion of the battery charger

subunit from ChargeBot's Energy Unit, as presented in Section 3.1.

DriveBot - Electrical Domain
System Level

Power
in Power

Actuation Energy Out out

Energyon Power
vod Module vi Module

I Lv1.1 Power
Out

Power LED

Sensing Comm. Control
Module Module Module v 1

V1.1 V1.1 s wr oe E

Signal Signal
in out

Communications

Bluetooth

Name: Electrical System v1.1
Prototype: Electrical System v1.0

Parent: DriveBot v1.2

Figure 3-50: Completed Electrical system diagram from DriveBot vl.1

3.4 Software

Now that the electrical system has been completed, there is a platform for the software

system. Unlike the electrical and mechanical systems, a prototype for the software

system is not proposed. There is immense variability in the architecture of hardware

that the software runs, as well as in the languages that are used. These, coupled

together with the wide freedom provided by many languages, make software difficult

to fit into one system prototype that is device independent. This is not to say that

the software system cannot be made into a system diagram. The software system
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diagram for DriveBot is shown in Figure 3-51. Bluetooth® commands are received

by the Bluetooth 4.1, also know as Bluetooth Low Energy (BLE) stack, which is

connected via a tunnel to the electrical system. These commands are passed to the

control logic. Depending on the commands and the state of the robot, a Pulse Width

Modulation (PWM) signal is created and sent out the left and right motor pins, which

are connected to the electrical system.

DriveBot - Software Domain
System Level

R Motor
Pin

BLE 4.1 Control - PWM - Electrical

E Sec k Logic Generation L Motor
Pin

0 _ Electrical

Name: Software System v1.1
Prototype: Software System v1.O

Parent: DriveBot v1.2

Figure 3-51: Diagram of the software system. The prototype for this block is empty

by default.

3.5 Completed DriveBot Diagram

Combining the mechanical, electrical, and software systems results in the final sys-

tem diagram for the robot, shown in Figure 3-52. The diagram contains all of the

connections that result from the robot. While this exact robot may not be particu-

larily useful outside of teaching System Diagramming and robotics, with every robot

diagrammed, the library of blocks that has been designed grows and grows. Almost

every subunit that was used for DriveBot will be used again in robots that provide

additional and varied utility.
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Figure 3-52: Final system diagram for DriveBot. Version 1.2 of DriveBot meets the

definition of a robot, as it has mechanical, electrical, and software systems, as well as

a controlled output.
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Chapter 4

Using System Diagramming to

Design MICA Blocks

The MICA (Measurement, Instrumentation, Control, and Analysis) Project is an

ongoing research effort in MIT's BioInstrumentation Laboratory that aims to bring

powerful, simple-to-use, wireless sensors and generators into the world of education

[6]. As education gets augmented by software-based teaching, it is essential that

hardware continues and expands into educational demonstrations and lessons. A core

tenet of the MICA project is that students learn best through hands-on, measurement-

driven education. Real-life experiments can provide a deeper intuition and a stronger

motivation, than purely abstract lessons. By having a set of easy-to-use sensors and

generators, individual students can quickly create an experiment, measure the results,

and then analyze the results. When coupling this individualized hardware approach

with software teaching methods, a new method for teaching students of all ages and

backgrounds is possible, one which embodies the MIT motto, mens et manus, mind

and hand.

4.1 System Diagramming

A sizable catalog of MICA sensors has been created by various researchers to date [7].

A major drawback of the previous version of MICA sensors is the difficulty of adapting
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Figure 4-1: A MICA Inertial Measurement Unit (IMU) block. The two gold plated

magnets can be seen at the top of the block, and the battery can be seen through the

translucent enclosure.

the existing sensor designs to accommodate new designs. By applying the principles of

System Diagramming that were established in the previous section, MICA blocks can

be more systematically developed by utilizing the Electronics System prototype, and

by populating the prototype with MICA subunits. These subunits can be recycled

throughout multiple designs, resulting in an overall decrease in development time for

creating new blocks. In addition to decreasing the time that it takes to incorporate

new sensors, using the Electrical System prototype makes it easier to upgrade existing

sections of a MICA block for new, higher performance blocks, and thus enhanced

functionality.

Each physical MICA block represents one block of the Electrical System at a

given level. For example, there are MICA system blocks, module blocks, and unit

blocks, each of which performs differently based on the design intent and the level of

operation. By chaining blocks, such as module blocks, together, functionality can be
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expanded, resulting in a fully functioning electrical system. This concept is illustrated

in Figure 4-2.

Control

Sensing Energy + Power
double

Figure 4-2: MICA blocks can be snapped together via electrically conductive magnets,
to expand the functionality of the MICA system.

4.2 Electronics

MICA blocks can be seen as the electrical system building blocks for robotics. Blocks

do not have to be used for strictly robotic applications; they can be used for a wide

variety of sensing applications. Multiple revisions of a MICA Inertial Measurement

Unit (IMU) Block have been developed throughout the process of merging System

Diagramming with MICA. The final version of the IMU block can be seen in Figure 4-

3. The IMU block's dimensions are 25 mm x 25 mm x 12.5 mm. An IMU is a fusion

of three different sensors, an accelerometer, a gyroscope and a magnetometer in this

case, all integrated into one IC, for example, a BOSCH® BMX055 [8]. The cube

connects wirelessly via BLE, which is achieved by the use of a Cypress Programmable

System on Chip® (PSoC) 4 BLE module [9]. This MICA block transmits IMU data

over the BLE connection to either a mobile device, or to a web application, where the

data is stored for analysis and manipulation. On the back of the MICA IMU are two
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gold plated rare-Earth magnets. These magnets serve as the mechanism for attaching

the MICA IMU to external objects, as well as the electrical inputs for charging the

battery.

Figure 4-3: A MICA IMU with the top cover removed.

4.2.1 Schematic Design

One of the main benefits of using System Diagramming with electronics design, is

that the electrical schematic and the System Diagram become one in the same. In

Figure 4-4 the System Diagram of the IMU block can be seen. This System Diagram

is the schematic that was used in Altium Designer6 [11] to create the circuit board

as seen in Figure 4-3. On the System Diagram of the IMU are the familiar blocks of

an Electric Module prototype. Because the MICA IMU block is a Sensing Module,

the Critical Block of the module is the Sensing Unit, which contains the IMU IC. One

slight deviation from the module prototype is that the Communication and Control

Blocks have been replaced by a Communication-Control group. This is because the

critical control component is in fact the same component as the critical communi-

cation component, i.e. the PSoC 4 BLE. The PSoC contains a BLE subsystem as

well as an ARM Cortex MO microcontroller [121. The integration of the BLE and
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microcontroller allows for a convenient package that saves space in the final imple-

mentation. Previous versions of the MICA IMU contained separate controller and

communication units.

The inputs to the electrical system can clearly be seen from the System Diagram.

There are two power inputs to the system for charging the Lithium-Ion battery that

powers the MICA IMU. The IMU IC has a tunnel to the Mechanical Domain, which is

where the forces to the system are presented. The signal from three differently colored

LEDs are the only outputs from the system. However, the bulk of the information

travels out of the system through the communication port via Bluetooth. Each of the

units in the MICA IMU schematic can be expanded to the subunit level, and then the

component level. The full System Diagram for the MICA IMU is shown in Appendix

A. A recycling symbol on a block indicates that the block is part of a library of block

that can be reused multiple times.

4.2.2 Board Design

Once the electrical System Diagram for the MICA IMU circuit is fully defined, the

board is ready to be laid out. Laying out the board is the same process as defining

the mechanical System Diagram for the circuit board. The board is laid out with

components grouped by subunit. Once a subunit has been laid out, a snapshot

of the layout is saved and associated with the subunit. Whenever another copy

of that subunit is used again, the only work that has to be done on the circuit is

connecting the inputs and outputs. In Altium, this is achieved by using the "rooms"

functionality. Once all of the subunits are individually laid out, they are placed on

the circuit board and connected together. Each electrical component is represented

in two ways: an electrical schematic to denote functionality and a mechanical CAD

model, to represent the physical footprint. The resulting CAD model can be seen in

Figure 4-5. The subunits on the board can be seen in the white silk screen on the

board in Figure 4-6.
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Figure 4-4: The top level circuit schematic in Altium, which is the same as the top level electrical System Diagram for the
MICA IMU.

( harW**

Chame

,;P!l)., 2

:oN

]\N R

i , Al

( R:", NIAI

Ox

I

I



Figure 4-5: A isometric view of the final CAD model of the MICA IMU circuit board.

LEs *C. CHENEY A
MICA IMU

33/1/16 V2.2.5 PA

0 0

L........& LDO MESU

Figure 4-6: The top (left) and bottom (right) of the MICA IMU circuit board. Sub-

units are denoted by white boxes around them on the silkscreen layer.

4.2.3 Population

Once the circuit board has been fully designed and manufactured, it is necessary to

populate the printed circuit board (PCB) with the components. This is achieved

through the use of a stencil, solder paste, and a reflow oven. A Kapton stencil is
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made on a laser cutter, using the geometry generated by the mechanical models of

components, and their position generated by Altium. After the stencils are cleaned,

an aerosol adhesive is sprayed on the back. Then, with the use of a microscope, the

stencil is placed on the PCB (Figure 4-7) and solder paste is applied to the stencil

using a razor blade. At this point the stencil is removed, leaving solder paste on

the component pads. The components are then placed onto the board by hand with

tweezers. Finally, the board is placed into a reflow oven to solidify the solder paste.

After the first side is populated, the same steps are repeated on the opposite side

of the board. An adhesive does not need to be placed on the first side when the

second side is being reflowed, as the surface tension from the solder paste prevents

the components from falling off, even as the solder paste becomes liquid again.

Figure 4-7: An orange Kapton stencil is adhered to the unpopulated MICA IMU
circuit board, seen through a microscope. The stencil is laser cut based on the
mechanical component models, and their placement on the PCB.

106



4.3 Mechanics

Having an accurate PCB model is crucial for designing an enclosure for each MICA

block. Each enclosure must have a mechanism for closing the block, a way of fixing

the PCB in place, a mechanism for fixing the block to the surrounding system, a

place for the battery, and a port for charging the battery. The resulting CAD model

for the MICA IMU can be seen in Figures 4-8.

Figure 4-8: A CAD model of the final MICA IMU. The enclosure is 3D printed using
stereolithography.

4.3.1 Form Factor and User Experience

One of the major considerations of the MICA project is the user experience for stu-

dents. A major goal of MICA is to completely remove burdensome wires from experi-

ments. To achieve this, there must be a mechanism for charging the MICA block that

does not use a plug. For the MICA IMU, there are two gold plated rare-earth magnets

on the back side of the block, as seen in Figure 4-9. These magnets allow the IMU to

be mechanically attached to a target, but also serve as the electrical connectors for
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the battery charging system. The IMU is attached to other gold plated magnets that

are connected to an external battery, or power supply. The magnets hold the block

in place, while current flows through the gold. Charging currents in excesses of two

amps have been sustained, without any adverse effects on the permanent magnets.

Another user experience area is turning the block on and off. While a physical

switch is built into the MICA IMU for development purposes, the goal for powering on

and off is to use a feature recognition functionality of the accelerometer. The BOSCH

BMX055 was selected in part because of its 2.1 pA total supply current in suspend

mode. The accelerometer is always kept on and in suspend model, even when the

MICA block is "off." When a user double taps the block, the accelerometer hardware

interrupt is triggered, causing another interrupt to trigger in the system controller,

which proceeds to wake up the system from a low power mode. When users want to

turn off the MICA IMU, they do so using the mobile or web application, as discussed

in the next section.

10 20 30 40 so to '1

Figure 4-9: (Left) The final MICA IMU and (right) a previous version. Both blocks

have gold plated permanent magnets for mechanical mounting and battery charging.
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4.4 Software

For MICA blocks to be useful in teaching environments, they need to be accessible

and simple to use. Previous versions of MICA blocks [7] had a built-in Organic LED

(OLED) screen that acted as a user interface for the cube. However, the ubiquity of

mobile devices has resulted in the on-board screen in MICA blocks becoming redun-

dant. Eliminating the screen from MICA blocks saves on space, power consumption,

and lowers development overhead complexity related to controlling the screen. A

mobile Android application and web application are used now to control the device

wirelessly, via BLE.

4.4.1 Embedded Software

The code that is incorporated by the System Diagram for the MICA block is the

embedded software. This includes the code that controls the IMU, manages power

and BLE communications, and measures power consumption. For the MICA IMU, the

embedded software is written using Cypress' PSoC6 CreatorTM [10] integrated design

environment (IDE). Creator is broken up into three main parts, each of which lends

themselves to System Diagramming. First, a user drags and drops virtual components

into the Creator schematic (Figure 4-10), which is similar to using blocks from a

System Diagramming library. These components are then wired to the specific pins

that were used in the electrical system, through Creator's Design Wide Resources

tab. Finally, components are controlled using application programming interface

(API) calls in C code.
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Figure 4-10: A screenshot of the schematic in PSoC Creator that controls the MICA

IMU. The schematic shown closely relates to the software system diagram of the

MICA IMU.

4.4.2 MICA Mobile

One of the major advantages, in addition to decreased power consumption, of using

BLE over another wireless protocol, is that a receiving device can communicate with

a MICA block without having a special wireless adapter. It is estimated that by

2018, there will be 10 billion BLE enabled mobile devices [13]. Accordingly, a mobile

application (MICA Mobile) has been written for the Android operating system. This

application connects to MICA blocks via the mobile device's BLE, where a user can

control settings on the device and start data logging from a given sensor. The data

received from the block are graphed in real-time on the screen and simultaneously

sent to a server in the Biolnstrumentation Lab (Figure 4-11). Once the data are on

the server, it is synced to the cloud and can be retrieved by others for inspection and

analysis. Getting the data into the cloud is a crucial step for education, as it allows
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students to easily compare and collaborate on data sets. Figure 4-12 shows a previous

version of the MICA IMU connected to MICA Mobile as the block is moved.

Mobile Device

MICA
Sensor Module

Domain: Electrical

MICA Server
MICA MICA

BLE Mobile - WiFi Meteor Server
Application Backend

Domain: Software Domain. Software

Domain. Electrical

Domain Electrical

Name: MICA-Mobile Device Data path
Parent: None

Figure 4-11: The software System Diagram for the sensor data when the MICA block

is connected to MICA Mobile.

Figure 4-12: Acceleration data are plotted in MICA Mobile as a previous version of

a MICA IMU is shaken.
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4.4.3 Web Application

While mobile devices that are BLE enabled are the wave of the future, steps must

be taken to ensure that non-BLE enabled devices, such as some laptops and desk-

top computers, can be used for MICA purposes. To make these devices backwards

compatible, a BLE to USB dongle is plugged into the computer. This dongle then

connects with a custom Google Chrome [14] application, MICA Chrome. MICA

Chrome is used to control the block in a similar manner as MICA Mobile. MICA

Chrome posts the data received from the sensor to the MICA server. Users then log

onto a MICA web application, written using the Meteor framework [15], to interact

with the datasets (Figure 4-13). A photo of the MICA IMU being moved while data

is plotted in real time on the MICA web application is shown in Figure 4-14.

MICA
BLE- USB

Module
Domain. Electrical

I
MICA

Sensor Module

Domain- Electrical

Computer I MICA Server

MICA MICA
USIB Chrome Weteo Seve
Port Applicaion Backend

Port ~ ~ ~ ~ AplctoDomain Software
Domain: Software

Domain Electrical

Chrome Web Browser

MICA
Meteor Web
Applicat on

Domari Software
Doniain Software

Domain: Electrical

Name: MICA-Computer Data path
Parent: None

Figure 4-13: The software System Diagram for the sensor

is connected to a BLE-USB dongle and MICA Chrome.
data when the MICA block
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Figure 4-14: As the MICA IMU is moved acceleration data is plotted in real time on
the MICA web application.
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Chapter 5

Conclusion

Block diagramming is used to design systems across many fields, with varying degrees

of rigor. In this thesis, a set of self-consistent rules was developed that enables System

Diagramming to be standardized regardless of the field they are describing. System

Diagramming allows for the creation of prototypes, which provide a framework for

System Diagramming blocks to be placed in, further increasing the standardization

of a system. A System Diagram prototype specific to robotics was presented with

several examples.

System Diagramming and the robotic prototype were merged into the existing

MICA project, which proposes to bring a suite of wireless sensors and generators to

the world of eduction. Using System Diagramming with MICA enables MICA blocks

to be developed and revised rapidly and also clearly defines a blocks role in a larger

system.

A set of MICA blocks were developed that used Bluetooth 4.1 which will allow

for a more widespread adoption of MICA. A mobile application was written for the

Android operating system, as well as a web application for controlling and interacting

with MICA cubes. These applications allow for MICA to be a cloud based project,

which is well suited for the education environment.

System Diagramming and MICA have come a long way, but both still have tremen-

dous areas for growth. The creation of System Diagrams is quite time intensive and

tedious. A web application should be written to help automate the process. This
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would allow for team based design of systems, and would allow for the full potential

of diagram versions to be used. Other cloud based softwares should be integrated

into the System Diagramming application, to the point where the System Diagram

is the link between the electrical CAD, mechanical CAD, and software IDE.

In terms of MICA, the web application and Android application both need sig-

nificant development efforts to become mature. An iOS application needs to be

implemented as well. Furthermore, a large catalog of MICA sensor and generator

cubes needs to be developed. In order to achieve this, effort needs to be put into

creating MICA tools that are helpful in the development of other MICA blocks.
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