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Abstract

This thesis presents an optimization framework to model the trade-offs in strategic supply chain
decision-making for a new product introduction in a real-world setting. The focus of the thesis is
on a consumer medical device that Johnson & Johnson's Calibra business will launch in the future.
As with any new product introduction, the launch exposes the J&J business to risk and uncertainty.
We develop a mixed-integer optimization model to guide the optimal design of a global consumer
medical device supply chain network comprising component suppliers, assembly facilities, ster-
ilizers, and distribution centers. The model evaluates strategic decisions over a seven-year time
horizon related to the location and capacities of various supply chain facilities and partners, trans-
portation costs, and strategic inventory required to satisfy global demand. We developed a stochas-
tic optimization extension of the model to protect the supply chain decision maker from demand
uncertainty. Comparison of the output of the model assuming deterministic demand to a manage-
rial heuristic resulted in total supply chain network cost reductions of 19% - 27%, amounting to
hundreds of millions in present-value dollars. The stochastic optimization solution reduces infea-
sibility related to either not meeting the demand or transportation lead time constraints. The two
models presented in this thesis enable J&J supply chain decision makers to gauge the additional
costs and benefits of different network design concepts, develop a network strategy that can adapt
to uncertain demand, and create a strong strategic foundation for future tactical and operational
decisions.
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Chapter 1

Introduction

1.1 Project Motivation

The purpose of this project is to develop a seven-year supply chain strategy coinciding with the

introduction of a new consumer medical device being launched by the Calibra business at John-

son & Johnson's Diabetes Care Franchise (DCF). The device is a wearable bolus insulin delivery

patch (IDP) that is used directly by persons with diabetes. The launch of the IDP creates an entirely

new market category focused on bolus-only insulin delivery patches. As with any new product

introduction, the launch of the IDP exposes the supply chain organization at J&J to risk and un-

certainty. It also provides the organization with an immense opportunity to evaluate and develop

strategic supply chain initiatives. J&J aimed to create a customer-centric, end-to-end supply chain

strategy. Looking across a seven-year time horizon, the project objective was to develop strategic

planning, sourcing, manufacturing, and delivery process designs to ensure that the supply chain

could efficiently and rapidly respond to changes in customer demand in the future.

In contrast to previous product launches at J&J, this project viewed the supply chain as a strate-

gic asset that could be leveraged to gain a competitive advantage in the insulin delivery market.

Traditionally, J&J, a manufacturer renowned for high quality manufactured goods, deployed pre-

existing supply chain assets and capabilities and incrementally improved on them over the product

life-cycle to reduce cost and improve profitability through process improvement and economies of

scale. The focus was always on the utility derived by customers from product features and func-

tionality. This project aimed to shift that focus towards the strategic selection and configuration

of supply chain capabilities and assets that could create value for customers beyond product func-

tionality.
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1.2 Problem Statement

If supply chain strategy is developed in such a way so as to confer a competitive advantage, then

decisions about internal business systems and processes, assets and capabilities have to align with

the business's basis of competition. This decision-making process is complicated by demand-side

and supply-side uncertainties when introducing a new consumer medical device product.

On the demand side, one difficulty is understanding the uniqule supply chain requirements for

customers in various regions of the world. Consumers' supply chain preferences and expectations

have changed over the last decade, particularly with the rise of e-commerce [5], improvements

in the speed and accuracy of order fulfillment by retailers such as Amazon, and the growth of

on-demand services such as Uber [6]. For medical devices, global differences in reimbursement

make it imperative to demonstrate value to price-conscious payers through an excellent patient

experience encompassing not only product features, but also the supply chain capabilities that

enable patients to attain improved clinical outcomes through better therapeutic adherence [7]. This

adherence derives from high product quality (including usability and Garvin's eight dimensions

of quality [8]), availability, as well as rapid response to emergency needs. The difficulty lies in

knowing which of the new customer-centric processes or technologies should be implemented,

and how each maximizes device adoption and end-user retention.

At the supply chain network level, the desire to have facilities that are in close proximity to cus-

tomers may result in the dispersion of facilities and supply chain partners around the world. This

introduces complexity at a time when close collaboration is necessary to reduce cost and time to

market. It is estimated that 80% of supply chain costs are determined by facility locations and the

flow of products between them [9]. Nevertheless, the design of the supply chain network is usu-

ally done with a short-term focus, with tactical and operational decisions predominating during

the accelerated production ramp-up phase that precedes new product introduction. Furthermore,

functional managers within the supply chain organization may have limited visibility to the im-

pact of their decisions on the long-term, end-to-end profitability of the supply chain. The desire for

cost reduction by managers focusing on the upstream portion of the supply chain could result in

increasing costs downstream. These trade-offs are usually invisible to the functional manager. If

visible, they are usually only qualitatively addressed. This makes it imperative to employ optimiza-

tion techniques during strategic supply chain network planning to ensure that the organization can

profitably satisfy global demand in the long-run.
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1.3 Thesis Overview and Contribution

This thesis presents an optimization framework to explicitly model the trade-offs in strategic sup-

ply chain network design for a new product introduction. The centerpiece of the thesis is a mixed-

integer linear optimization model that guides the optimal design of a global consumer medical

device supply chain network comprising component suppliers, assembly facilities, sterilizers, and

distribution centers. Taking a resource view of the supply chain [10], the model helps managers

determine the optimal location and capacities of various supply chain facilities and partners, trans-

portation modes, and strategic inventory required to satisfy global demand over a seven-year pe-

riod at minimal cost.

The model builds on data provided by a cross-functional team within the supply chain orga-

nization, and thus serves to deepen managerial insight into the value of each strategic network

configuration. The results provide a prescriptive roadmap to help profitably scale the supply chain

for a new product introduction from a small regional launch in a beachhead market, to a complex,

multi-layered global supply chain. Since strategic planning focuses on the decisions that have a

long-term impact on the supply chain, the underlying hypotheses were that 1) an optimized sup-

ply chain network could serve as a solid foundation on which the Calibra business could develop

medium to short-term tactical and operational decisions, and 2) that a network optimization model

could outperform managerial heuristics used in the design of the supply chain network in terms of

the end-to-end supply chain cost.

It is important to note here that this quantitative framework complements, and does not re-

place, the qualitative frameworks of industry-level, firm-level, or corporate-level strategic analysis

[11][12]. A comprehensive assessment of Calibra's competitive advantage, industry positioning,

and customer supply chain requirements was conducted as part of this supply chain project. This

helped guide the configuration of the supply chain network. Nevertheless, this thesis omits details

from that strategic analysis, and instead focuses on the design of the supply chain network.

1.4 Thesis structure

This thesis is organized into six chapters:

" Chapter Two provides background about diabetes, insulin therapy, the Calibra IDP launch,

and previous literature on end-to-end supply chain network optimization.

" Chapter Three details the formulation of a deterministic mixed integer optimization (MIO)

network design model focused on the case of J&J's Calibra business.

" Chapter Four describes a stochastic revision to the MIO model to handle the demand uncer-

tainty that was ignored in the deterministic model, with the goal of minimizing the expected

15



cost of the end-to-end supply chain network based on a set of global demand scenarios.

" Chapter Five provides the numerical results for both the deterministic and stochastic models.

" Chapter Six provides final recommendations and conclusions.

16



Chapter 2

Background on Johnson & Johnson

and Diabetes

2.1 Overview

This Chapter introduces the Johnson & Johnson company and its Diabetes Care Franchise (DCF).

It presents a short overview of diabetes and the salient characteristics of Calibra's new wearable

insulin delivery patch (IDP). The Chapter ends with a discussion of the Six Sigma DMADV design

excellence methodology used to carry out this supply chain strategy project and the rationale for

the use of mathematical optimization in the development of the supply chain network strategy.

Prior literature focused on the use of optimization techniques in multi-layered, multi-period supply

chain network design projects are also discussed.

2.2 The Johnson & Johnson Business

Johnson & Johnson (J&J) is one of the world's largest healthcare companies by revenue, with world-

wide sales of $74 billion in 2014. The company comprises three product segments: 1) pharmaceuti-

cals, 2) consumer products, and 3) medical devices. [13]

This thesis focuses on the Calibra business, which is one of three businesses within J&J's Diabetes

Care Franchise (DCF). DCF is based in Chesterbrook, Pennsylvania, and is part of J&J's medical

devices segment. Besides Calibra, DCF comprises the LifeScan and Animas businesses. LifeScan

produces glucose meters and electrochemical strips for self-monitoring of blood glucose (SMBG).

Animas manufactures electromechanical insulin delivery pumps that deliver both basal and bolus

insulin. The Calibra business plans to introduce a new wearable bolus-only patch device into the

17



market. The DCF products are explored in Figure 2-1 and are described further in Section 2.5.

Along with the Vision Care Franchise (VCF), which produces the Acuvue brand of contact lenses,

DCF forms the Consumer Medtech category of medical devices at J&J. Consumer medical devices

are designed for use directly by the end-user (the patient), unlike traditional medical devices that

are operated by healthcare professionals (e.g. ultrasound transducers, MRIs, suction catheters, and

others) or implanted into patients by healthcare professionals (e.g. pacemakers or hip implants).

Figure 2-1: Self-monitoring of blood glucose (SMBG) and insulin delivery consumer medical de-
vices produced by DCF's LifeScan, Animas, and Calibra [1][2]

Blood glucose meter and strp

Animas calibra

Animas Vibe Calibra Finesse
Basal-bolus Bolus-Only

Electromechanical Pump Mechanical Patch

While the pharmaceuticals and consumer products segments lagged behind the medical devices

segment prior to 2010, the pharmaceutical segment has seen increasing sales in the period 2012-

2014. [14]. DCF has seen a decrease in sales from $2.6 billion in 2012 to $2.142 billion in 2014 [14].

This has been attributed to lower prices resulting from competitive bidding [15] [161. The launch

of the Calibra IDP could significantly boost DCF revenues. Nevertheless, it is expected that price-

conscious payers will continue to apply pricing pressure, even in the case of an innovative new

medical device with improved clinical efficacy compared to pre-existing products. This requires

the strategic design of a supply chain network that can ensure product availability and that meets

the end-users' and payers' requirements, but that also leverages resources efficiently.

2.3 An Overview of Diabetes and Insulin

Diabetes mellitus is a metabolic disorder characterized by chronically elevated blood sugar levels

(hyperglycemia) resulting from insufficient production of insulin in the pancreas or from reduced

18



response to insulin by the body. Based on a 2014 estimate, there are approximately 25 million peo-

ple with diabetes in the United States [17]. This number includes 18 million people with a diabetes

diagnosis, as well as 7 million people that are estimated to have diabetes but are undiagnosed.

There are approximately 382 million people with diabetes worldwide [18]. The incidence of dia-

betes has increased in the United States over the past 25 years, but has shown a decline between

the period of 2008 and 2014. There were 1.4 million new cases of diabetes reported in 2014 in the

United States, compared to 1.7 million in 2008. [19].

There are three main types of diabetes:

" Type 1: Formerly known as juvenile diabetes, this is a condition in which there is a severe

deficiency in the amount of insulin produced by the pancreas. This results from the body's

immune system attacking the insulin-producing beta-islet cells in the pancreas. Type 1 dia-

betes patients must take insulin. Ten to fifteen percent of diabetics have Type 1 diabetes.

" Type 2: Formerly known as adult-onset diabetes, this is a condition where the pancreas does

not produce a sufficient amount of insulin and/or where body's tissues do not respond as

well to insulin, a phenomenon known as insulin resistance. Type 2 accounts for 85 to 90% of

diabetic patients.

" Gestational Diabetes: Occurs in approximately 4% of pregnant women around week 24 of

pregnancy, when the body cannot produce enough insulin due to hormone production from

the placenta that reduces tissue response to insulin (increasing insulin resistance) [20]. It is

seen as a mechanism through which the mother's body channels more glucose to the devel-

oping fetus [20][21].

Diabetes results in increased chance of complications including blindness, limb amputations,

kidney failure as well as two to four-fold increased risk of heart disease (e.g. coronary artery dis-

ease) and stroke [22] [23]. Cardiovascular disease results in 68% of deaths for people with diabetes

over the age of 65, with stroke accounting for 16%. [24]. The high prevalence of diabetes costs the

US healthcare system approximately $220 billion annually, with an average lifetime cost of $283,000

[25]. The global cost of diabetes was estimated at $376 billion in 2010 [26].

2.4 Insulin Therapy

The goal of diabetes treatment is to ensure control of blood glucose levels, or glycemic control. To

gauge treatment efficacy, a patient's glycated hemoglobin, or hemoglobin AiC (HbA1C), is mea-

sured. HbAiC results from plasma glucose attaching non-enzymatically to hemoglobin in the

blood. The higher the blood glucose level, the higher the HbA1C. The HbAiC level constitutes
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the weighted average of blood glucose levels over the last 120 days, and is a powerful indicator of

glycemic control. The American Diabetes Association (ADA) suggests a target level of 7% HbA1C

for patients with diabetes, although this goal is individualized based on patient's age, comorbid

conditions, and their risk of hypoglycemia [27].

Since patients with Type 1 diabetes do not produce sufficient insulin, they are introduced to

insulin therapy from the moment that they are diagnosed. Type 1 patients may be given long-acting

insulin which mimics low-level, basal insulin secretion from a normal pancreas.'. At mealtime,

Type 1 patients take rapid-acting insulin to mimic the pancreas's bolus insulin secretion that helps

the body process the carbohydrates in food [30]. An alternative therapeutic strategy involves the

use of an electromechanical pump that delivers rapid-acting insulin at a precisely controlled flow

rate to mimic basal insulin. These pumps additionally provide the user with the ability to deliver a

bolus dose at mealtime [31]. Electromechanical pumps have an average list price of $6,500 [32].

Glycemic control is addressed differently in Type 2 patients. Patients are provided with lifestyle

coaching upon diagnosis which emphasizes weight control, healthy eating, and exercise. If 1-IbA1C

goals are not met through lifestyle changes alone, then the American Council of Endocrinologists'

(ACE) glycemic control algorithm provides a useful therapeutic guideline for physicians. Based

on the patient's HbA1C levels, monotherapy usually commences with metformin. If the patient is

not at the HbA1C goal in 3 months, then dual therapy commences which combines the first-line

agent (usually metformin) with a second-line agent. If glycemic control continues to be elusive,

dual therapy is followed by triple therapy, introduction of basal (long-acting) insulin, and finally

the introduction of prandial, or mealtime (rapid-acting) insulin [27].

One-third of the diagnosed diabetic population in the U.S. uses insulin (approximately 7 mil-

lion people). One-third of those insulin users use mealtime insulin, with 250,000 new patients

introduced to rapid-acting insulin (RAI) annually [33]. As a mealtime insulin delivery device, the

Calibra IDP is labeled for use with rapid-acting insulin analogs NovoLog (Novo Nordisk) and Hu-

malog (Eli Lilly).

The incredible toll that the diabetes epidemic has on our society highlights the importance of de-

livering solutions that improve therapeutic outcomes. This includes a focus on new pharmaceuti-

cal treatments or medical devices for controlling blood glucose, as well as awareness and education

about the long-term risks of diabetes and the importance of therapeutic adherence.

'There are four major categories of insulin in the market, grouped by their pharmacokinetics, which defines their absorp-

tion by the body, their onset of action, and the duration of activity in the body. [28] [29]. These categories are long-acting,

intermediate-acting, short-acting, and rapid-acting insulin. Details about these categories, along with major brand names,

are presented in Appendix A, A.1
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2.5 Calibra IDP Launch

The launch of Calibra IDP will create a new category of insulin delivery devices that will enable

Type 1 and Type 2 diabetes patients to maintain glycemic control. Approximately two-thirds of

patients on rapid-acting insulin therapy do not maintain good glycemic control (defined as < 7%

glycated hemoglobin) with the use of pre-existing bolus-only insulin delivery devices [34]. There

are numerous reasons suggested, including 1) the fear of hypoglycemic events, which discourages

aggressive insulin treatment or 2) improper adherence to pharmacologic treatment in real-world

settings[35]. Mean adherence to insulin therapy was measured at 63% in one study [35]. A pa-

tient's level of stress or dietary habits may impact non-adherence, but there is also clear evidence

of intentional insulin ommission by more than half of diabetes patients on insulin [36]. Intentional

insulin omission usually results from anxiety about insulin injection, as many patients note that

injection interferes with daily activities, causes pain, and results in fear of public embarrassment

[37][36]. This suggests that a device strategy targeting injection-related omission problems could

improve adherence.

The Calibra IDP is filled with rapid-acting insulin by the user, and an adhesive layer on the

back of the patch enables attachment to a user's abdominal area. The patch can be worn for three

days. After three days, it is disposed and replaced with a new patch. When the patch is attached

to the abdomen, a tiny, flexible cannula is inserted into the subcutaneous tissue, which provides

the path for insulin to enter the body. The use of a flexible cannula means that no needle stick

is necessary for mealtime dosing. The IDP is designed to release precisely 2 units of rapid-acting

insulin when two buttons on the device are clicked simultaneously. Empty reservoirs or occluded

channels disable the buttons. The buttons are accessible from beneath a layer of clothing, allowing

the user to deliver a bolus dose discreetly (Figure 2-2).

The device's success will hinge on the ability to re-engage diabetic patients with their bolus therapy

and reduce the risk of insulin omission after failure to maintain glycemic control using conventional

bolus insulin delivery devices, such as 1) insulin pens or 2) syringes. Rapid-acting insulin pens

for bolus delivery include disposable pens that are pre-filled with insulin, such as the Flexpen

(Novo Nordisk) or Kwikpen (Eli Lilly) [38][39]. There are also reusable insulin pens, such as the

Novopen Echo (Novo Nordisk) [40] that enable users to load disposable insulin cartridges into

the pen. Syringes and needles have also been used traditionally for insulin delivery. For insulin

pens and syringes, the economies of scale, coupled with simpler design [41] makes them a low-cost

insulin delivery solution. The downsides of both pens and syringes is that they 1) require a needle

for each subcutaneous bolus delivery and 2) have to be used in the open, which as mentioned

above may result in injection-related anxiety [42]. The IDP delivers multiple doses of bolus insulin

discreetly over a three-day period through a flexible cannula, without the need for needle injections.
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Figure 2-2: (A) Attachment of the wearable Insulin Delivery Patch (IDP) to the user's abdominal
area. (B) Discreet bolus dosing by activating the buttons through the user's clothing

(A) (B)

In determining coverage and payment with payers, J&J will emphasize the quality dimensions

of the new wearable patch, including performance, features, aesthetics, and usability that help sat-

isfy the functional, emotional, and social needs of the user. Furthermore, unlike the more complex

and expensive basal-bolus electro-mechanical durable pumps that DCF's Animas produces, the

Calibra IDP is made of only mechanical parts. The original rationale for a mechanical device lack-

ing electrical parts is that it would reduce the cost per patch [431, making discreet mealtime insulin

delivery affordable. Clinical outcome studies will demonstrate how these added features could

help improve adherence and ensure glycemic control at an affordable price.

2.6 Methodology

Given the characteristics of the new device, Calibra's end-to-end supply chain strategy team used

the DMADV2 process design framework to develop the supply chain strategy and process design.

The cross-functional membership in the team mirrored the structure of the supply chain organiza-

tion at J&J. J&J's supply chain organization is structured using a process-oriented view of activities

that connect upstream suppliers to downstream customers. The process structure of the supply

chain organization parallels that developed by the Supply Chain Operations Reference (SCOR)

model, which divides supply chain functions into distinct, but interlinked management processes

that resemble the material flow in a typical manufacturing supply chain: Plan, Source, Make, De-

liver, and Return [3] [4]. This is described further in Table A.2 of Appendix A.

As such, the strategy team included representatives from marketing as well as planning, sourc-

ing, manufacturing, and distribution. After the project scope was defined by the team, Voice of
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Customer (VOC) data was collected using interviews and surveys with four customer segments:

persons with diabetes, healthcare professionals, wholesale distributors and retailers. This enabled

mapping of these customers' supply chain journeys and illumination of their supply chain needs

(refer to Figure 2-3 for an example of the process involved in fulfilling wholesale distributors' or re-

tailers' orders). VOC needs were translated into the supply chain design's functional requirements,

which detail what the supply chain needs to do to meet the customers' needs. These requirements

were used to evaluate current state processes and metrics, and to develop future state supply chain

design concepts.

Figure 2-3: Process outlining the receipt of an order by J&J, and delivery of product from J&J's
distribution center to a wholesale distributor or retailer's distribution centers in the United States.
In case of product damage during delivery, the product may be returned. This flow is based on the
process at LifeScan Inc., part of J&J's DCF
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The strategy team reasoned that meeting the supply chain's functional requirements, such as

on-time delivery, continuity of supply, or responsiveness depends fundamentally on how the sup-

ply chain network is configured. For example, placing manufacturing facilities close to customers

increases the likelihood of on-time delivery and fast responsiveness. But this also comes at a cost.

The supply chain network may be strategically designed and optimized in order to ensure sufficient

proximity to global customers, while reducing its overall cost. Strategic supply chain network

design focuses on decisions that have a long-term (multi-year) impact on the manufacturing orga-

nization [441. This includes decisions regarding the optimal location and purpose of supply chain

facilities, allocation of capacity to those facilities, and the optimal flow of product across the net-

work [45] [9] [44]. For Calibra, an optimized end-to-end global supply chain network could benefit

all stakeholders. It ensures that patients can readily access the product with limited supply dis-

ruptions. For J&J, it boosts profitability through the efficient use and timely deployment of assets

to satisfy demand. Reducing cost through network optimization also ensures long-term market

competitiveness as the product matures and struggles to maintain premium pricing.
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2.7 Literature Review

This section provides a brief discussion of previous literature focused on supply chain network de-

sign and optimization. A manufacturing supply chain network is defined as the flow of materials,

information, and money through a set of suppliers, manufacturing facilities, distribution centers,

ending with delivery of the finished good to the customer [9]. The application of optimization tech-

niques to supply chain network design are explored in several texts and reviews [9] [46][47] [48]

[49].

In addition to reviews, we would like to highlight those studies that have looked at strate-

gic decision-making in network design and optimization. Sabri and Beamon [50] conducted an

integrative strategic and operational analysis of procurement, production, and transportation deci-

sions in supply chain design by building a strategic level sub-model whose material flow outputs

are then used for operational-level decision-making under uncertainty of demand, production, and

delivery. ElMaraghy and Majety [51] focus on minimizing the total cost for a multi-stage, multi-

level, multi-customer automotive powertrain manufacturing supply chain using a multi-criteria

mixed-integer linear programming model. Hasani, Zegordi, and Nikbaksh [52] look at the real-

world case of a medical device manufacturer by constructing a robust mathematical programming

model to aid in the design of a multi-period, multi-echelon global supply chain under uncertainty.

These constitute just a portion of the hundreds of studies dedicated to mathematical optimization

techniques in the context of supply chain network design.
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Chapter 3

Supply Chain Network Design and

Optimization

3.1 Overview

Chapter 3 presents the mathematical optimization model for Calibra's global supply chain net-

work. The chapter begins by exploring qualitative decision-making frameworks used by decision

makers in supply chain design. A quantitative, mathematical optimization framework is then used

to build a simple facility location-capacity allocation model. The model is expanded to include

multiple periods and the multiple layers seen in a medical device supply chain, including compo-

nents suppliers, assembly facilities, sterilizers, and distribution centers. Transportation modes and

strategic inventory are later incorporated to enable holistic assessment of all the important strategic

levers in network design.

3.2 Portfolio approach to supply chain design

In order to evaluate the strategic decision levers available for supply chain design, a strategic plan-

ning team may resort to a strategy table similar to the one shown in Table 3.1 (adapted from [53]).

This table includes all the important strategic levers for supply chain network design: the location

of manufacturing facilities, the mode of international shipping, and the inventory stocking model.

If the supply chain design emphasizes responsiveness, with very low order-to-delivery time, the ta-

ble provides a concise graphical representation that allows managers to select compatible strategic

lever options that reflect the overall supply chain strategy.
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Table 3.1: Strategic table for supply chain design. Cells are highlighted only to illustrate how man-

agers may select different options to ensure alignment with the organization's strategic objectives

Lever Fast/High $ Intermediate Design Slow/Low $

Manufacturing Location In Country Regional Global

Sterilization In Country Regional Global

Final Packaging In Country Regional Global

International Shipping Air Truck Ship
Order Fulfillment location In Country Regional Global

Inventory Stocking Model Build to Stock Configure to Order Build to Order

This table is a very useful tool for initiating a discussion about the strategic design of a supply

chain network. Nevertheless, it is unclear what magnitude of difference exists between the three

options for each strategic lever. Apart from a qualitative insight, it is unclear how the different

levers interact, and how different configurations impact the total end-to-end cost or responsiveness

of the supply chain. To complement these qualitative decision-making tools, this thesis developed

an end-to-end network optimization rnodel to quantify the impact of strategic choices in supply

chain network design for a consumer medical device.

3.3 Manufacturing facility location-allocation problem

The facility location and capacity allocation problem for the Calibra manufacturing lines is ad-

dressed first. This is a simplified subset of the end-to-end model of the supply chain network, but

is the most critical, since it ensures that the supply chain network is able to satisfy the forecasted

demand. The goal is to locate an undetermined number of manufacturing facilities and their ca-

pacities in order to minimize the 1) fixed cost of establishing these facilities, 2) the cost of acquiring

capacity, and 3) the variable cost of transporting product to customers in a given set of countries

(the demand nodes in Figure 3-1).

Manufacturing in the IDP supply chain refers to the component asscniblly process. Components

arefabricated at selected suppliers and shipped to the assembly facilities.

Figure 3-1: Simplified network model illustrating the flow of finished goods along arcs between

assembly facilities and demand nodes

Assembly Demand

flow -

+ 4
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Each arc in this network has an associated transportation cost and transportation lead time. The

lead time could also incorporate the cycle time at the preceding node, to provide managerial insight

into the total of production and delivery lead times to the customer.

Assembly (cost, time)- Demand

When the mode of transportation is consistent across all arcs (a preliminary assumption in this

model), such that the cost is proportional to the distance between the nodes, then minimizing the

cost of the network minimizes the distance and lead time. If this simplification is forgone, the

model provides an opportunity to explore the impact of transportation as a strategic lever. As

demand and production volumes increase later in the product life cycle, lower-cost transportation

modes such as sea freight or trucking may be preferred over air freight. These lower-cost modes

are associated with greater lead times, and that trade-off can be explicitly modeled, as shown in

Section 3.7. For now, the model assumes one mode of transportation.

The notation and formulation of the simplified network model is provided below.

Notation

Sets

J Set of manufacturing facilities, indexed by j

M Set of countries, indexed by m

Parameters

Fj Fixed cost of setting up manufacturing plant j,

kj Variable capacity acquisition cost for manufacturing plant j,
Dm Demand in country m,

fjm Transport cost per unit from facility j to demand node m,

M Arbitrarily large constant (capacity constraint)

Variables

Cj Capacity of manufacturing facility j,

yjm Quantity of product shipped from facility j to demand node m,

0, if manufacturing site j is not chosen,
x I =

1, if manufacturing site j is chosen,
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Mathematical Formulation

Objective

minimize ((Fjxj + kjCj) + Efjmyjm (3.1)
jm

subject to

Tyjm > Dm; Vm C M (3.2)

YJm < C]; V] E (3.3)

0 < C1 < Mxj; Vj E J (3.4)

0 < yjm;Vj E J,Vm E M (3.5)

xj E {0,1} (3.6)

This simplified model assumes that the capacity C can take on any value in the set of non-

negative real numbers. 1 Constraint (3.2) ensures that production volumes satisfy the forecasted

demand. Constraint (3.3) ensures that the sum of production volumes 'm Yj,m in plant j do not

exceed the chosen plant capacity, C1. Constraint (3.4) restricts the capacity C1 to be less than zero if

a plant is not selected. Otherwise, it is set to be smaller than an arbitrarily large constant M (this

constraint may not be so arbitrary, as it really represents the ceiling of the allowable capacity acqui-

sition). Finally, constraints (3.5) and (3.6) are non-negativity and binary constraints, respectively.

3.4 Model expansion to include suppliers, sterilizers, and distri-

bution centers

With the goal of developing an end-to-end view of the supply chain, the model was expanded

to include supplier selection, sterilization, and distribution centers. These are the layers within a

traditional medical device supply chain. The nodes and arcs shown in Figure 3-2 form a directed

graph, or network. A description of each of the stages in the Calibra IDP network is provided

below.

Suppliers

Supplier selection is a multi-step process, usually beginning with 1) determining criteria with

which to judge the suppliers (e.g. quality, cost, technical ability, financial quality, etc.), 2) qualifying

suppliers to ensure they meet certain standards, and 3) final selection. Further, within the medical

1The next section shows that this is not particularly the case for the Calibra capacity allocation problem.
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Figure 3-2: Representation of the end-to-end network inclusive of first-tier component suppliers,
assembly facilities, sterilizers, distribution centers, and demand nodes

Component Assembly Sterilization Distribution Demand
Suppliers Center

device world, supplier switching sometimes requires gaining additional approval from the FDA.

There is extensive literature devoted to decision models that support the selection process [54] [55]

[56].

Suppliers in the model are selected so as to minimize 1) the variable cost of transporting com-

ponents from the suppliers to the manufacturing facilities and 2) the variable costs of purchasing

components from a supplier. This is contingent on all suppliers within the set of feasible suppliers

meeting the technical, quality, and financial guidelines adopted by the sourcing team.

Expanding the set of suppliers constitutes a challenge for a strategic network design project fo-

cused on new product introduction. The supply chain organization usually defaults to preferred

suppliers that are part of an approved supplier list (ASL). This aligns with the supply chain's ha-

bitual focus on efficiency and economies of scale. Larger volumes from suppliers working with

several businesses within J&J usually results in lower procurement costs, while also reducing the

cost and lead time of qualifying a new supplier. Nevertheless, reaching out beyond the ASL may

provide benefits in technical expertise that may reduce time to market or enable new product in-

novation that offsets the higher cost.

This model focuses on a strategic subset of suppliers that provide critical components. Critical

components 1) contribute significantly to the overall cost of the device, 2) are essential for meeting

the device's functional requirements, and 3) are difficult to manufacture, thereby making it chal-

lenging to find a replacement supplier. This then restricts the analysis to four types of components

defined by the set C of components indexed by c { 1, 2,3,4}. The set of four component types in-

cludes injection molded plastic parts, plastic films, and two types of rubber parts. All of these parts

are detail-controlled parts, meaning that the assembler (J&J) developed the functional specification

and conducted detailed engineering of the components, while the supplier is expected to deliver

parts that are built to specifications [57].

If the supplier network is assumed to be fixed (supplier selection is not a decision variable),

then the goal of the network optimization is to choose assembly facility locations that balance be-

tween proximity to the demand and proximity to the suppliers. On the other hand, given that there
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are one or two alternative suppliers for each component in the set C, supplier switching may be

permitted, but this incurs a cost (both money and time). Establishing a new supplier partnership

requires added time for supplier qualification, added cost of supplier management (i.e. the ad-

ditional project management or engineering resources to ensure supplier meets project goals and

time line) or regulatory penalties for supplier switching. This switching cost is discussed in Section

3.5.

Maintaining two concurrent supplier relationships for one component type incurs additional

fixed costs. Since the model aims to minimize cost, it may select only one supplier for each com-

ponent. Given the risk associated with single-sourced components, the model could determine the

added cost of mitigating supplier disruption by forcing it to select two or more suppliers for spe-

cific components c. A binary decision variable, xc,i E {0, 1}, is used to represent whether a supplier

i in a set of I suppliers, producing component c in a set C of components, is chosen. This is similar

to the notation used for assembly facilities in Equation 3.6.

Assembly

A pilot line was created in Redwood City, California by the Calibra business prior to its acquisition

by J&J. This is a very low throughput line ( 500 units/week) that relies on manual assembly of

the components into the final device, with the intention of designing and optimizing the assembly

process. A low volume line was designed in collaboration with an external automation partner

to automate the manual processes. This line is located in Aguadilla, Puerto Rico. The aim of this

automated line is to increase throughput to meet the forecasted launch demand and to further

optimize the assembly process. Once assembled, each individual device is packaged into a plastic

blister pack (primary packaging) with a Tyvek peal-off cover. Ten blister packs are combined into

one refill kit. Refill kits are stacked onto pallets. The pallets are then transported for sterilization.

The flow of finished goods in this network model tracks the flow of pallets of one particular SKU,

which is the IDP refill kit.2

In strategic global network design projects, there is always a question about the optimal extent

of assembly facility dispersion. This can sometimes be guided by the marketing strategy. Obtaining

permission to commercialize a medical device'in some countries, such as Russia, requires setting up

manufacturing activities within those countries. The scope of these manufacturing activities varies.

For example, sterilization or final kitting could be sufficient to meet those requirements. There are

also supply chain advantages to localization: 1) the ability to respond quickly to customers, 2) the

ability, through regional localization, to aggregate country demand and delay differentiation of

products, and 3) the ability to use operational hedging in order to mitigate demand or exchange

2 Additional SKUs that could be considered are 1) kits that healthcare professionals use to demonstrate the product to
patients or 2) kits that enable patients to immediately commence therapy after training on using the patch in a healthcare
professional's office. These SKUs are neglected in this model
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rate risk [58].

Product design changes introduce an interesting challenge to the dispersion of manufacturing

facilities around the world. A device such as the IDP will have a unique design history file (DHF),

mandated by the Food and Drug Administration (FDA), which documents the history of the prod-

uct development process for that medical device [59]. If the device is produced by several assembly

locations around the world, a change introduced to the DHF (e.g. a component change, or a new

assembly process improvement) would have to be adopted by all assembly sites. This synchroniza-

tion becomes difficult as some sites are more capable of responding to a process change than others.

One solution to the synchronization problem is to create two or three design history files, one for

each assembly site catering to a unique set of demand nodes. However, creating and maintaining

these sets of files becomes costly and difficult.

In the simplified facility location and capacity allocation model, the capacity of the assembly

lines could take on any non-negative real value. Given the high degree of automation in the Calibra

assembly lines, this assumption is forgone. Instead, there are five discrete blocks of capacity that

can be allocated across the different manufacturing facilities. Low volume lines (LVL) have the

lowest production capacity, while high volume lines (HVL) have the highest:

(1) Line 1: Low Volume Line (LVL)

(2) Line 2: Medium Volume Line (MVL)

(3) Line 2: MVL Capacity Increase

(4) Line 3: High Volume Line (HVL)

(5) Line 4: High Volume Line 2 (HVL2)

This alters decision variable C1 to C, E {0, 1} where P is the set of five capacities indexed by

p E {1, 2,3,4, 5}, for the four manufacturing lines indicated above. As such, the decision is whether

or not a manufacturing facility j adds the assembly line with the associated capacity p. An assembly

line incurs a capital investment cost Aj,p, a scale-up operating fixed cost SC,,, and a steady-state

operating fixed cost SS j ,p,. The notation xj E {0, 1} representing the choice of manufacturing facility

j remains the same.

An important, but difficult notion to quantify is the estimate of the organization's ability to in-

crementally improve the production capacity of pre-existing lines in lieu of investing in a new lines.

This is referred to internally as a "capacity acceleration" initiative. This can be incorporated into

the model by assuming that a small, discrete block of capacity c1,p could be added to a block of

assembly line capacity p, once that line is established. The cost per unit of incremental capacity,

kj,,, is greater, however, than the bulk purchase represented by the set P of capacities. The value of

this incremental capacity could impact the timing of line investments under different demand sce-

narios. This additional capacity can be built through learning and added investment in automation

engineers or technologists, and constitutes part of the annual operating costs of operating the line.
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Sterilization

The IDP product requires ethylene oxide (EtO) sterilization due to the use of a PTFE (Teflon)

insulin-delivery cannula in the device. PTFE provides a low coefficient of friction and biocom-

patibility, but exposure to gamma irradiation degrades PTFE [60] [61]. High temperature steam

sterilization is also not an option as it degrades the other plastics in the device and the primary

packaging plastic blister packs that hold the device [61].

Ethylene oxide sterilization can be conducted externally at sterilization suppliers, or a new

greenfield project could be erected in close proximity to the assembly facility. EtO is an explosion

hazard, and hazard risk minimization in medical device sterilization requires ensuring inertness

of the EtO, either by mixing it with gases such as CO2 or hydrochlorfluorocarbons (HCFCs), or by

using 100% EtO in combination with N2 within the sterilization chamber. The high cost of HCFC

mixtures makes the 100% EtO option more favorable, but the capital investments in equipment or

reinforcement to ensure facility safety when using 100% EtO become more costly.

During sterilization, entire pallets are introduced into the sterilization chamber, up to a certain

capacity of pallets per day. The EtO permeates through the secondary packaging and penetrates

the Tyvek cover in the primary packaging. Once the sterilization cycle is complete, the pallets

are removed from the sterilization chamber and transported to the J&J distribution centers. One

scenario under consideration couples manufacturing with the sterilization facility in an attempt to

reduce the transport cost of shipping pallets to a sterilizer.

Mathematically, the decision to choose a sterilizer is represented by similar notation to assembly,

with Xk C {0, 1} representing the binary choice of whether or not sterilization facility k is chosen

out of a set of K possible options.

Distribution centers

After the sterilizer ships the pallets of sterilized product to the distribution center (DC), the DC

stores the pallets. Operators in the DC break apart a small subset of the refill kits, extracting the blis-

ter packs and creating new secondary packaging. The remaining refill kits are untouched. When an

order from a customer is received, the warehouse management system (WMS) sends a pick, pack,

and ship request to the DC. Depending on each individual customer's demand, the distribution

center transports full truckloads (FT), less-than-truckloads (LTL), or parcels of product. FT incurs

the lowest cost per unit, while parcel delivery incurs the highest cost per unit.

Mathematically, the decision to choose a DC is represented by similar notation to assembly and

sterilization, with x, E {0, 1} representing the binary choice of whether or not DC I is chosen out

of a set of L possible options.
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Demand

Commercial launch of the IDP will commence in countries where J&J 1) has strong commercial

operations and 2) can attain prices that ensure profitability. There remains some uncertainty about

regulatory approval of the product in several national markets. There is also uncertainty about

how much payers might reimburse for the patch (this is seen in the United States as the sequence

of coverage, coding, and payment [62]). For example, in the United States there is a question about

whether the patch will be covered as a pharmacy (Rx) benefit or as durable medical equipment

(DME), which impacts J&J's revenue per patch. 3 In single-payer systems of healthcare, the gov-

ernment's delay or refusal to grant reimbursement for a consumer medical device means that J&J

may decide to stay out of the market, or enter with the expectation that patients will pay for the

product out of pocket. This is known as a cash pay model, and is appealing in countries where a

significant fraction of patients are willing to pay for the functional and social features of the IDP.

Since this is a new product introduction, there is no historical demand data that can be used

in the model. Instead, demand forecasts are used, knowing that the demand realized in the future

may vary considerably from the demand forecasted today. These parameters are therefore sub-

ject to prediction errors. To ensure network design robustness in light of this demand uncertainty,

different demand scenarios are developed, and a stochastic mixed-integer linear program is formu-

lated to address this uncertainty. This is discussed in Chapter 4. For now, the focus will be on the

deterministic demand problem using the demand forecasts provided by J&J's commercial team.

The demand notation for the model remains the same, with D,1 representing the demand at

country m in a set of M total countries.

Vertical Integration

Vertical integration impacts the types of goods or services procured. In the case of the Calibra busi-

ness, this leads to the question: is it beneficial to source raw materials, convert those internally

into components and assemble them (backward integration)? On the other side of the spectrum, is

it worthwhile to outsource raw material procurement, component manufacturing, and device as-

sembly to a supply chain partner? Would a supplier's relocation of physical fabrication assets (e.g.

injection molding machines) closer to the assembly process help ensure faster problem resolution

and process improvement? The qualitative factors going into this assessment are discussed below:

e Brownfield space availability: underutilized space at pre-existing J&J manufacturing facilities

makes the internal assembly option appealing from a cost perspective. In this case, the fi-

nancial analysis would have to account for the efficiency gains from producing another J&J

product in the same facility.
3This is an interesting device coverage challenge because the device does not have all the characteristics of durable

medical equipment, but also does not conform to what would traditionally be considered a pharmaceutical
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" Intellectual property protection: both the device design and assembly process can be compro-

mised in countries with lax legal enforcement of IP rights. This significant risk would have to

be weighed against improvements in labor and material costs. If the risk is severe, then those

options would be removed from the set of possible suppliers in the network model.

" Technological readiness of the assembly partner: In the case of partnering with an external as-

sembly supplier, the supplier must have the technical and project management capabilities

to successfully deliver on the project objectives. The supplier must show willingness to in-

vest in the equipment and space necessary for the assembly operations. One advantage of

outsourcing would be the expected knowledge spillovers from the supplier's prior success

with assembling similar types of medical devices at a comparable throughput, a form of ex-

ternal agglomeration [63]. On the other hand, shifting injection molding capabilities into near

proximity of assembly allows for internal agglomerations, inter-firm learning, enhancing the

ability of the J&J organization to surface and solve problems. This type of inter-firm learning

has been explored previously in the automotive industry [57].

For the case of Calibra, the reliance would be primarily on the external supplier's capacity, as

the system assembly process is worked out internally.

3.5 Incorporating time into the model

The model so far has not accounted for the seven-year time horizon of the strategy. One ap-

proach that may be used could have the model iterate through the forecasted demand in years

t C {1, 2, ... , 7}, creating a network design for each year. There are two problems with this ap-

proach:

1. Decisions made during time period t are not linked to the decisions in time t +1. For example,

in year t = 5, the model may decide to open the assembly candidate facility in Germany, but

given the demand in t = 6 it may find that the assembly plant in Ireland is preferable. When

the model is re-run in each time iteration t, it is oblivious to the decisions and costs associated

with period t - 1.

2. Point (1) above may be solved by ensuring that as the model iterates through t, the optimal

first year t = 1 decisions are set as constraints for the next time period t = 2. This is a greedy

approach that does not guarantee optimality.

Adding the time index

To reflect the time horizon of the decision-making process, the decision variables are all associated

with a time period t E {1, 2, ... 7}. For example, the decision to choose sterilizer k in period t can be
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represented as xk,t E {0, 1}. Similarly, the cost parameters are indexed by t to reflect price inflation

and the time value of money. This is to ensure that future cost improvements, while potentially

significant, when discounted to their present value still warrant the undertaking of this plan in the

present.

Adding a time index to the model helps tighten the intuition about facilities and their longevity.

This is especially important in the manufacturing world, where the construction of facilities and

purchase, placement, and set-up of expensive, highly automated manufacturing equipment is usu-

ally an irreversible decision. As such, constraints can be added to enforce the continuity of the

assembly line capacity decision from one period to the next:

C -,,, ; C,pt_1; V jC J,V p G P,V t G T. (3.7)

Introducing period-to-period switching costs

Alternatively, instead of forcing the model to perpetuate a facility decision, a period-to-period

switching cost can be included in the model. This can be done by using the fixed costs Rj,t for

launching a new facility j (where j here could represent assembly, sterilizer, or DC) in time t, and a

lower fixed cost rj,t for maintaining the facility j in time t. For an assembly facility, rj,t can be seen as

the fixed plant operating costs including depreciation, manufacturing overhead, or property taxes

among others. This prevents the model from opening one facility in year t, and then opening a sec-

ond facility in year t +1 that is closer to demand (and improves transportation cost), while leaving

the first facility idle.4

The period-to-period switching cost requires comparison of decisions in period t to period t - 1,

for t E {2, 3, ... , 7}. Using the example of the sterilizer above, creating a new relationship with a

sterilizer incurs a cost:

max{(xk,t - xk,t-1),01 * Rk,t;V k G K, t E {2,3, ..., 7}. (3.8)

For a pre-existing relationship with a sterilizer k, the associated cost is:

(xk,t * xk,t-1)* rk,t;V k c K,t c {2,3,...,7}. (3.9)

These are nonlinear terms that can be linearized with the introduction of two new variables Zlk,t E

{0, 1} and Z 2 kt E {0, 1} and some additional constraints:

4 While idle capacity is expensive, it can be seen as a form of productionflexibility. Production flexibility is the difference
between theoretical capacity and the forecasted demand. The trade-off here lies between maximizing the flexibility while
minimizing the cost of idle capacity. This may not be that important in the deterministic formulation of the problem, but
becomes more important when exploring the stochastic version of the problem in Chapter 4.
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min(max{(xk,t - Xk,t-1),0}) => min Zlk,t; V k E K,t c {2,3,...,7},

subject to

Zlk,t > (Xk,t - Xk,t-1). (3.10)

min(xk,t * Xk,t-1) == min Zlk,t; V k E K, t C {2, 3,... ,

subject to

Z2 k,t Xk,t (3.11)

Z2k,t < xk,t-1 (3.12)

Z2k,t Xk,t + Xk,t1 - 1. (3.13)

3.6 Revised End-to-End Model

This Section provides the revised end-to-end model inclusive of the time index, as well as the

facility switching and maintenance costs. The sets of assembly facilities, sterilizers, and distribution

centers, with their locations, are presented in Tables A.5, A.6, and A.7 in Appendix A.

Sets

I Set of suppliers, indexed by i E {1, 2,3, 4}

J Set of assembly facilities, indexed by j c {1, 2,.. .,15}

K Set of sterilization facilities, indexed by k E {1, 2, ... 13}

L Set of distribution centers, indexed by 1 C { 1, 2,.. ., 5}

M Set of demand countries, indexed by m E {1, 2, . . .,15}

C Set of components, indexed by c E {1,2,3,4}

P Set of capacities, indexed by p C {1, 2,...,5}

T Set of time periods, indexed by t C {1, 2,.. ., 7}
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Parameters

Ak,t

Fj,t ; Fk,t

scj,p,t
ssj,p,t

fc,i,jt

fj,k,t fk,l,t ; fl,mnt

Rc,i,t ;Rk,t ; R ~

rc i't; rk,t; r;,t

DIItj

ne

Pc,i,t

Pk,t

Pi,t

MP

M2

M

Decision Variables

0,
xc,i,t

0,p
Cj,,,= ,

Capital investment for assembly line with capacity p in manu-

facturing facility j in time period t

Capital investment for establishing internal greenfield sterilizer

k in time period t

Additional operating cost for incremental capacity in manufac-

turing plant j with capacity p in time period t

Facility overhead cost for manufacturing facility j, or steriliza-

tion facility k, in time period t

Fixed assembly line scale-up operating cost in time period t

Fixed assembly line steady-state operating cost in time period t

Transport cost per unit of component c from supplier i to manu-

facturing facility j
Transportation cost per unit from facility j to k, k to 1, and 1 to m

in time period t

Fixed cost of establishing relationship with supplier i, sterilizer

k, or DC I in time period t

Fixed cost of maintaining relationship with supplier i, sterilizer

k, and DC 1 in time period t

Demand in country m in time period t

Number of component c per patch

Cost of procuring component c from supplier i in time period t

Sterilization cost per unit at sterilizer k in time period t

Processing cost per unit at DC I in time period t

Magnitude of capacity in capacity block p

Maximum limit to added incremental capacity

Arbitrarily large constant

if supplier i for component c is not chosen in time period t,

if supplier i for component c is chosen in time period t,

if assembly line with capacity p in facility j is not chosen in time period t,

if assembly line with capacity p in facility j is chosen in time period t,

0,
X j,t ; Xk,t ; XIJt

if manufacturing facility j, sterilizer k, or DC I are not chosen in time period t,

if manufacturing facility j, sterilizer k, or DC I are chosen in time period t,
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yj,k,t; yk,l,t; Yl,m,t

Yc,i,j,t

cj,p,t

Z1c'it

Zlj,p,t

Zlj,t; Z1k,t; Z1;,t

Z2c,i,t

Z2j,t; Z2 k,t; Z2 it

Quantity of product shipped from from j to k, k to 1, and I to m,

Quantity of component c shipped from supplier i to manufacturing facility j,

Added incremental capacity of facility j with original capacity p,

Establishing new relationship with supplier i for component c in time period t,

Establishing new assembly line with capacity p in facility j in time period t,

Establishing new relationship with manufacturing facility j, sterilizer k, or dis-

tribution center 1 in time period t,

Maintaining relationship with supplier i for component c from time period (t -

1) to time period t,

Maintaining assembly line with capacity p in facility j from time period (t - 1)

to time period t,

Maintaining relationship with manufacturing facility j, sterilizer k, or distribu-

tion center I from time period (t - 1) to time period t

Mathematical Formulation

The mathematical program incorporates the changes made to the end-to-end network problem:

Capital investment costs

A =L Aj,p,tZlj,p,t + 1Ak,tZ1k,t.
jpt kt

Operating and Relationship Fixed Costs

Bo per = ( Fj,txj,t + I [kj,p,tcj,p,t + SC j,p,tZl j,p,t + + kj,p,tcj,p,t]
jt ipt

Brel = ( Rc,i,tZc,i,t + rc,i,tZ2c,i,t] + 1: [Rk,tZik,t + rk,tZ2k,tI + 3 [iR,tZ1i,t + rl,tZ21,t]
cit kt it

(3.14)

(3.15)

(3.16)

Transport costs

(3.17)TC = 1 fc,,yciJ,t + fj,k,tYj,k,t + L fk,,tYk,i,t + 1 f,m,tYI,m,t
cijt jkt kit lmt

Variable Costs

(3.18)VC = L Pc,i,tYc,i,j,t + L Pk,tYk,i,t + L PI,tYl,m,t
cijt kit limt

minimize(A + Bc per + Brel + TC + VC)

Objective
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subject to

Eyl,m,t > Dm,t

Yj,k,t pZ2j,p,t + 1 cj,p,t
k p p

CI,p,t < xj,t

0 < cj,p, < M2 * Z21,p,t

yc,i,j,t > (:ncyj,k,t
k

Yj,k,t k,l,t

IYk,l,t Yl,m,t
k m

yc,i,j,t Mxc,i,t

Yj,k,t - MXj,t
k

Yk,l,t - Mxk,t

Z1 c,i,t xc,i,t - xc,i,t-1

Z2c,i,t xc,i,t

Z2cit < xc,i,t-i

Z2cit > xc,i,t + xc,i,t- 1

Zlc,i,t C {0, 1}, Z2c,i,t {0, 1}

zlj,p,t > Cj,p,t - Cj,p,t-i

Z2j,p,, < Cj,p,t

Z2j,p,t < Cj,p,t-1

Z2j,p,t > Cj,p,t + Cj,p,,__1 - I

Z11,p,t E {0, 1}, Z2j,p,t C {0, 1}

Z1j,t > xj ,t - xj,t-1

Z2j,t xj,t

Z2j,t < xj,t-,

Z2j,t > xj,t + xj,t1 -1

Z1j,t {0, 1}, Z2j, E {0, 1}

Zlk,t > Xk,t - Xk,t-1

V m C M, V t G T

V j E J,V t c T

Vj E J,Vp P,Vt c T

;Vj C JVp P,Vt T

;Vc C C,Vj E J,Vt E T

; Vk E K,Vt E T

; V k c K,V t C T

; Vc c C,Vi C I,Vt E T

; Vj C J,Vt C T

; V k c K,V t E T

V c C

;V c C

V c C

V c C

V c E

V] C

Vj C

V C E

V C

V C

Vj C

V j C

V] E

V E

V C

Vk C

C,V i C I,V

C,V i C I,V

C, V i E I, V

C,V i C I,V

C, Vi E I, V t

J,Vt E T

J,V t E T

J,V t C T

J,V t C T

J, V t C T

J,V t E T

J,V t E T

J,V t C T

J,V t E T

J, V t C T

K,V t C T
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(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

t E T

t T

t T

E T

CT



Z 2k,t Xk,t

Z2 kt Xk,t-1

Z2 k,t Xk,t + xk,t-1

Zlk,t C {0,1},Z 2 kt C {0,1}

Z11,t > xit - xit_1

Z2 1,t xl,t

Z2 1,t <xi t_1

Z2 1,t > XI,t + xk,t-1

Z11,E {0, 1}, Z2j,t E {0, 1}

'Cjpt < 1

Yc,i,j,t ? 0, Yj,k,t > 0, Yk,I,t 0, Yl,m,t > 0

Xc,jt E {0, 11, Xj,t E {0, 1}, Xk,t C {0, 11, xi,t E {0, 1}

;V k E K,V t c T

;Vk E K,Vt ET

;V k e K,V t E T

;Vk c K,Vt E T

;Vl L,Vt E T

;V C L,Vt E T

;V E L,Vt E T

;V C E L,Vt C T

;Vl E L,Vt E T

;V p C PVt E T

;VC, I, J, K, L, M, P, T

;VC, I, J, K, L, T

Constraint (3.20) ensures that the production level satisfies customer demand. Constraint (3.21)

ensures that a manufacturing facility will not produce more than its capacity. The use of Z2jpt

ensures that production cannot commence until one time period after the line capacity has been

established. Constraint (3.22) prevents adding capacity to a manufacturing facility if the facility

is not selected (xj,t). Constraint (3.23) ensures that incremental capacity cannot be added until at

least one time period after the line is established. Constraints (3.24-3.26) are conservation of flow con-

straints. Constraints (3.27-3.29) ensure that flow is not enabled out of a facility that is not selected.

Constraint (3.55) ensures that only one block of each capacity p can be chosen. Finally, (3.56) and

(3.56) are non-negativity and binary constraints, respectively.

The way that 3.14 is currently written implies that the capital investment is expensed immedi-

ately in the model. An alternative would be to depreciate the assets over their lifetime, leading to a

different form:

A = 1 Depj,p,tCj,p,t + L Depk,t xk,t.
]pt

(3.58)
kt

Here, Depj ,p,t = Aj,p,t/ELp and Depk,t = Ak,t/ELk, where EL equals the expected lifetime of the

assets p and k, which we define as equal to seven years based on industry standards.

3.7 Revising the transportation modes

Incorporating the variety of possible transportation modes is an important part of the network

strategy. This can be implemented using new binary decision variables representing two trans-

40

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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(3.56)
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portation arcs, giving the model the choice between 1) a low cost, longer lead time mode such as

sea transport combined with trucking or 2) a higher cost, shorter lead time mode such as air freight.

,Boat +Truck (4, cost, T time)

Assembly * Sterilization

-Air (M ost, -. time)-

This changes the network into a directed multigraph, with multiple directed arcs (two arcs in

this case) connecting the nodes. This also transforms the model into a multi-objective model, where

the goal is to balance two competing objectives: minimize the total cost of the supply chain, while

also minimizing the total lead time. Different solution techniques may be used for multi-objective

optimization, including scalarization (weighted-sum), e-constraints, goal optimization, or multi-

level optimization methods [64]. In the case of the e-constraints method, the original objective of

minimizing cost is maintained, and the lead time objective is added as a constraint. The constraint

ensures that the value of the lead time objective is less than or equal to a given target, e. Here,

the value of e can be 1) the mean lead time across the network, or 2) the maximum lead time. The

value of c can be chosen to conform to a customer-specified target level, knowing well however,

that different global customers have different delivery lead time requirements.

A new index, r E {1(lowcost), 2(highcost)}, is introduced to the product and component flow y

to reflect the mode of transportation, as well as two new binary decision variables that determine if

the model picks a mode: S, for longer lead time, lower cost sea and truck freight, and A, for shorter

lead time, higher cost air freight. For simplicity, the model picks only one mode of transportation

between two nodes. The new decision variables are:

[ 0, if low cost transportation mode is not selected between j and k at time t,

11, if low cost transportation mode is selected between jand k at time t,{ 0, if high cost transportation mode is not selected between j and k at time t,
1, if high cost transportation mode is selected between j and k at time t,

Yj,k,r,t Quantity of product shipped from j to k using transport mode r at

time t.

Parameters are:

Sj,k,r,t Transportation lead time from j to k using transportation mode r in

time t,

Mtrans Arbitrarily large constant (transportation capacity).

An additional set of constraints ensure that if the binary variables S or A for mode selection are

zero, then the flow using that mode is also zero (Equations 3.59 and 3.60). Furthermore, we limit

the model to the choice of only one transportation mode between different nodes (Equation 3.61):
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Yj,k,r=lowcost,t Mtrans * S],k,t ; V j E J, k c K, t c T (3.59)

Yj,k,r=highcost,t Mtras* Aj,k,t ; V j E J,k E K, t E T (3.60)

Sj,k,t + Aj,k,t < 1 ; Vj C J,Vk E K. (3.61)

The updated transport costs become:

B = 1 fc,i,j,r,tYc,i,j,rt + 1 fj,k,r,tYj,k,rt + E fk,1,r,tYk,1,rt + L fi,m,r,tYi,m,r,t (3.62)
cijrt jkrt kirt lmrt

Average lead time e constraint

Setting the e constraint for the average lead time case looks at the flows weighted by their trans-

portation lead time. The greater the component or product flow associated with a longer lead

time, the greater the average lead time. The end-to-end average transportation lead time that we

are interested in calculating allows us to envision how long the product spends in transport from

suppliers all the way through to customers. Due to flow conservation within the network, the av-

erage end-to-end transportation lead time equals the sum of all flows, weighted by their lead time,

divided by the flow to the demand nodes. Rearranging produces the linear form in Equation 3.63:

cj ,j,r,t Sc,j,r,t] + 1 Yj,k,rtSj,k,rt + L yk,l,r,tSk,1,rt + 1: YI,m,r,tS1,m,r,t L Yl,m,rt * e; Vt C T

cC,,r j,k,r k,l,r l,m,r l,m,r
(3.63)

Inventory impacts the conservation of flow in the network. For example, this occurs if assembly

plants produce more than what is required to satisfy demand for time period t in order to build up

inventory for a future time period t + 1 (refer to Section 3.8). Since inventory is stored at the DCs,

inflow into a DC for a particular year may not equal outflow. Nevertheless, conservation of flow

still applies to the flow from suppliers all the way through to the DCs. As such, the network may be

broken up into two parts to evaluate the end-to-end transportation lead time: 1) the average lead

time for flows extending from suppliers through distribution centers, constrained by eave,1 and 2)

the average lead time for flows from distribution centers to demand nodes, constrained by Cave,2-

Two equations, similar in form to Equation 3.63, are introduced:

S[Yci,j,rtSci,j,r~t] + 1: Yj,k,r,tsj,k,rt + L Yk,1,rtSk,1,rt [ Yk,l,rt * Cave,1; Vt C T (3.64)
c,,],r nc j,k,r k,1,r k,I,r

L YI,in,r,tS1,m,r,t Yl,,r,t] * Cave,2; Vt E T (3.65)
I,m,r 1,m,r
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Equations 3.64 and 3.65 could be solved by leaving them independent, or they may be combined

into one equation: 5

YJr ~ ] + E Yj,k,r,tSj,k,rt + Zi Yk,l,r,tSk,l,rt+
clij,r j,k,r k,l,r (3.66)

mYI l,m,r,t Yl,m,r,t * Cave,1 + [ Yl,m,r,tl * cave,2; Vt c T
l,m,r k,l,r l,m,r

Maximum lead time e constraint

Setting the constraint according to a maximum acceptable end-to-end transportation lead time re-

quires assessment of all possible continuous paths leading from suppliers i to demand nodes m.

Sc,i,j,tsc,i,j,1,t + Ac,i,jtsc,i,,2,t + Sj,k,tsj,k,1,t + Aj,k,tsj,k,2,t + Sk,l,tsk,l,1,t + Ak,l,tsk,1,2,t+ (3.67)

Si,m,tsi,m,i,t + Al,m,ts,m,2,t Cmax ; Vc C C, i E I, c J, k c K, I E L, m c M, Vt E T

The constraints in 3.67 ensure that all continuous paths conform to the maximum allowable end-to-

end lead time, cmax. We can vary this parameter to assess the impact on the total cost and location

of supply chain facilities. Since 3.67 generates a significant number of constraints that increase the

model solution speed, the total number of constraints may be reduced by focusing only on the

injection-molded components instead of all the components in the set C.

Method

Transforming the problem from one mode of transportation to two introduces a technical chal-

lenge. Whereas with one mode of transport we can assume the total great circle distance from one

{latitude, longitude} pair to another, for two modes we need to understand what percentage of the

track connecting two nodes happens over land and water. Land transportation in the form of truck-

ing generally has a significantly higher (an order of magnitude or more) cost per ton mile than sea

transportation. Further, the speed of sea freight could be two to four times slower than trucking

speed.

A solution can be developed by following the steps:

1. Cities or countries in the model are geocoded (represented as latitudes and longitudes), and

the Haversine formula is used to determine the distance, d between two nodes.

2. A direct path connecting each node in the network to another node is created. This is called

a track. Each track is a vector composed of n entries: the first entry is the origin's latitude,

5Note that the way in which Equation 3.66 is written allows either one of the eave,1 or cave,2 constraints to be violated,
while preserving the total end-to-end transportation lead time constraint represented by (Cave,i + Cave,2)
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longitude pair, followed by a series of n - 2 Ilatitude, longitude} pairs, and ending with the

destination's {latitude, longitude} pair. This creates it - 1 equal segments. We choose n to be

20. The sum of the lengths of all n - 1 segments equals d.

3. A determination is made about whether the position for each entry in the track vector is

located over land or water. This is done by generating a 5x5 pixel static map through Google

that is centered on the {latitude, longitude} coordinates. The 5x5 pixel image is analyzed, and

if the color of the central region is blue, then the point is classified as water. Otherwise, it is

classified as land.

" For example, a track can be developed to connect an assembly plant in Aguadilla, Puerto

Rico 118.427445, -67.15407} to a sterilizer in Charlotte, North Carolina 135.227087,-80.843127).

This represents a path directed to the northwest (increase in latitude, decrease in longi-

tude). We confirm using the Google Maps query that the first point in Aguadilla lies on

land, which is shown as point 1 in Figure 3-3.

" Close to the midpoint of the journey (point 2 in Figure 3-3) is {28.3183,-74.5659}. We

confirm with Google Maps that this point is over water.

* If the point happens to lie over water, assume that the entire segment connecting the

previous point to this point in the track is over water. As such, a distance n is assumed

to cover water. The accuracy increases with larger n.

* We iterate through the remaining points in the track vector, and similarly assign each

segment to water or land. The final destination point, point 3 in Figure 3-3, is over land.

Figure 3-3: Constructing a track between geocoded points in the network. A map is centered over
each location, with the pixel color helping discriminate land from sea.
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2 0 Charlotte, North Carolina Atlantic Ocean Aguadilla, Puerto Rico

Cuba
Pue to Rco

Land Water LandGuatemala

Nicaragua
Map dta 02016 Google, INEGI

This method allows the model to determine the total distance over land and water connecting

two nodes in the supply chain network. The distance helps determine both the transport cost

(assuming a cost per ton-mile) and transportation lead times (assuming a given speed for each

mode).
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3.8 Integrating strategic inventory positioning

After determining yearly capacity allocation, transportation modes, and optimal flows, the focus

turns to the remaining strategic lever of inventory. Inventory has a critical effect on balancing

supply and demand in a supply chain network, particularly due to 1) variability in production and

transportation lead times and 2) prediction errors in demand forecasts. Inventory helps ensure that

the organization can satisfy demand at satisfactory service levels. Generally, inventory policies are

considered to be more tactical or operational in nature. In this network design model, the focus

will be on strategic inventory, which is important in the context of capacity allocation problems. It

is a means for the network to cope with demand uncertainty and unexpected shocks to the supply

chain network. Given a yearly inventory holding cost at a DC at location 1, represented by HI,

the model may opt to build up inventory in years where capacity exceeds demand, to satisfy next

year's demand in lieu of investing in additional capacity. This is captured in a new variable I .

At the strategic level, an inventory node can be used for each time period, with associated

inbound and outbound arc costs. This is shown in Figure 3-4, where arcs connect assembly to the

year's demand nodes, but also to the year's inventory node, which can be used to supply future

demand. Assuming a 2 year shelf life, it may be possible for inventory produced in one year to

transfer to the next.

Figure 3-4: Simplified network model accounting for inventory flow between different years

Year 1 Assembly ---. Demand Inventory
Yr 1 Yrl Yr 1

Year 2 Assembly -. Demand Inventory
Yr 2 YrZ Yr 2

Year 3 Assembly Demand Inventory
Yr 3 Yr3 Yr 3

The inventory is stored at the distribution centers 1, and is available for satisfying demand in

the next year. In this case, the inventory equals the product inflow into the DC minus the outflow

used to satisfy the demand from that DC:
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Ilt = E Yk,l,rt - ( yi,m,rt ; Vk c K, Vt c T. (3.68)
k,r m,r

The network begins with zero inventory in year 1. Inventory incurs an entire year's worth of

holding cost. The value of the holding cost is discussed in Section 3.10. As such, a holding cost HC

is added to the objective function, equal to:

HC = EHi,tIi,t. (3.69)
it

This in turn changes the objective function in 3.19 to the following:

Objective

minimize(A + B0 per + Brei + TC + VC + HC). (3.70)

While I1,t represents the total inventory created in year t, a flow decision variable il,m,rt is added

to the model for years t E {2, 3,... 7} representing the amount of the inventory stored at DC 1

that is used to meet demand in year t through transportation mode r. This flow is constrained by

the total inventory on hand for that year (Equation 3.71). Similarly, the combination of flows of

inventory and newly manufactured product from a DC I are limited by the choice of transportation

mode out of that DC (Equations 3.72-3.73):

m Il,t- ;Vl C L,Vt E T (3.71)
m,r

Yl,m,r=lowcost,t + il,m,r=1owcost,t < M * Si,m,t; VI C L, m E M, t e T (3.72)

Yl,m,r=highcost,t + i1 ,m,r=highcostt < M * Al,m1,t; V1 E L, m E M, t c T. (3.73)

3.9 A note on the tax strategy

J&J aims to benefit patients throughout the world with the sale of its new product, and the revenues

earned in different countries are subject to different levels of taxation. Large companies with a

global reach such as Johnson & Johnson aim to maximize the net after-tax profit. As such, taxes are

important in the design of global supply chain networks. Tax considerations can be incorporated

into the model by adding new tax parameters that would recognize the increased cost of a facility

option in a country with higher taxes. The model would use an option only when the benefit

from transportation cost and/or facility costs outweighs the added tax costs. With the inclusion

of revenues from the various global markets, the objective of the network optimization problem

changes from a cost minimization to a profit maximization.

The tax parameters would account for:
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" Marginal tax rates and cash grants for the purchase of manufacturing equipment

" Transfer prices

There are several methods for establishing transfer prices, including comparable uncontrolled

method, cost plus, or the profit split method. Transfer pricing must comply with the arm's length

standard, which requires related parties, such as international subsidiaries of an organization, to

"set their inter-company pricing policies as if they were unrelated parties dealing with one another

in the open market." [65] What marginal tax rates are used depends on the profit earned by the

legal entity within each location, based on functions performed, risks borne (inventory, currency,

product liability, etc.) and assets employed (IP and hard assets).

Although important, a rationale is provided below for why taxes are not included in this model:

1. Corporate tax rates and cash grants are subject to change over the seven to ten-year horizon of

this strategic network design model (see for example [66]), while facility location and capacity

allocation decisions are usually irreversible.

2. Most importantly, as this is a launch of a new medical device, regulatory approval of the prod-

uct in many of the markets remains uncertain. There is also uncertainty about reimbursement

as mentioned in Section 3.4. Enumerating the vast number of reimbursement and cash pay

possibilities, as well as their likelihood is extremely difficult. Here, a robust optimization ap-

proach could be used to address revenue parameter uncertainty. We will neglect this in the

model.

3.10 Modeling Assumptions and Scenarios

Several assumptions are incorporated into the model to account for some of the data and decisions

that have already been made by the Calibra organization for the early years.

An image of the anticipated network configuration for 2016 is shown in Figure 3-5 (using Gephi

software). This map represents the initial conditions of the supply chain network. The network

changes as the model minimizes cost over the 7-year time horizon.

* One of the most important assumptions is that the design of the device does not change. This

assumes a mature device design where the number and types of components remain the same

throughout the seven-year period. Through the design transfer process, the mature product

design is committed to production in the manufacturing environment. Therefore, an asso-

ciated assumption is that the technologies for all assembly lines are similar. This allows for

only incremental improvements after the assembly line capacities are determined (discussed

above).
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Figure 3-5: Anticipated network map for Calibra, 2016. Suppliers, as well as the assembly plant
in Aguadilla, Puerto Rico, are shown in red. The New Jersey sterilizer is shown in yellow, the
Louisville, Kentucky distribution center in purple, and the demand points in blue.
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* Cost assumptions for sea, truck, and air freight are made (shown in Table A.3 in Appendix

A), resulting in a transportation cost per mile. The transportation cost and lead time are both

functions of the distance traveled and the mode of transportation used.

The first two lines (LVL and MVL), and their associated capacities, are set to Aguadilla, Puerto

Rico, to reflect decisions that have already been made by the Calibra business. This is done

by setting the capacity decision variable Cn for the first three capacity increments in non-

Aguadilla locations to zero:

Cj#dAguadilla,p{11,2,31,t = 0; V t E T (3.74)

" Lines 3 and 4, the two high volume lines, do not have to be placed in the same facility.

r Incremental capacity cannot be added until at least one time period after the line is established):

cjt< M2 * Z21,p,t; V] E J, Vp E , Vt E T (3.75)

" The holding cost equals 20yr of the product's unit cost. The product unit cost is the total as-

sembly line and facility operating costs, plus inbound transportation and sterilization costs,

divided by the total production volume. Because of the division, this cost is nonlinear. How-

ever, it is possible to maintain linear terms by instead using an alternative estimate of the

holding cost per unit. Since production during year t may exceed demand due to the desire

for strategic inventory buildup, an upper bound of the unit cost could be attained by dividing

the operating costs by that year's total demand. While this may represent a higher per unit

cost, this holding cost estimate can be varied.
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Chapter 4

Stochastic Network Optimization

4.1 Overview

After introducing the supply chain network optimization model in Chapter 3, Chapter 4 outlines

the development of a stochastic optimization model that enables the supply chain decision maker

to cope with future demand uncertainty during the strategic planning of a global supply chain

network for a new product introduction. We modify the deterministic network optimization model

by first defining the stochastic demand as a set of three demand scenarios: low, medium, or high

levels of future demand. We then break the decision-making process down into multiple stages

in which some decisions are made prior to demand realization, and others after. The model helps

identify optimal strategic decisions that can be made by the decision maker in the current period

to ensure that the network is able to cope with uncertain demand in future periods.

4.2 Rationale for Stochastic Optimization

In Chapter 3, we assumed that future demand values are known with certainty (they are not ran-

dom). This deterministic demand assumption was made initially for two reasons. First, the deter-

ministic model is easier to build and work with than a stochastic model. Second, the use of only

one set of country demand values enables alignment of the various functions, such as marketing,

manufacturing, or engineering, on one demand target. This reduces friction during the modeling

and planning process. Since many functional plans are designed based on the nominal demand val-

ues, proposing that the demand is stochastic introduces additional complexity and uncertainty that

could result in greater managerial indecision. This could impede a large organization's progress

towards a final plan that fully aligns the different functions.

Nevertheless, in the real-life implementation of the supply chain network, the deterministic
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model is not very realistic. The extent of patch adoption in the global markets is uncertain. The de-

mand that is realized could differ significantly from the forecasted numbers. In the case of realizing

lower-than-expected demand, this would mean that capital is tied up in expensive equipment and

facilities that are underutilized. In the case of greater-than-expected demand, insufficient capital

investment in capacity results in the loss of customer sales and goodwill.

In case of greater-than-expected demand, the optimal capacity allocation and supplier/facil-

ity selection decisions obtained using the deterministic model may become infeasible. Constraint

(3.20) in Chapter 3 guarantees that for any feasible solution, production satisfies all demand. But

when the supply chain network is implemented in real-life, this constraint may be violated if the

demand that is realized in the first period exceeds the allocated capacity In addition to not being

able to satisfy demand, another infeasibility may arise when we consider the second objective of

the multi-objective model: ensuring that the average or maximum lead-time does not exceed some

e-constraint. Having already selected the transportation mode between different nodes in the net-

work, greater-than-expected demand from distant demand nodes may increase the average lead

time, thereby violating the e constraint of the deterministic problem.

Stochastic optimization protects the decision maker against uncertainty by ensuring that the

optimal decisions remain feasible for different realizations of the stochastic demand parameter.

Stochastic optimization is described in several texts and reviews [67] [68]. To address the demand

uncertainty, we transform the deterministic model developed in Chapter 3 into a stochastic opti-

mization model.

4.3 Representing the demand uncertainty

The first step in building the stochastic network optimization model is to characterize the demand

uncertainty. One possibility involves creating demand scenarios that obey a known probability

distribution. For example, we can specify a set, f2 = {W1, W2, -.- -, n}, of n demand scenarios w,

where each scenario (On occurs with some probability pn. Here, TPn = 1. Using this set of scenarios,
n

we modify slightly the notation of the deterministic model introduced in Chapter 3. The demand

parameter, Dm,t, which represents the demand in country m in time period (t), transforms into

Dm,t(wn), which represents the demand in country m in time period (t), under demand scenario

The multiperiod problem described in Chapter 3 introduces additional complexity because the

demand realized in period (t +1) is generally thought to depend on the demand realized in period

(t). These product adoption dynamics are explored in several diffusion models [69], which posit

that the probability of adoption by non-adopters in period (t + 1) is a function of the number of

previous adopters in periods {t, t - 1, ... , 1}. For example, if demand in period one is stochastic
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with three possible scenarios of low, medium, and high demand equal to {100, 200, 3001 units, then

the realization of the low scenario of 100 units of demand means that the demand scenarios for

period 2 would more likely have lower magnitude (e.g. {200, 300, 400} in year 2) than the demand

scenarios if the demand realized in period 1 was the high of 300 units (e.g. {400, 500, 600} in year

2).

This requires adding scenarios for each subsequent period of the model, which grows the sce-

nario tree exponentially. The total number of scenarios equals (nJTI) if there are n scenarios for

each period of the set of T periods. Adding scenarios increases the total number of variables in

the model. Specifically, if the deterministic model has M variables, then the stochastic optimiza-

tion model with S scenarios results in a total of ~ M * S variables. To maintain tractability, only

three scenarios are considered for the Calibra IDP supply chain network, reflecting the possibility

of realizing low, medium, or high levels of demand.

4.4 Multi-stage structure of stochastic optimization

In the stochastic optimization model, the decision-making process is broken into several decision-

making stages, with some decisions being made by the decision maker before the stochastic de-

mand is realized, and others after. Through this multi-stage approach, the decision maker deter-

mines the optimal set of decisions that can be made today in preparation for the uncertain demand

that arises in the future. For example, for a two-stage problem with only two time periods, the deci-

sion maker allocates capacity and selects strategic suppliers in the current period. These first stage

decisions are equivalent for all three scenarios. In the next period, the demand is realized from a

set of n possible scenarios, and production commences. The objective then becomes to minimize

the current period's capacity investment costs and the subsequent period's expected operating and

transportation costs. This is shown in Figure 4-1 for a set of three possible demand scenarios.

In the second stage, the amount of IDP produced depends on the scenario, but it cannot exceed

the capacity allocated by the first stage decisions. As such, the optimal first stage capacity alloca-

tion and supplier selection decisions that are common to all three scenarios ensure that production

volumes in the second stage can satisfy the realized demand for all three scenarios. This demon-

strates how the stochastic optimization model bolsters solution feasibility and protects the decision

maker from demand uncertainty.

As we expand the multi-stage process into additional stages, we see that a common pattern

emerges. New demand information is revealed at the beginning of each stage. Production quan-

tities are then determined through the flow decision variables Yo,d,r,t where o represents an origin

facility, d represents a destination facility or demand country, and r represents the transportation

mode at year t. Only outcomes of the current stage and previous stages are known. We can ad-
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Figure 4-1: In the two stage decision-making process, decisions are made in period zero (the first

stage). In this example, three demand scenarios could be realized in period one (the second stage).

The probability of realizing each scenario {wl, w2, w3} is {Pl,P2,P31 respectively, where p1 + P2+ p3 =

1.

First Stage Second Stage

dress this more concretely by assuming for simplicity that an assembly plant j produces the IDP

that flows to a sterilizer k, satisfying demand at country nodes m in year t. The notation of the

flow and facility/supplier selection variables is modified in a similar way to the demand parame-

ter described earlier, with x(wn) representing decision variable x under demand scenario Wn. The

sequence of demand realizations and decisions is shown in Table 4.1.

4.5 Incorporating multiple periods into a two-stage process

In Section 4.3, we limited the number of demand scenarios to three in order to maintain model

tractability. As such, instead of constructing T stages and exponentially growing the scenario tree,

the stochastic model comprises only two stages and T periods. Period T = 0 coincides with the first

stage, and periods T = {1, 2,... ,7} coincide with the second decision-making stage. This implies

that once we branch into one of the three demand scenarios in period 1, the demand that follows

in subsequent periods is deterministic. This is shown in Figure 4-2.

The shape of the three demand scenarios appears in Figure 4-3. The average curve will be

used for the deterministic model implementation in Chapter 5. These scenarios reinforce the idea

that once one scenario is realized in period 1, the demand in subsequent periods is known with

complete certainty (it is deterministic). The shape of the aggregate demand curves mirrors that

seen in S-shaped product adoption curves, with the low scenario showing early maturity in years

6 and 7, the medium scenario emphasizing continued growth, and the high scenario representing

a very successful product.
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Table 4.1: The sequence of production and capacity allocation decisions with respect to the timing
of the demand. For simplicity, the aggregate demand Dt is considered instead of the country-level
demand, Dm,t.

Year 0 1. Decide on manufacturing capacity Cj,p,o, as well as facility and supplier
selection Xj,0,Xk,0,XI,0, and xc,i,o

Year 1 2. Realize year 1 aggregate demand, D1(o,)

3. Produce Yj,k,r,1 (W) product to satisfy demand

4. Left-over inventory at DC = I,,1 (o)

5. Decide on capacity C,,,1 (On)

Year 2 6. Realize year 2 aggregate demand, D 2 (wn)

7. Produce Yj,k,r,2(Wn) product

8. Satisfy demand with new product and left-over inventory from Year 1

= Yj,k,r,2(Wn) + II,1(wn)

9. Left-over inventory at DC = I,2(Wn)

10. Decide on capacity Cj,p,2 (vn)

4.6 Formulating the two-stage model

We now formulate the two-stage, multi-period stochastic linear optimization model with three

demand scenarios. For three demand scenarios, our set of scenarios, f = {wi, w2 , w3 }. The proba-

bility of each scenario is equal to P1, P2, P3, respectively. To provide a more compact representation

of the decision variables in time t, we use the vector of decisions:

Xt = { Cj,p,t, Zlj,p,t, Z2j,p,t, xo,t, Z1o,t, Z20 ,t, Yo,d,r,t ilni,t, II, } (4.1)

To maintain concision, the variables xo,t and yo,d,r,t are used to represent all possible facility or

partnership decisions and flow decisions in period (t). The objective function becomes a function

of our decision variables and the realized demand, f(Xt, Dt(w)), similar to the objective function

shown in 3.19. For the current period, (t), the objective function costs reflect the production, in-

ventory, transportation, and capacity decisions of that period. These current period decisions are

constrained by the capacity, supplier, and inventory decisions made in the prior period, (t - 1), as

well as the constraints of the current period (t). This dependency appears in the constraints of the

optimization model below. Once again, for concision, the constraints are grouped into a matrix,

At, with m columns equal to the number of variables in Xt, and ii rows equal to the number of
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Figure 4-2: In the two stage, multi-period decision-making process, decisions are made in period
zero (the first stage). Three possible demand scenarios are possible in period one (the second stage),
with the demands in subsequent periods depending on the Period 1 scenario.

First Stage Second Stage
Period 0: Period 1 Period 2 Period 3

P A)3  (A) W
P2

Figure 4-3: Low, medium, and high aggregate demand scenarios for Calibra IDP

1 2 3 4
Time (Years)

5 6 7

constraints. The right-hand side of the constraints is represented by a vector of parameter values,

Bt, representing the flow. The objective function can then be represented as the expected value of

the costs under different scenarios:

Notation

Sets

0 Set of demand scenarios wn, for n E {1, 2, 3}

Parameters

pn Probability of realizing demand scenario wn

Dt(w,) Aggregate demand in year t under demand scenario On
Bt Vector representing right-hand side of constraints
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Variables

Xt Vector of decision variables in time period t

Mathematical Formulation

Objective:

minimize f (Xo) + p,[f(X 1 , D1(wi)) +f(X 2 , D2 (wl))+... + f(X 7, D7 (wi))] +...

+ P2 [f(Xi, Di(w2)) +f(X2 , D2 (w2))+... + f(X 7 , D7(w2 ))] +...

+ P3 [f(X1 , D1 (W3)) + f(X 2 , D2 (w 3 )) + ... + f(X 7 , D7 (w 3 ))]

subject to

A 0 Xo

-BoXo(D 1 (w)) + A 1Xi(Di(w))

-B 1 X1 (D2 (w)) + A 2X2(D2(w))

-B 6X 6(D7 (w)) + A 7X 7(D 7(w))

Xt(Dt(w))

< B0

< B1(D1(w)); Vw (E 0

< B2(D2 (w)); VW E 0)

< B7(D7(w)); Vw G E)

> 0; Vt e T, o E f)
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Chapter 5

Network Optimization Model Results

5.1 Overview

After introducing the deterministic supply chain network optimization model in Chapter 3 and the

stochastic optimization model in Chapter 4, Chapter 5 presents the numerical results from solving

the two supply chain network optimization models. The models comprise tens of thousands of

variables and tens to hundreds of thousands of constraints and can be solved to optimality within

a reasonable amount of time. We demonstrate the value of the deterministic model by comparing its

objective value to that of a managerial heuristic. Significant cost savings on the orders of hundreds

of millions of dollars can be attained. Similarly, numerical results are presented for the stochastic

model to demonstrate how the decision maker is protected from demand uncertainty.

5.2 Model Tractability

5.2.1 Size of the network problem

One of the characteristics that determines the ability to algorithmically solve a problem in an ac-

ceptable amount of time is the size of the mixed integer optimization model. The mixed integer

optimization models were implemented using the Julia for Mathematical Programming (JuMP)

language [70], and solved using the commercial solver Gurobi (version 6.5.0) [71].

Deterministic Problem

The deterministic demand model includes 19,952 variables (10,512 binary variables) and 18,385 lin-

ear constraints for the caverage transportation lead time problem. The max problem features the

same number of variables, but includes 400,708 linear constraints. This problem includes a sig-

nificantly greater number of constraints as it ensures that all possible combinations of continuous
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paths connecting upstream injection molding suppliers to downstream demand nodes have lead

time less than max.

Stochastic Problem

The stochastic optimization model with three demand scenarios includes 59,856 variables (31,536

binary variables) and 52,787 linear constraints for the caverage transportation lead time problem.

Table 5.1 below compares the variable and constraint counts for the deterministic and stochastic

models.

Table 5.1: Number of total variables, binary variables, and linear constraints associated with each
of the models.

Model Total Variables Binary Variables Linear Constraints

Deterministic cave 19,952 10,512 18,385
Deterministic Cmax 19,952 10,512 400,708
Stochastic cave 59,856 31,536 52,787

5.2.2 Solution Speed

After comparing the sizes of the deterministic and stochastic models, this section explores the speed

at which these models can be solved. Generally, the decision maker may find models that require

too much time to solve to be unacceptable if the frequency at which decisions need to be made

surpasses the model's decision throughput (the system's bandwidth). Given that this is a strate-

gic network optimization model, decisions need to be made annually or at most, bi-annually, so

the speed of the solution becomes less critical. Nevertheless, it is important to determine if these

models can be solved within a reasonable amount of computation time, and if the solver solution

strategy can be tuned to improve the computation time.

All of the computations were conducted on a desktop computer with an Intel Core i7-3970X

CPU (6-core, 12-threads, 64 GB RAM). All threads were used during computation to help reduce

the solution time. The mixed integer optimization (MIO) gap is used as a solution speed metric.

The MIO gap indicates the difference in the objective value of the best integer-valued solution - the

upper bound - and the objective value of all current leaf nodes - the lower or best bound resulting

from the continuous relaxation of the mixed-integer problem. The MIO Gap is indicative of the

quality of the current integer solution, or how far away it is from the optimum. An MIO Gap of

~ 0 (default value of 0.01% in most commercial solvers) indicates that the problem has been solved

to optimality.

In real world problems with estimation errors in the data, such levels of precision may not be

necessary, and the termination criteria - the relative MIO Gap at which the optimization stops -

may be adjusted. Interestingly, for a strategic decision-making process, estimation errors in the
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parameters will undoubtedly exist, which may drive the modeler to terminate early if the model is

large and slow to solve. On the other hand, the infrequency of decisions at the strategic level affords

the decision maker days or weeks to solve the problem, which minimizes the need to terminate

early.

Figure 5-1: Mixed Integer Optimization (MIO) Gap for the Deterministic cave transportation lead
time constraint problem. Providing the model with initial condition constraints significantly re-
duces the solution time (top panel). If initial conditions are not provided, the solution time in-
creases, but parameter tuning may significantly reduce the solution time (in this case by almost
1/2) as seen in the bottom panel.
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Figure 5-1 demonstrates that the deterministic eave problem can be solved in approximately 15

seconds for a model with initial conditions, or in 1500-3000 seconds (25-50 minutes) for a problem

with no initial conditions. The initial conditions refer to the decisions already made by the supply

chain decision makers at J&J, as mentioned in Section 3.10. These decisions appear as constraints

that set the capacity or facility options that are not selected by the decision maker to zero for the

initial two periods of the model. Adding these constraints accelerates the solution time as it forces

the model to build a supply chain network around those decisions that have already been made,

without expending the time to determine the optimal starting point. We present the solution time

for the scenario with no initial conditions to demonstrate how this network model could generalize

to other strategic network optimization projects and still solve in a reasonable time.

The Gurobi solver parameters play an important role in determining how fast a mixed integer

optimization problem can be solved. Tuning of these parameters resulted in significant improve-

ments in solution time - almost halving the time - for the model without initial conditions (Figure

5-1, lower panel). The most difficult challenge was in having a lower bound that was moving very

slowly. Focusing the MIPFocus parameter, which controls the high-level solution strategy, on mov-

ing the bound yielded improvements. Another significant solution time improvement came from

shutting off cuts by setting the Cuts parameter to 0. Combining a focus on finding feasible solutions

quickly and reducing cuts also resulted in performance improvements.

In the case of the deterministic emnax transportation lead time problem, Gurobi parameter tuning

did not significantly reduce the solution time. The MIO Gap and solution time are shown in Figure

5-2.

Figure 5-2: Mixed Integer Optimization (MIO) Gap for the Deterministic Cmax transportation lead
time constraint problem. Providing the model with initial condition constraints significantly re-
duces the solution time (top panel).
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The solution time for the stochastic optimization problem exceeds that of the deterministic prob-

lem. The stochastic problem has approximately three times the number of variables and constraints.

The model with initial conditions can be solved to an MIO gap of 0.01% within 340 seconds (ap-

proximately 6 minutes). The model without initial conditions requires approximately 17 hours
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for termination at an MIO gap of 1.6%. This suggested that there may be room for improvement

through solver parameter tuning in the case of the stochastic optimization model, which tends to

feature a slowly moving bound. By varying the solver parameters (primarily by setting the Cuts

parameter to zero), the model without initial conditions requires approximately 70 minutes to ter-

minate at an MIO gap of 1.5%, a significant improvement over the original computation time. With

tuning, the computation time is approximately 10 hours for termination at an MIO gap of 0.5%.

The MIO Gap result for the stochastic optimization model is shown in Figure 5-3.

Figure 5-3: Mixed Integer Optimization (MIO) Gap for the Stochastic Cave transportation lead time
constraint problem. Providing the model with initial condition constraints significantly reduces the
solution time (panel A). Providing no initial solution results in increased solution time (panel B),
while parameter tuning significantly reduces the solution time (panels C and D).
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5.3 Comparing the Deterministic model to a managerial heuristic

To understand the value of the deterministic optimization model, the model's decision outputs are

compared to a heuristic decision-making technique employed by managers. Heuristics provide

efficient decision-making rules for finding satisfactory solutions to large, complex problems such

as the design of a global supply chain network. As discussed in Section 1.2, managers may use

their extensive supply chain experience to guide the network design, but in doing so they may give
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considerably more weight to one dimension of the problem at the expense of others. The value of

the deterministic model lies in understanding the interdependencies between the strategic decision

levers and their impact on cost and lead time.

We compare the cost and lead time outputs of the model to the cost and lead times of the man-

agerial decision-making heuristic. The heuristic represents decisions that the supply chain planner

would have made without access to the strategic network optimization model. The heuristic is

outlined in the section below.

5.3.1 Managerial Heuristic

1. Each distribution center is assigned to a set of countries. As such, a country demand node can

only receive the finished good from one distribution center. The rationale for this heuristic

is that it compartmentalizes each geographic region, placing fulfillment responsibility on one

DC and simplifying communication between logistics and the country business managers.

This approach also reduces the number of transportation 'lanes' that need to be set up by the

logistics managers on the tactical and operational level.

2. Assembly operations are concentrated in one location. The rationale for this heuristic is

that concentrating assembly operations in one location allows the organization to leverage

economies of scale and spread the fixed facility costs and overhead over a larger production

output.

3. The transportation modes between different layers in the supply chain are pre-determined.

This heuristic perpetuates the decisions made in the early phase of the supply chain network

design, where the network can afford to ship small volumes of components using the high

cost transport mode to expedite experimentation in product design and manufacturing. This

high cost transportation mode of shipping is extended to the first four years of the network

strategy as an attempt by managers to ensure that customers receive product in a timely

manner.

We focus first on the difference in the objective value between the heuristic and the determin-

istic model. To make the comparison a fair one, we ensure that the deterministic model's average

transportation lead time approximately matches that obtained by the heuristic. The next question

is whether we add the supply chain's initial conditions, which were mentioned in Section 3.10, as

constraints to the deterministic model. This includes the location of the low volume and medium

volume assembly lines, as well as the selection of the sterilizer and distribution center facilities.

These analysis scenarios are presented below:
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5.3.2 Scenarios for Analysis

" Scenario 1: All three managerial heuristics are respected and the deterministic model is run

without adding the supply chain's initial conditions.

" Scenario 2: Only the first two managerial heuristics are respected: 1) the assignment of de-

mand nodes to DCs, and 2) the concentration of assembly in only one location. Strict e-

constraints are enforced to ensure very short transportation lead time to safeguard the 'spirit'

of the third heuristic. The deterministic model is run without adding initial conditions.

* Scenario 3: Only the first two managerial heuristics are respected, but the deterministic model

is run with the initial conditions.

" Scenario 4: Assume lower transportation cost parameters per mile for both the low cost and

high cost modes (deeply discounted/highly negotiated costs). Assume only the first two

managerial heuristics are respected, and that the deterministic model is run without adding

initial conditions.

" Scenario 5: Assume lower transportation cost parameters per mile for both the low cost and

high cost modes (deeply discounted/highly negotiated costs). Assume only the first two

managerial heuristics are respected, and that the deterministic model is run with initial con-

ditions.

Table 5.2: Percent difference for deterministic model versus the heuristic decision-making process.

Here, average lead time 1 equals eave,1, while average lead time 2 equals Cave,2.

Costs Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Average Lead Time 1 (hours) +24 +24 +24 +24 +24

Average Lead Time 2 (hours) +12 +12 +12 +12 +12

Objective Value Difference -27% -25% -19% -18% -13%

Capital Investment -6% +6% +7% -5% -5%

Facility Operating Costs +53% +53% +94% +41% +81%

Transport Cost Low Mode +138% +40% +34% +43% +34%

Transport Cost High Mode -73% -71% -56% -68% -52%

Transport Cost DC to De- +48% -1% +0% +0% +4%

mand Low Mode

Transport Cost DC to De- +24% +64% +62% +73% +51%

mand High Mode_
Assembly Line Startup Costs +3% +3% +5% -1% -1%

Assembly Line Steady State +11% +11% +19% -3% -3%

Costs
Unit Costs Material -1% -1% -1% +1% +1%
Unit Costs Sterilization -11% -11% -9% -8% -7%

Holding Costs -17% -17% -42% +49% +52%

Table 5.2 outlines the difference in the objective value between the deterministic model and the

managerial heuristic for the five scenarios. A negative objective value difference indicates that the

63



deterministic model costs less than the managerial heuristic. Optimization through the determinis-

tic model results in significant cost savings, on the order of hundreds of millions in present-value

dollars. The relative cost improvement ranges from 27% for Scenario 1, where all three managerial

heuristics are respected and the deterministic model is free to set the initial conditions, to 19% in

Scenario 3, which assumes that only the first two heuristics are respected and that the determin-

istic model is constrained by the initial conditions. Aggressively reducing the transportation cost

parameters (assuming negotiated rates) reduces the magnitude of the relative difference, but still

reduces the total supply chain cost by 13 to 18%, which represents tens to hundreds of millions in

present-value dollars.

The deterministic model's facility location and transportation strategy is markedly different

from the manager's heuristic. Table 5.2 demonstrates how the deterministic model elects to pay

about 50%-90% more in operating costs in order to run additional facilities that are closer to the

demand. In doing so, the model dramatically reduces the transportation costs. Interestingly, the

model in Scenario 3 has significantly higher operating costs because it is constrained by the initial

conditions for the low volume and medium volume assembly lines. It elects to add the two addi-

tional high volume lines in two separate facilities located on two different continents in order to

increase proximity to the demand. Furthermore, the deterministic model assigns country demand

nodes to distribution centers that lie outside the country's region in order to balance the trans-

portation costs and lead times over all countries in the model. Note that by selecting assembly and

distribution facilities that are closer to the demand, the model is able to meet the aggressive cave-

constraint by spending more money shipping through the high cost transportation mode from the

DCs to the customers (represented by Transport Cost DC to Demand High Mode), because these

usually constitute shorter distances compared to the long distances connecting a single global as-

sembly site to the downstream sterilizers and DCs.

This idea is further emphasized in Figure 5-4, where a greater percentage of the deterministic

model's cost lies in facility operating costs, while a substantial portion of the managerial heuris-

tic cost lies in the transportation costs. This exemplifies how the decision maker opting to reduce

supply chain cost by leveraging economies of scale using a global manufacturing facility may in-

advertently increase costs by emphasizing only one strategic supply chain cost driver or lever.

5.4 Effect of transportation lead time on supply chain costs

After comparing the results of the deterministic model to those of the managerial heuristic, we start

to see that the model affords the decision maker an opportunity to evaluate the cost and impact

of reducing the average or maximum transportation lead time constraints. Meeting a customer's

transportation lead time requirements is important, but at what point does the transportation lead
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Figure 5-4: Distribution of costs in the deterministic model compared to the managerial heuristic in
Scenario 2. The deterministic model elects to operate multiple regional assembly facilities, which
increases the fraction of assembly operating cost, but substantially decreases the transportation cost
relative to the heuristic.
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time requirement start having a significant impact on the objective function value, and what is the

magnitude of that impact? Furthermore, how does the transportation lead time constraint impact

the facility site selection?

The impact of reducing the transportation lead time on the objective value is shown in Figure

5-5. We notice that the objective value does not change significantly until ave,1 is set to 120 hours or

lower, meaning that the average time transporting components, assembled devices, and sterilized

kits should not exceed 120 hours. This results in a 4-6% increase in the objective function value,

depending on where the customers are required to be from the distribution centers (cave,2).

In other data, we show that the transportation cost for the 24 hours line does not actually in-

crease when the cae,1 falls to 120 hours. The model opts to 1) reroute flows, 2) alter and re-balance

the choice of transportation modes, or 3) adjusts to the lead time requirement by opening addi-

tional facilities. This is part of the flexibility of the model that can be leveraged extensively by the

supply chain decision maker.

65

- - w



Figure 5-5: Impact of transportation lead time Cavc,1 reduction in the supply chain network on the
objective function value given constraints on the proximity of DCs to customers, Cave,2 = { 24,48,72
hours).
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5.5 Value of the Stochastic Model

After demonstrating the value of the deterministic model, we now focus on how the stochastic

model protects the decision maker from infeasibility and demand uncertainty by comparing the

performance of the stochastic model's stage one decisions to those of the deterministic model under

a series of different test scenarios.

A set of ii test scenarios is generated by multiplying the average demand forecast by a uniformly

distributed random variable, Xrand ~ U(0.7, 1.5):

Dscen,n = {Demandt=1,2 . 7 * Xrand} (5.1)

We set (n = 30). Equation 5.1 implies that the demand scenario generated could have demand

that is 30% lower to 50% higher than the average demand shown in Figure 4-3. We set the first stage

outputs of the deterministic and stochastic models as the decisions for the first period in the test.

The subsequent periods are then solved, assuming that each demand test scenario is deterministic.

As discussed in Section 4.2, under certain test scenarios, the deterministic solution may become

infeasible. The allocated capacity may be insufficient to satisfy the demand, or the transportation

lead times may not satisfy the average lead time constraint.

One approach is to tabulate the scenarios in which infeasibility occurs. Alternatively, we could

allow the model to recover from the infeasibility through the addition of a recourse variable. This

recourse variable represents the organization's ability to access patches from an external source

- a contract manufacturer for example - through which the supply chain network satisfies the
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realized demand. 1 The cost of these recourse patches is greater, however, than the per unit cost, c,

of patches attained through the regular manufacturing operations. This higher cost equals c(1 + 6),

where 6 represents the added fractional expense (e.g. 20%-60% or more) per patch from sourcing

through the contract manufacturer. Furthermore, these patches can be shipped through the high

cost transportation mode from any DC in order to meet the lead time constraint. In the real world

of the Calibra supply chain, there will be no contract manufacturer that will provide this capability.

This is a feature that we add to the model to provide the decision-maker with insight into the value

of the stochastic model.

An uncapacitated recourse variable REC, in the set of non-negative real numbers, is then added

to ensure that we satisfy demand for period two:

E Yi,m,rt + E RECi,m,rt > Dm,t ; V m c M, t = 2 (5.2)
Ir Ir

RECr,,m,t > 0 ; V r E R,Vl L,V m e M,t = 2. (5.3)

5.5.1 Results

We now compare the two models' first and second period costs for the thirty test scenarios, assum-

ing that the supply chain decision maker implements either the deterministic or stochastic model's

first stage decisions. As discussed in Section 4.4, the first stage decisions impact the suppliers, as-

sembly facility locations, assembly facility capacities, sterilizers, and distribution centers for the

second period. Since only the first period decisions are fixed, the model can solve for the optimal

decisions in subsequent periods.

We see in Figure 5-6 and in Table 5.3 that the stochastic model's average objective function value

for the first two periods is less than the deterministic model's. Further, the coefficient of variation

- a measure of the dispersion of the data - is also smaller.

Table 5.3: Mean and coefficient of variation of second period objective function value for the deter-
ministic and stochastic model first period decisions.

Model Mean Coefficient of Variation
Deterministic 1 1
Stochastic 0.97 0.98

We observe that the stochastic model protects the decision maker from demand uncertainty by

investing in additional "buffer" capacity in the first period. This comes at an added cost in capital

investment and labor. This cost represents the price that the supply chain decision maker pays

in order to maximize the chances of satisfying the realized demand in the future. In test scenarios

where the realized demand is lower than the average demand, or slightly higher (up to 20% higher),

'An alternative way to think about the recourse variable is to see it as a penalty incurred for not satisfying demand,
similar to the underage cost seen in a two-stage newsvendor model
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Figure 5-6: Combined first and second period costs for thirty test scenarios assuming implemen-
tation of the first stage deterministic or stochastic decisions. The deterministic model's first period
decisions result in a higher average cost and greater standard deviation and coefficient of variation
than the stochastic model's first period decisions.}.
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implementing the stochastic solution means that we have essentially purchased excess capacity,

and the combined first and second period costs of the stochastic model's decisions exceed that of

the deterministic model. This difference in capital investment cost can be seen in the gap between

the stochastic and deterministic lines in the left panel of Figure 5-7 for Xrand less than 1.2.

On the other hand, when the realized demand is more than 20% larger than the average forecast,

implementing the deterministic model's first stage decisions results in infeasibility: we don't have

the necessary capacity in period two to satisfy demand. To recover from infeasibility, the model has

recourse in the second period to the more expensive patches. Purchasing these patches increases

the second period cost, especially as the realized demand increases from Xrand = 1.3 to 1.5, as

shown in Figure 5-7. The total cost of the supply chain over all periods is similarly lower for the

stochastic decision implementation when Xrand > 1.2 (data not shown).

The results of this section support the investment in additional capacity. Period two in this

multi-period model is a critical one for the dynamics of IDP adoption. Lost sales resulting from

inadequate capacity during this period could have a detrimental long-term impact on the ramp-up

of user adoption if we assume adoption in later periods is a function of pre-existing adopters.
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Figure 5-7: Combined first and second period costs as a function of realized demand, assuming
implementation of the deterministic or stochastic models' decisions for the first period. The deter-
ministic model's decisions cost less when demand is near or lower than the average forecast (when
Xrand lies between 0.7 and 1.2). Obtaining expensive recourse patches to recover from infeasibility
means that the deterministic model's decisions become more expensive as the realized demand
grows. The jump from Xrand = 0.8 to 0.9 is due to the investment in an additional assembly line in
period two in preparation for the demand in period three. This investment is not necessary when
Xrand < 0.8 since the pre-existing capacity is sufficient.
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Chapter 6

Conclusions

6.1 Overview

This thesis utilized a mathematical optimization model to evaluate the trade-offs in strategic sup-

ply chain decision-making for a new product introduction in a real-world setting. The optimization

model focused on strategic decisions related to the location and capacities of various supply chain

facilities and partners, transportation costs, and strategic inventory required to satisfy global de-

mand. The model significantly reduces the cost of the multi-period global supply chain network

compared to a managerial heuristic decision-making process. Further, the stochastic optimization

model protects the decision-maker against infeasibility - or the inability to satisfy demand within

the specified transportation lead time - due to demand uncertainty. This section highlights recom-

mendations and opportunities for implementing and developing modeling capabilities at J&J.

6.2 Recommendations

1. Deployment of optimization models

After demonstrating the value of the deterministic and stochastic optimization models, the

next step is to deploy these modeling tools in a format that is easy to access and use by Cali-

bra's supply chain decision makers. This would include creating an interface for parameter,

constraint, or variable (e.g. demand nodes) modification in the model so that managers can

incorporate new assumptions or developments.

2. Developing a cross-functional modeling culture

The introduction of optimization models could have a significant impact on organizational

decision-making processes. Currently, qualitative and semi-quantitative strategic decision-

making tools are used by managers to reduce the global supply chain network problem into
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smaller, tractable subsets focused on capacity allocation, supplier selection, facility location,

transportation, or strategic inventory. Managerial heuristics are then used to reduce the solu-

tion space for each problem subset (e.g. assembly facility location) to two or three feasible sce-

narios that are analyzed quantitatively. On the other hand, the model provides a more holis-

tic view of the end-to-end supply chain, selecting an optimal solution that conforms to the

decision maker's constraints from thousands of different supply chain configurations. The

transition from reliance on managerial heuristics to accepting the model's prescriptive out-

put has a significant impact on the organization's decision-making culture. As such, building

optimization models requires tight cooperation between functional decision-makers, since

cross-functional acceptance of the model's output presupposes cross-functional acceptance

of the model's inputs and assumptions.

The utilization of optimization models also impacts the way that data is collected and shared

across the organization. Data on supplier selection, assembly facility location, or transporta-

tion resides in disparate parts of the organization under different functional managers. The

success of this project depended heavily on the functions' ability to share data and insights.

One recommendation is to streamline data collection and institute new data management

practices. For data collection, it becomes imperative to enable faster data sharing with the

modeler. This in turn depends on the data management practices. Having a central depos-

itory of data organized by a data manager that constantly revises the necessary permissions

helps reduce data collection, model implementation, and decision-making lead times. The

data manager has the responsibility of balancing between safeguarding the privacy needs

of critical projects in the planning stage, and new projects that desire access to information

from projects that have already been considered or implemented. This enables an incremental

transformation into a data-driven organization.

3. Cross-franchise learning

J&J is a very large global company with incredibly sophisticated capabilities in medical device

design, manufacturing and distribution. Since the company employs a decentralized organi-

zational model, business units within J&J have the autonomy to make their own business de-

cisions. This autonomy sometimes results in locking important capabilities or best practices

internally within the business units. Future supply chain projects could benefit from infor-

mation sharing across the business units. Managers from other business units may join the

cross-functional supply chain strategy teams as new product introduction consultants. This

may help in developing synergies through the shared use of supply chain assets, processes,

and capabilities.

4. Strategy implementation
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Donald Sull at the MIT Sloan School of Management emphasizes that a great strategy is of

little use without proper execution [72]. The supply chain network strategy with its resource-

based focus is a critical strategic dimension of the overall supply chain strategy, which also

includes organizational processes and capabilities. We recommend that a steering team com-

prising supply chain leadership maintain year-to-year oversight over the supply chain strat-

egy, revise the strategy when necessary by incorporating new information, and create project

teams led by managers from the different supply chain functions to develop the more detailed

tactical or operational implementation plans.

5. Multi-product model improvement

Since the current model focuses on one product, J&J may benefit from expanding the model in

future iterations to look at the trade-offs involved in implementing global supply chain net-

works for multiple SKUs within the Calibra organization, or multiple products from different

business units within consumer medical devices.
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Appendix A

Tables
I

Table A.1: The four major categories of insulin. The Calibra IDP is labeled for use with Novolog

and Humalog

Insulin Name Duration Brand Onset of Action Peak

Insulin glargine Long-Acting Lantus 1.5 hrs Flat (Max at 5
hrs)

Insulin detemir Long-Acting Levemir 1 hr Flat (Max at 5
hrs)

Insulin NPH Intermediate-Acting NPH (N) 2-4 hrs 4-12 hrs

Regular Human Insulin Short-Acting Humulin R,Novolin 30 min 2-3 hrs

R

Insulin lyspro (analog) Rapid-Acting Humalog 15 min 1-2 hrs

Insulin aspart (analog) Rapid-Acting Novolog 15 min 1-2 hrs

Insulin glulisine (analog) Rapid-Acting Apidra 15 min 1-2 hrs

Table A.2: The five major process areas of the SCOR model [3] [4]

Plan The matching of aggregate demand and supply in order to develop optimal process plans for sourc-

ing, manufacturing, and delivery.

Source The procurement of goods or services from external vendors to meet demand.

Make The manufacturing of the finished good. In the case of Calibra, this involves the assembly of various

fabricated components procured from suppliers. This involves management of the production

facilities.
Deliver Distributing the finished goods to customers. This includes order management, warehousing, and

transportation management.

Return Return of defective or used product as well as product packaging. This is becomng more critical

with the rise of sustainable supply chains.

Table A.3: Cost and speed assumptions for different modes of transportation. FT refers to full

truckload.

Mode Cost per ton mile Cost per pallet per mile Average Speed (mph)

Truck $0.08 (FT) - $0.37 $0.2-$0.4 35

Air $0.6 - $6.4 $0.1-$1.3 450

Ocean $0.02 $0.044 - $0.1 12.65
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Table A.4: Set of supplier options

Component Type Option Country
1 Injection Molded Parts A US
1 Injection Molded Parts B US
1 Injection Molded Parts C US
2 Rubber Parts A US
2 Rubber Parts B US
3 Plastic Film A Belgium
4 Rubber Parts A US
4 Rubber Parts B US
4 Rubber Parts C US

Table A.5: Set of assembly options

Option State Country Internal/External
A Puerto Rico US Internal
B - UK Internal
C - Ireland Internal
D - Singapore Internal
E Georgia US External
F - Germany External
G Illinois US External
H - Mexico External
I - Romania External

J Arizona US External
K Michigan US External
L - Ireland External
M New York US External
N - Ireland External
0 Massachusetts US External

Table A.6: Set of global sterilizer options

Option State Country Internal/External
A New Jersey US External
B North Carolina US External
C New Mexico US External
D Texas US External
E - Ireland External
F - Netherlands External
G - Belgium External
H - China External
I - China External

J Puero Rico US Internal
K - UK Internal
L - Ireland Internal
M - Singapore Internal

Table A.7: Set of global distribution center options

Option City State Country Internal/External
A Louisville Kentucky US Internal
B Franklin New Jersey US Internal
C Beerse - Belgium Internal
D Singapore - Singapore Internal
E Shanghai - China Internal

Table A.8: Capital investment, fixed operating costs, and variable costs associated with suppliers

Capital Investment Fixed Cost Variable Cost Decision Variables Im- Value
pacted
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Establish relationship Zlot R_,it
Maintain relationship Z2c,i,t rc,i,

Component price Yc,ij,r,t Pc,i,t
per unit
Transport cost per YC,i,j,t fc,ii,r,,
unit



Table A.9: Capital investment, fixed operating costs, and variable costs associated with assembly

facilities

Capital Investment Fixed Cost Variable Cost Decision Variables Im-
pacted

Value

Assembly line capital in- Z1;,,,t Aj,,,
vestment
Incremental capacity c_,_,, k_,_,

Facility overhead cost X-, F-
Line scale-up operating cost Z1__,_,_ SCi, ,
Line steady-state operating Z2,p, ssj,5,,
cost

Transport cost per Yj,k,rt fjk,rt
unit

Table A.10: Capital investment, fixed operating costs, and variable costs associated with sterilizers

Capital Investment Fixed Cost Variable Cost Decision Variables Im-
pacted

Value

Establish relationship Zik,t Rk,t

Maintain relationship Z2k rk,
Sterilization price Yc,ij,r,i Pk,t
per unit
Transport cost per Yk,I,rt fk,1,r1
unit I_ I

Table A.11: Capital investment, fixed operating costs, and variable costs associated with distribu-

tion centers

Capital Investment Fixed Cost Variable Cost Decision Variables Im-
pacted
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Establish relationship Z1,, R ,
Maintain relationship Z21,, rl,

Pick and pack price Yl,r,, Pbt
per unit
Transport cost per yl,nz71,t fl,mz,r,t
unit

Value
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Appendix B

Network Optimization Code

## Supply chain strategy mixed integer optimization jodel

## Samer Haidar

using JuMP, AmplNLWriter

using DataArrays, DataFrames

using Formatting

using Gurobi

# Define the model

n = Model(solver=GurobiSolver(LogFile = "Log-S(Int(now()))" ,Cuts=0,Threads 12, MIPGap =

0.001))

#################################### Fiun ct ions ###############################################

# Inflatiin rate function

function repl(data, numperiods, inflation)

arrI = repeat([ inflation], outer=[1,numperiodsl);

arr2 = reshape ( collect (0:numperiods 1) , 1, numperiods);

temp = cell(1,1, numperiods)

templ,1 ,:] = arri .^ arr2;

matrix = repeat(temp[1 ,1,:] , outer = [size (data)[1],size(data) [2] ,1]);

return output = repeat(convert(Array,data) , outer = 1 ,1,numperiods]) .*rmatrix;

end

function rep2s(data, numperiods, inflation)

arrI = repeat([ inflation], outer=[1,numperiodsl)

arr2 = reshape ( c olle c t (0: numperiods 1) , 1, numperiods);

matrix = repeat(convert(Array , data) ,outer=[1 ,periods J);

temp = repeat(arrl .^ arr2, outer = [size(matrix)[11,1])

return output = repeat( convert(Array ,data) ,outer=[1,periods ]).*temp;

end

#Discount rate function

function discount(size , discrate , numperiods)
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numdims = length(size)

arrI = repeat ([discrate], outer=[1,numperiods I)

arr2 = reshape(collect (O:numperiods 1) , 1, numperiods)

i f (numdims == 2)

temp = cell (1, numperiods)

temp[1, :] = arri .^ arr2;

return output = repeat(temp[1,:], outer = [size[1],1])

end

i f (numdims == 3)

temp = cell (1,1, numperiods)

temp[1 ,1 ,:] = arri .A arr2;

return output = repeat(temp[1,1,:], outer = [size [1], size [2,1])

end

i f (numdims == 4)

temp = cell (1 1,1 ,numperiods)

temp[1,1,1,:] = arri .A arr2;

return output = repeat (temp ,1 ,1 ,:] , outer = [size [1] ,size [2], size [3] ,1)

end

end

#Timing function

function time (flow, timedata , nperiods , infrate , mode)

return output = repl(timedata , nperiods , infrate).* squeeze (flow [mode,: ,: ,:] ,1)

end

#Unit Cost function

function unitcosts (flow,price ,numperiods, discrate)

totsum = 0;
for( t=1:numperiods)
for( i=1: size (flow) [2])

temp = sum(flow[:,i,:, t]*price[i, t])/discrateA(t 1);

totsum = totsum + temp;

end

end

return output = totsum;

end

# Transport Cost function (low mode)

function tcostl (flow ,cost ,infrate ,discount)

totsum = 0;

numperiods = size(flow)[4];

f o r ( t =1:numperiods)

for( i=1: size (flow) [2])

for (j =1: size (flow) [3])

temp = sum(flow [1,i , j , t]* cost [i, j I*infrateA(t 1) )/discountA(t 1);

totsum = totsum + temp;

end

end

end

return output = totsum;

end

# Transport Cost function (high mode)
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function tcosth (flow , cost , infrate , discount)

totsum = 0;

numperiods = size(flow)[4];

f o r ( t =1:numperiods)

for (i=1: size (flow) [2])

for( j =1: size (flow) [3])

temp = sum(flow[2,i,j,t*cost[i,jI ninfrate^(t 1))/discountA(t 1);

totsum = totsum + temp;

end

end

end

return output = totsum;

end

################################### Data #####################################################

# Import cost data

df = readtable("geoloc5.csv");

## Suppliers

injmold = df[df[:SiteType] .== "InjMold", :j;

rubberi = df[df[:SiteTypel .== "Rubber", :j;

rubber2 = df[df[:SiteType] "Diaphragm",

film = df[df[:SiteType] .== "Film", :1;

## Assembly, sterilizer , distribution centers and demand

man df[df [:SiteType l *== "Man", :j;

ster = df[df[:SiteType] .== "Ster", :];

dist = df[df[:SiteType] .== "Dist", :;

demand = df[df[:SiteType] .== "Dem", :j;

infrate 1.04;

Discount = 1.1;

# Number of transport modes

nmodes = 2; # Either air or combination of ocean plus trucking

## Set of Demands

k = 1;

Dema = cell (1)

for(i = 1:length(names(demand)))

if (isequal(string(names(demand)[iI) [1:4] ,"Dema") == true)

if(k == 1)

Dema = names(demand)[i]

k = k+1

else

Dema = vcat(Dema, names(demand)[ i])

k = k+1

end

end

end

## Set of Capacities

r = 1;
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Cap = cell(1)

for(i = 1:length(names(man)))

if(isequal(string(names(man)[i1) [1:4] ,"Capa") == true)

if (r == 1)

Cap = names (man) [ i]

r = r+1

else

Cap = vcat(Cap, names(man)[i])

r = r+1

end

end

end

############### Facilities Parameters

# Number of facilities for each level of the supply chain

a= nrow(man); # manufacturing facilities

b= nrow(ster ); # sterilization facilities

c= nrow( dist ) # distribution sites

e = nrow(demand); # demand points

p = length(Cap); # size of assembly capacity set

inj = nrow(injmold); # injection molding suppliers

rl = nrow(rubberl); # rubber part 1 suppliers

r2 = nrow(rubber2); # rubber part 2 suppliers

f = nrow(film); # plastic film suppliers

# Periods in model

periods = length(Dema);

############# Cost of establishing relationship

Ra = rep2s(injmold [: ,:RCost] ,periods , infrate/Discount);

Rb = rep2s(rubberl[: ,: RCostIperiods , infrate/Discount)

Rc = rep2s(rubber2[: ,:RCost] ,periods, infrate/Discount);

Rd = rep2s(film [: ,:RCost],periods, infrate/Discount);

Rk = rep2s( ster [: ,: RCost],periods, infrate/Discount);

RI = rep2s( dist [: ,:RCost] ,periods, infrate/Discount);

############ Cost of maintaining relationship

ra = rep2s(injmold :,: rCost],periods ,infrate/Discount)

rb = rep2s(rubberl[: ,:rCost] ,periods, infrate/Discount);

rc = rep2s(rubber2 [:,:rCost],periods ,infrate/Discount)

rd = rep2s (film [: ,: rCost] ,periods , inf rate /Discount)

rk = rep2s ( ster [: ,: rCost ],periods , infrate /Discount)

rl = rep2s ( dist [: ,: rCost ],periods , infrate /Discount)

########### Manufacturing facility and line costs

Fj = rep2s(man[: ,:OpCost],periods,1/Discount); # man facility operating cost

# assembly line scale up cost

SCjp = rep1(man [: [:ScaleUpl ,: ScaleUp2 ,: ScaleUp3 ,: ScaleUp4 ,: ScaleUp5 ]] ,periods ,1.01 / Discount);

# assembly line steady state cost

SSjp = repl(man[: ,[:Steadyl ,: Steady2 ,: Steady3 ,: Steady4 ,: Steady5l] ,periods ,1.01/ Discount);

# Incremental capacity cost

############ Capital Investment Parameters
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CAPEX-assembly = rep1 (man[: [:Capexl ,:Capex2,:Capex3 :Capex4,:Capex5j] periods,1 / Discount);

CAPEX-ster = rep2s ( ster [: :Capexi],periods ,1/ Discount);

########## Variable Costs at Facilities ISuppliers

pa = rep2s(injmold [: UnitCost] ,periods ,0.95)

pb = rep2s(rubberl[: ,: UnitCost] ,periods ,0.95)

pc = rep2s(rubber2 [: UnitCost] periods ,0.95)

pd = rep2s(film [: UnitCost] ,periods ,0.95)

pk = rep2s( ster [: UnitCost] ,periods ,0.99)

pl = rep2s( dist [: UnitCost] ,periods ,0.99)

### Define demand

Demand = Array(demand[:,coLlect(Dema)]);

############### Transportation Parameters

# Transport mode speed in mph

airspeed = 450; #mph

truck-speed = 35; #mph

ocean-speed = 11 * 1.15; #16 knots * 1.15 miles/knot = mph

# Transport mode cost per mile

air-cost = 4/(2000/253);

truck-cost = 0.4;

ocean-cost = 0.1;

# Epsilon constraints

epsilon-avel = 240; # hours

epsilon ave2 = 24; # hours

#epsilonmax = 150; # hours

# Import pre processed distances

#cd ( "/Users /samh /Documents/LGO/Spring2016 /Thesis/ Transport/");

## Pre calculated Distances in miles

injawater = convert(Array, readtable("water casel.csv",header=false));

injaland = convert(Array, readtable( "land-casel . csv" ,header=false));

injatotal = convert(Array,readtable("total-casel .csv",header=false));

riawater = convert (Array, readtable ( "water-case2. csv" ,header=false ));

rialand = convert(Array,readtable("land case2.csv",header=false));

riatotal = convert(Array,readtable(" total-case2 . csv ",header=false));

r2awater = convert(Array,readtable("water-case3. csv ",header=false));

r2aland = convert (Array, readtable (" land case3 . csv" ,header=false));

r2atotal = convert(Array,readtable(" total-case3 . csv" ,header=false));

fawater = convert (Array, readtable ("water-case4 . csv" ,header=false));

faland = convert (Array, readtable ( "land-case4. csv" ,header=false));

fatotal = convert(Array, readtable ("total case4 . csv" ,header=false));

abwater = convert(Array,readtable("water-case5 .csv" ,header=false));

abland = convert (Array, readtable ("land case5. csv" ,header=false));

abtotal = convert(Array, readtable ("total-case5 . csv" ,header=false));

bcwater = convert(Array, readtable ("water case6 . csv" ,header=false));

bcland = convert(Array, readtable ("land-case6. csv" ,header=false));

bctotal = convert (Array, readtable (" total-case6 . csv" ,header=false));

cewater = convert(Array, readtable("water-case7. csv" ,header=false));

celand = convert (Array, readtable ( "land-case7. csv " ,header=false ) ) ;
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cetotal = convert(Array, readtable(" totaLcase7 .csv",header=false));

## Transport Cost tables

costlinja = injawater*ocean-cost + injaland*truckcost;

cost2inja = injatotal*air-cost;

cost1rla = r1awater*ocean cost + rlaland*truck cost;

cost2rla = riatotal*aircost;

cost1r2a = r2awater*ocean cost + r2aland*truckcost;

cost2r2a = r2atotal*air cost;

costlfa = fawater*ocean-cost + faland*truck-cost;

cost2fa = fatotal*aircost;

costlab = abwater*ocean-cost + abland*truck cost;

cost2ab = abtotal*air cost;

cost1bc = bcwater*ocean-cost + bcland*truck-cost;

cost2bc = bctotal*air cost;

costIce = cewater*ocean-cost + celand*truck-cost;

cost2ce = cetotal*air cost;

## Time tables

timelinja = injawater/ocean-speed + injaland/truck speed

time2inja = injatotal/airspeed;

time1rla = r1awater/ocean-speed + rlaland/truck-speed;

time2rla = rlatotal/air-speed;

timelr2a = r2awater/oceanspeed

time2r2a = r2atotal/air-speed;

timelfa = fawater/oceanspeed +

time2fa = fatotal/airspeed;

timelab = abwater/ocean-speed +

time2ab abtotal/airspeed;

timelbc = bcwater/ocean-speed +

time2bc = bctotal/airspeed;

timelce = cewater/ocean-speed +

time2ce = cetotal/airspeed;

+ r2aland/truck-speed;

faland/truck-speed

abland/truck-speed

bcland/truck-speed;

celand/truck-speed

################################ Variables ####################################################

## Facility /Partner Selection at time t
@defVar(n, Xa[ i = 1: inj , t = 1:periods I, Bin); # decision to use injection molding supplier i
@defVar(n, Xb[i = I:ri , t = 1:periods], Bin); # decision to use rubberl supplier i
@defVar(n, Xc[i = 1:r2, t = 1:periods], Bin); # decision to use rubber2 supplier i
@defVar(n, Xd[i = 1:f, t = 1:periods] , Bin); # decision to use film supplier i
@defVar(n, Xj[i=1:a, t = 1:periods , Bin); # decision to open assembly facility a

@defVar(n, Cjp[i=1:a, j = 1:p, t = 1:periods], Bin); # add capacity p at facility a

@defVar(n, Xk[i=1:b, t = 1:periods], Bin); # decision to use sterilizer b

@defVar(n, X1[ i=1:c, t = 1:periods] , Bin); # decision to use distribution center c

## Establish relationship with facility /partner

@defVar(n, Zia[i = 1:inj , t = 1:periods], Bin); # establish inj molding partuer

@defVar(n, Zlb[i = 1:rl, t = 1:periods], Bin); # establish rubberi partner

@defVar(n, Zicl i = 1:r2, t = 1:periods] , Bin); # establish rubber2 part ner

@defVar(n, Zld[ i = 1:f, t = 1:periods] , Bin); # establish film partner

@defVar(n, Z1jp [ i = 1:a, j = 1:p, t = 1:periods], Bin); # establish assembly line with capacity

p in facility j
@defVar(n, Zlj[i = 1:a, t = 1:periods], Bin); # establish assembly facility relationship
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@defVar(n, Zlk[i = 1:b, t = 1:periods], Bin); # establish sterilizer relationship

@defVar(n, Z11[i = 1:c, t = ]:periods], Bin); # establish distribution center relationship

## Maintain relationship with facility Ipartrner

@defVar(n, Z2a[i = 1:inj , = 1:periods], Bin); # inj molding partner

@defVar(n, Z2b[ i = 1:rl, t = 1:periods Bin); # rubberI partner

@defVar(n, Z2c[i = 1:r2, t = 1:periodsl, Bin); # rubber2 partner

@defVar(n, Z2d[i = 1:f, t = 1:periods], Bin); # film partner

@defVar(n, Z2jp[i = 1:a,j = l:p, t = 1:periods], Bin); # assembly line with capacity p in

facility j

@defVar(n, Z2j[i = 1:a, t = 1:periods], Bin); # assembly facility relationship

@defVar(n, Z2kI i = 1:b, t = 1:periods], Bin); # sterilizer relationship

@defVar(n, Z21[ i = 1:c, t = 1:periods], Bin); # distribution center relationship

## Inven tory

@defVar(n, lit Ii = :c, t = 1:periods] >= 0); # inven tory at DC c at time t

## Flows

@defVar(n, Yaj[r = 1:nmodes, i = 1:inj , j = 1:a, t = 1:periods] >= 0); # fU

molded compoien t to assembly a

@defVar(n, Ybj[r = 1:nmodes,i = :r), j = 1:a, t = 1:periods] >= 0); # flow

I to assembly a

@defVar(n, Ycj[r = 1:nmodes,i = 1:r2, j = 1:a, t = 1:periods] >= 0); # flow
2 to assembly a

@defVar(n, Ydj[r = 1:runodes,i = 1:f , j = 1:a, t = 1:periods] >= 0); # flow

assembly a

@defVar(n, Yjk[r = 1:nmnodes,i = :a, j = 1:b, t = 1:periodsI >= 0); # flow

manufacturing facility a to sterilizer 17

@defVar(n, Ykl[r = 1:nmodes,i = :b, j = 1:c, t = I:periodsl >= 0); # flow

sterilizer b to DC c

@defVar(n, Ylm[r = I:nmodes,i = 1:c, j = 1:e, t = I:periods] >= 0); # flow

to demamid miode e

@defVar(n, ilm[r = 1:nmodes,i = 1:c, j = l:e, t = 1:periods] >= 0); # inven

to demmiad iode e

## Traiisport Modes

@defVar(n, Saj [i=1:inj , j =1:a, t=1:periods ],Bin); # Slow mode for flow from

assembly a

@defVar(n, Sbji=1:rI , j =1:a, t=1 :periods] ,Bin); # Slow mode for flow from r

assembly a

@defVar(n, Scj[i=1:r2, j=1:a,t=1:periodsjBin); # Slow mode for flow from 

assembly a

w of injection

of compoeii rubber

of compoiieit ru bber

of componemit film to

of product from

of product from

of product from DC c

tory flow from DC c

iiijectioii molder

ubber I supplier

ubber 2 supplier

to

to

to

@defVar(n, Sdj[i=1:f, j=1:a,t=1:periodsl,Bin); # Slow mode for flow from film supplier to

assembly a

@defVar(n, Sjk[i=1:a, j=1:b,t=1:periodsl,Bin); # Slow ozode for flow from assembly a to

sterilizer b

@defVar(n, Skl[i=1:b, j=1:c, t=1:periodsl,Bin); # Slow mode for flow from sterilizer b to DC c

@defVar(n, Slm[i=1:c, j=1:e, t=1:periods] ,Bin); # Slow mode for flow from DC c to demamid e

@defVar(n, Aaj[i=1:inj , j=l:a,t=1:periods] ,Bin); # Fast mode for flow from injection molder to

assembly a

@defVar(n, Abj[i=1:rI, j=1:a,t=1:periods], Bin); # Fast mode for flow from rubber I supplier to

assembly a
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@defVar(n, Acj i=1:r2, j =1:a, t=i:periods IBin); # Fast mode for flow from rubber 2 supplier to

assembly a

@defVar(n, Adjii=1:f , j=1:a, t=1:periods],Bin); # Fast mode for flow from film supplier to

assembly a

@defVar(n, Ajk[i=1:a, j=i:b, t=1:periods] ,Bin); # Fast mode for flow front assembly a to

sterilizer b

@defVar(n, Akl[i=1:b, j=1:c,t=1:periods],Bin); # Fast mode for flow from sterilizer b to DC c

@defVar(n, Almli=1:c, j=1:e,t=1:periods1,Bin); # Fast mode for flow from DC c to demaud e

## Incremental Capacity

@defVar(n, AddCap[i=1:a, j = 1:p, t=1:periods] >= 0); # additional capacity option for

manufacturing lines

#@defVar(n, Rec[, i=I:c, j=l:e, t=1:periods] >= 0); # recourse variable

########################## FLOW TIME ########################################################

#### I Transport Time

AJ = time(Yaj , timelinja ,periods ,1 ,1) + time( Yaj , time2inja ,periods ,1 ,2);

BJ = time(Ybj,timelrla ,periods ,1, 1) + time(Ybj , time2rla ,periods ,1,2);

C = time ( Ycj , timelr2a ,periods I ,1) + time ( Ycj , time2r2a ,periods 1 ,2);

DJ = time (Ydj , timelfa ,periods ,j ,1) + time (Ydj , time2fa ,periods ,1 ,2) ;

JK = time'(Yjk , timelab ,periods ,1) + time(Yjk ,time2ab ,periods 1 ,2);

KL = time (Ykl , timelbc ,periods ,1 ,1 ) + time ( Ykl, time2bc ,periods ,1 ,2);

LM = time (Ylm, timelce ,periods , ,1) + time (Ylm, time2ce ,periods ,1 ,2) ;

ILM = time( ilm , timeice ,periods ,1 , 1) + time (ilm , time2ce ,periods ,1 ,2)

#RFC = time(Rec , time2ce , periods ,1 ,1);

################################ Constraints ##################################################

######## DEMAND ###################################################

# Demand Constraint

for(t = 1:periods)

for(j = 1:e)
@addConstraint(n, sum(Ylm[: ,: , j , t ]) + sum(ilm[: ,: j t ]) >= Demandl[j , t])

end

end

mult = 10;

############ FLOW ##################################################

##### Flow Constrainits

# Ijection molders to assemblers

for(t = 2:periods)

for(i = 1:a)
@addConstraint(n, sum(mult*Yaj [:,: , i , t]) >= sum(Yjk [: ,i ,: , t ]))

end

end

# Rubber I to assemblers

for(t = 2:periods)

for(i = 1:a)

@addConstraint(n, sum(mult*Ybj [: ,: , i , t ]) >= sum(Yjk [: ,i,: , t ]) );
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end

end

# Rubber 2 to assemblers

for(t = 2:periods)

for(i = 1:a)

@addConstraint(n, sum(mult*Ycj [:,:, i ,t) >= sum(Yjk [:, i ,:, t ));

end

end

# Rubber 2 to assemblers

for(t = 2:periods)

for(i = 1:a)

@addConstraint(n, sum(mult*Ydj [:,:,i, t]) >= sum(Yjk [: ,i ,:,t ));

end

end

# Assembly to sterilizers

for(t = 2:periods)

for(i = 1:b)

@addConstraint(n, sum(Yjk [: ,:, i ,t ]) >= sum(Ykl [:, i ,:, t ]));

end

end

# Sterilizers to DCs

for(t = 2:periods)

for(i = 1:c)

@addConstraint(n, sum(Ykl[:,: ,i,t]) >= sum(Ylm[:,i,:,t]));

end

end

# Mode Selection (ensure max

for(t = 2:periods)

@addConstraint(n, Saj[:,: t]

@addConstraint (n,

@addConstraint (n,

@addConstraint (n,

@addConstraint(n,

@addConstraint (n,

@addConstraint (n,

end

Sbj[:,: ,t ]
Scj [: ,:,t]

Sdj [:,:,t]

Sjk[:,: ,t]

Skl[:,:, t]
Slm:,: ,t ]

of one arc connecting two nodes)

+

+

+

+

+

+

+

Aaj[:

Abj [:

Acj [:

Adj [:

Ajk[:

Akl[:

Alm[:

ti

,t

t]

,t]

t]
ti

ti

# Stochastic problem has no flow in year 1
for(t = 1)

@addConstraint(n, Saj [: ,: t] + Aaj [: ,: t]

@addConstraint(n, Sbj [: ,: t ] + Abj [: ,: t]

@addConstraint(n, Scj[:,: t] + Acj:,: t]

@addConstraint(n, Sdj [: ,: t] + Adj [: ,: t]
@addConstraint(n, Sjk [: ,: ,t + Ajk[: ,: t]

@addConstraint(n, SkIl: ,: t] + AkI[: ,: ,t]

@addConstraint (n, Slm[: ,: t] + Am[: ,:, t]

end

# Flow possible only if mode selected

ones(size(Aaj) [1:2]));

ones ( size (Abj) [1:2])

ones ( size (Acj) [ 1:2]) );

ones( size (Adj) [1:2]));

ones( size (Ajk) [1:2]) );

ones(size(Akl) [1:2]));

ones (size (Alm) [1:2]));

0);

0);

0);

0);

0);

0);

0);
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for( t =2: periods)

@addConstraint(n,

@addConstraint(n,

@addConstraint (n,

@addConstraint(n,

@addConstraint (n,

@addConstraint (n,

@addConstraint (n,

end

for( t =2: periods)

@addConstraint (n,

@addConstraint (n,

@addConstraint (n,

(@addConstraint (n,

@addConstraint (n,

@addConstraint (n,

@addConstraint (n,

end

squeeze(Yaj[1,: ,:,tJ,1)

squeeze(Ybj[1,: ,:,t],1)

squeeze( Y cj[ 1 ,: ,:,t ],1)
squeeze(Ydj[1 ,:,:,t 1)
squeeze ( Yjk [1,: , t ],1)

squeeze (Ykl ,1 , ,:t ],1)

squeeze(YLm[1,: ,:, t] ,1)

squeeze ( Yaj [2 , ,:t] ,1)

squeeze(Ybj [2, , ,:t ],1)
squeeze ( Ycj 12 , : ,t] ,1)

squeeze ( Ydj [2,: ,:, t] ,1)

squeeze ( Yjk[ 2 , ,:t] ,1)

squeeze(Yki[2,: ,:,t],1)

squeeze(YmL2,: ,:, t],1)

.<= TransCap*Saj[:,: t])

. TransCap*Sbj[:,: t])

. TransCap*Scj [ : ,: t I);
.<= TransCap*Sdj[: ,:t

. TransCap*Sjk[: ,:t

. TransCap*Skl[: ,:t

+ squeeze ( ilm [1 ,: ,: ,t ,1)

. TransCap*Aaj[: ,:t

a TransCap*Abj [: ,:t

a TransCap*Acj [: t ]);
.<= TransCap*Adj [: ,:t

.<= TransCap*Ajk 1: ,t I;

a TransCap*Akl:,: t);

+ squeeze(ilm [2,: ,:, t],1)

.<= TransCap*Slm [: : , t ])

.<= TransCap*A:m[:,: , t]);

# Inventory flow constraint

@addConstraint (n, ilm [: ,: ,: 1] .== 0);

for( t =2:periods)

for( i =1:c)

@addConstraint(n, sum(ilm [: i: t 1) <= I t[it 1]); # flow cannot exceed inventory on hand

end

end

######## LEAD TIME E constraint ##############

# Epsilon average constraint

for( t=2:periods)

@addConstraint(n, sun(AJ[: : t])+sum(Bj [: ,: t])+sum(CJ[: ,: t])+sumn(DJ[: ,: t])+-sumi(JK[: ,: t])+

sum(KL[: ,: ,t]) <= sum(Ykl : ,:: t])*epsilonavel);

end

for(t=2:periods)

@addConstraint(n, sum(LM[: : t])+sum(ILM[: : t]) <:

epsilonave2

end

#

(sum(YlmI: : : , t ])+sum(ilmnI: : : , t ]))*

# Epsilon max constraint

for(t=1:1Periods)

for(i=1:inj)

for (j = :a)

for (k = 1b)
fo r (=1:c)

for (7=1: e)

@addConstraint (n, Saj [ i ,j, t* time inja li ,j]+Aajl i ,j, t *timne2inja i, j]+Sjkl j,k, t*

timelablij,k]+Ajklj,k,t*time2ab[j,k]+Skllk,l,ti*timelbclk,I]+Akllk,I,tJ*timne2bclk,l1+

S/mI im, 1t * timnelcel / ,mz]+A/,nl l ,i, t ]*time2celim <=1111 epsilon-max);

# end

# end

# end
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# end

# end

# end

# for(t=1:periods)

# for( i=):rJ)

# for(j=7:a)

# for(k=1:b)

# for(l=]:c)

# for (m=1:e)

# @addConstraint(n, SbIji j , ti*timelrlaIi ,I+AbjIi j, ti*time2rIa i iji+ Sj ,k, tI*timeIabi

j ,k]+Ajk[ ,k , t ]* time2abI j ,kI+ Ski lk, I, t ]* timeIbc[k , 1i +Aki Ik 1 , t j* tine2bc Ik, I I+Smi II ,m, t

1* tinelei 1 ,m+bAlmn I ,m, t]* tine2ceil I ml <= epsilon-max);

# end

# end

# end

# end

# end

# end

# for (t=1:periods)
# for(i=):r2)

# for(j=1:a)

# for (k=I:b)

# for(l=T:c)

# for(m=1:e)

t @addCon strain t (n, Scj i,j, tI J*time) r2a i, J + A cjIi,j, ti*tim e2r2a i ,j+SjkIl j,k, t I ti meIabi

j ,ki+ AjkI j ,k, tI* time2abIj ,ki+SkiIk, I, t * t ime bc Ik, i+Akik , 1, t* time2bcIk, I +SImi I ,n, t
j timtn lcc I ,m i-+Aln I ,m,t I time2ce i ,m] <= epsilon max);

# end

# end

# end

# end

# end

# end

# for ( t =I: periods )
# for(i=l:f)

# for( =):a)

# for (k=1:b)

# for(I= :c)

# for (m=I:e)

# @addConstraint (n, Sdj i ,j , t timelfa i , j i+Adjl i ,j , t time2fa i , j+ Sjkfj ,k, t1* tineabIj ,

ki+Ajk[j ,k, ti*time2ab Ij ,k+SkiIk,I , t* timeIbcIk, lI]+Aki k, 1,tk time2bclk, li+SlmiI ,n, t>*

tim e Ice 11 ,mi+Alm[1 in, ti* tine2ce I ,mi] <= epsilon max

# end

# end

# end

# end

# end

# end

######## CAPACITY t###################

# Injection molding capacity flow constraint
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for(t = 2:periods)

for(i = 1:inj)

@addConstraint (n, sum( Yaj [: ,i :,t) <=

end

end

# Rubber) capacity flow constraint

for(t = 2:periods)

for(i = 1:rl)

@addConstraint (n, sum(Ybj [:, i ,:,t]) <=

end

end

# Rubber 2 capacity flow constraint

for(t = 2:periods)

for(i = 1:rl)

@addConstraint (n, sumir( Ycj [ i t 1)

end

end

# Film capacity flow constraint

for(t = 2:periods)

for(i = 1:f)

@addConstraint (n, sum(Ydj I: i t 1)

end

end

injmold [i ,:Capacity)]*Z2a[ i ,t );

rubber [ i,: Capacityl]*Z2b[i ,t);

<= rubber2i,:Capacityl]*Z2c[i,t]);

<= film[i,:CapacitylI*Z2d[i,t]);

# Manufacturing line selection constraints

for(t = 1:periods)

for(i = l:p)

@addConstraint (n, sum(Cjp[: ,i ,t ]) <= 1)

end

end

# Capacity addition possible only if facility a is selected

for(t = 1:periods)

for(i = 1:a)

for(j = l:p)

@addConstraint(n, Cjp[i,j ,tJ <= Xjli ,t]);

end

end

end

# Additional manufacturing capacity constraints

for(t = 1:periods)

for(i = I:a)

@addConstraint(n, AddCapfi,:,t] .<= ceil(0.08*Array(man[i, collect(Cap)])).*Z2jp[i ,t]) # No

additional capacity permitted without opening line first

end

end

# Manufacturing capacity flow constraiit

@addConstraint(n, sum(Yjk[: ,1 ]) == 0);

for(t = 2:periods)
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for(i = 1:a)

@addConstraint(n, sum(Yjk : ,t]) <= sum(Array(man[ i , collect (Cap) ]) .*Z2jp [ i ,: , t ]) + sum(

AddCap[i ,:,t 1]));

end

end

# Sterilizer capacity flow constraint

for(t = 2:periods)

for(i = 1:b)
@addConstraint(n, sum(Ykl[: ,i ,:,t]) <= ster[i ,:Capacityl]*Z2k[i ,t]);

end

end

# Dist capacity flow constraint

for(t = 2:periods)

for(i = 1:c)

@addConstraint(n, sum(Ylmi[: ,i ,:,t]) + sum(ilm [: ,i ,:,t]) <= dist[i ,:Capacityl]*Z2l[i ,t]);

end

end

######## Rclationship Establishment

# Injcction molding supplier

@addConstraint(n, Zlal:,1I .== Xa[: ,1]);

for(t = 2:periods)

@addConstraint(n, ZIa :, t .>= (Xa[:, t]

end

# Rubberl supplier

@addConstraint(n, Zb[: ,1I

for(t = 2:periods)

@addConstraint (n, ZIbi: t I

end

# Diaphragm supplier

@addConstraint(n, Zlc[:,1]

for(t = 2:periods)

@addConstraint (n, Zic [: , t I

end

# Film supplier

@addConstraint(n, Zld[: ,1I

for(t = 2:periods)

@addConstraint (n, Zid [: , t]

end

# Assembly line change

@addConstraint(n, Zljp[:,:,

for(t = 2:periods)

@addConstraint(n, Zljp

end

# Assembly facility

@addConstraint (n, Zlj [:1]

for(t = 2:periods)

.== Xb[:,1]);

.>= (XbI: , t ] . Xb(: ,t 1]));

.== Xc[: ,1);

.>= (Xc[: , t I

.== Xd[: ,1]);

.>= (Xd[:, t] . Xd[: ,t 1]));

t] .== Cjp [:,: ,11) ;

t ] . = ( Cjp [: ,: ,t ] . Cjp :,:,t I

Xj [: ,11);
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@addConstraint(n, Zlj [:,t .>= (Xj [:,t]

end

# Sterilizer facility

@addConstraint (n, Zlk[: ,1]

for(t = 2:periods)

@addConstraint(n, Zlk[: ,tI

end

# DC facility

@addConstraint(n, Z11[: ,1]

for(t = 2:periods)

@addConstraint(n, Z1 I[: t]

end

.>= (Xk[:,t] .

.== XL [: , 1 ]) ;

.>= (Xl[:, t] .

######## Relationship Maintenance

# Injection Molding Supplier

@addConstraint(n, Z2a[: ,1]

for(t = 2:periods)

@addConstraint(n, Z2a[:, t] .<=

@addConstraint(n, Z2a[:, t ]<=
@addConstraint(n, Z2a[:, t .>=

end

Xa [: , t ])

Xa:,t 1])

(Xa[: ,t] .+ Xa[: ,t 1] . 1))

# Rubberl Supplier

@addConstraint(n, Z2b[: ,1]

for(t = 2:periods)

@addConstraint (n, Z2b[: ,t]

@addConstraint(n, Z2b[: ti

@addConstraint(n, Z2b[: ti

end

# Diaphragm Supplier

@addConstraint(n, Z2c[:,1]

for(t = 2:periods)

@addConstraint (n, Z2c[: ,tJ

@addConstraint (n, Z2c[: t]

@addConstraint (n, Z2c t]
end

# Film Supplier

@addConstraint(n, Z2d[: ,1]

for(t = 2:periods)

@addConstraint(n, Z2d[: ti

@addConstraint (n, Z2d[: ,tI

@addConstraint (n, Z2d[: ,tj

end

# Assembly facility

@addConstraint(n, Z2j [:,1]

for(t = 2:periods)

. 0);

.<= Xb[:,t])

.<= Xb[:,t 1])

.>= (Xb[:, t] .+ Xb[:,t 1] 1))

.== 0);

Xc[:, t ])
Xc[:,t 1])

(Xc[: ,t] .+ Xc[: ,t 1] . 1)

.== 0);

Xd[:, t )

Xd[: , t 11)

(Xd[: , t I .+ Xd[: , t 1] 1))

.== 0);
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@addConstraint(n, Z2j [:,t] .<= Xj [:,t ])
@addConstraint (n, Z2j [:,t ] <= Xj [:,t 1 j

@addConstraint (n, Z2j [ t ] .>= ( Xj I: t ] .+ Xj I: t I . 1))

end

# Assembly line

@addConstraint(n, Z2jp 1] 0);

for(t = 2:periods)

@addConstraint(n, Z2jp[:,:, t] .<= Cjp [:: ,t])
@addConstraint(n, Z2jp :: ,t] .<= Cjp [: ,:,t 1])

@addConstraint(n, Z2jp : ,,t] .>= (Cjp[:,: ,t] .+ Cjp[: ,:,t 1] 1))
end

# Sterilizer

@addConstraint(n, Z2k[:,lJ

for(t = 2:periods)

@addConstraint (n, Z2k[: t]

@addConstraint(n, Z2k[: t]

@addConstraint (n, Z2k [:t
end

# DC

@addConstraint (n, Z21 : 1]

for(t = 2:periods)

@addConstraint (n, Z21 [: t]

@addConstraint (n, Z21 I: t j

@addConstraint (n, Z21 1: t I
end

.== 0);

Xk [: , t 1)

Xk[: ,t 1)

(Xk[: , t . Xk[: , t I] 1))

.== 0)

Xl [: ,t)

XI t 1])

( XI[ , t ] . XI : t I j )

# Perpetuate incremental capacity decision

@addConstraint(n, AddCapt:,:,1] 0);

for(t = 2:periods)

@addConstraint(n, AddCap[:,:, t] .>= AddCap[: ,:,t 1])

end

########### INVENTORY ########################

# Inventory constraint relating production to demand

for(t = 2:periods)

for(i = 1:c)

@addConstraint(n, Ilt [i ,t] sum(Ykl [:,:, i ,t ]) + sum(Ylm[: , t ]) == 0) # inventory equals

difference between production and demand

end

end

@addConstraint(n, Ilt [:,1] .= 0)

## Line Capacity increments

for( t=1 :periods)

for(i= 2
:p)

@addConstraint(n, sum(Cjp[: ,i ,t]) <= sum(Cjp[: ,i , t I)) # ensures new line can't be used until

previous line is open

end

end
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## Line Capacity increments

for(t=l:periods)

for(i=1:a)

@addConstraint(n, Cjp[i ,3 , ti <= Cjp[ i ,2, t 1) # ensures new line can t be used until previous

line is open

end

end

# Initial Conditions constraints

@addConstraint (n, (sum(Yaj [: ,: ,: 1]) + sum( Ybj[: ,: , ,1]) + sum( Ycj[ , , ,1J) + sum(Ydj

1]) + sum( Yjk I , ,I]) + sum( Ykl [ , , ,11) + sum(Ylm[ , , ,1 i) + sum( ilm

,1]) ) == 0)

@addConstraint(n, (sum(Saj [: ,11) +sum(Sbj[: ,: ,1)+sum(Scj [ ,:+,1])sum(Sdj[: ,: ,1)+sum(Sjk

S,1])+sum(Skl[: ,: ,1]) +sum(Sin[: ,: ,])+sun( Aaji: ,: ,1]) +sum(Abj[ , ,1])+sum(Acj

[: ,: ,1J)+sum(Adj [: ,: ,1])+sun( Ajk [: ,: ,1])+sum(Akl [: ,: ,1])+sum(A[:,: ,1]) ) == 0)

############################ COSTS ########################################################

########################## First Stage costs

### Capital investment
FIRSTA = sum(( Zljp.*CAPEXassembly) [: ,: , 14) + sum((Zlk.*CAPEX-ster) : ,1]);

#### 2 Operating and Relationship Fixed Costs

FIRSTOPCOST = sum((Fj.*Xj)[:,1]);

FIRSTLINECOST1 = sum((SCjp.*Zljp)[: ,: ,1]);

FIRSTLINECOST2 = sum((SSjp.*Z2jp)[: ,:,1]);

FIRSTRELl = sum((Ra.*Z1a)[:,1)+sum((Rb.*Zlb)[:,1-])+sun((Rc.*Z1c)[:,1])+si((Rd.*Z1d)[:,1])+

sum((Rk.*Z1k) [: ,1])+sum(( RI.*Zll) [: ,11) ;

FIRSTREL2 = sun((ra.*Z2a) [: ,1])+sum((rb.*Z2b) [:,1)+sum((rc.*Z2c) 1: , ])+sum((rd.*Z2d): ,1 ])+

sum((rk.*Z2k) [: ,1])+sum(( rl.*Z2i) [: 1]);

######################## Second Stage Costs

### Transport Costs Slow Mode

TClow = tcostl(Yaj, costlinja ,infrate ,Discount)+ tcostl (Ybj ,costlrla ,infrate ,Discount)+tcostl(Ycj

costlr2a , infrate ,Discount)+ tcostl (Ydj , costlfa , infrate , Discount)+ tcosti (Yjk ,costlab

infrate , Discount)+ tcostl (Ykl , costlbc , infrate , Discount)+ tcostl (Ylm, costice , infrate

Discount)+ tcostl (ilm, costice , infrate ,Discount);

#### Transport Cost Fast Mode

TChigh = tcosth (Yaj , cost2inja , infrate , Discount)+tcosth (Ybj, cost2rla , infrate , Discount )+tcosth (

Ycj ,cost2r2a ,infrate ,Discount)+tcosth(Ydj,cost2fa ,infrate ,Discount)+ tcosth(Yjk,cost2ab

infrate , Discount)+tcosth (Ykl , cost2bc , infrate , Discount)+tcosth (Yim, cost2ce , infrate

Discount )+tcosth (ilm, cost2ce , infrate ,Discount);

#### Capital nvestmzent

A = sum(( Zljp.*CAPEXassembly) [: ,: ,2: periods 1) + sumn((Zk.*CAPEXster) [: ,2:periods])

#### 2 Operating and Relationship Fixed Costs

OFCOST = sum(( Fj.* Xj) [: ,2: periods]) ;

LINECOST1 = sum((SCjp.*Zljp) [:,:,2:periods]);

LINECOST2 = sum((SSjp.*Z2jp)[: ,: ,2:periods]);
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RELl = sum((Ra.*Zla) [: ,2: periods])+sum((Rb.*Zlb) [: ,2:periods) )+sum(( Rc.*Zlc) [ ,2: periods ])+sum
((Rd.*Zld) [: ,2: periods ])+sum((Rk.*Zlk) [: ,2: periods ])+sum(( Rl.*Z1])[: ,2: periods]);

REL2 =sum(( ra.*Z2a) [: ,2: periods ])+sum(( rb.*Z2b) [: ,2: periods ])+sum(( rc.*Z2c) [: ,2: periods ])+sum

((rd.*Z2d) [: ,2: periods ])+sum(( rk.*Z2k) [: ,2: periods ])+sum(( r1.*Z21) : ,2: periods]);

#Unit = sum( repeat (man 1: ,: UnitCost] , outer = 11 ,J ,periods ]).* Yjk) ;

ACap = sum((1280*4.3*AddCap./discount(size(AddCap),Discountperiods))[:,: ,2: periods]); #./

discount (size (Z4), Discount , periods)

#### Unit Costs

UCa = unitcosts (Yaj*multpa,periods ,Discount);

UCb = unitcosts (Ybj*mult,pb, periods ,Discount);

UCc = unitcosts ( Ycj*mult ,pc periods ,Discount);

UCd = unitcosts (Ydj*mult,pd, periods ,Discount);

UCk = unitcosts (Ykl ,pk, periods , Discount);

UCI = unitcosts(Ylm,pl ,periods , Discount);

UCi = unitcosts(ilm,pl ,periods ,Discount);

UJNITCOST = UCa+UCb+UCc+UCd+UCk+UCl+UCi;

#### Holding Costs

HOLD = sum(rep2s(dist [: :Holding] ,periods ,1.01/ Discount).* lit);

#cd ( "/ Users /salh / Documents/LGO/ uite rmns h ip /Model /")

include ( "ModelV5_Stochastic-sub I jil

include ("ModelV5_Stochastic-sub2_1 j I

################################ Object ive ###################################################

@setObjective(n, Min, (FIRSTA + FIRSTOPCOST + FIRSTREL2 + FIRSTRELI + FIRSTLINECOST2 +

FIRSTLINECOST1 + (1/3)*(A + TClow + TChigh + OPCOST + LINECOSTI + LINECOST2 + RELl +

REL2 + ACap + UNITCOST + HOLD) + (1/3)*(A2 + TClow2 + TChigh2 + OPCOST2 + LINECOST12 +

LINECOST22 + REL12 + REL22 + ACap2 + UNITCOST2 + HOLD2) + (1/3)*(A3 + TClow3 + TChigh3

+ OPCOST3 + LINECOST13 + LINECOST23 + REL13 + REL23 + ACap3 + UNITCOST3 + HOLD3)));

solve (n) ;

############################## Print Results #################################################
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