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ABSTRACT
Road pricing is an effective method of demand management. Pricing on highway

managed lanes is usually implemented as time-of-day or dynamic tolling in practice.

Toll rates are usually updated according to latest traffic measurement and based on

pre-defined rules. Researches on highway pricing can be generally categorized as

analytical, reactive or optimization-based approaches. The limitations of current

studies are compared and discussed in this thesis. A new framework is proposed

which aims to develop an adaptive integrated simulation-optimization framework that

brings together several enhancements: real time, predictive, simulation-based and

consistent.

The main components of the framework include DTA model, DynaMIT, for

evaluating control strategies, optimization module solving for optimal solution and

real-life traffic system providing surveillance data. Optimization problem is

formulated with rolling horizon scheme, and presented with basic models for revenue

maximization. Close-loop testing approach is proposed by replacing traffic system

with a microscopic simulator, MITSIM.

Tests are first conducted on a two-path synthetic network to demonstrate the

capability of the framework with changing demand and different behavior parameters.

Then a case study is performed on NTE Express Lanes network in Texas. Calibration

of the network with multiple sources of traffic data is discussed, and initial calibration

results with sensor data are presented. Also, the models are extended to account for

the regulation rules imposed by the local government. Optimization results for

morning peak period on a typical weekday are presented, and the resulting revenue is

compared with the benchmark case. Finally, potential improvement in solution

algorithm is discussed for the system's real time computational requirements.

The main contribution of the thesis includes: 1) identifying the limitations of
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tolling strategies in practice and in academic researches, 2) proposing an adaptive

integrated simulation-optimization framework, 3) demonstrating the capability of the

framework through close-loop testing on a synthetic network, and 4) applying the

framework on a real-world network with managed lanes, and proposing calibration

approach incorporating multi-source traffic data.

Thesis Supervisor: Moshe E. Ben-Akiva

Title: Edmund K. Turner Professor of Civil and Environmental Engineering
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1 Introduction

1.1 Overview of road pricing

Traffic congestion affects economic productivity as well as the environment and

traffic safety. In order to ameliorate congestion, actions can be taken on the supply

and demand sides. On the supply side, capacity can be increased through the

construction of new infrastructures. However this method is often too costly and

inefficient. An alternative approach of increasing interest is to improve the efficiency

of transportation networks through demand management.

Road pricing is an effective method of demand management. The purpose of road

pricing may vary by the road operators. Besides the most common objective to relieve

traffic congestion, it can also be deployed to internalize the cost of vehicle emission,

noise and road damage (de Palma and Lindsey, 2011). Private sectors may also use

pricing as a tool to generate revenue. The discussion on road pricing covers a variety

of aspects, including use of road pricing revenues, parking pricing, pricing of road

emission, etc. Road pricing strategies can also be categorized in various ways like toll

collecting technology, the degree to which the toll rates change by time, the definition

of area where vehicles are subject to toll, etc. In this section, the main focus would be

the categorization in spatial and temporal dimensions:

Spatially, congestion pricing may be classified according to the area of influence.

Facility-based scheme: Implementations include bridges, tunnels, managed lanes,

etc. Tolls can be collected either at a single point or multiple points depending on

distance travelled.

Cordons: A form of area-based charging where vehicles have to pay a toll when

crossing the cordon in the inbound/outbound direction. Examples include EcoPass
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introduced in Milan in 2008 to mitigate vehicle emission' and the cordon surrounding

the city center of Stockholm to relieve congestion.

Zonal scheme: Vehicles have to pay a toll to enter/exit a zone, and the zone

boundaries can be defined wither by natural features or by elements of the built

environment. One notable example is the London congestion pricing introduced in

2003.

[A
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Distance-based scheme: Toll rates vary depending on the distance of the vehicle

travelling on this facility, and the relationship between distance and toll rate can be

either linear or non-linear.

Temporally, tolls are applied using two strategies: fixed and dynamic.

In a fixed pricing setting, the toll either stays flat or varies in a predetermined

fashion during the day, which is often referred to as time-of-day tolling. One main

reason for the prevalent use of fixed tolling lies in its straightforward setting of toll

level and easy real time control. A fixed price setting took place in Oslo, Norway,

where the congestion was reduced by 5% in the first year of the implementation of an

urban toll ring project (Ieromonachou et al., 2006). The SR-91 Express lanes in

Orange City (Yildirim, 2001) uses a time-of-day rate to accommodate for different

demand levels across the day.

One main drawback of flat pricing is that it fails to consider the variability of

price elasticity of demand over time (e.g., during peak and off-peak period) and the

change in traffic network state. With the more advanced electronic toll collection

technology, and the growing ease of change the toll rates in real time, flat pricing is

now less preferable than time-of-day tolling or dynamic tolling.

Time-of-day tolling, as different from flat tolling, varies the toll rates by a given

toll step (e.g., 1 hour, 30min) and the tolling schedules are adjusted periodically (e.g.,

monthly, seasonally) to account for the latest traffic surveillance information. It is

more flexible compared with flat tolling.

Dynamic tolling in practice is often implemented in the form of responsive tolling,

in which the latest toll rate is updated as a function of the prevailing traffic conditions.

In real world applications, dynamic tolling has demonstrated traffic congestion

alleviation and traffic safety improvement.
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1.2 Pricing on managed lane

"Managed lanes" are defined by Federal Highway Administration in United

States as "highway facilities or a set of lanes where operational strategies are

proactively implemented and managed in response to changing conditions" (FHWA,

2008). Examples of managed lane include high-occupancy vehicle (HOV) lanes,

value priced lanes, high-occupancy toll (HOT) lanes, or exclusive or special use lanes.

There are various operational strategies applied to managed lane, like pricing, vehicle

eligibility, access control, etc.

HOT lane (High Occupancy Toll lane) is special type of lane which allows HOV

(high occupancy vehicle) and other exempt vehicles to travel without any charge.

Other vehicles could have access to HOV lane by paying a variable toll which is

adjusted in response to demand. Usually for a managed lane scheme, drivers have the

choice to choose between the parallel uncharged lane (which is also called general

purpose lane, or GP lane) and the HOT lane. Drivers are motivated to choose HOT

lane mainly because of expected less congestion and faster travel time than general

purpose lane (G6qmen et al., 2015). Some of the managed lanes are designed to

maximize throughput, while others may focus on maintaining free-flow condition or

revenue maximization.

Examples of tolling on managed lane

San Diego 1-15 is a typical highway system with dynamic pricing operation on

HOT lane facilities 6. The 20-mile 1-15 Express Lanes project runs from SR 78 in

Escondido to SR 163 in San Diego. Entrances and exits are constructed every two to

three miles for travelers to move on and off the main lanes to the Express Lanes.

While carpools, vanpools, and other exempt vehicles can use the Express Lanes free

of charge, single-occupant vehicles can also access the Express Lanes with a

6 http://511sd.com/fastrak51 Isd/I- 1 5ExpLanes
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FasTrakpass to electronically pay the toll. Compared with fixed monthly pricing,

dynamic pricing offers a more customized facility use with response to traffic demand,

and free-flow condition is usually maintained by the time-varying toll rate (Supernak

et al., 2003).

San Marcos
Carlsbad 4 Escondido

Hale Avenue

Del Lago
Encinitas /

Rancho Bernardo 1-15 Express Lanes
Solana Beach

Poway
Sabre Springs/
Penasquitos

Mira Mesa

Santee, Lakes

Figure 1.3 Map of 1-15'

R

m Existing MnPASS Express Lanes

Future MnPASS Express Lanes

Opening in 2015/2016

March 2, 2015 sourc,:MetropolaavCouncl204C TrlispolatiPaey Pliai

Figure 1.4 Map of 13948

http://5 1I sd.com/fastrak5 1 sd/FasTrakHome

http://wvw.mnpass.org/
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Minnesota's Mn/PASS 1-394 HOT lane is another notable example of dynamic

priced HOT lanes with multiple entries and exits9 . The main goal of Mn/PASS is to

improve the usage of the high occupancy vehicle (HOV) lane built in 1992, and the

underused HOV lanes were converted to HOT lanes, also known as Mn/PASS 394

Express Lanes. Speeds and capacity of the HOT lane are maintained by dynamically

changing the toll according to the demand and use of the lane. In-vehicle transponders,

road scanners, and loop detectors are used to automate the processes of toll collection

without stopping or slowing down drivers. Number of crashed was reduced by 5.3

percent based on the before-after data (Z. Xu and Huang, 2012), Overall, the

efficiency of MnPASS Express Lanes has improved compared with pre-MnPASS

condition as vehicle throughput has increased by 48% and person throughput by 25%

(Buckeye, 2012).

Highway Tolling Algorithms

Tolls on highways represent an example of facility-based congestion pricing and

mostly implemented as an operational policy on managed lanes, where strategies are

developed in real time in response to changing conditions. The main purpose of

developing toll lanes is to provide road users with congestion-free services and

improve safety and operations through increased flexibility (Chung, 2013).

The tolling algorithms for highways, especially for time-of-day or dynamic

tolling, also vary across the road operators. They may differ in the frequency of toll

changing, measurement used to update tolls, lower and upper bound of toll rates, etc.

Here are a few examples on how the operators determine the toll rates.

The SR-91 time-of-day toll schedule is updated seasonally, and the toll rates are

decided by the directional average volume for each hour of the day during the past 12

consecutive weeks, and some if-then rules are used to calculate the toll rates for each

http://www.mnpass.org/
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hour (OCTA, 2003).

The 1-15 South (of SR-56) develops a look up table to detennine the toll rates for

HOT lanes. 12-min volume lower thresholds, 6-min average volumes and level of

service are used to decide the updated toll rate, and the main aim is to keep the HOT

lane no worse than Level Of Service (LOS) C. There is a constraint on maximal of

each toll adjustment every 6 minutes (SANDAG, 2006).

1-15 North (of SR-56) uses a more complicated approach which considers the

different ingress/egress points, and divides the corridor into n zones with tolls derived

from a series of steps, including value of time adjustment, travel time saving

calculation and toll rate update. This procedure ensures that HOT lane is operating at

free flow speed.

1-394 updates the toll rates every 3 minutes depending on the real time density

and a pre-defined lookup table. The change in averaged density over the last six

minutes is used to look up the incremental amount of toll values. Traffic on the

general purpose lane is partly considered by the density change on HOT lane.

While each freeway operator adopts different type of tolling algorithms, there are

some similarities.

(1) The traffic surveillance system will provide real time or averaged measurement

of traffic speed/volume/density on the managed lane.

(2) Toll rate would increase in reaction to worsen condition on managed lane, and

one important aim is to keep the free flow speed on managed lane.

(3) For dynamic tolls, toll rates are updated by a certain interval length to

accommodate the traffic condition change.

(4) Drivers' reaction to tolls are not explicitly considered or oversimplified when

deciding the algorithms.

(5) There is constraint on the toll incremental value during consecutive intervals,

and there is upper bound specified by regulation.

19



1.3 Overview of DTA systems

Dynamic traffic assignment (DTA) system has the capability of capturing

complex traffic dynamics for a large-scale traffic network. So it can be useful in

providing prediction of traffic network state and evaluating traffic control strategies.

The typical components of DTA models include demand models for travelers' trip

decisions (OD, departure time choice, mode choice, route choice, etc) and supply

models for traffic flow movement (Ben-Akiva et al., 2001; Florian et al., 2001).

Traffic simulators provide real time estimation and prediction of demand and

traffic conditions, and they are of increasing interest given their valuable impact.

Ramos et al. (2012) highlighted the need for modular platforms that integrate proper

modeling and simulation capabilities in order to provide efficient management of

operations. They work with AIMSUN 10 , a microscopic traffic simulator. In urban

freight transportation, Grzybowska and Barcel6 (2012) presented a decision support

system for real time freight management with an integrated system of vehicle routing

and dynamic traffic simulation models.

There are two main types of DTA system: Analytical and Simulation-based.

Analytical model is usually based on mathematical formulation and optimization.

While the mathematical formulation gives computational advantage, the simplified

assumptions usually degrades the model's capacity to capture the realistic traffic

dynamics and travelers' trip decisions.

Simulation-based model uses more accurate traffic network representation,

network state estimation and real time prediction. Based on the level of details, they

can be further divided into microscopic, mesoscopic and macroscopic models.

Microscopic and mesoscopic model have the capability of capturing drivers' travel

10 http://www.tss-bcn.com

20



behavior and their real time response to traffic control/information, so they have been

utilized to provide consistent traffic prediction and route guidance (Mahmassani, 2001;

Y Wen et al., 2006; Yang Wen et al., 2008).

1.4 Thesis motivation

While dynamic road pricing is regarded as an effective way to improve the

network efficiency and relieve traffic congestion, past practices or studies mainly

implemented models which are based on simplified assumptions of traffic dynamics,

drivers' route choice and network equilibrium. Also, most of the analytical models are

tested only on small-scale synthetic networks, and the true effectiveness of the model

are not validated against a real-life complex network.

Our approach is an adaptive integrated simulation-optimization framework that

brings together several enhancements. First of all, the dynamic pricing methodology

is a predictive one meaning that the toll is optimized based on predicted traffic

conditions. A mesoscopic traffic simulator is integrated with the toll optimization in

order to obtain state estimation and prediction. This simulator embeds several

modules including demand simulation (OD estimation/prediction, travel time

estimation/prediction, route choice models etc.), supply simulation, and online

calibration. Consistent guidance generation is implemented in the prediction-based

guidance process, so that the network conditions that are expected to be realized,

given the anticipated users' reactions, coincide with those that form the basis for the

travel guidance. The toll optimization module is in complete interaction with the

simulator such that the optimized toll is decided with several iterations between the

two rather than a single feedback function. Finally, the framework is developed with

the aim of having a real time performance. This thesis focuses on developing the

testing framework for the toll optimization problem, and implementing the new

tolling model on a synthetic network and case study on the NTE TEXpress Lanes

network in Texas.
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1.5 Thesis outline

The remainder of the thesis is organized as follows. Chapter 2 presents a detailed

literature review on different frameworks, models and cases of dynamic tolling

problem. Chapter 3 proposes the formulation of the optimization problem which

interacts with the traffic simulator and solves to obtain the optimal toll values.

Chapter 4 presents the initial results of the framework on synthetic testing network to

demonstrate its capability to react to real time demand change, accommodate the toll

rates and meet the defined objectives. Chapter 5 presents a case study with the

optimization results on the NTE TEXpress Lanes network. Finally, conclusions and

future work are included in Chapter 6.
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2 Literature review

2.1 State-of-practice tolling strategy

Fixed pricing lacks an interaction between changing traffic conditions on the

network and motorists' willingness to pay. Conversely, in dynamic pricing the toll is

updated based on demand prediction and varying traffic conditions. As examples of

dynamic pricing applications, we refer to the 1-15 lane in San Diego and 1-394 high-

occupancy toll (HOT) lane in Minnesota (Cambridge Systematics, 2006; Supemak et

al., 2003; Yin and Lou, 2009). Base price for 1-15 varies from $0.50 to $4.00

depending on the time-of-day and the price can be adjusted in real time in response to

the traffic conditions. The toll price on 1-394 varies from $0.25 to $4.00 and can be

adjusted as often as every 3 minutes based on look-up tables. The FastLane project in

Tel-Aviv adopts if-then rules for the adjustment of the toll with the objective of

maximizing revenue and maintaining desired travel times (Bar-Gera, 2012). The

idea is depicted in Figure 2.1. Recently, several new dynamic pricing projects have

been initiated in the US, including the 1-495 and 1-95 Express Lanes in Virginia and

the NTE TEXpress and LBJ TEXpress projects in the Dallas-Fort Worth area, where

the toll is adjusted based on the observed congestion levels in the network.

Travel time, Decrease toll -1.0
T, ---------------.-- ---------- Toll is changed if predefined

Shor T- 2 ---------- ------- - -------- ------- thresholds on travel time
T. ....... --- - ----------- and toll are exceeded.

T4 ------------- --------- -To keep smooth reaction,
T - - ----- --- - ---------- -a hysteresis is used to

ensure that "increase fee
criterion" is not at the same

Increase tol +10 level of travel time as
T ------- ------- --------------- -------- "decrease fee criterion"

Long
Min toll Max toll toll

Figure 2.1 Illustration of rules used by Tel-Aviv
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2.2 Reactive and predictive tolling strategy

State-of-the-practice for dynamic pricing mostly considers rule-based methods or

look-up tables (Chung and Recker, 2011). More complicated algorithms have been

studied in the literature. There are reactive vs predictive (also referred as proactive

and anticipatory) methodologies.

Reactive dynamic pricing determines time-varying tolls in response to prevailing

traffic conditions, and the idea has been utilized also for ramp metering (Papageorgiou

et al., 1997). On the other hand predictive dynamic pricing methodologies incorporate

the uncertainty in the system and dynamic pricing is carried out based on predictions.

There are different conventions in terms of the way the uncertainties are taken into

account: some consider scenario-based dynamic pricing and some others integrate

dynamic pricing with traffic simulators in order to represent supply and demand as

realistic as possible. Another distinction lies in the way the dynamic pricing decisions

are applied to the real traffic system. Some of the studies consider an offline setting

while others aim at having real time optimization for toll pricing, which is challenging

in terms of computational time. In the remainder of this section we will give place to

different studies that have different conventions in terms of the above mentioned

concepts.

Li and Govind (2002) developed a decision model for assessing the tolling

strategy for managed lanes. The model assumes fully informed traveler, fixed total

demand and a certain proportion of drivers never using toll lane regardless of toll rate.

The toll rate us jointly determined by the willingness to pay, time saving and flow on

the two lanes.

Zhang and Levinson (2005) developed a road pricing model on a network of

autonomous highway links. These links are assumed to be competitive and

independent, and the objective is to maximize their own profit. Both decentralized

autonomous links and centralized government control are considered to generate the

pricing strategy.
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Nagae and Akamatsu (2006) presented a case where a manager can switch

between two levels of the toll in order to maximize the revenue taking into account

the dynamic uncertainty of transportation demand. A dynamic programming

formulation is adapted and an adjustment cost is considered for switching between the

levels in order to avoid fluctuations.

Y. Wang et al. (2009) proposed a self-adaptive tolling algorithm for HOT lane toll

optimization problem. Firstly, optimal flow ratio is determined based on observed

traffic speed and toll changing pattern. Secondly, logit route choice model is used to

calculate the proper toll rate to match the optimal flow ratio. Simulation-based

evaluation in VISSIM for SR167 in Washington demonstrates the capability of the

tolling algorithms in responding to real time traffic change.

Martin et al. (2009) presented a calibrated VISSIM model that integrates with

HOT lane pricing. External travel route choice model is developed to capture drivers'

route choice based on logit model. Travel time and traffic condition output is obtained

from VISSIM simulation. Toll rates are updated to meet the predetermined proportion

of vehicles that should be allowed on HOT lane.

Morgul (2010) employed traffic simulators Paramics and TransModeler for the

evaluation of pricing algorithm. Toll rates are dynamically updated to be reactive to

traffic conditions in a real time setting. The algorithm is of a rule-based type based on

the observed occupancy and speed.

Jang et al. (2014) proposed a reactive pricing methodology based on the

distribution function of value of time across the population. The toll rate is updated to

react to the latest traffic condition. They present results with different objective

functions including revenue maximization and delay minimization on a 14-mile

freeway segment in the San Francisco Bay Area.

Boyles et al. (2015) incorporated departure time choice into the evaluation

framework for HOT lane tolling. Drivers are divided into two groups; strategic drivers

make their departure time choice so as to minimize expected generalized cost, and
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choose either free lane or HOT lane, while captive drivers always choose free lane

with random departure time. Various toll algorithms were compared under varying

input demand.

Yin and Lou (2009) proposed two dynamic pricing approaches for managed toll

lanes: feedback-control approach (Figure 2.2) and reactive self-learning approach

(Figure 2.3). The pricing decisions are based on real time traffic conditions and the

objective is to improve the free-flow travel service on the toll lanes while maximizing

the freeway's throughput. A logit model is estimated in real time with a Kalman

filtering technique, using the observed flow, travel time and toll rates. In an extended

version of their model, they introduce heterogeneity in the logit model.

Toll Toll rate Real-world traffic/
generator Traffic estimation

Traffic data

Figure 2.2 Feedback control

Toll Toll rate ,Real-world traffic/
generator Traffic estimation

Calibrated Traffic data
parameters Willingness to pay

I learning I

Figure 2.3 Reactive self-learning

Dong et al. (2011) proposed an anticipatory control for the pricing problem where

the predicted traffic conditions are considered in order to generate the toll. As

illustrated in Figure 2.4, the toll is determined by adjusting the previously predicted

toll based on the deviation from the desired level. The dynamic pricing is integrated

with DYNASMART, a real time traffic estimation and prediction system, which

enables the modelling of users' response to price and road condition.
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state Traffic
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Figure 2.4 Anticipatory control

2.3 Optimization-based tolling strategy

Another approach, compared with reactive control, is to formulate the decision of

road pricing strategy as optimization problem. Often there are two fundamental parts

of such framework: formulation of performance objective and traffic modelling. The

performance objective is often very flexible, and may vary by researches.

Joksimovic et al. (2005) formulated the pricing problem as a bi-level optimization

problem, with the upper level model describing the network performance with given

toll values, and the lower level model capturing traffic dynamics, route choice and

departure time choice. Analytical form of DTA model is used to apply on two-path

simple network. User heterogeneity is considered by assuming class-specific value of

time.

Michalaka et al. (2011) developed a scenario-based toll optimization model in

order to take into account the uncertainties in traffic demand. A two-stage stochastic

formulation is adopted. The first stage determines the targeted inflows with the

objective of maximizing the throughput of the freeway while ensuring a desirable

density on the toll lane. The second stage optimizes the toll that would meet the

targeted inflows. The scenario-based optimization minimizes the difference between

the resulting and optimized demand on toll lane in high-consequence scenarios.

L. Yang et al. (2012) formulated a distance-based pricing problem on the basis of

a stochastic macroscopic traffic flow model. Model assumes that switching traffic

flow has no impact on the density evolution of free lane, and travel time on free lane
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is not affected by tolling. A numerical algorithm is proposed for achieving optimal

tolls in real time with the objective of maximizing total expected revenue.

G69men et al. (2015) developed the simulation model by three modules: demand

generation, consumer choice and simulation for traffic dynamics. The traffic dynamics

are modelled in the same way as the mesoscopic simulations used in DYNASMART.

With the objective to be maximizing total revenue for the whole simulation period,

different optimal policies are proposed to obtain the optimal time-dependent tolls.

Further researches use traffic simulators to capture both traffic dynamics and

traveler behavior through the embedded models. Compared with analytical form of

DTA model usually applied on simple testing network, simulation is more capable of

capturing the complexity of large-scale network, and more applicable to modelling

real-life network.

S. Xu (2009) reviews different pricing strategies and proposes a simulation-based

optimization approach in an offline setting, where a toll optimization module sends

the optimal toll to the real traffic system. Toll optimization module interacts with

DynaMIT so that the dynamic pricing methodology has a predictive nature. The

objective is to minimize the total travel time on the network assuming that total

demand is fixed regardless of the toll rate.

Zou and Kulkarni (2013) developed a modelling and optimization framework to

address the optimization problem for ramp metering and road pricing for High

Occupancy Toll lane. Paramics is used as simulation model for traffic dynamics, and

genetic algorithm based optimization engine is deployed to interact with traffic

simulator and find optimal solution.

Toledo et al. (2015) developed a simulated-based control framework for real time

toll optimization. Macroscopic traffic simulation model is used to describe traffic

dynamics, and a logit model is used to predict drivers' route choice. Consistency

between predicted travel time and information provided to users are achieved by

28



running iterations until convergence. Exhaustive search is used to solve the

optimization problem

However, simulation for a long-scale network is often associated with high

computation costs, and non-closed-form simulation model makes it hard to directly

apply traditional optimization techniques. To address the high computational cost,

surrogate-model approach, which is useful to solve a black-box optimization problem

(Liem, 2007), has been proposed to approximate the true simulation function and

reduce number of runs of simulation.

Surrogate-based optimization represents a class of optimization methodology,

which utilizes surrogate modelling techniques to search for the optima. In such a

framework, traditional optimization algorithms like gradient-based or evolutionary

algorithms are only used for sub-optimization, while an upper-level surrogate model

(or response surface model, meta-model) is used to improve the design efficiency and

reduce number of runs of the high-fidelity, expensive simulation model (Han and

Zhang, 2012).

X. Chen et al. (2015) proposed a simulation-based optimization algorithm to

develop optimal traffic signal timing plan for a urban network, with a lower accuracy

analytical model approximating the high accuracy simulator to improve

computational performance. Trust-region algorithm is adapted for the optimization

problem to make joint use of low-fidelity model and high-fidelity model in Amisun.

He et al. (2016) built a simulation based optimization framework for a time-

varying pricing problem. To solve the multi-objective and constraint optimization

problem, regression Kriging model, which is one typical type of function used for

surrogate model, and infill strategies are used to approximate the true function.

DynusT is used as the high-fidelity simulator to evaluate the input points.
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2.4 Summary

The literatures can be generally categorized into three types: analytical approach,

feedback control and optimization-based.

The analytical models usually have sound mathematical property, which makes it

possible to study complex derivation of the model. The first-best pricing theory, for

example, aims to set the pricing to be equal as the marginal cost of the road users.

However, while these theories provide fundamental insights to the tolling problems,

they can hardly be applied to real-world traffic system and highway tolling problems.

One main advantage of feedback control is its capability to react to real time

changes in traffic conditions. Main challenges for feedback control lies in the control

parameter tuning, which mainly relies on trial and errors in current research, and there

is no standard for selecting the most suitable parameter value to achieve the

predefined goal. Also, if the objective becomes more complicated than simply

maintaining free-flow condition on managed lane, such as maximization of revenue or

minimization of average travel time, feedback control is no longer a feasible approach.

Optimization-based approach offered the possibility of considering more

complicated objective, and it is more flexible in including different constraints. While

solving the optimization problem helps achieve the optimal control strategy,

computation time and efficiency should be considered and well addressed if the

optimization process in done in real time manner. If optimization is combined with

simulation-based DTA model, the network complexity, traffic dynamics and users'

travel behavior can be better captured.
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3 Methodology

3.1 DynaMIT

In this research project, DynaMIT (Dynamic Network Assignment for the

Management of Information to Travelers) is used to guide dynamic pricing decisions.

DynaMIT is a mesoscopic simulator developed by the MIT ITS Lab that provides

dynamic state estimation and prediction of traffic conditions. It combines models of

travel demand and supply in order to estimate demand and traffic conditions and

perform short-term predictions.

In real time applications, DynaMIT operates on a rolling horizon where

estimation and prediction intervals are performed successively. The prediction horizon

can be specified depending on the type of application. One main strength of the

software is that the predictions provided by DynaMIT are consistent with traffic

conditions that the users will face when they make their decisions (Bottom, 2000).

Demand

Disaggregate demand representation is employed in DynaMIT to model

individual traveler's pre-trip and en-route decision. Individual's socioeconomic

characteristics and access to real time information is considered during the decision

process. Aggregate demand representation is used for time-dependent OD matrix. The

historical OD flows are adjusted by DynaMIT in the following two stages (Ben-Akiva

et al., 2010a):

(1) Drivers' response to real time information captured by disaggregate behavior

model, which predicts travelers' departure time change, route choice and route

switching.

(2) Online calibration of aggregated OD matrix based on real time traffic

surveillance data.
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Supply

The simulated network in DynaMIT consists of static and dynamic components.

While the static part represents network topology, the dynamic part captures traffic

dynamics. The main classes of models are employed in DynaMIT to capture the

complexity of the network traffic flow:

(1) Capacity associated with road elements, incidents, controls.

(2) Deterministic queueing models for queueing part.

(3) Macroscopic speed density relationship for moving part.

The simulation of traffic operation is time based, and the process is divided into

two phases: update phase and advance phase. The traffic dynamics like densities and

speeds for road segments are updated during update phase, while the vehicles are

advanced to new positions during the advance phase.

Route choice model

Route choice model in DynaMIT is categorized into pre-trip and en-route choice

models. Here, we present the general structure with main features. It is formulated as

a path size logit model, in which a path size variable is included for considering the

overlapping of the routes (Bekhor et al., 2002). The utility function for path i is given

as follows:

Vi = yGCj + C, 3.1

where GCj is the generalized cost and C represents all other terms (e.g. early/late

arrival, trip purpose, path size, etc) in the utility function including the path size. i is

the scale parameter that represents the price parameter since we have a generalized

cost specification. GCj is specified as follows:

GCj = VOT x TTj + Tolli 3.2

where TT is the travel time, VOT is the value of time for the given individual

traveler, and Tolli is the toll value imposed on path i. VOT is assumed to be
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randomly distributed across each traveler group according to a lognormal distribution.

Then is probability for the given traveler to choose path i is:

P= - expVm) 3.3
EjE~jexp(vj)

where J is the full set of possible paths considered for the given traveler.

Dynamic Trqffic Assignment

DynaMIT combines the models presented above to estimate and predict traffic

network state and generate traffic information. For example, at the end of a time

interval (e.g. 8:00 a.m.), DynaMIT performs state estimation using data collected

during the last time interval (e.g. 7:55-8:00 a.m.). The estimated state of the network

at 8:00 a.m. and the input toll rates are then used to generate state prediction for a

future horizon (e.g. 8:00-8:20 a.m.).

State Estimation: Historical OD matrix, observed traffic surveillance data and

information provided to travelers are passed to DynaMIT for state estimation. The

estimated parameters (OD matrix and other key model parameters) would be obtained

from the online calibration model, and then loaded into supply model. The estimated

traffic network state and parameters would be used as inputs for state prediction.

State Prediction: Without measurement from the traffic surveillance system, the

prediction modules uses the estimated network state as a starting point for prediction,

and the most recently travel time guidance as trial strategy to solve the fixed-point

problem. Autoregressive process is used to predict future OD matrix, and similar

demand/supply models are used to obtain a revised travel time guidance. The module

would run iterations until convergence in order to generate consistent information and

guidance.

Figure 3.1 and Figure 3.2 illustrate the main modules of state estimation and

prediction, and the impact of tolls rates for each module.
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Figure 3.2 Road pricing in DynaMiT state prediction
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3.2 Modelling approach

The proposed modeling approach is an adaptive integrated simulation-

optimization framework for dynamic toll optimization that is depicted in Figure 3.3.

Toll optimization interacts with state prediction in order to determine the optimal toll.

The impact of toll on travel behavior is embedded through route choice models. The

optimal toll value is sent back to the traffic surveillance system for the

implementation of the updated toll.

Traffic
DynaMIT 4 __Sensor data Surveillance

State Estimation Speed/count Sysem
Estimated traffic state System
Calibrated parameters

DynaMIT Optimization
State prediction Module

Run Optimal Toll rate
System Toll iterations to (and predicted travel time)

Performance Rate reach best
toll vector

Algorithm:
Toll SPSA

Optimization GA

Figure 3.3 The adaptive integrated simulation-optimization approach

3.3 Optimization problem formulation

3.3.1 Rolling horizon scheme

The novelty of the proposed dynamic pricing methodology is that the optimization

model is in a complete interaction with the prediction capabilities of the simulator as

seen in Figure 3.3. It is developed in a rolling horizon manner so that as new

information is received from the prediction module, the toll is re-optimized. We

provide the terminology we use for the rolling horizon:
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* Tolling interval: Defines how frequently the toll is optimized. It is flexible

in our framework.

* Optimization horizon: Defines how far ahead we are optimizing. This is

also flexible in the proposed framework.

" Prediction horizon: Defines how far ahead the prediction module of

DynaMIT is performing traffic predictions. This is also flexible and there is a

clear trade-off between the accuracy of the prediction and the length of the

prediction horizon.

We provide the notation used for the toll optimization problem in Table 3.1. In

Figure 3.4 we illustrate the rolling horizon toll optimization. The vector of decision

variables for the toll is represented by $= ( ... , P). Since the optimization needs a

certain computational time, the toll for the first tolling interval will not be

implemented meaning that we will need to use the previously optimized toll value.

The computational time for toll optimization is aimed to be less than one tolling

interval. Therefore, in the figure the optimization horizon is shown to start with the

next tolling interval and the toll for the first interval is represented by k. We optimize

the toll for the next T intervals and in the next tolling interval we will start another

optimization. k2 will be equal to P*, which is optimized in the first tolling interval.

We investigate two versions of the rolling horizon optimization:

* Opt version 1 - Same toll during the optimization horizon: In this version,

we optimize a single toll value for a given managed lane segment during the

optimization horizon. However, since we start another optimization routine

in the next interval, implemented tolling at each interval may still be different.

Referring to Figure 3.4, at the first tolling interval the optimized tolls will be

equal to each other, i.e. P*3 = P* = .. = P*. At the second tolling interval

we will implement P* and re-optimize the toll for the subsequent intervals in

the optimization horizon.
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* opt version 2 - Different toll for each tolling interval in the optimization

horizon: In this version, we optimize a different toll value for each tolling

interval in the optimization horizon. This version is a generalization of the

first version and the solution typically takes longer since the dimension of the

search space increases.

Optimization horizon

Prediction horizon

11-T

A2 P2 --- PT+1

Start
time

LI

Tolling
interval K

Figure 3.4 Illustration of the rolling horizon scheme.

B
3.3.2 Mathematical formulations

Table 3.1 Notation for toll optimization problem

Parameters

I Number of managed lanes (or tolling segments) indexed by i.

T Number of tolling intervals in the optimization horizon indexed by t.

qcr Critical flow on the managed lane, which varies according to the total flow in

order to maintain an efficient use of the managed lane.

Vcr Critical speed on the managed lane in order to avoid congestion. This is a

fixed value determined according to the network conditions.
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CaV Penalty on the deviation from the critical speed.

aq Penalty on the deviation from the critical volume.

aP Penalty on changing the toll with respect to the previous tolling interval.

Variables

sit Decision variable - The toll rate on managed lane i at tolling interval t.

qit Number of vehicles entering managed lane i at tolling interval t as a function

of the toll rate.

vit Average speed on managed lane i at tolling interval t as a function of the toll

rate.

We present two formulations for the toll optimization problem. In the first

formulation we maximize revenue and in the second one we consider maintaining

certain traffic conditions on managed lanes while maximizing revenue. Note that the

framework is flexible to accommodate different objective functions.

Model 1 - Revenue Maximization

We maximize total revenue without any constraints on the network conditions with

the following model:

max q,,
i=1 t=1

s.t. (vit, qit) = DynaMIT(P)

LB it UB

3.4

3.5

3.6

The objective function is the total revenue collected through the tolls on

managed lanes. Constraints 3.5 maintain that the predicted speed and volume for each

managed lane segment and tolling interval are provided by DynaMIT as a function of

the toll vector. Since DynaMIT has various modules we cannot explicitly represent

the function. Constraints 3.6 define the lower and upper bounds on the toll. Upper
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bound is typically determined by the transport authority and the lower bound could be

zero.

The presented formulation is the general case (Opt version 2) where each

tolling interval in the optimization horizon has a specific toll variable. Opt version 1

can be represented with a toll variable A so that each tolling segment i has a single

toll value during the optimization horizon.

Model 2 - Revenue Maximization subject to Traffic Conditions

In this formulation, the revenue maximization is subject to conditions on the network.

These constraints can be in various forms. Here we consider constraints on speed and

volume on the managed lane. The model is given as follows:

1 T

max q,,,, 3.7
i=1 t=1

S. t. Vit >! Vcr 3.8

qit > qcr 3.9

(vit, qit) = DynaMIT(P) 3.10

LB Pit UB 3.11

The objective function 3.7 and constraints 3.10-3.11 are the same as before.

Constraints 3.8 and 3.9 maintain conditions on speed and volume respectively. The

speed needs to be above a critical value on the managed lane so that the congestion is

avoided. Volume is also aimed at being above a critical value in order to avoid very

little usage of the managed lane. The two constraints together aim at keeping the

managed lane uncongested, i.e. running above the desired speed, but at the same time

efficiently utilized, as illustrated in Figure 3.5.

Here it should be noted that vcr should vary over time depending on the total

demand level, and should be calibrated in real time. The main purpose of introducing
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such a constraint is to evaluate the system's reaction to different restrictions

operation performance, and to test if the system is running the optimization in

expected manner. When applying on a real-world network, the specification

constraints will be further studied to fit the need from road operators.

- Typical speed
density relationship
for moving vehicles
in DynaMIT

-Parameters
calibrated for
segment groups

0 -00

'c

-

<-

Desired traffic
condition
on toll link

vcr- - - - -- - -

0 50 100 150 200 250 0 500 1000 1500

density (veh/mile) volume (veh/hr)

Figure 3.5 Illustration of traffic condition constraint

2000

The model presented in 3.7-3.11 introduces hard constraints on the deviation

from critical volume and speed. However, it would be more realistic to allow certain

deviations with penalties since it is not easy to satisfy the constraints especially in

peak hours. Constraints 3.8 and 3.9 can be moved to the objective function with

weights analogous to lagrangian multipliers such that when the constraint is not

binding there is no penalty. We present the modified model as follows:

max tq,,+ a min(v, -- v,0)+a -Lmin(7 q,,0) 3.12

s.t. (vit, qit) = DynaMIT(P) 3.13

3.14LB Pit ! UB

The objective function 3.12 consists of three terms. The first term is the total

revenue obtained in the entire optimization horizon as before. The second term is the

40

on

an

of

C -



penalty on the speed deviation meaning that if the speed on a managed lane goes

below the critical value it will be negative and reduce the objective function value.

Similarly, the last term is the penalty on the volume. The critical volume varies based

on the total flow such that it will increase as total flow increases in order to keep a

balanced level of traffic volume on the managed lane and the free lane. The presented

Model 2 formulation adopts Opt version 2, and Opt version 1 can be represented with

a toll variable 8 .

3.4 Testing approach

3.4.1 Close-loop testing framework

In the optimization framework, DynaMIT is used as a tool to generate the optimal

tolling strategy. In order to evaluate the tolling strategy, there are generally two

approaches: field test and simulation-based evaluation. While field tests are expensive

and technically difficult to implement, the simulated output are usually analyzed to

evaluate the control strategy. One potential deficiency of simulated-based evaluation

lies in the fact that the strategy is both generated and evaluated in the same simulator.

The bias results from the same traffic flow dynamic and traveler behavior models

used to generate and evaluate strategies, and this setting would invariably

overestimate the traffic system improvement from the strategy.

In order to test our modeling approach, we use a microscopic traffic simulator,

MITSIM, which represents the real-life traffic surveillance system given in Figure 3.6.

Therefore, a closed-loop approach is built in a loop with a microscopic simulator and

a mesoscopic simulator. The software interface that developed to operationally link

DynaMIT and MITSIM provides a seamless facility for the exchange of information

between DynaMIT and MITSIM in real time (Ben-Akiva et al., 2002a; Rathi et al.,

2008).
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Figure 3.6 Close-loop testing framework

Interaction between components

(1) MITISM runs the simulation for the current interval, and send to DynaMIT traffic

surveillance data (e.g., loop detector count and speed), accident report, and traffic

messages disseminated to the drivers.

(2) DynaMIT receives the latest traffic data and uses it for state estimation and state

prediction.

(3) The optimization module optimizes the toll in interaction with the state prediction

based on pre-defined objective functions and constraints.

(4) The travel guidance information and the generated optimal toll rate are then sent

back to MITSIM.

(5) MITSIM runs traffic simulation for next interval with the strategy and travel

guidance from DynaMIT, and again outputs new traffic surveillance data to be fed

back to DynaMIT.

Experiment set-up procedure

(1) Generate network file in both MITSIM and DynaMIT, including network topology,

specification of nodes, links, segments, lane, lane connections, etc.

(2) Calibrate MITSIM against real-world filed data.
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(3) Run MITSIM with calibrated parameters and output simulated traffic surveillance

data.

(4) Calibrated DynaMIT against the MITSIM simulated output.

The full calibration process for a real-world traffic network will be described in the

case study section.

3.4.2 MITSIM

MITSIM is a microscopic traffic simulation model that evaluates the impacts of

alternative traffic management system designs, traveler information systems, public

transport operations, and various ITS strategies at the operational level and assists in

their subsequent refinement. MITSIM can evaluate systems such as advanced traffic

management (ATMS) and route guidance. MITSIM was developed by MIT's

Intelligent Transportation Systems (ITS) Program (Q. Yang et al., 2000; Q. Yang and

Koutsopoulos, 1996).

MITSIM represents networks at the lane level and simulates movements of

individual vehicles using car-following, lane changing, and traffic signal response

logic. Probabilistic route choice models are used to capture drivers' route choice

decisions in the presence of real time traffic information provided by route guidance

systems. MITSIM is designed as a testbed for evaluating traffic management systems.

Driving behavior model

The driving behavior models deal with tactical and operational driving decisions,

mainly acceleration and lane changing. Driver behaviors are mainly controlled by two

models: acceleration model and the lane-changing model (Ben-Akiva et al., 2002b).

The acceleration model determines the longitudinal movement of a vehicle under

three possible regimes: free-flowing, car following and emergency, while the lane-

changing model captures a lane-changing action with three levels of decision-making:

the decision to change lane, the choice of lane to change to and the gap acceptance
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behavior to perform the lane change.

Travel behavior model

The travel behavior models include both pre-trip and en-route path choices.

Drivers in MITSIM may have either predefined paths or compute them online.

Depending on whether set of paths is predefined for the traveler or not, a path-based

route choice model or a link-based route generation model would be used (Ben-Akiva

et al., 2010b).

The effects of traveler guidance and tolls on route choice are captured by the

route choice models. MITSIM classified the drivers to be informed and uninformed,

where the informed drivers would make route choices based on updated travel time

which incorporates real time traffic condition. If en-route traveler information is

available to drivers, they will update their route choice whenever the new information

is sent to them. There is also a diversion dummy variable penalizing drivers'

switching from the previous route. Uninformed drivers rely on habitual or historical

travel time to make route choice decision.

3.5 Summary

This chapter first described how to take into account the impact of road pricing on

drivers' route choice in traffic simulators. Then the framework is developed for

optimization of real time tolling strategy. The mathematical formulation of

optimization problem is proposed with multiple forms of objective functions. A

testing approach is proposed to incorporate DynaMIT and MITSIM running in a

close-loop framework.
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4 Application on synthetic network

4.1 Overview of synthetic network

The closed-loop approach presented earlier will be the platform for generating

simulation experiments for different case studies. In this chapter, the aim is to have an

understanding of the impact of toll optimization on network conditions through

different scenarios. Therefore, we present results only with DynaMIT. We use a

simple solution algorithm for the numerical experiments in this chapter such that we

have an exhaustive search with $0.05 of increments.

For all the formulations considered in this chapter, we introduce a small penalty

on changing the toll with respect to the previous tolling interval if the revenue gain is

below a predetermined threshold value. This term, a,, ,i -# /,(#) is introduced in

order to avoid fluctuations on the toll due to very small changes in the objective

function value. The penalty value, ap, is arranged such that a change in toll is avoided

when the revenue gain is below the threshold. We assume a value of 70, which means

that in order to have a change of $0.05 in the toll, it should bring at least $3.5 of

revenue during the prediction horizon.

Free Lane

O Destination
Managed Lane

Figure 4.1 Network representation for the simple example.

The network chosen for the numerical experiments is presented in Figure 4.1.

There are two possible paths from origin to destination. One path goes through a Free

Lane (FL) and the second one goes through a Managed Lane (ML), where users need

to pay a toll in the entrance after the bifurcation. There are two lanes on both FL and
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ML and the capacity is assumed to be 3900 veh/hr for each. Maximum allowed speed

on both the FL and the ML is 70 mph. The simulation horizon is 6:30-9:00, first 30

min being the warm-up period. The toll is optimized every 5 min, meaning that the

tolling interval is 5 min. The prediction horizon is considered as 20 min. The

optimization horizon is considered as 15 min so that the toll is optimized for 3 tolling

intervals starting from the next tolling interval as illustrated in Figure 3.4.

The demand profile is assumed to be increasing such that for the four consecutive

30 min intervals during 7:00-9:00, it is 3600, 3900, 4200 and 4500 veh/hr respectively

as in Table 4.1. Such a profile is considered in order to see the change in toll values as

a reaction to increasing demand. As mentioned before, VOT is assumed to be

distributed across the population and the mean value is assumed to be 15 $/hr.

Table 4.1 Input demand profile

Time interval Demand (veh/hr)

6:30-7:00 (warm-up) 3600

7:00-7:30 3600

7:30-8:00 3900

8:00-8:30 4200

8:30-9:00 4500

4.2 Results

We present different experimental results in the remainder of this section. First of

all we compare the results obtained with Model 1 and Model 2. Secondly, we

analyze the impact of different VOT distributions, namely different mean values.

Finally, we compare Opt version 1 and Opt version 2 in order to see if there is a

significant loss when optimizing a single toll value for the entire optimization horizon

for each tolling segment. Note that except this last experiment all the results are

obtained with Opt version 1.
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Model 1 vs Model 2

We first present results with Model I which has an objective function of revenue

maximization. In Figure 4.2 and Figure 4.3 we present the DynaMIT simulated flow

and speed, respectively. As expected, the flow on FL is increasing and the speed is

decreasing as a consequence of the increasing demand profile. On the other hand, ML

is kept running at the maximum speed with a relatively steady flow. This is achieved

by increasing the toll as illustrated in Figure 4.4. In the first hour, the toll is steady at

$0.5 and increases gradually to $0.65 and $0.7. Note that, the penalty on changing the

toll avoids fluctuations.
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Figure 4.2 Simulated flow (Model 1)
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Figure 4.3 Simulated speed (Model 1)
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Figure 4.4 Optimized toll values (Model 1)
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Next, we analyze the results of Model 2, which considers traffic conditions while

maximizing revenue. The critical speed on ML is assumed to be 65 mph and the

critical volume on ML is assumed to be 1200 veh/hr between 7:00-8:00 and 1500

veh/hr between 8:00-9:00. As previously mentioned, the critical volume is adjusted

based on the total flow in order to better adapt to changing demand patterns.

The simulated flow and speed are presented in Figure 4.5 and Figure 4.6,

respectively. It is observed that the condition on FL is better compared to Model 1

mainly because the volume on ML is controlled to be above the critical value. ML is

still around the maximum speed but goes below that few times during the simulation

horizon. The optimized tolls are lower compared to Model 1 as presented in Figure 4.7.

The average toll value is around $0.4. Therefore the resulting total revenue is lower

compared to Model 1 as presented in Table 4.2 and Table 4.3 under Setting 1. Figure

4.8 displays the objective function for different toll values for the tolling interval

08:25-08:30. If we were to maximize revenue only, the optimal toll for this interval

would be $0.65. However, in the existence of the speed and volume penalties, the

optimal value shifts to $0.4 as shown in the figure. The speed penalty decreases and

the volume penalty increases as toll increases.

Managed Lane Managed Lane
Free Lane Free Lane

_ C

I II II I I II li i iiiIII I I 1 111 I t2I In 7I In

Time Time

Figure 4.5 Simulated flow (Model 2) Figure 4.6 Simulated speed (Model 2)
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FigiUre 4.8 System performance at different toll rates.

Having constraints on speed and volume, which are introduced as penalties in the

objective function, results with lower revenue as expected. Since the aim of the

penalties is to have an uncongested and a better utilized ML, the throughput on ML

increases without leading to significant speed decreases, which in turn alleviates the

conditions on FL.

The results of Model 2 depend on the values of penalties and critical volume and

speed. When the critical volume on ML is increased or the penalty on volume is

increased, optimized tolls go lower and as a result the revenue is lower. On the other

hand, as the critical speed on ML is increased or the penalty on speed is increased, the

tolls need to be higher in order to maintain speed conditions and a higher revenue is
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obtained. We present results with additional penalty settings in Table 4.3 for Model 2

for illustration purposes. When we compare Setting 1 and 2, we see that an increased

penalty on volume results with a lower revenue since more drivers need to be attracted

to ML. When we compare Setting 2 and 3, the increase in speed penalty results with

higher revenue since the tolls are optimized at higher values in order to have fewer

drivers on ML.

Table 4.2 Revenue and Throughput for Model 1

Model 1

Opt Opt

version 1 version 2

Average toll ($) 0.580 0.572

Total revenue ($) 946 947

ML throughput (veh) 2161 2163

FL throughput (veh) 7716 7716

Table 4.3 Revenue and Throughput for Model 2

Model 2 (Opt version 1)

Setting 1 Setting 2 Setting 3 Setting 4 Setting 5

a, = 3.0 a( = 3.0 aV = 6.0 av = 3.0 aV = 3.0

Qq = 1.5 aq = 3.0 aq = 3.0 aq = 1.5 ag = 1.5

VOT=15$/hr VOT=15$/hr VOT=15$/hr VOT=10$/hr VOT=20$/hr

Average toll ($) 0.404 0.344 0.350 0.258 0.540

Total revenue ($) 915 864 869 605 1219

ML throughput (veh) 2840 3140 3124 2842 2821

FL throughput (veh) 7039 6740 6755 7037 7058

Impact of VOT

In this section we analyze the impact of lower (10$/hr) and higher (20$/hr) VOT with

Model 2. In Table 4.3, Setting 1 corresponds to the regular case with 15$/hr. Setting 4

and 5 represent the lower and higher VOT cases, respectively. When VOT is lower

the optimized toll values are lower since ML is less attractive to drivers. When the

VOT is higher the tolls increase which results with higher revenue. Across the three

versions, the throughput of ML is similar which is intuitive as the optimization model

decides on the tolls based on VOT for matching a similar target of attracted drivers.
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These results show that different behavioral parameters are reflected in the results

through the embedded choice models in DynaMIT.

Same vs Different Toll during the Optimization Horizon

Finally, we analyze the results with Opt version 1 and Opt version 2 using Model 1.

The aim of the analysis is to see how much we lose when we assume a single toll for

the entire optimization horizon.

It turns out that for our simple example the two versions have quite similar

network conditions and total revenue. Opt version 1 has a total revenue of $945.5 with

an average toll of $0.580 and Opt version 2 generates a revenue of $947.4 with an

average toll of $0.572, as illustrated in Table 4.2. When we think about the needed

computational time, if we have 10 possible toll values for each tolling interval in our

exhaustive search, Opt version 1 has a dimension of 10. On the other hand, this is

10 x 10 x 10 for Opt version 2 since the toll is different for each tolling interval in

the optimization horizon (assuming 3 tolling intervals). Since Opt version 2 will

always need more computational power and the results are not significantly different,

Opt version 1 might be preferred for real time studies.

4.3 Summary

The results suggest that the framework generates consistent results. An increasing

demand profile is considered and this results in an increasing pattern of optimized

tolls as expected. When constraints are introduced to maintain traffic conditions, the

resulting revenue is lower compared to pure revenue maximization. However, such

constraints alleviate network conditions in general. Furthermore, when drivers have a

higher willingness to pay, the optimized tolls are higher as expected.
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5 Case study on NTE network

In this chapter, a case study on NTE TEXpress Lanes network in Texas is presented to

demonstrate the application of the optimization framework on a real-life highway

corridor network.

5.1 Overview of NTE network

5.1.1 Network

The North Tarrant Express project developed a 13.3-mile TEXpress Lanes. Drivers

can travel the NTE TEXpress Lanes from 1-35W across 1-820 (Northeast Loop) to

SH-121/183 (Airport Freeway), just beyond the SH-121 split, with no stop-and-go

traffic along the way. The entire road network for NTE TEXpress network is shown in

Figure 5.1. The corridor network is extracted and modeled in both DynaMIT and

MITSIM. The simulated network includes general purpose lane, managed lane, on-

ramp/off ramps. The network representation is manually generated from the original

computer-aided engineering drawings. The center lines of each road segment are used

to determine the starting point, ending point and curvature of each segment.

NTE TE Xpress Lanes

.k

N

i0

SGETSEG ENI ~ ~ ,*

Figure 5.1 NTE TEXpress Lanes network inap

There are totally 146 nodes and 167 links in the highway network. Each link is

divided into several segments for an accurate representation of network geometry, and
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there are totally 266 segments. Based on the network topology, 246 OD pairs are

selected to make sure that each origin and destination combination is feasible on the

network.

5.1.2 Tolling in practice

The highway operator is currently implementing real time tolling based on

professional intuition so as to keep the traffic flow on managed lane no lower than 50

mph. As traffic levels and demand increase, the toll price changes to keep vehicles

moving. Once traffic volumes drop, the price goes down"1 . So generally the toll is

higher during rush-hour periods on the weekdays, and lower during non-peak periods

at other times of the day and on the weekends. Table 5.1 shows an example of average

toll rates for Eastbound 1-820 East Entrance Ramp during different intervals in the

morning peak hours. The general pattern is a higher toll value during 6:30-8:30 AM

on weekdays, and lower tolls during off-peak periods.

Table 5.1 Average tolling rate for Eastbound 1-820 East Entrance Ramp (G3)

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

06:00 AM $0.95 $3.00 $3.08 $3.08 $2.94 $2.93 $0.91

06:30 AM $0.95 $3.68 $3.70 $3.70 $3.51 $3.55 $0.91

07:00 AM $0.95 $3.99 $4.06 $4.04 $3.75 $3.83 $0.91

07:30 AM $0.95 $4.05 $4.17 $4.11 $3.82 $3.88 $0.91

08:00 AM $0.95 $4.00 $4.10 $4.08 $3.82 $3.85 $0.91

08:30 AM $0.95 $3.89 $4.02 $4.04 $3.83 $3.82 $0.91

09:00 AM $0.95 $2.94 $3.06 $3.18 $2.96 $2.90 $0.95

10:00 AM $0.95 $1.89 $1.94 $1.97 $1.88 $1.83 $0.95

The NTE TEXpress Lanes are comprised of two tolling segments:

- Toll Segment 1 (indicated in purple in Figure 5.1) runs from 35W to the

Northeast Loop / Airport Freeway interchange, near North East Mall

- Toll Segment 2 (indicated in blue in Figure 5.1) begins at the Northeast Loop

/ Airport Freeway interchange and extends to Industrial Boulevard

http://www.ntetexpress.com/pricing/how-pricing-is-determined
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The tolling strategy is segment-based, and implemented in the following ways,

- The toll rates are presented on a pricing sign before the toll gantries so that

travelers have enough time to decide whether to enter the managed lane or not

Figure 5.2 shows an example of entrance ramp.

- Pricing sign will also be presented on managed lane before entering the next

toll segment, so that travelers may choose to exit managed lane if they are not

willing to pay the toll rate for next segment. Once travelers enter a tolling

segment, they are charged for that segment.

- Full rate is charged at toll gantries located at the beginning of each toll

segment, and a predefined discount factor is used to calculate the toll rate at

other gantries along the toll segment. See Table 5.2 for discount factors at

each toll location. This factor is usually fixed within a day, and cannot be

changed real time as toll rates.

=T

AIRPORT FWY
NORTH

IRA ENTRANCE,MYETPIEU EXIT 23A

,j,, Hihway G(>[ rFW ZQ,-

Figure 5.2 Illustration of Airport Fwy North Entrance, Exit 23A1 1

I2 http://www.ntetexpress.coni/maps/nte-texpress-lanes-entrance-ramp-maps
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Table 5.2 Discount Factors by Gantry

Discount Factors by Gantry

Segment 1 Segment 1 Segment 2 Segment 2

Westbound Eastbound Westbound Eastbound

gantry factor gantry factor gantry factor gantry factor

5 0.25 3 1.00 16 1.00 9 1.00
8 0.75 6 0.50 11 1.00
10 1.00 7 0.50 12 0.75

13 0.50

5.1.3 Data

The highway road operator CINTRA provided three types of data for the week of June

7th -June 13th, 2015 as follows.

Sensor data

Flow and speed data are obtained from the MXD detectors located along general

purpose lane, managed lane and ramps in the network. The distance between the

detectors is approximately 2000 feet. The data is reported to the control center every

minute, and there are totally 135 sensors available. Figure 5.3 gives an example of

such data provided by a specific sensor.

Manual inspection is conducted to identify the inconsistent and erroneous data

before applying the off-line calibration. Firstly, those sensors with many "NA" or zero

values for speed and flow are eliminated. Next, some malfunctioning sensors are

identified and eliminated from further use. Specifically, if there is an on-ramp/off-

ramp between sensor i and sensorj, and another sensor k located at the ramp, then the

law of flow conservation can be used to check if the three sensors demonstrate

inconsistency in counts, and further investigation would identify which one of them is

erroneous.
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Speed variation sensorid 57 vN2AG310E Volume variation sensorid 57: vN2AG31DE
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Figure 5.3 Five-minute speed and volume for sensor no.57

The aggregated sensor data can also provide insights on the demand pattern of the

overall network and the variation of demand levels across weekdays. Figure 5.4

illustrates the total traffic volume change aggregated by each segment type. Figure 5.5

illustrates the average sensor speed change aggregated by each segment type. For

example, ElG represents eastbound segment 1 general purpose lane, while W2M

represents westbound segment 2 managed lane.

Generally, the morning peak hours last from 6 AM to 9 AM, while the evening

peak hours start early afternoon, and end around 8:30 PM. The peak direction is

eastbound in the morning and westbound in the evening. The operation speed is stable

and higher than 60 mph for the managed lane. On the contrary, there is significant

speed reduction observed on general purpose lane, with the average speed decreasing

below 40 mph during congestion.
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Figure 5.4 Variation of total sensor count for each segment group
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Figure 5.5 Variation of average sensor speed for each segment group
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A VI data

AVI data is provided by the road operator and captures the information for

vehicles equipped with transponders. Most of the AVI tag detectors are located at the

on-ramps and off-ramps connecting general purpose lane, and a few of them

connecting managed lane. See Figure 5.6 for locations AVI tag detectors across the

network. Each record of the dataset includes vehicle transponder ID and time stamp.

Although AVI data is collected whenever vehicles equipped with transponders pass a

tag detector, it is not available to the control center in real time. Instead, AVI data for

the entire day is communicated back to control center at the end of each day.

Figure 5.6 Distribution of AVI tag detectors

Before utilizing AVI data, it is helpful to investigate the market penetration rate of

transponders for traveler using the network. The segments with both sensors and AVI

tag detectors are selected to calculate penetrate rate for morning period, and the

results are average by the toll segment where the AVI tags detectors are located. The

results in Figure 5.7 shows the variation of penetration rate on June 8, and generally

the rate on managed lane is higher than general purpose lane and ramps.
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Figure 5.7 Morning peak penetrate rates grouped by segment type

To further make use of the AVI data in OD expansion, the penetration rates are further

aggregated to the node level. The definition of penetration rate for an

origin/destination node is defined as the proportion of vehicle with transponders

entering/exiting the network through the given node. The average penetration rate of

nodes for each segment group is listed in Table 5.3.

Table 5.3 Penetration rates at nodes grouped by segment group and weekday

Segment June. 8 ' June. 9"' June. 10t' June. 11"' June. 12"
Group

ELC 30.29% 30.51% 30.57% 28.89% 28.57%

E2C 37.55% 38.50% 41.48% 38.37% 36.29%

WIC 35.37% 35.980o 35.53% 35.37% 33.08%

W2C 38.60% 39.50% 39.14% 40.43% 36.57%

Transaction data

Transaction data is collected at each of the 11 toll gantries. Each record of the

dataset includes vehicle plate ID, vehicle transponder ID (if equipped), Gantry ID,

vehicle type, time stamp and toll rate. It should be noted that the proportion of

vehicles captured by toll gantries is approximately 99%, and both equipped and non-

equipped vehicles are captured.

Since transaction data captures each individual vehicle, they can be treated as

both sensor data (i.e. provide 1-min count data) and AVI data (i.e. provide vehicle tag

ID and time stamp), so that the three types of data are combined as complementary
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datasets. Figure 5.8 and Figure 5.9 illustrate traffic flow detected at every toll gantry

during the peak hours on June 8, while Figure 5.10 shows the real time toll rates for

each toll segment. Note that in real-life implementation, there is discount rate,

overcharge or exemption for particular types of vehicles. For example, heavy trucks

are subject to higher charges compared to single occupancy vehicles. High occupancy

vehicles can pay less if they activate HOV status for the desired HOV periods via web

site or the mobile app before entering the TEXpress Lanes.

G3 S -- Eastbound Segi
GS --- Eastbound Seg2

-G Westbound Segl
G7 -- Westbound Seg2
G8
G9
G10
Gi
G12
G12 - -/ -G 13
GIG

I I I I I I I I I'I

Time (5min)

Figure 5.8 Volume detected at toll gantries during 6:00-9:00 on June 8th
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Figure 5.9 Volume detected at toll gantries during 12:30-20:30 on June 81h
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5.2 Offline calibration methodology

5.2.1 Overview of model calibration for DTA model

In order to utilize DTA models to evaluate the impact of traffic control strategies on a

real-life network, the first fundamental step is to replicate the real-world demand

patterns and traffic dynamics in an accurate way inside the traffic simulator. This

requires a systematic approach to estimate all the key parameters in the DTA model

based on observed traffic data, and this procedure is called calibration.

Based on the frequency and time of calibration, there are two main types of

model calibration: offline and online. Offline calibration uses historical traffic

database (e.g., planning OD matrix, traffic sensor data, etc) to estimate the parameter

values so that the simulator can replicate the average traffic conditions of the network.

However, some long-term effects, like type of day and seasonal effects, may

compromise the estimation results. Online calibration differs from offline in that it

uses the offline calibration results as historical database, and adjusts the parameter

values based on real time traffic surveillance data, so that the short-term factors like

weather and incidents are better captured.

The parameters from both the demand and supply sides need to be calibrated

against the observed data. The typical parameters on demand side include time-

dependent OD matrix, travel behavior model parameters (e.g., route choice), etc. On

supply side, modelers are interested in calibrating driving behavior model parameters

(e.g., car-following model, lane changing), segment capacity, speed-density function

model, etc.

To capture the interaction between demand and supply components, latest

research uses simultaneous demand-supply calibration framework to formulate the

offline calibration problem (Balakrishna et al., 2007). The objective function is the

weighted sum of various types of deviations between observed traffic measurement

and simulated traffic measure (e.g., sensor count, speed). Despite the application of

SPSA as a solution algorithm in numerous studies (Ma et al., 2007; Paz et al., 2012;
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Vaze et al., 2009), the deterioration of performance with growing size of network and

simulation period motivates the development of a better algorithm. Lu (2013)

proposed a weighted SPSA (or W-SPSA) algorithm combining the principles of SPSA

with a more reliable gradient approximation method, which outperforms SPSA for

large-scale networks.

5.2.2 Calibration with multisource traffic data

Growing use of AVI technologies provides useful point-to-point flow information for

estimating network OD matrix, and travel time data is a typical example. When

formulating the typical objective function for OD estimation problem, an additional

term is added to consider the deviation of simulated link travel time from observed

link travel time extracted from AVI data (Djukic et al., 2015; Vaze et al., 2009).

However, this approach does not fully utilize the useful information of OD

distribution which can be inferred from AVI data. One main challenge is to properly

relate AVI data with OD distribution. Antoniou et al. (2006) applied Kalman filtering

to solve the OD estimation problem based on state-space modeling. A diagonal

scaling matrix is assumed as given input to capture the market penetration pattern of

the probe vehicles in the total vehicle population. However, this study did not address

how to obtain the scaling matrix (or market penetration rate matrix).

To further address the market penetration issue, Van Aerde et al. (1993) proposed

an approach to account for both the temporal and spatial variation of market

penetration rates. While temporal variation is captured by defining market penetration

rate for a certain period t, spatial variation is considered by calculating penetration

rate for each OD pair. Then the estimate of demand for a given OD is calculated by

number of probe vehicles captured for that OD and the estimated penetration rate.

Asakura et al. (2000) proposed a similar approach to estimate the percentage of true

OD flow observed with the AVI system, and developed the relationship between

population OD flow and observed OD flow in a linear equation.

Due to potential bias and difficulties in estimating market penetration rate, some
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studies take a different approach for the use of AVI data. Zhou and Mahmassani (2006)

proposed a new OD estimation method with AVI data, without the need to estimate

market penetration rate. The objective function for OD estimation combines deviation

for link counts, historical static demand and AVI split fractions. The formulation is

based on the assumption that AVI tagged vehicles are a representative subset of the

entire population. Similarly, Dixon and Rilett (2002) extracted the OD split proportion,

choice proportion and travel times from AVI data as measurement from AVI data, and

incorporated them with link count data to conduct OD estimation. AVI penetration

rate is not considered in the study.

5.2.3 Calibration of close-loop framework

As we are using MITSIM to mimic the real-world traffic system, calibration of both

DynaMIT and MITSIM are required before running the simulation. Depending on the

role of each simulator, the traffic data as input for calibration is different. Figure 5.11

illustrates the best procedure in which in the first step the real-world traffic

surveillance data is used to calibrate parameters in MITSIM. Then MITSIM would

run with the calibrated parameters and output the simulated traffic data. The MITSIM

simulated observation would be provided as input for DynaMIT calibration in the

second step. The main idea is to replace the real-world traffic system with MITSIM,

and use MITSIM to evaluate different control strategies generated by DynaMIT.

Or-iginal Inu

IITSINI Sensor
n u I ation count/speed

Calibration of Simulated sensor Calibrated OD Calibration of A data
DynaNIIT count/speed and parameters N ITSim

Simulated Gantry data
travel time Priori

- ----- - --- ----- --- M a i01) Matrix

Figure 5.11 Calibration for close-loop fr-amework
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5.3 Calibration approach for NTE network

In this case study, the main complexity of calibration work is how to make efficient

and effect use of AVI data in MITSIM offline calibration, and account for the

difference for two types of drivers. The network and data for our case have the

following characteristics:

(1) The AVI detectors are installed at all of the origin and destination nodes (i.e.

at all the entrance and exit ramps to both general purpose lane and managed

lane). Therefore, a full OD matrix for vehicle equipped with transponders can

be constructed.

(2) For a number of the origin/destination nodes, there are also traditional loop

detectors providing link count information. So it is possible to directly

calculate the market penetration rates for these nodes, and then apply them to

each OD pair through algorithms like bi-proportional apportionment.

(3) For some nodes, direct measurement of sensor count is not available.

However, sensor count can be inferred from sensors located at upstream and

downstream segments on main road.

(4) For origin/destination nodes with no market penetration rate, it can be

assumed that traffic entering/exiting the same road segment group has similar

market penetration patterns, and the average of penetration rate for all nodes

in the particular segment group can be used to as an approximation.

(5) To further account for the potential bias and error in constructing OD matrix

from AVI data and expanding it to population OD, the expanded OD is only

used as seed values for further calibration.
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Figure 5.12 Procedure of offline calibration with multi-source traffic data

The calibration procedure is illustrated in Figure 5.12, and detailed steps are described

as below:

Define grou) of drivers

(1) Drivers with transponders (w/)

(2) Drivers without transponders (w/o)

Define generic/group-specific parameters

Table 5.4 shows the parameters to be calibrated for two groups of drivers.

Table 5.4 Parameters to be calibrated for two groups of drivers

Drivers w/ Drivers w/o
Parameters DynaMIT MITSIM

transponders transponders

Time-dependent OD matrix xw/ XW/X

Route choice parameters:

a) Travel time coefficient, VRC,w/ PRC,w/o

b) VOT distribution

Driving behavior parameters NA VDB
Supply parameters: NA

Speed-density function, etc.

I
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Calibration for drivers with transponders

Construct xW/ directly with AVI data.

Select a set of major OD pairs with long enough travel time to differentiate

managed and general purpose lanes, and where there are AVI detectors

available to capture and distinguish drivers choosing managed and general

purpose lanes. See Figure 5.13 for an illustration, where the black path on

managed lane and grey path on general purpose lane are two comparable

routes with the same OD.

I $ IL

- OVAt-

Figure 5.13 Example of selected OD pair'

(3) Extract travel time and travel cost information for each driver and for each

path. For each driver, extract tt. ML (travel time using managed lane), tt. GP

(travel time using general purpose lane), cost.AML (monetary cost for paying

the toll to use managed lane), cost. GP (0), and observed path choice (use

managed lane or general purpose lane). By developing the binomial logit

model, travel time coefficient and VOT can be estimated for vehicles with

transponders.

Calibration for drivers w/o tra nsponders

(1) Expand x,/ to get seed values for x,/o

Figure 5.14 illustrates the expansion of the OD matrix with two origin

and two destination nodes. In Figure 5.15, the cells highlighted in gray in

the table above represent the base OD obtained from AVI data, while the
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cells in gray in the table below represent the sensor counts collected at each

node. One possible method is to use Iterative Proportional Fitting (IPF) to

obtain estimates of POP0iDj in cells highlighted in yellow so as to satisfy

the sensor count constraints and maintain the seed distribution of AVIOiDj-

ML

G.P

01

Figure 5.14 Network for illustration
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02

Total AVI vchs
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AVIO,. 0 ,

AV102-D1
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AVIO,

AV1
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I,

D, D2 Sensor Count

01 POPO,-.Dl POPo1'-D 2  fo1

02 POP02-D1  PPOP 2 -D 2  fo2
Sensor count fD, fD2

Figure 5.15 Illustration of OD expansion using AVI and sensor data

(2) Extract link travel time

Select a set of major paths in the network, and extract time-dependent travel

time from AVI data. In DynaMIT/MITSIM, we can add up simulated link

travel time to get path travel time.

(3) Define objective function

The offline calibration is formulated as optimization problem 5.1.

Constraint 5.2 shows the relationship between simulated outputs and model

inputs. Constraint 5.3 gives the upper and lower bound of parameter values.
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minZ(x, P) [Z (M" M')+ Z2(X, Ix")+ Z3 5.1
1h=1

subject to:

Mi =f(xh p, G) 5.2

(I ,d,) (xop) (UX ,u,) 5.3

where G is the road network; x is the time dependent OD matrix; @

includes other model parameters; MO and Ms are the observed and

simulated time-dependent traffic measurement, respectively (i.e. sensor

count, sensor speed, travel time); xa and pa are priori values for timed

dependent OD matrix and other model parameters, respectively. The

goodness-of-fit measures z1 ,z 2 and z 3 capture the error between the

simulated or estimated quantities and their measured or a priori values.

Here component z, consists of three terms: the deviations of simulated

sensor counts C, sensor speed V and link travel time L from real

observation. The variables to be optimized are x,/. and PRC,w/o, with xw/

and ORC,w/ being known inputs from previous steps. More detailed

specification of z1 ,z 2 and z 3 refers to (Ben-Akiva et al., 2010a; Lu, 2013).

While the general approach for DTA calibration considers the

discrepancy between estimated parameters and historical values, in our

study, high-quality historical values for behavior model parameters and OD

matrix are not available, and the provided historical values are only used as

starting points for calibration. Therefore, only deviation between simulated

and observed measurements are considered for calibration.

(4) Solution algorithm

W-SPSA (Weighted - Simultaneous Perturbation Stochastic Approximation
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is used as solution algorithm, see (Lu, 2013) for details. The way SPSA

estimates gradients would result in performance deterioration for a real-

world traffic system in that all the parameters are perturbed at the same

time no matter if the change in measurement values is caused by this

parameter or not. A weighted gradient approximation method is used to

exclude the influence from irrelevant measurement when approximating the

gradient, and measurements are weighed based on their correlation with a

specific parameter. After running N iterations of W-SPSA, further

perturbation will switch to SPSA. Therefore, the main advantage of W-

SPSA compared with traditional SPSA is its capability of reducing the noise

generated by irrelevant measurements where correlations between

parameters and measurements are sparse.

(5) Goodness of fit:

Normalized Root Mean Square Error (RMSN) is used as a typical

measurement of goodness of fit:

N

N (M o-Ms) 2

RMSN= N 5.4

i=I

where N is the number of observations; MP and M are observed and

simulated values for the ith measurement, respectively.

5.4 Calibration results

Due to the limitation of DynaMIT and MITSIM in simulating different types of

vehicles with their own route choice models, in this section, initial calibration results

with only sensor data are demonstrated. The simulation period is from 5:30 to 9:00

AM on June 8, 2015. The first half an hour (i.e. 5:30-6:00 AM) is set as warm-up
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period for which the deviation of sensor counts and speed are not incorporated in the

output performance measure. The time interval for OD and sensor counts is set as 5

minutes.

MITSIM calibration

Two groups of parameters are to be calibrated for the case study network: driving

behavior parameters and travel behavior parameters.

Driving behavior models mainly include car-following model and lane changing

model. Seed values for these model parameters are obtained from previous studies.

For general methodologies and typical model values of MITSIM calibration, we refer

to (Ben-Akiva et al., 2000; Ben-Akiva et al., 2002b; Darda, 2002).

Travel behavior parameters include route choice model parameters and time-

dependent OD matrix. A static planning OD matrix for a typical weekday is provided

by road operator, and then used to generate an seed time-dependent OD matrix.

Specifically, the original planning OD matrix provides the typical daily demand for

each OD pair, and with the help of sensor data, we can calculate the total network

sensor counts summed for each time period (i.e. every 5 minutes). Then the daily OD

matrix can be converted to time-dependent OD matrix to match the sensor count

variation throughout the day. This time-dependent OD matrix is used as seed value for

further calibration.

Figure 5.16 shows the observed sensor count versus the MITSIM simulated

sensor count with seed OD matrix and parameter values. Obviously, there is

significant deviation between the two sets of traffic flow data. After running W-SPSA

calibration codes, as shown in Figure 5.17 and Figure 5.18, most of the points are

close to the 45-degree line, which indicates that the simulated sensor counts and speed

are close to the observed sensor counts and speed.
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Figure 5.17 Observed count versus simulated count (5min interval) at last run
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Figure 5.18 Observed speed versus sIMulated speed (5min interval) at last run

DynaMIT calibration

After MITSIM is calibrated, the simulated sensor flow and speed are used as

inputs for DynaMIT calibration. On DynaMIT side, the parameter can be categorized

by demand and supply parameters.

On demand side, the MITSIM calibrated OD matrix and route choice model

parameters are used as the starting values for DynaMIT calibration.

On supply side, the parameters for speed-density relationship and segment

capacities are first fitted by field data using typical curve fitting methods. Note that

since not all segments have sensors on them, the sensor data are merged by segment

type. Figure 5.19 illustrates the speed-density plot for a particular road segment group,

and the red line represents the fitted curve. The fitted parameters will then further be

refined, jointly with demand parameters, by W-SPSA calibration codes.

Figure 5.20 illustrates the comparison between MITSIM simulated sensor count

and DynaMIT simulated sensor count, which generally shows good fitting.
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Figure 5.20 Observed count versus simulated count

Goodness-of-fit

Table 5.5 listed the goodness-of-fit for both MITSIM and DynaMIT offline
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calibration. The error rates are generally within the acceptable range, which indicates

that the offline calibration well replicated the typical real-life traffic condition on this

network in the two simulators.

Table 5.5 Goodness-of-fit for calibration

MITSIM

RMSN Count 32.8%

RMSN Speed 17.2%

DynaMIT

RMSN Count 9.8%

RMSN Speed 16.0%

5.5 Tolling Regulations

In the NTE TEXpress network, the road operator has to comply with contractual

requirements, i.e., regulations defined by Texas Department of Transportation when

imposing dynamic tolling. This section first illustrates the basic principles of

regulation, and proposes an extended formulation of the optimization model under the

tolling regulations. The aim is to demonstrate the capability of our framework to take

into account regulation constraints in industry.

5.5.1 Overview of regulation rules

(1) Segment toll is defined as the base toll rate multiplied by the toll segment length.

(2) Base toll rate cap is the upper bound of base toll rate (in dollar) per mile per toll

segment direction.

(3) The road operator cannot change the base toll rate more frequently than every five

minutes.

(4) If the road operator wants to set the base toll rate higher the base toll cap rate for a

toll segment direction, toll setting mode must enter mandatory mode. When in

mandatory mode, the road operator should comply with the following provisions:
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- At the end of each tolling interval, the measured average speed V and

measured average volume q are calculated by aggregating all sensors located

at the toll segment direction.

- If V is lower than vcr, base toll rate shall be multiplied by a flexible demand

factor between a lower bound DFIb and a higher bound DFub, and toll rate

will increase compared with previous toll (i.e. DFIb > 1).

- If V is higher than Vcr, depending on the level q, there is a set of pre-

defined rules to calculate a fixed demand factor DF. The base toll rate shall

be multiplied by DF, which may increase, decrease and maintain the previous

toll.

5.5.2 Mathematical formulation

The aim is to incorporate the regulations into the current framework, so that the

decision on whether to switch to mandatory mode or not is determined by field

surveillance data, while the optimizer should be capable of modelling and predicting

the decisions for future intervals based on the forecasted traffic condition.

Table 5.6 Additional notation for incorporating regulation rules

Tlit binary variable, whether we are allowed to enter mandatory mode or not.

6it binary variable, whether we decide to enter mandatory mode or not.

DFi, DFib lower and upper bounds for the demand factor

Here lit is input for the next interval based on field measurements (provided by

MITSIM in the closed-loop setting) and a variable to be optimized for the subsequent

intervals based on predicted traffic state. Similarly, DF't and DF'b are inputs for the

immediate next interval and variables for the subsequent intervals

Also, additional constraints are introduced to model the entering/existing decisions on

mandatory mode, and detailed interpretation of these constraints is explained.
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(Vi,,qi,)= DynaMIT(/) Vie I,te T

Ji, V Ri, Vie I,te T 5.6

d, ! M (61 ,_1) -1) + (1 / 100)(, - #c) Vie I,t e T 5.7

(DFi lb , DF ,bI, f Wi,,qi,) Vie I,t e {2,...,T } 5.8

SJfl DF < i /, eC+6,f _lD;" Vie I,te T 5.9

-- - -A M K/A ! #ij(t-,) + A+6M Vie I,te T 5.10

Equation 5.5: Predicted speed and volume are provided by traffic simulator

DynaMIT to evaluate objective function and also for the decisions in future intervals.

Equation 5.6: System cannot enter mandatory mode if not allowed by

measurements (for the next interval) or predictions (for future intervals).

Equation 5.7: If system was in mandatory mode in t- 1 and if the toll was above

the toll cap, system needs to stay in mandatory mode. For example, if the traffic

conditions are getting better, this enables that toll is reduced gradually based on

regulations.

Equation 5.8: Functions are predefined by road operator to get the lower and

upper bounds on the demand factor and the allowance to enter mandatory mode for

the future intervals based on predictions. Note that DF and -q values are inputs for the

first interval and variables for the future intervals.

Equation 5.9: If the decision is to stay in dynamic mode (6=0), then the toll is

optimized between 0 and toll cap, otherwise (6=1) toll rates follow the regulations in

mandatory mode.

Equation 5.10: Maximum change in the toll is imposed, and this constraint is

active only in dynamic mode (6=0), but will not be binding in mandatory mode (6=1)
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5.5.3 Testing on synthetic network

Initial results are demonstrated with the synthetic network presented in Chapter 4.

Demand profile is specified to have an increasing trend at 6:30-7:15 AM and

decreasing trend at 7:15-8:00 AM. The aim of this setting is to capture cases to enter

and exit the mandatory mode. Note that for this setting, toll cap is calculated as $0.95

based on segment length.

Figure 5.21 illustrates the optimal toll rates, where the system is capable of

reacting to the changing traffic demand input. System first decides to enter mandatory

mode because of the degrading traffic conditions on managed lane. Afterwards, due to

the decrease in traffic demand, the system is no longer allowed to stay in mandatory

mode, so it starts to gradually decrease toll rate so as to exit mandatory mode.

Figure 5.21 Optimal tolls with regulation rules

Table 5.7 lists the decision for each interval, which corresponds to Figure 5.21.

When the detected flow goes beyond the predefined threshold (highlighted in red), the

system is allowed to enter mandatory mode. On the contrary, when demand is

decreasing and congestion starts to relieve (highlighted in green), system is forced to

decrease the toll rates until exiting mandatory mode.
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Table 5.7 Optimal tolls with regulation rules

Time qspeed flow
(mph) (veh/2 lanes)

6:30
warm-up

6:40 0 --- 59.00 1536 0.65 0

6:45 0 --- 59.00 1656 0.80 0

6:50 0 58.55 1668 0.85 0

6:55 0 --- 58.15 1950 0.90 0

7:00 0 --- 55.70 2526 0.85 0

7:05 0 --- 53.35 2952 0.90 0

7:10 0 --- 52.95 3138 0.85 0

7:15 1 1.1 51.75 3492 1.00 1

7:20 1 1.15 53.10 3552 1.15 1

7:25 1 1.15 54.35 3522 1.32 1

7:30 1 1.1 51.30 3408 1.45 1
7:35 1 1 50.10 2844 1.45 1

7:40 1 0.95 52.45 2436 1.38 1

7:45 1 0.75 56.80 1890 1.04 1

7:50 1 0.75 59.65 1584 0.78 1

7:55 0 - 59.80 1614 0.93 0

8:00 0 --- 59.75 1662 0.88 0

5.6 Optimization results

Preliminary optimization is performed with calibrated OD parameters using only

sensor data as described in section 5.1.3. The simulation period is 5:30-9:00 AM, with

the first half an hour set as warm-up period. The starting toll rates for each segment at

5:30 AM is set as $2.50, $4.50, $2.50, $2.50 for segment group SlE, S2E, S1W, S2W,

respectively based on historical averaged toll rates. Tolling interval is 5 minutes, and

prediction horizon is 15 minutes. Exhaustive search is utilized for generating the

results. At each interval and for each toll segment, the system will search for the

+$0.10 and -$0.10 toll change compared to the previous interval. All the possible toll

value combinations for the four toll segments are evaluated using the predicted

revenue over the 15-minute prediction horizon as the objective function. The toll

vector with maximal predicted revenue in DynaMIT prediction is selected as the
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optimal control strategy to be sent to MITSIM.

The evaluation is performed in parallel by running the state prediction module of

DynaMIT independently for each toll rate input. The experiment is operated on a

computer equipped with Intel Core i7 CPU and eight cores. So eight toll rates can be

evaluated in parallel. The computation time for running the whole simulation period

with toll optimization is around 15 minutes measured in amount of CPU time.

Figure 5.22 (a) illustrates the optimized toll rates for each toll segment. The

optimized toll rates for S2E are higher. For other segments, the toll rates are relatively

stable and slightly increasing as time evolves. Compared to the base tolls in Figure

5.22 (b), which are the toll rates implemented and recorded by road operator on the

same day, the general pattern is similar, except that the base tolls are higher than

optimized tolls for all segments.

Here there are three cases for further comparison of traffic conditions

(1) "Optimized toll" case is simulated in the close-loop environment where

MITSIM received predictive travel time guidance and optimal toll rates from

DynaMIT every time interval.

(2) "Base toll (simulated)" case is simulated using MITSIM without guidance

from DynaMIT. The input toll rates are the values recorded by road operator

during the same time period. The simulated results are the same as the outputs

from off-line calibration.

(3) "Base toll (observed)" case is the observed traffic condition from field data.

Figure 5.23 (a), (b) and (c) compare the flow at gantries under different cases.

Figure 5.24 (a), (b) and (c) compare the simulated sensor speed aggregated by

segment group under different cases. There is some difference in traffic conditions

among three cases. But generally, the speed on managed lane is always maintained at

free flow speed. The flows under the three cases are generally consistent with the toll

rates, such that the number of vehicles passing the gantry decreases as the toll grows.
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Figure 5.22 Comparison between optimized tolls and base tolls
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To further compare the optimal toll strategy against the benchmark case, Figure

5.25 illustrates the comparison between optimized toll and base toll in simulated

revenue from MITSIM over time. The total observed revenue on field is $48612. The

total simulated revenue under calibration is $46186 with base toll rates. The total

simulated revenue is $48661 with optimized toll rates. Overall, the revenue values

provide a good match of the real-life conditions, and there is slight improvement.

Calibrated s e Optimized
Sb u Obrerveds Observed

iii

S t d sime me

(a) Calibrated vs. Observed (b) Optimized vs. Observed

Figure 5.25 Comparison of simulated revenue

These simulation outputs, analysis and comparison are preliminary and still need

to be further investigated for the following reasons:

(1) Possible explanations for lower toll rates compared with base toll may be

insufficient calibration of drivers' route choice model so that our model

underestimates driver's willingness to pay for using the managed lane.

(2) There might be different assumptions in drivers' access to travel time guidance

information. Also, in reality drivers may make their decision based on

additional considerations, like travel time reliability or vehicle type discount.

(3) The results need to be further validated with the field observed data to check if

the simulation captures the network bottleneck, congestion point, etc.
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5.7 Considerations on solution algorithm

Currently the preliminary results are based on exhaustive search, which requires

considerable computation time to search for the whole solution space. If the

optimization problem becomes more complicated, computational efficiency would be

a critical issue to address if the system is to be operated in real time manner. For

example, the growing number of tolling location, the increase in length of prediction

horizon and the larger network scale will all increase computational burden.

The optimization problem in this study is essentially to optimize for a black-box

function, since the value of objective function is evaluated by traffic simulator, and

there is no closed form for the output. When the framework is applied to a large-scale

network, computation time and efficiency should be addressed so that it can be

implemented in a real time manner. Typical approaches to solving optimization

problems with no closed-form expression include Stochastic Approximation methods,

Response Surface Methodology (Surrogated-based methods), Genetic Algorithm, etc.

Here genetic algorithm and surrogate-based methods will be discussed.

Genetic algorithm is preferable to solve problem with multiple local optima and a

large number of parameters (Q. Wang, 1997), which outperforms traditional gradient

based methods. Genetic algorithm has been previously used in solving transportation

problems like OD estimation (Zou and Kulkarni, 2013). Gupta et al. (2016) applied

genetic algorithm in solving dynamic road pricing problem as well. Genetic algorithm

with parallel evaluation of population using parallel and distributed computing

techniques was implemented in developing real time tolling strategy.

This algorithm will start by randomly generating a group of control strategies (i.e.

toll vectors) as initial individuals. These individuals will form the initial populations

or parent population with a predefined size N. Then these N individuals will be

evaluated in traffic simulation in a parallel and independent way, and the output

would be objective function value for each of the individual. Based on the ranks of the

objective function values, a new set of toll vectors which are called child population,

will be generated using a genetic operator. Typically crossover and mutation between
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different individuals will be conducted in this process. The updated generation of

population will be evaluated again in traffic simulator. The procedure of generating

new child population will be repeated until termination criteria is satisfied, which can

be a predefined maximum number of iterations or a threshold of improvement

between consecutive generations.

Surrogate-based optimization represents a class of optimization methodology,

which utilizes surrogate modelling techniques to search for the optima. It is referred to

as a technique that makes use of the sampled data (observed by running the simulation

model) to build surrogate models, which are sufficient to predict the output of an

expensive simulation run at untried points in the design space (Han and Zhang, 2012).

Surrogate modelling has been recently applied in simulation-based optimization for

road pricing (X. M. Chen et al., 2014) and signal timing (Osorio and Chong, 2015).

Figure 5.26 illustrates the general procedure of using surrogated-based methods if

DynaMIT state prediction is to be utilized as the high-fidelity model for evaluating

each sample point.

Design Space

DynaMIT Construct/Update Construct/Update
State prediction Surrogate Model CntutUdt

Surrogate Model

DoE

Surrogate Model (Design of Experiment)

No

Evaluate Optimal Data Fitting

Solution

Model Validation

[Termination Condition

Yes

Final Design

Figure 5.26 Illustration of possible framework using surrogate models
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El

Figure 5.27 further illustrates a possible way of utilizing surrogate models in the

real time optimization framework in this study. The potential capability of

computational time saving and its tradeoff with optimality still need to be further

investigated. Moreover, if surrogate models are to be built in real time, how to

intelligently use surrogate model and/or optimal toll rates from last interval to

optimize for the current interval can be interesting to further consider, since the

information from previous intervals may improve the initial sampling, and reduce the

design space for optimal solution. It might be possible to build surrogate models

offline based on historical database with different types of network state and demand,

so that the online efforts of building surrogate models for each interval may be

relieved.

DynaMIT
State Estimation

Online calibration of OD
and parameters (e.g., VOT) Surveillance:speed, count, AVI, etc

Current networkstate Real-world

Predicted OD and parameters traffic system

Strategy Generation Optimal Toll

Develop surrogate Optimization using (and consistent guidance)
model surrogate

DynaMIT Surrogate
State prediction Model

Figure 5.27 Initial design with surrogate-based optimization
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6 Conclusion

6.1 Summary

Road pricing, especially pricing on managed lanes, which is the focus of this

thesis, has a variety of aspects interesting for research. The framework of developing

road pricing strategy is also crucial for assessing the feasibility and effectiveness of a

managed lane project. Nowadays, communication and vehicle detection technology

has gifted planners and road operators with the ability to develop more efficient and

flexible tolling strategies to accommodate for the fluctuating traffic demand and

changing network states.

Extensive study on existing managed lane facilities reveals that most road

operators choose time-of-day strategy or dynamic tolling strategy to account for the

different demand levels throughout the day. The rules of toll updating, however,

mainly based on empirical data or professional intuition. Academic research on road

pricing mainly adopts reactive control, proactive control, optimization-based control.

The tool used for modelling traffic flow dynamics also vary from simplified,

analytical, macroscopic models to sophisticated, stochastic, microscopic models.

This thesis proposes a real time optimization framework for dynamic pricing on

managed lanes. The main characteristics of the proposed framework are:

(1) Real time: The system runs on a rolling-horizon scheme. Each time interval

traffic control center, DynaMIT, will receive traffic surveillance data, run the

optimization and return the optimal toll values to be implemented for the

immediate next interval.

(2) Prediction-based: The toll rates are evaluated based on the predicted traffic

condition and drivers' travel behavior. Therefore, for each possible solution,

we can forecast the impact of such a control strategy for network performance

and driver's behavior.

(3) Consistent: The system will generate guidance information for drivers in the

traffic system, and this guidance information is consistent in the sense that,
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drivers receiving the information on road will experience a similar travel time

given the path they have chosen and the toll charged on them.

(4) Adaptive: The system will calibrate the model parameters and OD matrix

embedded in the simulator in a real time manner, so that the latest field data is

utilized by the system to adjust the network state and driver behavior models.

Mathematical formulation of the optimization problem is proposed, and a close-

loop testing framework is developed which relies on the interaction between the toll

optimization model, the prediction capabilities of DynaMIT and the microscopic

simulation of MITSIM. The framework is first analyzed with numerical experiments

on a small example network with different formulations and behavioral assumptions.

The results demonstrated the capability of the system reacting to changing demand

and behavior models.

Then a case study on NTE TEXpress Lanes network is conducted to apply the

optimization framework on a real-life highway network. A number of practical issues

are addressed for the network, including field data filtering, extracting information for

vehicles equipped with transponders, study on the current tolling strategy, etc. For

calibrating the network and making better use of available data, a calibration approach

combining data from multiple sources is proposed. Initial calibration results with only

sensor count and speed are presented and evaluated.

To take into account the regulation rules from local government on managed lane

operation and constraints on tolling strategy, mathematical formulations are proposed

for these rules so that the system can provide tolling plan while satisfying all the

practical restrictions. Then preliminary results with optimized tolls are presented for

morning peak hours on a typical weekday. Optimal toll rates for each interval,

simulated network state and comparison with the benchmark toll strategy are shown

in the analysis. The results demonstrated the capability of the framework applying on

a large-scale network. The real time performance of the system is critical to be

maintained for large-scale networks. A few promising solution methodologies are

discussed and possible integration with the current framework is proposed.
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6.2 Future research

6.2.1 Travel behavior model

Drivers' route choice between managed lane and general purpose lane is one

fundamental part of the framework compared with urban network with no tolls.

Currently the route choice model embedded in the DTA model considers the typical

formulation of drivers' utility, and there is still room of improvement. Further study

may investigate the impact of travel time reliability, group-specific distribution of

model parameters, different specification for travel time/cost, etc.

Meanwhile, it would be interesting to extract more individual information for

transponders, and drivers' attributes can be interacted with travel time and cost to

better predict their route choice. For example, truck drivers may have significantly

different choice models compared with automobile drivers because they may have

their employers pay the tolls. Also, drivers' gender, age, residence location and other

demographic attribute may also enter the choice model. More realistic modelling will

include drivers' mode choice and departure time choice as well.

6.2.2 Efficient algorithm

One main difference of this study from previous study on toll optimization is that

we aim to run optimization in a rolling horizon scheme instead of one-shot

optimization at the beginning, so I am interested in extending our model to utilize

advanced optimization methods, possibly revised surrogate model, to improve

computational efficiency. Also, further research can be done to see how we can make

use of historical database to improve the efficiency of optimal toll searching. Possible

approach can be constructing a library of representative network states for a given

period of time. And for each network state in this database, an offline optimization

can be run to obtain the optimal toll rates for the next interval. Then during the rolling

horizon optimization, by matching the past network states with the ones in the

historical database, the search space may be reduced to the neighboring values of
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offline optimized toll rates.

6.2.3 Online calibration

Due to the important role of route choice model and its parameters in

determining drivers' choice between general purpose lane and managed lane, ideally

the route choice model parameters, instead of calibrated only offline once a day or

once a week, should be capable of changing dynamically to the latest surveillance

data as well. Challenges for this function include how to make joint use of AVI data

and sensor data in calibrating route choice parameters for every five minutes, how to

deal with drivers in the simulators whose observed route choice is different from

estimated, etc. Meanwhile, efficient solution' algorithm should also be developed for

online calibration so as to meet the real time optimization requirement.
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