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Abstract

Comfort is an important aspect of the transit passenger experience. Crowding can signif-
icantly decrease passenger comfort and disrupt service delivery, causing passenger travel
times to increase and even resulting in passengers being unable to board an arriving vehicle.
Reducing crowding is especially important to encourage ridership growth in the part of the
system most attractive to customers. However, due to high marginal costs of manual data
collection, crowding has not been extensively analyzed. With the advent of automatically
collected data systems, it is now possible to gain a more nuanced understanding on how pas-
sengers experience crowding as well as monitor conditions as ridership increases. This thesis
explores the use of passenger origin-destination inference to measure passenger crowding on
buses using the Massachusetts Bay Transportation Authority (MBTA) bus network as a
case study. There are three primary components of this research: vehicle trip level origin
destination interchange (ODX) scaling; development of passenger centric crowding metrics,
and crowding source contribution estimation.

The trip level scaling process enables the reliable estimation of passenger loads (account-
ing for those passengers not using smart fare media) for approximately 90% of MBTA bus
trips. Comparisons of ODX and Automatic Passenger Counter (APC) load estimates show
that while there is some inherent variability in the ODX derived estimates, many vehicle
trips have similar estimates. These ODX derived load and passenger flow estimates were
used to create passenger centric crowding metrics that consider many aspects of the pas-
senger experience. Results showed that the majority of crowding occurs on high frequency
routes during the peak periods as a result of building schedules around average peak loads
and slow travel speeds due to traffic congestion.

Next, using a classification tree methodology, the relative contribution that different
potential crowding sources have on creating crowding situations was estimated for each
route/direction/30-minute-time-period combination. While there were variations between
routes and time periods, most of the crowding observed appears to be derived from fixed
schedules not able to account for day-to-day fluctuations in demand or service reliability
problems that result in uneven headways causing loads on successive trips to vary widely.

The research concludes with a review of crowding intervention/mitigation strategies
including which strategies are more effective for each crowding source.
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Chapter 1

Introduction

Crowding is an important component of the public transit passenger experience. It

can significantly reduce passenger comfort and disrupt service delivery causing pas-

senger travel times to increase. In systems where vehicle miles of service have not

been increased enough to meet growing ridership, crowding results in a disincentive

to use transit on the very routes and at the times of day where demand is highest.

However, traditionally crowding has been expensive to measure and, as a result, it

has been difficult to manage. This thesis sets out to improve the ability to measure

passenger crowding on buses and therefore to manage it more effectively.

It is likely that crowded conditions create a larger negative perception of public

transportation disproportionate to the concentrated number of vehicle trips on which

it occurs. Crowding on a small number of high demand links affects the experiences of

a proportionally larger number of passenger journeys, so identifying when and where

crowded conditions arise can help to better understand the scale of the issue and

potential remedies for any transit agency.

This thesis proposes a methodology to estimate passenger crowding on buses us-

ing several automated data sources, including inferred passenger origin destination

interchange (ODX) as well as automatic passenger counter (APC) data. The Mas-

sachusetts Bay Transportation Authority (MBTA) bus network serves as a case study,

and a procedure is developed to estimate passenger crowding throughout the network.

ODX data is used to expand the coverage of load information from a sample of APC
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trips and estimate trip level passenger flows in addition to loads.

Using the newly estimated measures of crowding and a set of reasonable assump-

tions, the impact that various potential sources of crowding will be inferred for each

route, direction and time period in order to guide recommendations for reducing and

mitigating crowding. The goal is to guide a more effective use of resources rather than

to simply increase scheduled frequency for all crowded routes. Increasing scheduled

frequency is the most direct response to crowding and produces ancillary frequency

improvement benefits, but may not always be financially feasible so it is important

to develop a broad range of options.

1.1 Motivation

There are three primary motivations guiding this research:

1. Crowding has not traditionally been well investigated due to the large expense of

traditional data collection methods. Recent advances in automatically collected

data systems (ACDS) allow for a more nuanced understanding of the passenger

crowding experience and make it more affordable to monitor increased crowding

as ridership grows. Since crowding occurs on the routes and times of day when

demand is high it can have a disproportionate impact on discouraging ridership

growth.

2. Transit agencies are always budget constrained. Often times there are not

enough available funds to improve conditions in all crowded situations, while

simultaneously improving frequency, on time performance, and other elements

of the passenger experience. Therefore, there is a need to compare conditions

across routes and time periods in order to prioritize resource use.

3. While often caused by budgetary limitations, some agencies are also vehicle

constrained, making the identification of situations where crowded conditions

can be improved without increasing peak vehicle requirements important.

20



1.1.1 Passenger Centric Measurement

Passenger crowding is an issue that almost every transit agency faces. An Amer-

ican Public Transportation Association (APTA) survey in 2008 found that 85% of

responding agencies were experiencing crowding in some portion of their system.

(APTA 2008) [1] Crowding in vehicles and stations not only decrease passenger com-

fort, making a given service less appealing, but can also lead to unsafe conditions.

Therefore, it is important for agencies to continuously monitor crowding throughout

their system.

In the case of monitoring bus passenger crowding, traditional sampling methods

can provide an overview of crowding due to inadequate frequency for individual routes,

but crowding caused by headway and schedule adherence variability is more difficult

to measure.

As automatically collected data systems mature, agencies are able to develop more

passenger centric performance metrics. In addition to metrics based on operational

conditions, such as peak vehicle load or trip running time, data is now increasingly

available to better understand how the operation of the system affects passengers'

experiences. Both complete implementation of APC systems as well as utilization

of the ODX algorithm allow for nearly complete coverage of load estimates while

ODX also provides important additional planning information including passenger

flow estimates.

1.1.2 Resource Prioritization

Transit agencies often have to implement improvement strategies under budget con-

straints. In the APTA survey mentioned above, 91% of agencies faced limitations of

some form in their response to crowded conditions. Of these, 65% were limited in

their response by a lack of funds. (APTA 2008) [1] In these cases, it is important to

identify the highest priority routes and time periods to address the most prevalent

crowding. These situations could receive improved service as soon as schedules are

revised while lower priority routes could wait until more funding becomes available,
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and other operating strategies might be employed as well.

1.1.3 Strategy Assignment

Agencies also work within bus fleet size constraints. Of the agencies that faced limita-

tions in their response to crowded conditions, 28% were limited by a lack of additional

vehicles that could be introduced into the network. (APTA 2008) [1] In these situa-

tions, it may not be possible to improve conditions by increasing scheduled frequency

in the short term.

However, an agency may still be able to improve conditions systemwide by more

effectively utilizing the current capacity in operation. If routes with a high proportion

of crowding attributed to unreliability can be identified, then potentially systemwide

crowding can be reduced by improving reliability on the identified routes.

In addition, one can even imagine that if the operation of a current high capacity

but very unreliable route were improved substantially so that the resulting headways

were much more regular, the resulting improved service quality might attract more

ridership to fill the increased effective capacity.

1.2 Objectives

This thesis has two main objectives: 1) develop alternative monitoring measures and

an automated crowding diagnostic tool that allows for comparison and ranking of

conditions across a diverse set of routes; and 2) develop a methodology to infer the

sources of crowding for a route during a given time period which would help inform

the development of various crowding mitigation techniques to a diverse set of routes.

1.2.1 Alternative Crowding Measures and Diagnostic Tool

The first goal is to create a passenger centric crowding metric that moves crowding

measurement away from the traditional method of using the bus trip as the unit of

measurement. Instead, a set of alternative passenger-based metrics are explored. Al-
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though it is important to keep peak vehicle loads in mind when evaluating crowding

as there is a finite amount of capacity within each vehicle and bus trips with loads

nearing crush capacity have a high probability of denying passenger boardings, a tran-

sit agency should be primarily concerned with how passengers experience crowding

on their journeys.

Once a set of alternative metrics are proposed, an automated process can be devel-

oped to compare conditions among different routes. Converting the unit of measure-

ment from vehicles to passengers has the added benefit of enabling easier crowding

comparisons between routes of varying characteristics (length, frequency, ridership

patterns, etc...). Therefore, routes can be objectively ranked by the degree in which

their passengers face crowded conditions, allowing a transit agency to prioritize routes

and route segments on which to implement various crowding reduction techniques.

1.2.2 Crowding Source Determination

The second objective is to develop a methodology to determine the sources of crowding

for each route throughout the day. This could be used to help agencies more efficiently

address crowding conditions systemwide given finite resources. While increasing levels

of service and frequencies on a route will always decrease crowding, it may not be

the most efficient or effective method if a route has service reliability issues. In

that case, it might be more effective, for example, to work on improving on-time

terminal departure performance and introducing all-door boarding instead; and only

use additional vehicle resources on routes on which more crowding can be attributed

to scheduled frequency.

Crowding is a symptom of a problem, whether it be inadequate frequency or

schedule adherence. Identification of the primary source of the problem can enable

more effective action to mediate the problem.
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1.3 Methodology

To achieve the objectives mentioned in Section 1.2 a three phase process is used:

1. Develop a bus trip origin-destination-interchange (ODX) inference scaling pro-

cedure to provide estimates of both unlinked passenger origin-destination flows

and vehicle load profiles

2. Create crowding metrics that consider both the intensity and duration of pas-

senger crowding to evaluate crowding conditions across the entire bus network

3. Determine how much crowding can be attributed to various factors (i.e. sched-

uled frequency, headway variability, etc...).

1.3.1 ODX Scaling

Complementing APC information with ODX output is the basis for most of the anal-

ysis in this thesis. For transit agencies like the MBTA with high penetration rates

of reusable identifiable fare media and granular automatic vehicle location (AVL)

data, ODX provides estimates of passenger origin-destinations for most passengers

traveling within the system by combining automatic fare collection (AFC) and AVL

information. The resulting inferred OD matrix can be used to develop both a vehicle

load profile and a collection of individual and aggregated passenger origin destina-

tion flows. These two measures are used in the development of alternative crowding

metrics.

However, a percentage of passenger flows are not inferred in the raw ODX output.

In cases when a passenger's subsequent fare transaction does not meet a set of criteria

established in the ODX inference algorithm (temporal and spatial thresholds) or a

transaction is made in cash (therefore not accompanied by a subsequent transaction),

a destination for his/her trip cannot be inferred. There are also passenger trips

taken where there is no record in the ODX output. This occurs when a passenger

does not interact with the farebox on the vehicle or validation station at a bus stop

and therefore has no fare transaction. These two cases cause raw ODX output to
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undercount reality. A process described in Chapter 3 is used to scale the raw output

and create more accurate estimates of vehicle load profiles and passenger origin-

destination flows.

1.3.2 Metric Development

The scaled ODX output is then used to create various crowding metrics that can

be evaluated. The intent is to allow for comparison among all bus route/30-minute-

time-period combinations in the network to better understand the nature of crowding

throughout the system. At first, a systemwide analysis is done to show the distribution

of weekday crowding among routes and time periods. Then a ranking is produced to

identify the highest priority routes and time periods.

The primary metric used in this analysis is cumulative passenger crowding time

(CPCT), which is the cumulative amount of passenger time for which passengers

spend above a given crowding threshold. This metric takes into account both the

intensity (number of passengers above the crowding threshold) and duration (the

length of time in which passengers spend in crowded conditions) of crowding. This

can be calculated for each bus trip over a given time period (e.g., weekdays in March

2015) and combined in various ways to make comparisons (i.e., temporal distribution

of crowding on a given route on an average weekday or the distribution of crowding

among routes during a given time period.)

Additional metrics are used to estimate other dimensions of crowding. These

include the number of unique unlinked passenger trips on which a passenger experi-

enced crowded conditions, the number of unique passengers who had to stand for at

least a portion of their trip, and their average standing duration. These metrics are

important for further investigation into why a given route and time period has a high

amount of cumulative passenger standing time.

This will be accomplished while respecting the limitations of the current ODX

inference process, such as not being able to infer the specific vehicle a passenger

boards when he/she pays their fare at a faregate instead of onboard a vehicle, and

equipment (AFC, AVL) outages which cause entire vehicle trips to not be observed.
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Routes and periods for which this methodology does not well work will be identified

and noted.

1.3.3 Crowding Sources

Once the nature of crowding throughout the system is understood and routes and

times of high priority are identified, the effect that different potential sources have in

creating crowding conditions during each route/direction/time-period combination

will be explored. This will help agency decision makers select the most effective

strategy to address each crowding situation.

The first step is to determine how much crowding can be attributed to scheduled

frequency as opposed to "variability" factors. "Variability" factors are phenomena

that cause differences in loads between trips. This isolation of causes is accomplished

by comparing the amount of crowding we would expect on a route during a given time

period if every trip carried the same number of passengers (i.e., the total observed

demand divided by the number of vehicle trips scheduled) and passengers on each

trip had the same alighting distributions. Under some assumptions, this ratio is

the percentage of crowding that can be attributed to scheduled frequency while the

remainder can be attributed to variability factors.

Variability factors are then partitioned into a factor measuring the impact of

"dropped trips" (i.e., any scheduled trip not operated for any reason) and day-to-

day fluctuations in demand as well as within-period load variability factors. The

dropped trip factor captures the amount of crowding resulting from the difference

in actual versus scheduled frequency on a specific day. Day-to-day fluctuation in

demand captures the additional amount of crowding caused by surges in demand

on particular days assuming that passengers are evenly distributed among all actual

vehicle trips run during a particular length of time. Any additional crowding is

attributed to within-period load variability factors, which cause loads on vehicle trips

within a short time period on a specific day to vary. These are factors such as uneven

headways, poor schedule adherence and varying passenger alighting distributions and

arrival rates.
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1.4 Thesis Organization

This thesis is composed of seven chapters. The next chapter provides background

information and a literature review on this topic. It includes discussions on the theory

of passenger crowding, traditional crowding measurement techniques, applications

of detailed load information, uses of ODX, and the MBTA context in which these

methodologies will be applied. Chapter 3 describes the process used to scale ODX

and its validation results.

Chapter 4 describes how ODX can be used to create a passenger centric crowding

metric and applies these metrics to the MBTA network in order to gain a better

understanding of passenger crowding and identify when and where passengers are

facing the worst crowding. Chapter 5 discusses a methodology to determine the

source of crowding for a route during a given time period. Chapter 6 discusses po-

tential crowding reduction strategies and proposes crowding reduction programs for

the MBTA context under different resource availability scenarios. Finally, Chapter 7

provides a summary of research findings, recommendations for the transit industry,

and potential areas for future research.
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Chapter 2

Background

A measure of passenger comfort is an important component of transit agencies' eval-

uation of the level of service they are providing to their customers. A survey of rail

passengers in Australia found that a passenger's satisfaction with crowding accounted

for over 20% of their overall satisfaction with the service. (Thompson et. al. 2012) [21

Often times this is done through analysis of passenger loads on vehicles throughout

the network. This allows agencies to gain a better understanding of the conditions

passengers face while they ride. For example, someone who boards a vehicle with a

current passenger load above seating capacity will very likely not have access to a seat

and will have to stand for at least a portion of their trip, thus having a potentially

less comfortable experience than if a seat had been available.

2.1 Crowding

Crowded conditions as a psychological phenomenon can be defined as the point for

which a given person is experiencing more social interaction than desired. Often

times individuals regulate social interaction by controlling the amount of personal

space they provide for themselves. When this is compromised he/she feels crowded.

(Lepore & Allen 2000) [31 Many situations can arise throughout a transit system when

an individual's personal space is constrained to the degree where he/she might feel

crowded both in vehicles and stations.
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Being exposed to crowded conditions can have many negative health effects.

Mahudin et. al. (2011) [4] found that the more crowded passengers felt on their

transit journey the more stressed and exhausted they were likely to feel upon arrival

at their destination.

Passengers also experience two kinds of crowding: objective and subjective. (Li &

Hensher 2013) [5] Objective crowding is the set of physical conditions that a passenger

experiences. This is often what transit agencies measure and use to evaluate the

service they are providing. Common metrics are passenger density measures such as

vehicle load or passengers per square meter.

Subjective crowding is a passenger's perception of the conditions they face. This

is based on his/her objective crowding but is influenced by previous experiences,

expectations, and personal preferences. Two passengers facing the same objective

crowding could be facing very different subjective crowding if their values differ.

The latter is what passengers generally use to inform mode choice and trip making

decisions. (Thompson et. al. 2012) [2]

2.1.1 Objective Crowding

Objective crowding conditions have traditionally been measured as passenger density

of which there are multiple methods of calculation. Some agencies use vehicle loads as

a percentage of seated capacity often called a load factor. This allows for comparisons

among routes that use similarly configured but different sized vehicles.

Other agencies use standing density, a measure of how close passengers would need

to stand at different vehicle loads. This is likely a more nuanced metric compared to

load factors especially when comparing conditions across vehicles with very different

configurations. However, it assumes that all floor space is equally desirable and

that standing passengers will evenly distribute themselves throughout the vehicle.

(Tirachini et al 2013) [6]
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2.1.2 Subjective Crowding

Subjective crowding is more difficult to measure as it is very individualized. There

are many factors besides passenger density that can affect how someone perceives a

situation. Hirsch & Thompson (2011) [7] identified eight factors that affect a pas-

senger's perception of crowding: 1) Expectations of Conditions, 2) Environmental

Charateristics, 3) Quality of Communication from Transportation Provider, 4) Per-

ception of Personal Control of Situation, 5) Amount of Crowding Caused by Delays,

6) Perception of Risk to Safety and Health, 7) Passenger's Emotions, and 8) Behavior

of Other Passengers. This can also vary between cultures. Hall (1966) claims that

people from "contact" cultures where personal contact is an everyday occurrence are

less prone to feeling crowded than people from "non-contact" cultures.

However, objective crowding does play a significant role in how passenger's per-

ceive crowding. A meta-analysis of crowding studies performed by Wardman & Whe-

lan (2010) [81 found that crowding increases a passenger's "disutility" of travel time

(the amount of money an individual would be willing to pay to decrease travel time)

for both passengers standing and sitting. They were able to quantify this effect

through value of time multipliers. They found a positive correlation between load

factor and the value of time multipliers indicating that as vehicles become more

crowded travel time becomes more onerous for passengers. Table 2-1 describes their

findings. These higher disutility rates on routes and times of day when demand is

high act to inhibit ridership growth.

Recognizing different "disutility" rates can allow resource priorities to be set be-

tween increasing frequencies on low frequency routes to improve passenger accessi-

bility versus improving frequencies on high frequency, high demand routes to reduce

crowding.

The authors also mentioned that, although there was an inadequate amount of

research studying the effect that length of time spent in crowded conditions has on

a passenger's value of time to draw significant conclusions, they suspected that the

two were positively correlated as well.
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Table 2.1: Crowding Value of Time Multipliers by Load Factor

Load Factor Seated Standing
100% 1.17 2.14
150% 1.40 2.50
200% 1.66 2.92

Source: Wardman & Whelan (2010) [8]

2.2 Operational Impacts

Crowding also impacts a transit agency's ability to deliver a fast reliable service to its

customers. Lin & Wilson(1992) [9] find that passenger loads are positively correlated

with dwell time and that its effect increases as loads become higher. This increases

passengers' in-vehicle travel time.

Crowding can also affect a passenger's total journey travel time. If crowding

is prevalent through out a transit system and causes some vehicles to reach crush

capacity there is a possibility of passengers not being able to board the first vehicle

that arrives at his/her stop. This causes not only his/her expected travel time to

increase but also the variability of his/her possible travel times. Senna (1994) [10]

shows that passengers value both aspects.

Uniman (2009) [11] created a metric (Reliability Buffer Time) to evaluate how

this unreliability affects the amount of time a person allocates to make a trip. It is

the difference between the median travel time and a percentile that reflects their risk

aversion to being late (the 9 5th is commonly used) between an origin and destination

during a given time period. The more variable the travel times the more time a

passenger is required to allocate as a buffer in order to reach their destination at

the desired time. Therefore, even if a given passenger's trip is not delayed by denied

boardings, if they have been denied in the past they will have likely allocated more

time to make the trip than if travel times were more consistent.

Crowding on one vehicle can lead to crowding conditions across an entire route.

Adebisi (1986) [121 shows that variations in load from fluctuations in passenger ar-

rival rates can cause buses to bunch, two vehicles running in closer proximity than

scheduled, since higher loads cause longer dwell times. A vehicle on which more pas-
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sengers than average board will likely operate slower than average due to increased

dwell times at each stop. If passenger arrival rates return to average levels the fol-

lowing vehicle is likely to catch up to the first since its dwell times will be shorter

and, as a result, the gap (i.e., headway) between the following bus and its leader will

also decrease as each moves along the route, resulting in the following bus picking

up fewer and fewer passengers and traveling faster than average. The third vehicle is

then likely to experience a longer than average headway since the second is traveling

faster than average. It is likely to pick more passengers and travel slower than aver-

age. This process then repeats itself causing high load and headway variability along

a route.

2.3 Passenger Recruitment and Retention

It is in the interest of agencies to maintain a certain level of comfort for their passen-

gers in order to retain riders. Customers increasingly have multiple modes available

to make a trip and therefore could be persuaded to switch away from transit if condi-

tions deteriorate. If an occasional passenger has a pleasant experience, they are more

likely to continue taking transit and could eventually become a regular passenger.

(Thompson et. al. 2012) [21

2.4 Standards

To ensure some level of passenger comfort, agencies often use vehicle "peak" loads

to set frequencies on high demand services. Average maximum vehicle load, often

referred to as average peak load, of trips departing over a given time period have

been traditionally compared to a peak load threshold to determine whether a route

meets a crowding standard. The threshold is often based on load factors. An example

of this crowding standard would be: "no route/direction combination should have an

average peak load over 140% of seating capacity during any 30 minute period" within

the designated peak periods. Any route that fails this standard would be prioritized
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for an increase in frequency the next time schedules are revised.

There are many variations of this performance standard framework. Some agen-

cies have different thresholds for different time periods. For example, Southeastern

Pennsylvania Transportation Authority (SEPTA) uses a 100% load factor during the

off-peak periods. This increases to values ranging from 131% to 174% during the

peak periods depending on the specific bus model. (SEPTA 2014) [131 This recog-

nizes that in order to effectively meet the high travel demand during the peak periods

throughout the entire network some standing passengers must be tolerated. It also

notes that the configuration of different bus models leads to different ratios of seats

to floor space which allows some models to better handle large numbers of standing

passengers comfortably.

Some agencies have various thresholds for different levels of route frequency. The

Los Angeles County Metropolitan Transportation Authority has higher thresholds for

higher frequency routes. During the peak periods, load factor thresholds range from

140% for routes with headways under 10 minutes to 100% for routes with headways

over an hour. (LA Metro 2015) [14] This recognizes that the higher the load factor

threshold the more likely a passenger is to be denied boarding along a route. There-

fore, this standard reduces the likelihood that a passenger is denied boarding on a low

frequency route where the travel time penalty imposed by not being able to board

the first bus that arrives would be significant. If an individual is unable to board a

bus on a route with headways of 10 minutes they will likely only have to wait another

10 minutes for the next bus while a passenger unable to board a bus on a route with

60 minute headways will have to wait another hour.

Agencies also have different thresholds depending on where a route operates. In

addition to the standards mentioned above, SEPTA also restricts routes that utilize

limited access highways to a 125% load factor. This accounts for the additional safety

concerns that arise from high speed travel.

Finally, as load information becomes more widely available, some agencies are

taking a more granular and passenger based approach to creating standards. The

San Francisco Municipal Transportation Agency (SFMTA) measures the percentage
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of bus trips that exceed the crowding threshold in the peak direction during the peak

periods. (SFMTA 2013) [15] This reveals some crowding that occurs due to variation

in loads between adjacent trips that might be masked by average measures.

Regional Transportation District (RTD), which serves the Denver, Colorado metropoli-

tan area, requires that during the peak periods no passenger should have to stand for

longer than 15 minutes. (RTD 2002) [16] This ensures that when passengers do have

to stand, it is for a limited amount of time.

2.5 Crowding Measurement

Methods of calculating passenger loads and crowding have changed as the technology

available to transit agencies improves. Initially, all measurements were performed

manually by human "checkers" on a sample of bus trips. Recently, with the de-

velopment of automatically collected data systems (ACDS), it became possible to

automatically estimate ridership and loads. At first, while these ACDS systems were

initially being introduced into the transit agencies, they were only installed on a

small percentage of the bus fleet. As ACDS technologies matured and became widely

adopted, some agencies have fully implemented these technologies throughout their

bus fleets in order to obtain a more granular understanding of loads and crowding

through their network.

2.5.1 Manual Measurement

Before the advent of automatically collected data systems, load estimation was done

manually. For bus operations, there were three primary methods used to collect

the required data: counts done by the bus operator, ride checks, and point checks.

(Kittelson Associates et al 2003) [171 Operator counts would entail the bus driver

counting boardings and alightings at each stop. This allows an agency to manually

collect data without having an employee solely dedicated to data collection but is

feasible only on low ridership routes. From these on-off totals, loads can be calculated.

Ride checks have an employee other than the operator ride the bus the entire
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length of the route. He or she then tracks boardings and alightings at each stop. This

can be done potentially along with other tasks such as distributing surveys or taking

running time splits.

If the location where peak load of a bus route usually occurs during a given

time frame is known, often called the peak load point, it is then possible to gain

an approximate understanding of peak load variability during a given time period

through the use of point checks. This involves having an employee stationed at the

peak load point. He or she would then count the number of passengers on each vehicle

that passes through that point on the route. There is some margin of error in this

calculation since there is no guarantee that the peak load will occur at the location at

which the employee is stationed and without disrupting service it is difficult to get an

entirely accurate passenger count. However, it allows an agency to understand peak

load variation between trips. Since the marginal cost of these manual data collection

techniques performed by a separate employee is large, they are only done on a sample

basis.

2.5.2 Automatic Measurement

With the adoption of automatic data collection systems, agencies are able to collect

more data at significantly lower marginal cost. The systems most directly related to

estimating passenger loads and crowding are automatic passenger counters (APC).

They consist of either infrared sensors or tread pads located at all doors of a vehicle

that track the number of people who board and alight every time the doors are opened.

They are also often linked to a GPS unit that tracks each vehicle throughout its run

allowing the assignment of door openings to stops and development of a fine grain

running time analysis.

Full deployment of APC systems throughout a bus fleet allows agencies to have

a comprehensive understanding of passenger loading and crowding. Variation of pas-

senger loads between trips and days which are often masked by average values can be

studied. However, even with these benefits of universal implementation, only a small

percentage of agencies have implemented APC systems throughout their entire bus
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fleet. According to a survey by Daniel Boyle in 2008 (Boyle 2008) [181 of the agencies

using APC systems in their bus fleet, only 27% had devices installed in all vehicles

with 62% of responding agencies having fewer than 50% of vehicles equipped. The

author expects the number of agencies with full deployment to increase as the costs of

installation and maintenance of the systems decrease and purchases are included as

original equipment in intelligent transportation system (ITS) equipped vehicle pur-

chases.

2.6 Applications of Passenger Load Data

If an agency has passenger load information available for every trip, researchers and

agency analysts have the ability to empirically estimate how passengers experience

crowding. For example, Furth et. al (2006) [19] describe how peak load variation

can drastically change the passenger experience in terms of crowding. They use

the example of a theoretical bus route with an average peak load of 40.3 passengers

operating with vehicles of a capacity of 42. The average peak load would indicate that

passengers on the route are not experiencing crowding, however, there is a significant

amount of peak load variation, meaning that there are a significant number of very

crowded and relatively empty trips. On the trips with high peak loads crowding

occurs. Figure 2-1 shows an example of this type of peak load distribution. Almost

50% of trips have a peak load over seated capacity.

They also show that passengers experience crowding differently even within a

given crowded vehicle trip. At the peak load point of trips with peak loads over

the seating capacity, there are two general groups of passengers: standees and seated

passengers. For seated passengers, additional passengers above the seating capacity

do not affect their experience much besides making it more difficult to exit the vehicle.

For standees, each additional passenger above the seating capacity means they will

have less personal space in the vehicle. For the same trips mentioned above, Furth et.

al. grouped passengers into different crowding experiences (seated, seated without a

neighbor, and standing at various levels of passenger loads) at the peak load point.
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Figure 2-1: Potential Distribution of Trip Peak Loads. Source (Furth et. al. 2006)
[19]

The distribution shows that even though almost 50% of trips have peak loads over

seating capacity, most passengers are seated on a crowded bus. Therefore only 20%

of passengers on these trips are standing at the peak load point. Figure 2-2 shows

this distribution. By examining a service from the individual passenger perspective,

Furth et. al. present a more nuanced and perhaps more important system estimate

of comfort than the traditional methods would generally produce.

2.6.1 Headway Variation Affect On Load Variation

As shown in the previous section, routes with significant load variation generally

have more passengers facing crowded conditions than routes with relatively consistent

loads. This leads to the question of what is causing load variation. Combining pas-

senger load information with automatic vehicle location (AVL) records that track the

location of vehicles can help to address this question. Strathman & Kimpel (2003)[201

used AVL and APC data to look at the relationship between deviation from scheduled

headway at the peak load point and peak load. They found that deviation from the

scheduled headway was positively correlated with peak load meaning that vehicles

that faced a longer than scheduled headway at the peak load point would likely be
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Figure 2-2: Potential Distribution of Passenger Crowding Experiences. Source (Furth

et. al. 2006) [19]

more crowded than trips that faced shorter than scheduled headways. Assuming con-

stant passenger arrival rates, this occurs since passengers have more time to arrive

at bus stops as headways increase. They also discovered that much of this headway

deviation could be attributed to schedule deviation at the origin terminal.

Milkovits (2008) [21] found that changes in the percentage of bus trips operating

in bunched situations are positively correlated with the percentage of passenger time

spent in crowded conditions. As headways become more regular passengers are more

evenly distributed among vehicles, reducing the amount of crowding.

2.7 Uses of Passenger Origin Destination Interchange

Inference Data

Another application of ACDS is estimating the origin and destination of passengers'

linked and unlinked trips through a process known as origin destination interchange

(ODX) inference. ODX combines automated vehicle location (AVL) data with auto-

matic fare collection (AFC) data that records the fare collection device and timestamp

for every fare transaction. Transactions on the same fare media can then be grouped
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together, and are assumed to be a single passenger. Subsequent fare transactions on

the same fare media are used to determine origins and destinations of a passenger

throughout the day. In an "open" fare payment system, where the passenger only

interacts with the farebox upon entry to the system, a destination is inferred for each

unlinked trip by determining the closest possible destination that can be reached on

the mode of the current transaction to the location of the next transaction. On the

last trip of the day, the target destination is the location of the first transaction. The

algorithm assumes that passengers end the day at the same location from which they

started.

Unlinked trips are combined together to create multistage linked trips if two ad-

jacent unlinked trips meet certain criteria. These criteria include things such as the

destination of the first trip being within a distance threshold of the origin of the sec-

ond, the departure time of the second trip occurring within a time threshold of the

arrival of the first, etc... Figure 2-3 shows a graphical representation of this process.

1~1 E~ AJ Tti I I I cr2.- Nt fJ r-4 I v

Figure 2-3: Example of ODX Destination Inference Process. Source (Gordon 2012)
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This wealth of passenger OD information allows agencies to better understand how

passengers use their network. Zhao (2004) [22] uses this process to produce an OD

matrix for rail passengers in the Chicago Transit Authority's heavy rail network. Cui

(2008) [231 modifies this process to produce route level and subnetwork OD matrices

for the CTA bus network. Gordon (2012) [24] combines both processes to link bus and

rail trips together to infer a passenger's linked trip OD within the entire Transport for

London network. This provides a granular estimate of how passengers use a transit

network to move throughout a metropolitan area.

Also for TfL in London, Wang (2010) [25] uses ODX to develop bus route aggregate

load profiles. She uses this to look at load and ridership variation between days and

time periods. However, since there were a significant number of passengers who paid

their fare with a media other than an Oyster Card (TfL's smartcard fare media) and

some passenger trips did not have inferred destinations Wang needed to develop a

scaling process to estimate the total load for each trip. She develops a two-step process

that uses electronic ticket machine (ETM) trip ridership counts as control totals.

ETM totals are representative of total ridership since bus drivers are instructed to

record all boarding passengers regardless of whether a fare is collected. This process

enables the calculation of period average flows as well as trip-by-trip distributions.

Two Step ODX Scaling Process

1. Passengers whose destinations are not inferred with ODX are assumed to have

the same alighting distribution (probability of alighting at any stop further along the

route given that a passenger boarded at a specific stop) as the passengers for whom

a destination was inferred and are assigned destinations with this distribution.

FODT = FODT + BOT * ZT 2.1)
ET EDFODT

Where

* FODT is the passenger flow between origin stop G and destination stop D on

bus trip T
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* BOT is the number of passenger boardings at origin stop 0 on bus trip T for

which a destination is not inferred

2. Passengers for whom there is no inferred origin, and therefore also no destina-

tion, are assumed to have the same origin destination distribution as the passengers

in the previous step. Therefore, the flows calculated in step 1 are multiplied by the

ratio of ETM boarding totals to ODX boarding totals.

VOD = FODT* (
EO ED FODT

Where

" VOD is the scaled passenger flow between origin stop 0 and destination stop D

" TT is ETM boarding total for trip T

ODX can also be used to analyze the travel behavior of individual passengers.

Dumas (2015) [26] adapted the methodology Gordon used in London for the MBTA

network. He then used this to compare passenger travel times of residents of minority

neighborhoods to residents of non minorities neighborhoods. Viggiano (2013) [27I

used ODX to analyze passenger behavior on corridors with multiple routes.

2.8 MBTA Context

The case study for this thesis will be the bus network of the Massachusetts Bay

Transportation Authority (MBTA). The MBTA operates the public transportation

system in the Greater Boston, Massachusetts Metropolitan area which includes bus,

light, heavy and commuter rail, and ferry services. It's large and diverse service

area includes 175 municipalities with a combined population of almost 5 million.

It is heavily used with almost 1.3 million unlinked passenger trips systemwide and
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almost 400,000 bus passenger trips on a typical weekday. (MBTA 2014)[28] Ridership

growth has out paced increases in vehicle revenue miles over the past 20 years causing

increased crowding. [341 In addition to crowding that occurs on the busnetwork there

is also significant crowding on two of the three rapid transit lines, (Red and Orange)

and the Green Line light rail during the peak periods at certain locations.

2.8.1 MBTA Bus Network

Of the modes that the MBTA operates, the bus network is by far the most diverse.

There are 170 different routes ranging from high demand urban crosstown and arterial

routes to express commuter routes to neighborhood and suburban feeder routes to

early morning routes.

This diversity leads to a wide range route characteristics. Typical weekday rider-

ship ranges from over 14,000 passengers for Route 39, an urban arterial route to 45

for Route 431, a suburban feeder route. The length of routes also varies significantly

from 2.2 miles one way for Route 26, a neighborhood feeder route, to over 16 miles

for Route 34E, a suburban feeder route with many North Shore express routes also

exceeding 15 miles one-way. As one may expect, differing levels of demand and route

length lead to varying frequencies. During the morning peak period, route headways

vary from as low as 4 minutes for Route 7, an urban arterial route, to over an hour

for some suburban express routes. (MBTA 2014) [28] Ridership patterns vary as well

with some routes having significant amount of rider turnover while on others most

passengers board towards the beginning of the route and alight at the end.

2.8.2 Current Crowding Measurement and Standards

The MBTA currently has APC systems installed on approximately 14% of its bus

fleet. In order to get load estimates for the entire system, these vehicles are rotated

among different routes ensuring that almost every scheduled bus trip (e.g., Inbound

Route 1 trip that departs at 8:30 AM on weekdays) has at least one APC record

during a given season. This provides a sample of loads that can then be used to

43



evaluate passenger crowding and comfort.

Like most transit agencies, a crowding standard is derived from peak load analysis

using the APC data collected through the process described above. The standard is

as follows (MBTA 2010) [29]:

Average peak load cannot exceed 140% of seating capacity of a vehicle for any 30

minute duration during the following high demand periods of a weekday:

Early AM (6:00-6:59AM)

AM Peak (7:00-8:59AM)

Midday School (1:30-3:59PM)

PM Peak (4:00-6:29PM)

For all other weekday and weekend periods, average peak load cannot exceed 100%

of the seating capacity of a vehicle for any 60 minute duration. The standard also

requires that loads at the beginning and end of the service day for each route be

evaluated to see if the span of service needs to be adjusted.

While this standard enables analysis of crowding caused by inadequate frequency,

it does not take into effect crowding due to variability factors and makes comparison

of conditions among routes with different characteristics more difficult.
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Chapter 3

Procedures for Trip Level ODX

Scaling

Although raw ODX output can show relative magnitudes of passenger flows among

routes and trips, in order to get accurate estimates of passenger loads and flows, the

output from the ODX inference procedure must be scaled. Without this process, all

flows are likely underestimated. This is due to two main reasons: some passenger

trips only have an origin inferred and some passenger trips are not observed at all.

The first instance occurs when either a fare media is only seen once during a given

day, as in the case of a passenger paying their fare in cash or only taking a single

MBTA ride; or when their succeeding tap does not meet the criteria needed to infer a

destination. In these cases the ODX algorithm does not assign a destination for this

passenger trip.

The second instance occurs when a passenger does not interact with the farebox

on the vehicle or a fare validator at a bus stop. Unlike on the MBTA's heavy rail

system where passengers must pay their fare before passing through faregates and

into a station almost all bus passengers pay their fare on the vehicle on which they

ride. This leads to a significant number of passengers not interacting with the farebox

for a number of reasons: some may be exempt from paying such as children and blind

individuals, some may be purposely evading fare payment, and some may be waved

on by the operator due to either farebox malfunction or operational efficiencies.
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To account for these instances of undercounting passengers, a two step scaling

process was developed. It is similar to one Wang implemented on the Transport

for London bus network. (Wang 2010) [25] The first step, referred to as destination

scaling, allocates destinations to passenger trips for which only origins are inferred

based on a seed matrix of passenger flows of final stage trips. The second step, referred

to as boarding scaling, accounts for passengers who did not interact with the farebox

by multiplying the passenger flows calculated in the first step by a scaling factor

derived through comparing trip boarding totals calculated with the ODX inference

algorithm to trip boarding totals calculated with APC on bus trips for which both

systems are operating. This process results in the expected passenger flow between

any two stops on a given bus trip.

3.1 Destination Scaling

Destination scaling entails allocating destinations for every boarding recorded in

ODX. This is necessary as approximately 40% of bus passenger trips only have origins

inferred with no destination identified. Passenger flows are scaled by first finding the

probability of a passenger without an inferred destination alighting at any stop along

a bus route given that they boarded a given bus trip at a given stop, referred to as

the alighting distribution. This probability is used to allocate passenger flow among

all possible origin-destination pairs. Then these newly calculated passenger flows are

added to the passenger flows inferred through ODX to produce destination scaled

passenger flows as shown in equation 3.1.

FODT = FODTI + BOT * PODFT (3.1)

Where

" FODT is the passenger flow between origin stop 0 and destination stop D for

bus trip T

" FODTI is the passenger flow inferred by ODX between origin stop 0 and desti-

48



nation stop D for bus trip T

* BOT is the number of passenger boardings at origin stop 0 on bus trip T

" PODFT is the probability that a final stage F passenger boarding bus trip T at

origin stop 0 alights at destination stop D

3.1.1 Seed Matrix Development

The alighting distribution for a given stop on given bus trip is calculated through

the development of seed matrices. These matrices are created by aggregating final

stage passenger flows along a given route/direction/variation combination for every

thirty minute period throughout the day. Final stage trips are defined as any unlinked

passenger trip for which there is no successive unlinked trip associated as part of a

longer linked trip.

Then, for each boarding location, the percentage of passenger trips with alightings

at each of the possible destination stops is calculated. This percentage becomes the

alighting probability for each stop as shown in Equation 3.2. The distribution of these

alighting probabilities across all possible stops is the alighting distribution for a given

boarding stop.

PODFM -FODFM
EDFODFM

Where

* PODFM is the probability that a passenger on their final stage F during time

period M boarding at origin stop 0 alights at destination stop D

" FODFM is the final stage F passenger flow between stops 0 and D during time

period M
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There are three assumptions needed to create a seed matrix based on inferred

ODX passenger flows:

1. ODX inference is unbiased. The process assumes that the alighting distribu-

tion of passengers without inferred destinations is the same as passengers with

final stage inferred destinations. While it is possible that some destinations have

lower destination inference rates due to physical location or ridership behavior

there is no indication that these differences are large enough to substantially

change passenger flows patterns.

2. Passengers without inferred destinations are on the final stage of their

linked trip. The process also assumes that all transferring passengers will have

an inferred destination. This assumption is important as transferring passengers

are likely to have different alighting distributions than final stage passengers.

Transferring passengers are much more likely to alight at transfer points such as

heavy rail or bus stations while final stage passengers are likely to have a more

"spread" alighting distribution among all possible stops. Figure 3-1 shows the

difference in alighting patterns between transferring and final stage passengers

on Weekday Outbound Route 93 trips between 5:00-5:30PM. Red cells represent

destinations with high alighting probabilities while yellow and green represent

destinations with medium and lower alighting probabilities, respectively. The

boarding stops with a zero alighting probability for all other stops are stops

for which not a single passenger trip with inferred destination was recorded

during the seed period. Therefore, no alighting distribution could be derived.

Final stage passengers are more likely to alight in Charlestown, a residential

neighborhood of Boston while transferring passengers are more likely to alight

either in downtown Boston, where there are many transfer opportunities or at

Sullivan Station, a heavy rail station.

Most transferring passengers will have destinations inferred as they will likely

have a successive farebox interaction spatially and temporally close to a pos-

sible destination of their current stage. However, there is a possibility that a
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Devonshire St @ Milk St 0.04 0.01 0.01 0.03 001 0.00 0.10 0.03 0.09 0.13 0.11 0.08 0.08 0.05 0.02 0.00 0.01 (.11 0.00 0.00 0.18

Pearl St @ Congress St 0.02 0.01 0.04 0.13 0.00 0.19 0.03 0.04 0.09 0.07 0.10 0.09 0.09 0.04 0.01 0.01 0.03 0.00 0.00 0.10

Congress St @ State St 0.00 0.02 0.01 0.00 0.12 0.03 0.07 0.15 0.10 0.07 0.13 0.05 0.04 0.00 0.00 0.01 0.00 0.00 0.14

Congress St @ North St 0.07 0.01 0.00 0.17 0.03 0.09 0.08 0.12 0.10 0.06 0.07 0.04 0.02 0.01 0.01 0.00 0.00 0.13

Congress St @ Haymarket Sta 0.04 0.00 0.20 0.03 0.12 0.12 0.15 0.12 0.07 0.02 0.03 0.00 0.01 0.00 0.00 0.00 0.09

N Washington St @ Thacher St 0.13 0.25 0.00 0.08 0.17 0.04 0.04 0.00 0.08 0.00 0.04 0.00 0.00 0.00 0.00 0.17

N Washington St @ Commercial St 0.11 0.11 0.05 0.11 0.16 0.00 0.05 0.00 0.11 0.00 0.05 0.05 0.00 0.00 0.21

Chelsea St @ Warren St 0.00 0.10 0.20 0.00 0.00 0.10 0.10 0 10 0.00 0.10 0.00 0.00 0.00 0.30

Chelsea St @ Constitution Rd 0.17 0.17 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.50

Chelsea St @ Fifth St 0.06 0.00 0.00 0.06 0.06 0.00 0.00 0.00 0.06 0.00 0.00 0.76

Vine St @ Moulton St 0.04 0.04 0.08 0.00 0.00 0.00 0.04 0.13 0.00 0.00 0.67

121 Bunker Hill St opp Lexington St 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.86

Bunker Hill St @ Polk St 0.13 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.30

Bunker Hill St @ Pearl St 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.67

Bunker Hill St @ Sackville St 0.00 0.00 0.00 0.00 0.00 0.00 0.001
Bunker Hill St @ N Mead St 0.00 0.00 0.00 0.00 0.00 1.001

Bunker Hill St @ St Martin St 0.00 0.00 0.00 0.00 0.00

Bunker Hill St @ Baldwin St 0.00 0.00 0.00 0.00

Bunker Hill St @ Medford St 0.00 0.00 1.00

529 Main St 0.00 0.00

Cambridge St @ Maffa Way 0.00

(a) Final Stage Passenger Alighting Distribution

Devonshire St @ Milk St 0.01 0.02 0.01 0.19 000.3000.00 0.30 0.00 0.00 0.00 3.00 0.00 000 0. 00 0.00 1 3.03 0.00 0.72

Pearl St @ Congress St 0.03 0.01 0.41 0.00 0.00 000 00 0.00 0.00 0.00 0.00 0.00 0.00 . 0 0.00 0.00 0.01 0.31 0.00 0

Congress St @ State St 0.01 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 3.03 0.07 0.01 0.63

Congress St @ North St 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.81

Congress St @ Haymarket Sta 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.13 0.00 0.00 0.03 0.03 0.90

N Washington St @ Thacher St 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.93

N Washington St @ Commercial St 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Chelsea St @ Warren St 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.90

Chelsea St @ Constitution Rd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.0 0.88
Chelsea St @ Fifth St 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.98

Vine St @ Moulton St 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.96

121 Bunker Hill St opp Lexington St 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.94

Bunker Hill St @ Polk St 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.99

Bunker Hill St @ Pearl St 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.97

Bunker Hill St @ Sackville St 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Bunker Hill St @ N Mead St 0.00 0.00 0.00 0.00 0.00 1.00

Bunker Hill St @ St Martin St 0.00 0.00 0.00 0.00 1.00

Bunker Hill St @ Baldwin St 0.00 0.00 0.00 1.00

Bunker Hill St @ Medford St 0.00 0.00 1.00
529 Main St 0.00 1.00

Cambridge St @ Maffa Way 1.00

(b) Transferring Passenger Alighting Distribution

Figure 3-1: Passenger Alighting Distributions for Weekday Outbound Route 93 Trips,

17:00-17:30
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transferring passenger's destination is not inferred or they are categorized as a

final stage passenger instead.

The first instance could occur if a passenger does not interact with the farebox

on their subsequent unlinked trip. This occurs to some degree on all modes but

is most likely to occur when transferring onto either the bus or surface light rail

networks due to their onboard fare payment system.

The second instance could occur if the alighting of the first unlinked trip is

temporally too far from the boarding of the second trip. This could be someone

waiting a significant amount of time for their connecting service or running

an errand in between unlinked trips. The ODX algorithm is conservative on

its linking of trips so it is possible that some linked trips are unintentionally

split though this becomes a philosophical question of what entails a transfer.

This assumption potentially skews estimated passenger flows towards final stage

distributions.

3. Expected passenger flows between stops are fractional. Since the desti-

nation scaling process distributes passenger flows of passengers without inferred

destinations by the distributions derived from the seed matrices as shown above,

it allocates some amount of passenger flow to almost every downstream stop as

over the duration for which the seed is developed passengers make trips between

most stops. This means that a single passenger likely has his or her flow divided

among multiple OD pairs.

For the creation of average load profiles this does not have a major impact as

over the course of many trips there will likely be some portion of passengers

traveling between any two possible stops. However, in the creation of trip level

load profiles, depending on the ridership patterns of the route, this could lead to

more variation in loads than otherwise occurs in reality. Actual passenger flows

are composed of whole passengers therefore where a given passenger alights in

reality compared to the alighting distribution will affect load calculations.

This is mitigated to a degree with the development of trip specific seed matrices

52



as described in Section 3.1.2 below. This process limits potential destinations

to stops that were made on a given trip thus consolidating passenger flow to

some degree.

3.1.2 Trip Specific Seed Matrix

Seed matrices can be disaggregated further from period averages down to the trip

level. This is done by updating the alighting distributions based on the set of stops

that a vehicle made on a given trip. A stop will only be considered as a potential

destination if the vehicle opened its doors at that location. Therefore, the updated

alighting probability can be determined by dividing the alighting probability for des-

tination stop D given a passenger boarded at origin stop 0 by the sum of alighting

probabilities at all stops in the set of stops that the vehicle made ST as is shown in

Equation 3.3.

VD E ST : P(ODFT | ST) PODFM (3.3)
ED PODFM

Where

" PODFT is the probability that a passenger on their final stage F on bus trip T

boarding at origin stop 0 alights at destination stop D

* PODFM is the probability that a passenger on their final stage F during time

period M boardings at origin stop 0 alights at destination stop D

" ST is the set of stops made on bus trip T

The external announcement system onboard each vehicle enables the determina-

tion of this set of stops. The system announces the route and destination of the

vehicle every time the driver opens a door. It is intended to aide visually impaired

passengers in identifying their desired vehicle. A geotagged timestamp is recorded

whenever the external announcement system is initiated allowing for both the under-

standing of the set of stops made during each bus trip and the time at which these

stops occurred.
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(b) Final Stage Passenger Alighting Distribution for the 8:00 AM Inbound Route 39 on May
17, 2015

Figure 3-2: General and Trip Specific Passenger Alighting Distribution for Inbound
39, 8:00-8:30.
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This updating can change the alighting distribution of passengers on board a

vehicle. Figure 3-2 is an example of the general seed matrix of Inbound Route 39

during the 8:00-8:30 AM time period compared to the seed matrix specific to the

Route 39 trip that departed at 8:00 AM on May 17, 2015. This trip did not stop

at ten of the bus stops along the route. The alighting probability for the remaining

stops is then increased to account for the reduced number of alighting options for

passengers.

3.2 Boarding Scaling

The destination scaling process calculates passenger flows for all passengers with an

inferred origin. However, this is still undercounting reality. There are some bus

passenger trips that are not recorded at all in ODX. For a passenger to be observed,

they need to interact with either the farebox on the vehicle on which they board or

a fare validator located at their origin stop. This does not always occur.

There are many reasons why a passenger might not be observed. Some passengers

qualify for free rides. For the MBTA, this includes children under 11 and visually

impaired individuals. These individuals are likely significantly undercounted. There

are also occasions when the farebox on a vehicle might not be working properly, either

not collecting any fares or only collecting certain fare media. This will leave some if

not all passengers unobserved in the AFC system, and subsequently the inferred ODX

database. There are instances when passengers might be waved onboard a vehicle by

the operator without paying to increase operational efficiency. This occurs sometimes

on very crowded vehicles when an operator might allow passengers to board at rear

doors to take advantage of all available space or if a passenger has a pass that can be

visually validated. Finally, some passengers may deliberately evade fare payment.

To correct for this undercounting of passengers, scaling factors were developed to

bring ODX trip boarding totals closer to APC trip boarding totals. APC totals in this

case are used as control totals. Passenger flow totals calculated during the destination

scaling process are then divided by the predicted ODX/APC trip boarding total ratio,
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called farebox interaction rate, as shown in equation 3.4.

FDT FODT (34)
IRDM

Where

* FODT is the boarding scaled passenger flow between origin stop 0 and destina-

tion stop D for trip T.

* FODT is the destination scaled passenger flow between origin stop 0 and desti-

nation stop D for trip T.

* IRDM is the farebox interaction rate for route R in direction D during time

period M.

3.2.1 Farebox Interaction Rate

The farebox interaction rate used in Equation 3.4 is the predicted percentage of

passengers that are likely to interact with the farebox for any route/direction/time-

period combination. To calculate this rate, trip boarding totals calculated with APC

are compared to boarding totals calculated with ODX on bus trips for which both

systems were operating.

Figure 3-3 shows comparisons of Inbound Route 23 trips departing between 6:00

and 9:00 AM from February through April 2015. While there are some outlier trips

most have slightly fewer boardings recorded in ODX than with APC. Trips with few

APC boardings and many ODX boardings are due to the APC system only operating

correctly for a portion of a trip causing many boardings to be missed. Trips with few

ODX boardings and many APC boardings likely have a low farebox interaction rate

due to any of the reasons mentioned above.

The farebox interaction rate is calculated by running an ordinary least squares

(OLS) regression on this set of trips. The y axis intercept is constrained to zero

as we would expect a bus trip with zero boardings recorded in APC to also have

zero boardings recorded in ODX. Outlying trips for which one system has double the
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number of boardings as the other were excluded from the regression as they were

likely a result of equipment malfunction (most likely APC) and not indicative of the

true farebox interaction rate. In Figure 3-3, a farebox interaction ratio of 0.914 was

calculated with an R2 predictive value of 0.7487. This farebox interaction ratio means

that on average we would expect approximately 91% of passengers on any inbound

Route 23 bus trip departing between 6-9 AM to interact with the farebox.

Trip Boarding Total Comparisons APC vs. ODx
Weekday Inbound Route 23 Trips Departing Between 6:00 and 9:00AM Feburary-April 2015
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Figure 3-3: APC and ODX Trip Boarding Total Comparisons for Weekday Inbound

Route 23 Trips Departing Between 6:00 and 9:00AM Februrary- April 2015

There is some variation between time periods. Figure 3-4 shows Inbound Route 23

between 9:00 AM and 12:00 PM. The farebox interaction ratio is over six percentage

points lower than between 6:00-9:00 AM. This could be caused by differing rider

demographics between periods. For example, it is possible that young children make

up a higher percentage of riders in the 9:00 AM-12:00 PM period than during the AM

peak. Usage rates of fare media might change as well. Passengers who travel during

the AM peak might be more likely to be regular riders and have a CharlieCard, the

smnartcard fare media that includes a fare discount, while passengers traveling later in

the morning might be less regular riders and pay with a CharlieTicket, a paper ticket

fare media, or cash, for which an operator is more likely to wave on a passenger since

the transaction time is significantly longer than with a CharlieCard. To account for
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these variations a farebox interaction rate would ideally be calculated for every three

hour time period through out the day for each route/ direction combination.

Trip Boarding Total Comparisons APC vs. ODx
Weekday Inbound Route 23 Trips Departing Between 9:00AM and 12:00PM Feburary-April 2015160
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Figure 3-4: APC and ODX Trip Boarding Total Comparisons for Weekday Inbound
Route 23 Trips Departing between 9:00AM and 12:00PM February-April 2015.

Systemwide, this period to period variation appears to have a moderate effect

on farebox interaction rates. For most route direction combinations with at least

two periods having over 50 sample trips, a threshold set to ensure accurate estima-

tion, farebox interaction rates range 5-10 percentage points. Figure 3-5 shows the

distribution of these ranges.

In the case of the MBTA bus network, there was an insufficient APC trip sample

size to calculate factors for each three hour period on many low frequency routes.

Only 38% of route, direction, and 3 hour time period combinations had over 50

sample trips. Thus, only one route direction factor, independent of time period, was

calculated in this analysis.
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Distribution of Period Farebox Interaction Rate Ranges Weekdays Sept-Nov 2015
Route Directions with at Least Two Periods Having Over 50 Sample Trips
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Figure 3-5: Range of Period Farebox Interaction Rates for Route Direction Combinla-

tions with at Least Two Periods Having Over 50 Sample Trips- Weekdays September-

November 2015

3.2.2 Variation Among Routes

In addition to variation between different time periods there is also a large variation

between routes. Farebox interaction rates for route-direction combinations range

from as low as 0.5000 for Outbound SLW trips to 1.0224 for Inbound Route 431 trips

with most combinations between 0.85 and 0.90. This variation can be attributed

to the diversity of the routes in the MBTA network. Routes have different rider

demographics, specific fare mnedia usage rates, and fare evasion rates.

Many of the combinations with low interaction rates are routes on which fare

payment is made as passengers enter a station instead of onboard the vehicle for a

portion of stops on the route; therefore, these station-boarding passengers are not

assigned to a specific vehicle trip. At the moment, it is not possible to accurately

estimate loads oil these routes. Others have a relatively small sample of trips on

which to derive a factor. in which case relative outliers may have a larger effect.

Some routes have interaction routes over 1. Similar to many of the combinations

with low interactions, these combinations also have small sample sizes on which the
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interaction rate is based.

Distribution of Farebox Interaction Rates
Weekday Trips September-November 2015

08 09
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Figure 3-6: Farebox Interaction
tions September-November 2015

Rate Distribution for all Route Direction Combina-

I
3.2.3 Benefits of Calculating Disaggregate Farebox Interac-

tion Rates

Farebox interaction rates alone can provide important information to transit agen-

cies. In cases where AFC is used to calculate ridership totals, these rates can be

used as a ridership adjustment factor to account for passengers not included in the

initial ridership count or at least identify routes on which AFC totals might be signifi-

cantly undercounting reality. This could help agencies provide more accurate ridership

counts.

It could also help identify routes where fare collection rates are low. While a signif-

icant number of passengers who board without interacting with the farebox are likely

doing so legally, routes with lower farebox interaction rates are likely collecting less

fares than routes with higher farebox interaction rates. This means an agency is po-

tentially missing out on a significant amount of fare revenue. Identifying routes where
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farebox interaction rates are low allows an agency to prioritize areas of opportunity

to increase revenue.

Potential strategies could include promoting off-board fare payment through fare

validators on routes where operational issues are causing low farebox interaction rates

or increasing enforcement of fare payment on routes with high fare evasion through

the use of transit police ride checks. An added advantage to promotion of offboard

fare payment with validations is that all door boarding can be used to improve speed

of boarding and support on-time performance.

3.2.4 APC Boarding Totals Validation

Validation tests were performed in order to ensure that APC boarding totals did in

fact represent reality and were not systematically biased. This was accomplished by

comparing boarding totals calculated manually to boarding totals calculated through

APC. While there is some chance of measurement error even with manual counts,

comparing counts between the two methods should help identify any systematic biases

if they exist.

The MBTA had commissioned a set of ride checks to do just this. A total of 64

trips were checked from September 2010 through June 2013. Each ride check entailed

having an employee manually count boardings and alightings at each stop on a bus

trip for which an APC system was also in operation. Then loads and boarding totals

were compared to validate the APC data. For the purpose of validating the boarding

scaling process trip boarding totals were compared. Figure 3-6 shows this comparison.

An ordinary least squares regression, similar to the process used in the fare box

interaction rate calculation, was run on the boarding totals for these trips. It showed

that manual count totals were predicted to be roughly 95% of APC totals. This

regression also had a high predictive value with an R2 value of 0.904.

However, since the estimated model coefficient is close to one and there appears

to be trips on either side of the 1:1 ratio line further investigation was required. A

one sample t-test was performed to check whether the difference between the board-

ing totals of the two methods was statistically significant. For each trip, the APC
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Comparison of APC and Manual Count Trip Boarding Totals
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Figure 3-7: Manual Count-APC Trip Boarding Total Comparisons

boarding total was subtracted from the manual count boarding total. Then the t-test

was performed on this set of differences to see if the mean of this population was sta-

tistically different from zero. The resulting p value from this test was 0.1887 meaning

that we cannot reject the null hypothesis that the mean of the differences between

APC and manual counts is zero at either the 5 or 10 % confidence level.

Therefore, while the OLS model predicted that manual count totals would be lower

than APC totals, the predicted coefficient is not statistically significantly different

from one. This suggests that there is no systematic bias in the APC calculation and

that no adjustment factor is needed.

3.3 Validation

Validation was completed on the scaled load calculations to measure the accuracy of

the estimates. APC load estimates were used as the ground truth during this process.

Although these are estimates as well, comparisons to manual counts appear to show

relatively small amounts of difference indicating these estimates are highly accurate.

It also supplies a large enough sample to produce rigorous validation results.
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Loads were estimated for every possible vehicle trip within the MBTA bus network

for September-November 2015. Then, systemwide load comparisons were done to

identify any systematic errors that might be occurring. Then average and individual

trip load profiles were constructed to show any sources of error that may appear at

a more disaggregate level. Finally, vehicle trip totals were calculated to determine

the completeness of load calculations (i.e., for what percentage of trips operated are

ODX based loads able to be calculated) and if biases occur.

3.3.1 Systemwide Analysis

First, load comparisons were made at every stop for trips on which loads were cal-

culated through both ODX and APC processes. This includes over 2.6 million stops

distributed among 81,897 individual weekday vehicle trips from September to Novem-

ber 2015. This was done on the original "raw" inferred ODX loads and after each

successive scaling process to show its impact on load estimation. The first comparison

includes loads calculated by aggregating passenger flows directly inferred through the

ODX process. The second comparison adds destination scaling for the passengers

without inferred destinations to obtain new aggregated flow totals. The final com-

parison includes an additional boarding scaling process in addition to the previous

processes to obtain the "most comparable" loads and flows. The distribution of the

differences between ODX inferred loads and APC calculated loads for the same trips

are shown in Figure 3-8.

As mentioned during the scaling process methodology in the introduction to Chap-

ter 3, raw ODX output undercounts passenger flows. This in turn causes load cal-

culations to be underestimates as well. Load profiles constructed solely with ODX

inferred passenger flows undercount loads at the vast majority of stops. After desti-

nation scaling, loads are still generally undercounted though the accuracy improves

significantly. Finally, boarding scaling increases the calculated ODX load at every

stop, reducing the amount of undercounting. This is shown in Figure 3-8 by a shift

in the distribution of differences to the right, with results more centered around zero

difference.
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ODX APC Load Difference By Stop After Each Scaling Process
September-November 2015 Weekdays

105 Inferred ODx Load Profiles
3

2 -

0 --
-100 -80 -60 -40 -20 0 20 40 60 80 100

Load Difference
10 5 Destination Scaled Load Profiles

2.5 -

2 -

1.5 -

1-

0.5

-100 -80 -60 -40 -20 0 20 40 60 80 100
Load Difference

o10 5  Boarding Scaled Load Profiles

2.5 -

2 -

z31.5 --Cr

0.5 --

0
-100 -80 -60 -40 -20 0 20 40 60 80 100

Load Difference

Figure 3-8: Distribution of Load Differences Following Each Stop (ODX-APC) for
Trips with both APC and ODX Derived Load Calculations Weekdays September-
November 2015

The distributions imply that there is some additional load variability inherently

built into the ODX derived load profiles. This is likely due to the use of average

seed and boarding scale factors. Farebox interaction rates and alighting distributions

have a high probability of varying between trips in reality. The incomplete informa-

tion available on trips without APC data require the use of average scaling factors

independent of time period during the day.

Next, peak load estimates were compared. While load differences are important

to note at all stops, it is especially important to note differences at the peak load

point since this defines the highest crowding intensity experienced along an entire
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vehicle trip. Similar to Figure 3-8, peak load estimates were used from trips with

both ODX and APC load estimates. A plot of these peak loads is shown in Figure

3-9. The higher on the color scale (yellow being the highest and dark blue the lowest)

the more trips that have a given combination of peak load estimates (e.g., trips with

an ODX estimated peak of 45 and an APC estimated peak load of 48). The red line

represents equal peak loads.
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Figure 3-9: Comparisons of APC and ODX Estimated Peak Loads
November 2015

September-

A similar pattern to the load comparisons at every stop is revealed. The distribu-

tion appears to be relatively centered around the equal peak load line with a slight

ODX undercount bias. There also appears to be some additional load variability

introduced through the scaling process though most ODX peak loads appear to be

within 5 of the APC peak load.
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3.3.2 Load Profile Analysis

Period average and individual trip load profiles of trips with both APC and ODX

load estimates were also analyzed to determine the accuracy of the scaling process

on a more disaggregate level. Average profiles help identify route or period level

systematic errors while trip level could identify more sporadic and random errors

that affect individual trip estimates. They also show the impact of each successive

scaling process in load profile development.

Figure 3-10 shows the average load profile for weekday inbound Route 28 trips

that are scheduled to depart during the AM Peak period (7:00-9:OOAM) for September

through November 2015. The scaling process works well in this instance. APC and

boarding scaled ODX estimates never differ by more than three passengers at a given

stop. There are some minor differences in the shape of the load profile but generally

the two follow the same pattern.

It is also evident that the scaling process improves the accuracy of the load esti-

mate. While both the inferred ODX and destination scaled load profiles provide an

accurate representation of the general load profile shape, they underestimate loads.

Each additional scaling process increases the load estimate bringing it closer to the

APC load totals.

Results vary for across routes. The average load profile for weekday AM Peak

inbound Route 1 trips is shown as an example in which the scaled ODX estimates

are less accurate in Figure 3-11. Boarding scaled and APC loads are similar for the

first half of the route but then differ significantly in the second segment of the route.

There are two potential explanations:

1. It is possible that the seed matrix used during the destination scaling process

is different than than the alighting distribution in reality. It appears that in

the case of Route 1, ODX might be inferring a higher probability of passen-

gers having relatively short trips while in reality they are much longer. This

could potentially explain why ODX derived profiles have larger relative drops

in load between 84 Massachusetts Avenue (MIT) and Massachusetts Avenue A
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Average Load Profile Weekday AM Peak Inbound Route 28 September-November 2015
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majority of passengers alight at a final destination as shown in Figure 3-10 with

Route 28.

2. It is also possible that the boarding scale factor used is incorrect. As men-

tioned in Section 3.2.1, routes that had large enough sample sizes to derive

accurate factors for multiple periods saw moderate variation between periods.

If a given period factor differs significantly from the overall factor boarding and

load estimates could be inaccurate.
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Average Load Profile Weekday AM Peak Inbound Route 1 September-November 2015
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Figure 3-11: Average Load Profile for Weekday Inbound Route 1 During the AM Peak
September-November 2015 Estimated with Each ODX Scaling Process and APC.

This difference appears to vary among routes. Some routes may have low in-

teraction rates during the peak periods due to very high loads arid relatively

higher interaction rates during the offpeak when loads are lower. Other routes

might have lower interaction rate during the offpeaks due to a high percentage

of children passengers or passengers paying with a method other than smart-

card media and higher during the peaks when more passengers are likely to be

adults paying with smartcards.

Individual load profiles also help showcase the challenges faced when data collec-

tion collection systems are disabled for one reason or another. The 8:30AM scheduled

Inbound Route 47 trip on September 21, 2015 provides an excellent example. It can

be seen in Figure 3-12. On this trip, the external announcement system was not
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working properly, causing only the first and last stops to be recognized as potential

boarding and alighting locations using the AVL data set. In reality, as can be in the

APC profile multiple stops were made on this trip.
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not accurate, the scaling process estimates a more accurate peak load than would be

estimated otherwise. This equipment failure is relatively rare. Of vehicle trips with

ODX derived loads, approximately 2% had external announcement failures.

3.3.3 Completeness

Theoretically this process should be able to estimate loads for every operated trip.

However, due to data collection equipment failures and limitations in the ODX and

scaling process methodologies, loads are unable to be calculated for all trips. Fare

payment characteristics, and specific vehicle types of certain routes cause load calcu-

lations to be either inaccurate or unable to be reasonably computed.

On routes where passengers pay at a faregate instead onboard the vehicle, the

ODX methodology is unable to assign passengers to specific vehicle trips. Therefore

it is impossible to calculate loads for specific trips. In the MBTA case, this includes

the Silver Line Waterfront Routes (SL1, SL2, SLW).

Certain routes do not require fare payment. These are often ad hoc shuttles or

circulator routes. All passenger trips on these routes are unobserved since the ODX

algorithm requires a fare transaction to identify a passenger trip. For the MBTA, this

includes the Government Center Shuttle (Route 608), the SLI Inbound from Logan

Airport, and trips "run as directed" which are rail replacement shuttles for instances

when portions of the rail network are unable to provide service.

Finally, some routes operate with specialty vehicles on which APC systems are

not installed. This inhibits the development of a boarding scale factor. Therefore,

loads can be estimated up through the destination scaling process but are likely

undercounting by some unknown factor. The MBTA's Routes 71 and 73 falls into this

category. They are operated during the weekday with electric catenary trolleybuses

which are not equipped with APC systems and because it operates with specialty

equipment, other APC fitted vehicles cannot be inserted into its schedule as they are

for the vast majority of other routes.

Excluding the identified routes on which this methodology does not work well, 89%

of September-November 2015 operated weekday vehicle trips had an ODX derived
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load estimate. To ensure that there is no bias in the distribution of trips without

load estimates, three components were analyzed: day-to-day, route, and scheduled

departure time.

Day-to-Day analysis, as seen in Figure 3-13, shows a relatively consistent per-

centage of operated trips systemwide for which an ODX derived load estimate is

calculated. The calculation rate is lower for the first week of September. There was

an issue with data collection this week which caused ODX destination inference rates

to drop drastically from 60% to 40%. This likely also caused a significantly higher

percentage of trips to not have loads calculated. For the rest of the Fall, calculation

rates are consistently around 90% and do not show much bias between days of week

or specific periods of the Fall.

Percent of Operated Trips with ODX Load Estimates by Day

100 i i Weekdays September-November 2015

95

E
U,90

95 - -

0

x 85

0

80

75

0

70

65

60I I I I I
Sept 1 Sept 9 Sept 16 Sept 23 Sept 30 Oct 7 Oct 14 Oct 21 Oct 28 Nov 4 Nov 11 Nov 18 Nov 25

Date

Figure 3-13: Percent of Operated Trips with ODX Load Estimates by Day Weekdays
September-November 2015

Trips were then aggregated together by 30 minute scheduled departure periods to

determine if there were any biases in calculation rates by time of day. Figure 3-14,

shows that for much of the day calculation rates remain around 90%, However, during

the early morning and overnight periods rates drop considerably. Approximately 50%

of trips that were scheduled to depart during the 1 AM hour had ODX derived load
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calculations. There are two primary reasons for these lower rates:

1. There is a higher probability that a trip is operated without a single passenger

boarding during the entire vehicle trip during the late night hours as there

is less passenger travel demand. This would result in a trip not having a load

calculation since the ODX algorithm requires fare transactions to infer passenger

trips.

2. Since there are also fewer passenger trips overall during these periods, gaps in

seed matrices become more likely. (i.e., having no alighting distribution for

a given stop) This combined with a trip without any passenger destinations

inferred through ODX leads to the trip not being observed.

Percent of Operated Trips with ODx Estimated Loads by Time Period
Weekdays September-November 2015
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Figure 3-14: Percent of Operated Trips with ODX Load Estimate by Scheduled De-
parture Time Weekdays September-November 2015

Finally, the distribution of calculation rates among routes was explored to ensure

that there was no bias among routes. As shown in Figure 3-15, most routes have

similar rates around 95% of trips with the vast majority of routes having rates above
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85%. There are a handful of routes with significantly lower rates. The vast majority

of these routes are low frequency routes on which reasonable seed matrices cannot be

computed . This is similar to the issue which is causing loads not to be able estimated

on many late night trips.

Distribution of Percent of Operated Trips with ODx Load Estimates by Route
Weekdays September-November 2015
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Figure 3-15: Distribution of Percent of Operated Trips with ODX Load Estimates by

Route Weekdays September-November 2015

While there are certain routes and time periods for which calculation rates are low,

on most routes and time periods, unobserved trips appear to be randomly distributed

at constant rates. There is some bias but this occurs mostly on very low frequency

and low demand routes.

3.4 Conclusions

In this chapter a process is discussed to scale inferred passenger origin destination

information calculated through the ODX method. These scaled trip level passenger

flows can be used to construct trip load profiles. It uses a seed matrix created through

ODX inferred passenger flows and boarding scale factors derived from APC-ODX trip
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boarding total comparisons.

While gaps in data collection and methodology cause slightly less than complete

coverage of all trips, this methodology allows for load estimates on a vast majority of

vehicle trips with a relatively small sample of APC load estimates. Trips for which

loads are unable to be calculated appear to generally be equally distributed among

routes and time periods though there are some routes with low calculation rates and

trips that operate during the overnight period also have lower estimation rates.

74



Chapter 4

Passenger Centric Bus Crowding

Metrics

The process described in Chapter 3 allows for the development of a rich database

of both trip level passenger flows and vehicle loads throughout a bus network. This

enables crowding and comfort analysis that otherwise would not be possible without

full implementation of APC systems in the bus fleet. Passenger centric crowding

metrics can be developed to gain a better understanding of how passengers experience

crowding throughout the system. These include passenger crowding duration, average

standing time, number of unique passenger trips on which a passenger experienced

crowded conditions, among others.

Some of these metrics can be selected to enable transit agencies to do compar-

ative analysis to identify the highest priority routes and time periods for crowding

mitigation. This helps to focus attention and resources on situations in which pas-

sengers experience the worst conditions which is especially important when there are

not sufficient resources to meet the needs of the entire system.

Together with the MBTA staff and the Advisory Committee on the MBTA Ser-

vice Delivery Policy, a passenger centric crowding standard was also developed using

the detailed load information afforded by ODX. It identifies route/time period com-

binations in which a large percentage of passenger time is spent in uncomfortable

conditions. This allows for conditions to be evaluated for each combination in isola-
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tion of the rest of the network.

4.1 Benefits of ODX Crowding Measurement

There are two primary ways in which ODX derived load and passenger flow estimates

can improve the understanding of the passenger crowding experience throughout the

bus network: nearly complete estimates without full implementation of APC and the

ability to develop passenger centric metrics.

4.1.1 Complete Measurement

With a nearly complete coverage rate on calculable routes, the ODX scaling process

allows for a much more granular load estimation compared to traditional sampling

methods. In the MBTA case, an APC sample of 13% of operated trips on routes for

which ODX loads can be estimated is expanded to almost 90% with the ODX scaling

process. For resource constrained agencies, this could be powerful as nearly complete

load and stop level running time coverage could be achieved without the installation

of APC systems, a system solely designed for data collection, throughout the entire

fleet. The inputs for the ODX inference algorithm come from more common ACDS

that are required in the day-to-day operation of the network.

This nearly complete coverage allows for more nuanced measurement that accounts

for variations in loads between adjacent trips and variations in running time among

other considerations. Many of these aspects can be masked through the use of averages

which become necessary when samples sizes are small. In addition, with the higher

coverage rate cumulative measures can be used that highlight the effect that these

variations have in the passenger experience. For example, the number of unique

passenger trips on which crowded conditions are experienced, distribution of crowding

duration, among others.
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4.1.2 Passenger Centric Measurement

While many of the complete measurement aspects could be achieved with full im-

plementation of APC systems in a bus fleet, ODX derived load profiles have the

additional benefit of estimating passenger flows as well. Combining the two outputs

enables estimation of the crowding experience for each passenger. As shown in Figure

4-1, traditional load profile development entails aggregating boarding and alighting

totals at each stop and using these to construct loads. In this process, passenger

OD's are not estimated. Passenger origins and destinations cannot be linked without

further estimation through techniques such as iterative proportional fitting.

ODX derived load profiles, on the contrary, are developed with estimated pas-

senger flows. Therefore, a trip on which every passenger had a destination inferred

through ODX could be considered as a collection of passenger OD's, as in the bot-

tom image in Figure 4-1. The scaling process makes this slightly more complex as

passenger flows that are estimated during the destination scaling process are often

fractionalized among possible alighting stops, meaning that a given passenger may

not be assigned a unique origin-destination pair when estimating total flows on a

route.

Combining passenger flow information with vehicle loads enables the estimation

of each passenger's crowding experience. One can develop metrics that emphasize the

passenger experience instead of operational measures such as vehicle loads. Exam-

ples of passenger centric metrics include: the unique number of passengers who face

crowded conditions or the average length of time for which a passenger has to stand

when loads exceed seated capacity on a given route.

4.2 Comparative Crowding Measurement

Many bus networks contain a diverse array of routes. Routes can vary in length,

frequency of service, ridership patterns, travel speeds, degree of schedule adherence,

etc. This can make comparisons of crowding conditions difficult. As discussed in

Section 2.4, crowding conditions have traditionally been estimated through average
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Figure 4-1: Example Vehicle Trip Showing APC (top) and ODX (bottom) Load
Profile Development Process.

peak load analysis. While this is useful in determining whether a route is operating

with high enough frequency in order to meet the level of travel demand along a route,

it is difficult to compare average peak loads across routes. Individual passengers on

two routes with similar average peak loads could face very different intensities and

78



durations of crowding depending on the route characteristics mentioned above.

However, the combination of high trip coverage rates and the ability to develop

passenger centric measures from ODX derived load and passenger flow estimates

facilitate crowding comparisons between routes. There are four dimensions in which

the use of these ODX estimates can ease comparisons compared to average load profile

analysis, each are discussed in turn below:

1. Load variability's impact on passenger crowding

2. Duration of crowded situations

3. Number of unique passengers facing crowded conditions

4. Comparisons of routes with different frequencies

4.2.1 Load Variability

As Furth et.al. show and as discussed in Section 2.6, average load per vehicle trip

calculations often mask the impact that load variability has on passenger crowding.

Often when two buses are bunched, one is very crowded while the other is relatively

empty. The average load of the two likely under-represents the crowding that pas-

sengers experience as many more ride in the very crowded vehicle. Since load and

passenger flow estimates are available for nearly all operated trips, cumulative met-

rics, such as cumulative passenger crowding time, and the number of unique standing

passengers, among others, can be used that consider the conditions experienced on

each trip.

4.2.2 Crowding Duration

The amount of time that a passenger faces crowded conditions greatly affects his or

her experience. Average peak load analysis only considers crowding intensity (i.e.,

vehicle load). It does not take into effect the duration of the peak or crowded portion

of the route. This becomes especially important when comparing crowding conditions

79



across routes that have similar peak loads but varying route lengths, run times, and

ridership patterns.

Figure 4-2 shows two trips with similar peak loads but different peak load dura-

tions. The top is representative of typical inbound feeder route profile where loads

increase throughout the trip as passengers board and do not alight until the final

destination. The bottom is more typical of an express route where many people may

board early in the route, then the vehicle may go a significant amount time without

making a stop, sometimes traveling on a highway, with most people alighting at the

final destination.

Both trips have a peak load of 50 passengers. However, many more passengers

face conditions for a longer time on the bottom trip than the top. Passengers riding

on the second (bottom) trip face peak load conditions for 38 minutes while passengers

riding on the first trip only do for 8 minutes. Metrics that consider both crowding

duration and intensity can be applied to better differentiate similar situations. ODX

derived load profiles allow for this duration to be measured in two ways: time or

distance.

4.2.3 Unique Passengers Facing Crowded Conditions

The turnover rate of passengers, i.e., the frequency that passengers board and alight

during a trip, impacts the number of unique passengers who face crowded condi-

tions. Given a constant load profile, the higher the turnover rate the more unique

passengers who will face crowded conditions. An example is shown in Figure 4-3.

Both trips have a load of 50 passengers for the entire 38 minute duration, however,

the number of passengers experiencing this level of crowding differs significantly. In

the top trip there is no passenger turnover. 50 passengers experience this level of

crowding for the entire 38 minutes. In the bottom trip there is a significant amount

of turnover. 130 passengers experience this level of crowding for an average duration

of under 15 minutes. There is a difference between the number of passengers facing

crowded conditions and the average duration for which these passengers spend in

these conditions.
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Turnover rate is not shown in peak load or even load profile analysis alone. The

estimated passenger flows derived from the ODX based load profile development can

be used to estimate the number of unique passengers who were on a vehicle during
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any given section of a bus trip, identifying those who were onboard during crowded

segments.

4.2.4 Comparisons Between Routes of Different Frequencies

Crowding can occur on routes of all frequencies. However, two routes with similar

average load profiles and load variability but different frequency levels could have

a significantly different number of passengers facing crowded conditions. The more

frequent route will have have more passenger crowding since more bus trips will

run over a given time period. For example, a route with an average of 10 minute

headways will have 6 trips operate within a hour while a route with an average of 20

minute headways will only have 3 trips per hour. Since ODX based load estimates are

available for almost every vehicle trip and crowding metrics can be passenger centric,

frequency differences can be accounted for. Crowding metrics can be specified by the

time period (e.g., crowding experienced on a given route for trips departing between

8:00-8:30AM). This recognizes that while crowding occurs on specific vehicles, a route

operates as a system of multiple interrelated vehicles. Therefore, crowding analysis

should be done on the route level over a selected period of time when possible.

4.3 Cumulative Passenger Crowding Time

Taking all of the issues discussed above into consideration, A recommended crowding

metric, "Cumulative Passenger Crowding Time" (CPCT), was developed to utilize

the additional information that ODX derived estimates provide. CPCT is the total

amount of passenger time spent above a given crowding threshold. It is a cumula-

tive metric which enables it to account for crowding caused by load variability by

summing instead of averaging conditions on all trips under consideration. It also

acknowledges the temporal effect of crowding by considering not only the intensity

of crowding but also the duration. CPCT is passenger centric allowing for a more

nuanced understanding of the passenger experience and enabling comparisons among

routes.
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Its formulation is described in Equation 4.1. For every trip segment, often between

adjacent stops, the running time of that particular segment is multiplied by the

number of passengers on board in excess of the crowding threshold. This is calculated

for each segment of a vehicle trip and then summed to provide a cumulative passenger

time above crowding threshold for that trip. This can be further aggregated to gain

an understanding of crowding on a route or systemwide level.

CPCT = Z Ri * max(0, Li - T) (4.1)

Where

" CPCT is the cumulative passenger time above crowding threshold for a given

trip or set of trips

" i is a segment of a trip

" Ri is the running time for a given segment i

* Li is the vehicle load over a given segment i

" T is the crowding threshold used in the calculation

An example application of this metric is shown in Figure 4-4. In this case, the

crowding threshold is a load of 40 passengers, as marked by the green line. The

red area is the passenger time for which loads exceed the threshold. For this trip,

there are two instances of different duration and intensity in which loads exceeded

the threshold. During the first instance, there are 5 passengers above the crowding

threshold for 4 minutes for a total of 20 passenger minutes. Then during the second

instance there are also 5 passengers above the crowding threshold for 10 minutes and

then 10 passengers over the threshold for the final 5 minutes for total of 100 passenger

minutes. Combined, there are two passenger hours of cumulative passenger time spent

over the crowding threshold.

This metric estimates the intensity of crowding on each trip and weighs it by the

duration. Therefore, a trip with intense crowding for a short duration could have
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Figure 4-4: Example Calculation of Cumulative Passenger Crowding Time

the same CPCT as a trip with less intense crowding for a longer duration. While

more passengers may have experienced intense crowding conditions on the first trip,

the passengers experiencing crowding on the second may have experienced worse

conditions since they needed to stand or remain in an uncomfortable position for a

longer period of time.

The crowding threshold can vary depending on the circumstance. During rela-

tively low demand periods, this could be the seated capacity of a vehicle while during

high demand periods, this could be raised to some multiple of seated capacity like

many agencies currently do for average peak load analysis, to identify situations with

high intensity crowding.

4.4 Systemwide Crowding Analysis

CPCT of individual trips can be aggregated together in many different ways in order

to do systemwide analysis. Although loads and therefore CPCT are not able to be

calculated for every trip, since trips without calculations appear to be approximately
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uniformly distributed among routes and time periods CPCT can be used to make

relative comparisons. (i.e., There is more crowding on Route A than Route B.) An

analysis of crowding on the weekday MBTA bus network during the fall of 2015,

September-November, was done in this manner.

4.4.1 Temporal Distribution of Crowding

A temporal analysis was done to show the distribution of crowding throughout a

typical weekday. CPCT was calculated for each weekday trip for which an ODX

derived load profile was created. This includes approximately 90% of trips operated

on routes for which the scaling process is effective. See section 3.3.3 for a description

of excluded routes and Appendix A for a complete list. The seated capacity of the

vehicle in use on the specific route was used as the crowding threshold. Each trip

was then grouped into 30-minute-time-period clusters depending on its scheduled

departure time and CPCT was summed for each cluster. This distribution is shown

in Figure 4-5.

Cumulative Passenger Crowding Time by Time Period
Weekdays September-November 2015
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Figure 4-5: Cumulative Passenger Crowding Time by Scheduled Departure Time with
a Crowding Threshold of Seating Capacity. Weekdays September-November 2015
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It appears that most passenger crowding occurs during the peak periods. This

occurs for three reasons:

1. In order to meet the needs of the entire bus network during the high demand

peak periods the crowding standard that the MBTA uses during the peaks

is relaxed to 140% of seating capacity (See Section 2.8.2 for a more detailed

discussion) Therefore route schedules are built to allow for higher intensity

crowding in the peak periods than during the off-peak periods.

2. Overall travel demand also peaks during these periods. Therefore, road conges-

tion is generally higher as well. This causes running times to increase requiring

passengers to remain in crowded conditions longer.

3. To meet this higher travel demand, frequencies are increased on most routes

during the peak periods. Therefore, not only are average loads higher and run-

ning times longer but there are more trips operated resulting in more passengers

experiencing these crowded conditions.

Crowding during the morning peak is more concentrated in trips that depart

during the seven o'clock hour while crowding during the afternoon is less intense but

occurs for a longer time frame. This appears to follow general travel patterns. Many

of these passengers are likely to be commuters. In the morning, passengers are likely

required to be at their place of work during the 8 o'clock hour. Since most passengers

will likely head directly to their place of work, travel demand is concentrated within

a narrow time frame. This peaking of travel demand is difficult for a transit agency

to effectively manage without large amounts of resources sitting idle for the rest of

the day. Therefore crowded conditions occur.

During the afternoon, passengers have more staggered times for which they depart

for home. This is due to differing work hours and/or after work activities. Therefore,

afternoon travel demand is much less concentrated than the morning and should be

easier for the transit agency to effectively accommodate although the afternoon peak

is often plagued by greater levels of traffic congestion that tend to increase the bus

resources required to meet a similar demand.
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Although Figure 4-5 appears to show that there is little crowding outside of the

peak periods, it should not be interpreted as there are no crowded trips during the

off peaks. There may be crowded trips, however frequencies are lower and travel

times faster meaning fewer passengers are likely facing crowded conditions for shorter

lengths of time. Further analysis of individual routes should be done to identify where

a high percentage of passengers are facing uncomfortable conditions.

This metric is designed as a prioritization tool to identify the highest need routes

and times in terms of passengers experiencing a given level of crowding weighed

by their crowding duration. A crowding "standard" discussed in Section 4.7 that

is designed to determine if a route is providing adequate levels of comfort to its

passengers regardless of the number of customers served.

4.4.2 Distribution of Crowding by Route

Next, the distribution of CPCT among routes was explored. Trips were grouped by

route and CPCT was summed. The cumulative distribution function of this distribu-

tion ordered by route ranking of CPCT is shown in Figure 4-6. Crowding thresholds

of seated capacity and 140% of seating capacity were used.

The figure shows that much of the systemwide CPCT comes from a small portion

of the bus network. Approximately 60% of seated capacity CPCT occurs in the top

20 most crowded routes, with almost 66% of 140% of seated capacity CPCT occurring

in the top 20 routes. On many routes there are relatively small amounts of CPCT.

If route distribution is combined with temporal distribution a picture of even

more crowding concentration is developed. Figure 4-7 shows this distribution for

all route/30-minute-time-period combinations. 75% of seated capacity CPCT occurs

in approximately 10% of route/time period combinations. 140% of seated capacity

CPCT is even more concentrated with 75% occurring in roughly 5% of route-time

period combinations. This is encouraging from an agency perspective as the passenger

crowding experience systemwide can be improved with concentrated interventions.

Half hour time periods were used. This duration is short enough to gain a nuanced

understanding of how crowding conditions may change through out the day while long
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Figure 4-6: Cumulative Distribution Function of Cumulative Passenger Crowding

Time Ordered by Route Ranking of CPCT. Weekdays September-November 2015

enough to ensure that most routes have at least one scheduled trip in each period

within their span of service. Some routes which only operate during the peak periods

or other select times may only operate in a few time periods while other routes that

operate for the entire MBTA span of service may operate trips in as many as 46

different periods during an average weekday.

4.5 Prioritization

Comparative metrics also enable a ranking and prioritization of routes and time pe-

riods. It makes possible the identification of areas where the worst crowding occurs.

This can be done for entire routes to determine where broad changes might be neces-

sary such as changes in route design or transit priority measures. It can also be done

on a route/ 30-minute-time-period level to identify where more narrow time specific

changes might be warranted such as increased scheduled frequency, temporary bus

lanes, or more intense dispatch control at terminals.
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4.5.1 Route CPCT

Rankings were first completed by route. As shown in Section 4.4.2 most CPCT occurs

in a relatively small selection of bus routes within the MBTA bus network. A list of

the 20 routes with the most CPCT using seated capacity as the crowding threshold

is shown in Table 4.1.

Rank Route CPCT (Passenger Hours) Rank Route CPCT (Passenger Hours)
1 17329 11 7 4615
2 10579 12 4563
3 8265 13 4411
4 7351 14 47 4026
5 7319 15 16 3930
6 6951 16 3744
7 9 6696 17 34E 3251
8 5812 18 65 3191
9 86 5276 19 57A 2783
10 70 5039 20 93 2560

Table 4.1: MBTA Bus Routes with Most CPCT with Crowding Threshold of Seated
Capacity Weekdays September-November 2015. Key Routes are Listed in Orange.
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50% of the routes listed are considered key routes (in orange) under the MBTA's

Service Delivery Policy. These routes meet higher frequency and span of service

standards than the rest of the bus network. They are in turn also many of highest

ridership routes in the network.

The vast majority are also high frequency urban routes. The only exception is

the the 34E which is long local feeder route that runs from suburbs southwest of

Boston to Forest Hills, the terminal station of one of the heavy rail lines. Although

it only operates at 20 minute headways during the morning peak period, it has a

scheduled run time of approximately an hour meaning that while fewer passengers

likely experience crowded conditions, when they do they are likely to experience them

for a significant amount of time.

Passengers on the Route 111 experience significantly more crowding than pas-

sengers on any other route. This is a high demand route operating with 4 minute

headways during the morning peak. The crowding that occurs also occurs for a long

duration. The 111 runs from Chelsea, an inner suburb, across Boston Harbor to

Haymarket Station in Downtown Boston. Along the way it crosses the Tobin Bridge,

one of the main connections to Boston from the North Shore suburbs. There are

no stops between Chelsea and Boston meaning that when crowded conditions arise,

passengers remain in these conditions for extended periods of time, especially when

travel speeds over the Tobin Bridge slow due to congestion.

When a crowding threshold of 140% of seated capacity is used to isolate only high

intensity crowding situations, as shown in Table 4.2, most of the routes from the

seated capacity CPCT list remain. Only two are replaced: 22 and 34E which move

to positions just outside of the top 20. The order of routes changes somewhat with

non-key routes rising in rank (notably 7, 9, and 47). These appear to be routes with

high peak period but low off-peak travel demand meaning that they are likely to have

high intensity crowding occurring during the peak periods when schedules are built

around 140% of seated capacity peak loads and less low intensity crowding during

the off-peaks.

The 111 continues to have significantly higher CPCT than any other route. It has
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Rank R
1
2
3
4
5
6
7
8
9

10

Table 4.2:
of Seated
Orange.

oute CPCT (Passenger Hours) Rank Route CPCT (Passenger Hours)

4062 11 763
1649 12 727

9 1629 13 727
7 1329 14 16 656

1295 15 70 612
1217 16 65 512

86 1039 17 57A 498
47 974 18 456

893 19 109 456
819 20 93 440

MBTA Bus Routes with Most CPCT with Crowding Threshold of 140%
Capacity Weekdays September-November 2015. Key Routes are Listed in

almost 2.5 times more CPCT than the second highest route.

4.5.2 Route/Time-Period CPCT

In addition to understanding on which routes the most passenger crowding occurs, it is

also important to understand when it occurs as this will inform schedule adjustments.

As done in creating Figure 4-7, trips were grouped into 30 minute clusters based on

scheduled departure time and route. Table 4.3 shows the route /time-periods with the

most CPCT with seated capacity as the crowding threshold.

The spike in crowding during the peak periods shown in Figure 4-5 is highlighted

in this table as well. All but 5 of the top 50 route/time-periods combinations occur

during the peak periods. There are also more morning periods at the top of the

list while afternoon periods are further down. Route 47 saw a significant amount of

crowding on trips scheduled to depart between 16:30-17:00 which is likely due to high

levels of congestion over the BU Bridge.

It is evident that for a number of the most crowded routes passengers are likely to

experience crowded conditions if they board anytime within a large time frame. For

example, Route 111 has four of the top twenty route periods and nine of the top fifty.

They include four consecutive periods (6:00-8:00). Therefore a passenger boarding

during these periods is likely to experience a significant amount of crowding. This
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Rank Route Period CPCT Rank Route Period CPCT
(Passenger Hours) (Passenger Hours)

1 9 7:30-8:00 2002 26 14:30-15:00 796

2 6:30-7:00 1478 27 16 6:30-7:00 787

3 7:00-7:30 1471 28 17:00-17:30 781

4 9 8:00-8:30 1387 29 7:00-7:30 754

5 . 6:30-7:00 1345 30 16:30-17:00 750

6 6:30-7:00 1298 31 6:30-7:00 725

7 7:30-8:00 1247 32 7:30-8:00 724

8 6:00-6:30 1234 33 7:00-7:30 702

9 7:00-7:30 1220 34 17:00-17:30 667

10 7 8:00-8:30 1210 35 8:00-8:30 664

11 7 7:30-8:00 1146 36 5:00-5:30 659

12 6:00-6:30 1077 37 7:00-7:30 656

13 70 7:00-7:30 1036 38 16 6:00-6:30 642

14 6:00-6:30 980 39 47 16:00-16:30 619

15 9:30-10:00 970 40 15:00-15:30 613

16 7:30-8:00 968 41 6:30-7:00 611

17 7:30-8:00 941 42 15:00-15:30 592

18 86 7:30-8:00 928 43 86 16:30-17:00 578

19 47 16:30-17:00 890 44 8:00-8:30 574

20 86 8:00-8:30 875 45 17:30-18:00 562

21 65 7:30-8:00 857 46 9 17:00-17:30 554

22 86 7:00-7:30 844 47 14:00-14:30 551

23 14:00-14:30 841 48 14:30-15:00 545

24 9 7:00-7:30 834 49 8:00-8:30 543

25 16:30-17:00 833 50 17:00-17:30 536

Table 4.3: MBTA Bus Route/Time-Periods with Most CPCT with Crowding Thresh-

old of Seated Capacity Weekdays September-November 2015. Key Routes are Listed

in Orange.

is likely the cause of Route 111 having significantly more crowding than any other

routes though many other routes have multiple periods listed as well.

Table 4.4 presents 140% of seated capacity CPCT by route/time-period. It ap-

pears to show similar patterns as seated capacity. The vast majority of route/time-

period combinations occur during the peak periods and all occur on urban routes. As

in Table 4-2, non-key routes also rise in rankings for CPCT of 140% seated capacity

with significantly more non-key routes in the top 50 compared to seated capacity

CPCT.

It now possible to compare temporal distributions of crowding among routes. For

the use of many resources there is a temporal component (i.e., when is it being used)

as well as spatial (i.e., where it is being used). Therefore, a resource could be used

in one location for a period of time and then another for a different period of time.
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Rank Route Period CPCT Rank Route Period CPCT(Passenger Hours) (Passenger Hours)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

698 269 7:30-8:00
9:30-10:00
7:00-7:30

9 8:00-8:30
6:00-6:30

7 8:00-8:30
7 7:30-8:00

6:30-7:00
47 16:30-15:00
86 7:30-8:00

7:30-8:00
14:00-14:30

86 7:00-7:30
6:00-6:30
7:00-7:30

14:30-15:00
70 7:00-7:30
9 7:00-7:30

6:00-6:30
7:30-8:00
7:30-8:00
7:30-8:00

16 6:00-6:30
86 8:00-8:30

5:00-5:30

686
455
431
406
404
392
381
322
249
249
242
235
221
211
210
205
204
202
200
195
193
193
190
186

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

64 7:00-7:30
6:30-7:00

16:30-17:00
6:30-7:00

65 7:30-8:00
47 16:00-16:30
16 6:30-7:00
11 8:00-8:30

6:30-7:00
7:00-7:30
7:00-7:30
8:00-8:30

7 8:30-9:00
47 8:30-9:00

17:00-17:30
21:30-22:00
10:00-10:30
15:00-15:30
15:00-15:30

86 16:30-17:00
16:30-17:00

64 8:00-8:30
19 6:00-6:30
11 7:30-8:00

57A 8:00-8:30

Table 4.4: MBTA Bus Route/Time-Periods with Most CPCT with Crowding Thresh-
old 140% of Seated Capacity Weekdays September- November 2015. Key Routes are
Listed in Orange.

Figure 4-8 shows how this comparison can be done between routes with an example

comparing the temporal distribution of 140% of seated capacity CPCT on Routes 7

and 111.

The figure shows that the temporal distribution of CPCT can vary between routes.

Although both routes have morning and afternoon peaks they occur at different times.

The Route 111 peaks generally occur earlier than Route 7. This may be related to

different running times (Route 111 scheduled run times are approximately three times

longer than Route 7) as passengers may need to board earlier trips to make it to their

final destination on time on the Route 111.

It may also be that passengers of Route 111 have different travel schedules than

those of Route 7. The 111 connects working class neighborhoods in Chelsea, an inner

suburb, to downtown Boston. A larger percentage of its passengers may need to be
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Cumulative Passenger Crowding Time by Time Period Routes 7 and 111
Weekdays September-November 2015
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downtown earlier in the morning and therefore may finish work earlier as well. Route

7 connects the increasingly affluent South Boston neighborhood to the Financial Dis-

trict in which more passengers may be working traditional 9-5 work hours.

Overall distributions vary significantly between the two routes. Almost all of

Route 7's CPCT occurs during the peak periods while on Route III crowding occurs

throughout the day. This indicates that broad interventions might be appropriate for

the I11.

4.6 New Crowding Metrics

While cumulative passenger crowding time attempts to consolidate all crowding as-

pects into a single metric, it is also important to evaluate individual components

to better understand the nature of each crowding situation. Four components are

examined: the number of unique passenger trips experiencing crowded conditions,
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number of unique standees, number of passengers experiencing crowded conditions

for extended periods of time, and average standing time.

4.6.1 Number of Unique Passenger Trips Experiencing Crowded

Conditions

The number of unique passenger trips experiencing crowded conditions was calculated

for routes with the most 140% of seated capacity CPCT. Experiencing crowded con-

ditions is defined as being on a vehicle while loads exceed 140% of seated capacity for

some portion of a passenger's trip. The number of vehicle trips on which passengers

experience these conditions is also calculated. The results are shown in table 4-5.

Rank Route Passenger Trips Crowded Rank Route Passenger Trips Crowded
Affected Vehicle Trips Affected Vehicle Trips

1 111 117,491 1754
2 1 61,686 860
3 9 60,000 811
4 7 55,913 838
5 66 79,551 1075
6 57 87,236 1294
7 86 41,103 576
8 47 30,197 434
9 28 55,161 559

10 77 36,198 523

Table 4.5: Passengers Experiencing
Seated Capacity) for Routes with Most
September-November 2015

11
12
13
14
15
16
17
18
19
20

Crowded
140% of

23 52, 619 777
32 80,954 1328
39 45,941 452
16 34,398 508
70 34,240 472
65 27,940 422

57A 32,149 488
117 32,466 462
109 25,154 388
93 25,661 393

Conditions (loads over 140% of
Seated Capacity CPCT. Weekdays

Although the number of passengers experiencing crowded conditions is generally

correlated with CPCT, specific route characteristics cause relative fluctuations. The

number of vehicle trips in which loads exceed 140% of seated capacity greatly affects

the number of passengers who experience crowded conditions as everyone onboard

experiences it no matter the intensity or duration of the crowding situation, meaning

that routes on which many trips may barely exceed 140% of seated capacity will have

more passengers experiencing crowded conditions compared to routes on which only

a few trips greatly exceed 140% of seated capacity.

Route 111 has substantially more vehicle trips with loads over 140% of seated

capacity than any other route, subsequently causing almost twice as many passengers
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to experience crowded conditions. Routes 66, 57, and 32 also had more trips exceed

the crowding threshold than routes with similar CPCT.

The seated capacity of the vehicle in use also affects the number of passengers

experiencing crowded conditions. Routes 28 and 39 operate with 60 foot articulated

buses with a seated capacity of 57 which is significantly higher than the 39 seated

capacity of the 40 foot vehicles used on the vast majority of routes. Both of these

routes have more passengers experiencing crowded conditions on a similar number of

crowded vehicle trips relative to routes with comparable CPCT totals.

4.6.2 Crowding Duration

The ridership patterns, route length and travel speeds of a route affect the amount of

time passengers spend in crowded conditions. As shown in Section 4.2.2, passengers

on certain routes are more likely to remain in crowded conditions for extended periods

of time. An analysis of the distribution of passenger crowding time on routes with

the most 140% of seated capacity CPCT is shown in Table 4.6.

There is significant variation between routes. Some have a high percentage of

passengers who experience crowded conditions experiencing them for long durations.

More than half of these passengers experience crowded conditions for over 10 minutes

on Routes 111, 47, and 86. On other routes, very few passengers experience long du-

ration crowding. Only 15% of passengers experiencing crowded conditions on Routes

32 and 117 experience them for longer than 10 minutes.

There is also a temporal component to a passenger's crowding duration. During

the peak periods, travel speeds are slower due to more vehicles on the road causing

congestion. Loads are also generally higher due to the relaxed crowding threshold

built into the schedule causing crowding conditions to occur on longer spatial seg-

ments. Therefore, the amount of time passengers spend in crowding conditions also

increases. Figure 4-9 shows how the average amount of time a passenger spends in

crowded conditions changes throughout the day on Route 111.

There is a significant increase in the average crowding duration during the morning

peak. Average durations increase from approximately 12 minutes for most periods
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Crowding Duration

Rank Route 5mintes 10 minutes 20 mirtes -30 minutes

1 111 92 68 16 4

2 1 66 32 4 1
3 9 77 49 17 1
4 7 88 36 1 0
5 66 68 39 11 2
6 57 66 32 4 0
7 86 78 50 15 2
8 47 81 63 18 4
9 28 70 35 9 1

10 77 71 43 13 3
11 23 70 34 8 2
12 32 41 0 0
13 39 63 33 3 0
14 16 73 36 4 1
15 70 67 47 12 4

16 65 74 49 8 1
17 57A 74 37 3 0
18 117 42 16 3 1
19 109 79 29 1 0
20 93 78 35 2 0

Table 4.6: Duration Distribution of Passengers' Crowded Experience on Routes with
most CPCT. Weekdays September-November 2015. Red Cell >75% Orange Cell=
50-74% Yellow Cell=25-50% Green Cell < 25%

to over 24 for vehicle trips leaving (luring the 7 o'clock hour. This is likely due to

slow travel speeds over the Tobin Bridge and crowding conditions occurring earlier in

the route. There is also a midday lull likely caused by the reverse effect. Afternoon

peak travel demand is more spread reducing congestion's effect on running times and

therefore crowding duration.
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Average Passenger Crowding Duration by Time Period Route 111
Weekdays September-November 2015
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Figure 4-9: Average Passenger Crowding Duration by Time Period Route
days September-November 2015

111 Week-

4.6.3 Number of Standees

To isolate the passengers who are most affected by crowded conditions, the unique

number of passenger trips on which a passenger had to stand for some portion of

their trip can be identified. While this is similar to the number of unique passenger

trips experiencing crowded conditions, it considers all intensities of crowding. Table

4.7 shows the number of standees for routes with the most seated capacity CPCT.

It is assumed that passengers sit when a seat is available and seats are filled on

a first-in, first-out sequence. This is required since a passenger's actual actions are

unknown. A passenger is only assumed to have stood if they board while a vehicle

has a load exceeding its seated capacity.

This reveals a route's turnover rate. The comparison between Routes 66 and 111

highlight this. Route 66 is a crosstown route with many midpoint destinations while

the 111 has a single primary destination. More passengers were required to stand on
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Rank Route Standees Vehicle Trips Exceeding Rank Route Standees Vehicle Trips Exceeding
Seated Capacity Seated Capacity

1 111 81,867 4,982 11 7 30,789 1,691
2 66 91,212 3,600 12 77 31,735 1,728
3 57 76,927 3,640 13 39 43,974 1,609
4 23 63,791 3,354 14 47 22,726 1,200
5 1 61,113 3,075 15 16 34,582 1,670
6 28 56,809 2,073 16 22 38,494 2,268
7 9 44,074 1,945 17 34E 23,776 1,522
8 32 59,827 4,468 18 65 19,804 1,065
9 86 35,887 1,816 19 57A 21,671 1,035

10 70 38,669 1,781 20 93 19,390 1,244

Table 4.7: Number of Unique Standing Passenger Trips and Vehicles Trips Exceeding
Seated Capacity for Routes with Most Seated Capacity CPCT. Weekdays September-
November 2015.

Route 66 though this occurred on significantly fewer vehicle trips than Route 111.

For every Route 66 trip that exceeded seated capacity, many more passengers were

required to stand due to higher turnover rates.

4.6.4 Average Standing Time

It is also possible to calculate the average amount of time that a passenger is required

to stand when a seat is not available. This was calculated for the routes in the rank

order included in Table 4.7.

Rank Route Average Standing Time Rank Route Average Standing Time
(Minutes: Seconds) (Minutes: Seconds)

1 111 12:01 11 7 8:57
2 66 6:54 12 77 8:32
3 57 6:54 13 39 6:01
4 23 6:52 14 47 10:37
5 1 7:00 15 16 6:47
6 28 7:16 16 22 5:43
7 9 9:06 17 34E 7:56
8 32 5:49 18 65 9:39
9 86 8:48 19 57A 7:42

10 70 8:32 20 93 7:52

Table 4.8: Average Standing Time on Routes with Most Seated Capacity CPCT.
Weekdays September-November 2015.
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There is a wide range of average standing times. Route 111 has the longest

standing time and it is almost double the duration of the route with shortest, Route

22. The range is likely caused by two factors: turnover rate and duration of crowded

segments. Routes on which crowded segments are relatively short will only require

passengers to stand for limited amounts of time regardless of turnover rate. This

appears to be the case for Routes 22 and 32.

High turnover rates can shorten the average amount of time that each passenger

spends standing. This likely causes Routes 1 and 66 to have relatively short average

standing times compared to Routes 47 and 111 where turnover rates are lower.

4.7 Proposed Crowding Standard for the MBTA

A standard was also developed as a diagnostic tool to enable the identification of

routes on which a significant percentage of passenger travel time is spent in un-

comfortable conditions. It states that over a given time period, a set percentage of

passenger time must be spent in comfortable conditions for a given route.

Comfortable conditions for passengers are defined only for those who are seated

when vehicle loads are less than 140% of seated capacity. If vehicle loads exceed

140% of seated capacity, all passengers are said to be traveling in uncomfortable

conditions. Figure 4-10 shows an example calculation. The black line represents a

seated capacity of 39 while the blue line represents 140% of seated capacity. The red

areas are passenger time spent in comfortable conditions. In this example, about 33%

of passenger time is spent in comfortable conditions.

Cumulative total passenger time and comfortable passenger time can summed

across trips departing during a given time period for a extended time frame (i.e.,

Route 1 Inbound Trips Departing Between 8:00-8:30AM during July 2015). Then a

period percentage can be calculated.

The comfortable percentage thresholds can be adjusted for different time periods

to account for different acceptable crowding conditions. Thresholds can be lower

during the peak periods when mbre crowding is acceptable and higher during the off
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Figure 4-10: Example Calculation of Percentage of Passenger Time Spent in Com-
fortable Conditions. Green areas are comfortable passenger time while red areas are
uncomfortable passenger time. The black line is seated capacity while the blue is
140% of seated capacity.

peaks when passengers often expect to have a seat available.

The standard allows for the passenger experience be evaluated regardless of the

frequency of service provided. Where the prioritization calculations using the pre-

viously calculated metrics consider the number of passengers affected by crowded

conditions to enable comparisons, the proposed standard allows a route to be evalu-

ated in isolation of frequency to determine whether a route/time-period requires an

intervention.

4.8 Summary of Metrics

Each of the metrics discussed in the previous sections have unique advantages and

limitations. These are outlined in Table 4.9. To make the most use of these varied

metrics, it is recommended that they are used together in some combination to gain

the best understanding of crowding in a network. An example application could entail
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using a threshold percentage of passenger time spent in comfortable conditions as a

standard to identify "crowded" routes and time periods. Then CPCT can be used to

prioritize resource use among these "crowded" routes and time periods. Finally, the

distribution of passenger crowding duration can be used to identify routes and time

periods on which crowding intensity should be kept at a minimum as passengers are

more significantly impacted when crowding does occur.

Cumulative Passenger Crowding
Time (CPCT)

Unique Crowded Passengers

Crowding Duration

Standees

Average Standing Time

Percentage of Passenger Time
Spent in Comfortable Conditions

Advantages
Considers multiple aspects
of crowding and enables pri-
oritization of routes and
time periods

Identifies
passengers
crowding

the number of
affected by

Identifies where crowding is
likely to have largest impact
on affected customers

Identifies passengers most
seriously affected by crowd-
ing

Identifies where crowding is
likely to have largest impact
on the most affected cus-
tomers

Enables the identification of
route and time periods on
which crowding exceeds an
acceptable level regardless
of frequency

I Limitations
Difficult to determine ap-
propriate level of crowding

No information on magni-
tude or distribution of im-
pacts for each passenger

Does not measure how
many passengers are af-
fected

No information on magni-
tude of impact for each pas-
senger

Does not measure how
many passengers are af-
fected

Does not easily allow prior-
itization of interventions
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4.9 Conclusions

This chapter discusses how ODX derived trip level load and passenger flow estimates

can be used to gain a more nuanced understanding of passenger crowding throughout

a bus network. These estimates can also be used to develop passenger centric crowding

metrics such as CPCT. Other aspects of crowding beyond intensity can be evaluated

including crowding duration and the number of unique passengers who are affected

by crowding either by being in a crowded vehicle or having to stand for a portion

of his/her trip. These metrics also allow for comparisons between routes and time

periods enabling transit agencies to identify where passengers are most effected by

crowding.

In the case of the MBTA bus network, CPCT reveals that during the fall of 2015,

most crowding occurs in a relatively concentrated portion of the bus network. The

vast majority of crowding occurs during the peak periods as the crowding standard

is relaxed and congestion causes running times to increase. It is also concentrated

mostly on high frequency urban routes, with approximately 66% of 140% seated

capacity CPCT occurring in the top twenty most crowded routes and approximately

7% of unlinked passenger trips experiencing loads over 140% of seated for some portion

of their trip, since schedules are set based on average peak load analysis.

Within the group of most crowded routes as identified with CPCT, the nature

of the crowding situations varied. Some routes had many short duration crowded

vehicle trips such as the 32 and 117 while others had long duration crowding such as

111, 86, and 47.

Although most crowding occurs during the peak periods, routes have different

crowding peaks within the overall peak periods. Comparing the temporal distribution

of crowding of Routes 111 and 7, for example show that for both the morning and

afternoon peaks, Route 111 passengers experience crowded conditions earlier than

Route 7.

A standard is also discussed that can be used to evaluate crowding conditions

of a route in isolation of the rest of the network. The percentage of passenger time
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spent in comfortable conditions considers both the intensity and duration of crowded

situations. It is also differentiates between low intensity crowding where standees

are the passengers most affected by crowding and high intensity crowding where all

passengers are affected.

While this research focuses on the use of automated farecard and vehicle location

data, full implementation of APC systems on 100% an agency's bus fleet also allows for

a more granular estimation of passenger loads and therefore a better understanding

of the aggregate passenger crowding experience than is currently available using a

sample of trips. There is a lot to gained by using accumulated metrics instead of

averages. Many, but not all, of the alternative metrics discussed in this chapter could

be calculated with complete coverage of APC load estimates. However, additional

estimation procedures such as iterative proportional fitting (IPF) are required to

estimate how individual passengers are affected when only using APC load estimates,

as only boardings and alightings are estimated. The IPF estimation is similarly

imprecise as is the ODX procedures discussed herein. And it should be noted that the

passenger flow estimates provided directly from ODX provide a better understanding

of the crowding impact on individual passengers without further estimation.

For example, even a metric like CPCT, which could be estimated with full coverage

of APC systems groups all passengers together to create a total passenger crowding

time. However, as can be seen with the distributions of passenger crowding durations

in Table 4.6, each passenger's experience of crowding can be different, even within

a given vehicle trip where there can be a wide range of experiences. ODX provides

both the aggregate and more fine-grained individual passenger crowding information

to not only identify where the most passenger crowding occurs but also when and

where an individual is mostly likely to be negatively affected by crowding.

Thus, while transit agencies may have previously believed that the "gold standard"

method to measure and evaluate passenger crowding on buses was to equip every bus

with APC systems, this research provides quite compelling arguments that the joint

use of AFC and AVL data with the ODX algorithm along with a sample of APC

data can provide an additional base of comparison of crowded conditions throughout
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a high demand urban bus system.
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Chapter 5

Crowding Source Determination

The wealth of trip level load and passenger flow information available from ODX

derived estimates also enables further investigation of the causes of crowding for

each route/direction/time-period combination. This helps inform a transit agency's

selection of the most appropriate passenger experience improvement strategy for a

given situation. A more nuanced crowding reduction program can increase the degree

to which the overall passenger experience can be improved given finite resources.

A hierarchical classification tree method is proposed to determine the portion of

observed crowding, in terms of seated capacity CPCT, that can be attributed to

one of four categories. These categories include: scheduled frequency, dropped trips,

daily fluctuations in passenger demand, and within-period load variability factors.

Although there are many assumptions made in this analysis, it provides a method to

estimate the magnitude of effect for each potential "reason" for crowded conditions.

5.1 Sources of Crowding

There are many are many factors that cause crowding situations to arise on fixed

route bus service. A summary is shown in Figure 5-1. The base factors are the fixed

schedule not being able to meet fluctuations in demand and inadequate supply. The

fixed schedule's inability to meet normal passenger travel demand is crowding that

occurs when there is peaking in passenger travel demand (e.g., adequate capacity over
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the course of a scheduling period but not enough to meet demand for one or more

specific vehicle trips on a specific day). This variability in demand can occur on large

scale such as between days or smaller scales such as between vehicle trips within a

specific small time period. Since these fluctuations are generally not routine, they are

not incorporated into the schedule.

On the supply side, some crowding is inherent in the scheduled frequency. This

may be intended during the peak periods when resources need to be spread across the

entire network or unintended if schedules have not been adjusted over time to meet

higher levels of average demand.

Other reasons for crowding can be attributed to the provided service not operating

as scheduled. There are two primary areas in which provided service can fall short

of scheduled service: dropped trips and headway variability. Drop trips are when a

scheduled vehicle trip is not operated for any reason. This lowers average provided

frequency as well as increases headway variability, both requiring passengers to be

distributed among fewer vehicle trips as well as resulting in passengers being less

evenly distributed among these trips. Headway variability causes uneven vehicle

loading if passenger arrival rates are constant. It can be either caused by endogenous

factors such as poor terminal departure performance or more exogenous factors such

as general traffic congestion.

5.2 Methodology

A four stage classification tree is used in the source estimation process as shown in

Figure 5-2. At each junction a calculation is made to estimate the portion of crowding

to be attributed to each sequential branch. This requires controlling for both duration

and intensity components of crowding at different points throughout the procedure.

The classification process starts by clustering the Fall of 2015 non-school-holiday

weekday vehicle trips on routes which ODX and the scaling process are effective by

route, direction and 30-minute-time-periods during the day determined by sched-

uled departure time. Ideally, actual departure time would be used, however there
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Crowding

Fixed Schedule
inability to Meet Inadequate
Fluctuations in Supply
Demand

Day-to-Day Within Period Scheduled Provided Service

Dropped Trips Heraay

Exogenous Endogenous

Figure 5-1: Sources of Crowding

were many operated trips in which actual departure times are not available. Ob-

served seated capacity CPCT using scheduled run times is then summed for each

route /direction /30-minute-time-period combination. This controls for any effect that

deviations from scheduled run times might have on crowding duration. Seated capac-

ity is used as the crowding threshold instead of 140% of seated capacity for all periods

to capture crowding of all intensities. This becomes the base measure on which all

other sequential calculations are compared.

5.2.1 Scheduled Frequency and Variability Factors

The "scheduled frequency" factor estimates the amount of crowding that would be

expected if all scheduled service was delivered perfectly and passenger arrival rates

and alighting distributions were constant. It attempts to evaluate the degree to

which the scheduled level of service is able to meet average passenger travel demand

controlling for day-to-day variations in demand and service performance.
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Figure 5-2: Classification Tree Used in Crowding Source Methodology

Variability factors are the antithetic components to provided frequency. They

are components that cause vehicle trips within a route /direction/ 30-minute-time-

period to have differing levels of CPCT. These could be either intensity or dura-

tion factors. Variability factors included in this analysis are day-to-day fluctua-

tions in demand and factors that cause load variation between trips within a given

day/ route /direction /period combination that is usually caused by uneven headways.

This attribution split is accomplished by determining the level of crowding, in

terms of seated capacity CPCT, that would be expected if passengers were equally

split between all scheduled vehicle trips and trips operated with their scheduled de-

parture and running times. First, average load profiles are constructed for each route

variation within a route /direction /time-period combination. Then scheduled run-

ning times are assigned to each vehicle trip to calculate CPCT. This is divided by

the observed seated capacity CPCT to derive an attribution percentage for each

route /direction /time-period combination as shown in Equation 5.1.
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Figure 5-3 provides an example calculation. Here, there are four vehicle trips

with two dropped trips for a total of 6 scheduled trips. Trip 1 has 100 passengers

minutes of CPCT. Trip 2 has 75 passenger minutes while loads on trips 3 and 4 remain

under the crowding threshold for the entire duration. In total there are 175 passenger

minutes of CPCT experienced on the four trips. The scheduled average load profile

of the four trips is represented by the black line. This remains under the crowding

threshold for the entire duration. Therefore, if every scheduled trip was operated and

passengers were equally distributed among trips with the same boarding and alighting

distributions we would not expect any crowding.

60 1

- Trip 1
Trip 2
Trip 3

50 Trip 4
Scheduled Average Load Profile
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Figure 5-3: Example Calculation of Scheduled Frequency Contribution

The remaining CPCT that cannot be attributed to scheduled frequency is at-

tributed to variability factors (In the example case, all 175 passenger minutes of

CPCT). This is also divided by the observed CPCT to attain an attribution percent-

age as shown in Equation 5.2.

111

U----



CPCTSS
CPCTOS

CPCTOS - CPCTss
CPCTos

" SF is the percent of observed seated capacity

frequency

" VF is the percent of observed seated capacity

factors

" CPCTss is the CPCT calculated using period

and scheduled run times

CPCT attributed to scheduled

CPCT attributed to variability

scheduled average load profiles

* CPCTOS is the CPCT calculated using observed loads and scheduled run times

There is a possibility that there is some passenger demand peaking within a period.

(e.g., within the 8:00-8:30 AM period the 8:15AM trip is always more crowded than

the 8:25AM) This might cause more crowding to be attributed to variability factors

that should be in reality. Time periods are set to a relatively short 30 minutes in

order to minimize this possibility.

There is also a degree of load variability inherent in the ODX scaling process

due to the use of average scaling factors. This may cause the scheduled frequency

component contribution to be slightly under-attributed on some routes.
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5.2.2 Daily Demand and Supply Factors and Within-Period

Load Variability Factors

The amount of crowding that can be attributed to day-to-day fluctuations in demand

as well as the number of vehicle trips actually provided on any given day can be

defined as the portion of crowding that results from the actual provided frequency

levels not being able to meet passenger travel demand on any given day. Passenger

travel demand is likely to vary between days for a number of reasons. A few examples

include: individuals may decide to ride the bus for a trip they usually make on a

bike or by walking if the weather is bad; there may be an event that draws people

somewhere on a particular day increasing travel demand along a route or existing

public transit users might even be attracted to a particular route on a given day if

there is a disruption on another portion of the system. Actual provided frequency

also varies on a daily basis if any vehicle trips are dropped on a given day.

This daily versus within-period variation split is attempting to determine what

portion of crowding observed can be attributed to the provided frequency levels not

being able to meet passenger travel demand on any given day compared with crowding

brought on by factors that lead to variations in CPCT between adjacent vehicle

trips within a given day including uneven headways, and within-period variation in

passenger arrival rates and boarding/alighting distributions.

This is estimated by first calculating the daily average load for each route/direction

combination for each period and day it is in operation. Then using scheduled run

times, CPCT is calculated for every trip and summed for all trips within a route/direction/time-

period combination. This sum becomes the portion of crowding attributed to daily

demand and supply factors, as shown in Equation 5.3.

The remaining CPCT is attributed to factors causing CPCT to vary between

adjacent trips, as shown in Equation 5.4. For low frequency periods where only a

single trip is scheduled this is always zero. This reflects the high likelihood that

passengers during these periods select a specific vehicle trip to take each day and

therefore crowding is less likely to be affected by headway variation.
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DPV= CPCTDS (5.3)
CPCTOS

LV = CPCTOS - CPCTDAs (54)
CPCTOS

Where:

" DPV is the percent of observed seated capacity CPCT attributed to daily

provided frequency

" LV is the percent of observed seated capacity CPCT attributed to factors caus-

ing loads to vary between adjacent vehicle trips

" CPCTDAS is the CPCT calculated using the daily average load profile and

scheduled run times

" CPCTOS is the CPCT calculated using observed loads and scheduled run times

An analysis of the example trips used in Figure 5-3 can be expanded with this

methodology. If trips 1 and 3 occurred on day 1 and trips 2 and 4 occurred on day 2

then the daily average load profiles shown in Figure 5-4 would result. On day 1 we

would not expect any crowding if passengers were evenly distributed between the two

trips. On day 2 we would expect 25 passenger minutes of CPCT per trip for a total

of 50 passenger minutes.

Therefore, 50 passenger minutes is attributed to daily demand and supply factors.

The remainder of CPCT is attributed to within-period load variation factors, in this

case 125 passenger minutes.
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Example Calculation of Daily Fluctuations in Demand Crowding Contribution

- Day 1 Average Load Profile
Day 2 Average Load Profile

Crowding Threshold

50

so -

10

0

20

10

0
0 5 10 15 20 25 30

Minutes Since Terminal Departure

Figure 5-4: Example Calculation of Daily Demand and Supply Factors Crowding

Contribution

5.2.3 Headway Variability and Within-Period Demand Vari-

ability

Further analysis may be necessary to definitively separate within-period load varia-

tion factors into service delivery factors (such as uneven headways) and aspects that

a transit agency has little control over such as fluctuating passenger arrival rates and

boarding/ alighting distributions. Using the passenger arrival rates indicated by the

number of passengers boarding each vehicle at each stop as well the alighting distribu-

tions of these passengers, loads could be estimated under a perfectly delivered service

scenario. The additional crowding estimated with operated service delivered perfectly

compared to the crowding attributed to daily demand and supply factors would be the

amount of crowding attributed to within-period demand variability (varying passen-

ger arrival rates and boarding/ alighting distributions) as shown in Equation 5.5. The

remaining CPCT is attributed to uneven headways as in Equation 5.6. This process

assumes that there were no left behinds and that passengers arrived at a constant rate

between actual vehicle arrivals. Though this partition was not included in the overall

115



model, initial results suggest that the vast majority of crowding due to within-period

load variability factors is due to uneven headways. An example application is shown

for Inbound Routes 1 and 9 in Tables 5.2 and 5.3 respectively. More work should be

done on this topic to expand this analysis systemwide.

C PCTPs -- C PCTD As
WPDV = max( ,CPCS ,0) (5.5)

CPCTOS

CPCTOS - CPCTPS CPCTos - CPCTDAS)
HV =min( OP)s' CCQ (5.6)

CPCTos' CPCTOS

Where:

" WPDV is the percent of observed seated capacity CPCT attributed to within-

period demand variability.

" HV is the percent of observed seated capacity CPCT attributed to headway

variability.

" CPCTps is the CPCT estimated if operated vehicle trips run perfectly on sched-

ule.

" CPCTDAS is the CPCT calculated using the daily average load profile and

scheduled run times.

" CPCTOS is the CPCT calculated using observed loads and scheduled run times.
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5.2.4 Daily Factors: Day-to-Day Fluctuations in Demand and

Dropped Trips

The day-to-day fluctuations in demand factor is the amount of crowding that would

be expected in addition to overall scheduled frequency if all scheduled service was

delivered perfectly and passenger arrival rates and boarding/alighting distributions

were constant, due to surges in demand on particular days. It is attempting to

determine how effectively the scheduled level of service was able to meet passenger

travel demand on each day controlling for within-period load variability factors. While

overall scheduled frequency captures the average amount of crowding expected each

day from the schedule, day-to-day fluctuations in demand captures the impact that

fluctuations in passenger demand have on the ability of the schedule to meet demand

on a specific day.

The dropped trips component is the additional crowding expected from the low-

ering of average frequency due to vehicle trips being dropped. It only considers the

impact that a dropped trip has on the average frequency provided. If trips are dropped

without making adjustments to the schedule, it very likely that there will be increases

in headway variability. This effect is captured in the within-period load variability

component.

If all operated vehicle trips had ODX derived estimates then the average load

could be calculated in a similar process as described in Section 5.1.1 using scheduled

trips as the denominator. However, since ODX derived load profiles are only able

to be calculated on approximately 90% of operated vehicle trips, a different method

needed to be developed.

Instead the percentage of trips dropped for each route/direction/period/day was

estimated. Then this percentage was added to the number of trips observed. Average

loads were calculated by aggregating passenger flows from all trips within a particular

period on a specific day with load estimates and dividing these aggregate flows by

the adjusted trip total.

CPCT is then calculated using scheduled run times and multiplied by the dropped

117



trips adjustment factor. The CPCT calculated from overall scheduled frequency is

then subtracted from this sum to provide the amount of crowding attributed to day-

to-day fluctuations in demand, shown in Equation 5.7. The difference between the

amount of crowding attributed to daily demand and supply factors and the amount of

crowding attributed to the scheduled frequency not able to meet demand on a specific

day is attributed to dropped trips, as in Equation 5.8.

DD = CPCTDSS - CPCTSS (57)
CPCTOS

DT - CPCTDAS - CPCTDSS (5.8)
CPCTOS

Where:

* DD is the percent of observed seated capacity CPCT attributed to day-to-day

fluctuations in demand

" DT is the percent of observed seated capacity CPCT attributed to dropped

trips

" CPCTSS is the CPCT calculated using an overall scheduled proxy average load

and scheduled run times

* CPCTDSS is the CPCT calculated using a daily scheduled proxy average load

and scheduled run times

" CPCTDAS is the CPCT calculated using daily average load profiles and sched-

uled run times

" CPCTOS is the CPCT calculated using observed loads and scheduled run times
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For example, if there were six scheduled trips during the period depicted in Figure

5-3, meaning that two trips were dropped, one on each day, the schedule adjusted

average load profile would remain under the crowding threshold for the entire length

of the route. This is shown in Figure 5-5. Therefore, no crowding is attributed to day-

to-day fluctuations in demand. All of the crowding attributed to daily demand and

supply factors is due to the decrease in frequency resulting from trips being dropped.

60 1 1

- Day 1 Scheduled Average Load Profile
Day 2 Scheduled Average Load Profile
Crowding Threshold

50

40 - - -

'o
0

-2

00 
30

CU)

20 tz z

10

0 5 10 15 20 25 30
Minutes Since Terminal Departure

Figure 5-5: Example Calculation of Day-to-Day Fluctuations in Demand Contribu-

tion
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Therefore, for this example, 0% of the observed crowding is attributed to scheduled

frequency, 29% is attributed to dropped trips, 0% is attributed to day-to-day fluctua-

tions in demand, and 71% is attributed to within-period factors including trip-to-trip

load variations caused primarily by headway variation.

Total CPCT Passenger Minutes 175 100%
Scheduled Frequency 0 0%

Day-to-Day Fluctuations in Demand 0 0%
Dropped Trips 50 29%

Within-Period Load Variability Factors 125 71%

Table 5.1: Example Period Component Analysis from Figures 5-3 Through 5-5

5.3 Example Application

The procedure can be used to explore how the causes of crowding change through

the day along a route or between routes. Tables 5.2 and 5.3 depict the attribution

percentage and Figures 5-6 and 5-7 depict the absolute attribution of each component

for every weekday period in which trips were scheduled for inbound Routes 1 and 9

respectively during the Fall of 2015 to highlight differences between routes.

On Route 1, there was observed crowding during most operating periods with

higher amounts during the peak periods. Only during the early morning and overnight

periods was no crowding observed. For the periods in which crowding was observed,

it appears to be primarily initiated by factors causing within-period load variability,

of which the vast majority is caused by uneven headways. For a number of time peri-

ods, within-period demand variability has some impact. Since there are many popular

boarding and alighting locations along the route, passenger boarding/alighting dis-

tributions are somewhat more likely to vary. Passengers are also likely to arrive in

bunches at the many significant transfer points along route causing passenger arrival

rates to vary. For vehicle trips scheduled to depart between 7:30 and 8:30 there was

some crowding due to scheduled frequency which accounts for less than 25 percent of

observed CPCT during those periods.
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3cheduled Frequency
m Iropped Trips

Day-to-Day Fluctuations in Demand -
Within Period Demand Variability
Uneven Headways
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Hour of Day
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Figure 5-6: Absolute Crowding Source Contribution Inbound Route 1

During many periods, day-to-day fluctuations in demand have a non trivial impact

though it rarely accounts for more than 50% of observed crowding.
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Day-to-Day
Fluctuations in Demand

N\A
N A

28

Time Period

5:00
5:30
6:00
6:30
7:00
7:30
8:00
8:30
9:00
9:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30

23:00 and after

Total CPCT
(Passenger Hours)

0
0
.3

28
109
253
310
204
50
31
8
1

11
12
26
4
28
40
30
51
102
85
47
201
323
148
52
48
26
17
24
19
21
21
15
8
0

Table 5.2: Percentage Attribution of Crowding Sources for Weekday Inbound Route 1 by Period. September-November 2015.

Scheduled
Frequency

N A
N A

0
0
0

1)
0

0

0
0
0

0
0

00
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0
0
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0

0
0
0

0
0
0
0
0

0
0

Dropped
Trips
N \A
N A

1

0
2

3

0

0

0

0

0
0
0
0

*1
*10

4
0
9
10

.8
0
8
0
0
()
6
11

Headway
Variability

N ,A
N A

76 |
69

54
17
82
65
81

99
52
74
100
96
84
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50
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69
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83
54
13
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69
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N A
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0
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0
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0
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Time Period (Total CPCT Scheduled Dropped Day-to-Day Headway Within-Period

(Passenger Hours) Frequency Trips Fluctuations in Demand Variability Demand Variability

5:00 0 N' A N A N A N A

5:30 4 0 12 88

6:00 13 0 0 98 0

6:30 332 56 00 23 0

7:00 677 30 0

7:30 1534 52 3 3 2 0

8:0() 1181 37 019

8:30 151 0 0 1 99 0

9:00 12 0 0 20 80 0

9:30 6 0 0 91 0

10:00 0 N \A N\A

10:30 0 N\A N\\A N A N A N\A

11:00 0 N A N \\A N\A N<A N\A

11:30 0 N A N A N\A N\A N\A

12:00 2
12:30 0 N\A N A N\A N\A N\A

13:00 0 N\A N\A <A N A 

13:30 24 0- 8 8  0-d

14:00 14 46 1 0

14:30 2 100 0

15:00 3 86 140

15:30 6 __AN_ 0 100 0
16:00 0 N\A IAAN\A

16:30 1 \ 100 0

17:00 1 0 _____________ 
1000

17:30 0NA N\\A <NA A NA

18:00 0 N\'A N\\ A N\A N\A

18:30 0 N\A N\\\A N\A

19:00 1 0 0

19:30 0 N\A N\A N\A

20:00 and after 0 N\A N\A N\A N\A N\A

Table 5.3: Percentage Attribution of Crowding Sources for Weekday Inbound Route 9 by Period. September-November 2015.
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Figure 5-7: Absolute Crowding Source Contribution Inbound Route 9

Much of the crowding observed on Inbound Route 9 occurs during the morning

peak period, in which significantly more crowding occurs than Route 1. (Please note

the difference in scales between the two figures) In terms of crowding sources, while

there are some periods in which a large percentage of crowding can be attributed

to factors causing within-period load variability, these are periods with relatively

small amounts of crowding. During the morning peak, scheduled frequency accounts

for approximately between a quarter and a half' of the crowding observed. All of

the within-period load variability f'actor contribution is estimated to be caused by

uneven headways. Compared to Route I there are fewer destinations along Route 9.

Therefore, passenger boarding/ alighting distributions are more likely to stay constant.

5.4 Systemwide Analysis

Although each situation should be evaluated individually to determine the appropriate

intervention, these component estimates can also be used for systemwide analysis

to gain a better understanding of the primary sources of crowding throughout the
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network. The distribution of percentage contribution across all periods in which

passengers experienced some amount of crowding was explored for each component.

5.4.1 Scheduled Frequency

Figure 5-8 shows the cumulative distribution function of scheduled frequency compo-

nent contributions for periods with observed CPCT. Although these schedule attri-

bution estimates are likely to be slight underestimates due to the factors mentioned

in Section 5.1.1, it appears that for most route/direction/time-period combinations, a

relatively small portion if any crowding can be attributed to the schedule alone. Dur-

ing approximately 90% of the route/direction/30-minute-time-period combinations in

which crowding was observed, no portion of the crowding was estimated to be caused

by the schedule, meaning that average peak loads were less than the seated capacity

of the vehicle in use on the particular route. This percentage is slightly higher for

off-peak periods when the crowding standard is the seated capacity compared to the

peak and extended peak periods when the crowding standard is relaxed to 140% of

seated capacity and some crowding is expected. There are very few periods in which

the schedule accounts for the majority of passenger crowding.

5.4.2 Dropped Trlips

A CDF of dropped trip component percentages is shown in Figure 5-9. It follows

similar trends to the scheduled frequency distribution though slightly more periods

have a portion of crowding attributed to dropped trips. For approximately 75% of

route/direction/time-period combinations with observed CPCT, drop trips are not

estimated to be responsible for passenger crowding. There are two possible explana-

tions. A period might not have a trip dropped through the entire three month analysis

duration. Therefore, the daily scheduled frequency is identical to the daily provided

frequency. If trips are dropped during a period, it is possible that the dropped trip

component accounts for zero percent of crowding if no crowding is expected with the

provided frequency. In this case, daily average loads would increase when accounting
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Figure 5-8: CDF of Scheduled Frequency Component Percentages for
Route/Direction/Time-Period Combinations with Observed CPCT. Weekdays
September-November 2015.

for the dropped trips; however daily average peak loads remain under seated capacity.

In such cases, both scheduled frequency and dropped trips would have no affect on cre-

ating crowding conditions. For the majority of route/ direction/30-minute-time-period

combinations for which dropped trips contribute to some crowding, it contributes less

than 15%.

A higher percentage of route /direction/time-period combinations that occur dur-

ing the peak periods appear to be affected by dropped trips compared to combinations

occurring during the off-peak periods. This is likely due to higher dropped trip rates

as the system is functioning near its operational capacity during the peaks when ad-

ditional resources (either operator or vehicle) may not be available. It may also be

caused by peak period schedules allowing for more crowding therefore fewer situa-

tions are likely to have provided frequency able to maintain average peak loads under

seated capacity.
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Figure 5-9: CDF of Dropped Trips Component Percentages for route direction time

period combinations with Observed CPCT. Weekdays September-November 2015.

5.4.3 Day-to-Day Fluctuations in Demand

The distributions of day-to-day fluctuations in demand component percentages are

shown in Figure 5-10. For the majority of route/ direction /time-period combinations,

daily fluctuations in demand are estimated to have either no effect or cause 100%

of the crowding observed. Route/direction/time-period combinations with no esti-

mated crowding contribution are periods for which overall and daily average peak

loads remain below seated capacity. The passenger crowding experienced is due to

within-period load variability factors or dropped trips. There likely are fluctuations

in demand during these periods, however the fluctuations are not large enough to

cause the provided frequency to be inadequate to meet travel demand on any given

day.

For the majority of periods with crowding attributed to day-to-day fluctuations in

demand, it accounts for 100% of the crowding observed. These are route/direction/ time-

period combinations with only one scheduled trip and for which average loads remain

under seated capacity. Crowding occurs when an increase in passenger travel demand
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Figure 5-10: Distribution of Day-to-Day Fluctuations in Demand Percentages
for Route /Direction /Time-Period Combinations with Observed CPCT. Weekdays
September-November 2015.

causes loads on a specific day to exceed seated capacity. These are low frequency

routes for which passengers are much more likely to select a specific vehicle trip to

ride and therefore headway variations will have little effect.

There does not appear to be much difference between time periods. Peak, extended

peak (all time periods where the crowding threshold is 140% of seated capacity),
and off-peak periods all show similar distributions for crowded route/ direction /time-
period combinations.

It is likely that some of the crowding attributed to day-to-day fluctuations in

demand during high frequency periods is in reality caused by within-period load

variability factors. Daily average loads can be affected if vehicles trips bunch with

vehicle trips in adjacent periods. The period in which the more heavily loaded vehicle

trip of the pair occurs will likely have a higher average load than its level of passenger

travel demand would indicate while the period with the less loaded vehicle trip will

likely have lower daily average loads. This causes some days to appear to have higher
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levels of average demand than actual average levels of demand would indicate.

5.4.4 Within-Period Load Variability Factors

The distribution of within-period load variability factors percentages for route /direction time-

period combinations with more than one scheduled trip is presented in Figure 5-11.

Periods with only a single scheduled trip are excluded as the component percentage

will always be zero.
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Figure 5-11: Distribution of Within-Period Load Variability Factors Percentages for
Route/Direction /Time-Period Combinations with More than one Scheduled Trip and
Observed CPCT. Weekdays September-November 2015

This shows that for the majority of periods, within-period load variability fac-

tors have a large impact on creating crowded conditions. For many higher frequency

route/ direction/ time-period combinations, within-period load variability factors ac-

count for 100% of the crowding observed.

As mentioned in Section 5.1.1, it is likely the load estimation and scaling process

over estimates the amount of load variation. Therefore, it is also likely that the

contribution of overall variability factors (both day-to-day demand fluctuations and
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within-period load variability factors) is slightly over emphasized in this analysis.

Although even with this slight bias it still appears that within-period load variability

factors have contributed significantly to creating many crowded situations.

More research is needed to further the understanding of how within-period load

variability factors are partitioned into the uneven headway and within-period de-

mand variability categories though the Route 1 and 9 examples suggest that uneven

headways may account for the vast majority of this crowding.

5.4.5 Overall Crowding

This methodology can also be applied across routes and time periods to the entire bus

network (excluding the routes mentioned in Table A.1). The total amount of passen-

ger time attributed to each "reason" can be summed and divided by the total amount

of seated capacity CPCT observed to calculate systemwide contribution percentages.

It is estimated that approximately 17% of the CPCT calculated with scheduled run

times for September-November 2015 weekday bus trips could be accounted for by the

scheduled frequency; 4% is estimated to be caused by the decrease in frequency result-

ing from cancelled vehicle trips; 36% is estimated to arise from the fixed schedule not

being able to account for day-to-day fluctuations in demand and 44% is estimated

to result from factors that cause loads to vary within a route/direction combina-

tion on a given day such as uneven headways or varying passenger arrival rates and

boarding/alighting distributions.

This was also calculated systemwide for individual time periods. Figure 5-12

highlights how this composition changes throughout the day. Day-to-day demand

fluctuations and within-period load variability factors remain the dominant sources

for much of the day. Only during the early morning hours is scheduled frequency

the primary factor. The relatively high contribution of scheduled frequency during

the midday period is due to Route 111. It accounts for a significant portion of total

crowding during this period, much of which is caused by scheduled frequency. Figure

5-13 shows these contributions in absolute terms for each 30-minute-time-period.
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Figure 5-12: Crowding Component Contribution Systemwide by Time Period. Week-

days September-November 2015

Scheduled Frequency
Dropped Trips
Day-to-Day Demand Fluctuations
Within Period Load Variability Factors

N/A

4 5 6 7 8 9 10 11 12 13 14 15 16 1/ 18 19 20 21 22 23 0

Hour of Day

Figure 5-13: Absolute Crowding Component Contribution Systemwide by Time Pe-

riod. Weekdays September-November 2015

131

I

10 11 12 13 14 15 16 17 18 19 20 21 22 23 0

Hour of Day

C
0

0
C-)

a)
n~

A
20

10

16000

14000 l-

0

a)
0)

C
IL
C)

C)

C-)

12000 -

10000 -

8000 -

6000

4000

2000 r



5.4.6 Component Interaction

The methodology above partitions passenger crowding into discrete categories. How-

ever, there likely is some interaction between components. For example, a route/direction/time-

period combination with a high average load will likely have a significant amount

of crowding due to its scheduled frequency. It is also more likely to present ad-

ditional crowding due to dropped trips or fluctuations in day-to-day demand. A

route/direction/time-period combination with lower average loads may still be af-

fected by the same factors but has additional capacity to be able to absorb more

passengers without crowded conditions arising.

5.5 Highest Priority Routes

Routes can be classified by their crowding characteristics. This was done for the ten

routes with the most 140% of seated capacity CPCT, which are listed in Table 4.2.

Four categories emerged:

* Most Crowding Caused by Within-Period Load Variability Factors:

Routes 1 and 77 have only limited amounts of CPCT that can be attributed to

scheduled frequency even during the extended peak periods. Most is attributed

to within-period load variability factors with a small portion attributed to day-

to-day fluctuations in demand.

" Scheduled Frequency Accounts for a Significant Amount of Crowding

during Distinct "Peak" Periods: Routes 7, 9, 28, 47, and 66 all have distinct

"peak" periods in the morning when the scheduled frequency accounts for a

significant amount of crowding. The exact timing of these periods vary between

routes. It occurs from 5:30-7:00 for Route 28 while it occurs between 7:30-8:30

for Route 7. Some also have an afternoon peak period. For example, scheduled

frequency accounts for a significant amount of crowding on Route 47 between

15:30-17:00.
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" Scheduled Frequency Accounts for a Significant Amount of Morning

"Peak" Crowding then Scattered Amounts during the Rest of Day:

Routes 57 and 86 have a distinct morning "peak" period like the routes men-

tioned in the previous category however; they have scattered periods during the

afternoon and evening when the schedule accounts for a significant amount of

crowding as well. These afternoon periods are spread out intermittently over

multiple hours.

" Scheduled Frequency Accounts for a Significant Amount of Crowding

During the Off-Peak Periods: Route 111 has a crowding pattern distinct

from the other routes. It is estimated that other than between 19:30- 20:00

scheduled frequency has no crowding contribution for outbound vehicle trips.

Most crowding is split between day-to-day demand fluctuations and within-

period load variability factors. Inbound, however, scheduled frequency accounts

for much of the observed crowding for the early morning and midday periods.

This contribution is concentrated on the longer of the two variations run during

the off-peak periods. During the peak periods, it is estimated that scheduled

frequency does not cause any crowding.

5.6 Conclusions

This chapter discusses a methodology to estimate the contribution that different

potential sources have in creating crowding conditions. This estimation was done

for route/direction/30-minute-time-period combinations enabling an understanding

of how the causes of crowding on a route can change throughout the day. Four sources

were examined: scheduled frequency, the reduction in frequency due to dropped trips,

the fixed schedule not being able to account for day-to-day fluctuations in demand,

and factors that cause loads to vary within a period on a given day.

Overall, it was estimated that day-to-day fluctuations in demand and factors caus-

ing loads to varying within a period on a given day account for the majority of

crowding experienced. These two factors combine for approximately 80% of CPCT
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observed while scheduled frequency was only estimated to account for 17%. The

variability factors contribution is likely a slight over-estimate of their impact as their

is some inherent variability in the ODX derived load scaling process. The sourc-

ing methodology may also attribute some crowding that is caused by within-period

load variability factors to day-to-day demand fluctuations on high frequency routes if

trips scheduled near the boundaries of a period bunch with vehicle trips on adjacent

periods. This results in more fluctuations in daily average loads than occur in reality.

These contributions vary between time periods. For many routes, the contribu-

tions from different sources change throughout the day. Scheduled frequency is more

likely to have larger contributions during the extended peak periods, particularly the

morning peak period, on high demand routes as the crowding standards are relaxed.

However, these patterns vary between routes as well. Some routes like Routes 1

and 77 have significant amount of crowding, though almost all of it can be attributed

to within-period load variability factors while others have certain periods where the

schedule accounts for a significant amount of crowding.

Classification of routes by these patterns can help decision makers determine which

interventions are appropriate for each route.
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Chapter 6

Crowding Reduction Strategies and

Recommended Programs

Identifying the most effective crowding reduction strategy for each situation is im-

portant for transit agencies to make the most effective use of available resources.

This chapter outlines potential strategies and discusses the impact that each has on

the entire passenger experience along with the situations in which they are most ap-

propriate. Then, using the findings of this thesis, crowding reduction programs are

suggested for the MBTA given different resource scenarios.

6.1 Potential Crowding Reduction Strategies

There are many ways to improve the passenger crowding experience. Some involve

increasing the amount of seated capacity throughput while others make more effective

use of capacity in operation. Six categories of interventions are explored. These

categories include improving reliability in the form of headway maintenance, improved

passenger in-vehicle distribution, increasing scheduled frequency, increasing travel

speeds, network redesign, and increasing the capacity of vehicles in use.

The impact on the entire passenger experience is considered when evaluating po-

tential strategies as an intervention that improves the crowding aspect of a passenger's

experience may worsen another aspect to the point where the intervention decreases
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a passenger's overall riding experience. For example, mid point holding of vehicles

may reduce the amount of crowding that certain passengers face but increase others'

travel time to the point where the overall experience is diminished.

6.1.1 Improving Service Reliability

For cases in which within-period load variability factors have significant impacts,

the most effective intervention is likely to be to improve reliability. Maintaining even

headways enables more effective use of existing capacity. Average loads will remain the

same but there will be much less load variability between adjacent vehicle trips mean-

ing that high intensity crowding conditions will occur on fewer vehicle trips. Much

of this unreliability can be attributed to poor on-time (either headway or schedule-

based) terminal departure performance. Maltzan (2015) [33] showed that much of

the unreliability of two MBTA key routes (Routes 1 and 28) could be attributed to

poor terminal departure headway adherence.

Depending on the situation, this may or may not require additional resources.

There may be cases when stricter dispatching protocols at terminals may be all that

is required. These are cases where the scheduled vehicle "cycle time" is long enough

for most operators to leave on schedule but due to various reasons they do not depart

on time.

There may also be cases where a large percentage of vehicle trips are not able to

depart on time due to insufficient half cycle times in which case the optimal solution

may be to lengthen cycle times. This would result in more vehicle hours required to

maintain the current frequency. However, even in cases where all buses are late and

additional vehicle resources are unavailable, an even headway terminal dispatching

strategy would be largely effective.

A final case may be that the half cycle times are long enough to complete the

previous vehicle trip but operators do not have enough time to get ready for the

successive trip. Here an additional operator could be hired so that each operator

could "drop back" after they finish a vehicle trip. The additional operator waiting

at the terminal could operate the successive trip scheduled for that vehicle. The
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first driver would then wait at the terminal for the next vehicle to arrival and would

operate its successive trip. This would promote on time terminal departure while

still ensuring that operators have rest time in between trips. It would not require

additional vehicles, only additional operator hours.

Improving service reliability also has the added benefit of reducing a passenger's

expected wait time. Since more passengers are likely to board vehicle trips with longer

headways maintaining more even headways also decreases the expected passenger wait

time.

6.1.2 Passenger In-Vehicle Distribution

Although most of the analysis in the thesis focuses on using vehicle loads as a measure

of crowding intensity, passenger in-vehicle distribution greatly effects how passengers

perceive crowded conditions. Passengers are likely to feel more crowded on vehicles

where riders are clustered together compared to instances where passengers are uni-

formly distributed throughout the vehicle. Therefore passengers could perceive very

different levels of crowding given the same vehicle load depending how passengers are

distributed.

Often times this distribution can be improved by "nudging" passengers to change

their behavior. Some transit agencies have produced marketing campaigns to make

passengers more aware of the behaviors that decrease effective use of capacity. Figures

6-1 and 6-2 highlight examples from Translink in Vancouver and the Metropolitan

Transportation Authority in New York. Making passengers more aware of the impact

that certain behaviors have on other riders may encourage behavior change and reduce

subjective passenger crowding all without making any operational changes. This may

also increase the effective capacity of vehicles.
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I

Please consider others when using pubi.

II TI
TRANS/ 1K

Figure 6-1: Example of Rider Etiquette Advertisement on Translink Buses in Van-
couver, Canada that encourages passengers to move towards the back of the bus.
[35]

Dude...
Stop the Spread,
Please
It's a space issue.

Figure 6-2: Example of Rider Etiquette Advertisement on Metropolitan Transporta-
tion Authority in New York that persuades passengers to be mindful of how much
space they are taking up while seated. [361

6.1.3 Scheduled Frequency

In all situations an increase in frequency will reduce passenger crowding by increasing

the seated capacity throughput of a route. If passenger arrival rates are relatively

constant throughout a period, this will enable customers to be distributed among

more vehicles and therefore decrease average loads. It also benefits passengers by

reducing the average amount of time required to wait for a vehicle.

This strategy does require more resources if all else is equal. Unless there is

significant slack in the schedule, additional vehicle hours will be required to provide
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a higher level of service.

Increasing frequencies may help reduce load variability as well by decreasing the

impact that fluctuations in passenger arrival rates and alighting distributions have on

run times (e.g., a route with an average peak load of seated capacity may be better

able to maintain headways given fluctuating passenger arrival rates compared to a

route with an average peak load of 140% of seated capacity.). This could reduce

the downstream effect of such fluctuations. However, on some routes headways may

fluctuate for reasons other than varying loads (i.e., many traffic lights, traffic con-

gestion, low on-time terminal departure rates). In these cases, increasing frequencies

will likely not improve the effective use of capacity. The majority of passengers may

still face crowded conditions if even headways are unable to be maintained.

6.1.4 Speed

There are also instances where improving travel speeds can significantly reduce the

length of time in which passengers spend in crowded conditions. All else equal (i.e.,

frequencies and headway variability remain the same) this will not decrease the in-

tensity of crowding but will improve the passenger crowding experience. However,

increasing travel speeds will likely enable a reduction in cycle times. This can reduce

the number of vehicles required to provide the current level of service. This savings

could theoretically be used to increase frequencies on either the current route or oth-

ers within the system, lowering average loads. This strategy's effectiveness will often

depend on saving enough cycle time to save a whole bus either on a single route or

through an interlining schedule strategy with one or more routes.

This could be achieved through either transit-supported roadway strategies or

operational efficiencies. Roadway strategies are measures that increase travel speeds

between stops by modifying roadway infrastructure. Possible interventions include

bus lanes on routes with high levels of traffic congestion or transit signal priority

on routes with many signaled intersections. The impact on all road users should be

considered. While street right-of-ways are usually not directly controlled by transit

agencies, cooperation between municipalities and transit agencies can foster effective
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use of street space.

Operational efficiency interventions are strategies that reduce dwell times. This

includes offboard fare payment and reduction of "slow transaction" fare media usage.

Offboard fare payment requires passengers to pay their fare before boarding the ve-

hicle either at a faregate or through a ticket validator. Then when a vehicle arrives,

passengers can board through all doors without interacting with a fare collection de-

vice. This could greatly improve dwell times especially on high volume stops where

passengers are forced to wait in line to board a vehicle and for which the boarding

process can take a significant amount of time.

The type of fare media used also makes a significant difference in amount of time

required for passengers to board. Cash and magnetic strip card transactions take

significantly more time to process than contactless smart cards. Fare policies that

encourage greater smartcard use while still ensuring access for all could significantly

improve dwell times especially in locations with a high percentage of "slow" transac-

tions.

These interventions will not only shorten the duration of crowding that passengers

experience, it will also shorten their overall expected travel time while decreasing their

travel time variability.

6.1.5 Network Design

It is also possible to reduce crowding by making changes to the bus route network.

Through the development of new routes or increased frequencies on existing routes,

passengers may be encouraged to switch from more crowded routes. For example,

passengers traveling from one area on the periphery of a transit agency's service area

to another may have to transfer in the central business district (CBD). This may

worsen crowding by adding to ridership that is destined directly for the CBD. These

passengers may be better served by a crosstown route that bypasses downtown all

together. In some cases, these crosstown routes do not exist and a new route would

need to be established. In others, they operate at insufficient frequencies to draw

passengers from the arterial routes so that an increase in crosstown route frequency
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could be effective to not only increase productivity on the crosstown route but also

to reduce crowding on the arterials.

Since ODX allows for the analysis of passenger linked trips, opportunities for

network redesign can be identified. Vanderwaart (2016) [32] develops a framework to

use ODX to analyze the impact of bus service changes in the MBTA context.

These interventions would not only reduce crowding on the urban core of a network

but could also greatly improve passenger travel times and access across the region.

6.1.6 Increase Vehicle Capacity

Increasing the capacity of vehicles that operate on a route increases the seated capac-

ity throughput of a route without any changes to the schedule. For example, a typical

40 foot bus contains approximately 40 seats while a 60 foot articulated bus contains

approximately 60 seats. (These can vary depending on the interior configuration.)

Introducing articulated buses on a route that currently operates with 40 foot buses

can increase seated capacity throughput by almost 50%. There is also a standing

capacity increase as there is more floor space on the larger vehicles.

This is an effective strategy for routes with high demand for the entire day as

there would be no low demand period where significantly more capacity is provided

than is needed as service delivery policies require minimum frequencies.

It is a cost effective strategy for transit agencies as more passengers can be served

without dramatically increasing operating costs. If frequencies remain constant, no

additional operators would be needed. There is likely a slight increase in the marginal

vehicle operating costs of a 60 foot bus compared to a 40 foot bus but this is likely

significantly lower than the combined costs of increasing the number of operators and

vehicles required in increasing frequencies of 40 foot buses.

With larger vehicles, passengers are likely to experience less crowding, however,

they will face longer wait times compared to the same route with increased frequencies

using smaller vehicles.
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6.2 Potential MBTA Crowding Reduction Scenarios

The following section proposes recommendations for crowding reduction on the MBTA

bus system given different levels of resource availability including no additional op-

erating budget, no additional peak vehicles but with increases in operating budget,

minimal additional vehicles, and sufficient vehicles to reduce the majority of crowding

systemwide.

6.2.1 No Additional Operating Budget

If there are no additional operating resources available, recommended strategies focus

on improving effective use of existing capacity without adding any new operating

costs. These include:

" Implement strategies to improve on-time terminal departure perfor-

mance especially on high frequency routes. Within-period load variability

factors account for a significant amount of crowding on high frequency routes

and much of this is likely to come from uneven headways. Decreasing headway

variability will likely reduce crowding significantly on many route/direction/time-

period combinations. In many cases this may be achieved by improved dispatch-

ing at terminal locations.

" Create a passenger etiquette marketing campaign to encourage more

effective use of in-vehicle space. A marketing campaign similar to Cour-

tesy Critters could be introduced to raise awareness of passenger behaviors that

limit effective use of space within vehicles while promoting desired behaviors.

Topics could include moving away from the doors when standing, making open

seats available to others, placing backpacks between legs when vehicles become

crowded, among others. These could be used on both the rail and bus networks

as similar issues arise in both. While this would not necessarily decrease vehi-

cle loads, it may significantly improve the subjective crowding that passengers

experience and increase effective capacity.
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" Work with municipalities to identify situations where transit-supported

roadway strategies could be implemented. Projects similar to the transit-

signal priority measures on Commonwealth Avenue and bus lanes on Washing-

ton Street in Boston's South End could be implemented throughout the network

in places where many routes operate.The BU Bridge, Longwood Medical Area,

Malcolm X Boulevard and Columbus Avenue between Dudley and Ruggles Sta-

tions and Washington Street between Forest Hills Station and Roslindale Square

may be effective locations where further corridor analysis should be conducted.

By targeting a small number of specific problems, it may be possible to get

more cooperation from municipal traffic departments.

" Implement operational efficiency measures to reduce dwell times. Pro-

moting greater use of CharlieCards instead of cash or CharlieTicket transactions

should help reduce the duration for which passengers experience crowded con-

ditions. This could also improve farebox interaction rates.

Offboard fare payment could also be promoted especially at high volume mid-

point stations such as Dudley and Ruggles Stations, among others, by increasing

validation use. This will greatly improve dwell times at these locations by en-

abling all door boardings and eliminating slow onboard fare payment. These

operational efficiencies may even facilitate higher frequencies by lowering the

cycle times required to operate a given route.

" Look for opportunities to improve crowding through network re-

design. Opportunities where changes in network design could improve crowd-

ing conditions could be explored. Vanderwaart (2016) [32] provides a framework

that uses ODX to evaluate the effect that changes in network design have on

individual routes. For example, If route A is modified and improved, X number

of passengers are likely to switch from using Routes B and C since Route A

provides a better service for traveling between their desired origins and destina-

tions. Therefore crowding conditions are likely to improve on Routes B and C.)

She uses this process to describe an extension of Route 29 to Ruggles Station,
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Longwood Medical Area, and Brookline Village as a intervention to improve

access to Longwood and decrease crowding on the D Branch of the Green Line

and Route 28. The impact that service changes have on crowding of specific

routes could be evaluated. A memo in Appendix B shows another example

application of ODX in this manner. It estimates the effect that service changes

in the Route 47 corridor would have on existing riders.

6.2.2 No Additional Peak Vehicles but with Increases in Op-

erating Budget

If there are no additional peak vehicles available for service but small increases in

the operating budget are possible, strategies that make more effective use of existing

capacity during the peak periods as well as increasing capacity during the off-peaks

should be utilized. The recommendations from the no additional operating budget

scenario should be pursued in addition to the following:

" Implement "drop back" operator scheduling strategies to improve on-

time terminal departure performance, especially on high frequency

routes for which operators routinely do not have enough time to de-

part on-time. Within-period load variability factors account for a significant

amount of crowding on high frequency routes and much of this is likely to

come from uneven headways. Decreasing headway variability will likely reduce

crowding significantly on many route/direction/time-period combinations. If

operators routinely do not have enough time to depart on-time for their subse-

quent trip, a "drop back" operator scheduling strategy (where each subsequent

operator at a given terminal gets off the arriving bus and the previous arriving

operator takes over the following trip with that vehicle, thus giving all opera-

tors a headway long break and keeping vehicles in service (theoretically) on a

continuous basis.) can be introduced with no additional vehicle costs.

" Increase scheduled frequency for off-peak route/time-periods with

high amounts of 140% seated capacity CPCT and on which scheduled
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frequency accounts for a significant portion of crowding. During the

off-peak periods bus fleet size constraints are less prevalent. Therefore, sched-

uled frequency can be increased without introducing additional vehicles into

the network. Route/time-periods with a significant amount of crowding due

to scheduled frequency will see the most benefit from increases in frequency.

Example routes include the 23, 28, and 111 during the early morning period

and the 111 during the 2 PM hour.

6.2.3 Minimal Additional Vehicles

If some additional vehicles are available to be introduced into the bus network more

interventions could be implemented including expanding throughput capacity by in-

creasing scheduled frequency and lengthening cycle times to improve reliability. Using

the data presented previously, it is roughly estimated that to reduce 30-minute av-

erage peak loads to under 140% of seated capacity systemwide approximately 10

additional vehicles would be needed during the morning peak period. To eliminate

all scheduled frequency crowding (bring average peak loads under seated capacity)

on the top ten routes with the most overall 140% of seated capacity CPCT during

the 7:30-8:00 time period, approximately 25 additional vehicles would be needed.

The recommendations from the previous scenarios would still apply along with the

following new recommendations:

e Increase scheduled frequency for route/time-period combinations with

high amounts of 140% seated capacity CPCT and on which scheduled

frequency accounts for a significant portion of crowding. These are sit-

uations in which increases in scheduled frequency are likely to have the largest

impact. The highest priority combinations include Routes 7, 9, 28, 66, and 86

during the morning peak, 47 during the afternoon peak and 111 during the 2

PM hour. The exact timing within each period varies by route with Routes 28,

66, and 86 requiring additional vehicles on earlier morning trips than Routes 7

and 9.
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" Increase scheduled frequency on routes for which passengers are likely

to have long durations of crowding. These are routes for which ridership

patterns and route design result in passengers experiencing onerous crowding

when conditions arise. Therefore extra attention should be made to ensure that

crowding conditions do not arise. Example routes include the 47 and 111.

" Increase scheduled cycle times on routes for which they are currently

inadequate. For routes on which on-time terminal departure performance is

hampered by vehicles not arriving before their next scheduled trip, better dis-

patching may have limited impact. In these cases, lengthening scheduled cycle

times could significantly improve on-time terminal departure performance and

reduce crowding assuming improved on-time departure dispatching procedures

and performance.

6.2.4 Numerous Additional Vehicles

If a significant number of peak and off-peak vehicles are available, then increases in

scheduled frequency can be implemented on routes for which there will be lesser im-

pacts on crowding but which may also serve to attract new riders. This includes both

routes on which lesser amounts of total CPCT was observed and routes for which

there is significant crowding but most of it is attributed to either day-to-day fluctua-

tions in demand or within-period load variability factors. The recommendations from

the previous sections would still apply in addition to the following:

* Increase scheduled frequency on highly crowded route/time-period

combinations for which variability factors account for the majority of

crowding. The lower the average peak loads the less likely crowded conditions

are to arise even on high variability routes. Therefore, if there is still significant

crowding due to variability factors after implementing the recommendations

from Sections 6.2.1 and 6.2.2 , increasing scheduled frequency will likely improve

conditions though perhaps not as efficiently if reliability issues remain. This
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includes Route 111 during the morning peak and Route 1 during both peak

periods.

* Increase scheduled frequency on lightly crowded route/time-period

combinations for which scheduled frequency accounts for a signifi-

cant amount of crowding. These are routes for which either relatively few

passengers experience crowded conditions and/or they experience these condi-

tions for limited amounts of time. An increase in frequency will likely have a

significant impact for these riders though they account for small percentage of

systemwide crowding. Examples include Routes 238 and 430 during the morn-

ing peak period.

6.3 Summary for Highest Priority Routes

Recommended crowding reduction programs for the routes with the highest amounts

of 140% of seated capacity CPCT along with other select routes are shown in Table

6.1. These only include increases in reliability and scheduled frequency recommen-

dations. Other strategies listed in Section 6.1 should also be implemented though

additional analysis is needed to determine the appropriate situations and in which

form they should be implemented.

If there is no additional operating budget available, measures that would increase

reliability are recommended for all routes except Route 430 as it is low frequency

the entire day. If there is additional operating budget but no additional peak period

vehicles available, increasing frequency for crowded off-peak periods is recommended

for Routes 23, 28, 47, and 111. If there are minimal additional vehicles available,

reliability measures are recommended in addition to increases in scheduled frequency

during the highest impact periods where crowding is severe and a significant portion

of crowding can be attributed to scheduled frequency. For most routes, this occurs

during the morning peak period. In the many additional vehicles available scenario,

the same recommendations from the previous scenarios apply although additional

periods where scheduled frequencies should be increased are also included for certain
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No Additional Oper-
ating Budget

111

1

9

7

66

57

86

47 1

28

77

23

238

430

Additional Actions
with No Additional
Peak Vehicles but
with Increases in
Operating Budget

Reliability Measures

Reliability Measures

Reliability Measures

Reliability Measures

Reliability Measures

Reliability Measures

Reliability Measures

Reliability Measures

Reliability Measures

Reliability Measures

Reliability Measures

Reliability Measures

Additional Actions
with Minimal Addi-
tional Vehicles

Increase Frequency
During Morning Peak

Increase Frequency
During Morning Peak

Increase Frequency
During Morning Peak

Increase Frequency
During Morning Peak

Increase Frequency
During Morning Peak

Increase Frequency
During Morning Peak

Increase Frequency
During Morning Peak

Additional Actions
with Numerous Addi-
tional Vehicles

Increase Frequency
During Both Peak
Periods

Increase Frequency
During Early Morning
and 2-3PM Periods

Increase Frequency
During Early After-
noon Period

Increase Frequency
During Early Morning
Period

Increase Frequency
During Early Morning
Period

Increase Frequency
During Afternoon
Peak Period

-Increase Frequency
During Morning Peak

Increase Frequency
During Morning Peak

Increase Frequency
During Morning Peak

Table 6.1: Recommended Programs for Routes with Most 140% Seated Capacity
CPCT and Other Select Routes

'Also see a short-turn network design strategy that is detailed in Appendix B.
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6.4 Conclusions

Different situations call for different crowding reduction interventions. This chapter

outlines potential strategies and discusses the situations for which they are best suited.

Some strategies make more effective use of existing seated capacity throughput while

others increase capacity.

These strategies are then applied to the MBTA bus network under four scenarios:

no additional operating budget available, no additional peak vehicles available but

with increases in operating budget, limited number of vehicles available and many

additional vehicles available. In the no additional operating budget available scenario,

strategies focus on making more effective use of existing capacity using no additional

budget resources. In the increase in operating budget but no additional vehicles sce-

nario, reliability measures are emphasized as well as increasing capacity during the

off-peak periods when fleet size constraints are less restrictive. In the limited number

of vehicles available scenario, making effective use of existing capacity is still empha-

sized though capacity increases in high impact situations is also proposed. Finally, in

the many additional vehicles scenario, the recommendations from the previous two

scenarios continue though resources are now available to address lower impact situ-

ations. These recommendations recognize that ideal strategies are contingent upon

both the individual micro situations (e.g., route/time-period combinations) and the

overall context in which they arise (e.g., amount of resources available systemwide).

Since these techniques make it feasible to measure crowding more effectively and at

a reasonable cost, it is recommended that crowding be routinely monitored to under-

stand how ridership growth may be affecting crowding and conversely how excessive

crowding may be discouraging ridership growth.
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Chapter 7

Summary and Recommendations for

Future Research

This chapter summarizes the overall findings of this thesis. Then recommendations

for the transit industry are proposed based on these findings. Finally, areas of future

research in the area of crowding analysis are suggested.

7.1 Summary of Findings

This thesis has four primary areas of focus: adapting and implementing a scaling

process to estimate trip level passenger flows and vehicle loads through inferred pas-

senger origins and destinations using the MBTA bus network as a case study; creating

passenger centric crowding metrics to enable prioritization of resources to times and

routes on which the most crowding occurs; developing a methodology to estimate the

contribution that different potential sources have in creating crowded situations; and

identifying ways to use ODX based analysis to design effective strategies to reduce

crowding under different resource scenarios. The primary findings for each area are

discussed in the following sections.
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7.1.1 Trip Level ODX Scaling

A two step scaling process was adapted from Wang (2010) 1251 to scale ODX inferred

passenger flows. These flows were used to create trip level load profiles and origin

destination matrices. Comparisons to APC derived load profiles indicate relatively

accurate estimates though the scaling process does introduce some additional load

variability.

Although there are routes on which this process does not work well (e.g., routes

on which fares are paid at fare gates instead of onboard vehicles) this process enables

transit agencies with high penetration rates of reusable individually marked fare media

and granular AVL information in combination with a sample of vehicle trips with APC

load information to develop more complete coverage of load profile information than

can be accomplished with APC sample trips alone. In the MBTA case, on routes

which ODX and the scaling process works well, load profile coverage expanded from

13% of weekday vehicle trips operated from September-November 2015 with APC

estimated loads to almost 90% through the ODX scaling process. The operated trips

without load profiles appear to be relatively uniformly distributed though there were

lower coverage rates during the overnight period and on some very low frequency

routes.

7.1.2 Passenger Centric Crowding Estimation

The load and passenger flow estimates were then used to create metrics to evaluate

different aspects of crowding from the passenger perspective. These metrics consider

the intensity of crowding, its duration, and the number of unique passenger trips on

which crowding conditions were experienced.

Cumulative Passenger Crowding Time (CPCT) was developed to attempt to con-

solidate all of these aspects into a single metric. It was used to evaluate crowding in

the MBTA bus network and revealed that much of the crowding observed occurs in a

concentrated portion of the network both temporally and spatially. Most occurs on

high frequency routes during the peak periods. This appears to be a byproduct of
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both creating schedules based on a average peak loads and reduced travel speeds due

to traffic congestion.

Analysis of individual aspects of crowding was also completed which revealed that

passengers experience crowding in different ways on different routes. It was found

that passengers on certain routes are more likely to experience crowded conditions

for extended durations due to route design and ridership patterns. This duration also

varies throughout the day as loads and travel speeds fluctuate.

The number of unique passenger trips on which crowded conditions were experi-

enced was strongly correlated with the number of vehicle trips on which the crowding

threshold was reached though there was some deviation when vehicle seated capacity

and passenger turnover rates were considered.

7.1.3 Crowding Source Methodology

CPCT was then used to estimate the contribution of various factors towards creat-

ing the crowding conditions observed. Four potential factors were considered and

analyzed. All MBTA bus trips were clustered by route, direction, and 30 minute

scheduled start period to enable both comparisons across time periods on a given

route and between routes.

Although it is important to evaluate each route individually, this analysis was used

to evaluate the sources of crowding systemwide. It was estimated that for most routes,

the schedule frequency accounts for only a small portion of the crowding observed.

Even during peak periods, when the crowding standard allows for some crowding

to be built into the schedule, almost 90% of route/direction/30-minute-time-period

combinations would not be expected to have any crowding if scheduled headways were

perfectly maintained and passenger arrival rates and boarding/alighting distributions

were constant across the 30-minute-period.

The decrease in frequency resulting from dropped trips appears to have a minor

effect and for many combinations the effect is estimated to be zero. This does not

account for increases in headway variability that might result from cancelled trips.

For many route/direction/30-minute-time-period combinations, day-to-day fluc-
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tuations in demand either accounted for none of the crowding observed or almost

all of the crowding observed. On low frequency periods where neither scheduled

frequency or dropped trips contribute to crowding and only a single vehicle trip is

scheduled, day-to-day fluctuations in demand are estimated to account for 100% of

crowding as passengers are likely to select a specific vehicle trip to ride and therefore

within-period load variability factors are likely to have limited effects. Therefore, any

crowding that occurs is due to an infrequent surge in passenger travel demand on a

particular day. Periods in which daily average peak loads never exceed seated capac-

ity always have high enough scheduled frequency to meet demand on any specific day.

Therefore, within-period load variability factors cause all crowding conditions while

day-to-day fluctuations in demand are not estimated to have any contribution.

Within-period load variability factors were estimated to account for a significant

amount of crowding for higher frequency routes, of which the vast majority appears

to be caused by uneven headways although more research on this topic is recom-

mended (See Sections 5.2.3 and 7.3.3). It appears that if even headways were able

to be maintained much of the observed crowding would be eliminated. For many

periods, it accounts for nearly all of the crowding observed. For low frequency

route/direction/30-minute-time-period combinations on which only a single vehicle

trip is scheduled, this "reason" is estimated to be zero as passengers are more likely

to select a particular vehicle trip to board and for which varying headways are less

likely to have a significant impact on creating crowded situations. All crowding not

attributed to scheduled frequency or dropped trips for these combinations is consid-

ered to be caused by the fixed schedule not accounting for day-to-day fluctuations

in demand. It is likely that boundary issues cause some crowding attributed to day-

to-day fluctuations in demand in high frequency periods to be in reality caused by

within-period load variability factors (i.e., if there is bunching between vehicle trips

in successive periods, with one bus scheduled to depart in one period and the other

in the successive period, daily average loads for a specific 30-minute period could

fluctuate more than overall day-to-day fluctuations in passenger travel demand for

hourly or longer periods).
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Overall, across all combinations, scheduled frequency was estimated to cause ap-

proximately 17% of seated capacity CPCT calculated with scheduled run times, the

decrease in frequency resulting from dropped trips accounts for approximately 4%, the

fixed schedule not accounting for day-to-day fluctuations in demand approximately

36% and within-period variability factors approximately 44%. While the ODX scaling

process is likely to introduce a small level of additional variability into these estimates,

it is likely that fluctuations in demand and within-period variability factors account

for the vast majority of crowding observed.

7.1.4 Crowding Reduction Strategies

Finally, using both the passenger centric crowding metrics and the crowding source

estimates, crowding reduction strategies were proposed for the MBTA bus network

systemwide under different resource scenarios. The most effective mitigation strate-

gies for each type of crowding situation were identified.

Four scenarios were analyzed: No additional operating budget, no additional peak

vehicles available but with increases in operating budget, minimal additional vehicles

available and many additional vehicles available. No additional operating budget

emphasizes no additional operating costs interventions that improve the effective use

of existing seated capacity throughput, such as improving headway maintenance and

passenger in-vehicle distribution. For the no additional peak vehicles available but

with increases in operating budget scenario, strategies focus on increasing the ef-

fective use of existing seated capacity throughput and increasing capacity in high

impact off-peak route/time-periods. For the minimal vehicles available scenario, the

recommendations from the previous scenario can be augmented by increasing seated

capacity throughput in high impact situations. In the many additional vehicles avail-

able scenario, increasing seated capacity throughput in lower impact situations are

added to the recommendations from the previous scenarios.
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7.2 Recommendations for the Transit Industry

Three primary recommendations for the transit industry are proposed as a result of

the findings of this research: increase the ability to granularly measure passenger

crowding, increase the use of cumulative passenger centric crowding metrics, and ex-

plore additional crowding reduction strategies besides increasing scheduled frequency.

7.2.1 Granular Crowding Measurement

Transit agencies should make efforts to expand their capacity to granularly measure

passenger crowding. There is a lot to be gained by regularly monitoring crowding

and carefully estimating its source. Crowding caused by uneven headways may be

under detected using the traditional vehicle load metrics calculated from a sample of

vehicle trips.

APC systems should be specified on all new bus orders when possible. This will

eventually lead to full implementation throughout a bus fleet without costly retrofits.

APC systems do not only provide load estimates but also stop level run and dwell

times.

Agencies that have high penetration rates of reusable identified fare media and

granular AVL information should also implement the ODX inference algorithm for

their system. If they have less than complete coverage of APC equipped vehicles, it

can be used to increase the number of vehicle trips with reliable load estimates and

provide trip level passenger flow estimates.

Agencies that do not have high penetration rates of reusable identified fare media

should consider implementing such systems because of the improvement in both the

passenger experience and the passenger information they provide.

Even if agencies have 100% coverage with APC equipped buses ODX can provide

more nuanced crowding monitoring by enabling crowding measurement to be done

on the passenger level (e.g., estimating the distribution of passenger crowding dura-

tions on a specific route). It also facilitates passenger linked trip analysis to identify

network design changes that can reduce crowding conditions and improve access for
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its customers.

7.2.2 Cumulative Passenger Centric Crowding Metrics

With this complete coverage of trip load and passenger OD estimates, transit agencies

should move towards passenger based cumulative metrics. Average metrics such as

average peak load can mask the true amount of crowding that passengers experience.

Cumulative metrics consider the experience of every instance measured (e.g., vehicle

or passenger trip) and therefore can provide a better understanding of a crowding

situation where is significant amount of variation.

Passenger centric metrics can better represent the impact that crowding has on

passengers. Vehicle based measures (e.g, percentage of vehicle trips with peak loads

over a crowding threshold) can mask the passenger effect since many more passengers

travel in crowded vehicles compared to less crowded vehicles. A higher percentage of

passengers are likely to experience crowded conditions than the percentage of vehicle

trips on which crowded conditions arise.

7.2.3 Additional Crowding Reduction Strategies

This research shows that much of the crowding experienced on the MBTA bus network

is not due directly to scheduled frequency. Therefore, increasing scheduled frequency

may not always be the most effective crowding reduction solution. Transit agencies

should use all available interventions when introducing crowding reduction programs.

Maintaining even headways on unreliable routes may greatly reduce crowding and

improve the passenger experience without increasing scheduled frequency or operating

resources. While increased frequency in addition to maintaining even headways should

be pursued as a goal to stay ahead of ridership growth and encourage additional

ridership, agencies that are resource constrained can still effectively reduce crowding

levels and improve passenger comfort using the strategies out lined in Chapter 6.
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7.3 Future Research

This thesis focuses on route level in-vehicle passenger crowding. There are additional

aspects of passenger crowding that should be studied as well. These include analyzing

crowding on a corridor or OD perspective as well exploring how passengers experience

crowding before they even board a vehicle.

7.3.1 Corridor and Segment Analysis

In dense bus networks, multiple routes often operate on a shared corridor. Many

passengers boarding along these stretches have multiple options of routes to take.

Therefore crowding conditions across all routes of a corridor combined could be eval-

uated instead of isolating each route. This can help inform resource allocation de-

cisions across all routes within a corridor to provide the best level of service for all

passengers of the associated routes.

This type of analysis often requires a spatial analysis of where the most passenger

crowding time is spent. This could help agencies determine the most effective loca-

tions for transit-supported roadway improvements or short-turn route variations to

be introduced.

7.3.2 Left Behind Analysis

Passengers on crowded routes not only experience less comfortable conditions within

vehicles but also face a higher probability of being denied boarding if an arriving

vehicle does not have sufficient available space. Very high vehicle loads can be used

as a proxy measure to determine when and where denied boardings may occur but it is

difficult to determine exactly when an individual is unable to board. With advances

in software to analyze video and increasing use of surveillance cameras (including

video of the boarding and alighting areas outside of buses), a systemwide analysis

could be done to identify when and where passengers are denied boarding. This issue

cannot be analyzed through ACDS developed vehicle loads alone. In addition, video

analysis may also help determine the effective capacity of vehicles and factors that
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may cause it to vary.

7.3.3 Role of Varying Passenger Arrival Rates in Crowding

For this analysis, all factors that cause within-period load variation are generally

considered at the same time. These factors include varying passenger arrival rates

and boarding/alighting distributions as well as the perhaps more prevalent condition

of varying headways. Transit agencies have limited control over the randomness of

passenger travel behavior. Therefore, even if service is perfectly delivered, loads may

still vary between vehicle trips. A simulation may help to gain a better understanding

of how much load variability is caused by uneven headways compared to variations

in passenger travel behaviors. ODX derived load and passenger flow estimates pro-

vide both passenger arrival rates between vehicle arrivals and alighting distributions.

Simulation analysis can then reassign passengers to vehicles based on the scheduled

arrival times. Crowding metrics could be calculated and compared to the crowding

expected with daily average loads to estimate how much crowding is due to uneven

headways and how much is due to variations in passenger travel behavior.

7.3.4 Effect of Crowding on Route Choice

Combining the passenger linked trip information that ODX provides with crowding

information allows for a more refined analysis of passenger path choice. For passengers

with multiple possible routes and/or paths on these routes, it be desirable to measure

the relative "disutilities" of different components (e.g, overall travel time, number of

transfers, expected level of crowding, wait time, among others) of the riding experience

in path selection. This would allow transit agencies to identify components that are

most important to their customers, which in turn enables better prioritization of

service changes that improve the characteristics of their transit trip.

159





Appendix A

Tables

Routes Excluded From Crowding Analysis
Route Reason

71 Speciality Vehicle (trolley bus)
73 Speciality Vehicle (trolley bus)

431 Low Ridership (Unable to Construct Seed Matrices)
9701 School Specific Route
9702 School Specific Route
9703 School Specific Route

Slver Line 1 (SL1) Offboard Fare Payment
Silver Line 2 (SL2) Offboard Fare Payment

Silver Line Shuttle (SLW) Offboard Fare Payment
Government Center Shuttle (608) Free Service

Work As Directed Free Service
Run As Directed Free Service

Table A.1: Routes Excluded From Crowding Analysis
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Appendix B

Route 47 Memo
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To: MBTA Staff
From: Chris Southwick
Date: December 8, 2015
Re: ODx Evaluation of Route 47

Route 47 is a popular crosstown route serving Central Square, Cambridge;
Longwood and Boston Medical Centers; and Dudley, Ruggles, and Broadway
Stations. It is the 24th most popular weekday bus route with an average weekday
ridership of 5,036 according to the 2014 edition of the Blue Book. ODx (origin
destination inference) was used to analyze both current (Spring 2014) use and the
impact of potential route modifications.

Current Use

Average load profiles and origin destination matrices were derived from scaled up
ODx for each weekday period and direction for March, April, and May 2014 to gain a
better understanding of current ridership and crowding patterns.

There are likely many trips with significant crowding between Central Square and
Longwood Medical Area. Most crowding occurs on inbound AM Peak and outbound
PM Peak trips with average peak loads of 46 and 43 occurring as buses cross the BU
Bridge. A trip level load profile methodology is currently in development that could
better describe the nature of crowding on these trips.

There are also many passengers boarding at the Massachusetts Avenue @ Pearl
Street stop especially on inbound AM Peak trips with an average of 34 passenger
boardings there per trip.

Finally, there appears to be differing levels of demand between the Central Square-
Ruggles and Ruggles-Broadway segments. For example, inbound AM Peak trip
average loads never exceed 10 passengers after the vehicle passes through Ruggles
Station. On outbound AM Peak trips, running at headways of 21 minutes (more than
double that of inbound trips), average peak load does not exceed 20 passengers.

1



Below are average load profiles of both inbound and outbound trips during the AM
Peak.

47 Inbound AM Peak
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Figure 1: Average Loads for AM Peak inbound 47 trips during March, April, and May
2014.
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May 2014.
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Next, ODx was used to develop origin destination matrices for each period and
direction to understand passenger travel patterns. It showed very few people riding
from end to end and indicated that there are two separate groups of passengers who
use the route: passengers travelling between Central Square and Ruggles Station;
and passengers travelling between Longwood Medical Area and Broadway Station.

Central Square 0.4 0.5 5.8 25.0 1.4 0.0 0.1 0.0 0.3 0.0
Upper Cambridgeport A 0.0 0.1 0.1 1.0 3.6 0.7 0.0 0.1 0.0 0 2 0.0
Lower Cambridgeport 0.1 3.0 3.7 0.7 0.0 0.1 0.0 0.1 0.0
Kenmore 0.3 1.3 0.6 0.0 0.0 0.0 0.5 0.0
Longwood 0.3 1.2 0.1 0.6 0.1 0.8 0.3
Ruggles Station - 0.0 0.0 0.0 0.4 0.0 1.5 0.2
Ruggles St 0.0 0.3 0.0 0.2 0.2
Dudley Station 0.0 0 2 3.4 0.9
Washington St/Melnea Cass Blvd 0.2 0.3
Albany Street 0.5 1.7

Totals 0.01 0.51 0.71 10.21 34.01 4.71 0.21 1.61 0.41 7.81 36

33.6
5.9

7.8
2.8
3.3
2.2
0.7
4.5
0.5
2.2

63.6
Figure 3: Origin destination matrix of average passenger flows between
grouped stops for AM Peak inbound 47 trips during March, April, May 2014.

Broadway Station 8.9 0.1 2.5 0.2 0.9 4.4 0.2 0.1 0.0 17.3
Albany St/Harrison Ave 1.8 0.0 1.4 0.1 1.1 2.2 0.4 0.0 0.2 0.2 7.4
Eastern Washington St/ Melnea Cass Blvd 0.0 0.1 0.2 0.1 0.0 0.0 0.4
Dudley Station 0.0 0.9 2.2 0.4 0.1 0.4 0.3 4.4
Western Washington St/ Melnea Cass Blvd 0.0 0.6 0.6 0.2 0.1 0.1 0.0 1.6
Ruggles Station 4.6 0.9 0.8 0.9 0.4 7.6
Longwood 0.5 0.5 0.5 3.1 2.5 7.2
Kenmore .0 0.4 2.1 4.3 6.8
Lower Cambridgeport 0.0 0.3 4.9 5.2
Upper Cambridgeport 0.1 1.2 1.3

Totals 10.71 0.11 3.91 0.41 3.71 14.7 2.7 2.01 7.21 13.8 59.2

Figure 4: Origin destination matrix of average passenger flows between
grouped stops for AM Peak outbound 47 trips during March, April, May 2014.
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I
Potential Route Modifications

The observations from the current use analysis show that the 47 corridor could be

better served by increasing the frequency of service between Central Square and
Longwood Medical Area during the peak periods. This could be achieved by either

adding a supplementary 47A, serving Central to Longwood during the peak periods,
or breaking the current 47 into two routes. The two routes could consistent of one

serving passengers between Central Square and Ruggles; and one serving

passengers between Longwood and Broadway Station. Splitting would have many

benefits including:

- Improving the ability to match frequency to demand on the two segments

e Increasing the ease of interlining by locating new route endpoints near the

large terminals of Ruggles and Dudley Stations.
- Could be implemented without negatively affecting most current users

A split would likely require additional resources during the off peak periods in order

to meet current service levels due to overlapping service coverage.

Creating a 47A route on top of the current 47 and adjusting service to maintain even

7.5 minute combined headways in the peak direction during the AM Peak and 10

minute in the PM Peak will increase service between Central Square and LMA while

only a small portion of riders would see a slight decrease in frequency.

Figure 5: Potential routing of
Longwood Avenue and Louis

a 47A terminating at the intersection of
Pasteur Avenue.

4

" -) 1,X1 1-50C 200011



Route Consolidation

Consolidating the CT3 into the modified 47 was also explored since the routes are
similar in many respects. They have a significant amount of overlap and both
connect the Red Line, Boston Medical Center (BMC), Ruggles and Longwood.

While more people currently travel on the Andrew-BMC section of the CT3 (roughly
1000 passenger trips on the average weekday) than on the Broadway-BMC section
of the 47 (approximately 750) the majority of outbound CT3 passengers transfer
from the Red Line (63%+) on their way to BMC (52%) and Longwood (28%). The
vast majority of these Red Line riders (91%) come from the south.

Because of the route similarities with the 47 most CT3 passenger journeys would
only be slightly impacted, requiring a transfer from the Red Line at Broadway
instead of Andrew (adding three additional minutes of travel time for those coming
from the south). The 10 also serves passengers travelling between Andrew and
BMC who are unable to transfer at Broadway with 20 minute headways during the
AM Peak and 24 during the PM Peak.

Shifting the eastern endpoint of the 47 from Broadway Station to Andrew Station
was also explored but was rejected, as this would eliminate all MBTA service along
Albany Street north of BMC. With the amount of development occurring in the
eastern South End it is important to maintain service along this corridor.

Consolidation would produce resource savings that could be used to either improve
service on the modified 47 routes or other routes.

0 500 1000 1500 2000m

Figure 5: Current 47 and CT3 routes.
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Route Variations

Finally, different route variations of the Broadway-Longwood segment were
evaluated. The Central-Ruggles segment was straightforward with Ruggles as an
endpoint because of its good terminal facilities and natural break in demand.
However, there were two route components on the Broadway-Longwood segment
that, based on service goals, could be adjusted. They include the location of the
western endpoint and whether to bypass Dudley Station.

Western Endpoint Location

Extending the western endpoint of the Broadway segment to Longwood would
drastically decrease the percentage of current passengers who would have to make
an additional transfer with the new route configuration from about 15% to less than
5% for most time periods. Most of this improvement comes from giving Longwood
commuters travelling from east of Ruggles a one-seat ride.

Period Inbound (Broadway bound) Outbound (Central Bound)
Ruggles Longwood Ruggles Longwood

AM Peak 5.5% 2.7% 20.8% 4.6%
Midday 13.4% 4.1% 18.7% 5.8%
PM Peak 17.7% 3.7% 7.1% 3%
Evening 15.8% 5.8% 7.2% 3.1%

Figure 6: Percentage of current 47 riders who would have to make an additional
transfer with the route modification for each direction, endpoint and time period.

Also, overlapping the western and eastern segments will significantly improve
frequency between Ruggles and Longwood. This will improve access to Longwood
for passengers transferring at Ruggles, which includes passengers coming from the
Orange Line, Commuter Rail, and 7 bus routes (4 of which are key routes).

There would be some additional costs associated with running the eastern segment

through Longwood. Extending the length of the route will increase cycle time,
requiring more resources than the Ruggles endpoint variation to run the same
frequency (see Operational Expenses section). There would also be fewer
opportunities to interline vehicles since they would likely have to deadhead back to
Ruggles or Dudley from Brookline Avenue.
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Dudley Bypass

A Dudley bypass could have Broadway bound vehicles turn left on Washington
Street from Ruggles Street instead of travelling down Shawmut Avenue and Central
Square bound vehicles continue straight on Melnea Cass Boulevard without turning
onto Washington St. This would reduce outbound running times on average 8
minutes and inbound by 5 minutes. It would also reduce congestion at Dudley
Station where 17 routes currently stop.

Dudley Byp

t0 100 200 300 400 M

Figure 7. Map of Potential Dudley Station Bypass

However, the bypass would exclude the Dudley Station stop for Broadway bound
trips at which 7% of current 47 riders board or alight and five stops for Central
bound trips at which 16% of current 47 riders board or alight.

For Broadway bound riders, there would be two main options to complete their
journey with the reconfigured route:

1. Walk 1/8 of a mile from Dudley to Ruggles St @ Washington St to
board the 47

2. Wait for either the 1, 8, or Silver Line at Dudley for similar South End
destinations

For Central bound riders, there are three options:

1. Transfer at Ruggles instead of Dudley (27%+ of current 47 riders who
board at these stops transfer from routes that continue to Ruggles)

2. Take one of the Malcolm X Boulevard routes to Ruggles and then
transfer

3. Take the 8 or 19 for a direct trip to Longwood.
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Passenger Effects with the 47A Addition

In the PM Peak, in order to achieve 10 minute combined headways between Central
Square and Longwood Medical Area both the 47 and 47A would need to operate
with 20-minute headways. Current 47 headways vary between 15 and 25 minutes
meaning the difference in headway passengers will face will vary based on the trip
they ride though all passengers riding between Central and Longwood would see an
increase in frequency. This amounts to over 600 passengers on an average weekday
for a Ruggles turnaround configuration and 400 for a Louis Pasteur turnaround.

In the AM Peak, in order to achieve 7.5-minute combined 47-47A headways,
inbound frequency on the 47 will need to be reduced (10 to 15 minute headways)
and outbound frequencies increased (21 to 15 minute headways). All outbound
passengers will benefit from this increased frequency.

21% of inbound passengers will see a reduction in frequency with a turnaround
point at Ruggles and 32% with a turnaround point at the intersection of Longwood
Avenue and Louis Pasteur Avenue. These are passengers who alight after the
turnaround point.

The preponderance of riders would benefit from the increase in frequency,
approximately 700 riders on an average weekday with a Ruggles turnaround
configuration and 650 with a Louis Pasteur turnaround.

Operational Expenses

Split

Increasing the frequency of the Central-Ruggles route to 7.5 minute headways and
Broadway-Longwood route to 15 minute headways during the AM Peak and 10
minute and 20 minute respectively during the PM Peak, same as adding a 47A, will
help to better match supply to demand. There are some efficiency gains by
consolidating the CT3 into the 47 though slow travel speeds over the BU Bridge and
through Longwood make the increase in frequency expensive in terms of vehicle
requirements especially during the PM Peak. Current conditions do not warrant a
schedule adjustment during the off peaks.

The configuration of the new routes also affects the number of vehicles required.
The longer the combined length of the two routes of a configuration the more cycle
time and vehicles required. The following chart shows the change in vehicles
required for each major time period and configuration from the current amount
allocated between the 47 and CT3.
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Figure 7. Increase in Vehicle Requirements from Current
and 47 Allocation by Configuration and Time Period

Combined CT3

Adding a 47A

Adding a 47A, with the frequency changes mentioned above, will require 5
additional vehicles during the AM Peak and 4-5 in the PM Peak if operated between
Central Square and Ruggles. Operating between Central Square and the intersection
of Longwood Avenue and Louis Pasteur Avenue will require 3-4 vehicles in the AM
Peak and 2-4in the PM Peak depending on scheduling aggression. With
consolidation of the CT3 into the 47 these vehicle requirement costs would decrease
by 4 for each period.

Interlining vehicles may reduce the costs listed above.

Transit Priority on BU Bridge

Buses often face congested road conditions as they cross the BU Bridge and adjacent
rotary. This congestion is exacerbated during the peaks, with large increases both in
average and variance of running time. Implementing transit priority measures in the
area, even just during the PM Peak could produce significant running time
decreases.
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Configuration AM Peak Midday PM Peak Evening
Broadway- 0 -1 0 1
Ruggles (w/o
Dudley)
Broadway- 2 1 1-2 2
Longwood (w/o
Dudley)
Broadway- 2-3 1 2 2
Longwood (with
Dudley)



Inbound Route 47 Travel Time over BU Bridge
(Granite St @ Brookline St-Mountfort St @ Lenox St)
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Figure 8. Inbound Route 47 Travel Time crossing BU Bridge by
Scheduled Trip Departure Time

Outbound Route 47 Travel Time Over BU Bridge
(Mountfort St @ Carlton St- Brookline St @ Granite St)
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Figure 9. Outbound Route 47 Travel Time crossing BU Bridge by
Scheduled Trip Departure Time
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Recommendations

After the above analysis, the following recommendations for different service goals:

Split Proposal

1. Consolidate the CT3 into the 47.

2. Split the 47 into 2 separate routes from one of the three following
configurations:

i. Broadway-Longwood stopping at Dudley

0 5W0 1000 1500 2000m

ii. Broadway- Longwood bypassing Dudley

0 500 1000 1500 2000,,
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iii. Broadway-Ruggles bypassing Dudley.

0 500 1000 1500 2000,M

The Central-Ruggles route could operate with a 7.5 minute headways while the

Broadway-Longwood route could operate with 15 minute headways during the AM

peak. During the PM Peak, when travel demand is slightly less peaked, 10 minute

and 20 minute respective headways could be run. During the off peaks, the routes

could operate at the current headway of the 47.

The Broadway-Longwood variations are listed in order of decreasing service

coverage and costs. A Broadway-Dudley-Longwood route would provide the most

service coverage while being the most costly to run. The Broadway-Ruggles route

would be the least costly to run but would directly serve the fewest people. The

Broadway-Longwood route is a middle ground option.

47A Proposal

The 47A proposal would add an additional route (47A) on top of the 47 from Central

Square to either the intersection of Longwood Ave and Louis Pasteur Ave or Ruggles

Station during the peak periods. Both the 47 and the 47A would operate with 15

minute headways during the AM Peak and 20 minute headways during the PM Peak.

The combined headway between Central and Longwood would be 7.5 minutes and

15 minutes for the entire 47 corridor during the AM Peak and 10 and 20 minutes

respectively during the PM Peak.

The two proposals have similar costs when service coverage is taken into effect. A

decision between the two rests mostly on implementation and flexibility

preferences. The 47A proposal would be simpler to implement than the rerouting

and elimination of routes as is suggested in the split proposal, as passengers would

12



only see changes in frequency. However, it is not as flexible as the split proposal in
terms of having the ability to change frequencies for the different segments in the
future. The frequencies on the two split routes are largely independent and can be
changed without drastically affecting the performance of the other route while the
47A proposal requires that both routes have the same frequency in order to
maintain even headways over the critical Central-Longwood segment.

Overall, both of these recommendations increase frequency most where demand is
highest limiting the amount of resources needed to meet the ever-growing travel
demand between Central Square and Longwood Medical Area.
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