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ABSTRACT

Passenger demand forecasting, and subsequently passenger cancellation
forecasting, are important components in any airline revenue management (RM) system.

Passenger cancellations can potentially lead to flights leaving with empty seats and thus

to loss of revenues. Airlines need accurate cancellation forecasting tools in order to

properly compensate for cancellations, or in other words, overbook flights above their

physical capacity. At the same time, airlines need to be cautious not to overbook too

aggressively. If a flight is still overbooked at time of departure, not all passengers are

able to board and those left behind need to be compensated and re-accommodated.

This thesis focuses on modelling and forecasting passenger cancellations using

the PODS booking simulation tool. Several methods for cancellation forecasting and

overbooking are presented and their impacts are tested under different demand,

competition and RM strategy settings. All methods are based on time series modeling of

historical observations. However, the methods differ in terms of the data they use and

the cancelled bookings they compensate for. The potential contribution of Passenger
Name Record data (PNR) to more accurate cancellation forecasting is discussed as well.

Simulation results indicate that the ticket revenue gains due to cancellation

forecasting and overbooking range between 1.15% and 4.16%, depending on the

cancellation forecasting method used and the level of overbooking aggressiveness.

However, aggressive overbooking increases the negative effect on revenues due to the

costs associated with denied hoardings. Therefore, after taking into account these costs,

the net revenue gains range between 0.06% and 2.79%. For airlines with high

cancellation rates, the magnitude of the gains from cancellation forecasting and

overbooking is even greater, reaching 3.59% in net revenue improvements.

Thesis Supervisor: Peter P. Belobaba

Title: Principal Research Scientist of Aeronautics and Astronautics
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Chapter 1: Introduction

The concept of airline revenue management (RM) has grown after the

deregulation of the US airline industry in the late 1970s. While before deregulation

airlines had to set ticket prices according to the mileage-based formula used by the Civil

Aeronautics Board and charge all passengers the same price, after deregulation airlines

introduced different techniques such as price discrimination, product differentiation and

fare restrictions. These techniques are based on the notion that passengers have

different levels of willingness-to-pay (WTP) and different characteristics in terms of trip

purpose and sensitivity to price and time. Airlines attempt to maximize their revenues

by introducing multiple booking classes with different fares and restrictions such as

Saturday minimum stay and advance purchase to ensure that passengers with high WTP

purchase high fare tickets while passengers with lower WTP purchase lower fare tickets

to fill up the remaining unoccupied seats (Belobaba, 2016). The RM systems allocate

seats to each fare product based on the demand forecasts generated for each future

flight. Low fare products will have booking limits in order to prevent passengers with

high WTP who are not limited by restrictions from purchasing tickets with fares lower

than their WTP ("buying down"). High fare products will have protection levels in order

to ensure that requests for high fare seats will never be turned down.

1.1 Importance of Demand and Cancellation Forecasting

One of the core elements in an airline's RM system is its ability to forecast

demand for any given flight as accurately as possible. After the forecast is produced,

usually based on historical bookings, the RM system then determines the seat allocation

that will maximize revenue for the airline. However, just as in any other business,

forecasting demand for air travel is a challenging task for airlines as demand can be

highly volatile due to several factors such as seasonality, holidays, economic shifts, geo-

political disputes, epidemic outbursts and terror attacks to name a few. Even with the

advancement in computational applications which allow airlines to produce many
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different forecasts in a very short time (Neuling et al., 2003) forecasts are rarely a

precise prediction of future demand.

Inaccuracy of demand forecast may lead to unfavorable consequences to the

airline. If demand forecasts are higher than the actual demand level, the RM system may

allocate fewer seats to low WTP passengers as it expects demand to be sufficient enough

to fill the remaining seats with high WTP passengers. However, since there is not enough

actual demand, flights may leave with empty seats to their destination. Since an airline

seat on a given flight and date is a perishable product/service that cannot be

recuperated after the flight leaves for its destination, the airline loses potential revenue.

If demand forecasts are lower than actual demand level, the RM system may allocate too

many seats for low WTP passengers as it predicts there is not enough demand to fill all

seats. In this case, the RM system does not protect enough seats for passengers with high

WTP who book later in the booking process. In both cases, airlines do not maximize their

revenues as they do not optimize the number of seats made available to each fare class.

One of the main issues airlines have to take into consideration while building

models for demand forecasts is the phenomenon of passenger cancellations. The fact

that passengers can purchase their tickets well in advance before a departure date

increases the probability that at some point in time until departure, passenger plans will

change and hence will force them to either cancel their itinerary completely, or

reschedule their trips to different dates. Any cancellation by a passenger in the booking

process adds disturbance to the demand forecasting system and can result in revenue

loss. The potential loss of revenue also increases the later the passenger cancels his/her

itinerary as airlines have less time and flexibility to try and compensate for the revenue

loss. A sub-category of cancellation behavior is called "no-show" and this behavior refers

to cases where booked passengers fail to show up at the gate for departure. In these

cases passengers do not cancel their itineraries prior to departure and therefore airlines

do not have the time to try and sell the seat to another passenger and loss of revenue is

almost guaranteed unless anticipated by the airline.
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Forecasting cancellations could be an easy task if all passengers were the same.

However the reality is that passengers differ from one another in myriad ways and so is

their likelihood of cancelling their trips or not showing up to their flight on day of

departure. Belobaba et al. (2016) discuss two passenger types with their unique

characteristics: "leisure" and "business" passengers. "Business" passengers are

described as insensitive to price and time sensitive who go on business trips of up to a

few days during the week days, hence weekends and holidays are excluded, and book

their trips closer to departure. "Leisure" passengers are characterized as sensitive to

price and insensitive to time who travel for the purpose of vacation or visiting friends

and family and therefore travel for at least a few days, including weekends and holidays,

and book their trips far in advance. In order to ensure each type of passenger is paying

according to its WTP, the airlines use these characteristics to determine the restrictions

associated with each fare class.

Airlines implement several methods of attempting reduce the risk of revenue loss

associated with cancellations. One method is applying "non-refundable" or "non-

changeable" restrictions on some fare class. These restrictions can reduce the

probability of passengers cancelling after they had already booked their trins and at the

same time incentivize passengers to book their trips only if their plans are firm. For

"business" passengers these restrictions may be more inconvenient as their plans might

change even after booking and hence airlines usually allow bookings to be refundable or

changeable in higher fare classes. Allowing a passenger to get a refund or change their

itineraries in exchange for paying a higher fare for their booking reduces the revenue

loss expected in case of a cancellation.

Another method airlines implement to reduce losses associated with passenger

cancellations or "no-show" is overbooking. By overbooking, airlines allow bookings to

exceed the physical seat capacity on a given flight and thus reduce the probability of

flights leaving with empty seats. Though, just as in the case of demand forecasting, the

cancellation forecast needs to be as accurate as possible in order to enable airlines to

overbook just enough to fill all seats without exceeding the actual capacity. Airlines have
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developed cost based models to compute optimal levels of authorized capacity (AU) on

flights (Belobaba et al., 2016). The objective of the models is to find the AU where total

costs of denied boarding (DB) and spoiled seats are at minimum. The main challenge for

the airlines with these models is to produce accurate cost estimates of denied boarding

and spoiled seats as some costs are difficult to quantify. It is then up to the airline to

decide on a strategy that will be best for the airline economically.

1.2 Motivation for Research

Cancellation forecasting has been a research topic for airlines since the evolution

of RM in the early 1980s (Neuling et al., 2003). Accurate cancellation forecasting is a

crucial element for an airline's profitability and much effort has been invested by the

airlines in developing models to address this issue. Cancellation rates can be different

for each airline as the rates are mainly a factor of the airline's booking restrictions policy

and passenger mix. According to Illiescu et al. (2008), cancellation rates reaching 30%

or more are not uncommon, hence the importance of accurate cancellation forecasting is

understandable.

The most common approach to cancellation forecasting has been, and still is, time

series modeling based on historical observations. These models attempt to forecast two

types of cancellation rates: cancellation rates for bookings that have already been

accepted and cancellation rates for bookings that are yet to be made as the RM system

needs these rates for estimates of demand for a flight. The models take in consideration

the differences in rates due to specific flight attributes such as flight time, day of week,

seasonality and holidays to name a few (Garrow et al., 2004). A more recent approach

for cancellation rates estimation has been the use of disaggregate Passenger Name

Record (PNR) information from the airlines' reservation systems. PNR data contains

more detailed information about each booking which can contribute to better estimation

of cancellation rates on an aggregate level as the probability of cancellation of an

individual booking is not required by the RM system (Romero Morales et al., 2010).
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Despite the research done so far on the topic of passenger cancellation

forecasting, very little research has been done on the impact of different cancellation

forecasting and overbooking methods on airlines' RM systems, taking account of

passenger choice. Specifically, the interaction between cancellation forecasting and

overbooking methods with different RM systems, forecasters, under different demand

levels and cancellation rates and the impact on airlines' performance has yet to be

investigated. Therefore this thesis aims to analyze the consequences of cancellation

behavior as well as different cancellation forecasting and overbooking methods on

airline revenues. The Passenger Origin Destination Simulator (PODS) which simulates

airline competitive environment and passenger choice behavior is used in this thesis.

The passenger choice simulation has been expanded to include cancellation behavior for

the purpose of this thesis. The aspects to be investigated include the cancellation

forecasting and overbooking method used by the airline, the cancellation rate levels, the

RM system used, the type of forecast fed into the optimizer and the RM capabilities of

the competitors. Each scenario will present the results of the simulation runs with the

main focus being on the revenues, load factor and yield of one airline in a competitive

environment.

The thesis begins with this introduction and proceeds to Chapter 2 which

includes a literature review regarding cancellation forecasting methods and passenger

cancellation behavior in the airline industry. Chapter 3 provides an overview of PODS

and presents the adjustments made (and the assumptions behind them) in order to

incorporate cancellation behavior in the simulator. The chapter includes several

methods for passenger cancellation forecasting based on time-series analysis of

historical observations. The cancellation rates that are calculated by each method will be

used towards overbooking of remaining capacity in order to compensate for the

potential loss of revenues.

Chapter 4 presents the results of a series of test simulations done in PODS. The

first couple of tests will compare the results of one airline in a competitive environment

using different cancellation forecasting methods with different levels of overbooking
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aggressiveness. One test will compare the results for an airline using different

cancellation rate aggregations. Another test will impact of a different overbooking

approach on the performance measures. The rest of the tests will show the results under

different competitive, cancellation rates and RM settings.

Chapter 5 will discuss the importance of using detailed passenger data that is

included in every airline's databases towards the development of more sophisticated

and thus more accurate cancellation forecasting models. The chapter will give some

examples of PNR attributes that could be used in better understanding passenger

cancellation behavior. Chapter 6 will conclude this thesis and briefly discuss ideas for

future research.
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Chapter 2: Literature Review

The subject of passenger cancellation forecasting in airline RM systems has been

covered by the academic literature for several decades. In McGill and van Ryzin's (1999)

extensive review of 40 years of literature on transportation RM, it is claimed that

research on reservations control and overbooking dates back to the late 1950s.

Overbooking calculations were based on forecasting of probability distributions of the

number of passengers who showed up for their flights, and therefore overbooking

research motivated research on forecasting of passenger cancellations and no-shows.

Another review on the topic of overbooking can be found in Rothstein (1985), where the

motivation for overbooking, the advantages and early practices of overbooking are

discussed.

More recent literature regarding cancellation and overbooking in RM systems can

be found Gosavi et al. (2005) where an integrated simulation based approach is

developed for solving seat allocation problems in the airline industry taking into

consideration passenger cancellations and overbooking of flights. Subramanian et al.

(1999) developed a Markov decision process model for airline seat allocation for single

leg flights with multiple fare classes allowing for cancellations, no-shows and

overbooking. Both examples do not include customer choice behavior. Sierag et al.

(2015) introduce a customer choice cancellation model as an extension to RM model

proposed by Talluri and van Ryzin (2004). The customer choice model is based on a

Markov decision process and dynamic programming formulations. The authors conclude

that failure to take into cancellations in RM models can lead to a revenue loss of up to 20

percent.

The importance of cancellation forecasting accuracy to airlines' revenue

maximization is often discussed in the literature. Lawrence et al. (2003) assert that

underestimation of no-shows leads to loss of potential revenues due to unoccupied

seats, while overestimation can result in a cost penalty for the airlines as they need to

compensate for denied boardings. Romero-Morales et al. (2010) add that in revenue
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management system using dynamic pricing overestimation of cancellation rates can

result in underestimation of demand by the system and hence prices will be set too low

in order to attract more demand. Chatterjee (2001) demonstrates the necessity in

forecasting cancellation rates for bookings-in-hand (BIH) and booking-to-come (BTC)

instead of relying solely on forecast of net demand due to the uncertainty (i.e. variance)

of BIH and BTC. If BTC are not taken into account, there is a risk of underestimating the

total variance of the net demand.

Most of the work done on passenger cancellation forecasting methods is focused

on two main approaches. The first approach is traditional time series forecasting. This

approach is a relatively straightforward and intuitive approach which is being used in

many fields besides transportation. According to Garrow and Koppelman (2004),

airlines forecast no-shows rates using time-series models based on historical class or

cabin no-show rates. Lemke et al. (2008, 2009) investigate several methods for

forecasting using time series data. In addition to the commonly used methods of simple

averaging and exponential smoothing, other methods such as regressions,

decomposition and Theta models, autoregressive integrated moving average models and

non-linear forecasting are also proposed as methods for forecasting in airline RM

systems. Airlines forecast cancellation rates on fare class, day of week, point of sale and

OD levels and not on specific passengers' characteristics levels such as business or

leisure. For this reason, Garrow and Koppelman (2004) argue that forecasting models

based on historical bookings cannot make accurate predictions when passenger and/or

itinerary mix changes.

The second approach for cancellation forecasting that has gradually become

more popular among airlines in recent years is Passenger Name Record (PNR) based

forecasting. In this approach, the airline uses the attributes that are included in each

PNR to develop a forecasting model at a more disaggregate level. Flight times and dates,

origin and destination (OD) airports, seasonal aspects and passenger attributes such as

frequent flyer program membership and number of passengers travelling together are

just some of the attributes that can be retrieved from the PNR data and be used in
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models for cancellation forecasting. The data can be used in models for cancellation or

no show predictions either at a passenger level or cabin level as suggested by Lawrence

et al. (2003). Passenger level models can be implemented by using decision trees, Naive

Bayes algorithms and other probabilistic models while cabin level models can

implemented by using linear regressions or probabilistic models as well. Garrow and

Koppelman (2004) suggest a multinomial logit model that predicts whether or not each

passenger (i.e. PNR) will or will not show up for a flight. Neuling et al. (2003) also

emphasize the fact the due to the amount of information required for successful

implementation of PNR based forecasting models, several steps need to be taken in such

as understanding the information included in the PNR data and selecting proper

attributes to be used later on in the predictive models. Failure to do these basic yet

crucial steps may result in highly biased results.

The superiority of the PNR based model over the time series model is mentioned

in several papers. For example, according to Lawrence et al. (2003) a cabin level

passenger based model can produce between 0.4 to 3.2 percent revenue gains over the

conventional model. Nevertheless, the literature acknowledges the shortcomings of the

PNR model. Airlines forecast cancellation rates by time periods before departure and the

closer the time period is to departure the higher number of total bookings it contains.

Since PNR based models are dependent on number of bookings, they perform better in

forecasting cancellation the closer the bookings are to departure date. PNR based no

show models are incapable of producing a complete forecast early in the booking

process when few bookings are actually available. Furthermore Romero Morales et al.

(2010) address the complex dynamics in the behavior of passengers in the different

stages of the booking horizon and point out that the set of relevant attributes is very

diverse in different stages of the booking horizon.

In addition to the shortcomings of each model individually, there is also a general

consensus that using a single model can be risky as it can only be accurate to a certain

degree due to the changes in data and performance over time. Combined models can

complement each other and increase the accuracy of the forecast due to the improved

18



ability to adapt to changes in the data. Lemke et al. (2008, 2009) discuss linear, non-

linear as well as adaptive forecast combinations for improved accuracy of models. They

emphasize the fact that combining forecasting does not always improve performance

however generation of forecasts on different levels of aggregation of data can result in a

significance performance gain. Lawrence et al. (2003) suggest producing a weighted

average of historical and passenger based forecasts with increased weights assigned to

the passenger based forecast as more booking are realized. Romero Morales et al.

(2010) propose building multiple models for different stages of the booking horizon or a

single model that takes into account time dependency.

Illiescu et al. (2008) used ticketing data from the Airline Reporting Corporation

for group ticketing within 90 days before departure and the occurrence of refund and

exchange events in a discrete time proportional odds (DTPO) model with a prospective

time scale to.model airline passengers' cancellation behavior. The authors discuss three

main findings. First, in general higher cancellation rates are observed for recently

purchased tickets and for tickets whose flight departure dates are near. This finding is in

line with "bath-tub" shaped passenger cancellation pattern which is used in PODS and

will be described in further detail later in this thesis. Second, passengers travelling in

groups have lower probabilities for cancelling in comparison passengers who are

travelling alone. Third, based on variables associated with leisure passengers such as

Saturday night stay and end of week day of outbound departure, tickets that are booked

by leisure passengers have lower cancellation rates.

Belobaba (2016) presents the necessity for airlines to overbook flights as well as

different approaches for determining authorized capacity (AU) for flights. The

approaches include judgement of human analysts based on their previous experience

with passenger cancellation and no-shows, deterministic model which determines AU by

assuming the actual no-show rate is known with certainty and probabilistic or risk

based model which incorporates the variance in the distribution of no-show rates for

future flight departures. Airlines can make adjustments to the probabilistic models

based on their tolerance for denied boardings and spoiled seats. The probabilistic model
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has been extended to another model, the cost-based overbooking model, which not only

takes into account the uncertainty in no-show behavior but also accounts for the costs

airlines assign to denied boarding passengers spoiled seats and attempts to find the

optimal AU where total overall costs are minimized. Calculating the exact costs of denied

boarding and spoiled seats is not an easy task as these costs cannot be completely

quantified in monetary terms.

Karaesman and van Ryzin (2004) present a two-period optimization model to

determine joint overbooking levels for multiple class setting where substitution among

classes is allowed. Results show that in some cases accounting for substitution can

increase revenues to some extent after accounting for penalties. Based on their findings,

there is potential to improve overbooking practices for adjacent flights or multi-cabin

flights where substitution options are available. Ignaccolo and Inturri (2000) propose a

method to minimize both denied boardings and spoiled seats in flights by monitoring

the booking process and using Inference Fuzzy Systems to assist RM analysts with their

decisions on AU settings.

The existing literature on passenger cancellation behavior and cancellation

forecasting methods raises several points. First, the common practice used by airlines

today for cancellation forecasting is time series forecasting based on historical

observations. Second, the additional value PNR data can provide for the improvement of

the accuracy of cancellation forecasting is recognized. Third, the highest level of

accuracy can be provided only if several models are used together. That way each

model's deficiency can be compensated by other models. Fourth, there are several

approaches for compensating for loss of revenues due to cancellations, and every airline

can choose its approach based on its preferences and experience. Fifth, cancellation

probabilities vary by time, by type of passengers and by number of passengers in group.
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Chapter 3: Overview of PODS and Network U10

All the experiments described in this thesis are based on the Passenger Origin

Destination Simulator (PODS). This tool, which was initially developed by Boeing as a

model for passenger travel window preferences, now simulates a hypothetical airline

competitive environment in which each airline has its own network. Each airline gets to

decide on its RM system's components such as the RM optimization model and the

forecast method to be used and also on the fare products it offers its customers. Demand

for air travel is generated by simulating passengers who wish to travel in specific OD

markets and thus need to decide between the various paths, airlines and products

available to them. It is important to note that in PODS, just as in reality, airlines have no

control on the demand generation process and they do not know if demand actually

exists until a booking is made. The airlines must use the various forecasting tools

available to them to forecast the number of passengers on each future flight, their arrival

process and their cancellation patterns. In the next sections PODS and network U10, the

framework for this thesis, will be described in greater detail. The figures in sections 3.1

through 3.3, are from a report by Belobaba (2010) which includes many other charts

and figures regarding PODS.

3.1 Overview and Structure

The RM system in PODS consists of three sub-systems: the historical booking

database, the forecaster and seat allocation optimizer. Each booking made by a

passenger is recorded in the historical booking database. The forecaster then uses the

historical booking data together with the current booking levels to forecast bookings for

every flight in the future. Based on these forecasts, the optimizer allocates the number of

seats made available in each fare class, path and time frame before departure. The

availability then defines the passenger choice set from which the passengers have to

make a decision, based on their characteristics and associated preferences of schedule

times, fares and restrictions on each fare class. The characteristics of each passenger are

generated stochastically for each market by the demand generator which is the first
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component in the passenger choice model. After a booking is made, the RM system once

again updates the remaining availability in all fare classes. Figure 1 illustrates the

interaction between the Passenger Choice Model and RM systems in PODS during the

booking process.

Passenger Choice Model

Demand Generation

Decison Wi ndow Model

Lr Passenger haracteristics

L _Passenger Choice Set Pah ls yi;-*i~Path! Class Availability

PasEng c is io n

Path! Class bookings
and Cancellations

a RM Seat Allocation Optimizer

Current Future
Bookings Bookings

Forecaster

Update Historical
Bookirigs

Hi.stncal Booking Database

Revenue Management System

Figure 1: PODS Structure

(Source: Belobaba, 2010)

PODS simulates multiple repetitions of the same departure day and averages the

output results. The booking period consists of 63 days, which are divided into 16 time

periods or time frames. Figure 2 demonstrates the division of the pre-departure days

into their respective time frames. The number of days in each time frame decreases the

closer the time frame is to departure. The bookings-in-hand (i.e. the cumulative net

bookings) and forecasted bookings-to-come are re-calculated at the beginning of each

time frame in PODS.
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Figure 2: PODS' Time Frames

(Source: Belobaba, 2010)

3.2 Passenger Choice Behavior in PODS

The demand for each market is divided into two passenger types, business and

leisure, and each type is randomly assigned a set of characteristics which includes a

decision window, a maximum WTP and a set of disutility costs.

1. Decision window: the time frame within which the passenger is willing to travel. The

window is bounded by the earliest departure time and the latest arrival time the

passenger will consider. Business passengers have shorter decision windows than

leisure passengers due to their time sensitivity and reduced flexibility in travel. If the

path and fare class combination is within the decision window it will be included in

the passenger choice set and excluded otherwise.

2. Maximum WTP: the maximum amount the passenger is willing to pay for air travel.

It is defined as a function of the input basefare, the price which the mean number of

passengers in each OD market are willing to pay for travel, and emult, the elasticity

multiplier such that 50% of passengers are willing to pay emult*base fare to travel.

The base fare and the emult for business passengers are higher than those for leisure

passengers due their lower price sensitivity. If a travel option has an out-of-pocket
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fare that exceeds the passenger's maximum WTP it will be excluded from the

passenger's choice set.

3. Set of disutility costs: the dollar value of the disutilities arising from the restrictions

associated with the fare products in each market and from the re-planning, path

quality and unfavorable airline costs. In our case, the cancellation penalty restriction

on a ticket increases the disutility for business passengers due to the greater

uncertainty in their travel plans compared to leisure passengers. Re-planning cost is

the penalty assigned by the passenger if not able to fly within the desired time

window. Path quality cost is the penalty assigned by the passenger when flying a

connecting (versus a non-stop) itinerary due to the additional time and stress

associated with it.

On average, the ratio between business and leisure passengers is 40:60,

respectively, which is in line with industry data. Network U10 has four booking curves

which describe the arrival pattern of passengers into the booking process based on type

of passenger, business and leisure, and type of market, domestic and international,

shown in the example in Figure 3. The arrival patterns in the figure differ according to

the unique characteristics of each passenger tvnpe and are based on industry ePynerience

The leisure arrival curve is above that of the business as leisure passengers tend to book

earlier in the booking process than business passengers. The international market

arrival curve is above that of the domestic market as international passengers tend to

book further in advance due to the additional bureaucracy usually involved in

international itineraries such as visa arrangements. At day 21 before departure, 85% of

the international leisure passengers, 78% of the domestic leisure passengers, 54% of the

international business and 35% of the domestic business passengers have arrived to

book.

It should be noted that in reality passenger do not classify themselves as leisure

or business when they book and this classification is only used by PODS for the purpose

of modeling different types of demand groups. By no means is this supposed to suggest
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that business passengers will not book a low fare ticket, if the disutility costs associated

are not too high, or that a leisure passenger will not book a high fare ticket.
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Figure 3: Booking Curves by Passenger and Market Types

(Source: Belobaba, 2010)

3.3 Network U10 Competitive Airline Network

The competitive airline environment used in this thesis consists of four airlines,

and each airline is based in its own hub. Airline 1 (AL1) hubs at MSP, Airline 2 (AL2)

hubs at ORD, Airline 3 (AL3) hubs at MCI and Airline 4 (AL4) hubs at DFW. Each airline

flies to and from its hub to 40 domestic and international spoke cities, 20 east of the hub

and 20 west of the hub. The passenger flow goes from West to East. While most markets

are served by connecting itineraries, the hubs serve as destination and origin points as

well. Overall, the airlines operate 442 legs departure legs per day serving 572 OD

markets. Figures 4.1, 4.2, 4.3 and 4.4 illustrate all four airline networks. Airlines 1, 2 and

4 serve both domestic and international markets and represent the "legacy" carriers,

while Airline 3 serves domestic markets only and represents the low-cost carrier (LCC).
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(Source: Belobaba, 2010)

The airlines offer three types of fare products: domestic restricted, dornestic less-

restricted and international restricted. A fare product consists of 10 fare classes (FC)

with different restrictions applied to each fare class. The difference between the

domestic fare products is the "aggressiveness" of the restrictions applied. Figures 5.1,

5.2 and 5.3 present the fare products offered in Network U10.

FC AP MIN3 CXL SAT

G 0

3 00

4 7 0

Figre 1 oesi Retice

S 7 0

7 14 1 0

S 14 1 0

S 14 1 1

'-\,0 121 1 -

Figure S.A: Domestic Restricted

27

MW



FC AP MIN3 CXL SAT

1 
a

2 01 0 1 0

3 3 0 1 0

4 7 0 1 0

S 7 0 1 0

7 14 0 1

IR 14 0 0

!9 14 0 1 0

10 2

Figure 5.2: Domestic Less -Restricted

1 AC P SAT CX- MAX

2 0 0 1 0

3 23 1C -1

4 0 0 0

45 A 0

7 .14 1 1

3 14 1 1 1

94 21 1 1 1

:Kzv 2 1'1". -"'11

Figure 5.3: International Restricted

(Source: Belobaba, 2010)

The restrictions included the fare products are advance purchase (AP), minimum

three night stay (MIN3), cancellation fee (CXL), Saturday night stay (SAT) and maximum

number of nights at destination (MAX). The cancellation penalty (fee) for domestic

28



restricted, domestic less-restricted and international restricted is $200, $100 and $300,

respectively. In line with current US airline industry practice, very few fare classes do

not have a cancellation penalty associated with them, as in the real world only high fare

class tickets are changeable without additional charge, or are fully refundable. As

explained earlier, the cancellation penalty restrictions as well as all other restrictions

described in Figures 5.1-5.3 are used by airlines for the purpose of preventing

passengers with high WTP, mostly business, from buying down to lower fare classes.

3.4 Modelling Cancellation Behavior in PODS

Modeling passenger cancellation behavior can be done by allowing bookings to

"leave" the system at some point in the time frame between the booking and departure

times. Thus, each booking in PODS is assigned a cancellation probability at the beginning

of each time frame that varies depending on the time frame. The findings in Illiescu et al.

(2008) as well as industry experience suggest that passengers are more likely to cancel

their tickets either shortly after they book or close to departure date, while in between

they are less likely to cancel. This pattern resembles a "bath-tub" and hence the

cancellation probabilities of each booking in PODS follow this pattern. An example of

time frame dependent cancellation probabilities for a booking is demonstrated in Figure

6.1. In this example, a booking is made during TF8. In TF9 it is assigned a cancellation

probability of 0.2, in between TF10 and TF14 it is assigned a significantly smaller

cancellation probability of 0.01, and in TF15 and TF16 cancellation probabilities

increase to 0.1.

~booked 0.2 0.01 0.01 0.01 0.01 0.01 0.1 0.1

Figure 6.1: Exanmple of CXL Probabilities by Time Frame

In addition, each booking in PODS is assigned a cancellation probability

depending on the passenger type, business or leisure, and whether or not a penalty

(cancellation fee) is applied. The rationale here is that just as different types of
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passengers have different arrival or booking pattern depending on their characteristics

and type of market, as explained earlier, they also have different cancellation patterns.

Since business passengers' travel plans change more frequently compared to leisure

passengers' travel plans, bookings of business passengers in PODS are assigned higher

cancellation probabilities than bookings of leisure passengers. A booking that has a

cancellation penalty associated with it is assigned a smaller cancellation probability than

a booking without a penalty. The reasoning here is that a passenger will be less willing

to change or cancel his ticket if there is a penalty involved. Figure 6.2 shows the

probabilities used in PODS for simulation of a medium CXL rate scenario. In this scenario

the total number of cancellations over all time frames and fare classes sums up to

approximately 15% of all gross bookings.

Business NoIL0.101
Yes 0.1 0.005 0.05
No 0.12 0.006 0.06
Yes 0.06 0.003 0.03

Figure 6.2: CXL Probabilities by Passenger Type and Penalty

The table shows that a booking in a fare class without penalty is assigned a cancellation

probability that is double the probability of a booking with penalty independent of

passenger type. Also, leisure passengers with tickets that have no penalty associated

have higher cancellation probabilities than business passengers with tickets that have

penalty.

3.5 Passenger Cancellation Reporting in PODS

Every simulation run in PODS generates an output which includes a summary of

the revenues, yield and load factor, among many other parameters, for each airline.

PODS also provides a detailed report on forecasts, gross bookings and cancellations by

class and time frame and the number of denied boardings by class (if there are any).
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Figure 7.1 illustrates an example of gross bookings and cancelled bookings in each of the

16 time frames for one of the airlines in the simulation. Gross bookings are the number

of bookings accepted in the reservation system across all fare classes. The figure shows

that the number of cancelled bookings is more or less constant between TF2 and TF14,

afterwards the number of cancelled bookings increases significantly due to the higher

cancellation probabilities assigned to all bookings in the last two time frames before

departure as explained earlier. The low number of gross bookings together with the

higher number of cancelled booking in the last time frames means the reservation

system actually loses more bookings than it gains new bookings and therefore the net

bookings (i.e. gross bookings minus cancelled bookings) are negative and overall

bookings-in-hand (BIH) decrease.
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Figure 7.1: Example of Gross and Cancelled Bookings by Time Frame

Figure 7.2 presents an example of the distribution to fare classes of gross and net

bookings for an airline in PODS.
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Figure 7.2: Gross and Net Bookings by Class

The figure shows that CL8, CL9 and CL1O bookings are about 65% of total gross

bookings and that the cancellations are proportional to the number of gross bookings in

each fare class. That is, the higher the number of bookings in a specific fare class, the

higher the number of cancellations. Fare classes 2 through 10 have a cancellation rate of

approximately 16%, while fare class 1 has a cancellation rate of 35%. FCI does not have

a cancellation penalty and is mostly booked by business passengers and hence has the

higher cancellation rate.

3.6 Comparison between PODS and Industry Cancellation Rates

In order to validate that the cancellation probabilities assumed in PODS and the

resulting cancellation rates more or less match cancellation rates in the real world, a

dataset from a large North American (NA) airline containing the number of gross

bookings by time frame as well as the number of cancellations by time frame and

booked time frame was used. The data refers to single leg itineraries out of an airport in

the US in the coach cabin for July 1st to July 28t" 2014. Figure 8.1 summarizes the

booking and cancellation data by market.
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Figure 8.1: North American Airline Cancellation Data

As in Network U10, the majority of the legs (approximately 81%) are domestic while the

rest are international. The cancellation rate on the domestic legs is 13.74%, while on the

international legs the cancellation rate is higher, 19.27%. Overall, the cancellation rate is

about 14.78%. Figure 8.2 presents the gross bookings, cancellations and net bookings

curves, cumulatively, based on the airline's data. It should be noted, that the airline uses

22 time frames in its booking horizon (versus 16 in Network U10). Note that the

increase in the total number of cancellations is moderate up to time frame 19, while

afterwards there is a jump in the number of cancellations. This trend is in line with the

implementation of cancellation behavior in PODS which assumes higher cancellation

probabilities for all bookings in the last two time frames as shown in Figures 6.1 and 6.2.
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Figure 8.2: NA Airline Booking and Cancellation Curves

For the purpose of comparison between PODS' and actual airline cancellation

rates, the NA airline's gross bookings from Figure 8.2 are now spread over 16 time
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frames (as in Network U10), and the of cancellations are calculated based on the

cancellation probabilities shown in Figure 6.2. The gross bookings, cancellations and net

bookings curves with PODS' cancellation probabilities are presented in Figure 8.3.

Overall, both the cancellation patterns and cancellation rates are similar. The

cancellation rate is 13.16% and is close to the cancellation rate deriving from the airline

data of 14.78% reported earlier. This conclusion serves as a validation that the

cancellation probabilities used in this thesis can, in fact, be used to simulate "real world"

passenger cancellation behavior and cancellation rates.

250,000

200,000

150,000

100,000

50,000

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time Frame

-GRS BK - CXL NET BK

Figure 8.3: NA Airline Cancellations Based on PODS CXL Probabilities

3.7 Cancellation Forecasting Methods in PODS

In the overview of PODS' RM module earlier in this chapter, it was mentioned

that the data the forecaster inputs into the RM seat allocation optimizer is based on the

historical booking database that is constantly being updated as more bookings are

accepted in the reservation system. However, this process ignored the cancellation

phenomena and thus the impact of it on the accuracy of the forecaster. In order to allow

the RM system in PODS to take into account the cancellation phenomena, the historical

booking database was modulated to include both gross and net booking data at each

time frame.
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The cancellation forecasting methods in this thesis are an extension to the

conventional historical based statistical models presented in Lemke et al. (2008) and

Lawrence et al. (2003) where no-show numbers by booking class for future flights are

forecasted by computing the mean no-show rate over a group of similar historical

flights. However, the latter's model only looks at the total numbers of passengers booked

and "no-show" passengers and disregards the time frame element in the computation of

the no-show rates. In PODS, the cancellation estimates are forecasted by computing the

mean number of cancellations at a path/class/time frame level. The overbooking

method is based on the based on the deterministic overbooking model presented in

Belobaba (2016) assuming the cancellations are known with certainty. Due to the

current implementation of PODS, PNR based cancellation forecasting is not possible at

this stage. In the sections below, several methods for cancellation forecasting will be

proposed and discussed in detail. Each method has a different approach for cancellation

estimates computation, forecast adjustment and compensation for cancellations. In

addition, there will be two approaches for cancellation estimates aggregation and two

approaches for adjustment of remaining capacity, or overbooking.

3.7.1 Cancellation Forecasting Method 1 (CM1)

CM1 is assumed to be the most basic method for cancellation forecasting in which the

historical booking database records the number of net bookings at the end of each time

frame and thus that is the only information used by the RM forecaster as an input to the

seat allocation optimizer. Figure 9.1 provides an example of CM1's methodology. For the

sake of simplicity, the example presents the historical booking data for a booking

horizon of five time frames. Even though the number of gross bookings and cancelled

bookings are presented here, the only information used for forecasting purposes is the

"NET BK" data. At the beginning of TF1, the forecaster input into the optimizer equals 12

bookings, at the beginning of TF2 the input equals 8 bookings and so on. Unlike other

cancellation forecasting methods described later in this thesis, there is no calculation of

cancellation rates for either BIH or BTC and overbooking of remaining capacity is also

not possible, as no data on cancelled bookings is recorded.
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Figure 9.1: Exaiple of CM1 Methodology

3.7.2 Cancellation Forecasting Method 2 (CM2)

CM2 is a more advanced method for cancellation forecasting that considers gross

bookings and net bookings separately. The basic processes in CM2 follow the suggestion

made by Chatterjee (2001) to separate between the BIH and BTC cancellations and

therefore include:

* Forecasting gross BTC by path/class/time frame

* Forecasting cancellation of BTC by path/class/time frame

* Calculating cancellation of BIH by path/class/time frame

Cancellation estimation is complicated by the fact that some airlines only know the

number of cancellations in a time frame, independent of the booked time frame, whereas

others know both the number of cancellations by time frame and by time frame they

were actually booked. In CM2 only the number of cancellations in a time frame is known

and hence the cancellation estimate of BTC, pcxltc, by path/class in time frame tf (out of

n time frames) is calculated at the beginning of each time frame as follows:

Zbkgrs Y-bknet
pcxvltc =f "t

p'C'tt 11 ff-1

S Tbkgrs + I bknetp
tf uf =1
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Where bknet,,, is the total historical observations of net bookings for path p, class c,

and bkgrsIt is the total historical observations of gross bookings for path p, class c.

Alternatively, pcxltc can be translated to:

Total number of cancellations left until departure (future CXL)

Total gross bookings (Total GRS BK) - CXL already happened (past CXL)

In CM2, the cancellation estimate of BIH-, pcxlih, is the same as pcxItc. Figure 9.2 provides

an example for CM2's cancellation estimates methodology.

0 16 4 4 t 4

0 1t6 4 3 2

1 15 3 1 2

2 14 2 3 2

3 13 1 3 2

16 4 12

Figure 9.2: Example of CM2 Methodology

Following the calculation of the CXL estimates, BTC CXL estimates are used by the

forecaster to scale down gross BTC forecast that is input into the optimizer to account

for expected cancellation and BIH CXL estimates are used to reset, or overbook, the

remaining booking capacity for each leg at the beginning of each time frame as follows:

* The product of BIH times the cancellation estimates for all path/classes using

a leg is calculated. The result is the expected number of cancellations.

* An overbooking scaler (OBSCL) is chosen. The OBSCL could be any positive

number. The higher the OBSCL, the more "aggressive" the overbooking will

be. In this thesis, the OBSCL used are 0, 0.5, 1.0 and 1.5.
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* The product of the expected cancellations and selected OBSCL is calculated

and added to the remaining available capacity (i.e. physical capacity on leg

minus BIH at the start of the time frame).

The following notation presents the calculation of booking capacity on leg I and time

frame tf, :cap:

ilputh

bcapW= acap, + obscl - I idpIl
p=1

ibkihpc

Where ipatlh and ri/s represent the number of paths and fare classes, respectively,

actip, is actual capacity on leg 1, idpl1,, is a flag indicating whether (=1) or not (=0) path p

uses leg 1, bkin1 ,, represents booking-in-hand in path p, class c, at the start of time tf

Figure 9.3 shows a numerical example for the overbooking methodology of CM2 based

on the example in Figure 9.2.

4
6
8
10

Figure 9.3: Example of CM2 Overbooking Methodology

3.7.3 Cancellation Forecasting Method 3 (CM3)

CM3, unlike CM2, assumes that cancellations are known by the airline both by

time frame and by booked time frame. Thus, the cancellation estimate of BTC, pcxltc, by

path/class in time frame tfis calculated as follows:

0
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1 -
b kad,

Y bkgrs,,,
if

Where bkadpis the total historical observations of bookings for path p, class c that

survived until departure. Alternatively, pcxltc can be translated to:

BTC that will be cancelled before departure

gross BTC

The cancellation estimate of BIH, pcxlih, by path/class in time frame tf is calculated as

follows:

pcxlih,, = 1

U -1

Z bkad,
- f-

Y bknet
tf=1I

Or alternatively,

BIH that have yet to cancel but will before departure

BIH

Figure 9.4 presents an example for the calculation of ElBIH and BTC cancellation estimates

under CM3.

I Lx' A

16 4

12 2

9 1

6 0

0

0

4

6

8

10

0

2

2

2

1

4, 0 2

3 1 1

3 0

3 0
16 4 4

Figure 9.4: Exaniple of CM3 Methodology
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Just as with CM2, BIH cancellation estimates are used to reset remaining capacity by

adding the product of the expected cancellations times the OBSCL to the remaining

available capacity and the BTC cancellation estimates are used to scale down gross BTC

that are input into the optimizer. An example for CM3's overbooking methodology is also

presented in Figure 9.3 as it is similar to the overbooking methodology of CM2.

3.7.4 Cancellation Forecasting Method 4 (CM4)

In CM4, both BiH and BTC cancellation estimates calculations are the same as in

CM3, however the forecaster inputs into the optimizer gross BTC that are not scaled

clown to account for expected cancellations as in CM2 and CM3. As a result, the

overbooking methodology of CM4 resets the remaining capacity based on the expected

BilI and BTC cancellations.

The notation for the calculation of booking capacity on leg / and time frame tj; bcap ,:

bcap,,, =acap, + obscl- Z idpI 1  kiht (pcxlh)t )+ kastvi( pcxItc
p=1 P t=1 p tt )Ct)Pt ( C

The only difference is the inclusion of fcast and pcxltc to the equation which represent

the cancellation forecast of bookings-to-come in path p, class c, at the start of time tf

Figure 9.5 shows an example of the overbooking methodology of CM4.

0 16 0 U 0 0

4 0.0 12 RU0 2.2 4A 6,06

6 6 0 .46

10 3 0 2L

Figure 9.5: Example of CM4 Overbooking Methodology
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The different approaches of CM3 and CM4 with regard to the compensation for

BTC cancellations and the forecaster input might result in different protection levels for

the high fare classes and hence different overall results. Figure 9.6 presents an example

of class protection levels for CM3 and CM4 while using different overbooking scalers for

a given time frame. In the given example the BIH CXL RATE is 0.2, the BTC CXL RATE is

0.16 and the physical capacity of the aircraft is 100 and it is also assumed that the fare

structure consists of only six fare classes (CL) and that the forecast is deterministic.

2 5 4 5 40 40 46 50 52 60 58 70

5 8 7 8 36 35 42 45 48 55 54 65

10 8 7 8 29 27 35 37 41 47 47 57

11 9 8 9 22 19 28 29 34 39 40 49

12 10 8 10 14 10 20 20 26 30 32 40

20 10 8 10 6 0 12 10 18 20 24 30

,q 60 50 42 50

Figure 9.6: Example of Class Protection with CM3 and CM4

As a reminder, CLI protection level equals the remaining capacity on a flight leg

as the RM system does not want to reject a demand for the highest fare class if there is

any. One of the main differences between CM3 and CM4 is observed when OBSCL=0, or

in other words, when no overbooking is applied. In this case, since no additional

capacity is added either by CM3 or CM4 to the physical capacity, CL protection level is

the same for both methods and equals 40. The difference in the protection levels (or the

availability) of the lower fare classes increases the lower the class is. This is a direct

result of the forecast input that CM3 uses which is a scaled down BTC versus the forecast

input that CM4 uses which is gross BTC. Since the forecasts of CM4 are usually higher,

the protections levels of the higher fare classes are higher meaning less availability left

for the lower fare classes compared to CM3, again, if no overbooking is applied.
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When overbooking is applied (i.e. OBSCL >0), CM4 adds more seats to the

physical capacity than CM3 regardless of what the overbooking scaler is set to. Again,

the overbooking mechanism of CM4 compensates for the expected cancellations of BIH

and BTC and therefore will always add more capacity than CM3. The difference in the

capacity adjustment of the two methods offsets the difference in forecast input and

hence the difference in the availability of the lower fare classes is smaller than in the

OBSCL=0 case.

CM4 becomes less aggressive than CM3 when OBSCL=1.5. In this case, the

capacity added by CM4 versus CM3 exceeds the difference in the forecast input. The

difference between the two methods' lower fare class protection can increase even

further if OBSCL>1.5. At the same time, the number of denied boardings with CM4 will

be higher than the number of denied boardings with CM3. Figure 9.7 summarizes the

main concepts of all the cancellation forecasting methods discussed so far.

Da ta usecd

Cancellation
estimates

Overbooking
remnaining
capacity

Forecaster
input to
optinizer

Net
bookings in
each time
frane

No

Not possible
(No data on
CX L)

Net BTC

Gross
bookings +
CXL in each
time frame

Same CXL
estimates for
both BlH and
BTC

Product of,
BIH CXL times
th OBSCL

Scaled clown
BTC (after
CXL)

Gross bookings
+ CXL in eacl
tire frame +
tirne frame C XL
tickets were
booked

Different CXL
estimates for
BIH and BTC

Product of B1H
CXL times the
( B'SC L

Scaled down
BTC (after CXL)

Gross bookings +
CXL in each time
frame + Jme
fraIme CXL tickets
were booked

Different CXL
estimates for BIH
and BTC (same as
CM3)

Product f1311 &
FTC CXL times

the ) BSCL

Gross BTC
(before CXL)

Figure 9.7: PODS Cancellation Forecasting Methods Summary
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3.7.5 Leg Based Cancellation Forecasting

In previous sections the cancellation forecasting methods proposed were based

on calculating cancellation estimates on a path, fare class and time frame level. However,

the capacity is based on a leg level. The difference in aggregation level of these two

factors might lead to either too moderate or too excessive overbooking of flight legs as

each leg in an airline's network serves multiple paths with different demand types

(business or leisure) or volumes and at the same time different cancellation rates. It

would be therefore appropriate to develop a cancellation forecasting method that is

aggregated on leg, fare class, and time frame level. For this purpose, CM4 was extended

to estimate cancellations on a leg level as well. lcxlih, the cancellation estimate of BIH by

leg/class in time frame tfis calculated as follows:

npall tf-1

X Zbkad
cxlih =1- "=1 i=c

1cff npall tf-1

( bkne
n=1 i=1

where npal4 is the number of paths associated with leg I and idpl, is the identity of the

nth path using leg . Icxltc, the cancellation estimate of BTC by leg/class in time frame tf

is calculated as follows:

npal ti

I I bkadI'
IcxItc =1- n=1 i=t

LLtf npail ntf

Y 3 bkgrs~d 1
n=1 i=tf

The booking capacity is then calculated as:

nMels nMCIs npal

bcap, = acap, +obsc1 x fcastap, +obsl]ook, f (lcxlih , r) (1Xl tIf ) Z [ca St d j'C=1 c=1 m=1

where lbook,, represents the bookings on leg 1, class c and time frame tf.
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3.7.6 Apex Overbooking (APOB)

Apex overbooking is another approach for overbooking as an extension to the

cancellation forecasting methods discussed in this thesis and it is based on a practice

used by a North American airline. The idea behind APOB is to set the overbooking level

(AU) to the minimum of that calculated by CM2, CM3 or CM4 and that calculated by

APOB. APOB overbooking levels are generated by leg as follows:

* Obtain the average BIH by time frame using the accumulated booking history

and cancellation history for the path and class using that leg

* Find the maximum (apex) BIH across all time frames

* For apex time frame and all earlier time frames, set APOB overbooking level

(AU) to CAP * MAX BIH
NET BK AT DEPARTURE

* For each time frame after apex, set APOB overbooking level (AU) to

CAP * BIH TF(t)

NET BK AT DEPARTURE

Where CAP represents the physical capacity of the aircraft.

Figure 9.8 presents the concept of APOB for an airline that uses CM2 or CM3 for a

leg with a capacity of 100 seats and a booking horizon of eight time frames. Average net

bookings on the flight are 100. The BIH curve represents the average BIH based on

booking history and the apex is found at the start of time frame 6. The major assumption

here is that there is only one apex over all time frames as, in reality, several apexes

might be observed over the booking horizon. As expected, the AUs set by the OBSCL

technique are low at the beginning of the booking horizon and increase as departure day

approaches due to the linear correlation with the BIH. In addition, the higher the OBSCL,

the higher the AU. On the other hand, the AU (=116) set by the apex technique is

constant in the pre-apex time frames, while in the post-apex time frames the AU

decreases from one time frame to the next one.

44



16I0 - ----.

140

40

20

I 2 3 4 5 1 Departure

I 

-1 

0 -BC1L 0.5 AU -- -O5CL 1-0 AU --OBSCL 1.5 AU -- -APEX AU

Figure 9.8: Example of OBSCL and APEX Overbooking Levels

Figure 9.9 illustrates the actual AU set by the APOB methodology with different OBSCL

settings. The AUs presented in this figure are the minimum of the two AUs set by the

OBSCL technique and the apex technique.
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Figure 9.9: Example of Overbooking Levels with APOB
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3.8 Summary

The research literature offers several approaches for the development of

passenger cancellation forecasting and overbooking techniques. The methods in this

thesis are based on the combination of these techniques together with practices from

the US airline industry. The different methods included in this thesis represent only a

fraction of the possible techniques for cancellation forecasting that are being used by

airlines or other service based companies. However, measuring the value of each of

these methods, or in other words, the revenue advantage (or lack thereof) of one

method over the other is not a straightforward task for these companies. Using the PODS

platform, the impact of each of these methods on the airlines' performance in terms of

revenues, fare class bookings, load factors and yield will be analyzed. The results that

will be presented in Chapter 4 are meant to provide a general perspective regarding the

value of each of this methods rather than guaranteed results as the impacts of these

methods also depend on myriad of factors, of which some the airlines do not have the

ability to control. Therefore, the methods proposed will be tested in several different

scenarios.
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Chapter 4: PODS Simulation Results

This chapter presents and analyzes the results of a series of tests run in PODS.

Each test consists of several scenarios which all have the same settings except for a few

variables that will be modified in order to investigate their impacts on the RM system. In

most tests, these variables will be changed for only one airline in the U10 network,

namely AL1, while for all other airlines the settings will remain unchanged. The

principal result measures that will be discussed are ticket revenues, number of denied

boardings (DBs), net revenues, load factor and yield. The definition of each of these

terms in the context of PODS is as follows:

* Ticket revenues: All revenues collected from passenger bookings that

survived to departure (net bookings). Revenues from cancelled bookings are

not considered as ticket revenues.

* Denied boarding (DB): Passenger who did not fly (selected randomly) due to

excess number of net bookings at departure over physical capacity.

* Net revenues: Ticket revenues minus DB costs. DB costs are defined as the

number of booked passengers who had been denied boarding times the input

cost of a denied boarding ($150/$300/$450)

* Load factor: System load factor ( Revenue Passenger Miles (RPM)

* Yield: Ticket revenues of passengers actually carried (net bookings minus

DBs) divided by RPM.

Before presenting the results, the first sections in this chapter, 4.1.1 and 4.1.2, briefly

describe the set of optimizers and forecasters used in the simulation tests.

4.1.1 RM Forecasters

The performance of the RM system is heavily reliant on the accuracy of the

forecast that is fed into the optimizer. A highly sophisticated optimizer will not be able

to produce optimal revenues if it is given a poor forecast. In this thesis, two types of

forecasts are tested: standard path-class forecasting and hybrid forecasting (HF). Both
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forecasts are based on historical bookings of previous flights and current bookings of

future flights.

Standard path-class forecasting is based on the "pick-up" forecasting

methodology. Pick-up forecasting is a specific form of time-series forecasting that keeps

track of previous unconstrained bookings and the changes in bookings over time, or in

other words, the number of bookings that are "picked-up" from one time frame to the

next. A BTC forecast is thus produced by adding the average picked-up bookings for the

given time frame and the departure date from historical bookings. Standard path-class

forecasting is an extension to the standard leg-class forecasting that is also implemented

in PODS.

Hybrid forecasting is a more sophisticated forecasting technique that combines

standard forecasting and "Q-forecasting", a technique developed by Belobaba and

Hopperstad (2004) and mostly used in fully undifferentiated fare structures. Q

forecasting is meant to prevent the spiral-down effect, as passengers prefer buying the

lowest available fare when no restrictions are applied. Q forecasting incorporates

passengers' WTP estimates to compute probabilities of sell-up from class Q (the lowest

available fare class) to higher fare classes. Hybrid forecasting distinguishes between

price-oriented demand, passengers who always purchase the lowest available fare, and

product-oriented demand, passengers who are willing to buy higher fares due the

reduced restrictions on them. The name "hybrid" derives from the fact that each demand

group has a different booking behavior and hence different forecasts need to be utilized

for each group. Pick up forecasting is used to forecast the product-oriented demand and

Q-forecasting is used to forecast price-oriented demand. More details on Hybrid

forecasting and Q forecasting can be found in Belobaba and Hopperstad (2004).

Another technique aimed at preventing the spiral down effect and commonly

used with hybrid forecasting is the marginal revenue fare adjustment developed by Fiig

et al. (2010). The technique addresses the concern that improving demand forecasts

only by using WTP estimates is not enough to ensure revenue maximization especially

48



for flights with capacity exceeding demand. RM optimizers need to also address the

tendency of passengers to buy down in a given fare structure. The main assumption in

fare adjustment is that input revenue values of lower classes should be reduced in order

for the optimizer to reduce availability in those classes and close them earlier in the

booking process and thus encourage sell-up, even when there are expected to be empty

seats.

4.1.2 Seat Allocation Optimization

As a reminder, the optimizer in the RM system sets booking limits for each of the

fare classes based on the input fares and forecasts. There are two general approaches for

setting booking limits: leg-based controls and OD controls. The industry standard leg

based optimizer called Expected Marginal Seat Revenue, or EMSR, was developed in

Belobaba (1987b) and Belobaba (1989) as an extension to the seat inventory control

models developed by Littlewood (1972), Buhr (1982), Richter (1982) and Wang (1982).

The optimizer was refined to become EMSRb in Belobaba (1992). This approach

assumes the demand for each fare class is independent of demand in other classes and

that it can be described by a Gaussian distribution, based on historical data. Given the

mean and the standard deviation for a given fare class, the expected marginal seat

revenue is defined as the product of average fare of the fare class and the probability of

the seat to be booked. The optimizer protects seats for a higher fare class only up to the

point that the EMSR equals the fare of the next lower fare class. A full description of the

EMSRb algorithm can be found in Belobaba and Weatherford (1996).

The relevance of leg based control has decreased in recent years due to the

increasing use by large airlines of the "hub-and-spoke" type of operation that allows

them to sell multi-leg itineraries. Thus, any seat on a flight leg can be shared by

passengers from different fare classes that fly either on local or connecting itineraries.

The OD (network) controls differ from the leg based controls by taking into account the

network effects and hence they are set to maximize the revenues for the entire network

and not for each individual leg separately.
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In this thesis, three OD control mechanisms are simulated: Displacement

Adjustment Virtual Nesting (DAVN), Probabilistic Bid-Price (ProBP), and Unbucketed

Dynamic Programming (UDP). DAVN is a network OD control mechanism practiced by

some of the largest airlines. It was developed by Wysong (1988) and Smith and Penn

(1988). This OD control uses "value buckets" instead of fare classes for seat inventory

management in which each OD itinerary/fare-type (ODF) combination is assigned to a

revenue value bucket on each flight leg. The seat availability for a requested ODF

combination is based on the availability of the relevant bucket on each leg of the

passenger's itinerary. In addition, a penalty is applied to connecting fares to account for

potential displacement of a local passenger on each flight leg. The network revenue of an

ODF on the first leg of a connecting itinerary is equal to the itinerary fare minus the sum

of the displacement costs of the other legs included in the itinerary. The displacement

costs can be calculated either by using network optimization techniques or by simpler

leg-based EMSR models. A more detailed description of DAVN can be found in

Williamson (1992).

ProBP is an OD control mechanism that is based on the calculation of network

bid prices which have the same role as the network displacement costs. The bid price is

the sum of the marginal revenue values for an incremental seat on all legs of an itinerary

and is the threshold number the airline uses to decide whether or not to accept a

booking request. If the bid price is lower than the fare of the ODF requested, the request

will be accepted. Bratu (1998) and Belobaba (2002) provide a complete description of

ProBP.

The optimization models described so far are based on two main assumptions.

First, the demand for each fare class is independent. Second, the arrival pattern of the

demand is sequential. Dynamic programming (DP) is another approach used for

calculating bid prices on a single leg developed by Lee et al. (1993) and Lautenbacher et

al. (1999). Optimization models using DP differ from the static nature of traditional

models by taking into account the interspersed arrivals of demand over the booking

horizon and setting booking limits or bid prices within a time frame as a function of the
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BIH and the remaining capacity. The major limitation of DP optimization is the size and

complexity of the model formulation, which makes it infeasible to full network problems

(due to computational constraints) and thus limits the use of DP to single leg problems

in practice.

One of the network RM techniques using DP is called DAVN-DP. DAVN-DP

employs the same steps as in standard DAVN expect for the last step in which EMSRb is

replaced with a standard leg based DP to determine booking limits. Unbucketed DP

(UDP) is a slightly modified version of DAVN-DP which relaxes the hard constraint of

fixed (eight) virtual buckets used in DAVN-DP. The reader is referred to Diwan (2010)

for further details on DP and especially DP based RM systems.

4.2 Test 1: Cancellation Forecasting Methods 1-3 (CM1-CM2-CM3)

The first test of this thesis is aimed at comparing the performance of the RM

system using the first three cancellation forecasting methods developed in PODS,

gaining insights whether or not one methodology is beneficial over the others and

studying the effects of overbooking on the overall results. Thus in this test, AL1 will use

CM1, CM2 and CM3 with different overbooking levels (OBSCL=0, 0.5, 1 & 1.5). AL using

CM1 will be the base case scenario as CM1 does not actually forecast for cancellation.

The settings for this test are as follows:

" Medium demand level (such that load factor is approximately 82%)

* Medium CXL Rate (with the same probabilities presented in Figure 6.1)

* Optimizer: AL1- DAVN, AL2- DAVN, AL3- EMSRb, AL4- DAVN

* Forecaster: All airlines use standard forecast

* AL2, AL3 and AL4 use CM2 with OBSCL=0.5 (moderate overbooking)

Figure 10 shows the total network ticket revenues for ALl in each simulation.

ALl gains higher ticket revenues with CM2 and CM3 in all cases. When ALl does not

overbook (OBSCL=O), there are minor revenue gains of approximately 0.1% either with

CM2 or CM3 in comparison with CM1. However, the higher the OBSCL is, the higher the

ticket revenue gain CM2 or CM3 have over CM1. When AL overbooks moderately
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1b

(OBSCL=0.5), ALI gains an additional 1.15% in ticket revenues with either CM2 or CM3.

The ticket revenue gains over CM1 increase even more when ALl overbooks more

aggressively, in the magnitude of 2.08% and 2.07% when OBSCL=1.0, or 3.03% and

3.13% when OBSCL=1.5, for CM2 and CM3 respectively. The difference in revenue gains

between CM2 and CM3 is marginal. Nonetheless, it should be reminded that ticket

revenues are the revenues collected from all passenger bookings before taking into

account the negative impact of DBs and their associated costs.
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3,060,000'

1.4000 15% \1.15%
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Figure 10: Test I- Ticker Revenues & Peircent Gain over CMI

Figure 11 shows the number of DBs for CM2 and CM3 under different OBSCL.

CM1 is not included in this figure because overbooking cannot be applied with CM1 (and

hence no denied boardings are possible). ALl does have a higher number of DBs with

CM2 and CM3 the higher the OBSCL is. However, while the number of DBs when

OBSCL=0.5 is somewhat close to the US airline industry average number of eight DBs

per 10,000 passengers booked1, the number of DBs is nine times and even 20 times

higher when OBSCL=1.0 or OBSCL=1.5, respectively. Evidently, using OBSCL that is

greater than 1.0 is too aggressive and is far beyond what airlines in the real world would

be willing to practice. In addition, the number of DBs with CM2 and CM3 is quite similar.

I http://www.ritadot.gov/bts/sits/ita.dot.gov.bts/filcs/publica tions/nationlaL transportation statistics/
html/1tab1 164.htm
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Figure 11: Test 1- Denied Boardings per 10K Passengers Booked

Figure 12 shows the net revenues of ALl. Again, net revenues are calculated as

ticket revenues minus DB costs.
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Figure 12: Test 1- Net Revenues

For CM1, CM2 and CM3 with OBSCL=0, the net revenues are equal to the ticket revenues

in Figure 10 since there are no Dl3s. For the same reason, an increase in the DB cost has

no impact on the net revenues. Just as with the ticket revenues, CM2 and CM3 have

higher net revenues than CMl, no matter what OBSCL is used. Nonetheless, for each
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OBSCL used the higher the input DB cost is the smaller the net revenue is, and the

revenue gain over CM1 decreases as well. Figure 13 displays the percentage revenue

gain of CM3 over CM1 in all scenarios. It should be noted that the revenue gains with

CM2 are very similar and hence not presented.

2.50%

2.00% - -

1.50%..........

1.00%
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0.00% .-- - - --.

OBSCL=0 OBSCL=0.5 OBSCL=1.0 OBSCL=1.5

-- DB cost=$150 - DB cost=$300 DB cost=$450

Figure 13: Test I- CM3 Net Revenue Gain over CMI

When ALl does not apply any kind of overbooking, the net revenue gains of CM3

over CM1 are equal to the ticket revenue gains of CM3 over CM1 presented in Figure 10.

When OBSCL=0.5, the revenue gains over CM1 are approximately 1%, independent of

the input DB costs. However, the differences in net revenue gains are much more

apparent once ALI chooses to use more aggressive overbooking measures. When

OBSCL=1, CM3 net revenue gains over CM1 are 1.72%, 1.36%, 1.00% and when

OBSCL=1.5, the revenue gains are 2.19%, 1.26% and 0.32% for DB costs of $150, $300

and $450, respectively. Based on these results, ALl does benefit from overbooking in all

cases. Nonetheless, the magnitude of the revenue gains from overbooking changes

according to the DB costs and the aggressiveness of the overbooking. The higher these

factors are, the lower the net revenue gains.
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ALI load factors and yields in each scenario are presented in Figures 14 and 15.

ALl has the lowest load factors when it uses either CM2 or CM3 without overbooking.

These load factors are lower CM1's load factor. As expected, the load factors increase as

ALl overbooks more aggressively. On the other hand, the yields decrease as load factors

increase and hence the highest yields are observed when CM2 or CM3 are used without

any overbooking. The results imply that when the RM system allows for overbooking, it
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accepts more passengers in low fare classes. When the overbooking is aggressive, the

RM system accepts more low fare bookings and thus yields go down. The differences

between the load factors and yields of CM2 or CM3 in each OBSCL level are marginal.

Figures 16 and 17 present the net bookings, or total number of bookings at time

of departure, by class. Figure 16 shows the net bookings for CM1, CM2 and CM3 when no

overbooking is applied. Figure 17 shows the net bookings for CM2 and CM3 when

OBSCL=0.5 and OBSCL=1. Figure 18 shows the difference (in absolute terms) between

the net bookings of CM2 and CM3 over CM1 with different OBSCL. When OBSCL=O, ALI

has less bookings in CLIO with CM2 and CM3 compared with CMI. The difference in net

bookings in the higher fare classes is negligible. When OBSCL=0.5, ALl accepts more

bookings in CL6, CL9 and CL10 with CM2 or CM3 compared with CM1. The more

aggressive the OBSCL is, more bookings are accepted in those classes. The difference in

net bookings between CM2 and CM3 is marginal.
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Figure 16: Test 1- Net Bookings of CM1/2/3 by Class- OBSCL=O
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Figure 18: Trest 1- Difference in Net Bookings by Class

As explained earlier in Chapter 3, the demand forecast is one of the main factors

in determining the availability of fare classes for each future flight. Figure 19 displays

the mean path forecast for CL10 bookings in the CMI, CM2 and CM3 with OBSCL=0

scenarios. It should be noted that CL10 has an advance purchase restriction and hence

the forecast decreases from TFi to TF9 and then the forecast is zero as CL10 is closed

for bookings. In all the relevant time frames, the booking forecast for ALI using CM1 is
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lower than the CM2 or CM3 forecasts, which are very similar. Studies on the accuracy of

CM2 and CM3 have shown that both methods tend to (slightly) underestimate

cancellation rates, or in other words the forecasted cancellation rates were lower than

the actual rates, and hence the demand forecast fed into the optimizer was higher than

what it should have been.
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Figure 19: Test 1- CL1O Mean Pati Forecast by Time Framne

Since ALl is using the DAVN optimizer in this test, the forecasts are used to

determine the EMSRc or "critical EMSR" calculated from the virtual buckets on each leg,

which represents the minimum threshold for either accepting or rejecting booking

requests. Figure 20 shows the EMSRc for AL1 using CMI, CM2 and CM3 with OBSCL=0

on each day in the booking horizon. The EMSRc of CM1 is lower than the EMSRc of CM2

or CM3 up to day 24 before departure and higher afterwards. The lower path forecasts

(and EMSRc) allow the RM system to open more seats in lower fare classes when CM1 is

employed. ALl thus accepts more low fare class bookings and gains higher load factors

and ticket revenues. The down side is that the yield is lower for CM1 as seen in Figure

15.
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Figure 21: Test 1- EMSRc for CM3 with Different OBSCL

The interaction between overbooking and EMSRc is observed in Figure 21 which

shows the EMSRc for ALl using CM3 with different OBSCL. It should be noted that, the

EMSRc of CM3 is very similar to EMSRc of CM2 (and thus not presented). Higher OBSCL

is correlated with lower EMSRc and this explains the results presented in previous

figures. The lower the EMSRc is early in booking horizon, the higher the availability is in

the lower fare classes. The result is more bookings in low fare classes, higher load
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factors and higher overall ticket revenues, though yields are lower. Nonetheless, the

number of denied boardings increases as well, with a negative effect on net revenues.

The relationship between the total number of bookings and EMSRc can be

witnessed on the last day before departure in Figure 21. When AL does not overbook, it

has the lowest number of bookings and due to the large number of cancellations right

before departure, flights that were booked at physical capacity are now less full and the

EMSRc drops sharply. The drop gets smaller the higher the OBSCL is. When AL uses

aggressive overbooking parameters, the booking cancellations right before departure do

not impact the EMSRc as much, as a large number of flights are still booked at or above

physical capacity despite the cancellations.

The following points highlight the main conclusions arising for this test:

* Cancellation forecasting can help increase airline revenues (versus not

forecasting cancellations as in CM1)

0 The results ALl achieves with CM2 are very similar to the results with CM3

despite the different methodologies, and thus neither method is clearly

superior

0 Overbooking can help increase the number of bookings and thus load factors

and revenues

* Overbooking can have a negative effect on yields if as a result the RM system

accepts more low fare class bookings

* Overbooking is beneficial in terms of net revenue if it is not overly aggressive

and/or DB costs are low

* Aggressive overbooking may lead to large number of denied boardings which

have negative effect on net revenues, especially if DB costs are high

4.3 Test 2: Cancellation Forecasting Methods 3 & 4 (CM3 & CM4)

The second test in this thesis compares the performance of the RM system when

using the two more advanced cancellation forecasting methods described in Chapter 3,
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CM3 and CM4. These methods differ by the type of forecast that is being input into the

optimizer and also the technique that is used for overbooking. Thus, in this test, ALI will

use CM3 and CM4 with different overbooking levels (OBSCL=0, 0.5, 1 & 1.5). ALl using

CM3 is the "base case" scenario for this test, as it has been discussed in detail in the

previous test. The rest of the settings for this test are as follows:

* Medium demand level (such that load factor will be approximately 82%)

* Medium CXL Rate (with the same probabilities presented in Figure 6.1)

* Optimizer: AL1- DAVN, AL2- DAVN, AL3- EMSRb, AL4- DAVN

* Forecaster: All airlines use standard forecast

* AL2, AL3 and AL4 use CM2 with OBSCL=0.5 (moderate overbooking)
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Figure 22: Test 2- Ticket Ievenues & CM4 Revenue Gains over CM3

The ticket revenues of CM3 and CM4 are presented in Figure 22. When ALl is not

overbooking, CM3 has a revenue advantage over CM4. If OBSCL=0.5 or OBSCL=1.0, CM4

has a marginal revenue advantage of 0.12% and 0.16%, respectively, and a larger

revenue gain of 1% if the overbooking is very aggressive (OBSCL=1.5).
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Figure 23: Test 2- Denied Boardings per 10K Passengers Booked

Figure 23 compares the number of DBs for AL using CM3 and CM4. In all

scenarios, CM4 has a higher number of Dl3s and the difference, in absolute terms,

increases the more aggressive the overbooking is. This is a direct result of the difference

in the overbooking mechanisms of these methods. While CM3 only compensates for

forecasted cancellations of BIH, CM4 compensates for forecasted cancellations of both

BIH and BTC and thus ALl usually sets higher AUs with CM4.

ALl's net revenues for CM3 and CM4 with overbooking are presented in Figure

24. Figure 25 shows the percentage revenue gain of CM4 over CM3 with different OBSCL.

There are only two cases where CM3 has higher net revenues than CM4. The first case is

when OBSCL=0. The second case is when OBSCL=1.5 and the DB cost input is $450. In

this case the revenue gains of CM4 are completely diminished by the high number of DBs

and the costs associated with them. In all other scenarios, the revenue gains of CM4 over

CM3 range between 0.08% and 0.59%, depending, as usual, on the OBSCL and DB cost

inputs.
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Figure 24: Test 2- Net Revenues
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Figure 25: Test 2- CM4 Net Revenue Gains over CM3

The load factors and yields for ALI using CM3 and CM4 are displayed in Figure

26 and Figure 27, respectively. AL1 has a load factor that is almost three percent points

lower when using CM4 with OBSCL=O. This is a direct result of the difference in the

forecasts that are fed into the optimizer as explained in Chapter 3 (Figure 9.6). However,

the negative difference decreases LIP to the point where OBSCL=1, and then turns

positive when OBSCL=1.5.
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Figure 26: Test 2- Load Factors

The yields, in turn, have the opposite trend. CM4 has a significant 3.06% advantage in

yield over CM3 when OBSCL=0 which turns into a 0.54% loss when the OBSCL=1.5. In

addition, it is easy to notice that a change in OBSCL has a much bigger effect on the load

factors and yields of CM4 than of CM3.
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Figure 27: Test 2- Yields

The reasoning for the load factors and yields in this test can be found in Figure

28, where ALl's net bookings by class are shown. The most apparent differences are in
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the bookings of CL1O. When OBSCL=O, ALl has more bookings in CL1O with CM3 than

with CM4 which brings CM3 to have higher load factors than CM4 but significantly lower

yields. As OBSCL increases the difference in CL10 bookings decreases which, in turn,

decreases the differences in load factor and yield. When OBSCL=1.5, CM4 has more CL1O

bookings than CM3, which this time makes CM4 have a higher load factor but a lower

yield.
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Figure 28: Test 2- Net Bookings by Class

The net bookings are an outcome of the EMSRc of CM3 (Figure 21) and CM4

(Figure 29). In general, OBSCL has a much bigger effect on EMSRc of CM4 than on that of

CM3. When OBSCL=O, ALl has higher EMSRc with CM4 than with CM3. This is a direct

result of the difference in the forecast that is input into the optimizer. The optimizer

uses a cancellation adjusted BTC forecast with CM3 and an unadjusted forecast with

CM4. Higher bookings forecast means the optimizer allows fewer lower fare class

bookings early in the booking horizon and hence more seats are available for late high

fare class bookings.
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Flgure 29: Test 2- EISRc for CM4 with Different OBSCL

To conclude, these are the main findings from this test:

* CM4 ticket revenue gains are higher than CM3 when overbooking is applied

* CM4 has a significantly higher number of DBs than CM3 when OBSCL>0

* CM4 net revenues are higher than CM3 despite the higher number of DBs,

except for two "extremes scenarios where OBSCL=O or OBSCL=1.5 and the DB

costs are high ($450)

* There are large differences in number of bookings and thus load factors and

yields due to the different approaches of these methods

* CM4 is more sensitive to changes in the OBSCL than CM3

4.4 Test 3: Competitive Environment

In the previous tests, the effects of ALl's RM cancellation and overbooking

strategies on its own results were discussed in depth. The main assumption in those

tests was that the other airlines in the network keep their RM strategies constant and do

not respond with their own new strategies. Therefore, the third test in this thesis will

address the implications of the RM strategy of the competitors on the results of ALl

while assuming ALl keeps its RM strategy unchanged. The settings are as follows:
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* Medium demand level (such that load factor will be approximately 82%)

* Medium CXL Rate (with the same probabilities presented in Figure 6.1)

* Optimizer: ALl- DAVN, AL2- DAVN, AL3- EMSRb, AL4- DAVN

* Forecaster: All airlines use standard forecast

* ALl uses CM1 and CM3 with OBSCL=0, 0.5, 1.0

The scenarios in this test are divided into two types: the competitive scenario and the

non-competitive scenario. The competitive scenario is the framework that was used in

previous tests where AL2, AL3 and AL4 used CM2 and OBSCL=0.5. In the non-

competitive scenario AL2, AL3 and AL4 use CM1 and thus do not forecast for

cancellations and do not have the ability to overbook accordingly.

ALI ticket revenues are presented in Figure 30. In all scenarios, ALl gains lower

revenues when the competitors are using a competitive cancellation strategy. ALl's

ticket revenues decrease by approximately -0.43% when using CM1 and between -

0.58% and -0.79% when using CM3 and different OBSCL. The DBs are presented in

Figure 31. The difference in the number of DBs is marginal when OBSCL=0.5,

nonetheless it increases when the OBSCL is higher than 0.5.
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Figure 30: Test 3- AL1 Ticket Revenues
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Taking into account the DB costs results in the net revenues shown in Figure 32.

ALl has lower net revenues in the competitive scenario in both OBSCL scenarios. This is

a direct result of the lower ticket revenues ALI gains in the competitive scenario as seen

in Figure 30. Figure 33 compares the advantages of cancellation forecasting and

overbooking under both scenarios. The net revenue gains over CM1 are approximately

0.2 and 0.3 percent points higher in the non-competitive case (compared with the

competitive case) when OBSCL=0.5 and OBSCL=1, respectively.
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Figure 32: Test 3- A1l Net Revenues
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The load factors and Yields for ALI are presented in Figure 34 and Figure 35,

respectively. ALl load factors are lower in the competitive scenarios. The interesting

phenomenon in this test is that yields are also between 0.1% and 0.3% lower, depending

on the OBSCL used.
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Figure 35: T'est 3- Yields

Figure 36 displays the difference (competitive minus non-competitive) in net

bookings between the two scenarios. The figure shows that no matter what the OBSCL is

set to, ALI has more CL10 bookings in the competitive scenario and, in turn, less

bookings in all higher fare classes. The higher the OBSCL is the smaller the difference in

CLIO bookings as well. In addition, ALl has overall less net bookings in the competitive

sub-scenario. Based on this finding, it is possible to explain the trends in Figures 34 and

35. In the competitive sub-scenario, all other airlines use a more advanced cancellation

forecasting method and also overbook moderately which means they now have more

seats available especially in lower fare classes. Consequently, passengers who would

otherwise book with ALl are now "spilled" to the competition. In order to reduce the

spill, ALl's RM system is being less restrictive and opens more seats in low fare classes

to encourage high WTP passengers to buy-down and book in lower fare classes. This is

also reflected in the EMSRc of ALl presented in Figure 372. The competitive scenario has

lower EMSRc than the non-competitive scenario for all OBSCL scenarios.

For sake of simplicity, only the EMSRc when OBSCL=0 or 0BSCL=0.5 is presented as the trends are

similar with higher OBSCL
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Figure 37: Test 3- EMSRc

In conclusion, this test compared the results of AL under two different scenarios

of RM cancellation sophistication used by the competition. As expected, when the

competitors use more sophisticated cancellation forecasting and overbooking strategies,

ALl's ticket revenues and bottom line (net) revenues decrease. When the competitors

open more seats, especially in low fare classes, ALl lost high yield passengers to the

competitors. At the same time, ALl's RM system responded by opening more seats in
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CL10 which led to a spiral down effect. Nonetheless, ALl can increase its net revenues

by using more advanced cancellation forecasting and overbooking strategies (rather

than not forecasting cancellations or overbooking at all) and the expected net revenue

gains could range between 1% and 1.7%.

4.5 Test 4: Aggregation of Cancellation Estimates

The fourth test in this thesis explores the differences in the performance of the

RM system using two different approaches for generating cancellation estimates. The

first approach aggregates cancellation estimates on a path/class level, just as in all tests

so far, and the second approach aggregates cancellation estimates on a leg/class level, as

presented in section 3.7.5. The rest of the settings for this test are:

" Medium demand level (such that load factor will be approximately 82%)

* Medium CXL Rate (with the same probabilities presented in Figure 6.1)

* Optimizer: ALl- DAVN, AL2- DAVN, AL3- EMSRb, AL4- DAVN

* Forecaster: All airlines use standard forecast

* ALl uses CM4 and OBSCL=O, 0.5, 1.0

" Other airlines use CM2 and OBSCL=0.5

ALl's ticket revenues are presented in Figure 38. As expected, there is no difference in

ticket revenues when OBSCL=O as the cancellation estimates are not used for either for

adjusting the BTC forecast or for overbooking. When OBSCL>O, ALl has higher ticket

revenue gains when ALl uses cancellation estimates aggregated on a leg/class level

rather than a path/class level. The leg estimates' revenue gains are between 0.17% and

0.25% higher, depending on the OBSCL. The difference between the two aggregation

approaches is large when looking at the DB numbers in Figure 39. The leg estimates

approach has more DBs than the other approach with both OBSCL used. The bigger the

OBSCL, the bigger the difference is in absolute terms.
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Figure 38: Test 4- Ticket Revenues
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Figure 40 shows the net revenues of ALI with both aggregation approaches and

Figure 41 shows the percent revenue gain of the leg estimates over the path estimates.

ALl gains higher net revenues when using leg estimates and OBSCL=0, independent of

the DB costs, or when OBSCL=1 and the DB costs are low ($150). In these cases the

revenue gains range between 0.03% and 0.13%. When OBSCL=1 and the DB costs are

high (>$300), the leg estimates loss up 0.4% in revenues compared with the path

73



estimates. This is a direct result of the significantly higher number of DBs with the leg

estimates approach and the reasoning will be presented later in this section.
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Figure 40: Test 4- Net Revenues

0.20%

0.10%

0.00%

-0.10%

-0. 2 ,%"'

-0.30%

-0.40%

-0.50%

DS cost= $150

I 'OBSCL=0.5 OBSCL=1.0

Figure 41: Test 4- Leg Estinates Revenue Gains over Patti Estimates

Figure 42 and Figure 43 present ALl's load factors and yields with both

approaches. Overall, there are minor differences in the load factors and yields of both

approaches. ALl has a slightly higher load factor with the leg estimates compared with
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the path estimates when OBSCL=0.5 and lower load factor when OBSCL=1. ALl yields

are approximately 0.15% lower with the leg estimates than with the path estimates.
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Figure 42: Test 4- Load Factors
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Figure 43: Test 4- Yields

The difference in total ALl net bookings presented in Figure 44 explains the

difference in load factors and yields of the two aggregation approaches. ALl has a few

more bookings in CL6, CL9 and CL1O with the leg estimates approach than with the

other approach. For this reason ALl has more DBs when using leg CXL estimates.
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A separate study on the accuracy of the cancellation forecasting methods showed

that, in general, the path level cancellation forecasting methods tend to slightly

underestimate cancellation rates. In other words, the forecasted cancellation rates were

slightly lower than the actual cancellation rates. The study also compared the accuracy

of the leg level versus the path level cancellation forecasting by comparing the mean

average percent errors of both levels by class and time frame. The results showed that,

overall, the leg level cancellation estimates were more accurate. These findings can

explain the reason for the difference in DBs between the two aggregation approaches.

Since the leg level approach is more accurate and does not underestimate cancellation

rates as much, it forecasts more cancellations and hence sets higher AUs than the other

approach. Higher AUs translates to more bookings in the systems, which can lead to

higher DBs.
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Figure 44: Test 4- Leg over Path Net Bookings by Class

Based on the results of this test, changing the aggregation level of the cancellation

rates does not have a substantial effect on the results overall. Ticket revenues are indeed

higher with the leg estimates, however the DBs are higher as well. The bottom line net

revenues of the leg estimates approach are higher if the overbooking is moderate and

lower if the overbooking is more aggressive. The fare class mix of ALI is worse off when
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leg estimates approach is used as AL accepts slightly more low fare class bookings,

which lead to marginally higher load factors and lower yields.

4.6 Test 5- Apex Overbooking (APOB)

In the fifth test, the ("new") apex overbooking methodology will be tested and

compared with the ("old") OBSCL overbooking methodology which was used so far in all

tests. The apex overbooking methodology was developed in order to limit the number of

DBs in each scenario and with it mitigate the negative effect on airlines' revenues. The

settings for this test are as follows:

* Medium demand level (such that load factor will be approximately 82%)

* Medium CXL Rate (with the same probabilities presented in Figure 6.1)

* Optimizer: AL1- DAVN, AL2- DAVN, AL3- EMSRb, AL4- DAVN

* Forecaster: All airlines use standard forecast

* AL uses CM3 and OBSCL=0.5, 1.0, 1.5

* Other airlines use CM2 and OBSCL=0.5

Figures 45 through 47 illustrate the main difference in the two overbooking

approaches by showing the average percentage overbooking over (physical) capacity by

leg for each OBSCL used. When OBSCL=0.5, it is apparent that the percentage

overbooking of the two methods is very similar, if not identical. As a reminder, the AU

set by the new method is equal to the minimum of the AU set by the APOB technique or

the AU set by the OBSCL technique. When overbooking is moderate, the AU set by the

OBSCL technique appears to be the lowest in all time frames and thus there is no

difference between the two methods.
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Figure 45: Test 5- /0 Overbooking over Capacity- OBSCL=0.5

When OBSCL=1.0, there is a clear distinction between the percentage

overbooking of the two methods. The percentage overbooking is very similar with both

methods up to TF4 though afterwards the old method's percentage overbooking is

above that of the new method's up to departure. The gap between the two methods

reaches almost two percent points gap in TF13. The curves in Figure 46 imply that up to

TF4 the AU that was set by the OBSCL technique was the lower AU, while from that time

frame onwards the AU set by the APOB technique was lower. It should be noted that the

percentage overbooking in the OBSCL=1.0 scenario is higher than in the OBSCL=0.5

scenario in Figure 45. When OBSCL=1.5, the gap between the percentage overbooking

curves is even larger. The percentage overbooking of the old method is significantly

higher starting in TF3. Nonetheless, the percentage overbooking of the new method in

Figure 47 is similar to that in Figure 46, as the apex of the historical BIH observations in

both cases is the same. For this reason ALl's results are expected to be similar in both

scenarios.
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Figure 46: Test 5- % Overbooking over Capacity- OBSCL=1.0
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Figure 47: Test 5- % Overbooking over Capacity- OBSCL=1.5

The ticket revenues of ALl with both overbooking methods are shown in Figure 48.

Overall, the new method has a negative effect on ALl's ticket revenues. When

OBSCL=0.5, there is a very marginal difference in ticket revenues. When OBSCL=1 and

OBSCL=1.5 ALI's ticket revenues are 0.42% and 1.46% lower, respectively, with the new

method. On the other hand, the DB numbers are significantly lower as seen in Figure 49,

especially if ALl wants to use more aggressive overbooking measures. When
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OBSCL=0.5, the number of DBs is very similar with both methods, as expected. When

OBSCL>0.5, there are approximately 21 DBs per 10,000 passenger booked, which is a

more reasonable number, though still more than double the industry standard. Based on

these numbers, it seems that the new method does fulfill its purpose of limiting the

number of DBs to a level that is much closer to accepted industry levels.

3,110,000 0.20%
3,100,000 0.00%
3,090,000 .20%

3,080,000

3,070,000 -(.40%

3,060,000 -0.60%

3,050,000 -0.80%
3,040,000

3,030,000
1.20%

3,020,000
3,010,000 .40%

3,000,000 1-60%
OBSCL=0.5 OBSCL=1 OBSCL=1.5

isNi Old Method MM New Method % Change New over Old

Figure 48: Test 5- Ticket Revenues

Figure 50 compares ALI's net revenues under both methods. When OBSCL=0.5,

ALl has very similar net revenues under both methods. That is due to the very similar

ticket revenues and number of DBs. When OBSCL>0.5, the old method's net revenues are

higher than the new method's net revenues only if the DB costs are low ($150) and

lower otherwise. The net revenue gains with the new method can be up to 0.97% in the

"extreme" case of OBSCL=1.5 and very high DB costs, and -0.67% when OBSCL=1.5 and

DB costs are $150. Overall, the figure shows that the cap the new method sets on

bookings reduces ticket revenues and also substantially mitigates the negative effect the

DBs have on overall revenues.
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Figure 49: Test 5- Denied Boardings per 10K Passengers Booked
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Figure 50: Test 5- Net Revenues
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Figure 52 and Figure 53 show the load factors and yields for both methods. There

are very minor differences in load factors and yields when OBSCL=0.5. The load factors

tinder the new method are about 0.3 percent and 0.4 percent points lower and, in turn,

yields are 0.49% and 1.03% higher when OBSCL=1 and OBSCL=1.5, respectively.
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Figure 53: Test 5- Yields

The difference in load factors and yield is explained by the change in gross

bookings presented in Figure 54. ALI accepts fewer bookings under the new method,

especially in CL10, due to the capping set by that method. When OBSCL=1, ALI accepts

75 and 166 less bookings in CL10 under the new method compared with the old method.

When OBSCL=0.5, the difference in bookings between the two methods is negligible. The

cap the set by the new method is also clearly observed by the EMSRc presented in Figure

55. The EMSRc is not affected as much by the overbooking measures taken by ALI as

observed in Figure 21. For OBSCL=O.5, the EMSRc in both figures is similar, and for

OBSCL>0.5 the EMSRc is higher with the new method. The EMSRc is similar when

OBSCL=1 and OBSCL=1.5.
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Figure 55: Test 5- EMSRc

The APOB method attempts to address the main drawback of the overbooking

mechanism currently employed by the cancellation forecasting methods tested and

illustrated in previous tests which is the high number of DBs when ALl uses an

OBSCL>0.5. The high number is well above the level that airlines in the real world would

be willing to accept. A new overbooking mechanism was hence developed to cap the AU

such that the number of DBs would be reduced. Capping the AU results in higher EMSRc,
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especially in early time frame which means AL accepts fewer lower fare class bookings

compared with the old method. Consequently, ticket revenues and load factors decrease

and, in turn, yields increase. Nonetheless, the goal of the new method was achieved as

the number of DBs is indeed capped and closer to industry levels, though still higher.

Comparing the net revenues with both methods gives a mixed result. If the DB costs are

low (=$150), the net revenues are higher under the old method. The supremacy of the

new method is observed only if the DB costs are higher. It is therefore implied that

limiting the capacity on bookings can be beneficial for airlines only if the DB costs

calculated are relatively high and might hurt bottom line revenues more than the

additional gains due to overbooking. However, accurate computation of DB costs is still a

challenge for airlines today.

4.7 Test 6- High Cancellation Rates

In Chapter 2 we mentioned that cancellation rates can reach 30% for some

airlines due to a myriad of reasons. The sixth test in this chapter will present the

performance of the three cancellation forecasting and overbooking methods in a high

CXL rate environment. In this test, approximately 30% of gross bookings are cancelled

before departure. For the purpose of this test, the underlying system demand had to be

adjusted in order to maintain a load factor of approximately 81%. The cancellation

probabilities assigned to the bookings are shown in Figure 55 (and are double the

probabilities shown in Figure 6.2). The rest of the settings are as follows:

* Optimizer: AL1- DAVN, AL2- DAVN, AL3- EMSRb, AL4- DAVN

* Forecaster: All airlines use standard forecast

* ALl uses CM1, CM3/4 and OBSCL=0, 0.5, 1.0 ("old" method)

* Other airlines use CM2 and OBSCL=0.5
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Figure 56: Test 6- CXL Probabilities for High CXL Rate Scenario

Figure 56 presents ALl's ticket revenues in all scenarios. As expected AL gains

higher ticket revenues with CM3 and all OBSCL scenarios and with CM4 when OBSCL>O

than with CMI. The higher the OBSCL is the higher the revenue gains are over CM1. CM4

performs worse than CM1 only when overbooking is not applied. Again, the RM system

in the CM4 and OBSCL=0 scenario is overly restrictive and opens fewer seats in lower

fare classes. Despite the similarity of these results to the results in Test 1 and Test 2, the

magnitude of the revenue gains over CM1 is substantially greater in this test. However,

as in previous tests, the ticket revenues do not reflect the negative effect of DBs.

3 400,000

8.60%
3,300,000 86

6 31%

3,200,000
3A48% Si3.9

3,100,000 ||||
0.23%

2,900,0000

2,800,00 ENELINEl

2,700,000
3SCL= 0 BSCL=0 OBSCL=C.5 OBSCL=1 OBSCL=J OBSCL=0.5 OBSCL=1

CM1 CM3 CM4

tigure 57: Test 6- Ticket Revenues
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The DBs presented in Figure 58 are similar to the DBs presented in Test 2 (Figure

23) when OBSCL=0.5, however the number of DBs is noticeably higher for this test

compared with Test 2 when OBSCL=1. This is a lirect consequence of the overbooking

methodology which assumes a linear relationship between cancellation rates and

overbooking of remaining capacity. In both OBSCL scenarios, CM4 has more DBs than

CM3.
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Figure 58: Test 6- Denied Boardings per 10K Passengers Booked
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The net revenues of AL1 with CM3 and CM4 are presented in Figure 59, and the

percent net revenue gain over CM1 is presented in Figure 60. The net revenues are

higher when OBSCL=1 both with CM3 and CM4 despite the bigger number of DBs

compared with previous tests. The revenue gains over CMl are bigger as well compared

with previous tests.
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Figure 60: Test 6- % Net Revenue Gain over CMI
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Figure 61: Test 6- Load Factors

Figures 61 and 62 present the load factors and yields for ALL. The trends in these

figures are similar to the trends in previous tests: i) CM3 and CM4 have lower load
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factors, and in turn, higher yields than CM1 when overbooking is not applied, ii)

overbooking increases load factors and decreases yields, iii) Changes in load factors and

yields due to overbooking are greater with CM4. The main difference between this test

and previous tests is the bigger magnitude of changes compared with CM1.
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Figure 62: Test 6- YielIs & Percent Gain over CMI
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Figure 63: Test 6- Net Bookings without Overbooking

Figures 63 and 64 compare the net bookings for CM3 and CM4 without

overbooking and with overbooking. The net bookings trends in both figures are similar

to the trends in previous tests.
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Figure 64: Test 6- Net Bookings with Overbooking

To summarize, this test analyzed the effects of cancellation forecasting and

overbooking in a high cancellation rate scenario. The trends of the results in this test are

similar to the trends in Tests 1 and 2. The main difference between the tests is the

magnitude, both in absolute and percentage terms, of the revenue gains from

cancellation forecasting and overbooking. In this test, the revenue gains over CM1 (or no

cancellation forecasting) in some cases are more than double the revenue gains in

previous tests, therefore making the advantages of cancellation forecasting and

overbooking even more apparent.

4.8 Test 7- RM optimizers

The seventh test compares the performance of three different RM optimizers,

taking into account passenger cancellations. Some of the previous runs and theses using

PODS have analyzed the performance of different optimizers under different scenarios,

however passenger cancellations were not considered. Thus, this test includes three

scenarios and in each scenario ALl uses one of the three optimizers discussed earlier in

this chapter: DAVN, ProBP and UDP. In addition, the test will also address the difference

in the RM optimizers under two cancellation forecasting methods, CM3 and CM4, and

three different overbooking levels, OBSCL=0, 0.5 and 1. ALl's performance parameters
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will be presented and compared between the scenarios. The settings for this test are as

follows:

* Medium demand level (such that load factor is approximately 82%)

* Medium CXL Rate (with the same probabilities presented in Figure 6.1)

Optimizer: AL2- DAVN, AL3- EMSRb, AL4- DAVN

* Forecaster: All airlines use standard forecast

* AL2, AL3 and AL4 use CM2 with OBSCL=0.5 (moderate overbooking)
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Figure 65: Test 7- Ticket Revenues

Figure 65 presents ALl ticket revenues for all scenarios. In all scenarios ALl

gains the highest ticket revenues with UDP, followed by ProBP and DAVN gains the

lowest ticket revenues. When OBSCL=O, ALl has higher revenue gains with CM3 than

with CM4 when using DAVN and UDP, which is in line with results in test 2, and lower

ticket revenues when using ProBP. When OBSCL>O, ALl has higher ticket revenues with

CM4 with all optimizers. Nonetheless, as seen in test 2 and Figure 66, CM4 has more DBs

than CM3 due to the compensation of both BIH and BTC cancellations. UDP has the

substantially lowest number of DBs than DAVN and ProBP in both OBSCL scenarios,

though still much higher than industry standard when OBSCL=1. When OBSCL=0.5,

DAVN has the highest number of DBs in the CM3 scenario, while ProBP has the highest

number in the CM4 scenario. When OBSCL=1, ProBP has the highest number of DBs
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under both methods. Taking into account the costs associated with DBs results in the net

revenues presented in Figure 67 and Figure 68.

120

100 ms

80

60

40

20

0
CM3

OBSCL=0.5

CM4 CM3 CM4

OBSCL=1.0

DAVN ProBP UDP

Figure 66: Test 7- Deni ed Boardings per 10K Passengers Booked

Similar to the ticket revenues presented earlier, ALl still gains the highest net

revenues with UDP, then with ProBP and DAVN both with CM3 and CM4, though the

difference between DAVN and ProBP is marginal in the scenarios where DB costs are

either $300 or $450. Overall, similar to the results in test 2, more aggressive

overbooking can lead to higher net revenues if the DB costs are not too high.
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Figure 67: Test 7- Net Revenues with CM3
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Figure 68: Test 7- Net Revenues with CM4

Figures 69 and 70 present the percent net revenue gains over CM1 when

OBSCL=0.5 and 1, respectively. With CM3, the highest net revenue gains are achieved

with DAVN, then with ProBP and finally with UDP. This is in contrast to the trend

appearing in the figures showing the ticket and net revenues where UDP had the highest

revenues, followed by ProBP and DAVN. When OBSCL=0.5, the average percent gain is

approximately 1% as DB costs do not have a large effect on ticket revenues, and when

OBSCL=1 the percentage gain ranges between 1.7% and 0.8%.
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Figuire 69: Test 7- CM3 % Net Revenue Gain over CMI
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With CM4, the highest revenue gains are with ProBP when OBSCL=0.5 and then

DAVN. The revenue gains are slightly higher than the equivalent gains tinder CM3. When

OBSCL=1.0, the revenue gains are again higher with DAVN, then with ProBP and UDP.

The DB costs have a greater impact on revenues under CM4 due to the bigger number of

DBs and hence the revenue gain range between approximately 2% when DB costs are

low and 0.9& when DB costs are high.
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Figure 70: Test 7- CM4 /o Net Revenue Gain over CMi
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Figure 71: Test 7- Load Factors
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The load factors in Figure 71 show that load factors are the lowest with DAVN in

all scenarios. Under CM3, ProBP and UDP have very similar load factors while under

CM4 the load factors for Prol3P are higher than UDP load factors when OBSCL<I1.0 and

lower when OBSCL=1.0. The yields presented in Figure 72 show that in all scenarios

ProBP has the lowest yields, while DAVN and UDP have higher and very similar yields

under CM3. Under CM4 DAVN has higher yields. Overall the load factor and yield trends

are similar to the trends shown in test 2. CM3 has higher load factors than CM4 when

OBSCL<1 and similar load factors when OBSCL=1. At the same time, yields are lower for

CM3 when OBSCL<1 and similar yields when OBSCL=1.
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Figure 72: Test 7- Yields

Figures 73 through 75 present the difference in net bookings between ProBP and

UDP over DAVN for OBSCL=0, 0.5 and 1.0, respectively. For example, Figure 73 shows

that under CM3 ProBP has 35 more bookings in CL10 than DAVN while UDP has almost

10 bookings less when OBSCL=O. Under CM4, ProBP has 250 more bookings in CL1O,

while UDP has only 116 more bookings when OBSCL=0. For this reason there is a larger

difference in the optimizers' load factors and yields under CM4 than under CM3 as seen

in Figures 71 and 72. The differences in net bookings in higher fare classes are marginal.
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Figure 73: Test 7- Difference in Net Bookings- OBSCL=O

When OBSCL=0.5, the differences in CL1O net bookings are smaller than when

OBSCL=O. Under CM3, nonetheless, ProBP has more bookings in lower fare classes and

fewer bookings in higher fare classes than DAVN and hence the higher load factors and

lower yields. UDP has more bookings in lower fare classes and higher fare classes and

hence the higher load factor but similar yield to DAVN. Under CM4, ProBP has more

bookings in lower fare classes and less bookings in high fare classes than DAVN and thus

the higher load factor and lower yield than DAVN. UDP also has more bookings in CLIO

than DAVN however not to the same extent as ProBP and therefore the load factor is

lower and yield is higher than ProBP. The same idea repeats for OBSCL=1, however the

differences in CL1O between the optimizers are even smaller than OBSCL=O and

OBSCL=0.5.
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Figure 74: Test 7- Difference in Net Bookings- OBISCL=f.S
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Figure 75: Test 7- Difference in Net Bookings- OBSCL=1

In conclusion, this test compared the performance of DAVN, ProBP and UDP

while allowing for bookings to be cancelled during the booking process, a circumstance

that makes the task of optimizing seat allocation more challenging. The results show that

in all scenarios cancellation forecasting and overbooking can increase ticket and net

revenues. In general, UDP is the optimizer with the highest ticket and net revenues with

both CM3 and CM4, while DAVN is the optimizer with lowest revenues. The on the other

hand, the revenue gains over CM1 (percentage wise) are the highest for DAVN and
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lowest for UDP. When OBSCL=0.5, all optimizers have a net revenue gain of

approximately 1% and 1.2% over CM1 with CM3 and CM4, respectively. When OBSCL=1,

the difference between the optimizers' revenue gains (over CM1) over CM1 are more

apparent. The revenue gains in this case range from approximately 1% and 1.5% with

CM3 and 1% and 2.2% with CM4, depending on the DB costs. UDP achieves the highest

load factors, however it does not achieve the lowest yields as would be expected. The

results show that UDP accepts more bookings than DAVN but mostly in higher fare

classes. ProBP on the other hand accepts more bookings than DAVN but mostly in low

fare classes and thus ProBP has the lowest yield between the optimizers in all scenarios.

UDP also has the lowest number of DBs out of the three optimizers. This is because UDP

is more restrictive during booking time frames close to departure and thus accepts

fewer bookings when flight legs are booked close to or above capacity compared with

the other optimizers.

4.9 Test 8- RM Forecasters

Similar to the previous test, the eighth (and last) test compares the performance

of another major component in the RM system under the conditions of passenger

cancellations. This thesis will be the first to present the effects of the interaction

between the RM forecaster and the passenger cancellation phenomenon. Hence, this test

includes three main scenarios and in each scenario AL1 uses one of the three forecaster

types discussed earlier: standard forecast, hybrid forecast (HF) and hybrid forecast and

fare adjustment (HF/FA). This test will also address the performance of each forecaster

under CM3 and CM4 with different overbooking levels, OBSCL=O, 0.5 and 1. The rest of

the settings for this test are as follows:

" Medium demand level (such that load factor is approximately 82%)

* Medium CXL Rate (with the same probabilities presented in Figure 6.1)

* Optimizer: AL1- DAVN, AL2- DAVN, AL3- EMSRb, AL4- DAVN

* Forecaster: AL2, AL3 and AL4 use standard forecast

* AL2, AL3 and AL4 use CM2 with OBSCL=0.5 (moderate overbooking)
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The ticket revenues shown in Figure 76 indicate that in all scenarios SF gains the

lowest ticket revenues. Under CM3, HF and HF/FA have very similar revenues when

OBSCL<1, and HF/FA gains the highest revenues when OBSCL=1. Under CM4, HF gains

the highest revenues when OBSCL<1, and gains similar revenues as HF/FA when

OBSCL=1.
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Figure 76: Test 8- Ticket Revenues

In addition the lower ticket revenues, SF has the highest number of DBs in all

scenarios, followed by HF and HF/FA. The difference in DBs is high when OBSCL=1.

Figure 77 shows that even with HF/FA being the most moderate in terms of DBs of 40

per 10,000 passengers it is still significantly higher than industry standard.
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Figure 77: Test 8- Denied Boardlings per 10K Passengers Booked
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The net revenues tinder CM3 and CM4 presented in Figures 78 and 79 show that in all

cases, as expected, SF has significantly lower net revenues than HF and H F/FA due to the

combination of lower ticket revenues and highest DB numbers compared with the other

two forecasters. The net revenues of HF and HF/FA differ according the cancellation

forecasting method used. Under CM3, HF/FA has the highest net revenues in all

scenarios though its advantage is more apparent when the OBSCL is higher. Under CM4,

HF has higher net revenues than HF/FA when OBSCL=0.5, and lower net revenues when

OBSCL= 1.
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Figure 78: Test 8- CM3 Net Revenues
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Figure 79: Test 8- CM4 Net Revenues
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In order to understand the magnitude of the revenue gain with HF and HF/FA

over SF, Figures 80 and 81 illustrate the revenue gain in percentages of HF and HF/FA

over its equivalent SF scenario under CM3 and CM4, respectively. For example, under

CM3 and OBSCL=0.5, HF gains an additional 1.03% in revenues and HF/FA gains an

additional 1.07% in revenues over SF. Overall, under CM3 the revenue gains of HF and

HF/FA over SF are higher and range between 1.00% and 1.5% under CM3, while under

CM4 the revenue gains range between 0.6% and 1.4%, depending on the OBSCL and the

DB costs. Under both CM3 and CM4, the revenue gains when OBSCL=1 are higher and

difference in revenue gains between HF and -F/FA is up to 0.2 percent points.
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Figure 80: Test 8- CM3 Net Revenue Gain over SF
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Figure 81: Test 8- CM4 Net Revenue Gain over SF

101



Figure 82 shows that in all scenarios the load factors are the highest with SF,

followed by HF and eventually HF/FA has the lowest load factors in all scenarios. The

difference in the forecasters' load factors is bigger tinder CM3 versus CM4. The yields in

Figure 83 show that HF/FA has the highest yields, followed by HF and finally SF. The

load factors and yield patterns of CM3 and CM4 are similar to the trends seen in

previous tests.
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Figure 82: Test 8- Load Factors
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Figure 83: Test 8- Yields
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The difference in the fare class mix of HF and HF/FA compared with SF when

OBSCL=0.5 is presented in Figure 84. It should be noted that the results in this figure are

very similar to the results when OBSCL=0 and OBSCL=1. In all scenarios, transitioning

frorn SF to HF or HF/FA will results in less bookings in the lower fare classes,

particularly CL9 and CLIO and more bookings in the higher fare classes, CL through

CL5 and CL7. Overall, SF gains the highest number of net bookings, followed by HF and

HF/FA. Both under CM3 and CM4, the difference in net bookings is bigger under HF/FA

than under HF.
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Figure 84: Test 8- Difference in Net Bookings- OBSC =0.5

In conclusion, this test compared the performance of SF, HF and HF/FA while taking into

account passenger cancellations. Previous PODS tests explored the differences in the

performance of both forecasters based on solely on the methodology of each forecaster

as passenger cancellations did not occur. In this section, the forecasters were compared

also based on their ability to adjust for cancellations as practiced under the CM3

implementation. Under CM4 the BTC forecasts do not need to be adjusted for

cancellations. The main findings in this test are:

* The ticket and net revenues are higher with HF and HF/FA than with SF in all

scenarios, consistent with many previous studies.
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" The net revenue gains over SF are different for CM3 and CM4. With CM3 the

revenue gains range approximately 1% when OBSCL=0.5 or between 1% and

1.5% when OBSCL is higher. With CM4 the revenue gains are approximately

0.6% when OBSCL=0.5 or between 0.8% and 1.4% when OBSCL is higher

* The revenue gains over SF are higher for HF/FA with CM3 and with CM4 and

OBSCL=1. The difference in revenue gains is biggest with CM3 and OBSCL=1

* HF alone performs better than HF/FA only with CM4 and OBSCL=0.5

* HF/FA performs better than HF and SF in terms of DBs

* Both HF/FA and HF have a better fare class mix as both forecasters result in

less bookings in low fare classes and instead have more bookings in higher

fare classes. Overall, both HF and HF/FA have slightly less bookings than SF

* Thus, HF and HF/FA have lower load factors but higher yields compared with

SF

4.10 Summary

This chapter reported the findings from a series of simulation tests. The first two

tests compared the performance of the four cancellation forecasting methods in PODS

under different levels of overbooking, the third test compared two different competitive

environments, the fourth compared two aggregation levels of cancellation estimates, the

fifth compared two overbooking mechanisms, the sixth compared different CXL rate

levels, and the seventh and eights tests compared the performance of different

optimizers and forecasters with passengers cancellations.

The results in all tests were consistent. Cancellation forecasting was beneficial for

AL compared to no forecasting at all (CM1). For CM2 and CM3, this was true even when

no overbooking was applied (OBSCL=0) as ALl gained an additional 0.1% and 0.12% in

ticket revenues over CM1 in these scenarios. The ticket revenue gains can be increased

even further with overbooking and reach 3%. The down side to overbooking is the high

number of DBs, especially with the uncapped deterministic overbooking methodology

which brings DB values to be well above industry standards. After taking account of
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different DB costs, the net revenue gains of CM2 or CM3 could range between 0.3% and

2%, depending on the overbooking aggressiveness and the DB costs. Overall, the results

of CM2 and CM3 were very similar despite the different approach for the calculation of

cancellation rates. The net revenue gains over CM1 could get even higher with CM4, as

CM4 could gain additional 0.6% in net revenue over CM2/3 (depending on the DB costs

and OBSCL) and despite the substantially higher number of DBs when OBSCL>0.5. For

an airline with high cancellation rates, the importance of cancellation forecasting and

overbooking is higher. In this scenario, the net revenue gains over CM1 could get up 6%

with CM2/3 and 7% with CM4.

Using different optimizers and forecasters with different cancellation forecasting

methods showed that some optimizers and forecasters perform better than others when

cancellations are included. UDP gains the highest absolute net revenues, though the

highest net revenue gains over CM1 were achieved with DAVN. The net revenue gains

differ depending on the forecasting method used, the DB costs and OBSCL used. Among

the forecasters HF had higher net revenues than standard forecasting. Fare adjustment

increased net revenues even more in most cases. Switching to cancellation rates on a leg

level has a marginal impact on ticket revenues, yield and load factors but greater impact

on net revenues as leg level cancellation rates results in more DBs.

Use of more sophisticated cancellation forecasting methods and overbooking by

competitors can hurt ALI revenues due to a combination of spill (high fare class

passengers book with competitors instead) and spiral down (high fare class passengers

book in lower fare classes). The result for ALl is therefore lower load factors and yields

and between 0.4% and 0.8% loss of revenues. Apex overbooking is a good alternative for

the OBSCL overbooking methodology as it caps the AU and thus the number of DBs to

approximately 20 per 10,000, which is much closer to (though still more than double)

industry acceptable levels.
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Chapter 5: Use of Detailed Data in Cancellation Forecasting

As mentioned in Chapter 2, time series analysis has been the traditional approach

for demand forecasting in general, and passenger cancellation forecasting in particular.

The advancement in technology, combined with the fast growing data storage and

processing capabilities of computers, has pushed airlines (and other service companies)

to use their historical data more extensively and develop more accurate tools for

forecasting purposes. Thus, in addition to using historical booking data on an aggregate

level to forecast demand and cancellations for future flights, airlines have started using

the more detailed information contained in their large Passenger Name Records (PNR)

databases to forecast cancellation rates. The airlines use the attributes contained in the

PNR data of each booking to potentially better forecast the probability of a booking in

the future to cancel before the flight.

The purpose of this chapter is to explore some of the attributes included in the

PNR database of an airline and gain insights whether or not the attribute in question

could be significant for forecasting cancellation rates using methods such as logistic

regression and others, as suggested in Romero Morales et al. (2010). Since the bookings

in the current implementation of PODS do not contain PNR attributes, the analysis was

based on actual PNR dataset from a North American (NA) airline. The dataset included

approximately 50 million PNRs with at least one flight leg (coupon) between May 9th

2014 and May 9th 2015. The dataset had approximately 30 data elements containing

information as booking time, flight departure and arrival times, Frequent Flier Program

membership, passenger name, origin and destination, booking agent and point-of-sale,

to name a few. The data element that contained the cancellation time (date) was only

used in this analysis as an indicator whether a specific booking had been cancelled. For

the sake of simplicity we assumed that all cancellations in our data were made by the

passenger himself and not due to operational circumstances that forced the passenger to

deviate from his original planes. Before doing the analysis, the data was filtered such

that all the bookings included in the dataset were for flights operated by the airline only

(not by code-share partners), in coach cabin (not premium/business/first), and ticketed.
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The data mining and analysis was done using SQL programming language and SAS

(Statistical Analysis System).

The literature provides several statistical tools to assess the robustness of

independent variables in predicting the behavior of dependent variables. In this chapter

the relationship between the attributes and passenger cancellation behavior will be

examined by dividing each attribute to categories and calculating cancellation rates for

the coupons that are included in the category. For the sake of simplicity, each attribute

was analyzed independently, while ignoring the possible correlation between different

attributes. The cancellation rates were calculated for each category on a specific reading

day (RD) as follows:

Number of ACTIVE coupons that are cancelled AFTER reading day

Number of ACTIVE coupons on reading day

"Reading day" is equivalent to the data collection point (DCP) concept common among

airline RM systems. The reading days chosen for this analysis are 270, 120, 60, 30, 14, 7,

and 2 (days before departure). The analysis does not include no-show forecasting (i.e.

cancellation rates of active PNR on day 1 and day 0 before departure) and hence

cancellations on day 1 and day 0 before departure were ignored.

Figure 85 presents the cancellation rates for the attribute "number of passengers

in itinerary" at each of the reading days mentioned above. The attribute was divided into

two categories: "one passenger" and "more than one passenger". The idea here is to

examine whether or not passengers who travel by themselves have different

cancellation behavior and hence different cancellation rates than passengers who travel

in groups of two or more. It should be noted that PNRs with more than ten passengers

were excluded from the dataset. The figure shows that 16.55% of coupons that are

active on day 270 before their respective departure date and that belong to passengers

travelling alone cancel at some point between day 270 and departure date. The

cancellation rates gradually decrease up to RD 30, slightly increase on RD 14 and then

gradually decrease again to 7.43% on day 2 before departure. The cancellation rates of
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passengers travelling in groups of two or more is 10.46% on RD 270 and they gradually

decrease to 4.17% on RD 2. The general trend of decreasing cancellation rates over time

can be explained as follows:

* The number of bookings decreases the further away the RD is from the

departure date, hence cancelled bookings sum up to a larger portion of total

bookings (even if the absolute number of cancelled bookings stays constant)

* The further away the booking date is from the departure date, the higher the

probability that it would need be cancelled (or changed) due to unforeseen

circumstances (as the bath-tub shape cancellation pattern theory implies)
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Figure 85: No. of Passengers in Itinerary CXL Rates

The second trend that stands out from Figure 85 is that, on average, bookings of

passengers travelling alone have a 4.5 percent point higher cancellation rate than

bookings of passengers travelling in groups of two or more. The results imply that

traveling in groups of two or more reduces the motivation to cancel compared with

passengers who travel alone. On the other hand, these results could also be the

consequence of the fact that the two categories include different passenger types.

Passengers who travel in groups are mostly leisure passengers who have firm plans and
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hence tend less to cancel, while passengers who travel alone could either be leisure or

business passengers who tend to cancel more often.

The second attribute of interest is the "journey type" attribute. The idea is to

explore whether passengers have different cancellation behavior when travelling on one

way itineraries or round trip itineraries. The analysis further distinguishes between the

outbound and the return portions of a round trip itinerary. The attribute hence includes

three categories and their respective cancellation rates by RD are presented in Figure

86.
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Figure 86: Journey Type CXL Rates

The relationship between cancellation rates and RDs in the figure above is similar

to the relationship observed in the previous figure. That is, at first cancellation rates

gradually decrease up to RD 60, then slightly increase again up to RD 14 and then

gradually decrease again. This applies to all categories of this attribute. The figure also

shows that bookings that consist of one way itineraries have the lowest cancellation

rates (except for RD 270) while the return itinerary has the highest cancellation rates in

all RDs. The difference in cancellation rates between one way itineraries and round trip

itineraries could potentially be explained again by the type of passengers that purchase

one way tickets versus round trip tickets. It is possible that one way itineraries have a

larger percentage of leisure passengers due to their additional effort in finding one way
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combinations with (sometimes) different airlines. The different cancellation rates of

outbound and return trips could be explained by the "bath tub" shape cancellation rates

theory discussed in Chapter 3, which claims that the longer the time is between booking

and departure, the higher the probability is that the passenger will cancel. Based on this

theory, since the return trip is always later than the outbound trip the return trip is

more subject to change. Even though it is not covered in this analysis, it would be

interesting see how cancellation rates change as a function of the time between the

outbound and return trips.

The third attribute that was considered in this analysis is ticket refundability. The

idea was that passengers who purchase a ticket with an option to get a refund for

cancelling their bookings would be more likely to cancel than passengers who do not

have that option. Thus, the attribute was divided to two categories: "non-refundable"

and "refundable". It should be noted that according the dataset used, only approximately

15% of tickets sold to passengers are refundable, while all other tickets are strictly non-

refundable. The cancellation rates for the ticket refundability are presented in Figure 87.
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Figure 87: Ticket Refundability CXL Rates

According to the results, on RDs 270 and 120 the refundable tickets (coupons) do

have a higher cancellation rate than the non-refundable tickets. On RD 270 there is

almost a three percent point difference in cancellation rates and on RD 120 the
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difference decreases to only one percent point. On RDs 60 onwards, the refundable

tickets seem to have lower cancellation rates of up to 1.5 percent points than the non-

refundable tickets, a trend that is somewhat counter intuitive. Based on the results, it

seems that this relatively simplistic analysis is not enough to accept or reject the

hypothesis presented earlier, and thus a deeper analysis is required. It should be noted

that while the total number of bookings early in booking horizon is low, a passenger

who books early has more booking options (tickets with different fares and restrictions)

and hence if the passenger decides to purchase a refundable ticket it could be a good

indicator that he is more likely to cancel it than a purchase that purchased a non-

refundable tickets. At the same time, passengers who book later in the booking horizon

might purchase a refundable ticket only due to lack of other ticket options and not due

to uncertainty of plans. In order to get more robust results, future analysis should keep

track of the ticket types available for passengers at time of booking.

The fourth attribute is the Time of Day attribute. The idea here was to check

whether or not passengers are more likely or less likely to cancel their tickets based on

the time of day their flights depart. The results are presented in Figure 88.
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Figure 88: Time of Day CXL Rates

The results show that bookings for flight leaving late morning (9AM-12AM) have the

lowest cancellation rates on all RDs. On the other hand, except for RD 270, bookings for
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flights leaving in the evening hours (5PM-lOPM) have the highest cancellation rates. The

findings could potentially be a consequence of a policy that is common among NA

airlines which allows passengers to change their flights on the day of departure for a

certain change fee. It is possible that passengers, especially business, who were

supposed to fly later in the day decided to fly earlier due to last minute change of plans.

In addition to the day of week attribute we decided to use the day of week

attribute in this analysis as well. The results are presented in Figure 89. The most

noticeable trend is that weekend days, and in particular Saturdays and Sunday, have the

lowest cancellation rates, while week days, in particular Tuesdays through Thursdays,

have the highest cancellation rates. The trend is similar in all readings days. Just as in

some of the previous attributes, the difference could be explained by the mix of

passengers travelling on week days versus weekends. Business passengers travel mostly

on week days and since they tend to cancel or change their plans more frequently than

leisure, the cancellation rates are higher.
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Figure 89: Day of Week CXL Rates

Another attribute that was found to be interesting for this analysis is the point of

sale attribute. The idea was to examine whether there are differences in cancellation

rates of booking that were made inside the US versus bookings that were made outside
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the US. The hypothesis is that passengers who book outside the US are mostly non-US

residents with different cancellation behavior than US residents. Therefore the point of

sale attribute was divided into two categories: "outside US" and "inside US". The results

in Figure 90 show that at almost all RDs, the cancellation rates of the tickets booked

inside the US are, on average, 1.5 percent points higher than the that tickets booked

inside the US. On RD 270, the difference in cancellation rates is marginal. The results

imply that non-US residents and US residents have different cancellation behavior and

hence different cancellation probabilities. The reason could be either due to cultural

differences or due to the additional bureaucracy non-US residents need to deal with

when flying on US carriers which forces them to book only when plans are firm.
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Figure 90: Point of Sale CXL Rates

In conclusion, this chapter attempted to present the importance of using

disaggregate PNR data to gain better insights on passenger cancellation behavior in

general and calculating cancellation rates specifically. The attributes covered in this

chapter are only some of the attributes that exist in a PNR database that could be used to

forecast cancellation rates at a flight leg level or OD level when used in a logistic

regression. For example, the results presented in this chapter suggest that if a flight leg

or OD has mostly non-US passengers, the cancellation rate could be smaller than if most

passengers were US nationals, and thus the airline should be less aggressive when



overbooking. Using the same logic, if a flight leg mostly consists of passengers travelling

alone, the cancellation rates might be higher than if the same flight leg was mostly

consisted of passengers travelling in groups, hence the airline should be more aggressive

when overbooking.

The results in this chapter also show that the differences in cancellation rates

could be explained by the behavior of different passenger types. Therefore, it is implied

that airlines could forecast cancellation rates of flight legs or ODs based on passenger

type mix. First, the attributes in the PNR can be used to classify passengers into different

groups such as leisure and business, or any other type. Then, the cancellation rates of

each group by RD could be calculated and used for calculating the cancellation rates of

future flights. Since business passengers tend to cancel more than leisure passengers,

flight legs or ODs with a large proportion of business passengers should have higher

cancellation rates and hence overbooked more aggressively, and vice versa.
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Chapter 6: Thesis Summary & Conclusions

Passenger cancellation (CXL) forecasting is an important element in an airline's

Revenue Management (RM) system. Accurate forecasting can minimize the number of

unoccupied seats at time of departure and the costs for compensating passengers who

did not board due to overbooking. This thesis presented approaches for passenger

cancellation forecasting and overbooking and tested them under different settings using

the Passenger Origin Destination Simulator (PODS) booking simulation tool. All

cancellation forecasting methods examined in this thesis are based on time series

modelling of historical bookings, which is the most widespread approach by airlines

with certain variations.

Four cancellation forecasting methods were presented in this thesis: CM1

through CM4. These methods differ by i) the data that is used for cancellation rate

calculation, ii) the overbooking of remaining capacity, and iii) the forecast input into

optimizer. CM1 is the most basic method for cancellation forecasting and thus used as a

baseline for comparisons with other methods. This method does not forecast future

bookings (bookings to come or 'BTC') at the start of each time frame by separating the

historical data to gross bookings (the overall number of bookings in a time frame) and

cancellations. Instead, the method uses historical data containing the "bottom line" net

bookings (i.e. the bookings left in the system after cancellations) as a forecast. In

comparison, all other methods do separate gross bookings from cancellations in each

time frame. CM2 utilizes the number of cancellations in each time frame to calculate

cancellation rates. CM3 utilizes the number of bookings in each time frame that would

eventually be cancelled before departure. Both methods use a scaled down forecast of

BTC (a forecast adjusted to cancellations) as input to the RM seat allocation optimizer.

In order to compensate for the loss of revenues due to cancellation, the remaining

capacity is adjusted at the beginning of each time frame in the booking horizon to allow

for more bookings than actual seats on a leg. This practice commonly used by airlines

(and other industries providing perishable services) is called overbooking. The

overbooking method used in CM2 and CM3 determines the overbooking level on a flight
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leg by calculating the product of the expected cancellations of the bookings that are

currently in the system (booking in hand or 'BIH') times an overbooking scaler (OBSCL)

input, by leg. The higher the expected number of cancellations or the OBSCL are, the

more aggressive the overbooking will be. Since CM1 cannot forecast future cancellations

but rather only future net bookings (as explained earlier), the overbooking method

applied with CM2 and CM3 cannot be applied with CM1.

CM2 CM3
OBSCL 0 0.5 1 1.5 0 0.5 1 1.5
Ticket
Revenue 0.12% 1.15% 2.08% 3.03% 0.10% 1.15% 2.07% 3.13%
DBs per 10K 0 10 71 190 0 10 71 187
Net $150 0.12% 1.10% 1.72% 2.08% 0.10% 1.10% 1.72% 2.19%
Rev. $300 0.12% 1.06% 1.37% 1.13% 0.10% 1.06% 1.36% 1.26%
(by DB
cost) $450 0.12% 1.01% 1.01% 0.18% 0.10% 1.01% 1.00% 0.32%
Load Factor -0.49 1.05 1.95 2.02 -0.33 1.08 1.95 2.08
Yield 0.72% -0.23% -1.09% -1.70% 0.50% -0.26% -1.11% -1.63%

Figure 91: CM2/3 vs. CM1 result measures

Figure 91 summarizes the difference in the primary result measures of CM2 and

CM3 versus CM1 under a medium cancellation rate scenario. In this scenario, 15% of all

bookings eventually cancel before departure. This cancellation rate is similar to the

cancellation rates reported by North American airlines. Cancellation forecasting could

increase revenue gains by 0.12% even when no overbooking is applied (OBSCL=0). In

this case, the load factors of CM2 and CM3 are lower compared to CM1 and, in turn, the

yields are between 0.5% and 0.72% higher. When we increase the OBSCL, the

overbooking gets more aggressive and this leads to more bookings being accepted in the

system and higher ticket revenues. The ticket revenue gains of CM2/3 over CM1 range

between 1.15% and 3.13%, depending on the OBSCL used. The load factors increase and

the yields decrease the higher the OBSCL parameter chosen.

However, as in the real world, overbooking does have negative consequences if

on departure day the number of passengers booked exceeds the number of seats on a
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flight leg. The passengers who did not board need to be compensated according to

regulations and re-accommodated on later flights. The higher the number of denied

boardings (DBs) is, the higher the costs are for the airline. The number of DBs when

OBSCL=0.5 is approximately 10 (per 10,000 passengers) which is close to the airline

industry's standard, however when OBSCL>0.5 the number of DBs is substantially

higher. Taking in consideration the DBs and the (different) costs associated with them

shows that cancellation forecasting and overbooking are still beneficial. In the most

realistic scenario in which OBSCL is set to 0.5, the net revenue gain could range between

1.01% and 1.1%, depending on the DB costs. Overall, the results for CM2 and CM3 are

very similar despite the difference approach as to which cancellation data is used.

CM4 uses the same approach for cancellation rate forecasting as CM3. However,

while the overbooking methodology of CM3 only focuses on compensating for BIH

cancellations, CM4 compensates for cancellations of BIH and BTC at the same time.

Consequently, in order to prevent a double discount for cancellations of future bookings,

CM4 uses gross BTC forecast (a forecast that does not take future cancellations into

account) as an input to the seat allocation optimizer.

CM4
OBSCL 0 0.5 1 1.5

Ticket Revenues -0.34% 1.28% 2.74% 4.16%

DBsper10K 0 12 101 273

Net $150 -0.34% 1.22% 2.23% 2.79%
Revenues $300 -0.34% 1.15% 1.73% 1.43%
(by DB cost) $450 -0.34% 1.09% 1.23% 0.06%
Load Factor -3.1 0.28 2.01 2.4

Yield 3.57% 0.79% -0.96% -2.17%

Figure 92: CM4 vs. CM1 result measures

Figure 92 summarizes the difference in the primary result measures of CM4

versus CM1 (medium demand and medium cancellation levels). CM4 performs worse

than CM1 when overbooking is not applied due to the fact that the forecast input is gross

BTC forecast which is higher than the forecast input in CM2 and CM3. In this case, the
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RM system is very restrictive and rejects low fare bookings which translates to

significantly lower load factor but higher yield. When overbooking is applied, the ticket

revenue gains range between 1.28% and 4.16%. These revenue gains are higher than

the revenue gains of CM2 or CM3. At the same time, the number of DBs with CM4 is

higher, especially when OBSCL>0.5. This is due to the overbooking methodology of CM4,

which overbooks more aggressively than CM3 as it not only compensates for BIH

cancellation but for BTC cancellations as well. Despite the higher DBs, the net revenue

gains of CM4 over CM1 are slightly higher than those of CM2 or CM3 and range between

1.09% and 1.22% (depending on the DB costs assumed by the airline) in the realistic

scenario where OBSCL is set to 0.5. In comparison to CM2 and CM3, the magnitude of

changes in the load factors and yields due to an increase of the OBSCL is greater.

This thesis also looked at the revenue gains of cancellation forecasting and

overbooking under a high cancellation rate setting, as an attempt to address the

different cancellation rates reported by different airlines. In the medium CXL rate

scenario total cancellations summed up to approximately 15% of gross bookings, while

in the high cancellation rate scenario the cancellations summed up to almost 30% of

gross bookings. Figure 93 summarizes the difference in the primary result measures of

CM3 and CM4 versus CM1.

CM3 CM4

OBSCL 0 0.5 1 0 0.5 1
Ticket Revenues 0.23% 3.48% 6.31% -2.40% 3.69% 8.60%
DBs 0 5 133 0 20 307

Net $150 0.23% 3.45% 5.65% -2.40% 3.59% 7.09%
Revenues $300 0.23% 3.42% 5.00% -2.40% 3.49% 5.57%
(by DB cost) $450 0.23% 3.40% 4.34% -2.40% 3.39% 4.06%
Load Factor -1.02 3.37 6.65 -8.68 0.72 7.24

Yield 1.52% -0.69% -3.11% 9.37% 2.61% -3.49%

Figure 93: CM3/4 vs. CM1 results in a high CXL rates scenario

The trends in Figure 93 are similar to the trends in Figures 91 and 92. That is, the

higher the OBSCL the higher the (ticket and net) revenue gains, DBs and load factors are,
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and lower the yields are. However, the main difference is the magnitude of the changes

compared to CM1. In a high cancellation rate scenario, the revenue gains from

cancellation forecasting are greater and range between 3.4% and 3.59% with either CM3

or CM4 in the realistic scenario where OBSCL is set to 0.5. These results show airlines

with high cancellation rates could gain more from cancellation forecasting and

overbooking than airlines with lower cancellation rates.

As in the real world, the result measures of an airline are not dependent only its

own RM cancellation forecasting and overbooking strategy, but also the RM strategies of

the competitors. In this thesis, we tested the changes in results after before and after the

competitors move from using CM1 without overbooking (and thus not actually

forecasting for cancellations) to CM2 with moderate overbooking (OBSCL=0.5). This

transition led to revenue losses (for ALl) of 0.4% to 0.8% in ticket revenues and 0.65%

to 0.73% in net revenues, depending on the OBSCL used. When the competition

increases the availability of seats (especially in lower fare classes) due to overbooking,

our RM system responds by opening more seats in the lower fare classes as well. The

revenue loss is then a combination of two effects. First, a spiral down effect, which

means passengers who would otherwise book in higher fare classes now book in lower

fare classes instead. Second, a spill effect, which means passengers who would otherwise

book with a certain airline, now book tickets with the competitors. The loss of

passengers to the competitors, and in particular high fare class passengers, translated

then to lower load factors and lower yields.

Changing the aggregation level of the cancellation rate estimation model from

path (based on all possible origin/destination combinations in the network) to leg

(based on all possible direct flights in the network) can lead to an increase of up to

0.25% in ticket revenues. The tests showed that the overbooking with leg cancellation

rate estimates is slightly more aggressive. This is a direct consequence of the finding that

path aggregated cancellation estimates tend to (slightly) underestimate cancellation

rates while leg aggregated cancellation estimates tend to do the opposite. Since the

overbooking methodology used in this test assumes a linear relationship between
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cancellations and overbooking, the higher the forecasted cancellation rate is, the more

aggressive the overbooking is. This, in turn, results in higher number of DBs. The leg

aggregated cancellation rate estimates have a fairly marginal net revenue gain over the

path aggregated cancellation rates in the range of 0.03% and 0.13%, depending on the

OBSCL and DB cost. When the DB costs are high and OBSCL>0.5, the net revenue impacts

are negative.

The tests in this thesis showed that the deterministic overbooking mechanism

used in all cancellation forecasting methods leads to high numbers of DBs compared

with industry standard when OBSCL>0.5. In order to reduce the number of DBs, an

"apex overbooking" mechanism was developed that caps the authorized capacity (AU)

during the booking process. The apex overbooking mechanism does limit the number of

DBs when OBSCL>0.5 to be around 20 (per 10,000). Even though this number is still

more than double the industry standard, it is substantially smaller than the DB numbers

based on the simplistic overbooking mechanism. However, the attempt to limit DBs also

results in lower revenues as less bookings are accepted, especially in lower fare classes,

compared with the previous overbooking mechanism. In turn, the results also showed

lower load factors but higher yields.

Testing the performance of optimizers and forecasters while taking into account

passenger cancellation behavior showed results that are similar to the results in

previous work that excluded cancellations. The three different commonly used RM seat

allocation optimizers that were compared are: Displacement Adjusted Virtual Nesting

(DAVN), Probabilistic Bid Price (ProBP) and Unbucketed Dynamic Programming (UDP).

The two different forecasters that were compared were Standard Forecasting (SF) and

Hybrid Forecasting (HF). The hybrid forecasting was also used tested with the Fare

Adjustment (HF/FA) technique which is targeted at preventing the spiral down effect.

UDP has the highest ticket revenues regardless of the CXL forecasting method or the

OBSCL used, while also having the lowest DBs compared to ProBP and DAVN.

Consequently UDP has the highest net revenues. On the other hand, UDP has slightly

lower net revenue gains over CM1 compared with DAVN and ProBP in all scenarios.

120



HF/FA had the highest ticket revenues and the lowest number of DBs compared with SF

and HF. As result, the highest net revenues are gained with HF/FA. The RM system is

more restrictive when HF or HF/FA is employed, hence the load factors are lower and

yields are higher compared with SF.

The advancement in computational capabilities has pushed both academia and

the industry to develop more sophisticated tools for cancellation forecasting purposes,

using data on a disaggregate level. In the context of cancellation forecasting, the

elements included in the airline's detailed Passenger Name Record (PNR) data can

provide additional insights with regard to the cancellation behavior of airline

passengers. Several examples for attributes that could be included in the analysis of

cancellation behavior were described in this thesis. These attributes (in additional to

other attributes) could be used in a logit model to calculate cancellation rates by leg or

path, by class and time frame.

Despite the several approaches suggested in this thesis for cancellation

forecasting and overbooking, not all possible approaches were covered. In particular,

the overbooking model based on overbooking scaling (OBSCL) assumed cancellation

rates are known with certainty. This model would be a reasonable solution if an airline

is indifferent about the number of DBs and spoiled seats (seats left unoccupied at

departure). In the real world, cancellation rates are not known with full certainty and

hence future approaches should address this issue by developing probabilistic or risk-

based overbooking models, as suggested in Belobaba (2015). Since different airlines

have different cost estimates for DBs and spoiled seats, the optimal overbooking

solutions will differ by airlines. In addition, this thesis did not directly address the issue

of "no-shows" (booked passengers who fail to show up at the gate on time of departure)

which is a more complex scenario for the airlines, as they have do not have the time to

compensate for the potential loss of revenues as with cancellations occurring early in

the booking process.
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In conclusion, cancellation forecasting can help airlines increase their revenues.

The benefits of cancellation forecasting are greater for airlines with higher cancellation

rates (due to their less restrictive fare structure, for example). According to the

simulation results, this is true also when overbooking is not applied. There could be

different approaches for cancellation forecasting using different types of historical data.

However, the results would not be significantly different if an airline chooses one

method over the other. Airlines could increase their revenues even further if

overbooking is applied. Airlines should not be too aggressive with overbooking,

otherwise the benefits would be offset by the costs of compensating denied boardings.

In addition, while the natural outcome of overbooking is an increase in load factors,

increasing availability of seats (especially in low fare classes) could substantially

decrease yields. Since both these metrics are constantly under scrutiny by airline

managements, it is important to not to overbook too early in the booking process.
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