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Abstract

Demand for air travel has increased over the years and so have airport delays and
congestion. Delays have a huge impact on airline costs and influence the satisfaction
of passengers, thus becoming an important topic of research in the field of air trans-
portation. In recent literature, a Passenger Delay Calculator (PDC) was proposed to
estimate passenger delays. The PDC computes passenger delays for a specified day
based on actual flight schedules, fight cancellation information, and ticket booking
information. However, since actual fight schedules are a necessary input, the PDC
cannot be applied directly to hypothetical scenarios, in which different cancellation
strategies are implemented and their impact on passenger delays are evaluated. A
different model. Airport Network Delays (AND), has also been developed recently.
The AND model estimates fight delays and relies on an input in which demand con-
sists of the national planned fight schedule for any given day. In this thesis, we have
attempted to incorporate these two models, the AND and the PDC, within a single
framework, so that the resulting new integrated model can compute passenger de-
lays without requiring an actual flight-schedule input. The integrated model would
certainly increase the usefulness and applicability of the PDC since it could be used
with hypothetical scenarios, different flight cancellation strategies, etc.

We first describe the framework of the integrated model for studying flight delays
and passenger delays at a daily scale. The integrated model includes four compo-
nents: a Tail Recovery Model, Flight Cancellation Algorithms, a Refined Airport
Network Delay (RAND) model, and the PDC. The Tail Recovery Model recovers
missing tail numbers for many flights recorded in the Aviation System Performance
Metrics (ASPM) database. The Flight Cancellation Algorithms implement alterna-
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tive strategies for flight cancellations in the presence of large delays, such as cancelling
flights with long flight delays or flights with a large ratio of flight delay divided by
the seating capacity of the aircraft. The RAND model is an extension of the AND, in
which two implicit assumptions of the AND model have been modified. The RAND
model produces better estimates of flight delays in the sense of replicating actual
flight delays obtained from the ASPM database.

The overall integrated model is able to compute passenger delays and relies only on
planned flight schedules rather than actual flight schedules. Moreover, the integrated
model facilitates the study of factors that influence flight delays, such as weather
conditions and demand fluctuations, and evaluates the impact of different cancellation
strategies on passenger delays. Using actual data from different days, we conclude
that passenger delays can be reduced on the busiest traffic days through improved
flight cancellation strategies.

In the second part of the thesis, we extend the RAND model to compute flight
delays on a monthly scale using different capacity profiles as input. These capacity
profiles can be directly obtained from Federal Aviation Administration (FAA) reports
or constructed by using classical machine learning algorithms on airport-level data.
We validate our estimation of flight delays by using data of January, 2008, showing
that both the capacity profiles and the RAND perform well in terms of replicating
the actual monthly flight delays. These results imply that an effort can be made to
develop an integrated model incorporating the RAND, the PDC etc. at a monthly
scale or even at any generic time scale.

Thesis Supervisor: Amedeo R. Odoni
Title: Professor of Civil and Environmental Engineering

Thesis Supervisor: Dimitri Bertsekas
Title: McAfee Professor of Engineering
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Chapter 1

Introduction

According to the Bureau of Transportation Statistics (BTS), the total performed air-

craft departures by U.S. air carriers has increased from 5.5 million in 1985 to 9.3

million in 2012 (a 70% increase). One of the problems caused by this enormous

growth is the emergence of large delays and congestion throughout the National Air-

port System (NAS). Before the 1990s, delays occurred only in a few airports in the

NAS. However, as airport operations increased in the 1990s, the number of scheduled

flights approached the capacity limits of many airports. As a result, delays and con-

gestion became a widespread problem affecting network-wide operations. According

to the Aviation System Performance Metrics (ASPM) database, the average flight

delay in the U.S. increased from 10.1 minutes in 2002 to 16.7 minutes in 2007 ( a 65%

increase)'. The number of flights with taxi-out time exceeding 1 hour 2 increased

from 17,331 in 1989 to 39,388 in 2013 (a 127% increase).

Delays and congestion also cause flight cancellations and passenger disruptions, lead-

ing to a huge economic loss to the airlines. According to the U.S. Congress Joint

Economic Committee, in 2007, this cost was estimated to be $19 billion. Therefore,

it is increasingly important to develop reliable models for analyzing delays and to

propose policies for mitigating their impacts.

In the literature, delays are evaluated according to two types of metrics: flight-based

'This statistic is based on the Individual Flight Module of the ASPM. See Section 2.1 for detailed
information.

2This statistic is based on the Individual Flight Module of the ASPM.
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and passenger-based. Flight-based metrics focus on evaluating on-time performance

of flights in terms of the difference between their arrival (departure) scheduled time

and their actual arrival (departure) time; passenger-based metrics stress the impact of

delay on passengers in terms of the difference between their planned arrival time and

the actual arrival time. Since computing flight delays requires only flight itinerary in-

formation, whereas computing passenger delays requires additional information such

as booking data and flight cancellations, different models are developed for estimating

flight delays and passenger delays.

In this chapter, we introduce flight delays and passenger delays. We will then

review the Airport Network Delays model (AND)[Pyr12] and the Passenger Delay

Calculator (PDC)[BFV1O] which are used to evaluate these two types of delays, re-

spectively. These two models are essential cornerstones of our new integrated model

that will be introduced in Chapter 2. Section 1.4 presents the research goals, as

well as the contribution of this research. The final section contains an outline of the

structure and the content of Chapter 2 and Chapter 3.

1.1 Flight delays

A flight is delayed when the realized arrival (departure) time of a flight is later than

the scheduled arrival (departure) time. The difference between the two is identified

as the flight delay associated with that specific flight. Aggregating individual flight

delays, we are able to study flight delays at a network scale, for example, for all the

flights departing from or arriving at any U.S. airport.

The U.S. Department of Transportation (DOT) defines a flight as a delayed one if

it has more than 15-minute delay. Those with smaller delays are defined as on-time

flights. This metric is referred to as the 150TP metric and it is commonly used

in the literature in the study of flight delays. Shumsky [Shu95] and Hall [Ha199]

reported that US carriers increase planned block times and scheduled gate-to-gate

times in order to improve the on-time performance in terms of 150TP. This practice

16



results in a greater operating cost. Caulkins [Cau93] examined the trade off between

the 150TP on-time performance and operating cost, and proposed an approach to

estimating airline's schedule reliability, which compares the performance of a specific

airline to the average performance of all the airlines.

In the most recent twenty years, flight delays at airports in the U.S. have become a

significant problem. According to the Bureau of Transportation Statistics, every year

since 1990, roughly 20% of the flights of the largest U.S. Air Carriers were delayed

with respect to the 150TP metric3 , with the figures peaking in 2000 and 2007, at

27.4% and 26.6%. Figure 1-1 shows the evolution of average arrival delays from 1989

to 2013(ASPM) 4 . For each year, the average arrival delay is more than 10 minutes and

it increases from 10.1 minutes in 2002 to 16.7 minutes in 2007. Figure 1-2 shows the

evolution of the number of enplaned revenue passengers and the number of performed

aircraft departures by U.S. Carriers, where the orange line represents the Enplaned

Revenue Passengers and the blue line represents the number of of flights performed.

These two measures of demand present a similar trend to the average flight delay.

Before the 1990s, demand was relatively small, and delays were not as widespread.

The busiest year in history in terms of number of flights was 2007. After 2007, the

economic crisis reduced the number of flights and, as a result, airport delays. The

Federal Aviation Administration (FAA) also introduced slot controls at New York's

airports, which reduced the number of airport operations per hour, thus leading to a

gradual reduction of demand and delays.

Flight delays at the network level can be explicitly described through the flight

delays at each individual airport. Figure 1-3 shows the average arrival delays for 34

major U.S. airports in 2007 and 20135. For 2007, the busiest year in the history of the

3The largest U.S. Air Carriers are those that take up at least 1% of the total domestic scheduled
service

4 The average arrival delay for a specific year is computed by averaging over arrival delays of all
the flights in that year. For flights arriving on time or in advance, we set arrival delays to zero

5The list of 34 major airports with their abbreviation is shown in Table A.1. This set of 34
airports is identical to the set of the 35 busiest commercial airports in the country, known as the
Operational Evolution Partnership (OEP 35) airports with the exception of Honolulu International
Airport(HNL). The OEP 35 set includes all of the large hubs and several medium hubs in the U.S.
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Figure 1-1: Number of scheduled flights delayed and average arrival delay for all

scheduled flights in the US from 2000 to 2013

U.S. airline industry, the average arrival delay for most of the major airports exceeded

15 minutes, while the three major airports of the New York Metroplex-Newark Lib-

erty Airport(EWR), LaGuardia Airport (LGA) and John F. IKennedy Airport (JFK)

had average delays of more than 25-minutes.

At an individual airport, flight delays are caused by the relation between the actual

demand and the capacity of the airport. As a day proceeds, flight delays fluctuate

according to the evolution of demand and airport capacities. In particular, demand

and capacities can be represented by the number of scheduled flights and the airport

processing rates, respectively. In Figure 1-4, we relate these two factors to flight de-

lays by presenting the evolution of the number of scheduled flights over time of day

in five of the busiest U.S. airports in 2007-Atlanta (ATL), Chicago (ORD), Miani

(MIA), Dallas/Fort Worth (DFW) and Newark (EWR). The average arrival delays

are computed for each hour of a day as the average of the arrival delays associated

with flights scheduled to arrive within that specific hour.

From Figure 1-4 6, we observe that from lam to 6am, the average delay less than

15 minutes. After 6 am, the average arrival delays reach their peaks. At night, the

6To compute average accumulated arrival delay s in a day, we first divide a day into 24 hours.

For each hour, we compute the total arrival delays for flights scheduled to arrive within that hour.

Then we sum up total arrival delays for all days in a year, and take the average over the number of

flights, ending up with the quantities shown ill this figure.
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in the NAS modelled by the AND model. This computation takes place for June

14th, 2007. which. was a day with lioht load. For such days, it can be seen that local

delays may take up only a small portion of total delays, while the remaining delay is

captured by propagation delays.
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imating flight delays for an individual airport was introduced by Kivestu[Kiv74]. It

models the take-off and landing process as a dynamic and stochastic queue. Following

this work, Pyrgiotis[Pyrl2] proposed the AND model, which computes the propaga-

tion of flight delays at a network scale.

1.2 Passenger delays

Several existing models provide reasonably accurate estimates of flight delays. How-

ever, practically all existing models do not consider the impact of flight delays on

passengers. In fact, the difference between flight delays and passenger delays can

be significant. For example, in 2007, the average passenger delay was estimated to

be 33.09 minutes[BFV10], while the average flight delay was 16.69 minutes. This

difference is due to several factors that contribute to passenger delays: the seating

capacities of aircraft, flight cancellations and missed connections between flights.

Because missed connections and flight cancellations are not considered by models

of flight delays, Bratu proposed the concept of passenger-based metrics for delays[Bra04].

Passenger delays measure the difference between the planned and actual arrival time

at the final destinations of passengers' itineraries. To illustrate flight delays and

passenger delays, we use the following example. Suppose an aircraft of American

Airlines (AA) is scheduled to depart from Chicago O'Hare Airport (ORD) at 8:35am

and arrive in Phoenix Airport(PHX) at 11:00am. However, due to bad weather con-

ditions and airport congestion at ORD, the flight's actual departure time is changed

to 11:28am, eventually changing the actual arrival time to 1:55pm. Thus, this flight

has 173 minutes departure delay and 175 minutes arrival delay. Continuing this sce-

nario, if another aircraft of AA is scheduled to depart from PHX at 11:40am for Los

Angeles Airport (LAX), connecting passengers from Chicago will miss their connec-

tion at Phoenix because the aircraft from ORD to PHX will arrive after 11:40. These

passengers will have to be transferred to a different flight to L.A.,but they will have
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to wait for flights having available seats, thus increasing their travel time. Thus,

passenger delays occur, which consist of both the flight delays and the waiting time

for an alternative connecting flight. Besides missed connections and flight delays,

flight cancellations also play a role in passenger delays and sometimes have an even

greater impact. For example, assuming the initial flight is cancelled in Chicago, all

the passengers on this flight must be reallocated to other flights and all the itineraries

of these passengers will be disrupted. Therefore, it is very important to analyze

passenger delays in addition to flight delays. By exploring the effects of different

cancellation strategies under hypothetical scenarios, one can understand the impact

of these strategies on passenger delays and provide suggestions for reducing passenger

delays and increasing the total social welfare in the entire network.

1.3 Literature review

In this section, we review the AND model and the PDC. Our integrated model is

based on these two.

1.3.1 Airport Delay Network Model

The Airport Network Delay model (AND) [Pyr12] consists of a numerical queueing

model (QE) and a propagation delay algorithm (DPA), which capture the local delay

effect of an individual airport and the propagation delay effect of the network, re-

spectively. It estimates flight delays for each individual flight and tracks the itinerary

of each aircraft during its life cycle of a day. By aggregating such flight delays at

the individual airport level, statistics that are of interest, such as the average arrival

delay for each airport, can be computed and used to analyze the performance of each

airport. In addition, as a byproduct, the estimated arrival and departure times of

each individual flight will be obtained. The AND requires scheduled flight informa-

tion, airport capacities, and turnaround times of flights as its inputs. The model is

very flexible in the sense of allowing the testing of many hypothetical scenarios. By

changing the inputs, we can investigate the corresponding impact of different factors
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on flight delay statistics, and have a seuse of which factors have an important role or

act as a bottleneck for the system. The AND describes the evolution of flight oper-

ations over the day by dividing a day into many small time intervals, running delay

estimation for each individual flight within each interval, and updating information

on each flight in terms of its estimated departure and arrival time. Schematically,

Figure 1-6[Pyr12] shows each component of the AND model and the relations among

these components. By default, the AND divides a day into time slots of 15 minutes

Stan at T-O
Input aircraft itneraries (staf of day
for a single day plus
demand and capacity
profiles at each airport

Inpt:

delay by oine
of day per

airpore

Run OE for evey airnort:
Calculate the expected delay

on landiig and takeoff (or
every A T

L Determine r*, the time when the
first significant delay occurs

I Process flights operating before

3. Assign delays and rvise arrival
and departure times of successor
flights

4. Uprdate sirpor demand pofikes

Figure 1-6: AND framework

and iterates between the QE and the DPA within each time slot. In the beginning

of the loop, the scheduled flight information for all the flights of the day are input to

the QE. The QE will compute the estimated delays for flights that land or take off

within each time interval and update their estimated departure or arrival time, which

will subsequently be used as the input for the DPA. Then, the DPA determines which

flight delays will be propagated to the next time interval, thus affecting the demand

of the next time period. With a new demand profile constructed, a new iteration

begins. This continues until no more schedule updates are necessary.
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QE

The QE is a numerical queueing model which is applied to each airport. The

number of flights scheduled to take off and of land in each time period serves as the

demand rate of the queue, and the capacity of runways serves as the service rate.

Moreover, the order of accessing the queue is First Come First Serve (FCFS). In

particular, the underlying queue is modelled as a M(t)/Ek(t)/1 system, with arrivals

modelled as a non-stationary Poisson process and Erlang order k as the service time

distribution. Since the exact computation for Erlang queues is time-consuming, an

approximation method is used, which makes the AND highly efficient for computing

local flight delays within each airport.

The QE approximates the evolution of the probability distribution for the number

of flights waiting in the queue as the time proceeds. This facilitates the computation

of quantities that measure performance, such as time-averaged daily local delay, ex-

pected upstream delay, etc.

DPA

The DPA captures delay propagation effects throughout the network of airports

by determining which flights will propagate their delays so that they will be oper-

ated in an interval different from the one they were originally scheduled in. These

flights are labeled as unprocessed flights7 . For each time interval of a day, the DPA

first computes a critical time t* which is set equal to the earliest updated departure

or arrival time of unprocessed flights. The flights before this t* will be labelled as

processed flights and do not propagate their estimated delays in the following time

interval, thus not affecting demand for the next time interval. In contrast, the flights

operated after this t* will be labelled as unprocessed flights and will cause a change

to the demand of the next time interval, thus updating the demand profile. As a

7The time of a flight operation (landing or takeoff) is given by the final update of the time when
this operation will take place.
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result, new demand profiles for all the iirports are obtained and will be used as the

input for QE in the next iteration of the model.

The AND can be regarded as a very flexible framework, rather than a model. The

QE can be implemented in different ways, using not only Erlang service times and a

stochastic model but also deterministic demand and service processes. In addition,

the number of airports can be increased beyond the 34 U.S. major airports which are

covered in the current version of the AND model. Furthermore, since we compute

the probability distribution of the number of aircraft in the queue over the day, we

can design a computational module to calculate any statistic we may be interested in.

Although the AND has many advantages, it presents an estimation bias when

we compare its delay estimates to the actual delay computed through the ASPM

database. One reason for this bias is that the AND model does not consider the ini-

tial delay for each aircraft on any given day. For example, a flight may be scheduled

to depart from Mexico City at 7:55am and arrive in Los Angeles at 10:30 am. But

suppose that due to some mechanical problems, this aircraft cannot take off until 9:55

am. As a result, this aircraft would almost surely have a delay of 2 hours when it

arrives at Los Angeles. Since the AND only takes the planned flight schedule as its

input, this effect cannot be captured.

Moreover, when studying the flight delays within the NAS, the AND currently

only has capacity profiles for 34 major airports in the U.S. For other airports, the

AND assigns zero delay to any flight through them. This may lead to significant

underestimation of delays for the entire network.

1.3.2 Passenger Delay Model

Bratu[Bra04] proposed the Passenger Delay Calculator (PDC) to compute passenger

delays based on actual flight information, and proprietary booking data from an air-
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line. The PDC can take into account missed connections and flight cancellations, if

it has the actual flight information, such as whether a flight was cancelled or not,

and whether the connection time between two consecutive flights is enough. In ad-

dition, the PDC includes a module that reallocates disrupted passengers by setting

up a disrupted-passenger queue and also a maximum waiting time for any disrupted

passengers, such as 12 hours in the daytime and 24 hours at night time. Following

Bratu's work, Barnhart et al.[BFV10] generalized the PDC to 20 U.S. air carriers and

introduced a passenger itinerary allocation model based on a discrete choice model.

The itinerary allocation model is used to allocate passengers to all the possible

itineraries over a year. First, the model will extract attributes of itineraries, such as

the local time of departure for the itinerary, the minimum seating capacity for the

flights in the itinerary, etc. Then, a multinomial logit model is estimated by using

the booking data from the sponsor airline. Using the logit model and macroscopic

demand data, such as monthly itinerary demand and quarterly flight leg demand,

each passenger can be allocated to a possible itinerary. This constructed passenger

schedule information is used as the input for the PDC algorithm.

The PDC algorithm is executed in several steps. The first step is to determine

disrupted passengers. Passengers who take two consecutive flights can be labelled as

disrupted when either one of the two flights is cancelled or there is not enough time

between these two flights for passengers to catch the next flight because of an arrival

delay incurred by the first flight. In the second step, the disrupted passengers are

ordered by their disrupted time in a recovery queue that operates according to some

standard airline recovery policy. For the third step, the disrupted passengers will be

reallocated to the earliest flight that has available seats and is leaving for their final

destinations. During this assignment process, if the maximum waiting time thresh-

old is triggered and the passenger still cannot be reallocated, the passenger is given

a default delay equal to the maximum waiting time specified by the model's users.

Eventually, delays for groups of passengers that have the same itineraries will be com-
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puted. Based on these we can further compute various statistics for passenger delays.

The PDC is a powerful tool for computing passenger delays when actual flight

information is available. But it requires major enhancement if it is to be used for

computing passenger delays for hypothetical scenarios. In particular, we are interested

in what impact an airline's flight cancellation strategy will have on passenger delays

throughout an airline's network.

1.4 Research goal

The research presented in this thesis will propose an integrated model for testing the

impact of different cancellation strategies on passenger delays for hypothetical sce-

narios. Since the AND outputs the estimated departure and arrival information for

each flight, we will incorporate the AND into the PDC to compute the updated flight

arrival and departure information after determining the flights cancelled. In this way,

we can compute passenger delays for any hypothetical scenario. To this end, we will

introduce a framework that integrates a Tail Recovery Model, Flight Cancellation

Algorithms, a Refined Airport Network Delay (RAND) model, and the PDC at a

daily scale. We will implement different flight cancellation algorithms and test their

impact on the passenger delays.

We will also further explore the possibility to extend the integrated model to a

monthly scale, or a scale that contains any length of time. In particular, we will

extend the RAND to a monthly scale by constructing probability distributions for

airport capacities through some classical machine learning algorithms, and validate

our model by using the ASPM actual delay data.

1.5 Thesis outline

The main body of this thesis consists of two chapters: In Chapter 2, we provide a

detailed description of the integrated model. Specifically, we describe multiple com-
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ponents of the integrated model, including the Tail Recovery Model, the Capacity

Profile Construction Model and the Refined Airport Delays Model (RAND), which

is modified from the AND model proposed by [Pyr12]. Then we discuss multiple

cancellation algorithms and evaluate their impact on passenger delays in terms of six

criteria and seven typical days in 2007. We also compute passenger delay metrics on

August 9th given different numbers of cancelled flights.

In Chapter 3, we extend the RAND model to compute flight delays on a monthly

scale using different capacity profiles as input. These capacity profiles can be di-

rectly obtained from Federal Aviation Administration (FAA) reports or constructed

by using classical machine learning algorithms on airport-level data. We validate our

estimation of flight delays by using data of January 2008.
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Chapter 2

The Integrated Model

Passenger delays have a high economic cost to the passengers themselves, to the air-

lines and to the economy at large. Therefore, it is important to evaluate the factors

that influence passenger delays, such as different cancellation strategies and different

weather conditions. However, the Passenger Delay Calculator (PDC)[BFV10] relies

on an input of actually realized flight schedules to compute passenger delays. Thus,

the PDC in its existing form cannot be used to calculate how the passenger delays

would change in response to different cancellation strategies under different hypo-

thetical scenarios. In this research, our goal is to use the Airport Network Delays

(AND) [Pyr12] model as the tool to construct expected flight schedules and using this

information to estimate passenger delays.

To this end, in this chapter, we will introduce an integrated model that incorporates

the AND and the PDC at a daily scale, while the next chapter considers this combi-

nation at a monthly scale, or any other time scale. We differentiate models according

to different time scales because they have different applications depending on their

time scale.

The daily integrated model aims to study the impact of factors such as weather con-

ditions or more explicitly airport capacities and the number of scheduled flights. In

other words, this daily integrated model is only used for analyzing and estimating

delays rather than predicting delays. The inability to predict delays can be explained

by the large fluctuations of the number of flights operated by airlines on any specific

29



day and the unpredictability of weather conditions. For these reasons, we cannot

expect too much for performing accurate flight delays or even passenger delays esti-

mation. As a result, in the daily integrated model, we suppose that the capacity of

each airport is known as well as the initial flight 1 delays for early flight of a day.

Moreover, instead of studying a calendar day, we follow AND's setting that takes the

study window from 3 am of a specific day to 3 am of the following day and denotes

this time interval a "research day". AND takes 3 am as the starting time point of

a day because it assumes no significant interplay from one day to the next so that

(arrival) delays can be studied for an individual day. In Figure 2-1, we compute aver-

age arrival delays for late night flights, that is, flights scheduled to arrive before 3 am

but actually arriving after 3 am. We observe that both the percentage of late night

flights and percentage of late night flight delays are less than 1 %, which account

for a very small portion of total number of flights and flight delays in a day. Hence,

the inability of AND to handle late night flights will not have a significant impact

on the flight delay estimation. When using the scheduled flight data as an input, we

just simply ignore these late night flights. Similarly, we also ignore these flights for

our daily RAND model which will be introduced later. However, for passenger delay

computation, the no-interplay assumption seems to be problematic. Barnhart, Fear-

ing and Vaze [BFV10] showed that the percentage of disrupted passengers receiving

default delays is 33.5% for 6 hour / 12 hour delay limits (the maximum time any

delayed passengers will wait) and 8.0% for 24 hour / 24 hour delay limits 2 , while in

the meantime the percentage of Passenger Disrupted is 3.3%. Although in terms of

the number of disrupted passengers receiving default is roughly 0.5% to 1%, the total

passenger delays caused by these passengers are significant.

Because of these cross-day effects, the daily integrated model can not grasp the over-

all mechanism of flight delays and passenger delays. In addition, we are motivated to

extend the integrated model to predict delays at a macroscopic scale over an extended

period of time. Therefore, in Chapter 3, we shall extend the daily integrated model to

'For definition of initial delays, see section 2.5
2the number before and after slash sign means the delay limits for day and night, respectively.
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Figure 2-1: Number and percentage of arrivals delayed beyond the 24-hour study

window (3 am to 3 an of the next day) (2007)
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a monthly aggre gated model with monthly flight schedules as input. This reduces the

requirement of working with actual airport capacities and with actual initial delays

for any given day and allows us to develop statistical estimates of delays based on

long-term airport capacity data.

In section 2.1, we describe required input data sets for our integrated model as

well as difficulties in combining the AND and the PDC due to the different data sets

that these two models utilize. Section 2.2 presents the framework of the integrated

model and the relationships among all of its components. In the remaining sections,

we will introduce each component of the integrated model in detail. Moreover, we

will present estimation results for both flight delays and passenger delays.

2.1 Data preparation

The AND model uses the Aviation System Performance Metrics (ASPM) database as

a major input and so does the integrated model proposed in this chapter. The ASPM

is conpiled by the Federal Aviation Administration (FAA) and provides detailed data

on flights to or from the 77 ASPM airports3 . In addition to flights between the 77

3See Table A.l and Table A.2
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ASPM airports, the ASPM database also contains flights between any ASPM airport

and an international airport or a non-ASPM airport in the U.S. In 2007, there was a

total of 11,719,016 flights in the ASPM database. Among them4 , flights from or to

the 34 major airports5 account for 89.0% of total flights, while for 2013, this number

is 90.7%. Figure 2-2 shows the number of flights arriving or departing from each of

the 34 major airports. ATL and ORD serve the greatest number. In Figure 2-3,

we show the number of flights in the database for some major airlines' in 2007 and

2013 (19 for 2007 and 16 for 2013), which represent 67.2% and 76.9% of total flights

in the ASPM for 2007 and 2013, respectively. According to this figure, Southwest

Airlines (SWA) and American Airlines (AAL) have the largest number of flights in

2007. However, in 2013 ExpressJet (ASQ) had the largest number of flights. This is

because ExpressJet operates a very large number of regional flights 7 . In Figure 2-4,

we consider flights only between 34 major airports, where this time the number of

flights of ExpressJet is substantially lower than either 2007 or 2013.

The ASPM database combines several different sources of data, such as the Traffic

Flow Management System (TFMS) data, the Airline Service Quality Performance

(ASQP) data, etc. In particular, in 2007, the ASQP Data contributed 61.8% of the

total number of flights in the ASPM.

The ASPM database consists of several modules. Two of these which are used in

this research arc the Airport Analysis module and the Individual Flights module.

The data set of the Individual Flights module documents individual flights informa-

tion, including the airline operating the flight, the tail number of the aircraft, the

departure and arrival airports, the scheduled and realized arrival and departure time,

etc. However, cancelled flights, military flights, and General Aviation flights are not

recorded. The Individual Flights module facilitates the computation of flight delays

for different airlines, different airports, etc. Figure 1-3 showed the average arrival

4We compute this statistic from ASPMs Individual Flights Module, which will be described later
in this chapter.

5 See Table A.1
'See Table A.3
7The difference in the number of flights and number of airlines in 2007 and 2013 is due to airline

mergers between 2007 and 2013. For example, Northwest Airlines (NWA) was merged into Delta
Airlines (DAL) in 2008; Comair was merged into Delta in 2012.
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Figure 2-2: Number of flights at 34 major airports in the ASPM
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delays for 34 major airports in the U. S for 2007 and 2013, while Figure 2-5 shows

average arrival delays for 20 major airlines for 2007. WAe have used the Individual

Flights module to obtain scheduled flight time information, which is an important

input for the Refined Airport Network Delays (RAND) model, while the actual flight

timle information will serve to validate the flight delays estimation obtained by the

RAND. However, the original data set cannot be used directly as ail input for the

RAND, since a significant percentage of tail numbers of flights is artificial'. For ex-

amiple, in 2007, 38.2%;" of flights lack actual tail numbers. This situation leads to a

potential underestimation of flight delays in that the RAND models the flight delays

via the itinerary of each aircraft, but the propagation effect of delays through the

same aircraft will not be captured if some flights which in reality are operated by the

same aircraft, ar lasued to be operated by different aircraft inthe RAND model.

'In the ASPMI, tail numbers starting with Capital letter N are actual tail numbers. Other tail
numbers just simply follow their flight numbers, concatenating with airlines' ICAO code in the

beginning. For example, "N626AS" is an actual tail numlber, whereas "AAH923"' is an artificdial tail

number wvhich associates to a, flight fromn " AAH" airline and whose flight number is 923.
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Figure 2-3: Number of flights of major airlines in the ASPM
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Figure 2-4: Number of flights of major airlines between the 34 airports in the ASPM
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Therefore, we introduce a tail recovery model to associate flights with artificial tail

numbers to those with actual tail numbers (see Section 2.3).

The data set of the Airport Analysis Module documents weather conditions hourly

for each of 77 ASPM airports, as well as tens of other metrics, such as estimated de-

parture and arrival rates, average gate arrival delays, etc. In this thesis, we will study

the impact of weather conditions on capacities and then delays. In particular, we will

construct a daily capacity profile for each airport based on meteorological conditions

and further use the capacity profiles as an input for the RAND (See Section 2.4). In

Chapter 3, we will introduce a Markov Chain Model to dynamically construct the

meteorological conditions and then capacity profiles, based on which flight delays for

a. period of time, such as a month or a year, call be computed.

The second major database on which we shall rely was developed at MIT by combin-

ing a number of different databases of the FAA and the U.S. Bureau of Transportation

Statistics(BTS). We denote it by IDFB (Hybrid database combining databases from
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Figure 2-5: Average Arrival Delays for major airlines in 2007
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FAA and BTS). This is the major input database for PDC [BFV1O]. In our integrated

model, xe will continue using this database as the input to the PDC. The HDFB con-

bines the Airline Service Quality Performance (ASQP) database, the Schedule B-413

Aircraft Inventory (B-43), T-100 Domestic Segment (T-100) and the Airline Origin

and Destination Survey (DB1B) maintained by the BTS, as wvell as the Enhanced

Traffic Management System (ETMS) database maintained by the FAA. The ASQP

database provides scheduled flight information similar to that of the Individual Flight

Module of the ASPM, such as scheduled and actual arrival and departure time, ar-

rival andI departure airports, tail numbers, etc. Moreover, it also contains cancelled

flights information. The B-43 database provides seat capacity information for most

airlines, but can only match 75% of flights in the ASQP due to the artificial tail

number problem in the ASQP; the ETMS provides International Civil Aviation Or-

ganization (ICAO) aircraft equipment code and helps to match many of the remaining

25% flights in the ASQP by using scat capacity; the T-100 and the DB1B3 provide

aggregate passenger demand.

There is, however, a~ big (difference between the ASPM and the IIDFB in terms of the
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number of flights they contain. The total number of flights in the HDFB in 2007 is

only 7,455,428, compared to 11,719,016 in the ASPM. This difference is due to the

fact that the ASQP is only one of the data sources that provide flight information

for the ASPM. Moreover, the ASPM does not contain cancelled flights, whereas the

original ASQP database does. This difference leads to a problem when combining the

PDC and the AND models, since we cannot.use a unified database as an input for

the integrated model. The RAND requires the full set of flights as an input, or flight

delays will be underestimated. However, the PDC cannot use the full set of flights

as an input, since many flights do not have seat capacity information and belong to

other airlines beyond the 20 covered by the PDC. Therefore, at the cost of losing a

substantial number of flights, which are not reported in the HDFB, we use the Indi-

vidual Flight Module of the ASPM as an input for the RAND, but match the result

from RAND to the HDFB before computing passenger delays.

2.2 Overview of the Integrated Model

The integrated model provides a framework for quantifying aggregate passenger delays

at a daily scale based on the flight schedule information, flight cancellation informa-

tion and airport conditions (weather and capacity conditions). It turns out to be

very flexible, since we can implement different cancellation and operating strategies,

either existing or hypothetical, according to decisions made or suggestions given by

airline managers, airport managers and officials from the FAA, and observe how the

entire airport network delays vary in response to these strategies.

The framework of the integrated model at a daily scale is illustrated in Figure 2-6,

where squares represent processing steps, and ellipses represent data sets.

Before using this integrated model, we prepare three data sets for a specific day

from the HDFB, the Individual Flights Module and the Airport Analysis Module of

the ASPM. In the beginning stage of the framework, we combine the HDFB data set

and the ASPM flight data set. In particular, the HDFB data set is divided into two
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Figure 2-6: The framework of the integrated model
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parts, flights that were actually operated and flights that were cancelled in reality.

We match the former to the ASPM flight data set in order to obtain an integrated

data set since both sets contain only actually performed flights. But in order to im-

plenment cancellation strategies in hypothetical scenarios, we also assnme that all the

actually cancelled flights were not cancelled and include them into the integrated data

set. Since a significant percentage of flights in this integrated data set have artificial

tail numbers, we employ a tail recovery model to recover default tail numbers. In

particular, flight-specific information will be processed to construct entire itineraries

for each individual aircraft.

After constructing in this way a complete set of flights, a specific cancellation strategy

is executed to generate a specified number of hypothetically cancelled flights. The

remaining not cancelled flights are fed into the RAND along with capacity profiles

for all the 34 airports. The capacity profiles are either constructed according to the

FAA Benchmark report (2004)[ACB04] or based on construction methods described

in Section 2.4 and in Chapter 3. The RAND estimates flight delays for each flight and

also outputs expected arrival and departure time information for each flight. Based
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on this flight data set (note that it also identifies hypothetical cancelled flights), the

next step is to modify the PDC input dataset -- HDFB. In particular, we treat flights

which were cancelled in reality as normally operated flights and flights that are hypo-

thetically cancelled as actually cancelled flights in HDFB. Moreover, we update the

actual arrival and departure information by replacing it with expected arrival and

departure information computed through RAND. Eventually, we use this modified

HDFB dataset as an input to the PDC and compute passenger delays.

The matching of data sets is executed twice in this framework. It first takes place

between flights actually operated in the HDFB dataset and in the ASPM dataset

before executing the Tail Recovery Model (see Figure 2-6). The second match takes

place between flights in the table of the expected arrival and departure times and

the HDFB dataset before producing modified HDFB dataset for the PDC (see Figure

2-6). The number of flights that can be matched at this stage determines how many

flights will be updated in the HDFB in terms of their arrival and departure time, thus

directly affecting the accuracy of the estimation of passenger delays. In Table 2.1,

we use a random cancellation strategy9 as an example and show the extent to which

we can match the HDFB and the flight module data set of the ASPM, including

cancelled flights. For the seven days shown in the table, the percentage of matched

flights is always well above 90%.

'See section 2.7
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Table 2.1: Performance of matching the HDFB dataset and the ASPM dataset for the

random cancellation strategy for seven days in 2007

Date Nov Jun Jun Aug Mar Feb Feb

23rd 14th 20th 9th 2nd 24th 14th

Flights Actually 52 284 515 819 1238 2121 4385

Cancelled

Flights from 26947 35775 35522 34084 34225 27604 31544

the ASPM

Flights from 16946 21663 21639 21728 21305 17988 20458

the HDFB

Matched Flights 16166 20979 20254 20461 20836 17484 19742

Percentage of HDFB (95.4%) (96.8%) (93.6%) (94.2%) (97.8%) (97.2%) (96.5%)

flights matched

From the leftmost column to the rightmost column, the number of cancelled flights increases.

We will keep using this order for these seven days in all subsequent tables.

In section 2.3 through section 2.8, we will present each component of the integrated

model in detail. We select seven days (November 23, June 14, June 20, August 9,

March 2, February 24 and February 14) in 2007 as computational examples and show

results for these days for each module in the integrated model. These selected days

have different numbers of actually cancelled flights, with Feb 14 and Nov 23 being

days with the most and the least number of flights cancelled in 2007, respectively. In

particular, the largest number of cancellations is due to the Valentine's Day storm,

of February 13-14, 2007, while November 23 is the Friday after Thanksgiving. These

days are representative in the sense of having a wide range of delays and cancellations.

The basic profile of these days including the number of flights actually cancelled and

the total number of passengers from HDFB is presented in Table 2.2.
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Table 2.2: The basic profile for 7 selected days

Date Nov Jun Jun Aug Mar Feb Feb

23rd 14th 20th 9th 2th 24th 14th

Flights cancelled 52 284 515 819 1238 2121 4385

Number of passengers 1186717 1545767 1461023 1507411 1489961 1036570 1141024

2.3 The Tail Recovery Model

The tail recovery model recovers artificial tail numbers for the integrated data set that

merges the HDFB and the flight data set in the ASPM, thus providing full aircraft

itineraries. This is very important for modelling the delay propagation effect in the

airport network in the RAND. In the integrated data set, roughly 30% to 40% of flights

do not have actual tail numbers. For instance, on Aug 9th, the total number of flights

is 34084, of which 35.5% did not have actual tail numbers. Moreover, there is a small

percentage of flights lacking aircraft type information. For example, this number is

224 on August 9th. The tail recovery model has a significant impact on the flight

delays estimation. For instance, following the example of Chapter 1, suppose, for a

specific day, an aircraft departs from Chicago O'Hare Airport (ORD), where serious

congestion occurs and the delay time is about 30 minutes, to Los Angeles (LAX) via

Phoenix (PHX), where little congestion occurs and the delay time is about 5 minutes.

Under this setting, if the tail number is correct for this aircraft, or in other words, two

flight legs share the same tail number, AND computes the arrival delay at LAX 30

minutes and the arrival delay at PHX 35 minutes, leading to a total arrival delay 65

minutes for this aircraft. On the other hand, if the tail number for two flight legs are

different, these two flights legs are treated as if they were operated by two different

aircraft. Aircraft A makes the first flight, and aircraft B the second. Assuming all

the other flight schedules are the same as in the previous scenario, Aircraft A still

suffers 35 minutes of delay computed by the AND, whereas Aircraft B takes off on

time and does not suffer delay at all! As a result, the total arrival delay is only 35
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minutes, as opposed to the correct 65. Therefore, it is important to recover the tail

numbers as accurately as possible.

Our tail recovery algorithm is shown in Algorithm 1. Basically, it infers the tail

numbers of flights without actual tail numbers by relying on flights with existing tail

numbers and making additional assumptions, such as that matched flights should

belong to the same airline, have the same aircraft types, and match scheduled time

information.

Algorithm 1 The Tail Recovery Algorithm

1: MinTT <- Default Minimum transfer time

2: MaxTT +- Default Maximum transfer time

3: N +- the number of flights
4: F <- the list of all the flights including different attributes, such as tail numbers

(TN), aircraft types (AT), airlines (A), scheduled arrival time (SAT), scheduled

departure time (SDT), original airport (OA), destination airport(DA), actual ar-

rival time (AAT), actual departure time (ADT)
5: Nd <- the number of different tail numbers

6: Nd2 + 0
7: while Nd, = Nd do
8: Sort flights by A, TN
9: for i +- 1 to n do

10: if f[i].AT = 0 and f[i].TN h 0 then
11: j +- i +1
12: if f[i].A = f[j].A then
13: if f[i].TN = f[j].TN and f[j].AT h 0 then
14: f[i].AT +- f [j].AT
15: Continue
16: end if
17: end if
18: j -- i-1

19: if f[i].A = f[j].A then
20: if f [iI.TN = f [j].TN and f [j].AT , 0 then
21: f[i].AT +- f[j].AT
22: Continue
23: end if
24: end if
25: end if
26: end for
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27: Sort flights by A, AT, SDT
28: for i +- 1 to n do
29: if f[i].TN = 0 then c> f is an abbreviation for flight
30: j - I + 1
31: while f[il.A = f[j].A, f[i].AT = f[j].AT do
32: if f [i].DA = f [j].OA, f [i].SAT + MinTT < f [j].SDT, f [i].SAT +

MaxIT > f[j].SDT, f[i].AAT + MinTT < f[j].ADT, f[i].AAT + MaxIT >
f[j].ADT and f j].TN , 0 then

33: f [?i].-TN +- f [j].-TN
34: break
35: end if
36: j-j + 1
37: end while
38:

39: while f[il.A f[j].A, f[i].AT f[j].AT do
40: if f [i].OA = f [j].DA, f [j].SAT+MinTT < f [i].SDT, f [j].SAT+

MaxIT > f[i].SDT , f[j].AAT + MinTT < f[i].ADT, f[j].AAT + MaxIT >
f[i].ADT and f[j].TN h 0 then

41: f [i].T N +- f [ j].T N
42: break
43: end if

44: j +- j - 1

45: end while
46: end if
47: Nd2 +- the number of different tail numbers
48: Ndl Nd2

49: end for
50: end while

42



The algorithm is executed iteratively in two phases, recovering aircraft types and

tail numbers, until the number of aircraft stays the same for two consecutive itera-

tions.

For each iteration, in Phase 1 (Line 8 - Line 26), the algorithm first sorts flights

according to airline and tail number. It then tries to recover aircraft types for each

target flight, that is, the flights without aircraft type information but with tail num-

bers. Since we have sorted all the flights, for each target flight, we only need to look at

the previous and the next flight in the list. If one of them matches the target flight's

tail number and also has aircraft type information, the aircraft type of the target flight

is also known. In Phase 2 (Line 28 - Line 49), we first sort flights according to airline,

aircraft type and scheduled departure time. Then, for each target flight (flights with

incorrect tail numbers but having aircraft type information), the algorithm searches

flights that are before and after the target flight in the list. If a flight has the same

airline and aircraft type as the target flight, its destination airport matches the arrival

airport of the target flight, and has a reasonable time interval between arrival (both

scheduled and actual) time and the departure time (both scheduled and actual) of

the target flight and itself, these two flights are recognized to be operated by the

same aircraft, thus the tail number of the target flight can be recovered. Since actual

or default tail numbers provide useful information for recovering aircraft types, the

algorithm feeds these actual or default tail numbers into Phase 1, thus starting the

next iteration. After several iterations (in practice, the typical number is 5 to 10), the

algorithm will terminate, when no more tail numbers can be recovered by continuing

to iterate.

Phase 1 is a little different from Phase 2 in terms of the scope of searching for matched

flights for each target flight. Phase 1 only considers the previous and next flight on the

list, whereas Phase 2 considers more. The reason for this is the following: The number

of flights with missing aircraft types is relatively small (about 1% of total flights), thus

consecutive flights in the list with missing aircraft types are very rare. Also, owing

to the precise match condition of tail numbers, the algorithm can always find either

the previous or the next flight to recover the aircraft type of a target flight. However,
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this will not work for recovering tail numbers. We only have imprecise matching

conditions such as name of airline and aircraft type in Phase 2, therefore the arrival

and departure time of flights are taken into account in the matching conditions. In

particular, assuming other matching conditions are satisfied, if the difference of the

arrival time of a flight and the departure time of another flight is greater than the

minimum transfer threshold and less than the maximum transfer threshold, then we

identify these two flights as matched.

Even though this algorithm recovers almost all the tail numbers for aircraft with

artificial tail numbers, flights with both artificial tail numbers and missing aircraft

types cannot be recovered. However, this number is very small (see Table 2.3) for

unmatched flights.

In the tail recovery algorithm, minimum and maximum transfer times are important

parameters. In practice, according to experiments, 30 minutes for minimum transfer

time, and 720 minutes for maximum transfer time are best for the purpose of recov-

ering most of the flights with artificial tail numbers.

In Table 2.3, we present the total number of flights for seven selected days (same as

before) as well as the number of different tail numbers before and after application

of the tail recovery model. The substantial decrease in the number of different tail

numbers indicates the good performance of the tail recovery model. Moreover, the

number of unmatched flights is also minimal compared to the total number of flights

and can be safely ignored.
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Table 2.3: Results for the tail recovery model

2.4 Capacity Profile Construction Model

The capacity of an airport describes the rates at which the airport can process arrivals

and departures during each time interval of a day. In the AND (RAND) model,

capacity profiles for 34 major airports are constructed for any given day and used as

an input of the AND (RAND). When the Queueing Engine estimates local airport

delays based on its underlying numerical queuing model, the capacity of an airport

can be thought of as the number of flights that can be processed per unit of time by

the queueing system.

In this thesis, we will use the following types of capacity profiles:

1. The FAA benchmark three-level capacity profile. This benchmark is given by

Airport Capacity Benchmark Report 2004[ACB04]. As shown in Table A.1, this

benchmark provides three levels of capacities for each of 34 airports as well as

their corresponding occurrence probabilities. In particular, the benchmark pro-

vides an Optimum Capacity (OPT CAP), a Marginal Capacity (MARG CAP),

and an Instrument-Flight-Rules (IFR) Capacity, which represent weather con-
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Date Nov Jun Jun Aug Mar Feb Feb

23rd 14th 20th 9th 2th 24th 14th

Total flights in the ASPM 26947 35775 35522 34084 34225 27604 31544

Different tail numbers before 13335 16703 16789 16738 16533 14940 17432

recovery (percentage of total 49.5% 46.7% 47.3% 49.1% 48.3% 54.1% 55.3%

flights)

Different tail numbers after 9930 12091 12128 12357 12047 11095 12355

recovery (percentage of total 36.9% 33.8% 34.1% 36.3% 35.2% 40.2% 39.2%

flights)

unmatched flights 22 14 17 15 32 19 28

(after both phases)



ditions ranging from good to intermediate to low visibility. Thus, airport capac-

ities vary from high to medium to low levels, respectively. From the probability

associated with each level, we also observe that good weather conditions prevail

on most days at all the airports. This type of capacity profile can be used for

purposes of a macroscopic study, but is not suitable for tracing the capacity

evolution during a specific day. However, in Chapter 3, when we will estimate

flight delays on a monthly scale, this profile will be used as a benchmark and

serve as an input for the monthly RAND model for estimating flight delays.

2. The hourly estimated capacity levels contained in the Airport Analysis Module

of the ASPM database. This profile contains hourly capacities of airports each

day. In this Chapter, we use this capacity profile as an input for the day-

scale integrated model. In practice, this hourly capacity can be estimated from

historical data by using any popular regression machine learning model.

3. Probabilistic capacity profiles constructed through capacity profile construction

models that we have developed. This capacity profile has only two levels, "High"

and "Low", which is a simplification of the original capacity profile in which

capacity can vary continuously over a range of values. To produce a predictive

model for this classification problem, we use some classical machine learning

models, such as the logistic regression model, the Classification And Regression

Trees (CART) model, etc. In Chapter 3, we will compare flight delays estimated

based on capacity profiles using these algorithms to those based on the FAA

benchmark capacity profile.

2.5 The Refined Airport Delays Model(RAND)

The Refined Airport Network Delays (RAND) model is a modified version of the Air-

port Network Delays (AND) model. The AND model captures the occurrence of local

airport delays by using the Queueing Engine (QE), and quantifies the propagation

of flight delays by employing the propagation algorithm. By integrating these two
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components, the AND captures the mechanism of flight delay generation and propa-

gation throughout the network. However, the AND model includes two assumptions

that may lead to a substantial underestimation of the actual flight delays provided in

the Individual Flight Module of the ASPM.

The first assumption is the zero-delay assumption at the other airports beyond the

34 major ones. The flights whose departure and arrival airports are both in these 34

airports account for 67.2% of the total flights in the ASPM. The remaining flights

either have only one of their departure or arrival airports in the 34 major airports

or neither their destination nor their origin airport is one of the 34 airports. The

AND model only considers the 34 major airports in the U.S., treating all the other

43 airports in the ASPM database as a virtual airport, "ZZZ". Moreover, AND as-

sumes no arrival or departure delay is incurred at "ZZZ" for any flight, which may

not be in accordance with reality. For example, a flight may be scheduled to depart

from Albuquerque (ABQ) at 12:00 and arrive at Dallas/Fort Worth (DFW) at 14:40

but in reality, its departure time and arrival time may have been 12:50 and 15:34,

respectively (this is a real example from the ASPM database). The AND assumes no

flight delay occurred at ABQ since ABQ does not belong to the 34 major airports,

thus this 50 minutes delay is ignored. Using the ASPM Individual Flight Module

and calculating the average delays at the other 43 airports, we show in Figure 2-7

and Figure 2-8 that the average arrival and departure delays for these 43 airports

were significantly different from zero in 2007. In RAND, we will relax this zero-delay

assumption of the AND by adding a default arrival delay and departure delay to each

flight from or to these airports. These additional delays increase significantly the

arrival and departure delays for airports in the network, and make them closer to the

actual ones.

The second assumption is the zero-delay assumption for "initial flights". An initial

flight refers to the first flight in an aircraft's itinerary on a specific day. As indicated

earlier, the AND assumes a starting time of a day, for example, 3 am, and does not

consider any delays caused by flight delays from the previous day. For example, on a
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Figure 2-7: Average Arrival Delays for 43 other airports in 2007
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Figure 2-8: Average Departure Delays for 43 other airports in 2007
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specific day an aircraft may be scheduled to depart from LGA at 7:55 am and arrive

at STL at 9:35am, followed by a flight from STL at 10:37 am to LGA at 2:00 pm. In

this scenario, the flight from LGA to STL is the initial flight. The delay associated

with the initial flight is called initial delay. When an initial flight is scheduled early

in the day, its initial delay cannot always be explained by local congestion or a delay

propagation effect from an upstream airport since the initial delay is generated in

the early hours. However, the AND model ignores these initial delays and assumes

the initial departure and arrival delays for each airport to be zero, thus leading to

inaccuracy in terms of computing delays.

To reduce the negative effect of this assumption, we take into account the initial

delay that cannot be explained by local delay effects and delay propagations explored

by the AND model. However, exactly identifying this initial delay effect turns out to

be very difficult, since during the daytime the initial delays are probably caused either

by mechanical problems of the aircraft themselves or by local congestion. To remain
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Figure 2-9: Average (Initial) Departure Delays ii200'7
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on the conservative side, we only introduce initial delays to flights scheduled to arrive

and depart during the early hours of a day. As shown in Figure 2-9, from 3 am to 6 am,

average initial departure delays are small. Moreover, most flights during this period of

time can be counted as initial flights. Therefore, we directly use the actual departure

time as their departure time instead of using scheduled departure time as before.

Likewise, we introduce initial flight arrival delays to flights scheduled to arrive during

3 am to 6 am but not scheduled to depart during 3 am to 6 am. For flights' arrival

time later than 6 am, we just assume that the additional initial delay for any flight is

zero. Some statistics show the magnitude of these initial delays. In 2007, 41.4 % of

flights scheduled to arrive between 3 am and 6 am had positive-minute delays, while

43.1 % of flights scheduled to depart within these hours had positive-minute delays.

Figure 2-10 and Figure 2-11 present the histograms of flights during these hours

having departure and arrival delays, respectively. Surprisingly, the 'y distribution fits

these two histograms very well. We will further study these underlying distributions

for the yearly initial departure and arrival delay data in Chapter 3, using the one-

samlple Kolnogorov-Smirnov test to show that we cannot reject the - distribution
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as a possible underlying distribution for these data. In Chapter 3, we will also feed

the initial delays sampled from these underlying distributions to each day in a time

period of interest in the extended RAND model, and estimate flight delays on average.

However, the histograms of initial departure delays vary significantly from day to day,

as shown in Figure 2-12. Therefore for the input to the daily integrated model in this

chapter, we replace the scheduled departure and arrival time with actual time.

With initial departure and arrival delays added to flights in the early time of the

Figure 2-10: Histogram of initial departure delays for flights scheduled to arrive

between 3 am and 6 am in 2007 (in minutes)
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Figure 2-11: Histogram
3 an and 6 am in 2007

of initial arrival delays for flights scheduled to arrive between
(in minutes)
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Figure 2-12: Histogram of initial departure delays for flights scheduled to arrive

between 3 am and 6 am for four days with different magnitude of congestion in 2007
(in minutes)
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dav and default delays assigned to flights via 43 minor airports, the RAND model

improves the flight delay estimates in the sense of approaching the delays calculated

from the data in the ASPM flight level module. The estimation of arrival delays over

the 34 major airports for the seven representative days of 2007 is shown in Figure

2-13, where a red bar represents the delays calculated from ASPM, while a blue one

represents delays estimated by the RAND.
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Figure 2-13: Estimation of arrival delays over the 34 major airports for the seven

representative days of 2007
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Table 2.4: Some statistics for average arrival delays estimation over the 34 major
airports for the seven representative days of 2007 (delays are given in minutes)

Date Nov Jun Jun Aug Mar Feb Feb

23rd 14th 20th 9th 2th 24th 14th

Flights Cancelled 52 284 515 819 1238 2121 4385

average arrival delays in 7.39 19.38 21.25 23.24 30.08 18.88 35.67

ASPM

average arrival delays 5.09 15.47 12.99 18.28 16.33 10.76 20.9

from

RAND

number of airports with 20 14 26 17 23 22 22

underestimated delay

number of airports with 13 13 17 11 17 20 11

estimation error within

30 % of ASPM value

We summarize our observations from

elaborate on some of them in Table 2.4:

Figure 2-13 in the following list and also

1. Higher delays correspond to higher cancellation rates. With the exception of

Feb 24, the average arrival delay increases monotonically with the cancellation

rate.

2. For most airports, the average arrival delays over all 34 airports estimated by

the RAND matches the actual arrival delays obtained from the ASPM reason-

ably well in terms of estimation error. In particular, the estimated average

delay for more than one third of the 34 airports is within 30 % of the actual

delays. Moreover, except for Feb 24, and Jun 20, more than 25 airports have

an estimation error of less than 50 %10.

3. Except for Jun 14 and Aug 9, RAND underestimates the arrival delays at

10This observation is not presented in Table 2.4.
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roughly more than two thirds of airports.

4. For airports with moderate arrival delays (ex. MCO in the scenario of Feb 24),

the estimation of RAND is quite close to the true delays given by ASPM.

5. For airports with extremely large arrival delays (ex. IAD for Feb 14th, 2007

and MSP for Feb 24th), the RAND is not able to give a good estimate.

2.6 Experiments with the RAND model

In Section 2.5, we described the RAND model, which is mainly comprised of the AND

model, but additionally takes into consideration the initial delays for early flights of

a day and the default delay for flights via the airports other than 34 major airports.

The RAND model calculates flight delays mainly based on two factors, the number

of flights scheduled for a day (flight demand) and the capacities of 34 major airports.

Moreover, the flight delays are also affected by the minimum turn around time, the

maximum in air saving time for all the flights, the default delay parameters, queueing

model parameters such as the Erlang orders, etc. All these secondary inputs for the

RAND model are assumed to be set in accordance with our prior knowledge of the

airport system or directly from the available data. The minimum turnaround time is

the minimum time during which the aircraft must remain at the gate. It varies over

different airlines and different aircraft types and different airports. The maximum in

air saving time is the time that a flight can make up by speeding up en route. This

is set to be 10 minutes in the model. The Erlang order is chosen to be 9. However,

this parameter has proven to be of limited importance to the flight delay estimation.

With all these factors fixed, we test the sensitivity of RAND to the two principal

inputs for a specific day, February 14th.

Experiment 1: We consider three scenarios having different levels of flight demand.

The first one is exactly the actual scenario on February 14th, whose airport capacity

profiles come directly from the Airport Module in the ASPM database. We construct

the second scenario without changing the capacities of the airports, but increase the
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number of arrival flights at each airport by 20%. In particular, this scenario can be

achieved by randomly choosing 20% of existing flights for each airport, giving them

tail numbers different from the existing ones, and including them in the additional

flight demand. With the same method, we construct the third scenario under the

same conditions as the second scenario except randomly cancelling 20% of arrival

flights for each airport. We then use the RAND model to estimate the average arrival

delays based on these three scenarios. The estimation results are shown in Figure 2-

14. We observe that after increasing or decreasing flight demand by 20%, the average

arrival delays also increase or decrease accordingly, matching our intuition that higher

demand means more serious congestion. Moreover, some airports suffer substantial

increased delays when flight demand is increased, such as ATL, EWR and ORD. For

the entire network, the average arrival delays for the airport network are 23.24, 36.32,

16.83 minutes for the three scenarios, respectively. This reflects the well-known non-

linear relationship between demand and delay in queueing theory, namely that delays

are concave as the demand increases. However, our airport system is far from a simple

queueing system as it includes many complicating factors, such as the initial delays,

delays from other airports beyond 34 major ones, and the propagation delays across

airports.

Experiment 2: We consider three scenarios having different levels of airport capac-

ities. The first one is still the actual scenario with the actual flight demand and the

actual airport capacities. We construct the second scenario without changing flight

demand at any airport, but increase the airport capacity at each airport by 20%.

With the same method, we construct the third scenario under the same conditions as

the second scenario except decreasing the capacity by 20%. We then use the RAND

model to estimate the average arrival delays based on these three scenarios. The es-

timation results are shown in Figure 2-15, where the blue bar represents the average

arrival delay under the actual capacities, while the green and the red bar represent the

average arrival delays with capacities of more than 20% and less than 20% compared

to the actual scenario, respectively. As expected, the average arrival delays change in

the opposite direction of the change of airport capacities. Aggregately, the average
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Figure 2-14: Average arrival delays on Feb 14 2007 based on different flights demand
levels
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arrival delays for the whole airport network are 23, 18 and 43 minutes for the actual

scenario, +20% scenario and -20% scenario, respectively. From Figure 2-15, we see

that among all the airports, ORD is especially sensitive to the change of capacity as

well as the three airports within the New York Metropolitan area (EWR, JFK and

LGA). We conclude that flight delays are more sensitive to capacity changes than

to demand changes since most of the airports have a more substantial flight delay

increment compared to Experiment 1.

2.7 Cancellation Algorithms

The integrated model provides a framework in which different scenarios can be tested.

We focus here on testing different cancellation strategies and evaluating their impacts

on flight and passenger delays in the entire network. We consider five cancellation

strategies for our computational experiments: the random cancellation strategy; the

QE-based maximum-delay cancellation strategy; the QE-based rmaximuni-ratio can-

cellation strategy; the RAND-based maximum-delay cancellation strategy; and the

RAND-based maximum-ratio cancellation strategy. Each of these is described below.

Generally, these algorithms cancel flights iteratively until they reach a pre-defined

57



Figure 2-15: Average arrival delays on Feb 14 2007 based on different airport capac-
ities
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number of cancelled flights. For each iteration, all the algorithms first cancel a flight

based on a specific criterion, and then search for the consecutive flight of the cancelled

flight so that these two flights corresponds to a round trip of the same aircraft. We

denote this consecutive flight as the nearest flight of the current cancelled flight. It

must be operated by the same airline and have the same tail number and aircraft type

as the previous flight. In addition, this nearest flight has the same departure airport

as the arrival airport of the previous flight or the same arrival airport as the departure

airport of the previous flight. The algorithm for identifying the nearest flight is the

same for all the cancellation strategies and is similar to the tail recovery algorithm:

Flights are first sorted according to their airline, tail number and aircraft. We then

find the flight whose scheduled departure time is later than but not too remote from

the scheduled arrival time of the target flight. The acceptable time window is set to

be between 20 minutes at a minimum and 24 hours at a maximum.
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2.7.1 Random Cancellation Strategy

As shown in Algorithm 2, the random cancellation strategy randomly picks a flight

from the flight pool, and cancels both that flight and its paired flight. The algorithm

is very simple and fast, and turns out to give reasonably good approximate estimates

of the passenger delays observed in reality (See 2.8).

Algorithm 2 The Random Cancellation Strategy

1: N +- specified number of cancelled flights

2: F +- flights from the integrated flight data set

3: N1 flights that have been cancelled. N <-- 0

4: while N, < N do

5: Randomly remove a flight fl from F

6: Find the nearest flight f2, if one exists, with respect to fl and remove it from

F

7: N1 - N + (lor2)

8: end while

2.7.2 QE-based Maximum-delay Cancellation Strategy

The QE-based Maximum-Delay cancellation strategy, as shown in Algorithm 3, first

employs the Queueing Engine in each iteration of the algorithm, to compute the local

delays at each airport. Only remaining flights (i.e. the flights that have not yet

been cancelled) are considered when computing local delays. After summing up the

local arrival delay and local departure delay for each flight estimated by the QE, the

algorithm cancels the flight with the largest local delay, and its corresponding paired

flight. In our computational tests, this strategy always performs poorly. It gives much

larger passenger delay estimates, than in reality. The reason is that this strategy only

considers local delays. An aircraft suffering a large delay in its first flight leg will not

necessarily suffer a large delay in its second leg.
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Algorithm 3 The QE-based Maximum-Delay Cancellation Strategy

1: N +-- specified number of cancelled flights

2: F +- flights from the integrated flight data set

3: N1 flights that have been cancelled. N +- 0

4: while N < N do

5: Run QE for each airport and obtain local arrival delays and departure delays

for all the flights in F

6: For each remaining flight, local delay+- local arrival delay + local departure

delay

7: Remove f1, the flight with the maximum local delay, from F

8: Find the nearest flight f2, if it exists, with respect to fl and remove it from F

9: N1 +- N1 + (1or2)

10: Update demand of the QE for each airport

11: end while

2.7.3 QE-based Maximum-ratio Cancellation Strategy

The QE-based Maximum-Ratio Cancellation Strategy, shown in Algorithm 4 is almost

the same as the QE-based cancellation strategy except that in Algorithm 4, we use the

ratio between local delay and the number of seats on the aircraft as the cancellation

criterion instead of just local delay. By dividing by the number of seats, the new

criterion leverages the delays and seat capacity so that the algorithm tends to cancel

flights with large delays but fewer passengers. In practice, Algorithm 4 outperforms

Algorithm 3 in terms of alleviating passenger delays.
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Algorithm 4 The QE-based Maximum-Ratio Cancellation Strategy

1: N +- specified number of cancelled flights

2: F +- flights from the integrated flight data set

3: N1 flights that have been cancelled. N +- 0

4: while N1 < N do

5: Run QE for each airport and obtain local arrival delays and departure delays

for all the flight in F

6: For each remaining flight, local delay+- local arrival delay + local departure

delay

7: Divide the local delay of each flight by the number of seats of the aircraft

performing that flight

8: Remove fl, the flight with the maximum ratio, from F

9: Find the nearest flight f2, if it exists, with respect to fl and remove it from F

10: N1 +- N1 + (1or2)

11: Update demand of the QE for each airport

12: end while

2.7.4 RAND-based Maximum-delay Cancellation Strategy

The RAND-based Maximum-Delay Cancellation Strategy (Algorithm 5) is more so-

phisticated in terms of its within-loop algorithm. Instead of running only QE on each

iteration, this algorithm executes the entire RAND model, considering flight delays

for all the remaining flights within the entire airport network. The algorithm is time-

consuming, but the payoff is that total flight delays are obtained for each aircraft

itinerary rather than just local delays. Apart from the within-loop algorithm, all the

other parts of the algorithm are the same as its QE version (Algorithm 3). The flights

cancelled are those associated with the longest total itinerary delays.
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Algorithm 5 The RAND-based Maximum-Delay Cancellation Strategy

1: N <- specified number of cancelled flights

2: F +- flights that from the integrated flight data set

3: N1 flights have been cancelled. N1 +- 0

4: while N1 < N do

5: Run RAND and obtain flight arrival delays and departure delays for all the

flights in F

6: For each remaining flight, total delay of itineraryv- total arrival delay of

itinerary + total departure delay of itinerary

7: Remove fl, the flight with the maximum total itinerary delay, from F

8: Find the nearest flight f2 if exists with respect to fl and remove it from F

9: N1 +- N + (lor2)

10: Update demand of the QE for each airport

11: end while

2.7.5 RAND-based Maximum-ratio Cancellation Strategy

Like its QE version, the RAND-based Maximum-Ratio Cancellation Strategy (Algo-

rithm 6) computes the ratio between delays and seat capacity, but the delay used is

the total itinerary delay rather than local queueing delays. The algorithm cancels the

itinerary with the highest ratio. This algorithm turns out to be the best among the

five in terms of alleviating passenger delays.

2.7.6 General comments

As explained above, all the cancellation strategies, with the exception of random

cancellations, rely on estimates of flight delays by the RAND model, either partially

by using QE or entirely by using both QE and PDA. Generally, for each iteration,

these algorithms first find a flight to cancel in a greedy way based on a specific delay

related index, such as the maximum delay or the maximum ratio between delay and

seat numbers, and then search for another related flight to cancel in order to keep the
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Algorithm 6 The RAND-based Maximum-Ratio Cancellation Strategy

1: N +- specified number of cancelled flights
2: F +- flights from the integrated flight data set

3: N1 flights that have been cancelled. N +- 0
4: while N1 < N do
5: Run RAND and obtain flight arrival delays and departure delays for all the

flight in F
6: For each remaining flight, total delay of itinerary+-- total arrival delay of

itinerary + total departure delay of itinerary
7: Divide the local delay of each flight by the number of seats of the aircraft

performing that flight
8: Remove fi, the flight with the maximum ratio, from F

9: Find the nearest flight f2 if exists with respect to fl and remove it from F

10: N1 +- N, + (1or2)
11: Update demand of the QE for each airport
12: end while

entire airport network balanced. We can see that these algorithms attempt to develop

logical strategies that may approximate airline thinking. In reality, for example, if a

flight scheduled to fly from ORD to PHX is cancelled, its continuing flight leg from

PHX to LAX should also be cancelled since this aircraft is not available. However,

this does not mean all the flights operated by this aircraft should be cancelled. For

instance, suppose an aircraft is scheduled to perform a round trip from ORD to ABE

(Lehigh Valley Airport) and back in the morning and afternoon, followed by a round

trip from ORD to ATW (Outagamie County Regional Airport) in the evening. If the

ORD - ATW round trip is cancelled, this does not mean that the ORD - ABE round

trip will also be cancelled. All the above algorithms can handle this situation since

they only cancel round-trip flight legs in each iteration. If there is no round trip, the

above algorithms will not cancel any flight leg.

However, a potential problem is that the algorithm cannot ensure that the flight

itinerary will remain reasonable after each cancellation. For example, consider an

aircraft that makes a few of round trips between ORD and PHX and then eventually

flies from ORD to ABE, where it will stay at the end of the day. The algorithm

may cancel only the second flight leg in this three-legged itinerary, which will then
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decompose the itinerary to be from ORD to PHX and from ORD to ABE, leading to

an unreasonable result (an infeasible itinerary). Luckily, this problem is not signifi-

cant, as shown in Table 2.5. In this table, we compute the number of cancelled flights

which lead to this unreasonable result under the Random Cancellation Strategy. The

table shows that for each day we study, less than 5% of all flights are cancelled incor-

rectly1 2 based on the RAND-based maximum-delay cancellation strategy. In other

words, with the exception of these flights, the remaining flights have reasonable sched-

ules. We have similar results for the other cancellation strategies. Therefore, though

only cancelling at most two flight legs on each iteration, these algorithms prove to

work reasonably well in generating feasible and logical flight schedules.

Table 2.5: Flights cancelled in the RAND-based maximum-delay cancellation strategy

Date Nov Jun Jun Aug Mar Feb Feb

23rd 14th 20th 9th 2th 24th 14th

Flights Cancelled 52 284 515 819 1238 2121 4385

Flights cancelled 1 15 11 33 37 22 53

incorrectly (percentage) 2% 5.3% 2.1% 4.0% 3.0% 1.0% 1.2%

We test the five cancellation algorithms on the seven representative days. Figure

2-16 shows the percentage of the number of different aircraft cancelled out of the

number of different flights cancelled for the five cancellation strategies over seven

days. We observe that the more sophisticated cancellation algorithms tend to cancel

more flight legs from a smaller group of aircraft. In other words, the number of

aircraft involved in cancellations with sophisticated cancellation algorithms tends to

be less. For example, the number of aircraft that RAND-based algorithms cancel

is substantially smaller than those for QE based cancellation algorithms, while the

number of aircraft that the random cancellations algorithm cancels is greater than

that of RAND-based and QE-based algorithms. On the other hand, we also observe

that for days with more delays, the same algorithm tends to cancel more flight legs

from a smaller group of aircraft. For example, the QE-based max-ratio strategy

1 2 Itineraries that separate an aircraft's trip into discontinuous flight legs
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cancels flight legs from 0.5% of the aircraft on Feb 14th, while cancelling 0.8% of the

aircraft on Nov 23rd. This observation matches the fact that, in reality, it is easier to

cancel all of the flight legs associated with a specific aircraft than a subset of flight

legs associated with several aircraft. In this sense, the RAND-based algorithms, and

especially the RAND maxinum-ratio based algorithm are quite reasonable.

Figure 2-16: Ratios of the number of aircrafts cancelled to the number of flights

cancelled
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Using the RAND model with these five cancellation algorithms, we estimate flight

delays for five hypothetical scenarios. To compare flight delays for these five scenarios

with those of the actual scenario, we plot five curves associated with the average

arrival delays of these five hypothetical scenarios and one associated with the average

arrival delay of the actual scenario over the seven representative days' 3 in Figure 2-17.

We summarize our observations as follows:

1. For days with small delays, such as Nov 23rd, Jun 14th and Jun 20th, the

estimated flight delays in the hypothetical scenarios are similar to those in the

actual scenario, whereas the difference becomes substantial for days with greater

delays. For the (lays with substantial delays, most of the algorithms can reduce

delays to different extents. For example, on Feb 14th, the RAND max-ratio

strategy can reduce delay from 20 minutes to 13 minutes and on Auig 9th, the

13See Table 2.1
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QE max-delay strategy can reduce delay from 18 minutes to 15 minutes.

2. Among the five cancellation strategies, the RAND-based maximum-ratio can-

cellation strategy outperforms all the others, except for Mar 2nd. In particular,

on Feb 14th and Aug 9th, it reduces delays by up to 30%.

3. In Figure 2-17, the curves generated by the two QE-based algorithms and the

random algorithm have similar shapes, i.e., exhibit similar behavior.

Figure 2-17: Average arrival delays for scenarios in which all five cancellation algo-

rithms are applied
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In order to study how flight delays are affected by cancellation strategies at the

airport level, we present on Figure 2-18 average arrival delays on February 14th

for each of the 34 major airports based on six scenarios (five based on cancellation

strategies and one corresponding to the actual data). We observe that, instead of

reducing delays, the QE-based naximum-delay cancellation strategy leads to more

delays for most of the airports, whereas the QE-based maxinmium-ratio strategy can

slightly reduce flight delays. The two RAND-based algorithms reduce the flight delays

significantly.

Summarizing all of the figures and analysis presented above, we draw two conclu-

sions in terms of flight delays:
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Figure 2-18: Average arrival delays over 34 major airports on Feb 14th scenarios

based on different cancellation strategies

Average arrival delays

355

1. The RAND-based strategies perfoim bcst and fit reasonably well the actual

results because they consider itineraries over the entire network.

2. The performance of the QE-based strategies varies and depends on the criteria

used.

2.8 Passenger Delays results and analysis

In this section, we present some results obtained through the full integrated model.

The focus is on passenger delay metrics estimated by the model.

2.8.1 Passenger Delay metrics over six scenarios and seven

days

We test six daily scenarios, including five hypothetical ones based on the five cancella-

tion algorithms and the benchmark one based on Passenger Delay Calculator (P DC)

[BFV1OI alnd compute the estimated passenger delays for the seven representative

days. The computational results with resp~ect to different metrics of passenger delays
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are shown from Figure 2-19 to Figure 2-23. The benchmark value is indicated as

'Actual' in these figures.

The passenger delay metrics computed in these figures are as follows:

1. Percentage of passengers with more than 15 minutes of delay.

2. Average delay per passenger: This metric is computed by dividing the total

passenger delays by the total number of passengers.

3. Average delay per disrupted passenger: In the PDC, when a passenger misses a

connecting flight or the connecting flight is cancelled, a passenger is labelled as

disrupted. Average disrupted passenger delay is computed by dividing the total

delays of disrupted passengers by the total number of disrupted passengers.

4. Percentage of disrupted passengers: This is the percentage of disrupted passen-

gers in the total number of passengers on a specific day.

5. Percentage of disrupted passengers receiving default delays: The PDC will as-

sign new flights to disrupted passengers according their priority. However, it

may be impossible to assign some disrupted passengers to any flight. These are

labelled as unassigned passengers when their waiting time reaches a pre-defined

time threshold. Dividing the number of unassigned passengers by the number

of total disrupted passengers, we obtain the percentage of disrupted passengers

receiving default delays.

In Figure 2-19, we compute the percentage of passengers with more than 15 min-

utes delays over 7 days and 6 scenarios. From the figure, we observe that for days

with more flights cancelled (from left to right), the percentage of passengers with more

than 15 minutes of delay increases. The RAND max-ratio strategy reduces delays to

a greater extent than the other strategies, whereas the QE max-delay strategy per-

forms poorly for heavily congested days, but better for light-traffic days. The random

strategy gives results similar to the actual scenario. The QE max-ratio and RAND

max-delay strategies perform better than the QE max-delay strategy but worse than

the RAND max-ratio strategy.
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In Figure 2-20, we compute average passenger delays over 7 days and 6 scenarios.

We observe that for days with more flights cancelled, the average passenger delays

increase substantially. Among all strategies, the RAND max-ratio is still basically

the best algorithm, while for heavily congested days, the QE max-ratio strategy also

performs as well as the RAND max-ratio. The QE max-delay strategy is still the

poorest strategy, whereas the RAND max-delay, and the random strategies have sim-

ilar performance as the actual case.

In Figure 2-21, we compute the average delays of disrupted passengers over 7 days

and 6 scenarios. We observe that the traffic load for different days does not lead to

significant differences in terms of average disrupted passenger delays. The random

cancellation strategy is on average the best compared to the others, but it still leads

to higher delay estimates than actual for light-traffic days (Nov 23rd, Jun 14th and

Jun 20th). QE max-delay, QE max-ratio, RAND max-delay, RAND max-ratio lead

to even higher delays than the actual case.

In Figure 2-22, we compute the percentage of disrupted passengers over 7 days and

6 scenarios. We observe that for days with more flights cancelled, the percentage

of disrupted passengers increases substantially. As in Figure 2-19, QE max-ratio

and RAND max-ratio are best among all the algorithms in terms of percentage of

disrupted passengers, whereas the QE max-delay, the RAND max-delay and the ran-

dom strategies perform worse than the actual case.

In Figure 2-23, we compute the percentage of disrupted passengers receiving default

delays over 7 days and 6 scenarios. We observe that for days with more flights can-

celled, the percentage increases substantially. QE max-ratio and RAND max-ratio

are the best among all the algorithms since they produce the least percentage of

disrupted passenger receiving default delays, except Aug 9th for the QE max-ratio

strategy. For days with a heavy load, QE max-ratio outperforms RAND max-ratio.

QE max-delay and RAND max-delay are the worst performers compared to the ac-

tual case in this figure.

Summarizing all the above, we draw several conclusions:
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Figure 2-19: Percentage of passengers with more than 15 minute delays over 7 days
and 6 scenarios
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Figure 2-20: Average passenger delays over 7 days and 6 scenarios
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Figure 2-21: Average disrupted passenger delays over 7 days and 6 scenarios
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Figure 2-22: Percentage of disrupted passenger over 7 days and 6 scenarios
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Figure 2-23: Percentage of disrupted passenger receiving default delays over 7 days

and 6 scenarios
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1. The RAND based max-ratio strategy outperforms others most of the time in

terms of reducing passenger delays. This conclusion can be drawn from all the

figures except the one for average disrupted passenger delays.

2. For days with fewer passenger delays (Nov 23rd, Jun 14th, Jun 20th), the

cancellation algorithms have no significant impact on reducing passenger delays,

whereas for those with heavy passenger delays, the two max-ratio strategies

result in substantial improvement in terms of decreasing passenger delays.

3. The QE based max-delay cancellation strategy gives the worst results, when

compared to the actual scenario. This once more shows that cancelling the

flights with the maximmn delay in each iteration will lead to bias.

2.8.2 Passenger delay metrics on Aug 9th given different

number of cancelled flights

This experiment tests scenarios for August 9th, using the random cancellation strat-

egy. The number of cancelled flights varies in the tests, so we can observe the impact

of this number on the various metrics. In Figure 2-24, we consider six cases on Aug

9th, which are based on a different number of cancelled flights from 0 to 1000. In

particular, the number of cancelled flights in these cases are 0, 200, 400, 700, 819

and 1000. We compute metrics including average passenger delays, average disrupted

passenger delays, percentage of passengers suffering delays more than 15 minutes,

percentage of passengers disrupted, and percentage of disrupted passengers receiving

default delays for these six cases. In this Figure, we observe that with more flights

cancelled, the average passenger delays, the percentage of passengers disrupted, and

the percentage of passengers receiving default delays increases, which implies that

flight cancellations do not necessarily reduce passenger delays, even though they may

reduce some flight delays.
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Figure 2-24: Passenger delays of scenarios with varying number of cancelled flights
on Aug 9th
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Chapter 3

The extended RAND model

In Chapter 2, we have discussed the integrated model that combines the RAND, the

PDC and other models to estimate passenger delays under different scenarios. The

integrated model focuses on a single day of operations and uses as its inputs that

day's flight demand information, a real-time capacity profile for each airport, and the

actual initial delays for flights scheduled to depart in the early time of a day. All

these requirements prevent the model's application for predicting flight delays and

passenger delays over a specified extended period of time that we are interested in,

such as one month or one year. However, aviation administrators and planners are

often more interested in estimates of aggregate flight or passenger delays in a future

month or year, so they can initiate policies and actions aimed at alleviating delays.

Therefore, we try to extend the integrated model to accommodate aggregate input

data, such as monthly flight demand data. We build models that generate profiles

of airport capacities and initial delay distributions over a long period of time, such

as a month, and thus extend the flight delay estimation part of the RAND model to

a similarly long period. We first briefly review in this chapter several widely used

machine learning methods, including the logistic regression model, the Classification

and Regression Tree (CART) model, and clustering methods. Then we proceed to

construct capacity profiles either at a daily level or at an hourly level based on these

models for all the 34 major airports by using airport capacities and weather condition

data from the Airport Analysis Module of the Aviation System Performance Metrics
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(ASPM). Section 3.3 presents results from the application of the aggregate RAND

model that computes average monthly arrival delays at the airport level. We compare

these estimates to actual delays from the ASPM database.

3.1 Model Review

3.1.1 Logistic Regression Model

The Logistic Regression Model is an important machine learning model which is

widely used in classification problems. Consider a two-class classification problem,

where we use Y = 0, 1 to represent the class label, and X to represent the feature

vector or explanatory variables. Instead of directly predicting the value of Y, we

try to find a regression model that predicts the probability of being in class 1 given

explanatory variables, namely, Pr(Y = IX = x). This probability always takes a

parametric form of the sigmoid function:

1
Pr(Y = X= x) = + W (3.1)

1 + e-wbX

where W is the coefficient vector for explanatory variables.

In order to perform model selection for Logistic Regression, we compute McFadden's

Adjusted R2 , which measures the relative quality of a statistical model for a given

set of data and deals with the trade-off between the goodness of fit of the model and

the complexity of the model. The formula is given by:

R2 1nLa( MFujj) - K
Rdj = - (3.2)

inL(IfIntercept)

where L is the estimated likelihood given different models; MFUI1 represents the model

we build with all the explanatory variables; Iintercept represents a naive model that

only contains the constant term as an explanatory variable and K represents the

number of parameters. By using the ratio between these two log-likelihood expressions

with a penalty of K, the formula measures explanatory power by using the explanatory
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variables in the model.

3.1.2 CART Model

The Classification and Regression Tree (CART) is a semi-parametric method which

partitions the input space and uses different simple predictions in different regions of

that space.

Consider again the classification case. The classifier is made up of

1. A partition function, 7r, mapping elements of the input space into exactly one

of M regions, R 1,. . . , RA.

2. A collection of M output values, 0 m, one for each region.

If we already knew a division of the space into regions, we would set Q"m, the constant

output for region Rm to be the majority of the output values in that region; that is

1M = majority 1x(i) , I}y( (3.3)

Define the error in a region as

Em = |{iI() E Rm and y(') / Om}I (3.4)

Our objective is to select a partition to minimize

M

cM + ZEm (3.5)
m=1

for some regularization constant c.

To achieve this goal, we establish a criterion (e.g. the misclassification error, the Gini

index, etc [THF08]) based on the error defined in each region, for finding the best

single partition of the data, and then apply it recursively to partition the space until

the number of regions is greater than a threshold k. We will select the partition of

the data that minimizes the sum of the errors of each partition.
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Since the CART model tends to overfit the data, it might be tempting to regularize

by stopping after a somewhat large k, or by stopping when splitting a region does

not significantly decrease the error.

Define cost complexity of a tree T, where m ranges over its leaves as

ITI

Cac(T) = Em,(T) + aIT (3.6)
M=1

We will pick a using cross validation.

3.1.3 Cluster Methods

As a class of methods in supervised learning, Cluster methods do not need to specify

the response variable and attributes. Instead, the cluster methods define some dis-

tance metrics for observations and select observations that are close to each other to

construct clusters.

3.2 Construction of airport capacity profiles

As stated in section 2.1, the Airport Analysis Module from the ASPM is used for

constructing Capacity Profiles for airports. The Airport Analysis Module contains

weather conditions, including ceiling, visibility, temperature, wind angle, wind speed

as well as expected hourly capacities for all the ASPM 77 airports. It also contains the

Meteorological Conditions which we define as consisting of two states, either Visual

Meteorological Conditions (VMC) or Instrument Meteorological Conditions (IMC).

In the first part of this section, we will predict the hourly Meteorological Conditions

based on weather conditions, by modelling the prediction problem as a classification

problem. In particular, we will use the logistic regression model and the CART model.

Then we will proceed to predict the airport hourly capacity directly, by using a linear

regression model and a hierarchical cluster method. For all the models, we use data

1Regularization is a technique that prevents the model from overfitting.
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Figure 3-1: Percentage of VMC and IMC hours at the 34 airports in 2007
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of 2007 to estimate parameters in the model, and use data of January 2008 to test

the accuracy of our predictions.

3.2.1 Logistic Regression for estimating meteorological con-

ditions

We first show the percentage of hours tinder VMC and IMC for each of the 34 major

airports in Figure 3-1. We observe that all the airports have a significant percentage

of VMC and IMC hours except McCarran International Airport (LAS) and Phoenix

Sky Harbor International Airport(PHX), which are in VMC practically all the time.

Therefore, for most of the airports, the logistic regression model has an adequate

number of observations from both levels of its response variable.

The best specification of the logistic regression niodel we find can be written as 2

V1 =3,1, + 3ccjCEILJNG + 3u,,lV JSIBILITY + /3tepTEAPERATU RE+

2CEILING is measured in Hundreds of Feet; VISIBILITY is expressed in statute miles, ranging

from 0 to 99; TEMPERATURE is expressed in degrees Fahrenheit; WIND SPEED is in Knots; All
the following tables in this chapter use these units for variables which represent weather conditions.
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3winadWINDSPEED + 71TineDummy1 + 72TirmeDummY 2 + 73TineDumMy 3

The probability of being in VMC or IMC is given as follows:

1
Prob(VMC) = 1 1"I + e-i

Prob(IMC) = 1 - Prob(VMC)

where V is a scalar.

In this specification, 0con, ice, /vis, /temp and /wind are coefficients for the correspond-

ing weather conditions, whereas -yi, 72, and73 are coefficients for time-based dummy

variables. In particular, we use the time interval from 6 pm to midnight as the bench-

mark and use dummy variables to represent other time intervals. TimeDummy1 is

1 if the time of day of the observation is between midnight and 6 am, 0 otherwise;

TimeDummy 2 is 1 if the time of day of the observation is between 6 am and noon,

0 otherwise, and TimeDummy3 is 1 if the time of day of the observation is between

noon and 6 pm, 0 otherwise.

The parameter estimates and goodness of fit using data of 2007 are shown in Table

3.1. We observe that the goodness of fit in terms of McFadden's adjusted R2 is quite

good. When looking into the statistical test results of individual logistic regressions

for each airport (not listed here), we find that the Z values for all the parameters

are significant, except for LAS and PHX. As stated earlier, these two airports seldom

have IMC observations, leading to the insignificance of the estimated coefficients.

From Table 3.1, we also observe that the coefficients for ceiling and visibility have

positive signs, implying the higher the ceiling and visibility values, the greater the

chance that an airport has a VMC hour. However, other factors such as temperature

and wind speed contribute differently to predicting each airport's meteorological con-

ditions. For instance, for ATL, a higher temperature generally means better weather

conditions, thus leading to a VMC prediction for the airport, whereas the opposite is

true for BOS. Furthermore, time dummy variables have different signs over different

times of the day and different airports, suggesting that congestion at different airports
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Table 3.1: Parameter estimation and Goodness fit

AIR- INTE- BETA BETA BETA BETA GAMMA GAMMA GAMMA McFa

CEI- VISIB- WIND- adj.

PORT RCEPT LING ILITY TEMP SPEED DUMMY1 DUMMY2 DUMMY3 R2

ATL
BOS
BWI
CLE
CLT
CVG
DCA
DEN
DFW
DTW
EWR
FLL
IAD
IAH
JFK
LAS
LAX
LGA
MCO
MDW
MEM
MIA
MSP
ORD
PDX
PH L
PHX
PIT
SAN
SEA
SFO
SLC
STL
TPA

-15.24
-6.23
-6.21
-4.70
-9.20
-5.69
-5.81
-5.27
-11.97
-7.05
-5.21
-7.76
-10.34
-30.26
-4.48
-947.3
-4.95
-7.07
-4.70
-4.17
-15.23
-9.13
-21.98
-4.61
-34.44
-4.07
-13.76
-2.81
-1.11
-12.55
-33.33
-15.08
-9.69
-3.50

0.02
0.03
0.02
0.09
0.03
0.04
0.06
0.02
0.05
0.02
0.05
0.04
0.01
0.03
0.02
11.77
0.04
0.06
0.04
0.05
0.05
0.01
0.03
0.03
0.05
0.03
0.02
0.02
0.03
0.06
0.04
0.05
0.03
0.02

1.53
0.68
0.82
0.32
0.88
0.45
0.54
0.62
0.99
0.76
0.52
1.18
1.27
2.89
0.62
26.02
1.06
0.64
0.42
0.44
1.17
0.83
2.18
0.48
3.29
0.54
1.64
0.53
0.72
0.95
3.45
1.25
0.79
0.58

0.02
0.00
0.00
0.00
0.03
0.03
-0.01
0.01
0.02
0.00
-0.02
-0.06
0.00
0.01
-0.02
2.79
-0.12
-0.02
0.01
0.00
0.02
0.05
0.00
0.01
0.01
-0.02
0.01
0.00
-0.12
0.02
-0.06
0.02
0.02
0.00

-0.13
-0.02
-0.02
0.00
-0.08
-0.03
0.00
0.00
-0.05
-0.01
0.04
-0.02
0.03
-0.05
0.02
-2.67
0.02
0.01
-0.03
-0.02
-0.03
0.01
-0.02
0.02
0.01
-0.01
-0.02
-0.01
0.11
-0.06
-0.04
-0.01
-0.04
-0.07

-0.52
0.08
-0.72
0.18
-1.19
-0.23
-0.40
-0.51
-0.99
-0.41
-0.39
-0.40
-0.43
-0.07
0.00
-3.54
0.13
-0.14
-0.51
-0.24
-0.53
-0.29
-0.47
-0.14
-0.38
-0.33
0.29
-0.39
0.17
-0.43
-0.46
-0.15
-0.40
-1.32

-0.35
0.42
-0.29
-0.11
-1.42
-0.61
-0.08
-0.28
-0.89
-0.39
-0.52
-0.29
-0.10
-0.38
0.29
5.45
1.71
-0.09
-0.37
-0.29
-0.46
-0.47
-0.56
-0.54
-0.53
-0.27
0.70
-0.56
1.07
-0.33
0.48
-0.39
-0.62
-0.44

0.41
0.43
0.25
0.11
-0.71
-0.30
0.44
0.70
-0.08
-0.23
-0.02
0.37
0.23
0.44
0.25
1.81
1.08
0.01
0.59
0.24
-0.01
0.06
0.21
0.02
0.28
0.30
0.36
0.02
0.37
0.29
0.80
-0.54
-0.38
1.04

0.70
0.69
0.69
0.63
0.70
0.65
0.73
0.72
0.73
0.61
0.69
0.63
0.71
0.71
0.62
1.00
0.83
0.73
0.57
0.66
0.77
0.57
0.71
0.63
0.62
0.64
0.76
0.57
0.66
0.63
0.82
0.72
0.73
0.62
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Figure 3-2: Prediction accuracy for the 34 airports of the logistic regression model

M~

0 H

may happn 1111 different patturns in1 teims ot time of day. For sexvera~l of the most con-

gested airports in the U.S., such as ATL, LAX, JFK, DFW and DEN, the coefficients

of thme dummy variables are increasing with the time of the day, that is, ThmeDummy1

is less than 'TimeDuummyQ, and TimeD umnmy2 is less than TimeD urmmys, implying

that the congestion level at these airports wvill tend to be more serious in the later

lpart of a day.

To test the predictive power of the model, we apply these logistic regression models by

using airp)ort data from January 2008. Sumiiig up correctly estimated observat ions

(including observations of VMC that are estimated as VMC and observations of IMC

that are predicted asICwe shwa prdcinacrc o ach airport in Figure

3-2. With almost all the airports we have more than 90% prediction accuracy. We

conclude that the logistic regression model performs quite well in predicting VMC vs.

IMC conditions.

3.2.2 The CART model for estimating meteorological condi-

tion

In tlis subsection, we use the CART model, in particular, the classification tree as

an alternative way to predict meteorological conditions based on weather conditions.

Since the CART model is a tree-based model, it is more intuitive than logistic regres-

sion in terims of mimicking the (decision-nmaking logic and process of hmnan beings.
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The best specification we have obtained contains two variables, ceiling and visibility,

and it employs the Gini index as the node impurity measure.

Equipped with the CART model, we determine a corresponding classification tree

(which is composed of values of some critical decision points, such as CEILING and

VISIBILITY) for each of the 34 airports using 2007 data. Then we use January 2008

data to test the prediction accuracy of this approach. The result is summarized in

Table 3.2. Each classification tree can be interpreted as a two-step decision process.

Using ATL as an example, we first consider the ceiling parameter. If the ceiling is

greater than 35.5 hundreds of feet, we claim ATL is in VMC, otherwise we base our

decision on the visibility parameter. If visibility is greater than 6.5 miles, we believe

ATL is in VMC, otherwise ATL is in IMC. This table implies that ceiling and visibility

play more essential roles in terms of determining meteorological conditions than other

weather conditions, such as temperature, wind speed and wind angle. This conclu-

sion is consistent with our observations from the logistic regression model. Regarding

the relative importance of ceiling versus visibility, we have no generic answer and

conclude that their relative importance varies over airports. However, both models

(classification tree first considers ceiling, then visibility or vice versa) perform quite

well in terms of prediction accuracy using January 2008 data.

Additionally, if we compare the prediction accuracy of the CART model (the fourth

column of Table 3.2) to that of the logistic regression (Figure 3-2), we find that they

are very close differing only in the second digit. This implies that both models give

very similar estimation results despite being based on different methodologies. This

further confirms the applicability of machine learning techniques to this estimation

task, which uses weather conditions to predict airport meteorological conditions.

3.2.3 Linear Regression Model for estimating hourly capac-

ities

Since estimating airport meteorological conditions does not directly imply the level

of capacity in an airport, we consider an alternative way to estimate capacity directly
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Table 3.2: Critical decision points for classification trees and prediction accuracy

AIRPORT CEILING VISIBILITY Prediction Accuracy
(Hundreds of feet) (miles)

ATL
BOS
BWI
CLE
CLT
CVG
DCA
DEN

DFW
DTW
EWR

FLL
IAD
IAH
JFK
LAS
LAX
LGA
MCO

MDW
MEM

MIA
MSP
ORD
PDX
PHL
PHX
PIT

SAN
SEA
SFO
SLC
STL
TPA

84

35.5
24.5
24.5
25.5
35.5
28.5
29.5
19.5
34.5
29.5
29.5
39.5
29.5
39.5
19.5
49.5
24.5
31.5
24.5
18.5
49.5
19.5
34.5
18.5
34.5
22.5

32
17.5
19.5
39.5
34.5
52.5
49.5
20.5

6.5
2.75
4.5

2.75
4.5

2.75
3.5

2.75
4.5
4.5
3.5
4.5
6.5
7.5
3.5

-1
2.75
3.5

2.75
2.75
4.5
4.5
7.5

2.75
7.5
3.5
6.5

2.75
2.75
2.75

7.5
2.5
4.5

2.75

0.80
0.83
0.85
0.81
0.85
0.83
0.88
0.93
0.79
0.76
0.83
0.85
0.81
0.66
0.86
0.99
0.76
0.82
0.92
0.86
0.80
0.95
0.74
0.86
0.73
0.86
0.99
0.87
0.73
0.63
0.72
0.90
0.79
0.93



by using a linear regression model. The true capacity suggested by FAA is obtained

from the Airport Analysis Module in the ASPM database. Our goal is to predict

the capacity of each airport based on the weather information we have. Thus, the

dependent variable is the airport capacity, whereas the independent variables include

weather conditions, and dummy variables for time of day. The coefficient estimation

results and goodness of fit are shown in Table 3.3. We observe that R2 ranges roughly

from 0 to 0.45, with 6 airports more than 0.3. Based on these results, we conclude that

a linear regression model can explain some causality in terms of signs of coefficients.

However, lacking a good enough goodness of fit, we do not have enough confidence to

further use the model for computing flight delays. Comparing to the models built for

estimating the meteorological conditions, capacity estimation requires factors beyond

weather conditions.

3.2.4 Cluster Methods for estimating hourly capacities

In this subsection, we will employ a hierarchical clustering method to estimate airport

capacity. We set the number of clusters to three. The reason for doing so is that we

wish to compare our results to the capacity profiles suggested by the FAA. These

profiles also identify three capacity levels for each' airport.

We consider the hourly arrival rate and hourly departure rate for each airport as a two

dimensional vector, and use Euclidean distance as the metric that describes the degree

of similarity between them. Then we apply a hierarchical clustering method to divide

capacities into three groups, compute corresponding mean values within groups and

use them as the three levels of capacities for each airport. Moreover, the percentage of

observations for each group is used as an estimator of the probability that a random

observation will provide a capacity belonging to that specific group. The ultimate

three-level capacity profile is shown in Figure 3-3 and Figure 3-4, where the blue,

orange and gray curves represent the probability of high capacity, the probability of

medium capacity, and the probability of low capacity, respectively. Comparing it to

the three-level capacity profile suggested by the FAA shown in Figure 3-5, we observe

that the range of capacity levels generated for each airport through this cluster method
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Table 3.3: Estimation of parameters and Goodness of fit for Linear Regression Model
with respect to capacity

AIR- INTE- BETA BETA BETA BETA GAMMA GAMMA GAMMA R 2

CEI- VISIB- WIND-

PORT RCEPT LING ILITY TEMP SPEED DUMMY1 DUMMY2 DUMMY3
ATL
BOS
BWI
CLE
CLT
CVG
DCA
DEN
DFW
DTW
EWR
FLL
IAD
IAH
JFK
LAS
LAX
LGA
MCO
MDW
MEM
MIA
MSP
ORD
PDX
PHL
PHX
PIT
SAN
SEA
SFO
SLC
STL
TPA

45.93
19.26
19.73
16.84
27.71
49.24
15.84
44.90
42.39
38.41
18.61
17.05
28.74
35.98
17.84
22.30
21.13
20.60
40.45
15.72
32.77
26.33
30.12
37.77
17.94
20.12
26.56
32.66
13.93
19.62
12.73
24.43
21.75
29.25

0.01
0.00
0.00
0.01
0.00
0.00
0.00
0.01
0.02
0.01
0.00
0.00
0.00
0.01
0.00
0.00
0.01
0.00
0.00
0.00
0.01
0.00
0.01
0.01
0.02
0.01
0.01
0.00
0.00
0.00
0.01
0.01
0.01
0.00

0.70
0.40
0.12
0.46
0.44
0.52
0.10
0.65
0.83
0.28
0.24
0.13
0.28
0.41
0.21
0.30
0.28
0.06
0.02
0.17
0.30
0.27
0.61
0.97
0.28
0.44
0.33
0.34
0.10
0.19
0.27
0.75
0.53
0.04

-0.02
0.05
-0.04
0.00
-0.03
-0.07
0.00
0.08
-0.03
-0.07
0.01
0.02
0.01
0.00
0.01
0.02
0.18
-0.05
-0.01
0.01
-0.03
0.04
-0.03
0.01
0.05
0.00
0.02
0.02
-0.04
0.01
0.07
0.01
0.02
-0.03

-0.07
-0.18
-0.01
-0.09
-0.08
-0.03
-0.01
-0.17
-0.17
-0.04
-0.08
0.02
-0.12
-0.17
-0.05
-0.02
-0.05
0.01
0.00
-0.06
-0.06
0.04
-0.15
-0.28
-0.04
-0.06
-0.02
-0.02
0.00
-0.03
-0.04
0.01
0.00
0.01

0.33
-0.23
-0.05
0.10
-7.30
-3.41
0.07
0.16
0.72
-0.36
0.55
0.12
0.29
0.51
0.11
0.17
0.73
-6.00
-0.02
0.03
-0.11
0.08
-0.38
0.29
0.65
0.06
0.17
0.41
0.01
-0.09
-2.22
0.22
0.30
-0.04

0.47
-0.73
0.15
0.18
3.39
2.59
0.10
0.91
0.55
-0.30
0.49
-1.44
0.13
0.65
0.19
-0.05
-0.57
0.41
-0.19
0.16
0.94
-1.10
0.92
0.40
-1.42
-0.18
-0.34
0.12
0.07
-0.15
2.58
-0.47
0.71
-0.29

0.12
0.31
0.27
0.21
3.56
2.75
0.04
-0.37
0.55
0.71
0.08
-0.21
-0.16
0.16
0.27
-0.34
-0.70
0.77
0.08
0.14
0.69
-0.35
1.11
0.10
-0.71
0.35
-0.26
-0.15
0.09
-0.03
2.91
-0.23
0.02
-0.09

0.39
0.17
0.14
0.21
0.40
0.18
0.04
0.19
0.24
0.14
0.23
0.26
0.08
0.23
0.17
0.16
0.25
0.29
0.01
0.08
0.22
0.08
0.19
0.30
0.35
0.27
0.28
0.05
0.12
0.21
0.47
0.22
0.24
0.03
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Figure 3-3: Three levels of 15-icite eapacities identified by the Ilierarchical Chister

Method
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is mulich Wider than that of the FAA, and the state probability is more balanced. In

contrast the capacitv profile given by the FAA (Figure 3-5) indicates that for more

thai roughly 80,o% of days tHI optimum capaeity is available.
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3.3 Estimation of Flight Delays and Discussion of

Results

It was seen in Section 3.2 that Logistic Regression gives accurate estimates of VMC

vs. IMC, while the CART model also provides similarly accurate estimates in a more

intuitive way. However, when it comes to estimating capacities, the goodness of fit

achieved by a linear regression model is only around 20-30%. Cluster methods are

also not particularly successful in replicating the benchmark capacities provided by

the FAA and their associated probabilities. Therefore, for estimating flight delays in

January 2008, we only use the capacity profiles provided by the first two models. We

denote these two capacity profiles as LogAvg and CARTAvg, respectively. Besides

these two capacity profiles, we also consider two Benchmark capacity profiles produced

by the FAA. These four capacity profiles are described in detail as follows:

1. LogAvg: The probability of the capacity values for this capacity profile is es-

timated through the logistic regression model for each hour based on weather

conditions, while the capacity values are estimated using the mean of hourly

capacities in either VMC group or IMC group from 2007 data.

2. CARTAvg: The probability of the capacity values for this capacity profile is

estimated through the CART model for each hour based on weather conditions,

while the capacity values are estimated by the mean of hourly capacities in

either VMC or IMC from 2007 data. The result is shown in Figure 3-6.

3. FAABen: This capacity profile is based on the Airport Capacity Benchmark

Report in 2004[ACB04]. The detailed information involving the probability of

the capacity levels and the magnitude of capacity levels is shown in Figure 3-5

and is also listed in Table A.1.

4. This capacity profile is derived from the Airport Capacity Benchmark Report

in 2004. We convert the three levels of capacities to a single level of capacity

by taking the expectation of capacities at all three levels from FAABen. The

resulting capacity profile is as shown in Figure 3-7
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Figure 3-5: FAABen Capacity Profile

(a) Probabililtie for 15 ninuies capacity values

0

lin addiion to airport capacity profiles, another importanrt input is the initial

dclays for (,arIly flight of each day. lit Chapter 2, we directly use actual departure

timte for flights between 3 arn andJ 6 ami to replace their scheduled decparture timte, so

that initial delays are taken into conlsiderationl. Hlowever, since wc. now consider an

aggregate model based Oll mnithly datai, we relax this strong assumption by supposing

a-n Iuderlying distribution behind the initial dclay of flights. As shown in Figure 2-

12, initial deIcys for flights departing within 3 ant to 6 am cart be fitted by gainina

distribiutions. The corrcespontdinlg distribu-tion parameter estimation results are lse

in Tables 3.1 mid 3.5 jaS weT,,l, as, test results froml Kolmlogor-ov-Sirni'ov goodnel(Ss- of fit

tests.

89



Figure 3-6: Capacity values of Capacity trolile CAPTAvg(15 minutes capacities)
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Tablh 3.: Estimation and Goo(llless of fit test results to initial departure delays

Parameter Names Par ainter estimated The ( stui ted standard error

shape 0.72 1 0.0316

rate 0.0014 0.000075

D statistic 0.0011

{) Value 0.581

Table 3.5: Estiniation and Goodness of fit test result for initial arrival delays

Paraneter Nanes Parameter estimated The estimated standard error

shailpe 0.7-69 0.0350

rate 0.0013 0.000073

D statistiCS 0.0012
p Value 0.130
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Both of the results indicate that the estimates for the parameters are significant

since the standard error is small. Moreover, the D statistic which represents the

maximum distance between the CDF of data and the underlying true gamma distri-

bution, is also small, and the corresponding p value is large, which implies that we

cannot reject the hypothesis and conclude that the two distributions are significantly

different. Therefore, we accept the hypothesis that these gamma distributions can be

used as the underlying distributions for our data.

Based on the capacity profiles and underlying gamma distributions for initial delays,

for each day of January 2008, we estimate hourly capacities directly using sampling

capacity for each airport from the probabilistic daily capacity profiles. For the initial

delays, we sample an initial delay for all the flights that are scheduled to take off

between 3 am to 6am and use this initial delay to correct the scheduled departure

time of the flight. We then use this corrected scheduled time information as the input

for the extended RAND model. We compute average arrival delays for each airport

for each day and further averaging them for 31 days. The final average arrival delays

for the entire month for different capacity profiles are shown in Figure 3-83, as well

as the benchmark result of actual average arrival delays computed directly from the

ASPM database.

In this graph, the curve for LogAvg typically overlap with the curve of CARTAvg.

In terms of numerical values, these two capacity profiles produce similar average ca-

pacities for all the airports. This observation is due to the fact that both models

achieve close estimation accuracies. Readers can refer to Section 3.2.2.

We also observe that, for most airports, the delays generated by all four capacity

profiles follow similar patterns even though they differ in magnitude. Moreover, all

four capacity profiles can explain more than 70% of actual flight delays for most air-

ports except EWR, FLL, ORD and SFO. Overall, this suggests that, since average

flight delays on a monthly scale can be predicted at reasonable levels of accuracy,

it is worthwhile to attempt to extend in the future the entire integrated model to a

3Note that LogAvg produce delays which are very close to that of CARTAvg, thus the curve for
which is covered by that of CARTAvg and couldn't be seen from the graph
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Figure 3-8: Average Arrival Delays for 34 airports i- Jan 2008 using four capacity

profiles
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Chapter 4

Conclusion

In this thesis, we have attempted to incorporate two models, the Airport Network

Delay (AND) model and the Passenger Delay Calculator (PDC), within a single

framework, so that the resulting new integrated model can compute passenger delays

without requiring an actual flight-schedule input. The integrated model increases

the usefulness and applicability of the PDC since it could be used with hypothetical

scenarios, different flight cancellation strategies, etc.

We describe the framework of the integrated model for studying flight delays and pas-

senger delays at a daily scale. The integrated model includes four components: a Tail

Recovery Model, Flight Cancellation Algorithms, a Refined Airport Network Delay

(RAND) model, and the PDC. The Tail Recovery Model recovers missing tail num-

bers for many flights recorded in the Aviation System Performance Metrics (ASPM)

database. The Flight Cancellation Algorithms implement alternative strategies for

flight canceltions in the presence of large delays, such as cancelling flights with long

flight delays or flights with a large ratio of flight delay divided by the seating capacity

of the aircraft. The RAND model is an extension of the AND, in which two implicit

assumptions of the AND model have been modified. The RAND model produces bet-

ter estimates of flight delays in the sense of replicating actual flight delays obtained

from the ASPM database.

The overall integrated model is able to compute passenger delays and relies only on

planned flight schedules rather than actual flight schedules. Moreover, the integrated
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model facilitates the study of factors that influence flight delays, such as weather con-

ditions and demand fluctuations, and evaluates the impact of different cancellation

strategies on passenger delays. Using actual data from different days, we conclude

that passenger delays can be reduced on the busiest traffic days through improved

flight cancellation strategies.

In the second part of the thesis, we extend the RAND model to compute flight delays

on a monthly scale using different capacity profiles as input. These capacity pro-

files can be directly obtained from Federal Aviation Administration (FAA) reports

or constructed by using classical machine learning algorithms on airport-level data.

We validate our estimation of flight delays by using data of January, 2008, showing

that both the capacity profiles and the RAND perform well in terms of replicating

the actual monthly flight delays. These results imply that an effort can be made to

develop an integrated model incorporating the RAND, the PDC etc. at a monthly

scale or even at any generic time scale.
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Appendix A

Tables
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Table A.1: Capacity per 15 minutes (and associated probabilities) of 34 major airports
suggested by the FAA in the U.S.[ACB04]

IATA Name OPT CAP MARG CAP IFR CAP
CODE (PROB) (PROB) , (PROB)
ATL Atlanta Intl 46(0.76) 43.25(0.14) 40(0.1)
BOS Logan Intl 31.75(0.82) 28.75(0.07) 23(0.11)
BWI Baltimore Washington Intl 28.25(0.85) 19.25(0.06) 16.5(0.09)
CLE Cleveland Hopkins Intl 20(0.78) 18.75(0.12) 16(0.1)
CLT Charlotte Douglas Intl 32.5(0.82) 32(0.09) 26.5(0.09)
CVG Cincinnati/Northern Kentucky Intl 30.75(0.55) 30.5(0.35) 27.75(0.1)
DCA Ronald Reagan Washington National 20(0.86) 18(0.08) 14.75(0.06)
DEN Denver Intl 53.75(0.92) 48.5(0.02) 40.25(0.06)
DFW Dallas/Fort Worth Intl 68.75(0.81) 60.25(0.13) 47.25(0.06)
DTW Detroit Metropolitan Wayne County 46.75(0.74) 42.5(0.16) 35(0.1)
EWR Newark Liberty Intl 22(0.82) 20(0.09) 15.75(0.09)
FLL Fort Lauderdale Hollywood Intl 15.25(0.82) 15(0.16) 13.5(0.02)
IAD Washington Dulles Intl 33.75(0.8) 29.25(0.11) 27.25(0.09)
IAH George Bush Intl 32.75(0.71) 32.5(0.22) 27.5(0.07)
JFK John F. Kennedy Intl 20.25(0.86) 20.25(0.05) 16.5(0.09)
LAS McCarran Intl 27(0.98) 20(0.02) 17.5(0)
LAX Los Angeles Intl 35.5(0.8) 32.25(0.15) 30(0.05)
LGA LaGuardia 20.5(0.81) 19.75(0.1) 18(0.09)
MCO Orlando Intl 38.5(0.91) 34.5(0.04) 27.5(0.05)
MDW Midway Intl 16(0.84) 16(0.07) 15.5(0.09)
MEM Memphis Intl 41.25(0.76) 38.5(0.17) 31.5(0.07)
MIA Miami Intl 29.75(0.95) 27.75(0.03) 23.5(0.02)
MSP Minneapolis Saint Paul Intl 29.25(0.64) 28.5(0.28) 28.25(0.08)
ORD O'Hare Intl 48.75(0.84) 48.75(0.07) 35(0.09)
PDX Portland Intl 29.5(0.75) 20(0.21) 19.5(0.04)
PHL Philadelphia Intl 27.5(0.86) 24.75(0.06) 24(0.08)
PHX Phoenix Sky Harbor Intl 34.75(0.99) 28.25(0.01) 28.25(0)
PIT Pittsburgh Intl 39(0.86) 36.75(0.05) 33.75(0.09)
SAN San Diego Intl 14.25(0.64) 14.25(0.31) 12.25(0.05)
SEA SeattleTacoma Intl 20.5(0.64) 18.75(0.29) 14.5(0.07)
SFO San Francisco Intl 26.75(0.74) 21.75(0.2) 17.5(0.06)
SLC Salt Lake City Intl 32.5(0.85) 28.75(0.09) 28(0.06)
STL LambertSt. Louis Intl 27.25(0.76) 23.25(0.17) 16.75(0.07)
TPA Tampa Intl 26(0.93) 23(0.03) 18.5(0.04)

OPT CAP denotes Optimum Capacity; MARG CAP denotes Marginal Capacity;
IFR CAP denotes Instrumental-Flight-Rules Capacity; PROB denotes probabilities
associated to corresponding capacity class.
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Table A.2: 43 other airports in the U.S.

IATA CODE Name
ABQ Albuquerque Intl

ANC Ted Stevens Anchorage Intl

AUS AustinBergstrom Intl

BDL Bradley Intl
BHM BirminghamShuttlesworth Intl

BNA Nashville Intl
BUF Buffalo Niagara Intl
BUR Bob Hope
DAL Dallas Love Field
DAY Dayton International

GYY Gary/Chicago Intl

HNL Honolulu Intl
HOU William P. Hobby
HPN Westchester County

IND Indianapolis Intl

ISP MacArthur

JAX Jacksonville Intl

LGB Long Beach
MCI Kansas City Intl

MHT Manchester-Boston Regional

MKE General Mitchell International

MSY Louis Armstrong New Orleans Intl
OAK Oakland Intl

OGG Kahului
OMA Eppley Air-x000C-eld
ONT Ontario Intl
OXR Oxnard

PBI Palm Beach Intl
PSP Palm Springs Intl
PVD T. F. Green
RDU RaleighDurham Intl
RFD Chicago Rockford Intl
RSW Southwest Florida Intl
SAT San Antonio Intl

SDF Louisville Intl
SiC San Jose Intl

SJU Luis Muoz Marn Intl
SMF Sacramento Intl
SNA John Wayne

SWF Stewart Intl

TEB Teterboro
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Table A.3: 20 major airlines in the U.S.

IATA CODE ICAO CODE Name
AQ AAH Aloha Airlines
AA AAL American Airlines
AS ASA Alaska Airlines, Inc.
YV ASH Mesa Airlines
EV ASQ Atlantic Southeast(merged into ExpressJet after 2011)
XE ASQ ExpressJct
US USAAWE US Airways
CO COA Continental Airlines
OH COM Comair(merged into Delta in 2012)
DL DAL Delta Air Lines
MQ EGF American Eagle Airlines
F9 FFT Frontier Airlines
9E FLG Pinnacle Airlines
HA HAL Hawaiian Airlines
B6 JBU JetBlue Airways
NW NWA Northwest Airlines(merged into Delta in 2008)
00 SKW SkyWest Airlines
WN SWA Southwest Airlines
FL TRS AirTran Airways
UA UAL United Airlines

98



Bibliography

[ACB04] Airport capacity benchmark report 2004. U.S Department of Transporta-

tion, Federal Aviation Administration, 2004.

[BFV10] C. Barnhart, D. Fearing, and V. Vaze. Modeling passenger travel and delays

in the national air transportation system. 2010.

[Bra04] S. Bratu. An analysis of passenger delays using flight operations and pas-

senger booking data. 2004.

[Cau93] Caulkins. The on-time machines: Some analysis of airline punctuality. Op-
erations Research, 41(4):710-720, 1993.

[Hal99] W. Hall. Efficient Capacity Allocation in a Collaborative Air Transportation

System. Phd thesis, Massachusetts Institute of Technology, Department of

Aeronautics and Astronautics, 1999.

[Kiv74] P. Kivestu. Alternative Methods of Investigating the Time Dependent

M/G/k Queue. Master's thesis, Massachusetts Institute of Technology, De-
partment of French, 1974.

[Pyr12] N. Pyrgiotis. A Stochastic and Dynamic Model of Delay Propagation Within

an Airport Network For Policy Analysis. Phd thesis, Massachusetts Institute

of Technology, Department of Aeronautics and Astronautics, 2012.

[Shu95] R. Shumsky. Dynamic statistical models for the prediction of aircraft take-

off times. Phd thesis, Massachusetts Institute of Technology, Department

of Aeronautics and Astronautics, 1995.

[THF08] R. Tibshirani T. Hastie and J. Friedman. The Elements of Statistical Learn-

ing: Data Mining, Inference, and Prediction. Springer, 2008.

99


