
MIT Open Access Articles

A New Algorithm to Classify the Homogeneity 
of ERS-2 Wave Mode SAR Imagette

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Song, Guiting, Jagabandhu Panda, Yanhui Zhang, Haoliang Chen, and K. Muni Krishna. 
“A New Algorithm to Classify the Homogeneity of ERS-2 Wave Mode SAR Imagette.” J Indian Soc 
Remote Sens 42, no. 1 (October 10, 2013): 13–21.

As Published: http://dx.doi.org/10.1007/s12524-013-0302-3

Publisher: Springer India

Persistent URL: http://hdl.handle.net/1721.1/104340

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/104340


RESEARCH ARTICLE

A New Algorithm to Classify the Homogeneity of ERS-2
Wave Mode SAR Imagette

Guiting Song & Jagabandhu Panda & Yanhui Zhang &

Haoliang Chen & K. Muni Krishna

Received: 17 April 2013 /Accepted: 3 June 2013 /Published online: 10 October 2013
# Indian Society of Remote Sensing 2013

Abstract A new classification parameter is developed
using 1535 ERS-2 wave mode synthetic aperture radar
(SAR) test imagettes to better differentiate homoge-
neous and inhomogeneous imagettes. The comparison
between the new parameter (Min) and the previous one
(Inhomo) (Schulz-Stellenfleth and Lehner, 2004) was
done under varied threshold values of Inhomo. It is
concluded that the performance of ‘Min’ is much better
than ‘Inhomo’when applying to the 1535 test imagettes.
Furthermore, bothMin and Inhomo are applied to nearly
1 million imagettes collected for the period from 1

September 1998 to 30 November 2000. The compari-
sons of the global inhomogeneous distribution between
‘Min’ and ‘Inhomo’ reveal that both the areas and
percentage of inhomogeneity calculated by ‘Min’ are
larger than that calculated by ‘Inhomo’. By analyzing
the low wind speed distribution of HOAPS data, we
found that low wind speed over the ocean is one of the
key reasons for the inhomogeneity of SAR imagettes.
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Introduction

During the last three decades, several satellite mis-
sions have provided meteorological and oceanic data
sets for research and operational purposes to the
weather, ocean and climate communities. In future, it
is expected that the planned satellite missions will
result in a five order of magnitude increase in the
volume of data available for use by the operational
scientists and researchers all over the world (Marshall
et al. 2009). These data sets would provide accuracies
in predicting the weather events and is expected to
improve the environmental prediction capability.
Analyzing the satellite data for any weather event is
not so simple, since it involves various technicalities.
However, the scientists are continuously trying to
make use of the satellite products in weather, ocean
and climate studies (e. g. Mitra et al. 2013). For
example, the satellite derived data sets have been used
for the study of surface and upper-air characteristics
(Panda and Giri 2012), near-surface wind driven fea-
tures over ocean surface (Deb et al. 2009), heavy
rainfall events (Deb et al. 2008), and also for the
studies related to tropical cyclones (Panda et al.
2011; Deb et al. 2011; Jaishwal et al. 2012, 2013).

In view of the utility of satellite products, appropri-
ate techniques need to be developed (e. g. Jaishwal et
al. 2012) for deriving the environmental parameters
(both ocean and atmosphere) from remotely sensed
measurements by the environmental satellites. For ex-
ample, it has been demonstrated earlier that the syn-
thetic aperture radar (SAR) imagette can be used to
derive wave parameters like significant wave height,
wind speed and mean wave period (Schulz-Stellenfleth
et al. 2007). The empirical algorithm developed by
Schulz-Stellenfleth et al. (2007) was called CWAVE
and the imagette is the only input data for CWAVE, so
the homogeneity feature of the imagette has important
effect on the result of the CWAVE. Several studies in
past have also analyzed the feature of SAR imagettes
(Hasselmann et al. 1985; Lyzenga et al. 1985; Alpers
and Bruemmer 1994; Horstmann et al. 2003; Schulz-
Stellenfleth and Lehner 2004). These studies reveal
that several factors such as ice, atmospheric features
like rain or biogenic surface film, oil slick, or ship wake
could make the imagettes inhomogeneous and such
inhomogeneous imagettes could not be applied into
CWAVE to retrieve wave parameters. Therefore, a
homogeneity test must be performed beforehand. In

view of this, an effort is made in the current study to
improve the performance of CWAVE by developing a
new classification parameter of the imagette for
CWAVE. Further, significance of this new classifica-
tion parameter is discussed over several regions of the
world. The study mainly uses the European satellite
(ERS-2) products for the classification of imagettes and
developing the new algorithm for this purpose.

Data Used

Two types of data sets are used in this study. One is the
wave mode ERS-2 SAR imagettes and the other one is
the HOAPS (Hamburg Ocean Atmosphere Parameters
and Fluxes from Satellite) wind speed data. The details
of these data sets are described in this section along
with their utility in relating to the present study.

Wave Mode ERS-2 Imagette

The imagettes used in this study is wave mode ERS-2
imagettes which is 10 by 5 km size acquired every
200 km along the satellite track. The C-band radar
operates with vertical polarization in transmit and re-
ceives and provides a spatial resolution of about 10 m
in azimuth direction and 20 m in range direction. The
required SAR wave mode single look complex (SLC)
imagettes, which are not available as standard products,
were reprocessed at German Aerospace Center (DLR)
(Lehner et al. 2000) from raw data provided by the
European Space Agency (ESA). 1535 test imagettes
classified by eye including four types of imagettes i. e.
water, slick, ice and undefined inhomogeneous imagettes
were applied to develop new classification parameters
and are shown in Fig. 1. The newly-developed parame-
ters are validated by nearly 1 million ERS-2 wave mode
imagettes from 1 September 1998 to 30November 2000.

HOAPS Wind Speed Data

The HOAPS wind speed data used in this study has a
resolution of 0.25º×0.25º latitude-longitude grid. It is
considered twice a day (0 UTC (0–12 UTC over-
passes) and 12 UTC (12–24 UTC overpasses)). Each
grid-cell contains the average of data from the satellite
that passed this grid box closest to 12 and 24 UTC,
respectively. The time range of HOAPS data used in
this article is also from 1 September 1998 to 30
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November 2000. The HOAPS data have been used to
understand the underlying reasons of inhomogeneity
in the SAR imagettes. Many natural or artificial factors
could contaminate the SAR imagette over the ocean
such as low wind speed, precipitation, oil spill, atmo-
spheric fronts, bottom topographic effect, currents and
sea ice above 50 º N and 50 º S etc. However, the low
wind speed, precipitation and oil spill are usually the
most likely reasons to contaminate the SAR imagette
over open ocean (Brekke and Solberg 2005). The
HOAPS wind data is derived from special sensor
microwave/imager (SSM/I) passive microwave radi-
ometers and it was considered as the long time series
(1987–2008) and high spatial resolution’s wind satel-
lite observations. It will be used to statistically calcu-
late the percentage of the low wind speed over every
3°×3° longitude/latitude grid boxes. Its high spatial
resolution could provide more samples over 3°×3°
longitude/latitude grid boxes than other lower spatial
resolution datasets.

New Classification and Parameter Developing

The homogeneity test (called Inhomo) used by
CWAVE is based on the standard spectral estimation

theory developed by Schulz-Stellenfleth and Lehner
(2004). For Inhomo test, every imagette has been
divided into 32 subimagettes of about 1×1 km size,
which were used to estimate the mean and variance of
the periodograms. The expectation value of the homo-
geneity parameter θ (Inhomo) is defined as

θ ¼

X

k

var
���

Pkð Þ
mean
����

Pkð ÞX

k

mean
����

Pkð Þ
; ð1Þ

wheremean
����

and var
���

are the standard estimators for the
periodograms mean and variances. Pk is the
subimagette’s periodogram. For a perfectly homoge-
neous imagette, the homogeneity parameter θ should
be 1.

When Inhomo test is applied to 804,300 ERS-2
wave mode imagette data sets in order to filter the
inhomogeneous ones, 741,264 imagettes were correct-
ly classified. However, the remaining 63,036 imagettes
were incorrectly classified as homogeneous ones. One
apparent reason of this miscalculation could be because
of the retrieved parameters (such as wind speed, sig-
nificant wave height or mean wave period) from these
63,036 imagettes, which were negative. For CWAVE,

Fig. 1 Four types of imagettes: (a) ice, (b) water, (c) undefined, and (d) slick
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if the input imagette is homogeneous, the retrieved
parameters should not be negative. The percentage of
misclassification is found to be approximately 7.84 %.
Figure 1 shows three examples among these 63,036
imagettes which were not correctly classified.
Figures 1(a), (c) and (d) were classified by Inhomo test
as homogeneous imagettes. However, all of these three
imagettes are inhomogeneous in nature, which repre-
sent ice and undefined reasons caused the inhomoge-
neity and slickness. In view of the above analysis, it is
essential to develop a new parameter for better classi-
fication of imagettes.

The Scheme of Division of Imagette

In every wave mode imagette, there are 512 pixels in
the range direction with the resolution of 20 m and
1024 pixels in the azimuth direction with the resolu-
tion of 10 m. In this scheme, 5 pixels are selected in
the range direction and 10 pixels are selected in the
azimuth direction in every sub-imagette; thus the size
of sub-imagette is about 100 m×100 m, and there are
10404 sub-imagettes in one wave mode imagette.

Definition of New Parameters

Several new classification parameters were investigated
in this article. The definitions of them are as following:

(a) CoVar: the variance of the intensity of every sub-
imagette divided by the mean value of intensity
as ordinate versus the mean NRCS of the whole
imagette as abscissa; a separation function to
distinguish the homogeneous imagettes from in-
homogeneous ones will be derived using the least
squares fitting method.

(b) Min: The Minimum normalized radar cross sec-
tion (NRCS) of sub-imagette as ordinate versus
the mean NRCS of the whole imagette as abscis-
sa; a separation function to distinguish the homo-
geneous imagettes from inhomogeneous ones
will be derived using the least squares fitting
method.

(c) Max: The Maximum NRCS of sub-imagette as
ordinate versus the mean NRCS of the whole
imagette as abscissa; a separation function also
will be derived using the least squares fitting
method.

(d) Percentile (PC): Figure 2 shows the sketch map
of the definition of PC. The calculation process
of PC can be seen from Eqs. 2–5. Firstly, the
standard deviation δ could be calculated from
the intensity of every pixel in an imagette
(Eq. 2). Then, the mean intensity of the whole

imagette ( I) will be calculated from Eq. 3.
Consequently, - η can be defined as given in
Eq. 4, which acts as a reference value of the
pixel’s intensity. It is assumed that ‘n’ is the
number where the pixel’s intensity is larger than
η and ‘N’ is the total pixel number of the
imagette. So the significance of PC is the per-
centage of the pixel’s intensity which is larger
than η (Eq. 4).

δ ¼ std Ið Þ ð2Þ

I ¼< I > ð3Þ

η ¼ I þ 2δ ð4Þ

PC ¼ n

N
� 100% ð5Þ

A figure will be plotted using PC as ordinate and
the mean NRCS of the whole imagette as abscissa.
Similarly, a separation function will be derived using
the least squares fitting method.
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Fig. 2 The sketch map of the definition of Percentile
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Results and Discussion

The new parameters defined in Definition of new
parameters sub-section are applied to the 1535 test

imagettes and the best one, which is the parameter of
the least number of misclassifications, is chosen for
further application and analysis.

Figure 3 shows the results of the different new
parameters applied to the 1535 test imagettes and the
separation function lines are fitted for every new clas-
sification parameter by least square method to classify
the homogeneous water imagettes from other inhomo-
geneous ones including ice, slick and undefined inho-
mogeneous imagettes. The black plus symbols (+)
representing imagettes obtained over ocean water,

Fig. 3 (a–b): Results of different parameters using the test data:
(a) Minimum NRCS of sub-imagette (Min) and (b) CoVar.
Here, x-axis represents the mean NRCS of the whole imagette.
The symbols ‘+’, ‘*’, ‘Δ’ and ‘□’ represent water, ice, slick and
undefined categories respectively. The line was fitted by least
square method to separate the homogeneous water imagettes
from other inhomogeneous ones including ice, slick and
undefined inhomogeneous imgettes (c–d): Results of different

parameters using the test data: (c) Maximum NRCS of sub-
imagette (Max) and (d) Percentile (PC). Here, x-axis represents
the mean NRCS of the whole imagette. The symbols ‘+’, ‘*’,
‘Δ’ and ‘□’ represent water, ice, slick and undefined categories
respectively. The line was fitted by least square method to
separate the homogeneous water imagettes from other inhomo-
geneous ones including ice, slick and undefined inhomogeneous
imgettes

Table 1 The number of misclassifications (TNoM) for Min,
CoVar, Max, PC and Inhomo

Parameter Min CoVar Max PC Inhomo

TNoM 15 71 55 50 118
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which indicate the homogeneous ones, could be used
for CWAVE. The purple star symbols (*) representing
imagettes obtained over ice, the pink triangle symbols
(Δ) for imagettes with slick and the black square ones
(□) for undefined inhomogeneous imagettes indicate
that the unclear reason causes the inhomogeneity. The
number of misclassifications (TNoM) for every pa-
rameter including Min, CoVar, Max, PC and Inhomo
is listed in Table 1. The TNoM for Min, CoVar, Max
and PC are calculated from Fig. 3, and the TNoM for
Inhomo was calculated by eye when the test imagettes
datasets are prepared. It can be seen that the TNoM of
Min is the least, which is only 15. The TNoMs of the
four new parameters are much less than that of
Inhomo. We also give a list of the TNoMs of Inhomo

under varied threshold values in Table 2. Currently,
the threshold value of Inhomo used in CWAVE is 1.07
(Schulz-Stellenfleth et al. 2007), which is proved here
that the threshold value of 1.07 is the best because
both increase and decrease of the threshold value from
1.07 lead to a larger number of TNoM. When increas-
ing the threshold value from 1.07, more inhomoge-
neous imagettes were misclassified into homogeneous
ones, and when decreasing the threshold value from
1.07, more homogeneous imagettes were misclassified
into inhomogeneous ones. Therefore, based on the
statistical analysis and comparisons above, ‘Min’
should be chosen as the new standard classification
parameter for further applications. After least squares
fitting, the function for ‘Min’ y=tan(126°)x−24.9,
which approximates y=−1.376x−24.9, can be obtained
to separate the homogeneous and inhomogeneous
imagettes, where y is the minimum NRCS of sub-
imagttes and x is the mean NRCS of the whole
imagette. This separation function will be applied to
the 2 years imagettes to distinguish the homogeneous

Table 2 The number of misclassifications (TNoM) for Inhomo
under varied threshold values

Inhomo 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11

TNoM 128 125 123 121 118 122 123 125 126

Northwestern 
Arabian Sea 

Western 
Arabian Sea

Indonesian and 
Papua New 
Guinea islands 
region

Northwest 
Africa coastal 
area

West coastal 
area of  North 
and Middle 
America 

the Galápagos 
Islands area

a

b

Fig. 4 The global distribu-
tion of inhomogeneous
imagettes with 3°×3° longi-
tude/latitude grid boxes
from (a) new classification
parameter Min and (b)
Inhomo parameter
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imagettes from inhomogeneous ones as a new classi-
fication parameter-Min.

The best new classification parameter (Min) and
‘Inhomo’ are applied to the 2 years’ imagettes (about
1 million) of ERS-2 wave mode to compare their
performance. All of the imagettes were obtained over
ocean area. The 3°×3° latitude-longitude boxes over
the global ocean were defined to statistically analyze
the percentage of the inhomogeneous imagettes within
each box. The global distributions of the percentage of
the inhomogeneous imagettes using the parameter
‘Min’ (Fig. 4a) and ‘Inhomo’ (Fig. 4b) are shown in
Fig. 4. In order to clearly present the difference of the

inhomogeneous distribution, the maximum percentage
of inhomogeneity is set to 40 %. Both figures (Figs. 4a
and b) show that the high percentage of inhomoge-
neous areas except the polar ice area locate in the
ocean area of Indonesian and Papua New Guinea
islands region, the west coastal area of north and
Middle America, the western and northwestern
Arabian Sea, the Galápagos Islands area and the coast-
al area of northwest Africa. However, there exist dif-
ferences between the distribution of the new parameter
‘Min’ and the old one ‘Inhomo’. In all of the large
inhomogeneous regions, the areas of inhomogeneity
calculated by ‘Min’ are a little larger than that

Fig. 5 The global distribu-
tion of inhomogeneous
imagettes with 3°×3° longi-
tude/latitude grid boxes for
the percentage greater than
40 % which calculated from
(a) new classification pa-
rameter (Min) and (b)
Inhomo parameter
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calculated by ‘Inhomo’. Also the color in the same
area of inhomogeneity of ‘Min’ shows much redder
than that of ‘Inhomo’. These two features also exist in
Fig. 5, which shows the global distribution of inho-
mogeneity greater than 40 %. Both of the Figs. 4 and 5
indicate that the parameter ‘Min’ could filter more
inhomogeneous imagettes than ‘Inhomo’, which
means that even when the ‘Inhomo’ parameter’s re-
sults are homogeneous, the parameter ‘Min’ still could
give the opposite judgment. Therefore, the parameter
‘Min’ might be more powerful to filter the inhomoge-
neous imagettes than ‘Inhomo’.

The main reason of such strong inhomogeneous
distribution in Figs. 4 and 5 is possibly due to the
low wind speed as seen from Fig. 6. The high percent-
age HOAPS low wind speed (lower than 3 m/s) dis-
tributions in Fig. 6 agrees well with the inhomoge-
neous imagette distributions of Figs. 4 and 5. But the
areas of the low wind speed are a little smaller than the
inhomogeneous imagette areas. Under low wind speed
condition, the SAR backscatter signal gets reduced;
thus dark regions or spots will appear in the SAR
images and the speckle level of the SAR image will
be increased. This probably is the main reason of the
consistent distribution of inhomogeneity of SAR
imagette and low wind speed.

Conclusions

Synthetic aperture radar is one of the most applicable
space-borne sensors for retrievals of ocean surface
wind, ocean surface wave and internal wave, current
fronts and ocean eddies. SAR images are also widely

used to detect man-made illegal or accidental spills
and natural seepage from oil deposits. In shallow
waters, SAR imagery allows to infer the ocean bottom
topography. All of these applications need to first
distinguish the homogeneity property of the SAR im-
age. In this study four new parameters are tested to
better separate homogeneous imagettes from inhomo-
geneous ones. The ‘Min’ parameter was chosen be-
cause of its best performance of separating the homog-
enous imagettes from inhomogeneous ones. The sep-
aration function of ‘Min’ was fitted as y=−1.376x
−24.9, where ‘y’ is the minimum NRCS of sub-
imagettes and ‘x’ is the mean NRCS of the whole
imagette. Comparisons between the new parameter
‘Min’ and previous parameter ‘Inhomo’ were done
using both 1535 test imagettes and nearly 1 million
imagettes collected for the period from September
1998 to November 2000. The comparisons imply that
the new parameter ‘Min’ classifies the property of the
test imagettes much better than ‘Inhomo’ and it is also
more capable to filter inhomogeneous imagettes as com-
pared to ‘Inhomo’. The new parameter ‘Min’ can pos-
sibly be applied to CWAVE and is expected to better
distinguish the homogeneity of the SAR imagette.

The inhomogeneous imagettes distribution agrees
well with the low wind speed distribution from
HOAPS datasets because low wind speed causes more
speckle noise and nonlinear intensity inhomogeneity
during SAR imaging. Under low wind speed the radar
backscatter signal will be reduced and then dark re-
gions or spots will appear in the SAR image, that is
speckle noise.

A number of SAR missions are crucial for contin-
uous SAR research. European radar satellites ERS-1,

West coastal 
area of  Middle 
America area

Northwest
Africa coastal 
area

Galápagos 
Islands area

Northwestern 
Arabian Sea

Western 
Arabian Sea

Indonesian and 
Papua New 
Guinea islands 
region

Fig. 6 The global distribution of low wind speed (lower than 3 m/s) with 3°×3° longitude/latitude grid boxes from HOAPS datasets
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ERS-2, Envisat, TerraSAR-X and TanDEM-X provid-
ed valuable SAR images for this study. All of the SAR
satellites provide wave mode SAR imagettes similar to
the ones used in this paper. There is also a number of
SAR missions planned. The new separation function
(Min) can possibly be helpful in a wide range of
applications in order to distinguish the homogeneity
and inhomogeneity of SAR image.
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