

MIT Open Access Articles

Chain Polytopes and Algebras with Straightening Laws

The MIT Faculty has made this article openly available. *[Please](https://libraries.mit.edu/forms/dspace-oa-articles.html) share* how this access benefits you. Your story matters.

Citation: Hibi, Takayuki, and Nan Li. "Chain Polytopes and Algebras with Straightening Laws." Acta Mathematica Vietnamica 40.3 (2015): 447–452.

As Published: http://dx.doi.org/10.1007/s40306-015-0115-2

Publisher: Springer Singapore

Persistent URL: <http://hdl.handle.net/1721.1/104347>

Version: Author's final manuscript: final author's manuscript post peer review, without publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Chain Polytopes and Algebras with Straightening Laws

Takayuki Hibi · Nan Li

Dedicated to Professor Ngo Vi ˆ eˆ t Trung on the occasion of his sixtieth birthday ˙

Received: 25 June 2014 / Revised: 10 September 2014 / Accepted: 7 October 2014 / Published online: 19 February 2015 © Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2015

Abstract It will be shown that the toric ring of the chain polytope of a finite partially ordered set is an algebra with straightening laws on a finite distributive lattice. Thus, in particular, every chain polytope possesses a regular unimodular triangulation arising from a flag complex.

Keywords Algebra with straightening laws · Chain polytope · Partially ordered set

Mathematics Subject Classification (2010) Primary 52B20 · Secondary 13P10 · 03G10

1 Introduction

In [\[6\]](#page-6-0), the order polytope $O(P)$ and the chain polytope $C(P)$ of a finite poset (partially ordered set) *P* are studied in detail from a view point of combinatorics. Toric rings of order polytopes are studied in [\[1\]](#page-6-1). In particular, it is shown that the toric ring $K[\mathcal{O}(P)]$ of the order polytope $O(P)$ is an algebra with straightening laws ([\[2,](#page-6-2) p. 124]) on a finite distributive lattice. In the present paper, it will be proved that the toric ring $K[\mathcal{C}(P)]$ of the chain polytope $C(P)$ is also an algebra with straightening laws on a finite distributive lattice. It then follows immediately that $C(P)$ possesses a regular unimodular triangulation arising from a flag complex.

T. Hibi (\boxtimes)

N. Li

Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan e-mail: hibi@math.sci.osaka-u.ac.jp

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA e-mail: nan@math.mit.edu

2 Toric Rings of Order Polytopes and Chain Polytopes

Let $P = \{x_1, \ldots, x_d\}$ be a finite poset. For each subset $W \subset P$, we associate $\rho(W) = \sum_{i \in W} \mathbf{e}_i \in \mathbb{R}^d$, where $\mathbf{e}_1, \ldots, \mathbf{e}_d$ are the unit coordinate vectors of \mathbb{R}^d . In particular, $\rho(\emptyset)$ is the origin of \mathbb{R}^d . A *poset ideal* of *P* is a subset *I* of *P* such that, for all x_i and x_j with $x_i \in I$ and $x_j \leq x_i$, one has $x_j \in I$. An *antichain* of *P* is a subset *A* of *P* such that x_i and x_j belonging to A with $i \neq j$ are incomparable.

Recall that the *order polytope* is the convex polytope $O(P) \subset \mathbb{R}^d$ which consists of those $(a_1, \ldots, a_d) \in \mathbb{R}^d$ such that $0 \le a_i \le 1$ for every $1 \le i \le d$ together with $a_i \ge a_j$ if $x_i \le x_j$ in *P*. The vertices of $O(P)$ are those $\rho(I)$ such that *I* is a poset ideal of *P* ([\[6,](#page-6-0) Corollary 1.3]). The *chain polytope* is the convex polytope $C(P) \subset \mathbb{R}^d$ which consists of those $(a_1, \ldots, a_d) \in \mathbb{R}^d$ such that $a_i \geq 0$ for every $1 \leq i \leq d$ together with

$$
a_{i_1}+a_{i_2}+\cdots+a_{i_k}\leq 1
$$

for every maximal chain $x_{i_1} < x_{i_2} < \cdots < x_{i_k}$ of *P*. The vertices of $C(P)$ are those $\rho(A)$ such that *A* is an antichain of *P* ([\[6,](#page-6-0) Theorem 2.2]).

Let $S = K[x_1, \ldots, x_d, t]$ denote the polynomial ring over a field K whose variables are the elements of *P* together with the new variable *t*. For each subset $W \subset P$, we associate the squarefree monomial $x(W) = \prod_{i \in W} x_i \in S$. In particular, $x(\emptyset) = 1$. The *toric ring* $K[\mathcal{O}(P)]$ of $\mathcal{O}(P)$ is the subring of *R* generated by those monomials $t \cdot x(I)$ such that *I* is a poset ideal of *P*. The toric ring $K[\mathcal{C}(P)]$ of $\mathcal{C}(P)$ is the subring of *R* generated by those monomials $t \cdot x(A)$ such that *A* is an antichain of *P*.

3 Algebras with Straightening Laws

Let $R = \bigoplus_{n \geq 0} R_n$ be a graded algebra over a field $R_0 = K$. Suppose that *P* is a poset with an injection φ : *P* \rightarrow *R* such that $\varphi(\alpha)$ is a homogeneous element of *R* with deg $\varphi(\alpha) \ge 1$ for every $\alpha \in P$. A *standard monomial* of R is a finite product of the form $\varphi(\alpha_1)\varphi(\alpha_2)\cdots$ with $\alpha_1 \leq \alpha_2 \leq \cdots$. Then, we say that $R = \bigoplus_{n \geq 0} R_n$ is an *algebra with straightening laws* on *P* over *K* if the following conditions are satisfied:

- The set of standard monomials is a basis of *R* as a vector space over *K*.
- If α and β in P are incomparable and if

$$
\varphi(\alpha)\varphi(\beta) = \sum_{i} r_i \varphi(\gamma_{i_1})\varphi(\gamma_{i_2})\cdots, \qquad (1)
$$

where $0 \neq r_i \in K$ and $\gamma_{i_1} \leq \gamma_{i_2} \leq \cdots$ is the unique expression for $\varphi(\alpha)\varphi(\beta) \in R$ as a linear combination of distinct standard monomials, then $\gamma_{i_1} \leq \alpha$ and $\gamma_{i_1} \leq \beta$ for every *i*.

We refer the reader to [\[2,](#page-6-2) Chapter XIII] for fundamental material on algebras with straightening laws. The relations [\(1\)](#page-2-0) are called the *straightening relations* of *R*.

Let *P* be an arbitrary finite poset and $\mathcal{J}(P)$ the finite distributive lattice ([\[7,](#page-6-3) p. 252]), consisting of all poset ideals of *P* ordered by inclusion. The toric ring $K[\mathcal{O}(P)]$ of the order polytope $\mathcal{O}(P)$ is a graded ring with deg $(t \cdot x(I)) = 1$ for every $I \in \mathcal{J}(P)$. We then define the injection $\varphi : \mathcal{J}(P) \to K[\mathcal{O}(P)]$ by setting $\varphi(I) = t \cdot x(I)$ for every $I \in \mathcal{J}(P)$. One of the fundamental results obtained in [\[1\]](#page-6-1) is that $K[O(P)]$ is an algebra with straightening laws on $\mathcal{J}(P)$. Its straightening relations are

$$
\varphi(I)\varphi(J) = \varphi(I \cap J)\varphi(I \cup J),\tag{2}
$$

where *I* and *J* are poset ideals of *P* which are incomparable in $\mathcal{J}(P)$.

Theorem 3.1 *The toric ring of the chain polytope of a finite poset is an algebra with straightening laws on a finite distributive lattice.*

Proof Let *P* be an arbitrary finite poset and $C(P)$ its chain polytope. The toric ring $K[\mathcal{C}(P)]$ is a graded ring with deg $(t \cdot x(A)) = 1$ for every antichain *A* of *P*.

For a subset $Z \subset P$, we write max (Z) for the set of maximal elements of Z. In particular, max(Z) is an antichain of *P*. The poset ideal of *P* generated by a subset $Y \subset P$ is the smallest poset ideal of *P* which contains *Y* .

Now, we define the injection $\psi : \mathcal{J}(P) \to K[\mathcal{C}(P)]$ by setting $\psi(I) = t \cdot x(\max(I))$ for all poset ideals *I* of *P*. If *I* and *J* are poset ideals of *P*, then

$$
\psi(I)\psi(J) = \psi(I \cup J)\psi(I * J),\tag{3}
$$

where $I * J$ is the poset ideal of *P* generated by $max(I \cap J) \cap (max(I) \cup max(J))$. Since $I * J \subset I$ and $I * J \subset J$, the relations [\(3\)](#page-3-0) satisfy the condition of the straightening relations.

It remains to prove that the set of standard monomials of $K[\mathcal{C}(P)]$ is a *K*-basis of $K[\mathcal{C}(P)]$. It follows from [\[6,](#page-6-0) Theorem 4.1] that the Hilbert function ([\[2,](#page-6-2) p. 33]) of the Ehrhart ring ([\[2,](#page-6-2) p. 97]) of $O(P)$ coincides with that of $C(P)$. Since $O(P)$ and $C(P)$ possess the integer decomposition property ([\[4,](#page-6-4) Lemma 2.1]), the Ehrhart ring of $\mathcal{O}(P)$ coincides with $K[\mathcal{O}(P)]$ and the Ehrhart ring of $\mathcal{C}(P)$ coincides with *K*[$\mathcal{C}(P)$]. Hence, the Hilbert function of *K*[$\mathcal{O}(P)$] is equal to that of *K*[$\mathcal{C}(P)$]. Thus, the set of standard monomials of $K[\mathcal{C}(P)]$ is the *K*-basis of $K[\mathcal{C}(P)]$ as desired. desired.

4 Flag and Unimodular Triangulations

The fact that $K[\mathcal{C}(P)]$ is an algebra with straightening laws guarantees that the toric ideal of $C(P)$ possesses an initial ideal generated by squarefree quadratic monomials. We refer the reader to [\[3\]](#page-6-5) and [\[5,](#page-6-6) Appendix] for the background of the existence of squarefree quadratic initial ideals of toric ideals. By virtue of [\[8,](#page-6-7) Theorem 8.3], it follows that

Corollary 4.1 *Every chain polytope possesses a regular unimodular triangulation arising from a flag complex.*

5 Further Questions

Let, as before, P be a finite poset and $\mathcal{J}(P)$ the finite distributive lattice consisting of all poset ideals of *P* ordered by inclusion. Let $S = K[x_1, \ldots, x_n, t]$ denote the polynomial ring and $\Omega = \{w_I\}_{I \in \mathcal{J}(P)}$ a set of monomials in x_1, \ldots, x_n indexed by $\mathcal{J}(P)$. We write *K*[Ω] for the subring of *S* generated by those monomials *w_I* · *t* with $I \in \mathcal{J}(P)$ and define

the injection $\varphi : \mathcal{J}(P) \to K[\Omega]$ by setting $\varphi(I) = w_I \cdot t$ for every $I \in \mathcal{J}(P)$.

Suppose that $K[\Omega]$ is an algebra with straightening laws on $\mathcal{J}(P)$ over *K*. We say that $K[\Omega]$ is *compatible* if each of its straightening relations is of the form $\varphi(I)\varphi(I') = \varphi(J)\varphi(J')$ such that $J \leq I \wedge I'$ and $J' \geq I \vee I'$, where *I* and *I'* are poset ideals of *P* which are incomparable in $\mathcal{J}(P)$.

Let $K[\Omega]$ and $K[\Omega']$ be compatible algebras with straightening laws on $\mathcal{J}(P)$ over K . Then, we identify $K[\Omega]$ with $K[\Omega']$ if the straightening relations of $K[\Omega]$ coincide with those of $K[\Omega']$.

Let P^* be the *dual poset* ([\[7,](#page-6-3) p. 247]) of a poset P. The toric ring $K[\mathcal{C}(P^*)]$ of $\mathcal{C}(P^*)$ can be regarded as an algebra with straightening laws on $\mathcal{J}(P)$ over *K* in the obvious way. Clearly, each of the toric rings $K[O(P)]$, $K[Cl(P)]$, and $K[Cl(P^*)]$ is a compatible algebra with straightening laws on $\mathcal{J}(P)$ over *K*.

Question 5.1 (a) Given a finite poset *P*, find all possible compatible algebras with straightening laws on $\mathcal{J}(P)$ over *K*.

(b) In particular, for which posets *P*, does there exist a unique compatible algebra with straightening laws on $\mathcal{J}(P)$ over *K* ?

Example 5.2 (a) Let *P* be the poset of Fig. [1.](#page-4-0) Then, $K[\mathcal{O}(P)] = K[\mathcal{C}(P)]$, and there exists a unique compatible algebra with straightening laws on $\mathcal{J}(P)$ over *K*. In fact, $\mathcal{J}(P)$ for *P* is the poset in Fig. [2.](#page-5-0) In the corresponding algebra, we must have $be = af$. Then, we have either $bc = ad$ or $bc = af$. However, since $bc \neq be$, it follows that $bc = ad$. Similarly, we have $de = cf$. Hence, the ASL relations are unique.

(b) Let *P* be the poset of Fig. [3.](#page-5-1) Then, there exist three compatible algebras with straightening laws on $\mathcal{J}(P)$ over *K*. They are $K[\mathcal{O}(P)]$, $K[\mathcal{C}(P)]$, and $K[\mathcal{C}(P^*)]$.

(c) Let *P* be the poset of Fig. [4.](#page-5-2) Then, there exist nine compatible algebras with straightening laws on $\mathcal{J}(P)$ over *K*.

Fig. 1 Example 5.2 (a)

Conjecture 5.3 *If P is a disjoint union of chains, then the compatible algebras with straightening laws on* $\mathcal{J}(P)$ *over* K *are* $K[\mathcal{O}(P)]$ *,* $K[\mathcal{C}(P)]$ *, and* $K[\mathcal{C}(P^*)]$ *.*

References

- 1. Hibi, T.: Distributive lattices, affine semigroup rings and algebras with straightening laws. In: Nagata, M., Matsumura, H. (eds.) Commutative algebra and combinatorics on advanced studies in pure mathematical, vol. 11, pp. 93–109, Amsterdam (1987)
- 2. Hibi, T.: Algebraic combinatorics on convex polytopes. Carslaw Publications, Glebe (1992)
- 3. Ohsugi, H., Hibi, T.: Toric ideals generated by quadratic binomials. J. Algebra **218**, 509–527 (1999)
- 4. Ohsugi, H., Hibi, T.: Convex polytopes all of whose reverse lexicographic initial ideals are squarefree. Proc. Am. Math. Soc. **129**, 2541–2546 (2001)
- 5. Ohsugi, H., Hibi, T.: Quadratic initial ideals of root systems. Proc. Am. Math. Soc. **130**, 1913–1922 (2002)
- 6. Stanley, R.: Two poset polytopes. Discrete Comput. Geom. **1**, 9–23 (1986)
- 7. Stanley, R. Enumerative combinatorics, 2nd edn., vol. I. Cambridge University Press, Cambridge (2012)
- 8. Sturmfels, B.: Gröbner bases and convex polytopes. America Mathematical Society, Providence (1995)

