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Abstract It will be shown that the toric ring of the chain polytope of a finite partially
ordered set is an algebra with straightening laws on a finite distributive lattice. Thus, in
particular, every chain polytope possesses a regular unimodular triangulation arising from a
flag complex.

Keywords Algebra with straightening laws · Chain polytope · Partially ordered set

Mathematics Subject Classification (2010) Primary 52B20 · Secondary 13P10 · 03G10

1 Introduction

In [6], the order polytope O(P ) and the chain polytope C(P ) of a finite poset (partially
ordered set) P are studied in detail from a view point of combinatorics. Toric rings of
order polytopes are studied in [1]. In particular, it is shown that the toric ring K[O(P )]
of the order polytope O(P ) is an algebra with straightening laws ([2, p. 124]) on a finite
distributive lattice. In the present paper, it will be proved that the toric ring K[C(P )] of
the chain polytope C(P ) is also an algebra with straightening laws on a finite distributive
lattice. It then follows immediately that C(P ) possesses a regular unimodular triangulation
arising from a flag complex.
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2 Toric Rings of Order Polytopes and Chain Polytopes

Let P = {x1, . . . , xd} be a finite poset. For each subset W ⊂ P , we associate
ρ(W) = ∑

i∈W ei ∈ R
d , where e1, . . . , ed are the unit coordinate vectors of Rd . In par-

ticular, ρ(∅) is the origin of Rd . A poset ideal of P is a subset I of P such that, for all xi

and xj with xi ∈ I and xj ≤ xi , one has xj ∈ I . An antichain of P is a subset A of P such
that xi and xj belonging to A with i �= j are incomparable.

Recall that the order polytope is the convex polytope O(P ) ⊂ R
d which consists of

those (a1, . . . , ad) ∈ R
d such that 0 ≤ ai ≤ 1 for every 1 ≤ i ≤ d together with

ai ≥ aj if xi ≤ xj in P . The vertices of O(P ) are those ρ(I) such that I is a poset
ideal of P ([6, Corollary 1.3]). The chain polytope is the convex polytope C(P ) ⊂ R

d

which consists of those (a1, . . . , ad) ∈ R
d such that ai ≥ 0 for every 1 ≤ i ≤ d together

with

ai1 + ai2 + · · · + aik ≤ 1

for every maximal chain xi1 < xi2 < · · · < xik of P . The vertices of C(P ) are those ρ(A)

such that A is an antichain of P ([6, Theorem 2.2]).
Let S = K[x1, . . . , xd , t] denote the polynomial ring over a field K whose variables are

the elements of P together with the new variable t . For each subset W ⊂ P , we associate
the squarefree monomial x(W) = ∏

i∈W xi ∈ S. In particular, x(∅) = 1. The toric ring
K[O(P )] ofO(P ) is the subring of R generated by those monomials t · x(I ) such that I is
a poset ideal of P . The toric ring K[C(P )] of C(P ) is the subring of R generated by those
monomials t · x(A) such that A is an antichain of P .

3 Algebras with Straightening Laws

Let R = ⊕
n≥0 Rn be a graded algebra over a field R0 = K . Suppose that P is a poset with

an injection ϕ : P → R such that ϕ(α) is a homogeneous element of R with degϕ(α) ≥ 1
for every α ∈ P . A standard monomial of R is a finite product of the form ϕ(α1)ϕ(α2) · · ·
with α1 ≤ α2 ≤ · · · . Then, we say that R = ⊕

n≥0 Rn is an algebra with straightening
laws on P over K if the following conditions are satisfied:

• The set of standard monomials is a basis of R as a vector space over K .
• If α and β in P are incomparable and if

ϕ(α)ϕ(β) =
∑

i

riϕ(γi1)ϕ(γi2) · · · , (1)

where 0 �= ri ∈ K and γi1 ≤ γi2 ≤ · · · is the unique expression for ϕ(α)ϕ(β) ∈ R

as a linear combination of distinct standard monomials, then γi1 ≤ α and γi1 ≤ β for
every i.

We refer the reader to [2, Chapter XIII] for fundamental material on algebras with
straightening laws. The relations (1) are called the straightening relations of R.

Let P be an arbitrary finite poset and J (P ) the finite distributive lattice ([7, p. 252]),
consisting of all poset ideals of P ordered by inclusion. The toric ring K[O(P )] of the order
polytopeO(P ) is a graded ring with deg(t · x(I )) = 1 for every I ∈ J (P ). We then define
the injection ϕ : J (P ) → K[O(P )] by setting ϕ(I) = t · x(I ) for every I ∈ J (P ). One

448



Chain Polytopes and Algebras with Straightening Laws

of the fundamental results obtained in [1] is that K[O(P )] is an algebra with straightening
laws on J (P ). Its straightening relations are

ϕ(I)ϕ(J ) = ϕ(I ∩ J )ϕ(I ∪ J ), (2)

where I and J are poset ideals of P which are incomparable in J (P ).

Theorem 3.1 The toric ring of the chain polytope of a finite poset is an algebra with
straightening laws on a finite distributive lattice.

Proof Let P be an arbitrary finite poset and C(P ) its chain polytope. The toric ring
K[C(P )] is a graded ring with deg(t · x(A)) = 1 for every antichain A of P .

For a subsetZ ⊂ P , we write max(Z) for the set of maximal elements ofZ. In particular,
max(Z) is an antichain of P . The poset ideal of P generated by a subset Y ⊂ P is the
smallest poset ideal of P which contains Y .

Now, we define the injection ψ : J (P ) → K[C(P )] by setting ψ(I) = t · x(max(I ))

for all poset ideals I of P . If I and J are poset ideals of P , then

ψ(I)ψ(J ) = ψ(I ∪ J )ψ(I ∗ J ), (3)

where I ∗ J is the poset ideal of P generated by max(I ∩ J ) ∩ (max(I ) ∪ max(J )). Since
I ∗ J ⊂ I and I ∗ J ⊂ J , the relations (3) satisfy the condition of the straightening
relations.

It remains to prove that the set of standard monomials of K[C(P )] is a K-basis
of K[C(P )]. It follows from [6, Theorem 4.1] that the Hilbert function ([2, p. 33])
of the Ehrhart ring ([2, p. 97]) of O(P ) coincides with that of C(P ). Since O(P )

and C(P ) possess the integer decomposition property ([4, Lemma 2.1]), the Ehrhart
ring of O(P ) coincides with K[O(P )] and the Ehrhart ring of C(P ) coincides with
K[C(P )]. Hence, the Hilbert function of K[O(P )] is equal to that of K[C(P )].
Thus, the set of standard monomials of K[C(P )] is the K-basis of K[C(P )] as
desired.

4 Flag and Unimodular Triangulations

The fact that K[C(P )] is an algebra with straightening laws guarantees that the toric
ideal of C(P ) possesses an initial ideal generated by squarefree quadratic monomi-
als. We refer the reader to [3] and [5, Appendix] for the background of the existence
of squarefree quadratic initial ideals of toric ideals. By virtue of [8, Theorem 8.3],
it follows that

Corollary 4.1 Every chain polytope possesses a regular unimodular triangulation arising
from a flag complex.

5 Further Questions

Let, as before, P be a finite poset and J (P ) the finite distributive lattice consisting of all
poset ideals of P ordered by inclusion. Let S = K[x1, . . . , xn, t] denote the polynomial
ring and � = {wI }I∈J (P ) a set of monomials in x1, . . . , xn indexed by J (P ). We write
K[�] for the subring of S generated by those monomials wI · t with I ∈ J (P ) and define
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the injection ϕ : J (P ) → K[�] by setting ϕ(I) = wI · t for every I ∈ J (P ).
Suppose that K[�] is an algebra with straightening laws on J (P ) over K . We

say that K[�] is compatible if each of its straightening relations is of the form
ϕ(I)ϕ(I ′) = ϕ(J )ϕ(J ′) such that J ≤ I ∧ I ′ and J ′ ≥ I ∨ I ′, where I and I ′ are poset
ideals of P which are incomparable in J (P ).

Let K[�] and K[�′] be compatible algebras with straightening laws on J (P ) over K .
Then, we identify K[�] with K[�′] if the straightening relations of K[�] coincide with
those of K[�′].

Let P ∗ be the dual poset ([7, p. 247]) of a poset P . The toric ring K[C(P ∗)] of C(P ∗)
can be regarded as an algebra with straightening laws on J (P ) over K in the obvious way.
Clearly, each of the toric rings K[O(P )], K[C(P )], and K[C(P ∗)] is a compatible algebra
with straightening laws on J (P ) over K .

Question 5.1 (a) Given a finite poset P , find all possible compatible algebras with
straightening laws on J (P ) over K .

(b) In particular, for which posets P , does there exist a unique compatible algebra with
straightening laws on J (P ) over K ?

Example 5.2 (a) Let P be the poset of Fig. 1. Then, K[O(P )] = K[C(P )], and there exists
a unique compatible algebra with straightening laws on J (P ) over K . In fact, J (P ) for P

is the poset in Fig. 2. In the corresponding algebra, we must have be = af . Then, we have
either bc = ad or bc = af . However, since bc �= be, it follows that bc = ad . Similarly, we
have de = cf . Hence, the ASL relations are unique.

(b) Let P be the poset of Fig. 3. Then, there exist three compatible algebras with
straightening laws on J (P ) over K . They are K[O(P )], K[C(P )], and K[C(P ∗)].

(c) Let P be the poset of Fig. 4. Then, there exist nine compatible algebras with
straightening laws on J (P ) over K .

Fig. 1 Example 5.2 (a)
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Fig. 2 Example 5.2 (b)

Fig. 3 Example 5.2 (c)

Fig. 4 J (P ) in Example 5.2 (a)

Conjecture 5.3 If P is a disjoint union of chains, then the compatible algebras with
straightening laws on J (P ) over K are K[O(P )], K[C(P )], and K[C(P ∗)].
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