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There is an error in Sect. 6.2 of the original article in the computation of equations of the
generalized Drinfeld–Sokolov hierarchy associated to the minimal nilpotent element f
of the Lie algebra g = sln, n ≥ 3, corresponding to the unique (up to a constant factor)
non-zero central element c ∈ g

f
0 (such c exists for minimal f only in the case g = sln ,

n ≥ 3).
Namely, equation d L

dt1
= 0 in the second line of page 652 should be replaced by

d L

dt1
=

∑

k∈J 1
2

(
ψ([ f, vk])ψ([c, [ f, vk]])

)′
.

Consequently, one should add to Eq. (6.17) of the original article the following equations

dψ(u)

dt1̃
= ψ([c, u])′′ − 1

2(x |x) Lψ([c, u]),
d L

dt1̃
=

∑

k∈J 1
2

(
ψ([ f, vk])ψ([c, [ f, vk]])

)′
.

(1)

This error affected the example of g = sl3 in Sect. 8 of our paper [DSKV14a].
Namely, to (8.7) one should add two conserved densities:

g0̃ = ϕ , g1̃ = 6ψ+ψ− ,
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to Eq. (8.9) one should add the equation

d

dt0̃

⎛

⎜⎝

L
ψ+
ψ−
ϕ

⎞

⎟⎠ =
⎛

⎜⎝

0
−3ψ+
3ψ−

0

⎞

⎟⎠ ,

to Eq. (8.10) one should add equations

d L

dt1̃
= 6 (ψ+ψ−)′ ,

dψ±
dt1̃

= ∓3ψ ′′± ± 3Lψ± ∓ ϕ2ψ± − 3

2
ψ±ϕ′ − 3ϕψ ′±,

dϕ

dt1̃
= 0,

and to Eq. (8.20) one should add equations

d

dt0̃

⎛

⎝
L
ψ+
ψ−

⎞

⎠ =
⎛

⎝
0

−3ψ+
3ψ−

⎞

⎠ ,
d

dt1̃

⎛

⎝
L

ψ+

ψ−

⎞

⎠ =
⎛

⎝
6 (ψ+ψ−)′

−3ψ ′′
+ + 3Lψ+

3ψ ′′− − 3Lψ−

⎞

⎠ .

The latter is the well known Yajima–Oikawa (YO) equation [YO76].
Thus, in [DSKV14a] we proved that the YO hierarchy is obtained by Dirac reduction

from the minimal sl3 generalized Drinfeld–Sokolov hierarchy, and, as a result, we gave
in formulas (8.4) and (8.5) two compatible Poisson structures for the YO hierarchy. The
latter were found in [Che92].

Furthermore, this error affected the example considered in Sect. 2.5 of our paper
[DSKV14b]: one should add Eqs. (1) to the equations at the end of Sect. 2.5 there
in the case of g = sln , n ≥ 3. Thus, in Sect. 2.5 of [DSKV14b] we proved that the
n − 2-component YO hierarchy is obtained by Dirac reduction from the minimal sln
generalized Drinfeld–Sokolov hierarchy. As a result, we gave two compatible Poisson

structures for the n − 2-component YO hierarchy, which we denoted by H0 and H
D
1 in

Sect. 2.5 of [DSKV14b].
The new type of reduced Kadomtsev–Petviashvili (KP) hierarchy, called the con-

strained KP hierarchy, was introduced in [KSS91,KS92], where it was observed that
the YO hierarchy can be obtained as a constrained KP hierarchy (and this was used
in [Che92] to find its bi-Poisson structure). A more general s-vector constrained KP
hierarchy was introduced in [SS93], where it was shown that the multi-component YO
hierarchy, studied in [Ma81], can be obtained by this construction. After that, in [ZC94]
the more general s-vector m-constrained KP hierarchy was introduced (the constrained
KP hierarchy of [KS92,Che92,SS93] corresponds to m = 2).

Our main observation in this regard is that the s-vector m-constrained KP hierarchy
is isomorphic to the Dirac reduction by conformal weight 1 fields of the generalized
Drinfeld–Sokolov hierarchy [DSKV14a,DSKV13], associated to the Lie algebra g =
slm+s and its nilpotent element f corresponding to the partition (m, 1, . . . , 1) of m + s.
(Note that for both hierarchies the number of fields is equal to m−1+2s = dim(g f/

g
f
0
).)

For m = 2 this observation is proved in [DSKV14b].
We are grateful to Professor Takayuki Tsuchida, who pointed out to us that our Eq.

(8.10) in [DSKV14a] is a higher symmetry of the YO equation in the YO hierarchy
[Che92], which led us to the discovery of the error in the original article.
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