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Modeling End-to-End Order Cycle-Time Variability to Improve On-Time Delivery Commitments and
Drive Future State Metrics

by
Christian Schneider

Submitted to the MIT Sloan School of Management and the IDSS on May 6, 2016 in partial Fulfillment of
the Requirements for the Degrees of Master of Business Administration and Master of Science in

Engineering Systems Design

Abstract

Dell is accelerating investments to simplify and improve one of the core competencies it was founded on,
customer experience. One goal within this initiative is to increase the percentage of orders that are on-
time to a committed Estimated Delivery Date (EDD). EDDs for products vary greatly with the complexity
of the customer purchase orders. In order to remain competitive, Dell has set an aggressive goal to
provide better on-time delivery performance. Dell needs to quote more accurate lead time commitments
to customers and increase the stability of high variability steps in the end-to-end order supply chain.

The EDD lead time, from customer order to proof of delivery, consists of a payment (processing) phase,
manufacturing (build, inbound logistics, warehouse) phase, and a logistics (delivery) phase. Each of these
segments are managed by different organizations within Dell. Understanding what the end-to-end future
state looks like will allow functional teams to set improvement targets to achieve Dell's on-time goal.

This study has three main objectives: (1) determine the key drivers of variability in the current state
process, (2) identify opportunities for more detailed EDD range generation, and (3) quantify targets for
individual process steps to drive towards the target future state. Three high volume Build to Order (BTO)
regional product lines were chosen as cases to analyze. BTO product lines, compared to Build-to-Stock
(BTS), inherently have a more variable supply chain for the processes examined.

To meet the main objectives, this thesis examines the hypothesis that a simulation model based on
historic order data can be used to quantify existing cycle time performance in the supply chain and deliver
targets to achieve Dell's on-time performance target. Key drivers of cycle time variation were identified
through process mapping and design of experiment statistical analysis.

Results from the modeling and sensitivity analysis produced actionable recommendations for each of the
three objectives and lead to a pilot project to improve EDD commitments for an existing desktop product
line. Direct to customer shipping, inbound logistics method, and day of week were identified as attributes
that were significant drivers of variability and were underutilized in the EDD commitment process. This
provided an opportunity for smarter lead time setting. A pilot project for a desktop line adjusted lead
times to incorporate direct to customer shipping and day of week, resulting in a 30-40% on-time
performance improvement. Finally, modeling results quantified cycle time distribution targets for each
process step to achieve Dell's future state goal for on-time delivery. Dell is building on this project by
analyzing more regional product lines and exploring opportunities to incorporate machine learning.

Thesis Supervisor: Bruce Cameron
Title: Lecturer in Engineering Systems, Director of Systems Architecture Lab

Thesis Supervisor: Stephen Graves
Title: Professor of Management Science, MIT Sloan School of Management
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Note on Proprietary Information
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competitive information.
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Introduction
In 2013, Michael Dell, along with Silver Lake Partners, took Dell Inc. private to re-focus the company's long

term strategy without the quarterly scrutiny of Wall Street. One of the strategic areas of investment for the

private company is to accelerate the delivery of an enhanced and simplified customer experience (Company

Herritage, n.d.). One year after privatization, Dell created the End to End Order Experience Program. This

program is tasked with increasing the percentage of products delivered on-time to a targeted best in class

level. The goal of this project is to investigate variability in the current state supply chain and improve on-

time delivery accuracy.

1.1 Motivation
The motivation for this project came from understanding current state performance and delivery lead time

commitment processes. The order process for products is split into three high-level sequential phases:

payment, manufacturing, and logistics. Each of these phases has historically operated in a silo and determined

their portion of the total lead time committed to the customer. For nearly all customers, a late order is a bad

customer experience. The culture throughout the supply chain put a strong emphasis on not being late to

each phase's lead time allocation. The "don't be late" mantra led to conservative delivery forecasts that would

ensure limited late orders. As a consequence, delivery commitments became conservatively long and many

orders would ship to customers much earlier than the commitment. Some consumers may not mind an early

shipment, but for others it is just as inconvenient as a late shipment. Corporate customers with large orders

may not have storage space for deliveries before the committed date range. For individual consumers,

packages could be left on doorsteps for several days increasing the likelihood of theft or damage.

During checkout, Dell communicates an expected delivery range to the customer based on several factors

known prior to final order entry. Among these factors are payment method, product type, customer location,

shipping method, and component inventory. Orders with similar factor characteristics are grouped together

to create cycle time distributions for each of the three process phases. Trends in distributions are monitored

over time, and each process phase calculates a lead time based on recent history, allowing for up to five to

ten percent of orders to be later than the commitment. By using recent history, Dell is able to capture

incremental improvements in processes within supply chain phases. However, using recent history ignores

seasonal drivers of variation in processes. Extreme deviations from business as usual operations can skew

recent history, so Dell carefully examines the drivers of abnormal operations.

12



Figure 1 illustrates this lead time determination for an example product's manufacturing phase. A six business

day lead time commitment allows for no more than five percent of orders exceed the commitment. Choosing

a lead time lower than six business days would cause an unacceptable percent of orders to exceed the

commitment. Conversely, a lead time of more than six days would have less orders late to the commitment,

but could contribute to a total delivery range commitment that is not competitive to industry peers. The lead

times for each phase are then added together to calculate the last day of the delivery commitment range.

Example Product Manufacturing Phase Cycle-Time Distribution

Using 5% Late Threshold

'4%

35%

30%

25%
0
0 20%

15%

1 f0%

No more than 5%
orders later than 6

- - business days

5% t

0% .....

0 1 2 3 4 5 6 7 8 9

Biz Day Cycle-Time

Figure 1: Manufacturing phase cycle time distribution and lead time determination allowing for up to 5% of orders to be late to

commitment.

If the lead times for payment, manufacturing, and logistics were one, six, and three respectively, the

summation of these, ten business days, would determine the last day of the delivery range. After determining

the last day of the delivery range, Dell applies a competitive framework to determine the first day of the

delivery commitment range. The competitive framework calculates the length of the delivery range taking

into consideration industry peer benchmarking and historic Dell cycle time performance. Figure 2 illustrates

an example of how the delivery commitment aligns to the distribution of actual end-to-end order cycle times.

This example is for an order that has a combined last day lead time of ten business days and may have a

competitive delivery range of four business days, making a final delivery commitment to the customer of
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seven to ten business days. A delivery with a shorter last day lead time, such as five business days, may only

have a delivery range of three days, making a final delivery commitment of three to five business days.

Hypothetical End-to-End Business-Day Cycle-Time Profile

40% Competitive Delivey
Range of

35% 
4 Days

Sum of three

30% 
Phase Lead Times
1+6+3 = 10

S25%

o 20%

Late
15%

Early On-Time
10%

5%

0% -

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Biz Days

Figure 2: Hypothetical on-time commitment example, allowing for Up to 10% late orders, plotted against actual order cycle

times

Each phase commits its lead time to equal a specified high percentile of recent cycle time distributions and all

three phases are added together. If the goal is to have on-time accuracy equal the same specified percentile

used to calculate lead times, Dell is assuming the three process phases are not independent. The summation

of individual lead times implies that an order that is late to the payment commitment will also likely exceed

the manufacturing and logistics commitment allocations. This assumption could cause orders to have

unnecessarily long delivery range commitments if process phases are actually independent from one another.

An end-to-end commitment process, instead of three phase, could provide a more accurate delivery window

and increase on-time delivery performance.

Actual order performance using the three phase commitment process is illustrated in Figure 3 for an example

US customizable product line that is representative of the performance of the entire US customizable product

portfolio. Dell stakeholders view on-time performance through similar charts on a weekly basis. This graph

highlights the percentage of early, on-time, and late orders for a twelve-month period. Over the past year,

the Order Experience Program has on average made about a 10-point gain in on-time order delivery, but about
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30% of orders remain delivered early to the committed delivery range. Current state on-time performance is

still far short of the future state goal.

Example Product Line

Delivery Outcome

80%~

......................

50%

4L%

30%

20

0%

- --- L 6r n nn a i n z -
~~r-4

-

C C .0 

-tin >m Go

Figure 3: Example delivery accuracy trend chart for an average customizable product line.

1.2 Objectives
This project has three main objectives to help Dell increase on-time delivery performance. The first objective

is to identify the key drivers of variability in the current state process. Each order has many characteristics

that could influence the amount of time spent in each step of the supply chain, but Dell does not currently

examine the impact of all characteristics on the delivery date commitment process. Identifying impactful and

unutilized order characteristics can help Dell determine where to concentrate investment resources to

improve cycle time performance and the delivery date range commitment process.

Bridging the gap from the current state to the aggressive future goal state requires investments in both the

lead time calculation engine and operational processes. The second objective is to find opportunities for Dell

to provide more detailed and accurate delivery date range to the customer. Recommendations for changing

the delivery date commitment must maintain a competitive offering compared to industry peers. This means

a recommendation to simply provide a much wider delivery date range to improve on-time performance

would not be feasible.
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The other option to improve on-time delivery is to reduce variability in the underlying supply chain processes.

The third objective of this project is to quantify future state cycle time performance targets for each step in

the supply chain. Dell's supply chain measures and sets metrics to improve cycle time performance

throughout the supply chain. The current state continuous improvement approach has led to incremental

improvement to on-time delivery performance. This third objective would provide Dell cycle time

performance targets for a future state supply chain that would meet the company's on-time delivery

performance goal.

Senior management engagement is also critical to successfully implementing change in the supply chain and

delivery date range commitment processes. "Customer experience does not improve until it becomes a top

priority and a company's work processes, systems, and structure change to reflect that." (Meyer & Schwager,

2007). The objectives of this project provide data driven recommendations to help Dell senior leadership

understand how the future state supply chain should perform and commit to the customer.

1.3 Hypothesis
This project hypothesizes that variability can be better understood by creating a modeling framework that

statistically identifies key drivers of variability and uses simulation to predict the amount of time orders spend

in each step of the end-to-end process. The modeling framework needs to be granular enough to provide

meaningful improvement targets to each functional process. The framework must also be flexible enough to

address the uniqueness of regional supply chains, incorporate process improvements, and accept new

processes not currently operational.

Another approach examined for this study was to identify drivers for variability by flagging orders that did not

meet ideal state supply chain performance. Orders not meeting ideal state expectations would be separated

from the population and examined for similar attributes. This analysis would provide insights into the causes

of variation in the supply chain and could be used to create more detailed improvement targets for supply

chain process steps. In 2014, Tracy Napolilo created a framework for Nike that could be tailored to the Dell

supply chain to accomplish this approach (Napolillo, 2014). Unfortunately, this approach would not directly

address the second objective of this study, to improve delivery date range commitments.

A third approach considered for this project was to identify key drivers of variability and create a regression

model to forecast end-to-end cycle times of future orders. This approach would consider the start and end
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points of the order process instead of analyzing each individual process step, producing a simpler model that

is easily repeatable and can accommodate more historic data. This high level regression approach would

provide insight into key drivers of variability and opportunities to improve end-to-end delivery date range

commitments. However, this approach would not offer enough insight into the individual processes to meet

the third objective of this project, providing performance cycle time targets to supply chain processes.

1.4 Thesis Outline

Chapter two of this thesis discusses the research analysis used for this study. This chapter explains why a

flagship build to order (BTO) notebook product line was chosen for this study and the current state processes

included in its supply chain. The chapter then describes the methods used to statistically screen for and

confirm with Dell stakeholder the order attributes that drive cycle time variation at each step of the supply

chain. Outputs from this section address the first objective of this study, identifying the key drivers of variation

in the supply chain. Statistical analysis of the correlation between process step cycle times is also examined

to validate the assumption that processes are independent from one another.

Chapter three uses the significant attributes for each process, identified in Chapter two, to construct process

flow branch diagrams that represent different order flow paths for the current state supply chain. Then, the

chapter describes how the process diagram branches were used to parse the historic order dataset and fit

distributions to the process step cycle times. These cycle times were then applied to a simulation model to

forecast the end-to-end cycle times for each branch of the process flow diagrams. Results from the simulation

were then calculated into business performance metrics used by Dell and validated to historic data.

Chapter four highlights the opportunities to address the second and third objectives of this study, improving

delivery date range commitments and providing future state cycle time metrics for individual process steps.

Examples are used to illustrate how using statistically significant criteria not currently used by Dell's delivery

commitment calculations can improve on-time performance. Specific standard deviation reduction targets

are then calculated to illustrate how a future state supply chain should perform to meet Dell's aggressive on-

time goals.

The fifth chapter applies the modeling framework to a flagship BTO business desktop line. The chapter

explains why this product line was chosen and highlights how the framework was used to build a simulation
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model. The simulation model outputs revealed an opportunity to commit more aggressive delivery date

commitments for directly shipped orders and to increase the percent of on-time orders by 39%.

The final chapter discusses how the recommendations from using the modeling framework were received by

Dell and the main lessons learned. This chapter also discusses how this framework can be applied to other

industries and future work that can build off of this modeling framework.

1. Research Analysis

2.1 Regional Product Case Approach

Dell is estimated to have shipped over 10 million PCs in Q4 2015 globally, accounting for approximately 13%

of the market (Pettey, 2016). With many SKUs and regions, it was necessary to determine a subset of the

order population for the initial analysis. Generating a leaner dataset required collaboration between the data

analytics team, the order experience team, and the operational leadership teams. This study focusses on two

flagship notebook and desktop build to order (BTO) US products. The notebooks selected are manufactured

in Asia, while the desktop line is manufactured in Mexico.

To reduce complexity of Dell's end-to-end product order supply chain, regional products were chosen as an

example of the broader supply chain. Deciding on these two offerings involved discussion with regional Order

Experience program team leaders, data analytics team members, and operational function managers. Prior

to this study, each stakeholder had preferences for areas of focus where the supply chain is most variable. In

general, stakeholders were in alignment and expected most of the end-to-end process variability to be in the

inbound logistics and Dell consolidation facility steps, both of which are managed by third parties. The

standard offering for inbound logistics from Asia to the US had a service window that was three days wide,

which was almost as wide as Dell's committed delivery range to the customer. For Dell fulfilment operations,

a variety of services were performed on orders with little differentiation on the order delivery commitments.

It was believed that because Dell creates delivery date range commitments allowing for a 5-10% threshold of

late orders, less frequent processes with longer durations were setting the commitments for the entire order

portfolio. Scoping the cases required regional products that flow through stakeholder focus areas. These

areas included financing payment terms, orders that bypass Dell consolidation facilities, and premium

outbound logistics.
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The flagship configurable notebook product line, manufactured in Asia and delivered to the United States,

was chosen to develop the initial framework. This line is the marque product for US business customers and

constitutes the majority of order volume for the build to order portfolio. Business laptops come in many

configurable models to suit the diverse business needs of Dell's end users. All models of the selected product

line were used in this study, but limited to the main production facility in China. The product line has

approximately eighty thousand orders per quarter, approximately half of total US build to order volume. On-

time performance is measured by the order and not weighted by the number of systems that are in the order.

This means that an order for one notebook counts the same as an order for 25 or 50 notebooks for on-time

performance. The most recent month available at the time of this study, August 2015, was chosen for the

order dataset.

The other important characteristic of the case study design for this analysis was limiting the data to business

as usual (BAU) operations. One component of obtaining a BAU dataset was to eliminate orders that did not

receive a standard manufacturing lead time commitment during customer check out. Dell has product specific

lead times for many of the process steps within the manufacturing phase. Orders that do not meet standard

lead time commitment criteria typically had forecast delays due to component inventory shortages and varied

in duration based on SKU and inventory levels. Only 5-15% of orders from case studies observed do not meet

standard lead time criteria. Other non-standard events could also impact the BAU operations. During a two-

week period in June 2015, extreme thunderstorms near the Nashville consolidation facility cause abnormal

logistics delays, skewing cycle times in preliminary data analysis. To maintain a BAU order population, orders

impacted by events like these would also require exclusion from the modeling framework.

2.2 Current State Processes and Data Availability

The current state processes for configurable US notebooks span from payment to delivery. The order system

is broken up into three phases named payment, manufacturing, and logistics. Within these three phases are

seven sub processes that are separated by timestamps. Payment and outbound logistics each have one of

these seven sub processes. The remaining five sub processes, network planning, facility planning, build,

inbound logistics and consolidation, are in the manufacturing phase. An order must complete the previous

process step to move on to the next. Because the temporal data for the seven sub processes are separated

by timestamps, it is important to understand the boundaries of the processes in relation to these timestamps.

To maintain a comparable end point of the system, the delivery's first attempt was considered the end of the

process. Orders delivered on a subsequent attempt were noted in the data, but for this study orders were
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considered completed on the first attempt. Figure 4 illustrates the process phase flow and the action that

creates the timestamp that ends each step in the dataset.

Payment Manufacturing Logistics
Phase LT Phase LT Phase LT

downloadsto downloadedto production production consolidation consolidation attemptby
Dell mfg team I i a facility facility and facility and facility and carrier

enters logistics opasetes etrslogistics

provider completeness networknetwork check

Figure 4: Order experience supply chain process flow with descriptions of the actions that create process ending timestamps

Previous efforts at Dell merged significant data related to order experience from several databases into one.

This combined database includes order characteristics that determine the process flow and lead time

commitment through payment, manufacturing, and logistics. Actual lead time commitments and process step

timestamps for each order are also included.

Each one of the three phases is responsible for a portion of the lead time for each product. Lead times are

committed based on order characteristics that are known at the time of order entry. For example, in payment,

paying with a credit card will have a shorter lead time compared to creating financing terms. Generally, both

payment and logistics lead times are determined agnostic to the manufacturing phase processes, so a

notebook, tablet, or mouse would follow the same lead time commitment logic for these two phases.

In the current state, all of the processes within manufacturing have characteristics that can impact the lead

time commitment for any product. These include component inventory, build facility, inbound logistics

method, and consolidation services. Most of the criteria in manufacturing is product specific.

The order flow begins with the payment processing phase. An order will not continue to the manufacturing

phase until the payment is validated by an exception based process. Order criteria such as payment method

and customer type impact the approval process and therefore the cycle time performance of this process. For

this study, only payment methods of credit card, gift card, and financing terms were incorporated. These

payment terms represent over 80% of the order population. Payment terms that were excluded for this

analysis include wire transfer, lease terms, credit terms and orders that qualify for Dell's Buy and Try program.
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Once payment terms are validated, the order moves into the manufacturing phase. The first two steps in

manufacturing are planning-related. Network planning is the time an order spends waiting to be assigned to

an original design manufacturer (ODM) facility. This is an automatic process that typically has a very short

cycle time. Facility planning is the time spent in the ODM facility until the production of the product. Delays

in this process step are driven by facility queue management and part shortages. Orders with known part

shortage issues at order entry will receive an extended lead time commitment and were excluded from this

analysis. Dell has a team continuously exploring opportunities in inventory management to cost effectively

minimize part shortage events.

The next process step is building the product. ODMs operate within a negotiated service level agreement

(SLA) that dictates cycle time and late tolerance. The SLA is unique for each product and facility. The build

process represents a large portion of the total manufacturing lead time commitment. This process is

considered complete after the order is completed and exits the ODM facility.

Once the order exits the facility, it enters the inbound logistics process. Lead time is influenced by the location

of the ODM facility and the service level of transportation chosen. Inbound logistics has two unique paths

determined by an order's need for additional value add services. Orders that do not require additional

services can be directly shipped to the customer. Direct to customer shipments are shuttled from the ODM

to a logistics carrier hub where they transition to the outbound logistics process, bypassing the consolidation

step.

Orders requiring services are shuttled from the ODM to a Dell consolidation facility. Once the order is scanned

and accounted for, it begins the consolidation process. Lead time commitments are based on the additional

services required. These services include adding software, accessories, asset tags, specialty shipping labels,

and other configuration services. The consolidation process is considered complete once scanned onto the

appropriate outbound logistics carrier truck.
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i l facility

Ship directly to the
customer

Figure 5: Decision tree describing simplified criteria to illustrate why an order is shipped directly to the customer or shipped to a

Dell consolidation facility.

Outbound logistics begins when the order is in the carrier network. Dell uses multiple carriers to fulfil delivery

demand. Lead times for this process phase are largely driven by customer location and delivery service. Only

ground, next day, and second day delivery services, representing over 90% of the order volume, were included

in this study.

Analysis of the current state and understanding how available timestamp data aligns with the processes gave

insight into how the data would represent cycle time variability at the sub process level. Each process cycle

time includes the handoff transition time to the subsequent process except for the production phase, which

begins when production initiates and completes once loaded onto the truck for inbound logistics. Orders can

spend time sitting on these trucks until the agreed upon cutoff time when the trucks leave the facility to begin

transportation. Once the inbound logistics provider delivers the order contents to the consolidation facility,

the timestamp does not initiate until the inbound logistics product is unloaded from the truck, unpacked, and

all portions of the order are accounted for. Both of the handoff transition times discussed can also be

impacted by the production facility, consolidation facility, and third party logistics pr.ovider's day of week

schedule. Orders could wait an additional day in these transition states due to weekend work schedules or

holidays.
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Because inbound logistics timestamp data will include both of these handoff transition times, it is unlikely that

the cycle times representing this sub process in the data will align to third party logistics providers service

level agreement (SLA) hourly targets. These SLA targets begin at the agreed upon cutoff time when the trucks

begin transportation and end once delivered to the consolidation facility. Dell stakeholder expectations are

more aligned to the SLA targets than the actual cycle times represented in the data. Understanding what

order characteristics impact these handoffs and the processes could explain variability in the end-to-end

system.

2.3 Design of Experiment Statistical Screening

Current state analysis revealed that orders have many attributes that can impact how they travel through the

supply chain. This chapter examines the portion of the modeling framework that determines the key order

attributes that drive cycle time variability. Cycle time distributions of each process step are examined to

determine the value of differentiating the order population to account for variation. Spending time analyzing

extremely short duration processes, compared to the multi-day end-to-end cycle time, will not provide much

value to the modeling framework. For processes where it is worth differentiating the order population, a

design of experiment screening is used to identify order attributes that drive cycle time variation. The output

of this portion of the framework will be a list of key attributes for each sub process that can be leveraged to

segregate the order population into a process flow tree.

Configurable products have delivery date range commitments of at least five business days. Some of the sub

processes, network planning and consolidation, have an average duration of under an hour. The duration of

these two processes, compared to the total time it takes to flow through the supply chain, is not worth

differentiating to account for variation. Payment processing is also a very short duration process compared

to the end-to-end cycle time. However, internal Dell stakeholders were very curious about how attributes

impacted the cycle time for different payment options, so attributes that cause variation were analyzed for

this phase. Figure 6 shows the cycle time values by percentile for network planning, consolidation and

payment. For consolidation, many orders arrive at the facility to only get a shipping label. Because of the

sequencing of timestamp data creation, many of these get the arrival and departure timestamp

simultaneously as they are loaded onto the outbound logistics truck, explaining the zero value for the

percentile values up to 75%.
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Payment Processing Network Planning Consolidation

Quantiles Quantiles Quantiles
90.0% 3.C48 90.0% 0.37 900 12,78
75.0% quartile 0.38 75.0% quartile 0.08 75,0% quartile 0
50.0% median 0.22 50.0 median 0,07 50.0% median 0
25.0% quartile 0. 7 25.0% quartile 0.05 25.0% quartile 0
10.0% 0 2 10.0% 0.03 10.0% 0

Figure 6: Product line hourly cycle time distribution percentiles for payment processing, network planning, and consolidation
process steps.

For the remaining four process steps, facility planning, build, inbound logistics, and outbound logistics, median

cycle times ranged from 18 to 93 hours. These four processes made up the bulk of the end-to-end order cycle

time. Figure 7 shows the hourly distribution percentile values of these processes.

Facility Planning Build Inbound Logistics Outbound Logistics

Quantiles Quantiles Quantiles Quantiles

90.f: .44.077 90.0: 45.679 90.0: 148.452 90.0% 105.09
75.T% quartile 24,87 75.0% quartile 30.865 75.0% quartile 118.9425 75.0% quartile 83.93
50.0"' median 18.08 50.0% median 2232 50.0% median 9335 50.0% median 50.015
25.0% quartile 14,15 25.0% quartile 16.5 25.0% quartile 78.72 25.0% quartile 34.84

10.0% 11.58 10.0% 13.35 10.0% 63.27 10.0% 13.702

Figure 7: Product line hourly cycle time distribution percentiles for facility planning, build, inbound logistics, and outbound
logistics process steps.

For the longer four process steps and payment processing, a design of experiment screening analysis was

performed to determine which order characteristics, or combination of order characteristics, in the case study

dataset are statistically significant. Another approach considered was to perform a stepwise regression to

identify the criteria that drive the variability in the process. Stepwise regression tests one variable at a time

and incorporates other variables if their addition to the set improves the R2 of the model. The available

dataset included over 70 independent variables of order attributes that could influence the cycle time

performance at any of the seven process steps. Lists of the most impactful criteria for each process step are

presented later in this chapter. Performing a stepwise regression with this many variables would be time

consuming, and would not capture the potential correlation of independent variables. Also, the output of this

analysis will be a list of significant criteria that will be used to create a product flow diagram. If the output

were to create a linear regression model to forecast end-to-end cycle times, a stepwise regression would

provide a useful solution.
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It is important to note that certain characteristics are directly influenced by or provide similar information to

another characteristic. For example, a certain SKU may by definition only have one production location and

require additional services beyond the base model. SKU, and its inherent characteristics, would also drive the

manufacturing lead time commitment. Using any of these related fields in addition to SKU in an analysis would

be repetitive and could lead to double counting impacts. SKU however is an extremely granular attribute, and

separating the order population based on SKU would not provide enough data points for this study's analysis.

Attribute relationships were identified through interviews with stakeholders throughout the supply chain. It

is important for this framework to be cognizant of these relationships when identifying statistically significant

order features.

To screen the dataset for impactful criteria, the framework used the JIMP effects screening platform. This

platform is a least squares regression that relies on the sparsity-of-effects principle. This principle states that

relatively few effects in a study are impactful and estimates based off of these effects would only provide

random error (SAS Institute Inc., 2015). Effects screening was performed on each of the process steps

individually, testing for first and second order relationships. An attribute was deemed significant if the

individual p-value was less than 0.05.

For this analysis, a random sampling of 1000 observations from the filtered dataset of over 70,000 orders was

generated to run through the screening module. Sampling and screening was repeated 10 times and then

aggregated for each process step to limit sampling bias.

Once a sample of orders is generated, an individual process's cycle time, in hours, is selected as the dependent

variable. All attributes are added as independent variables. For each potential predictive criterion, the null

hypothesis is that the criterion does not add predictive value. As a result, any attribute that has a p-value of

less than 0.05, a statistically significant threshold chosen for this analysis, would reject the null hypothesis and

suggest that the criterion is significant to the model.

The outputs of this screening are Lenth t-ratio, individual p-value, and simultaneous p-value. Lenth t-ratio is

a factor that indicates the magnitude impact of each independent variable. This is calculated as a regression

parameter estimate divided by the Lenth's Pseudo-Standard Error, an estimate of the residual standard error.

In discussions with Dell stakeholders, the Lenth t-ratio was communicated as the magnitude of impact factor.
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Individual p-value and simultaneous p-value, as mentioned above, are parameters that identify the predictive

power of each independent variable. The smaller the value the more predictive power, with 0.05 as the

statistically significant threshold. Individual P-value represents the statistical significance for use as a

predictor in a linear model and assumes all other constraints are inactive. This is likely satisfactory if there

are few impactful criteria, but if there are several the individual p-value could over-predict significance. The

simultaneous p-value adjusts for multiple comparisons and is more useful to determine significant predictors

if several criteria are significant (SAS Institute Inc., 2015).

Figure 8 is a report table for the US configurable notebook business product line sorted by individual p-value

for payment processing. Pay_CodeLeadTime, at the top of the table, represents the lead time commitment

from the payment team and should be highly correlated to the amount of time an order spends in the payment

phase of the end-to-end process. This characteristic is based on other order criteria, and would not be a good

candidate for predictive analysis. Most of the remaining criteria can be separated into two distinct buckets,

payment type and customer type. Pay_Code and PaymentTerms describe the method of payment. Credit

cards and gift cards should have much shorter cycle times than customer orders that require financing terms.

OperationalSegment, OnlineOffline_Flag, ParentChannel, and CarrierCode all are related to the class of

customer purchasing the product. Larger customers that have done business with Dell in the past may have

more streamlined financing processes compared to small businesses that order less frequently and need

varying terms. For the payment methods chosen in this case study analysis, only PayCode was used to

represent other payment description attributes.

A - Screening for OrderProcess_Hours

A Contrasts
Lenth Individual Simultaneous

Term Contrast t-Ratio p-Value p-Value

PayCodeLeadTime 3.18937 6.79

OperationalSegment 1.55449 3.31 . Tjj 0.5058
PayCode -1.58780 -3,38 0.4314

OnlineOfflineFlag -1,35686 -2.89 0.9119

PaymentTerms 1.47368 3.14 -'G 0.7036
ShipToCountry 1.25731 2.68 '307 0.9857

Mfg LeadTime 1.27303 2.71 J5__ 0.9793

ParentChannel -1.22279 -2.60 1 [91' 0.9945

N etw ark Hours -1.19092 -2.53 1O5* 0.9980
CarrierCode -0.97759 -2.08 '.374k 1.0000

FacilityHours -0.8W86 -1.89 0.0585 1.0000

Figure 8: Effects screening report for a 1000 order sample of payment processing data.
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Screening reports were repeated 10 times for each process step with 10 different order samples. For each

process step, the count of instances where order attribute p-values were less than 0.05 was collected in a

single table. Attributes for the payment processing phase are listed in Table 1, limited to those attributes that

occurred three or more times in the 10 screening runs. This table was then shared with members of the order

experience program team and functional operational managers to determine if the anticipated business

critical criteria aligned with the reporting results.

Significant Payment
Processing Order Count of screening

Attributes p-values <= 0.05

Network_DayOfWeek 7

Network HourOfDay 7

PaymentHourOfDay 7

Paymen t_DayOfWee k 4

- annelDesc 3

Facility HourOfDay 3

Table 1: Count of instances, across screenings, of attributes that had a p-value of less than or equal to 0.05 for payment

processing

Many of the aggregated results were intuitive, such as an order with a longer quoted payment lead time took

longer to process. The PayDesc and PayCode both describe the payment type, and as mentioned earlier

only the PayCode was used to represent payment description. Differing payment options impacting the

payment processing time was also intuitive to the stakeholders, who expected more time for orders that were

purchased without a credit card. As a result, Pay_Code was used as the representative for all three of the

attributes highlighted in green.

Temporal attributes accounted for five out of the eight that occurred at least three times in the screening,

highlighted in yellow. In discussions with stakeholders, temporal differences were also expected. These were

likely due to the labor schedule and prioritization of some build to stock orders earlier in the day. Order

volume during the time of day and day of week when payment staffing was lower was less than 5% of orders.

Therefore, differentiating on these attributes was ignored for this study. While this study does screen for

hour of day order attributes, these attributes are not included in the next chapter's process flow diagram
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construction because parsing data into hours, in addition to other criteria, would create order populations

too small for this study's modeling framework approach.

Channel_desc differentiates an order by the industry and size of the purchaser. After further investigation

into the customer type, the only payment option impacted was financing. Customer classes impacted by the

differentiation did not have significant order volume. Therefore, this characteristic was also ignored for this

study.

This type of screening was repeated for the facility planning, build, inbound logistics, and outbound logistics

process steps. Below are tables highlighting the highest count attributes from screening analysis.

Explanations for how the attributes interact with one another and which were chosen to be included in the

process flow diagram construction are also briefly discussed for each of these process steps.

For facility planning, significant attributes fall into two buckets. The first, highlighted in yellow in Table 2, are

temporal impacts such as day of week and time of day processes begin. Day of week temporal attributes for

each process step are related to one another, as some sub processes have a short duration and do not change

the day of week value for subsequent processes. Facility Day was chosen as the attribute to represent the

temporal impacts for the facility planning process. The second bucket of attributes, highlighted in green, are

related to the specific product selected. Products specification and customer type attributes are very

correlated, as products are designed to meet the needs of specific customer segments. The product selected

can also impact the services tied to the order, such as expedited delivery or consolidation facility services.

Differentiating at the unique SKU level would result in sub populations too small to analyze in subsequent

modeling framework steps. To represent the green bucket of attributes, this study differentiated on the

product brand identifier only.

Significant Facility Planning Count of screening

Order Attributes p-values <= 0.05

I ShuttleHours 7 1
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I Facility Day 41

Shuttle Day 4

Merge Hours 4

Table 2: Count of instances, across screenings, of attributes that had a p-value of less than or equal to 0.05 for facility planning

The build process step, where the order is in production, revealed only temporal attributes in the statistical

screening aggregation. To account for this in the process flow diagram, the attribute representing the

beginning of the build process was included in the process flow diagram.

Count of

Significant Build Order screening p-values

Attributes <= 0.05

Shuttle Day 10

FacilityHours 7

Build Day 6

Table 3: Count of instances, across screenings, of attributes that had a p-value of less than or equal to 0.05 for the build process

Attributes impacting the inbound logistics process, illustrated in Table 4, are grouped into three buckets.

Facility Hours and Logistics Day of Week are both temporal attributes. Logistics day of week was chosen to

represent the temporal daily impact. Shuttle method code, which describes the different inbound logistics

services offered by Dell's third party logistics provider, was also selected as significant. Delivery method code

is related to the direct ship flag attribute that determines if an order can bypass Dell consolidation facilities

and ship directly to the customer. Some delivery methods require unique shipping labels to be applied to the

packaging at Dell consolidation facilities. The direct ship flag attribute takes into account the unique shipping

label differentiation and captures other reasons why orders require consolidation services. The direct ship

flag was selected to represent the order flow paths for the next chapter's diagram construction.

Count of

Significant Inbound screening p-values

Logistics Order Attributes <= 0.05

FacilityHours 6

Log Day 4

Deliver-method code 4

Direct ShipFlag 4

Table 4: Count of instances, across screenings, oJ at trbutes that had a p-value of less than or equal to 0.05 for inbound logistics
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The last process, outbound logistics, can also be represented by three buckets of attributes in Table 5. Day of

week is very important for orders that receive ground shipping because, depending on the carrier, weekend

delivery may not be an option. Logistics day of week, the day logistics processes begin, was selected to

represent day of week attributes. Green attributes, when combined, describe all of the shipping options

available in the supply chain. Both the direct ship flag and local ship code attributes were selected to

differentiate orders. Blue attributes influence the amount of time it takes for a ground shipment to reach the

customer. Dell uses a zip code to zip code logic matrix to create the freight lead time attribute based on the

source and sink postal codes. For this study, freight lead time was used as a differentiating attribute to

represent the zip code impact of ground deliveries. The blue attributes do not impact shipment methods like

next day and second day that have fixed delivery commitments regardless of zip code.

Count of
Significant Outbound screening p-values
Logistics Order Attributes <= 0.05

Loe Dav 10

Build Day 4

ShipToPostalCode 4

FreightLead Time 3
Table 5: Count of instances, across screenings, of attributes that had a p-value of less than or equal to 0.05 for outbound

logistics

Creating these analysis tables for the identified sub processes required both data analysis and stakeholder

discussion to determine the significance of and relationships between order attributes. Confirming

dependencies between attributes was a manual process, and can vary across regional products based on the

underlying supply chain. This same set of attributes was re-examined for a flagship desktop product line pilot

project. Differences and influencing factors for the desktop attributes will be discussed in chapter five.

The screening results were also powerful in revealing the lack of predictive power for certain criteria. System

quantity and boxes shipped were two of the order characteristics that were thought to be significant drivers

of cycle time variation. For some product lines this was confirmed in the data, but for others, system quantity

had weak predicting power. Figure 9 shows these attributes in an effects screening report for configurable

notebooks ordered in the US. Individual pvalues for these are over the 0.05 threshold of statistical

significance in all 10 screenings.
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Lenth Individual Simultaneous

Term Contrast t-Ratio p-Value p-Value

SystemQuantity 0,73942 1.57 0.188 1.0000

BoxesShipped -0.06247 -0.13 0.8966 1.0000

Figure 9: Example payment processing screening output for system quantity and boxes shipped attributes

2.4 Statistical Validation of Independent Processes Cycle Times

Generally, configurable products that are manufactured after completion of the order process follow a first in

first out (FIFO) methodology through the system. Processes will accept the order that has been waiting the

longest in the queue. Stakeholders in the Order Experience Program and supply chain functions assumed that

by using a FIFO system with ample capacity and no prioritization at each stage that there would be no

correlation in cycle time performance between process steps. If a product takes an abnormally long time to

pass through payment processing, it is not more likely to take longer in the subsequent process steps. If each

process step is indeed independent, or has very a small correlation to other process steps, then it allows for

the simple addition of individual process cycle times to get to a total order cycle time.

There are reasons why this independence assumption could potentially be flawed. There could be a

prioritization scheme at some process steps that favors orders in the queue that might be tracking late to the

committed delivery date range. If this type of scheme was in place, then processes early in the supply chain

might show a negative correlation to subsequent processes. Take, for example, an order that initially was

assigned ground shipping, which typically takes three to five business days, that finishes the manufacturing

phase with only one day left in the delivery commitment. A prioritization scheme could upgrade this "tracking-

late" order to next day shipping to make up for the previous process delays. Conversely, an order that

completed the manufacturing phase with six days left in the delivery commitment could be downgraded to

ground shipping to save the system money. While system capabilities allow for this type of prioritization, it is

currently not used for build to order products.

Another potential violation of this assumption would be if queue wait times between processes made up the

majority of the cycle times. If capacity at each process phase were less than incoming order volume, queues

could form at each step that cause wait times to exceed process time. During high order volume periods, this

could cause uniformly high cycle times across the supply chain. Order volume much below capacity limits

would not cause long queue wait times. In an excess capacity scenario, cycle time would mostly be

determined by the underlying process durations. Dell build to order products are made in a just-in-time
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fashion where capacity is high enough to handle significant order variability. Cycle time correlation between

processes due to capacity constraints in the system are not expected.

To test the independence assumption, pairwise correlations of process cycle times were analyzed. Each

process step's cycle time was compared to the cycle times of each other process step using the Pearson

product-moment correlation coefficient. Coefficient values are calculated using the following equation where

x and y are response variable values:

Z(x - :)(y - Y)

Z_(X -)2 V Y(y _ y)2

A correlation value of zero indicates no correlation and a correlation value of 1 or -1 indicates a strong

positive or negative correlation (SAS Institute Inc., 2015). Table 10 shows the pairwise correlations for

process cycle times.

I Multivariate

zi Correlations
OrderProcessHours NetworkHours FacilityHoursBuildHours ShuttleHours MergeHours DeliverHours

Order Process Hours 1.0000 -" - 7 - - __ 3 '4 -j C

NetworkHours - ; 1.0000 , -02.029; -0.0472 0.0371 0.0090
FacilityHours 002 0.3232 1.0000 -* 3 4245 0.0307 0.0140

BuildHours -. 0017 -0.0296 -. i 1.0000 33098 -0.03 103 31

Shuttle Hours -3.0027 -0.0472 -0.124 - 1.0000 0.074:: 3.3T2

Merge_Hours 1.0114 0.0371 0.0307 -O,032 34 1.0000 30L4

DeliverHours 
' 

q1r 4C -_ _ -337L4 0000

Figure 10: Multivariate correlation report that shows pairwise correlations for each process cycle time

As illustrated in the report above, there is very little correlation between the different process step cycle

times. All of the coefficients are very close to zero. The most significant correlation is a negative relationship

between shuttle, or inbound logistics, hours and facility planning hours. This suggests that orders that take

longer in the facility stage will be slightly faster in inbound logistics compared to the rest of the population.

Looking at the plotted data in Figure 11, this relationship is less pronounced for short shuttle cycle times and

longer facility cycle times.

32



Scatterplot Matrix
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Figure 11: Scatterplot matrix illustrating the relationship of the cycle time data across process steps. The Facility Hours

compared to the Shuttle Hours is circled to highlight the largest correlation relationship.

Because delivery date commitments are heavily influenced by long tail events, not accounting for this small

negative correlation when adding process steps together could create a conservatively long end-to-end lead

time forecast compared to the actual data. Validation of the modeling framework outputs in the next Chapter

will examine the relationship of the simulation to historic order data.

3. Simulation Modeling Process
This chapter will discuss the methods used to construct a current state simulation model for the selected

BTO business notebook product line. The first section discusses how to use the previously identified

statistically significant order attributes to create process flow trees for each phase. The purpose of using

process flow trees is to separate the orders into populations to account for attribute driven variability.

The second section reviews how to fit distributions to the separated order populations for each process

step. Calculated distributions will be used to represent the process step in a simulation model. This

section also discusses approaches used to address inconsistencies in the order dataset.

The third section discusses how the simulation model was constructed. The model combines the process

flow trees from the first section and random sampling against the fitted distributions from the second
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section. The objective of the model is to simulate end-to-end cycle times for each branch of the process

flow diagram.

The fourth section explores how Dell delivery commitment methodologies could be applied to the

simulation model results. Simulated end-to-end cycle time distributions for each branch are leveraged to

forecast delivery ranges. This section also calculates the proportion of orders that are predicted to be

early, on-time, and late based on the delivery commitment.

The fifth, and final, section of this chapter investigates efforts to validate the simulation model. End-to-

end distributions, delivery commitments, and on-time percent were shared with internal stakeholders

and compared to the current state supply chain equivalents. This section also discusses methods used to

address concerns in the validation process to better align the model to the current state.

3.1 Process Flow Diagram Construction
In the previous chapter, statistically significant order attributes were identified for each process step. A

process flow diagram can be constructed using these attributes to represent potential order flow paths

through the supply chain. Each branch is a series of process steps characterizing a unique order experience.

Because payment and logistics phases are product independent, each supply chain phase, payment,

manufacturing, and logistics has its own diagram. To determine the end-to-end supply chain paths, all

possible combinations of the three phase diagram branches are created. For example, if there are two

branches in payment, six branches in manufacturing, and three branches in logistics, then there would be a

total of 36 (2*6*3) order flow paths once all combinations of the three are determined. These supply chain

flow paths are later used to aggregate cycle times across processes to determine end-to-end order cycle times.

One caveat to this approach is that some order attributes can impact more than one process phase. The

differentiation of an order that is directly shipped to a customer versus an order that requires a trip to a Dell

consolidation facility is an attribute that affects both manufacturing and outbound logistics. Combinations of

supply chain branches between manufacturing and outbound logistics must take this relationship into

account, meaning no direct ship manufacturing branches can pair with a consolidation outbound logistics and

vice versa.

For each supply chain phase, significant attributes from the statistical screening analysis were further

examined to ensure accurate representation in the diagrams. Attributes vary in the detail they provide for an

order. Some are simple true/false flags, providing a binary paring of options. Others contain many more
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options, such as hour of the day or number of systems in an order. Incorporating an attribute into the process

diagram does not necessarily require each option to have its own branch.

For the payment phase, as mentioned previously, payment code was the only attribute selected as statistically

significant and validated by stakeholders. Components of payment code considered for this study include

financing terms, each credit card option, and gift cards. These components represent over 80% of the orders

in the dataset. Other payment options were ignored to simplify the process diagram and modeling process.

A modeling simplification was to bundle payment codes that had similar cycle time performance. The six

credit and gift card options had very similar cycle time distributions, but financing typically had longer and

more variable cycle times. Therefore, the process flow for the payment step was only split into two subsets

of the population, credit/gift cards and other.

A similar approach was used for logistics, except more criteria were deemed significant through the screening

process. Criteria utilized for this study were the direct ship vs Dell consolidation flag, shipping method, day of

week shipment begins, and forecast freight lead time. Only shipping methods ground, next day, and second

day were used in this study, representing over 90% of the order population. Freight lead time was selected

as a proxy for length of ground delivery orders. Dell differentiated lead times based on the beginning and

ending zip code of the orders. Using the predicted logistics lead time instead of zip codes helped to simplify

the process flow diagram and modeling. Figure 12 is the logistics diagram. For each branch, cycle times are

differentiated by the logistics day of week to account for carrier network weekly scheduled.
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Figure 12: Outbound logistics process flow diagram

For the manufacturing phase, the branches span the remaining five process steps, network planning, facility

planning, production, inbound logistics, and, if needed, consolidation. For process steps that have very short

cycle times, such as network planning and consolidation, separating the order population based on statistical

screening criteria does not add much value to the simulation model. These process steps represent a few

hours in a two-week end-to-end order process. Longer and more variable process steps were more granularly

represented in the diagrams. Key order criteria impacting the manufacturing processes were product, day of

week each process step begins, direct ship vs consolidation, and inbound logistics method. Facility planning

and Build processes have similar day of the week performance for weekdays compared to weekends. This

allowed for grouping of these day of the week attributes into two buckets for each process, instead of seven

to represent each day of the week individually. This simplified the flow diagram and simulation process.
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Figure 13: Manufacturing process flow diagram

3.2 Data Parsing and Fitting Distributions
The previous section created process diagrams to represent unique order flow paths. This diagram can be

used to separate the order data based on significant order attributes into distinct populations. With the order

data separated, the next step in the modeling framework is to fit distributions to the cycle time data for each

process step branch. These distributions will represent the process steps in a simulation model.

In 2015, Kara Pydynkowski performed a similar study of a stock product line to determine the same day

shipping eligibility. Her analysis relied on characteristics used in the current state lead time setting engine to

differentiate the population. The approach used the @risk platform to test various fit options. Likelihood

functions were generated to determine which fit should be used in the simulation. Distributions were then

sampled and added together to achieve an end-to-end cycle time view that was then compared to varying

delivery cutoff times to determine same day shipping eligibility (Pydynkowski, 2015).

This study uses a similar approach to derive the appropriate distribution criteria that will represent each of

the process step options. First, a plot of each subset of data is generated for visual inspection. Figure 14

illustrates a plot for the inbound logistics process. Plotting the data helps to identify any potential data issues

or unique characteristics of the underlying data. Any issues identified in this step must be addressed to ensure

final modeling results are actionable.
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Figure 14: Histogram of one branch of inbound logistics cycle times illustrating lumpy data

For the example above, when plotting data for inbound logistics orders that were directly shipped to

customers, a distinct lumpy pattern was identified where a more normal or lognormal distribution was

expected. This observation was discussed with members of the order experience program and logistics teams

to identify the root cause of the lumpy cycle times, as it would be challenging to fit a distribution to the data

shape. The lumpy data was a result of a missing package scan in the dataset during the handoff from one

logistics carrier to another. In anticipation of this potential scan issue, Dell had instituted a backstop value to

be used in the event of a missed scan. This backstop value was an hour count based on the anticipated number

of business days for inbound logistics. Time stamps that denoted the beginning of inbound logistics and final

delivery were still valid for these orders, so as a fix for the data issue, inbound and outbound logistics

processes were combined into one cycle time so a fit could be calculated and used in a simulation model.

After inspecting the subsets of data for inconsistencies, the next step is to determine the appropriate

distributions to use for building a simulation model. This study examined normal, lognormal, and Gaussian

distributions for potential fit to the data for each of the 84 process branch nodes. A likelihood measure for

each distribution was then compared to determine which distribution provided the best fit. Likelihood

measures uncertainty in the fit model with a likelihood-ratio test. The parameter is created by taking the

difference of the likelihood of the fitted model, a fitted distribution in this case, and the likelihood of a

predictor less reduced model, a linear fit using only an intercept parameter (SAS Institute Inc., 2015).

In every instance, the lognormal distribution provided a better fit than the other alternatives. This makes

sense as, in general, as cycle time populations are constrained by zero and have medians below averages

because of a long cycle time tail distributions. The mean and standard deviation are the outputs of this fitting

process, and are used in the simulation modeling.
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Figure 15 illustrates the process for determining distributions fit. Likelihood measures for fitted distributions

below are listed in the legend. Lognormal had the lowest value, and therefor best fit across the three options.

Lognormal fit was consistently the best across many of the order population cycle times.

Normal - Likelihood 32,595

LogNormal - Likelihood 29,651

Gamma - Likelihood 30,259

Figure 15: Histogram and fitted distribution likelihood values for the build process

3.3 Simulation Model Construction
The previous two sections of this chapter created a process flow diagram and calculated distribution branch

parameters for each process step. The next step in the modeling framework is to randomly sample against

each of the process cycle time distributions several times. These samplings will be summed across the process

flow diagram branch paths to predict end-to-end cycle times for each supply chain offering. This approach

will provide a unique end-to-end cycle time distribution for each possible combination of significant order

attributes represented in the process diagrams. Simulated end-to-end cycle times from this model will

represent the business as usual current state supply chain and will be used for further analysis in later sections

of this thesis.

Excel was used to randomly sample against the fitted distributions. One thousand instances were generated

with replacement using the fitted distribution parameters for each process step node on the process flow

diagram. Each of the thousand instances in the simulation represents a potential order and has a

corresponding cycle time sampled from each of the process step distributions. The next step is to add up the

process steps to represent a complete end-to-end diagram branch. For branch elements that do not depend

on the time of day or day of week, the cycle time components from each row are added together to
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correspond to the diagram layout. Because we previously tested the assumption of independent cycle times

across process steps, cycle times can be simply added together to calculate the end-to-end cycle time.

For diagram branch elements that do depend on the time of day and day of week, temporal logic must be

added to the simulation to identify the appropriate distribution to use given the simulated start time of day

and day of week. The facility planning, production, inbound logistics, and outbound logistics phases have

different distributions based on the day of week the process begins. Random sampling of historic start hour-

of-day and day-of-week data was used to represent when, during the course of a week, an order would enter

the system. Creating a start time of day and day to be paired with end-to-end cycle times is important to

determine on-time performance when considering temporal attributes. Day of week and calendar vs business

day conversions also impact both the commitment and the cycle time distributions. Cycle times of processes

are then added in sequential order to determine the day of week each process begins for each simulated

order. Logic operations in the model then chooses the appropriate day of week distribution to include in the

end-to-end cycle time.

The output of the simulation is an end-to-end cycle time for each potential order flow path, as determined by

the significant order attributes in the process diagram. The expectation is that this simulation will represent

the cycle time performance of the current state supply chain offerings. One benefit of this study's approach

is that it accounts for order attributes that may not be utilized by Dell when committing a delivery range to

the customer.

One such characteristic is the flag that indicated if an order was directly shipped to a customer or if it required

a trip to a Dell consolidation facility. In Dell's current processes, all of these orders are aggregated into one

flow path and provided a single delivery date range commitment. The simulation from this study provides

two flow paths based on this attribute, allowing for more detailed and accurate delivery date range

commitment. Figure 16 illustrates how differentiating on this attribute can impact the higher cycle time end

of the distribution ranges, 9 5 th percentile chosen for this example. The last day in a delivery date range is

calculated based on this end of the distribution, potentially providing Dell opportunities to commit smarter

lead times to customers.
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End-to-End Simulation: Aggregated Versus Separated
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Figure 16: Cycle time distributions for one aggregated order population compared to the distributions differentiating on the
attribute that identifies an orders eligibility to be directly shipped to the customer.

This example and other opportunities for Dell to provide more detailed delivery date range will be further

examined in the next chapter.

Another benefit to this study's modeling approach is that simulation occurs at the sub-process level. The

outputs of the modeling are the end-to-end cycle time distributions of unique flow paths. However, retaining

insight into the sub-process cycle time distributions can reveal which processes contribute most to the end-

to-end cycle time variability. Also, because the process steps are assumed independent, distributions for

individual process steps can be altered and re-inserted into the model. This can be useful for assessing

possible process improvement or other changes in underlying processes. Uses of these types of changes will

be further discussed in the next chapter.

Subsequent sections of this chapter will translate the modeling outputs to current state business metrics and

validate the modeling cycle time distribution outputs. End-to-end cycle time distributions will be used to

calculate expected delivery date ranges and on-time order performance for each supply chain offering.

Forecast delivery commitments and on-time performance will be used in the validation process.
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3.4 Translating Simulation to Business Performance

Dell has a commitment process that generates lead times for products based on certain attributes known at

order entry. These include length of time it takes the payment to clear, availability of items in the order,

delivery method, shipping provider, factory location, delivery address, and holiday periods (Shipping and

Delivery, n.d.). To calculate the expected delivery date (EDD), the last date a customer can receive an order

without being late, attribute specific lead time forecasts from the payment, manufacturing, and logistics are

added together. Individual phase lead times are created to maintain a certain small threshold of late orders

in each phase. The level of acceptable late orders can be altered to provide a more or less competitive

commitment to the customer but typically is limited to between 0 and 10%.

One key difference between the current commitment process and the simulation model is that the model

calculates the EDD based on the end-to-end distribution, not a summation of phase lead times. Because these

processes have little correlation, orders that are late in one phase are unlikely to be late in the other phases.

Combining individual phase lead times that allocate for a specific threshold of orders that exceed a late

threshold at each phase creates an unnecessary buffer. Taking an end-to-end view while maintaining insight

to the individual process steps was one of the key considerations in developing this modeling framework. For

this study, an end-to-end late threshold of 5-10% was used to calculate the EDD.

A simple example was used to communicate the value of an end-to-end view to capture the variance pooling

across the process steps due to their independence. Assume each phase is normal with a mean of 0 units and

standard deviation of 1 unit and has no correlation. The individual lead times, allowing for a 10% late

threshold, would be approximately 1.3 units for each phase. Aggregating all three lead times would yield a

3.9-unit lead time commitment. The end-to-end process would have a mean normal parameter equal to the

sum of the individual means, 0 units. The end-to-end standard deviation would be equal to the square root

of the sum of squared standard deviations from each process step. This would be equal to the square root of

three in this example. Allowing for the same 10% threshold of late orders, the lead time commitment would

be about 2.3 units. By taking an end-to-end view, the lead time is more accurate and is reduced by over 40%.

In reality process steps have varying distribution parameters, but the concept remains true and helped to get

buy-in for the end-to-end simulation model results.

Simulated orders can be categorized as on-time, late, or early by pairing a delivery date range to the end-to-

end cycle time distribution. Once an end-to-end EDD is calculated, this study uses the same method as Dell
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to determine the delivery date range. Summarizing this method from the introduction chapter, Dell uses a

competitive framework to identify the delivery range used in the lead time commitment. In general, as the

EDD gets further out, the delivery range gets wider. These ranges are benchmarked to industry peers and

adjusted to align to Dell's supply chain. To calculate the beginning of the committed delivery date range, the

competitive range is subtracted from the EDD. Orders that fall within the beginning date and the EDD are

considered on-time. Order delivered before the range are early and after are late.

The simulation model, paired with the calculated delivery date range provides early, on-time, and late

percentages for each order branch. These results can be aggregated to a single on-time performance view

representing all possible product flow paths weighting the percentages with the historic order volume of each

branch. Dell stakeholder track on time performance at the product line level. A modeling output, like product

level on-time performance, that aligns to existing reporting metrics is useful for presenting results throughout

supply chain stakeholders. Validation efforts, comparing the simulation to the current state, are also

important for discussing simulation results with stakeholders.

3.5 Validating Simulation to Data

It is important to determine how well the simulation model represents the current state supply chain before

developing recommendations based on the simulation analysis. The intended uses of this model are to find

opportunities to improve customer delivery commitments and provide cycle time targets to supply chain

process steps. Therefore, it is important to validate the simulation results to historic end-to-end cycle time

data, with emphasis on the long tail distribution where EDD values are determined. It is also important to get

Dell stakeholders to confirm that simulation outputs are reasonable given their supply chain expertise.

It is important to note that Dell's process for determining an EDD for a product is not a rigid process. Because

a threshold range for late orders is used as the determinant, there is some flexibility in the commitment.

Communicating a shorter lead time within the threshold range can make an offering more competitive and

appealing to the customer. Conversely, if a longer commitment if communicated, it is more likely that the

order will not arrive late to the customer. Because of this, delivery commitments for historic orders were not

used in the validation process. Instead, end-to-end cycle times for historic orders with the same attributes

were compared to the simulation forecast cycle times.
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Average and 9 5th percentile values of end-to-end distributions were calculated for branches of the product

flow diagrams to compare the simulation and historic data. Comparison of these metrics would indicate how

well the critical segments of the distribution matched. The 9 5 th percentile is representative of the point on a

distribution where an EDD could be located for a given branch. Because the end-to-end distribution shape is

a bell curve, the average value of the distribution indicates the cycle time of a significant portion of the order

volume. Validating lower percentile values was less valuable for this study because the delivery date

commitment process does not use this end of the distribution for decision making.

Table 6 shows the average and 95 th percentile for both the simulation and the actual historic end-to-end

distributions for the month of August 2016. Attributes for historic orders were aligned to those of the

simulated process flow diagram branches. Branch attributes are hidden to protect proprietary information,

but are given a unique identifier for reference. The table shows the comparison for seven examples chosen

at random from the larger branch dataset. For this comparison, only categorical attributes, like payment type,

inbound logistics method, direct ship flag, delivery type, and freight lead time were used to differentiate

orders. Temporally differentiated branches were aggregated at each process step to simplify the comparison

to the historic data. Temporal attributes were still used in the simulation to determine the correct cycle time

distribution at each process step to sample based on the simulated start time of day and day of week.

Branch ID (hidden attributes)___________________

1 2 3 4 5 6 7

Simulation 11 5.8 7.6 6.3 6.7 5.5 7.6 6.3

Actual i' 5.9 8.0 6.4 6.7 5.5 7.3 6.4

Actual p - Simulation pi 0.2 0.4 0.0 0.0 0.0 -0.2 0.1

Simulation P95 8 11 9 10 9 11 9

ActualP95 8 11 9 10 9 10 9

Actual P95 - Simulation P95 0 0 0 0 0 -1 0

Table 6: Average and 95th percentile values from simulation and historic order cycle time distributions.

In each of the example branches, the simulation was very close to the historic order cycle time performance.

Cycle time differences between historic data and simulation ranged from -0.2 and 0.4 business days, with a

5% maximum deviation of any one branch. For three of the branches, average cycle time aligned to the tenth

of a business day. A 5% deviation from average performance was acceptable to stakeholders to represent the

current state cycle time performance, and all branches were within this tolerance.
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9 5t* percentiles of the distributions were also compared. These values are integers, because the percentile

value chosen is a multiple of 1/(n-1), where n is the number of observances in the dataset. The maximum

deviation from the historic data was one day, and only occurred for one of the example branches. A difference

of one business day could represent up to 24 hours in underlying distribution differences. Because of this,

internal stakeholders wanted very close alignment for the 9 5t[ percentile integer comparison. A difference of

one day was acceptable for Dell stakeholders to represent the tail distribution of the orders. No branches

exceeded one-day difference for the 95"' percentile.

Dell stakeholders also wanted to see a comparison of the percent of orders that would be on-time for the

historic order population and the simulation. For both populations, this study used the method described in

section 3.4 to calculate the EDD, allowing for a 5% late threshold. The Dell competitive range framework was

then referenced to determine the appropriate delivery range to combine with the EDD of each branch. For

the same seven branches as the previous validation table, Table 7 shows the on-time calculation for the

historic data set and the simulation. In both historic and simulated calculations, late orders were up to 5%

based on the calculation methodology of the EDD. On-time percentage differences ranged from -4% to 15%

across the branches, with a total volume weighted on-time difference of 6%. Comparing the distribution and

on-time validations, branch 2 had the largest mean difference and orders tended to be slightly earlier in the

distribution compared to the historic data, resulting in the 15% on-time difference. The 6% aggregate on-time

difference was acceptable to the Dell stakeholders. However, because on-time results varied within the

branches, they wanted to retain visibility into the individual branch on-time values when discussing

recommendations based on the simulation results

Branch ID (hidden attributes)

1 2 3 4 5 6 7

Historic data on-time % 53% 60% 39% 43% 12% 69% 37%

Simulation on-time % 49% 45% 34% 38% 16% 61% 34%

Historic - Simulation % 4% 15% 5% 5% -4% 8% 3%

Table 7: On-time accuracy for historic data and simulation results using the same Dell delivery date range commitment method.

4. Improvement Opportunities

Constructing a simulation model that aggregates cycle times for each process step provides flexibility for

identifying opportunities for business improvement. Each process can be altered and examined to explore

the impact to the end-to-end performance. Processes can even be swapped out for hypothetic distributions
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of new supply chain flow paths. Also, unique end-to-end supply chain options, based on statistically significant

order characteristics, are separated from the broader population to allow for smarter EDD generation. These

sensitivities to the modeling and lead time calculations were leveraged to find ways to improve on-time

performance of each case study regional product selected. A combination of these were used to create a

potential future state of operations that achieves Dell's on-time performance goal.

4.1 Smarter Lead Time Commitments

Dell uses several criteria to determine an EDD for each order. Only order characteristics known at the time of

order entry can be used to set the EDD. For the current state, these include product, payment type, delivery

method, customer location, shipping method, component inventory, and additional services required. The

statistical screening and process flow diagram construction stages of the modeling framework identify key

characteristics that drive cycle time variation. Attributes used in current state lead time calculations were

identified as significant, but other characteristics were also highlighted as important differentiators.

The two biggest opportunities for smarter lead time setting were differentiating the order population by

inbound shuttle method and direct ship vs consolidation. Dell's supply chain has multiple methods for

transporting products from the ODM to the final delivery country. Each method has a different quoted service

level and cycle time performance. The inbound logistics method varies by customer class, seasonal cycle, and

product type, but orders have committed lead times based on a mixed population of logistics services. For

orders where the vast majority of the population uses one service, this differentiation will show little on-time

improvement. However, high volume US business products had a more even split between at least two

inbound logistics methods. For the mixed populations, if the transportation option is known at time or order

entry, and delivery range held constant, on-time performance for US orders can show on-time improvements

of 15-30%.

The other order characteristic underutilized in EDD commitment creation was directly shipping to the

customer. Dell orders can require routing to a consolidation facility for additional services or be routed

directly to the consumer. Simulation identified a 10-15% improvement when differentiating on the direct ship

outcome, varying based on the percentage of the order population that qualify for the direct shipping option.

Also, for the direct to customer shipping option, a more competitive lead time was allocated to the qualifying

population. Unfortunately, this is a characteristic that is determined by systems that execute after the order
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entry process in the current state. Upfront knowledge of direct ship qualification would allow for population

separation and more accurate lead time commitments.

4.2 Process Distribution Improvement

Another method for on-time improvement is altering the underlying process step distributions in the

model to simulate process improvement or inclusion of a new supply chain offering. It is important to

consider the feasible limits of existing processes and the financial constraints for process improvement or

switching to new systems. Another consideration when reducing cycle time tail distributions is that as the

processes improve, the EDD commitment and delivery range will also reduce. This phenomenon provides

a more competitive offering to the customer, but can limit the amount of on-time performance gain.

The first attempt to achieve Dell's future state on-time goal in the model is to uniformly reduce the

standard deviation of each process step by a fixed percentage. The EDD for each product offering is still

calculated by maintaining a designated threshold of late orders and the delivery range is follows the same

competitive range logic framework. The first attempt also assumed smart lead time improvements from

the previous section, differentiating on inbound logistics and direct to customer criteria. Figure 17

illustrates an example standard deviation reduction of 50% for two of the longer duration cycle time

process steps, Facility Planning and ODM Production.

Facility Planning In Production

Current State Current State
Future State Future State

o 0
0 0

Cycle Time (hrs) Cycle Time (hrs)

Figure 17: Example of the impact of process improvement through standard deviation reduction on cycle time distributions for

facility planning and production processes.

Reducing the standard deviation has a significant impact on the longer duration tail of the distribution,

but had very little impact on the mean. The flexibility of the simulation model allows for changes to the

mean of the process step distributions, but mean changes were not used for the modeling outputs
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communicated to Dell stakeholders. Because delivery date ranges are committed based on the long tail

of the distribution, mean shifts to the right would cause more orders to be on-time to the delivery window.

This could be accomplished by holding orders that are forecast to be early to the delivery window during

a process near the end of the supply chain. Alternatively, mean reductions would likely cause more orders

to be early to the delivery range.

Once the final standard deviation reduction percent was determined, distribution metrics were created

to socialize the results with the order experience program and functional leaders to determine feasibility

and cost of implementing the model distribution improvements. Functional team metrics are typically

communicated as the cycle time at specific percentiles and the average of the order population. These

percentile and average values were created for each of the process steps, broken out by each of the

significant order characteristics from the statistical screening. Also critical to acceptance of the metrics

was communicating the end-to-end view along with the individual process metrics.

Dell has varying levels of control at each process step in the supply chain. While Dell has control over

which delivery methods to use, Dell does not have as much control over improvements to the existing

third party logistics provider offerings. Also, certain processes have experienced great improvement in

the recent past, limiting the improvement potential from current state. Using feedback from the

functional team leadership, improvement targets were re-aligned in an iterative process until all

stakeholders were comfortable with the future state improvement targets. Processes that already

realized significant improvements and processes where Dell has less direct control were allocated a 10%

standard deviation reduction targets. These processes included payment processing, outbound logistics,

network planning. The remaining process steps, facility planning, build, inbound logistics, and Dell

consolidation, were allocated improvement targets of 20%.

In addition to reducing variation in existing processes, the model can simulate against hypothetical

distributions of new supply chain offerings. One such offering simulated for US notebooks was a new one-

carrier logistics offering combining inbound and outbound logistics services. This type of service would

eliminate a handoff between carriers and utilize the more robust third party logistics network. Switching

to this new service was expected to provide a more competitive commitment with higher on-time

performance for little extra cost. Cycle time distributions were created to represent this service based on

carrier information and manufacturer to delivery cutoff time assumptions. New efficient supply chain

offerings did not include standard deviation reduction targets for the future state.
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Figure 18 highlights the end-to-end distribution difference between a current state premium supply chain

offering compared to the new combined logistics offering. The new offering has a tighter cycle time

performance and the tail distribution is much thinner. On-time performance increased 20-25% using this

new offering compared to the existing premium offering. With quantitative support from the modeling

framework, Dell increased efforts to develop an implementation strategy for this offering.

Premium Current State vs Future Combination Logistics Service

0

Biz Day Cycle-Time

- Current State Premium - Future State New Inbound and Outbound Combination Service

Figure 18: End-to-end cycle time distributions of current state premium offerings and future state options

5. Pilot Project: Smart Lead Time Generation for Direct Ship

One takeaway from using the modeling framework across multiple case studies was the impact of

differentiating the order population based on direct ship eligibility. Orders that qualify typically have

shorter cycle time performance and less variability than those that required additional services at a Dell

consolidation facility. Implementing lead time changes for a sample product line was a feasible pilot

project that could be completed and reviewed during the study timeline.

5.1 Case Selection and Data Availability

To determine an appropriate regional product line to analyze for the pilot project required collaboration

with data specialists within the order experience program organization. An ideal order population for the

pilot project would have a significant volume of orders that qualify for direct shipping. Also, this same

order population would ideally have fewer factors driving consolidation facility work to simplify the study.

After investigation and discussion with the order experience program, IT, and consolidation team leaders,

a US desktop product line manufactured in Mexico was identified as a candidate meeting the above
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criteria. Over 80% of this product line qualified as direct ship eligible. ODMs used in Mexico can perform

more services in house compared to those in Asia, simplifying the characteristics requiring consolidation

processes.

In order for Dell to use an attribute to set a lead time, current state IT systems must contain the attribute

at customer check out. The statistically significant attribute that indicates if an order is eligible to be

directly shipped to the customer was determined after customer check out. To create this attribute prior

to check out, this study identified reasons why an order would require consolidation services. Additional

data sources such as attached software, palletizing, and more detailed logistics carrier lead time

commitments provided better insight into characteristics that were known at order entry. These other

sources required mapping to the original database prior to analysis. A new attribute was created utilizing

these new data sources and it properly identified over 95% of the orders that required an order to flow

through a Dell consolidation facility.

5.2 Modeling Framework Pilot Implementation

With the product line identified and additional data appended to the order information, the modeling

framework was used to analyze the population. Statistical screening and collaboration with functional

team leadership identified the key drivers of cycle time variability and were used to create a diagram

representing the majority of supply chain flow paths, as seen in Figure 19. As with initial modeling efforts,

only a subset of the ship codes, payment codes, and manufacturing lead times representing over 80% of

the orders were utilized in the study to simplify the modeling process.

Facility PIRWiVIRg Build Logistics:
Day of~eek - Day of weekNetwork Planning -- ormnay_ of Wee Comtmn

F Grouping 1 Grouping 1 i Mexico

Logistics:
Commitment

Facility 'Planning Build Option 2

Day of Week Day of Week Oto

- 6 - Commi tm ent
Option 3

Figure 19: Pilot process flow diagram for desktop orders manufactured in Mexico

Statistical screening also helped to identify order criteria shared by the order population that requires

consolidation facility services. Some of the reasons for consolidation included certain ship codes, attached
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software and hardware, and large order processing. The consolidation facility criteria were investigated

individually to identify cycle time duration and lead time implications.

End-to-end cycle time distributions for each of the 24 branches of the decision tree were analyzed for the

direct shipped population to determine appropriate lead time commitments. As an additional

consideration, order entry day of week was also analyzed for the direct shipping population, as cycle time

performance varies based on facility calendars and logistics carrier scheduled. Table 8 highlights the

difference between the current state EDD calculation and the simulation forecast EDD based on a 10%

late threshold.

Difference Between Current State EDD and Calculated Simulation EDD Allowing for 10% Late Orders

Order Begin: Day of Week

Logistics LT Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Option 1 1 -1 -1 -1 -2 0 0

Option 2 1 -1 -2 -2 -3 0 0

Option 3 0 -4 -3 -3 -3 i1

Table 8: Pilot comparison of current state and simulation EDD values for three different logistics lead time options.

The simulation revealed that weekday orders that qualify for direct shipping had lead times that were up

to two business days longer than needed. All branches of the process flow that were directly shipped to

the customer had similar weekday results. Weekend orders took longer due to factory and logistics

schedules, and the current state lead times were representative of the tail distribution of this population.

The weekly shape of order cycle times was validated against a broader historic order population by the

order experience data analytics team. Simulation results also revealed an opportunity to improve the

lead time commitment for varying logistics options, but was not investigated for this analysis.

Orders requiring consolidation services had varying end-to-end distributions based on the specific service

required. Visibility into each unique service was limited in the modeling framework dataset. Unique

buffers were collaboratively quantified by the operational teams and added to delivery commitments.

These services can be identified through a combination of order characteristics, including SKU, tied

product information, and shipping method. Each of these characteristics are IT enabled for lead time

differentiation in the current state.
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5.3 Recommended Changes

Comparing the simulation results with the current state lead times revealed a mismatch in commitments.

Implementing a two business day reduction in lead time commitments for weekday orders directly

shipped to customers, in-line with model forecasts, should yield a 30-40% increase in on-time

performance. This lead time reduction should be paired with consolidation service lead time adders to

commit smarter lead times to customers.

Example Directly Shipped Branch of Pilot Process Diagram

2 day delivery date range reduction

Proposed Current
Delivery State

0 Range Range

66% on-time 34% on-time

Biz Day Cycle-Time

Figure 20: Illustration of the pilot two business-day commitment reduction with on-time percentage impact

5.4 Results

The US desktop product line adopted this lead time recommendation for two weeks in the fall of 2016,

impacting just over 8,000 orders. Examination of the pilot population required waiting for final delivery

results. For the two-week pilot, this total product line saw an increase in on-time performance of 39%.

This also caused an increase in late orders by 8% and reduction in early orders by 47%. Included in the 8%

late increase are orders that had missing delivery information and was calculated based on the final

delivery, not first delivery attempt typically used to calculate on-time performance. While the 8% increase

in late orders was acceptable by internal pilot criteria, this was a conservatively calculated value that was

likely much lower, with more orders becoming on-time and early.
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One day during the pilot was negatively impacted by an unaccounted for holiday in Mexico, Revolution

Day Memorial. This day saw late orders spike to almost 20% with the more aggressive two business day

commitment reduction. Orders spanning this holiday ideally would have added one additional day to the

EDD calculated to account for the factory closure. This highlights the importance of pro-actively adapting

to factory and delivery schedules, not simply relying on a historic dataset to calculate lead times.

With the success of this pilot, Dell planned to complete analysis and implementation for other US desktop

product lines by the end of the first quarter of 2016. The pilot for this study took a team of four people

approximately two weeks' worth of time to complete preliminary analysis of data, examine current state

IT systems capabilities, and communicate delivery commitment changes to stakeholders. Repeating this

analysis for other desktop product lines would likely take less time due to similar IT systems and

stakeholders. The limiting factor in repeating this analysis is re-creating the direct ship attribute. Asia

manufactured notebooks have more detailed consolidation facility service requirements that make re-

creation of the attribute more challenging. However once the necessary order data are identified for the

consolidation facility services, this pilot's process can be used to commit smarter and more accurate lead

times to customers.

6. Conclusion and Future Work

6.1 Recommendations and Impact to Dell

The main takeaway across multiple regional case studies is that Dell needs to find a balance between

being on-time and providing a competitive delivery commitment. Improving on-time delivery will require

smarter lead time commitments and a reduction in variability at the individual process level. Both of these

improvements will require investment in physical and IT process capabilities. Another alternative to

investment is to commit a wider delivery window to increase on-time delivery. Weighing investment costs

and delivery competitiveness will be critical to deciding the future of the order experience program.

The modeling framework identifies statistically significant order characteristics that Dell can leverage to

commit smarter lead times to customers. Separating orders by criteria that drives cycle time variability

provides a more accurate representation of order populations. Ensuring that these characteristics are

known prior to order entry is critical to altering the current state lead time commitment engine. The lead

time pilot project differentiated on direct ship eligibility and day of week, but there are other

opportunities for more granular population separation.
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In addition to smarter lead times, Dell can invest in improving or replacing components of the order

experience supply chain. The modeling framework allows for an exploration of the impact of these

changes on end-to-end cycle times and on-time performance. In general, handoffs between process steps

were consistently identified as the greatest area of improvement. Assigning improvement targets needs

to account for where cycle times materialize in the data and provide proper accountability to ensure

cooperation across the handoff. It is important to note which supply chain components are common

when aggregating results over multiple regional case studies, especially when assigning cycle time

distribution targets. Also, assumptions used to create hypothetical distributions for proposed new supply

chain offerings should be validated before and after use in the modeling framework to ensure accurate

representation of the process.

6.2 Impact to Industry

Improving performance of temporal commitments to customers is a supply chain goal of many

organizations. End-to-end cycle time classification and simulation are topics explored in other industries.

Retail, high mix low volume manufacturing, and bio technology have explored differentiating a population

and constructing simulations to better understand variability in the system. Historic applications in

industry focus on short term identification of process improvement opportunities or feasibility of service

level agreement parameters (Pydynkowski, 2015) (Luna, 2015) (Napolillo, 2014).

The modeling framework discussed in this analysis is adaptable and can provide both an end-to-end cycle

time view while providing insight into the individual process steps. High mix low volume manufacturing

can leverage this framework to identify time consuming processes that may tie up specialized equipment.

The simulation results from the framework can also be helpful in exploring new logistics options. For

example, a retailer may have a goal of having outbound logistics for ground shipping take two business

days or less. Using the framework presented here, the retailer can compare the performance of branches

with two day commitments or less to those with three or more to validate the goal's impact.

Dell, in general, is selling directly to the end user, making the delivery commitment the focus of the post

simulation analysis. Other industries may be more concerned with other characteristics of the end-to-

end process such as volume of frictionless orders or outlier performance to mean. The framework is

robust enough to provide insight into these areas of concern.
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6.3 Future Work

One short term area of opportunity is to find other product lines to repeat the success of this study's pilot

project. Other desktop lines with similar supply chain flow paths are great candidates since direct

shipment requirements will align to the previous efforts. To perform a similar project for Asia

manufactured products, a deeper investigation into the consolidation facility and direct ship eligibility

needs to be performed. This will require collaboration between the Order Experience Program Office, IT,

and the functional teams that manage the Asia supply chain components. Key criteria driving the eligibility

must then be mapped to criteria known at order entry, to allow for use in lead time calculations.

Another opportunity to mimic the success of the direct ship differentiation could be to limit certain

product lines to be exclusively directly shipped or sent to a consolidation facility. This would ensure direct

ship eligibility would be known at order entry, providing increased on-time performance. The trade-off

for this would be less customization available to the customer. Further investigation into this offering and

trade-off could be more useful for products that have complex criteria that dictate the direct ship

eligibility.

Expanding on the statistical screening and population separation from this study, machine learning could

be leveraged to perform a more robust analysis of all Dell offerings. A machine learning approach could

provide a more real time analysis of the order cycle time data and investigate supply chain options that

were ignored by this study for simplification reasons. Decision tree algorithms provide a more robust

analysis of the entire order population, compared to the framework presented in this study that makes

many simplifying assumptions that ignore smaller order populations.

A classification and regression tree (CART) approach can provide insight into generating accurate EDD

values for the entire order population. This supervised learning approach can incorporate both

categorical and numeric variables. The order population is iteratively split in half based on available

variable characteristics until a minimum threshold of data points per population is reached. Each split can

use a greedy approach, producing locally efficient decisions, to minimize the error in each leaf of the tree

since making global decisions may be too complex. Once the population is organized in the tree, the

individual populations can be analyzed. The algorithm can also be paired with a cost of complexity

function, introduced by Breiman et al., that eliminates branches that do not add much value to the overall

model. Maintaining the appropriate level of complexity is important for matching results with system

capabilities and socializing the analysis results with the rest of the organization (Wilkinson, 2002).
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Dell is utilizing a supervised machine learning algorithm within the Business Transformation Program

Office (BTPO) analytics team. The approach takes an end-to-end view without individual process steps

broken out. The BTPO approach works well for analyzing the current state supply chain offerings, but in

its existing form does not have a method to incorporate process improvement or new supply chain

offerings. Altering the BTPO machine learning approach to include individual processes would include the

benefits of this study's approach and machine learning.
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