
UNIFORM-INLET THREE-DIMENSIONAL TRANSONIC
BELTRAMI FLOW THROUGH A DUCTED FAN

by

Wai K. Cheng

GTL Report No. 130 May 1977



UNIFORM-INLET THREE-DIMENSIONAL TRANSONIC
BELTRAMI FLOW THROUGH A DUCTED FAN

by

Wai K. Cheng

GTL Report No. 130 May 1977

This research, carried out in the Gas Turbine Laboratory,
M.I.T., was supported by the Air Force Office of
Scientific Research (AFSC) under Grant AFOSR-75-2784.



TABLE OF CONTENTS

Section

I. INTRODUCTION

II. THE FORMULATION OF THE PROBLEM

III. THE MEAN FLOW

IV. THE 0 VARYING FLOW

V. THE WAKE FUNCTION

VI. THE ACOUSTIC MODES

VII. SOLUTION BY GALERKIN'S METHOD

VIII. MATCHING OF UPSTREAM AND DOWNSTREAM FLOW

IX. NUMERICAL CALCULATION

REFERENCES

FIGURES

Page No.

3

3

11

15

18

23

30

36

45

50

51



1

I. INTRODUCTION

This report is a continuation of a line of analytical treatment of

three dimensional flows in compressor or ducted fans. In the earlier

theories [1,2,9,10], the blade row is modelled as a set of spinning

lifting lines and the induced velocities are treated as acoustic per-

turbations. While these studies have been useful in advancing our

knowledge of the three dimensional nature of the flow, it has been

difficult until now to correlate the theory with experiments. The

reason, of course, is that the strong overall swirl induced by such

blade rows is by no means a small perturbation in practical applica-

tions.

It is realized that the high pressure stage of a compressor

usually has a large number of blades (~40 to 100). Therefore although

the collective effect of all the baldes can be a large disturbance,

each blade contributes only a small disturbance. Thus a linearized

theory is still possible. To extend the previous acoustic theory to a

rotor with large turning we may still represent the blades as super-

positions of source and lifting lines, but we have to calculate the

exit flow by linearizing about a non-zero (and large) swirl velocity

profile. This is the approach taken by the theory proposed by McCune

and Hawthorne [3]. They calculated the velocities induced by the trail-

ing vorticity of a nonuniformly loaded rectilinear cascade for incom-

pressible flow. This work was later generalized to the compressible

case by Morton [4]. Cheng [5] treated incompressible flow in an annular

geometry. In that analysis the blades are represented as lifting lines

of nearly constant circulation, and the exit flow is therefore, to
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lowest order, of "free vortex" type. Linearizing about the free vortex

flow, the velocity induced by the trailing vortex sheets due to non-

uniform blade bonding are calculated in [5] to order 61. It is the

purpose of this report to treat the general compressible case, including

the results of Ref. [5] as the incompressible limit. The result of this

analysis also serves as the Green's function for constructing a lifting

surface theory for transonic rotors with practical loading.

Before going into the details of the theory, let us examine some

simple pictures of its findings. The nonuniformly loaded blades shed

off the excess circulation as wakes. The induced velocity of the wakes

is found to cause a "downwash" at the blade which has the effect of

partially nullifying the nonuniformity in loading. This can easily be

understood by a c.onsideration of the wake system of a blade. Fig. 1

shows a blade with the tip region more heavily loaded than the inboard

stations. 'We can see that the wake induces a tangential velocity com-

ponent which lowers the angle of attack at the high work (tip) region

and increases that of the low work (hub) region.

Another major development is the mode matching of the upstream

and downstream flow. The presence of the strong swirl makes the

acoustic mode shapes downstream drastically different from those up-

stream. For example, we can have upstream hyperbolic modes in a tran-

sonic rotor while all the downstream modes are elliptic because the

relative velocity is subsonic there. Simple modewise matching is no

longer possible. In the present work, a method of mixed-mode matching

is developed. A result is that a pure tone downstream (upstream) can

excite a whole spectrum of tones upstream (downstream). In particular,
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any source downstream can excite the acoustic radiations upstream of a

transonic rotor.

II. THE FORMULATION OF THE PROBLEM

For the sake of brevity in the presentation we make the following

*
simplifications. We assume:

(i) Inviscid, isentropic flow.

(ii) Isolated rotor in an infinitely long annular duct.

(iii) Steady flow in the rotor frame.

(iv) The flow for upstream of the rotor is uniform axial flow with

no swirl.

(v) The number of blades of the rotor is large so that while the

overall induced swirl is large, the loading per blade remains

small.

(vi) The axisymmetric part of the velocity downstream has, to a

first approximation, a free vortex profile.

(vii) The three dimensional nature of the flow is due to the

presence of discreet vortex sheets trailing from the nonuni-

formly loaded blades.

The equations of motion for a steady flow in the rotor frame is

4V - v 2r + 2vYxq' =- (2.1)

where primes are used to denote flow propertities measured in the rela-

tive frame. Thus

= - vr (2.2)

*
The assumptions (i)-(vii) are not mutually independent. Moreover,

most of the implied restrictions can be relaxed as the present theory is

further refined.
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where v is the angular frequency of the rotor. In the following dis-

cussion all quantities are nondimensionalized with respect to a length

scale given by the blade tip radius r a time scale of r /w-co, and a
T

mass scale of p r where W__ and p- are the inlet axial velocity and

density.

The continuity equation is

pVOc- + q'-Vp= 0 (2.3)

Taking the dot product of (2.1) with _g'and using the isentropic

condition

dp = a2dp (2.4)

we obtain

a2V -L' = 1/2 _q' -Vq1 2 _ 21' - r (2.5)

The model we adopt consists of a set of lifting lines representing

the blades. Due to spanwise loading variation there will be a trailing

vortex sheet originating from each blade so that the Kutta condition

*
can be satisfied. These vortex sheets are assumed to remain thin and

will be shown to first order in the blade loading variation to lie on

surfaces governed by the 6-averaged (pitchwise-averaged) flow.

With the assumptions stated at the beginning of this section we

have Beltrami flow[3,[5]

W x 1' = 0 (2.6)
*

In a recent report Kerrebrock [6] noted that if the background flow

is not a free vortex (in particular he considered a wheel flow) the

wakes will be spread by shear waves even if we assume inviscid flow.

Here we only look at flow produced by a rotor of nearly constant span-

wise blade loading so that the background flow is very nearly a free

vortex and the mechanism for shear wave is absent.
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where

W = VXR (2.7)

is the vorticity measured in the absolute frame. To obtain (2.6) we

write Crocco's equation in the rotating frame

_9 (2.8)
- TVS + VI - 'x = 0

where

I ~ h + 1/2 q'2 - 1/2(v r)2  (2.9)

The rothalpy I in the rotor frame is the analogue of the total enthalpy

h* in the stationary (absolute) frame. The first two terms in (2.8)

are zero for the assumed steady relative isentropic flow. From (2.9)

the equation of motion for I is

I _ + D (1/2 q'2) - (1/2(vr)2 )

Some manipulation yields

DI T DS +
Dt Dt p at

For isentropic steady relative flow with uniform inlet conditions this

leads to VI = 0 and (2.8) reduces to (2.6).

Let the vortex sheets lie on surfaces of

a = c(r,O,x)

From (2.6) w and S'are parallel and the vortex sheets can be re-

presented as

B
= Vxq = f(xr) E 6(a-a )q' (2.10)

i=l

c. = 0, 271/B, 2(271/B), 3(27/B),...
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where B is the number of blades and ^ denotes unit vector. f represents

the strength of the vortex sheet, still to be determined.

Equations (2.5) and (2.10) form the basic set of equations for the

present analysis. (The functions f and a will be furnished from the

averaged flow later in this section.) Essentially (2.5) specifies the

divergence of the velocity field and (2.10) specifies the curl. Together

with appropriate boundary and upstream-downstream matching conditions,

they completely define the velocities.

We shall solve for the velocities by linearizing about a base flow

g which is a uniform axial flow upstream and a free vortex flow downstream:

1 = _0+T (2.11)

-% = (u., vo, wo)

u = 0 both upstream and downstream

w = C1 ,C2 (constants) upstream and downstream (2.12)

v = 0 for upstream and %1/r for downstream

Let C F(r) be the (nondimensionalized) circulation on each blade with

1(r) representing the nonuniform loading profile.* Then

BCpT
v = x < 0 (2.13)o 2 W

We assume that F(r) is a function of spanwise mean 1 and

1 dF
= 0(C) E << 1BP dr

I and w are thus 0(c). A study of the flow for stronger loading

variations is underway, and will be reported subsequently.

Before we can solve (2.5) and (2.10) it is necessary to find f

*As pointed out by many authors, dr/dr = 0 at r = h,l to be consistent
with the boundary condition u(h) = u(1) = 0.
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and a. We shall derive expressions for them first by a heuristic argu-

ment and then in a more formal way.

Fig. 2a shows a developed stream surface. Since the vortex sheets

are going along the stream lines, a = cst is a streamline on this sur-

face. It is easy to see that to the lowest order of approximation

a - - tan 3'
r 2

(vr - v )V
-

+ (2.14)

r w0  r wo

in the downstream flow. It will be shown that f in (2.10) is O(e).

Therefore in the present work we only need the lowest order approxima-

tion of a to be used in (2.10).

Let each blade carry a circulation of C rl(r) with Cy F>0 in the

direction as shown in Fig. 3a. For isentropic flow Kelvin's theorem

applies. Consider the circulation circuit as shown in Fig. 3b. The

radial velocity at the trailing edge is

(P2-~1)
2 |u l = C 2 r2juj=C 6r

or

- 1 dl'
u + 7 Cp c (2.15)

where the upper (lower) sign refers to the pressure (suction) side of

the blade.

Figure 3c shows the form of the wakes on a developed stream sur-

face downstream of the blade. (To 0(1) the stream surface remains a

cylinder.) The radial velocity jump across the vortex sheet is given

by

21ul = lim (Wcosa;) rda
-+O a = - E
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Thus
2|ul

IW| = ,cs 6(a)
2rcos2

This can be generalized to include all the vortex sheets and after taking

care of proper signs and also using (2.15) we obtain

B

W C Fd o 6(a-a )-=C dr r cos~ 62
2i=1

where a, = 0, 27r/B, 4/B,...,(B-1)2n/B.

From the velocity triangle

cos w /= '

Thus

1 a B
W = - C r E (a-a ) (2.16)

0 r=1

What follows is a formal derivation of (2.16). Let

Q f2Tr a

=' = 1 ' dO
R 0 P

The nonaxisymetric part of the flow quantities are all O(c). From (2.6)

we have

Since w = O(s) we can write

W = XQ' + 0(e 2) (2.17)

From the identity

xX
V-W = 0 = - RQ') = () RQ

where continuity is used in the last quality, it can be concluded

therefore, that there must be a functional relationship between X/R

and Rq1. Furthermore, continuity

V - (RQ') = 0
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also enables us to write RQ' as the cross product of two gradients

RQ' = Vax V (2.18)

where a and $ are yet to be defined. Thus X/R will be a function of

a and $. We pick $ to be the Stokes stream function of _.

U -
Rr Dx W = i-- ;V

Rr ar (2.19)

Without loss of generality we define

a(x,r,O) = - 0 - F(x,r) (

Since the trailing vortex sheets remain thin we can write (2.17) as

B
w= Vxj = Rf (x,r) E 6(a-a )Q' (

i=1

a = 0, 2r/B, 47/B,...

Averaging over 0 we obtain

_ = VxQ = Rf B

The x and r component of (2.21) are

2.20)

2.21)

(2.22)

3rv B

9r 27T 3r

arv 0  B

ax 2rr fax

f 2 ( - 0 C ar
B ai 2 Cra

To find a we go back to the defination (2.18). The 0 component is
Vr - v0 aF

= W-g+ U
r ax 3r

This can be integrated imnmediately by the method of characteristics

Thus

(2.23)

(2.24)
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with boundary condition F = 0 at X = 0 (the rotor plane). The

solution is

F(x,r) = fx vr(x) - U (e) (2.25)
0 - +0

w 0 r

with r = r(x) along a streamline of $ = constant. Noticing that f

given by (2.24) is already 0(E) we only have to determine a or F in

(2.21) to 0(1). To this order the stream surfaces remain parallel to

the axis of the annulus and (2.25) becomes

F(x,r) = yr - 0 X + 0(e) (2.26)
w r

0

Summarizing, we have

ar BW(= R C - )i ' (2.27)

a = -- vr - Uo x (2.28)
wo r

This is the same as our previous result if we remember

_F 1 3J'-- = - + )' = q' + 0(e)3$rRwo 3r

so (2.27) and (2.28) are equivalent to (2.16) and (2.14) with a

difference of 0( 2
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III. THE MEAN FLOW

The basic equations we wish to solve are (2.5) and (2.16) which are

repeated here for convenience:

2 1 2 2
a -' -V'-v '-r (3.1)

C rB

S~ w~r -r _ i 6a - a ) (3.2)

= 0, 2/B, ., (B - 1)27r
1 ~ B

x(Vr - v0

(
rw

0

In the following, (3.1) is conveniently linearized with respect to the

free vortex profile (2.12), although

a = 30 + , and ' = f +at

where q1 = O(E). Since the difference between the relative and absolute

velocity is a zeroth-order quantity (vrO), sl and 4 are the same and we

shall drop all primes on the perturbation quantities. Taking the 6 -

average of (3.2) we obtain

- BC

V x ri = --- (3. 4)
41=2 rw 0 Dr r

Writing a = a0 + a1 , a = 0(c), we obtain after some algebra

2 u 1 1 av 1 1 1
a0 -+ - + r + )=-

2 (3.5)

= 0 3 0 a
ru +(w + t) Cw w + v ,v)
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The e - averaged equation is

- 2- 2
1 V0  U w0 w1

-- + -1+ -)--+(1--) -= 0r r -2i ) r axa0  a0

or

D1+ (1+ M2 ) + (1- M2 ) -1= 0 (3.6)Dr r ex ax

The 0 component of (3.4) is

1= -- v (3.7)
ax ar 2rwr r 0

(3.6) and (3.7) form two equations for the two unknowns u, and w1 . Note

that different M (r) and M (r) have to be used for the upstream and

downstream flow and the RHS of (3.7) is zero for upstream. The difference

of the base flow for upstream and downstream means that mode-by-mode

matching across the rotor plane is no longer possible. We can only

match the sum of all the modes. The matching problem will be dealt with

in a later section.

To solve the equations (downstream) let

1 = V4 + E (3.8)

so that u= + Er, w -= + E Pick E, = Er 0 and

1 ar rr wlax

Ex =- rdr 1 + C (3.9)
2 Trw 0r ar0

Then (3.7) will be identically satisfied. The constant of integration C

will be determined in the matching process to conserve mass flux.
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(3.6) now becomes

2 + M 2 2
-- +D -- + ( 2 -1D)-- = 0

2 r lr 2
r lx

The boundary conditions are

u= -, - 0 at

and IVOI vanishes far downstream.

rotor plane are that there should

the matching plame and axial mass

be dealt with in section 8.

For the incompressible case (

solution can easily be worked out.

to use $ where

r = h , 1 (3.11)
1

The matching conditions across the

be no change of radial momentum across

flux is conserved. The details will

3.6) reduces to V = 0. Analytic

It is more convenient in this case

- lli - 1u - and w1 r ax 1 r Dr

whence continuity is automatically satisfied. (3.7) then becomes

0 x < 0
( + r =

r ax2 Dr2 r Dr
(3.12)

BC v I
-- x > 0Vw 0 r 3r

The boundary conditions are

= 0 at r = hl, 1

and velocities remain bounded far from the rotor. The solution of (3.12)

(3.10)
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is

1 1"
Y1 Ak e r Z k(r)

_ (e=r(3.13)

k1 Ap (1 - e )r Zlq (r)

where

A E 1 1 BC v0 Dr
1 27Xr2 r)

Zl(r) (J1 (X kzr) + bk Y1(Altr))

(l r(J (Xly r) + b Y r)) dr)

The eigenvalue Xlk and phase-factors bt are chosen to satisfy the

boundary conditions

Z (h) = Z (1) = 0
II1

For further details, see Ref.9.
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IV. THE e VARYING FLOW

In section III we have effectively written

g(x,r,O) = _(r) + a (x,r) + .i(x,r, ) (4.1)

where 1i averaged to zero over 0. We found from the e averaged

*
equations. We shall find - here. The governing equation may be

obtained from subtracting from (3.5) its 6-averaged part. We then obtain

2 2 u1  2 21 a- v

O a0 r r Do

1 2 2 1 V 1 (42)
0 x + 0 -x -r M6

or
u 1  - (1 - 2 ) D v-

(1+ M ) -- + - -+
0 r Dr r Do

-MM 1 1 D,1) + (1- _ 2M (---+----) = 0
x a x r DO x ax

Ma and M; are the tangential Mach number of the base flow in the absolute

and relative frames respectively. From (3.2)

C B
x = .-.) --- (4.3)

Swr r qi 1 i 2T

Using = w0 x + vo' and (3.3) we can write

= w r Va x r + 0(c) (4.4)

* --
Recall that a1 represents simply the extent to which the 6-averaged flow

deviates from a pure free vortex type associated with . + a,

therefore, is the present approximation to the mean flow corresponding to

the reference flows in Refs. 3 and 5.
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as can be directly verified. Then (4.3) becomes

V x = CI (a - a,) - Va x r + 0(E ) (4.5)

It is convenient to write

B 1Ba i

i [( - a) - ] H(a) ~ ~

E S'(a)

Where primes here denote differentiation with respect to a. H and S

are the step and sawtooth functions illustrated in Figure 4a and

Figure 4b. Thus

V x i =C S'(a) Va x r = C VS x Vr (4.6)

Let

= V + A (4.7)

Then

V x A= Cr VSx Vr

If we chose

A = C S Vr (4.8)

(4.6) will be satisfied identically. (The other choice

A - C r VS

only differs from our choice by a curl free vector which can be absorbed

in the V4 part of (4.7).) Now c has to satisfy (4.2). Substituting

(4.7) and (4.8) into (4.2) we obtain an equation for 4
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2 (1+M ) (- M 2) 2 2
+ + + (I - W ) -

Dr2 r Dr r2 2 x 2

(4.9)

M M' 2 1+ M2
2x 0 D 0 a a- 2 C- + )(-C S ')r DXDO r + T r

where

= vI/a0  0 - Vr)/a0

The type of partial differential to which equation (4.9) belongs

depends on the coefficient matrix

x r 0

2
x 1 - M 0 -M M/r a 0 -c

r 0 1 0 =0 1 0

L -M M'/r 0 (1 - M; 2 )/r 2  -C 0 b

The eigenvalues are

X = 1 and -[(a + b) + (a - b)2 + 4c2]

The equation will be hyperbolic, parabolic or elliptic according to

whether

(a + b) (a - b)2 + 4c2

This relation may be simplified to the requirement

> hyperbolic

22
M + M 2  = 1 for parabolic equation type.x 0

elliptic

The LRS is just the square of the relative mach number, in analogy with

the less general result of Ref. 10. Thus we only have radiation if the
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relative mach number (including finite swirl) is greater than one. For

many practical transonic compressors (M2 + M 2) can be less than 1 down-x

stream and greater than 1 for part of the radius upstream.

(4.9) reduces to McCune's acoustic equation [10] if we let v0 '.

The homogeneous equation becomes, in that limit,

2+ + 1(1 - 22 + (1 - M2)@ + 2M 2_ v 1 = 0
ar2 r r r2 a2 2 x 2 a0 r Max

(6 here is -e in [10])

V. THE WAKE FUNCTION

We just seek a particular solution to (4.9). It will be called the

wake function. The sawtooth function may be expanded in Forrier series

as

co inBa
S(a) = n = i (5.1)

Let

c1= n 1 n(r) e inBa (5.2)

(4.9) becomes

___ 4 a 22 2 2a
2+ 2nB - B 2 + inB nn1 - 2 ar Dr nar n21

ar ar

(1+ 42

+ r ~ + inB. )] (5.3)r nar

(1-N,2 ) 2
+ -rB - nB ]

r 2e naoe
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2 '2+ (11-1 )q2 2c 22Da 2

2) x I a in - nB inx-
x x 2

r MI

2x0 2 2 aDt inBct

=e + -) - E ]
r Dr) F r n = 1 n7

with the expression for a in (2.14) the first terms in the last three

square brackets on the LHS are zero.

As we are only interested in the solution at the vicinity of the

blade, it is only neccessary to get a solution for small x. However

care must be taken to apply the boundary condition at x->. Under the

assumption that the wakes follow the free vortex flow we have rolled

up vortex sheets at large x. Whether the wakes still follow the primary

flow after they roll up is irrelevant. We expect that the rolled up

wakes at large x do not induce any significant varying velocity distur-

bances. Then the solution obtained by combining a particular solution

to (5.3) for small x and a solution to the homogeneous part of (4.9)

with boundary condition of vanishing # at x-x> (or radiation condition if

the equation is hyperbolic) will be valid for small x.

2
Ordering x = 0(c) and n = 0(c) and neglecting terms of 0(E ) (5.3)

n

becomes

a2 ( + M 2 1 _ M' 1 X M V'
n + ) n n 2B2 + ( - M) + 2 x 0 - g (r)

2 r (r n 2 x 2 r r4
Dr -r r

(5. 4a)
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where

+ 2

gn(r) n7( r C+ ) C )

(4.13a) may be simplified as

a2 (1 + M 2) @ v2

n + r ~3n n 22B2 + - = g (r)
Dr 2r r

The effect of compressibility only brings in the term

M2
The i 1 m 
_rIt E n - nW Cr -)

The incompressible limit is

r2n2 n + 1 a n n 2 B 2

ar 2 r 3r n

We can- get a glimpse

driving term) of (5.4c).

V2
12 1 1 a r r

2 r _T(r+t)(rtr
(5.4c)

at how the flow is set up from the RHS (the

It was mentioned that [(2.15)]

ar
~ C3 r-

Thus

RHS of (5.4c) ~ r ar(ru)

which is the r derivative component of the continuity equation. What

has happened is the nonuniform spanwise loading of the blade induces a

radial velocity. The rest of the flow field then tries to readjust so

that continuity can be satisfied.

We shall first give an analytic solution for (5.4) in the limit of

v0 - 0 and then describe a very efficient numerical algorithm for the

general case.

(5.5)

(5. 4b)
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For v0 + 0, (5.4b) reduces. to

32

2+ n2B2(2 + 1n = (r) (5.6)

with g n(r) now given by

gn(r) (+ )(C ) (5.7)n nir r ar Pr D

The boundary condition is -b-= 0 at r = h, 1. The solution is given

in terms of the modified Beasel functions.

$ (r) = I(r) 1 dC gn(C) K()+ K(r) r d gn t
nr n Kn(s)

K' (h)K' (1)Si - I'(h)K'(l)S I' (h)I' (1) K - I'(h)K'(1)S I
+ Z I(r) + Z K(r)

where

S = ( d g n D M K - 1 Cd gn( )K(E)

Z = I'(h)K'(1) - K'(h)I'(1)

The I and K are the modified Beasel functions of first and second kind

I(r) = nB (nBvr) K(r) = KnB (nBvr)

I'(r) = I (nBvr) K'(r) = K (nBvr)Dr nB Dr nB (~r

This is identical to the wake function used by McCune and Okurounmu [11]

since v0 - 0 reduces (4.9) to the acoustic equation.

A very efficient numerical method to solve (5.4) for the general

case is the Alternate Gradient Implicit scheme. (See e.g. Richtmeyer
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and orton 112].) Let us write (5.4b) as (dropping the subscript n's)

2 1+

Dr2  r r

where 
,2

f = n2B2  1+
r r

Let k denote the iteration index and j denote the r station number.

Then to second order in 6r

k + 1 k

J =
6t

k + 1 + 4k+1
i + 1 i - 1

k+ 1-2)

6r2

(1+ M 2)

+r.

k + 1 _ k+1
j +1 j -

26r

6t is a tuning parameter normally set to 1. Rearranging we have

A.$k + 1 + B.k + 1 - C.k + 1 = D.3 j + 3

where 2
1 +

A. = (1 + ) 6t
3 ~ rj

B. = 6r2 + (2 + f .6r 2) 6t
21 2

c i = (1
(.1 + M 2)

- M e. 6r)
2r.

D. = k - g St) 6r
3 (1 j

+

k+l
f 

~ 

) -

9j
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Then we can solve for k l in two sweeps as
J

k+l k+l
k = E + F.

3
(backward sweep)

A.
E=
j B. - .E.J J J.-l1

D. + C.F.

F = B - C E'
j B3 jj-l

(forward sweep)

To start the sweep the boundary condition = 0 at r = h and 1 has to

be applied. A second order accurate finite difference approximation of

the boundary condition is

1 F =-E r 2

1 + f 6r 2/2 1 1 1 2

F 2 2
F - 1 (l + fn - 16r /2) + gn - 16r 2/2

n 1 - En - (l + f _ 6r2 )

starter
forward sweep

starter
backward sweep

The scheme is unconditionally stable for f > 0 and typically con-

verges in 3 to 4 iterations.

VI. THE ACOUSTIC MODES

Let us now investigate the homogeneous part of (4.9), which is re-

peated here

( + M 2) t + ( - M; r +
0 r Dr r 2 o

(6.1)
2 2

+ (1 - M2)i, - 2M M' - = 0
x D 2 x 0 r 3x

where

r
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We have to remember that the M , M and M are different for upstream

and downstream. In particular 34 0 = 0 upstream in the present study.

Often relative Mach numher M + M i2 s less than 1 downstream but may

well be greater than 1 over part of the radius upstream. Let

=E e inBe + ikn x (6.2)
n n

real part implied. Then for each (n

2 22 M'M n2 B2 1 - M 2
-+ (l+ M )_-+ -(l - M2)k2 + 2 - xBk - = -

Dr2 e r Dr x r r2

(6.3)

where the subscript n has been dropped temporarily for simplicity. The

boundary conditions are

a- = 0 at r = h, 1. (6.4)
3r

Defining
M'M nB

X = [k - x (6.5)
r(l - M )x

(6.3) becomes

2 2 2 M,2 + M2 -1
+ 2 2 n B x = 0 (6.6)

r2 r Dr x 2 1 M 2
x

(6.6) may be put into self-adjoint form by introducing

p = exp ( fr dr(1 + Pe-)/r) (6.7)

*
M is always assumed to be less than unity in the present work.
x
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Then

2 ~2 n 2 0 2 1 X) =0(
(p ')' + P1- A( i- ) - 2 (6.8)

r 1-M
x

Here primes denote differentiation with respect to r except for M' which

as before denotes the relative tangential Mach number. In order for

expansion (6.2) to be valid we must have an infinite number of eigen-

values kn and corresponding eigenfunctions 4) . By the Oscillation

Theorem [13] this is only possible if the expression in the curly braces

is greater than zero and goes to infinity for some value of k (which

may be infinite).

Let $1 and $2 be two solutions with eigenvalues k, and k2 (with the

corresponding A1 and A2).

2222 1 - M,2 - M
(W), + ph)1  - (l-M )A - n 2 0 x) = 0 (6.9a)

r 2 1 - M2
x

2 2 1 -M, 2  M

(01)' + p'2 - (1 - M )A - nB x 0 (6.9b)22x 2 r2 0 _ 2 =0(9b
r 1-N

x

Subtracting $2 (6.9a) from 4)1 (6.9b) and integrating the result from

r = h to 1 and making use of the boundary condition (6.4) we obtain

1 P (1 - M2) (X2 ) (X2 + 1) dr = 0 (6.10a)

or, using (6.5)

1 (1 2MM nB
f p)$ 2  1 - M2) (k2 - k) (k + k - x ) dr = 0 (6.10b)

h 12x 2 1 2 1 r(l - x )
x

All the coefficients in the differential equations (6.3) are real,

therefore, if k is an eigenvalue and 4 the corresponding eigenfunction
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* * * *
so are k and # . Let i= #, #2 = , k1 = k, k2 =k . Then

1 p 2 2 2M M nB

( pM (12- ) (2k) (2k
x r( -M )rl-Mx)

dr = 0 (6.11)

The Incompressible Case

In the limit of all Mach numbers + 0 (6.6) and (6.11) reduce to

+ + -k2 _ nB 0 (6.12)
32 r Dr r 2

f1 pI l2 k. k dr = 0 (6.13)

For solution to exist it is obvious that k must be purely imaginary,

k = + ia

where the upper (lower) sign refers to the upstream (downstream) flow.

This represents an elliptic field vanishing at lxi + -*

The solution can be written down explicitly in this case:

eAu
np np np

EEAd
np np np

Y x
inB n
e e

einBO e Ynpx

x < 0

x > 0

= =( (y r) + b Y (y r) ) /,fNnnp nB np np nB np np

f1 CC( C+ Y( 2
Nn f U nB p np nB np

b =-J' (y h)/Y' Cy h)
np nl np nB np
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The y np's are the solutions. to the algehric equation

J' (Y ) Y' CY h) - Y' Cy ) J' (y h) = 0
nB np nB np nB np nB np

The induced velocity decays exponentially with no oscillation away from

the rotor. Details on obtaining the y and b values are available in
np np

Reference 9.

The Case of V + 0

This includes the acoustic theory and the upstream part of the

present theory. There is no difference between the two for x < 0. Now

the relative Mach number may be greater than 1 locally and radiation of

sound is possible. This can easily be seen from (6.8). For if

2 '2  2
(M + M - 1)> 0, -X can be negative and the expression inside the

curly braces is still positive. For a given n there will only be a

finite number of real k's (X's) because the first term in the curly

2
braces will dominate for large A. (cf. Ref.1)

For the complex eigenvalues, we can find their real parts by (6.11).

When kiO0, (6.11) gives

N'

pj 2 ( ')M nBnr x dr

kr = (6.14)

fJ I 2(1 - M2 )dr
n x

As there is no radial pressure gradient in the equilibrium upstream flow
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M = Cst and M' Vr

kr=~ 2 (6.15)

x

Fig. 5 shows the locations of the eigenvalues in the complex k plane.

(6.3) is quadratic in k. Therefore if ki#0 both k and k are

eigenroots. We keep only the one with ki<0 so that (6.2) will give a

vanishing solution for x + - oo. If k is purely real, roots will occur

in pairs. We keep only the one which gives the correct Doppler effect.

These roots are illustrated in Fig. 5. It con easily be seen ((6.3),

(6.5) and (6.15)) that the line defined by (6.15) is midway between a

pair of real k's. In this case of V0 + 0 the solution can be written

down explicitly. (6.3) becomes

1 2 2
+ + [Z2 2 ( 0 6.16)

r
where

2 2 2 22 2 2
P = n B v M - k (l - M )- 2M vnBk (6.17)x x x

The solution is

n= ZnB (9r)

where

Z (kr) = J (,r) + 2Y (9r)
nBnB nB(9r

and k and a. are the eigenvalues and phase factors required to satisfy

the two point boundary condition

Z'B (Zr) = 0 at r = h and 1 (6.18)

*
Recall that, in the present notation, M , Me, M1, etc. are mean value

(O-averaged) quantities.
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The eigenvalues k are all real and greater than 0. However the k

obtained from (6.17) may be complex:

M nB +1(M nB) - 92 - (nB M2 )](1 - M2 )
k X x 2 X X (6.19)

(1 - M2

For sufficiently large Z, k is always complex. This result is identical

with that of McCune [9]. Transonic resonance is also possible. For

k = 0 (6.16) becomes

2 22 2 2
" + $') +4 n B2V _- )=

ya 2 2)

which has nontrivial solution = ZnB nBV happens to be one of
nB a0  a0

the eigenvalues k defined in (6.18). McCune [10] overcame the mathema-

tical singularity by putting in a viscous dissipation term. There is no

need to repeat this here. By contrast, non-linear effects were used

in landing this singularity in Refs. 1 and 11.

The Downstream Flow

This is typified by a large V As a result, for a compressor, the

relative Mach number is often subsonic. From (6.6) it can be concluded

that X (and k) must be complex so that the boundary condition (6.4) can

be satisfied. Since k .0 we can estimate kr by (6.14)

1 r
1 pJ2 MM nBdr M M nB I

k = r x X (6.20)
r 2 2 r(1 - M2) r
1 14)1 (l -M)drx
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with C at some point along the span (h,l). For many operating

compressors M < 0 with our definition. In that case, k < 0. Instead6 r

of a monotonic exponential decay in the incompressible case, 4 has an

oscillatory decay from the rotor. Comparing the estimates (6.20) and

(6.15) the main effect of the swirl is to decrease k . Thus we haver

longer waves downstream.

The solution to (6.3) in general cannot be obtained in closed form.

In the next sections we shall discuss a numerical way of generating the

approximate eigenfunctions and eigenvalues together with the matching

of the solutions upstream and downstream.

VII. SOLUTION BY GALERKIN'S METHOD

In this section we shall solve the equations (3.10) (mean flow) and

(6.3) (6 varying flow) by a numerical expansion procedure. Since the

coefficients of both equations take different forms for upstream and

downstream, it is desirable to expand both the upstream and downstream

flows in terms of the same set of functions to facilitate the matching

procedure. Galerkin's method, frequently used in problem in elasticity

[14], suits our purpose. Basically the solution modes (by this we mean

the solutions to (3.10) and (6.3) with definite axial wave number k) are

expanded in terms of a complete set of functions satisfying the same set

of boundary conditions. The coefficients of the expansion are found by

making the residual orthogonal to all the functions in the complete set.

The task of solving a differential equation for eigenfunctions is thus

reduced to solving for the eigenvectors of a matrix. We also obtain the

axial wave number (which may be complex) as the eigenvalues of the matrix.
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The equations we are solving take the general form of

L(k,(P) = 0 (7.1)

with boundary conditions

T (h) = 3 (1) = 0 (7.2)

For the mean flow the operator L takes the form

2 (1 + 2
LM(K,) = 2+ r (1 - M2 )K2 (7.3)

For the 6 varying flow it takes the form

a2 ( + M 2)

LT (k, n 2 r +
(7.4)

2M'M n2B2 (1 - M 2
+ 2-k2(1 M ) + r x nBk 2+(n{ ~~x) r 6

r

with the understanding that M, M and M; take different form for up-e

stream and downstream flow. We have also assumed that in the mean flow

O(x,r) - (r)e (7.5)
and in the 6 varying flow

$(x,r,6) ~ (r)einB eiknx (7.6)

We shall solve (7.1) by Galerkin's method and apply the result to

(7.3) and (7.4). Let

N
((r) = a (r) (7.7)

where { , is a complete set of independent functions (they need not

be orthogonal) satisfying
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$ Z (h) = -$ () = 0 (7.8)

Then the solution to (7.1) is given by (for every eigenvalue k)

lim N
N + o ak(k)$Z(r) (7.9)

with the eigenvalues k and eigenvectors [ag] determined by making the
N

residue L(k, k~i akiP) orthogonal to the $ 's:

N
drw(r)L(k, E $)$ = 0 j=1,2,. .. ,n (7.10)

where w(r) is an appropriate weighing

matrix relation of the form

The k's are

cally zero.

boundedness

convergence

M. (k)
a

aN

function.

= 0

In general (7.10) is a

(7.11)

determine to make [M..] singular so that [a I is not identi-
1J

It can be shown that (7.9) under certain mathematical

and smoothness conditions converges (in the mean). The

goes as

N 2
~ ( IL(k, la&$)I dr/N

which is very fast if a suitable set {4} is chosen.
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The Mean Flow

For the mean flow let
n

a. (7.12)

(To facilitate matching, the same set of $'s should be used for both

x > 0 and x < 0.) Then the M. 's in (7.11) become

2

M.. (k)= 1 wdr T. 2 +

S(1 + M2) W
+ wdr T. - + (7.13)

+ K2 1 wdr(l - M2).. - B. + K2C. .i 3 i1j

where
B .. I + M DT.

B. wdr T.( - + r) (7.14a)
ij 1 ar 2 r ar

C = wdr(l - M 2) .. (7.14b)
ij hx i i

T -1 2
Let A = (a1,...N). Then (7.11) may be written as C BA = - K A

and, hence,

K = (eigenvalue of C 1 B) (7.15a)

A = eigenvector of C~1 B (7.15b)

The upper (lower) sign in K are for the upstream (downstream) solution.

(It will turn out that the eigenvalues of C-1 B are negative and K is

real.) Suitable normalization of a will be carried out in the upstream-

downstream matching process (Chapter 8).
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The e Varying Flow

The procedure is identical to the above except now not only k2 but

k is involved in the dispersion relation (7.11). We shall use m..

instead of M to distinguish the present from the mean flow treatment.

Let
N

n a A9 a nk

th(the index n denotes the n azimuthal mode)

Th en in'> 1 + w) Dh

n. 1 + -hi 3
Mi..=( wdr{ 1j + -

13 Dr 2 r ar

22_n B (1 - M, 2 %ln+
r nj nir

(7.16a)

+ k 1 wdr r nB j ni

- k2  1 wdr(l - M2  I)x nj ni

or

n 2 Dn. + (7.16b)
1JJ iJ 3J

where the D.., E. and FA. matrices are easily identifiable from (7.16a).
I ij Ii

The eigenvalue problem is

2 Dn n n n
Z (-k D. + k E. + F .)A. = 0 i = 1,..,n
J 1J 13 J

n
when A. = a . Dropping the index n temporarily for simplicity we have

jt nj

in matrix notation

(-k2 D + k E + F)A = 0 (7.17)
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The matrices involved in (7.17) are N x N and k appears quadratically.

Therefore we would have 2N eigenvalues for k in general. However only N

of them are retained by requiring either vanishing solutions at

1xI + <x on the appropriate radiation condition.

To solve (7.17) for k, it is noted that if a suitable set of $'s

is chosen, D is going to be diagonal dominant; also D-1 exists and is

well-behaved. Multiplying (7.17) by D-1

(-k2 1 + k D-1 E + D-1 F)A= 0 (7.18)

Let

G E D-1 E, H E D~1 F
(7.19)

A = A A2 = k A

Then the N x N matrix equation (7.18) may be written as a 34 x 2N matrix

equation

0 I A, A1

G A2 k A (7.20)

Thus

k = eigenvalues of (7.21)

After finding k, the eigenvector A can be solved easily. Normalization

of A will be carried out in the matching of the upstream and downstream

f low in (Chapter 8).
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VIII. MATCHING OF UPSTREAM AND DOWNSTREAM FLOW

The matching conditions are

0+
[u]0- 0, no radial force (8.1)

0+
=pw]0- 0, mass. flux conservation (8.2)

The difficulty of the matching lies in the fact that, because of

the strong swirl, the downstream duct modes are different from the up-

stream modes. Mode by mode matching is no longer possible. For each

radial position, all the modes are added up to satisfy (8.1) and (8.2).

Say if we limit ourselves to N 0-modes and P radial modes, then (8.1)

and (8.2) furnish 2 x N x P simultaneous algebric relations between

the 2 x N x P amplitudes. The details of the mixed mode matching go as

follows. Let

P = PO + p1

where po is the density corresponding to the base flow (2.12) which is

different far upstream and downstream, then (8.2) becomes

[(p0 + p) (wo w)] = 0 (8.3)

(We shall use 0-, 0+ and u, d interchangeably.) In our model of the

base flow we have assumed a jump of tangential velocity across the

x = 0 plane (actuator disk). There must be a corresponding jump in

radial pressure gradient to supply the neccessary centrifugal force.

Hawthorne and Ringrose [8] pointed out that this pressure variation will

further yield a modification of the radial density profile and therefore

a redistribution of mass flux. Hence radial flow will occur even if

the far downstream flow is of free vortex type. Since the' observed

radial flow is small we can assume the difference of the two 0(1)

quantities to be

(POWOd w(P0Wu = 0(s)
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Then, to 0(c), (8.3) can be written as

Jp0w1 + pIw0 + p0 d0 d = 0 (8.4)

Taking the 0-average of (8.4) yields

[p0w1 + pdw0 + p0w0]d = 0 (8.5)

and the difference of (8.4) and (8.5) gives the corresponding matching

condition far the perturbation flow:

[p0 1 + w Id = 0 (8.6)

Since we have so far only calculated the velocities, the presence of the

density perturbations p1 and pg in (8.5) and (8.6) are not very

convenient. However they can be eliminated via the energy equation

(isentropic flow has been assumed throughout)

1 2
C T + - q = C T (along stream line)
p 2 p t

or

p = p (1 y - -1
t 2 2

a t

where the subscript t denotes total (stagnation) quantities. Taking the

logarithmic derivative and remembering that Tt is independent of r for

uniform axial flow and/or for free vortex flow, we have

dg - qdg

P a2 -(y - 1)q/ 2

Replacing dp by p1 , p by p0 , q by q0 and dq by q1

_ _ _ _U 11 0 . 11 ~ O -1 2 (8.7)
a- 2 y -1 q2 a2  w 2 x
x 2 0 0
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o averaging (8.7) we obtain

p - o rW
1 x 0 W 0

The mass flux matching condition for the mean flow is therefore

2 d1(1 - M ) Pow, + p w 0

The 0 varying part of (8.7) is

-= - x2 0 01p1 = - N dp0w 1 + v 0 1 )/w 0

Hence the mass flux matching condition for the 0-varying flow is

1(1-N2 ) p0 1 w0  M0 p0  1/w 0] = 0

The Mean Flow

The 0-averaged velocity perturbation is given by

we = V + E

where

(E0 + C) x ; x > 0

B C rvOI
E - -- B r -dr0- 2rw0 $ r ar

0 ; x < 0

(8.8)

(8.9)

(8.10)

(8.11)

(8.12)

(8.13)

(8.14)



39

and C is the constant of integration in (3.9). According to the

Galerkin procedure

N N KUx N N d Kux
E_ E 1 au ,r) e P E= N a T (r)e x < 0

P 

_ 1=ll el d P ~ =1p Vk d (.5

N N K x N N dK (8.15)
p E, au T (r)e = N C t T9 (r)e x > 0
p-l1= ep P 1  p P

where the same Pt's are used for both upstream and downstream. The

coefficients of expansion are expressed as N aT where the a 's make

up the unnormalized eigenvector discussed in the last section; the

N p's provided their normalization. (p indexes the eigenvectors and Z

the components of each.)

We shall pick the normalized Z0 QAr) (which satisfy the boundary

conditions) as our expansion functions $ (r):

Z Gkr) [J0 A(X r) + b Y0 ( r)]/4F1

N = l 0[J (Xr) + bkYO(XAr)]2dr

(ZO r))= 0 at r = hlDr 0

This choice turns out to satisfy exactly the differential equation for

0 upstream [see also (3.13)] and hence saves the labour of solving the

matrix eigenvalue problem upstream.

However the set Z is not complete unless we include a constant.

This manisfests itself as the constant of integration in (3.9) and re-

presents a net mass flux.
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From (8.1) we have

ZJNU u =N o Nd cd (8.16)
9p Zp kP kp kp ZP

Substituting the various expansions into (8.9) we obtain

2 N d ]d -2(1 ) E N p K ] = 0 ((1 -M )p ) (EO + C) (8.17)
x 0 91p p Zp z p U [pw0 - (( x MX Od

By using the same T's for the upstream and downstream solutions we

have been able to carry out the matching of the radial velocity (8.16)

without difficulty. However in the matching of the mass flux (8.17) we

get on each side of the equality a product of TP (r) and p0 (r) with

different radial dependence upstream and downstream. Therefore we have

to reexpand both sides of (8.16) in terms of a common set of complete

functions (r) before we can compare the coefficients. It is

convenient to use the same set of T's for the 3's so that orthogonal

relations can be used wherever possible. Upon substituting (8.16) into

(8.17) the problem can be cast in the form of the following matrix

d
equation for [N ]

p

1 d
([a ]]b ] + - [C d ]) [N ] = [g ] - - [C m (8.18)

MP MP f m p p m f M

where [] represents an N x N matrix or an N vector depending on the

number of subscripts its element carries. We have assumed that the re-

expansion is also carried out to N terms so that (8.18) remains an

N x N system and thus does not become over or under determined.
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The definition of the various terms in (8.18) are:

U 2 u ud
a (1 - (M 2 K- amp x 0 m mp

b = Kd d

C = 1 ((1 M )P r dr

C= ((l- M )0 d mdr

n d
d = ( a d d
p k=1 kp B Kzp

B= 41 ((1 - M2)P T )drdr

{((1k00

g 2)p E ) +[pw] d rTl drm = {((1 )0 d 0 m

e = (1 (( - M 2)PoE )d + [P0w0] } rdr

f = I1 ((1 - M2 )P )drdr

Finally the constant of integration in (3.9) is

C =- (e + FE N d ad K B )f kp p Zp p k

The 0-varying Flow

The procedure is exactly the same as the previous one except we

have to carry another index n to denote the 0 modes. From Chapter 4

S +x(8.19)
V + CrSVF > 0
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= w + %-

00 i nit X<O
E i Rn(r) e (8.20)

w n=1 x>0

The Rn's are the particular solutions (wake functions) to (5.4). The

method by which they are calculated numerically is described in Chapter 5.

In addition,

N N . uIk
0 u inBe ik x

n 1 =1 p-l an p e e np x<0

S= (8.21)

00 N u inBO eikd x
E E p a e np x>0UP=1 kp-1 p=1 n PP n9.

where the Galerkin expansion in Chapter 7 has been carried to N terms.

Applying the matching condition (8.1) we have

Ea + R (8.22)
np nkp n= n n- n9 n=1 n nT 3 r

Cr .
(Rn - -- ) = E b $ (8.23)

nr Z-=1 ni 9.n

Then

N d nl o
S(aU - a ) = i b n=,...,o (8.24)

p=1 n Rp n 2p ng, R7=1,...,N
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The mass-flux matching (8,11) becomes

2 ag i ku

-~l-N
2  d d d 00D=-(1-M )P0 /W a P i k + E iR (r) - (inB) -

d d D
1P0  6 /w0] an a $., inB + nY1 i Rn(r)(-. )(inB)

(8.25)

This can be written as

where

(8.26)
jpau fu ad fd(r+E g

n p an fnt(r) = n nkp nlp() + ni g(r)

n. r) = [(1 - ) )p k/w0 ]U$ (r)

f d (r) = [((1 - M 2 )p k - p0M MnB)/w0 d r)n ) = ( () -P O ( ) 0(r)

Da 2 d
9 (r)[ P ( (l - -M(--) /w nBR (r)

Reexpanding these functions in terms of a complete set y (r) to N terms

we have

u,d N u,d
nkp n=1 nkpm Am(r)

N
gn El c y (r)n M7L nm "i

(8.26) becomes

u u d d
anp p bpy (r) = n)m ap y (r)pm + n~micy(r)

(8.27a)

(8.27b)

(8.28)
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For each m and fixed n we equate teh two sides of (8.28) and get N

relations. They are

E an bu = E ad bd
Z,,p nkp nkpm ,p n9,p nkpm

+ i c
nm

m=1,2,...,N
(8.29)

For each n, (8,24) and (8.29) provide 2N normalization conditions for the

2N eigenvectors [au ] and [ad ]. Let Nud be the normalization constant
nVp n Rp np

u d
amd [a u ] be the unnormalized eigenvectors for the [m..] matrix inn ,p

section 7.

au:d = Nu,d au,d
n 9p np n kp

n=l,...,o

p=l,... ,N

(8.24) and (8.29) become

E Nu u = E Nd cd + i b A=1,...,Np np n9p p np n p nN

Np au t bP = N d au bd + i
S np A n 4m np n 2 n Vm

In matrix notation we have, for each n

[u d I [Nu ]n P n R np]

u d d
nmp nmp np

c
nm

m=1,.. .,N

[ib n

[ic ]
nm

where

= T a b
nmp k n P n 4m

From (8.33) we can solve for Nu' d easily and (8.30) furnishes the
np

coefficients for (8.21).

(8.30)

(8.31)

(8.32)

(8.33)
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IX. NUMERICAL CALCULATION

The following gives s.ome of the details of the calculation pro-

cedure. Results are presented at the end of this section.

(i) Parameters of the Calculation

The inputs to the computation are: the number of blades B, the hub

to tip ratio h, the axial Mach number far upstream M., the rotor

speed v, the average loading per blade C and the loading profile F(r).

All quantities are nondimensionalized as discribed in section 2. The

loading profile we choose is

P(r) = 1 - S Cos (r h T

where c is a small parameter of about 0.1 ~ 0.2. Note that r has zero

derivatives at the tip and hub radii.

Instead of V and C it is sometimes more convenient to specify

the blade tip Mach number MT and the total pressure ratio Pt2 /P . They

are related by

Pt2 (l + M 2  (1) V )ry/y -l1

t2 2 2B

= T 2 + 1)M
x

(ii) The Base Flow

The base flow from which- perturbation is made consists of a uniform
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axial flow upstream of the actuator dish. and a free vortex flow with

constant axial velocity downstream. Each can be shown to be a self con-

sistent flow field in the applicable region.

Let the upstream and downstream quantities carry subscripts 1 and

2. For a given density p 1 and velocity w1 upstream, the downstream

axial velocity is

p1w1
w = (9.1)

where

j grdr
< = (9.2)

rdr

The value of <p2 > is obtai ned through the Euler turbine equation and the

isentropic relation.

a 2 +2 (9.3)

1 2a a1

P 2  a 1/Y - 1  (9.4)
p a

S1 1y

where a is the velocity of sound and v the 0 velocity. <A > is obtained

by substituting (9.1) into (9.3) and solving the system (9.2), (9.3)

and (9.4) by iteration. The result of some cases under study is shown

in Figure 6.

(iii) The Mean and e varying Flow

The precedures outlined in the previous sections are straightfor-

ward but tedious to carry out. The wake function calculated by the
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mentioned implicit alternate gradient method converges very rapidly.

In the Galerkin expansions. normalized Bessel functions are used with

weight equal to r. These Bessel functions are chosen to have vanishing

derivatives at hub and tip and to satisfy the differential equations for

the upstream flow. (This is the reason why they are used.) Orthogonal-

ity is used whenever possible to reduce the labor of computation.

The only difficulty comes in the upstream and downstream matching

of the e varying part of the perturbation flow. With our model, velo-

cities become singular at the lifting line. The singularity manifests

itself as a failure of convergence of the Fourier expansion of velocities.

For example with velocity potential

inBO ik xEE a e e np
np np np

The 0 velocity component at the lifting line is

v (x = O,r,O = 0) = ZE a -
I np np r cnp

In general the above sum over n diverges.

Theoratically it is still possible to apply the matching condition

to the divergent series and obtain meaningful values for the an's. This

was done for the small swirl case in [11] and for the incompressible

rectilinear cascade in [3] by requiring the correct singular behavior

at the lifting line. In those work, however, such a step is possible

analytically because the mode shapes are the same for both upstream

and downstream. In the strong swirl case studied here, the mode shapes

are different for upstream and downstream. The mixed mode matching of

the singular velocities is not so straightforward. Direct application
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of the procedure outlined in section 8 yields series that do not con-

*
verge (at least numerically). McCune pointed out that the matching

condition (8.2) is an indirect specification of the correct singular

behavior of the velocities at the matching plane. The following re-

placement may be more appropriate

0+ C r B B
[v1]- 1 0-(6 -0 ) - -) (9.5)

2rT 47rfei = 0, , ,...00

(9.5) and (8.2) are shown to be identical in the incompressible recti-

linear cascade calculation [3].

t
For the time being we avoid this problem by addressing ourselves

only to the calculation the total deflection angle. In this case the

acoustic modes have all decayed away at the Trefftz plane. The pertur-

bation potential there is then given by #w alone in (8.20). The wake

induced velocities which modify the deflection angle are given by V w

at a = 0. (We have neglected here the effect of the upstream acoustic

radiation, if any, on the incoming flow direction.)

(iv) Numerical Results

Figures 7 to 9 show the total deflection angles for different

*
J. E. McCune, Private communication 1976.

t Study of the method of determining the correct Fourier coefficients of
the divergent series is underway. These coefficients are important
for determining the upstream acoustic radiation spectrum in the
presence of strong downstream swirl.
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blades and loadings. The mean solution takes into account the

0-averaged contribution of the wakes (associated with E00) and the 3D

solution includes also the contribution from 4 . As expected the effect
w

of the wake generally is to try to "bend" the loading profile towards

a free vortix profile.

Fig. 10 shows the axial decay rate of the 0-averaged flow induced

by the wake. That the magnitudes of the downstream decay rates are

smaller than those of the corresponding upstream radial modes is due to

the Prandtl Glauert effect. Fig. 11 shows the axial complex wave

number of the three dimensional perturbation velocities. The downstream

values are all complex as the flow is subsonic there in the examples

taken. To each azimuthal mode m, there correspond a finite number of

upstream purleyreal wave numbers. These are the acoustic radiating

modes (modes above cut-off).

Fig. 12 shows the deflection correction AD due to the three

dimensional part of the perturbation velocities for a rotor of fixed

total pressure ratio as a function of rotor speed. The decrease in AD

here is artificial because as we run up the rotor speed v the loading

per blade decreases -1/v if the pressure ratio is to remain constant.

The strength of the shed vorticity also goes down by 1/v. Fig. 14

shows AD verses rotor speed for a rotor of constant work per blade so

that the pressure ratio increases as the rotor speed increases. It is

found that AD still decreases as speed increases. This is because the

angle the wake makes with the axial direction increases as v increases.
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The annulus averaged downstream density
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Axial decay rate of mean flow solution for the first 6 radial modes
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30 Deflection angle correction V MT
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3D deflection angle correction Vs MT
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