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ABSTRACT

Herein the generation of sound by subsonic turbulent air

flow in cavities is studied. Two types of cavity modes

are considered; the axial modes of a pipe'open at both

ends and the transverse modes of a rectangular duct.

Experiments were performed to measure the acoustic spectra

of the flow generated noise. A linear theoretical analysis,

based on an isotropic model of the turbulent fluctuations,

is developed to predict this spectra. Certain nonlinear

phenomena (screech), due to the alteration of the source

flow by the emitted sound, are identified. The necessary

conditions for such instabilities are examined.
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NOMENCLATURE

SYMBOL DESCRIPTION

a Radius of cylinder, disk, or sphere

A Cross sectional area

A Pressure perturbation amplitude (Appendix)

b Duct width

B Radiated pressure amplitude

c Speed of sound (3,4000 cm/sec)

C 0 Speed of sound in the quiescent air
(Chapter 4)

C+ Speed of sound in the quiescent air (Appendix)

c. Speed of sound in the jet (Chapter 4)
J

c_ Speed of sound in the jet (Appendix)

cp Acoustic phase speed in a moving fluid...
c + V cosa

c Normalized phase speed of a shear layer
disturbance (Appendix) w

d Duct width kc+

D Pipe diameter

D(w) Denominator in Green's function for an
open ended pipe with flow

DB Decibels

D a aConvective derivative ... + Vi X

f Frequency

fn Frequency of nth harmonic

fs Strouhl Frequency

F Frequency range

AF Interval between axial mode frequencies...
c(l-M)2
2(L+8+&

G Green's function

HI nth order lIankel function of the first kind
n
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NOMENCLATURE (cont'd.)

SYMBOL DESCRIPTION

i /~

I Acoustic intensity

I n nth order modified Bessel function

jn,s S th root of first derivation of J

Jn Bessel function of the first kind

k Wavenumber .. .
c

k + Wavenumber for propagation in the direction
of flow ... ~(+M)

k Wavenumber for propagation opposite to the
direction of flow .. )

c(l-M)

k Axial component of the wavenumber in a duct

k Handa's ip (Appendix)

k Handa's ip_ (Appendix)

kHz Kilohertz

K Wavenumber
~th

K n order modified Bessel functionn

2. Point source location in a pipe

L Pipe or orifice length

m Integer

m - Unit mass of air
0V

M Mach number .. .

n Integer

N integer

1P Total pressure

p Acoustic pressure ... see Table of Fourier
transforms on page 130.
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NOMENCLATURE (cont'd.)

SYMBOL DESCRIPTION

G, Turbulent pressure

q Monopole source strength in units of
(volume/unit volume) /time

q integer

Q, Q(W Designates the highest propagating mode at

frequency w

Q Total equivalent monopole source strength

r. Distance to observation point

* 0 Distance to source point

R Pressure reflection coefficient at pipe inlet

RL Pressure reflection coefficient at pipe exit

R Turbulent velocity correlation

Turbulent pressure correlation ... see Table
of Statistical transformson pages 131 and 132.

s Integer

S Strouhl number

S Monopole source strength in units of volume/
time.

t Time
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u Acoustic velocity

unw Acoustic velocity normal to a duct wall in
the region of zero mean flow

unf Acoustic velocity normal to a duct wall in
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u 0 Velocity amplitude of a spherical source

W Total fluctuating velocity .. v + u

v Turbulent velocity
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NOMENCLATURE (cont' d.)

SYMBOL DESCRIPTION

V Mean velocity

w Total velocity ... V + w ... V + v + u

x observation point

x, 0Source point

y Source.point (Chapter 1)

(x, y, z) Coordinates of the observation point

(' o0zo) Coordinates of the source point

z Axial coordinate in a duct

Z ka sin e (Chapter 2)

a Distance shift in the x direction in the
correlation function

a Correlation length

a Ratio of convection velocity to mean velocity

Constant from boundary condition at wall
(Appendix)

8 Distance shift in the y direction in the
correlation function

, Specific acoustic admittance

y Ratio of spedific heats

y Distance shift in the z direction in the
correlation function

8 Delta function

80 Inlet end correction for a open ended pipe
with flow

8L Exit end correction for a open ended pipe
with flow

Small quantity

T1 Distance shift in the correlation function
computed in the lab frame of reference

1 Shear layer displacement (Appendix)
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NOMENCLATURE (cont'd.)

SYMBOLS

-- mn

0

A
Am

y 1

2 + K2
(Appendix)

Kinematic viscosity ... i/P

Distance shift in the correlation function

computed in the jet frame of reference

Eddy volume

3.14159... ratio of circumference to diameter
of a circle

Radiated acoustic power

Total density ... Po +P0 +P

Mean density

Turbulent density fluctuation

Acoustic density fluctuation

Density of acoustic modes in a rectangular
duct at the wave number (k ,k )

Mode wavenumber in a second absorbing duct

Mode wavenumber in a sound absorbing duct

Summation symbol
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DESCRIPTION

Mode wavenumber in a hard wall duct

Angle between flow and observer

Radiation resistance of a simple source in a
duct.

Wave length of sound

Mean square amplitude of the cross duct mode

Coefficient of viscosity

- _-KV) 2 + K 2 (Appendix)

I+

V
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PO
P0

P

p

p(k ,k )
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NOMENCLATURE (cont'd,)

SYMBOL

T

9,

X

a

Re

SUB-
SCRIPTS

0

i

i, j,

Z+
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DESCRIPTION

Time shift in the correlation function

Axial angle in cylindrical coordinates

Phase of Fourier coefficient

Characteristic function for a cross duct mode

Coefficient of heat conduction

Angular frequency ... 2rf

Source volume

Angular frequency (Appendix)

Order of magnitude

Average of N measurements

Real part

Pipe inlet

Incident wave

Tensor component

Acoustic wave upstream of the source point
propagating in the direction of flow

Acoustic.wave upstream of the source point
propagating opposite to the direction of flow

Pipe exit
-th

m, n transverse mode in a duct

n th order
~th.

n thharmonic

Source point

qth transverse mode in a duct

Reflected wave

Acoustic wave downstream of the source point
propagating in the direction of flow

Acoustic wave downstream of the source point
propagating opposite to the direction of flow

Strouhl frequency

Transmitted wave

Axial component

n-

L

M

n

n

0

q

r

r.+

s

t

z



NOMENCLATURE (cont'd.)

SUB-
SCRIPT DESCRIPTION

+ Propagation in the flow direction

+ Points outside the jet (Appendix) ... r>R.

- Propogation opposite to the direction of flow

- Points inside the jet (Appendix) ... r<R.

SUPERSCRIPT

Vector

Unit vector

-- Time average
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INTRODUCTION

In the now classical theory of sound from turbulent

flow by Lighthill1 , 2 boundaries were not considered.

Further, it was assumed that the turbulent flow field was

not altered by sound emission.

For closed systems, such as cavities and wave-

guides, discrete modes may be excited. It is possible

that the coupling between the flow field and acoustic

modes is strong enough to alter the primary flow field.

Under such conditions acoustically induced flow instabilities

such as whistles occur. The objective of this thesis is

to study the turbulent excitation of duct modes and the

conditions for possible instabilities.

Chapter One reviews the theory of turbulent

excitation of sound in free space. The induced acoustic

field is calculated in three ways. The sound field is

determined by time-domain Green's function technique for

both Lighthill's , 2 quadrupole source model and

Ribner's3, 4 equivalent distribution of monopoles. The

omission of turbulent shear interactions in an isotropic

monopole model of the turbulence is demonstrated. The

sound field is also determined by a frequency-domain Green's

function technique for a monopole distribution. Time and

frequency domain calculations yield identical results for

the monopole source distribution. However, the frequency

domain technique allows the analysis to be extended to
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systems with boundaries in simple fashion.

Chapter Two examines the excitation of axial

pipe modes by turbulent flow theoretically and experiment-

ally. The experiment is performed by drawing air through

a cylindrical pipe. The observations demonstrate that

mode excitation diminishes as the flow speed increases.

This is attributed to end losses which increase with flow

speed. A Green's function, based on the measured pressure

reflection coefficients, is used to predict the variation

in spectra with flow.

Chapter Three demonstrates the excitation of

transverse modes in pipes experimentally. Air is drawn

through a small orifice into a rectangular duct. Pro-

nounced asymmetric peaks are observed at the first few

cutoff frequencies. The asymmetric nature of the

peaks and relative spectral intensity are again explained

by Green's function techniques. For high frequencies,

where a large number of modes can propagate, the spectra

resembles the free-space jet spectra. In this frequency

range, the duct radiation impedance asymptotically

approaches the free space impedance, hence the similar

response to similar source distributions.

Chapter Four examines feedback instabilities,

cases where the emitted sound field alters the jet flow

itself. The chapter concentrates on screech tones of
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circular orifices having length to diameter ratios

between one half and two. The frequency dependance of the

screech on Mach number and length is explained by a

kinematic analysis of the feedback loop. It is further

demonstrated that the frequency of the feedback instability

must be approximately equal to that of an acoustic made

for screech to occur. Similar observations are presented

with regard to air jets impinging on plates.

In conclusion two mechanisms exist whereby the

acoustic energy from a turbulent jet can be concentrated

at select frequencies. The first is the selective

response of a medium with boundaries to a random source.

The spectral line shape for such cases is accounted for

by Green's function techniques. The second mechanism is

the feedback instability which requires coupling of the

jet flow to the acoustic field. Here the modification

of the jet flow must be considered to determine the excita-

tion frequencies.

It is recommended that future work be done on

the screech instability. The influence of the acoustic

cavity mode on the feedback instability should be examined

in greater detail. In particular, the convection speed

of jet column disturbances with and without adjacent

resonators should be determined experimentally. Further-

more, the mechanism which limits the amplitude of the

screech should be determined.
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1. FREE SPACE JET NOISE

1.1 Introduction

Aerodynamic noise may be defined as that noise

which is generated as a direct result of airflow without

any part due to the vibrations of solid bodies.5 The

basic theory of aerodynamic sound generation and its

application to noise radiated from turbulent jets was first

given in two papers by Lighthill.1, 2 He considers a

fluctuating hydrodynamic flow covering a limited region

surrounded by a large volume of fluid which is at rest,

apart from the infintessimal amplitude sound waves

radiated by the turbulent flow. The exact equations

governing the density perturbations in a turbulent, viscous,

heat conducting fluid are compared with the approximate

equations appropriate to an inviscid non heat conducting

media at rest. The difference between the two sets of

equations is treated as if it were an externally applied

source field which is known if the flow is known.

The forcing terms fall into three groups: a

Reynolds stress due to turbulent momentum convection,

a term due to heat conduction and one due to viscous

stresses. Not all terms contribute equally to the

acoustic field, only the Reynolds stresses need be

considered. It is a well established fact that in

turbulent flow6' 7 the ratio of inertial to viscous
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stresses, the Reynolds number, VD/ , is usually quite

large, at least in most aero-acoustic applications. We,

therefore, neglect viscosity. If we further assume that

the flow emanates from a region of uniform temperature

the effects of heat conduction ought to be the same order

of magnitude as the viscous effects. This is providing

the Prandtl number, is of order one, in air

f/c/= .73. Our conclusion is that only the Reynolds

stress contributes to the acoustic field. Lighthill

further assumes that the turbulent flow is incompressible

in the source region. To calculate the acoustic field

one needs the statistical distribution of the Reynolds

stresses

Ribner simplified the source field by observing

that in low speed turbulence Lighthill's quadrapoles combine

to behave as simple sources proportional to D where

'co' is the local pressure due to the turbulence. He

observed that the effective volume of the fluid element

in an unsteady flow fluctuates inversely as the local

pressure. Part of this dilation is the sound source, the

other part propagates the sound. From incompressibility

it follows that the Reynolds stress is balanced. by the

spatial derivatives of the turbulent pressure field.

The remaining unbalanced term is the second time deriva-

tive of the turbulent pressure. It is this term which

24



is the source of acoustic waves.

The simplification of source terms is essential

if one is to make any progress in theory. A weak point of

aeroacoustics is that it assumes the detailed structure

of the turbulent field is known. This is not the case,

either theoretically or experimentally.

Consider, for example, an experiment to determine

the statistical distribution of the Reynolds stresses.

To do this one measures the turbulent velocity fluctuations

vk v at (x, t) and vi vj at (x+ , t+Z) where and ' are

the spatial and temporal separation of the measurement.

To evaluate the correlation one must carry out such

measurements at all separations z and t' , for all permu-

tations of the indicies.

Ribner's analysis provides a basis for

requiring only the properties of the scalar pressure

field. The problem reduces to the measurement ofL6 (x, t)

and )(x+ , t+t) without additional permutation terms.

If Ribner's model is used, and the turbulent

fluctuations are assumed to be isotropic, the sound from

the interaction of turbulence with the mean shear is

neglected. Lighthill calls this interaction the aero-

8
dynamic sounding board, Lilley uses the phrase "shear

noise" to distinguish it from the "self noise" of turbu-

lence alone. In this thesis Ribner's model is used and
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only the "self noise" is considered. To point out the

omission, the sound fields from the source dilation model

are here compared to that from the Reynolds stresses.1 0

In both instances the time domain Green's function is used.

The technique of manipulating the scalar source

terms with the frequency-domain Green's function is

introduced first. The results are identical to those

using time-domain techniques. The exercise is- performed

to elicit the assumptions implicit in the frequency

domain calculation. One finds, for example that the

spatial Fourier transform represent first order retarded

time effects. These points, are best demonstrated by

comparison to the time-domain calculations.

Frequency domain techniques let one extend

the theory to cases with boundaries. Such effects are

considered by Ffowcs-Williams and Hawkings and also by

Curle using time domain analysis. They use a free

space Green's function. The extra terms in the integral

expression due to not satisfying the boundary conditions

must be simplified and interpreted. If, however, one

works in the frequency-domain, the Green's function is

comparatively simple. Differences in spectra between

regions with and without boundaries are explained by

differences in Green's function. That is, the medium

responds differently to identical source functions
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when boundaries are present.

With this in mind one simplifies a turbulent

jet by assuming homogeneity and isotropy of the fluid

fluctuations. One further specifies that the form of the

correlation for such fluctuations is Gaussian. The

predictions of such a distribution are compared to those

of dimensional analysis and to experimental results.

The same source correlation will be used to describe

fluctuations in enclosed regions. This underscores the

fact that a class of spectra variations can be attributed

to variations in the response of the medium as opposed

to changes in the turbulent sources.

1.2. Turbulence as a Source of Sound

1.2.1 Review of Classical Acoustics

Lighthill'sl, 2, 7 theory of turbulent noise

is developed by analogy to classical linear acoustics.

It is instructive, therefore, to review the solution

to the acoustic response of a media with distributed

volume sources (f, t). The linearized equations of

mass and momentum conservation for an inviscid compres-

sible fluid are.

0 -1.2
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Here Y, p, and U. are the acoustic density

pressure and velocity perturbations;s is the average

density. One further assumes adiabatic conditions

Take the time derivative of Eq, 1.1 and subtract the

divergence of Eq. 1.2 to find the forced wave equation

2 252 . S' 1

1.3

1 . 4

Consider the associated equation for a point

source. Let (y', t ) be the source coordinates and (2, t)

be the field coordinates. One needs the Green's func-

tion G (x , t j y , t') such that

1.5C V 2 G ' _ -(t-6') <9( - )

The solution is

G( t I '= l- t + 1x 1) 1.6
4.-7' C \X C

The solution to the acoustic field of a distributed

source is then *1/2

Ax d t'G(Xt, 17t') j7)( t'

9T 9( 1.7

where 2 is a volume which contains the sources. C
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1.2.2 Derivation of Lighthill's Equations

This section reviews the acoustic analogy
1 ,2 , 7 H osdr

approach introduced by Lighthill.1  He considers

the sound radiated from a small region of fluctuating

flow embedded in a large volume of fluid which is at rest.

The equations governing the density perturbations in the

real fluid are compared to those appropriate to a uniform

media at rest, which coincide with the real fluid outside

the region of turbulence. The difference between the two

sets of equations will be considered as if it were the

effect of an external source field, known if the flow is

known, hence radiating sound according to the laws of

linear acoustics.

Consider the complete Navier Stokes equations

for fluid flow with no external sources. They are

Mass Conservation

9 t 91.8

Momentum Conservation

= 1.9

Wheref y and are the total density velocity and

pressure. In classical acoustics we assume particle

velocities are small so that squares of time dependent

terms are neglected.
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In the analogy approach one compares the complete

equations of motion (Eq. 1.8 and 1.9) to the linearized

ones (Eq. 1.1 and 1.2) so as to group non linear terms

on the right hand side of the wave equation. To do this

rewrite the momentum equation as

n-i 2) -X.. ~ ~ & 1.10

Proceeding as in the linear case one has

Z 22 2 ~
- - 1.11

where

TF V V + fLJ~JLJ + (Fj C 2 L 1.12

The procedure yields a wave equation in which

the non linear terms appear as source terms. An integral

form is obtained by replacing in Eq. 1.7 with

T . As the complete Navier-Stokes equations have not been

solved in differential form one will encounter similar

difficulties in the integral form. It is necessary to

simply T 1 .

T. . is composed of three parts. The first,
JJ

V, represents the convection of momentumfV at

velocity V.. At low flow speeds it is reasonable to
J

replacef by the average densityj% . One further

neglects the acoustic component of the fluctuating
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velocities v. and v., these velocities are assumed to be

due only to turbulence. The second term, (f.-- b)

represents the viscous contribution to the stress tensor.

For high Reynolds numbers this term is- negligible, compared

to ,vi v.. The third term,(f-c ) ,represents the effect

of heat conduction, i.e., the departure from the

adiabatic pressure density relation in Eq. 1.3. For

Prandtl numbers 1(l) this contribution is the same as

the viscous one, and therefore negligible. The solution

is 7/Z

-_- -71. 2 1.13

Wherey is the acoustic density fluctuation and v. v. the

turbulent velocity perturbations. An interesting approach was

used byKraichnan and later by Mawardi.12 They point out

that Lighthill's equation is an integral equation for

the unknown density (-o), assuming the medium is inviscid

and non heat conducting. If v. v. are assumed to be
1 J

independent of density Eq. 1.13 results as the first

approximation in an iterative solution.

1.2.3 Ribner's Equation

3Ribner reduces the source field to an equivalent

distribution of monopoles. He starts with Eq. 1.11,

ignores heat conduction and viscosity, and explores the
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consequences of the approximate incompressibility of the

turbulence. The key to the analysis is to assume the

perturbation in the pressure consists of two parts; the

pseudosound 'Cp' generates the sound, the acoustic

pressure 'p' propogates the sound. He restates Eq. 1.11

as

c2  atz ,aY X e9Y 1.14

For an incompressible fluid

-. z 1.15

That is, the pressure gradients balance the Reynolds

stress. Subtracting Eq. 1.15 from Eq. 1.14 gives

2 1.16
C 9 ) 2XLc

where he neglects ~ a JLo ) . For low

speed turbulence, e.g., jets up to moderate speeds, 021 10

within the turbulence and the neglected term is much

less than j(. Mawardi,1 2 in a separate analysis,

|C,2 Ptz M4
shows that this term is Y(M9) and therefore small com-

pared to Q, which is 0(M2), for subsonic flow.

Ribner offers the following interpretation of

Eq. 1.16.

"For acoustic purposes we replace the turbulent
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flow by an equivalent acoustic media at rest containing

the appropriate dilations. For such a medium

dilation rate = - P

where Yo is the mean value of the local density/f . On

a certain understanding ... either side of this

equation has the same local sound generating effect as

a flucturating source of matter injected at the rate

- . But it is the time rate of Se that

constitutes the effective acoustic source strength

the result is

effective 2
source strength C 0 2

Here the notation is changed to conform to present usage,

is the density fluctuation associated with

turbulent pressure fluctuations

The separation of the pressure field into

two parts needs additional comment. The concept of the

pseudosound was introduced by Blckhintsev.13 The

pseudosound field dominates within and near the
-3

turbulent region. It decays, however, as IX I whereas

-/the acoustic pressure decays as IXI. Consequently,

the acoustic pressure dominates in the far field.

Two other differences exist that allow one to separate

6P from p. First, is the relation of pressure to velocity.

The fluctuating turbulent pressure '&p' is proportional

to the square of the turbulent velocity fluctuation
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(~ ; ') whereas the acoustic pressure 'p' is directly

proportional to the acoustic velocity fluctuation

(= Cu). Turbulent pressure fluctuations are convected

only in the direction of the mean flow at approaximately

the average flow speeds. Acoustic waves travel in all

directions with speeds equal to c + 7rcos e, where e is

the angle between the vector to the observation point and

the direction of mean flow. In summary, the pseudosound

field has the characteristics of a pressure field in an

incompressible flow, being dominated by inertial rather

than compressional effects.

1.3 A Comparison of Three Calculations

1.3.1 Monopole Source, Frequency-Domain Green's
Function

The acoustic field of a turbulent jet is calculated

here using a frequency-domain Green's function. Morse

and Ingard14 (Chapter 7.1) consider the sound radiated from

a random distribution of volume sources. The source term

they consider is proportional to a first time derivative.

Ribner's3 work indicates that the source term should be

proportional to a second time derivative; the extra deriva-

tive will give an additional factor of o2 in the intensity.

The results of Morse and Ingard are correct for a distri-

bution of volum'e sources, however, the monopole source

characteristics of turbulent jets are different from

this simple model, to see this compare Eq. 1.4 to Eq. 1.16.
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The appropriate modifications are introduced in this

section.

The procedure is to first discuss the representa-

tion of random sources, then relate this representation

to the calculated acoustic field. The source field

can only be described in statistical fashion. On the

other hand, the instantaneous acoustic field depends on

the instantaneous distribution of the sources. The struc-

ture of the wave equation embodies this fact in requiring

an instantaneous description of the source field. The

theoretical task is to-reduce all formulas to those

which only require statistical information.

Mathematically, one computes the instantaneous

acoustic pressure from a complete description of the

source. The statistical properties are extracted by

computing the magnitude of the Fourier pressure amplitude.

It is shown later that the amplitude of the Fourier spectra is

proportional to the Fourier transform of the source cor-

relation, the most often used description of random fields.

The technique has its analogue in laboratory

procedure. The microphone detects the instantaneous

value of the acoustic field. The signal is then Fourier

analyzed and averaged to provide a record of the statistical

behavior of the acoustic field. Hence, the parallel in
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in deducing average properties from a instantaneous ones.

One first discusses the representations of a

source (j(, t). One can equivalently describe its time

behavior at point i by its Fourier transform

i tt 1.17
f T2 t

To extend the description to spatial variables one takes

the multiple Fourier transform

6PCL)) C/' Gt 3 1.18
/6 '4P'

where the space integration is over the source volume Q2.

Now consider the statistical time behavior of

the source at point y. Continuity requires a measurement

at one instant be closely related to a measurement made at

the next instant. As the time 'interval between two succes-

sive observations 'increases one expects the measurements

to be less and less related to one another. These expecta-

tions are quantified by considering the relation between

two observations separated by an inteval ' for all

times t. Taking the average of the product of these

two observations yields the source correlation

T/2O~t7z) &it tf~j~ 1.19
T--,oo 2

The value of CR at V= 0 is the time average source strength.
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To extend this function to spatial coordinates

consider a similar set of measurements between two points

separated by a distance r .

T/ 2

If the source is homogeneous it is independent of uniform

translations of the coordinate system. One defines, for

homogeneous systems,

00T/a

If there is mean flow the turbulent pattern will be

convected at some finite speed. With flow will not

be peaked a 0, this is because an eddy located at

y at t = 0 has moved a distance V V by the time

t = . One compensates for the convection by defining the

correlation in the system /r

A =t-) 1.22

Again, consider the point y. Since the descrip-

tions (t) and a) (k/) are derived from the same source

function (D (t) one expects the two to be related. Follow-

14ing Morse and Ingard (Chapter 1.3) one computes the

Fourier transform of 6.
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t' & ) C = I d '
2 1r - r/I

e IT/t . 7-lT/e

d t 60p(t) d/ U 6(L/u)e
27, T T/ t - T/e

The Fourier

over time T

transform of the auto-correlation function

is times the spectra amplitude (W)Iof

( ) .

The extension to spatial coordinates yields

/ G /-r', ( i ,, ) 1

2_T2

- I

A shift to the system /
gives

J2 T

I 6 44 /2.=

T' 1.24

in the frame of the jet flow,

f I J f/ 1.25

where M is the Mach number and 9 the angle between the

observer and mean flow.

One can now compute the pressure radiated

from a stochastic distribution of monopoles via frequency-

domain techniques. Start with the forced wave equation,

Eq. 1.16. Take the Fourier transform to find
2 a -WI .( a V

1.26

The Green's function for the Helmholtz equation is
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from which one finds

P (W$X) -
c ki~-~'I

4 ''x e 3 . 4

1.28

C)

Now compute the magnitude of p (w Z) to find

However, IcpfWh )IIs proportional to the multiple

1.29

Fourier

transform of the autocorrelation 6tofcp, by Eq. 1.24we

have

>P ( 
_

.307-Q
4 t7a

Transforming to coordinates by Eq. 1.25 gives

TQ
fd j j 1.31

1.3.2, Monopole Source, Time Domain Green's
Function

The radiated pressure is here calculated for

the same monopole source field, this time using a time-
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7e
1LrI- "'_

C-
1.27

kc)

where

G Oz) I ") =
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domain Green's function. The radiated acoustic pressure

p, which is a solution to Eq. 1.16, is determined by the

Green's function Eq. 1.6, note that G is multiplied by

c2 since we are calculating the pressure and not the

density.

sT'% l , S') I '
C 9t

where t' = t - X--
c

x c ~- ~

1.32

Here the distance 1 is approximated by , t is

the retarded time. Now compute the convariance of /0

P 61V) p (X t ) P (x)ti-& )

I /
- 2 ~

(~H7~) C
1. 33

where

C

C
Here bars indicate time averages and primes indicate

source coordinates.

To proceed one uses the relations given in

Goldstein6 (Chapter 2)

2 D2t) O x
1.34
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~p+ z)~t~J O~adr*z' 1.35

Eq. 1.34 relates time derivatives to derivatives in the

correlation interval V. Eq. 1.35 states that the

correlation of a stochastic function is independent

of uniform time translations. Substituting To = - c

gives

(4 x17) C
)1.36

C

where one approximates

.0%0 # -Xi ^oi _ -
C 7 C

1.37

Here is the separation vector (f"-y~'). One now intro-

+y.'"
duces the average position r = The Jacobian

of the transform from (y', Y") to (r^, ij*) is unity. Hence

(4*7rx C I C
1.38

where, as before,

1.39

To find the spectral density compute the Fourier trans-

form of p (x,')

~Y
T

TZ

paZ, V)
29-'

1.40
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Where the following identities have been used

L 4-J' e)d tf r

1.41

1.42j T--

If the source is homogeneous the integral over r, yields

the source volume2 .. Thus,

\(C ) '(*; - ) 2

Transferring to the/

C ('x )

TJ2 d J- C, zc 1.43

41' -1 /V
coordinate system

T/2

T.L Z/)a. 1.44
#/?-2 - T/t

Inspection shows Eqs. 1.30 and 1.31 are identical to

Eqs. 1.43 and 1.44, as was to be demonstrated.

Note that the spatial Fourier transform has

its origin in the first order retarded time effects, (see

Eq. 1.42). The question "what is the spectral density

of the source?" can now be assured without ambiguity.

The answer is to consider only the temporal variations at a

point.

The answer depends on whether the spectra is

computed in the or system. It has been shown that

the Fourier amplitude spectra of the source is propor-

tional to the Fourier transform of the source correla-

tion (R (Eq. 1.22). However, depends on the frame
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in which it is measured. For moving eddies the turbulent

fluctuations seen by a fixed observer will appear much

more rapid because of the convection of the random spatial

pattern of the turbulence with the flow. The rapid con-

vection of the fluctuations cause the time variation seen

by an observer moving with the flow to be much slower than

those seen by a fixed observer.. In a moving frame the

correlation at a point will decay much more slowly.

Figure 1.1 is taken from measurements of the

second order time delay correlation carried out by Davies,

Fisher, and Barratt.15 The spacing between lines

parallel to the Z axis is a measure of the correlation

', the smaller the spacing, the shorter the interval

of correlation. The diagram indicates that measurements

made in the frame of the jet flow are correlated for

longer intervals than those made in a stationary frame.

Note that these considerations do not modify

the radiated pressure spectra. Variations in UL from

the to systems are compensated for by the appear-

ance of the (1 -Mcoso ) term in the exponential.

1.3.3 Quadrupole Source, Time Domain Green's
Function

Now consider the radiated pressure from a

stochastic distribution of Reynolds stresses. Here

only the major steps in calculating the spectra are
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outlined, the reader is referred to the literaturel, 6, 16

for more detailed accounts. The point is Eq. 1.51 which

demonstrates that the radiated field has its origin in

two mechanisms, turbulence alone and turbulent shear

interactions. Eq. 1.13 is the starting point of this

analysis. As the observer is in the far-field, where the

laws of classical acoustics apply, can be replaced by

to yield
C

pC7,Tt)-_ .r. t) 1.45

where

Here t' is the retarded time, y' the source point and x

the observation point. Twice applying the divergence

theorem together with a decay of T.. faster than
1) y

allows a change to differentiation in the observerb

coordinates.

x' );)' I i'1.46

Differentiating and neglecting terms C9 x hives

P 0 1 X, d. 02 T F t') 1.47
#F$ C X L2. 2

where we have approximated

Eq. 1.47 implies that if the source is stochastic so is.
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the radiated pressure field. Now compute the correla-

tion of p to find

C7 X#1.48

where we have used the identity given in Eq. 1.34. Again,

noting the cross correlation of a stationary function is

independent of time translation (see Eq. 1.35) and

switching to the coordinates (it, i) (see paragraph fol-

lowing Eq. 1.37) gives

C 1.49

The flow is now separated into a mean part V and a fluc-

tuating part v. Contracting over the indicies1 6 , 17

and assuming homogeneous isotropic turbul nce gives

( 2x-) C 4t I+
2 at] 1.50

where the prime and double prime indicate

The first term in Eq. 1.50 is due to turbulence alone and

the second to turbulent shear interactions. To get
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the spectral density one computes the Fourier transform

of p(x, t ) to find

-t- 
1.51

where

Transforming to moving coordinates gives

X .52

[ R AI + 2 + e) 7 r ,,

Inspection reveals the similarity of Eqs. 1.51

and 1.52 to Eqs. 1.43 and 1.44 and also to Eqs. 1.30 and

1.31. The first terms are identical if the quadrupole

covariance R is replaced by the pressure covariance

2
In effect, V is replaced with the pressure .

This is physically consistent since Bernoulli's equation

requires that incompressible pressure fluctuations be

equal to

The second term is the "shear noise" that origin-

ated in the turbulent shear interactions. By assuming a

specific model' for the correlations R1111 and R11

Ribner shows that the contribution to the time average

intensity is approximately equal. The shear noise
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modifies the angular distribution by cos 4 + cos 2 e.

Ribner further points out that the self noise peak

is shifted to a frequency above the shear noise peak by

a factor of /2' For example, if R J( e one

expects R a which gives the factor of

This point is important in that the emphasis in the

thesis has been to collate the results with a single

correlation function. Such attempts consistently fail

to account for low and high frequency regimes simul-

taneously. If the low frequency results are in agree-

ment with the data, the high frequency spectra will

disagree and vice versa.

Experiments18' 19 reveal that there is an

additional angular dependence due to the refraction of

sound through the shear layer. All these calculations

assume that once the sound is generated it travels

through a medium at rest. This is not so, especially

for sources near the centerline of the jet. Sound

emitted from this region has to travel through the.

velocity gradients that separate the center of the

jet from the ambient atmosphere. The complete solution

to refraction through axisymmetric shear layers in

three dimensions is, as yet, unsolved. Results are

available in two dimensions for refraction through one20

and two21 shear layers.
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1.3.4 Velocity Intensity and Total Power

Three separate methods have been used to calculate

OV2
Ip( W, x)I . This quantity was chosen for discussion

as it is the one measured in the laboratory with the

microphone and spectrum analyzer. However, it is not

the only quantity of interest. Other acoustical quanti-

ties are often required, which are here derived from the

Fourier amplitude spectra.

The radial acoustic intensity at frequency

f = is

-Cur

/,-) [p(% caX)- pJXYU wX)
1.53

In the far field the velocity is radial and equal to the

pressure divided by the free space impedance C. Hence,

Integrfting over a sphere of radius x gives

the power radiated at frequency ,.

._2 _C

The approximation becomes exact if the radiation is

isotropic.

One can also construct the time average
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intensity at x by converting a time integral into a

frequency one. In the far field
.T/2

Ix'1 6) d t \p (X"-)\
OCT 2 1.56

The total time average power is the
0"

yCT 1.57

Where again the approximation is exact if the radiation

is isotropic.

1.4 Comments on the Turbulent Correlation

1.4.1 Choice of the Correlation Function

The crucial quantity in determining sound

radiated from turbulence is the space time correlation

within the turbulent jet. -It is known for homogeneous

turbulent processes that the velocity fluctuations are

near Gaussian. Townsend's22' 23 investigation of the

homogeneous turbulence behind wire mesh screens has

established that the velocity correlations in space are

near Gaussian. Furthermore, it has been established

that the velocity fluctuations at a single point are

Gaussian to within experimental error.

The data on the free jet demonstrate the situa-

tion is considerably more complex. Figure 1.2 shows the
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development of a round initially laminar subsonic jet

from a nozzle of diameter D. The annular region about

the jet becomes turbulent and spreads linearly outward and

inward. This region of turbulence progressively

diminishes the laminar, or potential, core until it is

completely obliterated four to six diameters downstream.

Lilley1 5 has organized the data on round jets with

a view towards acoustic applications. One result is that

the turbulent intensity varies radially as a universal

function of (r - D/2)/ . Here o( is the scale of

variation and r the distance from the jet axis. Recent

work by Uberoi and Singh24 on. two dimensional jets at

45 diameters in the fully developed region, show that

such intensity variations may be measurement errors due

to time averaging. The usual-measurements are made by

time averaging data from probes fixed in space, Singh

records the temperature fluctuations by shooting a probe

across the Jet at high speeds. Each record was shifted

to have a common center and averaged. The resulting

profiles showed mean square fluctuations which are

quite flat, indicating homogeneous intensity profiles.

By averaging the records without this adjustment they

were able to reproduce the two humped curve in agreement

with stationary probes. This indicates that the jet

itself is well mixed, but swings from side to side. A
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stationary probe will randomly measure ambient and jet

conditions thereby recording an apparent fluctuation where

there are none.

Aside from intensity variations, there is also the

problem of scale variations along the length of the jet.

.asie25Lassiter 2has demonstrated that both the longitudinal

and radial scales were found to increase with the axial
Rosebau 17

distance. Goldstein and Rosenbaum have developed a

theory for the axisymmetric jet which can deal with such

variations. Roughly speaking, the jet is sliced perpen-

dicular to its axis into a series of disks, each of

which radiates independently.

Ribner has explored the experimental conse-

quences of such variations. He correlates the velocity

fluctuation at various axial positions in the jet with

the radiated pressure at a point in the far field.

He deduces that different portions of the jet contribute

to different: frequency regions in the emitted spectra

(Fig. 1.2). In particular, he finds that the high

frequency sound is generated near the nozzle and the

low frequency sound downstream. Such observations

are consistent withthe scale changes observed by

.25Lassiter.

Despite marked departures from isotropy in

real jets, simple isotropic models have been used with
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some 'success in accounting for the observed behavior

of jets. Gaussian correlation, in particular, is used

in view of the fact that it accounts for the structure

of homogeneous turbulence. Recall that the measurements

of Davies15 et al have confirmed that the turbulent

fluctuations are convected with the flow. This indicates

that only in the moving frame,, do the space and time

functions separate into a product of two functions. Let

o< be the length scale and cc4 be the inverse of the

time scale. In the frame moving with the jet speed V

1.58

in the lab frame

C) 1.59

For low subsonic speeds (V 0) the two are identical.

Ribner3 has used the form given in Eq. 1.59

to account for the directionality observed in the

intensity measurements due to convection. MeechaM 26

uses the same functional form to account for the high

frequency sound spectrum in terms of an integral over the

turbulent energy spectrum. Incidently, Ribner works

with a simple monopole model whereas Meecham works from

Lighthill's quadrupole model.
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Simple isotropic turbulence with the Gaussian .

spacetime correlation is assumed throughout this thesis.

Such assumptions allow quantitative calculations of the

Fourier spectra to be made which will then be directly

compared to the data. These assumptions will enable one

to account for the spectra in limited frequency bands.

Detailed agreement both above and below the Strouhl peak

is not possible due to real variations in the jet

turbulence.

1.4.2 The Eighth Power Law

Using only dimensional arguments Lighthill

showed that total acoustic power should vary as the eighth

power of the mean velocity. These arguments are repro-

duced here for future reference.

Recall that the power is the integral of the

radiated intensity over a surface enclosing the source

(Eq. 1.57).. The far field intensity is the time averaged

pressure divided by foC (Eq. 1.56). The mean square

pressure is the value of the pressure covariance at

= 0. One further assumes that the source is isotropic

Substitution of Eq. 1.50 into Eq. 1.57 yields

-. f Itd ,a ,,2

Y ' 1.060

Let D be the jet diameter. The intergration over

r, yields the source volume 12 which is approximately D3 .
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The time derivative is proportional to a character-

istic frequency. It is known from experiment that the

jet noise peaks at a frequency fs .2, this character-

istic value is known as the Strouhl frequency. The ratio

V
of the observed peak frequency to the value 5 is the

Strouhl number, which is approximately constant over a

wide range of Reynolds numbers, flow speeds and jet

diameters. This allows one to set 2 The
: D 

turbulent velocity v increases monatonically with the

mean flow and is approximately .1 V. Substituting

these values into Eq. 1.60 gives

Iv r 0 1.61
27  

28
Olsen et al. and von Gierke have collated

the experiment on model jets and aircraft jets. They

.29
find good agreement for subsonic flow. Supersonic

data indicates departures from the eighth power law, in

this regime the power goes approximately as the third

power of velocity. One can easily see this if one

recalls that the mechanical power in the jet is

*23-A The efficiency predicted by the eight power
2

law is the ratio of acoustic to total power, which is

M 5 This can only hold for low velocities, at some

point the acoustic power must be reduced, less it exceed

the mechanical power of the jet.
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1.4.3 The Kolmogorov Inertial Subrange

Now consider the spectral distribution of

acoustic energy from a dimensional standpoint. The jet

velocity and diameter are not sufficient scales, as

these combine to give only a single. characteristic

frequency. To get frequency variations one must scale

the equations to the eddy size and the power per

unit mass 6.

In the turbulent region the particular form

of the driving mechanism that maintains the turbulence

must influence its structure, at least for those eddies

whose size is comparable to the driving mechanism. These

large eddies transmit their energy to the smaller eddies

via non linear coupling, eventually the energy is dis-

sipated as heat in the mic.roscale eddies. Kol.mogorov

postulates that there is a range of eddy sizes, termed

the inertial subrange, for which the statistical

properties are supposed to be independent of both the

diriving mechanism and the viscosity. The size of the

eddies in this range is smaller than the size D of

the large eddies and larger than the size d c of

the heat dissapating eddies.

Morse and Ingard14 (Chapter 11.4). have calcu-

lated the acoustic spectra implied by such considerations.

They use a Lighthill model neglecting turbulent shear
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interactions, retarded time effects, and convection by

the mean flow. Under this set of restrictions they find

1X(2 ~~~, L 1.62

valid for frequencies greater than the Strouhl frequency.

Two factors emerge. First the spectral intensity increases

as a high power of the velocity, here given as 10.5. Second

the intensity, at a given velocity, falls off as a w

This yields a 10.5 DB drop in spectral amplitude per

octave. That is

A S PL - /(2) - ,. DL3 1.63

1.4.4 Gaussian Correlation and the Relation
Between the Turbulent and Acoustic Spectra

Some implications of Gaussian correlation using

Ribner' s model are worked out here. For simplification

attention is restricted to low subsonic speeds. It is

further assumed that the source volume is small enough

so what the correlation distance can be set to zero.

This is equivalent to neglecting retarded times. For a

more detailed discription including the effects of

4convection and finite spatial correlation see Ribner's

account. In this limit

1.64
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where ~ is the effective source volume (note has

dimensions of L -3). The spectral energy distribution

of the turbulence is the Fourier transform of

T 21.65

The energy is maximum at zero and falls off

monatonically as the angular frequency '-/ increases. This

is a direct consequence of the form of the correlation,

as the Fourier transform of a Gaussian function is

Gaussian. Note that experiments or turbulence behind

grids show the energy peaked at some non-zero frequency,

which implies that some error is introduced by the

present approximation. The error is not too large if

the peak frequency is approximately zero.

To compute the radiated acoustic pressure

spectra one carries out the integration indicated

in Eq. 1.30 to find

2fr \ I(w, )\ = I .Q = P
7r2 . v 1.66

Note that the ratio of acoustic to turbulent amplitude

goes as the fourth power ofw

Ip (44j l X )1' 1.67

This factor implies that the radiative efficiency

increases as the fourth power of the frequency. This
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has the effect of shifting the acoustic intensity

maximum to W)= 23/2 Wu . Eq.- 1.66 implies a spectra that

behaves qualitatively as free space jet noise. That is

the level increases with frequency to a maximum and then

falls off as the frequency is increased further. Dimen-

sionally one requires C., Y7 The frequency regime in
0

which Kolmogorov's assumptions should apply coincide

with the region of frequencies greater than L4W deduced

from Gaussian correlation. They are in qualitative

agreement in that both predict a decrease in level

with increasing frequency. However, the Gaussian model

does not give the simple power law that was deduced

before.

Figure 1.3 compares the spectra predicted in

Eq. 1.66 to that detected from a free jet. The

microphone was located at 90* to the jet axis so as to

minimize turbulent shear and convection effects. The

plots were generated for three characteristic values of

W, and the amplitudes shifted to coincide the low,

middle, and high portions of the frequency plot. The

figure indicates that an isotropic description of

the jet fails to account for all the details of the

observed spectra. In particular, a function that

accounts for the high frequency end cannot also account

for the low frequency sound. Discrepancies of this
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form will occur in our evaluation of the spectra for systems

with boundaries. However, it will always be possible to

get close agreement for limited portions of the spectra.

To calculate the total power one first

evaluates the time average intensity at point x (Eq. 1.56)

and then integrates over the surface of a sphere of radius

x (Eq. 1.57) to find

f4 _0 go CT

C 

S-

- - 4L2 1.68

One can now use dimensional analysis to evaluate ,this

expression. The spectra maximum occurs at the Strouhl

frequency, which is given approximately by w
0

The pressure fluctuations Tare proportional to the

square of the turbulent velocity fluctuations. Recalling

that the turbulent velocity fluctuations are proportional
2

to the mean gives pc< 7/. Letting ~~~ and J2 scale

as the cube of the jet diameter D3 gives

_T D 1.69

C
The eighth power law is then equivalently deduced from

a monopole or quadrupole source field.

1.5 Summary

Chapter One serves as an introduction to
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Lighthill's acoustic analogy analysis of turbulent jet

noise. Ribner's reduction of the source field to an

equivalent monopole distribution is presented.

The statistical properties of the radiated

acoustic field were calculated in three separate

fashions. The first concerned the prediction of sound

from a monopole source distribution via frequency-

domain analysis. The results are identical to the

same analysis using time-domain techniques. The

parallel development clarifies certain details of the

calculation. The third calculation proceeded from the

quadrupole source field via time domain techniques. By

comparison one finds that the isotropic monopole

model neglects turbulent shear interactions. Aside

from this the predictions are identical.

To proceed one needs the source correlation, i.e.,

a -statistical description of the turbulent fluctuations.

Observations on homogeneous turbulence have indicated

that an isotropic Gaussian distribution is appropriate.

The results.of such an assumption are compared to those

of dimentional analysis and found to be in qualitative

agreement. The drawback is that turbulent inhomogeneities

cannot be accounted for, this limits comparison of data

and theory to limited portions of the spectra. However,

such a model enables one to make numerical predictions.
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for systems with boundaries and will be used in

Chapters Two and Three.
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2. EXCITATION OF AXIAL PIPE MODES

2.1 Introduction

Now consider the effect of boundary conditions

on the spectra of sound emitted by turbulence. Herein

the flow excitation of an axial pipe of uniform cross

section A and length L is examined. The problem is

reduced to one dimension, the boundary conditions are the

reflection coefficients at the ends.

In the most elementary treatment of the plane

wave eigenmodes of an open ended pipe it is assumed

that the ends are pressure nodes. Hence,. the pipe

resonates at frequencies fn = n. With mean flow,

one must account for the difference in phase speed for

a wave travelling with the flow, C' = C(l+M), and
p

against the flow, c = c(l-M)., With flow the pipe

nc(1-M
eigenmodes are fn 2L . The acoustic response

of the pipe to an oscillating source will be greatest

when the soUrce frequency equals an eigenfrequency.

The ends of the pipe, however, are not

perfect reflectors of the incident intensity. There

is always some portion of the incident wave that

30
radiates out the end. Ingard and Singhal have

demonstrated that the departure from perfect reflection

increases with flow. This implies that the eigenmodes

are damped by the sound radiated out of the ends of the
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pipe. The response of a pipe at its eigenfrequencies

diminishes with increasing flow.

Herein the response of the pipe to the turbulence

in the air flow itself is investigated. A cylindrical

pipe was connected to a plenum chamber and then to a

pump (Fig. 2.2). The mean flow was varied from Mach

0.0 to Mach 0.5. A microphone, placed several diameters

in front of the inlet, detected the resulting acoustic

field. The signal was then spectrum analyzed, an average

of 256 spectra was computed by a separate device, at each

flow speed, and then plotted.

One observes that at low flow speeds the pres-

sure spectra varies periodically with frequency, with peaks

at the eigenfrequencies. As the flow speed increases

the peaks at the eigenfrequencies are no longer there,

the pressure spectra resembles the smooth variation with

frequency seen in free space jet noise (Fig. 2.1). The

results are consistent with the observed behavior of

the reflection coefficients.

31In the'theoretical section, Ingard's con-

struction of a Green's function from the emperical

pressure reflection coeffieients is presented. The response

of a pipe to a turbulent field with Gaussian correlation

is predicted with this Green's function. This model

accounts for the observed changes in spectra with flow.
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2.2 Experiment

2.2.1 Apparatus and Procedure

The experimental apparatus is shown schematically

in Fig. 2.2. A small cylindrical pipe was connected to

a pump through a plenum chamber. The pressure in the

plenum was lowered so as to draw air through the pipe

at flow speeds to to Mach .5. The mass flux was

monitored by a calibrated orifice downstream of the

plenum.

A microphone was placed several diameters

in front of the inlet at an angle e to the pipe axis.

The signal was amplified and spectrum analyzed in the

zero to ten kilocycle range. A second microphone,

connected to a sound level meter, was used to evaluate the

C weighted intensity as a function of the angle.

Additional meansurements were made with the microphone

in the chamber. The discussion will concentrate,

however, on the upstream measurements.

Consider the placement of the -microphone.

In the chamber, the acoustic wave from the pipe must

first pass through the exit jet, where it is refracted,

before it reaches the microphone. Apart from this,

the turbulent noise from the exit jet completely masks

the pipe noise, which makes detection of the pipe

modes impossible. If the microphone were mounted in
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the pipe in addition to the acoustic wave it would

detect the turbulent pressure fluctuations in the mean

flow. The acoustic pressure also depends on the axial

position of the microphone. If it was located at a node

for a given mode the pressure amplitude at this frequency

is not detected.. The problem is further complicated by

the fact that the node location depends on the flow speed since

the effective length depends on the mean flow. The final

option is to mount the microphone in front of the inlet.

This has its own problems, the pressure spectra is

multiplied by WU due to the radiation impedance of free

space. In addition, there is some dependence on the

angle e due to the finite size of the inlet. However, the

transfer function for these effects is independant of

the Mach number, it is this condition that motivates

measurements in front of the inlet.

The upper limit on flow speed of Mach .5 is

due to the vena contracta. The flow entering the pipe

contracts to an area six-tenths the pipe cross section.

The mass flux is maximum when the flow speed at the

contraction is sonic. The mass flux in the pipe is

identical to that in the vena contradtion, hence the

velocity in the pipe is about six-tenths that in the

contraction. This means the maximum flow speed in the

pipe is approximately half the speed of sound.
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2.2.2 Variation with Pipe Length

Herein it is established that it is the axial

modes of the pipe which are excited. In the simplest

model of a pipe open at both ends the wavelength of the

fundamental is twice the pipe length. It follows that

the fundamental frequency is inversely proportional to the

pipe length, since f = . Since overtones are
L

harmonics the frequency interval between modes is equal

to the fundamental and should therefore show the same

dependence on length.

If one accounts for variations with flow speed

thand phase changes at the ends the frequency of the n

mode is given by

5 t7 nc 2.

2 (L +S. +~

Where C and L are the end corrections which give the

phase shifts = 'I+ 2.- Ingard and Singhal find

2 1 - /-\

S SL .3D (1-M ). It follows that the interval

between peaks is given by

a 2L 22

To check this prediction a 1" diameter pipe was

examined for lengths from 2" to 18" in 2" increments.

The flow speed in the pipe was held at a constant value of

Mach .14. With the exception of 2" pipe the data agrees
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with the prediction in Eq. 2.2. The 2" case is an

example of orifice screech which is discussed in

Chapter Four. The length test demonstrates it is the

axial modes which are excited (Fig. 2.3).

2.2.3 Variation With Flow Speed

There is an additional way to check for axial

modes. That is to monitor the variation in frequency

with mean flow. The prediction is that the fundamental

frequency is reduced as the flow speed increases. This

result can be understood if one recalls that the sound

is convected with the mean flow. The time for a wave to

travel downstream is + and back upstream is L
c+V c-VI

The' frequency is inversly proportional to the period to

complete such a cycle and is given by f1 = c (l-M2 )
1-t 2L

To check this variation, spectra were obtained

for a 1/2" inner diameter pipe 12" long with a 1/16"

wall. The microphone was 2" in front of the inlet. The

pressure drop across the pipe was set and the spectra

plotted from zero to ten kilohertz. The flow speed was

determined from the pressure drop and from a calibrated

orifice downstream. Figure 2.1 is an example of

spectra taken with this setup. Pronounced excitation

only occurs for flow speeds up to Mach .3, the funda-

mental varies approximately 10% in this range. As the
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observed bandwidth is about 50% of the fundamental frequency

some comment on data reduction is advisable.

The experimenter has two options to determine

variations with flow. One is to study the location of

the fundamental, fl, and the other is to measure the

spacing between peaks,A f. In a frequency analysis the

minimum error is the channel width of the analyzer, in

these experiments this is always 200 of the maximum

frequency. Graphically, this is approximately the line

width of the pen. Assume one chooses to locate the

fundamental. The frequency range -is set to 1,000 Hz

and the instrument resolution is 5 Hz. However, the

resonant peak has a finite bandwidth which is approxim-

ately one half the separation between modes. The

resonant peak, or certer, is extremely difficult to de-

termine.

Now assume that the average spacing between

peaks is studied. The frequency range is set to 10,000 Hz

and the instrument resolution is 50 Hz. However, a

large number of modes are now in evidence and the average

spacing can be determined with great accuracy. If n modes

are excited in a range F the spacing is simply '4f = Fn

So long as a large number of modes are evident the measure-

ment is quite accurate. If, however, the flow speed is

above Mach .3 the modes are overdamped and neither method
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is adequate.

Figure 2.4 presents an analysis of A f versus

mean flow. The error bars are set to 50 Hz, i.e., the

resolution of the spectrum analyzer. At low flow speeds

it is clear that the accuracy is much better than this.

Only at high flow speeds, where the modes are heavily

damped, does the error approach the resolution

limit. The frequency shifts are clearly those predicted

in Eq. 2.2. Hence, the second test establishes the fact

that it is the axial pipe modes which are excited.

Given the fact that the axial modes are excited

one now has at his disposal an independent means of

measuring the flow speed. This is to measure the in-

terval between modes and calculate what flow speed is

necessary to produce this interval. The flow speed

determined in this fashion agrees with that determined

by the press.ure drop to Mach .05. The acoustic

calibration of flow speed is used in Figure 2.1. The

data in Figure 2.4 is based on flow speeds calculated

from the pressure drop across the inlet, and there is

no circular reasoning used in the evaluation of the

shifts with flow speed.

2.2.4 Variation with Microphone Placement

This section establishes the acoustic field

for different microphone locations. A cylindrical pipe
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of 1" -inner diameter and 1/16" walls was used. Pipe

lengths from 2" to 18" in 2" increments at flow speeds

of Mach .07, .11 and .14 were investigated. Acoustic

spectra were taken at 00, 450 and 90* to the pipe

axis 12" from the inlet.

With the exception of the 2" pipe, the excitation

of axial modes was evident for the entire range explored.

In addition to spectra, intensity measurements were

taken at 100 increments from 0* to 900 ,(Figure 2.13 to

2.21). Again, excepting the 2" length the variation is

smooth and approximately independent of angle. There

is some decrease in level, approximately 2DB, as the

microphone travels from a maximum at 00 to a minimum at

900.' This may be suppression of the high frequencies

by interference effects due to the finite size of the

inlet.

In addition spectra measurements were made with

the -microphone in the plenum chamber. No mode excitation

was observed. The spectra in the chamber is dominated

by the exit jet noise. Figure 2.5 plots the C weighted

SPL for a microphone in the chamber versus one on axis

in front of the inlet. Before comparing plots the

increase in level due to chamber reverberation must be

determined. The screech data from the 2" pipe provides

this calibration as the screech level far exceeds any
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turbulent noise at the inlet or exit. At Mach .14 the

screech is greatest, the level in the chamber exceeds that

outside by 10DB. One concludes that, all other things

being equal, chamber measurements should exceed exterior

measurements by 10DB. However, the observed level changes

for 4" to 18" pipes are approximately 30DB. This can

only be accounted for by noting the sound from the exit

jet dominates the acoustic field in the chamber.

Of interest is the fact that the sound level,

for 4" to 18" pipes, is independent of length. If

boundary layer turbulence along the pipe walls was the

sound source, the level would increase with length. It

does not, therefore the spectra is determined by inlet

and exit conditions. This implies that in a study of

self noise of duct liners great care must be taken to

separate end effects from sound generated in pipes.

2.2.5 Effect of Liners

This experiment considers the effect of an

absorbent liner on the spectra. A 1-1/2" inner diameter

pipe was lined with a 1/4" thick blanket of Scott

acoustic foam. Lengths from 2" to 18" in 2" increments

were examined for velocities from Mach .07 to .20.

For lengths greater than 6" no evidence of mode excitation

occurred. For lengths below 6" only the first or

second mode was detected, and these were severely damped.
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The behavior is expected, the longer the path length the

greater the acoustic damping. No increase in level

due to liner roughness was observed.

2.3 Theory

2.3.1 On Distinguishing Mean Flow Effects From
Turbulent Fluctuations

Consider the complete mass and momentum equations

for an inviscid non heat conducting compressible fluid.

These are

Mass Conservation

24 1- 4- a W.= 0 2.3~~2.3

Momentum Conservation

4 ~ +0

j 2.4

Wherew is the total fluid velocity. One must separate

the velocity fluctuations from the mean flow velocity V1 .

Thus set

First transform the mass equation to find

+ Y + V =0

Before making A similar substitution in the momentum

equation one' first transforms it to a more suitable form.

Subtract wi times Eq. 2.3 from Eq. 2.4 to get the
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momentum equation

O 
2.6

Eq. 2.6 is the more familiar expression used in fluid

mechanics. Substituting W + V1  for w one finds

++2 2.7

Add V. times Eq. 2.5 to Eq. 2.7 to find

t _ !+V j 2.8

ID DX, ox.- X

Eqs. 2.5 and 2.8 are the exact mass and

momentum equations written in a form that separates the

constant mean flow V from the velocity fluctuation Wi.

To get the wave equation multiply Eq. 2.5 by the convective

derivative + V and s'ubtract the result from the

gradient )of Eq. 2.8. This gives

_____2.9

Assuming an adiabatic pressure density relation gives

2j ~ 2.10
C Ot ax Q~

where
D +V
ot 9xI

Assume that the acoustic portion of the Reynolds stresses

neglibible, i.e., V- V' = (v. + u.) (v. + u.) v. v.
i i 1
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If the turbulent fluctuations are approximately incom-

pressible we have

2
__ 2.11

Xi ) x

which we have used g)= p + P. Using the same approxim-

ation as in Eq. 1.16 one finds

2 2 a
2 P2.12C i c Dt2

To reduce the problem to one dimension take

the average over the cross section. One finds

-va ---2 AVG ~?AVG 2.13
c ot o 0a

whereP~- prI

2.14

PAAVG A ))2

Taking the Fourier trans form gives

(I-t ) (&JX).2L/1_p ,x)+ J ax)=
(xJ x() 2.15

where A&Pdd

J) AV-h I4 zP CL&J~2.16

AAG
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2.3.2 The Green's Function

The linear acoustic response of an open-ended

pipe is given by the Green's function. This will be

constructed here from the empirical pressure reflection

coefficients at the ends following Ingard's 3 1  procedure.

A coordinate system is used such that the inlet is at

x = 0 and the exit at x = L. The boundary conditions are

the pressure reflection coefficients R and R It is

assumed that these are given for all values of the mean

flow.

Consider a harmonic source of unit strength lo-

cated at x = x0 . The pressure field induced by this

source is the Green's function Gj x[x0 ) which solves

SjG + 2LMk/1 Gr + 90 -(- X0) 2.17

To develop the Green's function one specifies the acoustic

field to the right and left of the source point (subscript

r and 2.) as the sum of a wave propagating with (subscript

+) and against (subscript -) the mean flow.

G = (f- x/-Xzx+
2.18

G~j ~+JJ PN x0/(X<L
where

~ C 0 M
One needs four restrictions to determine

the coefficients Pr-' Pr+' P-, and PL+ uniquely.
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Continuity of pressure at the point x0 gives

p~L xa YO k,.xO x. 2.19

To find the second restriction integrate Eq. 2.17 over a

small region 6 about the source point x . The value of

the right hand side is -1. Let e go to zero and assume

continuity at x = x0 , only the first term on the left

hand side contributes. Dividing by 1-M2 gives the magni-

tude of the discontinuity in slope.

+ P r + k +~ 0 _2 .2 0

The third and fourth restrictions come from the

pressure reflection coefficients R0 and RL. Care is

needed as to which wave is the incident one. At the

inlet it is the wave travelling against the flow; at the

exit, it is the wave travelling with the flow. Hence

z R e p-. 2.21

=1 .LPrt 2.22

Solving Eqs. 2.19 to 2.22 for the incident wave coeffi-

cients at the ends ives
_-__+___ i-k..x0  i(k,+ &..)L. -= L x.~

t" -21& D6.)L L
2.23

+= .2 k D6 )[e + R ~ X 2.24
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where

0(w ~~ I- 2.25

Substituting Ecps. 2.21 and 2.22 into E . 2.18 gives

G = p X x<x,

2.26

G 4,r- PrLe ~ C:t~~ - .k
Substituting Eqs. 2.23 and 2..24 into Eq. 2.26 gives

G~ (x |G )

=0) + .C +L+|C x <., x+
-2tk. O@ ) 27

Which is identical to the expression published by Ingard

and Singhal. 30  The problem was worked in detail so as

to identify the incident wave at either end. The

discrepancy between perfect and measured reflection

will be attributed to radiation losses out the ends. One

can then deduce the magnitude of the transmission coef-

ficients from the intensity difference between the

incident and reflected wave.

2.3.3 Analysis of the Pressure Reflection
Coefficients

Consider the pressure reflection coefficients

in a pipe with flow. To clarify their influence the

fundamental pipe mode will be constructed first through
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simple arguments. We will then consider the effects of

mean flow.

In the most elementary treatment of the axial

modes of a straight pipe with no flow it is assumed that

the ends are pressure nodes, so that the wavelength of

th 2Lthe nth mode is . The frequency of oscillation is

then fn nc

If the ends are pressure nodes then one finds

Pi Pr 0
which implies

r=- RO 2.28

Pi
at the inlet. An identical expression is found at the

exit. Here the subscripts i and r indicate the incident

and reflected wave respectively.

The condition is identical to the requirement

that the intensity of the incident wave equal that of the

reflected wave 2 2
IPM __ \[P\

which impli X C fo C

Jpf 1= R~l2.29

1Pd
Identical results are obtained at the exit. At zero flow

the condition of a pressure node implies perfect intensity

reflection. If one allows for phase shifts, the ends are

no longer pressure nodes. However, so long as the
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magnitude of the pressure reflection coefficient is

unity the ends are perfect reflectors of the incident

intensity.

The condition that the incident intensity be

completely reflected will be used to derive pressure

reflection coefficients for a lossless pipe with flow.

The flow makes the medium anisotropic as the phase

speed depends on the direction of propagation. Moreover,

the intensity expression is anisotropic.31 For propa-

gation with the flow I+ = QL4+ for propagation

against the flow I_ = IR -M ,If one now requires
fo C

the reflected intensity equal the incident one finds

at the inlet I 2 2 1

which impliesgo

2.30

Similar requirement at the exit gives

I. - j 'I 2.31

30The measurements of Ingard and Singhal show

that

If , IL N2.33
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Figures 2.6 and 2.7 compare the measured coefficients

(Eqs. 2.32 and 2.33) to those of a lossless duct (Eqs. 2.30

and 2.31). The measurements extend only up to Mach .5.

It is clear that the discrepancy between perfect and

measured reflection increases with the flow speed. That

is, as the flow increases so do the losses.

Their measurements. show that the end corrections

and ( are approximately equal to .3D(1-M ). That is,

the effective length of the pipe depends on flow. The

importance of these measurements is that they can be

substituted into the Green's function to give the actual

response of ducts. The measured reflection coefficients

will be used to account for the decreased mode excitation

with increasing flow.

It is of some interest to note that the

reflection coefficient at the upstream end can be

derived assuming the duct inlet is a one dimensional

nozzle in which the fluid is accelerated from rest to

the mean speed V.. If one considers the limit as the

nozzle length is much less than the wavelength, the

nozzel can be described as a set of boundary conditions

at the inlet. Marble32 has considered the acoustic

response of quasi-steady nozzles. The solution may be

found by matching stagnation temperature, mass flow, and

entropy across the nozzle. The application to pipe
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flow was pointed out in Bohn and ZukQski's33 discussion

of the measured inlet pressure reflection coefficient.

They find, by the circuitous route of Marble's calculations,

the expression in Eq. 2.30.

Cummings34 has considered the reflection

coefficient at the exit. He also uses a quasi-steady

model. One point brought out is that the air leaving

the exit retains the form of a circular jet for some

diameters downstream and that this must be accounted for

in the analysis of the exit reflection. This is in marked

contrast to the inlet where one assumes the flow acceler-

ates from zero in a negligible distance.

2.3.4 Transmission Out of the Ends of the Pipe

Consider the sound transmitted out of the ends

of the pipe. The calculation is done in two steps. The

first quantity one needs is the pressure just outside

the ends of the pipe. This follows from an energy

balance assuming all losses are due to radiation. The

second step it to replace the fields just outside the

ends by an equivalent distribution of monopoles. From

this distribution one calculates the radiation into

free space.

In the first step one must account for the

asymmetry in flow conditions in the intensity expressions.
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Just before the inlet the mean flow is zero, the accelera-

tion of the fluid takes place in the vena contracta. The

intensity in this region is K. Just after the exit the

mean flow is approximately the same as in the duct. The

deacceleration of the fluid takes place over a compara-

tively long distance, on the order of five jet diameters.

The intensity in this region is then JP ( + t)

rc
Close to the end the pressure is approximately

uniform across a disk of the same diameter as the pipe.

Moreover, one may assume the acoustic velocity is

approximately parallel to the pipe axis. Under these

conditions one may calculate the transmitted intensity

from a one dimensional model. At the inlet one assumes

2 .2

2 WI2 2.34

T= iptl =(I of- R + M)I

Again, assuming all losses are radiative one finds at the

exit t -

.rC f 0C

V/2
ti +pL '1) -m 2.35

lP|8
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where T inlet and T exit are the magnitudes of the

inlet and exit pressure transmission coefficients.

Consider the second step in the calculation

which describes the propagation from the immediate

vicinity of the inlet into free space. Outside the in-

let the medium is uniform and at rest, hence the result-

ing pressure field is transmitted according to the laws

of classical acoustics. At the exit the field is

embedded in the center of a cylindrical jet with large

velocity gradients at the shear layer. One expects

refraction due to these shear layers, and possible

channeling of the sound in the aerodynamic duct formed

by the velocity gradients (ref. 14, Chapter 11).

Consider the inlet first. As a first approx-

imation one can model the end conditions as a distribu-

tion of volume sources. Let the average acoustic

velocity be U4 C and uniform in a direction

parallel to the tube axis. Then the strength of an

equivalent volume source is Sw equal to UA or S

equal to JPtIA. If one distributes the source over the
yo C

duct cross section A the source strength per unit area

is-then lPtI. The model is by Morse 3 5

to calculate the radiation from a piston in a plane wall.

One finds the free space acoustic pressure pC& r) is
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p6wFr) = I kf3 c S A sJ c

-r kC. k S' rOdroy.dYc

/? * r r21/jr r.r d 7( C e
- 'r 0

AI C C 2 7"' r. r (k. r - e)

Hence a,

p (,I )A C, kC 2.36

where a is the pipe radius and e the angle that r

makes with the pipe .axis. IPtI is given in Eq. 2.34. Let

T space be the transmission coefficient from the inlet to

the point (r, 8).

T IP<C, r) = a A 2 T&1 PACE 1

&zA /_Z + 2.37

wher rZ 1,3Th 36where Z The approximation holds in the limit

as the wavelength is much larger than the duct radius.

This is the case since this Chapter considers frequencies

below the first cutoff. The first term in the expansion

predicts unifotm radiation. The second term predicts

a decrease in radiated pressure with increasing angle

and frequency. This suppression of high frequencies may
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account for the decrease in level with angle observed

in Figures 2.13 to 2.20.

Consider the problem of sound transmission from

the exit. One can start by modeling the acoustic field

in the immediate vicinity of the exit by an equivalent

point source. One must then account for the refraction

of sound through the velocity gradients in the jet.

Experimental work is available for the single frequency

point source in air jets (Atvars18 et al and Grande ).

The theoretical problem is solved in two dimensions for

one shear layer by Gottleib20 and for two shear layers

by Grahm and Grahm. Since experiment indicates that

the exit jet spectra completely dominates the acoustic

field of the pipe the analysis will not be carried out.

2.3.5 Effect of the Convective Derivative on
the Source Term

Herein the acoustic field in a pipe due to a

distribution of pressure sources is calculated. The

turbulent source term is given in Eq. 2.15 as

4 -C)Y 2.38

The formal solution to the forced wave equation is

whUr ) is 2.39

where G is defined in Eq.' 2.26.
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To get an expression that can be interpreted

it is necessary to have the convective derivative

operate on the Green's function. This is done by

expanding the term

+ + /Al 2~1' -A 2.40

and differentiating by parts. To simplify the resulting

expression assume that the turbulent sources are con-

tained entirely within the pipe and are sufficiently far

from the ends so that D and 0 may be set to zero

at the inlet and exit. Further assume that the observa-

tion point is located outside the source region. Under

these restrictions the radiated field is

D()=X, X6 (W X)(.-AQ 2Cx )
~jO 2.41

If the source contribution from the ends is significant,

or if the observation point is in the source volume, then

Eq. 2.41 is incomplete and the other terms resulting

from differentiating by parts must be considered.

To calculate the field radiated out of the

pipe it is necessary to find the magnitude of the

incident pressure wave at the inlet. Here all sources

are located downstream from the observation point, hence

Gjj<Xo) for x <x0  is to be used (Eq. 2.26). This is

given as
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G X o) =Io )X p(x,) , e 2.42

The Green's function is composed of two waves, one

travelling with the flow and the other against the

flow. The incident pressure wave at the origin travels

against the flow -and is proportional to

Substituting G into Eq. 2.41 and selecting the incident

pressure wave, P(Lx) gives

(CU X 2 P, X,,)

=1

-2c t~D@.)
dxed)CL>,x0)3

L X" + ~ /4X0~

-I

OIW5 4X)

+ k, C f I2( X02~ pk()C

To interpret this expression note that the spatial

Fourier expansion of 0(&'jXo)is given by
0c k X 0

_00& C

X0a 
2.44

0
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The limits of integration and changed by noting O is

zero outside the pipe. The spatial transform is given

in the set of travelling waves ( since the Green's

function is expressed in this set. Had the Green's

function been expanded in the set of standing waves

sin nirx the standing wave expansion of (P would have to

be used. Expressing Eq. 2.44 in terms of j ) gives

___) P-. cM~+~)L 2.45

The incident pressure field is composed of two

parts, which are interpreted as follows. The first is

proportional to (4)) k. This is due to sound waves that

travel directly to the inlet from the source. Only that

portion of the turbulence that has a wave number

contributes. That is, that portion of the
C(/- )

source distribution whose wavenumber satisfies the disper-

sion relation for propagation upstream contributes.

The second term is due to sound waves that initially

travel downstream but are reflected off the exit. If

there was no reflection at the exit, i.e., if RL equals

zero, this term would not exist. This interpretation

is supported by the fact that only the portion c(O, k

of the turbulence contributes. That is only disturbances

whose wavenumber satisfies the dispersion relation for
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propagation downstream, k = contribute to this

term.

2.3.6 Acoustic Field of a Point Source

Consider a source whose dimensions are much

less than the wavelength of sound generated. In this

limit it can be modeled as a single point source

6(x 0 =, D Sg6X- 2.46

where 2 is the location of the equivalent source and D the

effective length of the source (note the g function has

units of L~ 1 ). Taking the transform indicated in

Eq. 2.44 and substituting into Eq. 2.45 gives

ptLC, 0 =(~)CT/ D c+
D(I-) M) + /1)

2.47

From which one finds the magnitude

The cosine term in the expression arises from interfer-

ence effects, which are possible only because the source

location .$ is specified. If one lets k' vary over the

length of the pipe and computes the average value of

this term drops out whereas the others remain the same.

Computing this average one finds
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22

2.49

We can define a transfer coefficient

T DC 2.50

Note that averaging over all source positions has removed

all dependence on 20. The magnitude of the generated

acoustic wave depends only on the Fourier amplitude of

the source field, which can be derived from a statistical

description of the time variations of the source strength.

The location of the source A has its counterpart, in

distributed sources, in the phases of the Fourier

coefficients of the source. The neglect of such phases

is equivalent to the neglect of interference effects.

2.3.7 Acoustic Field of a Distributed Source

Consider the acoustic field of a distributed

source. Let the Fourier coefficient of the source be

given by

-<a; 2.51

where is the phase of the coefficient. Substituting

into Eq. 2.45 and computing the amplitude gives the

incident pressure amplitude
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Note the similarity of Eq. 2.52 to Eq. 2.48.

The interference term due to localization of a point sour

has been replaced by the phase term ( .. - <4 ). The

expression, as it stands, cannot predict the sound field

of a random source, because only amplitudes and not

phases can be deduced from the correlation function.

Consider the average of N measurements of the incident

pressure and assume the value of the phases to be random,

one finds

2 2.

The result is equivalent to taking the average over all

source locations.

To understand the effect of averaging consider

a point source that moves in a random fashion in the

duct. Let the time needed to compute a Fourier analysis

at the inlet be smaller than the time it takes for the

position . to change significantly. Any single anslysis

will contain interference effects due to the approximate

ce

53

localization of the source. An average of N such
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measurements would have the cosine term contribute

randomly and therefore tend toward zero.

Consider the Fourier analysis of the field

due to a distrubuted source. Any single analysis depends

on the precise distribution in time and space of the

sources, hence it will include interference effects.

If the average of N measurements is taken these inter-

fernece effects contribute randomly and therefore tend

toward zero.

One may ask which expression to use, i.e.,

Eq. 2.49 or 2.53. The answer depends on the extent of

information concerning the source. To use the model of

a distributed source requires statistical information

concerning the distribution in both time and space.

Information concerning turbulent fields in

short pipes is limited and the approximation of a random

point source is more appropriate. Eq. 2.49 only requires

that one specify the correlation in time and will there-

fore be used.

2.3.8 The Upstream Acoustic Field

The transfer coefficients Tare now used to

predict the acoustic spectra in front of the inlet. The

various calculations are tied together so as to derive

the acoustic spectra outside the pipe from the turbulent
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source spectra inside the pipe. Only the correlation in

time will be assumed. In effect, one considers the

average field from a collection of random point sources.

From Eqs. 2.50, 2.37 and 2.34 one finds

2=r T T 1 X~~ 2.54SPACE IMLET DUCT

Assume that the source is described by a

Gaussian correlation in time

V 'C' =-2.55

Taking the Fourier transform yields the source spectra

D CL, ~2.56

To concentrate on the spectral line shape,

separate the frequency dependent terms in Eq. 2.54 from

those which determine the average amplitude to get

< H&')K 2 7 a< __-__1

C 22.57

If the microphone is on the pipe axis e = 0

and the last line is exact. The exponential term comes

from the source distribution. A factor of w comes from

the radiation impedance of free space and a second factor

of c/from this second time derivative in the source

term. The JD(0) 12 in the denominator comes from the
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response characteristic of the duct (Eq. 2.25), it

depends on the flow speed through the reflection coef-

ficients. It is -this term that is responsible for the

periodic amplitude variations observed in Figure 2.1.

Explicitly

ID(c)|a / - 2 2p )c(c (T + '* 12 2.58
I- M

The duct response is maximum at frequencies where

is minimum. This occurs at frequencies where the

cosine term is equal to one. That is when

S = Ct), - C-r) --- 2.59
2 7%.d (L 0 + g)

If the product IR0I IRLI was equal to one, then ID( id) 2

equals zero at J . Hence the duct response is infinite.

This occurs if the ends are perfect reflectors of the

incident intensity, i.e. if

I,IL=- /- /I\ _+ = 2
02.60

However, the measurement of Ingard and Singhal30 have -

shown that

Q,|M) |33= 5 2.61

As the flow speed increases, the product R 0 1 IRLI

decreases, consequently ID( j )1.2 varies less and the acoustic

spectra smooths out. That is, the eigenmodes are damped.
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2.3.9 Numerical Comparison of Theory to
Experiment

Herein the observed spectra is fit by the

expression in Eq. 2.57. All mean intensity information

is lumped into a proportionality constant,

B, which is a function of the flow speed and the

distance of the microphone from the inlet. The data

is fit by adjusting B and w.
0

Figures 2.8 to 2.10 compare the theoretical

spectra to that observed in experiment. All of the

qualitative features are accounted for. First, it is

clear that the spectral line.shape agrees with that

observed. Second, the amplitude peaks at the

resonant frequencies are damped at the higher flow

speeds. Finally, the average rise and fall of the

amplitude with frequency is the same as is observed.

It should be noted that at high frequencies

the theoretical amplitudes match the observations. At

low frequencies the data exceeds the theoretical levels.

The same effect was observed in fitting the free space

spectra with an isotropic turbulent model. The inhomo-

geneities of the turbulence must be accounted for to fit

both the highand low frequency ends of the spectra.

Moreover, at low speeds, the theoretical reson-

ant peaks .are greater than those observed. This

95



discrepancy is due to non-radiative damping such as

turbulent and visco thermal losses. At high flow speeds

the predicted and observed resonant peaks agree. At these

velocities, radiative damping is the dominant loss mechan-

ism and the model, based only on end losses, is more

accurate.

It is also possible that some modification of

the exit reflection coefficient may be necessary at low

flow speeds. The empirical coefficients given by Ingard

and Singhal are used throughout (Eqs. 2.32 and 2.33).

At zero flow the two reflection coefficients should agree,

however, they give JR01 = 1 whereas IRLI = .95. They

indicate that IRLI is an average for all frequency ranges

and flow speeds, at best, a good approximation. Such

discrepancies do indicate that a more detailed study

of the exit reflection coefficient is in order. In

particular, if one substitutes the value .95 for IRLI

at low flow speeds greater radiative damping would

occur. This would bring the theory in better agreement

with the observations.

In Figure 2.11 the Strouhl numbers that were

used to fit the.data are plotted. This fit was done on

a computer using a least squares procedure. .Here, one

assumes that the correlation frequency W, is related

to the Strouhl frequency fS as
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0 JT

-211S r 2.62

.~' DpiPE
Here the inlet turbulence is assumed to be the major noise

source. The Strouhl numbers are based on the velocity and

diameter at the narrowest point of the vena contracta.

The numbers obtained range from a high of .68 to a low

of .16. This is well within the range observed in free

space spectra. Strouhl numbers based on pipe diameters

and velocity are 2.15 times larger than those based on

the inlet jet.

The scatter of Strouhl numbers is large, and some

additional comment is necessary. If c) is the correla-

tion frequency than the correlation time is given by

2= J= T

7 7T S 2.63
JET

Such a calculation (Figure 2.12) gives a correlation

time that varies from a high of .5 milliseconds at low

flow speeds, to a low of .2 milliseconds when the inlet

is choked. The near constancy of the correlation time

indicates why the Strouhl number varies inversely with the

flow speed.

A discussion of the amplitude 3 is premature

as several untested assumptions were made in determining
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how sound is transmitted out of the ends. For example,

it has been assumed that the departure from perfect

intensity reflection is due solely to radiative damping.

Any non-radiative losses at the ends would alter the

transmission coefficients and obscure the interpretation

of 13. Suffice to say that the change in amplitude

serves only to move the pattern of spectal variation by

a constant factor and does not alter the relative line

shape.
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3. EXCITATION OF TRANSVERSE DUCT MODES

3.1 Introduction

In the present section the aerodynamic excita-

tion of high order acoustic modes in a rectangular duct

by a turbulent jet is explored. The nature of the duct

response in the vicinity of an eigenfrequency and the

range of frequencies is determined for which the qualita-

tive behavior of the acoustic response of a duct differs

from free space.

Sound can be transmitted in a duct in more than

one mode. As the frequency of the source is increased

beyond mode cutoff., a new mode is available for the radia-

tion of sound down the duct. The response of the duct to

a sound source is greatest when the source frequency is

equal to an eigenfrequency. Random sources, such as

turbulent jets, contain all frequencies. One expects

that the detected pressure spectra will show peaks at the

eigenmodes.

Herein, the pressure response of a duct to an

enclosed air jet was measured in two frequency bands:

0 to 5 kHz and 0 to 25 kHz. The jet noise source in

these experiments was produced by drawing air through an

orifice, on which various orifice sizes, flow rates, and

orifice locations were used.
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One observes that the pressure spectra does

exhibit asymmetric singularities (pressure spikes) at

frequencies equal to the cutoff frequencies for the

first few higher order duct modes. As yet the discon-

tinuous nature of the radiated pressure field from a

random source has not been demonstrated by any published

experimental data. One of the aims of this chapter is

to demonstrate such peaks in the pressure spectrum exist.

One accounts for. these spikes theoretically by consider-

ing the response of the-duct to a turbulent field with

Gaussian correlation. This model accounts for the varia-

tions in spectra at the eigenmodes.

In a frequency range in which a large number

of modes can propagate the spectra smooths out, i.e.,

the duct spectra resemble the free space jet spectra.

To account for this, one notes that the asymptotic limit

of the duct radiation impedance is the free space imped-

ance. This implies that the linear response of a duct to

a turbulent source should be identical to the- free space

response to the same source in the high frequency limit.

This accounts for the observed spectra.

Pressure spikes termed impingement screech have

been observed, in certain instances, in the high fre-

quency limit. These will be identified, in Chapter 4, as

nonlinear feedback oscillations that occur when an air
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jet impinges on a wall. They depend on the alteration of

the jet structure by the emitted sound. Phenomena in

which the field reacts back on the source cannot be

accounted for without considering the variations produced

in the jet, and are not considered in this chapter.

3.2 Experiment

3.2.1 Apparatus and Procedure

In principal, the apparatus is a rectangular

duct with a small hole in its side. One end is fitted to

a suction device which lowers the pressure in the duct.

The air drawn through the hole develops turbulent fluc-

tuations which generate the sound. This sound is

detected by a microphone mounted flush to the duct wall.

The signal is then spectrum analyzed, and then the

average of 256 analyses computed and plotted.

The rectangular duct has inner dimensions of

1 " by 4".. A nonreflective acoustic termination is

placed at its end. This is fashioned from a triangular

wedge of acoustic fiberglass. The first 56" of the duct

is the test section. The top and bottom are fitted with

eight detachable plates (Fig. 3.1).. These plates are

used to mount microphones, orifices and pressure taps as

needed.

The next 72" is an acoustic muffler consisting

of two strips of acoustic foam mounted on the sides of
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the duct. The muffler reduces any noise generated by the

suction apparatus. The transmission loss exceeds 40 DB

above 1 kHz and exceeds 20 DB above 250 Hertz.

Fixed to the end of this section is a pipe

which leads to the suction apparatus. A cutoff valve con-

nects the apparatus to the main exhaust facility, a pneu-

matically operated butterfly valve modulates the mass flux.

Additional flow resistors were used to control the mass

flux. These were blocks of acoustic foam placed in front

of a wire screen in the duct.

A hot wire anemometer was used to calibrate the

flow speed. To calibrate the probe,a " diameter orifice

plate was mounted at the end of the duct, as shown in

Fig. 2.1. The mass flux through the orifice is calculated

from the pressure drop across it37 (Eq. 4.1). Continuity

of mass flux, plus the ratio of jet-to-duct cross-section,

gives the flow speed in the duct. The probe cannot be

mounted in the jet since hot wire measurements are

inaccurate at near sonic speeds, hence the mounting of

the probe in the low velocity mean duct flow.

The orifice plates were then mounted on the

side . The velocity versus pressure drop was calculated

as before. Comparison of anemometer readings from this

data to standard axial mounts showed no substantial

deviations (Fig. 3.2).
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One quarter inch B +K microphones were used to

detect the acoustic field. The protective cover which

shields the microphone membrane was removed so as to pro-

vide a smooth surface to the flow. The microphone was

mounted in a test plate with the membrane flush to the

surface of the plate. Recall that transverse modes are

characterized by their variation in a plane normal to the

duct axis. To detect such modes, the microphone must be

at a pressure antinode. In rectangular ducts, the

corners are pressure antinodes for all modes. Two plates

with the microphone mounted at the corner were made. A

third plate was machined to allow transverse variation of

the microphone (Fig. 3.3). The plate has a double row of

" holes spaced by " from center to center. The second

row is staggered behind the first to provide k" increments

in microphone location. The holes are stopped with alumi-

num plugs when the microphone is not in place.

Circular orifice plates of ", " and 1" dia-

meter were machined from k" thick aluminum plate (Fig.

3.4). The orifices are tapered so as to present a sharp

edge to the in-coming flow. Tapering is necessary to

avoid orifice screech when the thickness to diameter is

between and ,2. The plates were mounted on the side of

the duct so 'that the jet enters perpendicular to the duct

axis. A fourth plate, " diameter, was mounted to let-
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the air enter parallel to the duct axis. It was this

plate that was used for the velocity calibration (Fig.

3.1). Finally, a 60" pipe, " inner diameter, was

mounted on a plate (Fig. 3.5).

The electric apparatus consists of a micro-

phone power supply, a spectrum analyzer, a spectrum

averager, and an x-y plotter.

3.2.2 Basic Experiment

In the experiment an orifice plate is mounted

in .the center of the test section. The pressure in the

duct is reduced and air drawn through the orifice. The

air jet impinges on the opposite wall. The turbulent

fluctuations in the air jet act as the sound source.

The acoustic signal is analyzed in two frequency ranges,

termed low (0 to 5 kHz ) and high (0 to 25 kHz ) (Fig.

3.6).

The low frequency range spans the first four

transverse duct modes. In this limit the frequency

separation between modes is greater than their bandwidth

when excited by a random source. Inspection of Fig. 3.6

shows that just beyond each mode cutoff the sound level

increases abruptly. Of particular interest is the

asymmetric shape of the curves which characterizes the

excitation of transverse modes. Recall that such modes

progagate only if the frequency is above a certain cutoff.
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The duct pressure response to excitation of a given mode

is zero below its cutoff frequency on, infinite at the

cutoff frequency, and proportional to 2 above

ncutoff (see section 3.3.1). The infinite response is in

the ideal case of infinite source impedance and zero

damping. Real fluid effects limit the response to

approximately 10 DB. Nonetheless, the asymmetric shape

is still evident.

In the high frequency range the spectra

resembles the free space jet spectra (Fig. 36 ). Below

five kilohertz the level jumps at the cross modes are

still evident. Above five kilohertz the spectra smooths

out. One can show that the radiation impedance in the

high frequency limit asymptotically approaches the free

space impedance, hence the similarity. Two physical

effects are responsible for the smoothing of the curve.

First, the damping limits the level jump at cutoff.

Second, a new mode cuts on before the level shift from

the previous mode has subsided. The influence of the

neighboring modes overlap so as to make the contribution

of any given mode small, in this range.

3.2.3. Spectra Variation with Jet Velocity
and Diameter

Herein the effects of flow speed and orifice

diameter are investigated. Since the flow rate in the

duct is much smaller than that of the jet, the duct
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response should remain approximately independent of flow

speed. Aside from level shifts due to increased turbu-

lence, the spectra should be similar. Three orifice

diameters, ", ", and 1", were tested for jet flow

speeds up to Mach 1. Representative spectra are pre-

sented for each of these cases.

The low frequency spectra are presented in

Figs. 3.7, 3.8, and 3.9. Level jumps at the first three

cutoff frequencies are observed for all flow speeds.

Moreover, the characteristic asymmetric shape of the

peak is observed in all cases. The sound level rises

monatonically with velocity as expected. The intensity

at the high frequency end appears to increase at a faster

rate than the low frequency intensity in these plots.

Recall that, in free space, the spectra peaks at a

Strouhl frequency approximately equal to * . As the
D

velocity increases, the intensity shifts toward the higher

frequencies. Hence the observed level increases at low

frequencies should be smaller than those at high fre-

quencies.

The high frequency spectra are presented in

Figs. 3.10, 3.11, and 3.12. Here the average response

of the duct is most evident. Aside from screech tones,

the spectra increases with flow in a manner similar to

free space spectra. Dotted lines, indicating average
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behavior, are drawn at low and high velocities in Figs.

3.10 and 3.11. As before, the sound level increases

monatonically with velocity. Moreover, the peak of the

average behavior increases with flow speed approximately

as the Strouhl frequency. These observations are con-

sistent with the low frequency behavior.

Certain spectral anomalies, termed screech

peaks are sometimes observed above Mach .6. These peaks

are nonlinear effects which are due to the coupling of

the jet flow to the acoustic waves produced. One indi-

cator of a separate mechanism is the line shape. Screech

peaks are symmetric about their maximum, the duct response

is asymmetric and peaked at a cutoff frequency.

3.2.4 Reduction by Strouhl Number

It is oftentimes useful to establish scaling

lows for data reduction. In aeroacoustics the Lighthill

eighth power law, and its extension by von Gierke38 to

spectral analysis (see section 4.3.2) has been found use-

ful. The basis for data reduction is the proposition

that the spectral intensity is maximum at a frequency

given by fs .2V where V and D are the jet velocity

and diameter. The point is that spectra should be simi-

lar for experiments with similar Strouhl numbers.

Such a comparison is made here. Figs. 3.13 and

3.14 present the spectra with the same Strouhl frequency
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(5.7 kHz and 2.5 kHz ) for the low frequency regime.

Fig. 3.15 compares two orifices of similar Strouhl fre-

quency (1.9 kHz ) in the high frequency regime. From

the figures it is clear that the spectral shape reduces

according to Strouhl number.

One exception is of note, the line shape below

the first cutoff. In each case (Figs. 3.13 and 3.14) the

orifice with the lower jet velocity exhibits a decay in

level as the frequency increases from zero to the first

cutoff. The orifice with the greater velocity exhibits

levels approximately independent of frequency. Such

behavior may indicate the dominance of sources other than

sound from the jet turbulence at low jet speeds. One

possibility is the wall turbulence in the duct.

One item of note is that the overall level

increases with increasing velocity. Let us assume that

the radiated power in the duct is proportional to V8D2 as

is the case for free jets. If the spectra shape is iden-

tical, the power per unit frequency should increase in

the same fashion. The level ratio between orifices of

different diameters but similar Strouhl numbers is given

by
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where D and D are the orifice diameters. The ratio is

independent'of velocity for orifices with identical

Strouhl numbers. If the diameter is doubled, the level

should increase by 30 DB. To check this, the average

separation between lines was computed, in the frequency

band indicated, for Figs. 3.13, 3.14, and 3.15. One

finds

Figs. D D s Range ASPL
0 1 kHz kHz

3.13 " " 5.7 2 +5 26

3.14 " 1" 2.5 2 +5 35

3.15 " 1" 1.9 5 + 15 30

The result holds for the high frequency spectra

where the duct response is identical to the free space

response. The scale is only approximate for the low
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frequency spectra. In this range the turbulent sound

field is especially sensitive to variations in the jet

velocity and diameter. The error for a 10% deviation of

the Strouhl number gives an uncertainty of

10 log 0 +3.4 DB, or a net error of 6.8 DB. The

observed deviations are 4 and 5 DB. This suggests that

the dimensional scaling laws do apply to the ducts, even

in the low frequency region.

3.2.5 Separating Linear from Feedback Effects

Certain peaks in the spectra were identified as

nonlinear effects. These were termed screech peaks.

They were distinguished from the linear duct response at

cutoff by their symmetric line shape. Herein the two

effects are separated by plotting amplitude variations

versus flow speeds.

In the linear response of the duct the sound

pressure level is proportional to the turbulent intensity.

Since the turbulent intensity increases monatonically

with flow speed, it follows that the level should also

increase monatonically.

A nonlinear effect depends on the interaction of

the jet flow with the acoustic wave it produces. Such

interactions depend strongly on the jet flow speed.

Screech instabilities only occur for certain flow speeds.

One finds that the sound level no longer increases

monatonically with flow speed.
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To show the linear character of the duct response

at the cutoff frequency, the behavior of the first trans-

verse mode (f = 1.6 kHz ) is studied in detail (Fig.

3.16). Its behavior is compared to the amplitude depend-

ence on flow speed for a point (f = 2.5 kHz ) between the

first and second cutoff frequencies. This comparison is

done for a " diameter orifice mounted on the side of the

duct. One finds that both frequencies have the same

variation in amplitude with flow speed. The only differ-

ence is that the level at the first cutoff is 7 DB higher

than the level between modes. That the intensity follows

the same power law indicates the response of the duct at

cutoff is independent of velocity.

Of note is the fact that the amplitude increases

as the sixth power of velocity. At first this seems to

contradict the result of the previous section. This is

not so. The Strouhl frequency increases with flow speed

for an orifice of fixed diameter. In Fig. 3.16 the

Strouhl frequency varies from a low of 2.7 kHz at Mach .5

8 2
to a high of 5.4 K.C. at Mach 1..0. Theyr D law holds

only for experiments with similar Strouhl numbers.

In Fig. 3.17 two frequencies identified as screech

peaks are investigated; these are at 9.1 kHz and 13.0

kHz. The amplitude does not vary monatonically with

velocity. In particular, the level seems to peak at
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Mach .7 and .8 and then fall off. Such variations with

flow speed identify the screech as a separate, nonlinear

effect.

3.2.6 Effect of Inlet Turbulence

Herein the effect of inlet turbulence on spectral

line shape is determined. The spectral line shape should

be independent of variations in inlet flow conditions

since it is dominated by the duct response. Contrast the

simple orifice to the flow from a long pipe. The flow

entering the duct from a sharp edged orifice is laminar;

it does not become turbulent until points further down-

stream. The flow from a long pipe, on the other hand,

is fully turbulent. For comparison to the orifice data

the flow was drawn into the duct from a 60" pipe of 1"

inner diameter (Fig. 3.5).

The low frequency spectral dependence on flow

speed is presented in Fig. 3.18. The line shape is

similar to that observed for orifices. In particular, the

asymmetric shape of the peak at cutoff is evident for all

flow speeds.

The high frequency spectral dependence on flow

speed is presented in Fig. 3.19. Again the line shape is

similar to that observed for orifices. In particular, the

spectra resembles the free space spectra in this range.

Absent from this figure is evidence of screech peaks. In
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section 4.3.5 one screech peak is shown to occur at suf-

ficiently high flow velocities.

Of note is the periodic ripples superimposed on

the low frequency plot in Fig. 3.18. The spacing between

these ripples is 112.5 Hertz. This corresponds to a

cavity length L =I2 = 60". The ripples represent the2F

excitation of the axial pipe modes. The response of the

pipe is superimposed on the duct response.

3.2.7 Orifice Mounted on Axis

Herein the orifice was placed so that the air jet

entered parallel to the duct axis. The acoustic foam

wedge was removed from the upstream end and a " orifice

plate was mounted in its place (Fig. 3.1).

Acoustic spectra versus velocity in the low fre-

quency range are presented in Fig. 3.20. Again, one

observes asymmetric peaks at cutoff frequencies for all

flow speeds. The effect, however, is not as pronounced

as it is for side-mounted orifices. This is due to mask-

ing of the acoustic wave by the convected turbulence.

The hard-walled orifice plate in the plane of the duct

cross-section also influences the spectra. To circumvent

these effects, the orifice was mounted on the duct side.

The microphone could be mounted upstream in a region of

zero mean flow.
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The change of location introduces impingement

screech. This screech occurs only if the air jet strikes

an opposing wall. No screech was observed for the ori-

fice mounted on axis.

3.2.8 Upstream versus Downstream Radiation

With the exception of the orifice mounted on axis

all spectra were taken with the microphone located up-

stream. In this region, apart from some recirculation,

there is negligible convected turbulence to mask the

acoustic wave. In addition, the duct response is inde-

pendent of jet velocity as the mean flow is zero. Condi-

tions downstream of the orifice should be similar since

the flow speed in the duct is small.

Two microphones were used to check this, one up-

stream and the other downstream. The flow speed was set,

and both upstream and downstream spectra were plotted on

the same graph. The only error introduced by such pro-

cedure is the difference in microphone response, which

is approximately 0.8 DB.

The spectra at Mach .25 and 1.0 for a " orifice

are compared in Fig. 3.21. The response at the low flow

speed is approximately identical. At high flow speeds a

periodic variation of level with frequency is observed

downstream, but not upstream. Aside from these variations

the response is identical. The microphone was placed
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upstream to avoid these flow-induced effects which obscure

the interpretation of the spectra.

3.2.9 Effect of Microphone Placement

The point of this experiment is to emphasize

that the duct response is due to the excitation of the

transverse modes.. It also demonstrates the influence of

microphone placement on the detected spectra. The micro-

phone holder shown in Fig. 3.3 was placed upstream from

a " orifice. The flow speed was set and level changes

with changes in the transverse microphone position noted.

Three frequencies were selected for detail inspection.

Cutoff
Frequency Propagating Frequency Dominant

kHz Modes kHz Mode Shape Nodes

1.0 (0,0) 0 1 0

1.8 (0,0) 0
(1,0) 1.67 cos d 1

3.5 (0,0) 0
(1,0) 2r 1
(2,0) 3.35 cos d 2

Above a cutoff frequency all lower modes still

propagate. However, the duct response is greatest at a

given mode near its cutoff. Hence the detected pressure

variations should be dominated by the transverse variations

of that mode.
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Fig. 3.22 indicates this variation. At 1 kHz

only the plane wave propagates, the pressure is uniform

across the duct cross section. At 1.8 kHz the first

antisymmetric mode dominates, hence the node at the center

of the duct. At 3.5 kHz the first symmetric mode domi-

nates, hence the observation of two nodes.

The pressure waves in the various modes are addi-

tive. If the microphone is placed at an antinode for a

mode, this mode will not be detected. This effect is

demonstrated for the first antisymmetric mode (Fig. 3.23).

The center of the duct is a node for this mode, hence its

influence is not detected. In particular, the peak at the

first cutoff is unobserved. For this reason all other

experiments were done with the microphone at the corner.

3.3 Theory

3.3.1 Duct Acoustics with Mean Flow

Consider a rectangular duct of width d and

height b. Assume there is uniform mean flow throughout

the duct. The linearized wave equation for a harmonic

acoustic pressure perturbation of angular frequency w is

+ _2 Q + ) P 3.2

where the z direction lies along the duct axis (see Eq.

2.12 and set Cp -equal to zero) .
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Mungar39 has pointed out that the boundary con-

dition at the walls must be re-examined if flow is present.

There can be no mean flow parallel to the duct wall due

to the action of viscosity. Morse and Ingard1 4 have

shown such effects can be modeled as viscous attenuation

terms for infinitessimal acoustic velocities parallel to

the wall. However, in the presence of mean flow one must

assume an infinitessimal region of fluid near the walls

in which the mean flow speed is zero. The fluid in the

duct is assumed to slip past this region.

When there is relative motion between the fluid

and the walls, continuity of displacement must be used in

place of continuity of velocity. The normal acoustic

velocity Unf in the fluid is

rv3.3

where nf is the particle displacement normal to the

walls in the moving fluid. The wall velocity Unw in the

stationary fluid near the walls is obtained from the

normal particle displacement nw at the wall by

/7 WW LLfri3.4
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Continuity of particle displacement gives

/, W ,fnf

or

3.5

In the absence of slip continuity of displacement and

normal velocity are equal. Now use the condition that

the particle displacement at the walls is zero, i.e. the

fluid cannot penetrate the hard-walled duct. From Eq.

3.4 it is clear that Unw is zero. The momentum equation

relates pressure gradients in the moving fluid to

particle velocities

Y'o Du On

or

) j 3.6

Substituting Eq. 3.5 into Eq. 3.6 and requiring Unw equal

to zero gives

fPO -o+ Y7 )2u-
- ZL
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or, by Eq. 3.4 with T0 nw

0= L

The

the

corn

y= 0

3.7

ordinary NeumannCondition on the pressure field at

walls still holds.

Locate the origin of the coordinate system at a

er of the duct. The walls are located at x 0,b and

,d. A set of solutions satisfy the wave equation

fM r = m 3.8

- Coi mIrx
b

C 'O-I) '
d

mnr)

a
~r~m

-

ba

Each $ represents a pressure field, or mode,

in the duct which satisfies both the wave equation and

the boundary conditions. The field is, in general, a

linear combination of the modes $ m'
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Note that the transverse portion $ (x,y) of

the modes is orthogonal. Thus

b d

<4 dv (xY? x )= -- bd
o 1 mn P1 r Pq M rn 3.9

where bd is cross section of the duct and A the2n
average value of m2

M L
both m= 0 and n= 0;either

m= 0 or n= 0 but not both*

mP 0 and n 60.

It will be convenient to replace the double index m,n by

the single index n. To do so, arrange the modes in order

of increasing fm'
For a wave to propagate in the m,nth mode,

k m, the wave number in the axial direction, must be real.

Given the angular frequencycj ,k m is real only if

\ c

or

3.10

where m 

() =c C nW

fr m
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For any frequency w there are only a finite number of

propagating modes.

3.3.2 The Green's Function

If the sound generator is a simple harmonic

source at point (xo, yO, z0 ), the resulting acoustic dis-

turbance is the Green's function G (rIr ). Such a func-

tion solves the forced wave equation

[(I _ 1 )2 + CO/MO +2

SC 9Z X 3.11

where G must satisfy the boundary condition in Eq. 3.7.

G can be expanded in a series of eigenfunctions 1 m'

For an infinite duct the acoustic waves propagate away

from the source point. Thus

G=0 Ae_ f'(x/y)C & J-4*

An k/ )Wr+ X 
h

where

- 22
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Insertion of the expansion into the wave equation. Eq.

3.11, then multiplying by ' n and integrating over the

cross section bd gives a set of equations

+ 2 &MD

bd -A

4 ('~f A

11

Integrating from z - E to Z + c gives the magnitude of

the discontinuity in the derivative with respect to z at

the source point

3.14
bd..

Continuity of the pressure requires

3.15

One has, dropping the subscript on the A n's,

In t int

In the limit of zero flow this reduces to

3.16
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2Ibd -A-

which can be found in Morse and Ingard14 (Chapter 9).

The Green's function is

G n 3.17
rn)

where the + sign holds for z > 0 and the - sign for

z < z on the term in the exponential.

3.3.3 Random Source Representation in a Duct

Consider the representation of a random source

in a duct. The issue is sufficiently complex to warrant

a separate discussion. The discription is done in steps.

First comes a review of the correlation in time, next

space correlation along the duct axis, then the space

correlation in the plane of the duct cross section.

Finally, the full space time correlation is presented as

the union of the above. A number of transforms are

introduced; to keep track of these the results are sum-

marized in tables3.l and32. On the right hand side is a

note on dimensions which provides a useful -check on the

formulas.
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Consider a region of turbulent pressure fluc-

tuations(p inside a rectangular duct (O< x <b, O <y <d)

with rigid walls. Let the fluctuations be confined to

a region - L/2 < z < L/2. To construct a measure of the

temporal variations of the source at point r , one pro-

ceeds as in free space.

3.1

(0 1i t )( 4 3.19

Similarly, the correlation is

3.20
T/

3.21
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See Eq. 1.23 for a proof of Eq. 3.21. If the source is

homogeneous, one can drop the source point r0 in the

description of (R.

Now consider a measure of the spatial variation

along the duct axis. Again, one proceeds as in free

space. The Fourier transform is

OD qa DW C-3.22

d1 t 3.23

Similarly, the correlation is

C/O

J. 3.25L
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Now consider a measure of the spatial variation

for points separated in the plane of cross section of the

duct. If one defines

Q~~3 cXx' 0 (+o~)7 3.26

bi0

as the pressure correlation for simultaneous measurements

separated by a and a, one must decide what values to use

forp( when x +a exceeds b or y+ a exceeds d.

One possibility is that P is zero outside the

source region, as was the case for axial pipe modes (Eq.

2.44-). In this case, however, computational difficulties

are encountered when the source correlation is related to

the radiated pressure. In particular, it is impossible

to expand the source in the duct eigenfunctions if the

source strength is assumed to be zero outside the walls.

Here is is more convenient to consider the walls as

reflectors and to consider(p outside the duct to be the

mirror image of the distribution inside. Following Morse

and Ingard (Chapter 9), one expands the source in the

eigenfunctions of cross section and limits attention to

.points inside the duct. The Fourier transform is

n mn mn () 3.27
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Tlmn I

b d -/-m n

Similarly the correlation is

mn

JA bd
mn

rn n

b

0

2Pr
3.30

To get Eq. 3.30, substitute the Fourier expansion

ofO (Eq. 3.27) into Eq.3.26. Substitute the resulting

expression forc(,3) into line 1 of Eq. 3.30. Then

recall

(X-r C<, )= d/3

r X C0,3by) 1?bO c
b b

Id
co-1n W/I',3 -w...y nr;, rVrn/3

d dd

The result -follows from the orthogonality of the sines

and cosines.
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Since the walls are rigid the pressure fluctua-

tions will be periodic in the wave numbers k = andx *b

k = . Similar assumptions are made when the dis-yd

placement of a violin string of length L is expanded in

a series sin . If one looks closely at the series

and asks what displacement is predicted for x outside the

end points, one finds the displacement periodic in k =L

The description of arbitrary space time varia-

tions is the union of the above transforms. Thus the

Fourier transform is

3.31

b 00 L/2 T/

rn 2
Mn d~z d q~xr~q(PO-,i)C1V-333 k
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LT hnrnnn

Mhnn

2- -A mnT I L ) 3 .34

where
'A /A Y

For each mode m,n at frequency w all values of k

are needed for the source description. One may well ask

why this is so since the wave equation demands

( ()2 (). The answer is that

one can choose any variation whatsoever in the source dis-

tribution. When it comes time to find the radiated

pressure, only those values of k= k will contribute.

Consider, for example, the simple case of a

point source oscillating at frequency w0 in a narrow tube.

Only the plane wave propagates. The complete spatial

Fourier description of the source requires all values of

k, since its location is given by a delta function. The

radiated pressure, however, only contains the wave number

W0
k . The point is, only in the radiation field are

w and k connected; in the source all variations are

possible.
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TABLE 3.1

TABLE OF FOURIER TRANSFORMS

Transform Dimension

Time variation at a point

2 ir fo+ J e

F(t0 d w e

iwt
(P (t)

icot

Space variation in duct cross

mnb dA n 0 0

(xy)m= E
mn mn

y 0 (xy)(P(xy)

4 (.xy)
mn

Space variation along duct axis

CP(k) = 1 + dz ik z )
2] e P-z)

P )00
(P(Z)= ]+ dk e ikz(P (k)

Arbitrary space time variation

mn( (k) 2 x dy dZt
A b4r 0 -, -mn 00 -00

' (xy)(t)
m n

iwt-ikze

~fL OD4?~ ~ ik
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TABLE OF

TABLE 3.2

STATISTICAL TRANSFORMS

Transform

Time variation at a point
T/Z

j t

Dimension

P23
T

2 7

Jp)

-L L.O'Zf'

2 6

[6va2-T]

2a
T

Space variation in duct cross section

6~~c~3)
bd

mn

m n

0 0

Il), 12 -A

Y-,.rcj)

M 07
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11<I P-rna
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)

j-A-
r)

)

Iff

6(t) P(t + T)

rn n rn

,Prn n ( ::7 <j a

b d
dx y

*r eI



Transform

Space variation along duct axis

L -/2

i7 \ 0

=0A

~KeLY

Arbitrary

06T,'t z)=
space time variation,/2

x d

Mn)

= E~
/-T

FX , t ) x. 3,

rn nPmri

b

dc ,
1n -

LT,

00

[2wTL
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le LU

[ca]

Dimension

' O ccd k d Cc-)

r) 00 -00

CO
dw00 (C<, P)C-I&jr +

hi r)

(UJI tL)=
rn h

mn

tol 2|
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3.3.4 The Radiated Pressure

Consider the acoustic radiation from a region of

turbulent pressure fluctuations inside a rectangular duct.

Assume the flow in the duct is small enough so that its

effects on the duct modes can be neglected.

The radiated pressure is

2-bd- 
3.35

The approximation is in truncating the expression for G

at the last propagating mode. Here Q(w) denotes the mode

whose cutoff frequency is closest to the source frequency

W. Note the double index m,n has been replaced by the

single index q.

Inspection of Eq. 3.35 shows that the integral

over the source volume Q gives a term proportional to the

multiple Fourier transform of (p (Eq. 3.32). Thus

3.36
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where we have shortened the notation to

7 = (, y/ )

q7= AI?.GE Pqw L0 Z~II)

Compute the magnitude of the radiated pressure to find

Ip( %-)1I2 - p(Lvr")p@ )

~~2

2_1 S [YLal I

3.37

The expression for the radiated pressure depends

on both the magnitude and the phase of the turbulent pres-

sure. This phase dependence does not appear in the expres-

sion for the radiated power in the axial direction. The

power at frequency w is proportional to the integral over

the cross section of |p(w,r) 12 The integration over the

cross terms is zero by the orthogonality of the i's.
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In the laboratory, however, one can get repro-

ducible point measurements independent of the axial

coordinate z if the average of a large number of spectra

is taken. No integration of measurements over the duct

cross section is needed. The implication is that the

phases $ are random and therefore contribute nothing to
q

the average.

Consider the average of N spectra.

N h=I

N iZ=2

~~O a
3.38

Where it is assumed that the nth measurement -

is random and therefore the second term is zero for large

N- The expression for the average magnitude of the

radiated pressure depends only on the magnitude of the
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source pressure spectra. Eq. 3.34 shows that this quan-

tity is proportional to the multiple Fourier transform of

the source correlation. Hence

LT k A 2>~i2  10 HY

3.39

One may ask why it is necessary to use such

averages in ducts and not free space. In a duct there

are a number of modes in which sound can propagate; in

free space there is only one mode. Each mode in a duct

propagates at a different phase speed. This generates

interference effects which depend on the distance from a

source, even in the case of a single point source with

random fluctuations in time. Such interference effects

depend on the coherence of the source. If the source

fluctuations are random, these interference effects will

tend to zero for an average over many measurements.

Hence the radiated pressure will no longer depend on the

distance from the source.
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3.3.5 Gaussian Correlation and a Qualitative
Analysis of the Low Frequency Spectra

Eq. 3..39 provides the basis for interpreting

the observed spectra. In accordance with previous work,

the radiated pressure from an isotropic Gaussian distri-

bution of sources is determined. Let the correlation

length be a and the correlation time . Thus
0

a

UtM )=)= T e 3.40

One computes (w,k) by performing the integrals indi-

cated in Eq. 3.34. These are given separately

6 wtV
wt2

rym

bb Cj CL

a

C

I - q3) -

So d -2
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The approximations in the last two lines come from taking

the upper limit as w; these hold only if a<<b and a <<d.

Combining these results gives

-- 1 4 c 2

rr- n
nCL 3 b

/G.A.,bd L00

3.41

Note that the mode number does not appear in the exponent.

This is because

2- 2 2-

hm n rn --- o- + 1C
2 b 2z

If Eq. 3.41 is substituted into Eq. 3.39, the radiated

pressure is

<p(w) ), 2- CL L T 7r2.

/G bd C o

-O 2

II

3.42

Of particular interest is the dependence on

2j -in the summation. As the fre-

quen y is increased above an eigenfrequency, a new term

is added to the sum. At precisely this frequency kq is

equal to zero, which gives a pole in the pressure response.
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As the frequency is increased above the eigenfrequency,

the contribution of this term diminishes and approaches

k-2 assymtotically. These poles have their origin in the

Green's function, i.e., the duct response, and not on the

turbulent field. Further, note the asymmetric nature of

this contribution. For w <w the sum terminates before

this mode contributes. For w >wq the mode propagates

and is included in the summation. Hence the asymmetry of

the peaks in the low frequency spectra (Figs. 3.7, 3.8,

3.9, 3.18 and 3.20).

Further note the dependarce of $ on the obscrver's

coordinates. If the microphone is at a node, $q equals

zero, and the mode is not detected. This feature is

demonstrated experimentally in Fig. 3.23. With the micro-

phone in the center, the (1,0) mode is not detected. The

behavior is further demonstrated in Fig. 3.22 by altering

the transverse position of the microphone.

3.3.6 Damping and the Smoothing of the High
Frequency Spectra

Herein the theoretical infinite peaks at the

cutoff frequencies is corrected. To remedy the situation,

one postuiates some damping of the modes. This can be

done in a formal manner by assuming a uniform specific

acoustic admittance at the walls. Thus the Neumannbound-

ary conditions for zero mean flow
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2 = 0 . = D
lX =0) b Ir 0 d .m0

are replaced by

G X =o b K'= 0d 3.43

This change introduces a damping of the

acoustic waves; see Morse and Ingard (Chapter 9). In

working such a problem, the difficulty arises in that the

eigenfunctions are no longer orthogonal to their complex

conjugates 40. To expand the Green's function in such a

set becomes quite tedious. Recall, however, that the

2poles are due to k + 0 as the cutoff frequency is
q

approached. It will be assumed that the damping is so

small that the wave functions and eigenfrequencies are

given sufficiently accurately by the undamped values. The

only modification by damping is assumed to be in the wave

number k . Such assumptions are common to the treatment
q

41of similar problems in room acoustics. The argument is

that damping modifies the response only in the vicinity of

an eigenfrequency, i.e., at a pole.

Consider the modified boundary conditions given

in Eq. 3.43. The addition of damping gives
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where, in the limit of small

ih6~rv)

b

d

6M

d1 in

mr >

n ;,,

2
0lr - 3 ( //&-t )

S( (2

The ,
b'F 4 reduce.to the mode wave numbers )-P,

correction factor. One then has

I M rIIknr7
04

a a
(m

2

3.45

E=
hi)=O

tn;,-o
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That is, at the eigenfrequency the magnitude of the wave

number km is now nonzero. This implies that the singu-

larities at the cutoff frequencies have been removed from

the theory.

Numeric calculations based on visco-thermal

damping have been done. The results for the first mode

show that the predicted level changes exceed those

observed. Such work suggests that the radiative damping

may be the dominant loss mechanism. 4 2

To determine the influence of damping on the

high frequency spectra, consider the radiated pressure at

frequencies just above and below the cutoff frequency w Q.

Consider the change in radiated pressure normalized to

the pressure at a frequency just below the cutoff.

1. <I P@JLQ&)iZ> J

2- <

-~0J 14.46
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The approximation is in substituting the

asymptotic limit of k for the sum in the denominator.
q

This substitution is correct if Q is large. If k is

finite, it is clear that the pressure change approaches

zero as , where Q is the number of propagating modes.

Note that the limit is correct only if k is nonzero at

the cutoff, as is the case when there is damping.

The conclusion is the change in radiated pres-

sure when a new mode propagates is small compared to the

contribution from all other modes if there are a large

number of propagating modes. In this fashion, the

assumption of finite damping accounts for the smoothing

of the spectra in the high frequency limit. This collates

with the observed spectra under a variety of conditions

(Figs. 3.10, 3.11, 3.12 and 3.19).

3.3.7 Radiation Impedance and the Similarity
of the High Frequency Duct Spectra to
Free Space Spectrat

The damping argument (Eq. 3.46) states that the

spectra smooths out in the high frequency limit. It can

be shown that the spectra is identical to the free space

spectra in the high frequency limit. Morse and Ingard14

have shown this is true for a simple volume source.

The author is indebted to Dr. Rice of NASA Lewis for sug-
gesting the use of averaging techniques in duct acoustics.
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Herein the analysis is extended to radiation from a turbu-

lent source. In the model of Morse and Ingard the volume

source q is replaced by a small sphere of radius a whose

surface oscillates with velocity amplitude U. To con-.0

nect the analysis to turbulent flow, note that the source

term S , of Morse and Ingard, has the units of volume per

unit time. Here the source term q has the units volume

per unit volume per time. Inspecting the mass continuity

equation, Eq. 1.1, shows that S is equivalent to m0 q,

where mo is a unit mass. Further, note that q can be

replaced by an equivalent turbulent dilation (section
e c

1.2.3). This follows from Ribner's analysis presented in

Chapter 1. Thus

where a is the radius of the simple spherical volume

source.

A check on dimensions shows that the units are

correct. The only important difference is the factor k

in the equivalent turbulent source. This comes from the

appearance of a second time derivative, in place of a

single time derivative for turbulent fields.

The key to the analysis is to examine the

asymptotic limit of the radiation impedance. The
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impedance is the ratio of the net force on the surface of

the sphere to the surface velocity Li. The real portion
0

of the impedance, 9 , is a measure of the magnitude of

the radiated pressure. Morse and Ingard14 have shown this

is (Ref. 14, p. 502, Eq. 9.2.12)

fo L rnL rn 3.48
bd - -A

where (xo, yO, 0) is the coordinate of the equivalent

spherical source (Fig. 3.24). They state, without proof,

"if we average out the narrow peaks, the curve approaches

the value 50 c(41a 2)k2a , which is the radiation resistance

of the source in free space" (Ref. 14, p. 503). A proof

is provided here.

For a nonlocalized source it is appropriate to

consider the average value of 9 for all source points

(xo, yO).

b d

bd 0 *

Mn

To evaluate 9' in the limit of large M,N , the double sum

is replaced an integral. The discrete values and na-
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are replaced

kmn

by the continuum values k and k
)- ( - 12

[I

/tko

2'h

where k0 is the wave number of the source which oscillates

at frequency w . The sum is broken into three parts

Mn

~M1OSm,o

MN

mr 0

0 N

ky"0

kzo

ke
40 (kx 0) 1zO

J kA

( I. Vm)n
-~~Ie 5d kd g'-.'r I o

-0

Io

3.51

The first and last sum are for modes with transverse

variations only in the x or only in the y direction. The
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middle sum indicates modes that have both x and y varia-

tions. The density terms indicate the number of new modes

added per unit increase in wave number at the wave number

(k , ky). For a rectangular geometry these densities are

constant. They are

117

3.52

f(0)kr d

Integrating using the values given in Eq. 3.52 yields

~~o bm z mo 2

0 3.53

O20 el IO n
Q)n a
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Substituting back into Eq. 3.49 gives

PO _/z, bd Iz .4-(

b 2 r?' 2

3.54

Which was to be proven. The procedure is identical to

that used to predict the high frequency behavior of rooms.

Close inspection of Eq. 3.54 shows that bd is the area of

the duct cross sectionand 2(b+d) is the circumference.

By analogy to room acoustics, one can generalize

eC //7 C' + _o L 3.55

A

for ducts of arbitrary cross section. A is the cross

sectional area and L the length of the perimeter.

Since the radiation impedance of a duct is the

same as that of free space, in the high frequency limit,

the duct response should be similar to the free space

response. The same source distribution should yield

similar spectra. Hence the explanation for the high fre-

quency behavior observed in Figs. 3.10, 3.11, 3.12 and

3.19. The arguments concerning finite damping showed that
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the spectra should smooth out in this limit. The averag-

ing procedure demonstrates that the duct response is

identical to the free space response.

3.3.8 Velocity, Power and Jntensity

Now consider other acoustical quantities. The

situation in a duct is quite different from free space.

In free space, assuming source isotropy, the intensity

power and velocity could be deduced from a single pressure

measurement in the far field. The relations between

acoustic quantities is much more complicated in a duct if

transverse modes are excited. A single point. measurement

is not sufficient to determine the other parameters. If,

however, the pressure measurement is made at a common

antinode for all the excited modes, then a maximum value

can be established for the intensity and power.

Let the pressure field be given by Eq. 3.36

pwi)Z 2 7r~/. ~ ~ ' 3.56

It follows that the velocity in the z direction is

U (c 2 / 7 .- D'.
;a) -Y 3.57
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where Uz follows from the momentum equation p0 aU iE

The intensity in the z direction at frequency w is

Co &1
4 z

3.58

Using the random phase assumption to compute the average

of N measurements gives

<K1, TCuc4r) -
3.59

The power radiated in the +z direction at fre-

quency w is obtained by integrating over the duct cross

section

7(w) =

8d

b d

0 x

Iki
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To establish a relation between these exact

quantities and a single pressure measurement, first

recall Eq. 3.38

~ fdk

It follows from the definitions of k and A that

3.61

- / 1 3.62

If the microphone is placed at a corner, ip is identically

1 for all q. The inequalities in Eq. 3.62 then show

<lP~Y)I2
C4~-VY~

K<(4 )

bd
2. Yo C 3.63

In engineering problems the maximum values are

often the quantities that are needed. The inequalities

of Eq. 3.63 demonstrate that an upper limit on the radiated

power and intensity can be established from a single meas-

urement.
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3.3.9 A Numeric Comparison of Predicted to
the Observed Law Frequency Spectra

Consider the spectra predicted in Eq. 3.42.

Examine the prediction for a " orifice mounted on the

side of a 1 " by 4" rectangular duct. The duct height

and width is then equal to

b=<0 d=39 3.64

where D is the jet diameter. For numerical comparison,

let the inverse of the correlation time, w, be given by

the Strouhl frequency

WO= 2 7" 2 i'lr .2-5 77 = 1 C
* 2 S --m--z-- 3.65

D. - D

Choose a velocity so that the contribution of space and

time correlation is approximately equal; that is

C W

3.66

Here the correlation length is assumed to be equal to the

jet-diameter. Substituting these values into Eq. 3.42

gives
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<~ ~ ~ ~ ' 13x(rWN

177r)

3.67

where

All information concerning the absolute level is absorbed

into B.

In Fig. 3.25 a comparison of Eq. 3.67 is made

to the observed spectra for a " orifice with mean flow

speed Mach .61. The qualitative features of the curve

are in agreement with the prediction. First, the asym-

metric shape of the peaks is predicted quite accurately.

In fact, the spectra levels are accurate to 2 DB for fre-

quencies above the first cutoff. This is quite good con-

sidering only dimensional arguments are used to fit the

data. It should be noted that the parameter B was -choosen

so that predicted and observed spectra lie close to one

another.. This does not affect the curve shape at the

peaks, which is the point of interest.

- The most glaring disparity is for frequencies

below the first cutoff. As was the case for free space,

an isotropic model of the source fluctuations can only
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account for limited portions of the spectra. A complete

analysis requires that the inhomogeneities of the turbu-

lent field be accounted for. This discrepancy does not

detract from the main point. The spectral line shape can

be explained through a linear analysis of the duct

response. The asymmetric peaks have their origin in the

selective response of the duct to a source near a cutoff

frequency. No alteration of the turbulent spectra needs

to be assumed.
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4. SCREECH

4.1 Introduction

In these studies of flow-generated sound several

instances where the sound field departed from that pre-

dicted by linear models were observed. Until now it was

assumed that the aerodynamic sources in the fluid could be

given without reference to the acoustic field that they

produce. This assumption must be abandoned if one is to

account for the screech anomalies. In such cases the

acoustic pressure reacts back on the flow field so as to

produce a coupled, or feedback, oscillation.

Previously it was assumed that the jet fluctua-

tions which produce'the sound are random and could be

statistically described by a Gaussian correlation. This

method is not adequate for screech. There exist collec-

tive modes of oscillation of the jet that are different

than the random turbulent fluctuations. It is these

modes which are important in feedback. In a feedback loop

a perturbation of the jet results in an amplifying fluc-

tuation of the flow. The fluctuation breaks into ring

vortices which are convected downstream. When these

vortices encounter some obstruction or discontinuity,

they produce an acoustic wave. This travels back to the

origin of tht jet and perturbs it, thereby closing the

feedback loop.
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The whistling teapot is a common example of just

43
such an effect4. In escaping from the teapot, the vapour

passes through two concentric circular orifices spaced a

short distance apart. The first orifice serves to form a

jet. This jet passes through the second orifice and, if

the flow speed is right, a discrete tone is generated. In

the absence of a second orifice one hears only the broad-

band hiss which typifies sound emission from model jets.

Two similar instabilities have occurred in these

studies. The first was observed in the excitation of

axial pipe modes. Intense pure tone oscillations occurred

for pipe lengths which were short compared to the pipe

diameter. This is shown here to occur for cylindrical

orifices having length-to-diameter ratios between one half

and two.

The second instability was observed in the tur-

bulent excitation of transverse modes in ducts. Intense

pure tone oscillations occurred if the flow speed was

right. These are here shown to be those due to a jet

impinging on a flat plate.

Anderson4 studied the orifice tone extensively.

He explores the conditions for the excitation of pure

tones by airflow through a sharp-edged cylindrical ori-

fice. Here separation of the flow from the upstream edge

allows for shear layer oscillations and thereby orifice
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screech. His results are presented in nondimensional

form as Strouhl number versus Reynolds number. Heller45

also observed such tones occurred for length-to-diameter

ratios between one half and two.

This investigation of orifice screech presents

the results in plots of frequency versus flow speed to

facilitate the kinematic analysis of the problem. In

particular, one can account for the observed screech fre-

quencies by careful analysis of the feedback loop. One

assumes that disturbances of the jet at the inlet are

propagated downstream46. At the exit the sudden expan-

sion of orifice diameter generates an acoustic wave. This

propagates upstream and perturbs the jet at the inlet.

The fundamental screech frequency is inversely propor-

tional to the period required to transverse such a cycle.

Overtones are assumed to be integral multiples of the

fundamental.

It is further shown that screech occurs only if

the frequency is approximately that of an axial acoustic

mode. This is seen by noting the screech tones occur near

the intersection of a screech mode with the axial pipe

frequency. Suitable alterations of the geometry are then

explored to sh6w coupling with the radial acoustic modes.

The second instability was observed in the

excitation of transverse modes in ducts. These were the
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narrow band peaks which occurred at certain flow speeds.

Analysis of level versus jet velocity showed that these

were nonlinear effects.

Recall the screech occurred.in configurations

where the air jet impinged on the opposite duct wall.

Pure tone oscillations have been observed when a subsonic

jet impinges on a wall. The impingement couples the air

jet to the acoustic field.

Powell and Unfried47,48 observed a similar

effect in the study of edge tones. In their work a jet

from a rectangular slot impinges on a triangular wedge

located downstream. In the classical edge tone experi-

ments the wedge angle is acute. However, these experi-

menters varied the angle to 180*, i.e., a flat plate.

They observed screech in this setup.

Wagner 4 9, and later Neuwerth5 0, investigate the

free subsonic circular jet impinging on a flat plate.

Screech occurs at Mach numbers greater than .6 and nozzle-

to-plate separations less than 6 jet diameters. They

observe that periodic shedding of ring vortices at the

jet boundary can be induced by an acoustic wave either

inside or outside the jet. To minimize the influence of

acoustic modes, Neuwerth lined all surfaces with sound

proofing material. In this fashion he isolates the effect

of the wave travelling inside the jet column.
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Herein such modes are shown to occur in the

presence of an acoustic mode. A free jet exists from an

orifice in a flat plate and impinges on a second plate.

The separation is the same as is the duct experiment.

The screech frequencies produced here are the same as

those observed in the duct. These frequencies are approxi-

mately those of the acoustic mode between two flat plates.

In a separate experiment the change in frequency

by the presence of an acoustic resonator is demonstrated.

First, an air jet from a long pipe is set to impinge on a

flat pipe, and the screech tone is noted. Next, a cavity

is formed by fitting a plate snugly over the pipe exit.

The screech frequency is observed to shift to that of the

acoustic cavity.

4.2 Orifice Screech

4.2.1 Orifice Screech: Apparatus and Procedure

Herein the generation of pure tones caused by

drawing air through circular orifices of small length-to-

diameter (L/D) ratio is described. The phenomena is

characterized by intense pure tone oscillations termed

"orifice screech." The apparatus differs from that used

to determine the axial mode excitation of pipes in that

the L/D ratio is small. Roughly speaking, orifice screech

is observed for holes in plates, whereas the axial modes

are observed in long pipes. The critical parameter is the
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length-to-diameter ratio and not whether the entrance is

a flat plate or a pipe (Fig. 4.1).

The apparatus is a flat plate fixed to a cylin-

drical plenum chamger, 15" in diameter by 30" long. The

plenum was damped by two flat boards of fiberglass sound

absorber. At the center of the plate a small circular

hole was drilled, typically " diameter. The plenum was

evacuated to a pressure below atmospheric and air drawn

through the orifice. The flow-generated sound was

detected with a microphone, and the signal was spectrum

analyzed. The microphone was mounted in the ambient air

outside the plenum.

The apparatus differs from Anderson's 4 in one

important feature. He uses a compressor system. The

plenum is raised to a pressure higher than atmospheric,

and air is forced through the orifice. He finds it

necessary to place a stainless steel screen " in front of

the orifice plate to "stabilize" the flow. All air is

passed through the screen before entering the orifice.

The precaution is necessary since upstream disturbances

generated in the compressor plumbing are forced through the

orifice. In the present setup, air enters from the quies-

cent atmosphere and such precautions are unnecessary.

As the flow velocity increases, the jet tones

appear quite suddenly. As the velocity of the flow
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increases further, the amplitude decreases gradually,

finally merging into the broadband turbulent noise. There

is a mid-range between "onset" and "offset" in which the

amplitude is insensitive to velocity changes. A typical

spectra from a L = 2", D = " orifice is presented (Fig.

4.10). The extremely narrow peaks distinguish screech

from broadband turbulent-generated sound. The difference

is noted quite easily by ear. Turbulent noise is per-

ceived as a hiss, whereas orifice screech is a shrill

piercing whistle.

4.2.2 Screech Dependence on the Length-to-
Diameter Ratio and Flow Speed

Herein the range in which screech occurs is

established. The orifice is a " diameter hole drilled

in an aluminum plate of thickness " ", ", 1", and 2".

The flow speed was varied from zero to Mach 1.0 in each

case. Screech was observed for the ", ", and 1" thick-

nesses it did not occur for the 1" or 2" plate (Fig. 4.5).

The tones were observed in a range of flow speeds from

Mach .25 to Mach .85. The flow speed was calculated,from

the pressure drop across the orifice by the isentropic

.37
nozzle approximation

L.(0 P4 4.1
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where

V velocity in the air jet

c 0 speed of sound in the quiescent air

y ratio of specific heats

PT pressure in the plenum

PA upstream atmospheric pressure

The results on the (L/D) necessary for screech confirm the

observations of Heller4 5

It is especially important that the inlet edge

of the orifice be sharp for maximum efficiency in the pro-

duction of tones. If one does so little as to place a

pencil point near the inlet, the tones are suppressed.

This is not true for the exit; here wide variations in the

geometry can be tolerated.

The importance of a sharp inlet motivates

several aspects of-the study. The flow separates from the

walls of the orifice at the leading edge. It then con-

tracts to approximately .6 of the inlet area forming a jet

surrounded by an annulus of quiescent air between the jet

and the walls. Such a well-defined symmetric system can

support collective modes of oscillation which propagate

down the jet column. These begin as perturbations in the

jet diameter and develop into rihl vortices. Such

51vortices have been observed in both orifice screech and

impingement screech.
4 9 ,5 0
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A qualitative explanation of the absence of

screech tones for large L/D can be given. Recall that

the viscous forces induce the jet to expand back to the

walls of the pipe. If the length is short enough, the

flow never reattaches to the walls. If the length is

long enough, the flow reattaches, and the propagation of

the rinr vorticies is perturbed. The mean flow por-

tion of the feedback loop is broken, and screech does not

occur.

Figs. 4.2, 4.3, and 4.4 plot the screech fre-

quency versus mean flow speed. The circles are the

observed points, the solid line is the theoretical feed-

back frequency, Eq. 4.4, and the dotted line the axial

pipe mode, Eq. 4.6. In all cases the screech frequency

increases with the flow speed. If a series of tones are

detected at a given flow speed, their frequencies are

related as the ratio of integers. In all cases the data

is clustered about the intersection of the feedback fre-

quency with the axial mode frequency.

To emphasize the clustering, consider the "

data (Fig. 4.2). For low speed the data lies along the

path of the feedback instability. At Mach .62 the fre-

quency jumps by 3 kHz. This can be explained if one

assumes some interaction between the feedback mode and

the axial pipe modes. The jump signifies .a change in

coupling from the first to the second axial mode.
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4.2.3 Similarity to Hole Tone

If orifice screech is similar to the hole tone,

one expects that the critical features are determined by

the diameter and separation between inlet and exit. To

check this feature, two thin orifice plates were con-

structed. These were separated by a short length of pipe

with an inner diameter larger than the orifice diameter.

The orifice plates were fashioned out of 116"

thick sheet of aluminum. In each plate a 450 tapered

hole was drilled to form a " diameter hole so as to

fashion a sharp edge.. In the first test, the separation

between edges was set to ". Two pipe diameters were

studied, % " and 4 1/32 "-

Fig. 4.7 is a plot of the screech data observed

for the %" inner diameter separator. Superimposed on the

graph is the trace of the feedback and axial frequencies

used for the " x " orifice (Fig. 4.3). The data from

this experiment follows the same trend as that observed

for the simple orifice of similar length and diameter.

Fig. 4.8 is a plot of the screech data observed

for the 4 11/32" inner diameter separator. Superimposed on

the graph is the trace of the feedback frequency used for

the " x " orifice. Besides the axial modes, there are

now radial cavity modes whose frequencies are below 20 kHz.

Two pronounced cases of radial mode excitation are
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indicated by triangles in place of circles for the data

points. There are too many radial modes below 20 kHz

to plot with any clarity on the graph. However, the

excitation of such modes, for the down pointing triangles,

is verified in section 4.2.6. Note that the data points

approximately follow the feedback frequency. The rela-

tions, however, are considerably more complex than that

of observed for the %'" inner diameter separator.

In the next experiment the L/D bounds on screech

are determined for the 4 " inner diameter separator. The

geometry is identical to that presented in Fig. 4.7,

except for the separation between edges. The plate separa-

tion was set at 0", 4", ", 1" and 2". The ratio of

orifice diameter-to-plate separation in which screech was

observed is the same as that of a simple orifice. To see

this, compare Figs. 4.5 and 4.6.

4.2.4 Perturbation of the Flow by Screens

Herein it is shown that the unimpeded propaga-

tion of disturbances down the jet column play an essential

role in the production of screech tones. It was once

thought that the perturbation of the jet shear layer at

the inlet drives the axial acoustic mode. In such a

model, only the inlet flow conditions are critical. This

model is incorrect, as it is demonstrated here.
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To settle the question, one needs to perturb

the jet downstream without any perturbation of the axial

mode. This is done with a wire screen placed in the

center of the orifice. A jet passing through the screen

becomes turbulent, whereas the axial mode is undisturbed.

Consider the first axial acoustic mode. The center of

the orifice is at a velocity node, a screen placed at

this point has negligible effect on the acoustic fluctua-

tions in the orifice. Hence only the jet is perturbed.

Two " diameter holes were drilled in a "

plexiglass plate. The rear side of one hole was then

drilled to a slightly larger diameter so as to allow a

wire screen to be mounted in the center. The screen was

held in place by an annular plexiglass plug with a 3/"

inner diameter. The only difference between the two ori-

fices is the screen at the center. The screen was com-

posed of 5 mil wire with 30 strands per inch. This gives

approximately 70% open area.

Air was drawn through the unmodified orifice

and screech was observed. Next, air was drawn through

the screened orifice. No screech occurred for any flow

speed up to Mach 1.0. One concludes that the continuity

of the jet column is an essential part of orifice screech.

A screen flush to the inlet inhibits screech

for the same reason. The inlet flow is turbulent and

collective modes of oscillation on the jet are supressed.
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The screech is supressed if the screen is

placed flush to the exit. This experiment must be done

carefully. If the screen bows slightly past the exit

wall, screech occurs.

For a summary of these observations, see Fig.

4.9.

4.2.5 A Kinematic Calculation of the Feed-
back Frequency

Covert and Bilanin52 have studied a similar

screech mechanism caused by air flow past a rectangular

cutout in a flat surface. They extend an analysis pro-

posed by Rossiter.53 The central point is that the flow

separates from the surface at the leading edge of the

cutout, thereby forming an unstable shear layer. Any

perturbation of the shear layer travels downstream towards

the trailing edge-. The interaction at the trailing edge

generates an acoustic wave that propagates upstream to

force the shear layer. The feedback cycle is then com-

pleted.

A similar mechanism exists for orifice screech.

The air separates from the surface at the inlet to form a

cylindrical jet with a well-defined shear layer. Any dis-

turbance at the inlet propagates down the jet as a dis-

placement of the shear layer which then develops into

r in vortices. When these vortices reach the trail-

ing edge, they generate an acoustic pulse. This pulse
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travels back upstream to force the shear layer at the

inlet, thereby forming a feedback loop.

Assume that the phase shifts of such disturb-

ances are zero at the inlet and exit. Let tH be the time

it takes for a disturbance of the jet to reach the exit

H 4.2

where a is the ratio of the convection speed of such dis-

turbances to the mean jet speed V; L is the length, i.e.

thickness of the orifice.

Let tA be the time it takes for the resulting

acoustic pulse to reach the inlet. There are two paths,

one, through the quiescent annulus, the other through the

jet column.

In the annulus the phase speed is c, in the jet

it is c- V. Hence, the characteristic acoustic time is

S=t L 4.3
2 

A2

The feedback frequency is inversely proportional to the

period to complete the cycle

__C= C__4.4

t +t L I+c0 MAl 8
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t +4 L.5
A2 H

In the experiment the points lie along the path

given by Eq. 4.4 and only these curves are presented.

That is, the acoustic feedback through the annulus

accounts for the observed frequencies. Overtones are

assumed to be integral multiples of the fundamental. The

convection speed was set at six tenths the mean flow

speed (a= .6).

Consider the behavior of the axial pipe fre-

quencies with flow. The fundamental is

C 4.6

2 L +.G6

It has been observed that for screech excitation

to occur the feedback frequency f must be approximately

that of the axial pipe mode. Consider the interaction of

the nth feedback mode with the qth axial acoustic mode.

Setting the two frequencies equal yields a cubic equation

in the Mach number.

gives
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\3 D + / 4- 1 n 2 + 1.2 0 --7

The real valued solution to Eq. 4.7 for 0 i M 1 1 gives

the Mach number about which the screech is centered. The

intersection of the solid and dotted lines in Figs. 4.2,

4.3 and 4.4 represent a graphical solution to Eq. 4.7 for

selected values of R with a = .6. The cubic equation can

be solved exactly. Care must be taken since the equation

reduces to a quadratic when D = qn

Some comment on the choice of convective veloc-

ity is in order. The most compelling argument is the

experimental evidence of Wagner and Neuwerth.
4 9 '5 0

Through schilerian photography they determine the propaga-

tion speed of the r'i' vortices to be approximately

51
six tenths the mean flow speed. Anderson finds the

value of a= .53 in a similar study. Analytic calculations

by Handa54 and Bilanin55 predict that the phase speed of a
C p prox ma-cte Ir

shear layer disturbance propagates at A half the mean flow speed.

This can be explained qualitatively by consider-

ing a vortex sheet at the jet boundary. Imagine these

vortices to be solid rollers whose bottoms move, without

slip, at the jet velocity and whose tops roll, without
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slip, on the quiescent air. The center of mass of these

rollers will then move a half the jet velocity.

4.2.6 Cavity Mode Excitation

The screech studies of thin orifice plates

separated by a 4 132" cylinder (Fig. 4.8) demonstrated the

excitation of additional tones. These are due to the

coupling of the feedback instability to the cylinder modes.

This is demonstrated by examining one velocity in great

detail.

The case under review is represented in Fig. 4.8

as triangles that point down, i.e., at Mach .34. The

excited modes have nodal lines that lie along the radii.

These divide the cylinder into a set of "pie slice"

regions. Only those modes with an odd number of nodes

are excited; these are called the antisymmetric modes.

First, one establishes that the phenomena is a

screech instability. In Fig. 4.10 the spectra for a simple

orifice is presented. In Fig. 4.11 the spectra of the hole

tone at Mach .33 is presented. The similarity in line

shape and the magnitude of the fundamental, in comparison

to the harmonics, shows that the screech mechanism is

similar. At Mach .34, only 5 mm Hg larger pressure drop,

the cavity modes are excited (Fig. 4.12). The feedback

frequency should increase about 3% in a shift of flow

speed from Mach .33 to Mach .34 (Eq. 4.4). This slight
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shift is enough to make the screech tones coincident with

the third, seventh and eleventh antisymmetric cylinder

mode.

Consider the modes of oscillation of a disk of

air bound by a hard walled cylinder of radius R . The

pressure field inside the cylinder is the sum of the

natural modes.

4.8P(r, )Pn s T ', r)eLC?

Where Jn is the Bessel function of the first kind. The

walls impose the boundary condition

'~ - C
G

iz. k=='

4.9

hence

"S 0 n

Thus the natural frequencies are

nS~ nS 2 X'IZo

where

c'($' )=O0J- 0S
4.10

4.11

The prime on J

respect to its argument.

36and Stegun . One needs

signifies differentiation with

The notation follows Abramowitz

the values j n' for odd n up to
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17. For values greater than n= 8 tables are not easily

found, and it proved necessary to calculate the roots

jn l by computer.

Let the radius R = 5.54 cm, the speed of sound

C= 34,000 cm and the length L=1.27 cm. To place the
sec

predicted screech notes at the observed values, it is

necessary to assume a=.547. An equivalent change would

be to lower the Mach number to nine tenths its nominal

value of .34 and keep a=.6. Table 4.1 presents a

numerical comparison of the observed frequencies of excita-

tion to those given by Eq. 4.11.

Based on the ratio of observed-to-calculated

frequencies, it is clear that all but the first peak

coincide with the antisymmetric cavity modes. There is,

however, a numerical discrepancy that increases with

increasing frequency. At the last observed peak the dif-

ference is 250 Hz. The error in the frequency measurement

is approximately 100 Hertz, hence the difference cannot be

attributed to experimental error in the frequency measure-

ment.

One possibility is that the radial frequencies

are altered by the presence of the air jet in the center.

An accurate. calculation should include this modification.

Another possibility is that the error lies in the value

c
of . The ratio of the observed-to-calculated

0
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frequencies is correct to 2%. A 2% error in the radius

R0 , approximately 1 mm, would then account for the dis-

crepancy.

The data can be reduced in a manner independent

of . This is to consider the ratio of the screech
2R0

tones to the screech tone of maximum amplitude, observed

at 4.2 kilocycles. If Eq. 4.11 is correct, this ratio

Jn,lshould be given as ,-. Table 4.2 presents the data

3 ,1
reduced in this fahsion. The numbers agree in absolute

value within an error of .05.

Only the first peak differs significantly.

Inspection of Table 4.1 shows the observed peaks are

separated, on the average, by 2.1 kilohertz. It is most

probable that the first peak is the difference tone due

to the interaction of the excited modes with their nearest

neighbors. All the other peaks are clearly due to the

excitation of the antisymmetric cavity modes.

It is instructive to recall that this entire

section is devoted to the screech behavior at a single

velocity. A complete analysis of the data given in Fig.

4.8 requires a similar study at each velocity. Such a

task is beyond the scope of this chapter. One point that

comes out is that the screech depends, in some fashion, on

the distance of the wall from the jet column. This effect

is incorporated into an analysis of the shear layer sta-

bility of a jet and is presented .in the appendix.
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TABLE 4.1

Data for Screech Coupled to Cavity Modes

Screech Cavity Observed
Frequency Frequency Frequency fobserved
Eq. 4.4 Eq. 4.11 Fig.4.12 f

n, s jn, s kHz kHz kHz calculated

1,1 1.84 1.80 2.1 1.17

3,1 4.20 4.20 4.12 4.2 1.02

5,1 6.42 6.30 6.3 1.00

7,1 8.58 8.40 8,42 8.4 1.00

9,1 10.71 10.51 10.6 1.01

11,1 12.83 12.59 12.59 12.7 1.01

13,1 14.93 14.65 14.7 1.00

15,1 17.02 (16.79) 16.70 16.8 1.01

17,1 19.11 18.75 19.0 1.01

This table demonstreates the coupling of screech to the

radial acoustic modes.
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TABLE 4.2

Normalized Data for Screech Coupled to Cavity Modes

jn f observed
screech ' 1 bsrd calculated ratio

I f__observed___

n,s harmonic 3,1 3,1 observed ratio

1,1 .44 .50 .88

3,1 1 1.00 1.00 1.00

5,1 1.53 1.50 1.02

7,1 2 2.04 2.00 1.02

9,1 2.55 2.52 1.01

11,1 3 3.05 3.02 1.01

13,1 3.55 3.50 1.01

15,1 4 4.05 4.00 1.01

17,1 4.55 4.52 1.01
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4.3 Impingement Screech

4.3.1 Impingement Screech, Apparatus and
Procedure

A screech mode was also observed in the experi-

ments on the excitation of transverse modes in ducts. It

was shown that the initial peaks in the observed spectra

were due to the selective response of the duct at its

cutoff frequency. Further, it was proved that the spectra

should smooth out in the high frequency limit, i.e., when

a large number 'of modes can propagate. However, intense

pure tones were observed in this frequency regime at flow

velocities above Mach .6. These are here identified as a

feedback instability, termed impingement screech, due to

the obstruction of the air jet by the opposing wall of the

duct.

Wagner49 has shown that a jet incident on a flat

plate screeches. This occurs only if the plate is less

than 6 diameters from the jet nozzle, and if the Mach

number is greater than .6. He collated the acoustic fre-

quency with the shedding of ring vorticies on the jet

column. He concludes that the screech is due to "feedback

between the flow and the pressure field generated by it."

Neuwerth50 later extended the work to include screech at

supersonic velocities.

The nozzle they used is not quite the same as'

the orifice plate or pipe used in the duct experiments
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(Figs. 3.4 and 3.5). Their apparatus was a converging

nozzle followed by a short length of pipe (Fig. 4.13).

Herein it is shown that impingement screech occurs using

an orifice plate and a 60" pipe. That is, the slight

variations of inlet conditions in the duct experiments

from Wagner's nozzle do not suppress impingement screech.

The apparatus used here is a plenum chamber 60"

long and 12" wide. At the exit the chamber converges to

a diameter of 4". A " thick orifice plate with a hole

tapered to 45* to a " diameter was attached to this end.

In the second experiment a 60" pipe with a " inner

diameter was fixed to a plate that was, in turn, secured

to the chamber exit. A square flat plate, 4" on a side,

was placed in the air jet at various distances from the

exit. The plenum pressure is raised to force air out at

a constant rate.

Before investigating the screech, some data on

the turbulent-generated noise is taken. A qualitative

presentation is given so as to provide spectra for compari-

son to the turbulent excitation.of cavities.

* 4.3.2 Free Jet Spectra from Pipes and Orifices

The variation in free space spectra with jet

flow speed is given here. This is done to demonstrate that

the qualitative spectra of free jets is the same for both

a long pipe and an orifice. For a more detailed analysis
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the reader is referred to von Gierke's38 studies. He shows

that the spectra can be scaled by introducing the dimen-

sionless frequency

SD C--J 1 4.12
7~Co

and the power

4.13
gA d 9 D C-

where

c sound speed in the jet

c sound speed in the quiescent air

dW
dW spectrum of acoustic power output

from the jet

D jet diameter

The difference between c and c0 accounts for the tempera-

ture differences between the jet and free space.

The spectra presented here was measured 24" from

the jet axis in the plane of the exit nozzle. Fig. 4.14

presents the data for a jet from a tapered orifice. Fig.

4.15 presents the data for a jet from a 60" pipe. The

shape of the spectra is the same in both cases. Observe

that the level increases monatonically with jet flow

speed.
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The point is that the qualitative features are

not altered by the initial level of turbulence. Air from

a tapered orifice is laminar at the exit. The turbulence

is caused by the mass entrainment at the jet boundary.

The air jet from a long pipe is turbulent at the exit. The

level, of course, is altered by mass entrainment at the

jet boundaries. The differences at the exit do not alter

the character of the emitted acoustic spectra. These

observations reinforce those made in the study of turbulent

sources in ducts. In the duct, the spectral line shape was

similar for both the orifice and pipe jets.

4.3.3 Turbulent Sound Level Increase due to
the Obstruction of the Flow by a Flat
Plate

The increased broadband noise due to obstructing

the flow is demonstrated. First, the sound generated by

an air jet from a tapered orifice is measured. Next a

flat plate is placed in the air jet and the sound is

measured again. Here the distance of the plate from the

orifice is great enough, 9 jet diameters, so that screech

does not occur.

In Fig. 4.16 the spectral sound intensity for

this experiment is given. At the same flow speed, the jet

incident on the plate is much louder than the free jet.

Actual shifts range from 7 to 12 DB depending on the fre-

quency. The line shape of the spectra is unchanged. This
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indicates that the mechanism for sound generation is

similar in both the free jet and the obstructed jet.

This is not the case if the plate is within 6

jet diameters of the orifice. In such cases screech

occurs at selected flow speeds. The resulting spectra

shows intense narrow band peaks at the screech frequen-

cies. These peaks have the same shape as those observed

in the high frequency duct spectra (Figs. 3.10, 3.11 and

3.12).

There are, of course, quantitative differences

in the generated sound when the flow is obstructed. These

differences are of secondary importance in establishing

the mechanism for sound generation. One must first

separate the linear effects from the feedback effects

before addressing the more quantitative aspects of the

study. It is with-this intent that the arguments concern-

ing spectral line shape are presented. For a more detailed

study of the sound generated by air jets on flat plates,

we refer the reader to the work of Olsen, Miles and Dorsh.62

4.3.4 Impingement Screech from a Tapered Orifice

Here we reproduce impingement screech, observed

by Wagner 9 and Neuwerth 50, using a jet from a tapered

orifice impinging on a flat plate. The apparatus is shown

in the middle diagram of Fig. 4.13. The pressure drop

across the plate was set at a ratio of .60 which gives a
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flow speed of Mach .83 (Eq. 4.1). The separation between

orifice and plate was altered at constant flow speed.

The orifice is mounted with its flat side toward

the compressor. The direction of air flow through the

orifice is the same as in the duct experiment. The ori-

fice plate is " thick, and the hole tapers at 450 to the

nominal diameter of ", such orifices do not screech by

themselves. The separation "x" is measured from the inner

surface to the obstructing wall.

Screech was observed for separations from 3/16

to 2 " , i.e., from .88 to 5 jet diameters. For separa-

tions greater than 5 jet diameters no screech is observed.

49 50This result agrees with Wagner and Neuwerth's observa-

tion that the obstructing plate must be less than 6 dia-

meters from the nozzle.

In Fig. 4.17 the observed screech frequencies

are plotted against the inverse of the plate separation.

If the screech is associated with an axial acoustic mode

parallel to the jet, the frequency should scale as 1; i.e.,x

the data points should lie along straight lines. This

happens; however, the screech frequencies are only approxi-

mately equal to the cavity frequencies nc In fact, two
2x

screech modes appear. All other frequencies can be inter-

preted as harmonics or difference tones based on these two

modes, which have been arbitrarily labeled F and FB.
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Examine the implication of the separation range

to interpret the screech observed in ducts. Recall that

in the duct experiment the orifice plates were mounted so

that the distance between the jet inlet and the opposing

wall was 1 %". This separation is the sum of the duct

height, 1 ", and the plate thickness 1/8" . The orifice

plates had diameters of ", " and 1". All of these

screeched. Clearly the " and 1" orifice are in the

separation range established by Wagner 9. However, the

" orifice is located 6 jet diameters from the opposing

wall, i.e., just outside the separation limit for screech

to occur in free space.

One can account for this if Wagner's49 explana-

tion of the separation limit is examined. For screech to

occur the plate must be inserted in the laminar core of

the jet. In free-space the core extends from 5 to 6 dia-

meters from the exit. In an enclosed space the core

persists for longer distances. Consider the flow field

of an ideally expanded jet in free space. At .the exit

the turbulence is zero and the streamlines parallel over

the entire jet diameter, apart from the boundary layer.

Downstream the region of no turbulence tapers off to 0 at

5 to 6 jet diameters. As this occurs, the mean diameter

of the jet gets larger (Fig. 1.2).

What happens is that the shear layer accelerates

the air surrounding the jet. Consequently, instabilities
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in the process of mass entrainment have caused the turbu-

lent regime to grow. If the laminar core is to be

reduced in this fashion, an unimpeded entrainment air by

the shear layer is essential. In a closed space such as

a duct the walls impede the flow of mass into the jet.

Consequently, the laminar core lasts for larger distances.

The screech of the " orifice occurs at such a large

separation from the plate because the length of its

laminar core is longer in a duct.

4.3.5 Coupling of Impingement Screech to
Cavity Mode

Neuwerth50 and Wagner 49 show that screech occurs

without any influence from adjacent acoustic cavities.

It was shown earlier that the orifice screech instability

can be altered by the influence of an adjacent acoustic

resonator. Herein such coupling is demonstrated for

impingement screech.

Screech was observed, in one instance, when air

entered the rectangular duct from a 60" pipe. This

occurred at a duct to atmospheric pressure ratio of .45

with a screech frequency equal to 9.1 kHz.

An attempt to reproduce this result was

made using the apparatus diagramed at the bottom of

fig. 4.l3 Here the jet exits from the pipe onto the flat

plate; no other reflecting surfaces are nearby, hence
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there are no adjacent acoustic resonators. Screech was

observed at

Patmospheric Frequency
Pplenum kHz

.44 11.0

.45 11.0

.47 12.2

.48 12.3

The pressure drop is about the same as that in the duct,

but the frequency is off by at least 2 kHz.

To remedy the frequency disparity, a second

plate was fit snugly over the end of the pipe. In this

manner an acoustic resonator is formed between the nozzle

and impingement plate. The distance between plates is

1 g", hence the cavity modes are at 4.46, 8.92, 13.39 and

17.85 kilocycles. The observed screech frequencies

occurred at

Patmosphere Frequency
Pplenum kHz

.44 9.00 18.00

.45 9.00. 18.00

.48 8.85 17.65

.50 8.70 ---
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That is, the screech was shifted to a frequency coinci-

dent with the second and fourth cavity modes. These

correspond to a standing pressure wave whose wavelength

is equal to, and one half, the separation between plates.

In addition, one finds that the observed screech fre-

quencies are coincident with that frequency observed in

the duct.

4.3.6 Direct Comparison of Impingement Screech
to Screech in Ducts

Herein a direct comparison of impingement screech

is made to screech seen in the duct experiments. In the

duct, the separation between the inlet and the opposite

wall was 1 5". The same separation between the exit and

impingement plate was set in a test using the apparatus

diagramed in the middle of Fig. 4.13. The flow speed was

varied and the resulting screech frequencies were measured.

As in the duct, the screech only occurred for flow speeds

greater than Mach .5.

In Fig. 4.18 the screech frequency is plotted

as a function of flow speed. Data from both the duct and

compressor test is presented. From the figure it is evi-

dent that .the data in one experiment compliments that in

the other. That is, the screech occurs at approximately

the same flow speeds and frequencies.

The solid lines represent the first four

acoustic modes for two plates separated by 1 ". The
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observed screech frequencies are clustered about these

lines. Such a comparison is only approximate, as the

data of the previous section has shown that the fre-

quency still depends somewhat on the flow speed.

187



5. CONCLUSIONS AND RECOMMENDATIONS

Herein the generation of sound by turbulent flow

in cavities is examined. Two types of cavities are con-

sidered: the axial modes of a pipe open at both ends,

and the transverse modes of a rectangular duct. Experi-

ments are performed to measure the acoustic spectra of the

flow-generated noise. A linear theoretical analysis,

based on an isotropic model of the turbulent fluctuations,

is developed to predict this spectra. Certain nonlinear

phenomena, due to the alteration of the source flow by

the emitted sound, are identified. The conditions neces-

sary for such instabilities are examined.

To introduce the linear procedure, calculations

are carried out for a turbulent source in free space.

Here some of the limitations of the model are discussed.

One assumes a finite volume of turbulent fluid. An iso-

tropic pattern of noise sources is created continuously

at one face of the volume and is convected at a finite

velocity to the downstream face where it disappears.

Implicit in this description is a neglect of turbulent

shear and refraction effects.

To make the comparison between alternate pro-

cedures explicit, detailed calculations were carried out.

The results derived from Lighthill's1 ,2 quadrupole model

using time domain techniques are given in Eqs. 1.51 and
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1.52. Similar results are derived from Ribner's equivalent

distribution of monopoles, again using time domain analysis

(Eqs. 1.43 and 1.44). Ribner's model is used again, this

time using frequency domain analysis to derive the spectra

of the radiated pressure (Eqs. 1.30 and 1.31). Frequency

and time domain techniques give precisely the same answer

for Ribner's source model. Aside from the turbulent shear

interaction, these are the same results as one gets from

Lighthill's model. This is providing Ribner's turbulent

pressure sources(p are assumed identical to the local

2
turbulent kinetic energy fluctuations p v .

An interesting extension of this analogy would

be to assume a second distribution of monopoles whose

strength is proportional to p0Vv, where V is the mean

flow speed and v the fluctuating velocity. This would, in

some fashion, account for the turbulent shear effects.

However, care must be taken to introduce the angular

4 2
dependence 2(cos 6 + cos 6), where 6 is the angle between

the observor and the direction of flow. It is recommended

that theoretical studies be continued to establish this

analogy.

Another problem that needs further work is the

inhomogeneities in the turbulent field. Ribner 63has

already used the variation in characteristic scales of

the turbulence to collate data on the free space spectra.
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He observes that a single correlation function cannot

account for the entire spectra. Nonetheless, limited

portions of the spectra can be described assuming a single

correlation function. Here attention is placed on the

mid and high frequencies. It is recommended that the

minimum number of separate correlation functions needed

to account for the observed spectra be established.

In the second chapter an experimental study of

the turbulent excitation of axial pipe modes is given.

Such effects have been reported before 30 ,56 , but were not

conclusively identified. Identification is accomplished

by showing that the interval between modes depends on

flow speed and length precisely as an axial mode (Figs.

2.3 and 2.4). Previous observations concerning diminished

mode excitation at high flow speeds are confirmed here.

To account for these observations in detail, a

frequency domain analysis of sound generation by isotropic

turbulence in pipes is developed. To carry the analysis

to a point where only a statistical description of the

turbulence is required, it proves necessary to introduce

a random phase assumption. It is demonstrated that the

influence of the Fourier phase coefficient is identical

to localization of the source (Eqs. 2.48 and 2.52). Thus,

neglecting phase terms is equivalent to averaging overall

possible source positions. Sound generation from the ends
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of the pipe can then be predicted from a statistical des-

cription of the source field (Eq. 2.54). Direct compari-

son to the experimental results (Figs. 2.8, 2.9 and 2.10)

demonstrates that radiative damping accounts for the

diminished excitation at high flow speeds.

It was assumed that the losses at the ends are

purely radiative. From this assumption the transmission

coefficients out the pipe ends can be derived from the

measured pressure reflection coefficients. It may be

that some other loss mechanism acts at the ends. This

will alter the transmission coefficient. It is recom-

mended that an experimental .study of the transmission

coefficient be performed. It is further recommended that

the behavior of the exit pressure reflection coefficient

be examined in greater detail to account for some small

discrepancies.

In the third chapter an experimental study of

the turbulent excitation of the transverse modes in ducts

is presented. Two effects are established. The first is

that the level of radiated sound increases in discrete

jumps at the first few cutoff frequencies. For fre-

quencies slightly greater than the nearby cutoff, the

level decreases- smoothly. The asymmetric shape of these

curves is predicted using frequency domain techniques

(Eq. 3.38).. Again it proved necessary to introduce a

random phase assumption to carry the calculations to completion.
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In the ideal case the level jumps should be

infinite at the cutoff frequencies. Damping requires

that these jumps be finite as is indicated in Eq. 3.45.

However, visco-thermal damping alone cannot predict the

magnitude of the observed jumps. It is recommended that

the mechanism that limits these level shifts be estab-

lished. In particular, the approximation that the

acoustic contribution to the Reynolds stress

is negligible is not valid when the predicted acoustic

velocities are infinite.

The second effect established by these experi-

ments is that the spectra smooths out at frequencies

where a large number of modes can propagate. In fact,

the spectra strongly resembles the spectra of sound

generated by turbulence in free space. To understand the

smoothing, recall that damping effects make the peak

height finite. At frequencies of large modal density a

new mode cuts on before the sound level has diminished

from the level jump at the previous cutoff frequency.

This overlap of peaks causes the curve to smooth out. A

quantitative analysis based on this idea is given in

Eq. 3.46.

The problem can also be approached by calculat-

ing the average radiative resistance of the duct. In

the high frequency limit the radiative resistance
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approaches that in free space. Herein, this concept is

applied to the interpretation of acoustic spectra in

rectangular ducts. An extension of the limit to ducts of

arbitrary shape is given in Eq. 3.55. In short, the duct

spectra is similar to the free space spectra since the

duct and free space response are approximately the same

in this limit.

In the experimental phase two anomalies occurred

that are identified as nonlinear effects. Orifice screech

occurred in pipes having small length-to-diameter ratios.

Impingement screech occurred in ducts when the air jet

impinged on a nearby wall. Further experiments were per-

formed to establish the conditions necessary for such

instabilities. It is shown that the emitted acoustic

field reacts back on the jet so as to alter the primary

flow field. A kinematic analysis of orifice screech

proved adequate to predict the frequency dependenceon

length and flow speed (Eq. 4.4). Further it was demon-

strated experimentally that the feedback cycle is unstable

only if the feedback frequency is approximately that of an

adjacent axial acoustic mode. From this observation one

can predict the velocities and frequencies at which the

feedback cycle is most likely to be unstable and thereby

produce "screech" (Eq. 4.7).
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It is further observed that variations in geo-

metry that produce additional acoustic modes can markedly

alter the screech frequencies. In the appendix the shear

layer instability of a circular jet subject to an acoustic

perturbation in the presence of boundaries is derived.

The dispersion relation for such a disturbance is deduced

(Eq. A28), and its limiting forms are presented (Eqs. A3g,

A39, A42 and A43). Phase speed calculations of the shear

layer instability indicate that the coupling of feedback

to the resonator may be through the spatial gradients.

That is to say, if a resonator is present, all spatial

variations are dominated by the characteristic wavenumber

of the resonator. The influence of such coupling is to

alter the phase speed of the shear disturbance (Eqs.- A48

and A49). Preliminary experimental observations are in

qualitative agreement with this result. It is recommended

that a quantiative experimental study be initiated to see

how the phase speed is changed when a resonator is present.

It is further recommended that one establish whether or

not the phase speed is adequately described by linear

analysis.

In summary, a study of flow-generated sound in

cavities has been performed. For linear effects, a

detailed prediction of spectral line shape of the radiated

sound is possible. For nonlinear effects, some important
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aspects of how sound couples to the flow that generates

it are established.
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APPENDIX: STABILITY ANALYSIS OF THE PERTURBED JET IN THE

PRESENCE OF BOUNDARIES

A.l Introduction

The collective oscillations of the jet play an

essential role in screech instabilities. It is therefore

useful to calculate the motion of the jet subject to an

acoustic perturbation. Herein the linear analysis of a

forced jet surrounded by a quiescent annular region

bound, in turn, by a hard-walled duct is presented. The

theory is developed to the point where a rather complex

dispersion relation must be solved. Rather than solve

the equation numerically, several limiting cases are pre-

sented. These correspond to a free circular jet, a two-

dimensional shear layer in the vicinity of a hard wall,

and a free two-dimensional shear layer. The solutions of

the linear equations in these limits have been given by
T 57  58 54 52

Tam, Sedel'nikov5, Handa4, Covert and Bilanin2, and

Miles59

One should first establish what portion of the

acoustic pulse couples to the shear layer. Three possi-

bilities exist, the particle displacement, the particle

velocity, and the pressure perturbation. Chanaund and

43
Powell demonstrate that the pressure perturbation forces

the shear layer. They force a circular jet from an ori-

fice with an acoustic wave from a loudspeaker. This was
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done in the study of the hole tone, where a second ori-

fice plate is mounted downstream. They find:

With the sound from the speaker (located
on the jet axis) disturbing the jet, the flow
pattern was observed to be symmetric and simi-
lar to that found with the plate and no speaker.
The speaker was then moved to a position per-
pendicular to the jet axis, and again a
symmetric pattern resulted! Since the acousti-
cal wavelength was much greater than the
nozzle diameter, the particle motion lateral
to the jet must have been in phase across the
jet diameter and so, if the jet were appreciably
sensitive to the motion, sone asymmetry of the
disturbances, at least, should have occurred.
Since they did not, it appears that the axi-
symmetric jet is predominantly pressure sensi-
tive.

In an acoustic wave the particle velocity and

displacement are parallel to the direction of propagation.

The acoustic pressure, being a scalar field, has no such

directionaltiy. With the loudspeaker downstream, the

propagation direction is parallel to the jet. With the

loudspeaker perpendicular to the axis, the propagation

direction is perpendicular to the jet. If the jet were

sensitive to either the acoustic displacement or velocity,

some changes should have occurred by changing the direc-

tion of the incident acoustic wave. Since no changes

were observed, one concludes that the acoustic pressure

forces the jet.

A.2 Problem Statement

Consider the perturbation of a compressible,

inviscid, cylindrical jet in the vicinity of a. rigid
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boundary. Let the jet and the boundary be coaxially

symmetric and have radii R. and R0 . Assume the mean

JJ^0 A
velocity V = V z is uniform for all r< R. and zero for

all r >R .. Here the jet axis lies along the z axis, and
J

r is the radial distance from this axis. Let the shear

layer at R. be driven by a localized pressure disturbance
J

at z= 0. Assuming isentropic conditions gives

V =l D 2  Rr < . Al

C at

where the '-- subscript refers to points in the jet and

the + to points outside the jet. Here

D ~ Y_

t 9t

Let the shear layer displacement from the equi-

librium position R be labelled (Rt r Momentum con-

servation requires that the radial particle accelration

be equal to the radial pressure gradient at the shear

layer. Thus

D2
~'Dt ~ - F?1 A3
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r~fb I A4

On the jet axis the pressure must be finite,

hence

4,.,00 A5
ro

The hard wall demands that the radial particle

velocity be zero at r =R0 . Equivalently

0 A6r Z

Continuity of pressure at the shear interface

requires

A7p= ( -R

where A6(z)ei(n(P -wt) is the acoustic forcing term at the

inlet.

A.3 Integral Solution

To solve Eqs. Al to A7, introduce the Fourier

Laplace transform. This procedure is identical to Tam's

analysis of the free jet. Thus

A8
0 - Wt
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?=C 0>0&g - (h a- J2 t)
A9

whose inverse transforms are

--

W.+ iG'

d 
--co, *

d~2
-I-

/ C --12
Pt

Transforming Eqs. Al and A2, assuming ini tial

conditions are zero, gives

2.,
-/A A2

-(2 - K 2  .

c.

+ ,< 2
A13J2

where A and A are the quantities in curly brackets,

in A12 and A13 and

G? r rar r
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Continuing the transforms of Eqs. A3 to A7 gives

/

'2 -J

r~ ~
'I

A14

A15

0 A16

A17

A18r= f'

To solve A12 and

I

r ar r

/~ (n4
Al3, assume P+ p(r)el which gives

1)

/2 / () 2
pa) .n! ptsr) =

r2
p+~(r)

or

(r)_ f(y r)2 . + r) p1 (r) = 
-p

The solution to A19 is the nth modified Bessel

functions of the argument x= ru , where the +'or - holds

for r>R. or r<R. Eqs. A14 through A19 are the
J )

boundary conditions the solution must satisfy. Explictly

one has
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P-=
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P4 =f-*+ I'
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p (r)= fQr) + c< r i.r)j
+ 

IJ

r<I?. A20

r.>Rj A21

where A, B, a and are numerical constants to be deter-

mined by the boundary conditions. The factor has been

used to facilitate the expansions in the limiting cases.

The notation of Abramowitz and Stegun36 is used for the

Bessel functions.

That the pressure be finite at the origin

(Eq. A16) requires a =0. The hard wall (Eq. A16) requires

=3 . / (_ X ) A22

where the prime signifies differentiation with respect to

the argument x. Substituting A20 and A21 into A14 and

A15 gives

A23

Ln:

K.. -) Z x J

I .j . 2

/ T V ) + r7n x /"
+ ,+P A24

./3 T(x) + K rX)
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Eliminating the pressure by Eq. A18 from A23 and A24

gives

/ A

(-2 - u ) A (k, 12) A25

where

2

Ix) +-L4 (x) .)-

X=p {.

A26

xzM- -

Assume that both the jet and annulus have equal specific

heat ratios and that unperturbed static pressures in the

jet and annulus are equal. From the identity C= P

it follows

A27

which implies

.C4 2L.-K /33 *~ I cnMx)

In4. Is + L Kt

+ A

+

a 2

IS..
n~ A28

The solution for the shear layer displacement

is

= -A C%32fd &.
~

(203- W) 1 (K,12)
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The general form of the amplifying solution is

C<

where w is the frequency of the acoustic perturbation,

and k is the solution to the dispersion relation

A(k,w) = 0.

A.4 Comments on the Evaluation of the Integral

The integral given in A29 is, in general, quite

difficult to solve. The customary approach is via the

theorem of residues. It is essential, therefore, to

locate the roots of the dispersion relation A(k,w) =0.

A detailed analysis of the evaluation in the limit of a

two-dimensional free shear layer is provided by Miles. 5 9

Bilanin and Covert52 have solved the dispersion relation

numerically for a -two-dimensional shear layer located

near a hard wall. Similar numerical solutions for the

free vibrations of a supersonic cylindrical jet given by

58 54 57SedelJnikov and Handa Tam has demonstrated that

so long as the radius of such a jet is large compared to

the wavelength of the disturbance, Miles59 solution can be used.

Handa provides a detailed analysis of the integration

procedure once the dispersion relation is solved.

Such detail in carrying out the integrations

is not warranted in this analysis. Experiments by

49 51Wagner and Anderson demonstrate that the perturbations
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of subsonic jets "roll up" to form ring vortices that

propagate down the jet column. It is these vortices that

are essential to screech. The process of formation of

these vortices is not contained in linear analyses such

as this one.

The argument is that such vortices can form

only if there is an amplifying disturbance of the shear

layer. The hydrodynamic analogue is the formation of

droplets by the amplifying oscillations of a water jet,

61
first described by Rayleigh6. The key is to identify

the amplifying roots of the dispersion relation. This is

done analytically by the asymptotic procedure used by

Tam57

A.5 Removing the Duct Wall

54 58
Handa and Sedel'nikov have analyzed the

free oscillations of a circular jet. Their analysis can

be recovered if one assumes the wall is infinitely far

from the jet. To evaluate this limit, the following

expansions are used
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ja ) j
x

(x ) =

'1?' 27X

px ) = C

2lX

jalw(j <ltd-'

These limits are used with x= A+ . By definition, R
+ 0 .0

is a real number. This implies that the restriction on

the argument x becomes a restriction on )+. The restric-

tion is then larg A+1 < T or R (A+) 7 0. The only place

that the wall diameter enters into the dispersion rela-

tion A29 is in the parameter a defined in Eq. A22. Thus

S--: . x- 0 CO I'(x)

-2 x

= 0
A31
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To make this notation coincide with Handa's, introduce

his parameters

k 0 C2

C..

and note

(X) 2

Kx ) 2= i r e
2

Hence

T (Js(.
t)

7r < V /x.fir

~(-U +i.) 2-
H,~kr) - J. )

Substituting Eqs. A31, A32 and A34 into Eq. A26 and

setting A(k,w) = 0 gives

207

A32

I,

H ax)

A33

(x )< fr
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n- A35

which is identical to Handa's5 4 Eq. 4.39, page 84, and

Sedel'nikov's 58, Eq. 6 , page 73.

A.6 Simplification to Two Dimensions

The two-dimensional dispersion relation for a

shear layer near a wall can also be recovered. This was

first solved by Bilanin and Covert52 and applied to the

study of screech from air flow past rectangular cutouts.

To do the expansions properly, one must specify the duct

radius R= R. +D, where D is the distance between the

jet and the wall. This distance is kept finite while R.

tends toward infinity. The expansions needed are

A36

/3 lTrI@) -tiKn2)

rD)
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Substituting Eqs. A36, A37 and A38 into Eq. A28 gives

A39

C y -K coxrA JA, D) + AA- K
pA [ 11p55.A-

which is identical to Bilanin's55 Eq. 3.30, page 23, and

Bilanin and Covert's52 Eq. 16, page 349. Note, however,

that subscripts + and - are opposite those used here.

This stems from the difference in subscript used to

define which region is moving.

To get Miles59 dispersion relation for the free

oscillations of a two-dimensional shear layer, let the

distance D tend towards infinity. In this limit

+ A40

To recover Miles' solution exactly, introduce

the transform

A41

29 C
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where E = is the phase speed normalized to the speed

of sound in the quiescent media. Thus

a (K~f) K -3 (I4 3
--- * 00A42

-iK 159
which is equal to times Miles,. Eq. 5.3a, page 545.

The mathematical theory of vortex sheet insta-

bility was rigorously solved by Miles. In his analysis,

he rejects spurious roots found by previous authors.

Hence most modern authors use his paper as a reference

for exact analysis of the shear layer instability. The

zeros of Eq. A42 have been extensively studied by Miles,

who concludes that: a) the vortex sheet is unstable if

V < (c+2/3 + c_2/3) 3/2, b) the function a++ a_ has no

complex zeros and hence does not give rise to unstable

poles, c) in the unstable case the zeros of the function

(a+ 8-(J) +1) are the two complex conjugate roots of

2 2
0+ 8- -1).

For subsonic velocities one can approximate

c+ ~c . In this limit

a (, W)= o

gives

2A43
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Take advantage of the symmetry, and let

c - and j = $ . Substituting into Eq. A43 gives

2 is udr 2 i the at 2 T

which is quadratic in the quantity -2 Thus

3Z 2 -7X~ IT= It~ LL~

Substituting

kc+.

for x and Y gives

_M .. M/+8 4- 1 +1 M"

2 4j)

which is the solution of the dispersion relation Eq. A28

in the limit X <<Ri, << 0 , and c+ = c_, where A is the

wavelength of the disturbance. Some comment can be made

on the approximation c+ ~ c_, where c_ is the speed of

sound in the jet. Assume the jet accelerates isentropi-

cally through an orifice. Then the speed of sound in

the jet is61 .
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C= 2- Y A45
+ 2

when the orifice is choked c_ is minimum and equal to

.913 c+, where c+ is the sound speed in the surrounding

air (see Landau61 Eq. 80.18). Thus the approximation is

good for subsonic flow.

The dispersion relation yields complex roots

for all Mach numbers less than /T = 2.83. The imaginary

part of c is maximum at M = /3 1.73 and has a numerical

value of .5. The imaginary portion increases monatonically

from zero to the maximum as the flow speed increases from

Mach 0 to Mach 1.73, then it decreases monatonically to

zero as the flow speed increases to Mach 2.83.

A.7 Comments on the Application of the Theory to
Screech

The most important point of the analysis is that

the shear layer is unstable at subsonic speeds. Some

ambiguity is inherent in further interpretation. This is

because only the ratio of w to k is specified in Eq. A44

and not the absolute values. To interpret the relation,

consider the limiting cases of w real and then k real.

Recall that the'shear displacement is given by
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For &/ real one has

O (A46

For . real one has

O A47

Specify that the acoustic pressure perturbation

is harmonic in time at frequency w, where w is a real

number. From Eq. A46 it is clear that the wave grows

spatially in the downstream direction. This interpreta-

tion is used by Tam in his study of supersonic jets.

Given w, it follows that

AA

C+ C+

cujc*.12 A48
T +

where the second root of Eq. A44 was chosen so that

k < 0, and the wave amplifies downstream.
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Assume, on the other hand, that the acoustic

perturbation grows in time, at a rate to be determined.

Let the spatial perturbations be dominated by the spa-

tial variation of the adjacent acoustic resonator. For

an orifice one would require the wave number k to be

real and equal to that of the axial acoustic mode.

Given k, it follows that

7,/, = k e- = k C.

A49

where the first root of Eq. A44 was chosen so that

w.> 0 and the wave grows in time.

Concentrate on the phase speeds for each limit.

If the forcing acoustic perturbation does not grow in

time, the phase speed of the shear layer disturbances

is approximately V. If, however, the coupling is through

the spatial gradients, the phase speed of the shear layer

V
disturbances is . Recall that the orifice data was

fit with a phase speed equal to .6 V. This suggests

coupling through the wave number
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Also recall the experiment on the coupling of

impingement screech to the axial acoustic modes (section

9.3.5). There the screech frequency shifted down by about

2 kHz when the plate forming the acoustic cavity was

fitted to the end of the pipe. One interpretation of

this shift is that the phase speed of the disturbances

on the jet was lowered.

These observations suggest that the influence

of an acoustic resonator on shear layer instabilities is

to determine the spatial gradients and thereby alter the

phase speed of such instabilities. Before proceeding

with such studies, the theoretical phase speed must be

derived in greater detail. For orifice screech the

acoustic wavelength is approximately the same length as

the jet diameter and the two-dimensional approximation

X<< R. is no longer valid. It is therefore necessary to
J

solve Eq. A28 numerically.

The interpretation is only preliminary.

Physically, it is clear that the formation of ring vortices

play an essential role in screech. If these are formed

close to the inlet, the time of transit down the-jet is

determined by the propagation speed of such vortices.

This speed may or may not be close to that given in Eqs.

A48 and A49. One cannot reach a conclusion based on the

linear analysis. If the vortex speed is independent of
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the initial perturbation that forms such vortices, then

the only important point is that the shear layer is

unstable at low flow speeds.
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FIGURE 2.6 -- Inlet pressure reflection coefficient.
Experiment from Ref. 30.

233

.9 -

.8 -

06

.5.64

.3

---



-THEORY, NO LOSSES
Eq. 2.31

EXPERIMENT, LOSSES
Eq. 2.33
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FIGURE 2.7 -- Exit pressure reflection coefficient.
Experiment from Ref. 30
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FREQUENCY KILOHERTZ

FIGURE 2.8 - Comparison of experimental and theoretical spectra at Mach .10.
(L = 12", D = 1/2", 0 = 00, R = 2")
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FIGURE 2.9 -- Comparison of experimental and theoretical spectra at Mach .14.
(L = 12", D = 1/2", e = 00, R = 2")
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FIGURE 2.10 -- Comparison of experimental and theoretical spectra ht Mach .40.
(L = 12", D = 1/2", e = 0*, R = 2")
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FIGURE 2.11 -- Strouhl numbers used to compute the spectra.
The data points are determined by a least
squares fit of the theory to the experimental
'spectra. The velocity and diameter at the
narrowest point of the inlet contraction are
used to compute the Strouhl number.
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FIGURE 2.12 -- Correlation time based on the Strouhl numbers.
The data in Figure 2.11 is used to compute the
correlation time by Eq. 2.63.
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0*0
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RELATIVE SPL DB

FIGURE 2.13 -- Polar intensity plot for a 2" pipe. Pipes that
screech, such as this one, have variations in
the intensity with angle. This is .to be compared
to the uniform distribution of intensity for
longer pipes. Zero DB corresponds to ambient
lab noise which is approximately 65 DB C weight..
(L=2", D=1", 0 as indicated, R=12")
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FIGURE 2.14 -- Polar intensity plot for a 4" pipe.
(L = 4", D = 1", R = 12")
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FIGURE 2.15 -- Polar intensity plot for a 6" pipe.
(L = 6", D = 1", R = 12")
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FIGURE 2.16 -- Polar intensity plot for an 8" pipe.
(L = 8", D = 1", R = 12")
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FIGURE 2.17 -- Polar intensity plot for a 10" pipe.
(L = 10", D = 1", R = 12")
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FIGURE 2.18 -- Polar intensity plot for a 12" pipe.
(L = 12", D = 1", R = 12")
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FIGURE 2.19 -- Rolar intensity plot for a 14" pipe.

(L = 14", D= 1", R= 12")
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FIGURE 2.20 -- Polar intensity plot for a 16" pipe.
(L = 16", D = 1", R = 12")
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FIGURE 2.21 -- Polar intensity plot for an 18" pipe.
(L = 18", D = 1", R = 12")
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Photo of the experi-

mental apparatus used

to study the turbulent

excitation of trans-

verse modes in ducts.
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LBS/SEC.

DIAMETER

DIAMETER

1" DIAMETER

0 1/2" DIAMETER

FIGURE 3.2 -- Hot' wire velocity calibration. The mass
flux is calculated from the pressure drop
across the orifice assuming there is isentropic
flow. This is compared to the mass flux in
the duct measured with the hot wire. Note
the coincidence of standard end mount data
points with measurements for side mounted
orifices. This shows that the jet velocity
can be calculated from the pressure drop
across the orifice (Eq. 4.1).
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FIGURE 3.3

Photo of the micro-

phone holder used to

detect the mode shape

of the radiated

sound.
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FIGURE 3.4

Photo of orifice

plates used to f6rm

air jets (1/4", 1/2"p

and 1" diameters).
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FIGURE 3.5

Photo of 60" pipe

with 1/2" inside

diameter used to

form air jet.
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10

FREQUENCY

15 20 25
KILOHERTZ

In the high frequency range the smooth duct spectra
resembles the free space jet spectra.

2 3 4 5

FREQUENCY KILOHERTZ

In the low frequency range asymmetric peaks at the
cutoff frequencies are evident.

FIGURE 3.6 -- Comparison of low and high frequency spectra
in a rectangular duct. The air jet generating
the sound is from a 1/2" orifice mounted on
the 4" side of a 1-1/2" by 4" duct. The flow
speed in the jet is Mach .44.
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FIGURE 3.7 -- Low frequency spectra using a 1/4" diameter
orifice.
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FIGURE 3.8 -- Low frequency spectra using a 1/2". diameter
orifice plate.
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FIRGURE 3.9 -- Low frequency spectra using a 1" diameter
orifice plate.
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FIGUER 3.10 -- High frequency spectra using a 1/4" diameter
orifice plate.
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FIGURE 3.11 -- High frequency spectra using a 1/2"
diameter orifice plate.
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FIGURE 3.12 -- High frequency spectra using a 1" diameter
orifice plate.
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FIGURE 3.13 -- Reduction of low frequency spectra by
Strouhl frequency. Here

fs .2 2 5.7 kHz.
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FIGURE 3.14 -- Reduction of low frequency spectra by
Strouhl frequency. Here

f= .2 = 2.5 kHz.
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FIGURE 3.15 -- Reduction of high frequency spectra by
Strouhl frequency. Here

f= .2 v 1.9 kHz.
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& MIKE

FIGURE 3.16 -- Sound level versus mean flow for a 1/2"
diameter orifice plate. Levels at first
cutoff frequency (1.6 kHz) are compared to
those at a frequency between the first and
second cutoff (2.5 kH).
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FIGURE 3.17 -- Sound level versus mean flow for a 1/2"
diameter orifice plate. Two frequencies
at which screech occurs are shown.
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FIGURE 3.18 -- Low frequency spectra from an initially
turbulent jet. The jet is from a 60" pipe
of 1/2" inside diameter.
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IGURE 3.19 -- High frequency spectra from an initially
turbulent jet. The jet is from a 60" pipe
of 1/2" inside diameter.
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FIGURE 3.20 -- Low frequency spectra observed when jet and
duct axis are parallel.

268

140

130

120

z
>4

0

C4

110

100

90

80

70

60

._MIKE JET

MACH

.88

.66

... 4.

.30

2,01,0MODE

I I I I _________________________ I-I~

0 1

yl



140

130
MICROPHONE DOWNSTREAM

PSTREAM

120 -

W 110 MACH

>-- 1.00

100 I .. ~ ~ . :.L L

S90

80
.25

S 70 .

60,

0 1 2 3 4 5

FREQUENCY KILOHERTZ

FIGURE 3.21 -- Comparison of upstream and downstream
radiated acoustic spectra.
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FIGURE 3.22 -- Transverse variation of radiated sound levels at fequencies
selected to stow the mode shape.
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FIGURE 3.23 -- Influence of mode shape on detected spectra.
At the duct center, the microphone does not
detect sound radiated in the 1,0 mode.
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FIGURE 3.24 -- Radiation resistance Rs of a simple source of
radius a at point xb y0 0 in a rectangular
duct of sides b, d. Numbers by each
peak indicate the m, n of the mode resonating.
Dashed curve is radiation resistance from same
source in free space. (Ref. 14)
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FIGURE 3.25 -- Comparison of theoretical and experimental spectra at Mach .6
for a 1/2" diameter orifice plate.
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FIGURE 4.1 -- Experimental apparatus used to generate screech.
For screech the length to diameter ratio must

be less than two. In these experiments the

orifice plate is used.
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FIGURE 4.2 -- Screech frequency versus flow speed for a
1/4" long orifice plate.
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FIGURE 4.3 -- Screech frequency versus flow speed for
a 1/2" long orifice plate.
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FIGURE 4.4 -- Screech frequency versus flow speed for a
1" long orifice plate.
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V 4 I

FIGURE 4.5 -- Summary of tests made to determine the
length to diameter ratio necessary for
screech.
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FIGURE 4.-6 -- Summary of tests made to determine the length
to diameter ratio necessary for the modified
hole tone.
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I GURE 4.7 -- Screech frequency versus flow speed for the
modified hole tone with a 5/8" inside diameter.
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FIGURE 4.8 -- Screech frequency versus flow speed for the
modified hole tone with a 4-11/32" inside
diameter.
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FIGURE 4.9 -The suppression
screens.

of the orifice screech by
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FIGURE 4.10 -- Typical orifice screech spectra -(Mach -.48).
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FIGURE 4.11 -- Screech spectra for the modified hole tone at Mach .33.
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FIGURE 4.12 -- Screech spectra for the modified hole tone at Mhch .34.
All but the first peak are shown to coincide with cavity
modes which have the indicated number of nodal diameters.
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FIGURE 4.13 -- Experimental apparatus used to generate
impingement screech.
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FIGURE 4.14 -- Free space spectra from a 1/2" diameter orifice plate.
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FIGURE 4.15 -- Free space spectra from a 60" long pipe with a 1/2"*
inside diameter.
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FIGURE 4.16 -- Increased sound level due to obstruction of flow
by a flat plate.- The orifice has a 1/2" diameter,
the flow speed is Mach .8.
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x

FIGURE 4.17 -- Impingement screech frequency versus
distance to plate. The orifice has a 1/2"
diameter, the flow speed is Mach .8. The
two dominant lines are labeled F and F
arbitrarily. All other tones arg interbreted
as the sum or difference of these two modes.
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FIGURE 4.18 -- Direct comparison of impingement screech to
screech observed in a rectangular duct. The
dotted lines are the acoustic cavity mode
frequencies for two plates separated by 1 1/2".
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