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ABSTRACT

Herein the generation of sound by subsonic turbulent air
flow in cavities is studied. Two types of cavity modes

are considered; the axial modes of a pipe open at both

ends and the transverse modes of a rectangular duct.
Experiments were performed to measure the acoustic spectra
of the flow generated noise. A linear theoretical analysis,
based on an isotropic model of the turbulent fluctuations,
is developed to predict this spectra. Certain nonlinear
phenomena (screech), due to the alteration of the source
flow by the emitted sound, are identified. The necessary

conditions for such instabilities are examined.
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SYMBOL

NOMENCLATURE

DESCRIPTION

Radius of cylinder, disk, or sphere

Cross sectional area _
Pressure perturbation amplitude (Appendix)
Duct width ,

Radiated pressure amplitude

Speed of sound (3,4000 cm/sec)

Speed of sound in the guiescent air
(Chapter 4)

Speed of sound in the quiescent air (Appendix)
Speed of sound in the jet (Chapter 4)
Speed of sound in the jet (Appendix).

Acoustic phase speed in a moving fluid...
c + V cosb -

Normalized phase speed of a shear layer
disturbance (Appendix) W

ke
Duct width +
Pipe diameter

Denominator in Green's function for an
open ended pipe with flow

Decibels

9 5
3¢ T Vi 3%

Convective derivative ...
Frequency

Frequency of nth harmonic
Strouhl Frequency
Frequency range

Interval between axial mode frequencies...
c(1-M) 2 '
2(L+80+8L)

Green's function v

nth order Hankel function of the first kind
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SYMBOL

kHz

= R

8 8 B e

=

g B =z o

NOMENCLATURE (cont'd.)

DESCRIPTION

Acoustic intensity
nth order modified Bessel function

th

S root of first derivation of Jn

Bessel function of the first kind

)
Wavenumber ceeg

Wavenumber for propagatlon in the direction
of flow ""_CFHWT
Wavenumber for propagatlon opposite to the

direction of flow ... __®
c{1l-M)

Axial component of the wavenumber in a duct
Handa's ipo (Appendix)
Handa's iu_ (Appendix)

Kilohertz
Wavenumber

nth order modified Bessel function

Point source location in a pipe
Pipe or orifice length

Integer

Unit mass of air

Mach number ...g
Integer

Integer

Total pressure
Acoustic pressure ... see Table of Fourier
transforms on page 130.
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SYMBOL

NOMENCLATURE (cont'd.)

DESCRIPTION

Turbulent pressure

Monopole source strength in units of
(volume/unit volume)/time

integer

Designates the highest propagating mode at
frequency w

Total equivalent monopole source strength
Distance to observation point

Distance to source point
Pressure reflection coefficient at pipe inlet
Pressure reflection coefficient at pipe exit

Turbulent velocity correlation

Turbulent pressure correlation ... see Table
of Statistical transformson pages 131 and 132.

Integer
Strouhl number

Monopole source strength in units of volume/ |
time,

Time

Retarded time

Time interval

Pressure transmission coefficient
Acoustic velocity

Acoustic velocity normal to a duct wall in
the region of zero mean flow

" Acoustic velocity normal to a duct wall in

the region of mean flow
Velocity amplitude of a spherical source

Total fluctuating velocity «e V+ou
Turbulent velocity
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NOMENCLATURE (cont'd.)

SYMBOL DESCRIPTION

v Mean velocity

w Total velocity ... V+w ... V+ v + u
X Observation point

X, Source point

Yy Source point (Chapter 1)
(x, ¥y, 2) Coordinates of the observation point

(xo'yo’zo) Coordinates of the source point

Axial coordinate in a duct
2 ka sin 6 (Chapter 2)
a Distance shift in the x direction in the
correlation function
Correlation length
Ratio of convection velocity to mean velocity

8 Constant from boundary condition at wall
(Appendix)

B Distance shift in the y direction in the
correlation function

Bx' By Specific acoustic admittance

Y Ratio of spedific heats

Y Distance shift in the z direction in the
correlation function

8 Delta function

8 Inlet end correction for a open ended pipe

o .

with flow

3y, Exit end correction for a open ended pipe
with flow »

€ " Small quantity _

1 Distance shift in the correlation function

computed in the lab frame of reference
n Shear layer displacement (Appendix)
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SYMBOLS
)'an

)

)

NOMENCLATURE (cont'd.)

DESCRIPTICHN

Mode wavenumber in a hard wall duct

Angle between flow and observer ‘

Radiation resistance of a simple source in a
duct. '

Wave length of sound

Mean square amplitude of the cross duct mode

Coefficient of viscosity

‘[_‘(%;Ez)iz + K2 (Appendix)

J— (9 )2 + K2 (Appendix)
C,

Kinematic viscosity ... u/p
Distance shift in the correlation function
computed in the jet frame of reference

Eddy volume

3.14159...
of a circle

ratio of circumference to diameter

Radiated acoustic power
Total dehsity ... Po +P° +p
Mean density ’

Turbulent density fluctuation
Acoustic density fluctuation

Density‘of acoustic modes in a rectangular
duct at the wave number (kx,ky)

Mode wavenumber in a second absorbing duct

Mode wavenumber in a sound absorbing duct
Summation symbol
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SYMBOL

Q D D E X € & ©

A
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Re

SUB-
SCRIPTS

0
i
i, ¥
L+

NOMENCLATURE (cont'd,)

DESCRIPTION

Time shift in the correlation function
Axial angle in cylindrical coordinates
Phase of Fourier coefficient _
Characteristic function for a cross duct mode
Coefficient of heat conduction

Angular frequency ... 2rf

Source volume

Angular frequency (Appendix)

Order of magnitude

Average of N measurements

Real part

Pipe inlet
Incident wave
Tensor component

Acoustic wave upstream of the source point
propagating in the direction of flow

Acoustic wave upstream of the source point
propagating opposite to the direction of flow

Pipe exit

m, hth transverse mode in a duct
th

n

nth harmonic

order

Source point
qth transverse mode in a duct
Reflected wave

Acoustic wave downstream of the source pbint
propagating in the direction of flow

Acoustic wave downstream of the source point
propagating opposite to the direction of flow

Strouhl frequency
Transmitted wave
Axial component
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NOMENCLATURE (cont'd.)

SUB-

SCRIPT DESCRIPTION

+ Propagation in the flow direction

+ Points outside the jet (Appendix)... r>Rj

- Propogation opposite to the direction of flow
- Points inside the jet (Appendix) ... r<Rj
SUPERSCRIPT

- Vector

~ Unit vector

 — Time average
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INTRODUCTION

In the now classical theory of sound from turbulent

1, 2 . . -
’ boundaries were not considered.

flow by Lighthill
Further, it was assumed that the turbulent flow field was
not altered by sound emission. |

For closed systems, such as éavities gnd wave-
guides, discrete modes may be excited. It is possible
that the coupling between the flow field and acoustic
mbdes is strong enough to alter the primary flow field.

Under such conditions acoustically induced flow instabilities
such as whistles occur. The objective of this thesis is

to study the turbulent excitation of duct modes and the
conditions for possible instabilities.

Chapter One reviews the theory of turbulent
excitation of sound in free space. The induced acoustic
field is calculated in three ways. The sound field is
determined by time-domain Green's function technique for

both Lighthill'sl’ 2

guadrupole source model and

Ribner's>’ 4 equivalent distribution of monopoles. The
omission of turbulent shear interactions in an isotropic
monopole model of the turbulenée is demonstrated. The
sound field is also determined by a frequency-doméin Green's
function technique for a monopole distribution. Time and
frequency domain calculations yield identical results for
the monopole source distribution. However, the frequency

domain technique allows the analysis to be extended to

20



systems with boundaries in simple fashion.

Chapter Two examines the excitation of axial
pipe modes by turbulent flow theoretically and éxperiment-
ally. The experiment is performedbby drawing air through
a cylindrical pipe. The observationé demonstrate that
mode excitation diminishes as the flow speed inéreases.
This is attributea to end losses which increase with flow
speed. A Green's function, based on the measured pressure
reflection coefficients, is used to predict the variation
in spectra with flow.

Chapter Three demonstrates the excitation of
transverse modes in pipes experimentally. Air is drawn
through a small orifice into a rectangular duct. Pro-
nounced asymmetric peaks are observed at the first few
cutoff frequencies. The asymmetric nature of the
peaks and relative spectral intensity are again explainéd
by Green's function techniques. For high frequencies,
where a large number of modes can propagate; the spectra
resembles the free-space jet spectra. In this frequency
range, the duct radiation impedance ' asymptotically
approaches the free space impedahce, hence the similar
response.to similar source distributions. |

Chapter Four examines feedback instabilitieé,
cases where the emitted sound field alters the jet flow

itself., The chapter concentrates on screech tones of
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circular orifices having length to diameter ratios

between one half and two. The frequency dependance of the
screech on Mach number and length is explained by a
kinematic analysis of the feedback loop. It is further
demonstrated that the frequency of the feedback instability
must be approximately equal to that of an'acouséic made

for screech to océur. Similar observations are presented
with regard to air jets impinging on plates.

In conclusion two mechanisms exist whereby the
acoustic energy from a turbulent jet can be concentrated
at select frequencies. The first is the selective
response of a medium with boundaries to a random source.
The spectral line shape for such cases is accounted for
by Green's function techniques. The second mechanism is
the feedback instability which requires coupling of the
jet flow to the acoustic field. Here the modification |
of the jet flow must be considered to determine the excita-
tion frequencies.

It is recommended that future work be done on
the screech instability. The influence of the acoustic
cavity mode on the feedback instébility should be examined
in greater detail. In particular, the convection speed
of jet column disturbances with and without adjacent |
resonators should be determined experimentally. Further-
more, the mechanism which limits the amplitude of the

screech should be determined.
22



l. FREE SPACE JET NOISE

1.1 Introduction

Aerodynamic noise may be defined as that noise
which is generated as a direct result of airflow without

any part due to the vibrations of solid bodies.5

The
basic theory of aerodynamic sound generation and its
application to noise radiated from turbulent jets was first

1, 2 He considers a

given in two papers by Lighthill.
fluctuating hydrodynamic flow covering a limited region
surrounded by a large volume of fluid which is at rest,
apart from the infintessimal amplitude sound waves
radiated by the turbulent flow. The exact equations
governing the density perturbations in a turbulent, viscous,
heat conducting fluid are compared with the approximate
equations appropriate to an inviscid non heat conducting
media at rest. The difference between the two sets of
equations is treated as if it were an externally applied
source field which is known if the flow is known.

The forcing terms fall into three groups: a
Reynolds stress due to turbuleqt momentum convection,
a term due to heat conduction and one due to viscous
stresses.. Not all terms contribute equally to the
acoustic field, only the Reynolds stresses need be
considered. It is a well established fact that iﬁ

6, 7

turbulent flow ' the ratio of inertial to viscous
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stresses, the Reynolds nunmery~fVD§M , 1s usually quite
large, at least in most aero-acoustic applications. We,
therefore, neglect viscosity. If we further assume that
the flow emanates from a region of uniform temperature
the effects of heat conduction ought to be the same order
of magnitude as the viscous effects. This is ﬁroviding
the Prandtl numbef,\fbpo/;( is of order one, in air
;f7“4§’= .73. Our conclusion is that only the Reynoids
stress contributes to the acoustic field. Lighthill
further assumes that the turbulent flow is incompressible
in the source region. To calculate the acoustic field
one needs the statistical distribution of the Reynolds
stresses

Ribner simplified the source field by observing
that in low speed turbulence Lighthill's quadrapoles combine
to behave as simple sources proportional to Ei:Zl, where
‘™' is the local pressure due to the turbulence. He
observed that the effective volume of the fluid element
in an unsteady flow fluctuates inversely as the local
pressure. Part of this dilation is the sound source, the
other part propagates the sound.‘ From incompressibility
it follows that the Reynolds stress iS‘balanced,by‘the
spatial derivatives of the turbulent pressure field. |
The remaining unbalanced term is the second time deriva-

tive of the turbulent pressure. It is this term which

24



is the source of acoustic waves.,

The simplification of source terms is essential
if one is to make any progress in theory. A weak point of
aeroacoustics is that it assumes the detailed structure
of the turbulent field is known. This is not the case,
either theoretically or experimentally.

Considef, for example, an experiment to determine
the statistical distribution of the Reynolds stresses.

To do this one measures the turbulent velocity fluctuations
vh v, at (x, t) and v; vy at (x+?, t+7) where ? and ?¥ are
the spatial and temporal separation of the measurement.

To evaluate the correlation one must carry out such
measurements at all separations 2 and T, for all permu-
tations of the indicies.

Ribner's analysis provides a basis for
requiring only the properties of the scalar pressure
field. The problem reduces to the measurement of(P(x, t)
and(P(x+2, t+T) without additional permutation terms,

If Ribner's model is used, and the turbulent
fluctuations are assumed to be isotropic, the'sqund from
the interaction of turbulence with the mean shear is
neglected. Ligbthill calls this interaction the aéro-
dynamic sounding board, Lilley8 uses the phrase "sheaf
noise" to distinguish it from the "self noise" of turbu-
lence alone. 1In this thesis Ribner's model is used and
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only the "self noise" is considered. To point out the
omission, the sound fields from the source dilation model
are here compared to that from the Reynolds st’resses.10
In both instances the time domain Green's function is used.

The technique of manipulafing the scalar source
terms with the frequency-domain Green's function is
introduced first., The results are identical to those
using time-domain techniques. The exercise is- performed
to elicit the assumptions implicit in the frequency.
domain calculation. One finds, for example, that the
spatial Fourier transform represent first order retarded
time effects. These éoints, are best demonstrated by
comparison to the time-domain calculations.

Frequency domain techniques let one extend
the theory to cases with boundaries. Such effects ére
considered by Ffowcs-Williams and Hawkings9 and also by
Curlelo using time domain analysis. They use a free
space Green's function. The extra terms in the integral
expression dﬁe to not satisfying the boundary conditions
must be simplified and interpreted. 1If, however, one
works in the frequency-domain, the Green's funcﬁion is
comparatively simple. Differehces in spectra between
regions with ana without boundaries are explaihed by
differences in Green's function. That is, the medium

responds differently to identical source functions
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when boundaries are present,

With this in mind one simplifies a turbulent
jet by assuming homogeneity and isotropy of the fluid
fluctuations. One further specifies that the form of the
correlation for such fluctuations is Gaussian. The
predictions of such a distribution are}compared to those
of dimensional analysis and to experimental results.

The same source correlation will be used to describe
fluctuations in enclosed regions. This underscores the
fact that a class of spectra variations can be attributed
to variations in the response of the medium as 6pposed

to changes in the turbulent sources.

1.2 Turbulence as a Source of Sound

1.2.1 Review of Classical Acoustics
1, 2, 7

Lighthill's theory of turbulent noise
is developed by analogy to classical linear acoustics.
It is instructive, therefore, to review the solution
to the acoustic response of a media with distributed
volume sources 3 (Y, t). The lipearized equations of

mass and momentum conservation for an inviscid compres-

sible fluid are

2f +£2U - %9 1.1

2 ¢t 5 X;
1.2
fL 3 U + 2. p -0
2 ¢ 9 X;
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Here5>, p, and u; are the acoustic density
pressure and velocity perturbations;j% is the average

density. One further assumes adiabatic conditions
2
Ap=Ccdeg . 1.3

Take the time derivative of Ed, 1.1 and subtract the

divergence of Eq., 1.2 to find the forced wave equation

2 2 2 )
C V- io9s R Ay 1.4
dt 9T
Consider the associated equation for a point
source. Let (¥, t/) be the source coordinates and (¥, t)

be the field coordinates. One needs the Green's func-

tion G(¥, t|¥, t7) such that

2 vie _ 226G _-S@&-¢) §(p- &) L5

a2
The s@lution is
G( X tipth=_1t ; SE-¢+1X=2) 1.6
L7 ClR-pl c

The solution to the acoustic field of a distributed

source is then +T/2

(X¢) ”ngt'c(xjf/gt’)og (7 ¢) |
f .fzr-T/z fg%, - 1.7
e fff o 2,
frct Mo ®-y1 et t'= t-;gé_f}

where £ is a volume which contains the sources.

i
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1.2.2 Derivation of Lighthill's Equations

This section reviews the acoustic analogy

1, 2,7 He considers

approach introduced by Lighthill.
the sound radiated from a small region of fluctuating
flow embedded in a large volume of fluid which is at rest.
The equations governing the density pérturbations in the
real fluid are compared to those appropriate to a uniform
media at rest, which coincide with the real fluid outside
the region of turbulence. The difference between the two
sets of equations will be considered as if it Qere the
effect of an external source field, known if the flow is
known, hence radiating sound according to the laws of
linear acoustics.

Consider the complete Navier Stokes equations

for fluid flow with no external sources. They are

Mass Conservation

Momentum Conservation

QP Y+ g% = Py, 1.9
2 t a X 2 X,
: J J
Wheréﬁ;“/'and p. are the total density velocity and
pressure. In classical acoustics we assume particle

velocities are small so that squares of time dependent

terms are neglected.
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In the analogy approach one compares the complefe
equations of motion (Eq. 1.8 and 1.9) to the linearized
ones (Eq. 1.1 and 1.2) so as to group non linear terms
on the right hand side of the wave equation. To do this
rewrite the momentum equation as |

2 - . _2
2p%* C2f C -Zn(f“f“f * P C A 10

2t X

Proceeding as in the linear case one has

2 2 __2 2
2p - ¢ v = 3 TL
-_— ; 1.11
9t° 5 29X

where
| - 2

The procedure yields a wave equation in which

the non linear terms appear as source terms. An integral

2

form is obtained by replacin 2g in Eq.1.7 with 2
y Tep g SL 5 5 d Xi3X;
T... As the complete Navier-Stokes equations have not been

1]
solved in differential form one will encounter similar
difficulties in the integral form. It is necessary to
simply Tij'
T,. is composed of three parts. The first,

13
f vL’ \\3 , represents the convection of momentumf“{ at
velocity vj. At low flow speeds it is reasonable to
replaceﬁ’ by the average density‘fp . One further

neglects the acoustic component of the fluctuating
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velocities v, and Vj, these velocities are assumed‘to be
due only to turbulence. The second term, (H%J - E%J&J)
represents the viscous contribution to the stress tensor.
For high Reynolds numbers this term is negligible, compared
to G v; vy. The third term,(ﬁfcfr)gq represents the effect
of heat conduction, i.e., the departure from the
adiabatic pressure density relation in Eq. 1.3. For
Prandtl numbers C?Ql) this contribution is the same as
the viscous one, and therefore negligible. The solution
is 2 ‘
o= Jorfor sseipend vy

“T/2 _ gﬁ'gn 1.13
Where~§ is the acoustic density fluctuation and A vj the
turbulent velocity perturbations. An interesting approach was
-used by Kraichran lland later by Mawardi.12 They point out
that Lighthill's equation is an integral equation for
the unknown densitj@f*j%L assuming the medium is inviscid
and non heat conducting. If vy vj are assumed to be
independent of density Eq. 1.13 results as the first

approximation in an iterative solution.

1.2.3 Ribner's Equation

Ribner3 reduces the source field to an equivalent
distribution of’monopoles. He starts with Eq. 1.11,

ignores heat conduction and viscosity, and explores the
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consequences of the approximate incompressibility of the
turbulence. The key to the analysis is to assume the
perturbation in the pressure consists of two parts; the
pseudosound ‘p' generates the sound, the acoustic

pressure 'p' propogates the sound. He restates Eg. 1.1l

as ‘ _
L, _9.2_(@+p)— f_(giu p)=_az__(§>,\{lf)— 2 (P-fa)V ¥
c® at? X, 2% 3% ax ¥ 1.14

For an incompressible £fluid

2 _p= 9% (aVv) 1.15

That is, the pressure gradients balance the Reynolds

stress. Subtracting Eq. 1.15 from Eg. 1.14 gives

2 2 — 2 :
2 p - 2 p = L 22 P
2 1.16
c? 5+2 3X; c? 9¢? |
where he neglects _L 9_2___.(f . fo)‘{ V . For low
C* aXx;3X;

speed turbulence, e.gqg., jetsJup to moderate speeds,OD‘/D:ﬁfj

within the turbulence and the neglected term is much

2 . .
less than |—- Ja—-OD 12 in a separate analysis,
shows that this term is &(M°) and therefore small com-

. Mawardi,

pared tO'OD, which isC??MZ), for subsonic flow.
Ribner offers the following_interpretétion of
Egq. 1.16.

"For acoustic purposes we replace the turbulent
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flow by an equivalent acoustic media at rest containing
the appropriate dilations, For such a medium

fo dilation rate = - —3-—1_-
where j% is the mean value of the local densityﬁ? . On
a certain understanding ... either side of this
equation has the same local sound geneérating effect as
a flucturating source of matter injected at the rate
j%gﬁf‘ g%f - But it is the time rate of @ ¢ that
constitutes the effective acoustic source strength ...

the result is

. . 2 o 2 V
S g o 2F T g LT
Here the notation is changed to conform to present usage,
jf is the density fluctuation associated with
turbulent pressure fluctuations .
The separation of the pressure field into
two parts needs additional comment. The concept of the

13

pseudosound  was introduced by Blokhintsev. The

pseudosound field dominates within and near thé 3
turbulent region;‘ It decays, however, as [X f-whereas
the acoustic pressure decays as lxl-{ Consequently,

the acoustic pressure dominates in fhe far field.

Two other differences exist that allow one to separate

'03 from p. First, is the relation of preséure to velocity.
The fluctua;ing turbulent pressure 'Oj is proportional

‘to the square of the turbulent velocity fluctuation
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(§)Q{ﬁ,vz) whereas the acoustic pressure 'p' is directly
propcrtional to the acoustic velocity fluctuation

(P== cu). Turbulent pressure fluctuations are convected
only in the direction of the mean flow at approaximately
the average flow speeds. Acoustic waveé travel in all
directions with speeds equal to ¢ + 7 cos ©, where © is
the angle between the vector to the obser&ation point and
the direction of mean flow. In summéry, the pseudosound
field has ‘the characteristics of a pressure field in an
incompressible flow, being dominated by inertial rather

than compressional effects.

1.3 A Comparison of Three Calculations

1.3.1 Monopole Source, Frequency-Domain Green's
Function

The acoustic field of a turbulent jet is calculated
‘here using a frequency-domain Green's function. Morse

14 (Chapter 7.1) consider the sound radiated from

and Ingard
a random distribution of volume sources. The source term
they consider is proportional to a first time derivative.
Ribner's3 work indicates that the source term should be
proportional to a second time derivative; t+he extra deriva-
tive will give an additional factor of w2 in the intensity.
‘The results of Morse and Ingard are correct for a distri-
bution of volume sources, however, the monopole sburce
characteristiés of turbulent jets are different from

this simple model, to see this compare Eg. 1.4 to Egq. 1.16.
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The appropriate modifications are introduced in this
section.

The procedure is to first discuss the fepresenta—
tion of random sources, then relate this representation
to the calculated acoustic field. The source field
can only be described in statistical fashion. On the
other hand, the instantaneous acoustic field depends on
the instantaneous distribution of the sources. The struc-
ture of the wave equation embodies this fact in requiring
an instantaneous description of the source field. The
theoretical task is to reduce all formulas to those
which only require statistical information.

Mathematically, one computes the instantaneous
acoustic pressure from a complete descripfion of the
source. The statistical properties are extracted by
computing the magnitude of the Fourier pressure amplitude.
It is shown latéer that the amplitude of the Fourier spectra is
proportional to the Fourier transform of the source cor-
relation, the most often used description of random fields.

The technique has its analogue in laboratory
procedure. The microphone detects the instantaneous
value of the acoustic field. The signal is then Fourier
analyzed and averaged to provide a reéord of the statistical

behavior of the acoustic field. Hence, the parallel in
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in deducing aVerage properties from a instantaneous ones.
One first discusses the representations of a
source (P(y, t).  One can equivalently describe its time

behavior at point ¥ by its Fourier transform

e { wt
Plw, P)= 1 | dt @p,t) € 1.17
27}/ -T2

To extend the description to spatial variables one takes
the multiple Fourier transform
7%2 o~
Pl )= L Hj‘" A S 1.18
67" ’/2
where the space integration is over the source.volume Q.
Now consider;the statistical time behavior of

the source at point ¥. Continuity requires a measurement
at one instant be closely related to a measurement made at
the next instant. As the time interval between two succes-
sive observations ‘increases one expects the measurements
to be less and less related to one another. These expecta-
tions are quéntified by considering the relation between
two observations §eparated by an inteval 77 fof all

timeé t. Taking the average of the product of these

two observations yields the source correlation
T/2 '

RAY, T)= Lo 'jdf PEt) PG T+ AT

T— oo

The value of R at T'= 0 is the time average source strength.
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To extend this function to spatial coordinates
consider a similar set of measurements between two points

separated by a distancerz .

. T/2
R, 7, T) = fw_%_gg;;/z PG ) PF 7, ¢57) 120

If the source is homogeneous it is indépendent of uniform
translations of the coordinate system. One defines, for

homogeneous systems,
T72

ARGz Lo L \at ([ 06,0 e 5,200

T~ T T

A2~ oo _
If there is mean flow the turbulent pattern will be
convected at some finite speed. With flow (R_(rZ’,’t‘) will not
be peaked a ‘2\'= 0, this is because an eddy located at
¥ at t = 0 has moved a distance V % by the time
t

=7 . One compensates for the convection by defining the

NS
correlation in the system /e’ = Z—Z‘V?:

RC 52) = Rep- 27 ©) .22

Again, consider the point ¥. Since the descrip-
tions (%) and P (w) are derived from the same source
function (P () one expects the two to be related. Follow—

14

ing Morse and Ingard (Chapter 1.3) one computes the

Fourier transform of 6{_
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I Ath@)c = L far " far P& ) pit+)
o 272 T/Z
(Wt t+T/2 .
= 1 fdt PHC” Jdu Plv)e”
2NT T/2 t-Tre
2 1.23
The Fourier transform of the auto-correlation function
over time T is %f times the spectra amplitude kpauﬂof
@(f).
The extension to spatial coordinates yields
+ T ve L&fb’-l/z-?’
26 pe, BT = 1 j /Q(??)c 7
LT remt :

L~

A shift to the system / in the frame of the jet flow,
gives
T/2
Y ~ 2 M -
/6 77 [Pl h)T = f gf /502(;7)6‘“’(/ C";";)S /3/?
2T e’
where M is the Mach number and © the angle between the

observer and mean flow.

One can now compute the pressure radiated
from a stochastic distribution of monopoles via frequency-
domain techniques: Start with the forced wave equation,

Eq. 1.16. Take the Fourier transform to find

2 ' 2 Y- -y
W) plw,®) + vV pwi) = (w) PWX)
C _ C 1.26
The Green's function for the Helmholtz equafibn is
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G,KIp)= ¢
$ 7 IR=) | 1.27

from which one finds

P, ¥ = Sﬁdﬂ/ e @(
R g ™Ix-yl
~C CR X ( ) IT}l“SL k- ’/CPOw'}7)
4 rx
= otk (g)z(emg Oa(u,E) 1.28
7% \C
where
E=2k o
Now compute the magnitude of p(L¢,?) to find
Iply, )¢ = w ¢(/ ? (277)?/43@, R)1° 1.29
X

2
-However,kfﬂuggnlis proportional to the multiple Fourier
transform of the autocorrelation GLof(P, by Eq. 1.2%we
have

2 4 LW~ LZ’ :
c/lgmx] 4q2 "7

Transforming to,; coordinates by Eg. 1.25 gives

’P(u,xjez (%})%(g”xf P f772 fﬂa’}'@/g 2)ct Mw‘iS)a.lé &

1.3.2, Monopole Source, Time Domain Green's
~ Function

The radiated pressure is here calculated for

the same monopole source field, this time using a time-
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domain Green's function. The radiated acoustic pressure
- p, which is a solution to Eq. 1.16, is determined by the
Green's function Eq. 1.6, note that G is multiplied by

c2 since we are calculating the pressure and not the

density.
PE) = e, M‘“’G“/r, t) 1, 28, PEE
| * c? 9 1.32
g / d 92 A/]t;)
where t' = t - §:Z ZFxct jf(_{z _—t-'z ﬂ

. . 1 s .
Here the dlstance|§~ ol is approximated by 3’ t is

the retarded time. Now compute the convariance of P

P,T) = P&E) PG, ErTI

- a /\/,/ 7
= I ﬂdymdy 9° G’(r,f)aet 7e2)

(477'x) 1.33
where t' = ¢ - lS?-E'I
C

f//: t - [x'_ :
Here bars indicate time averages and primes indicate
source coordinates.

To proceed one uses the relations given in
'Goldsteins (Chapter 2)

&) 9 t+77 ) = Q &) t+20

af Ca¢¢ _ az'
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t+T + t) = +
PETL) PE+G+T) = p@) @((t+T) L35

Eq. 1.34 relates time derivatives to derivativés in the
correlation intervalT” . Eq. 1.35 states that the
correlation of a stochastic function is independent

of uniform time translations. Substituting To = igii:L

C

gives

P(x T)=

S- &y cP “ 5" p(y 7) (f(/" t+ T+ Z_E?:) 1.36

(477“)&) C C

where one approximates

IX-71 -1%- 71~ X (Y™-Y) = X - ’2 | 1.37
C

Cc X C

Here 7 is the separation vector (§”-y’). One now intro-
~ [+ & Na</4

duces the average position [J = —X—%X—. The Jacobian

of the transform from (y', ¥”) to (£, f) is unity. Hence

P(x vy=_1 Sﬁ...gdsg‘dzz % Q(E:’?/ ‘”*f_'?z?) 1.38

@Lm?) c* c

where, as before,

~ ~ 1.39
GZ,(I;, p,T) = PG t) P(E+ 7, t+T)
To find the spectral density compute the Fourier trans-
form of p(x,T) 7/2 )
~y| 2 (wT
|p(w,x)| = L gd’r c PKX.T)
T o T2
o~
&~ ¢ é. é‘-

:mr(m*x) (w [ﬁ" ra’7 UB{C, T)C 1'40
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Where the foliowing identities have been used
LWt o T
ge 2t pe)dr =w‘f{€‘w AT) dT

at"‘ 1.41

S.e ’L’+ _A_C-_)d’t’ = {ezwﬁv_?'ﬁ/c)@(r)dr 1.42

If the source is homogeneous the integral over r yields

the source volume {2, Thus,

7/‘)«) 477*3 L1

Transferring to the coordlnate system
g )f Y

et ¥ 1a [l Apenct <G (5

@rx)

Ip(w, x)l—( )4 / [C"?Q(’?T')Céwr ZIEWE
(#

Inspection shows Egs. 1.30 and 1.31 are identical to
Eqs. 1.43 and 1.44, as was to be demonstrated.

Note that the spatial Fourier transform has
its origin in the first order retarded time effects, (see
Eq. 1.42). The gquestion "what is the speétral density
of the sourece?" can now be assured without ambiguity.
The answer is to consider only the temporal variations at a
point. |

The answer depends on whether the spectra is
-computed in the/f’or fysystem. It has been showh that
the Fourier ampiitude spectra of the source is propor-
tional to the Fourier transform of the source correla-

tion ®R (Eq. 1.22). HoweVer,Oz depends on the frame
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in which it is measured. For moving eddies the turbulent
fluctuations seen by a fixed observer will appear much
more rapid because of the convection of the random spatial
pattern of the turbulence with the flow. The rapid con-
vection of the fluctuations cause the timé variation seen
by an observer moving with the flow to be much slower than
those seen by a fixed observer. In a moving frame the
correlation at a point will decay much more slowly.

Figure 1.1 is taken from measurements of the
second order time delay correlation carried out by Davies,.
Fisher, and Barratt.15 The spacing between lines
parallel to the T axis is a measure of the correlation
T , the smaller the spacing, the shorter the interval
of correlation., The diagram indicates that measurements
‘made in the frame of the jet flow are correlated for
longer intervals than those made in a stationary frame.

Note that these considerations do not modify
the radiated pressure spectra. Variations in ﬂ_ from
the ; to 12" systems are compensated for by the appear-
ance of the (1 -Mcosfd ) term in the exponential.

1.3.3 Quadrupole Source, Time Domain Green's
Function

Now consider the radiated pressure from a
stochastic distribution of Reynolds stresses. Here

only the major steps in calculating the spectra are
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outlined, the reader is referred to the literaturel’ 6, 16

for more detailed accounts. The point is Eq. 1.51 which
demonstrates tha£ the radiated field has its origin in
two mechanisms, turbulence alone and turbulent shear
interactions. Eqg. 1.13 is the starting point of this
analysis. As the observer is in the far-field, where the

laws of classical acoustics apply,.f can be replaced by

27' to yield

C
2 ~ sy
pP(%, t)__ qir ! 9 'I:J-(y,t) 1.45
-7l 2k 3y |
where

—I:J: Fo\/i\f

Here t’ is the retarded time, ¢ the source point and X

the observation point. Twice applying the divergence

theorem together with a decay of Tij faster than %

allows a change to differentiation in the observers

coordinates.

pit)=_1_ gqcls T ') 1.46
#7° DX, ax %-71
Differentiating and neglecting terms C9/(X blves

P(Y, )= 1 XX ga"y C 7;j(y)t) 1.47
#7 cix® Ve ot , ' -
- where we have approximated
. . ! {
X—V 2 X — T —
A %- 7| X

Eq. 1.47 implies that if . the source is stochastic so is.
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the radiated pressure field. Now compute the correla-

tion of p to find

PERT) = p&,t) pR, t+7)

—_ LXK Xg.x,2 f'--jc/)/ol}/ 9"‘ T(y, t’) T, {y, %)
@rx)2 c* 277 1.48
where we have used the identity given in Eq. 1.34. Again,
noting the cross correlation of a stationary function is
independent of time translation (see Eq. 1.35) and
switching to the coordinates (i,l?] (see paragraph fol-

lowing Eq. 1.37) gives

4 - N N
Pé‘,f)= A » ' /4 X, ‘;J4XLX2 de"’,;dj;z g—'C'_"' IJ-(C)t)T;E(l;Hbf#Zﬁ%_z )
(4mx)° ¢ | 115

The flow is now separated into a mean part V and a fluc-

tuating part v. Contracting over the indiciesls’ 17

and assuming homogeneous isotropic turbu nce gives
P

’ ) “: — so o0 d (43"’ . ’ 2 V
'O(‘ ) (9‘/12‘)()& CI j f ’ 92"‘" SOV' jo ‘
1.50

2 LAY
2(00-2,46 +Co:1,9)7- fa\{ﬁ‘l/”
where the prime and double prime indicate

\{/= \4( E‘;t)

V4 (o A " .
V = V,(';+q,?‘-“+’t’+i" n/c)
The first term in Eq. 1.50 is due to turbulence alone and

the second to turbulent shear interactions. To get
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the spectral density one computes the Fourier transform

of p(x, ) to find

Wt i T ird® oW iE g
P ( ) O ¢ |
1.51
[R”N(IZN,T) + 2(codos 604,29)'7"273”(/2,2“)]
where
R, (0= g, ViGt) @ v B+ f,t+0)
R, @, T= @ VEt) e Vi(Beq, e+ T)
Transforming to moving coordinates gives -
lp(w ,— (_) 1 f..'fd‘?raz Lw(l-Mme)‘clﬁ;g’.
unmxy 477’2

.52
R, ¢ 7T) + 2cogfe +corle) 7 R,,(/@'TI
Inspection reveals the similarity of Egs. 1.51
and 1.52 to Egs. 1.43 and 1.44 and also to Egs. 1.30 and
~1.31. The first terms are identical if the quadrupole
covariance R'Hl is replaced by the pressure covariance
q: In effect, §°W2 is replaced with the pressure (.

This is physically consistent since Bernoulli's equation

requires that incompressible pressure fluctuations be
2

equal to shfi.

The second term is the "shear noise" that origin-
ated in the turbulent shear interactions. By assuming a
specific model  for the correlations Rjjj; and Ril
Ribner shows‘fhat the contribution to the time average

intensity is approximately equal. The shear noise
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modifies the angular distribution by cos4be + cos2 0.

Ribner further points out that the self noise peak

is shifted to a frequency above the shear noise'peak by

, - @, T2
a factor of Y& For example, if R < C one
-2@T)* ! ~
expects R, X " which gives the factor of /2.

Hii

This point is important in that the emphasis in the
thesis has been to collate the results with a single
correlation function. Such attempts consistently fail
to‘account for low and high frequency regimes simul-
taneously. If the low frequency results are in agree-
ment with the data, the high frequency spectra will
disagree and vice versa.

18, 19 reveal that there is an

Experiments
additional angular dependence due to the refraction of
sound through the shear layer. All these calculations
assume that once the sound is generated it travels
through a medium at rest. This is not so, especially
for sources near the centerline of the jet. Sound
emitted from this region has to travel through the .
velocity gradients that separate the center of the
jet from the ambient atmosphere. The complete solution
to refracfion through axisymmetric shear layers in
three dimensions is, as yet, uhsolved; Results are

available in two dimensions for refraction through one20

21

and two shear layers.
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1.3.8 Velocity Intensity and Total Power

Three separate methods have been used to calculate
lplw, ?)lz. This quantity was chosen for discussion
as it is the one measured in the laboratory with the
microphone and spectrum analyzer. However, it is not
the only quantity of interest. Other acoustical quanti-
ties are often required, which are here derived from the
Fourier amplitude spectra.

The radial acoustic intensity at frequency

f =—
27

I1w, %)= Re [pl, Y)_C ] Re[%-0(w,%)C Lwt]

is

o .o ) 1.53
L[,o(u, 2) O, %)+ plw,x) u(w,x)]~x

In the far field the velocity is radial and equal to the

pressure divided by the free space impedance §C . Hence,

p(w ;(u)|3 1.54

T(w, X)=

egrgtlng over a sphere of radius x gives
thé power radiated at frequency é?;.
2 2
Tew) =§§ Tee)dd & erx® |plox)
o .

The approximation becomes exact if the radiation is
isotropic.
One can also construct the time average
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intensity at X by converting a time integral into a

frequency one. 1In the far field

- T/2 Y
IXV= _L \dt |p(x¢)
§CcT T : 1.56
= 2 \dw |F>@q,f7[a

gCT ~®
The total time average power is the

i :W IE)dA = 4&7rx2.2_77:§dwlP<%>?>| |
A ecT 7% 1.57

2

Where again the approximation is exact if the radiation

is isotropic.

1.4 Comments on the Turbulent Correlation

1.4.1 Choice of the Correlation Function

The crucial quantity in determining sound
radiated from turbulence is the spéce time correlation
within the turbulent jet. It is known for homogeneous
turbulent processes that the velocity fluctuations are

near Gaussian. Townsend'szz’ 23

investigation’of the
hémogeneous turbulence behind wire mesh screens has
established that the velocity correlations in space are
near Gaussian. Furthermore, it has been established
that the veiocity fluctuations at a single point are
Gaussian to within experimentai error.

The data on the free jet demonstrate the situa-

tion is considerably more complex. Figure 1.2 shows the
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development of a Yound initially laminar subsonic jet
from a nozzle of diameter D. The annular region about
the jet becomes turbulent and spreads linearly outward and
inward. This region of turbulence progressively
diminishes the laminar, or potential, core until it is
completely obliterated four to six diameters downstream.
Lilley15 has organized the data on round jets with
a view towards acoustic applications. One result is that
the turbulent intensity varies radially as a universal
function of (r - D/2)/X . Here o is the scale of
vafiation and r the distance from the jet axis. Recent

24 on two dimensional jets at

work by Uberoi and Siﬂgh
45 diameters in the fully developed region, show that
such intensity variations may be measurement errors due
to time averaging. The usual -measurements are made by
time averaging data from probes fixed in space, Singh
records the temperature fluctuations by shooting a probe
across the iet at high speeds. Each record waé shifted
to have a common center and averaged. The resﬁlting
profiles showed‘mean square fluctuations which are
quite flat, indicating homogeneous intensity profiles.
.By averaging the records without tﬁis adjustment they
were able to reproduce the two humped curve in agreement’
with stationary probes. This indicates thét'the jet
itself is well mixed, but swings from side to side. &
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stationary probe will randomly meésure ambient and jet
conditions thereby recording an apparent fluctuation where
there are none. .

Aside from intensity variations, there is also the
problem of scale variations along the length of the jet.

25

Lassiter has demonstrated that both the longitudinal

and radial scales were found to increase with the axial

17 have developed a

distance. Goldstein and Rosenbaum
theory for the axisymmetric jet which can deal with such
variations. Roughly speaking, the jet is sliced perpen-
dicular to its axis into a series of disks, each of
which radiates independently.

Ribner63 has explored the experimental conse-
quences of such variations. He correlates the velocity
fluctuation at various axial positions in the jet with
the radiated pressure at a point in the far field.
| He deduces that different portions of the jet contribute
to different frequency regions in the emitted spectra
(Fig. 1.2). In particular, he finds that the high
frequency sound ié generated near the nozzle and the
low frequency sound downstream. Such observatiqns
aré consistent withthe scale changeé observed by
Lassiter.25 |

Déspite marked departures from i§otropy in

real jets, simple isotropic models have been used with
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some ‘success in accounting for the observed behavior

of jets. Gaussian correlation, in particular, is used
in view of the fact that it accounts for the structure
of homogeneous turbulence. Recall that the measurements

15 et al have confirmed that the turbulent

of Davies
fluctuations are convected with the flow. This indicates
that only in the moving frame,;, do the space and time

functions separate into a product of two functions. Let

o be the length scale and «} be the inverse of the

time scale. 1In the frame mov1ng with the jet speedV
ﬁ@ész+ ;i * i} ;2 g
R (5, 2)= Fel | 1.58

in the lab frame

. s {@0@')+(12,‘ 7‘2‘)+y},+h£
R(pT)=p° C o

1.59

For low subsonic.speeds (V2 0) the two are identical.
R.j.bner3 has used the form given in Eg. 1.59
toAaccount for the directionality observed in the
intensity measurements due to convection. Meecham26
uses the same fﬁnctional form to account for the high
frequency sound spectrum in terms of an integral over the
turbulent energy spectrum, Incidently, Ribner wbrks

with a simple monopole model whereasMeecham works from

Lighthill's guadrupole model.
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Simple isotropic turbulence with the Gaussian
spacetime correlation is assumed throughout this thesis.
Such assumptioné allow quantitative calculations of the
Fourier spectra to be made which will then be directly
compared to the data. These assumptions will enable one
to account for the spectra in limited frequency bands.
Detailed agreement both above and below the Strouhl peak
is not possible due to real variations in the jet
turbulence.

1.4.2 The Eighth Power Law

Using only dimensional arguments Lighthill
showed that total acoustic power should vary as the eighth
power of the mean velocity. These arguments are repro-
duced here for future reference.

Recall that the powér is the ihtegral of the
radiated intensit& over a surface enclosing the source
(Eq. 1.57)., The far field intensity is the time averaged
pressure divided by j%C'(Eq. 1.56). The mean square
pressure is the value of the pressure covariance at
T =0, One fufther assumes that the source is isotfopic

Substitution of Eq. 1.50 into Eg. 1.57 yields

’ 3 [2 Y/, .
77\/= / S j:..fdgrdi Q[{ VS \//2 1.60
— -;L -] 1 [ .
47 T3 o7t .
Let D be the jet diameter. The intergration over
3

r, yields the source volume {2 which is approximately‘D .
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The time derivative é%; is proportional to a character-

istic frequency. It is known from experiment that the
v
‘D“l
istic value is known as the Strouhl frequency. The ratio

jet noise peaks at a frequéncy fs 2.2 this character-
of the observed peak frequency to the value % is the
Strouhl number, which is approximately constant over a
wide range of Reynolds numbers, flow speeds and jet
diameters., This allows one to set 7557 x:%gr The
turbulent velocity v increases monatonically with the

mean flow and is approximately .1 V., Substituting

these values into Eg. 1.60 gives

A 2 | 1.61
T a Q,Z/;Q
' olsen’t al and von Gierke?® have collated
the experiment on model jets and aircraft jets. They
find good agreement for subsonic flow. Supersonic29
data indicates departures from the eighth power law, in
this regimeithe power goes approximately as the third
power of velocity. One can easily see this if one
recails that the mechanical power in the jet is
éﬁ%;iﬁf The efficienCy predicted by the eight power
law is the ratio of acoustic to totél power, which is
Ms. This can only hold for low velocities, at some

point the acoustic power must be reduced, less it exceed

the mechanical power of the jet.
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1.4.3 The Kolmogorov 1Inertial Subrange

Now consider the spectral distribution of
acoustic energy from a dimensional standpoint. The jet
velocity and diameter are not sufficient scales, as
these combine to give only a single characteristic
frequency. To get frequency variations one must scale
the equations to the eddy size ’Z and the power per
unit mass €.

In the turbulent region the particular form
of the driving mechanism that maintains the turbulence
must influence its structure, at least for those eddies
whose size is comparable to the driving mechanism; These
large eddies transmit their energy to the smaller eddies
via'non linear coupling, eventually the energy is dis-
sipated as heat in the microscale eddies. Kolmogorov
. postulates that there is a range of eddy sizes, termed
the inertial‘subrange, for which the statistical
properties are supposed to be independent of both the
difiying mechanism and the viscosity. The size of the
eddies in this rénge is smaller than the size D of
the large eddies and larger than thbe size dg-i%;’ of

e
the heat dissapating eddies.

Morse and Ingard14

(Chapter 11.4). have calcu-
lated the acoustic spectra implied by such considerations.
They use a Lighthill model neglecting turbulent shear
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interactions, retarded time effects, and convection by
the mean flow. Under this set of restrictions they find

mu)a< / f’oCZM/O‘;’ : w77%—ﬁ

47 x2 ko)

valid for frequencies greater than the Strouhl frequency.

1.62

Two factors emerge., First the spectral intensity increases

as a high power of the velocity, here given as 10.5. Second

the intensity, at a given velocity, falls off as aw 33,
This yields a 10.5 DB drop in spectral amplitude per
octave, That is
A - - .

SPL — /O Tew) o~ - 10.5 DB 1.63

octave I ()

1.4.4 Gaussian Correlation and the Relation
Between the Turbulent and Acoustic Spectra

Some implications of Gaussian correlation using
Ribner's model are worked out here. For simplification
attention is restricted to low subsonic‘speeds. It is
further assumed that the source volume is small enough
so what the correlation distance can be set to zero.
This is equivalent to neglecting retarded times. For a
more detailed discription including the effects of
convection and finite spatial correlation see Ribner's4

account. In this limit

g 2
Rty e) = = S @™

'1.64
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where = is the effective source volume (note § has
dimensions of L-3). The spectral energy distribution

of the turbulence is the Fourier transform'of GZ
w

2 |pw o)l = pi = - (& .
- &D g?;%;zg 1.65
The energy is maximum at zero and falls off
monatonically as the angular frequency « increases. This
is a direct consequence of the form of the correlation,
as the Fourier transform of a Gaussian function is
Gaussian. Note that experiments or turbulence behind
grids show the energy peaked at some non-zero frequency,
which implies that somé error is introduced by the
present approximation. The error is not too large if
the'peak frequency is approximately zero.
To compute the radiated acoustic pressure

spectra one carries out the integration indicated

in Eq. 1.30 to find 2

& %« e = w)
ﬂ"l/o@)?)l:(@) L o2z ¥ e
T Cl GIX) 2/ W, )
Note‘that the ratio of acoustic to turbulent amplitude
goes as the fourth power ofw

2 4 .

LW, X ) . .

P&, ™ o o | - 1.67

,ODQU)Cﬁla

This factor implies that the radiative efficiency
increases as the fourth power of the frequency. This

57



has the effect of shifting the acoustic intensity

maximum to W = 23/2

ué . Eg. 1.66 implies a spectra that
behaves qualitatively as free space jet noise. That is
the level increases with frequency to a maximum and then
falls off as the frequency is increased further. Dimen-
sionally one requires uzuafo The frequency regime in
which Kolmogorov's assumptions should apply coincide
with the region of frequencies greater than /) deduced
from Gaussian correlation. They are in qualitative
agreement in that both predict a decrease in level
with increasing frequency. However, the Gaussian model
does not give the simple power léw that was deduced
before.

Figure 1.3 compares the spectra predicted in
'Eq. 1.66 to that detected from a free jet. The
microphone was located at 90° to the jet axis so as to
minimize turbulent shear and convection effects. The
plots were génerated for three characteristic values of
¢J, and the amplitudes shifted to coincide the low,
middle, and high portions of the frequency plot. The
figure indicates that an isotropic description of
the jet fails to account for all the details of the
observed spectra. In particular, a function that
accounts for the high frequency end cannot also account

for the low frequency sound. Discrepancies of this
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form will occﬁr in our evaluation of the spectra for svstems
with boundaries. However, it will always be possible to
get close agreement for limited portions df the spectra.

To calculate the total power one first
evaluates the time average intensity at point X (Eq. 1.56)
and then integrates over the surface of a sphere of radius

x (Eq. 1.57) to find

T = ﬁ;‘dx\ .:w 2w lp@,ﬂla

y-2) foCT

— 2

47 e, ct

One can now usSe dimensional analysis to evaluate this

expression. The spectra maximum occurs at the Sfrouhl
frequency, which is given approximately by W, 2 i%? .
Thelpressure fluctuations O3are proportional to the
square of the turbulent velocity fluctuations. Recalling
'~ that the turbulent velocity fluctuations are proportional
to the mean 'gives ODc(SgTz Letting = and {2 scale

as the cube of the jet diameter D3 gives

§ 2 |
me eV D 1.69
- .

C

The eighth power law is then equivalently deduced from

a monopole or quadrupole source field.

1.5 Summary

Chapter One serves as an introduction to
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Lighthill's acoustic analogy analysis of turbulent jet
noise. Ribner's reduction of the source field to an
equivalent monopole distribution is presented.

The statistical properties of the radiated
acoustic field were calculated in three separate
fashions, The first concerned the prediction of sound
from a monopole source distribution via frequency-
domain analysis. The results are identical to the
same analysis using time-domain techniques. The
parallel development clarifies certain details of the
calcﬁlation. The third calculation proceeded from the
quadrupole source field via time domain techniques. By
comparison one finds that the isotropic monopole |
model neglects turbulent shear interactions. Aside
from this the predictions are identical.

To proceed one needs the source correlation, j,e,,

a statistical description of the turbulent fluctuations.

Observations on homogeneous turbulence have indicated

that an isotropic Gaussian distribution is apprbpriate.
The results.of such an assumption are compared to those

of dimentional analysis and found to be in gualitative
agreement. The drawback is that turbulent inhomogeneities
cannot be a¢counted for, this limits comparison of data
and theory to limited portions of the spectfa; However,

such a model enables one to make numerical predictions.
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for systems with boundaries and will be used in

Chapters Two and Three.
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2. EXCITATION OF AXIAL PIPE MODES

2.1 1Introduction

Now consider the effect of boundary conditions
on the spectra of sound emitted by turbulence. Herein
the flow excitation of an axial pipe of uniform cross
section A and length L is examined. The problem is
reduced to one dimension, the boundary conditions are the
reflection coefficients at ﬁhe ends.

In the most elementary treatment of the plane
wave eigenmodes of an open ended pipe it is assumed
that the ends are pressure nodes. Hence, the pipe
resonates at frequencies fn = g%. With mean flow,
one must account for the difference in phase speed for

a wave travelling with the flow, Cb = €(1+M), and

against the flow, Cp = C(1-M). With flow the pipe

ne (1-M2)
—n

of the pipe to an oscillating source will be greatest

eigenmodes are fn‘= The acoustic response
when the source frequency equals an eigenfrequency.

The ends of the pipe, however, are not
perfect refleétoré of the incident intensity. Therev
is always some portion of the incident wave that
radiates out the end. Ingard and Singhal30 have
demonstrated tha£ the departure from perfect reflection

‘increases with flow. This implies that the eigenmodes

are damped by the sound radiated out of the ends of the
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pipe. The reéponse of a pipe at its eigenfrequencies
diminishes with increasing flow.

Herein the response of the pipe'to the turbulence
in the air flow itself is investigated. A cylindrical
pipe was connected to a plenum chamber and then to a
pump (Fig. 2.2). The mean flow was varied from Mach
0.0 to Mach 0.5. A microphone, placed several diameters
in front of the inlet, detected the resulting acbustic
field. The signal was then spectrum analyzed, an average
of 256 spectra was computed by a separate device, at each
flow speed, and then plotted. |

One observes:that at low flow speeds the pres-
sure spectra varies peripdically with frequency, with peaks
at the eigenfrequencies. As the flow speed increases
the peaks at the eigenfrequencies are no longer there,
the pressure spectra resembles the smooth variation with
frequency seen in free space jet noise (Fig. 2.1). The
results are Eonsistent with the observed behavior of
the reflection coefficients.

In the theoretical section, Ingard's31 con-
struction of a Green's function from the emperical
pressure reflection coeffieients is presented. The response
of a pipe to a turbulent field with Gaussiap correlation
.is predicted with this Green's function. Thié model
accounts for the observed changes in spectra with flow,
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2.2 Experiment

2.2.1 Apparatus and Procedure

The experimental apparatus is shown séhematically
in Fig. 2.2. A small cylindrical pipe was connected to
a pump through a plenum chamber. The pressure in the.
pPlenum was lowered so as to draw air through the pipe
at flow speeds to to Mach .5. The mass flux was
monitored by a calibrated orifice downstream of the
pienum.

A microphone was placed several diameters
in front of the inlet at an angle & to the pipe axis.
The signal was amplified and spectrum analyzed in the
zero to ten kilocycle range. A second microphone,
connected to a sound level meter, was used to evaluate the
C weighted intensity as a function of the angle.
Additional meansurements were made with the microphone
in the chamber., The discussion will concentrate,
.however, on the upstream measurements.

Consider the placement of the microphone.

In the chamber, the acoustic wave from the pipe must
first pass through the exit jet, where it is refragted,
before if reaches the microphone., Apart from this,

the turbulent noise from the exit jeé completely masks
the pipe noise, which makes detection of the pipe

modes impossible. If the microphone were mounted in
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the pipe in addition to the acoustic wave it would
detect the turbulent pressﬁre fluctuations in the mean
flow. The acoustic pressure also depends on the axial
position of the microphone. If it was located at a node
for a given mode the pressure amplitude at this frequency
is not detected. - The problem is further compliéated by
the fact that the node location depends on the flow speed since
the effective length depends on the mean flow. The final
option is to mount the microphone in front of the inlet.
This has its own problems, the pressure spectra is
multiplied by Luedue to the radiation impedance of free
space. In addition, there is some dependence on thé
angle € due to the finite size of the inlet. However, the
transfer function for these effects is independant of
the Mach number, it is this condition that motivates
measurements in front of the inlet.

The upper limit on flow speed of Mach .5 is
due to the vena contracta. The flow entering the pipe
contracts to an area six-tenths the pipe cross section.
The mass flux is maximum when the flow speed at the
contraction is sonic. The mass flux in the pipe is
identical to that in the vena contraction, hence the .
velocity in the pipe is about six-tenths that in the
contraction. This means the maximum flow speed in the

pipe is approximately half the speed of sound.
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2.2.,2 Variation with Pipe Length

Herein it is established that it is the axial
modes of the pipe which aré excited. 1In Ehe simplest
model of a pipe open at both ends the wavelength of the
fundamental is twice the pipe length. It follows that
the fundamental frequency is inversely proportional to the

pipe length, since £ = < . Since overtones are

harmonics the frequency ?nterval between modes iS equal
to the fundamental and should therefore show the same
dependence on length.

If one accounts for variations withAflow speed
and phase changes at the ends the frequency of the nth
mode is given by

§ =nc (-m) 2.1
2 (L+8, +8.)

Where So and SL are the end corrections which give the

phase shifts ¢ = T+ —iLilgu Ingard and Singhal  find
1~/
§,7 &, 2 .3D (l—Mz) . It follows that the interval

between peaks is given by

Atf= =0 _ _— C2.2
2 [Tev o]
To check this prediction a 1" diameter pipe was
examined for lengths from 2" to 18" in 2" increments.

The flow speed in the pipe was held at a constant value of

Mach .l4. With the exception of 2" pipe the data agrees
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with the prediction in Eq. 2.2. The 2" case is an
example of orifice screech which is discussed in
Chapter Four. The length test demonstrates it is the

axial modes which are excited (Fig. 2.3).

2.2.3 Variation With Flow Speed

There is an additional way to check for axial
modes. That is to monitor ﬁhe variation in frequency
with mean flow. The prediction is that the fundamental
frequency is reduced as the flow speed increases. This
resﬁlt can be understood if one recalls that the sound
is convected with the mean flow. The time fdr a wave to

travel downstream is .

and back upstream is

o P
The frequency is inversly proportional to the period to
c _ (1-M2)

complete such a cycle and is given by f1_= Vi

To check this variation, spectra were obtained
for a 1/2" inner diameter pipe 12" long with a 1/16"
wall. The microphone was 2" in front of the inlet. The
pressure drop across the pipe was set and the_Spectra
plotted from zeré to ten kilohertz. The flow speed was
determined from the pressure drop and from a calibrated
orifice downst;eam. Figure 2.1 is an example of
spectra taken with this setup. Pronounced excitation

only occurs for flow speeds up to Mach .3,' the funda-

mental varies approximately 10% in this range. As the

67



observed band&idth is about 50% of the fundamental frequency
some comment on data reduction is advisable.

The experimenter has two optioné to determine
variations with flow. One is to study the location of
the fundamental, fl' and the other is to measure the
spacing between peaks,Af. 1In a frequency analysis the
minimum error is the channel width of the analyzer, in
these experiments this is always 7%5 of the makimum
frequency. Graphically, this is approximately the line
width of the pen. Assume one chooses to locate the
fundamental. The frequency range is set to l;OOO Hz
and the instrument resélution is 5 Hz, However,.the
resonant peak has a finite bandwidth which is approxim-
atély one half the separation between modes. The
resonant peak, or certer, is extremely difficult to de-
ternine.

Now assume that the average spacing between
peéks is studied. The frequency range is set to 10,000 Hz
and the instrument resolution is 50 Hz. However, a
large number of modes are now in evidence and the average
spacing can be determined with great accuracy. If n modes
are excited in a range F the spacing is simplynzkf = g.
So long as. a large number of médes are evident the measure-

ment is quite accurate. If, however, the flow speed is

above Mach .3 the modes are overdamped and neither method
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is adéquate.

Figure 2.4 presents an analysis of Af versus
mean flow. The'error bars are set to 50 Hz, i.e., the
resolution of the spectrum analyzer. At low flow speeds
it is clear that the accuracy is much better than this.
Only at high flow speeds, where the modes are heavily
damped, does the error approach the resalution
limit. The frequency shifts are clearly those predicted
in Eq. 2,2. Hence, the second test establishes the fact
that it is the axial pipe modes which are excited.

Given the fact that the ‘axial modes are excited
one now has at his disposal an independent means of
measuring the flow speed. This is to measure the in-~
terval between modes and calculate what flow speed is
necessary to produce this intefval. The flow speed
determined in thié fashion agrees with that determined
by the pressure drop to t Mach .05. The acoustic
calibration of flow speed is used in Figure 2.1. The
data in Figure 2.4 is based on flow speeds calculated
from the pressuré drop across the inlet, and there isi
no circular reasoning used in the evaluation of the

shifts with flow speed.

2.2.4 Variation with Microphone Placement

This section establishes the acoustic field

for different microphone locations. A cylindrical pipe
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of 1" inner diameter and 1/16" walls was used. Pipe
lengths from 2" to 18" in 2" increments at flow speeds
of Mach .07, .ll and .14 were investigated. Acoustic
spectra were taken at 0°, 45° and 90° to the pipe

axis 12" from the inlet.

With the exception of the 2" pipe, the excitation
of axial modes was evident for the entire range explored.
In addition to spectfa, intensity measurements were
taken at 10° increments from 0° to 90°,(Figure 2.13 to
2.21). Again, excepting the 2" length the variation is
smoofh and approximately independent of angle.' There
is some decrease in level, approximately 2DB, as the
microphone travels from a maximum at 0° to a minimum at
90°.” This may be suppression of the high frequencies
by interference effects due to the finite size of the
inlet.

In addition spectra measurements were made with
the microphone in the plenum chamber. No mode ekcitation
was observed. The spectra in the chamber is dominated
by the exit jet noise. Figure 2.5 plots the C weighted
SPL for a microphone in the chamber versus one on axis
in front of the inlet. Before compafing plots the’
increase in level due to chamber reverberétion must be
determined. The screech data from the 2" pipé provides

this calibration as the screech level far exceeds any
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turbulent noise at the inlet or exit. At Mach .14 the
screech is greatest, the level in the chamber exceeds that
outside by 10DB. One concludes that, all 6ther things
being equal, chamber measurements should exceed exterior
measurements by 1l0DB. However, the observed lével changes
for 4" to 18" pipes are approximately 30DB. This can
only be accounted for by noting the sound from the exit
jet dominates the acoustic field in the chamber.

Of interest is the fact that the sound level,
for 4" to 18" pipes, is independent of length. If
boundary layer turbulence along the pipe walls'was the
sound source, the levellwould increase with 1ength. It
does not, therefore the spectra is determined by inlet
and exit conditions. This implies that in a study of
self noise of duct liners great care must be taken to

separate end effects from sound generated in pipes.

2.2.5 Effect of Liners

This experiment considers the effect of an
absorbent liner qn the spectra. A 1-1/2" innef diameter
pipe was lined with a 1/4" thick blanket of Scott
acoustic foam. Lengths from 2" to 18" in 2" incréments
were examined for velocities from Mach .07 to .20.V
For lengths greater than 6" no evidence of mode excitation
occurred. For lengths below 6" only the first or

second mode was detected, and these were severely damped.
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The behavior is expected, the longer the path length the
greater the acoustic damping, No increase in level

due to liner roughness was observed.

2,3 Theory

2.3.1 On Distinguishing Mean Flow Effects From
Turbulent Fluctuations

Consider the complete mass and momentum equations
for an inviscid non heat conducting compressible £fluid.

These are

Mass Conservation
Q9 + 2 vg =0 » 2.3
ot X '

Momentum Conservation

2 E\A{ + 9 ?\I\/LVJ + a__? =0
9t 9% X, 2.4
Wherew&_is the total fluid velocity. One must separate

the velocity fluctuations from the mean flow velocity Vl'

Thus set
s{:: V{*'ZP&:
First transform the mass equation to find
v, =
2+l |p 2 PY% =0 2.5
2t X axj

Before making a similar substitution in the momentum
equation one first transforms it to a more suitable form.
Subt;actwi times Eq. 2.3 from Eq. 2.4 to get the
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momentum equation
ﬁD d  + M§ d_|w + 2 H) =0 2.6
2t ' 9XJ- X,
Eq. 2.6 is the more familiar expression used in fluid

mechanics. Substituting vt Vl for w, one finds

fa +V97 +f0/9 V, + 2 p =0 2.7
QXJ oX; CRY
Addwi times Eq. 2.5 to Eg. 2.7 to find

9+ Va S?V--rg Py +2p =0 2.8
ot X, J 2 X{
Egs. 2.5 and 2.8 are the exact mass and

momentum equations written in a form that separates the
constant mean flow vy from the velocity fluctuation Q&.

To Qet the wave equation multiply Eg. 2.5 by the convective
derivative {%; + vV, é%i- and subtract the result from the

]

gradient)Z?-,of Eq. 2.8. This gives
X,

2
9+ 2_ -2 p=2 Y 2.9
2t ax]f % axchd-f {

Assuming an adiabatic pressure density relation gives

2

L L, P - v P= 2—¢¥?Y 2.10
c® Dt ax i2X] |
where :
O =2 4V
Ot ot 2X
Assume that the acoustic portion of the Reynolds stresses
neglibible{ i,e., v&_vg = (vi + ui)(vj + uj):B v, Vj'
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If the turbulent fluctuations are approximately incom-

pressible we have

2 2
-V = 2 2 Vi Yy 2.11
® Qx‘-axJ-SD ‘

which we have used p=p +03. Using the same approxim-

ation as in Eq. 1.16 one finds

! D2 - vp= -1 D
C_Z_D—izp P_E‘a‘?@ , 2.12

o

To reduce the problem to one dimension take

the average over the cross section. One finds

2 ' 2 2
‘lZ 2—2 PAVG_—D——z PAVG——J_a' D 2034\/6 2.13
c Dt X Cc D¢

ms by £ po

! 2.14
(Pave™ & gg (Pdydz
Taking the Fourier transform gives
2
(I-MaBQZ_ PLWX)4+2.RM I Pl X+ R plyx)=
ax? 92X _ 2 2.15
=~/h+( /V\D_) GD@J,X)
where , o » X
. — L
P(“"’_’Q‘ngif Pave & ) 16

[wt

| oo
0>("‘-))X) = Wsﬁf’lj @AVGC
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2.3.2 The Green's Function

The linear acoustic response of an open-ended
pipe is given by the Green's function. This will be
constructed here from the empirical pressure reflection
coefficients at the ends following Ingard's31 procedure.

A coordinate system is-used such that the inlet is at
lx = 0 and the exit at x = L. The boundary conditions are
the pressure reflection coefficients Ro and RL’ It is
assumed that these are given for all values of the mean
flow.

Consider a harmonic source of unit sfrength lo-

cated at x = Xge The pressure field induced by this

source is the Green's function G fX|x_ ) which solves

2 2 2 :
("M)&_QG+2L/1M2_G+ RG =~ %) 2.17
o X X
To develop the Green's function one specifies the acoustic

field to the right and left of the source point (subscript

r and £) as the sum of a wave propagating with (subscript

+) and against (subscript -) the mean flow.
_ ~ L RX +i R, X
G, = R. € tp, e 7 0< X < Xo
. 2.18
. “LR_X +ikR, X .
ch:: P"-_-e +Pr4 c T Xo<X <L
where h..,.-“-w '

T C(1xtmMm)

One needs four restrictions to determine

the coefficients P. P

et P, s and Poy uniquely.

r+’
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Continuity of pressure at the point x gives

- ho X rik, % -( R Xo +iky Xo
Pe-C + P € = pp.C + Pre€ 2.19

To find the second restriction integrate Eq. 2.17 over a
small region € about the source point X,- The value of
the right hand side is -1. Let € go to zero and assume
continuity at x = io' only ?he first term on the left
hand side contributes. Dividing by l—M2 gives the magni-
tude of the discontinuity in slope.

. -‘k- ) ) +
~ihk prct X\ Lk, P, et R =
+t§_’l+x°__ i

- “Lh.X .
Tehkop.c rikepe,C T

The third and fourth restrictions come from the

2.20

pressure reflection coefficients Ry and RL‘ Care is
needed as to which wave is the incident one. At the
inlet it is the wave travelling against the flow; at the

exit, it is the wave travelling with the flow. Hence

I

Pey
Pr-

Solving Egs. 2.19 to 2,22 for the incident wave coeffi-~

Ro Pe- 2.21

dlovr k)t Pr+ : 2.22

|l

R,

cients at the ends T?ves

! Si b Xe Ll L cla,xa

= +
Pe- ~2LR D) c R 2. 93
l -l R+ Xo g +L./?,_Xo.
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where

' )L
PDw )= /- QORLCé(k“‘h)‘ 2.25
Substituting Egs. 2.€l)fnd 2.22 ini? %T. 2.18 gives
—_ -¢ - +L 1.)(
Gw_ Pl_ctc + R, C X < Xo
k Y " 2.26
' R+ Db -eR_X
G P,.,[C’fiﬂ X—I-R,_C’L’thfksc ‘e X > X,

Substituting Egs. 2.23 and 2.24 into Eq. 2.26 gives
G_ (X [%)

_ e L R(X~ %) [“ RLCZ(/E++ h,-)(L'X):][/+ Roczé,m-)xj
=2k Dev) 2.27

i R~ (X Xo) [I+ RLC(O?.M QJ(L-X.,”:/ , Rocéoa”h-bi]

-2( R D) 227
Which is identical to the expression published by Ingard

and'Singhal.30 The problem was worked in detail so as

—

to identify the incident wave at either end. The
discrepancy between perfect and measured reflection

.will be attributed to radiation losses out the ends. One
can then deduce the magnitude of the transmission coef-
ficients from the intensity difference between the
incident and reflécted wave,

2.3.3 Analysis of the Pressure Reflection
Coefficients

Consider the pressure reflection coefficients
in a pipe with flow. To clarify their influence the

fundamental pipe mode will be constructed first through
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simple arguments. We will then consider the effects of
mean flow.

In the most elementary treatment of the axial
modes of a straight pipe with no flow it is assumed that

the ends are pressure nodes, so that the wavelength of

the nth mode is %E. The frequency of oscillation is
- nc
then fn = 37.-

If the ends are pressure nodes then one finds

P+ Pr= 0

which implies

= 2.28
P e R,
L

at the inlet. An identical expression is found at the
exit. Here the subscripts i and r indicate the incident
and reflected wave respectively.

The condition is identical to the requirement
that the intensity of the incident wave equal that of the
reflected wave 2 2

1Pd - _ 1Pr]
which impliegoc fo ¢

[P =1= IR, | 2.29
P

Identical results are obtained at the exit. At zero flow
the condition of a pressure node implies perfect intensity
reflection. If one allows for phase shifts, the ends are

no longer pressure nodes. However, so long as the
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magnitude of the pressure reflection coefficient is
unity the ends are perfect reflectors of the incident
intensity.

The condition that the incident intensity be
completely reflected will be used to derive preséure
reflection coefficients for a lossless pipe with flow.
The flow makes the medium anisotropic as the phase
speed depends on the direction of propagation.‘ Moreover,
the intensity expression is anlsotroplc.31 For propa-
gation with the flow I_ "IPJ O+”4) , for propagation
against the flow I_ __l O WQ If one now requires

the reflected inten51ty equal the incident one finds

at the inlet 2 2 2

which implies

-— l~. p—
| Prl = M = IR 2.30
AR
Similar requirement at the exit gives
— M —
[Pl= e/ = || 2.31

lpL, - M
30

The measurements of Ingard and Singhal show

that

2hSa
/)-’ e N9
Ro =R (+/‘MZ 2,32

. alzJ)
T-M2) 2.33

I

lfaLI 2 7 | RL IRJCL(#
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Figurés 2.6 aﬂd 2,7 compare the measured coefficients
(Egs. 2.32 and 2.33) to those of a lossless duct (Egs. 2.30
and 2,31). The measurements extend only up to Mach .5.
It is clear that the discrepancy between perfect and
measured reflection increases with the flow speed. That
is, as the flow increases so do the losses.

Their measurements show that the end corrections
S; and SL are approximately equal to .3D(1-M2). .That is,
the effective length of the pipe depends on flow. The
importance of these measurements is that they can be
substituted into the G:een's function to give the actual
response of ducts. The measured reflection coefficients
will be used to account for the decreased»mode excitation
witﬁ increasing flow.

It is of some interest to note that the
reflection coefficient at the upstream end can be
derived assuming the duct inlet is a one dimensional
nozéle in which the fluid is accelerated from rest to
the mean speed V._’If one considers the limit as the
nozzle length is much less than the wavelength, the
nozzel can be described as a set of boundary conditions

32 has considered the acoustic

at the inlet. Marble
response of quasi-steady nozzles. The solution may be
found by matching stagnation temperature, mass flow, and

entropy across-.the nozzle. The application to pipe
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flow was pointed out in Bohn and Zuko.ski's33 discussion

of the measured inlet pressure reflection coefficient.

They find, by the circuitous route of Marble's célculations,
the expression in Eq. 2.30.

34 has considered the reflection

Cummings
coefficient at the exit. He also uses a quasi-steady
model. One point brought out is that the air leaving
the exit retains the form of a circular jet for some
diameters downstream and that this must be accounted for
in the analysis of the exit reflection. This is in marked

contrast to the inlet where one assumes the flow acceler-

ates from zero in a negligible distance.

2,3,4 Transmission Out of the Ends of the Pipe

Consider the sound transmitted out of the ends
of the pipe. The calculation is done in two steps. The
first quantity one needs is the pressure just outside
the ends of the pipe. This follows from an energy
balance assuming all losses are due to radiation. The
second step it to replace the fields jus£ outside the
ends by an equivalent distribution of monopoles. From
this distribution one calculates the radiation into
free space, |

In the first step one must account for the

asymmetry in flow conditions in the intensity expressions,
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Just before the inlet the mean flow is zero, the accelera-
tion of the fluid takes place %p the vena contracta. The
intensity in this region is U%L. Just after the exit the

mean flow is approximately tﬁ; same as in the duct. The
deacceleration of the fluid takes place over a compara¥
tively long dlstance, on the order of flve jet diameters.
The intensity in this region is then ]F&I G+ p\)

Close to the end the pressurécis approximately
uniform across a disk of the same diameter as the pipe.
Moreover, one may assume the acoustic velocity is
approximately paraiiel,to the pipe axis. Under these

conditions one may calculate the transmitted intensity

from a one dimensional model. At the inlet one assumes

It= I-1I,

B 1P o) = 1P ga Y
f.C  @C [

2 !
To, 1ol =[0- )"~ IRL 01+ MY
[P

Again, assuming all losses are radiative one finds at the

2.34

exit It = 'IL' -TI,
1+ m)? |pd°= |R|ec/+ My° —'|/3,|2(/-M)2

Tex® l&‘=[(/+/“\)2 - RS G-m) 2.35



where T inle£ and T exit are the magnitudes of the
inlet and exit pressure transmission coefficients.

Consider the second step in the.calculation
which describes the propagation from the immediate
vicinity of the inlet into free space. Outside the in-
let themediumis uniform and at rest, hence the result-
ing pressure field is transmitted according to the laws
of classical acoustics. At the exit the field is
embedded in the center of a cylindrical jet with large
velocity gradients at the shear layer. One expects
refraction due to these shear layers, and poséible
channeling of the souﬁd in the aerodynamic duct formed
by the velocity gradients (ref. 14, Chapter 11).

’ Consider the inlet first. As a first approx-
imation one can model the end conditions as a distribu-
tion of volume sources. Let the average acoustic
velocity be U, C-é wtand uniform in a direction
patallel to the tube axis. Then the strength of an
equivalent volume source is Sw equal to (A or Sw

equal to Jfélfi; If one distributes the source over the

£o C
duct cross section A the source strength per unit area
/
6;, is- then lF&’ . The model is by Morse >

sC
to calculate the radiation from a piston in a plane wall.

One finds the free space acoustic pressure f)@qiy) is

83



¢ k-(F-r5)

/lef") =/ kg ﬂAJA .Sw/ c

$#mr
b a 2w b .
A — lej%Cls;f e SL g ro drs gici¢>C? cRtotinve q}¢49
i o

4T

. Q
=-inpc e e | ndn Jlnime)

$r
= -iRpC c‘/“s“j ra’ 2 I, (ka tirn o)
Hence 4T Ra -. ©
IP(‘-U, r)l"‘ E—QZ ‘Pfl 2 I(ha —od-(/vue) 2.36

G4 r RA 4 ®

where a is the pipe radius and 6 the angle that ¥

makes with the pipe axis., lF%' is given in Eq. 2.34. Let
T space be the transmission coefficient from the inlet to

- the point (x, 8).

Tepacs =|pew, Fll =rA |216)
(BT 4T z
2 _4
= RA |/-2 +Z 2:37
455 urr g /32

where Z =hqA4n©. The approximation 6 nolds in the limit
as the wavelength is much larger than the duct radius.
This is the case since this Chapter considers frequencies
A below the first cutoff. The first term in the expansion
predicts unifofm radiation. The second term predicts
a decrease iﬁlradiated pressure with increasing angle

and frequency. This suppression of high frequencies may
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account for the decrease in level with angle observed

in Figures 2.13 to 2.20.

Consider the problem of sound transmission from

the exit. One can start by modeling the acoustic field
in the immediate vicinity of the exit by én equivalent
point source. One must then account for the refraction
of sound through the velocity gradiehts in the jet.

Experimental work is available for the single frequency

18 19)

point source in air jets (Atvars et al and Grande

The theoretical problem is solved in two dimensions for

one shear layer by Gottleib20

21

and for two shear layers
by Grahm and Grahm. Since experiment indicates that
the exit jet spectré completely dominates the acoustic

field of the pipe the analysis will not be carried out.

2.3.5 Effect of the Convective Derivative on

the Source Term

Herein the acoustic field in a pipe due to a
distribution of pressure sources is calculated. The

turbulent source term is given in Eq. 2.15 as

2
- fe,+;M9 ) @(w,xo)
I Xo
The formal solution to the forced wave equation is

L
o 2 :
Plo,x) = gdxo G_ (x| X) Iucng_) (p(w,xo)
1. /O 2Xo _
where G is defined in Eq. 2.26.
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To get an expression that can be interpreted
it is necessary to have the convective derivative
operate on the Green's function. This is done by

expanding the term

. 2
(IQ,+LM_:_)__>=Q8+ 2(',’2/‘12_~M22_27 2.40
?Xo 2Xo 92X

and differentiating by parts. To simplify the resulting
expression assume that the turbulent sources are lcon—
tained entirely within the pipe and are sufficiently far
from the ends so that (P and .%%% may be set to zero

at the inlet and exit. Further assume that the observa-

tion point is located outside the source region. Under

these restrictions the radiated field is

L _

Py x ) =[dxs (Pl m(a- 2 F G006

° Xo _
If the source contribution from the ends is significant,
or if the observation point is in the source volume, then
qu. 2.41 is incomplete and the other terms resulting
from differentiating by parts must be considered.

To calculate the field radiated out of the

pipe it is necessary to find the magnitude of the
incident.pressure wave at the inlet. Here all sources
are located downstream from the obsefvation point, hence
CiQGK[XQ) for X <X is to be used (Eqg. 2.26). This is

~given as

86



-2k (R, X

G (X|xe) =p &) g Po-(xe) o 2.42

The Green's function is composed of two waves, one
travelling with the flow and the other against the
flow. The incident pressure wave at the origin travels
. . . -k X
against the flow -and is proportional to & .

Substituting G into Eq. 2.41! and selecting the incident

pressure wave, RIUXV gives

Pee,0)= (dxs (ples, xo) (/e,-mo ) Pa- o)

L
= / gd"o @(w,xd(h-mg_f

‘ZCQD@U) QXO
CZ/Z- Xo + RLCZ(IE+*Q-)LC-OIE4 xo}
L )
y g(/w/‘ﬂt-)z [Frc™* ™ peyn)  2.03
-2¢R Deo)

R CL(’E-}#’R }L(Q, M}B) 9X° Uj(wyo)c L’B Xo

To interpret this expression note that the spatial

Fourier expansion of OX?on)is given by

A Xo
Mw)@)= ! dXe W(w,xo) C Cki
S v

L/Z,Xo

I¥o w )e
g( (P& xo 2.44
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The limits of integration and changed by noting (P is

zero outside the pipe. The spatial transform is given

TihX
in the set of travelling waves C * since the Green's

function is expressed in this set. Had the Green's

function been expanded in the set of standing waves

nmx

sin —_ the standing wave expansion of (o would have to

be used. Expressing Eg. 2.44 in terms of 0}@qu4) gives

Pl V=Ll Y L PR+ RLCL@“Q‘)L@@,MJ
Oeo) 1G-M) G+ M)° 2.45

The incident pressure field is composed of two
parts, which are interpreted as follows. The first is
proportional to GX&GQX This is due to sound waves that
travel directly to the inlet from the source. Only that
portion of the turbulence that has a wave number h_=

&) contributes. That.is, that portion of the

c (- M) - |
source distribution whose wavenumber satisfies the disper-
sion relation for propagation upstream contributes.
The second term is due to sound waves that initially
travel downstream but are reflected off the exit. If
there was no reflection at the exit, i.e., if RL equéls
zero, this term would not exist. This interpretation
is supported by the fact that only the portion Ojéog k*)

of the turbulence contributes. That is only disturbances

whose wavenumber satisfies the dispersion relation for
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propagation downstream, R P E‘Z-)mcontribute to this

term,

2.3.6 Acoustic Field of a Point Source

Consider a source whose dimensions are much
less than the wavelength of sound generated. In this

limit it can be modeled as a single point source
(P Xo )= (W) D Sx- L) 2.46

where £ is the location of the equivalent source and D the

effective length of the source (note the § function has

1

units of L™ 7). Taking the transform indicated in

Eq. 2.44 and substituting into Eq. 2.45 gives

Plico)= Py cmhD (i TR0, | p otertyy-cked
Dw) - m)® (+ M)
2.47
From which one finds the magnitude
ijo)lik,ﬂiwueﬂ’z/fﬂz[( L e IRf
|De |2 g-m* Grm)?t ) 48
-2 ] conlk,+RILrS-2)

. . /= M) . .
The cosine term in the expression arises from interfer-

ence effects, which are possible oniy because the source
location £ is specified. If one lets £ vary over the
length of the pipe and computes the average value of lF{Guyﬁna
this term drbps out whereas the others remain. the same.

Computing this average one finds
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L

2 | 42
dpdcwjo)l J = - ggiﬁ |Pc<w)0)|,_

2 2 2
o )Tt s IR
2.49
We can define a transfer coefficient
2
T - <[P£(w,o)| %
pucT lOIgJ”z - “ o 2.50

Note that averaging 6véral1.soﬁrce positions has removed
all dependence on /. The magnitude of the generated

- acoustic wave depends only on the Fourier amplitude of
the source field, which can be derived from a statisticai
description of the time variations of the source strength.
The location of the source £ has its counterpart, in
distributed sources, in the phases of the Fourier
coefficients of the source. The neglect of such phases

is equivalent to the neglect of interference effects.

2.3.7 Acoustic Field of a Distributed Source

Consider the acoustic field of a distributed
source. Let the Fourier coefficient of the source be

-given by |
03(“-)/ Ry ) = lﬂw) /?,:)l e’ é | 2,51

where féis the phase of the coefficient. Substituting

into Eq. 2.45 and computing the amplitude gives the
incident pressure amplitude
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2 2 .2 2 2 2
P, G o))"= mp P RN + [plyr)|” IR)
, l l&wf (-m) (+mM)*

- W(‘U, /2‘1 l@@: ,a*)l ZIIZL_I wﬂ{(&'ﬁk.)@r&)#‘@-é)}}

(- M2)2
2.52
Note the similarity of Eq. 2.52 to Eq. 2.48.

The interference term due to localization of a point source
has been replaced by the phase term ( é_-¢2 ).. The
expression, as it stands, cannot predict the sound field
of a random source, because only ampliitudes and not
phases can be deduced from the correlation function.
Consider the average of N measurements of the incident

pressure and assume the value of the phases to be random,

one finds ’ Y,

<Jpwol7= & T |pegol’

=Mk 103(“%'%-7) P r ) R,
D)™ ) (- M) (M7
The result is equivalent to taking the average over all

source locations.

Tovunderstand the effect of avefaging consider
a point source that moves in a random fashiOn_in the
duct. Let the time needed to‘compute a Fourier analysis
at the inlet be smaller than the time it takes for the
position £ to change significantly. Any single anélysis
will contain interference effects due to the approximate

localization of the source. An average of N such
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measurements would have the cosine term contribute
randomly and therefore tend toward zero.

Consider the Fourier analysis of the field
due to a distrubuted source. Any sipgle analysis depends
on the precise distribution in time and space of the
sources, hence i; will include interference effects.
If the average of N measurements is taken these inter-
fernece effects contribute randomly and therefore tend
teward zero,

One may ask which expression to use, i.e.,
Eq. 2.49 or 2.53. The answer depends on the extent of
information concerning the source. To use the model of
a distributed source requires statistical information
concerning the distribution in both time and space.

Information concerning turbulent fields in
short pipes is limited and the approximation of a random
point source is more appropriate. Eq. 2.49 only requires
that one specify the correlation in time and will there-

fore be used.

2.3.8 The Upstream Acoustic Field

. The transfer coefficients Tare now used to
predict the acoustic spectra in front of the inlet. The
various calculations are tied together so as to derive

the acoustic spectra outside the pipe from the turbulent
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source spectra inside the pipe. Only the correlation in
time will be assumed. In effect, one considers the
average field from a collection of random point sources.

From Egs. 2.50, 2.37 and 2.34 one finds

dpey™IE 7 =T° 78 7° N

T o
PACE IvLET DULCT IPC ) 2.54

Assume that the source is described by a

Gaussian correlation in time

2
~ (DT
Ulét)== CPa c ) 2.55

Taking the Fourier transform yields the source'spectra

’0)(‘“”),2: /WTO;)ZC-KZ%O) | 2.56

Up

To concentrate on the spectral line shape,
separate the frequency dependeﬁt terms in Eg. 2.54 from

those which determine the average amplitude to get
2 (8 wmey) 4 “(t%)°
Pl r)” 7 = |2 T (%5 ) o , C
< ' “a 4 © [0Ge )|

2.57

—_ _(w )2

©+0  lpw) . .

If the microphone is on the pipe axis 6 = 0

and the last line is exact. The exponential term comes
from the source distribution. A factor of w?comes from
the radiation impedance of free space and a second factor
of «? from this second time derivative in the source

term. The ]D(g))lz in the denominator comes from the
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response characteristic of the duct (Eq. 2.25), it
depends on the flow speed through the reflection coef-
ficients, It is this term that is responsible for the

periodic amplitude variations observed in Figure 2.1.

Explicitly
2 2
lD(w)Ia =/-2 Vﬁol IQLICOQ,(?(%)Y/—*&)*SJz + IR} IRl 5. 58
/= Mm?

. . . : 2
The duct response is maximum at frequencies where IEXgJﬂ
is minimum. This occurs at frequencies where the

cosine term is equal to one. That is when

; = Wn =_NC 0"”42)
" 21 26L-+S}4~SL)

If the product ]ROI IRLI was equal to one, then |D( uJ)|2

2.59

equais zero at u% . Hence the duct response is infinite,
This occurs if the ends are perfect reflectors of the

incident intensity, i.e. if

IRLIR|= =M 1+mMm =

1—-— 2.60
| + M - M
HoWever, the measurement of Ingard and Singha1.30 have
shown that
L33
R R = .95 i'—"-"—) < 2.61
‘ | +M

As the flow speed increases, the product lRol !RLl

decreases, consequently |p(w )[2 varies less and the acoustic

spectra smooths out. That is, the eigenmodes are damped.
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2.3.9 Numerical Comparison of Theory to
Experiment

Herein'the observed spectra is fit by the
expression in Egq. 2.57. All mean intensity information
is lumped into a proportionality constant,

B, which is a function of the flow speed and the
distance of the microphone from the inlet. The data
is fit by adjusting B and w .

Figures 2.8 to 2.10 compare the theoretical
spectra to that observed in experiment. All of the
qualitative features are accounted for. First, it is
clear that the spectral lineShépeagrees with that
observed. Second, the amplitude peaks at the
resonant frequencies are damped at the higher flow
speeds. Finally, the average rise and fall of the
amplitude with frequency is the same as is observed.

It should be noted that at high frequencies
the theoretical amplitudes match the observations. At
low frequenciés the data exceeds the theoretical levels.
The same effect was observed in fitting the free space
spectra with an isotropic turbulent model. The inhomo-
geneities of the turbulence must be accounted for to fit
both the high.and low frequency ends of the spectra.

Moreover, at low speeds, the theoretical reson-

ant peaks are greater than those observed. This
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discrepancy is due to non-radiative damping such as
turbulent and visco thermal losses. At high flow speeds
the predicted and observed resonant peaks agree.. At these
velocities, radiative damping is the dominant loss mechan-
ism and the model, based only on end losses, is more
accurate,

It is also possible that some modification of
the exit reflection coefficient may be necessary at low
flow speeds. The empirical coefficients given by Ingard
and Singhal30 are used throughout (Egs. 2.32 and 2.33).
At zero flow the two reflection coefficients should agree,
however, they give lRol = 1 whereas |RL| = .95. They
indicate that “ﬁﬂ is an average for all frequency ranges
and flow speeds, at best, a good approximation. Such
discrepancies do indicate that a more detailed study
of the exit reflection coefficient is in order. 1In
particular, if one substitutes the value .95 for lRLl
at low flow speeds greater radiative damping would
occur. This would bring the theory in better agreement
with the observations.

. In Figure 2.11 the Strouhl numbers that were
used to fit the data are plotted. This fit was done on
a computer using a least squareé procédure. . Here, one
assumes that the correlation frequency /), is related

to the Strouhl. frequency fs as
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Here the inlet turbulence is assumed to be the major noise

source, The Strouhl numbers are based on the velocity and
diameter at the narrowest point of the vena contracta.
The numbers obtained range from a high of .68 to a low
of .16. This is well within the range observed in free
space spectra. Strouhl numbers based on pipe diameters
and velocity are 2.15 times larger than those 5ased on
the inlet jet.

The scatter of Strouhl numbers is large, and some
additional comment is necessary. If «{ is the correla-

tion frequency than the correlation time is given by

Do .y S .63

Such a calculation (Figure 2.12) gives a correlation
time that varies from a high of .5 milliseconds at low
flow speeds, to a low of .2 milliseconds when the inlet
is choked. The near constancy of the correlation time
indicates why the Strouhl number varies inversely with the
flow speed.

A discussion of the ampiitude (3 1is premature
as several untested assumptions were made in determining
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how sound is transﬁitted out of the ends. For examble,
it has been assumed that the departure from perfect
intensity reflection is due solely to radiative damping.
Any non-radiative losses at the ends would alter the
transmission coefficients and obscure the interpretation
of [3. suffice to say that the change in amplitude
serves only to move the pattern of spectal variation by
a constant factor and does not alter the relative line

shape.
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3. EXCITATION OF TRANSVERSE DUCT MODES

3.1 Introduction

In the present section the aerodynamic excita-
tion of high order acoustic modes in a rectangular duct
by a turbulent jet is explored. The nature of the duct
response in the vicinity of an eigenfrequency and the
range of frequencies is determined for which the qualita-
tive behavior of the acoustic response of a duct differs
from free space.

Sound can be transmitted in a duct in more than
one mode. As the frequency of the source is increased
beyond mode cutoff, a new mode is available for the radia-
tion of sound down the duct. The response of the duct to
a sound source is greatest when the source frequency is
equal to an eigenfrequency. Random sources, such as
turbulent jets, contain all frequenciesf bne expects
‘that the detected pressure spectra will shoﬁ peaks at thg
eigenmodes.

Herein, the pressure response of a duct to an
enclosed air jet was measured in two frequency bands:

0 to 5 kHz and 0 to 25 kHz. The jet noise source in
these experiments was produced by drawing air through an
orifice, on which various orifice sizes, flow rates, and

orifice locations were used.
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One observes that the pressure spectra does
exhibit asymmetric singularities (pressure spikes) at
frequencies equél to the cutoff frequencies for the
first few higher order duct modes. As yet the discon-
tinuous nature of the radiated pressure field from a
random source has not been demonstrated by any published
experimental data. One of the aims of this chapter is
to demonstrate such peaks in the pressure spectfum exist.
One accounts for. these spikes theoretically by consider-
ing the response of the duct to a turbulent field with
Gaussian correlation. This model accounts fof the varia-
tions in spectra at the eigenmodes. |

In a frequency range in which a large number

6fjmodes can proﬁaggte the spectra smooths out, i.e.,
the duct spectra resemble the free space jet spectra.
To account for this, one notes that the asymptotic limit
of the duct‘radiation impedance is the free space imped-
ance. This implies that the linear response of a duct to
a‘tgrbulent source should be identical to the free space
response to the same source in the high frequency limit.
This accounts for the observed spectra.

Pressure spikes termed impingement screech have
been observed, in certain instances, in the high fre-
quency limit. These will be identified, in Chapter 4, as

nonlinear feedback oscillations that occur when an air
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jet impinges on a wall. They depend on the alteration of
the jet structure by the emitted sound. Phenomena in
which the field reacts back on the source cannot be
accounted for without considering the variations produced

in the jet, and are not considered in this chapter.

3.2 Experiment

3.2.1 Apparatus and Procedure

In principal, the apparatus is a rectangular
duct with a small hole in its side. One end is fitted to
a suction device which lowers the pressure in the. duct.
The air drawn through the hole dévelops turbulent fluc-
tuations which generate the sound. This sound is
detected by a microphone mounted flush to the duct wall.
The signal is then spectrum analyzed, and then the
average of 256 analyses compu£ed and plotted.

The rectangular duct has inner dimensions of
15" by 4".. A nonreflective acoustic termination is
placed at its end. This is fashioned from a triangular
wedge of acoustic fiberglass. The first 56" of the duct
is the test section. The top and bottom are fitted with
eight detachable plates (Fig. 3.1).. These platés are
used to mount microphones, orifices and pressure taps as
needed.

The next 72" is an acoustic muffler consisting

of two strips of acoustic foam mounted on the sides of
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the duct. The muffler reduces any noise generated by the
suction apparatus. The transmission loss exceeds 40 DB
above 1 kHz and exceeds 20 DB above 250 Hertz.

Fixed to the end of this section is a pipe
which leads to the suction apparatus. A cutoff valve con-
nects the apparatus to the main exhaust facility, a pneu-
matically operated butterfly valve modulates the mass flux.
Additional flow resistors were uséd to control the mass
fiux. These were blocks of acoustic foam placed in front
of a wire screen in the duct.

A hot wire anemometer was used to calibrate the
flow speed. To calibrate the probe, a %" diameter orifice
plate was mounted at the end of the duct, as shown in
Fig. 2.1. The mass flux through the orifice is calculated

37 (Eg. 4.1). Continuity

from the pressure drop across it
of mass flux, plus the ratio of jet-to-duct cross-section,
gives the flow speed in the duct. The probe cannot be
mounted in the jet since hot wire measurements are
inaccurate at near sonic speeds, hence the mounting of
the probe in the low velocity mean duct flow.

The orifice plates were then mounted on the
side . The velocity versus pressure drop was caléulated
as before. Comparison of anemometer readings from tﬁis
data to standard axial mounts showed no substantial

deviations (Fig. 3.2).
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One quafter inch B + K microphones were uéed to
detect the acoustic field. ' The protective cover which
shields the micréphone membrane was removed so as to pro-
vide a smooth surface to the flow. The microphone was
mounted in a test plate with the membrane flush to the
surface of the plate. Recall that transverse modes are
characterized by their variation in a plane normal to the
duct axis. To detect such modes, the microphone must be
at a pressure antinode. In rectangular ducts, the
corners are pressure antinodes for all modes. Two plates
with the microphone mounted at the corner were made. A
third plate was machined to allow transverse variation of
the microphone (Fig. 3.3). The plate has a double row of
%" holes spaced by %" from center to center. The second
row is staggered behind the first to provide %" increments
in microphone location. The holes are stopped with alumi-
num plugs when theAmicrophone is not in place.

Circular orifice plates of %", %" and 1" dia-
meter were machined from 3" thick aluminum plate (Fig.
3.4). The orifices are tapered so as to present a sharp
edge to the in-coming flow. Tapering is necessary to
avoid orifice screech when the thickness to diameter is
between % and 2. The plates were mounted on the side of
the duct so that the jet enters perpendicular to the duct

axis. A fourth plate, %" diameter, was mounted to let’
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the éir enter parallel to the duct axis. It was this
plate that was used for the velocity calibration (Fig.
3.1). Finally, a 60" pipe, %" inner diaméter, was
mounted on a plate (Fig. 3.5).

The electric apparatus consists of a micro-
phone power supply, a spectrum analyzer, a spectrum
averager, and an x-y plotter.

3.2.2 Basic Experiment

In the experiment an orifice plate is mounted
in the center of the test section. The pressure in the
duct is reduced and air drawn through the orifice. The
air jet impinges on tﬁe opposite wall. The turbﬁlent
fluctuations in the air jet act as the sound source.

Thé acoustic signal is analyzed in two frequency ranges,
termed low (0 to 5 kHz ) and high (0 to 25 kHz ) (Fig.
3.6).

- The low frequency range spans the first four
transverse duct modes. In this limit the frequency
éeparation between modes is greater than theif bandwidth
when excited by a random source. Inspection of Fig. 3.6
shows that just beyond each mode cutoff the sound level
increases abruptly. Of particular interest is the
asymmetric shape of the curves which characterizes the
exciﬁation of transverse modes. Recall thaﬁ such modes

progagate only if the frequency is above a certain cutoff.
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The duct pressure response to excitation of a given mode

is zero below its cutoff frequencycun, infinite at the
1

cutoff frequency, and proportional to —- above
W - w
cutoff (see section 3.3.1). The infinite resgonse is in

the ideal case of infinite source impedance and zero
damping. Real fluid effects limit the response to
approximately 10 DB. Nonetheless, the asymmetric shape
is still evident. |

In the high frequency range the spectra
resembles the free space jet spectra (Fig. 36 ). Below
five kilohertz the level jumps at the cross modes are
still evident. Above five kilohertz the spectra smooths
out. One can show that the radiation impedance in the
high frequency limit asymptotically approaches the free
space impedance, hence the similarity. Two physical
effects are responsible for the smoothing of the curve.
First, the damping limits the level jump at cutoff.
Second, a new mode cuts on before the level shift from
the previous mode has subsided. The influence of the
neighboring modes overlap so as to make the contribution
of any given mode small, in this range.

3.2.3. Spectra Variation with Jet Velocity
and Diameter

Herein the effects of flow speed and orifice
diameter are investigated. Since the flow rate in the
duct is much smaller than that of the jet, the duct
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response should remain approximately independent of flow
speed. Aside from level shifts due to increased turbq-
lence, the spectra should be similar. Three orifice
diameters, %", %", and 1", were tested for jet flow
speeds up to Mach 1. Representative spectra are pre-
sented for each of these cases.
The low frequency spectra are presented in

Figs. 3.7, 3.8, and 3.9. Level jumps at the first three
cutoff frequencies are observed for all flow speeds.
Moreover, the characteristic asymmetric shape of the
peak is observed in all cases. The sound 1evei rises
monatonically with velocity as expected. The intensity
at the high frequency end appears to increase at a faster
rate than the low frequency intensity in these plots.
Recall that, in free space, the spectra peaks at a
Strouhl frequency approximately equal to L%Z-. As the
velocity increases, the intensity shifts toward the higher
frequencies. Hence the observed level increases at low
frequencies should be smaller than those at high fre-
qguencies.

. The high frequency spectra are presented in
Figs. 3.10, 3.11, and 3.12. Here the average response
of the duct is most evident. Aside from screech tones,

the spectra increases with flow in a manner similar to

free space spectra. Dotted lines, indicating average
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behavior, are drawn at low and high velocities in Figs.
3.10 and 3.11. As before, the sound level increases
monatonically with velocity. Moreover, the peak of the
average behavior increases with flow speed approximately
as the Strouhl frequency. These observations are con-
sistent with the low frequency behavior.

Certain-spectral anomalies, termed screech
peaks are sometimes observed above Mach .6. These peaks
are nonlinear effects which are due to the coupling of
the jet flow to the acoustic waves produced. One indi-
cator of a separate meghanism is the line shape. Screech
peaks are symmetric about their maximum, the duct response
is asymmetric and peaked at a cutoff frequency.

3.2.4 Reduction by Strouhl Number

It is oftentimes useful to establish scaling
lows for data reduction. In aeroacoustics the Lighthili
eighth power law, and its extension by von Gierke38 to
spectral analysis (see section 4.3.2) has been found use-
ful. The basis for data reduction is the proposition

that the spectral intensity is maximum at a frequency

.2V
D

and diameter. The point is that spectra should be simi-

, where V. and D are the jet velocity

given by fs

lar for experiments with similar Strouhl numbers.
Such a comparison is made here. Figs. 3.13 and

3.14 present the spectra with the same Strouhl frequency
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(5.7 kHz and 2.5 kHz ) for the low frequency regime.
Fig. 3.15 compares two orifices of similar Strouhl fre-
quency (1.9 kHz ) in the high frequency regime. From
the figures it is clear that the speétrél shape reduces
according to Strouhl number.

One exception is of note, the line shape below
the first cutoff. In each case (Figs. 3.13 and 3.14) the
orifice with the lower jet velocity exhibits a decay in
level as the frequency increases from zero to the first
cutoff. The ofifice with the greater velocity exhibits
levels approximately independent of freguency. Such
behavior may indicate the dominance of sources other than
sound from the jet furbulence at low jet speeds. One
possibility is the wall turbulencé in the duct.

One item of note is that the overall level
increases with increasing velocity. Let us assume that
the radiated power in the duct is proportional to VﬁDz as
is the case for free jets. If the spectra shape is iden-
tical, the power per unit frequency should increase in
the same fashion. The level ratio between orifices of
different diameters but similar Strouhl numbers.is given

. by
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where Dy and D, are the orifice diameters. The ratio is
independent of velocity for orifices with identical
Strouhl numbers. If the diameter»is doubled, the level
should increase by 30 DB. To check this, the average
separation between lines was computed, in the frequency

band indicated, for Figs. 3.13, 3.14, and 3.15. One

finds
Fi D D £s Range ASPL
 Figs. Yo 1 kHz kHz
3.13 rPL I ot 5.7 2+ 5 ' 26
3.14 UL 2.5 2+ 5 35

3.15 " 1" 1.9 5 > 15 30

The result holds for the high frequency spectra
where the duct response is identical to the free space

response. The scale is only approximate for the low
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frequenéy spectra. 1In this range the turbulent sound
field is especially sensitive to variations in the jet
velocity and diameter. The error for a 10% deviation of
the Strouhl gnumber gives an uﬁcertainty of

10 log(—iﬁ) X 1+3.4 DB, or a net error of 6.8 DB. The
observedf%gviations are 4 and 5 DB. This suggests that
the dimensional scaling laws do apply to the ducts,_even

in the low frequency region.

3.2.5 Separating Linear from Feedback Effects

Certain peaks in the spectra were identified as
nonlinear effects. These were termed screech ?eaks.

They were distinguished from the linear duct response at
cutoff by their symmetric line shape. Herein the two
effects are separated by plotting amplitude variations
versus flow speeds.

In the linear response of the duct the sound
pressure level is proportional to the turbulent intensity.
Since the turbulent intensity increases monatonically
with flow speed, it follows that the level should also
increase monatonically.

A nonlinear effect depends on the interaction of
the jet flow with the acoustic wave it produces. Such
interactions depend strongly on the jét flow speed.
Screech instabilities only occur for certain flow speeds.
One finds that the sound level no longer increases
monatonically with flow speed.
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" To show the linear character of the duct response
at the cutoff frequency, the behavior of the fi;st trans-
verse mode (f = 1.6 kHz ) is studied in detail (Fig.
3.16). 1Its behavior is compared to the amplitude depend—
ence on flow speed for a point (f = 2.5 kHz ) between the
first and second cutoff frequencies. This compatison is
done for a %" diameter orifice mounted on the side of the
duct. One finds that both frequencies have the same
variation in amplitude with flow speed. The only differ-
ence is that the level at the first cutoff is 7 DB higher
than the level between modes. That the intensity follows
the same power law indicates the response of the duct at
cutoff is independent of velocity.

Of note is the fact that the amplitude increases
as the sixth power of velocity. At first this seems to
contradict the result of the previous section. This is
not so. The Strouhl frequency increases with flow speed
for an orifice of fixed diameter. 1In Fig. 3.16 the
Strouhl frequency varies from a low of 2.7 kHz at Mach .5
to a high of 5.4 K.C. at Mach 1.0. The'y‘aD2 law holds
only for gxperiments with similar Strouhl numbers.

In Fig. 3.17 two frequencies identified as screech
peaks are investigated; these are at 9.1 kHz and 13.0
kHz, The amplitude does not vary monatonically with

velocity. In particular, the level seems to peak at
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Mach .7 and .8 and then fall off. Such variations with
flow speed identify the scréech as a separate, nonlinear
effect.

3.2.6 Effect of Inlet Turbulenée

Herein the effect of inlet turbulence on spectral
line shape is determined. The spectral line shape should
be independent of variations in inle£ flow conditions
since it is dominated by the duct response. Contrast the
simple orifice to the flow from a long pipe. The flow
entering the dﬁct from a sharp edged orifice is laminar;
it does not become turbulent until points further down-
stream. The flow from a long pipe, on the other hand,
is fully turbulent. " For comparison to the orifice data
the flow was drawn into the duct ffom a 60" pipe of %"
‘inner diameter (Fig. 3.5).

The low frequency spectral dependence on flow
speed is presented in Fig. 3.18. The line shape is
similar to that observed for orifices. 1In particular, the
asymmetric shape of the peak at cutoff is evident for all
flow speeds.

The high frequency spectral dependence on flow
speed is presented in Fig. 3.19. Again the line shape is
similar to that® observed for orifices. 1In particﬁlar, the
spectra resembles the free space spectra in this range.
Absent from this figure is evidence of screech peaks. fn
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sectidn 4.3.5 one screech peak is shown to occur at suf-
ficiently high flow velocities.

Of note is the periodic ripples superimposed on
the low frequency plot in Fig. 3.18. The spacing between
these ripples is 112.5 Hertz. This corresponds to a

cavity length L = = 60". The ripples represent the

<_
2AF
excitation of the axial pipe modes. The response of the
pipe is superimposed on the duct response.

3.2.7 Orifice Mounted on Axis

Herein the orifice was placed so that the air jet
entered parallel to the duct axis. The acoustic foam
wedge was removed from the upstream end and a %" 6rifice
plate was mounted in its place (Fig. 3.1).

| Acoustic spectra versus velocity in the low fre-
quency range are presented in Fig. 3.20. Again, one
observes asymmetric peaks at cutoff frequencies for all
flow speeds. The effect, however, is not as pronounced
as it is for side-mounted orifices. This is due to mask-
ing of the acoustic wave by the convected turbulence.
The hard-walled orifice plate in the plane of the duct
cross-section also influences the spectra. To circumvent
these effects, the orifice was mounted on the duct side.
The microphone could be mounted upstream in a region of

zero mean flow.
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" The change of location introduces impingement
screech. This screech occurs only if the air jet strikes
an opposing wall. No screech was observed for the ori-
fice mounted on axis.

3.2.8 Upstream versus Downstream Radiation

With the exception of the orifice mounted on axis
all spectra were taken with the microphone located up-
stream. In this region, apart from some recirculation,
there is negligible convected turbulence to mask the
acoustic wave. In addition, the duct response is inde-
pendent of jet velocity as the mean flow is zero. Condi-
tions downstream of the orifice should be similar since
the flow speed in the duct is small.

Two microphones were used to check this, one up-
stream and the other downstream. The flow speed was set,
and both upstream and downstream spectra were plotted on
the same graph. The only error introduced by such pro-
cedure is the difference in microphone response, which
is approximately 0.8 DB.

The spectra at Mach .25 and 1.0 for a %" orifice
are compared in Fig. 3.21. The response at the low flow
speed is approximately identical. At high flow'speeds a
periodic variation of level with frequency is observed
downstream, but not upstream. Aside from these variations
the response is identical. The microphone was placed
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upstream to avoid these flow-induced effects which obscure
the interpretation of the spectra.

3.2.9 Effect of Microphone Placement

The point of this experiment is to emphasize
that the duct response is due to the excitation of the
transverse modes.. It also demonstrates the influence of
microphone placement on the detected spectra. The micro-
phone holder shown in Fig. 3.3 was placed upstream from
a %" orifice. The flow speed was set and level changes
with changes in the transverse microphone position noted.

Three frequencies were selected for detail inspection.

Cutoff
Frequency Propagating Frequency Dominant
kHz Modes kHz Mode Shape Nodes
1.0 (0,0) 0 1 0
1.8 (0,0) 0
(1,0) 1.67 cos £ 1
3.5 (0,0) 0
(1,0) 1
(2,0) 3.35 cos 22X 2

"Above a cutoff frequency all lower modes'still
propagate. Howéver, the duct response is greafest at a
given mode near its cutoff. Hence the detected pressure
variations should be dominated by the transverse variations'

of that mode.
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Fig. 3.22 indicates this variation. At 1 kHz
only the plane wave propagates, the pressure is uniform
across the duct cross section. At 1.8 kHz the first
antisymmetric mode dominates, hence the node at the center
of the duct. At 3.5 kHz the first symmetric mode domi-
nates, hence the observation of two nodes.

The pressure waves in the various modes are addi-
tive. If the microphone is placed at an antinode for a
mode, this mode will not be detected. This effect is
demonstrated for the first antisymmetric mode (Fig. 3.23).
The center of the duct is a node for this mode; hence its
influence is not detected. 1In particular, the peak at the
first cutoff is unobserved. For this reason all other

experiments were done with the microphone at the corner.

3.3 Theory

3.3.1 Duct Acoustics with Mean Flow

Consider a rectangular duct of width 4 and
height b. Assume there is uniform mean flow throughout
the duct. The linearized wave equation for a harmonic

acoustic pressure perturbation of angular frequency w is

2\ .2
(-m7)27,

oz C 9z l\c) oax® oar?

. 2 :
+ 2L WM 2 +fﬁ + 2 498 ?Fb o 3.2
where the z direction lies along the duct axis (see Eqg.
2.12 and set P equal to zero).
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Mungar39 has pointed out that the boundary con-

dition at the walls must be re-examined if flow is present.
There can be no mean flow parallel to the duct wall due

14 have

to the action of viscosity. Morse and Ingard
shown such effects can be modeled as viscous attenuation
terms for infinitessimal acoustic velocities parallel to
the wall. However, in the presence of mean flow one must
assume an infinitessimal region of fluid near the walls
in which the mean flow speed is zero. The fluid in the
duct is assumed to slip past this region.

When there is relative motion between the fluid
and the walls, continuity of'displacement must be used in
place of continuity of velocity. The normal acoustic
velocity Unf in the fluid is

Uye™ D Fpp =(-Lw i 7k, 5oy

Dt. 3-3

where;f nf is the particle displacement normal to the
walls in the moving fluid. The wall ve1001ty U in the
stationary fluid near the walls 'is obtained from the

normal particle displacement/f aw 2t the wall by

U = 2 = -~/ W
hw ~—— /nw hw .
3£ 3.4
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Continuity of particle displacement gives
,/?n»v ' /;;§

or

UnW = Un_p

- Lw —Ud+£7rhl 3.5

In the absence of slip continuity of displacement and
normal velocity are equal. Now use the condition that
the particle displacement at the walls is zero, i.e. the
fluid cannot penetrate the hard-walled duct. From Eq.
3.4 it is clear that Unw is zero. The momentum equation
relates pressure grédients in the moving fluid to

particle velocities

§0 D_Un,F:-g__E‘

D¢ an
or
. 2 _
G Ciwsdhe ) £ = -g_nf_’ 1

Substituting Eq. 3.5 into Egq. 3.6 and requiring Unw equal

. to zero gives

G (ot iTR U = —2p
| ~{w CRL
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or, by Eq. 3.4 with § ow = 0

0=-2F 3.7

9N

The ordinary NeumannCondition on the pressure field at
the walls still holds.

Locate the origin of the coordinate system at a
corner of the duct. The walls are located at x=0,b and

y=0,d. A set of solutions satisfy the wave equation

( Rnp Z
me): q/mn(x’r) = 3.8
where
Lan = CoL mmx cou hT'Y
b d
R = % /RS (-2 - MR
| - M&

. Each wmn represents a pressure field, or mode,
in the duct which satisfies both the wave equation and
the boundary conditions. The field is, in general, a

linear combination of the modes Ibmn'
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Note that the transverse portion tbmn(x,y) of

the modes is orthogonal. Thus

b d
S-odxgé{lv ({:’nn(xly) Y/Pi( X)Y>:- gmp g,:)'g“/\"mr‘; bd 3.9

where bd is cross section of the duct and Amn the

2
average value of wmn .
1 both m=0 and-n=0)'either
-— 1 - — .
Amn = < L m=0 or n=0 but not both)
E m# 0 and n#0.

It will be convenient to replace the double index m,n by
the single index n. To do so, arrange the modes in order

of increasin .
g M’mn

th mode,

For a wave to propagate in the m,n
kmn' the wave number in the axial direction, must be real.

Given the angular frequencyw,kmn is real only if

2 2

() > s 6

C
or

: 2
w7 WM )
3.10

where W, = C W
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For any frequency w there are only a finite number of
propagating modes.

3.3.2 The Green's Function

If the sound generator is a simple harmonic
source at point (xo, Yqr zo), the resulting acoustic dis-
turbance is the Green's function Gw (f}fo). Such a func-

tion solves the forced wave equation

[(;-Me)i t2LWMD 4+ g_))2+ 2° +Q_2_ G =§x-%) $+-1) S$E-2,)
228 ¢ ez ax°

X" Y 3.11

where G must satisfy the boundary condition in Eg. 3.7.
G can be expanded in a series of eigenfunctions ¥ mn®
For an infinite duct the acoustic waves propagate away

.from the source point. Thus

G = ; A Yoyt EnlETEL
_ (R, |2-2
G =2 A, yrict o | 27z,

~where

R

/R =M e = Mk
/=M% |~ M?
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Insertion of the expansion into the wave equation. Eq.
*
3.11, then multiplying by wh and integrating over the

cross section bd gives a set of equations

E’ A, v zehna (e H’nZ)J A,,CC Iz

292 92

_ oo SE-z)
bd A,

3.13

Integrating from Z,~ € to z +e gives the magnitude of
the discontinuity in the derivative with respect to z at

the source point

(/z A +ih, A )_ /(% 1;) 3.14
' bd_/L ‘

Continuity of the pressure requires

A = A 3.15

n+ n-

One has, dropping the subscript * on the An's,

AL =L %K) - 3.16
(/e_n++/in,) bd_/Ln ‘

In the limit of zero flow this reduces to
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A= & HxK)
Tk, bd_n

14

which can be found in Morse and Ingard (Chapter 9).

The Green's function is

G=T i Yo v) hixor) e el P

(k?,m +f, ) bd A

where the + sign holds for z >z and the - sign for
z<z  on the term in the exponentiél.

3.3.3 Random Source Representation in a Duct

Consider the representation of a random source
in a duct. The issue is sufficiently complex to warrant
a separate discussion. The discription is done‘in steps.
' First comes a review of the correlation in time, next
space correlation along the duct axis, then the space
correlation in the plane of the duct cross section.
Finally, the full space time correlation is présented as
the union of the above. A number of transforms are
introduced; to keep track of these the results are sum-
marized in tables3l and32. On the right hand side is a
note on dimensions which provides a useful -check on the

formulas.
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Consider a region of turbulent pressure fluc-
tuations @ inside a rectangular duct (0<x<b, 0<y<d)
with rigid walls. Let the fluctuations be confined to
a region - L/2 < z < L/2., To construct a measure of the
temporal variations of the source at point ;;, one prd-

ceeds as in free space.

~ © ‘Wt .
@(ro, LU>= Z‘ﬁ: gf{af @(Pé,t) eL 3.18
* ¢ wt
~ - W ‘
P0s, )= S_dw P w) & 3.19

Similarly, the correlation is

RED = SJ{? P, ) P & ko)

t;? -T/2

(4w RE,wrc

3.20
AR, w= 1 (dv RED T
a -
—_ 2_17} ,ﬂﬁ)w),
T ' 3.21
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See Eq. 1.23 for a proof of Eq. 3.21. If the source is
homogeneous, one can drop the source point f6 in the
description of R.

Now consider a measure of the spatial variation
along the duct axis. Again, one proceeds as in free

space. The Fourier transform is

(P =__'F§C4£ 03(,2_)6”'&a 3.22
00 ' R
GDCZ'): gd’% GDU’L)CL = 3.23

Similarly, the correlation is

RE) = “,_ng‘? PE) (X2+Y)

~y2

= (dr Re)e™™ - 3.24

0‘)“0?.‘)= P EY RoHe kY

3.25

2
2T (R)
2 |pee)
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Now consider a measure of the spatial variation
for points separated in the plane of cross section of the

duct. If one defines

b rd |
@(o(,/@)z__'_gdxgdr P&, ) 0:)(><+o<) )/-f-/G) 3.26
bd ° ©

as the pressure correlation for simultaneous measurements
separated by a and B, one must decide what values to use
for when x+ o exceeds b or y+ 8 exceeds d.

One stsibility is that @ is zero outside the
source region, as was the case for axial pipe modes (Eq.
2.44). 1In this case, however, computational difficulties
are encountered when the source correlation is related to
the radiated pressure. 1In particular, it is impossible
to expand the source in the duct eigenfunctions if the
source strength is assumed to be zero outside the walls.
Here is is more convenient to consider the wails as
réflectors and to consider (p outside the duct to be the
mirror image of the distribution inside. Following Morse
and Ingard14 (Chapter 9), one expands the source in the
eigenfunctions of cross section and limits attention to

. points inside the duct. The Fourier transform is
X v)= 2, .
P y) ,;,, Prrny o 1) 3.27
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b (4
Pmn =_+ gdx gdy (P& ¥) ¢ &vy) 3.28
bd‘/\—mn o (o] _
Similarly the correlation is
02,(4,[3)-";” @mn Wmn@(:ﬁ) | 3.29
- "‘A_mn |03mn‘ -~ 3.30

To get Eq. 3.30, substitute the Fourier expansion

of (P (Eq. 3.27) into Eq.3.26. Substitute the resulting

expression for(RﬁX,g) into line 1 of Eq. 3.30. Then
recall
— v
fopbresrep)= Cov mEKr=)cow oL (1)

= ’Co@mfi‘*x con MK — sy X A MIEX
b b’ b b

’m hary coan®fB — Adrny - nh/3 l
d d ' d d

The result follows from the orthogonality of the sines

and cosines.
127




Since the walls are rigid the pressure fluctua-

tions will be periodic in the wave numbers kx = % and

ky = % . Similar assumptions are made when the dis-

placemént of a violin string of length L is expanded in

a series sin E%}E . If one looks closely at the series

and asks what displacement is predicted for x outside the
end points, one finds the displacement periodic in kx = % .
The description of arbitrary space time varia-

tions is the union of the above transforms. Thus the

Fourier transform is

- WwWt+ L Rz

P, t)= & g_‘j'mk'g‘_j;f Pl £ C 3.3

PhoeI= L (axg de (af Vix, ) (s 4)C it
_/\.. b 477" :

Similarly, the correlation is
0& b ~d ~L/2 T/2
?JT)— BALT go S‘JY dL/Q 7—/2 (P< Y, 2t) 0361‘6( Y+ﬁ Z+3/zf+'l')

=. % N - LW+ L /?.Y
;,n _ilmlq_&iw Oz’nghr{‘h') %(no(’/"))e

3.33
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@&w,h): | ~ gd«gd/}[dyid’l‘ @67,2') ‘*’m(g,pk:‘wt chy
- " A bd4lr= e b Lo Lo

mn

2
2
LT > P ’_ 3.34

where

FZJ= O(;(\ i—p)/) +Y§

For each mode m,n at frequency w all values of k
are needed for the source description. One may well ask
why this is so since the wave equation demands

2 2 e’
}3 = }1 = A—"E‘J—) - (mTrnd) - (%t) -+ The answer is that
mn

‘one can choose any variation whatsoever in the source dis-

tribution. When it comes time to find the radiated
pressure, only those values of k==kmn will contribute.‘
Consider, for example, the simple case of a
point source oséillating at frequency W, in a narrow tube.
Only the plane wave propagates. The complete spatial
Féurier description of the source requires all values of
k, since its location is given by a delta function. The
"radiated pressure, however, only contains the wave number

w

k, = ?? . The point is, only in the radiation field are

w and k connected; in the source all variations are

possible.
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TABLE 3.1
TABLE OF FOURIER TRANSFORMS

Transform

Time variation at a point

+ 00 fwt
(P(w>=1_/ dte'wCP(t)
2
- a0
* o lwt
F(t)= / dwe  “ P ()

- o0
Space variation in duct cross section

b d
G:r)nn:i fdx dy ‘Pmr(’%y)(}:(x)y)
bd/\.mno 0

Pxy)= 2 ® ¥ (xy)
mn M

mn “

Space variation along duct axis

® (k) - T_fmdz &2y
27r -00 '

P(z) = fmdkelkz(}ﬁ(k)

Arbitrary space time variation

= (wk)= 1 /%y%{//aq% +‘°<‘:)1t ll,{m()x,y)P(T; t)ye
me A bd 4
mn L 9 O -0 -] ,

~ A | ~(wt+i k2
N

-0 <
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TABLE 3.2
TABLE OF STATISTICAL TRANSFORMS

Transform Dimension
. ‘Time variation at a point
@ T/2 »
t)= | gdt o+ ]
) =) P& PE+7) o [(p
oo .
= gdu Runre ¢“T
_ < 2 -cw’&"
oo )
Nw) = _l__gfdf O?I’L’)C’wab/ 0)27"
2T )=
= er [pe|”
T
Space variation in duct cross section
2
. 03_(o< gdx gdf P&, y)@(x«x y+/3) [@ ]

=L R__Y¥ ()

mn mn Mmh

% Amnlﬁ’mn‘a (Pmn@('/@)
| b d
R =ngo<%{a ‘//m,gd,/@)ﬁfd,ﬁ) [OD?_]
=%, Pk
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Transform

Dimension
Space variation along duct axis
/2 2
TR )
- )42, PE)PE+y) - ( .
o0 R
= (4r RErIe®Y
0o : .
= 2P (qr |p@) et
Rk = __'_gav Ruyett [(P‘—
2T J-oo
_ 21 2
= — |Pk)
Arb;.trary sp'ace timéa \(acfiazz/izcjnr/z ,
Oz,fz\' ’C’): gdx gjygdz gdé ngi t) 0:)(X+c(‘ y+(3, [@ ]
/ bdLT Jo 7R 7R Zf-),/tf't')

. [~} «Q ~L‘wt’*dé,3/
= %a:n g_df gif: @mgw,h)) CH-BIc

0o

A 2 g2 ~wr+ L RY
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3.3.4 The Radiated Pressure

Consider the acoustic radiation from a region of
turbulent pressure fluctuations inside a rectangular duct.
Assume the flow in the duct is small enough so that its
effects on the duct modes can be neglected.

The radiated pressure is

Pl F)= mjf:z G (PIF) P, 7o)

x,v)C

The approximation ié in truncating the expression for G
at the last propagating mode. Hefe Q(w) denotes the mode
‘whose cutoff frequency is closest to the source frequency
w. Note the double index m,n has been replaced by the
single index q.

Inspection of Eq. 3.35 shows that the integral
over the source volume { gives a term proportional to the

multiple Fourier transform of ® (Eq. 3.32). Thus

@, R)= 212 h°2 CP(w,QB_‘f’(x et Re?
P 9=0 ki
’ C@Z z+ $.)
:(;1_2 77"2/;2 § 033 q - 9 9
3=0 kg - |
3.36
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where we have shortened the notation to

Q= Qw) Vg = 06 1)

(Pa=| Py kg )l Cf?? - ARG L Pyt Ry V1

Compute the magnitude of the radiated pressure to find

Pl ™)® = peo®) pey F) ¥

2 2

= wR? § Py Y
?:O hqz '

- Q
+2.% Y, Rt K% com[(k,i— ¥ +(d>$~¢5)]
?—'O S=g+/ Qq ks

3.37

The expression for the radiated pressure depends .
on both the magnitude and the phase of the turbulent pres-
sure. This phase dependence does not appear in the expres-
sion for the radiated power in the axial direction. The
power at frequency w is proportional to the integral over
'the‘cross section of Ip(w,r)lz. The integration over the

cross terms is zero by the orthogonality of the ¢'s.
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In the laboratory, however, one can get repro-
"ducible point measurements independent of the axial
coordinate z if the average of a large number of spectra
is taken. No integration of measu;ements over the duct
cross section is needed. The implication is that the
phases dh are random and therefore contribute nothing to
the average.

Zonsider the average of N spectra.

N 2
Lpwffr= L2 |pw, iy
N h=1

2 2
A DI
n=i | g-0 h;’

N
| + ZCE f: Pq Ps wg ¢ m[(hq' k)= +(¢3‘ ch)]

FO $g+| Rj. R

Q 2 .2
— ity P Y
Fo hga

3.38

Where it is assumed that the nth

measurement ( - y
¢q ¢S n

- is random and therefore the second term is zero for large

N. The expression for the average magnitude of the

radiated pressure depends only on the magnitude of the
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source pressure spectra. Eq. 3.34 shows that this quan-
tity is proportional to the multiple Fourier transform of

the source correlation. Hence
Q o
4 Ozrné“ﬁyai) ¢%2
Q-0 }gé
# 2 wa Lé>/
— LT b § —ipi gda(gd,@gd Yg’d’t’ Q(:Z ) l//(q)ﬂ

< pom?P>=17m2kr

3.39

One may ask why it is necessary to use such
averages in ducts and not free space. In a duct there
are a number of modes in which sound can propagate; in
free space there is only one mode. Each mode in a duct
propagates at a different phase speed. This generates
interference effects which depend on the distance from a
source, even in the case of a single point Source with
random fluctuations in time. Such interference effects
depend on the coherénce of the source. If the source
fluctuations are random, these interference effects will
tend to zero for an average over many measurements.
Hence the radiated pressure will no longer depend on the

-distance from the source.
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3.3.5 Gaussian Correlation and a Qualitative
Analysis of the Low Frequency Spectra

Eg. 3.39 provides the basis for interpreting
the observed spectra. In accordance with previous work,
the radiated pressure from an isotropic Gaussian distri-
bution of sources is determined. Let the correlation

length be a and the correlation time &L. Thus

0o

2 2 2 2
P_Ga@?f) - X +R8 + Y
2 &2

Ry 0)=p* e

3.40

One computes Oﬁmn(w,k)by performing the integrals indi-

cated in Eq. 3.34. These are given separately

| 2
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The approximations in the last two lines come from taking
the upper limit as =; these hold only if a<<b and a<<d.
Combining these'results gives .
4 ke @)
2 3 * “e ¢
Oe/rgbﬁ)kmn): (P @ C 3.41

/6 A, bd s

Note that the mode number does not appear in the exponent.
This is because
2 2 2
I?,mna mT a hir a\ _ [fwa

————
— — —— om—

0 )+ = |-

2 b 2/ \d ¢ 2 C

If Eq. 3.41 is substituted into Eg. 3.39, the radiated
preéssure is

. 2 2

/W /

2 ) - Lo +/2

QP@U,V‘” >=,g32 QgLTW’a /34 c 7 [wo (C}]
/6 bd s,

W)
%go ‘PaCX, Va) 3.42
U Ag Ry |

Of particular interest is the dependence on

5 T

in the summation. As the fre-
quegiy is increased above an eigenfrequency, a new term

is added to the sum. At precisely this frequency kq is

equal to zero, which gives a pole in the pressure response.
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As the frequency is increased above the eigenfrequency,
the contribution of this term diminishes and approaches
k-2 assymtotically. These poles have their origin in the
Green's function, i.e., the duct response, and not on the
turbulent field. Further, note the asymmetric nature of
this contribution. For w<:wq the sum terminates before
this mode contributes. For w2>mq the mode propagates

and is included in the summation. Henrce the asymmétry of
the peaks in the low frequency specfra (Figs. 3.7, 3.8,
3.9, 3.18 and 3.20).

Further note the depcndcnce of wq on ﬁhe obscm/cr‘s
coordinates. If the microphone is at a node, wq equals
zero, and the mode is not detected. This feature is
demonstrated experimentally in Fig. 3.23. With the micro-
phone in the center, the (1,0) mode is not detected. The
behavior is further demonstrated in Fig. 3.22 by altering
the transverse position of the microphone.

3.3.6 Damping and the Smoothing of the High
Frequency Spectra

Herein the theoretical infinite peaks at the
cutoff frequencies is corrected; To remedy the situation,
one postulates some damping of the modes. This can be
done in a formal manner by assuming a uniform épecifié
acoustic admittance at the walls. Thus the Nevmannbound-

ary conditions for zero mean flow
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2 X ar

%= 0, b r=od .

are replaced by

4p =1‘¢hﬁx/’3 2 = tiRA.P
x| . 9;7{ | !
Xx=O b )’:.()Jd

)

This change introduces a damping of the

14 (Chapter 9). 1In

acoustic waves; see Morse and Ingard
working such a problem, the difficulty arises in that the
eigenfunctions are no 1onger orthogonal to their complex
conjugates40. To expand the Green's function in such a
set becomes quite tedious. Recall, however, that the
poles are due to qu + 0 as the cutoff frequency is
approached. It will be assumed that the damping is so
small that the wave functions and eigenfrequencies are
given sufficiently accurately by the undamped values. The
only modification by damping is assumed to be in the wave
number kq. Such assumptions are common ﬁo the treétment

41 The argument is

of similar problems in room acoustics.
that damping modifies the response only in the vicinity of
an eigenfrequenéy, i.e., at a pole. |

Consider the modified boundary conditions given

in Eq. 3.43. The addition of damping gives
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where, in the limit of small B

M0 > mm 2048, k

m >0
b b ™ m
AV T~
o, hm 2.8 .k n >o
d d n
Hence » o 2 '
an o ;?,mn - ZL.k(im@‘.f %)
. ,

h‘omn = (é-‘i) 2- (mbﬁ/) 2— (ZW)E’ 3.4

The 7%[”’, -2%50 reduce. to the mode wave numbers Hfh, plus a
n

correction factor. One then has

2
R R ()% 4 (o )
e |~ |7 722+ )
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That is, at the eigenfrequency the magnitude of the wave:
number kmn is now nonzero. This implies that the singu-
larities at the.cutoff frequencies have been removed from
the theory.

Numeric calculations based on visco-thermal
damping have been done. The results for the first mode
show that the predicted level changes exceed those
observed. Such work suggests that the radiative damping
may be the dominant loss mechanism.42

To determine the influence of damping on the
high frequency spectra, consider the radiated pressure at
frequencies just above and below the cutoff frequency Wqe
Consider the change in radiated pressure normalized to

the pressure at a frequency just below the cutoff.
ap _ < ]p(wQ+e)la >-—<“:»(wQ-e)|Z D
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The approximation is in substituting the
asymptotic 1limit of kq for the sum in the denominator.
This substitution is correct if Q is large. If kQ is
finite, it is clear that the pressure change approaches
zZero as é, where Q is the number of propagating modes.
Note that the limit is correct only if kQ is nonzero at
the cutoff, as is the case when there is damping.

The conclusion is the change in radiated‘pres—
sure when a new mode propagates is small compared to the
contribution from all other modes if there are a large
number of propagating modes. In this fashion,lthe
assumption of finite damping accounts for the smoothing
of the spectra in the high frequency limit. This collates
with the observed spectra under a variety of conditions
(Figs. 3.10, 3.11, 3.12 and 3.19).

3.3.7 Radiation Impedance and the Similarity
of the High Frequency Duct Spectra to
Free Space Spectrat

The damping argument (Eg. 3.46) states that the
spectra smooths out in the high frequency limit. It can
be shown that the spectra is identical to the free space
spectra iq the high frequency limit. Morse and Ing.ard14

have shown this ‘is true for a simple volume source.

+The author is indebted to Dr. Rice of NASA Lewis for sug-
gesting the use of averaging techniques in duct acoustics.
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Herein the analysis is extended to radiation from a turbu-
.lent source. In the model df Morse and Ingard the volume
source g is replaced by a small sphere of radius a whose
surface oscillates with velocity ampiitﬁde L%. To con-
nect the analysis to turbulent flow, note that the source
term %w, of Morse and Ingard, has the units of volume per
unit time. Here-the source term q has the units volume
per unit volume per time. Inspecting the mass continuity
gquation, Eqg. ;.l, shows that SDOSW is equiValent to m.d
where m is a unit mass. Further, note that g can be
replaced by an équivalent turbulent dilation Eig (section
1.2.3). This follows from Ribner's analysis g;oresented in

Chapter 1. Thus

4”/@&%: SW :mog = My ’LCD
fe @< C

3.47

where a is the radius of the simple sphefical'volume
source.

A check on dimensions shows that the units are
correct. The only important difference is the factor k
in the equivalent turbulent source. This comes from the
~appearance of a second time derivative, in place of a
single time derivative for turbulent fields. |

Thé key to the analysis is to examine the
asymptotic limit of the radiation impedance. The
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impedance is Ehe ratio of the net force on the surface of
the sphere to the surface velocity bg. The real portion‘
of the impedance, 69 , 1s a measure of the-magnitude of
the radiated pressure. Morse and Ingard14 have shown this

is (Ref. 14, p. 502, Eqg. 9.2.12)

3.48

O = ﬁ,c_ﬂ“zaf/;n k. ‘P:né(a,.‘é)

bd " Ryn M
where (xo, Yo 0) is the coordinate of the equivalent
spherical source (Fig. 3.24). They state, without proof,
"if we average out the narrow peaks, the curve'approaches
the value 5%c(4ﬂéz)k2a2, which is the radiation resistance
of the source in free space" (Ref. 14, p. 503). A proof
is érovided here.

For a nonlocalized source it is appropriate to

consider the average value of &) for all source points

(x5, ¥g)-
gdxg O &, 15 )
MV
=g C g o ‘2 kR
bd mn k | . 3.49

To evaluate @' in the limit of large M,N, the double sum

is replaced‘an'integral. The discrete values %} and ﬁ;
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are replaced by the continuum values kx and ky.
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where ko is the wave number of the source which oscillates

at frequency w,
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The sum is broken into three parts
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The first and last sum are for modes with transverse

variations only in the x or only in the y direction.
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middle sum indicates modes that have both x and y varia-
tions. The density terms indicate the number of new modes
added per unit increase in wave number at the wave number

(kx, ky)° For a rectangular geometry these densities are

constant. They are

— b
SD(QWI O)'— ;;7

(k&, R )== in— 3.52
§D Y ﬂ~2 '

©, k)= d_
§Orr/= 5

Integrating using the values given in Eq. 3.52 yields

M.0
2 Ro o~ ho b
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Substituting back into Eq. 3.49 gives

 ~ ‘ 2 .
6% gc_87%°a¥  |he bd , ho(b+d)

bd 21 b4

2 g 2 '

2 ©C #ra koa® + [ b+d

3.54
Ro

Which was to be proven. The procedure is identical to

that used to predict the high frequency behavior of rooms.

Close inspection of Eg. 3.54 shows that bd is the area of

the duct cross section.and 2(b-+d) is the circumference.

By analogy to room acoustics, one can generalize

C/
e ~ .@C 6’77%2,‘/ /aQZA koL 3.55
A 27 4

for ducts of arbitrary cross section. A is the cross
sectional area and L the length of the perimeter.

Since thé radiation impedance of a duct is the
same as that of free space, in the high frequency limit,
the duct response should be similar to the free spacé
response. The same source distribution should yield
similar spectra.‘ Hence the explanation for the high fre-
‘quency behévior observed in Figs. 3.10, 3.11, 3.12 and

3.19. The arguments concerning finite damping showed that
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the spectra should smooth out in this limit. The averag-
ing procedure demonstrates that the duct response is
identical to the free space response.

3.3.8 Velocity, Power and Intensity

Now consider other acoustical quantities. The
situation in a duct is éuite different from free space.
In free space, assuming source isotropy, the intensity
power and velocity could be deduced from a single pressure
measurement in the far field. The relations between
acoustic quantities is much more complicated in a duct if
transverse modes are egcited. A single point measurement
is not sufficient to determine the other parametefs. If,
however, the pressure measurement is made at a common
antinode for all the excited modes, then a maximum value
can be established for the inténsity and power.

Let the‘pressure field be given by Eg. 3.36

: ) Q Z@'Z+¢)
P, F)= L 27 /fgo GJQQ@ e 1 se
S

It follows that the velocity in the z direction is

. Q | |
U, F)= ¢ emih 2 ;s % Cc(kizfd)?) -
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where Uz follows from the momentum equation o g%tl =- 3P

9z "
The intensity in the z direction at frequency w is
~ ~ K I 2
I;_(W;"):__’_ [p(w,r)uz(u,r) + Pl Uz(w,r)]
#. .
Q
o 3C 2 ,.,2
2Tk P
oC 2:0 Ei
QR-7 Q
g=0 S=q+I /?, J
1
' 3.58
Using the random phase assumption to compute the average
of N measurements gives
o 71 S 2 2
1z, er)> > P %
@ C g0 Rq 3.59
The power radiated in the +z direction at fre-
quency w is obtained by integrating over the duct cross
section
b d .
77;@?: iaxg;ar T, (v f)
= 2"} Adz @g ;
5% 3.60
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To establish a relation between these exact
quantities and a single pressure measurement, first

recall Eq. 3.38

<IPQJ)V’*‘)]2>=1/.77‘4Q3 iio kR g&a%a 3.61
Tk R
b4

It follows from the definitions of kq and Aq that

'/Lg_</ R_ 71 | 3.62

Rq

If the microphone is placed at a corner, wq is identically

1 for all q. The inequalities in Eqg. 3.62 then show

<I(wm>
257(: é%zzxéﬁ ~

and

3.63

bd <[p(wr2>’ > 77;@.))
257C covrien

In engineering problems the maximum values are
often the quantities that are needed. The ineqﬁalitieé
of Eq. 3.63 demonstrate that an upper limit on the radiated
power and inténsity can be established from a single meas-

urement.
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3.3.9 A Numeric Comparison of Predicted to
the Observed Law Frequency Spectra

Consider the spectra predicted in Eq. 3.42.
Examine the prediction for a %" orifice mounted on the
side of a 1%" by 4" rectangular duct. The duct height

and width is then equal to

b‘—"gD , d= 3D 3.64.

where D is the jet diameter. For numerical comparison,
let the inverse of the correlation time, W, s be given by

the Strouhl frequency

w,= 2§ = 2T (.25 [)z _Z_/ MC 165

D D
Choose a velocity so that the contribution of space and

time correlation is approximately equal; that is

/

12

D
C

.63

X
.

3.66

2

Here the correlation length is assumed to be equal to the
vjet-diameter. Substituting these values into Eq. 3.42

gives
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3.67

where

All information concerning the absolute level is absorbed
into B.

In Fig. 3.25 a comparison of Eq. 3.67 is made
to the observed spectra for a %" orifice with mean flow
speed Mach .61. The qualitative features of the curve
are in agreement with the prediction. First, the asym-
metric shape of the peaks is predicted quite accurately.
In fact, the spectra levels are accurate to *2 DB for fre-
quencies above the first cutoff. This is quite good con-
sidering only dimensional arguments are used to fit the
data. It should be noted that the parameter B was choosen
so that predicted and observed spectra lie cldse to one
another. This does not affect the curve shape at the
peaks, which is. the point of interest.

The most glaring dispérity is for frequencies
below the first cutoff. As was the case for free space,
an isotropic model of the source fluctuations can only
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account for limited portions of the spectra. A complete
analysis requires that the inhomogeneities of the turbu-
lent field be accounted for. This discrepancy aoes not
detract from the main point. The spectral line shape can
be explained through a linear analysis of the duct |
response. The asymmetric peaks have their origin in the
selective response of the duct to a source near a cutoff
frequency. No alteration of the turbulent spectra needs

to be assumed.
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4. SCREECH

4.1 Introduction

In these studies of flow-generated sound several
instances where the sound field departed from that pre-
dicted by linear models were observed. Uhtil now it was
assumed that the aerodynamic sources in the fluid could be
given without reference to the acoustic field that they
produce. This assumption must be abandoned if one is to
account for the screech anomalies. In such cases the
acoustic pressure reacts back on the flow field so as to
produce a coupled, or feedback, oscillation.

Previously it was assﬁmed that the jet fluctua-
tions which produce the sound are random and could be
statistically described by a Gaussian correlation. This
-method is not adequate for screech. There exist collec-
tive modes of oscillation of the jet that are different
than the random tufbulent fluctuations. It is these
modes which are important in feedback. In a feedback loop’
a perturbation 6f the jet results in an amplifying fluc-
tpation of the flow. The fluétuation breaks into ring
vortices which are convected downstream. When these
vortices encounter some obstruction or discontinuity,.
‘they produce an acoustic wave. This travels back to the
origin of the jet and perturbs it, thereby closing the
feedback loop. |
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The whistling teapot is a common example of just
such an effect43.. In escaping from the teapot, the vapour
passes through two concentric circular orifices spaced a
short distance apart. The first orificé serves to form a
jet. This jet passes through the second orifice and, if
the flow speed is right, a discrete tone is generated. 1In
the absence of a second orifice Onevhears only the broad-
band hiss which typifies sound emission from model jets.

Two gimilar instabilities have occurred in these
studies. The first was observed in the excitation of
axial pipe modes. Intense pure tone oscillations occurred
for pipe lengths which were short compared to the pipe
diameter. This is éhown here to occur for cylindrical
orifices having length—to-diametef ratios between one half
and two. |

The second instabilify was observed in the tur-
bulent excitation of transverse modes in ducts. Intense
pure tone oscillations occurred if the flow speed was
right. These are here shown to be those due to a jet
impinging on a flat plate.

Anderson44

studied the orifice tone extensively.
~ He explores the conditions for the excitation of pure
tones by airflow through a sharp-edged cylindricél ori-
fice. Here ééparation of the flow from the upstream edge

allows for shear layer oscillations and thereby orifice
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screech. His results are presented in nondimensional
form as Strouhl number versus Reynolds number. Heller45
also observed such tones occurred for length-to-diameter
ratios between one half and two. o

This investigation of orifice screech presents
the results in plots of frequency versus flow speed to
facilitate the kinematic analysis of the problem. 1In
particular, one can account for the observed screech fre-
quencies by careful analysis of the feedback loop. One
assumes that disturbances of the jet at the inlet are
propagated downstream46. At the exit the sudden expan-
sion of orifice diameter generates an acoustic wave. This
propagates upstreamland perturbs the jet at the inlet.
The fundamental screech frequency'is inversely propor-

' tional to the period required to transverse such a cycle.
Overtones are assumed to be integral multiples of the
fundamental.

It is further shown that screech occurs only if
the frequency is approximately that of an axial acoustic
mode. This is seen by noting the screech tones occur near
the intersection of a screech mode with the axial pipe
' frequency. Suitable alterations of the geometry are then
explored to shdw coupling with the radial acoustic modes.

The second instability was observed in the

excitation of transverse modes in ducts. These were the
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narréw band peaks which occurred at certain flow speeds..
Analysis of level versus jet velocity showed that these
were nonlinear effects.

Recall the screech occurred in configurations
where the air jet impinged on the opposite duct wall.
Pure tone oscillations have been observed when a subsonic
jet impinges on a wall. The impingement couples the air
jet to the acoustic field.

47,48 observed a similar

Powell and Unfried
effect in the study of edge tones. 1In their work a jet
from a rectangular slqt impinges on a triangular wedge
located downstream. In the classical edge tone éxperi—
ments the wedge angle is acute. However, these experi-
menters varied the angle to 180°, i.e., a flat plate.

. They observed screech in this'setup.

49

Wagner "~ , and later Neuwerth50

, investigate the
free subson?c circular jet impinging oh a flat plate.
Scfeech occurs at Mach numbers greater than .6 and nozzle-
té-plate separations less than 6 jet diameters. They
observe that pefiodic shedding of ring vortices at the
jet boundary can be induced by an acoustic wave either
"inside or outside the jet. To minimize the influence of
acoustic modes, Neuwerth lined all surfaces with sound
proofing material. In this fashion he isolates the effect

of the wave travelling inside the jet column.

158



Herein such modes are shown to occur in the
presence of an acoustic mode. A free jet exists from an»
orifice in a flat plate and impinges on a second plate.
The separation is the same as is the duct experiment.

The screech frequencies producea here are the same as
those observed in the duct. Theée frequencies are approxi-
mately those of the acoustic mode between two flat plates.

In a separate experiment the change in frequency
by the presence of an acoustic resonator is demonstrated.
First, an air jet from a long pipe is set to impinge on a
flat pipe, and the screech tone is noted. Next, a cavity
is formed by fitting a plate snugly over the pipe exit.
The screech frequency is observed to shift to that of the

acoustic cavity.

4.2 Orifice Screech

4.2.1 Orifice Screech: Apparatus and Procedure

Herein the generation of pure tones caused by
drawing air éhrough circular orifices of small length-to-
diémeter (L/D) ratio is described. The phenoména is
charécterized by'intenée pure tone oscillations termed
"orifice screech." The apparatus differs from that used
to determine the axial mode excitation of pipes in that
the L/D ratio is small. Roughly speaking,.orifice screech
is observed for holes in plates, whereas the.axial modes

are observed in long pipes. The critical parameter is the
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length-to-diameter ratio and not whether thelentrance is-
a flat plate or a pipe (Fig. 4.1).

The apparatus is a flat plate fixed to a cylin-
drical plenum chamger, 15" in diameter by 30" 1ohg. The
plenum was damped by two flat boards of fiberglass sound
absorber. At the center of the plate a small circular
hole was drilled, typically %" diameter. The plenum was
evacuated to a pressure below atmospheric and air drawn
through the orifice. The flow-generated sound was
detected with a microphone, and the signal was spectrum
analyzed. The microphone was mounted in the ambient air
outside the plenum.

44 in one

The apparatus differs from Anderson's
important feature. He uses a compressor system. The
plenum is raised to a pressure higher than atmospheric,
and air is forced through the orifice. He finds it |
necessary to place a stainless steel screen %" in front of
the orifice plate to "stabilize" the flow. All air is
passed through the screen before entering the orifice.

The precaution is necessary since upstream disturbances
generated in the compressor plumbing are forcea through the
orifice. 1In thé present setup, air enters from the quies-
cent atmosphere and such precautions are unnecessary.

As the flow velocity increases, the jet tones

appear quite éuddenly. As the velocity of the flow
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increases further, the amplitude decreases gradually,
finally merging into the broadband turbulent noise. There
is a mid-range bétween "onset" and "offset" in which the
amplitude is insensitive to velocity changes. A typical
spectra from a L=%", D=%" orifice is presented (Fig.
4.10). The extremely narrow peaks distinguish screech
from broadband turbulent-generated sound. The difference
is noted quite easily by ear. Turbulent noise is per-
ceived as a hiss, whereas orifice screech is a shrill
piercing whistle.

4.2.2 Screech Dependence on the Length-to-
Diameter Ratio and Flow Speed '

Herein the range in which screech occurs is
established. The orifice is a %" diameter hole drilled
in an aluminum plate of thickness %", %", %", 1", and 2".
The flow speed was varied from zero to Mach 1.0 in each
case. Screech was observed for the %", %", and 1" thick-
nesses it did not occur for the ' or 2" plate (Fig. 4.5).
The tones were 6bserved in a range of flow speeds from
Mach‘.25 to Mach';85. The flow speed was calculated, from
the pressure drop across the orifice by the isentropic

nozzle approximation37

M= 1 = /2 /-(&)'?“

Co ¥ V- )
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where

\% velocity in the air jet

o speed of sound in the quiescent air
Y ratio of specific heats

PT pressure in the plenum

PA upstream atmospheric pressure

The results on ﬁhe (L/D) necessary for screech confirm the
observations of Heller45.

It is especially important that the inlet edge
of the orifice be sharp for maximum efficiency in the pro-
duction of tones. If one does so little as to place a
pencil point near the inlet, the tones are suppressed.
This is not true fof the exit; here wide variations in the
geometry can be tolerated.

The importance of a sharp inlet motivates
several aspects of the study. The flow separates from the
walls of the orifice at the leading edge; It then con-
tracts to approximately .6 of the inlet area forming a jet.
surrounded by an annulus of quiescent air between the jet
and the walls. Such a well-defined symmetric system can
support collective modes of oscillation which propagate
down the jet column. These begin as perturbations in the
jet'diameter‘aﬁd develop into Piha vortices. Such
vortices ha&é been observed in both orifice'screech51 gnd

impingement screech.49'50
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A qualitative explanation of the absence of
screech tones for large L/D can be given. Recall that
the viscous forces induce the jet to expand back to the
walls of the pipe. If the length is short enough, the
flow never reattaches to the walls. If the length is
long enough, the flow reattaches, and the propagation of
the rinj vorticies is perturbed. The mean flow por-
tion of tlie feedback loop is broken, and screech does not
occur.

Figé. 4.2, 4.3, and 4.4 plot the screech fre-
quency versus mean flow speed. _The circles are the
observed points, the solid line is the theoretical feed-
back frequency, Eq..4.4, and the dotted line the axial
pipe mode, Eq. 4.6. In all cases-the screech frequency
" increases with the flow speed. If a series of tones are
detected at a given flow speed, their frequencies are
related as the ratio of integers. 1In all cases the data
is clustered about the intersection of the feedback fre-
quency with the axial mode frequency.

To emphasize the clustering, consider the %"
data (Fig. 4.2). For low speed the data lies along the

path of the feedback instability. At Mach .62 the fre-
quency jumps by 3 kHz. This cén be explained if.one
assumes some‘interaction.between the feedback mode and
the axial pipe modes. The jump signifies a change in
coupligg from the first to the second axial mode.
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4.2.3 Similarity to Hole Tone -

1f orifice screech is similar to the hole tone,
one expects that the critical features are detefmined by
the diameter and separation between inlet and exit. To
check this feature, two thin orifice plates were con-
structed. These were separated by a short length of pipe
with an inner diameter larger than the orifice diameter.

| The orifice plates were fashioned out of Y{s"
thick sheet of aluminum. In each plate a 45° tapered
hole was drilled to form a %" diameter hole so as to
fashion a sharp edge.  In the first test, the éeparation
between edges was set to %". Two pipe diameters were
studied, % " and 4 4, ".

Fig. 4.7 is a plot of the screech data observed
for the % " inner diameter separator. Superimposed on the
graph is the trace of the feedback and axial frequencies
used for the %" x %" orifice (Fig. 4.3). The data from
this experiment follows the same trend as that observed
for the simple orifice of similar length and diameter.

Fig. 4.8 is a plot of the screech déta observed
for the 4 Y4, " inner diameter.separator. Superimposed on
the graph‘is the trace of the feedback frequency usedlfor
the 4" X %" orifice. Besides the axial modes, there are
now radial cavity modes whose frequencies are below 20 kHz.

Two pronounced.cases of radial mode excitation are
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indicated by triangles in place of circles for the data
points. There are too many radial modes below 20 kHz

to plot with any clarity on the graph. However, the
excitation of such modes, for the down pointing triangles,
is verified in section 4.2.6. Note that the data points
approximately follow the feedback frequency. The rela-
tions, however, are considerably more complex than that
of observed for the ¥ " inner diameter separator.

In the next experiment the L/D bounds on screech
are determined for the % " inner diameter separator. The
geometry is identical to that presented in Fig. 4.7,
except for the separation between edges. The plate.separa-
tion was set at 0", %", %", 1" and 2". The ratio of
orifice diameter-to-plate separation in which screech was
observed is the same as that of a simple orifice. To see
this, compare Figs. 4.5 and 4.6.

4.2.4 Perturbation of the Flow by Screens

Herein it is shown that the unimpeded propaga-
tion of disturbances down the jet column play an essential
role in the production of screech tones. It was once
thought that the perturbation of the jet shear layer at
the inlet drives the axial acoustic mpde. In such a
model, only the inlet flow conditions are critical. This

model is incorrect, as it is demonstrated here.
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To settle the question, one needs to pefturb
the jet downstream without any perturbation of the axial
mode. This is done with a wire screen placed in the
center of the orifice. A jet passing through the screen
becomes turbulent, whereas the axial mode is undisturbéd.
Consider the first axial acoustic mode. The center of
the orifice is at a velocity node, a screen placed at
this point has negligible effect oﬁ the acoustic fluctua-
tibns in the orifice. Hence only the jet is perturbed.

;i"

Two % " diameter holes were drilled in a
plexiglass plate. The rear side of one hole was then
drilled to a slightly larger diameter so as ﬁo allow a
wire screen to be mounted in the center. The screen was
held in place by an annular plexiglass plug with a 3@"
inner diameter. The only difference between the two ori-
fices is the screen at the center. The screen was com-}
posed of 5 mil wire with 30 strands per inch. This gives
épproximately 70% open area.

Air was drawn through the unmodified orifice
and screech was observed. Next, air was drawn thréugh
the scregned orifice. No screeéh occurred for any flow
speed up to Mach 1.0. One concludes’that the continuity
of the jet column is an essential part of orifice scréech.

A screen flush to the inlet inhibits screech

for the same reason. The inlet flow is turbulent and

collective modes of oscillation on the jet are supressed.
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The screech is supressed if the screen is
placed flush to the exit. This experiment must be done
carefully. If fhe screen bows slightly past the exit
wall, screech occurs.

For a summary of these observations, see Fig.
4.9.

4.2.5 A Kinematic Calculation of the Feed-
back Frequency '

Covert and Bilanin52 have studied a similar
screech mechanism caused by air flow past a rectangular
cutout in a flat surface. They extend an analysis pro-

53 The central point is that the flow

posed by Rossiter.
separates from the surface at the leading edge of the
cutout, thereby forming an unstable shear layer. Any
perturbation of the shear layer travels downstream towards
the trailing edge. The interaction at the trailing edge
generates an acoustic wave that propagates upstream to
férce the shear layer. The feedback cycle is then com-
pleted.
. A simiiar mechanism exists for orifice screech.
The air separates from the surface at the inlet to form a
- cylindrical jet with a well-defined shear layer. Any dis-
turbance at the inlet propagates down the jet as a dis- -
placement of the shear layer which then dévélops into
Pinj. - vortices. When these vortices reach the trail-
ing edge, they generate an acoustic pulse. This pulse
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travels back upstream to force the shear layer at the
inlet, thereby forming a feedback loop.

Assume that the phase shifts of such disturb-
ances are zero at the inlet and exit. Let tH be the time

it takes for a disturbance of the jet to reach the exit

r = L

H —_— 4.2
XY

where o is the ratio of the convection speed of such dis-
turbances to the mean jet speed V; L is the length, i.e.
thickness of the orifice.

Let t, be the time it takes for the resulting
acoustic pulse to reach the inlet. There are two paths,
one, through the quiescent annulu#, the other through the
jet column.

In the annulus the phase speed is ¢, in the jet
it is ¢=-V. Hence, the characteristic acoustic time is

[

L t =
ArT o | 2o —— - 4.3

c-v

The feedback frequency is inversely proportional to the

period to complete the cycle

§3=/'_—_

[
t% -+t;

< M “ 4.4

C
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/
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In the experiment the points lie along the path
given by Eg. 4.4 and only these curves are presented.
That is, the acoustic feedback throﬁgh the annulus
accounts for the observed frequencies. Overtones are
assumed to be integral multiples of the fundamental. The
éonvection speéd was set at six tenths the mean flow
speed (o= .6).

Consider the behavior of the axial pipe fre-

quencies with flow.‘ The fundamental is

? = C 7 4.6
A r/
+.6.Q]
L

et 1- m2

It has been observed that for écreeéh excitation
to occur the feedback frequency fl.must be approximately
that of the axial pipe mode. Consider the interaction of

th th

the n feedback mode with the g axial acoustic mode.

Setting the two frequencies equal yields a cubic equation

. in the Mach number.

nf = qf

gives -
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The real valued solution to Eq. 4.7 for 0 5 M < 1 gives
the Mach number about which the screech is centered. ' The
intersection of the solid and dotted lines in Figs. 4.2,
4.3 and 4.4 represent a graphical solution to Eq. 4.7 for
selected values of % with o =.6. The cubic equation can
be solved exactly. Care must be taken since the equation
reduces to a quadratic when % = IT%_H .

Some comment on the choice of convective veloc-
ity is in order. The most compelling argument is the
experimental evidence of Wagner and Neuwerth.49’50
Through schilerian photography they determine the propaga-
tion speed of the nih? vortices to be approximately
six tenths the mean flow speed. Anderson51 finds the
value of o= .53 in a similar study. Analytic calculations
by Handa54 and Bilanin55 predict that the phase speed of a

- qpproximately
shear layer disturbance propagates atAhalf the mean flow speed.

‘This can be explained qualitatively by cdnsider-

ing a vortex sheet at the jet boundary. Imagine thesé

vortices to be solid rollers whose bottoms move, without

slip, at the jet velocity and whose tops roll, without
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slip, on the quiescent air. The center of mass of these
rollers will then move a half the jet velocity.

4.2.6 Cavity Mode Excitation

The screech studies of thin orifice plates
separated by a 4 4" cylinder (Fig. 4.8) demonstrated the
excitation of additional tones. These are due to the
coupling of the feedback instability to the cylinder modes.
This is demonstrated by examining one velocity in great
detail.

The case under review is represented in Fig. 4.8
as triangles that point down, i.e., at Mach .34. The
excited modes have nodal lines that lie along the radii.
The;e divide the cylinder into a set of "pie slice"
regions. Only those modes with an odd number of nodes
are excited; these are called £he antisymmetric modes.

First, 6ne establishes that the phenomena is a
screech instability. In Fig. 4.10 the spectra for a simple
orifice is presented. 1In Fig. 4.11 the spectra of the hole
tone at Mach .33 is presented. The similarity in line
shape and the maénitude of the fundamental, in comparison
to the harmonics, shows that the screech mechanism is
similar. At Mach .34, only 5 mm Hg larger pressure drop,
the cavity modes are excited (Fig. 4.12). .The feedback |
frequency should increase about 3% in a shift of flow
speed from Mach .33 to Mach .34 (Eq. 4.4). This slight
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shift is enough to make the screech tones coincident with
the third, seventh and eleventh antisymmetric cylinder
mode.

Consider the modes of oscillation of a disk of
air bound by a hard walled cylinder of radius Ro' The
pressure field inside the cylinder is the sum of the

natural modes.

Pne)=png Z’f,(hng’“)eme . 4.8

Where Jn is the Bessel function of the first kind. The

walls impose the boundary condition

9 Emé)

= 0
' 4.9
N

hence where

.}ans R'o =Jr:5 J;.)(Jr/ws)s O

Thus the natural frequencies are
S = Il
ns Jng 271, 4.11

The prime on J signifies differentiation with

respect to its argument. The notation follows Abramowi;z

36

‘and Stegun~~. One needs the values i, 1 for edd n up to
i I
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17. For values greater than n=8 tables are not easily
found, and it proved necessary to calculate the roots
n,1 bY computer.

Let the radius Ro==5.54 cm, the speed of sound
C=34,000 ég% and the length L=1.27 cm. To place the
predicted screech notes at the observed values, it is
necessary to assume a = .547. An equivalent change would
be to lower the Mach number to nine tenths its néminal
value of .34 and keep a=.6. Table 4.1 presents a
numerical comparison of the observed frequencies of excita-
tion to those gyiven by Eqg. 4.11. |

Based on the ratio of observed—to-calcuiated
frequencies, it is clear that all but the first peak
coiﬁcide with the antisymmetric cavity modes. There is,
however, a numerical discrepanéy that increases with
increasing frequehcy. At the last observed peak the dif-
ference is 250 Hz. The error in the frequency measurement
is épproximately 100 Hertz, hence the difference cannot be
attributed to experimental error in the frequency measure-
ment.

One possibility is that the radial frequencies
are altered by the presence of the air jet in the center.

An accurate calculation should include this modification.

Another possibility is that the error lies in the value

C

of TR - The ratio of the observed-to-calculated
(o)
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frequencies is correct to 2%. A 2% error in the radius

Ro' approximately 1 mm, would then account for the dis-

crepancy.
The data can be reduced in a manner independent
of Z;R . This is to consider the ratio of the screech
o

tones to the screech tone of maximum amplitude, observed
at 4.2 kilocycles. Ef Eq. 4.11 is'correct, this ratio
should be given as é;hﬁf. Table 4.2 presents the data
reduced in this fahsii%. The numbers agree in absolute
value within an error of .05.

Only the first peak differs significantly.
Inspection of Table 4.1 shows the observed peéks are
separated, on the average, by 2.1 kilohertz. It is most
probable that the first peak is the differehce tone due
to the interaction of the excited modes with their nearest
neighbors. All the other peaks are clearly due to the
excitation of the antisymmetric cavity modes.

It is instructive to recall that this entire
section is devoted to the screech behavior at a single
velocity. A complete analysis of the data given in Figqg.
4.8 requires a similar Study at each velocity. Such a
task is béyond the scope of this chapter. One point that
comes out 1is that the screech depends; in some fashion, on
the distance of the wall from the jet column. This effect
is incorporated into an analysis of the shear layer sta-

bility of a jet and is presented.in the appendix.
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TABLE 4.1

Data for Screech Coupled to Cavity Modes

Screech Cavity ' Observed
Frequency Frequency Frequency £

: Eq. 4.4  Eq. 4.11 Fig.412 opserved

n,s In,s . kHz kHz kHz “calculated
1,1 1.84 1.80 2.1 | 1.17
3,1 4.20 4,20 4.12 4,2 1.02
5,1 6.42 6.30 6.3 1.00
7,1 8.58 8.40 8,42 8.4 " 1.00
9,1 10.71 10.51 10.6 1.01
11,1 12.83 12.59 12.59 12.7 1.01
13,1 14.93 - 14.65 14.7 1.00
15,1 17.02 (16.79) 16.70 16.8 1.01
17,1 19.11 : 18.75 19.0 1.01

This table demonstreates the coupling of screech to the

radial acoustic modes.
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TABLE 4.2

Normalized Data for Screech Coupled to Cavity Modes

jﬁ 1 fn lobserved
screech L L calculated ratio
n,s harmonic »33,1 f3,1OBserved observed ratio

1,1 .44 .50 .88
3,1 1 1.00 1.00 1.00
5,1 1.53 1.50 1.02
7,1 2 2.04 2.00 1.02
9,1 2.55 2.52 1.01
11,1 3 3.05 3.02 1.01
13,1 3.55 3.50 1.01
15,1 4 4.05 4.00 1.01

17,1 4.55 4.52 1.01
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4.3 Impingement Screech

4.3.1 Impingement Screech, Apparatus and
Procedure

A screech mode was also observed in the experi-
ments on the excitation of transverse modes in ducts. It
was shown that the initial peaks in the observed spectra
were due to the selective response of the duct at its
cutoff frequency. Further, it was proved that the spectra
should smooth out in the high frequency limit, i.e., when
a large number of modes can propagate. waever, intense
pure tones were observed in this frequency regimé at flow
velocities above Mach .6. These are hére identified as a
feedback instability, termed impingement screech, due to
the obstruction of the air jet by the opposing wall of the
-duct.

Wagner49 has shown that a jet incident on a flat
plate screeches. Tﬁis occurs only if the plate is less
than 6 diameters from the jet nozzle, and if the Mach
number is greatér than .6. He collated the acoustic fre-
quency with the shedding of ring vorticies on the jet
column. He concludes that the screech is due to "feedback
between the flow and the pressure field generated by it."

'Neuwerthso

later extended the work to include screech at
supersonic velocities.

The nozzle they used is not quite the same as"
the orifice plate or pipe used in the duct.experiments
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)
(Figs. 3.4 and 3.5). Their apparatus was a converging

nozzle followed by a short length of pipe (Fig..4.13).
Herein it is shown that impingement screech occurs using
an orifice plate and a 60" pipe. That is, the slight
variations of inlet conditions in the duct experiments
from Wagner's nozzle do not suppress impingement'screech.

The apparatus used here is a plenum chamber 60"
long and 12" wide. At the exit the chamber converges to
a diameter of 4". A %" thick orifice plate with a hole
tapered to 45° to a %" diameter was attached to this end.
In the second experiment a 60" pipe with a %" inner
diameter was fixed to a plate that was, in turn, secured
to the chamber exit. A square flat plate, 4" on a side,
was placed in the air jet at various distances from the
exit. The plenum pressure is raised to force air out at
a constant rate.

Before investigating the screech, some data on
the turbulent-generated noise is taken. A qualitative
pfesentation is given so as to provide spectra for compari-
son to the turbulent excitation4of cavities.

. 4.3.2 Free Jet Spectra from Pipes and Orifices

The variation in free space spectra with jet
flow speed is given here. This is done to demonstrate that
the qualitative spectra of free jets is the same for both
a long pipe and an orifice. For a more detailed analysis
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38 studies. He shows

the reader is referred to von Gierke's
that the spectra can be scaled by introducing the dimen-
sionless frequency
$D ¢ 4.12
' Co '

and the power

/Oﬂcy/ t dw V7 Co 4.13
foA d¥§ D ¢ :
where
cj sound speed in the jet
S sound speed in the quiescent air
daw

ar spectrum of acoustic power output
from the jet

D jet diameter

The difference between cj and o accounts for the tempera-
ture differences between the jet and free space.

The spectra presented here was measured 24" from
the jet axis in the plane of the exit nozzle. Fig; 4.14
presents the data for a jet from a tapered orifice. Figqg.
4.15 presents the data for a jet from a 60" pipe. The
shape of the spectra is the same in both cases. Observe

that the level increases monatonically with jet flow

speed.
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The poinf is that the gualitative featureé are
not altered by the initial level of turbulence. Air from
a tapered orifice.is laminar at the exit. The turbulence
is caused by the mass entrainment at the jet boundary.
The air jet from a long pipe is turbulent at the exit. The
level, of course, is altered by mass entrainment at the
jet boundaries. The differences at the exit do not alter
the character of the emitted acoustic spectra. These
observations reinforce those made in the study of turbulent
sources in ducts. In the duct, the spectral line shape was
similar for both the orifice and pipe jeﬁs.

4.3.3 Turbulent Sound Level Increase due to
the Obstruction of the Flow by a Flat
Plate

The increased broadband noise due to obstructing
the flow is demonstrated. First, the sound generated by
an air jet from a tapered orifice is measured. Next a
flat plate is placed in the air jet and the sound is
measured again. Here the distance of the plate from the
orifice is great enough, 9 jet diameters, so that screech
does not occur.

In Fig. 4.16 the spectral sound intensity for
this experiment is given. At the same flow speed, the'jet
incideht on the plate is much louder than the free jet.
Actual shifts range from 7 to 12 DB depending on the fre-

quency. The line shape of the spectra is unchanged. This
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indicates that the mechanism for sound generation is
similar in both the free jef and the obstructed jet.

This is not the case if the plate is within 6
jet diameters of the orifice. 1In suéh Eases screech
occurs at selected flow speeds. The resulting spectra
shows intense narrow kand peaks at the screech frequen-
cies. These peaks have the same shape as those observed
in the high frequency duct spectra (Figs. 3.10, 3.11 and
3.12).

There are, of course, quantitative differences
in the generated sound when the flow is obstructed. These
differences are of secondary importance in establishing
the mechanism for sound generatiop. One must first
separate the linear effects from the feedback effects
before addressing the more quantitative aspects of the
study. It is with this intent that the arguments concern-
ing spectral line shape are presented. For a more detailed
étudy of the sound generated by air jets on flat plates,
we refer the reader to the work of Olsen, Miles and Dorsh.62

4.3.4 Impingement Screech from a Tapered Orifice

Here we reproduce impingement screech, observed

by Wagner49 and Neuwerth50

, using a jet from a tapered
orifice impinging on a flat plate. The apparatus is shown
in the middle‘diagram of Fig. 4.13. The pressure drop

across the plate was set at a ratio of .60 which gives a
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flow speed of Mach .83 (Eq. 4.1). The separation between
orifice and platg was altered at constant flow speed.

The orifice is mounted with its flat side towarad
the compressor. The direction of air flow through the
orifice is the same as in the duct experiment. The ori-
fice plate is %" thick, and the hole tapers at 45° to the
nominal diameter of %", such orificés do not screech by
themselves. The separation "x" is measured from the inner
surface to the obstructing wall.

Screéch was observed for separations from X¢"
to 2%", i.e., from .88 to 5 jet diameters. Fof separa-
tions greater than 5 jet diametérs no screech is observed.

50 observa-

This result agrees with Wagner49 and Neuwerth's
tion that the obstructing plate must be less than 6 dia-
"meters from the nozzle.

In Figq. 4.17 the observed screech frequencies
are plotted against the inverse of the plate separation.
If the screech is associated with an axial acoustic mode
parallel to the jeﬁ, the frequehcy should scale as %; i.e.,
the data points should lie along straight lines. This
happens; however, the screech frequencies are only approxi-
mately equal to the cavity frequencies %%% . In fact, two
'screech modes appear. All other frequencies can be inter-

preted as harmonics or difference tones based on these two

modes, which have been arbitrarily labeled F, and Fp.
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Examine the implication of the separation range
to interpret the screech observed in ducts. Recall that
in the duct experiment the orifice plates-were mounted so
that the distance between the jet inlet and the opposing
wall was 1 %". This separation is the sum of the duct
height, 1%", and the plate thickness %" . The orifice
plates had diameters of %", %" and 1". All of these
screeched. Clearly the %" and 1" orifice are in the
separation range established by Wagner49. However, the
" qrifice is located 6% jet diameters from the opposing
wall, i.e., just outside the separation limit for screech

to occur in free space.

49 explana-

One can account for this if Wagner's
tion of the separation limit is examined. For screech to
occur the plate must be inserted in the laminar core of
the jet. 1In free space the core extends from 5 to 6 dia-
meters from the exit. In an enclosed space the core
persists for longer distances. Consider the flow field
of an ideally ekpanded jet in free space. At‘the exit
the turbulence is zero and the streamlines parallel over
the entire jet diameter, apart from the boundary layer.
Downstream the region of no turbuleﬁce tapers off to 0 at
5 to 6 jet_diameters. As this occurs, the mean diameter
of the jet gets larger (Fig. 1.2). |

What happens is that the shear layer accelerates

~the air surrounding the jet. Consequently, instabilities

183



in the process.of mass entrainment have caused the turbu-
lent regime to grow. If the laminar core is to be
reduced in thig'fashion, an unimpeded entrainment air by
the shear layer is essential. 1In a closed space such as
a duct the walls impede the flow of mass into the jet.
Consequently, the laminar core lasts for larger distances.
The screech of the %" orifice occurs at such a large
separation from the plate because the length of its
1aﬁinar core 1is longer in a duct.

4.3.5 Coupling of Impingement Screech to
Cavity Mode : '

Neuwerth50 and Wagner49-show that screech occurs
without any influence from adjacent aéoustic cavities.

It was shown earlier that the orifice screech instability
can be altered by the influence of an adjacent acoustic
resonator. Herein such coupling is demoﬁstrated for
impingement screech.

Screech was observed, in one instance, when air
entered the rectangular duct from a 60" pipe. This
occurred at a duct to atmospheric pressure ratio of .45
with a screech frequency equal to 9.1 kHz.

An attempt to repfoduce this result waé.
made using the abparatus diagramed at the bottom of
‘fig. #.13, Here the jet exits from the pipe onto the flat

plate; no other reflecting surfaces are nearby, hence
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there are no adjacent acoustic

observed at

Patmospheric

Pplenum

.44
.45
.47
.48

The pressure drop is about the

but the frequency is off by at

resonators. Screech was

Frequency
kHz

11.0
11.0
12.2
12.3

same as that in the duct,

least 2 kHz.

To remedy the frequency disparity, a second

plate was fit snugly over the end of the pipe. 1In this

manner an acoustic resonator is formed between the nozzle

and impingement plate. The distance between plates is

1% ", hence the cavity modes are at 4.46, 8.92, 13.39 and

17.85 kilocycles. The observed screech frequencies

occurred at

Patmosphere

plenum

.44
.45
.48
.50
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Frequency
kHz

9.00 18.00
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That is, the screech was shifted to a frequency coinci-
dent with the second and fourth ca&ity modes. These
correspond to a standing pressure wave whose wavélength
is equal to, and one half, the separation between plates.
In addition, one finds that the observed screech fre-
quencies are coincident with that frequency observed in
the duct.

4.3.6 Direct Comparison of Impingement Screech
to Screech in Ducts

Herein a direct comparison of impingement screech
is made to screech seen in the duct experiments. In the
duct, the separation between the inlet and the opposite
wall was 1 %". The same separation between the exit and
impingement plate was set in a test using the apparatus
diagramed in the middle of Fig. 4.13. The flow speed was
varied and the resulting screech frequencies were measured.
As in the duct, the screech only occurred for flow speeds
greater than Mach .5.

In Fig. 4.18 the screech frequency is plotted
as a function of flow speed. Data from both the duct and
compressor test is presented. From the figure it is evi-
dent that the data in one experiment cqmpliments that in
the other. That is, the screech occurs at apprdximately
the same flow speeds and frequencies.

The solid lines represent the first four

acoustic modes for two plates separated by 1% ". The

186



observed screech frequencies are clustered about these
lines. Such a comparison is only approximate, as the
data of the previous section has shown that the fre-

quency still depends somewhat on the flow speed.
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5. CONCLUSIONS AND RECOMMENDATIONS

Herein the generation of sound by turbulent flow
in cavities is examined. Two types of ca&ities are con-
sidered: the axial modes of a pipe open at both ends,
and the transverse modes of a rectangular duct. Experi-
ments are performed to measure the acoustic spectra of the
flow-generated noise. A linear theoretical analysis,
based on an isotropic model of the turbulent flﬁctuations,
is developed to predict this spectra. Certain nonlinear
phenomena, due to the alteration of the source flow by
the emitted sound, are identified. The condifions neces-
sary for such instabilities are examined. |

To introduce the linear procedure, calculations
aré carried out for a turbulent source in free space.

Here some of the limitations of the model are discussed.
One assumes a finite volume of turbulent fluid. An iso-
tropic pattern of noise sources is created continuously
at one face of the volume and is convected at a finite
vélocity to the downstream face where it disappears.
Implicit in this description is a neglect of turbulent
shear and refraction effects.

To make the comparison between alternate pro-
~ cedures explicit, detailed calculations were carried out.
The results derived from Lighthill'sl’2 quadfupole model
using time domain techniques are given in Egs. 1.51 and

188



,
1.52.. Similar results are derived from Ribner's equivalent
distribution of monopoles, again using time domain analysis
(Egs. 1.43 and 1.44). Ribner's model is used again, this
time using frequency domain analysis to derive the spectra
of the radiated pressure (Egs. 1.30 and 1.31). Frequency
and time domain techniques give precisely the same answer
for Ribner's source model. Aside from the turbulent shear
interaction, these are the same results as one géts from
Lighthill's model. This is providing Ribner's turbulent
pressure sources (p are assumed identical to the local
turbulent kinetic energy fluctuations povz.

An interesting extension of this analoéy would
be to assume a second distribution of monopoles whose
stréngth is proportional to DOVV, where V is the mean
flow speed and v the fluctuatihg velocity. This would, in
some fashion, accéunt for the turbulent shear effects.
However, care must be taken to introduce the angular
dependence 2(cos48 + cosze), where 6 is the angle between
tﬁe observor and the direction of flow. It is recommended
that theoretical studies be continued to establish this
analogy.

Another problem that needs further work is the
~inhomogeneities in the turbulent field. Ribner 63has
already used the variation in characteristic scales of

the turbulence to collate data on the free space spectra.
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He observes that a single correlation function cannot
account for the entire spectra. Nonetheless, limited
portions of the spectra can be described assumiﬁg a single
éorrelation function. Here attention is placed on the

mid and high frequencies. It is recommended that the
minimum number of.separate correlation functions needed

to account for the observed spectra be established.

In the second chapter an experimental study of
thé turbulent excitation of axial pipe modes is given.
Such effects have been reported before30’56, but were not
conclusively identified. Identification is accomplished
by showing that the interval between modes depends on
flow speed and length precisely as an axial mode (Figs.
2.3 and 2.4). Previous observations concerning diminished
mode excitation at high flow speeds are confirmed here.

To account for these observations in detail, é
frequency domain analysis of sound generation by isotropic
turbulence in pipes is developed. To carry the analysis
to a point where only a statistical description of the
turbulence is required, it proves necessary to introduce
a random.phase assumption. It is demonstrated that the
influence of the Fourier phase coefficient is identical
to localization of the source (Eqs. 2.48 and 2.52). Thus,
neglecting phase terms is equivalent to averaging overall
possible source positions. Sound generation from the ends
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of the pipe can then be predicted from a statistical des-
'cription of the source field (Eq. 2.54). Direct compari-
son to the experimental results (Figs. 2.8, 2.9 and 2.10)
demonstrates that radiative damping accounts for the
diminished excitation at high flow speeds;

It was assumed that the losses at the ends are
purely radiative. From this assumpﬁioﬁ the transmission
coefficients out the pipe ends can be derived from the
measured pressure reflection coefficients. "It may be
that some othef loss mechanism acts at the ends. This
will alter the transmission_coefficient. It is.recom-
mended that an experimental‘study of the transmission
coefficient be perfdrmed. It is further recommended that
the behavior of the exit pressure‘reflection coefficient
"be examined in greater detail to account for some small
discrepancies.

In the third chapter an experimental study of
the turbulent excitation of the transverse modes in ducts
is presented. Two effects are established. The first is_
that the level of radiated sound increases in discrete
jumps at the first few cutoff frequencies. For fre-
quencies slightly greater than the nearby cutoff, the
'level decreases smoothly. The asymmetric shape of these
curves is pré&icted using frequency domain techniques
(Eq. 3.38). Again it proved necessary to introduce a
random phase assumption to carry the calculations to completion.
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In the ideal case the level jumps should be
infinite at the cutoff frequencies. Damping requires
that these jumps be finite as is indicated in Eq. 3.45.
However, visco-thermal damping alone cannot predict the
magnitude of the observed jumps. It is récommended that
the mechanism that limits these level shifts be estab-
lished. 1In particular, the approximation that the
acoustic contribution to the Reynolds stress
is negligible is not valid when the predicted acoustic
velocities are infinite.

The second effect established by these experi-
ments is that the spectra smootﬁs out at frequencies
where a large number of modes can propagate. In fact,
the spectra strongly resembles the spectra of sound
"generated by turbulence in free space. To understand the
smoothing, recall that damping effects make the peak
height finite. At frequencies of large modal density a
new mode cuts on before the sound level has diminished
from the level jump at the previous cutoff frequency.
This overlap of peaks causes the curve to smooth out. A
guantitative analysis based on this idea is given in
Eqg. 3.46. |
| The problem can also be approached by calculat-
ing the average radiative resistance of the duct. 1In
the high frequency limit.the radiative resistance
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approéches that in free space. Herein, this concept is
applied to the interpretation of acoustic.spectra in
rectangular ducts. An extension of the limit to ducts of
arbitrary shape is given in Eq. 3.55. 1In short, the duct
spectra is similar to the free space spectra since the
duct and free space response are approximately the same
in this limit.

In the experimental phase two anomalies occurred
that are identified as nonlinear effects. Orifice screech
occurred in pipes having small lehgth—to-diameter ratios.
Impingement screech ocgurred in ducts when the air jet
impinged on a nearby wall. Further experiments Qere per-
formed to establish the conditions necessary for such
insiabilities. It is shown that the emitted acoustic
field reacts back on the jet so as to alter the primary
flow field. A kinematic analysis of orifice screech
proved adequate to predict the frequency dependenceon
length and flow speed (Eq. 4.4). Further it was demon-
stfated experimentally that the feedback cycle is unstable
only‘if the feedback frequency is approximately that of an
adjacent axial acoustic mode. From this observation one
can predict the velocities and frequencies at which the
feedback cycle is most likely to be unstable and thereby
produce "screech" (Eq. 4.7).
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It is further observed that variations in geo-
metfy that produce additional acoustic modes can»markedly
alter the screech frequencies. In the appendix the shear
layer instability of a circular jet subject to an acoustic
perturbation in the presence of boundaries is derived.

The dispersion relation for such a disturbance ié deduced
(Eg. A28), and its limiting forms are presented (Egs. A35,
A39, A42 and A43). Phase speed calculations of the shear
layer instability indicate that the coupling of feedback
to the resonator may be through the spatial gradients.
That is to say, if a resonator is present, all'spatial
variations are dominated by the characteristic wavenumber
of the resonator. The influence of such coupling is to
alter the phase speed of the shear disturbance (Egs. A48
and A49). Preliminary experimental observations are in
qualitative agreement with this result. It is recommended
that a quantiative experimental study be initiated to see
how the phase speed is changed when a resonator is present.
It is further recommended that one establish whethei or
not the phase speed is adequately described by linear
analysis.

In summary, a study of flow-generated:sound_in
cavities has been performed. For linear effects, a
detailed prediction of spectral line shape of the radiated
sound is possible. For nonlinear effects, some important
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aspects of how sound couples to the flow that generates

it are established.
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APPENDIX: STABILITY ANALYSIS OF THE PERTURBED JET IN THE
PRESENCE OF BOUNDARIES

A.1l Introduction

The collective oscillations of the jet play an
essential role in screech instabilities. It is therefore
useful to calculate the motion of the jet subject to an
acoustic perturbafion. Herein the linear analysis of a
forced jet surrounded by a quiescent annular region’
bound, in turn, by a hard-walled duct is presented. The
theory is developed to the point where a rather complex
dispersion relation must be solved. Rather than solve
the equation numericaliy, several limiting cases are pre-
sented. These correspond to a free circular jet, a two-
dimensional shear layer in the vicinity of a hard wall,
and a free two-dimensional shear layer. The solutiohs of
the linear equations in these limits have been given by

Tam57, Sedel'nikov58, Handa54, Covert and Bilaninsz, and

Milessg.

One should first establish what portion of the
acoustic pulse couples to the shear layer. Three possi-
bilities exist, the particle displacement, the particle
velocity;-and the pressure perﬁurbation. Chanaqnd'and

43 demonstrate that the pressure perturbétion forces

Powell
the shear layer. They force a circular jet from an ori-

fice with an acoustic wave from a loudspeaker. This was
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done in the study of the hole tone, where a second ori-
fice plate is mounted downstream. They find:
With the sound from the speaker (located
on the jet axis) disturbing the jet, the flow
pattern was observed to be symmetric and simi-
lar to that found with the plate and no speaker.
The speaker was then moved to a position per-
pendicular to the jet axis, and again a
symmetric pattern resulted! Since the acousti-
cal wavelength was much greater than the
nozzle diameter, the particle motion lateral
to the jet must have been in phase across the
jet diameter and so, if the jet were appreciably
sensitive to the motion, sone asymmetry of the
disturbances, at least, should have occurred.
Since they did not, it appears that the axi-

symmetric jet is predominantly pressure sensi-
tive.

In an acoustic wave the parﬁicle velocity and
displacement are parallel to the direction of propagation.
The acoustic pressure, being a scalar field, has no such
‘directionaltiy. With the loudspeaker downstream, the
propagation direction is parallel to the jet. With the
loudspeaker perpendicular to the axis, the propagation
direction is perpendicular to the jet. If the jet were
sensitive to either the acoustic displacement or velocity,
some changes should have occurred by changing the direc-
tion of the incident acoustic wave. Since no changes
were observed, one concludes that the acoustic pressure
‘forces the jet.v

A.2 Problem Statement

Consider the perturbation of a compressible,
inviscid, cylindrical jet in the vicinity of a rigid
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boundary. Let the jet and the boundary be coaxially
symmetric and have radii Rj and Ro' Assume the mean
velocity G’= \% ? is uniform for all r<Rj and zero for
all r:>Rj. Here the jet axis lies along the z axis, and
r is the radial distance from this axis. Let the shear
layer at R. be driven by a localized pressure disturbance

3
at z=0. Assuming isentropic conditions gives

2 2
% =1 D P : r< R. Al
- = - J
TRL
2 e
= ° . A2
v R I [ |2 RJ
C+ Jt

where the "'—” subscript refers to points in the jet and

ALY

the +7 to points outside the jet. Here

D =2 Vo9
Dt 8t Q2

Let thé shear layer displacement from the equiF
librium position Rj be labelled IZ(Rj,t)f. Momeptum con-
servation requi;es that the radialAparticle accelration
be equal to the radial pressure gradient at the shear

layer. Thus

2
- D - -2 D ‘ '
g) De2 2 Erf% r = J?j A3
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2 .
2, h=_73p .
Sf 61_27 Sr r:RJ Ad

On the jet axis the pressure must be finite,

hence

0. < oo | R AS

The hard wall demands that the radial particle

velocity be zero at r==Ro. Equivalently

(o]

9p+=0 ; r‘:R_ ' A6

Continuity of pressure at the shear interface

requires

c'(mp S wt)
Pr= R HtASE C r= R’f» A7

i(ne - wt)

where Ad(z)€ is the acoustic forcing term at the

inlet.

'A.3 Integral Solution

To solve Egs. Al to A7, introduce the Fourier
Laplace transform. This procedure is identical to Tam's

analysis of the free jet. Thus

y) oo o0 -/ -
£ =gdf§df p, & (=28 a8
o -

-
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?/=i;£§'?c—émz—ﬂﬂ | N,

whose inverse transforms are

w+i€ o Y ) |
_t / LKRZ2-NT 210
= d K d c
p-t 477,2 §~m+£€' g-w—Q Pﬁ ‘
@+ i€ co )
Kz-0t) All
= _| d K gdﬂ /o tl
Iz 47742 X--e:w-o-l;e o ,Z

Transforming Eqs. Al and A2, assuming initial

conditions are zero, gives

2 7 2 2 /o _ 2 s
ooP= -{———QC—KT] LA N Al2
2 7/ 2 2 7’ Z 7/ A13
LATRR v IR e
+

where pz_and.ni are the quantities in curly brackets, {1,

in Al2 and Al3 and

2=
rar r 9<P2
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Continuing the transforms of Zgs. A3 to A7 gives

_.,_. 9 _/"-—' -(Z"K 2 / :.R,"

§- E?P ( ) h TN A
. ‘= 0% r=R: a5
T i

+

/ r= O Alé6
. P_ L @0

’ = Ro

Ei£2+== a 4 Al7
o r .

P.;/ =P:+ é_fl___@Lmﬂ r=R,; A8

S - w

’ ine

To solve Al2 and Al3, assume p: = ggr)e which gives

o ra pr) - 0l PLE) =l P

—

!
r or = 29r r
or

ra ro po_
gr. tn

,
(1, r)° + n?} p,{r)=o0 Al9
or ) )

th

The solution to Al9 is the n~ modified Bessel

functions of the argument x=ru4_, where the + or - holds
for r:>Rj or r< Rj' Eqs. Al4 through Al9 are the
boundary conditions the solution must satisfy. Explictly

one has
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P—:(P)=A ‘In(#_ r‘) + 0( Kn(ﬂ-r‘)l p<fe], A20

4

Prr)=B |8 T 0+ Kola) | >R A2
m
where A, B, o and B are numerical constants to be deter-
mined by the boundary conditions. The factor %;has been
used to facilitate the expansions in the limiting cases.
The notation of Abramowitz and Stegun36 is used for the
Bessel functions.
That the pressure be finite at the origin

(Eq. Al6) requires o =0. The hard wall (Eq. Al6) requires

/K ( x) A22
" I (x)

ﬁ = -
X=u R,
where the prime signifies differentiation with respect to
the argument x. Substituting A20 and A2l into Al4 and
Al5 gives
’ ‘ ;7 (th@

oo , Lot P (®R)E =0

£ @ -nV) In(x)lx=“.rg_

A23

s V4 [} Vi .
s, BIL, (X)+ 7 Kn(k®) PNV
¢ : an(faj)@ T | a2

2 .
5+ A InG) + 77 Hak)

X= My R.J'
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Eliminating the pressure by Eq. Al8 from A23 and A24

gives
, ' _ (nP
? =-( A C
R -w) AK, 12) , A25
where
2 2
A(K,ﬂ)z g.,.rz QIH(X)+J7PKH(X) _ 3_@7_4(7/) I
+ A I,;(X) r Kp(x) B I,’;x) A26
x=.uﬁj x=H- R

Assume that both the jet and annulus have equal specific

heat ratios and that unperturbed static pressures in the

jet and annulus are equal. From the identity C-= /¥ P

it follows
2 2
G = ¢gc _ | | A27
which implies

T2

_#;—i,(z ﬁInCXH_’iT., K,,(X)l + uf-K.e_ T
L. ¢ 9]

x=u4@. =#-§f

Aé‘(lﬁ)= ?+ Cs

ad BI04 K,,’@)I

The solution for the shear layer displacement

is

A29

_ J - 00 @+l . _
-4‘” 4‘00+L€ C{Z‘W)A<K,_Q)
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The general form of the amplifying solution is.
t Rz - wt)
\z°< c

where w is the frequency of the acoustic perturbation,
and k is the solution to the dispersion relation

A(k,w) =0.

A.4 Comments on the Evaluation of the Integral

The integral given in A29 is, in general, quite
difficult to solve. The customary approach is via the
theﬁrem of residues. It is essential, therefore, to
locate the roots of the dispersion relation A(k,w)==0.

A detailed analysis of the evaluation in the limit of a
two-dimensional free shear layer 1is provided by Miles.59
Bilanin and Covert52 have solved the dispersion relation
numerically for a two-dimensional shear layer located
near a hard wall. Similar numerical solutions for the
free vibrations of a supersonic cylindrical jet given by
Sedel’mikov®® and Handa>%. Tam>’ has demonstrated that

so long as the radius of such a jet is large compared.to’

the wavelength of the disturbance, Miles59

solution can be used.
Handa provides a detailed analysis of the integration
procedure once the dispersion relation is solved.
Such detail in carrying out the integraticns
is not warrantgd in this analysis. Experiments by
>Wagner49 and AndersonSl demonstrate that the perturbations
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of subsonic jeﬁs "roll up" to form ring vortices that
propagate down the jet column. It is these vortices that
are essential to screech. The process of formation of
these vortices is ngt contained in linear analyses such
as this one.

The argument is that such vortices can form
only if there is an amplifying disturbance of the shear
layer. The hydrodynamic analogue is the formatién of
droplets by the amplifying oscillations of a water jet,
first described by Rayleigh6l. The key is to identify
the amplifying roots of the dispersion relatioh. This is
done analytically by tﬁe asymptotic procedure used by

Tam57.

A.5 Removing the Duct Wall

Handa54 and Sedel'nikov58 have analyzed the

free oscillations of a circular jet. Their analysis can
be recovered if one assumes the wall is infinitely far
from the jet. To evaluate this 1limit, the following

expansions are used
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X—+ o0

X =0

X+ oo

1,00 = & |arg6)] < I

Ky = ™ lagix| <3
r:;r /217-’>(1 a’? ;52—-
) « A30
I &)= _ [ oq <
nE e “FAT
K )= e % [a/%g'x)] <3f
v J/ 2TX 2
These limits are used with x=y+Ro. By definition, .Ro

is a real number. This implies that the restriction on

the argument x becomes a restriction on K, - The restric-

tion is then |arg #_'_l < % or R_(K)) 2 0. The only place

ﬁhat the wall diameter enters into the dispersion rela-

tion A29 is in the parameter B defined in Eq. A22. Thus

o X .

/

A 'K%Q)
X— 00 T I,
Do @ -2 X
X 00
o

A3l
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To make this notation coincide with Handa's, introduce

his parameters

(N \2 p) / . . '
Ro= /(a) - R = Ly, A32
/
,{ /ﬂ h'V hz = (M
and note
—-{nm
Iw=e 2 J @x) < 0/7/0)‘%’
aA33
ie
K&)=(r HGx) -r< x)<1r
K DV? L1
2 ? 2
Hence
| ,_[gﬂ”
T, (k- R;) - 41,,(&,@,-) =c I (R, &)
| L
' A34
{ni

2 7 |
¢ H (ko ;)

Kh(“-»- Rj):: Kn(hon|')=

e
2

Substituting Egs. A31, A32 and A34 into Eg. A26 and

setting A(k,w) =0 gives
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QW H (o)) o (w-rY) T(gRp)

54

which is identical to Handa's Eg. 4.39, page 84, and

Sedel'nikov'ssg, Eq. 6, page 73.

A.6 Simplification to Two Dimensions

~

The two-dimensional dispersion relation for a

shear layer near a wall can also be recovered. This was.

52

first solved by Bilanin and Covert and applied to the

study of screech from air flow past rectangular cutouts.
To do the expansions properly, one must specify the duct

radius Ro = Rj-+D, where D is the distance between the

jet and the wall. This distance is kept finite while Rj

tends toward infinity. The expansions needed are

-2 My (Q"f- D)

Len B = C !

R [roo A36
, T + 1K (¢

Lon B IE 1K)

R—>c0 . ’
J A In(x)—i-ﬁ: Kn(X)

X=p, R;

Ky R; + ~He R ;

= Lem [ C e
Rom Ceh R e

- coA (u D)
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L I, &)

5 =2 | =1 A38
— o0
| T, ) x= 4R

J

Substituting Egs. A36, A37 and A38 into Eq. A28 gives
Lon Ak, N)_

J 2 2 2 B A39
= §+ C+ “.,.‘ K Coxﬂ\a(#.,.D) + | '(va
M, N Mo

which is identical to Bilanin's55 Eg. 3.30, page 23, and

Bilanin and CoVert'552 Eg. 16, page 349. Note, however,
that subscripts + and - are opposite those used here.

This stems from the difference in subécript used to
define which region 'is moving.

59

To get Miles dispersion relation for the free

.oscillations of a two-dimensional shear layer, let the
distance D tend towards infinity. 1In this limit

. a2 2 2 2
L A(&)a}:ggq By = K™ + u_ -k
R’rw M, M A40

O— oo

To recover Miles' solution exactly, introduce

the transform

A4l




where C = Kg" is the phase speed normalized to the speed
_ + _
of sound in the quiescent media. Thus

Lo a(k,n) = “l’< &3+ nﬁ-) Cg+/3_4-7)

RJ-*oo A42
D— ﬁ*ﬂ"
. . -iK . . v 59
which is equal to T8 times Miles'™” Eq. 5.3a, page 545.
+ -

The mathematical tgeory of vortex sheet insta-
bility was rigorously solved by Miles. In his analysis,
he rejects spurious roots found by previous authors.
Hence most modern authors use his paper as a reference
for exact analysis of the shear layer instability. The
zeros of Eg. A42 have been extensively studied by Miles,
who concludes that: a) the vortex sheet is unstable if

v < (c+2/3 _2/3)3/2

+ ¢ . b) the function B+-+B_ has no
complex zeros and hence does not give rise to unstable
poles, ¢) in the unstable case the zeros_of the function
(B+(E)B_(E)-kl) are the two complex conjugate roots of
(8,%8_%-1).

For subsonic velocities one can approximate

c,=c_. . In this limit

aCk,w)=0
gives ,
(/3,_*/5--?/\ =0

[22- 7]%[(6-/‘«)2— 7]V2+1 =0 A
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Take advantage of the symmetry, and let

% and y = %. Subsﬁituting into Eq. A43 gives

X +7)2-1] [R-7)%-1] =

vr—
—~
I

which is quadratic in the quantity 22. Thus

-2 2 -
X = ¥V #7 2/ uv2y

Substituting for X and y gives
~

i
Nl

]
A

o
R A44

PR ]2 le ro| 3
+
<_
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-‘.
”":s
+
3
N

“

which is the solution of the dispersion relation Egq. A28

in the limit A << Rj' A << Ro, and ¢, * c_, where A is the

+

wavelength of the disturbance. Some comment can be made

on the approximation C, ® C_,y where c_ is the speed of

sound in the jet. Assume the jet accelerates isentropi-
cally through an orifice. Then the speed of sound in

the jet is®l
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% ¢ 1 (-1 y? a45
- -t 2
when the orifice is choked c¢_ is minimum and equal to
.913 Cr where c, is the sound speed in the surrounding
air (see Landau61 Eg. 80.18). Thus the approximation is
good for subsonic flow.
The dispersion relation yields complex roots

for all Mach numbers less than /8 = 2.83. .The imaginary
part of ¢ is maximum at M = /3 = 1.73 and has a numerical
value of .5. The imaginary portion increases monatonically
from zero to the maximum as the flow speed increases from
Mach 0 to Mach 1.73, then it decreases monatonically to

zero as the flow speed increases to Mach 2.83%.

A.,7 Comments on the Application of the Theory to
Screech

The most important point of the‘anaiysis is that
the shear layer is unstable at subsonic speeds. Some
ambiguity is inherent in further interpretation. This is
because only the ratio of w to k is specified in Egq. A44
and not the absolute values. To interpret the relation,
~consider the limiting cases of w real and then R real.

Recall that the shear displacement ? is given by
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Q o e L (Rz2-wt)

For «w real one has

c(R,z-wt) _~- R Z
Q<K c c AdE

For Kk real one has

] < @ L (rag~wrf)c+ w,

A47

Specify that the acoustic pressure perturbation
is harmonic in time at frequency w, where d is a real
number. From Eg. A46 it is clear that the wave grows
spatially in the downstream direction. This interpreta-
tion is used by Tam.in his study of supersonic jets.

Given w, it follows that

M
- w2

R, = w Re

L
[

: | z7y7
= v Im[—’—l"“’ [/ - )
Cs e C qu:;F?~ !
27 _ ;
/ohasc=——°‘i'J = C A+ [ = v A48
R M L
2 Mer 0

where the second root of Eq. A44 was chosen so that

ki<<0, and the wave amplifies downstream.
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Assume, on the other hand, that the acoustic
perturbation grows in time, at a rate to be determined.
Let the spatial'perturbations be dominated by the spa-
tial variation of the adjacent acoustic resonator. For
an orifice one would require the wave number k to be
real and equal to that of the axial acoustic mode.

Given k, it follows that

w.= R C} ELCI€SI== k C,

r

M

2
w;= R Cy IM,EI—: R C+ //_/+Mz—(l+ﬂ25
| : ¥

Vo= we = CoM = T
e

rhase —_—

R 2 A49

where the first rcot of Eg. A44 was chosen so that
w, > 0 and the wave grows in time.

Cohcentrate on the phase speeds for each limit.
If the forcing acqustic perturbation does not grow in
time; the phase speed of the shear layér disturbances
is approximately V. 1If, however, the coupling is through
the spatial gradients, the phase spéed of the shear layer
disturbances is % . Recall that the orifice data was
fit with a phase speed equal to .6 V. This éuggests

coupling through the wave number
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Also recall the experiment on the coupling of
impingement screech to the axial acoustic modes (section
4.335). There the screech frequency shifted down by about
2 kHz when the plate forming the acoustic cavity was
fitted to the end of the pipe. One interpretation of
this shift is that the phase speed of the disturbances
on the jet was lowered.

These observations suggest that the influence
of an acoustic resonator on shear layer instabilities is
to determine the spatial gradients and thereby alter the
phase speed of such instabilities; Before proceeding
with such studies, the theoretical phase speed muét be
derived in greater detail. For orifice screech the
acoﬁstic wavelength is approximately the same length as
the jet diameter and the two-dimensional approximation
A << Rj is no longér valid. It is therefore necessary to
solve Eq. A2§ numerically.

| The interpretation is only prelimina:y.
Physically, it is clear that the formation of ring vortices
play an essential role in screech. If these are formed
close to the inlet, the time of transit down the -jet is
determined by the propagation speed of such vortices.
‘This speed may or may not be close to that given in Eqs.'
A48 and A49. One cannot reach a conclusion based on the

linear analysis. If the vortex speed is independent of
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the initial perturbation that forms such vortices, then
the only important point is that the shear layer is

unstable at low flow speeds.
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FIGURE 2,13 -- Polar intensity plot for a 2" pipe. Pipes that
screech, such as this one, have variations in
the intensity with angle. This is to be compared
to the uniform distribution of intensity for
longer pipes. Zero DB corresponds to ambient
lab noise which is approximately 65 DB C weight. .
(L=2", D=1", 0 as indicated, R=12")
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FIGURE 2.20 -- Polar intensity plot for a 16" pipe.
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FIGURE 3.1
Photo of the experi-

mental apparatus used

to study the turbulent

excitation of trans-

verse modes 1n ducts.
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FIGURE 3.3
Photo of the micro-

phone holder used to
detect the mode shape
of the radiated

sound.
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FIGURE 3.4
Photo of orifice

plates used to form
air jets (1/4", 1/2",

and 1" diameters).



FIGURE 3.5
Photo of 60" pipe
with 1/2" inside
diameter used to

form air jet.
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In the low frequency range asymmetric peaks at the
cutoff frequencies are evident.
FIGURE 3.6 -- Comparison of low and high frequency spectra

in a rectangular duct. The air jet generating
the sound is from a 1/2" orifice mounted on
the 4" side of a 1-1/2" by 4" duct. The flow
speed in the jet is Mach .44.
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: brifice plate.

256




140

130L /'JETO MIKE i% _
5’ .
MACH
™~
=
U
~
[9))]
=
Z
>
Q
<
!
o
—
tS
™~
0
(=
-
[
m -
70
MODE 1,0 2,0 0,1§,
60( l | 1
0 1 2 3 5
FREQUENCY KILOHERTZ
FIRGURE 3.9 -- Low frequency spectra using a 1" diameter

orifice plate.

257



RE 2 x 10°% DYNES/CM2

DB

SPL

140

130 _/JET o MIKE . /
.
™\ SCREECH
PEAK
120 BAKS
110 |

MACH

60 ] 1 1 1
0 5 10 15 20 25
FREQUENCY KILOHERTZ
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FIGURE 3.20 -- Low frequency spectra observed when jet and

duct axis are parallel.
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FIGURE 3.23 -- Influence of mode shape on detected spectra.
At the duct center, the microphone does not
detect sound radiated in the 1,0 mode.
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be less than two. In these experiments the
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FIGURE 4.12 -- Screech spectra for the modified hole tone at Mach .34.
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