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Chapter 12 

Planar Graphs 

12.1 Drawing Graphs in the Plane 

Here are three dogs and three houses. 

���� ���� ���� 

Dog Dog Dog 
Can you find a path from each dog to each house such that no two paths inter­

sect? 
A quadapus is a little-known animal similar to an octopus, but with four arms. 

Here are five quadapi resting on the seafloor: 
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Can each quadapus simultaneously shake hands with every other in such a 
way that no arms cross? 

Informally, a planar graph is a graph that can be drawn in the plane so that no 
edges cross, as in a map of showing the borders of countries or states. Thus, these 
two puzzles are asking whether the graphs below are planar; that is, whether they 
can be redrawn so that no edges cross. The first graph is called the complete bipartite 
graph, K3,3, and the second is K5. 
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In each case, the answer is, “No— but almost!” In fact, each drawing would be 
possible if any single edge were removed. 

Planar graphs have applications in circuit layout and are helpful in display­
ing graphical data, for example, program flow charts, organizational charts, and 
scheduling conflicts. We will treat them as a recursive data type and use structural 
induction to establish their basic properties. Then we’ll be able to describe a simple 
recursive procedure to color any planar graph with five colors, and also prove that 
there is no uniform way to place n satellites around the globe unless n = 4, 6, 8, 12, 
or 20. 
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When wires are arranged on a surface, like a circuit board or microchip, crossings 
require troublesome three-dimensional structures. When Steve Wozniak designed 
the disk drive for the early Apple II computer, he struggled mightly to achieve a 
nearly planar design: 

For two weeks, he worked late each night to make a satisfactory design. 
When he was finished, he found that if he moved a connector he could 
cut down on feedthroughs, making the board more reliable. To make 
that move, however, he had to start over in his design. This time it only 
took twenty hours. He then saw another feedthrough that could be 
eliminated, and again started over on his design. ”The final design was 
generally recognized by computer engineers as brilliant and was by en­
gineering aesthetics beautiful. Woz later said, ’It’s something you can 
only do if you’re the engineer and the PC board layout person yourself. 
That was an artistic layout. The board has virtually no feedthroughs.’”a 

aFrom apple2history.org which in turn quotes Fire in the Valley by Freiberger and Swaine. 

12.2 Continuous & Discrete Faces 

Planar graphs are graphs that can be drawn in the plane —like familiar maps of 
countries or states. “Drawing” the graph means that each vertex of the graph 
corresponds to a distinct point in the plane, and if two vertices are adjacent, their 
vertices are connected by a smooth, non-self-intersecting curve. None of the curves 
may “cross” —the only points that may appear on more than one curve are the 
vertex points. These curves are the boundaries of connected regions of the plane 
called the continuous faces of the drawing. 

For example, the drawing in Figure 12.1 has four continuous faces. Face IV, 
which extends off to infinity in all directions, is called the outside face. 

This definition of planar graphs is perfectly precise, but completely unsatis­
fying: it invokes smooth curves and continuous regions of the plane to define a 
property of a discrete data type. So the first thing we’d like to find is a discrete 
data type that represents planar drawings. 

The clue to how to do this is to notice that the vertices along the boundary 
of each of the faces in Figure 12.1 form a simple cycle. For example, labeling the 
vertices as in Figure 12.2, the simple cycles for the face boundaries are 

abca abda bcdb acda. 

Since every edge in the drawing appears on the boundaries of exactly two contin­
uous faces, every edge of the simple graph appears on exactly two of the simple 
cycles. 

Vertices around the boundaries of states and countries in an ordinary map are 
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Figure 12.1: A Planar Drawing with Four Faces. 

IV III
II

a

b

c
d

Figure 12.2: The Drawing with Labelled Vertices. 

always simple cycles, but oceans are slightly messier. The ocean boundary is the set 
of all boundaries of islands and continents in the ocean; it is a set of simple cycles 
(this can happen for countries too —like Bangladesh). But this happens because 
islands (and the two parts of Bangladesh) are not connected to each other. So we 
can dispose of this complication by treating each connected component separately. 

But general planar graphs, even when they are connected, may be a bit more 
complicated than maps. For example a planar graph may have a “bridge,” as in 
Figure 12.3. Now the cycle around the outer face is 

abcefgecda. 

This is not a simple cycle, since it has to traverse the bridge c—e twice. 
Planar graphs may also have “dongles,” as in Figure 12.4. Now the cycle 

around the inner face is 
rstvxyxvwvtur, 
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Figure 12.3: A Planar Drawing with a Bridge. 

12.3. PLANAR EMBEDDINGS 

a

d

b
c

g
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t

s

u

y x

w
v

Figure 12.4: A Planar Drawing with a Dongle. 

because it has to traverse every edge of the dongle twice —once “coming” and once 
“going.” 

But bridges and dongles are really the only complications, which leads us to 
the discrete data type of planar embeddings that we can use in place of continuous 
planar drawings. Namely, we’ll define a planar embedding recursively to be the 
set of boundary-tracing cycles we could get drawing one edge after another. 

12.3 Planar Embeddings 

By thinking of the process of drawing a planar graph edge by edge, we can give a 
useful recursive definition of planar embeddings. 

Definition 12.3.1. A planar embedding of a connected graph consists of a nonempty 
set of cycles of the graph called the discrete faces of the embedding. Planar embed­



238 CHAPTER 12. PLANAR GRAPHS 

dings are defined recursively as follows: 

•	 Base case: If G is a graph consisting of a single vertex, v, then a planar em­
bedding of G has one discrete face, namely the length zero cycle, v. 

•	 Constructor Case: (split a face) Suppose G is a connected graph with a planar 
embedding, and suppose a and b are distinct, nonadjacent vertices of G that 
appear on some discrete face, γ, of the planar embedding. That is, γ is a cycle 
of the form 

a . . . b a.· · · 
Then the graph obtained by adding the edge a—b to the edges of G has a 
planar embedding with the same discrete faces as G, except that face γ is 
replaced by the two discrete faces1 

a . . . ba and ab · · · a, 

as illustrated in Figure 12.5. 

a

z

y b

x

w

awxbyza → awxba, abyza

Figure 12.5: The Split a Face Case. 

•	 Constructor Case: (add a bridge) Suppose G and H are connected graphs 
with planar embeddings and disjoint sets of vertices. Let a be a vertex on a 
discrete face, γ, in the embedding of G. That is, γ is of the form 

a . . . a. 
1 There is one exception to this rule. If G is a line graph beginning with a and ending with b, then 

the cycles into which γ splits are actually the same. That’s because adding edge a—b creates a simple 
cycle graph, Cn, that divides the plane into an “inner” and an “outer” region with the same border. In 
order to maintain the correspondence between continuous faces and discrete faces, we have to allow 
two “copies” of this same cycle to count as discrete faces. But since this is the only situation in which 
two faces are actually the same cycle, this exception is better explained in a footnote than mentioned 
explicitly in the definition. 
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Similarly, let b be a vertex on a discrete face, δ, in the embedding of H , so δ is 
of the form 

b b.· · · 

Then the graph obtained by connecting G and H with a new edge, a—b, has 
a planar embedding whose discrete faces are the union of the discrete faces 
of G and H , except that faces γ and δ are replaced by one new face 

a . . . ab ba.· · · 

This is illustrated in Figure 12.6, where the faces of G and H are: 

G : {axyza, axya, ayza} H : {btuvwb, btvwb, tuvt} , 

and after adding the bridge a—b, there is a single connected graph with faces 

{axyzabtuvwba, axya, ayza, btvwb, tuvt} . 

Figure 12.6: The Add Bridge Case. 

An arbitrary graph is planar iff each of its connected components has a planar 
embedding. 
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12.4 What outer face? 

Notice that the definition of planar embedding does not distinguish an “outer” 
face. There really isn’t any need to distinguish one. 

In fact, a planar embedding could be drawn with any given face on the outside. 
An intuitive explanation of this is to think of drawing the embedding on a sphere 
instead of the plane. Then any face can be made the outside face by “puncturing” 
that face of the sphere, stretching the puncture hole to a circle around the rest of 
the faces, and flattening the circular drawing onto the plane. 

So pictures that show different “outside” boundaries may actually be illustra­
tions of the same planar embedding. 

This is what justifies the “add bridge” case in a planar embedding: whatever 
face is chosen in the embeddings of each of the disjoint planar graphs, we can draw 
a bridge between them without needing to cross any other edges in the drawing, 
because we can assume the bridge connects two “outer” faces. 

12.5 Euler’s Formula 

The value of the recursive definition is that it provides a powerful technique for 
proving properties of planar graphs, namely, structural induction. 

One of the most basic properties of a connected planar graph is that its num­
ber of vertices and edges determines the number of faces in every possible planar 
embedding: 

Theorem 12.5.1 (Euler’s Formula). If a connected graph has a planar embedding, then 

v − e + f = 2 

where v is the number of vertices, e is the number of edges, and f is the number of faces. 

For example, in Figure 12.1, |V | = 4, |E| = 6, and f = 4. Sure enough, 4−6+4 = 
2, as Euler’s Formula claims. 

Proof. The proof is by structural induction on the definition of planar embeddings. 
Let P (E) be the proposition that v − e + f = 2 for an embedding, E . 

Base case: (E is the one vertex planar embedding). By definition, v = 1, e = 0, 
and f = 1, so P (E) indeed holds. 

Constructor case: (split a face) Suppose G is a connected graph with a planar 
embedding, and suppose a and b are distinct, nonadjacent vertices of G that appear 
on some discrete face, γ = a . . . b a, of the planar embedding. · · · 

Then the graph obtained by adding the edge a—b to the edges of G has a planar 
embedding with one more face and one more edge than G. So the quantity v − 
e + f will remain the same for both graphs, and since by structural induction this 
quantity is 2 for G’s embedding, it’s also 2 for the embedding of G with the added 
edge. So P holds for the constructed embedding. 
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Constructor case: (add bridge) Suppose G and H are connected graphs with 
planar embeddings and disjoint sets of vertices. Then connecting these two graphs 
with a bridge merges the two bridged faces into a single face, and leaves all other 
faces unchanged. So the bridge operation yields a planar embedding of a con­
nected graph with vG + vH vertices, eG + eH + 1 edges, and fG + fH − 1 faces. 
But 

(vG + vH ) − (eG + eH + 1) + (fG + fH − 1) 
= (vG − eG + fG) + (vH − eH + fH ) − 2 

= (2) + (2) − 2 (by structural induction hypothesis) 
= 2. 

So v −e+f remains equal to 2 for the constructed embedding. That is, P also holds 
in this case. 

This completes the proof of the constructor cases, and the theorem follows by 
structural induction. � 

12.6 Number of Edges versus Vertices 

Like Euler’s formula, the following lemmas follow by structural induction directly 
from the definition of planar embedding. 

Lemma 12.6.1. In a planar embedding of a connected graph, each edge is traversed once 
by each of two different faces, or is traversed exactly twice by one face. 

Lemma 12.6.2. In a planar embedding of a connected graph with at least three vertices, 
each face is of length at least three. 

Corollary 12.6.3. Suppose a connected planar graph has v ≥ 3 vertices and e edges. Then 

e ≤ 3v − 6. 

Proof. By definition, a connected graph is planar iff it has a planar embedding. So 
suppose a connected graph with v vertices and e edges has a planar embedding 
with f faces. By Lemma 12.6.1, every edge is traversed exactly twice by the face 
boundaries. So the sum of the lengths of the face boundaries is exactly 2e. Also by 
Lemma 12.6.2, when v ≥ 3, each face boundary is of length at least three, so this 
sum is at least 3f . This implies that 

3f ≤ 2e. (12.1) 

But f = e − v + 2 by Euler’s formula, and substituting into (12.1) gives 

3(e − v + 2) ≤ 2e 

e − 3v + 6 ≤ 0 

e ≤ 3v − 6 
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Corollary 12.6.3 lets us prove that the quadapi can’t all shake hands with­
out crossing. Representing quadapi by vertices and the necessary handshakes by 
edges, we get the complete graph, K5. Shaking hands without crossing amounts 
to showing that K5 is planar. But K5 is connected, has 5 vertices and 10 edges, and 
10 > 3 5 − 6. This violates the condition of Corollary 12.6.3 required for K5 to be · 
planar, which proves 

Lemma 12.6.4. K5 is not planar. 

Another consequence is 

Lemma 12.6.5. Every planar graph has a vertex of degree at most five. 

Proof. If every vertex had degree at least 6, then the sum of the vertex degrees is 
at least 6v, but since the sum equals 2e, we have e ≥ 3v contradicting the fact that 
e ≤ 3v − 6 < 3v by Corollary 12.6.3. � 

12.7 Planar Subgraphs 

If you draw a graph in the plane by repeatedly adding edges that don’t cross, you 
clearly could add the edges in any other order and still wind up with the same 
drawing. This is so basic that we might presume that our recursively defined pla­
nar embeddings have this property. But that wouldn’t be fair: we really need to 
prove it. After all, the recursive definition of planar embedding was pretty techni­
cal —maybe we got it a little bit wrong, with the result that our embeddings don’t 
have this basic draw-in-any-order property. 

Now any ordering of edges can be obtained just by repeatedly switching the 
order of successive edges, and if you think about the recursive definition of em­
bedding for a minute, you should realize that you can switch any pair of succes­
sive edges if you can just switch the last two. So it all comes down to the following 
lemma. 

Lemma 12.7.1. Suppose that, starting from some embeddings of planar graphs with dis­
joint sets of vertices, it is possible by two successive applications of constructor operations 
to add edges e and then f to obtain a planar embedding, F . Then starting from the same 
embeddings, it is also possible to obtain F by adding f and then e with two successive 
applications of constructor operations. 

We’ll leave the proof of Lemma 12.7.1 to Problem 12.6. 

Corollary 12.7.2. Suppose that, starting from some embeddings of planar graphs with 
disjoint sets of vertices, it is possible to add a sequence of edges e0, e1, . . . , en by successive 
applications of constructor operations to obtain a planar embedding, F . Then starting 
from the same embeddings, it is also possible to obtain F by applications of constructor 
operations that successively add any permutation2 of the edges e0, e1, . . . , en. 

2If π : {0, 1, . . . , n} → {0, 1, . . . , n} is a bijection, then the sequence eπ(0), eπ(1), . . . , eπ(n) is called 
a permutation of the sequence e0, e1, . . . , en. 
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Corollary 12.7.3. Deleting an edge from a planar graph leaves a planar graph. 

Proof. By Corollary 12.7.2, we may assume the deleted edge was the last one added 
in constructing an embedding of the graph. So the embedding to which this last 
edge was added must be an embedding of the graph without that edge. � 

Since we can delete a vertex by deleting all its incident edges, Corollary 12.7.3 
immediately implies 

Corollary 12.7.4. Deleting a vertex from a planar graph, along with all its incident edges 
of course, leaves another planar graph. 

A subgraph of a graph, G, is any graph whose set of vertices is a subset of the 
vertices of G and whose set of edges is a subset of the set of edges of G. So we can 
summarize Corollaries 12.7.3 and 12.7.4 and their consequences in a Theorem. 

Theorem 12.7.5. Any subgraph of a planar graph is planar. 

12.8 Planar 5-Colorability 

We need to know one more property of planar graphs in order to prove that planar 
graphs are 5-colorable. 

Lemma 12.8.1. Merging two adjacent vertices of a planar graph leaves another planar 
graph. 

Here merging two adjacent vertices, n1 and n2 of a graph means deleting the 
two vertices and then replacing them by a new “merged” vertex, m, adjacent to all 
the vertices that were adjacent to either of n1 or n2, as illustrated in Figure 12.7. 

Lemma 12.8.1 can be proved by structural induction, but the proof is kind of 
boring, and we hope you’ll be relieved that we’re going to omit it. (If you insist, 
we can add it to the next problem set.) 

Now we’ve got all the simple facts we need to prove 5-colorability. 

Theorem 12.8.2. Every planar graph is five-colorable. 

Proof. The proof will be by strong induction on the number, v, of vertices, with 
induction hypothesis: 

Every planar graph with v vertices is five-colorable. 

Base cases (v ≤ 5): immediate. 
Inductive case: Suppose G is a planar graph with v + 1 vertices. We will de­

scribe a five-coloring of G. 
First, choose a vertex, g, of G with degree at most 5; Lemma 12.6.5 guarantees 

there will be such a vertex. 
Case 1 (deg (g) < 5): Deleting g from G leaves a graph, H , that is planar by 

Lemma 12.7.4, and, since H has v vertices, it is five-colorable by induction hypoth­
esis. Now define a five coloring of G as follows: use the five-coloring of H for all 
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n11

n n2
n1 m

n2

Figure 12.7: Merging adjacent vertices n1 and n2 into new vertex, m. 
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the vertices besides g, and assign one of the five colors to g that is not the same as 
the color assigned to any of its neighbors. Since there are fewer than 5 neighbors, 
there will always be such a color available for g. 

Case 2 (deg (g) = 5): If the five neighbors of g in G were all adjacent to each 
other, then these five vertices would form a nonplanar subgraph isomorphic to K5, 
contradicting Theorem 12.7.5. So there must be two neighbors, n1 and n2, of g that 
are not adjacent. Now merge n1 and g into a new vertex, m, as in Figure 12.7. In 
this new graph, n2 is adjacent to m, and the graph is planar by Lemma 12.8.1. So 
we can then merge m and n2 into a another new vertex, m�, resulting in a new 
graph, G�, which by Lemma 12.8.1 is also planar. Now G� has v − 1 vertices and so 
is five-colorable by the induction hypothesis. 

Now define a five coloring of G as follows: use the five-coloring of G� for all 
the vertices besides g, n1 and n2. Next assign the color of m� in G� to be the color 
of the neighbors n1 and n2. Since n1 and n2 are not adjacent in G, this defines a 
proper five-coloring of G except for vertex g. But since these two neighbors of g 
have the same color, the neighbors of g have been colored using fewer than five 
colors altogether. So complete the five-coloring of G by assigning one of the five 
colors to g that is not the same as any of the colors assigned to its neighbors. 

A graph obtained from a graph, G, be repeatedly deleting vertices, deleting 
edges, and merging adjacent vertices is called a minor of G. Since K5 and K3,3 are 
not planar, Lemmas 12.7.3, 12.7.4, and 12.8.1 immediately imply: 

Corollary 12.8.3. A graph which has K5 or K3,3 as a minor is not planar. 

We don’t have time to prove it, but the converse of Corollary 12.8.3 is also true. 
This gives the following famous, very elegant, and purely discrete characterization 
of planar graphs: 

Theorem 12.8.4 (Kuratowksi). A graph is not planar iff it has K5 or K3,3 as a minor. 

12.9 Classifying Polyhedra 

The Pythagoreans had two great mathematical secrets, the irrationality of 
√

2 and 
a geometric construct that we’re about to rediscover! 

A polyhedron is a convex, three-dimensional region bounded by a finite number 
of polygonal faces. If the faces are identical regular polygons and an equal number 
of polygons meet at each corner, then the polyhedron is regular. Three examples of 
regular polyhedra are shown below: the tetrahedron, the cube, and the octahedron. 
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We can determine how many more regular polyhedra there are by thinking 
about planarity. Suppose we took any polyhedron and placed a sphere inside 
it. Then we could project the polyhedron face boundaries onto the sphere, which 
would give an image that was a planar graph embedded on the sphere, with the 
images of the corners of the polyhedron corresponding to vertices of the graph. 
But we’ve already observed that embeddings on a sphere are the same as embed-
dings on the plane, so Euler’s formula for planar graphs can help guide our search 
for regular polyhedra. 

For example, planar embeddings of the three polyhedra above look like this: 
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Let m be the number of faces that meet at each corner of a polyhedron, and let 
n be the number of sides on each face. In the corresponding planar graph, there 
are m edges incident to each of the v vertices. Since each edge is incident to two 
vertices, we know: 

mv = 2e 

Also, each face is bounded by n edges. Since each edge is on the boundary of two 
faces, we have: 

nf = 2e 

Solving for v and f in these equations and then substituting into Euler’s formula 
gives: 

2e 2e 
m 
− e + = 2 

n 

which simplifies to 
1 1 1 1 

+ = + (12.2) 
m n e 2 

This last equation (12.2) places strong restrictions on the structure of a polyhedron. 
Every nondegenerate polygon has at least 3 sides, so n ≥ 3. And at least 3 polygons 
must meet to form a corner, so m ≥ 3. On the other hand, if either n or m were 6 
or more, then the left side of the equation could be at most 1/3 + 1/6 = 1/2, which 
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is less than the right side. Checking the finitely-many cases that remain turns up 
only five solutions. For each valid combination of n and m, we can compute the 
associated number of vertices v, edges e, and faces f . And polyhedra with these 
properties do actually exist: 

n m 
3 3 4 6 4 tetrahedron 
4 3 8 12 6 cube 
3 4 6 12 8 octahedron 
3 5 12 30 20 icosahedron 
5 3 20 30 12 dodecahedron 

v e f polyhedron 

The last polyhedron in this list, the dodecahedron, was the other great mathemat­
ical secret of the Pythagorean sect. These five, then, are the only possible regular 
polyhedra. 

So if you want to put more than 20 geocentric satellites in orbit so that they 
uniformly blanket the globe —tough luck! 

12.9.1 Problems 

Exam Problems 

Problem 12.1. 
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d

G1 G2 G3

(a) Describe an isomorphism between graphs G1 and G2, and another isomor­
phism between G2 and G3. 

(b) Why does part (a) imply that there is an isomorphism between graphs G1 and 
G3?


Let G and H be planar graphs. An embedding EG of G is isomorphic to an embed­

ding EH of H iff there is an isomorphism from G to H that also maps each face of

EG to a face of EH .
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(c) One of the embeddings pictured above is not isomorphic to either of the oth­
ers. Which one? Briefly explain why. 

(d) Explain why all embeddings of two isomorphic planar graphs must have the 
same number of faces. 

Class Problems 

Problem 12.2. 
Figures 1–4 show different pictures of planar graphs. 
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1
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b
c

d

Figure 1

a

b

c

d

Figure 2

a

b
c

d

e
Figure 3

a

b

c

d

e
Figure 4

(a) For each picture, describe its discrete faces (simple cycles that define the re­
gion borders). 

(b) Which of the pictured graphs are isomorphic? Which pictures represent the 
same planar embedding? – that is, they have the same discrete faces. 
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(c) Describe a way to construct the embedding in Figure 4 according to the recur­
sive Definition 12.3.1 of planar embedding. For each application of a constructor 
rule, be sure to indicate the faces (cycles) to which the rule was applied and the 
cycles which result from the application. 

Problem 12.3. (a) Show that if a connected planar graph with more than two ver­
tices is bipartite, then 

e ≤ 2v − 4. (12.3) 

Hint: Similar to the proof of Corollary 12.6.3 that for planar graphs e ≤ 3v − 6. 

(b) Conclude that that K3,3 is not planar. (K3,3 is the graph with six vertices and 
an edge from each of the first three vertices to each of the last three.) 

Problem 12.4. 
Prove the following assertions by structural induction on the definition of planar 
embedding. 
(a) In a planar embedding of a graph, each edge is traversed a total of two times 

by the faces of the embedding. 

(b) In a planar embedding of a connected graph with at least three vertices, each 
face is of length at least three. 

Homework Problems 

Problem 12.5. 
A simple graph is triangle-free when it has no simple cycle of length three. 
(a) Prove for any connected triangle-free planar graph with v > 2 vertices and e 

edges, e ≤ 2v − 4. 

Hint: Similar to the proof that e ≤ 3v − 6. Use Problem 12.4. 

(b) Show that any connected triangle-free planar graph has at least one vertex of 
degree three or less. 

(c) Prove by induction on the number of vertices that any connected triangle-free 
planar graph is 4-colorable. 

Hint: use part (b). 

Problem 12.6. (a) Prove Lemma 12.7.1. Hint: There are four cases to analyze, de­
pending on which two constructor operations are applied to add e and then f . 
Structural induction is not needed. 
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(b) Prove Corollary 12.7.2. 

Hint: By induction on the number of switches of adjacent elements needed to con­
vert the sequence 0,1,. . . ,n into a permutation π(0), π(1), . . . , π(n). 
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