Problem Set 4 Solutions

Due: Monday, February 28 at 9 PM

Problem 1. Prove all of the following statements except for the two that are false; for those, provide counterexamples. Assume $n>1$. When proving each statement, you may assume all its predecessors.
(a) $a \equiv a(\bmod n)$

Solution. Every number divides zero, so $n \mid(a-a)$, which means $a \equiv a(\bmod n)$.
(b) $a \equiv b(\bmod n)$ implies $b \equiv a(\bmod n)$

Solution. The statement $a \equiv b(\bmod n)$ implies $n \mid(a-b)$, which means there is an integer k such that $n k=a-b$. Thus, $n(-k)=b-a$, so $n \mid(b-a)$ as well. This means $b \equiv a(\bmod n)$.
(c) $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$ implies $a \equiv c(\bmod n)$

Solution. The two assumptions imply $n \mid(a-b)$ and $n \mid(b-c)$. Thus, n divides the linear combination $(a-b)+(b-c)=a-c$ as well. This means $n \mid(a-c)$.
(d) $a \equiv b(\bmod n)$ implies $a+c \equiv b+c(\bmod n)$

Solution. The first statement implies $n \mid(a-b)$. Rewriting the right side gives $n \mid(a+c)-(b+c)$, which means $a+c \equiv b+c(\bmod n)$.
(e) $a \equiv b(\bmod n)$ implies $a c \equiv b c(\bmod n)$

Solution. The first statement implies $n \mid(a-b)$. Thus, n also divides $c(a-b)=a c-b c$. Therefore, $a c \equiv b c(\bmod n)$.
(f) $a c \equiv b c(\bmod n)$ implies $a \equiv b(\bmod n)$ provided $c \not \equiv 0(\bmod n)$.

Solution. This is false. For example, $6 \cdot 2 \equiv 8 \cdot 2(\bmod 4)$, but $6 \not \equiv 8(\bmod 4)$.
(g) $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$ imply $a+c \equiv b+d(\bmod n)$

Solution. The assumptions, together with part (e), give:

$$
\begin{aligned}
a+c \equiv b+c & (\bmod n) \\
b+c \equiv b+d & (\bmod n)
\end{aligned}
$$

Now part (c) implies $a+c \equiv b+d(\bmod n)$.
(h) $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$ imply $a c \equiv b d(\bmod n)$

Solution. The assumptions, together with part (e), give:

$$
\begin{aligned}
a c & \equiv b c \\
b c & (\bmod n) \\
b b d & (\bmod n)
\end{aligned}
$$

Now part (c) implies $a c \equiv b c(\bmod n)$.
(i) $a \equiv b(\bmod n)$ implies $a^{k} \equiv b^{k}(\bmod n)$ for all $k \geq 0$.

Solution. We use induction. Suppose that $a \equiv b(\bmod n)$. Let $P(k)$ be the proposition that $a^{k} \equiv b^{k}$.
Base case. $P(0)$ is true, since $a^{0}=b^{0}=1$ and $1 \equiv 1(\bmod n)$ by part (a).
Inductive step. For $k \geq 0$, we assume $P(k)$ to prove $P(k+1)$. Thus, assume $a^{k} \equiv b^{k}$ $(\bmod n)$. Combining this assmption and the fact that $a \equiv b(\bmod n)$ using part (g), we get $a^{k+1} \equiv b^{k+1}(\bmod n)$.
By induction, $P(k)$ holds for all $k \geq 0$.
(j) $a \equiv b(\bmod n)$ implies $k^{a} \equiv k^{b}(\bmod n)$ for all $k \geq 0$.

Solution. This is false. For example, $0 \equiv 3(\bmod 3)$, but $2^{0} \not \equiv 2^{3}(\bmod 3)$.
(k) $(a \operatorname{rem} n) \equiv a(\bmod n)$

Solution. By definition of rem, a rem $n=a-q n$ for some integer q. So we can reason as follows:

$$
\begin{aligned}
(a \operatorname{rem} n) & \equiv a-q n \quad(\bmod n) & \\
& \equiv a \quad(\bmod n) & \text { from }(\mathrm{d}) \text { and } q n \equiv 0 \quad(\bmod n)
\end{aligned}
$$

Problem 2. Prove that there exists an integer k^{-1} such that

$$
k \cdot k^{-1} \equiv 1 \quad(\bmod n)
$$

provided $\operatorname{gcd}(k, n)=1$. Assume $n>1$.
Solution. If $\operatorname{gcd}(k, n)=1$, then there exist integers x and y such that $k x+y n=1$. Therefore, $y n=1-k x$, which means $n \mid(1-k x)$ and so $k x \equiv 1(\bmod n)$. Let k^{-1} be x.
Problem 3. Reviewing the analysis of RSA may help you solve the following problems. You may assume results proved in recitation.
(a) Let n be a nonnegative integer. Prove that n and n^{5} have the same last digit. For example:

$$
\underline{2}^{5}=3 \underline{2} \quad 7 \underline{7}^{5}=307705639 \underline{9}
$$

Solution. The correctness of RSA relies on the following fact: if p and q are distinct primes, then

$$
m^{1+k(p-1)(q-1)} \equiv m \quad(\bmod p q)
$$

for all m and k. Setting $k=1, p=5$, and $q=2$ proves the claim.
(b) Suppose that p_{1}, \ldots, p_{k} are distinct primes. Prove that

$$
m^{1+\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right)} \equiv m \quad\left(\bmod p_{1} p_{2} \cdots p_{k}\right)
$$

for all m and all $k \geq 1$.
Solution. If m is a multiple of a prime p_{j}, then

$$
\begin{equation*}
m^{1+\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right)} \equiv m \quad\left(\bmod p_{j}\right) \tag{}
\end{equation*}
$$

holds, because both sides are congruent to 0 . If m is not a multiple of p_{j}, then congruence (${ }^{*}$) still holds because:

$$
\begin{aligned}
m^{1+\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right)} & \equiv m \cdot\left(m^{p_{j}-1}\right)^{\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right) /\left(p_{j}-1\right)} \quad\left(\bmod p_{j}\right) \\
& \equiv m \cdot 1^{\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right) /\left(p_{j}-1\right)} \quad\left(\bmod p_{j}\right) \\
& \equiv m \quad\left(\bmod p_{j}\right)
\end{aligned}
$$

The second step uses Fermat's Theorem. Now the congruence (*) means that:

$$
p_{j} \mid m^{1+\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right)}-m
$$

Thus, p_{j} appears in the prime factorization of right side. Since this argument is valid for every prime p_{j} where $1 \leq j \leq k$, all of the primes p_{1}, \ldots, p_{k} appear in the prime factorization of:

$$
m^{1+\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right)}-m
$$

Therefore:

$$
p_{1} p_{2} \cdots p_{k} \mid m^{1+\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right)}-m
$$

Rewriting this as a congruence gives:

$$
m^{1+\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right)} \equiv m \quad\left(\bmod p_{1} p_{2} \cdots p_{k}\right)
$$

Problem 4. Suppose that p is a prime.
(a) An integer k is self-inverse if $k \cdot k \equiv 1(\bmod p)$. Find all integers that are self-inverse $\bmod p$.
Solution. The congruence holds if and only if $p \mid k^{2}-1$ which is equivalent to $p \mid(k+1)(k-1)$. this holds if and only if either $p \mid k+1$ or $p \mid k-1$. Thus, $k \equiv \pm 1$ $(\bmod p)$.
(b) Wilson's Theorem says that $(p-1)$! $\equiv-1(\bmod p)$. The English mathematician Edward Waring said that this statement would probably be extremely difficult to prove because no one had even devised an adequate notation for dealing with primes. (Gauss proved it while standing.) Your turn! Stand up, if you like, and try cancelling terms of $(p-1)$! in pairs.
Solution. If $p=2$, then the theorem holds, because $1!\equiv-1(\bmod 2)$. If $p>2$, then $p-1$ and 1 are distinct terms in the product $1 \cdot 2 \cdots(p-1)$, and these are the
only self-inverses. Consequently, we can pair each of the remaining terms with its multiplicative inverse. Since the product of a number and its inverse is congruent to 1 , all of these remaining terms cancel. Therefore, we have:

$$
\begin{aligned}
(p-1)! & \equiv 1 \cdot(p-1) \quad(\bmod p) \\
& \equiv-1 \quad(\bmod p)
\end{aligned}
$$

