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Expected Value II 

1 The NumberPicking Game 

Here is a game that you and I could play that reveals a strange property of expectation. 

First, you think of a probability density function on the natural numbers. Your distri
bution can be absolutely anything you like. For example, you might choose a uniform 
distribution on 1, 2, . . . , 6, like the outcome of a fair die roll. Or you might choose a bi
nomial distribution on 0, 1, . . . , n. You can even give every natural number a nonzero 
probability, provided that the sum of all probabilities is 1. 

Next, I pick a random number z according to your distribution. Then, you pick a 
random number y1 according to the same distribution. If your number is bigger than 
mine (y1 > z), then the game ends. Otherwise, if our numbers are equal or mine is bigger 
(z ≥ y1), then you pick a new number y2 with the same distribution, and keep picking 
values y3, y4, etc. until you get a value that is strictly bigger than my number, z. What is 
the expected number of picks that you must make? 

Certainly, you always need at least one pick, so the expected number is greater than 
one. An answer like 2 or 3 sounds reasonable, though one might suspect that the answer 
depends on the distribution. Let’s find out whether or not this intuition is correct. 

1.1 Analyzing the Game 

The number of picks you must make is a naturalvalued random variable. And, as we’ve 
seen, there is a nice formula for the expectation of a naturalvalued random variable: 

∞

Ex (# times you pick) = Pr (# times you pick > k)	 (1) 
k=0 

Suppose that I’ve picked my number z, and you have picked k numbers y1, y2, . . . , yk. 
There are two possibilities: 

•	 If there is a unique largest number among our picks, then my number is as likely to 
be it as any one of yours. So with probability 1/(k + 1) my number is larger than all 
of yours, and you must pick again. 
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•	 Otherwise, there are several numbers tied for largest. My number is as likely to be 
one of these as any of your numbers, so with probability greater than 1/(k + 1) you 
must pick again. 

In both cases, with probability at least 1/(k + 1), you need more than k picks to beat me. 
In other words: 

1 
Pr (# times you pick > k) ≥	 (2)

k + 1 

This suggests that in order to minimize your rolls, you should chose a distribution 
such that ties are very rare. For example, you might choose the uniform distribution on 
{1, 2, . . . , 10100}. In this case, the probability that you need more than k picks to beat me is 
very close to 1/(k+1) for moderate values of k. For example, the probability that you need 
more than 99 picks is almost exactly 1%. This sounds very promising for you; intuitively, 
you might expect to win within a reasonable number of picks on average! 

Unfortunately for intuition, there is a simple proof that the expected number of picks 
that you need in order to beat me is infinite, regardless of the distribution! Let’s plug (2) 
into (1): � 1

∞

Ex (# times you pick) = 
k + 1 

k=0 

= ∞ 

This phenomenon can cause all sorts of confusion! For example, suppose you have a 
communication network where each packet of data has a 1/k chance of being delayed by 
k or more steps. This sounds good; there is only a 1% chance of being delayed by 100 or 
more steps. But the expected delay for the packet is actually infinite! 

There is a larger point here as well: not every random variable has a welldefined 
expectation. This idea may be disturbing at first, but remember that an expected value is 
just a weighted average. And there are many sets of numbers that have no conventional 
average either, such as: 

{1,−2, 3,−4, 5,−6, . . .} 

Strictly speaking, we should qualify virtually all theorems involving expectation with 
phrases such as “...provided all expectations exist.” But we’re going to leave that as
sumption implicit. Fortunately, random variables without expectations don’t arise too 
often in practice. 

2 The Coupon Collector Problem 

Every time I purchase a kid’s meal at Taco Bell, I am graciously presented with a miniature 
“Racin’ Rocket” car together with a launching device which enables me to project my new 
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vehicle across any tabletop or smooth floor at high velocity. Truly, my delight knows no 
bounds. 

There are n different types of Racin’ Rocket car (blue, green, red, gray, etc.). The type 
of car awarded to me each day by the kind woman at the Taco Bell register appears to be 
selected uniformly and independently at random. What is the expected number of kids 
meals that I must purchase in order to acquire at least one of each type of Racin’ Rocket 
car? 

The same mathematical question shows up in many guises: for example, what is the 
expected number of people you must poll in order to find at least one person with each 
possible birthday? Here, instead of collecting Racin’ Rocket cars, you’re collecting birth
days. The general question is commonly called the coupon collector problem after yet 
another interpretation. 

2.1 A Solution Using Linearity of Expectation 

Linearity of expectation is somewhat like induction and the pigeonhole principle; it’s a 
simple idea that can be used in all sorts of ingenious ways. For example, we can use 
linearity of expecatation in a clever way to solve the coupon collector problem. Suppose 
there are five different types of Racin’ Rocket, and I receive this sequence: 

blue green green red blue orange blue orange gray 

Let’s partition the sequence into 5 segments: 

blue green green red blue orange blue orange gray���� � �� � � �� � � �� � � �� � 
X0 X1 X2 X3 X4 

The rule is that a segment ends whenever I get a new kind of car. For example, the middle 
segment ends when I get a red car for the first time. In this way, we can break the problem 
of collecting every type of car into stages. Then we can analyze each stage individually 
and assemble the results using linearity of expectation. 

Let’s return to the general case where I’m collecting n Racin’ Rockets. Let Xk be the 
length of the kth segment. The total number of kid’s meals I must purchase to get all n 
Racin’ Rockets is the sum of the lengths of all these segments: 

T = X0 + X1 + . . . + Xn−1 

Now let’s focus our attention of the Xk, the length of the kth segment. At the begin
ning of segment k, I have k different types of car, and the segment ends when I acquire 
a new type. When I own k types, each kid’s meal contains a type that I already have 
with probability k/n. Therefore, each meal contains a new type of car with probability 
1 − k/n = (n − k)/n. Thus, the expected number of meals until I get a new kind of car 
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is n/(n − k) by the “mean time to failure” formula that we worked out last time. So we 
have: 

n 
Ex (Xk) = 

n− k 

Linearity of expecatation, together with this observation, solves the coupon collector 
problem: 

Ex (T ) = Ex (X0 + X1 + . . . + Xn−1) 

= Ex (X0) + Ex (X1) + . . . + Ex (Xn−1) 
n n n n n 

= + + . . . + + + 
3 2 1n− 0 n− 1 

1 1 1 1 1 
= n + + . . . + + + 

n n− 1 3 2 1 

= nHn 

The summation on the nexttolast line is the nth harmonic sum with the terms in reverse 
order. As you may recall, this sum is denoted Hn and is approximately ln n. 

Let’s use this general solution to answer some concrete questions. For example, the 
expected number of die rolls required to see every number from 1 to 6 is: 

6H6 = 14.7 . . . 

And the expected number of people you must poll to find at least one person with each 
possible birthday is: 

365H365 = 2364.6 . . . 

3 Expected Value of a Product 

Enough with sums! What about the expected value of a product of random variables? If 
R1 and R2 are independent, then the expected value of their product is the product of 
their expected values. 

Theorem 1. For independent random variables R1 and R2: 

Ex (R1 · R2) = Ex (R1) · Ex (R2) 

Proof. We’ll transform the right side into the left side: ⎛ ⎞ ⎛ ⎞ 

Ex (R1) · Ex (R2) = ⎝ x · Pr (R1 = x)⎠ ⎝ y · Pr (R2 = y)⎠ · 
x∈Range(R1) x∈Range(R1) 

= xy Pr (R1 = x) Pr (R1 = y) 
x∈Range(R1) y∈Range(R2) 

= xy Pr (R1 = x ∩ R1 = y) 
x∈Range(R1) y∈Range(R2) 
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The second line comes from multiplying out the product of sums. Then we used the fact 
that R1 and R2 are independent. Now let’s group terms for which the product xy is the 
same: 

= xy Pr (R1 = x ∩ R1 = y) 
z∈Range(R1·R2) x,y: xy=z 

= z Pr (R1 = x ∩ R1 = y) 
z∈Range(R1·R2) x,y: xy=z 

= z · Pr (R1 · R2 = z) 
z∈Range(R1·R2) 

= Ex (R1 R2)· 

3.1 The Product of Two Independent Dice 

Suppose we throw two independent, fair dice and multiply the numbers that come up. 
What is the expected value of this product? 

Let random variables R1 and R2 be the numbers shown on the two dice. We can com
pute the expected value of the product as follows: 

Ex (R1 · R2) = Ex (R1) · Ex (R2) 

1 1 
= 3 3 

2 
· 

2 
1 

= 12 
4 

On the first line, we’re using Theorem 1. Then we use the result from last lecture that the 
expected value of one die is 31 .

2

3.2 The Product of Two Dependent Dice 

Suppose that the two dice are not independent; in fact, suppose that the second die is 
always the same as the first. Does this change the expected value of the product? Is the 
independence condition in Theorem 1 really necessary? 

As before, let random variables R1 and R2 be the numbers shown on the two dice. We 
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can compute the expected value of the product directly as follows: 

Ex (R1 R2) = Ex R2 
1·

6

= i2 · Pr(R1 = i) 
i=1 

12 22 32 42 52 62 

= + + + + + 
6 6 6 6 6 6 

1 
= 15 

6 

The first step uses the fact that the outcome of the second die is always the same as the 
first. Then we expand Ex (R2 

1) using one of our formulations of expectation. Now that the 
dice are no longer independent, the expected value of the product has changed to 15 1 . So 

6

the expectation of a product of dependent random variables need not equal the product 
of their expectations. 

3.3 Corollaries 

Theorem 1 extends to a collection of mutually independent variables. 

Corollary 2. If random variables R1, R2, . . . , Rn are mutually independent, then 

Ex (R1 R2 Rn) = Ex (R1) · Ex (R2) · · ·Ex (Rn)· · · ·

The proof uses induction, Theorem 1, and the definition of mutual independence. We’ll 
omit the details. 

We now know the expected value of a sum or product of random variables. Unfortu
nately, the expected value of a reciprocal is not so easy to characterize. Here is a flawed 
attempt. 

False Corollary 3. If R is a random variable, then 

1 1 
Ex = 

R Ex (R) 

As a counterexample, suppose the random variable R is 1 with probability 1 and is 2 
2 

with probability 1 . Then we have: 
2

1 1 
= 

1 1Ex (R) 
2 2

+ 2 1 ·	 · 
2 

= � � 3 
1 1 1 1 1 

Ex = + 
R	 1 

· 
2 2 

· 
2 

3 
= 

4
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The two quantities are not equal, so the corollary must be false. But here is another false 
corollary, which we can actually “prove”! 

False Corollary 4. If Ex (R/T ) > 1, then Ex (R) > Ex (T ). 

“Proof”. We begin with the ifpart, multiply both sides by Ex (T ), and then apply Theo
rem 1: 

Ex (R/T ) > 1 

Ex (R/T ) · Ex (T ) > Ex (T ) 

Ex (R) > Ex (T ) 

This “proof” is bogus! The first step is valid only if Ex (T ) > 0. More importantly, 
we can’t apply Theorem 1 in the second step because R/T and T are not necessarily 
independent. Unfortunately, the fact that Corollary 4 is false does not mean it is never 
used! 

3.3.1 A RISC Paradox 

The following data is taken from a paper by some famous professors. They wanted to 
show that programs on a RISC processor are generally shorter than programs on a CISC 
processor. For this purpose, they made a table of program lengths for some benchmark 
problems, which looked like this: 

Benchmark RISC CISC CISC / RISC 
Estring search 150 120 0.8 
Fbit test 120 180 1.5 
Ackerman 150 300 2.0 
Rec 2sort 2800 1400 0.5 
Average 1.2 

Each row contains the data for one benchmark. The numbers in the first two columns are 
program lengths for each type of processor. The third column contains the ratio of the 
CISC program length to the RISC program length. Averaging this ratio over all bench
marks gives the value 1.2 in the lower right. The authors conclude that “CISC programs 
are 20% longer on average”. 

But there’s a pretty serious problem here. Suppose we redo the final column, taking 
the inverse ratio, RISC / CISC instead of CISC / RISC. 

Benchmark RISC CISC RISC / CISC 
Estring search 150 120 1.25 
Fbit test 120 180 0.67 
Ackerman 150 300 0.5 
Rec 2sort 2800 1400 2.0 
Average 1.1 
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By exactly the same reasoning used by the authors, we could conclude that RISC pro
grams are 10% longer on average than CISC programs! What’s going on? 

3.3.2 A Probabilistic Interpretation 

To shed some light on this paradox, we can model the RISC vs. CISC debate with the 
machinery of probability theory. 

Let the sample space be the set of benchmark programs. Let the random variable R be 
the length of the RISC program, and let the random variable C be the length of the CISC 
program. We would like to compare the average length of a RISC program, Ex (R), to the 
average length of a CISC program, Ex (C). 

To compare average program lengths, we must assign a probability to each sample 
point; in effect, this assigns a “weight” to each benchmark. One might like to weigh 
benchmarks based on how frequently similar programs arise in practice. But let’s follow 
the original authors’ lead. They assign each ratio equal weight in their average, so they’re 
implicitly assuming that similar programs arise with equal probability. Let’s do that same 
and make the sample space uniform. We can now compute Ex (R) and Ex (C) as follows: 

150 120 150 2800 
Ex (R) = + + + 

4 4 4 4 
= 805 

120 180 300 1400 
Ex (C) = + + + 

4 4 4 4 
= 500 

So the average length of a RISC program is actually Ex (R) / Ex (C) = 1.61 times greater 
than the average length of a CISC program. RISC is even worse than either of the two 
previous answers would suggest! 

In terms of our probability model, the authors computed C/R for each sample point 
and then averaged to obtain Ex (C/R) = 1.2. This much is correct. However, they inter
pret this to mean that CISC programs are longer than RISC programs on average. Thus, 
the key conclusion of this milestone paper rests on Corollary 4, which we know to be false! 

3.3.3 A Simpler Example 

The root of the problem is more clear in the following, simpler example. Suppose the data 
were as follows. 

Benchmark Processor A Processor B B/A A/B 
Problem 1 2 1 1/2 2 
Problem 2 1 2 2 1/2 
Average 1.25 1.25 
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Now the statistics for processors A and B are exactly symmetric. Yet, from the third col
umn we would conclude that Processor B programs are 25% longer on average, and from 
the fourth column we would conclude that Processor A programs are 25% longer on av
erage. Both conclusions are obviously wrong. The moral is that averages of ratios can be 
very misleading. More generally, if you’re computing the expectation of a quotient, think 
twice; you’re going to get a value ripe for misuse and misinterpretation. 

4 The Total Expectation Theorem 

Earlier we talked about conditional probability. For example, you might want to know the 
probability that someone was dealt at least two aces, given that they were dealt the ace 
of spades. Similarly, one can talk about conditional expectation. For example, you could 
determine the expected number that comes up on a fair die given that the roll is even. 

There are several ways to compute a conditional expectation, just as there are several 
ways to compute an ordinary expectation. In fact, the conditional expectation formulas 
are the same as the ordinary expectation formulas, except that all the probabilities become 
conditional probabilities. If R is a random variable and E is an event, then the expected 
value of R given that event E occurs is denoted Ex (R | E) and defined by: 

Ex (R | E) = R(w) Pr (w | E) 
w∈S 

= x · Pr (R = x | E) 
x∈ range(R) 

For example, let R be the number that comes up on a roll of a fair die, and let E be the 
event that the number is even. Let’s compute Ex (R | E), the expected value of a die roll, 
given that the result is even. 

Ex (R | E) = R(w) · Pr (w | E) 
w∈{1,...,6} 

1 1 1 
= 1 · 0 + 2 · + 3 · 0 + 4 · + 5 · 0 + 6 ·

3 3 3 
= 4 

Conditional expectation is really useful for breaking down the calculation of an ex
pectation into cases. The breakdown is justified by an analogue to the Total Probability 
Theorem: 

Theorem 5 (Total Expectation). Let E1, . . . , En be events that partition the sample space and 
have nonzero probabilities. If R is a random variable, then: 

Ex (R) = Ex (R | E1) · Pr (E1) + · · ·+ Ex (R En) · Pr (En)| 
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For example, let R be the number that comes up on a fair die and E be the event that 
result is even, as before. Then E is the event that the result is odd. So the Total Expectation 
theorem says: 

Ex (R) = Ex (R E) ·Pr (E) + Ex R E ·Pr (E)� �� � � ��| � � �� � � ��| � � �� � 
= 7/2 = 4 = 1/2 = ? = 1/2 

The only quantity here that we don’t already know is Ex R | E , which is the expected 
die roll, given that the result is odd. Solving this equation for this unknown, we conclude 
that Ex R | E = 3. 

To prove the Total Expectation Theorem, we begin with a Lemma. 

Lemma. Let R be a random variable, E be an event with positive probability, and IE be the 
indicator variable for E. Then 

Ex (R IE)
Ex (R | E) = 

·
(3)

Pr (E) 

Proof. Note that for any outcome, s, in the sample space, 

0 if IE(s) = 0,
Pr ({ =s} ∩ E)

Pr (s) if IE(s) = 1, 

and so 
Pr ({ = IE(s) · Pr (s) . (4)s} ∩ E)

Now, 

Ex (R | E) = R(s) · Pr ({s} E) (Def of Ex (· | E))|
s∈S 

R(s) · Pr ({
= 

s} ∩ E) 
(Def of Pr (· | E))

Pr (E)
s∈S � IE(s) · Pr (s) 

= R(s) · (by (4))
Pr (E)

s∈S 

s∈S(R(s) · IE(s)) · Pr (s) 
= 

Pr (E)

Ex (R IE)


= 
·

(Def of Ex (R IE))
Pr (E) 

·

Now we prove the Total Expectation Theorem: 
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Proof. Since the Ei’s partition the sample space, � 
R = R · IEi 

(5) 
i 

for any random variable, R. So � � � 
Ex (R) = Ex R · IEi 

(by (5)) � i 

= Ex (R · IEi
) (linearity of Ex ()) 

i� 
= 

i 

Ex (R | Ei) · Pr (Ei) (by (3)) 
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