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Induction III 

1 Two Puzzles 

Here are two challenging puzzles. 

1.1 The 9Number Puzzle 

The numbers 1, 2, . . . , 9 are arranged in a 3× 3 grid as shown below: 

1 2 3 
4 5 6 
7 8 9 

You can rearrange the numbers by rotating rows and columns. For example, rotating the 
first row to the right gives: 

1 2 3 
4 5 6 
7 8 9 

−→ 
3 1 2 
4 5 6 
7 8 9 

Notice that 1 and 2 both moved right one position and the rightmost number, 3, jumped 
back to the left. Similarly, if we now rotate the first column downward, then 3 and 4 both 
move down one position and the bottom number, 7, jumps back up to the top: 

3 1 2 
4 5 6 
7 8 9 

−→ 
7 1 2 
3 5 6 
4 8 9 

Can you find a sequence of moves that transposes the original configuration? 

. . . ? . . . −→ −→ 
1 2 3 
4 5 6 
7 8 9 

1 4 7 
2 5 8 
3 6 9 
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1.2 The Temple of Forever 

Each monk entering the Temple of Forever is given a bowl with 15 red beads and 12 green 
beads. Each time the Gong of Time rings, the monk must do one of two things: 

1. If he has at least 3 red beads in his bowl, then he may remove 3 red beads and add 
2 green beads. 

2. He may replace every bead in his bowl with a bead of the opposite color. 

For example, at the first ring of the Gong of Time, the monk might replace every bead 
with one of the opposite color, giving him 12 red and 15 green. Then, at the second ring, 
he might remove 3 red and add 2 green, leaving 9 red and 17 green. 

A monk may leave the Temple of Forever only when he has exactly 5 red beads and 5 
green beads in his bowl. Can you find a way to escape? 

2 Using Induction to Analyze a Process 

An important application of induction is proving that a system never enters some unde
sirable state. For example, we might want to prove that a file system is never corrupted, 
records in a data structure are always rapidly retrievable, or a communication protocol 
never deadlocks. No new mathematical techniques are required to use induction for such 
purposes. But you’ll need to think about induction somewhat differently. We’ll use the 
9Number Puzzle and the Temple of Forever as illustrations. 

2.1 Induction on Time 

Some frustrating experiments suggest that there is no way to escape from the Temple of 
Forever or solve the 9Number Puzzle. But how could we hope to prove these conclusions 
using induction? Remember that induction establishes that some predicate P (n) is true 
for all n ∈ N. For the Temple problem, should we use induction on the number of red 
beads? Green beads? The total? Worse, the 9Number Puzzle doesn’t seem to involve a 
naturalvalued variable at all! 

The common solution when analyzing a system is to use induction on time; that is, 
we’ll use induction to prove that some predicate P (n) is true for every n ≥ 0 where n is 
the number of rotations, gong rings, moves, hours, steps, or whatever. 

Unfortunately, a naive approach still doesn’t work. Let’s try such an argument and see 
where we get stuck. 

Theorem. No one leaves the Temple of Forever. 
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Proof. We use induction. Let P (n) be the proposition, “After n gong rings, the number of 
red beads in the monk’s bowl is not equal to the number of green beads.” 

Base case. Initially, there are 15 red beads and 12 green beads, so P (0) is true. 

Inductive step. We must show that P (n) implies P (n+1) for all n ≥ 0. So assume that after 
n gong rings the number of red beads in the monk’s bowl is not equal to the number of 
green beads. Then after n + 1 gong rings... × 

We’re stuck! If we assume that P (n) is true, the monk might have, say, 8 red beads and 
3 green beads after n gong rings. But then removing 3 red and adding 2 green leaves him 
with 5 red and 5 green, making P (n + 1) false! In other words, we can’t hope to prove 
P (n) implies P (n+1) in the inductive step— not because we aren’t sufficiently clever, but 
because it’s just not true! 

So we must be cleverer. 

2.2 Finding an Induction Hypothesis 

The key to proving that a system can never reach a “bad” state is chosing the right induc
tion hypothesis. In particular, the induction hypothesis should describe a property that 
is: 

1. True at the start. 

2.	 Invariant, meaning that if the system has the property before a move, then it must 
also have the property after the move. 

3. False in the “bad” state. 

Intuitively, we’re looking for a property that the system has initially and can never lose. 
This means any state of the system lacking that property is unreachable. 

Let’s check a couple properties against these criteria. 

The monk always has at least one bead. This is true initially since the monk starts with 
a bowlful of beads. Furthermore, this property is invariant. Suppose the the monk 
has at least one bead. 

•	 If the monk removes 3 red beads and adds 2 green, then he is left with at least 
the 2 green. (Remember this operation is only allowed if the monk has at least 
3 red.) 

•	 If the monk has at least one bead before swapping colors, then he has at least 
one bead after doing so; in fact, chaning colors does not affect the number of 
beads at all. 
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The problem is that this property also holds in the state we’re trying to rule out, 
where the monk has 5 red and 5 green. So this property does not meet all our 
criteria. 

The monk has an unequal number of red and green beads. This property does hold at 
this start, and does not hold in the “bad” state where the monk has 5 red and 5 
green. However, this property is not preserved by every move. For example, if the 
monk has 13 red and 8 green, then after the next gong he could have 10 red and 10 
green. In other words, the property is not invariant. 

A good way to find an invariant is to list a lot of states and look for a distinctive feature 
they have in common. For example, here are some states the monk can reach: 

(15, 12) → (12, 15) → (9, 17) → (17, 9) 
↓

(12, 14) → (14, 12) → (11, 14) → (14, 11) 
↓ ↓ ↓

(9, 16) → (16, 9) (8, 16) (11, 13) 

Here the pair (r, g) denotes the state where the monk has r red beads and g green beads. 
Continuing in this way, you might notice that the difference r − g only takes on certain 
values: 2, 2, 3, 3, 7, 7, 8, 8, etc. In particular, the number of red beads minus the number of 
green beads is always of the form 5k+2 or 5k+3 where k is an integer. The rules for the Temple 
provide an explanation: adding 3 red and removing 2 green changes the difference by 5. 
And swapping colors negates the difference. Furthermore, this property holds at the start 
(since 15 − 12 = 5 0 + 3) and does not hold in the state we’re trying to prove unreachable · 
(since 5 − 5 = 0 is not of the form 5k + 2 or 5k + 3). This is exactly the sort of property we 
need, so we’re ready for a proof! 

Theorem 1. No one leaves the Temple of Forever. 

Proof. We use induction on the number of gong rings. Let P (n) be the proposition that 
after n rings, the number of red beads in the monk’s bowl minus the number of green 
beads is equal to 5k + 2 or 5k + 3 for some integer k. 

Base case: P (0) is true because initially (after zero rings) the number of red beads minus 
the number of green beads is 15 − 12 = 5 0 + 3.· 
Inductive step: Now assume that P (n) holds after n gong rings, where n ≥ 0. Let r denote 
the number of red beads in the monk’s bowl, and let g denote the number of green beads. 
In these terms, we are assuming that r − g is equal to 5k + 2 or 5k + 3 for some integer k. 
After n + 1 gong rings, there are two cases to consider, depending on the monk’s action: 

1. If r ≥ 3, then the monk may have replaced 3 red beads with 2 green beads. Thus, 
the number of red beads minus the number of green becomes: 

(r − 3) − (g + 2) = (r − g)− 5 

This is equal to either 5(k − 1) + 2 or 5(k − 1) + 3, so P (n + 1) is true. 
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2. Alternatively, the monk may have exchanged every red bead for a green bead and 
vice versa. In this case, the number of reds minus the number of greens becomes 
g − r. If r − g = 5k + 3, then g − r = 5(− k) − 3 = 5(− k − 1) + 2. If r − g = 5k + 2, 
then g − r = 5(− k)− 2 = 5(− k − 1) + 3. Thus, P (n + 1) is again true. 

Therefore, P (n) implies P (n + 1) for all n ≥ 0. 

By the induction principle, P (n) is true for all n ≥ 0. Since the number of red beads 
minus the number of greens is always of the form 5k + 2 or 5k + 3 and the difference 
required to leave the temple does not match either form, no monk can ever leave the 
Temple of Forever. 

Many proofs that a system can not reach a “bad” state share several features with this 
one: 

•	 The induction hypothesis holds initially and is preserved by every move, but does 
not hold in the “bad state”. 

•	 The proof uses induction on time, as measured by gong rings, operations, or what
ever. 

•	 In the inductive step, there is one case for every possible operation. 

In fact, the proof that the 9Number Puzzle is unsolvable has the same format. 

3 The 9Number Puzzle 

We’ll prove the 9Number Puzzle insoluble using a property that probably would not 
occur to you immediately, but comes up all the time in puzzles and protocols involving 
arrangements of objects. 

3.1 Permutations and Inversions 

A permutation of the numbers 1 thorugh 9 is a sequence containing each digit exactly 
once. Placing the rows of the puzzle sidebyside gives a permutation of the numbers 1 to 
9. For example, the original configuration corresponds to a permutation as shown below: 

1 2 3 4 5 6 7 8 9 −→ 
1 2 3 
4 5 6 
7 8 9 
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An inversion is a pair of terms in a permutation that are in reverse order. For example, 
the original permutation has zero inversions; 1 precedes 2, 1 precedes 3, 2 precedes 3, 1 
precedes 4, and so forth. But now suppose we rotate the top row to the right as before: 

3 1 2 
4 5 6 
7 8 9 

3 1 2 4 5 6 7 8 9 −→ 

Now there are two inversions: 3 and 1 are out of order and so are 3 and 2. Suppose we 
rotate the first column downward: 

7 1 2 
3 5 6 
4 8 9 

7 1 2 3 5 6 4 8 9 −→ 

The resulting permutation has eight inversions: 

(7, 1) (7, 2) (7, 3) (7, 5) 
(7, 6) (7, 4) (5, 4) (6, 4) 

At this point, one might guess that the number of inversions is always even. Let’s check 
that this property does not hold for the transpose configuration, which we’d like to prove 
unreachable: 

1 4 7 
2 5 8 
3 6 9 

1 4 7 2 5 8 3 6 9 −→ 

Sure enough, here there are nine inversions, which is an odd number: 

(4, 2) (4, 3) (7, 2) (7, 4) (7, 3) 
(7, 6) (5, 3) (8, 3) (8, 6) 

3.2 The 9Number Puzzle is Impossible 

We’re now ready to prove that the 9Number Puzzle is unsolvable. The proof relies on 
some preliminary facts about inversions. This is exactly the sort of situation where lem
mas can make an argument more clear. 

The parity of an integer refers to whether the number is even or odd. For example, 7 
has odd parity, 4 has even parity, and 0 has even parity. 

Lemma 2. Swapping two terms in a permutation changes the parity of the number of inversions. 

Proof. Take an arbitrary permutation: 

x b1 . . . bk y 
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The horizontal lines indicate sequences of elements. Swapping x and y gives the permu
tation: 

y b1 . . . bk x 

This reverses the order of 2k+1 pairs: x and y, x and each bi, and y and each bi. Effectively, 
this flips the parity 2k + 1 times which is equivalent to flipping the parity once. 

Lemma 3. Rotating three terms in a permutation preserves the parity of the number of inversions. 

Proof. Take an arbitrary permutation: 

x y z 

A forward rotation is equivalent to swapping y and z and then swapping x and z: 

z x y 

Similarly, a reverse rotation is equivalent to swapping x and y and then x and z: 

y z x 

In any case, two swaps flip the parity twice, which leaves the original parity unchanged. 

Theorem 4. No sequence of moves transforms the original configuration of the 9Number Puzzle 
into the transpose configuration. 

Proof. We use induction. Let P (n) be the proposition that after n steps the number of 
inverted digits is even. 

Base case. After 0 steps, the puzzle is in the original configuration. There are zero inver
sions, so P (0) is true. 

Inductive step. Suppose that after n steps, the puzzle has an even number of inversions. 
By Lemma 3, rotating three digits preserves the parity of the number of inversions. Thus, 
the puzzle has an even number of inversions after n + 1 steps as well. 

By the principle of induction, P (n) is true for all n ≥ 0; that is, the number of inversions 
is even after any sequence of moves. The transpose configuration is unreachable since it 
has an odd number of inversions. 

A few wrapup notes, First, notice that Lemma 3 holds when any three digits are ro
tated. Thus, even if we allowed rotations along the long diagonals of the 9Number Puz
zle, there would still be no way to reach the transpose configuration. Second, similar 
arguments about permutations and inversions explain why certain states are unreach
able in many other puzzles. For example, you may have observed that there is no way to 
flip a single edge of Rubik’s Cube. Finally, you might be discouraged that this technique 
only helps prove that puzzles are not solvable. This seems rather negative. But remember 
in that in the context of a file system or communication protocol, proving that the system 
never enters a corrupted or deadlocked state is a very good thing! 
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4 Common Induction Mistakes 

There are several potholes that students commonly fall into while trying to write induc
tion proofs. Some are simple, some are quite subtle. Collectively, these traps cost 6.042 
students thousands of points every term. Here are the top gradegutters and how to avoid 
them. (Alternatively, if you mash all these blunders into a single proof, you might be able 
to drive your TA bananas.) 

4.1 The Misplaced Quantifier 

Let’s start with a simple, relatively minor gotcha. Can you spot the problem? 

Theorem 5. For all n ≥ 0: 

212 + 22 + . . . + n = 
n(2n + 1)(n + 1) 

6 

2Proof. We use induction. Let P (n) be the proposition, “For all n ≥ 0, 12 + 22 + . . . + n = 
n(2n + 1)(n + 1)/6”. 

Base case. Etc. × 

In general, an induction hypothesis is a predicate P (n), which is a statement that is 
true or false depending on the value of n. The goal of an induction proof is to prove that 
P (n) is true for all n ≥ 0. A valid induction hypothesis in this case would be: 

2P (n) = “12 + 22 + . . . + n = 
n(2n + 1)(n + 1) 

” 
6 

In the erroneous proof above, the predicate P (n) itself asserts that an equation holds for 
all n ≥ 0. This makes no sense. The “For all n ≥ 0” bit should not be part of the induction 
hypothesis. 

4.2 Misusing a Predicate as a Numerical Function 

Here’s another classic. This one is a pretty major error. 

Theorem 6. For all n ≥ 0: 

212 + 22 + . . . + n = 
n(2n + 1)(n + 1) 

6 



Induction III 9 

2Proof. We use induction. Let P (n) be “12 + 22 + . . . + n = n(2n + 1)(n + 1)/6”. 

Base case. P (0) = 0(2·0+1)(0+1) = 0
6 

Inductive Step. 

P (n) + (n + 1)2 = 
n(2n + 1)(n + 1) 1)2+ (n 

6 
(n + 1)(2(n + 1) + 1)(n + 2) 

= 
6 

= P (n + 1) 

× 

Remember, an induction hypothesis is a predicate P (n), which is a statement that is 
true or false depending on the value of n. In particular, P (n) has no a numerical value. 
Adding P (n) is like trying to divide by a pomegranate. It makes no sense. 

4.3 Too Few Base Cases 

The Fibonacci numbers F0, F1, F2, . . . are defined recursively as follows: ⎧ ⎪⎨ ⎪⎩


0 when n = 0 

Fn = 1 when n = 1 

Fn−1 + Fn−2 when n ≥ 2 

Thus, the first few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, . . . . Each number is the sum of 
its two predecessors, except for the first two. 

We’ll use Fibonacci numbers to demonstrate a error that usually comes up in connec
tion with strong induction proofs. 

False Claim 7. All Fibonacci numbers are even. 

Proof. We use strong induction. Let P (n) be the proposition that Fn is even.


Base case. F0 = 0 is even, so P (0) is true.


Inductive step. Assume P (0), . . . , P (n− 1) to prove P (n). Now


Fn = Fn−1 + Fn−2 

and Fn−1 and Fn−2 are both even by assumptions P (n− 1) and P (n− 2), so Fn is also even. 

By induction, all Fibonacci numbers are even. × 
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The problem is that too few base cases are considered. This immediately raises a larger 
question: “How many base cases must I consider?” The answer goes back to the strong 
induction axiom. In order to prove P (n) for all n ≥ 0, you must prove all of the following: 

� 1. P (0) 
� 2. P (0) implies P (1) 
� 3. P (0) and P (1) imply P (2) 
� 4. P (0), P (1), and P (2) imply P (3) 
� 5. P (0), P (1), P (2) and P (3) imply P (4) 
. . . . . .	 etc. 

You can regard this as a scorecard for strong induction proofs; if you can’t check off ev
ery box, the proof is bogus. For example, in the “proof” above, we established the first 
statement under the base case heading. The argument under the inductive step heading es
tablished statements 3, 4, 5, etc. (This argument does not work for n = 1, because it relies 
on the assumption P (n− 2).) So here’s the scorecard: 

�×
�
�×
�×
�×


1. P (0) 
2. P (0) implies P (1) 
3. P (0) and P (1) imply P (2) 
4. P (0), P (1), and P (2) imply P (3) 
5. P (0), P (1), P (2) and P (3) imply P (4) 

etc.
. . . . . . 

In order to complete the proof, we would need to show that P (0) implies P (1). But we 
can not in this case, since P (1) is actually false; the Fibonacci number F1 = 1 is odd. 

4.4 Choosing the Wrong Induction Variable 

Many problems involve several different naturalvalued random variables. For example: 

Theorem 8. For all integers k ≥ 0 and r ≥ 2: 

k1 + r + r 2 + . . . + r =
1	− rk+1 

1 − r 

We could try an induction argument based on the variable r or based on the variable 
k. One choice (k) leads to prompt success and the other (r) leads to disaster. How are you 
to know which is which? 

There is no general answer, though we’ll try to provide guidance from time to time. 
For example, when proving a property of a system that changes in discrete time steps, 
use induction on the number of steps. Your best course is to avoid fixating exclusively on 
one variable; if the proof doesn’t work out, try induction on another variable. 
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4.5 BuildUp Error 

This last error is both subtle and common. An autocity is a city with a road to some other 
town. 

Claim 9. You can drive between every pair of autocities in our world. 

Proof. The proof is by induction. Let P (n) be the proposition that in all possible worlds 
with n autocities, you can drive between every pair of autocities. 

Base case. Since a world with n = 1 autocities can not exist, we begin by proving P (2). In 
this case, only one configuration is possible, and the claim clearly holds: 

city B

city A

Inductive step. Next, we show that P (n) implies P (n+1) for all n ≥ 2. As usual, we assume 
that P (n) is true and show that P (n + 1) logically follows. By the assumption P (n), you 
can drive between every pair of autocities in a world with n autocities. Now we add one 
more autocity (call it “city A”) to form a world with n + 1 autocities: 

n autocities

city B

city A

All that remains is to prove that you can drive from city A to any other city. Since A is an 
autocity, you can drive from A to at least one of the other n autocities (call that one “city 
B”). Then, from city B, you can drive to any of the others, by our assumption P (n). This 
shows that P (n + 1) is true. 

By induction, P (n) is true for all n ≥ 2. Thus, in particular, you can drive between any 
pair of autocities in our world. 

The error is in the inductive step. We showed that the induction hypothesis holds for 
every world with n + 1 autocities which can be builtup by adding one autocity to a world with 
n autocities, you can drive between any two autocities. However, not all worlds with n + 1 
autocities can be built up by adding one more autocity to a world with n autocities. Here 
is an example: 
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There is no way to construct this world by adding 1 more autocity to a world with 3 
autocities. Therefore, we have not shown that P (n) implies P (n + 1) and the induction 
argument is broken. 

This blunder of assuming an arbitrary configuration of n + 1 objects can be built up 
from a good configuration of n objects in some particular way is known as “buildup 
error.” 
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