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Abstract

The Stefan-Boltzmann Law has served as the basis for the analytical determination
of energy transport between thermally radiating bodies for over 100 years. For systems
whose physical dimensions are on the order of the characteristic wavelength of the
radiation, ample theoretical and experimental evidence substantiates the significant
departure from the Stefan-Boltzmann Law. The experimental data, however, do not
correlate well with each other, nor do the theoretical predictions adequately explain the
discrepancies.

To explain these inconsistencies, this thesis identifies a set of microscale radiative
transfer regimes based on the electron-photon interactions responsible for the absorption
in the participating surfaces. Since the data from the various experimental configurations
lie in different regimes, the disagreement among the measurements can be traced to the
differences in the absorption process. Only measurements that lie in the regime
consistent with the basis of the fluctuational electrodynamic formulation agree with the
prediction.

The fluctuational electrodynamic approach to microscale radiative transfer arises
from the incorporation of the fluctuation-dissipation theorem in Maxwell's equations.
This formalism accounts for wave interference and radiation tunneling of the thermal
field and provides a rigorous account of the statistical nature of its source. This thesis
indicates fundamental limitations of the current approximations to this formalism and
presents the derivation of a new proximity function applicable over the entire range of
temperature and spacing for which the general formalism is valid. The proximity
function indicates the spectral details of the spacing effect, permitting analysis and design
of microscale thermal systems.

A new class of energy conversion devices, called microscale thermophotovoltaic
devices, is proposed and analyzed using a numerical computation of the full fluctuational
electrodynamic formulation. The devices are modeled as pn-junctions of In;.,GaxAs and
Hg,.xCdsTe. The results indicate the influence of temperature, alloy composition,
doping, and vacuum gap on performance. Microscale radiative transfer can increase
power density ten fold without loss of efficiency, thereby reducing initial costs, while
decreasing size and weight of such systems. A model of the microscale device is
presented and employed to identify the important parameters for the future development
of this technology.

Thesis Supervisor: Prof. Ernest G. Cravalho
Title: Professor of Mechanical Engineering
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Nomenclature

D = carrier diffusion coefficient, m2 s-

E = electric field vector, V m!

E = scalar fluctuational electric field, V m-!
E = rate of energy flux to receiver, W m-2
FF = pn-junction fill-factor

G = electron-hole generation rate, m-3s-!

H = magnetic field vector, A m-!

H = scalar fluctuational magnetic field, A m-!
I { = spectral intensity, W m2 pmr! sr-!

I, = Hertzian dipole current, A

I, = light-generated current, A m-2

I = short-circuit current, A m-2

sC
= effective active region of the pn-junction = L.+W+L;, m

= active region of the pn-junction at large vacuum gap, m
= electron diffusion length, m

= hole diffusion length, m

= proximity function (sum of polarizations), m-2
= molecular weight, kg kgmole-!

= electron or hole number density, m-3

= Avogadro's number = 6.02x1026 kgmole-!

net radiative energy flux, W m-2

= rate of heat loss from receiver, W m-2

= rate of energy supplied to the emitter, W m-2

= quantum efficiency

= gap-dependent portion of proximity function

= rate of entropy flux to receiver, W K-1 m-2

= rate of entropy generated in receiver, W K-! m-2

= oscillator strength in permittivity fit

H.‘nmm-ra-hclp&g.p-'ﬁg 25 RS
<
i

= temperature, K
Ta = absolute thermodynamic temperature, K



effective flux temperature, K

internal energy, J

built-in voltage, V

open-circuit voltage, V

depletion width of the pn-junction, m

absorption coefficient, cm-!

speed of an electromagnetic wave in a vacuum = 3.0x108 m s-!
size of vacuum gap size (separation of surfaces), m
size of Hertzian dipole, m

tidal displacement, m

electron charge = -1.602x10-1°C

black body emissive power, W m-2

Planck's constant = 6.626x1034J s

square root of -1

electric current vector, A m-2

extraneous point electric current vector, A m-2
extraneous point magnetic current vector, V m-2
random electric current vector, A m-2

ath element of the random electric current vector, A m-2
random magnetic current vector, V m-2

ath element of the random magnetic current vector, V m-2
27 X wave number = a¥c, m’!

wave vector, m-!

Boltzmann constant = 1.381x10-23 J K-!
x-component of the wave vector, m!

z-component of the wave vector, m!
heterojunction layer thickness, m

integer value of y

electron rest mass = 9.11x10-31 kg

electron effective mass, kg

refractive index or summation index
Bose-Einstein statistical distribution

intrinsic carrier concentration, m-3
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n; = mean occupancy number of state j
n, = spectral mean occupancy number
r = radial displacement from electric dipole, m
F = unit vector in the r-direction
t = integrand of M
y = dimensionless spacing = 2k, Td/hc
D, = spectral photon‘ flux, m2s-! pmr!
@, = total photon flux density, m2s-!
I; = damping coefficient of oscillator in permittivity fit, cm-!
A = mean free path, m
e = mean energy of a quantum oscillator, J
é = penetration depth, m
Sssg = penetration depth in anomalous skin effect region, m
dysg = penetration depth in normal skin effect region, m
Eop = element of the permittivity tensor, C2 N-1 m-2
() = angle, rad
¢ = vector in the ¢-direction
= efficiency
Mo = impedance of free space, Q
Nc = Carnot efficiency
K = extinction coefficient or integration variable = ik,
A = wavelength, m
y = thermal de Broglie wavelength, m
Aw = wavelength at maximum emissive power (Wien's wavelength), m
u = electron mobility, m2 V-1 s
Uo = permeability of free space = 47x10-7 H m-!
Hap = element of the permeability tensor, N s2 C-2
v = frequency, s-!
6 = angle, rad
é = vector in the 6-direction
P = argument of k, or k,/€, rad
c = dc electrical conductivity, Q-! m!
Ouff = effective dc electrical conductivity, Q! m-!

11



T = electron scattering time, s

TA = carrier lifetime due to Auger recombination, s
Tr = carrier lifetime due to trap recombination, s
Up = Fermi velocity, m s-!

® = angular frequency, rad s-!

@, = plasma frequency, rad s-!

Subscripts

0 = point current source or diffractional field due to point source
1 = material 1

2 = material 2

A = acceptor

D = donor

F = Fermi level

b = black body

c = conduction band

e = electric dipole

g = band gap

m = magnetic dipole

n = nth layer of heterojunction

P = photon

\ = vacuum or valence band

of = denotes an element of permittivity or permeability tensor
I = parallel polarization

1 = perpendicular polarization

Superscripts

top = top layer of heterojunction

bot = bottom layer of heterojunction

far = far field

near = near field

TPV = thermophotovoltaic

12
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Chapter 1

Introduction

1.1 The Limitations of the Stefan-Boltzmann Radiation Law

1.1.1 The Discovery of the Spacing Effect

For nearly 100 years until the 1960's, the Stefan-Boltzmann Radiation Law had
served as the primary tool for the analytical determination of energy transport between
radiating bodies. The underlying theoretical foundation of this law grew out of an
attempt by Max Planck in 1901 to formulate an empirical equation that fit the early
experimental data for the spectral emissive power of a black body over the entire
spectrum (Planck, 1959). Subsequently, Planck was able to derive the expression which
now bears his name (from which the Stefan-Boltzmann Radiation Law can be derived) by
postulating a set of assumptions that provided the basis for quantum theory. Since that
time, the Stefan-Boltzmann Radiation Law has been the cornerstone of the theory of
radiative heat transfer for engineering analysis.

In the mid-1960's, scientisis and engineers, challenged by thermal radiation
problerﬁs associated with the space effort, began to confront the limitations of this well-
known law. The effectiveness of cryogenic thermal insulation, measured experimentally,
did not agree with the predictions of the Stefan-Boltzmann Radiation Law (Emslie, 1962;
Leung et al., 1979). The small spacing between adjacent layers within the insulation
(Tien and Cunnington, 1973) violated one of the fundamental assumptions made by

Planck. In The Theory of Heat Radiation, Planck states: "We are therefore obliged to

19



introduce right at the start a certain restriction with respect to the size of the parts of space
to be considered. Throughout the following discussion it will be assumed that the linear
dimensions of all parts of space considered... are large compared to the wave lengths of
the rays considered”. The long wavelength of radiation at cryogenic temperatures and the
small system dimensions of multi-layered thermal insulation conspire to invalidate the
original assumptions of Planck through the phenomena of wave interference and
radiation tunneling between adjacent layers of metallic sheets (Born and Wolf, 1965).
These phenomena play an important role in determining the effectiveness of many
thermal insulation systems.

The effects of wave interference and radiation tunneling have been demonstrated
experimentally. The measurements of Cravalho et al. (1968) and Domoto et al. (1970)
indicate that the Stefan-Boltzmann Radiation Law is inadequate to describe the exchange
of energy between closely-spaced thermally radiating bodies. In the ensuing decades,
several experimental studies (Hargreaves, 1969; Hargreaves, 1973; Kutateladze et al.,
1979) produced further evidence that the law is limited in its applicability. The proximity
effect continues to be important today. Xu et al. (1994) have investigated the role of
thermal radiation in scanning thermal microscopy and scanning tunneling microscopy,
where the thermal contact between the tip and sample is important. These measurements,
however, do not correlate well with each other.

Theoretical predictions, formulated to account for the spacing effect, do not provide
suitable agreement to the measurements. Neither the earliest attempts, based on an
intensity approach (Boehm and Tien, 1970), nor several analytical models (Polder and
Van Hove, 1971; Caren, 1974; Levin et al., 1980; Loomis and Maris, 1994), which
involve approximations to a fluctuational electrodynamics approach (Rytov et al., 1987)

can account for the measured spacing effect. The lack of a detailed explanation for the
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outstanding disagreements prevents the design and analysis of systems, which involve the

spacing effect of thermal radiation.

1.1.2 The Importance of the Spacing Effect

Given the current state of technology relative to its status when this phenomenon
was first reported, there now exist a number of situations of practical interest in which
the spacing effect is operative and in some cases dominant. For example, the ever-
growing development of micro-fabrication techniques means that practical devices
(micro-structures and micro-machines) can now be built for which the relevant length
scale is in the range where the spacing effect is important. This underscores the
paramount importance of a fundamental understanding of the effect.

In addition, a deeper understanding of the fundamentals of radiative heat transfer for
small surface spacing and at low temperatures may prove useful in the design of
cryogenic thermal insulation. State-of-the-art cryogenic thermal insulation utilizes thin
sheets of plastic, coated with highly-reflective layers of gold, silver, or aluminum and
separated by a highly evacuated space. It is the high reflectance of such coatings that
provides effective thermal insulation against radiative heat transfer. However, recent
studies by Zhang et al. (1992) show that the reflectance of YBa,Cu;0;, a high-T,
superconductor, in the far-infrared spectral region is near unity and even higher than that
of gold. Since for temperatures below 30 K, a large portion of the radiative energy is
emitted at long wavelengths, precisely where the reflectance of YBa,Cu30; is the
highest, these materials may be very attractive for optimizing super-insulation designs.
Such optimization is possible only upon the validation of the existing predictions for
radiative transfer that account for the spacing effect and the elucidation of their
conditions of applicability.

The feasibility of devices that convert the thermal energy of a hot source to

electrical energy by a thermophotovoltaic device may be determined (and their efficiency
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improved) by a better understanding of the spacing phenomenon. Thermophotovoltaic
devices utilize new semiconductor materials in which electron-hole pairs are created by
the absorption of photons emitted by a surface at a higher temperature than the device
(Coutts and Benner, 1994). A class of devices called microscale thermophotovoltaics has
been proposed (DiMatteo, 1996), which will explcit the enhanced transfer of energy that
occurs when bodies are very close. Such devices have the potential to utilize the high
temperature source more effectively than conventional methods. The net result will be
higher overall energy densities and potentially higher energy conversion efficiencies.
The design and analysis of such devices requires a sound knowledge of radiative transfer

at small spacing, which this thesis provides.

1.2 The Objectives of the Present Investigation

The objective of this thesis is two-fold: to clarify and address the outstanding issues
in the study of the spacing effect, and to introduce and analyze the performance of a class
of devices that exploit the spacing effect for enhanced energy conversion.

Inorder to deepen the understanding of the spacing effect, the first part of this thesis
presents an evaluation of the existing predictions and an assessment of their applicability
to the experimental measurements. Chapter 2 outlines the physical basis of the spacing
effect, describes the two theories most widely used to make predictions, and surveys the
results of existing experimental measurements. Chapter 3 examines approximations to
the fluctuational electrodynamics approach to predict the spacing effect. This
formulation is simplified for metallic and dielectric surfaces into relatively simple closed-
form proximity functions. Regimes are developed that delineate the dependence of the
net radiative flux on the surface separation to outline the applicability of the proximity-
function formulation. Chapter 4 defines a set of microscale radiative transfer regimes for

two thermally radiating bodies, thereby illustrating the problems inherent in comparing
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the measurements and the predictions. The regimes provides a tool for use in designing a
new set of experiments.

The remaining chapters concentrate on the analysis of a new class of energy
conversion devices. Chapter 5 reviews thermophotovoltaic energy conversion devices
and offers a concept that exploits microscale thermal radiation to enhance the
performance of such devices. Performance parameters and the modifications to the
existing theory that are necessary to apply the fluctuational electrodynamics approach to
thermophotovoltaic materials are discussed. Chapter 6 presents the models used for the
device materials, discusses the results of the analysis of the proposed devices, and

explores the next phase of the development of such devices.
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Chapter 2

Predictions and Measurements of Microscale Radiative
Transfer

2.1 The Basis of the Spacing Effect

Thermal radiation emitted by a solid surface is the fluctuation of an electromagnetic
field produced by the random thermal motion of electrons associated with the atoms that
make up the solid. The random thermal motion of such charged particles produces
radiation that covers a broad spectrum of frequencies. This radiation field can be
modeled as a collection of quantized dipole oscillators with frequencies distributed
according to the Boltzmann distribution at equilibrium (Rytov et al., 1987). The field of
each oscillator is comprised of two components, a near field and a far field. The solution
of Maxwell's equations for the field far from an electric dipole yields a propagating

electromagnetic field with real and imaginary terms.
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where 7, is the impedance of free space, I, is the current flowing between charge
reservoirs d, apart, k is 2z times the wave number, and r, 6 the coordinates of the point of
observation. These traveling waves constitute the classical equilibrium thermal radiation
first postulated by Planck (1959). The power transmitted by an oscillating

electromagnetic field is characterized by the real part of the Poynting vector, the cross
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product of the electric and magnetic fields. Therefore, the far field of the dipole transmits
power by virtue of its non-zero real component of the Poynting vector. Thermal energy is
exchanged when the traveling waves emitted by the oscillators in one body are absorbed
by corresponding oscillators in the other body. As the distance of separation of the
bodies becomes small, these waves experience multiple reflections that result in classical
wave interference.

When considering radiative transfer of thermal energy between closely-spaced
bodies, a second mode of radiative transfer must be taken into account. Near the axis of a
dipole, the characterization of the wave field is more complex due to the presence of a
rapidly decaying quasi-stationary field that extends only over a distance of the order of
the wavelength of the radiation. The solution of Maxwell's equations in this
neighborhood, the near field, yields an electromagnetic field consisting of a purely
imaginary electric field and a purely real magnetic field.

E= M?’—"(r‘Zcoso + 6sin o)

. lod, .
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The Poynting vector for this near field becomes complex and is dominated by purely
imaginary terms. As a consequence, there is no net power flow out of this region when
radiating into a vacuum, since the real part of the Poynting vector is zero. This field is
often referred to as an evanescent field, because it is mathematically similar to the field
associated with an internally reflected electromagnetic wave at the surface of a body. In
this casé, power flows parallel to the surface.

Consider the situation shown in Fig. 1; i.e. two semi-infinite materials separated by
a vacuum gap of size d. When the distance of separation between the surfaces is small,
the second surface lies within the spatially decaying quasi-stationary field of the first

surface. The magnitude of the electric field at the surface of the second body is
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Figure 1:  The system of two materials separated by a vacuum gap showing
the coordinate system used in the theoretical formulation.

sufficiently large to affect the motion of the charges in this second body. The resulting
electronic motion dissipates the energy of the near field and produces Joule heat. This
mode of energy transfer has been called radiation tunneling (Born and Wolf, 1965).
Since this near-field behavior is absent from the classical theory of thermal radiation, the
classical theory cannot describe the electromagnetic fields in a cavity whose dimensions

are of the order of, or smaller than, the wavelength of the radiation.

2.2 The Existing Theories of Microscale Radiative Transfer

There have been several attempts to predict the net radiative transfer between
bodies that are closely-spaced by including the effects of both the near- and far-
electromagnetic fields. For the case of absorbing media separated by a non-absorbing
medium or vacuum, the theoretical predictions fall in one of two approaches. The
intensity approach, which uses Planck’s distribution for equilibrium black body radiation,
is based on the energy balance for radiation across an interface. The fluctuational
electrodynamics approach is based on stochastic Maxwell's equations and the thermal

fluctuation of charges in a dissipative medium.
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2.2.1 Intensity Approach

In this approach, developed by Boehm and Tien (1970), the source of the thermal
radiation is not well specified. Instead, the intensity of radiation emitted by a particular
medium is assumed to be related to the radiation intensity emitted by a black body in

thermal equilibrium by a relation given by Fragstein (1950).

nt

+ K2

Ho.T)= ) ep(@.T) (3)

where n is the refractive index, xis the extinction coefficient of the material and e}, is the
black body emissive power. This expression is derived from the energy balance for
normal incidence at an interface between a dissipative medium and vacuum assuming the
vacuum to be filled with equilibrium black body radiation, and thus, the statistical nature
of the source radiation is provided b>' Planck's distribution.

The electromagnetic waves propagate according to Maxwell's equations, and the
presence of the dissipative media is introduced through the constitutive relations for the
materials. By solving these equations subject to the boundary conditions of the medium-
dielectric-medium system, the amplitude of the transmitted electric and magnetic fields
can be found in terms of the incident fields on a particular interface. The solution of
these equations automatically includes the effect of multiple reflections resulting in wave-
interference and the radiation tunneling due to the quasi-stationary waves by integration
over all frequencies through which the wave vector, k, assumes both real and imaginary
values. The calculation of the energy flux is completed by combining the source statistics
with the solution of the electric and magnetic fields for the system via the complex
Poynting vector. The net radiative transfer is the difference between the amount of
energy flux from the first medium to the second and the amount from the second to the

first.
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One problem with this is approach is the validity of the Fragstein relation.
Rytov (1953) showed that this relation is inadequate for describing the intensity of
radiation in an absorbing medium. Fragstein derived the equation under the assmption
that the energy is transferred as a bundle of plane, non-extinguishable waves. The strong
absorption of metals makes it impossible to represent the thermal radiation in an
absorbing medium as a combination of such waves since the waves decay rapidly due to
the absorption. Rytov (1953) showed that it is impossible, using Fresnel's formulas for
plane w'aves, to derive Kirchoff's law for an isotropic material employing Eq. 3. For an
anisotropic material, the relation given by Fragstein is valid for normal incidence only.
Furthermiore, the energy balance at each surface is strictly valid for normal incidence yet
the transmission factors explicitly require a change in the critical angle of incidence in

order to account for the quasi-stationary field.

2.2.2 Fluctuational Electrodynamics Approach

After Rytov (1953) pointed out that the thermal agitation of free and bound charges
results in macroscopic, randomly fluctuating volume densitiecs of charge and current
which constitute the source of the thermal radiation, all subsequent theoretical predictions
used a form of the fluctuation-dissipation theorem to model the source of the field.
Polder and Van Hove (1971), Caren (1974), Levin et al (1980), and Loomis and Maris
(1994) all use such an approach. There are several ways of accounting for these random
currents depending upon the nature of the surface materials. Rytov et al. (1987) provide a
particularly thorough explanation of this procedure and maintain a completely general
approach that is suitable for gyrotropic and anisotropic materials. For the specific case of
isotropic non-magnetic materials, Polder and Van Hove (1971) and Loomis and Maris
(1994) present more detailed derivations. The approach of Rytov et al. (1987) is outlined
here, since it illustrates the technique without being restricted to particular choices of

material. This approach leads to the generally applicable result, which was reported but
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not derived in Levin et al. (1980), and has yet to appear in the traditional heat transfer
literatufe.

By introducing the random fluctuation sources, as macroscopic volume densities of
the electric (j.) and magnetic currents (j,), into Maxwell's equations, the equations
become stochastic in nature. Taking the Fourier transforms of Maxwell's equations and

including these extraneous sources yields:

curlH=£E+:4—7£j+ﬂje, Cur1E=—l—mH—ﬂjm 4)
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These macroscopic currents, caused by the random thermal motion of microscopic
charged particles (electrons), represent the source of the fluctuational field which
constitutes radiation from the body. The random sources can be modeled using the
fluctuation-dissipation theorem (Kubo, 1966). If the form of the random sources is
known, the stochastic Maxwell's equations can be solved subject to the boundary
conditions of the particular system to obtain expressions of the fluctuational fields due to
the postulated sources. The solution of the stochastic Maxwell's equations automatically
accounts for the traveling and quasi-stationary electric and magnetic fields in the space
between the bodies since they are subject to the boundary conditions and material
properties of the system and are valid for all values of the wave number.

It is less tedious, however, to use Maxwell's equations in the general integral form
and write the solutions in terms of Green's functions. Green's functions have the same
role for spatial problems that impulse-response functions have in temporal problems; they
are the solutions to boundary-value problems with point field sources. A set of point
electric and magnetic dipoles (jg and jy,,) is postulated as an imaginary and deterministic
source "causing" the observed charge and current fluctuations. The field formed by these
extraneous sources is called a diffractional field (Eg, Hg, and Eq,,, Hg,,) in the literature

and should be differentiated from the desired fluctuational field (Rytov et al., 1987). The
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extraneous sources are completely arbitrary and are chosen carefully in order to obtain
the necessary components of the source field in order to calculate the Poynting vector.
The sources, jg. and jon,, are chosen as point electric and magnetic dipoles so that the
solution of Maxwell's equations yields the diffractional fields Eg, and Hy, (for j.) that are
Green's functions (solutions of a boundary-value problem with point field sources).

The actual fluctuational field can be expressed in terms of the diffractional field by
use of the electrodynamic reciprocity theorem, which relates the strengths and sources of
two different fields for the same system of bodies and media (Rytov et al., 1987). This
theorem, derived from two sets of Maxwell's equations, is valid for reciprocal media:
those whose permittivity and permeability tensors are symmetric. By choosing the source
currents of the diffractional fields as point sources in a particular direction, expressions
for the desired components of the electric and magnetic fluctuational fields can be found
in terms of the diffractional electric and magnetic fields and the correlation of the random

currents.

E, = I{EOe -je ~Hoe - Jm }d°r
v
By, = _I{EOm Jo ~Hom - jm}d°r ®
1%
where (1;, 1,=x, y, z). The electric field in the x-direction is obtained by choosing jg, as a
unit vector in the x-direction while setting jo,, to zero. Thus, any component of the
electromagnetic field can be obtained simply by choosing a new extraneous source in a
particular direction.
Multiplying the components of the actual fluctuational fields by their complex
corijugates and averaging over the equilibrium ensemble of j, and j,, yields the products

of the components of E and H that define the Poynting vector. The thermal radiation, in

turn, can be calculated from the Poynting vector from the following expression.
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where (a,8=1x, y, z). The particular expressions for Ej and Hy come from the solution of
Maxwell's equations with the boundary conditions for the particular system of bodies
being considered (Grinberg, 1948). Equation 6 gives directly any desired moment of the
electromagnetic field provided Maxwell's equations are solved and the correlation of the
random extraneous currents is modeled.

The fluctuation-dissipation theorem for continuous systems provides the statistical
correlation of the random currents. This theorem is a generalization of the approach
derived by Nyquist (1928) to relate the voltage fluctuation in electrical systems to the
electrical resistance. The fluctuation-dissipation theorem successfully describes
irreversible processes (such as dissipation of energy in a resistor) in terms of the thermal
equilibrium properties (voltage fluctuations) of the system. Kubo (1966) provides a
general derivation of the fluctuation-dissipation theorem, which, when applied to
Maxwell's equations, yields an expression for the covariance of extraneous currents for

the radiating system.
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where £,gis an element in the permittivity tensor for a particular medium, pygis an
element of the permeability tensor, and ( ) is the ensemble average. This expression
shows that the electric and magnetic sources are not spatially correlated; the radius of the
spatial correlation is zero as indicated by the delta function. The function © is the mean

energy of a quantum oscillator.
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(Note: The mean energy of such an oscillator should include the additional term ha¥4x.
Since this "zero" osciliation will cancel out with the sources in the second material when
considering the radiation from the second body to the first, it can be omitted.)

The fluctuation-dissipation theorem is valid for any frequency, the quantum region
included, and is applicable to macroscopic systems of any physical form in thermal
equilibrium. Such an equilibrium law can be used for non-equilibrium situations
provided that the transport phenomena required to maintain steady-state conditions are
insignificant when compared with the irreversible process of interest. (In the present
case, the energy input required to maintain the temperature of the high-temperature
surface must be insignificant compared to the energy emitted by that surface into the
gap.)

All the necessary information is available to permit a calculation of the radiative
transfer as a function of spacing. Substituting Eq. 7 in Eq. 6 and integrating yields,

(B (r0) i (r2)) = 222D o
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Consider two semi-infinite plane parallel bodies separated by a vacuum gap of size
z=d, as depicted in Fig. 1. The z-component of the Poynting vector for energy flux in the
electromagnetic field can be calculated for each medium radiating to the other.

P= TP(a))da) = TPlz(a)) + Py (w)dw (10)
0 0

For steady-state conditions, the sources of the fluctuation in each medium are statistically
independent, thus, both fields are incoherent. The net heat flux, therefore, is the sum of

the heat flow from each surface to the other. This sum is evaluated by considering the
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thermal field produced by the first medium while the second is present passively. The
permittivity of the second medium, however, is calculated at the temperature of the
second medium.

Because the electromagnetic field is incoherent, it is assumed that half the flux
comes from the parallel polarization and half from the perpendicular polarization. The

real part of the Poynting vector is:
Py () =-;—{(EXH;)—<EYH;)+(E;Hy)—(E;Hx>} (11)

By choosing the appropriate extraneous point sources, using Eq. 9 for each term in Eq. 11
determines the net radiative heat flux from material 1 to material 2.

For the case of isotropic materials which may have both complex permeability and
permittivity, the solution of the boundary-value problem is of a simpler form, since the
tensors reduce to single functions. For two semi-infinite plane parallel surfaces separated
by a vacuum of size d, Levin et al. (1980), using the results of Grinberg (1948), report the

following formulation.
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where for the vacuum: kf+kzzv =k2, for each material: kf+kzzj =k2£juj (j=12),

k=w/c, and:
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Wave Vector Polder and Van Hove| Levin et al. (1980) Loomis and Maris
(1971) Eq.(5) (1994)
Eq. (19) Eq. (21)

Z- comp. in vacuum k,y -ip pk

z- comp. in material 1 k, -ip; sk

z- comp. in material 2 kg -ip, s ka
x- component ky 4 q
d l l

Table 1: The equivalent notation for several fluctuational electrodynamics
approaches for the prediction of the spacing effect.

This expression provides the starting point from which to derive the proximity
functions that form the basis of the work in the next chapter. These expressions are
equivalent to the general results presented in Polder and Van Hove (1971), Levin et al.
(1980), and Loomis and Maris (1994), and can be converted to the particular notation of
the other investigations by using Table 1. (It should be noted that Polder and Van Hove
assumed that the two materials are characterized by the same material properties and that
u=1.) This table shows the wave vectors of the radiation field within each material and
the vacuum space that separates them. Figure 2 shows the wave vectors on the complex
plane for both low and high conductivity. This depiction will prove useful in the
examination of the approximations made in each of these investigations (see Chapter 3).
For O<k, <k, the field in the vacuum is the familiar traveling-wave field (far field). When
k<k,, the field decays exponentially, thus accounting for the near-field effects.

In order to make a prediction, it is necessary to determine the material properties of
the media and model their variation with temperature and frequency. Levin et al. (1980)
made an impedance approximation and simplified the equations to examine the first order
effects in surface impedance only. In this way the material properties of a particular
medium were eliminated by assuming that either the anomalous skin effect or normal

skin effect theory was sufficient to characterize the surface impedance (and in so doing it
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Figure 2: Wave vectors of the thermal radiation fields: (a) a metal (b) a

dielectric.

was assumed that both media are in the same electronic transport region). By dividing
the expression for the radiative transfer as a function of spacing by the expression at large
spacing, the material-dependent properties cancel out leaving an expression which only

depends on the first order power between surface impedance and frequency. The

importance of these assumptions are discussed in the next chapter.

For the purpose of introducing the spacing effect, Figure 3 presents the results of
the two approaches. Both theories indicate the same general trend in the spacing effect.

Namely, a large increase in radiative transfer at small spacing and a region where the
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Figure 3:  Predictions of the spacing effect on radiative transfer. Levin et al.
(1980), solid line; Boehm and Tien (1970), broken line..

radiative transfer is less than that at large spacing marked by a clear minimum. The exact
details, however, differ. At small spacing, the result of Boehm and Tien (1970) varies
inversely with the fourth power of the spacing whereas the result of Levin et al. (1980) is
inversely proportional to the first power. The spacing over which the heat flux is less
than at large spacing is greater in the prediction of Boehm and Tien (1970), and the
minimum is an order of magnitude greater. A more detailed examination of the
theoretical predictions is given in Chapter 3, but first the experimental evidence of the

spacing effect is presented.

2.3 Experimental Measurements of Microscale Radiative Transfer

All the reported experimental investigations of the spacing effect examined the
radiative transfer between plane parallel metallic surfaces but used different techniques to
measure the magnitude of the effect. Domoto et al. (1970) and Kutateladze et al. (1979)

performed experiments on bulk copper disks using a calorimetric technique, which
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utilized the calibration of a thermal link of low thermal conductance to make the
measurements of the net radiative transfer. Hargreaves (1973) devised an electrical input
method which utilizes a guard enclosure maintained at a temperature very close to the
temperature of the emitter. Hargreaves reports the results of eight experiments using
chromium films near room-temperature with a small temperature difference between the
surfaces. Xu et al. (1994) measured the effect of spacing on the net flux between a planar
thermocouple and the flattened tip of a needle mounted on a piezoelectric tube.

An understanding of the specific details of each of these investigations is important
in order to assess the validity of comparisons made to the theory presented in the previous
section. These details provide the framework for the regimes of microscale radiative
transfer formed in Chapter 4.

First, consider the calorimetric technique used by Cravalho et al. (1968) and
Domoto et al. (1970). From a common base plate hangs an emitter surface (high
temperéture) and a thermal link of low thermal conductance. This link supports the
receiver surface (low temperature) opposite the emitter. Prior to making a particular
measurement, the thermal link is calibrated: the receiver surface is maintained at an
elevated temperature by dissipating a known amount of energy in a heater, and the
temperature difference across the thermal link is measured. The calibration curve, thus
obtained, gives the erergy flux transferred to the receiver in terms of the temperature
difference across the thermal link. To measure the radiative flux as a function of the gap
size, the emitter is maintained at a particular temperature and the temperature difference
across the thermal link is measured as the gap dimension is varied. The calibration curve
convcrté this temperature difference to a quantitative measure of the energy transferred
from the emitter to the receiver.

Domoto et al. (1970) and Cravalho et al. (1968) used this apparatus to measure the

net radiative heat flux between two copper surfaces at 4.5 K and 10 K by submerging the
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evacuated apparatus in a liquid helium bath. Kutateladze et al. (1979) used a similar
technique, but did not provide a detailed description of the apparatus. The large
uncertainty in the results was due to a number of limitations of the apparatus. A single
mechanical feedthrough for positioning the samples was inadequate to determine or
maintain surface parallelism. While a micrometer at the end of this feedthrough provided
some measure of the surface spacing, there was no provision for a direct precise
measurement of the surface separation. The calibration process may not have ensured
that the conditions during the experiments were the same as during the calibration. The
calibration procedure, however, provides a means to incorporate all the extraneous losses
within the calibration. The heating of the plates was provided by lumped resistors rather
than a more uniformly distributed heater wire; therefore, the temperature distribution
across each surface may not have been uniform. The low-conductance of the thermal link
resulted in long time constants, which reduced the amount of data that could be taken,
increased helium consumption, and raised uncertainty as to whether sufficiently steady-
state operation had been reached.

Hargreaves (1973) measured the net heat flux with less uncertainty by devising an
apparatus that used an electrical-input method. This type of apparatus works well for
closely-spaced bodies at room temperature. A guard enclosure completely surrounds the
hot surface except where it faces the cold one. By maintaining a very small temperature
difference between the guard and the hot surface, all the electrical power dissipated in the
heater on the back of the hot surface radiates to the cold surface. The heater power
required to maintain the temperature of the hot surface as it is moved relative to the cold
surface becomes a measure of the heat flux. Hargreaves (1973) measured the separation
of the surfaces in a more nearly direct manner by measuring the capacitance between the
chromium surfaces. Three piezoelectric stacks, which could be precisely regulated to

give accurate and repeatable control of the surface spacing to 1 pm, positioned the
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samples. This technique requires more sophisticated equipment than the calorimetric
technique, and therefore, is expensive and complex. Windows used for examination of
interference fringes reduced the accuracy at lower temperatures. Conduction losses
through the supports between the hot surfaces and the guard enclosure limited the
precision at low temperatures. The technique does reduce the time constant dramatically,
provides accurate spacing control, and directly measures the energy being supplied to the
hot plate.

Xu et al. (1994) measured the net heat flux between two-metallic surfaces separated
by less than 1 pm. In this apparatus, the flattened tip of an indium needle and the upper
surface of a planar thermocouple comprised the two parallel surfaces between which the
flux was measured. A resistance wire around the needle provided electrical heating,
while a thermoelectric junction (Ag90/Cul0-Cr) mounted on a glass plate produced a
temperature-dependent voltage in response to the thermal energy exchange between the
needle and the junction. A piezoelectric transducer provided movement of the needle.
The system was installed in a high-vacuum chamber with vibration isolation and electric
shielding. Xu et al. (1994) measured both ac and dc thermoelectric voltages and lowered
(by a factor of 100) the detection noise level from the results of Hargreaves (1973). The
results were less sensitive, however, because the surfaces were much smaller in area (by a
factor of 105). Xu et al. (1994) present measurements about two mean gap sizes, which
indicate a much lower variation with gap size than indicated by the theoretical prediction.
Xu et al. (1994) do not give absolute temperatures for each surface, and their analysis
yields only the temperature difference. While this technique is promising, independent
control and monitoring of the temperature of each surface would allow better comparison
with the earlier measurements.

Figure 4 presents all the published data of the spacing effect on radiative transfer

available in the literature. (The results of Xu et al. (1994) are not included, since they
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Figure 4:  Measurements of the normalized net radiative flux versus gap size
for metallic surfaces.

report only two values without the corresponding absolute temperature.) To normalize
the data, the net radiative flux at a particular gap was divided by the net radiative flux at
large spacing. As the spacing between the surfaces diminishes, there is an obvious and
substantial increase in the net radiative flux. While the data do not demonstrate a clear
trend, a number of features are evident. As the mean temperature decreases, the
enhanced radiative heat flux begins at longer gap sizes, as expected since the energy is
transferred by increasingly longer wavelengths at lower temperatures. As a result, the
traveling waves are cut-off and the near-field of one surface begins to transfer energy to
the opposite surface at a larger gap than for a higher mean temperature.

Several more distinct features become clear when the data are presented in terms of
a dimensionless gap. Levin et al. (1980) simplified their expressions for the theoretical
prediction by using a dimensionless gap, defined as the ratio of the surface spacing to one

half the characteristic wavelength, A, which is approximately 5 times Wien's wavelength.
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Figure 5: Measurements of the normalized net radiative flux
versus dimensionless gap size.

Figure 5 shows all tne experimental measurements versus the dimensionless gap.
The measurements made by Hargreaves (1973) show very little spread, reducing to nearly
a single line that shows the flux varies with the inverse fourth power of the gap. The high
temperature measurements of Kutateladze et al. (1979) (those for a cold medium at 77 K)
follow a similar trend, but display a spacing effect at a dimensionless gap approximately
an order of magnitude higher. Such a shift is unexpected since the spacing effect should
become evident when the Wien's wavelength is approximately the gap size; i.e. y=0.4. If
not an experimental artifact, this shift must be due to a longer range effect of the near
field. Similar to Hargreaves (1973) measurements, the data reported by Kutateladze et al.
(1979) show no minimum at intermediate spacing, and at small spacing the dependence is

to the inverse fourth power.

A=—5 =52, (14)
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where T is the mean temperature of the two media separated by a gap d. This
approximation becomes invalid at low temperatures where the temperature difference is
an appreciable fraction of the mean temperature, and therefore, a single dimensionless
spacing cannot be defined.

As the temperature is decreased even further, more anomalies are evident. For the
low-temperature measurements of Kutateladze et al. (1979), the spacing effect begins at
the same magnitude of non-dimensional spacing as the higher temperature experiments.
The spacing effect, however, is less dramatic and increases more slowly with decreasing
gap. As the temperaiure difference increases (from AT~25 K to AT~42.1 K, the spacing
resembles inore closely the trend seen in the higher temperature experiments. The
measurements of Domoto et al. (1970) were performed at still lower mean temperatures,
and the results are similar to the colder experiments of Kutateladze et al. (1979): a low
initial slope followed by an increase at intermediate gaps.

The theories and measurements also differ in the magnitude of the energy flux at
large spacing. Figure 6 shows the ratio of the radiative transfer calculated from Levin's
theory to that measured as a function of mean temperature. At low temperature the
prediction under-estimates the radiative transfer. As the temperature is increased, the
prediction over-estimates the radiative transfer by an order of magnitude. This
comparison suggests that the experiments of Domoto et al. (1970) may not have reached
steady state. If it was necessary to heat the system up to reach steady state, the
measurements under-estimate the radiative transfer and the ratio would be greater than
one.

This analysis indicates that there are substantial differences between the predictions
and measurements. The data do not all collapse on a single line when plotted versus
dimensionless spacing, as predicted by the theory. There is no clear evidence to support

the small spacing trend. The uncertainty in the measurements is too high to reveal a clear
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Figure 6  Comparison of the measured radiative transfer and the prediction of
Levin et al. (1980) at large gap.

minimum. At very low temperatures, the measured trend at intermediate separations is
not predicted by the theory. The theories do not predict the same magnitude of radiative
transfer at large spacing. Although Levin et al. (1980) dismiss the results of Domoto et
al. (1970) and Kutateladze et al. (1979) as erroneous due to their lack of agreement with
their predictions, the substantial differences that exist with even Hargreaves (1973)

results warrant a closer look at the possible root of the deviations.



Chapter 3

Appfoximate Predictions for Microscale Radiative
Transfer

3.1 Introduction

In their most general form, the fluctuational electrodynamics approaches to
accounts for the effects of wave interference and radiation tunneling yield formulations,
which are in agreement. However, the practical application to particular materials has
required various simplifications to render the results more tractable. These
simplifications are not generally applicable and cannot be compared directly, because of
an inconsistent set of assumptions used to reduce the expressions. This chapter explores
the basis of the assumptions used to make these approximations, clarify their limitations,
and offer a set of regimes delineating their applicability. Proximity functions (in the
strongly-absorbing and weakly-absorbing limits) that incorporate all the transport-
enhancing effects of the general formalism are derived. These functions show the details
of the spacing effect across all frequency and spacing regimes. Furthermore, while in
agreement with the previous work, they provide a simple and elegant means to account
for the far- and near-field effects of thermal radiation.

In'the past several decades, there have been numerous attempts to develop a general
formalism that accounts for the aforementioned effects on the net radiative transfer. As
outlined in the previous chapter, early attempts by Boehm and Tien (1970) and Caren
(1972a; 1972b) suffer from an inadequate specification of the source of the thermal field

(Fragstein, 1950). Subsequent treatments use an approach first suggested by Rytov
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(1953) that uses the fluctuation-dissipation theorem to model the source of the radiation
field. These fluctuational electrodynamic treatments and approximations to them form
the subject of this chapter.

The nature of the results of these approximations has been sufficiently complex that
a complete understanding of the spacing phenomenon that would lead to a meaningful
exploitation of the spacing effect has proven elusive. Furthermore, attempts by Levin et
al. (1980) and by Loomis and Maris (1994) to simplify the theory introduce limitations of
applicability that have not been reported. In the course of this examination, a proximity
function is derived, which provides a simple and convenient closed-form function to
account for the effects of both wave interference (far field) and radiation tunneling (near
field).

Unlike previous work, which only presents the results of a numerical integration
leading to the net heat flux, the present formulation of a proximity function illustrates the
frequency-dependence of the spacing effect. With the more detailed structure revealed,
ambiguities within and differences between earlier approaches are clarified. This
function is a useful tool for including the spacing effect for the purposes of analysis,
presenting no more difficulty than a frequency-dependent emissivity. This approach
facilitates the design and analysis of systems whose dimensions are on the order of or less

than the wavelengths of the thermal radiation.

3.2 Comparison of Previous Approximations

In order to determine the net radiative transport between two infinite parallel plates,
it is necessary to determine the material properties of the media and model their variation
with temperature and frequency. There are two distinct limits that represent the behavior
of materials with respect to radiative transport, namely the strongly-absorbing limit

(metals) in which the propagation of the electromagnetic fields is highly attenuated or the
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weakly-absorbing limit (dielectrics) in which the fields propagate with little attenuation.

For these two models the formalism outlined in Chapter 2 simplifies considerably.

3.2.1 Strongly-Absorbing Limit (Metals)

The earliest attempts to use the fluctuational electrodynamics approach (Polder and
Van Hove, 1971; Levin et al., 1980) simplified the formalism by assuming a purely
imaginary permittivity of the form: e=-(4mo/ck)i where the dc conductivity, o, is so large
that the magnitude of the permittivity is much greater than unity over all relevant
frcquenéies.

Levin et al. (1980) made an impedance approximation for highly-conducting metals
and simplified the equations to examine the first order effects in surface impedance only.
This simplification eliminated the material properties of a particular medium by assuming
that either the anomalous skin effect or normal skin effect theory was sufficient to
characterize the surface impedance (and in so doing it was assumed that the electronic
transport mechanisms in both media are identical). By dividing the expression for the
radiative transfer as a function of spacing by the expression at large spacing, the material-
dependent properties cancel out leaving an expression which depends only on the first
order pdwer between surface impedance and frequency.

Levin et al. (1980) assumed that for all relevant frequencies, the metal is strongly-

absorbing, and so the wave vector in the material reduces to:

ij =\'k2€jﬂj'~k£ =k ej#j (15)

This approximation is illustrated in Fig. 2(a), which shows that for a highly-conductive
material, the wave vector in the surface closely follows the relative permittivity. Using
this approximation, Levin et al. (1980) examined only singularities in the integrals for M
in Eq. 12. As a result, the approximate equations are valid only for a very small gap

between surfaces whose permittivity is very high and purely imaginary. Their subsequent
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analysis does not make any mention of this limitation in spite of their apparent
knowledge of the work of Polder and Van Hove (1971). By carefully accounting for the
individual traveling waves that meet the boundary conditions as the gap gets larger, Levin

et al. (1980) found for metals:

Re(y//er )Re(y/ua/e; ) f( kd )
Re(+/i1/e1 ) +Re(\na/e2 )"\ 7

)= El'y""";'l"*' m(m +61:’(32m +1)

M=M+M =k?
(16)

, m=int(y)

When the materials are the same, non-magnetic (u=1), and the permittivity is purely
imaginary, the function M will reduce to:

k? kd 20
M= Wf(T), where |£| = —(,:; (17)

where k=2maw/c. After examining the approach used by Polder and Van Hove (1971), a
quantitative assessment of the limitation of the approach of Levin et al. (1980) is
presented.

Polder and Van Hove (1971) present a much more convincing and justified
approximation for the integrals in Eq. 12, although they examine only the near-field
effect for systems in which both materials have the same relative permittivity and a
permeability of u=1. Without making the simplification in Eq. 15, they proceed by
grouping the wave vector in the materials and the permittivity together, so that:
py =arg(k, /e), p, =arg(k,). Depending on the size of the gap, the integrands take on a
form that yields simple expressions for each regime when integrated analytically. For the

parallel-polarized field:

kcos
: % (18)
7.212)e|cos? py .
==z 4>y
ak*d A
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For the perpendicular-polarized field:

k2 Ielcos 1L 1
M, = —8 d<< ]
7.212cos? pL 1

= S>>
T 4ek?d® ] (19)

Note that these results are completely consistent with the result of Levin et al. (1980)
shown in Eq. 16, if one considers only a very small gap (d<<1/lk,/d) with a purcly
imaginary permittivity. The difference of a factor of two arises from the far-field
component which has a similar form at small gap sizes and thus adds to the near-field
result. While Polder and Van Hove (1971) limit themselves to similar materials, their
results cover a much broader range of spacing: specifically, any range where the near
field dominates.

The regimes of validity of these approximations for highly-conductive materials are
delineated by comparing the gap size to the dominant wavelength of the radiation.
Wien's displacement law gives the wavelength of maximum emissive power for the
Planck distribution. The near-field effects begin to appear when the gap is on the order of
the wavelength of maximum emissive power. For a typical metal with a dc conductivity
of about 1018 s-! (cgs units), the gap sizes for which the various components become

important can be estimated.

2r
Anear = Aw = %' AwT =2898umK Apoar = 2898#mK
1 3 45umK¥?
~ /el = [atga] = V4ol ck =7 20
e e 0)
= L = . . = ~ O.IMmK
d) ] I «/Ekl c/4nck d; 2

Figure 7 illustrates these regimes. The results of Levin et al. (1980) have a very
limited range of applicability: only at very low temperatures is their result useful, and

even then it is applicable only to gap sizes much less than 1 pm (hatched upward to the
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Figure 7: Temperature-gap regimes: the regions of validity for the
approximations proposed by Levin et al. (1980) and Polder and Van
Hove (1971).

left). The approximations made by Polder and Van Hove (1971) (hatched upward to the
right), however, show a much wider range of applicability, extending up to the far-field
regimes (solid line) and overlapping the more limited regime of Levin et al. (1980).

After several early attempts to formulate a theory for the enhanced heat transfer at
small spacing (the results of which were not satisfactory), Caren (1974), with knowledge
of the work of Polder and Van Hove (1971), offered a simplified result for the case of
metals at low temperature. At such low temperatures, the extreme anomalous skin effect
(EASE) predominates. Similar to the normal skin effect, a local relationship exists
between the induced current and electromagnetic field for a material in the EASE region.
The theory for the EASE is much more tractable than the anomalous skin effect, and as a
result, Caren (1974) was able to use a simple expression for the surface impedance in his
formulation. This simple formula permitted Caren (1974) to cast the spacing effect in

powers of y=2kyTd/hc, where T is the temperature of a particular material. This
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formulation provides insight into the nature of the spacing effect. At small gaps sizes, the
heat flux rises in a manner inversely proportional to the gap size, while at intermediate
gaps, it rises more steeply: d-4. Caren (1974) discusses only the unidirectional heat flux.
For the net heat flux, the use of his expressions becomes problematic since at low
temperatures where the EASE dominates, the dimensionless parameter y, defined by a
single temperature, no longer accurately characterizes the temperature dependence of
either material. Caren (1974) provides a comparison with several sets of data,
demonstrating that the use of EASE theory may prove applicable to experiments made at

particularly low temperatures.

3.2.2 Weakly-Absorbing Limit (Dielectrics)

Loomis and Maris (1994) were interested in the heat transfer associated with
evanescent electromagnetic waves. While they based their approach on the early work of
Polder, they were apparently unaware of any later work, including several experimental
measurements of the spacing effect. Loomis and Maris present a theory which is in every
way consistent with the theory outlined above. Owing to their interest in atomic force
microscopy, however, they proceed to simplify the general formalism by assuming the
wave vector in the material can be simplified so that it is equal to the wave vector in the
vacuum. This assumption is equivalent to assuming that the materials are dielectrics in
which the electrical conductivity is very weak, and the thermal radiation penetrates with
little attenuation.

Figure 2(b) illustrates the wave vectors when the materials are not highly
conductive. Due to the low conductivity, the wave vector, k, can be approximated by &,,.
This assumption greatly reduces the complexity of the integral, so that a factor of d-2
comes out of the integral entirely.

Loomis and Maris (1994) give a condition for which their approximation is valid:
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This condition is equivalent to the case of Levin et al. (1980). It cannot be expected,
therefore, to use this approximation over a very wide range of gap sizes and will always
be restricted to low-conductivity materials. This result for small spacing between
dielectrics differs by a full power from the case of a metal. Note that as long as the
conductivity is high enough, the previous results derived for metallic surfaces are correct,
and the d-! behavior is valid. The actual behavior is somewhere between the two
extremes. Polder and Van Hove, themselves, found in their numerical integration, a
substantial deviation from the d-2 dependence. Although they do not allude to a cause,
performing the numerical integration over a frequency range where the conductivity is no
longer large compared to one may account for this deviation. This effect occurs since the
upper bound on the integral goes to infinity. As Loomis and Maris (1994) point out, a
region where d-! occurs will always be reached. Its effect, however, becomes important
only at .very small gap sizes — onc (or which any argument is purely academic given the

available measurements.

3.3 Present Approach: Proximity Functions

A better understanding of the details of the spacing effect is obtained by
determining the frequency-dependent nature of the spacing effect. To this end, in this
section is derived a function which characterizes the wave-interference and radiation
tunneling effects. This function is constructed in much the same manner as the previous
investigations. Here, however, the form of this proximity function is examined in an
attempt to deepen the understanding of the effect and the influence of temperature and
frequency. This knowledge will prove useful in the design of devices to exploit the
enhanced heat transfer, where the flux due to specific frequency intervals is important.

Lastly, the product of this function and Planck's distribution is integrated to determine the
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net radiative heat flux. This approach follows closely the procedure of Levin et al. (1980)

for the far-field effect and Polder and Van Hove (1971) for the near-field effect.

3.3.1 Strongly-Absorbing Limit (Metals)
Consider a thermally interacting system as illustrated in Fig. 1, where both materials
are identical highly-conducting metals, for which the permeability is unity (u=1), and the

permittivity has both real and imaginary components. For the near field, k<k,, and

therefore from Eq. 12, k,, = \fk2 —k2 =~ix s0 k= \kaz —k? . Equation 12 reduces to:

near 1
My =zj'n Kkdx

0
cos? py

=== ) 7 o
sinh(xd) LYC] sinh(2xd)( |k, /e . ) .2
( > ) ( L +r‘—l*z/¢) — (I._{,E_.l-f- Tje )smp“+smh (Kd)(-i-+sm p")+l

Mfa'=%"‘t_|_ xdx (22)
' 0

cos’p,

t =— .
T T T r———

By examining the regimes outlined by Polder and Van Hove (1971), Equation 22

simplifies without making any other assumptions except on the gap size. For d<<1/lk/d,

over a wide range of k, sinh(xd) xd, and therefore:

coszp“
N (. V(e
a ( |k/e|) ""( |k/|)s‘“”'+"“’)( sin’ ) +1 23
_ COS Pl

(Ikz/ Id+|"/|) (lkz/s|d+|k/|)smp| +(xd) ( +sin p||) +1

But |58L|d <<1, and so (xd)? << xzd/l%l, therefore:
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2
Kd
[2Ikz/elcospn ‘““”'] +1

By recognizing that for a highly-conductive material, [k, /¢| is independent of x (see

n=

6=
\ 2k

Fig. 2(a)), and making the appropriate substitution, the near-field effect due to parallel-

polarized waves reduces to:

J'|k /e|c03p|| du

) _j [ﬂk_/% ‘““""] * o w (25)

_ Ikz/icosmu [7 + p"]

Figure 7 shows that when the gap size is larger than 1/lk,/d, the far field dominates,
and so one need not consider this component for the purposes of forming a proximity
function. Note the equality of Eq. 25 and Eq. 18 (the result of Polder and Van Hove
(1971)) when k, = ek.

Now consider the perpendicularly-polarized contribution to the spacing effect. For
d<<1/lk,l, over a wide range of x ,xd is so small that sinh(xd) 0 and the denominator in

Eq. 22 becomes unity.

= l cos? py kdk
0 (0)( |k, |) (o)(@)sin pL+ (o)(% +sin?p, ) +1 6

near

d<<

x<<|k| )
= cos?p; Kdi = Z2gPL Ik
0

|-

For d>>1/Ik, the hyperbolic sine function dominates. By keeping the highest order terms

and noting that for a permittivity of large magnitude, x<<lk,l, Eq. 22 becomes:
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o0 2 2 = 3 2
near zlj 2cosp; dic=SOSPL [_X dx  1.803cos“p; (28)
a>> " 4 (| sinh(xd)|k| l,[*d* §sinh®(x) |k [a*

Equations 25 through 28 provide the near-field approximations for two highly-
conductive isotropic materials, which are consistent with the approach used by Polder and
Van Hove (1971) (see Eq. 18 and Eq. 19, above). For the perpendicular polarization, it is
necessary to combine Eq.26 and Eq. 28 into a single function, which can be

accomplished by adding the results together much like resistors in parallel.

~ -1
1 1

near __

M-L = Muearl + M ]
1 d<< L d>>

-1
8 + |k, |2 d _ Ikz|2 cos?p n
ko cos?p;  1.803cos’py | 8+0.5546(fk,|d)"

(29)

This procedure provides a single function which covers smoothly the entire range of gap

sizes below, through, and beyond the cut-off gap size where d=1/Ik,|,.

Now, consider the behavior of integrals in Eq. 12 when the far-field effects are

dominant. For the far field, 0<k,<k and therefore, the correct form of the integrals is
obtained by making the substitution ix for x, where sinh(ixd) becomes isin(xd), Eq. 22

becomes:
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And for the perpendicular polarization:

k
M = %J.tl xdx
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For very small x, the perpendicular component contributes nothing to the heat
transfer since there are no singularities in M{", however, the parallel-polarized wave
contributes to the heat flux. This contribution takes on the same form as shown in Eq. 24,
except that the sign in front of the tangent is positive. As a result, the far-field

contribution at small kis:

far ~ _l_ xdx

M’ Ix—»o 4 2
0 [2Ikzleicosn|+tanp“:| +

1 |k, /e|cospy  du
=— 31
4 -'- d u? +1 G

lanpy)
_ |kofelcospy [_;;_ ]
=—3d |27~

Because of the presence of sine functions in the denominator of Eq. 30, there will
be singularities at all the zeros of sin(xd). For x,=nm/d<k (n being an integer), Levin et
al. (1980) simplified their expression equivalent to Eq. 30, by using sin(xd) (-1)* x'd
where k=K, +x'. By using this approximation in Eq. 30, the contribution for each

singularity is independent of n and equal to:
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|k, /e|cospy z

2 d (32)

The number of these contributions is the integer part of kd/m (m=int(kd/r )), so that the
summary contribution of each of the peaks and that for which x is small (Eq. 31) combine

to give:

M{ar ~ Ikz/slcospﬂ 3mn +Mfar

k, /e|cospy 3 k, /€|cos
=| z/|4 Al 2”2‘_,_' z/ld p"[_g__p"] 33)

_ |k, /€|cospy
-'—zj;——[%(?’m“)—m]

x—-0

This result is consistent with Levin et al. (1980) where they assume that k, =+/ek and
pn = /4. This substitution indicates that Eq. 33 has an additional factor of 3/4 preceding
the expressions given by Levin et al. (1980). This factor assures that as the gap size grow
to infinity, the gap-dependent portion of the proximity function will approach unity.
Because the approximations made to these integrals are accurate to first order, this factor
ensures a physically sound result in the limit, without sacrificing either the applicability
or the accuracy of the function at smaller gap sizes.

For the perpendicularly-polarized waves, a similar simplification about each
singularity provides the contribution about each point. The total contribution for all the
singulafities can be summed to yield:

ar _ 3 > 7 cospy & 2 o cosp |
M = TR R m+1)(2m+1 34

Combining the results of these approximations provides the proximity function.
Using Eq. 25, Eq. 29, Eq. 33, and Eq. 34, a closed-form function is obtained, which

accounts for the effect of the gap on the net heat flux.
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A comparison of this result to that of Levin et al. (1980) is obtained by assuming

that k, =+/ek and therefore cosp; =cospy =cosp. Using y=kd/r, it is seen that the first

three termes of this proximity function give the same result of Levin et al. (1980).

) %
_k cosp[ 1 +ﬂn_+m(m+l)(2m+l)+ 2cosplef2 ] (36)

T2 |2y 4y 8y 8-+0.5546/¢]% ny*

At very small gap sizes, the proximity function is dominated by an inverse linear
relationship with y. As y increases past unity, the two middle terms dominate the
proximity function, and the far field becomes important. Between small and large gaps,
is a region where the proximity function remains constant with the gap size, then steeply
drops (by y™4) before the far field dominates. This middle region was completely
neglected by Levin et al. (1980), without explanation.

Because the permittivity varies with wave number (frequency), the proximity
function cannot be formed into a function of one variable (e.g. y=kd/m). However, the
form of the function can be examined by plotting it in three dimensions. For simplicity,
consider the proximity function for a metal. Since the magnitude of the permittivity is
much greater than unity for a metal, assume that k, =+/ek where |¢|=4zr0o/ck and
cosp=cosm/4=1/+/2. The temperature dependence of the dc electrical conductivity is
obtained from the Bloch-Griineisen formula (Wilson, 1953), and the electrical resistivity

is calculated using Matthiessen's rule (MacDonald, 1956). The proximity function for
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Figure 8: Gap-dependent part of the proximity function for a metal using
material properties of gold at 300 K.

gold at a temperature of 300 K is shown in Fig. 8, where only the gap-dependent portion
of the proximity function, S, such that M = (k2/ 2\/5|£|% )S is shown.

The proximity function augments the manner in which energy is distributed with
frequency. Caren (1974) gave to the integral of the product of the proximity function and
the mean energy of a quantum oscillator over all frequencies the term unidirectional heat
flux; it can be considered as a modified Planck distribution due to the effect of spacing.

For a metallic surface, the product of Eq. 8 and Eq. 36 yields:

Pia(k)=—5 Ok, T)M(k.d)

he k3 1 | 3m | m(m+1)(2m+1) NABL 37
R CYI 3 + 744
47 «/EH% exp(hkc/27rka1)—l 2y 4y 8y 8+0.5546le[*n"y

The effect of the near field and wave-interference on Planck's distribution can be

clearly seen in Fig. 9, where the unidirectional energy distribution is plotted for a gold
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Figure 9: The integrand of the unidirectional heat flux, Pyo(k), for a metal
using material properties of gold at 300 K.

surface at 300 K. At large gaps, our analysis gives the classical Planck's distribution and

illustrates dramatically the transition through wave-interference to the near field.

3.3.2 Weakly-Absorbing Limit (Dielectrics)

To examine the details of the spacing effect on a material with low permittivity,
consider the wave vector as illustrated in Fig. 2(b). For dielectric materials, an
electromagnetic wave propagates with little attenuation (the imaginary part of the

permittivity is low compared to unity). As a result, the wave vector in the material, k,, is

nearly equal to that in the vacuum, k,,. Substituting k, =k, =ix in Eq. 22, provides an

approximation to the integral for the case of a dielectric. Because the conductivity is low,

the relative permittivity is almost purely real and near unity. The following substitutions

into Eq. 22, cospy=cosp) =1 sinp =sinp; =0, and lkJ=xresult in the following

simplifications:
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near 17 kdx near 17 Kkdx
M —Il 2 2 MY z_13 2
402 (lel* +2)sinh“(xd) +1 4 o5 sinh®(xd)+1
1 1 udu

38
(J;gsmhz(u)+l 4d? ({%smhz(u)+l (38)

=0.8151_ 0.5461
4d? 4d*?

where lel=1 is used. By combining the two contributions, the near-field contribution to
the proximity function is:

0.8151 A 0.5461 1.3612

MMdr ___Mnear +Mnear = + =
i L 77447 T ad® T ad?

(39)

For the far-field effects, a similar expression is obtained by making the same
substitutions into Eq. 30. The periodic function in sin(xd) can be approximated by the
previously-introduced substitutions about the peaks:

Kkdx
sin?(Kd) +1

_1 °f K,dx’
(1) kd)? +2

00 (40)

ne | 1 tan-l(-i):l _ nn?

T24% |2 V2 ). 2+2d*
m(m+l)lr

m
jar_2
22w/_d2 2424*

so M =M{"+

Combining Eq. 39 and Eq. 40 yields the proximity function for a dielectric material.

2
M = M"™ +Mfar = 1°36;2 + m("l‘l"l)Izt _\/5
4d 24/2d @1
k%[ 0.6806 m(m+1)
= +
2 ”2y2 }’2

As for the case of a metal, a factor has been incorporated (here /2 ) so that the gap-

dependent portion of the proximity function will approach unity at large gap size.
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Figure 10: The gap-dependent portion of the proximity function for a system of
two dielectric surfaces.

Because the approximations made to these integrals are accurate to first order, this factor
ensures a physically sound result in the limit, without sacrificing the applicability or the
accuracy of the function at smaller gap sizes.

The gap-dependent portion of the proximity function for a dielectric is shown in
Fig. 10. The form of our proximity function permits the examination of the spacing
effect on dielectric materials as a function of one variable, analogous to the form of Levin
et al. (1980) for a metal. In agreement with the observations of Loomis and Maris
(1994), the near-field effect to be inversely proportional to the second power of the gap
size d. However, because the magnitude of the permittivity was assumed low
(approaching unity), the proximity function is independent of the material properties, and
the dependence on dc conductivity that Loomis and Maris (1994) show in their regime
maps cannot be verified. This difference will be apparent when the regime maps based

on this proximity function are presented.
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Figure 11: The integrand of the unidirectional heat flux, P{2(k), for
a dielectric at 300 K.

Figure 11 shows the product of the proximity function for a dielectric and the mean

energy of a quantum oscillator at 300 K (Eq. 42).

P(k)= @(k,T)Izvl(k,d) _ ke K3 [0.6806+ m(m+l):| “2)

47> exp(hke/2nkyTi)— 1| z%y? y?

This product is the integrand of the unidirectional heat flux for a dielectric. Similar to the
case of a metal, Figure 11 illustrates the dramatic effect of the near field and the transition
through the wave-interference to the classical result of Planck. The absence of strong
absorption has decreased the magnitude of the spacing effect at intermediate gap sizes,
but increased the spacing effect at small gaps. Note that the effect of the first peak, as the
far field becomes important, is much greater for a dielectric than for a metal (compare
with Fig. 10). It is expected that the magnitude of the permittivity will affect the net heat

flux in this intermediate gap size.
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3.3.3 Net Heat Flux Calculation and Permittivity-Gap Regimes

The expressions for the unidirectional heat flux from one surface (Eq. 37 for a
metal; Eq. 42 for a dielectric) enable one to calculate the net heat flux between two
surfaces at different temperatures. From Eq. 10, the net flux is found simply by reversing

the indices, adding the result and integrating over all frequencies.

P = [P(w)do = [ P3(@)+ Pyj(0)do
= [ 61(T1,0)My3 + 65(Ty, 0)Mp1dw
0

but M;=-M;; from Eq. 9, therefore:

=‘:—2! 1(T1,k)M(Ty,k.d) = ©3(T5,k)M(T5, k.d)dk
0

Figure 12 shows the net radiative transfer as a function of the gap size for surfaces
at 320 K and 300 K. The results are normalized using the net flux at large spacing, in
order to compare the influence of weakly-absorbing materials (dielectrics) and strongly-
absorbing materials on the spacing effcct. (Metallic surfaces have a high reflectance, and
therefore, the net flux is lower than that for dielectrics, as indicated by the presence of the
magnitude of the permittivity in the denominator of Eq.36.) For a metal, the
intermediate regime, characterized by a steep increase (d-4) followed by a region
independent of gap size, is clearly apparent. The magnitude of this constant region is
dependent on the magnitude of the permittivity (last term of Eq. 36). Strongly-absorbing
materials exhibit a very steep increase to a large heat flux at intermediate gap sizes, while
a decrease in the permittivity lessens the effect.

Also shown in Fig. 12 is the result of a numerical calculation made on the full
expressions (Eq. 22 and Eq. 30) for gold surfaces. There is very good agreement between

the proximity function over a wide range of gap sizes. This approximation does not
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Figure 12: The normalized net radiative flux versus gap size between surfaces
at 320 K and 300 K.

capture the decrease in the rise of net flux just before the constant region is reached,
however, it does capture the magnitude of the constant region and the onset of the
spacing effect very well. Polder and Van Hove (1971) found a very similar result when
comparing their numerical and approximate predictions.

While the intermediate region is not present in the resnlt for a dielectric, there is a
minimum prior to the increase at small spacing. This minimum, not apparent for the
metallic system, is a result of the substantial decrease in the proximity function due to the
cut-off of the last traveling wave of the far-field at gap sizes on the order of the
wavelength of maximum power in Planck's distribution. As shown by Fig. 11, the
proximity function for a dielectric enhances the contribution of longer wavelengths more
slowly than the proximity function of a metal (Fig. 8) where the k4 dependence increases

the contribution of lower frequencies to the net heat flux. As a result of this greater
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compensation, the net heat flux for a metal does not pass through a minimum prior to
increasing at small gaps.

This minimum was observed in the predictions of Boehm and Tien (1970), the
approximations of Polder and Van Hove (1971) (but not in their numerical calculations),
the predictions made by Cravalho et al. (1967) for a dielectric, and by Levin et al. (1980)
where they neglected the intermediate regime. None of the experimental measurements
of verify this feature. This is not surprising, since none of these measurement were
performed on weakly-absorbing materials. The actual existence of the minimum has
been the subject of some disagreement in the literature, and its cause had remained
undetermined. Formulating a set of regimes that delineate the dependence of the net flux
on the gap size and magnitude of the permittivity provides more insight into this
phenomenon and summarizes the effect of spacing on the net radiative transfer.

The regimes are formed by comparing the relative size of the gap-dependent terms
in the proximity functions of Eq. 36 and Eq. 41. For instance, the far-field terms (those
with m in the numerator) dominate the proximity function when their sum (approximately
unity at large spacing) is greater than 1/(2y), that is when y > 1/2. Similar boundaries are
determined by comparing all the terms; the resultant regimes are shown in Fig. 13.
Above the dotted line are the regimes for strongly-absorbing materials (i.e. the magnitude
of the permittivity is much greater than unity). Below the dotted line are the regimes for
weakly-absorbing materials. Within each regime at high permittivity, the functional
dependency of the proximity function on the magnitude of the permittivity and the gap
size is indicated. Because the proximity function for a dielectric is formed by assuming
that the magnitude of the permittivity is unity, the regimes are independent of the
permittivity, as is the boundary between the regimes.

For the metal shown in Fig. 12, the permittivity is large, and by traversing the

permittivity-gap regime map across |¢/=104, the system can be traced through the various
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Figure 13: The permittivity-gap size regimes for the theory of microscale
radiative transfer based on the proximity function.

regimes. For the dielectric, follow |e]=1. These regimes are very similar to those
determined by Loomis and Maris (1994), except for the absence of material dependency
for materials of low permittivity and an intermediate regime at large permittivity between
d-4 and the far field. The narrow size of this regime is responsible for the absence of a
minimum in the net flux for two metallic surfaces. For a dielectric, the regime for small
gaps, where the there is a relatively smaller spacing-effect at low frequency, covers a
broad range of frequency, reducing the proximity function and creating the intermediate

minimum in the net heat flux.

3.4 Conclusions

In this chapter, the theory behind the fluctuational electrodynamics approach to
account for the near- and far-field effects on radiative transfer has been presented and the
previous attempts to apply the theory to specific systems have been reviewed. By

examining these attempts to approximate the theory, the limitations to the general
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application of the approximations, which obscure the details of the spacing effect and
render the use of the theory tenuous have been elucidated. The details of the spacirg
effect have been clarified by deriving a relatively simple proximity function that accounts
for both the far- and near-field for two extremes: a metal (large permittivity) and a
dielectric (low permittivity).

These proximity functions are in complete agreement, in these limits, with the
earlier treatments in the literature and are valid across transitions between regimes in the
limits of high or low permittivity. A set of regimes, which delineates the validity of the
proximi.ty functions, has been derived for the permittivity-gap plane. This map is a useful
tool to predict the effect of spacing on the net radiative flux.

Loomis and Maris (1994), apparently unaware of existing measurements of the
spacing effect, propose to perform experiments at room temperature using highly-doped
semiconductors. In order to examine the spacing effect with such materials, it will be
necessary to develop approximations which are valid across transitions from low to high
permittivity. To exploit the spacing effect for other applications, it may be necessary to
tailor the permittivity of the materials making up the surfaces. For instance, reducing or
enhancing the radiative flux over a desired band of frequencies can be obtained by careful
manipuiation of the gap size, dc conductivity and temperature of the surfaces. In this
manner, material specifications for a particular application can be determined, providing
useful design criteria for material development . In order carry out such investigations,
however, it is necessary to determine simple proximity functions which can be applied
over the entire range of permittivity. In this manner, direct numerical integration will not
be needed, allowing easier development of devices, without obscuring the physical

mechanisms of importance.
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Chapter 4

Regimes of Microscale Radiative Transfer Between
Metallic Surfaces

4.1 Introduction

The preceding chapters illustrate the ample theoretical and experimental evidence to
substantiate the enhanced transfer of energy by thermal radiation between two closely-
spaced surfaces when the distance of separation is on the order of the characteristic
wavelength of the radiation. These chapters have established that there is no clear
agreement as to the magnitude of the effect of spacing on the thermal transport. In this
chapter, the theoretical predictions and experimental measurements are consolidated for
the first time. A set of microscale radiative transfer regimes that account for the different
mechanisms of absorption that occur are derived. For the various experimental
configurations, these regimes show that the disagreement among the experimental
measurements performed thus far can be traced to the different microscale regimes that
govern the absorption process. Furthermore, using these regimes the discrepancies
between the analytical models and the experimental measurements are explained. At the
very low cryogenic temperatures of some of the experimental configurations, the existing
theories have limited applicability since the Boltzmann transport equation is not strictly

valid at these temperatures.

4.2 Microscale Radiative Transfer Regimes
Although some of the measurements have been compared with the predictions in

the literature (Hargreaves, 1973), careful attention was not paid to determine if the theory
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meets the conditions under which the experiments were made. Comparisons should be
made only between the predictions and measurements which meet the same restrictions.
This chapter considers the hypothesis that the discrepancies between theory and
experiment lie in the nature of the interaction between the incident photons and the
electrons resident in the surface of the receiving body. Since the energy absorbed by the
electrons must be given up ultimately to either the lattice or the surrounding electrons by
collisions, the electronic transport phenomena in the bodies must be examined.

Such an examination begins by formulating a set of radiative transfer regimes for
two thermally radiating bedies. The regimes are based on the relative sizes of the
characteristic length scales which are important in the interaction of light and matter.
Recently, Tiea and Chen (1992) have discussed the importance of length scale on
radiative transfer by delineating a number of microscale regimes for the interaction of
electromagnetic radiation of a particular wavelength with a solid whose dimension in the
direction of propagation is relatively small. The three microscale regimes identified
indicate when wave-interference effects, classical size-effects, and quantum-size effects
become important. A similar approach is presented here for the case of two bodies
interacting by means of thermal radiation. This formulation uses the spacing between the
surfaces as the characteristic size of the system rather than the size of the material layer;
i.e. consider the two bodies to be semi-infinite. As a result, wave interference and
radiation tunneling become important when the separation of the bodies is of the order of
the Wien's wavelength.

Unlike the case considered by Tien and Chen (1992), regimes for a system of two
radiatively interacting bodies are derived. The nature of the absorption process in cne
surface is coupled to the other surface, since, while each body absorbs energyi, it is also a
thermal source for the other body. En=rgy is emitted over a spectrum of wavelengths;

hence, there is not a single characieristic wavelength that describes the incident radiation
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complefely. Wien's wavelength is used as a characteristic wavelength to represent this
spectrum. The length scales, some of which depend on the frequency of the incident
radiation, are coupled through the wavelength of maximum emissive power. Because the
source radiation is not monochromatic, each body may in fact be in several different
electronic transport regions at any one instant of time depending on its temperature and
the frequency of the incoming radiation (Wooten, 1972).

The expressions for the important characteristic lengths are given below. Wien's
wavelength is found by determining the maximum in the expression for Planck's

distribution.

hc

2y T =2897.8umK ~
w K= 483k,

(44)

The mean free path of the energy carrier is the product of ine Fermi velocity and the

scattering time, which in turn is a function of the electrical conductivity.

A= ‘tvF (45)

When the electron mean free path is small relative to the penetration depth of the incident
electromagnetic field, the electron experiences a constant electric field between
collisions. This is known as the normal skin effect for which Ampere's Law gives the
dispersion relation for an electromagnetic wave. From this result, an expression for the
wave vector can be derived. The penetration depth is then the inverse of the imaginary

part of this wave vector.

] -6
Bres = (%uoa)/'z - (2897.8 x 109 mK (46)

)%

mcpyoT

where ois the dc electrical conductivity. When the mean free path is large relative to the
penetration depth of an electromagnetic wave, the electron experiences a spatially varying

electric field between collisions, and Ohm's law is no longer valid. Then, the equation for
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the penetration depth must be modified by replacing the electrical conductivity with an

effective one.

Cefp = MSE g 47

1
suse = (% )%= 2 mup Y5
ASE (l)[.loO'eff qu N82

1
_(2897.8x10°mK muvy, %

(48)

The thermal deBroglie wavelength of an electron is calculated by assuming that the
electrons constitute an electron gas in collisional thermal equilibrium with a velocity
distribution given by the Boltzmann distribution and a mean momentum characterized by

a temperature 7.

_h
= Y T “9)

Also included is another characteristic length, the distance traveled by an electron in
a time 1/2x of the period of the radiation, in addition to the length scales used by Tien and

Chen (1992). It is referred to here as the tidal displacement.

4 = 5 _ vp 2897.8x10~°mK )
e ¢ 2nT

Of the characteristic lengths pertaining to the material itself, the penetration depth,
mean free path, and tidal displacement are a function of the frequency of radiation and/or

the electrical resistance which is related to the scattering time by:

(D

The calculation of these lengths requires values for the number density of free

electrons, N, the effective electron mass, m, and the dc electrical conductivity, 6. The
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Figure 14: Scattering time versus frequency diagram showing electronic
transport regions for copper.

number density and the effective electron mass were obtained from Dugdale (1977). The
temperature dependence of the dc electrical conductivity was obtained from the Bloch-
Griineisen formula (Wilson, 1953), and the electrical resistivity was calculated using
Matthiessen's rule (MacDonald, 1956), using the room-temperature resistivity data
reported by Dyos and Farrell (1992). By equating the expressions for these characteristic
lengths, a number of electronic transport regions can be delineated. As shown in Fig. 14,
there are five regions. Each line represents the points where two particular characteristic
lengths are equal. Wooten (1972) provides a more detailed discussion.

The regions in Fig. 14 indicate the different electronic transport phenomena that are
encountered when a body absorbs electromagnetic radiation. When predicting the net
radiative flux, the electronic transport phenomena must be correctly accounted for in the
models used for the material properties and must be consistent with the theoretical

framework. For instance, in the anomalous skin effect region, the model for the material
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properties used in any theoretical prediction must account for the variation in electric
field between electronic collisions. In the normal skin effect region, a constant electric
field is sufficient. Included in Fig. 14 is a line which shows the frequencies for which the
thermal deBroglie wavelength equals the penetration depth for the anomalous skin effect
(dashed line), a regime not previously discussed in the literature. This region delineates
the conditions under which the Boltzmann transport theorem is valid, and its importance
will be discussed after considering the regimes.

In the classical skin effect region (region N) the electrons suffer many collisions
while within the penetration depth, where there is a local, instantaneous relationship
between induced current and the electric field. For higher frequencies, the inertia of the
electrons becomes important. In the relaxation region (region R), the electrons suffer
many collisions, but the radiation oscillates so quickly that the electrons respond as free
electrons only occasionally undergoing a collisicn. At frequencies higher than the plasma
frequency, the reflectance drops to zero, and transmission occurs (region T).
Transmission may also occur below the plasma frequency if wt>>1, then the dielectric
function approaches unity resulting in zero reflectance and absorptance.

Increasing the scattering time from the normal skin effect region causes an increase
in mean free path. In this anomalous skin effect region, (region A) the electric field
varies appreciably over the path length. The electron is affected by the clectric field in a
non-local fashion. The Boltzmann transport equation is employed to determine the
electrical conductivity. This region is delineated by the boundary, A=6. When the
frequency is increased, the electrons experience an increasing number of oscillations
within a mean free path; the boundary is determined by é=vg/w. This region, called the
extreme anomalous skin effect region (region E), is similar to the relaxation region except

that collisions are much less frequent and almost entirely at the surface. The condition
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for surface collisions to be of equal importance to those with the lattice is A=§, where in
these regions it is roughly equal to the plasma wavelength.

Note that the scattering time depends solely on the temperature of the material
(Eq. 51). If it is assumed that the frequency of the radiation is characterized by the
frequency where the emissive power of a black body is maximum (Ady;e,), then the
frequency can be replaced by the temperature of the Planck distribution to which Wien's
wavelength corresponds. The temperatures of the receiver and emitter, therefore,
determine the appropriate electronic transport region. The temperatures, however, also
govern the thermal exchange of energy, and therefore the temperature can be used to (i)
form a set of regimes for microscale radiative transfer and (ii) group the experiments into
these regimes.

To form a set of regimes for the case of two surfaces exchanging thermal radiation,
a combination of the electronic transport in each of the two surfaces is chosen (e.g. both
in the normal skin effect region). Next, the limits on the temperature of each surface for
the particular transport phenomenon is determined by using Eq. 51 and the Bloch-
Griineisen formula for the temperature dependence of the dc electrical conductivity. This
procedure is repeated for all the combinations of electronic transport phenomena to form
a complete set of regimes. Graphically, this is achieved by plotting the electronic
transport regions as Tyeceiver VEISUS Teminer fOT @ given surface as in Fig. 15. Then, reverse
the roles of the hot and cold surfaces and re-plot Fig. 15. Now, the vertical axis is the hot
temperature, and the horizontal one is the cold temperature. By superimposing one set of
regions on the other set, intersections of the electronic transport regions for each surface
arise. These intersections define the regimes of microscale radiative transport for the
exchange of thermal energy between metallic surfaces.

Figure 16 shows the regimes for chromium, and Figure 17 shows those for copper.

Table 2 indicates the combinations of electronic transport phenomena that characterize
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Figure 15: Electronic transport regions for copper surfaces (thin line) and
chromium surfaces (thick line) as functions of temperature.

each regime. For instance, regime 1 shows the temperature range for which the hot
surface and the cold surface are both in the anomalous skin effect region. The two
dashed lines indicate the regions of the regimes for which the Boltzmann transport
equatiofl is valid and where the system is near thermodynamic equilibrium.

The regimes indicate that to ensure that both media are in the same electronic
transport region, the temperature difference must be kept relatively small, and
additionally, there are some temperatures for which it is very difficult to achieve this.
(The temperature difference must approach zero.) For some materials (i.e. copper), there
is no regime where the absorption in both surfaces is characterized by the normal skin
effect. Due to the high electrical conductivity of such materials, the scattering time for
which the electrons experience the normal skin effect is large, and thus the normal skin
effect exists only at sufficiently low frequencies. The temperature of the emitter would

have to be colder than the receiver, which is clearly impossible in a system of two

76



103

: T T T lll’l' T L) ,llll'] T T llll'l:
- |- - -BTE /
I Equilibrium /’

. i

e 5

= 102l )/

@ I — 7

Q L

c i /

o

g /

a /

o /

2 /

s 10'L

g F 7 5

& 7 ]

- L/ ]
Y ) ‘1
[ PRI ) 4 ]

100 R AN | s

100 10! 102 103

Temperature of Cold Surface, K

Figure 16: Microscale regimes for radiative transfer between surfaces of
' chromium. Hargreaves (1973), triangles.

surfaces. As a result, for some materials there are no frequencies of significant power for
which both surfaces experience the normal skin effect.

Figures 16 and 17 indicate that the experimental measurements do not lie within the
same regime. The measurements of Hargreaves (1973) lie within a regime for which the
electronic transport in at least one surface is in the normal skin effect and the system is
near equilibrium. All the other measurements lie in regions in which the anomalous skin
effect determines the nature of the absorption process. Moreover, the measurements
which display the most striking deviations from the results of Hargreaves (1973) are in
regimeé most different from those of Hargreaves (1973): i.e. far from equilibrium and
where absorption in both surfaces is dominated by the anomalous skin effect. The high
temperature results of Kutateladze et al. (1979) have a similar spacing trend as

Hargreaves (1973) and lie in a regime in which one surface meets the conditions of the
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Figure 17: Microscale regimes for radiative transfer between surfaces of
copper. Domoto et al. (1970), circles; Kutateladze et al. (1979),
squares.

extreme anomalous skin effect. The extreme anomalous skin effect, like the normal skin
effect is characterized by a local relationship between the current and electric field.
Moreover, the measurements which display the most striking deviations from the
results of Hargreaves (1973) are in regimes most different from those of Hargreaves
(1973): i.e. far from equilibrium and where absorption in both surfaces is dominated by
the anomalous skin effect. The high temperature results of Kutateladze et al. (1979) have

a similar spacing trend as Hargreaves (1973) and lie in a regime in which one surface

Regime Number Hot Surface Cold Surface
1 Anomalous Skin Effect Anomalous Skin Effect
2 Extreme ASE Extreme ASE
3 Relaxation Region Relaxation Region
4 Normal Skin Effect Normal Skin Effect
5 Anomalous Skin Effect Extreme ASE
6 Extreme ASE Anomalous Skin Effect
7 Anomalous Skin Effect Relaxation Region
8 Relaxation Region Normal Skin Effect
9 Extreme ASE Normal Skin Effect

Table 2: The characteristics of the regimes for microscale radiative
transfer of thermal energy between metallic surfaces.
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meets the conditions of the extreme anomalous skin effect. The extreme anomalous skin
effect, like the normal skin effect is characterized by a local relationship between the

current and electric field.

4.3 Comparison of Measurements to Theoretical Predictions

Chapter 3 presented proximity functions, which account for the spacing effect of the
net radiative transfer of thermal energy. Recall that the formulation of this proximity
function rests on the use of a fluctuation-dissipation theorem that is valid strictly for
macroscopic systems in thermal equilibrium. The use of such an equilibrium law is
acceptable for non-equilibrium situations provided that the transport phenomena required
to maintain steady-state conditions are insignificant when compared with the irreversible
process of interest. (In the present case, the energy input required to maintain the
temperature of the high-temperature surface must be insignificant compared to the energy
emitted by that surface into the gap.) This prediction also relies on a model for the
dielectric function which is valid only when the normal skin effect characterizes the
absorption process. Given these limitations to this prediction, the theory can only be
compared to the highest temperature measurements of Hargreaves (1973) (i.e. it is valid
for only a single microscale regime.

Figure 18 illustrates the results of the prediction for a mean temperature 304 K, and
Figure 19 illustrates the results of the prediction for a mean temperature 291 K. These
figures show the results for which the dc conductivity was obtained from data for the
resistivity of chromium and a prediction for which the dc conductivity was set to fit the
measured flux at large spacing. The difference in dc conductivity is only about a factor
of 1/3, a reasonable agreement considering that the complexity of the Fermi surface for
chromium is not captured in these calculations, which use the Drude model of the
dielectric function. Both the trend and the onset of the effect coincide in a reasonable

fashion.
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There is a steep increase in the net radiative flux (d-4) as the gap decreases.
Contrary to Boehm and Tien (1971) and Levin et al. (1980), this prediction using the
proximity function does not indicate a minimum in the radiative flux prior to the steep
increase, as is born out by the measurements. This approximation does not account for
the gradual decrease in the slope of the flux prior to the constant region shown in Fig. 12,
but these expressions are still useful for comparison to experimental measurements, since
the data do not extend down to this region.

Predictions for the measurements which lie in other regimes do not show any
agreement with the experimental measurements. Predictions using properties of copper at
low temperature indicate a slightly lower slope, but it is not as low as the measurements.
This trend arises from the prominence of the long wavelength radiation at low
temperature, where the parallel-polarized component of the near field tends to modify the
energy distribution at larger gaps than the perpendicularly-polarized component. The
large deviations are not surprising considering that the restrictions of the theory do not

meet the conditions of the experiments.

4.4 Discussion

The regimes indicate the importance of matching the theoretical framework to the
conditions inherent in the experimental measurements. The limitations in the
appiicability of the theory and thus the agreement between the predictions and
measurements is due to the limits of the fluctuation-dissipation theorem and to
inappropriate techniques used to model the material properties of the media.

These limitations make it impossible to clarify the outstanding differences between
the predictions and measurements. Levin et al. (1980) dismiss the results of Domoto et
al. (1970) and Kutateladze et al. (1979) as erroneous simply because the measurements
do not agree with the predictions. Levin's predictions, however, did not account for the

effect of the perpendicularly-polarized component of the near field and so should not
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exhibit the steep rise to a region of constant flux. Xu et al. (1994) measured a normalized
radiative flux of 125 for a gap of 0.05 um in the ac limit and the same ratio at 0.15 um in
the dc limit. For these gap dimensions, the theory predicts a net radiative flux at least an
order of magnitude greater than their results. Though Hargreaves's (1973) results agree
reasonably well to the predictions, the remaining differences mandate a more detailed
account of the interactions between the photons and the electrons in future theoretical
formulations.

Irﬁprovements to the theory > expand its applicability to other regimes must focus
on the implementation of the fluctuation-dissipation theorem. This theorem models the
statistics of the source of the thermal radiation field by relating the statistical variation of
the thermal source to the mean energy of a quantum oscillator and the permittivity tensor
of the material (Rytov et al., 1987). The theorem, therefore, links the equilibrium thermal
properties of the system to material properties of the surfaces. There are two distinct
problems to solve in order to extend the theory: (i) how to model the material properiies
for the appropriate absorption process and (ii) how to model the statistics of the thermal
sources for non-equilibrium or non-linear systems (i.e. where the anomalous skin effect is
important).

First, consider modeling the material properties. Each element of the permittivity
tensor is a dielectric function, which relates a component of the eleciric field to the
electric displacement in a particular medium. For an isotropic, non-magnetic metal, the
complex dielectric function consists of a constant real part and a frequency-dependent
electrical conductivity in the imaginary part. The modeling of this frequency-dependent
conductivity is crucial to account properly for the effects in each electronic transport
region. For the normal skin effect case, where the electric field does not vary over the
length of the mean free path, current and electric field are related locally by Ohm's law.

The Drude expression predicts the conductivity reasonably well with a frequency-
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independent scattering time. Predictions using the Drude expression s.aould be applicable
to most of Hargreaves (1973) measurements, being in regime 1 where both surfaces
experience the normal skin effect. When the mean free path is large, the spatial and
temporal variation of the electric field becomes important. Ohm's law is no longer valid,
and there is a non-local relationship between the current and electric field. In this case,
the Boltzmann transport equation must be solved. Reuter and Sondheimer (1948) solved
the Boltzmann equation for the case of a varying electric field by assuming a single
constant relaxation time and a normally incident electromagnetic field. Modeling the
dielectric function with an expression from the Boltzmann transport equation may prove
useful for comparison to the high-temperature results of Kutateladze et al. (1979), which
are located in a regime where the anomalous skin effect and extreme anomalous skin
effect dominate the electronic transport.

At low temperatures, the penetration depth becomes comparable to the thermal
deBroglie wavelength. Polder and Van Hove (1971) correctly point out that their theory
is valid only for the case where there is a local relationship between current and electric
field. This restriction was made presumably because their implementation of the
fluctuation-dissipation theory had a zero-radius correlation function. While Levin et al.
(1980) attempted to derive results for the anomalous skin effect by using the Boltzmann
transport equation, the approach is limited to relatively high temperatures. This region is
included in Fig. 16 and Fig. 17 to indicate where the effect of variation in electric field
over the extent of the electron is important (i.e. where the Boltzmann transport equation is
not valid). The Boltzmann transport equation can be derived from the fluctuation-
dissipation theorem (Chester, 1963a; Kubo, 1966), provided that (i) the thermal deBroglie
wavelength is smaller than both the mean free path and the penetration depth and (ii) the
interaction time for a collision is smaller than the inverse frequency of the radiation

(Chester, 1963b). It is precisely in this region of the regimes where the low temperature
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measurements aave been performed and where the largest deviations from the theoretical
predictions occur. Sirce the Boitzmann transport equation is not valid for a large
temperature difference at a low mean temperature, the dc conductivity must be modeled
by some other means.

The second problem with the fluctuation-dissipation theorem is its limitation to
cases where the macroscopic system is in thermal equilibrium. Figure 17 and Figure 18
include lines which illustrate when an experiment is far from this condition. In the case
of radiation between two surfaces, the system is near equilibrium when the energy
removed from the low-temperature surface that is required to maintain its temperature is
insignificant compared to the energy emitted by that surface into the gap. The energy
removed that maintains the steady-state equals the net energy across the gap, and so the

condition for near-equilibrium is:

IP conducted I <<1

Py (52)
[P = Pai| _ |0T'4"0T§| - IT,“—T;‘}l <l

Py —  oIf T

The ratio can be made with the high-temperature surface, but since regimes were formed
in terms of the low-temperature surface, the ratio is formed with the low-temperature
surface for comparison. This choice is more conservative, since this ratio will be larger
than that for the high-temperature surface. Assuming that for comparison that near
equilibrium exists when this ratio is less than 1/4:

|T14 -T; I 1
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This ratio is a function of spacing. Because radiation begins to tunnel from the cold
surface before the hot one due to the longer wavelength, this ratio decreases with spacing
until such a gap size that the tunneling of the hot surfaces becomes significant. The
"large gap" estimate yields a conservative limit for the temperatures at which equilibrium
can be assumed. This temperature difference indicates the upper limit to ensure nearly
equilibrium conditions and is represented by the short dashed line in Fig. 16 and Fig. 17.
As the cold temperature diminishes, only a very small temperature difference can be
tolerated to ensure equilibrium. All but two experiments of Hargreaves (1973) are far
from the equilibrium line. Even if the material properties are modeled appropriately for
each regime, comparisons to predictions cannot be made until the theory is formulated
with a non-equilibrium form of the fluctuation-dissipation theorem. Future experimental
measurements should be conducted with as small a temperature difference as possible to
permit a comparison to a prediction similar to the one presented here, namely one based
on an equilibrium expression for the statistical properties of the system.

This chapter has demonstrated that the experimental measurements are spread
across a number of regimes and that these measurements in each regime show distinctly
different characreristics. The microscale radiative transfer regimes indicate where the
available theoretical predictions are valid and show under what conditions new
experiments should be performed. Furthermore, the regimes are a useful tool for the
design of experiments, which can verify the available theories by guiding the choice of
materials and temperatures to investigate. These regimes have focused attention on
several important issues that must be investigated in order to expand the applicability of
the theory for the analysis and design of a broader set of heat transfer systems and

experiments.
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Chapter 5

Analysis of Microscale Thermophotovoltaic Devices

For the remainder of this thesis, attention is focused on a new class of energy conversion
devices. These devices constitute the marriage of microscale radiative transfer of thermal
energy and thermophotovoltaic energy conversion obtained by bringing the emitter and
receiver into close proximity. The fluctuation electrodynamics approach to microscale
radiative transfer detailed in the preceding chapters accounts for the spacing effect, which
provides the net transfer of photons to the receiver. The receiver converts the photons
into useful electrical energy by the photovoltaic effect. This chapter outlines the existing
technology, presents a model for a microscale device, and outlines the necessary
modifications to the fluctuational electrodynamics formulation for the particular

operating conditions and materials.

5.1 Existing Thermophotovoltaic Technology

Thermophotovoltaic energy conversion devices produce electrical power by direct
photovoltaic conversion of photons emitted by a heat source. These devices have few
components, no moving parts, high power density (1.5-3 W/cm?2), rapid response times,
and high potential energy conversion efficiencies (Coutts and Benner, 1995). These
attributes make the range of potential applications diverse, including remote electricity
supplies (Broman et al., 1996), transportation (Fraas et al., 1995), co-generation (Krist,
1995), electric-grid independent appliances, and space, aerospace, and military power

supplies (Regan et al, 1995; Schock et al. 1995).
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Figure 20: Schematic energy band diagram of a direct band-gap
semiconductor.

Though suggested 30 years ago, only recently have efficient conversion materials
been developed, raising interest in the potential of thermophotovoltaic energy conversion.
While recent improvements in the design of silicon photovoltaic devices have created the
prospect of highly efficient energy conversion, it is the ability to manufacture efficient
devices from compound semiconductors, which makes thermophotovoltaic energy
conversion attractive. By varying the alloy composition, compound semiconductors
allow the device response to be tuned to the emission of a particular heat source.

To understand why the ability to tune the device response is important, consider the
electronic structue of a semiconductor. Figure 20 depicts schematically the energy
bands of a direct band-gap semiconc:icting material (Pierret, 1987). The energy bands
are calculated from a quantum mechanical consideration of the behavior of electrons in
the periodic potential formed by the positive lattice ions of the material. These bands
describe the allowable energy states that an electron can obtain. The crystal momentum,
k, accounts for the interaction of the lattice with the electron. A statistical consideration

of the electrons reveals that these energy states are filled such that, depending on the
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Figure 21: Comparison of band-gap energy and distribution of photon energy
according to Planck's distribution of thermal energy.

temperature, the outer valence and conduction bands are only partially filled (Pierret,
1987). The electrons in these bands are free to move, providing conductor-like behavior.

When photons with energy greater than the band gap, E,, are absorbed, an electron
can be elevated to the conduction band leaving a hole in the valence band. The hole and
electron are both free to move and contribute to the ability of the semiconductor to
conduct a current. By lowering the band-gap energy, photons with less energy can
induce a band-to-band electronic transition. Changing the alloy composition of ternary
compound semiconductors, such as In;_,Ga,As, directly affects the magnitude of the
band gap (Wojtczuk, 1995). It is the ability to tune the band-gap energy provided by the
compound semiconductor that expands the flexibility of thermophotovoltaic systems.

The size of the band gap determines the temperature limits of the emitter. Hot
objects emit radiation according to Planck's distribution, as shown in Fig. 21 (Siegel and

Howell, 1981). To utilize this energy most effectively, a majority of the photons should
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have an energy greater then the band gap of the semiconductor. For an order of
magnitude estimate of this relationship, suppose it is desirable to have an band gap low
enough that all photons greater than one half the photon energy at the peak of Planck's
distribution contribute to band-to-band electronic transitions.

Ej, max =_1_ hc SE
2 24, &

(54)

This criteria ensures that the greatest number of photons impinging the device induce

band-to-band transitions. Using Wien's wavelength for the maximum wavelength gives:

hcT
2% 2897um & (55)
T(K)> 4665 Ey(eV)

This relation provides a rough estimate of the source-temperature limits based on the
band-gap energy. Figure 21 shows the location of the band gap relative to the peak in

Planck's distribution.
For materials such as gallium arsenide and silicon, which have band gaps of about
1.4 eV and 1.1 eV respectively, an appropriate source should be between 5100 K and
6500 K. Such high temperatures make these materials suitable for converting thermal
radiation from the sun, which is nearly a black body at 6000 K. The ternary alloy,

In; ,Ga,As, has a band gap that varies between 0.36 eV and 1.4 eV depending on the
relative amount of indium and gallium in the compound. For Hg,_,Cd,Te, the range of
band gap is even larger, from 0 eV to 1.6 eV. At a band gap of 0.37 eV, a suitable source
need be only 1680 K. Such low band gap materials are at the heart of thermophotovoltaic

systems, since emitter temperatures in the range of 1000 K to 2000 K are widely

attainable. For this reason, In; ,Ga,As has been used in many thermophotovoltaic
devices. This thesis focuses on In;_,Ga, As and Hg,_,Cd,Te to study the effect of alloy

composition on the performance of microscale thermophotovoltaic devices.
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Figure 22: Schematic diagram of a thermophotovoltaic energy conversion
system.

Figure 22 shows a schematic representation of a typical thermophotovoltaic system.
Currently, a great deal of research is focused on optimizing each sub-system to improve
overall performance. A sub-system that converts a fuel to heat drives the
thermophotovoltaic system. The particular application of the system often determines the
fuel source. Systems have been designed to use energy from fossil fuels, and nuclear,
radio-isotope, renewable, and solar sources (Coutts and Benner, 1995). An emitter
converts this heat energy to electromagnetic radiation. A photo-diode or pn-junction
formed from the new ternary compound semiconductors converts the electromagnetic
radiation to electricity. The final sub-system conditions the electric power for the
particular application (White and Hottel, 1995).

The overall efficiency of a thermophotovoltaic system depends on the efficiency of

each subsystem:

TPV _
N = Ncomb. " Mtransf. * diode * pwr.-cond. (56)

White and Hottel (1995) examined the efficiency of each sub-system in order to estimate
the upper limit of the overall thermophotovoltaic energy conversion efficiency. Their

results indicate an upper limit of 13% and suggest that the most inefficient sub-system is
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that involving the emitter and radiant transfer from the emitter to the diode. White and

Hottel (1995) give typical values for the efficiency of each sub-system in Eq. 56.

n™"Y =(0.7)(0.35)(0.6)(0.9) = 0.13 (57)

Improving the efficiency of the transfer of energy from the emitter to the receiver offers
the greatest promise to increase the overall performance of thermophotovoltaic devices.
Net power density output is also a very important performance parameter. The
primary cost of the thermophotovoltaic energy conversion system are the pn-junctions
that form the receiver. Because the devices produce power from a source of energy flux,
the systems are designed on a per unit area basis. By increasing the power density (the
power per unit area facing the emitter) great savings may be achieved in initial costs,
while providing weight and size reductions. The design goal would be to achieve this

with little or no loss in efficiency.

5.2 Microscale Thermophotovoltaic Devices

The analysis of the spacing effect in Chapter 2 indicates that larger increases in the
net heat flux result when the vacuum gap between the surfaces is small. Moreover, the
spectral distribution of the electromagnetic radiation is substantially different from
Planck's distribution. The remaining sections of this chapter investigate the possibility of
exploiting the spacing effect on radiative transfer to enhance the performance of
thermophotovoltaic devices. By bringing the emitter and receiver closely together,
energy density will increase, but the effect on device performance is not obvious because
of the complex and coupled influence of surface temperature, alloy composition, and gap
size. Presented here is a model to investigate the influence of these parameters on the

theoretical device performance.

92



Energy, E

Distance, x

Figure 23: Schematic energy band diagram of a pn-junction.

5.2.1 Model for a Standard Thermophotovoltaic Device

In standard thermophotovoltaic devices, power from the absorbed photons is
extracted by a diode junction fabricated with semiconductor materials. This diode is a
metallurgical junction formed by bringing together semiconductors that have been doped
with impurities so that the conduction and valence bands on each side of the junction
have a different concentration of electrons and holes. Materials doped with donor
impurities (n-type) have a greater concentration of electrons in the conduction band,
whereas those doped with acceptor impurities (p-type) have few electrons in the valence
band creating a higher concentraiion of holes. Asymmetry in the electronic structure
results in a pn-junction when an n-type and p-type material are joined.

The energy band diagram of such a junction is shown in Fig. 23, where the spatial
variation of the bards in the vicinity of the junction is illustrated. Because a system in
thermal equilibrium may have only one Fermi level, the energy bands on the p-side are
elevated above those of the n-side forming a potential barrier. Far enough away from the
junction, conditions are similar tc the unperturbed doped material.

The carrier concentrations corresponding to Fig. 23 are shown in Fig. 24. Note that

for high doping, the impurity concentrations, N, and Np, are large, resulting in a great
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Figure 24: Majority and minority carrier concentrations near the depletion
region of a pn-junction (Green, 1982).

difference between the concentration of majority and minority carriers on each side of the
junction. The intrinsic carrier concentration, n;, shown in Fig. 23, figures prominently in
the quantitative calculation of carrier concentration. Its square equals the product of the

concentration of majority and minority concentrations (Pierret, 1987).
2 _
nf = NoNy exp(~Eg / kyT) (58)

where N and Ny are the effective density of conduction band and valence band states,
respectively (Pierret, 1987).

The current voltage characteristics of such a junction can be determined by
accounting for the drift and diffusion of electrons and holes across the junction. Due to
the variation in carrier concentration, there is both a concentration gradient and a
potential gradient in the diode. Accounting for the flux of holes and electrons under dark
and illuminated conditions reveals the current-voltage characteristics of pn-junctions used
for solar cell applications. Figure 25 shows that since the current-voltage curve crosses
the 4th quadrant, power can be extracted from the device (Green, 1982).

In the dark, there is a small saturation or dark current, I;, at zero voltage. This dark

current plays an important role in determining the system performance and greatly
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Figure 25: Current voltage characteristics of a solar cell (Green, 1982).

depends on the manner in which a particular junction is manufactured. Methods to
estimate this parameter are discussed in the next chapter. When illuminated, the entire
current-voltage curve shifts down into the fourth quadrant by an amount, /;, the light-
generated current. The maximum power from the device is obtained by maximizing the
shaded area in Fig. 25. This maximum power is related to the open-circuit voltage and

short-circuited current by a device parameter called the fill-factor (Schock et al., 1995).

Py =1 Vo FF

kol f fse
Voc = . n(ld l) (59)

L]l
n('7)] ()

where k, is Boltzmann's constant, T, is the temperature of the device, and e is the charge

FF=|1-

of an electron. The light-generated current is given by the volumetric carrier generation

rate, G, times the active volume of the cell, AL:
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I. =eGA(L, + W + L)) (60)

or per unit area:

I, =eG(L, + W + Ly,) (61)

where W is the size of the depletion region in the vicinity of the metallurgical junction,
which is much less than the diffusion leng : s of electrons, L, and holes, L,. These
diffusion lengths are characteristic decay lengths of the current density in the diode and

are related to the carrier diffusion coefficient, D, and carrier lifetime, 7, by (Green, 1982):

L, =+[De7e and Ly, =+/Dy1p (62)
To estimate the efficiency of the thermophotovoltaic device, the maximum power is

compared to the net radiative power incident on the diode.

nTPV — Pm = IchocFF
Pinc Pinc

(63)

where P, is the total incident energy flux integrated over all frequencies and I is

assumed to be equal to the light-generated current, I;. This current is calculated by

taking the product of the spectral flux of photons with energy greater than the band-gap

energy, @py, and the charge of an electron.

IL=e[[op,0|dE (64)

Eg
The factor Q. is the quantum efficiency, which accounts for the fraction of photons at a
particular energy above the band gap that recombine without contributing to the current.
The photon flux is simply the total energy flux at a particular frequency divided by the

energy of a photon at that frequency. In this manner, the flux of photons incident on the
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diode of a standard thermophotovoltaic device is given by Planck's distribution divided
by the photon energy (Iles, 1995).

Comparison of Eq. 61 and Eq. 64 indicates that for standard thermophotovoltaic
devices, it is assumed that the total flux of photons is absorbed uniformly over the active
region (L.+W+L;). The quantum efficiency, therefore, accounts for the variation o this
active region with frequency, since very short or long wavelength radiation will be
absorbed far from the junction and the electron-hole pair will recombine without
contributing to the current. In actual fact, the active region is larger than a typical device
thickness, but it provides a measure of the recombination occurring in the diode. It serves
as a convenient indicator of the recombination by examining its change with photon flux—

an important aspect of microscale thermophotovoltaic devices.

5.2.2 Model for a Microscale Thermophotovoltaic Device

The microscale fluctuational electrodynamic field indicates that there will be a great
increase in photon flux at a particular frequency as the vacuum gap decreases. This
increased flux will increase the injected carrier concentration. There is, however, a limit
to the current generated by the increased photon flux. The carrier lifetime and the active
region depend, by Eq. 62, on the magnitude of the recombination effects.

Radiative recombination, Auger recombination, and recombination by traps all
contribute to decreasing the lifetime (Pierret, 1987; Green, 1982). Recombination by
traps involves the two-step process whereby electrons relax from the conduction band to
an energy level between the cunduction and valence bands introduced by doping
impurities. As a result, this form of recombination is determined by the dopant level.
Radiative recombination and Auger recombination depend on the concentration of the
carriers themselves, since these recombination mechanisms arise from interactions
between the carriers. The increased photon flux will act to decrease the carrier lifetime

and therefore, since the minority carriers exist for a shorter period of time, less make it
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across the depletion width and to the contacts: i.¢. the effective active region of the diode
decreases as the vacuum gap between the emitter and receiver decreases.

To account for recombination effects, it cannot be assumed that the active region is
a constant as implied by Eq. 64. To model the variation of carrier lifetime with
generation rate, combine Eq. 61 and Eq. 62, neglecting the depletion width, W, which is
much smaller than the diffusion lengths. Assuming the mean lifetime for holes and

electrons is approximately equal yields an expression for the light-generated current.

I =e(y/D, +{/Dy N7 G (65)

The effect of the recombination mechanisms can be combined to form an effective

carrier lifetime (Green, 1982).

l=—l—+l wherer=—C2— (66)
T Tt Ta n

The suBscript T refers to recombination by traps and A refers to Auger recombination.
The carrier lifetime is inversely proportional to the square of the carrier concentration
(Pierret, 1987) as shown in Eq. 66. For a standard device, the total concentration of the
majority carriers is simply the doping level, but for the microscale device the total carrier

concentration, n, is the sum of the carrier concentration when dark and when illuminated.

where Np is the imparity dopant concentration. Note that the lifetime due to Auger
recombination is used in Eq. 67, since at high generation rates, the carrier concentration
will be large enough that Auger recombination dominates. For the p-side of the junction,

N4 replaces Np.
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Consider the light-generated current when the gap size is large enough that the

generation rate is close to that for the standard thermophotovoltaic devices. The lifetime

can be estimated by simplifying Eq. 67 with the assumption that:

Grt, << Np
Since trap recombination dominates:
1_(Mp) 1
T C Tt

and the light-generated current at large vacuum gap size is:

IL ze(\/D_e+ﬁ)ﬁG
=ely G

=e [[0,10.|dE
Eg

(68)

(69)

(70)

Here, Ly, is the diffusion length at large spacing. The light-generated current is

proportional to the injected volumetric carrier generation rate, G.

When the emitter and receiver are brought close together, the carrier injection rate

increases. In this limit, Auger recombination dominates:

n=Gr,
The carrier lifetime becomes:
¢ _1
T Gzri TA
c Vs
TA = ?

and the light-generated current at small vacuum gap size is:
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I = (D, +Dy )C% G7 (73)

As the carrier generation becomes larger, recombination reduces the rate by which
the current is generated; the light-generated current is proportional to the 2/3 power of the
generation rate. The current still increases with generation rate as the photons tunnel with
decreasing vacuum gap size. The light generated current will not increase as quickly as
the incident power and, therefore, by Eq. 63, the efficiency will decrease.

The model developed here uses the large spacing result of Eq. 70 as a reference to
explore the effect of vacuum gap size on the performance of microscale
thermophotovoltaic devices. The carrier generation rate is defined in reference to the

active region at large spacing from Eq. 70:

of[cpp lQe] dE = (74)

RE it}
Lo ;, Ly
where @, is the total photon flux. The light-generated current from Eq. 65 becomes:

I, = (/D ++/Dy ) VTG =eLG
L

=e—¢p

L,

(75)

where using Eq. 69, the ratio of active regions is given by:

L T C %
LS

12
= 1-+(:3333[£9)}§
Np

(76)

To summarize, the microscale thermophotovoltaic device performance is
characterized by an efficiency, which compares the maximum output of the diode

junction to the incident power:
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Pm
n= = (77)
Pinc Pinc

where the open-circuit voltage and fill-factor are given by Eq. 59 and the short-circuit

current is:

I.=1 = P (78)

where @), = T[‘ppAQe]dE

Eg

This device model requires as inputs the quantum efficiency, dark saturation
current, dopant concentration, and device temperature. Modeling these parameters for
particular materials is discussed in the next chapter. In addition, the diffusion coefficients

and optical constants of the materials that make the pn-junction must be modeled.

5.3 Modifications to the Fluctuational Electrodynamic Approach

The performance of microscale thermophotovoltaic devices can be evaluated using
the fluctuational electrodynamic analysis presented in Chapter 2 to predict the increase in
the flux of photons due to the small vacuum gap size. In order to avoid the erroneous
applicat‘ion of the theory to microscale thermophotovoltaic energy conversion, it must be
ascertained that the present formulation meets the operating conditions associated with
thermophotovoltaic devices. This section examines the ability of the theory to account
for the large temperature difference between the emitter and receiver and presents a

formulation applicable to thermophotovoltaic devices.

5.3.1 Consideration of the Equilibrium Fluctuation-Dissipation Theorem
The fluctuational electrodynamic approach to radiative transfer uses the fluctuation-
dissipation theorem to characterize the statistics of the random currents, which give rise

to the thermal radiation. As discussed in Chapter 4, the fluctuation-dissipation theorem is
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strictly valid for thermodynamic equilibrium. When conditions of local thermodynamic
equilibrium exist, however, the theorem still provides accurate modeling of the statistical
behavior of the system. Local thermodynamic equilibrium exists when the population of
energy states that take part in the absorption and emission process are given, to a very
close approximation, by their equilibrium distributions (Siegel and Howell, 1981).

When the radiation flux becomes large, the population of high energy states occurs
so strongly that the collisional processes cannot re-populate the lower states adequately
enough to maintain the equilibrium distribution. Such conditions exist when very fast or
very energetic radiative transfer takes place (i.e. shock phenomena, nuclear explosions,
short-pulse laser). An order of magnitude calculation shows that local thermodynamic
equilibrium exists for the moderate temperature conditions of interest for
thermophotovoltaic systems.

From the derivation of Planck's distribution, the flux of photons in a black-body

cavity at a temperature, 7, in the frequency range dw that impinge a cavity wall is:

o’*dw photons
3
n2c3| exp ho ) 4] ™
2nky, T

So that the total photon flux over all frequencies is:

cop=c (79)

@, = chbbda)
0

(2T YT wdu
~,.( 2 J £ exp(u)—-ldw (80)

photons

~2.5x101°713
m2K3s

For a metal such as gold, the number of free electrons within the penetration depth, 4,

near the surface is:
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NeszA"xa
My,

(19300)6.02 x 1026
- 197 @D

electrons
~6x1020 =200

m?

where p is the material density, N, is Avogadro's number, and My, is the molecular

weight. For local thermodynamic equilibrium, there must be many more electrons than

photons:
N, >> PpT (82)

where 7 is the electron-phonon interaction time, which characterizes the relaxation time
required for an electron to return to its equilibrium state. For a Drude material, the

relaxation time is related to the dc electrical conductivity.

(83)

where N is the number density of free electrons and m is their effective mass. Table 3
shows the estimate of the electrons within a penetration depth of the surface of gold
compared to the number of photons from a heat source at 2000 K that penetrate the
surface within a relaxation time. The temperature dependence of the dc electrical
conductivity was obtained from the Bloch-Griineisen formula (Wilson, 1953), and the
electrical resistivity was calculated using Matthiessen's rule (MacDonald, 1956), using
the room-temperature resistivity data reported by Dyos and Farrell (1992).

Table 3 indicates that local thermodynamic equilibrium conditions exist for
thermophotovoltaic systems since the electron-phonon interaction is suitably rapid and

the flux of photons is not large within the short interaction period. The equilibrium
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surface dc conductivity |  relaxation Pp Pyt Ng
temperature time
s 1/(Qm) s photons/(m2 s photons/m2 | electrons/m2
77 223x106 1x10-13 2x1025 2x1012 6x1020
300 44x108 3x10-14 2x1025 6x1011 6x1020
2000 7x106 4x10-15 2x1025 8x1010 6x1020

Table 3: Estimates of the electron and photon number density for local
thermodynamic equilibrium considerations.

fluctuation-dissipation theorem, therefore, is valid for analysis of thermophotovoltaic
systems.

The particular form of the fluctuation-dissipation theorem used in the formulation
presented in this thesis is based on a linear relationship between the current and the
electric field in the surface of interest. As discussed in Chapter 4, when such a linear
relationship such as Ohm's law is valid, the fluctuational electrodynamic analysis yields a
linear set of differential equations. For the case of the normal skin effect, such a linear
relationship is valid and a linear form of the fluctuation-dissipation theorem can be used.

Careful attention must be paid to the electronic transport in the receiver. If Ohm's
law is not valid, a fluctuation-dissipation theorem that can account for the spatially
varying electromagnetic field must be developed. Like the problem of applying the
present theory to the low temperature measurements of heat flux examined in Chapter 4,
limitations of the theory may be encountered when examining the performance of
thermophotovoltaic devices at low temperature.

5.3.2 Fluctuational Electrodynamic Formulation for Large Temperature
Differences
In order to calculate the flux of photons and the net incident heat flux, a formulation

similar to Chapter 3 is derived for the case of two plane parallel surfaces of different
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permittivity and a large temperature difference. Consider the isotropic formulation

presented by Eq. 12 and Eq. 13. The denominator of the proximity integrals is:

A= (.’2!_ +k )(kl_2 +k )eszd - (E_ZL -k ](kZ_Z —k Je_kad (84)
Zv Zv v rAY
3] %) & 1)

Rearranging:
k,, k - k -
4= ka(—I;L + ﬁ)(ekud +eknd ) + (kZZV _ .ﬂkZ_Z](ekad _ okl )

(85)

by @ & ] sinh(k;,d)

Let the sum and product vectors be defined as follows:

ky k
& &
k, k
z,= k2v+_1_A£
sz € €

Z,

(86)

And so the denominator of the proximity integral becomes:

I = dlky, 12| 1+ sinh?(k,, d){ 1+

Zg

2 Zp .
r +Re| —= smh(2kzvd) for k,, real

L. \
[ r

= 4k, 12| 1+ sinh(k,, d){1 -

(87)

wN -cN mN -cN

P (%), .
+ilm 7 smh(Zkad) for k,, imag.
S

With similar substitutions, the proximity integrals can be rearranged, making the
wave vector explicitly purely real or imaginary. The following relations provide the
effect of spacing for the radiative transfer of thermal energy between surfaces of isotropic

materials with different complex permittivity and the permeability equal to unity.
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xdx
|zs|2[1 + sinhz(xd){l +|z, /zs|2} +Re(z, /Zs)sinh(2xd)]

k k, k
where Z; =L+ 22, 7 =f +Li'—33-, and x =k2 - k2.
& & ke, €1 €

e = | i /) im(ic, ) @)
0
k,,

lear = "f Im(kzl /81 ) Im(kZZ /82) xdx (89)
0 |Zs|2[1 - sinz(xd){l ~|2,/z |2} — Re(Z, /2, )sin(2 xd)]

where Z; = kz' 2y 22 kzy v Zy=k 1 kz‘ kzz , and x—\sz k2

€] ) v kz g &
= k
- J' ( ) 2( 2 xdx (90)
0]Z| [1 + smhz(x'd){l +| } + Re( > /Z sinh(2 xd)]
where Z; =k, +k;,, Z, =k, +-22 kz‘kn ,and x = \f Z_p2,
kzy
Mfar _ j Im(k )Im(kzz ) xdx (9 1)
0|Z| [l s1n2(xd){l /z| }— Re(z, /zs)sin(2xd)]

,andx—\/kz—kz

The proximity functions are only functions of the vacuum gap size, d, and the

where Zg =k, +k;y, Z, =k,, _ kb
14

k,

permittivity of the surfaces, €, and £,. With Eq. 88 through Eq 91 for the proximity
function M, and the mean energy of a quantum oscillator, ©, from the fluctuation-
dissipation theorem (Eq. 8), the energy flux from material 1 to material 2 due to the

fluctuational electrodynamic field is:

Plz(w)="?2"{Ml+M.L}=% (92)

and the spectral photon flux is:
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P r(w) 2=x
‘Dp/'l. = ———IéP = RPIZ(O’) (93)
With Eq. 93 and Eq. 78 for the efficiency, the power produced in the microscale
thermophotovoltaic device and the efficiency can be determined as a function of gap size.
Such an analysis requires the modeling of the permittivity of each surface as a function of

temperature, alloy composition, and frequency. For the device characteristics, the

quantum efficiency, dark current, and doping level of the pn-junction are also needed.
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Chapter 6

Performance of Microscale Thermophotovoltaic Devices

This chapter presents the performance of the proposed microscale thermophotovoltaic
devices modeled in the previous chapter. First, predictions for the optical constants of the
materials, which constitute the emitter and receiver, are presented and compared to
experimental measurements from literature. Next, expressions for the device parameters
are developed. The results of the predicted performance are presented and the influence
of temperature, alloy composition, and vacuum gap size are discussed. An analysis of the
limitations to microscale thermophotovoltaic energy conversion in reference to the
Second Law of thermodynamics is discussed. In the final section, important
considerations for the future development of microscale thermophotovoltaic devices are
presented. A parameter space is defined as a guide to potential developments of new

materials for the future improvement of thermophotovoltaic energy conversion.

6.1 Modeling Material Properties

The permittivity over the entire frequency range is required for the calculation of
the photon flux and net heat flux. The permittivity is related to the optical constants of
the material (i.e. the refractive index, n, and the extinction coefficient, k) by the following
relation:

e = (n+ix)? (94)

In this section, models for the optical constants for the emitter and receiver are presented.
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6.1.1 'Receiver: Optical Constants

The materials examined in this thesis are chosen to investigate the two main
objectives of this evaluation of microscale thermophotovoltaic energy conversion: (i) to
explore improvements to existing thermophotovoltaic technology, and (ii) to explore the
best possible performance by optimizing the material properties and operating
temperatures. To examine the improved performance of existing technology, the receiver
is modeled as a pn-junction fabricated from In,_,Ga, As, since this material is widely used
to fabricate thermophotovoltaic devices (Coutts and Benner, 1995). To explore the best
possible performance, the ternary alloy Hg,_,Cd, Te is used to model the material of the
device. This material has a high conversion efficiency at long wavelength, making it
ideal for converting the near-field energy as the vacuum gap decreases. Its wide-spread
use for far-infrared detectors provides a large body of experimental data from which to
model a hypothetical pn-junction for thermophotovoltaic energy conversion (Kruse,
1981).

Note that for the relations in this section, the units of energy, E, frequency, , and

wavelength, 4, are eV, cm-1, um, respectively.

In, ,Ga,As

Indium gallium arsenide is a III-V ternary compound semiconductor with a direct
band gap that can be varied from 0.35 eV (x=0) to 1.42 eV (x=1) (Wojtczuk et al., 1995).
This alloy has a high electron mobility making it an ideal material for fast opto-electronic
devices (Heime, 1989). While this material's electronic properties have been well-
studied, it has only recently been used for photo-diode applications, and therefore, the
data for permittivity are scarce. As In; ,Ga,As continues to be used for such devices,
more data should become available. Since the standard thermophotovoltaic device
fabricated from these alloys is operated at room-temperature to minimize the cooling

load, only the room-temperature performance is investigated.
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Wojtczuk et al. (1995) report the band-gap energy as a function of lattice constant.
A curve fit to their data yields an expression for the band gap, Eg, in eV as a function of

alloy composition, x, at 300 K.
Ey(x,T)=0.35+0.5x +0.59x (95)

For photons with an energy just below the band gap, there is no absorption. Not
until the photon energy is far below the band gap does absorption increase, although at
such low energy, new minority electrons or holes are not created. The optical behavior in
this regior: is determined by the lattice oscillations, free-carrier absorption, and opticai
phonons. Because the thermal energy being radiated at such frequencies is small
compared to that at the peak, a rough model for the absorption will suffice. The
permittivity used here is based on the fitting parameters for p-type GaAs at room
temperature (Hebb, 1993), excluding the contribution of intersubband transitions, since

the error is very small. The permittivity in this region is:

e(w)y=¢,+¢€, (w,z_ - w%)/(w%—wz-—iwl‘) - ao:/(co2 + ico/r) (96)

where wp, and wr are the longitudinal and transverse phonon frequencies and I' is the
damping ccefficient. Palik (1985) gives w;=292.1 cm! and wr=268.7 cmr! and I'=2.4
cm-l. The permittivity, £, is the value of {w) at frequencies very much larger than the
phonon oscillations in the absence of free carriers, which Hebb (1993) gives as 11. The
last term describes the contribution of the free carriers, where @, is the plasma frequency,
and 7 is the scattering time. The plasma frequency and scattering time are related to the

free carrier density , N, and the mobility, u, through:

2 Ne2
Wp =—%
n ﬁo 97)
T= ”m
e
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where m* is the effective mass of the charge carrier. Hebb (1993) provides a rationale for
using m*=0.5mg and 7=2x10-14s,

Above the band gap, the dominant shape of the variation of the permittivity is
determined by transitions between the various electronic bands. Yakovlev (1994)
performed ellipsometric measurements in the near-ultraviolet, visible, and near-infrared
for x=0, 0.7, 0.8, and 1.0. For this study, Yakovlev's data were tabulated and a linear
interpolation between the values for x at any particular frequency was performed to
calculate the optical constants.

The dispersion in the refractive index near the band gap is less than 1% and so for
the range of energy 0.05 eV to 1.5 E, an average result is obtained by interpolating

between the low-energy values reported by Yakovlev (1994):

n=,le, =332 (98)

For the extinction coefficient near the band-gap energy, a simple relation from

Amirtharaj (1991) is fit to the data of Jain et al. (1996).
x=ﬁx B(1+ x),[E— Eg where p=2.12x10* (99)

where Aisincm, Tin K, and E in eV.

Figure 26 shows the optical constants for indium gallium arsenide at 300 K as a
function of snergy of the photon. Notice that there is good agreement between the
available data and the model used in this thesis. Increasing the relative amount of
gallium in the alloy causes the band-gap energy to increase. As a result, the absorption
edge appears at a higher frequency. This ability to alter the location of the absorption
edge permits tuning of the diode to match the peak in the spectrum of energy from the

enitter.
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Figure 26: Comparison of the predictions and measurements of
the optical constants of Inq_,Ga,As at 300 K.
Hg,; ,Cd,Te
Mercury cadmium telluride is a II-VI ternary compound semiconductor belonging
to the zinc-blende family, and therefore, has much in common with well-known materials
GaAs and InP. The shape of the permittivity is very similar for most materials in this
family, but the precise energy positions of spectroscopic features vary from material to
material. The direct gap can be varied from 0 eV (x=0) to 1.6 eV (x=1), which is below
the lowest limit of the III-V family of materials. Such a low band-gap energy makes
Hg,_ ,Cd,Te ideal for infrared detection (Reine et al., 1981).
The distinct regions of absorption depend on the energy of the photon in relation to
the band-gap energy. Hansen et al. (1982) derived the following expression for the band

gap by analyzing the experimental data in the literature.

 Eg(x,T)=-0.302+193x+5.35x 107 T(1 - 2x) - 0.810x> +0.832x>  (100)

which is valid for O0< x <0.6 (plus x=1) and 4.2 K<7<300 K.
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Oscillator w; S,- 1]
cm’! em-!

1 110 0.3 10

2 123 5.6 3

3 134 0.7 9

4 141 0.15 6

5 149 0.9 4

6 153 0.35 6

7 157 0.15 4

Table 4: Oscillator parameters for the dielectric function of Hgy.xCdyTe for
photon energy below 0.05 eV.
At energy far below the band gap, the optical behavior is determined by the lattice
oscillations, free-carrier properties, impurity transitions, and band-to-band transitions in
the narrow-gap alloys. Amirtharaj (1991) reports parameters which fit the classical form

of the permittivity for photon energy less than 0.05 eV:
7
8(0) = e, + X 57 (0)/(0}-0?-ior)) - 0? (o +iayr) (101)
J=1

where o is the frequency and the lattice oscillations are treated as damped oscillators with
strength, S;» frequency @, and damping I;, and €, is the value of g(w) at frequencies very
much larger than the lattice oscillations in the absence of free carriers (i.e. Amirtharaj
(1991) gives a value of 16). The last term describes the contribution of the free carriers,
where w,is the plasma frequency, and 7 is the scattering time. The plasma frequency and
scattering time are related to the free carrier density, N, and the mobility, u, through by
Eq. 97. Table 4 shows the parameters for the seven oscillators.

Above the band gap, the dominant shape of the variation of the permittivity is
determined by transitions between the various electronic bands. Aspnes and Arwin

(1984) performed ellipsometric measurements in the near-ultraviolet, visible, and near-

infrared for x=0, 0.2, 0.29, and 1.0. For this study, their data were tabulated and a linear
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interpolation between the values for x at any particular frequency was performed to
calculate the optical constants.

The feature of most studied is the increase in absorption in the vicinity of the band
gap due to its importance in optic-electronic devices. The dispersion in the refractive
index in this region is less than 1% and so for the range of energy 0.05 eV to 1.5 E, the

average result reported by Finkman and Nemirovsky (1979) is used.

n=2.65+1.17(1-x)? (102)

For the extinction coefficient, a simple relation from Amirtharaj (1991) provides a

reasonable model for the absorption near the band-gap energy.
=2 5 -
K= 4ﬂx2.109x10 [(1+x)/(T +81.9)\[E-E, (103)

where Aisincm, T in K, and E in eV.

Figure 27 compares the prediction of the optical constants of Hg ¢Cd ,Te at 300 K
using the relations reported above to actual measurements over the entire range of
frequency needed for this study. The data are taken from a number of sources as
compiled and reported by Amirtharaj (1991). There is very good agreement between the
data and the prediction. Figure 28 indicates the effect of alloy composition for
Hg, ,Cd,Te at a temperature of 300 K. Note that as the amount of cadmium in the alloy
composition increases, the absorption edge occurs at higher frequency and decreases in
magnitude. For Hg, ,Cd,Te at low temperatures, the absorption edge increases in
magnitude as indicated in Figure 29.

Comparison of Fig. 26 and Fig. 27 reveals that the absorption edge of the mercury
cadmium telluride alloy can be extended to lower energy than that of indium gallium

arsenide. This feature makes the Hg,;_,Cd, Te alloy ideal for far-infrared applications.
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Amirtharaj (1991).
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rigure 29: Effect of alloy composition on optical constants of Hg¢.,Cd,Te at
77 K; calculated from theory fitted to measurements from Amirtharaj
(1991).
6.1.2 Receiver: Carrier Mobility and Lifetime
In order to account for the reduction of the active region as the generation rate

increases due to the small vacuum gap, it is necessary to estimate the diffusion coefficient

and carrier lifetime. The diffusion coefficient is related to the mobility by Einstein's

relation (Pierret, 1987).

.t

The minority carrier lifetime can vary a great deal depending on the doping and
dominant recombination mechanism (Pines and Stafsudd, 1980). For the microscale-
device model presented in the previous chapter, an estimate only for the lifetime due to
the doping (trap recombination) is needed, since Auger and radiative recombination is

assumed to vary with the inverse second power of the minority carrier concentration
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(Green, 1982). This model is an estimate, accurate for a feasibility analysis, that captures

the most important results of more detailed studies of carrier lifetime (Anderson, 1977).
By setting the carrier lifetime due to trap recombination, the constant in the

expression for the mean carrier lifetime is determined. From Eq. 69 and Eq. 72, the

carrier lifetime is:

1 1 1
—_— e— + ——
T T TA
1/3 1
1 [ G? (105)
=—< o)
T N

To estimate the size of the active region, the intrinsic carrier concentration, mobility, and

carrier lifetime due to traps are needed.

In, ,Ga,As

Most applications using gallium arsenide-related compounds attempt to exploit the
ability of these alloys to match the lattice constants of the substrate (often InP) to produce
unstrained layered structures (Miller and Mullin, 1991). Lattice-matching occurs for
x=0.47, so many of the material properties reported in the literature are limited to this
composition. Here, this value of the mobility is assumed to represent the mobility at all
alloy compositions. Olivia and Eastman (1980) studied the mobility of gallium arsenide

as a function of dopant concentration and obtained the following relation valid at room

temperature.
feon. = 1 m?
GaAs —
1+ \/N_DiN_A Vs (106)
1053

BimGaas = 1-5Gaas

where dopant concentration, Np and Ny, are in nmr3. The mobility of holes is assumed to

be 0.01 times that of the electrons.
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Ahrenkiel et al. (1995) present measurements for the recombination lifetime in
In;_,Ga, As. Their results show that the bulk recombination lifetime (Shockley-Read-Hall
lifetime) is very high due to the high quality of their samples. They report an observed
value of 2.9 ps, which is used herein for the trap recombination lifetime. This parameter
is the most difficult to model since it depends on the dominant mechanism of
recombination and the quality of the fabrication of the devices (Green, 1982; Pierret,
1987). Rather than try to estimate a parameter that may vary to such a great extent, a
single lifetime is adopted so as to give a reasonable result without obscuring the influence
of the other parameters. A closer examination of the influence of carrier lifetime on the

overall efficiency is examined in the Section 6.3.

Hg, ,Cd,Te
Carrier mobility for Hg,_,Cd, Te is evaluated by generating a relation to fit the

available Hall mobility data. Rogalski (1988) gives an expression that approximates the

data for 0.2<x<0.6 is:
4 _ 715
_9x10% b-(0.2/x)06 (107
VA a=(0.2/x)"
where mobility has units of m? V-! s-! and Z is defined as:
forT>50K Z=T
(108)

for TSS0K  Z=118x10°/[2600 - (T-25)>""]

The hole mobility may be estimated at 0.01 times the electron mobility. For p-type
materials, the mobility is expected to be reduced by a factor of approximately three
(Rogalski, 1988).

Rogalski (1987) reports a carrier lifetime due to trap recombination of 0.1 ps and

herein is assumed constant with temperature. Like the In;_,Ga, As materials, this lifetime
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Figure 30: Comparison of the influence of dc conductivity on the
spectrum of energy at small and large vacuum gap.

is used as an input parameter whose effect on the device performance is examined in

Section 6.3.

6.1.3 Emitter Optical Constants

This study is focused on determining the effect of microscale radiative transfer on
the performance of thermophotovoltaic devices. As a result, it is necessary to extract the
effect of material properties of the emitter from those of the receiver. The emitters
currently being examined in the literature vary in material from amorphous silicon
carbide to the rare-earth oxides, which permit selective emission in particular frequency
ranges.

An attempt was made in the present study to establish the effect of dc conductivity
by modeling the emitter as a metal with the simplified form of the Drude model for the
optical constants. The emitter conductivity can have a prominent effect on the spectral

distribution of incident photon energy as shown in Fig. 30. For highly conductive
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materials such as gold, the reflectivity is so high that the net flux at large spacing
becomes low and then net power out of the device is lower than for a dielectric. For
sufficient power output, a material with low conductivity is needed, i.e. a dielectric.
Figure 30 shows that at small spacing, an emitter with a dielectric surface encourages an
enhanced energy distribution at low energy, meaning that efficiency of the device will be
low. Clearly a trade-off must be made between high conductivity for attenuation of low-
energy photon flux at small vacuum gaps and low conductivity for sufficient power
output.

The main focus of this study is the design of the device from the viewpoint of the
receiver. To reduce the effect of the emitter optical constants, the emitter is modeled as a
Drude material with a low conductivity. Figure 30 shows that such a model produces a
spectrum of energy that approaches the dielectric results at both small and large vacuum
gap, because, unlike the Hagen relation used for the metal optical constants, the full
Drude expression produces a non-zero permittivity at photon energies near the band-gap.
This model, with a low conductivity, ensures a black body-like behavior since it provides
a weakly absorbing response to the incident radiation thereby keeping the reflectivity low
and the magnitude of the permittivity is close to unity. This model will be used in all

subsequent calculations for the emitter permittivity.

6.2 Modeling Receiver Device Parameters

The quantum efficiency and the dark saturation current of the thermophotovoltaic
cells are the two device characteristics that are strongly dependent on the material
properties introduced in the previous session (carrier mobility and lifetimes) (Borrego et
al.; 1995). In turn, these properties influence the device performance. This section

presents the models that can predict these parameters.
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Figure 31: Quantum efficiency for iny_,Ga,As at 300 K; showing

the curve fits for x=0.5 and x=0.7 for the
measurements from Wojtczuk et al. (1995).

6.2.1 Quantum Efficiency

The quantum efficiency accounts for the fractional amount of minority carriers that,
while generated by photon absorption, do not contribute to the light-generated current due
to recombination or tunneling effects. This parameter depends greatly on the manner in
which a particular cell is fabricated, but the general effect is demonstrated by the

measurements of Wojtczuk et al. (1995). Figure 31 shows their data for In;_,Ga,As with

the curve fit model used in this study. The curve fit is a third order polynomial:
Q. = ay + ayA + azA? + ayA> (109)

where A is in pm. The quantum efficiency is very low outside the wavelength range
shown in Fig. 31; it is assumed to be zero outside the range: 0.8 um < A < ;. For the
calculation of the photon flux, only the portion of the spectrum for which the quantum

efficiency is greater than zero, is used.
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Coefficient A; B; G D;

a, 198.9 -945.5 1454 -733.0
ar -5633.3 2539 -3932 2004
a3 421.1 -2007 3129 -1607
a, -103.4 492.6 -770.4 397.7

Table 5: Coefficients for the polynomial curve-fit of Eq. 110 to
measurements of quantum efficiency in Fig. 31.

Another curve fit was used to express the empirical x-dependence of each

coefficient:

@ = A + Bx+Cix* + Dix> (110)

The values of Aj, B;, Cj, and D; determined by a computer fit are shown in Table S.

For mercury cadmium telluride, a quantum efficiency of unity is assumed for
photon energies above the band-gap energy and zero below. This assumption is made
since thermophotovoltaic devices are not made from this material. In addition,
Hg, ,Cd,Te is used here to study ideal performance, and thus this model for quantum

efficiency provides an upper bound to the performance characteristics.

6.2.2 Saturation Current

The saturation current is the reverse current that results when the photo-diode is
dark and has no voltage bias; it is the pre-exponential factor for the expression of the dark
current (Green, 1982). When in the dark, the minority carriers move by diffusion through
the depletion region of the diode. Accounting for the current of electrons and holes

produces the ideal diode law, and thus the saturation current (Green, 1982):

1d="D°"i2+eDh"i2=en?( D. + VD ) (111)
LNy LyNp Na+te  Npm
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Using the parameters in the previous section and Eq. 62 for the diffusion length, the
saturation current as a function of the material's band-gap energy can be determined.

To predict the saturation current, the intrinsic carrier concentration, n;, is needed.
For In;_,Ga, As the intrinsic carrier concentration can be calculated by using the scaling
relation described by Jain et al. (1995). A curve fit to the data reported by Jain et al.
(1996) yields the carrier concentration as a function of band gap energy for In, ,Ga, As at

300 K.
n; =1.86x10* exp(~19.1 Eg) m™3 (112)

For Hg, ,Cd, Te, Hansen and Schmit (1983) model the intrinsic carrier concentration with
a relation for the band gap using the most recently available fundamental parameters.

Their approximate expression for the intrinsic carrier concentration (in units of m-3) is:

n; = (5.585-3.820x +1.753x 10T~ 1364 x 1071T) x

(113)
102 EXY*1%2 exp(-E, / 2k, T)

The saturation current determined for a device made of In;_Ga,As is shown in
Fig. 32 along with measurements of actual dark current by Wilt et al. (1995) and
Wojtczuk et al. (1995). The broken line indicates the prediction using Eq. 111 with the
intrinsic carrier concentration from Eq. 112. The result under-estimates the dark current
measured on actual devices by a factor of several orders of magnitude. To obtain realistic
performance estimates, the saturation current is fitted to the measured data by adjusting
the intrinsic carrier concentration by a factor of 11.32.

Choosing to adjust the carrier concentration is reasonable, since it depends of the
quality of the actual diode. In addition, the dark current depends on the second power of
the carrier concentration and only weakly on the carrier lifetime and diffusion coefficient.

Because the intrinsic carrier concentration enters the model of the device performance
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Figure 32: The saturation current for a pn-junction made from
heavily-doped Iny_,Ga,As.

only through the dark current whereas the mobility and carrier lifetime affect the active
region of the diode, its choice as an adjustable parameters is justified further. For this
reason, ihe intrinsic carrier concentration is fixed to fit the dark current while the mobility
and carrier lifetime become design parameters to examine the performance of the device.
The saturation current determined for a device made of Hg,_,Cd,Te is shown in
Fig. 33. Reine et al. (1981) report measurements of the RpA product which accounts for
all the current losses in a diode, including surface recombination, tunneling, and contact

resistance. From this product, the overall current losses can be estimated:
R0A= T—’— ka/Id (114)

where n is the minority carrier concentration (=n;2/Np). At low temperature, the
prediction and measurements agree, but at higher temperature the intrinsic carrier

concentration must be increased. For Hg, ,Cd,Te, the value is 36.5. Note that the
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Figure 33: The saturation current for a pn-junction made from
heavily-doped Hg.,Cd, Te.

Hg,.,Cd,Te has a higher dark current than In; ,Ga,As at 300 K. This will limit the

performance of these devices, but it may be offset by their lower band-gap energy.

6.3 Enhanced Performance Due to the Spacing Effect

6.3.1 Performance at Large Vacuum Gap

The performance of the proposed thermophotovoltaic devices is determined from a
numerical integration of the photon flux in the vacuum gap over all frequencies (Eq. 78).
For details of the numerical integration, see Appendix A. The photon flux determines the
magnitude of the short-circuit current generated in the device, which in turn determines
the voltage and thus the power. Figure 34 shows the variation of the device output for a
diode fabricated from In;_ ,Ga,As with various alloy compositions. The source has a
temperature of 2000 K and the vacuum gap is large. Figure 35 shows the result for a

Hg,_,Cd, Te under the same conditions. The output power density is representative of
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Figure 34: Current, voltage, and maximum power output at large
vacuum gap of a pn-junction made from heavily-doped
Iny.xGa,As.

those actually achievable. Krist (1995) reports values of 1.5-3 W/cm? in their device,
which operates with a source at 1700 K. Given the difference in emitter temperature, the
prediction is quite close to actual system performance.

The results indicate that there is an alloy composition at which the power output
reaches a maximum. This arises from the behavior of the saturation current, which
decreases with band-gap energy as shown in Fig. 32 (Green, 1882). A decrease in
saturation current causes the voltage to increase with band-gap energy. The short-circuit
current, however, exhibits the opposite trend: it decreases with band gap, since less of
the incident power can be absorbed owing to a shift in the absorption edge. This result is
typical of the performance of solar cells, for which a maximum power output occurs at a
band gap in the range of 1.4 to 1.6 eV (Green, 1982). Figures 34 and 35 indicate that the
peak power occurs for a band-gap energy near 0.6 eV for In;_,Ga, As and about 0.64 eV
for Hg,_,Cd,Te.
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Figure 35: Current, voltage, and maximum power output at large
vacuum gap of a pn-junction made from heavily-doped
Hg1.4CdyTe.

The net power is nearly the same for the two materials despite the higher dark
current of Hg,_,Cd,Te. The results show that the short circuit current for Hg;_ ,Cd, Te is
about 1.2 times greater than that of In;_,Ga,As. This arises from the difference in the
magnitude of the permittivity at high photon energy. The magnitude of the permittivity
of In;_,Ga, As remains constant at about 11 above the band gap (see Fig. 26), where as for
Hg, ,Cd,Te it is about 8, for a ratio of 1.4. At large spacing the fluctuational

electrodynamics approach produces a net flux inversely proportional to the magnitude of
the permittivity. For the device performance, this means that the Hg, ,Cd,Te devices

produce slightly more power.

6.3.2 Influence of Temperature
As the temperature of the emitter is increased, more current is generated producing

more power output. Figure 36 indicates the effect of increasing the emitter temperature
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Figure 36: Variation in efficiency due to temperature of the emitter
for an In4_4Ga,As device.

on the efficiency of the device. In the thermophotovoltaic literature, the efficiency is
defined as the output power over the total incident power above the band-gap energy.
Here, the efficiency is the power output over the total power of the entire spectrum, thus
staying with the more traditional definition. An increase in emitter temperature to 2000
K from 1000 K produces an increase by a factor of almost 5. As indicated in Figure 21,
the device becomes very inefficient at low emitter temperature where a substantial
amount of the incident power is carried by photons of energy below the band-gap energy.

There is also a shift in the location of the maximum efficiency. As the temperature
decreases, the net flux of photons also decreases, directly affecting the magnitude of the
short-circuit current. The open-circuit voltage decreases more slowly with temperature,
because, it depends on the natural logarithm of the ratio of short-circuit current to dark

current. Since the current decreases more quickly than the voltage, their relative
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Figure 37: Variation in efficiency due to temperature of the
receiver for a Hgy.xCdyTe.

magnitude decreases, resulting in a shift of the maximum efficiency to lower energy at
lower emitter temperatures.

It is worthwhile to determine the effect of lowering the temperature of the receiver,
since the dark current can be substantially reduced. (Infrared detectors made from
Hg,_,Cd,Te normally operate at low temperature to decrease the noise for improved
detector response (Reine et al., 1981).) Figure 37 shows the effect of alloy composition
on the efficiency for a Hg, ,Cd,Te diode cooled to 77 K with a source at 2000 K. The
decreased dark currert provides a substantial improvement in the performance by more
than doubling the maximum efficiency. This increase occurs because of the large
decreasé of dark current despite a decrease in the thermal voltage, which tends to lower
the voltage generated.

The maximum efficiency shifts to lower band gaps because a lower dark current

increases the voltage relative to the current. The optical constants near band gap,
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Figure 38: Spectrum of energy flux from the emitter to the
receiver at various vacuum gaps for an Inq_,Ga,As
device.
however, are relatively insensitive to the temperature, meaning that the photons absorbed,
and thus the current generated, remain approximately unaffected by the cooler receiver.
For terrestrial systems, the cooling costs incurred for maintaining the receiver
temperature may prove prohibitive. For space-borne applications, however, where

cooling may not prove a problem, a lower receiver temperature may prove beneficial

since the potential for improved efficiency is large.

6.3.3 Influence of Vacuum Gap on Energy Density

As the vacuum gap between the receiver and emitter becomes small, the effects of
the near field become important for determining the photon flux. As discussed in
Chapter 3, this enhanced flux varies significantly from the result of Planck's distribution
for the energy density in a cavity at thermodynamic equilibrium. The results of a
numerical prediction of the uni-directional energy flux (from the emitter to the

In,_,Ga,As receiver) for a vacuum gap of 0.01 um and 0.1 pm is shown in Fig. 38.
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Figure 30 shows the results of a similar computation for Hg,_,Cd,Te. These figures also
include the result for a large vacuum gap, where only the traveling waves contribute to

the energy flux.

The flux of energy from the emitter to the receiver increases over the entire energy
range at a sufficiently small vacuum gap. (The details of the energy spectrum at
intermediate vacuum gaps is discussed in the last sub-section of Section 6.3.) Note the
decrease in the energy distribution for photons of energy less than the band gap. This
decrease is a result of the extinction coefficient being nearly zero over a significant range
of energy below the band gap. The power density increases again as phonon- and free-
carrier absorption begins to dominate at low energy. Such absorption decreases the
efficiency since the energy is insufficient to create an minority carriers, and therefore, the
energy is absorbed without contributing to the current.

It is instructive to examine the ratio of power in the spectrum above the band-gap,
to the total incident power incident on the diode. Figure 39 shows this ratio as a function
of vacuum gap for several alloy compositions. For the In;_,Ga,As device, the ratio of
power above the gap decreases initially, before returning to its large spacing value. As
the vacuum gap decreases, fewer traveling waves of the far field can fit within the space
between the emitter and receiver. A decrease in power across the spectrum results, but
the first part of the spectrum to tunnel across the vacuum gap is the low energy portion
since the wavelength is longest in the region. As a result, the fraction of energy above the
band gap will decrease initially until the far-field effect compensates. For In;_,Ga,As,
the ratio does not increase above its value at large gaps, because the band-gap energy is
not sufficiently below the peak in the spectrum for an emitter at 2000 K (0.85 eV).

The Hg,_,Cd,Te receivers have a much higher fraction of energy above the band
gap, and exhibit a substantial increase with spacing. For band-gaps sufficiently below the

peak in the spectrum, almost the entire incident power is at high photon energy. As the
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Figure 39: The fraction of the incident energy flux from the emitter
that is above the band-gap of the receiver.

alloy composition changes toward higher x, the band gap increases, resulting in less
energy flux above the band gap. At such alloy compositions, however, the greatest
increase in the fraction of energy occurs, since as shown in Fig. 30, the near field
increases the power over a significant energy range in the vicinity of the peak, while
attenuating the low energy region of the spectrum.

Though the fraction of the power spectrum above the band gap is an important
parameter for the determination of the device performance, it does not capture the details
of the energy conversion process. Consider the power output of the device as calculated
from Eq. 59. Figure 40 shows the incident flux of energy and the net power out of the
device as a function of vacuum gap, with their ratio: the efficiency of the device.

Note the substantial increase in output as the vacuum gap diminishes. Over the first
decade for which the near-field enhances the energy flux, there is an order of magnitude

increase in the power incident on the device. The power output tracks the incident power
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Figure 40: Output power and efficiency as a function of vacuum
gap for Iny_,Ga,As at low band gap.

as expected resulting in a higher power output from the device, but a lag occurs resulting
in decreased efficiency in the sub-micron region. The microscale device is able to
process a higher through-put of energy, from the emitter, but it does so at a slight
decrease in efficiency, due to the initial near-field enhancement of the low energy portion
of the spectrum. This is shown clearly in Fig 40, by the flat portion of Poy near 1 um,
whereas Py.c continues to increase. Similar results occur for the Hg;_,Cd,Te devices, the
results of which are shown in Fig. 41.

For gap sizes less than 0.3 pm, the power output tends to approach the incident
power, and so the efficiency tends to increase greatly. This increase does not, and cannot,
continue indefinitely. Below 10-2 pm, the increase in power output tends te slacken
and the efficiency again drops. The enhanced photon absorption is responsible for the
increase in recombination that occurs when the generation rate of electrons and holes is
high. The increased recombination is discussed in 6.3.3 where the influence of carrier

lifetime is examined.
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Figure 41: Output power and efficiency as a function of vacuum
gap for Hg¢.,Cd, Te at low band gap.

6.3.4 Influence of Band Gap on Efficiency

Figures 42 and 43 show the efficiency as a function of vacuum gap for several
values of the band gap. While the trends are very similar, the alloy composition plays an
important role in determining the depth of the minimum and the height of the maximum.
Only for very low band gap does the minimurn in efficiency disappear. For all other band
gaps, the increase in efficiency occurs only after the minimum at a larger gap. Figure 43
shows clearly that as the band-gap is increased, the minimum starts to appear, and the
maximum decreases.

To get a better sense of the influence of band-gap energy on the performance,
consider the efficiency as a function of band-gap energy as shown in Figure 44 and 45 for
several vacuum gap sizes. The variation in efficiency with band-gap energy displays the
characteristic maximum at intermediate values of the band-gap. As the vacuum gap size
decreases, the entire curve shifts to lower total efficiency. As the gap is decreased

further, the efficiency begins to increase, growing to a value greater than that at large gap.
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Figure 42:  Efficiency as a function of vacuum gap for In4_,Ga,As
at several alloy compositions.
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The efficiency does not simply increase equally over all band gaps. Two
characteristics are apparent in the numerical predictions. The maximum efficiency occurs
at lower band-gap energy, and there are alloy compositions for which the spacing effect
cannot improve the efficiency at all. The shift in the maximum is due to the tendency of
the cannot improve the efficiency. The shift in the maximum is due to the tendency of
the spacing effect to enhance the low-energy radiation. The spacing effect, therefore, will
alter the current density most noticeably in the low band-gap material. This effect is most
strongly evident in Hg; _,Cd,Te.

The results of the computation suggest that the spacing effect may only be useful in
increasing the efficiency for a range of alloy compositions. This range is for band gaps
below the location of the maximum at large spacing and the upper limit of which
increases with decreasing vacuum gap. This upper limit is the point at which the thin
curves intersect the bold solid curve. The higher the band-gap energy, the smaller the
vacuum gap needed to bring the efficiency to a value equal to its large spacing value.
Careful consideration of the alloy composition and spacing can lead to both increased

power density with improved efficiency.

6.3.5 Influence of Carrier Lifetime and Doping

These predictions seem to imply that the efficiency will continue to increase as the
vacuum gap decreases. While this is true for the net heat flux, the same cannot be said
for the power output since recombination plays an important role in limiting the
maximum efficiency that can be obtained.

The increased power produced in a microscale thermophotovoltaic device results
from the enhanced flux of photons as the vacuum gaps decreases. Both the light-induced
current and voltage will increase until the concentration of carriers is so large that
recombination attenuates the power output. The model used for the microscale device

presented in Chapter 5 includes the effects of Auger recombination. Recall Eq. 72, which
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Figure 46. Carrier lifetime and the active region for In¢_,Ga,As.

gives an expression used to account for this recombination mechanism. The carrier
lifetime will decrease due to the enhance generation of carriers. As Auger recombination
increases, it will dominate the trap recombination (Eq. 66).

Figure 46 shows the carrier lifetime as a function vacuum gap in In,_,Ga,As and
Figure 47 shows the values for Hg; ,Cd,Te. Note that the carrier lifetime at large
spacing equals that of the lifetime due to trap recombination. As the emitter and receiver
are brought close together, the near-field produces greater numbers of electrons and
holes. These unpaired carries begin to recombine more quickly as their concentration
grows. The result is a decrease in lifetime of the carriers. The carriers must diffuse to the
junction interface in order to contribute to the current. Since their lifetime is shorter, and
they move with the same diffusion coefficient, fewer carriers will survive long enough to
reach the depletion region of the pn-junction cross through it and travel to the contacts.

The light-generated current, therefore, is limited by recombination effects.
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Figure 47:  Carrier lifetime and the active region for Hg_,Cd, Te.

This decreased lifetime manifests itself as a decreased in the effective active region
of the cell. The active region is that part of the cell extending to a diffusion length on
either side of the depletion width of the junction. From Eq. 62, these lengths are
proportional to the square root of the carrier lifetime, and so decrease as shown in Fig. 46
and Fig. 47 with the carrier lifetime. This length is used to model the average
concentration of photon-generated elecirons and holes in the device by assuming a
uniform generation rate at large spacing. As the gap decreases, the active region
decreases, while the generation rate remains averaged over the initial (large-vacuum gap)
active region. In this manner, the reduced carrier lifetime limits the performance.

Note that such active regions are quite large, especially for In; ,Ga, As which has a
high mobility. These values are larger than typical thermophotovoltaic devices
themselves, which are on the order of ten microns (Wilt et al. 1995). The active region
reduces strongly once Auger recombination dominates the predictions of the carrier

lifetime. Bringing the emitter close enough to the receiver will increase the photon flux
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Figure 48: The effect of neglecting Auger recombination on the
prediction of the increase in efficiency for Hg4.,Cd, Te.

so much that the active region will be smaller than the device size. Once this occurs, the
active region will become so small that very little power can be obtained from the device.
Figure 48 indicates the effect of neglecting the Auger recombination on carrier
lifetime: the efficiency apparently grows without bound. This result is due to the
dependence of voltage on the short-circuit current. The short circuit current is relaied to a
fraction of the incident power, but the voltage is proportional to the natural logarithm of
the current. Near equilibrium conditions, this relation holds, since the minority carries
are ata
small concentration. At very small vacuum gaps, the carrier concentrations become
large, and the application of the standard equilibrium analyses such as the one used here
to determine the microscale device performance will be in error.
The level of doping plays a crucial role in the performance of thermophotovoltaic

devices. It is important to keep the doping as high as possible, so that the dark current is

141



T,;=2000 K
g To=300 K
2 i
S
&
@
]
% 0.4 / L’ —— N=5x10'9 cm3 J
< J N=1x10'® cmd
L’ — — -N=5x10'8cm®
0.2 — — = N=1x10"8 cm™® .
----- N=1x10'7 cm™®
o b1 11 aasgl 2.1 1 asennl L3y aaregl st a1l [N
1073 102 10" 100 10!
Vacuum Gap, pm
Figure 49: Influence of dopant concentration on active region for

minimized permitting a larger open-circuit voltage.
microscale performance by influencing the size of the active region. The model for the
microscale device of Chapter 5 assumes that the carrier lifetime is proportional to the
square of the carrier concentration.
experimental measurements of carrier lifetime with doping levels. By setting the trap

recombination lifetime, the constant of proportionality for the Auger recombination is

In gGa 5As.

The trap portion of this lifetime is set by

determined. From Eq. 76, the ratio of active region is:
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The ratio involving the doping compares the concentration of light-generated carriers in
the initial active region to the doping concentration. Figure 49 shows the influence of
doping on the active region of In gGa ,As.

At high doping, the active region maintains its initial size over a substantial range of
vacuum gaps. Increasing the doping from this level shifts the efficiency curve higher as
depicted in Fig. 50. Decreasing the doping while keeping the trap recombination lifetime
constant causes the Auger recombination to dominate even at large vacuum gaps. As a
result, the active region does not approach unity at large vacuum gaps, since the active
region over which the light-induced carrier concentration is averaged is greater than the

actual active region. Low doping causes a substantial dark current, which produces low

efficiency as indicated in Fig. 50.
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6.3.6 Performance in the Interference Region

Tﬁc previous sections have examined the performance of microscale
thermophotovoltaic devices at small vacuum gaps where the near-field is the only
contribution to the energy density in the gap. Figures 42 and 43 indicate that the
efficiency oscillates around its large gap value until it reaches a minimum. This
oscillation is due to wave interference caused by the small vacuum gap between the
emitter and the receiver.

As the gap decreases, longer traveling waves cannot meet the boundary conditions,
and so are excluded from the space between the surfaces. Figure 51 shows the effect of
interference on the distribution of energy incident on the cell. At a large vacuum gap,
there aré an infinite number of traveling waves, and the spectrum is smooth as indicated
by Fig. 38. For a gap of 3 um, the spectrum is no longer smooth and the peaks and

valleys that represent the effects of wave interference become evident. These peaks move
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off to higher energy as the gap decreases until the final peak which represents the longest
traveling wave (4=2d) passes over the peak. As it does so, the spectrum of energy
increases by a factor of almost 2. The minimum in efficiency comes after this peak has
shifted to higher energy, because the near-field begins to enhance the low energy portion
of the spectrum. By 0.8 pm, there is a substantial enhancement of the low energy portion
of the spectrum. This shift in the energy distribution causes a decreased efficiency.

The wave interference effect may prove useful for operating a device at an
improved efficiency level, while permitting a higher power output. The gap size of the
device must be controlled carefully in order to maintain the peak in the appropriate

location relative to the band-gap energy.

6.3.7 Heterojunctions: Influence of Multiple Band Gaps

Each photon with energy greater than the band gap creates a single electron-hole
pair regardless of its energy. For high energy photons, the electron is elevated to energy
levels greater than the conduction-band edge. (The hole is injected below the valence-
band edge.) The electron and hole, however, quickly relax back to the band edge by
recombination. Though the photon's energy may be much greater than the band gap, the
electron and hole are separated only by the band-gap energy. This relaxation limits the
achievable efficiency (Green, 1982).

The efficiency can be improved by the use of a heterojunction. By creating a
layered structure in which each layer has a different band-gap, the power loss due to
relaxation can be attenuated. High energy photons are absorbed near the surface of the
receiver, and lower energy photons penetrate to a greater depth. By placing a high band
gap material at the surface, electron-hole pairs formed from high energy photons will be
subject to less thermalization. For the deeper layers, successively smaller band-gaps
permit lower energy photons to be absorbed. These lower energy photons, however,

cannot be absorbed by the top layer since its absorption below the band-gap is zero.
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By prudent choice of layer thickness and band gap, the light-induced current can be
maintained at a level equal to that of a homojunction. The performance improves, since
the dark current associated with the recombination process will decrease, thereby,
increasing the voltage output of the device.

For the purpose of analysis, consider a two-layered heterojunction fabricated from
In; .xGaxAs. The total current is the sum of the current generated within each layer. The
expression for the generation rate must be modified to account for the difference in
absorption within the two-layer structure. From Bouger's Law (Siegel and Howell,

1981), the fraction of the energy absorbed in a layer from § to S+dS below the surface is:

i S * *
—ZA'T(O.S;)=0,1(S)CXP[—({“A(S )dS J (115)

where ay=4nx/A is the absorption coefficient. For the case of materials for which the

extinction coefficient is independent of position, the fraction absorbed is:

diy (S) 4nx ( 4k )
AN TR —_ 116
L ©) N exp n S (116)

The carrier generation rate in the nth layer is the fraction of photon flux absorbed in this

layer:

Pp, :
G, = e X (fraction absorbed)

")) nl

= % x  [aj exp(~a,S)dS (117)
(n-1)!

= _f_P_;_,_[ea;_l - 1]

- lenall

where each layer is of thickness I. The total generation rate for layer n is the integral

over all frequencies of incident photons:
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where A, is the wavelength of the photon with an energy equal to the band gap. Note that
for a single homojunction model of Chapter 5, there is a semi-infinite single layer.

Substituting n=1 with /- into the integrand of Eq. 118 yields the familiar expression
for the generation rate.

Consider a two level structure for which the top layer is / microns below the surface

and the second layer extends from / to lpot. The generation rate is:

D top
g —a, "l

)
@ = (b !
Gbot). :-—;::'pl (l—e a (bot )) (119)
le™
;}:D lbot

4
Gp= [Giop,dA+ [Gooydh
0 0

To examine the performance of such a device, the generation rate expressed by
Eq. 119 is combined with the model introduced in Chapter 5. The only adaptation
necessary is to determine the dark current in each layer based on the band-gap of the

material comprising the layer. From Eq. 111, the dark current becomes:

(niz)top \/Fe-'-(n'?)bot w/ﬁh_
Na+z Np+m

Ij=e (120)
Notice that the junction was formed such that the diffusion coefficient of the holes
combines with the intrinsic carrier concentration of the bottom layer. This combination
ensures that the contribution of the low band-gap material to the dark current is attenuated
by the low diffusion coefficient of the holes. The high band-gap material of the top layer

has a lower intrinsic carrier concentration, thereby, counteracting the high electron
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Figure 52:Distribution of light-generated carriers for a
heterojunction between In gGa 5As and In gsGa gsAs

placed at 0.5 um or 1 um below the surface.

mobility. The resulting dark current is less than that of the homojunction. It is this
decreased dark current that permits improved performance of the heterojunction.

Figure 52 compares the photon flux density in the top and bottom layer of a 2-layer
heterojunction. These results are for a device whose total thickness is 10 um. The
density of photons absorbed in each layer depends on the thickness of the layer. For a
relatively thin top layer, most of the current is generated in the bottom layer. Notice that
the total photon density for the entire device is the same for the case of a top layer of
0.5 pm thickness or 1 pm thickness, arising from the top layer's transparency to photons
near, but just below, the band gap. The current, therefore, is the same as that for a
homojunction of the lower band-gap material.

The decreased dark current improves the performance of the microscale device.
Figure 53 shows the efficiency of a heterojunction device comprised of a 0.5 um top layer

of IngGa,As and a bottom layer of In gsGaysAs. Also shown are the predicted
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the surface and homojunctions of the same band gaps.

efficiencies for the homojunctions formed from the materials of each of the layers. The
efficiency at large spacing improves substantially over that of the low band-gap material.
In addition, the efficiency increases at a higher value of the vacuum gap. Also
noteworthy, is the increase in the minimum efficiency to levels greater than the
homojunction.

The improvement due to the grading of the band gap in each level is a promising
modification to the microscale thermophotovoltaic device. By examining different
combinations of materials, layer thicknesses, and band gaps, the performance can be

optimized.

6.4 Second Law Limitations
The results presented in the previous section suggest that the spacing effect may

permit the improvement of the efficiency of thermophotovoltaic energy conversion. It is
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Figure 54: Schematic diagram of an energy converter for the
Second Law analysis.

important to examine the entropy transfer for such devices in order to assess the
maximum efficiency that this technology permits. The thermodynamic efficiency of the
conversion of radiation into other forms of energy has been widely discussed. Landsberg
and Tonge (1980) review the work prior to 1979, and Landsberg and Baruch (1989) offer
corrections and extensions to the earlier wor'-

Consider an energy conversion device as shown in Fig. 54, which consists of an

emitter and a receiver separated by a vacuum gap. The emitter is maintained at a constant

temperature of T by a heat transfer, Qs, from a primary energy source, while the receiver
is maintained at a temperature of TR by another heat transfer, Q,, to a cooler
environment. A vacuum gap of size d separates the emitter and receiver, so that radiative
transfer is the sole thermal interaction between the surfaces. The device delivers work at
a rate of W from the receiver. Figure 54 shows four control volumes whose surfaces are
defined by dashed lines. Control volume 1 refers to the combined system of the emitter,
receiver, and vacuum gap. Control volumes 2 and 3 refer to only the emitter and
receiver, respectively. Control volume 4 is a very thin control volume extending from the

surface of the emitter to about a penetration depth below the surface.
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To examine the maximum efficiency of the system, consider the energy and entropy

balances on control volume 1 in Fig. 54.

E=EE +ER
=Qs"Qc-W
S=58g+5S
=0 /Tg - Qo [Tr +Sg, + Sy

(121)

where the entropy generation within the device, due to internal process not otherwise
specified, is .S"g 2 0 and consists of contributions from both the emitter and receiver.

Note that the emitter and receiver are not assumed to operate in steady state; i.e. the
energy and entropy of the device change at rates £, S. Steady state cannot be assumed a
priori, because the stipulation that the emitter and receiver interact only through the
transfer of radiative energy does not guarantee that the entropy transfer into the emitter by
the heat interaction equals that leaving the emitter by radiation into the vacuum. It will
be shown that for large vacuum gaps, the difference between the two is provided by
entropy generation in the device, which permits steady-state operation. As the vacuum
gap diminishes, however, the thermal field within the gap changes such that the entropy
within it deviates from the equilibrium case. The resulting imbalance does not permit
steady state operation, though the Carnot efficiency is still the maximum efficiency
achievable for the overall system.

When the heat transfers into the emitter and out of the receiver maintain the
temperatures of each surface, the energy of the emitter and receiver are constant. The
energy and entropy balances become:

W=0,-0,

0. = 0, Tr/Te - Tr (S5 ~ S5 )~ Tr (& — S¢¢ ) (122)

The efficiency of the device is obtained by comparing the work delivered by the receiver

to the heat needed to drive the device. From Eq. 122, the ratio is:
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n=—

O (123)
=1-Tr/Tg -TR/Qs(SE 'SgE)“TR/Qs(SR -S'gR)
For steady-state operation of a device in which all the interactions are reversible, the last
two terms are zero, and the efficiency equals the Carnot efficiency.
To evaluate the rate of entropy storage or loss in the emitter and receiver for the
unsteady case, entropy and energy balances must be obtained for each surface separately.
For control volume 2, the energy and entropy balances are:

0=0,— Py + Py

. . (124)
St = Os/Tg —Si2+ $1 + S,

For control volume 3:

0=P;p-Py~Q.-W

. . . (125)
SR =812~ $21 — O /Tr +Sgg

where the heat interactions are assumed to maintain the temperature of the each surface
such that the energy within each control volume is constant. The rate of entropy change
in the emitter and receiver are obtained by eliminating the heat transfer in the entropy

balance by using the energy balance.

Sg = Sgg = (P12 = P21)/Te = Si2 + 511

. . . (126)
SR —Sgg =S12 =521~ (P12 - Py - W)/TR
Combining Eq. 126 with Eq. 123 yields the efficiency of the overall system.
n=1-Tg/Tg - Tr/0; ((Plz — Py)[Tg ~(Pia = Py - W)/TR) 127

=1-Tg/Tg - (Tr/Tg -1+ W/Q;)

which re-arranges to give the Carnot efficiency:
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n=1-Tg/Tg =nc (128)

This analysis indicates that the overall device does not violate the Second Law; the
maximum efficiency for the overall system is the Carnot efficiency, even when operating
under unsteady conditions. In the Section 6.3, however, the efficiencies were determined
by examining only the transfer of energy to and from the receiver. By examining the
receiver and emitter separately, an upper limit to the efficiencies of Section 6.3 can be
determined.

For the case where the emitter and receiver are separated by a vacuum gap that is
large compared to the characteristic wavelength of the radiation in the gap, Planck's
distribution provides the expressions for energy and entropy flux. Use of Planck's
equilibrium expression implicitly assumes that the temperatures of the emitter and
receiver are not too different. The net radiation field within the gap can be treated as a
superposition of the contributions from each surface, which equals the radiation field of
the isothermal cavity situation. The difference in temperature of the two surfaces,
however, means that for a particular surface, there is a net imbalance in the amount of
energy and entropy contributed to the field in the gap and the amount received from it.
The net imbalance constitutes a flux of energy and entropy to the other surface via the
vacuum gap. The assumptions implicit in this model require more analysis, but keeping
in mind these reservations, it is used here to obtain expressions for the flux of entropy and
energy into the gap from each surface.

For microscale devices, it is necessary to examine the influence of the vacuum gap
on the transport of entropy from the emitter to the receiver, without assuming the
equilibrium radiation given by Planck's distribution or modeling the emitter as a

reservoir. From Eq. 125, the efficiency for the energy conversion in the receiver is:

14 0
e = =1- (129)
R Py - Py Py - Py
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where the net radiative flux through the surface of the receiver is used as the net input to
the "device". By using the entropy balance, the efficiency of the energy conversion in the

receiver is:

TR(Slz = Sy1 +Sgp - SR)

MR =1—

Pyy - Py, (130)
<1- TR ﬁlZ -‘;21
12 — 21

where the equality holds for the limiting case: Sg —S,. =0 or the device is operatin
R gR g

reversibly in steady-sate.

Landsberg and Tonge (1980) introduce the effective flux temperature defined as the
ratio of energy to entropy flux into a device to permit the examination of the performance
of devices subjected to non-equilibrium radiation fields. The effective flux temperature is
a means to characterize the source of energy "seen" by the device. Considering the
receiver as a device subject to non-equilibrium radiation equal to the net flux across the
vacuum gap yields a definition of the effective flux temperature of the source.

_Pip—Py

Tp =
S12 — 821

(131)

For the moment, consider this definition as a purely mathematical substitution; its relation
to the thermodynamic temperature is discussed later. Using this definition, the efficiency
for the receiver from Eq. 130 oecomes:

nR51—;—R (132)
F

which is the expression for the Carnot efficiency based on the effective flux temperature.
To determine the limiting efficiency of the energy conversion within the receiver, it
is necessary to determine the effective flux temperature as defined by Eq. 131. The net

energy flux is given by the fluctuational electrodynamic formulation in Chapter 3.
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Determination of the entropy transfer for a microscale device is required to evaluate the
effective flux temperature.

Landsberg and Tonge (1980) provide a general means of evaluating the entropy
transfer that can be used away from equilibrium. Their approach is used here to consider
the effect of spacing on the entropy transfer. Let P(N;, Nj,...) be the probability of
finding N bosons in a single-particle quantum state 1, N, in state 2, etc. Assuming that
the probability of each state, pj(N;), is independent of the other quantum states (the

particles are bosons) yields:

P(Ny,Ns,..) = py(Ny)pa(N2)... (133)

The probability of an additional particle occupying the state j is independent of the

. N; . . "
number already in the state. Thus p;(N;)eq.’ where g; is an undetermined positive
y AR j J p

number. Normalization then gives:
(N))=(1-g})q,", 0sgj<1 (134)
Pj\Nj)= gj QJ , =4gj=

The mean occupancy number n; of state j is:

00 N‘
n= Y Ng.*(l-¢q;)=—— (135)
J N=0 J ( J) l—qj

The entropy of the system is obtained by summing the probability over all possible states:

S:—kb z... Z...Pln(P)
N|=0 Nj=0

~—23(1-a)q” nf(1-0)s" 136

= ka[(l +nj)ln[l +nj]—nj lnnj]
J
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This expression for the entropy of a gas of bosons can be adapted for 4 continuous
spectrum of quantum states by assuming that the sum can be replaced by an integral. The
influence of the small gap on the validity of changing from a summation to an integral
needs a more thorough examination. In the present case, for which the radiation is un-
polarized and the emitter subtends a half-angle of 90° at the receiver, the results of

Landsberg and Tonge (1980) reduce to:

2rk
S= —:2-"- [(1 +n )Infl+n,]-n, lnnv]vzdv (137)
where ny is the spectral variation in the mean occupancy number. Equation 137 relates
the entropy of the boson gas to a non-equilibrium occupancy number. By decreasing the
size of the vacuum gap, the mean occupancy number changes from the equilibrium value.
The influence of the vacuum gap size on the mean occupancy number can be determined

from the fluctuational electrodynamic formulation:

2p 2
n =(—C-) 12, =(£) Mn, where ny = 1 (138)
v 2v) E () hw
p exp -1
27[ka1

This expression for the occupancy number with Eq. 137 provides the contribution of

entropy .in the gap from the surface at temperature 7', by assuming that the surface at this
temperature contributes a radiation field equal to the isothermal equilibrium situation.
Due to the presence of the factor M, the expression for entropy given by Eq. 137 is a non-
equilibrium entropy flux into the gap. The expression for ny, is the occupancy number for
an equilibrium boson gas, and M is the proximity function from the fluctuational
electrodynamic approach. For large vacuum gaps, M approaches (a/c)? and Bose-
Einstein statistics obtained. This expression for the occupancy comes from accounting

for the total allowed momentum values between k and k-+dk, including both polarizations:
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Figure 55: Entropy transfer associated with microscale radiative
transfer between the emitier and receiver.

Plzkdk = (2f(k)47tk2dk) ho but f(k)= "p

27 (21)°
(139)
- PPy, M .
p szp ) b

This derivation assumes that the near-field is discretized in the same manner as the
far-field. The possible frequencies of the photons are found by examining the normal
modes of oscillation that create standing waves within the vacuum gap, and
differentiating to find the number of states in a frequency range from v to v+dv
(Grossman, 1969). In other words, the imaginary wave numbers discretize in a manner
exactly equal to the real wave numbers.

The entropy flux can be calculated for a particular device by specifying the material
properties and integrating over all frequencies. Figure 55 shows the result of a

computation for several band gaps. The entropy flux increases as the emitter and receiver
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Figure 56: Comparison of the entropy and energy fluxes as a
function of vacuum gap.

are brought close together. The effect of the enhanced entropy flux due to the spacing
effect is illustrated in Fig. 56, where the net energy and entropy fluxes are shown for a
device modeled with the properties of Ing gGag 2As.

The broken line in Fig. 56 is the efficiency of the energy conversion within the
receiver using the definition of the effective flux temperature. Consider the result at large
spacing. For equilibrium black body radiation, Landsberg and Tonge (1980) relate the
energy and entropy fluxes through a surface to the energy and entropy density of black
body radiation within an enclosure of volume V. Their derivations yield the familiar

expressions for the energy and entropy fluxes of equilibrium black body radiation:

E=<Y o1t

v
§==2=Z oT3

4V 3
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where the temperature of the emitter is used to characterize the radiation in the gap.
Substitution of these expressions into Eq. 130 provides a rough estimate of the efficiency

at large vacuum gaps; the efficiency is less than the Carnot efficiency:

4/ 13
n <1-T /30’TE
R = R 4
4T"TE (141)
<1---R<
3Tg Nc

For the case shown in Fig. 56, Tr=300 K and Tg=2000 K, which yields an efficiency of
80%. At large spacing, the fluctuational electrodynamic analysis of the microscale device
predicts an efficiency completely consistent with the black body result. The difference is
due to the non-black body material properties of In|_4GayAs.

The spacing effect enhances the energy density in the vacuum gap to a greater
degree than it does the entropy, owing to the reduced number of microstates that the
radiation field can obtain within the small vacuum gap for the same macroscopic
properties, Tr and Tg. As a result, the effective flux temperature, TF, increases, and by
Eq. 132, the limiting efficiency of the energy conversion within the receiver also
increases. The broken line in Fig. 56 indicates that the maximum efficiency increases
from the large spacing result as the vacuum gap decreases. At first glance, this result
seems to be in violation of the Second Law, since the efficiency increases beyond the
Carnot efficiency as evaluated using the thermodynamic temperature of the emitter. The
use of the absolute thermodynamic temperature, however, is valid only when the
radiation interaction can be considered a heat interaction with a reservoir at the absolute
temperature.

Recall that for the overall system a maximum efficiency equal to the Carnot
efficiency was obtained. For the receiver considered independent of the emitter,

however, the maximum efficiency increases due to the spacing effect. Because of the
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stipulation that a heat interaction into the emitter drives the device, the overall system
performance is limited to the Carnot efficiency. Because the small gap enhances the
energy flux to a greater degree than the entropy flux, the entropy within the emitter must
increase.

Consider the entropy balance of control volume 2. The entropy balance in Eq. 126

can be re-arranged using the definition of the effective flux temperature (Eq. 131).

St = S =(Pi2 = P21)/Tg — S12 + 5y

T, (142)
=(Ppp - le)/TE[ -—ngl
F

At large vacuum gaps, Tg was found to be 3/4Tg, and therefore:

¢« & _ _1Pp—Py
$g ~ S, = 3o (143)

The enfropy storage within the emitter is less than the entropy generation. At large
spacing, therefore, the emitter can operate in steady state, but does so irreversibly. This
irreversibility is generated near the surface of the emitter by the generation of the
radiation field.

As the vacuum gap decreases, the effective flux temperature tends toward a value
very much larger than the emitter temperature, because of the large increase in energy
flux. From Eq. 142, therefore, the difference between the entropy storage and entropy

generation rates is a positive quantity:

: ; Py, - P.

E EE TE
The entropy within the emitter must increase, since the heat interaction carries more
entropy into the emitter than the emission at the surface into the gap can support. The

emitter cannot operate at steady-state as the gap decreases.
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Because the spacing effect influences the entropy of the radiation field, it is
important to investigate alternative methods of providing energy to the emitter other than
heat interactions, so that the efficiency of the overall system can be improved. The
present analysis suggests that the spacing effect augments the radiation field such that the
non-equilibrium distribution of radiation no longer resembles a heat interaction. There is
a component of the energy flux from the emitter that could be considered work rather
than heat. As a result, the effective flux temperature is greater than the absolute

thermodynamic temperature defined as:

1 (ﬁ) (142)
Tpo \JU)y
Landsberg and Tonge (1980) compare the absolute thermodynamic temperature and

the effective flux temperature for several different types of radiation distributions. For

black body radiation they find, as shown by Eq. 140:
. 3
TA = TE while TF = ZTE (143)

Thus, Tg is an absolute thermodynamic temperature, while T is not. For near-
monochromatic radiation in a box isolated from its surroundings, Landsberg and Tonge
(1980) show that Tg=Tg; i.e. for such situations, which arise when analyzing
photosynthesis, the flux temperature is an absolute thermodynamic temperature.

To model diffuse and direct conversion of solar radiation, Landsberg and Tonge
(1980) introduce the concept of dilute black body radiatior, which is based on a spectrum

whose mean occupancy number, ny, is given by:

£ (140)

n =—jp——~——
v hv
exp| — |1
(ka)
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which resembles the Bose-Einstein statistics multiplied by a factor £. For cases where
e<1, Landsberg and Tonge (1980) name the distribution dilute black body radiation,
which represents a non-equilibrium situation. For microscale devices, the factor £>1 for
sufficiently small vacuum gap, and therefore, becomes an intensifying factor. The result,
as shown in Fig. 56, is the definition of an effective flux temperature that characterizes
the field of radiation in the microscale vacuum gap, which is greater than the absolute
thermodynamic temperature of the emitter.

This characterization of the radiation field permits an alternative interpretation of
the spectral distribution of the energy due to the spacing effect. Recall Fig. 9, which
shows the radiative flux in the vacuum gap. As the spacing decreases, the distribution
resembles a Planckian distribution at a higher absolute temperature. The entropy analysis
given above indicates that this higher temperature is in fact the effective flux temperature
of the radiation field caused by the influence of the small vacuum gap.

The microscale thermophotovoltaic device represents a means to increase the
iimiting efficiency of photovoltaic energy conversion. The predictions of Section 6.3
indicate that there are substantial irreversibilities involved with the absorption of photons
and the creation of electron-hole pairs by the photovoltaic effect. So called two-level
models of solar cells have been developed to analyze these irreversibilities (Baruch,
1985; Parrott, 1982; De Vos and Pauwels, 1981). The determination of the effect of
microscale radiative transfer on these models is reasonable next step in the analysis of the

ideal performance of microscale thermophotovoltaic energy conversion.

6.5 Development of Microscale Thermophotovoltaic Devices

The analysis of microscale thermophotovoltaic devices using the fluctuational
electrodynamic formalism indicates several promising improvements that can be made to
thermophotovoltaic energy conversion. The most important prediction of the analysis is

the determination that the power density in a microscale device can be as great as ten
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times that of a standard thermophotovoltaic device. This increase in power density will
permit smaller and lighter systems whose initial cost will be dramatically reduced.

The improved power density comes with marginal gains in efficiency. The loss of
the traveling wave components of the field reduces the efficiency over a small vacuum
gap range. However, for low enough band-gap and vacuum gap, the efficiency can also
increase. The magnitude of the increase in efficiency depends in an interrelated way on
the temperature, alloy composition, and doping of the materials comprising the device.

Introducing materials such as mercury cadmium telluride that have favorable
material properties at low temperature will permit the increase in efficiency by cooling
the receiver. The fabrication of the receiver as a heterojunction will permit even further
increases in efficiency, over all vacuum gaps. The efficiency of such devices increases at
a larger band gap than the homojunction devices.

A Second Law analysis indicates that the microscale thermophotovoltaic device
permits an increase in the maximum efficiency by changing the relative amount of energy
and entropy that are transferred by microscale radiative transfer. The large difference
between the predicted efficiency using the device model and the maximum efficiency
from the Second Law analysis indicates that improvements in junction design may be
necessary to utilize the near-field energy more effectively.

This thesis provides a firm basis for the concept of microscale thermophotovoltaic
energy conversion. There are a number of issues, introduced in this work, that may lead
to better improvement of the device performance.

The careful design of the emitter may decrease low energy photons in the vacuum
gap. The present model examines only Drude-like materials for the emitter. By using
selective emitters of rare-earth oxides, improved performance should be attainable since

these materials emit in a narrow frequency range.
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The heterojunction analysis indicates that a series of layers with a graded band gap
may permit a further reduction in the dark current. An examination of the influence of
multiple layers and layer thickness may lead to further performance improvements.

There are several thermophotovoltaic-system configurations that the microscale
concept may take. The standard configuration includes a hot emitter placed directly
opposite the receiver separated by a small vacuum gap, which is the system analyzed in
this thesis. The emitter provides the energy to drive the conversion process in the cooler
receiver. The receiver is a pn-junction diode with one or more junctions, each of which
may have a different band-gap energy.

An alternative system is an intermediate re-radiator configuration. This system
includes a material between the emitter and receiver, which absorbs the energy from the
emitter and re-radiates it across a different frequency range, thereby acting as a band-pass
filter with characteristics more closely matched to the receiver.

Another alternative involves a solar source re-radiator that absorbs energy from the
sun and acts as an effective emitter. The solar energy elevates the free-electron gas into a
non-equilibrium state that permits the gas to radiate photons at lower frequency than the
sun. By optimizing the material properties of the re-radiator, the emitted radiation can be
tuned to the frequency range most suitable for the microscale thermophotovoltaic device.

In all of these alternative configurations, the close proximity of the receiver to the
emitter or re-radiator marks the technology as a microscale energy conversion device.

Microscale thermophotovoltaic device performance will be further enhanced by
developing new materials with properties specifically fashioned to compliment this new
technology. The results of the analysis in Section 6.3 indicate that materials with the
properties summarized in Table 6 will permit better performance from these devices. The
focus on developing materials to meet the criteria of microscale thermophotovoltaic

energy conversion constitutes a new avenue of research for material science.

164



Property Desired Range Reference
Optical Constants Receiver:

n=k<<1 E <Eg 6.1.1

n=x 1 E>Eg
Emitter: 6.1.3

n=k>> 1 E <E

n=x 1 E>Ey

Band gap, eV Ep = T(K)/2333
5.
Fo<5 6 314
Eg> Ey/2 o~
Mobility, cm2 V-1 s'1 low: < 900 6.1.2
Dopant Concentration, high: Na Np> 1019 6.3.5
cm3

Intrinsic Carrier low: < 1014 6.2.2

Concentration, cm3

Table 6: Desired material properties for the improvement of
microscale thermophotovoltaic energy conversion

devices.
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Appendices

Appendix A: Numerical Integration Considerations

The complex nature of the integrands of Eq. 43 and Eq. 88 through Eq. 91 does not
permit analytical evaluation of the integrals. The integrands of these equations have
numerous integrable singularities at unknown places between the upper and lower
bounds. Simpson's rule or Romberg's method can be adapted by picking out each
singularity and integrating between them. For large vacuum gaps, however, the number
of singularities goes to infinity, and the computation time becomes prohibitive.
Therefore, a variable-step-size differential equation integration rouiine must be
employed.

A fourth-order Runge-Kutta method with adaptive step-size control achieves good
accuracy by taking many small steps through the regions where the integrands vary a
great deal (Press et al., 1986). Where the functicn is more smooth, the routine takes large
steps. Step-doubling was used together with a fifth-order Runge-Kutta step to permit the
variation in step size. Press et al. (1986) provide a very good discussion of the subtleties
involved in using such a routine to solve sets of ordinary differential equations. The only
changes made here were a reduction in function calls, which can be obtained since in the
present study the set of equations consisted of only one equation. The same values for
the parameters that govern the operation of the integration listed in Press et al. (1986)
gave fast convergence with reasonable accuracy.

This routine was used for the integration over wave number for the net flux between
the surfaces and also for the integration of the full expressions for the proximity function

from the fluctuational electrodynamic formulation.
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Appendix B: Fluctuational Electrodynamic Formulation

Inputs Assumptions Calculation
Random —
Maxwell's
Sou|i'ce | . Equations
e'm
[ Stochastic
Maxwell
Equations
d - Solution of
Maxwell's
Equations
& > Sugj.%c:ts to
Diffrqctional
Fluctuation- Field
T | Dissipation
Theorem
Poynting
Vector

P =] P12(a)) + P21(a))da)

Figure 57: Schematic representation of the fluctuational electrodynamic
formulation used to calculate the net flux batween two surfaces.
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