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by
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Doctor of Philosophy

Abstract

In 1983, Ira Gessel introduced the ring of quasisymmetric functions (QSym), an ex-
tension of the ring of symmetric functions and nowadays one of the standard examples
of a combinatorial Hopf algebra. In this thesis, I elucidate three aspects of its theory:

1) Gessel’s P-partition enumerators are quasisymmetric functions that generalize,
and share many properties of, the Schur functions; their Hopf-algebraic antipode sat-
isfies a simple and explicit formula. Malvenuto and Reutenauer have generalized this
formula to quasisymmetric functions “associated to a set of equalities and inequali-
ties”. I reformulate their generalization in the handier terminology of double posets,
and present a new proof and an even further generalization in which a group acts on
the double poset.

2) There is a second bialgebra structure on QSym, with its own “internal” comul-
tiplication. I show how this bialgebra can be constructed using the Aguiar-Bergeron-
Sottile universal property of QSym by extending the base ring; the same approach
also constructs the so-called “Bernstein homomorphism”, which makes any connected
graded commutative Hopf algebra into a comodule over this second bialgebra QSym.

3) I prove a recursive formula for the “dual immaculate quasisymmetric functions”
(a certain special case of P-partition enumerators) conjectured by Mike Zabrocki. The
proof introduces a dendriform algebra structure on QSym.

Two further results appearing in this thesis, but not directly connected to QSym,
are:

4) generalizations of Whitney’s formula for the chromatic polynomial of a graph
in terms of broken circuits. One of these generalizations involves weights assigned to
the broken circuits. A formula for the chromatic symmetric function is also obtained.

5) a proof of a conjecture by Bergeron, Ceballos and Labbé on reduced-word
graphs in Coxeter groups (joint work with Alexander Postnikov). Given an element
of a Coxeter group, we can form a graph whose vertices are the reduced expressions
of this element, and whose edges connect two reduced expressions which are “a sin-
gle braid move apart”. The simplest part of the conjecture says that this graph is
bipartite; we show finer claims about its cycles.
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Preface

Mountains will labour: what’s

born? A ridiculous mouse!

Horace

This thesis gathers some of the work I have done within the last five years. It is,

per se, not an integral whole, but four of its five chapters are united by a common

thread (quasisymmetric and symmetric functions). Specifically, the thesis consists of

the following:

Chapter 1: Double posets and the antipode of QSym. This chapter (which also ap-

pears on the arXiv as preprint arXiv:1509.08355v2) reproves and gen-

eralizes a formula for the antipode of certain quasisymmetric functions

due to Malvenuto and Reutenauer. Only basic knowledge of quasisym-

metric functions is assumed, and an even more basic understanding of

Hopf algebras (reading [GriRei15, §1 and §5] should be more than suf-

ficient).

Chapter 2: Dual immaculate creation operators and a dendriform algebra structure

on the quasisymmetric functions. This chapter (which has also been

posted on the arXiv as preprint arXiv:1410.0079v6 in a slightly mod-

ified edition1) constructs four new operations on the ring of quasisym-

metric functions, two of which make it into a dendriform algebra. The

operations are used to prove a conjecture of Mike Zabrocki that gives an
1More precisely, the preprint arXiv:1410.0079v6 comes in two versions: a short (“default”) one,

and a detailed one (available as an ancillary file). Our Chapter 2 is a mix of the two.
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alternative definition of the so-called “dual immaculate quasisymmetric

functions” (an analogue of the Schur functions). This paper has been

accepted for publication at the Canadian Journal of Mathematics; it is

fairly light on prerequisites (again, the reader will find everything she

needs in [GriRei15, §1 and §5], except for some further material from

[GriRei15, §8] used in the last section).

Chapter 3: The Bernstein homomorphism via Aguiar-Bergeron-Sottile universal-

ity. In this chapter (which has also been released on the arXiv as

preprint arXiv:1604.02969v2), I use the Aguiar-Bergeron-Sottile uni-

versal property of the ring of quasisymmetric functions to construct

(what Hazewinkel calls) the Bernstein homomorphism (actually, a gen-

eralization thereof), which generalizes the internal comultiplication on

quasisymmetric functions. The reader is, again, expected to have a good

understanding of Hopf algebras and quasisymmetric functions ([GriRei15,

§1, §5 and §7]); prior familiarity with the internal comultiplication is not

required.

Chapter 4: A note on non-broken-circuit sets and the chromatic polynomial. This

chapter (also appearing on the arXiv as preprint arXiv:1604.03063v1)

explores several generalizations of Whitney’s formula for the chromatic

polynomial of a graph in terms of subsets containing no broken cir-

cuits. In particular, the graph is replaced by the matroid, the chromatic

polynomial by the chromatic symmetric function (although not both at

once!), and the subsets containing no broken circuits are replaced by

subsets avoiding a certain pre-selected set of broken circuits). This note

has an expositive character, even if the generalizations are new (to my

knowledge); in particular, I believe it to be readable with no preknowl-

edge whatsoever in algebraic combinatorics.2

2Remarkably, the main lemma in this chapter (Lemma 4.2.7) is proven using a bijection Φ highly
reminiscent of the involution 𝑇 in the proof of Theorem 1.4.2 in Chapter 1. (Actually, Φ can be
extended to an involution, thus making the analogy even more palpable.) This suggests a connection
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Chapter 5: Proof of a conjecture of Bergeron, Ceballos and Labbé (joint work with

Alexander Postnikov). This chapter (which also appears on the arXiv

as preprint arXiv:1603.03138v1) proves a conjecture about reduced

words of elements in Coxeter groups (more precisely, about cycles in

reduced word graphs). Unlike the previous four chapters, this one has

no direct connection with combinatorial Hopf algebras and symmetric

functions; the reader is assumed to be familiar with basic combinatorial

properties of Coxeter groups [Lusztig14].

Various other work done during my stay at MIT has not found its way into this

thesis, including the two-part paper, joint with Tom Roby, on birational rowmo-

tion [GriRob15]; the study of dual stable Grothendieck polynomials, joint with Pavel

Galashin and Gaku Liu [GaGrLi16]; and some minor results that have become exer-

cises in [GriRei15].

between the two results and possibly even a common generalization; I have not, however, been able
to take hold of such a generalization so far.
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Chapter 1

Double posets and the antipode of

QSym

Abstract

We assign a quasisymmetric function to every double poset (that is, every finite set
endowed with two partial orders) and any weight function on its ground set. This
generalizes well-known objects such as monomial and fundamental quasisymmetric
functions, (skew) Schur functions, dual immaculate functions, and quasisymmetric
(𝑃, 𝜔)-partition enumerators. We then prove a formula for the antipode of this func-
tion that holds under certain conditions (which are satisfied when the second order of
the double poset is total, but also in some other cases); this restates (in a way that to
us seems more natural) a result by Malvenuto and Reutenauer, but our proof is new
and self-contained. We generalize it further to an even more comprehensive setting,
where a group acts on the double poset by automorphisms.

1.1 Introduction

Double posets and E-partitions (for E a double poset) have been introduced by Clau-

dia Malvenuto and Christophe Reutenauer [MalReu09] in order to construct a com-

binatorial Hopf algebra which harbors a noticeable amount of structure, including an

analogue of the Littlewood-Richardson rule and a lift of the internal product oper-

ation of the Malvenuto-Reutenauer Hopf algebra of permutations. In this note, we

shall employ these same notions to restate in a simpler form, and reprove in a more
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elementary fashion, a formula for the antipode in the Hopf algebra QSym of qua-

sisymmetric functions due to (the same) Malvenuto and Reutenauer (generalizing an

earlier result by Gessel), and extend it further to a case in which a group acts on the

double poset.

In the present version of the paper, some (classical and/or straightforward) proofs

are missing or sketched. A more detailed version exists, in which at least a few of

these proofs are elaborated on more1.

Acknowledgments

Katharina Jochemko’s work [Joch13] provoked this research. I learnt a lot about

QSym from Victor Reiner.

1.2 Quasisymmetric functions

Let us first briefly introduce the notations that will be used in the following.

We set N = {0, 1, 2, . . .}. A composition means a finite sequence of positive

integers. We let Comp be the set of all compositions. For 𝑛 ∈ N, a composition of 𝑛

means a composition whose entries sum to 𝑛 (that is, a composition (𝛼1, 𝛼2, . . . , 𝛼𝑘)

satisfying 𝛼1 + 𝛼2 + · · ·+ 𝛼𝑘 = 𝑛).

Let k be an arbitrary commutative ring. We shall keep k fixed throughout this

paper. We consider the k-algebra k [[𝑥1, 𝑥2, 𝑥3, . . .]] of formal power series in infinitely

many (commuting) indeterminates 𝑥1, 𝑥2, 𝑥3, . . . over k. A monomial shall always

mean a monomial (without coefficients) in the variables 𝑥1, 𝑥2, 𝑥3, . . .. 2

1It can be downloaded from http://web.mit.edu/~darij/www/algebra/dp-abstr-long.pdf
2For the sake of completeness, let us give a detailed definition of monomials and of the topology

on k [[𝑥1, 𝑥2, 𝑥3, . . .]]. (This definition also appears in Section 2.2 of this thesis.)
Let 𝑥1, 𝑥2, 𝑥3, . . . be countably many distinct symbols. We let Mon be the free abelian monoid on

the set {𝑥1, 𝑥2, 𝑥3, . . .} (written multiplicatively); it consists of elements of the form 𝑥𝑎1
1 𝑥𝑎2

2 𝑥𝑎3
3 · · · for

finitely supported (𝑎1, 𝑎2, 𝑎3, . . .) ∈ N∞ (where “finitely supported” means that all but finitely many
positive integers 𝑖 satisfy 𝑎𝑖 = 0). A monomial will mean an element of Mon. Thus, a monomial is
a combinatorial object, independent of k; it does not carry a coefficient.

We consider the k-algebra k [[𝑥1, 𝑥2, 𝑥3, . . .]] of (commutative) power series in countably many
distinct indeterminates 𝑥1, 𝑥2, 𝑥3, . . . over k. By abuse of notation, we shall identify every monomial
𝑥𝑎1
1 𝑥𝑎2

2 𝑥𝑎3
3 · · · ∈ Mon with the corresponding element 𝑥𝑎1

1 · 𝑥𝑎2
2 · 𝑥𝑎3

3 · · · · of k [[𝑥1, 𝑥2, 𝑥3, . . .]] when
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Inside the k-algebra k [[𝑥1, 𝑥2, 𝑥3, . . .]] is a subalgebra k [[𝑥1, 𝑥2, 𝑥3, . . .]]bdd consist-

ing of the bounded-degree formal power series; these are the power series 𝑓 for which

there exists a 𝑑 ∈ N such that no monomial of degree > 𝑑 appears in 𝑓 3. This

k-subalgebra k [[𝑥1, 𝑥2, 𝑥3, . . .]]bdd becomes a topological k-algebra, by inheriting the

topology from k [[𝑥1, 𝑥2, 𝑥3, . . .]].

Two monomials m and n are said to be pack-equivalent4 if they have the forms

𝑥𝑎1
𝑖1
𝑥𝑎2
𝑖2
· · ·𝑥𝑎ℓ

𝑖ℓ
and 𝑥𝑎1

𝑗1
𝑥𝑎2
𝑗2
· · ·𝑥𝑎ℓ

𝑗ℓ
for two strictly increasing sequences (𝑖1 < 𝑖2 < · · · < 𝑖ℓ)

and (𝑗1 < 𝑗2 < · · · < 𝑗ℓ) of positive integers and one (common) sequence (𝑎1, 𝑎2, . . . , 𝑎ℓ)

of positive integers.5 A power series 𝑓 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]] is said to be quasisymmet-

ric if every two pack-equivalent monomials have equal coefficients in front of them

in 𝑓 . It is easy to see that the quasisymmetric power series form a k-subalgebra of

necessary (e.g., when we speak of the sum of two monomials or when we multiply a monomial with an
element of k). (To be very pedantic, this identification is slightly dangerous, because it can happen
that two distinct monomials in Mon get identified with two identical elements of k [[𝑥1, 𝑥2, 𝑥3, . . .]].
However, this can only happen when the ring k is trivial, and even then it is not a real problem
unless we infer the equality of monomials from the equality of their counterparts in k [[𝑥1, 𝑥2, 𝑥3, . . .]],
which we are not going to do.)

We furthermore endow the ring k [[𝑥1, 𝑥2, 𝑥3, . . .]] with the following topology (as in [GriRei15,
Section 2.6]):

We endow the ring k with the discrete topology. To define a topology on the k-algebra
k [[𝑥1, 𝑥2, 𝑥3, . . .]], we (temporarily) regard every power series in k [[𝑥1, 𝑥2, 𝑥3, . . .]] as the family
of its coefficients (indexed by the set Mon). More precisely, we have a k-module isomorphism∏︁

m∈Mon

k → k [[𝑥1, 𝑥2, 𝑥3, . . .]] , (𝜆m)m∈Mon ↦→
∑︁

m∈Mon

𝜆mm.

We use this isomorphism to transport the product topology on
∏︀

m∈Mon

k to k [[𝑥1, 𝑥2, 𝑥3, . . .]]. The re-

sulting topology on k [[𝑥1, 𝑥2, 𝑥3, . . .]] turns k [[𝑥1, 𝑥2, 𝑥3, . . .]] into a polynomial k-algebra; this is the
topology that we will be using whenever we make statements about convergence in k [[𝑥1, 𝑥2, 𝑥3, . . .]]
or write down infinite sums of power series. A sequence (𝑎𝑛)𝑛∈N of power series converges to a power
series 𝑎 with respect to this topology if and only if for every monomial m, all sufficiently high 𝑛 ∈ N
satisfy

(the coefficient of m in 𝑎𝑛) = (the coefficient of m in 𝑎) .

Note that this topological k-algebra k [[𝑥1, 𝑥2, 𝑥3, . . .]] is not the completion of k [𝑥1, 𝑥2, 𝑥3, . . .]
with respect to the standard grading (in which all 𝑥𝑖 have degree 1). (They are distinct even as
sets.)

3The degree of a monomial 𝑥𝑎1
1 𝑥𝑎2

2 𝑥𝑎3
3 · · · is defined to be the nonnegative integer 𝑎1+𝑎2+𝑎3+· · · .

A monomial m is said to appear in a power series 𝑓 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]] if and only if the coefficient
of m in 𝑓 is nonzero.

4Pack-equivalence and the related notions of packed combinatorial objects that we will encounter
below originate in work of Hivert, Novelli and Thibon [NovThi05]. Simple as they are, they are of
great help in dealing with quasisymmetric functions.

5For instance, 𝑥2
2𝑥3𝑥

2
4 is pack-equivalent to 𝑥2

1𝑥4𝑥
2
8 but not to 𝑥2𝑥

2
3𝑥

2
4.
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k [[𝑥1, 𝑥2, 𝑥3, . . .]]; but usually one is interested in the set of quasisymmetric bounded-

degree power series in k [[𝑥1, 𝑥2, 𝑥3, . . .]]. This latter set is a k-subalgebra of

k [[𝑥1, 𝑥2, 𝑥3, . . .]]bdd, and is known as the k-algebra of quasisymmetric functions over

k. It is denoted by QSym. It is clear that symmetric functions (in the usual sense

of this word in combinatorics – so, really, symmetric bounded-degree power series

in k [[𝑥1, 𝑥2, 𝑥3, . . .]]) form a k-subalgebra of QSym. The quasisymmetric functions

have a rich theory which is related to, and often sheds new light on, the classical

theory of symmetric functions; expositions can be found in [Stan99, §§7.19, 7.23] and

[GriRei15, §§5-6] and other sources.

As a k-module, QSym has a basis (𝑀𝛼)𝛼∈Comp indexed by all compositions, where

the quasisymmetric function 𝑀𝛼 for a given composition 𝛼 is defined as follows:

Writing 𝛼 as (𝛼1, 𝛼2, . . . , 𝛼ℓ), we set

𝑀𝛼 =
∑︁

𝑖1<𝑖2<···<𝑖ℓ

𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · · 𝑥𝛼ℓ
𝑖ℓ

=
∑︁

m is a monomial
pack-equivalent
to 𝑥

𝛼1
1 𝑥

𝛼2
2 ···𝑥𝛼ℓ

ℓ

m

(where the 𝑖𝑘 in the first sum are positive integers). This basis (𝑀𝛼)𝛼∈Comp is known

as the monomial basis of QSym, and is the simplest to define among many. (We shall

briefly encounter another basis in Example 1.3.6.)

The k-algebra QSym can be endowed with a structure of a k-coalgebra which,

combined with its k-algebra structure, turns it into a Hopf algebra. We refer to

the literature both for the theory of coalgebras and Hopf algebras (see [Montg93],

[GriRei15, §1], [Manchon04, §1-§2], [Abe77], [Sweed69], [DNR01] or [Fresse14, Chap-

ter 7]) and for a deeper study of the Hopf algebra QSym (see [Malve93], [HaGuKi10,

Chp. 6] or [GriRei15, §5]); in this note we shall need but the very basics of this

structure, and so it is only them that we introduce.

We define a k-linear map Δ : QSym → QSym⊗QSym (here and in the following,
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all tensor products are over k by default) by requiring that

Δ
(︀
𝑀(𝛼1,𝛼2,...,𝛼ℓ)

)︀
=

ℓ∑︁
𝑘=0

𝑀(𝛼1,𝛼2,...,𝛼𝑘) ⊗𝑀(𝛼𝑘+1,𝛼𝑘+2,...,𝛼ℓ) (1.1)

for every (𝛼1, 𝛼2, . . . , 𝛼ℓ) ∈ Comp

6. We further define a k-linear map 𝜀 : QSym → k by requiring that

𝜀
(︀
𝑀(𝛼1,𝛼2,...,𝛼ℓ)

)︀
= 𝛿ℓ,0 for every (𝛼1, 𝛼2, . . . , 𝛼ℓ) ∈ Comp

7. (Equivalently, 𝜀 sends every power series 𝑓 ∈ QSym to the result 𝑓 (0, 0, 0, . . .)

of substituting zeroes for the variables 𝑥1, 𝑥2, 𝑥3, . . . in 𝑓 . The map Δ can also be

described in such terms, but with greater difficulty [GriRei15, (5.3)].) It is well-known

that these maps Δ and 𝜀 make the three diagrams

QSym Δ //

Δ
��

QSym⊗QSym

Δ⊗id
��

QSym⊗QSym
id⊗Δ

// QSym⊗QSym⊗QSym

,

QSym

∼=
((

Δ // QSym⊗QSym

𝜀⊗id
��

k⊗QSym

, QSym

∼=
((

Δ // QSym⊗QSym

id⊗𝜀
��

QSym⊗ k

(where the ∼= arrows are the canonical isomorphisms) commutative, and so (QSym,Δ, 𝜀)

is what is commonly called a k-coalgebra. Furthermore, Δ and 𝜀 are k-algebra homo-

morphisms, which is what makes this k-coalgebra QSym into a k-bialgebra. Finally,

let 𝑚 : QSym⊗QSym → QSym be the k-linear map sending every pure tensor 𝑎⊗ 𝑏

to 𝑎𝑏, and let 𝑢 : k → QSym be the k-linear map sending 1 ∈ k to 1 ∈ QSym. Then,

6This definition relies on the fact that (𝑀𝛼)𝛼∈Comp is a basis of the k-module QSym.

7Here, 𝛿𝑢,𝑣 is defined to be

{︃
1, if 𝑢 = 𝑣;
0, if 𝑢 ̸= 𝑣

whenever 𝑢 and 𝑣 are two objects.
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there exists a unique k-linear map 𝑆 : QSym → QSym making the diagram

QSym⊗QSym
𝑆⊗id

// QSym⊗QSym
𝑚

''

QSym

Δ
77

𝜀 //

Δ
''

k 𝑢 // QSym

QSym⊗QSym
id⊗𝑆

// QSym⊗QSym

𝑚
77

(1.2)

commutative. This map 𝑆 is known as the antipode of QSym. It is known to be

an involution and an algebra automorphism of QSym, and its action on the various

quasisymmetric functions defined combinatorially is the main topic of this note. The

existence of the antipode 𝑆 makes QSym into a Hopf algebra.

1.3 Double posets

Next, we shall introduce the notion of a double poset, following Malvenuto and

Reutenauer [MalReu09].

Definition 1.3.1. (a) We shall encode posets as pairs (𝑃,<), where 𝑃 is a set

and < is a strict partial order relation (i.e., an irreflexive, transitive and

antisymmetric binary relation) on the set 𝑃 ; this relation < will be regarded

as the smaller relation of the poset. (All binary relations will be written in

infix notation: i.e., we write “𝑎 < 𝑏” for “𝑎 is related to 𝑏 by the relation <”.)

(b) If < is a strict partial order relation on a set 𝑃 , and if 𝑎 and 𝑏 are two

elements of 𝑃 , then we say that 𝑎 and 𝑏 are <-comparable if we have either

𝑎 < 𝑏 or 𝑎 = 𝑏 or 𝑏 < 𝑎. A strict partial order relation < on a set 𝑃 is said

to be a total order if and only if every two elements of 𝑃 are <-comparable.

(c) If < is a strict partial order relation on a set 𝑃 , and if 𝑎 and 𝑏 are two elements

of 𝑃 , then we say that 𝑎 is <-covered by 𝑏 if we have 𝑎 < 𝑏 and there exists

no 𝑐 ∈ 𝑃 satisfying 𝑎 < 𝑐 < 𝑏. (For instance, if < is the standard smaller

relation on Z, then each 𝑖 ∈ Z is <-covered by 𝑖+ 1.)
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(d) A double poset is defined as a triple (𝐸,<1, <2) where 𝐸 is a finite set and

<1 and <2 are two strict partial order relations on 𝐸.

(e) A double poset (𝐸,<1, <2) is said to be special if the relation <2 is a total

order.

(f) A double poset (𝐸,<1, <2) is said to be semispecial if every two <1-

comparable elements of 𝐸 are <2-comparable.

(g) A double poset (𝐸,<1, <2) is said to be tertispecial if it satisfies the following

condition: If 𝑎 and 𝑏 are two elements of 𝐸 such that 𝑎 is <1-covered by 𝑏,

then 𝑎 and 𝑏 are <2-comparable.

(h) If < is a binary relation on a set 𝑃 , then the opposite relation of < is defined

to be the binary relation > on the set 𝑃 which is defined as follows: For any

𝑒 ∈ 𝑃 and 𝑓 ∈ 𝑃 , we have 𝑒 > 𝑓 if and only if 𝑓 < 𝑒. Notice that if < is a

strict partial order relation, then so is the opposite relation > of <.

Clearly, every special double poset is semispecial, and every semispecial double

poset is tertispecial.8

Definition 1.3.2. If E = (𝐸,<1, <2) is a double poset, then an E-partition shall

mean a map 𝜑 : 𝐸 → {1, 2, 3, . . .} such that:

∙ every 𝑒 ∈ 𝐸 and 𝑓 ∈ 𝐸 satisfying 𝑒 <1 𝑓 satisfy 𝜑 (𝑒) ≤ 𝜑 (𝑓);

∙ every 𝑒 ∈ 𝐸 and 𝑓 ∈ 𝐸 satisfying 𝑒 <1 𝑓 and 𝑓 <2 𝑒 satisfy 𝜑 (𝑒) < 𝜑 (𝑓).

8The notions of a double poset and of a special double poset come from [MalReu09]. The notion
of a “tertispecial double poset” (Dog Latin for “slightly less special than semispecial”) appears to be
new and arguably sounds artificial, but is the most suitable setting for some of the results below
(and appears in nature, beyond the particular case of special double posets – see Example 1.3.3).
We shall not use semispecial double posets in the following; they were only introduced as a middle
ground between special and tertispecial double posets with a less daunting definition.
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Example 1.3.3. The notion of an E-partition (which was inspired by the earlier

notions of 𝑃 -partitions and (𝑃, 𝜔)-partitions as studied by Gessel and Stanley9)

generalizes various well-known combinatorial concepts. For example:

∙ If <2 is the same order as <1 (or any extension of this order), then E-

partitions are weakly increasing maps from the poset (𝐸,<1) to the totally

ordered set {1, 2, 3, . . .}.

∙ If <2 is the opposite relation of <1 (or any extension of this opposite relation),

then E-partitions are strictly increasing maps from the poset (𝐸,<1) to the

totally ordered set {1, 2, 3, . . .}.

For a more interesting example, let 𝜇 = (𝜇1, 𝜇2, 𝜇3, . . .) and 𝜆 = (𝜆1, 𝜆2, 𝜆3, . . .)

be two partitions such that 𝜇 ⊆ 𝜆. (See [GriRei15, §2] for the notations we are

using here.) The skew Young diagram 𝑌 (𝜆/𝜇) is then defined as the set of all

(𝑖, 𝑗) ∈ {1, 2, 3, . . .}2 satisfying 𝜇𝑖 < 𝑗 ≤ 𝜆𝑖. On this set 𝑌 (𝜆/𝜇), we define two

partial order relations <1 and <2 by

(𝑖, 𝑗) <1 (𝑖
′, 𝑗′) ⇐⇒ (𝑖 ≤ 𝑖′ and 𝑗 ≤ 𝑗′ and (𝑖, 𝑗) ̸= (𝑖′, 𝑗′))

and

(𝑖, 𝑗) <2 (𝑖
′, 𝑗′) ⇐⇒ (𝑖 ≥ 𝑖′ and 𝑗 ≤ 𝑗′ and (𝑖, 𝑗) ̸= (𝑖′, 𝑗′)) .

The resulting double poset Y (𝜆/𝜇) = (𝑌 (𝜆/𝜇) , <1, <2) has the property that the

Y (𝜆/𝜇)-partitions are precisely the semistandard tableaux of shape 𝜆/𝜇. (Again,

see [GriRei15, §2] for the meaning of these words.)

This double poset Y (𝜆/𝜇) is not special (in general), but it is tertispecial.

(Indeed, if 𝑎 and 𝑏 are two elements of 𝑌 (𝜆/𝜇) such that 𝑎 is <1-covered by 𝑏, then

𝑎 is either the left neighbor of 𝑏 or the top neighbor of 𝑏, and thus we have either

𝑎 <2 𝑏 (in the former case) or 𝑏 <2 𝑎 (in the latter case).) Some authors prefer to

use a special double poset instead, which is defined as follows: We define a total
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order <ℎ on 𝑌 (𝜆/𝜇) by

(𝑖, 𝑗) <ℎ (𝑖′, 𝑗′) ⇐⇒ (𝑖 > 𝑖′ or (𝑖 = 𝑖′ and 𝑗 < 𝑗′)) .

Then, Yℎ (𝜆/𝜇) = (𝑌 (𝜆/𝜇) , <1, <ℎ) is a special double poset, and the Yℎ (𝜆/𝜇)-

partitions are precisely the semistandard tableaux of shape 𝜆/𝜇.

We now assign a certain formal power series to every double poset:

Definition 1.3.4. If E = (𝐸,<1, <2) is a double poset, and 𝑤 : 𝐸 → {1, 2, 3, . . .}

is a map, then we define a power series Γ (E, 𝑤) ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]] by

Γ (E, 𝑤) =
∑︁

𝜋 is an E-partition

x𝜋,𝑤, where x𝜋,𝑤 =
∏︁
𝑒∈𝐸

𝑥
𝑤(𝑒)
𝜋(𝑒) .

The following fact is easy to see (but will be reproven below):

Proposition 1.3.5. Let E = (𝐸,<1, <2) be a double poset, and 𝑤 : 𝐸 →

{1, 2, 3, . . .} be a map. Then, Γ (E, 𝑤) ∈ QSym.

Example 1.3.6. The power series Γ (E, 𝑤) generalize various well-known qua-

sisymmetric functions.

(a) If E = (𝐸,<1, <2) is a double poset, and 𝑤 : 𝐸 → {1, 2, 3, . . .} is the constant

function sending everything to 1, then Γ (E, 𝑤) =
∑︀

𝜋 is an E-partition
x𝜋, where

x𝜋 =
∏︀
𝑒∈𝐸

𝑥𝜋(𝑒). We shall denote this power series Γ (E, 𝑤) by Γ (E); it is

exactly what has been called Γ (E) in [MalReu09, §2.2]. All results proven

below for Γ (E, 𝑤) can be applied to Γ (E), yielding simpler (but less general)

statements.
9See [Gessel15] for the history of these notions, and see [Gessel84], [Stan71], [Stan11, §3.15]

and [Stan99, §7.19] for some of their theory. Mind that these sources use different and sometimes
incompatible notations – e.g., the 𝑃 -partitions of [Stan11, §3.15] and [Gessel15] differ from those of
[Gessel84] by a sign reversal.
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(b) If 𝐸 = {1, 2, . . . , ℓ} for some ℓ ∈ N, if <1 is the usual total order inher-

ited from Z, and if <2 is the opposite relation of <1, then the special dou-

ble poset E = (𝐸,<1, <2) satisfies Γ (E, 𝑤) = 𝑀𝛼, where 𝛼 is the compo-

sition (𝑤 (1) , 𝑤 (2) , . . . , 𝑤 (ℓ)). Thus, the elements of the monomial basis

(𝑀𝛼)𝛼∈Comp are special cases of the functions Γ (E, 𝑤).

(c) Let 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) be a composition of a nonnegative integer 𝑛. Let

𝐷 (𝛼) be the set {𝛼1, 𝛼1 + 𝛼2, 𝛼1 + 𝛼2 + 𝛼3, . . . , 𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ−1}. Let

𝐸 be the set {1, 2, . . . , 𝑛}, and let <1 be the total order inherited on 𝐸 from

Z. Let <2 be some partial order on 𝐸 with the property that

𝑖+ 1 <2 𝑖 for every 𝑖 ∈ 𝐷 (𝛼)

and

𝑖 <2 𝑖+ 1 for every 𝑖 ∈ {1, 2, . . . , 𝑛− 1} ∖𝐷 (𝛼) .

(There are several choices for such an order; in particular, we can find one

which is a total order.) Then,

Γ ((𝐸,<1, <2)) =
∑︁

𝑖1≤𝑖2≤···≤𝑖𝑛;
𝑖𝑗<𝑖𝑗+1 whenever 𝑗∈𝐷(𝛼)

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛

=
∑︁

𝛽 is a composition of 𝑛; 𝐷(𝛽)⊇𝐷(𝛼)

𝑀𝛽.

This power series is known as the 𝛼-th fundamental quasisymmetric function,

usually called 𝐹𝛼 (in [BBSSZ13a, §2.4] and Section 2.2 of this thesis) or 𝐿𝛼

(in [Stan99, §7.19] or [GriRei15, Def. 5.15]).

(d) Let E be one of the two double posets Y (𝜆/𝜇) and Yℎ (𝜆/𝜇) defined as in

Example 1.3.3 for two partitions 𝜇 and 𝜆. Then, Γ (E) is the skew Schur

function 𝑠𝜆/𝜇.

(e) Similarly, dual immaculate functions as defined in [BBSSZ13a, §3.7] can be

realized as Γ (E) for conveniently chosen E (see Proposition 2.4.4), which
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helped the author to prove one of their properties (see Chapter 2 of this

thesis). (The E-partitions here are the so-called immaculate tableaux.)

(f) When the relation <2 of a double poset E = (𝐸,<1, <2) is a total order (i.e.,

when the double poset E is special), the E-partitions are precisely the reverse

(𝑃, 𝜔)-partitions (for 𝑃 = (𝐸,<1) and 𝜔 being a labelling of 𝑃 dictated by

<2) in the terminology of [Stan99, §7.19], and the power series Γ (E) is the

𝐾𝑃,𝜔 of [Stan99, §7.19]. This can also be rephrased using the notations of

[GriRei15, §5.2]: When the relation <2 of a double poset E = (𝐸,<1, <2) is a

total order, we can relabel the elements of 𝐸 by the integers 1, 2, . . . , 𝑛 in such

a way that 1 <2 2 <2 · · · <2 𝑛; then, the E-partitions are the 𝑃 -partitions

in the terminology of [GriRei15, Def. 5.12], where 𝑃 is the labelled poset

(𝐸,<1); and furthermore, our Γ (E) is the 𝐹𝑃 (x) of [GriRei15, Def. 5.12].

Conversely, if 𝑃 is a labelled poset, then the 𝐹𝑃 (x) of [GriRei15, Def. 5.12]

is our Γ ((𝑃,<𝑃 , <Z)).

1.4 The antipode theorem

We now come to the main results of this note. We first state a theorem and a

corollary which are not new, but will be reproven in a more self-contained way which

allows them to take their (well-deserved) place as fundamental results rather than

afterthoughts in the theory of QSym.

Definition 1.4.1. We let 𝑆 denote the antipode of QSym.

Theorem 1.4.2. Let (𝐸,<1, <2) be a tertispecial double poset. Let 𝑤 : 𝐸 →

{1, 2, 3, . . .}. Then, 𝑆 (Γ ((𝐸,<1, <2) , 𝑤)) = (−1)|𝐸| Γ ((𝐸,>1, <2) , 𝑤), where >1

denotes the opposite relation of <1.
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Corollary 1.4.3. Let (𝐸,<1, <2) be a tertispecial double poset. Then,

𝑆 (Γ ((𝐸,<1, <2))) = (−1)|𝐸| Γ ((𝐸,>1, <2)), where >1 denotes the opposite re-

lation of <1.

We shall give examples for consequences of these facts shortly (Example 1.4.7),

but let us first explain where they have already appeared. Corollary 1.4.3 is equivalent

to [GriRei15, Corollary 5.27]10 (a result found by Malvenuto and Reutenauer, as well

as by Ehrenborg in an equivalent form). Theorem 1.4.2 is equivalent to Malvenuto’s

and Reutenauer’s [MalReu98, Theorem 3.1]11. We nevertheless believe that our ver-

sions of these facts are more natural and simpler than the ones appearing in existing

literature12, and if not, then at least their proofs below are more in the nature of

things.

To these known results, we add another, which seems to be unknown so far (prob-

ably because it is far harder to state in the terminologies of (𝑃, 𝜔)-partitions or

equality-and-inequality conditions appearing in literature). First, we need to intro-

duce some notation:

10It is easiest to derive [GriRei15, Corollary 5.27] from our Corollary 1.4.3, as this only requires
setting E = (𝑃,<𝑃 , <Z) (this is a special double poset, thus in particular a tertispecial one) and
noticing that Γ ((𝑃,<𝑃 , <Z)) = 𝐹𝑃 (x) and Γ ((𝑃,>𝑃 , <Z)) = 𝐹𝑃 opp (x), where all unexplained
notations are defined in [GriRei15, Chp. 5]. But one can also proceed in the opposite direction.

11This equivalence requires a bit of work to set up. To derive [MalReu98, Theorem 3.1] from our
Theorem 1.4.2, it is enough to contract all undirected edges in 𝐺, denoting the vertex set of the new
graph by 𝐸, and then define two order relations <1 and <2 on 𝐸 by

(𝑎 <1 𝑏) ⇐⇒ (𝑎 ̸= 𝑏, and there exists a path from 𝑎 to 𝑏 in 𝐺)

and
(𝑎 <2 𝑏) ⇐⇒ (𝑎 ̸= 𝑏, and there exists a path from 𝑎 to 𝑏 in 𝐺′) .

The map 𝑤 sends every 𝑒 ∈ 𝐸 to the number of vertices of 𝐺 that became 𝑒 when the edges were
contracted. To show that the resulting double poset (𝐸,<1, <2) is tertispecial, we must notice that if
𝑎 is <1-covered by 𝑏, then 𝐺 had an edge from one of the vertices that became 𝑎 to one of the vertices
that became 𝑏. The “𝑥𝑖’s in 𝑋 satisfying a set of conditions” (in the language of [MalReu98, Section
3]) are then in 1-to-1 correspondence with (𝐸,<1, <2)-partitions (at least when 𝑋 = {1, 2, 3, . . .});
this is not immediately obvious but not hard to check either (the acyclicity of 𝐺 and 𝐺′ is used in
the proof). As a result, [MalReu98, Theorem 3.1] follows from Theorem 1.4.2 above. With some
harder work, one can conversely derive our Theorem 1.4.2 from [MalReu98, Theorem 3.1].

12That said, we would not be surprised if Malvenuto and Reutenauer are aware of them and just
have not published them; after all, they have discovered both the original version of Theorem 1.4.2
in [MalReu98] and the notion of double posets in [MalReu09].
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Definition 1.4.4. Let 𝐺 be a group, and let 𝐸 be a 𝐺-set.

(a) Let < be a strict partial order relation on 𝐸. We say that 𝐺 preserves the

relation < if the following holds: For every 𝑔 ∈ 𝐺, 𝑎 ∈ 𝐸 and 𝑏 ∈ 𝐸 satisfying

𝑎 < 𝑏, we have 𝑔𝑎 < 𝑔𝑏.

(b) Let 𝑤 : 𝐸 → {1, 2, 3, . . .}. We say that 𝐺 preserves 𝑤 if every 𝑔 ∈ 𝐺 and

𝑒 ∈ 𝐸 satisfy 𝑤 (𝑔𝑒) = 𝑤 (𝑒).

(c) Let 𝑔 ∈ 𝐺. Assume that the set 𝐸 is finite. We say that 𝑔 is 𝐸-even if the

action of 𝑔 on 𝐸 (that is, the permutation of 𝐸 that sends every 𝑒 ∈ 𝐸 to

𝑔𝑒) is an even permutation of 𝐸.

(d) If 𝑋 is any set, then the set 𝑋𝐸 of all maps 𝐸 → 𝑋 becomes a 𝐺-set in the

following way: For any 𝜋 ∈ 𝑋𝐸 and 𝑔 ∈ 𝐺, we define the element 𝑔𝜋 ∈ 𝑋𝐸

to be the map sending each 𝑒 ∈ 𝐸 to 𝜋 (𝑔−1𝑒).

(e) Let 𝐹 be a further 𝐺-set. Assume that the set 𝐸 is finite. An element 𝜋 ∈ 𝐹

is said to be 𝐸-coeven if every 𝑔 ∈ 𝐺 satisfying 𝑔𝜋 = 𝜋 is 𝐸-even. A 𝐺-orbit

𝑂 on 𝐹 is said to be 𝐸-coeven if all elements of 𝑂 are 𝐸-coeven.

Before we come to the promised result, let us state a simple fact:

Lemma 1.4.5. Let 𝐺 be a group. Let 𝐹 and 𝐸 be 𝐺-sets such that 𝐸 is finite.

Let 𝑂 be a 𝐺-orbit on 𝐹 . Then, 𝑂 is 𝐸-coeven if and only if at least one element

of 𝑂 is 𝐸-coeven.

Theorem 1.4.6. Let E = (𝐸,<1, <2) be a tertispecial double poset. Let ParE

denote the set of all E-partitions. Let 𝑤 : 𝐸 → {1, 2, 3, . . .}. Let 𝐺 be a finite

group which acts on 𝐸. Assume that 𝐺 preserves both relations <1 and <2, and

also preserves 𝑤. Then, 𝐺 acts also on the set ParE of all E-partitions; namely,

ParE is a 𝐺-subset of the 𝐺-set {1, 2, 3, . . .}𝐸 (see Definition 1.4.4 (d) for the

definition of the latter). For any 𝐺-orbit 𝑂 on ParE, we define a monomial x𝑂,𝑤
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by

x𝑂,𝑤 = x𝜋,𝑤 for some element 𝜋 of 𝑂

(this does not depend on the choice of 𝜋). Let

Γ (E, 𝑤,𝐺) =
∑︁

𝑂 is a 𝐺-orbit on ParE

x𝑂,𝑤

and

Γ+ (E, 𝑤,𝐺) =
∑︁

𝑂 is an 𝐸-coeven 𝐺-orbit on ParE

x𝑂,𝑤.

Then, Γ (E, 𝑤,𝐺) and Γ+ (E, 𝑤,𝐺) belong to QSym and satisfy

𝑆 (Γ (E, 𝑤,𝐺)) = (−1)|𝐸| Γ+ ((𝐸,>1, <2) , 𝑤,𝐺) .

This theorem, which combines Theorem 1.4.2 with the ideas of Pólya enumeration,

is inspired by Jochemko’s reciprocity result for order polynomials [Joch13, Theorem

2.8], which can be obtained from it by specializations (see Section 1.8 for the details

of how Jochemko’s result follows from ours).

We shall now review a number of particular cases of Theorem 1.4.2. Details on

most of them will be provided in forthcoming work.

Example 1.4.7. (a) Corollary 1.4.3 follows from Theorem 1.4.2 by letting 𝑤 be

the function which is constantly 1.

(b) Let 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) be a composition of a nonnegative integer 𝑛, and

let E = (𝐸,<1, <2) be the double poset defined in Example 1.3.6 (b). Let

𝑤 : {1, 2, . . . , ℓ} → {1, 2, 3, . . .} be the map sending every 𝑖 to 𝛼𝑖. As Exam-

ple 1.3.6 (b) shows, we have Γ (E, 𝑤) = 𝑀𝛼. Thus, applying Theorem 1.4.2

28



to these E and 𝑤 yields

𝑆 (𝑀𝛼) = (−1)ℓ Γ ((𝐸,>1, <2) , 𝑤) = (−1)ℓ
∑︁

𝑖1≥𝑖2≥···≥𝑖ℓ

𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

= (−1)ℓ
∑︁

𝑖1≤𝑖2≤···≤𝑖ℓ

𝑥𝛼ℓ
𝑖1
𝑥
𝛼ℓ−1

𝑖2
· · ·𝑥𝛼1

𝑖ℓ
= (−1)ℓ

∑︁
𝛾 is a composition of 𝑛;

𝐷(𝛾)⊆𝐷((𝛼ℓ,𝛼ℓ−1,...,𝛼1))

𝑀𝛾.

This is the formula for 𝑆 (𝑀𝛼) given in [Malve93, (4.26)], in [GriRei15, Theo-

rem 5.11], and in [BenSag14, Theorem 4.1] (originally due to Ehrenborg and

to Malvenuto and Reutenauer). It also shows that the Γ (E, 𝑤) for varying

E and 𝑤 span the k-module QSym.

(c) Applying Corollary 1.4.3 to the double poset of Example 1.3.6 (c) (where the

relation <2 is chosen to be a total order) yields the formula for the antipode of

a fundamental quasisymmetric function ([Malve93, (4.27)], [GriRei15, (5.9)],

[BenSag14, Theorem 5.1]).

(d) Let us use the notations of Example 1.3.3. For any partition 𝜆, let 𝜆𝑡 denote

the conjugate partition of 𝜆. Let 𝜇 and 𝜆 be two partitions satisfying 𝜇 ⊆ 𝜆.

Then, there is a bijection 𝜏 : 𝑌 (𝜆/𝜇) → 𝑌 (𝜆𝑡/𝜇𝑡) sending each (𝑖, 𝑗) ∈

𝑌 (𝜆/𝜇) to (𝑗, 𝑖). This bijection is an isomorphism of double posets from

(𝑌 (𝜆/𝜇) , >1, <2) to (𝑌 (𝜆𝑡/𝜇𝑡) , >1, >2). Thus, applying Corollary 1.4.3 to

the tertispecial double poset Y (𝜆/𝜇), we obtain

𝑆 (Γ (Y (𝜆/𝜇))) = (−1)|𝜆/𝜇| Γ ((𝑌 (𝜆/𝜇) , >1, <2))

= (−1)|𝜆/𝜇| Γ
(︀(︀
𝑌
(︀
𝜆𝑡/𝜇𝑡

)︀
, >1, >2

)︀)︀
. (1.3)

But from Example 1.3.6 (d), we know that Γ (Y (𝜆/𝜇)) = 𝑠𝜆/𝜇. More-

over, a similar argument using [GriRei15, Remark 2.12] shows that

Γ ((𝑌 (𝜆𝑡/𝜇𝑡) , >1, >2)) = 𝑠𝜆𝑡/𝜇𝑡 . Hence, (1.3) rewrites as

𝑆
(︀
𝑠𝜆/𝜇

)︀
= (−1)|𝜆/𝜇| 𝑠𝜆𝑡/𝜇𝑡 . (1.4)
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This is a well-known formula, and is usually stated for 𝑆 being the antipode

of the Hopf algebra of symmetric (rather than quasisymmetric) functions,

but the latter antipode is a restriction of the antipode of QSym.

It is also possible (but more difficult) to derive (1.4) by using the double

poset Yℎ (𝜆/𝜇) instead of Y (𝜆/𝜇). (This boils down to what was done in

[GriRei15, proof of Corollary 5.29].)

(e) Two results of Benedetti and Sagan [BenSag14, Theorems 8.1–8.2] on the

antipodes of immaculate functions can be obtained from Corollary 1.4.3 using

dualization.

1.5 Lemmas: packed E-partitions and comultiplica-

tions

We shall now prepare for the proofs of our results. To this end, we introduce the

notion of a packed map.

Definition 1.5.1. (a) An initial interval will mean a set of the form {1, 2, . . . , ℓ}

for some ℓ ∈ N.

(b) If 𝑇 is a set and 𝜋 : 𝑇 → {1, 2, 3, . . .} is a map, then 𝜋 is said to be

packed if 𝜋 (𝑇 ) is an initial interval. Clearly, this initial interval must be

{1, 2, . . . , |𝜋 (𝑇 )|}.

Proposition 1.5.2. Let E = (𝐸,<1, <2) be a double poset. Let 𝑤 : 𝐸 →

{1, 2, 3, . . .} be a map. For every packed map 𝜋 : 𝐸 → {1, 2, 3, . . .}, we define

ev𝑤 𝜋 to be the composition (𝛼1, 𝛼2, . . . , 𝛼ℓ), where ℓ = |𝜋 (𝐸)| (so that 𝜋 (𝐸) =

{1, 2, . . . , ℓ}, since 𝜋 is packed), and where each 𝛼𝑖 is defined as
∑︀

𝑒∈𝜋−1(𝑖)

𝑤 (𝑒). Then,

Γ (E, 𝑤) =
∑︁

𝜙 is a packed E-partition

𝑀ev𝑤 𝜙. (1.5)
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Proof of Proposition 1.5.2. For every finite subset 𝑇 of {1, 2, 3, . . .}, there exists a

unique strictly increasing bijection {1, 2, . . . , |𝑇 |} → 𝑇 . We shall denote this bijec-

tion by 𝑟𝑇 . For every map 𝜋 : 𝐸 → {1, 2, 3, . . .}, we define the packing of 𝜋 as

the map 𝑟−1
𝜋(𝐸) ∘ 𝜋 : 𝐸 → {1, 2, 3, . . .}; this is a packed map (indeed, its image is

{1, 2, . . . , |𝜋 (𝐸)|}), and will be denoted by pack𝜋. This map pack𝜋 is an E-partition

if and only if 𝜋 is an E-partition13.

We shall show that for every packed E-partition 𝜙, we have

∑︁
𝜋 is an E-partition; pack𝜋=𝜙

x𝜋,𝑤 = 𝑀ev𝑤 𝜙. (1.6)

Once this is proven, it will follow that

Γ (E, 𝑤) =
∑︁

𝜋 is an E-partition

x𝜋,𝑤 =
∑︁

𝜙 is a packed E-partition

∑︁
𝜋 is an E-partition; pack𝜋=𝜙

x𝜋,𝑤⏟  ⏞  
=𝑀ev𝑤 𝜙

(by (1.6))

(since pack𝜋 is a packed E-partition for every E-partition 𝜋)

=
∑︁

𝜙 is a packed E-partition

𝑀ev𝑤 𝜙,

and Proposition 1.5.2 will be proven.

So it remains to prove (1.6). Let 𝜙 be a packed E-partition. Let ℓ = |𝜙 (𝐸)|;

thus 𝜙 (𝐸) = {1, 2, . . . , ℓ} (since 𝜙 is packed). Let 𝛼𝑖 =
∑︀

𝑒∈𝜙−1(𝑖)

𝑤 (𝑒) for every 𝑖 ∈

{1, 2, . . . , ℓ}; thus, ev𝑤 𝜙 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) (by the definition of ev𝑤 𝜙). Then, the

13Indeed, pack𝜋 = 𝑟−1
𝜋(𝐸) ∘ 𝜋. Since 𝑟𝜋(𝐸) is strictly increasing, we thus see that, for any given

𝑒 ∈ 𝐸 and 𝑓 ∈ 𝐸, the equivalences

((pack𝜋) (𝑒) ≤ (pack𝜋) (𝑓)) ⇐⇒ (𝜋 (𝑒) ≤ 𝜋 (𝑓))

and
((pack𝜋) (𝑒) < (pack𝜋) (𝑓)) ⇐⇒ (𝜋 (𝑒) < 𝜋 (𝑓))

hold. Hence, pack𝜋 is an E-partition if and only if 𝜋 is an E-partition.
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right hand side of (1.6) rewrites as follows:

𝑀ev𝑤 𝜙 =
∑︁

𝑖1<𝑖2<···<𝑖ℓ

𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ⏟  ⏞  

=
ℓ∏︀

𝑘=1
𝑥
𝛼𝑘
𝑖𝑘

=
∑︁

𝑖1<𝑖2<···<𝑖ℓ

ℓ∏︁
𝑘=1

𝑥𝛼𝑘
𝑖𝑘⏟ ⏞ 

=𝑥

∑︀
𝑒∈𝜙−1(𝑘)

𝑤(𝑒)

𝑖𝑘
(since 𝛼𝑘=

∑︀
𝑒∈𝜙−1(𝑘)

𝑤(𝑒))

=
∑︁

𝑖1<𝑖2<···<𝑖ℓ

ℓ∏︁
𝑘=1

𝑥

∑︀
𝑒∈𝜙−1(𝑘)

𝑤(𝑒)

𝑖𝑘⏟  ⏞  
=

∏︀
𝑒∈𝜙−1(𝑘)

𝑥
𝑤(𝑒)
𝑖𝑘

=
∏︀

𝑒∈𝐸; 𝜙(𝑒)=𝑘

𝑥
𝑤(𝑒)
𝑖𝑘

=
∑︁

𝑖1<𝑖2<···<𝑖ℓ

ℓ∏︁
𝑘=1

∏︁
𝑒∈𝐸; 𝜙(𝑒)=𝑘

𝑥
𝑤(𝑒)
𝑖𝑘⏟ ⏞ 

=𝑥
𝑤(𝑒)
𝑖𝜙(𝑒)

(since 𝑘=𝜙(𝑒))

=
∑︁

𝑖1<𝑖2<···<𝑖ℓ

ℓ∏︁
𝑘=1

∏︁
𝑒∈𝐸; 𝜙(𝑒)=𝑘

𝑥
𝑤(𝑒)
𝑖𝜙(𝑒)⏟  ⏞  

=
∏︀

𝑒∈𝐸
𝑥
𝑤(𝑒)
𝑖𝜙(𝑒)

=
∑︁

𝑖1<𝑖2<···<𝑖ℓ

∏︁
𝑒∈𝐸

𝑥
𝑤(𝑒)
𝑖𝜙(𝑒)

=
∑︁

𝑇⊆{1,2,3,...}; |𝑇 |=ℓ

∏︁
𝑒∈𝐸

𝑥
𝑤(𝑒)
𝑟𝑇 (𝜙(𝑒))⏟  ⏞  

=
∏︀

𝑒∈𝐸
𝑥
𝑤(𝑒)

(𝑟𝑇 ∘𝜙)(𝑒)
=x𝑟𝑇 ∘𝜙,𝑤

=
∑︁

𝑇⊆{1,2,3,...}; |𝑇 |=ℓ

x𝑟𝑇 ∘𝜙,𝑤 (1.7)

14.

On the other hand, recall that 𝜙 is an E-partition. Hence, every map 𝜋 satisfying

pack𝜋 = 𝜙 is an E-partition (because, as we know, pack𝜋 is an E-partition if and

only if 𝜋 is an E-partition). Thus, the E-partitions 𝜋 satisfying pack𝜋 = 𝜙 are

precisely the maps 𝜋 : 𝐸 → {1, 2, 3, . . .} satisfying pack𝜋 = 𝜙. Hence,

∑︁
𝜋 is an E-partition; pack𝜋=𝜙

x𝜋,𝑤 =
∑︁

𝜋:𝐸→{1,2,3,...}; pack𝜋=𝜙

x𝜋,𝑤

=
∑︁

𝑇⊆{1,2,3,...}; |𝑇 |=ℓ

∑︁
𝜋:𝐸→{1,2,3,...}; pack𝜋=𝜙; 𝜋(𝐸)=𝑇

x𝜋,𝑤

(because if 𝜋 : 𝐸 → {1, 2, 3, . . .} is a map satisfying pack𝜋 = 𝜙, then |𝜋 (𝐸)| = ℓ

14In the second-to-last equality, we have used the fact that the strictly increasing sequences
(𝑖1 < 𝑖2 < · · · < 𝑖ℓ) of positive integers are in bijection with the subsets 𝑇 ⊆ {1, 2, 3, . . .} such that
|𝑇 | = ℓ. The bijection sends a sequence (𝑖1 < 𝑖2 < · · · < 𝑖ℓ) to the set of its entries; its inverse map
sends every 𝑇 to the sequence (𝑟𝑇 (1) , 𝑟𝑇 (2) , . . . , 𝑟𝑇 (|𝑇 |)).
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15). But for every ℓ-element subset 𝑇 of {1, 2, 3, . . .}, there exists exactly one 𝜋 : 𝐸 →

{1, 2, 3, . . .} satisfying pack𝜋 = 𝜙 and 𝜋 (𝐸) = 𝑇 : namely, 𝜋 = 𝑟𝑇 ∘𝜙 16. Therefore,

for every ℓ-element subset 𝑇 of {1, 2, 3, . . .}, we have

∑︁
𝜋:𝐸→{1,2,3,...}; pack𝜋=𝜙; 𝜋(𝐸)=𝑇

x𝜋,𝑤 = x𝑟𝑇 ∘𝜙,𝑤.

Hence,

∑︁
𝜋 is an E-partition; pack𝜋=𝜙

x𝜋,𝑤 =
∑︁

𝑇⊆{1,2,3,...}; |𝑇 |=ℓ

∑︁
𝜋:𝐸→{1,2,3,...}; pack𝜋=𝜙; 𝜋(𝐸)=𝑇

x𝜋,𝑤⏟  ⏞  
=x𝑟𝑇 ∘𝜙,𝑤

=
∑︁

𝑇⊆{1,2,3,...}; |𝑇 |=ℓ

x𝑟𝑇 ∘𝜙,𝑤 = 𝑀ev𝑤 𝜙

15Proof. Let 𝜋 : 𝐸 → {1, 2, 3, . . .} be a map satisfying pack𝜋 = 𝜙. The definition of pack𝜋 yields
pack𝜋 = 𝑟−1

𝜋(𝐸) ∘𝜋. Hence, |(pack𝜋) (𝐸)| =
⃒⃒⃒(︁
𝑟−1
𝜋(𝐸) ∘ 𝜋

)︁
(𝐸)
⃒⃒⃒
=
⃒⃒⃒
𝑟−1
𝜋(𝐸) (𝜋 (𝐸))

⃒⃒⃒
= |𝜋 (𝐸)| (since 𝑟−1

𝜋(𝐸)

is a bijection). Since pack𝜋 = 𝜙, this rewrites as |𝜙 (𝐸)| = |𝜋 (𝐸)|. Hence, |𝜋 (𝐸)| = |𝜙 (𝐸)| = ℓ,
qed.

16Proof. Let 𝑇 be an ℓ-element subset of {1, 2, 3, . . .}. We need to show that there exists exactly
one 𝜋 : 𝐸 → {1, 2, 3, . . .} satisfying pack𝜋 = 𝜙 and 𝜋 (𝐸) = 𝑇 : namely, 𝜋 = 𝑟𝑇 ∘ 𝜙. In other words,
we need to prove the following two claims:

Claim 1: The map 𝑟𝑇 ∘ 𝜙 is a map 𝜋 : 𝐸 → {1, 2, 3, . . .} satisfying pack𝜋 = 𝜙 and 𝜋 (𝐸) = 𝑇 .
Claim 2: If 𝜋 : 𝐸 → {1, 2, 3, . . .} is a map satisfying pack𝜋 = 𝜙 and 𝜋 (𝐸) = 𝑇 , then 𝜋 = 𝑟𝑇 ∘ 𝜙.

Proof of Claim 1. We have (𝑟𝑇 ∘ 𝜙) (𝐸) = 𝑟𝑇

⎛⎜⎝ 𝜙 (𝐸)⏟  ⏞  
={1,2,...,ℓ}

⎞⎟⎠ =

𝑟𝑇

⎛⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩1, 2, . . . , ℓ⏟ ⏞ 

=|𝑇 |
(since 𝑇 is ℓ-element)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠ = 𝑟𝑇 ({1, 2, . . . , |𝑇 |}) = 𝑇 (by the definition of 𝑟𝑇 ). Now, the

definition of pack (𝑟𝑇 ∘ 𝜙) shows that

pack (𝑟𝑇 ∘ 𝜙) = 𝑟−1
(𝑟𝑇 ∘𝜙)(𝐸) ∘ (𝑟𝑇 ∘ 𝜙) = 𝑟−1

𝑇 ∘ (𝑟𝑇 ∘ 𝜙) (since (𝑟𝑇 ∘ 𝜙) (𝐸) = 𝑇 )

= 𝜙.

Thus, the map 𝑟𝑇 ∘ 𝜙 : 𝐸 → {1, 2, 3, . . .} satisfies pack (𝑟𝑇 ∘ 𝜙) = 𝜙 and (𝑟𝑇 ∘ 𝜙) (𝐸) = 𝑇 . In other
words, 𝑟𝑇 ∘𝜙 is a map 𝜋 : 𝐸 → {1, 2, 3, . . .} satisfying pack𝜋 = 𝜙 and 𝜋 (𝐸) = 𝑇 . This proves Claim
1.

Proof of Claim 2. Let 𝜋 : 𝐸 → {1, 2, 3, . . .} be a map satisfying pack𝜋 = 𝜙 and 𝜋 (𝐸) = 𝑇 .
The definition of pack𝜋 shows that pack𝜋 = 𝑟−1

𝜋(𝐸) ∘ 𝜋 = 𝑟−1
𝑇 ∘ 𝜋 (since 𝜋 (𝐸) = 𝑇 ). Hence,

𝑟−1
𝑇 ∘ 𝜋 = pack𝜋 = 𝜙, so that 𝜋 = 𝑟𝑇 ∘ 𝜙. This proves Claim 2.
Now, both Claims 1 and 2 are proven; hence, our proof is complete.
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(by (1.7)). Thus, (1.6) is proven, and with it Proposition 1.5.2.

Proof of Proposition 1.3.5. Proposition 1.3.5 follows immediately from

Proposition 1.5.2.

We shall now describe the coproduct of Γ (E, 𝑤), essentially giving the proof that

is left to the reader in [MalReu09, Theorem 2.2].

Definition 1.5.3. Let E = (𝐸,<1, <2) be a double poset.

(a) Then, AdmE will mean the set of all pairs (𝑃,𝑄), where 𝑃 and 𝑄 are subsets

of 𝐸 satisfying 𝑃 ∩ 𝑄 = ∅ and 𝑃 ∪ 𝑄 = 𝐸 and having the property that

no 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄 satisfy 𝑞 <1 𝑝. These pairs (𝑃,𝑄) are called the

admissible partitions of E. (In the terminology of [MalReu09], they are the

decompositions of (𝐸,<1).)

(b) For any subset 𝑇 of 𝐸, we let E |𝑇 denote the double poset (𝑇,<1, <2), where

<1 and <2 (by abuse of notation) denote the restrictions of the relations <1

and <2 to 𝑇 .

Proposition 1.5.4. Let E = (𝐸,<1, <2) be a double poset. Let 𝑤 : 𝐸 →

{1, 2, 3, . . .} be a map. Then,

Δ(Γ (E, 𝑤)) =
∑︁

(𝑃,𝑄)∈AdmE

Γ (E |𝑃 , 𝑤 |𝑃 )⊗ Γ (E |𝑄, 𝑤 |𝑄) . (1.8)

A particular case of Proposition 1.5.4 (namely, the case when 𝑤 (𝑒) = 1 for each

𝑒 ∈ 𝐸) appears in [Malve93, Théorème 4.16].

We shall now outline a proof of this fact. The proof relies on a simple bijection

that an experienced combinatorialist will have no trouble finding (and proving even

less); let us just give a brief outline of the argument17:
17See the detailed version of this note for an (almost) completely written-out proof; I am afraid

that the additional level of detail is of no help to the understanding.
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Proof of Proposition 1.5.4. Whenever 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) is a composition and 𝑘 ∈

{0, 1, . . . , ℓ}, we introduce the notation 𝛼 [: 𝑘] for the composition (𝛼1, 𝛼2, . . . , 𝛼𝑘),

and the notation 𝛼 [𝑘 :] for the composition (𝛼𝑘+1, 𝛼𝑘+2, . . . , 𝛼ℓ). Now, the formula

(1.1) can be rewritten as follows:

Δ(𝑀𝛼) =
ℓ∑︁

𝑘=0

𝑀𝛼[:𝑘] ⊗𝑀𝛼[𝑘:] (1.9)

for every ℓ ∈ N and every composition 𝛼 with ℓ entries.

Now, applying Δ to the equality (1.5) yields

Δ(Γ (E, 𝑤)) =
∑︁

𝜙 is a packed E-partition

Δ(𝑀ev𝑤 𝜙)⏟  ⏞  
=

|𝜙(𝐸)|∑︀
𝑘=0

𝑀(ev𝑤 𝜙)[:𝑘]⊗𝑀(ev𝑤 𝜙)[𝑘:]

(by (1.9))

=
∑︁

𝜙 is a packed E-partition

|𝜙(𝐸)|∑︁
𝑘=0

𝑀(ev𝑤 𝜙)[:𝑘] ⊗𝑀(ev𝑤 𝜙)[𝑘:]. (1.10)

On the other hand, rewriting each of the tensorands on the right hand side of

(1.8) using (1.5), we obtain

∑︁
(𝑃,𝑄)∈AdmE

Γ (E |𝑃 , 𝑤 |𝑃 )⊗ Γ (E |𝑄, 𝑤 |𝑄)

=
∑︁

(𝑃,𝑄)∈AdmE

⎛⎝ ∑︁
𝜙 is a packed E|𝑃 -partition

𝑀ev𝑤|𝑃 𝜙

⎞⎠⊗

⎛⎝ ∑︁
𝜙 is a packed E|𝑄-partition

𝑀ev𝑤|𝑄 𝜙

⎞⎠
=

∑︁
(𝑃,𝑄)∈AdmE

⎛⎝ ∑︁
𝜎 is a packed E|𝑃 -partition

𝑀ev𝑤|𝑃 𝜎

⎞⎠⊗

⎛⎝ ∑︁
𝜏 is a packed E|𝑄-partition

𝑀ev𝑤|𝑄 𝜏

⎞⎠
=

∑︁
(𝑃,𝑄)∈AdmE

∑︁
𝜎 is a packed E|𝑃 -partition

∑︁
𝜏 is a packed E|𝑄-partition

𝑀ev𝑤|𝑃 𝜎 ⊗𝑀ev𝑤|𝑄 𝜏 .

We need to prove that the right hand sides of this equality and of (1.10) are equal

(because then, it will follow that so are the left hand sides, and thus Proposition 1.5.4

will be proven). For this, it is clearly enough to exhibit a bijection between
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∙ the pairs (𝜙, 𝑘) consisting of a packed E-partition 𝜙 and a 𝑘 ∈ {0, 1, . . . , |𝜙 (𝐸)|}

and

∙ the triples ((𝑃,𝑄) , 𝜎, 𝜏) consisting of a (𝑃,𝑄) ∈ AdmE, a packed E |𝑃 -partition

𝜎 and a packed E |𝑄-partition 𝜏

which bijection has the property that whenever it maps (𝜙, 𝑘) to ((𝑃,𝑄) , 𝜎, 𝜏), we

have the equalities (ev𝑤 𝜙) [: 𝑘] = ev𝑤|𝑃 𝜎 and (ev𝑤 𝜙) [𝑘 :] = ev𝑤|𝑄 𝜏 . Such a bi-

jection is easy to construct: Given (𝜙, 𝑘), it sets 𝑃 = 𝜙−1 ({1, 2, . . . , 𝑘}), 𝑄 =

𝜙−1 ({𝑘 + 1, 𝑘 + 2, . . . , |𝜙 (𝐸)|}), 𝜎 = 𝜙 |𝑃 and 𝜏 = pack (𝜙 |𝑄) 18. Conversely,

given ((𝑃,𝑄) , 𝜎, 𝜏), the inverse bijection sets 𝑘 = |𝜎 (𝑃 )| and constructs 𝜙 as the

map 𝐸 → {1, 2, 3, . . .} which sends every 𝑒 ∈ 𝐸 to

⎧⎪⎨⎪⎩𝜎 (𝑒) , if 𝑒 ∈ 𝑃 ;

𝜏 (𝑒) + 𝑘, if 𝑒 ∈ 𝑄

. Prov-

ing that this alleged bijection and its alleged inverse bijection are well-defined and

actually mutually inverse is straightforward and left to the reader19.

18We notice that these 𝑃 , 𝑄, 𝜎 and 𝜏 satisfy 𝜎 (𝑒) = 𝜙 (𝑒) for every 𝑒 ∈ 𝑃 , and 𝜏 (𝑒) = 𝜙 (𝑒)− 𝑘
for every 𝑒 ∈ 𝑄.

19The only part of the argument that is a bit trickier is proving the well-definedness of the inverse
bijection: We need to show that if ((𝑃,𝑄) , 𝜎, 𝜏) is a triple consisting of a (𝑃,𝑄) ∈ AdmE, a
packed E |𝑃 -partition 𝜎 and a packed E |𝑄-partition 𝜏 , and if we set 𝑘 = |𝜎 (𝑃 )|, then the map

𝜙 : 𝐸 → {1, 2, 3, . . .} which sends every 𝑒 ∈ 𝐸 to

{︃
𝜎 (𝑒) , if 𝑒 ∈ 𝑃 ;

𝜏 (𝑒) + 𝑘, if 𝑒 ∈ 𝑄
is actually a packed E-

partition.
Indeed, it is clear that this map 𝜙 is packed. It remains to show that it is an E-partition. To do

so, we must prove the following two claims:
Claim 1: Every 𝑒 ∈ 𝐸 and 𝑓 ∈ 𝐸 satisfying 𝑒 <1 𝑓 satisfy 𝜙 (𝑒) ≤ 𝜙 (𝑓).
Claim 2: Every 𝑒 ∈ 𝐸 and 𝑓 ∈ 𝐸 satisfying 𝑒 <1 𝑓 and 𝑓 <2 𝑒 satisfy 𝜙 (𝑒) < 𝜙 (𝑓).
We shall only prove Claim 1 (as the proof of Claim 2 is similar). So let 𝑒 ∈ 𝐸 and 𝑓 ∈ 𝐸 be such

that 𝑒 <1 𝑓 . We need to show that 𝜙 (𝑒) ≤ 𝜙 (𝑓). We are in one of the following four cases:
Case 1: We have 𝑒 ∈ 𝑃 and 𝑓 ∈ 𝑃 .
Case 2: We have 𝑒 ∈ 𝑃 and 𝑓 ∈ 𝑄.
Case 3: We have 𝑒 ∈ 𝑄 and 𝑓 ∈ 𝑃 .
Case 4: We have 𝑒 ∈ 𝑄 and 𝑓 ∈ 𝑄.
In Case 1, our claim 𝜙 (𝑒) ≤ 𝜙 (𝑓) follows from the assumption that 𝜎 is an E |𝑃 -partition (because

in Case 1, we have 𝜙 (𝑒) = 𝜎 (𝑒) and 𝜙 (𝑓) = 𝜎 (𝑓)). In Case 4, it follows from the assumption that
𝜏 is an E |𝑄-partition (since in Case 4, we have 𝜙 (𝑒) = 𝜏 (𝑒) + 𝑘 and 𝜙 (𝑓) = 𝜏 (𝑓) + 𝑘). In Case 2,
it clearly holds (indeed, if 𝑒 ∈ 𝑃 , then the definition of 𝜙 yields 𝜙 (𝑒) = 𝜎 (𝑒) ≤ 𝑘, and if 𝑓 ∈ 𝑄, then
the definition of 𝜙 yields 𝜙 (𝑓) = 𝜏 (𝑓) + 𝑘 > 𝑘; therefore, in Case 2, we have 𝜙 (𝑒) ≤ 𝑘 < 𝜙 (𝑓)).
Finally, Case 3 is impossible (because having 𝑒 ∈ 𝑄 and 𝑓 ∈ 𝑃 and 𝑒 <1 𝑓 would contradict
(𝑃,𝑄) ∈ AdmE). Thus, we have proven the claim in each of the four cases, and consequently Claim
1 is proven. As we have said above, Claim 2 is proven similarly.
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We note in passing that there is also a rule for multiplying quasisymmetric func-

tions of the form Γ (E, 𝑤). Namely, if E and F are two double posets and 𝑢 and

𝑣 are corresponding maps, then Γ (E, 𝑢) Γ (F, 𝑣) = Γ (EF, 𝑤) for a map 𝑤 which is

defined to be 𝑢 on the subset E of EF, and 𝑣 on the subset F of EF. Here, EF

is a double poset defined as in [MalReu09, §2.1]. Combined with Proposition 1.3.5,

this fact gives a combinatorial proof for the fact that QSym is a k-algebra, as well

as for some standard formulas for multiplications of quasisymmetric functions; simi-

larly, Proposition 1.5.4 can be used to derive the well-known formulas for Δ𝑀𝛼, Δ𝐿𝛼,

Δ𝑠𝜆/𝜇 etc. (although, of course, we have already used the formula for Δ𝑀𝛼 in our

proof of Proposition 1.5.4).

1.6 Proof of Theorem 1.4.2

Before we come to the proof of Theorem 1.4.2, let us state three simple lemmas:

Lemma 1.6.1. Let E = (𝐸,<1, <2) be a double poset. Let 𝑃 and 𝑄 be subsets

of 𝐸 such that 𝑃 ∩𝑄 = ∅ and 𝑃 ∪𝑄 = 𝐸. Assume that there exist no 𝑝 ∈ 𝑃 and

𝑞 ∈ 𝑄 such that 𝑞 is <1-covered by 𝑝. Then, (𝑃,𝑄) ∈ AdmE.

Proof of Lemma 1.6.1. For any 𝑎 ∈ 𝐸 and 𝑏 ∈ 𝐸, we let [𝑎, 𝑏] denote the subset

{𝑒 ∈ 𝐸 | 𝑎 <1 𝑒 <1 𝑏} of 𝐸. It is clear that if 𝑎, 𝑏 and 𝑐 are three elements of 𝐸

satisfying 𝑎 <1 𝑐 <1 𝑏, then both [𝑎, 𝑐] and [𝑐, 𝑏] are proper subsets of [𝑎, 𝑏], and

therefore

both numbers |[𝑎, 𝑐]| and |[𝑐, 𝑏]| are smaller than |[𝑎, 𝑏]| . (1.11)

A pair (𝑝, 𝑞) ∈ 𝑃 × 𝑄 is said to be a malposition if it satisfies 𝑞 <1 𝑝. Now,

let us assume (for the sake of contradiction) that there exists a malposition. Fix a

malposition (𝑢, 𝑣) for which the value |[𝑢, 𝑣]| is minimum. Thus, 𝑢 ∈ 𝑃 , 𝑣 ∈ 𝑄 and

𝑣 <1 𝑢, but 𝑣 is not <1-covered by 𝑢 (since there exist no 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄 such

that 𝑞 is <1-covered by 𝑝). Hence, there exists a 𝑤 ∈ 𝐸 such that 𝑣 <1 𝑤 <1 𝑢

(since 𝑣 <1 𝑢). Consider this 𝑤. Applying (1.11) to 𝑎 = 𝑣, 𝑐 = 𝑤 and 𝑏 = 𝑢, we see
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that both numbers |[𝑢,𝑤]| and |[𝑤, 𝑣]| are smaller than |[𝑢, 𝑣]|, and therefore neither

(𝑢,𝑤) nor (𝑤, 𝑣) is a malposition (since we picked (𝑢, 𝑣) to be a malposition with

minimum |[𝑢, 𝑣]|). But 𝑤 ∈ 𝐸 = 𝑃 ∪ 𝑄, so that either 𝑤 ∈ 𝑃 or 𝑤 ∈ 𝑄. If 𝑤 ∈ 𝑃 ,

then (𝑤, 𝑣) is a malposition; if 𝑤 ∈ 𝑄, then (𝑢,𝑤) is a malposition. In either case,

we obtain a contradiction to the fact that neither (𝑢,𝑤) nor (𝑤, 𝑣) is a malposition.

This contradiction shows that our assumption was wrong. Hence, there exists no

malposition. Consequently, (𝑃,𝑄) ∈ AdmE.

Lemma 1.6.2. Let E = (𝐸,<1, <2) be a tertispecial double poset. Let (𝑃,𝑄) ∈

AdmE. Then, E |𝑃 is a tertispecial double poset.

Proof of Lemma 1.6.2. We need to show that the double poset E |𝑃= (𝑃,<1, <2) is

tertispecial. In other words, we need to show that if 𝑎 and 𝑏 are two elements of 𝑃 such

that 𝑎 is <1-covered by 𝑏 as element of the set 𝑃 , then 𝑎 and 𝑏 are <2-comparable.20

Let 𝑎 and 𝑏 be two elements of 𝑃 such that 𝑎 is <1-covered by 𝑏 as element of the

set 𝑃 . Thus, 𝑎 <1 𝑏, and

there exists no 𝑐 ∈ 𝑃 satisfying 𝑎 <1 𝑐 <1 𝑏. (1.12)

Now, if 𝑐 ∈ 𝐸 is such that 𝑎 <1 𝑐 <1 𝑏, then 𝑐 must belong to 𝑃 21, which entails

a contradiction to (1.12). Thus, there is no 𝑐 ∈ 𝐸 satisfying 𝑎 <1 𝑐 <1 𝑏. Therefore

(and because we have 𝑎 <1 𝑏), we see that 𝑎 is <1-covered by 𝑏 as element of the set

𝐸. Since E is tertispecial, this yields that 𝑎 and 𝑏 are <2-comparable.

20Here, we are using the following notation: If 𝑇 is a subset of 𝐸, and if 𝑢 and 𝑣 are two elements
of 𝑇 , then we say that “𝑢 is <1-covered by 𝑣 as element of the set 𝑇 ” if and only if 𝑢 is <1,𝑇 -covered
by 𝑣, where <1,𝑇 denotes the relation <1 on the set 𝑇 (not the relation <1 on the set 𝐸). In
general, saying that 𝑢 is <1-covered by 𝑣 as element of the set 𝑇 is not equivalent to saying that
𝑢 is <1-covered by 𝑣 as element of the set 𝐸 (because there might be an element 𝑤 of 𝐸 satisfying
𝑢 <1 𝑤 <1 𝑣, but no such element that belongs to 𝑇 ). Rather, 𝑢 is <1-covered by 𝑣 as element of
the set 𝑇 if and only if 𝑢 <1 𝑣 and there exists no 𝑤 ∈ 𝑇 satisfying 𝑢 <1 𝑤 <1 𝑣.

21Proof. Assume the contrary. Thus, 𝑐 /∈ 𝑃 . But (𝑃,𝑄) ∈ AdmE. Thus, 𝑃 ∩𝑄 = ∅, 𝑃 ∪𝑄 = 𝐸,
and

no 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄 satisfy 𝑞 <1 𝑝. (1.13)

From 𝑐 ∈ 𝐸 and 𝑐 /∈ 𝑃 , we obtain 𝑐 ∈ 𝐸 ∖ 𝑃 ⊆ 𝑄 (since 𝑃 ∪𝑄 = 𝐸). Applying (1.13) to 𝑝 = 𝑏 and
𝑞 = 𝑐, we thus conclude that we cannot have 𝑐 <1 𝑏. This contradicts 𝑐 <1 𝑏. This contradiction
shows that our assumption was false, qed.
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Thus, we have shown that if 𝑎 and 𝑏 are two elements of 𝑃 such that 𝑎 is <1-

covered by 𝑏 as element of the set 𝑃 , then 𝑎 and 𝑏 are <2-comparable. This proves

Lemma 1.6.2.

(We could similarly show that E |𝑄 is a tertispecial double poset; but we will not

use this.)

Lemma 1.6.3. Let E = (𝐸,<1, <2) be a double poset. Let 𝑤 : 𝐸 → {1, 2, 3, . . .}

be a map.

(a) If 𝐸 = ∅, then Γ (E, 𝑤) = 1.

(b) If 𝐸 ̸= ∅, then 𝜀 (Γ (E, 𝑤)) = 0.

Proof of Lemma 1.6.3. (a) Part (a) is obvious (since there is only one E-partition

when 𝐸 = ∅).

(b) Observe that Γ (E, 𝑤) is a homogeneous power series of degree
∑︀
𝑒∈𝐸

𝑤 (𝑒). When

𝐸 ̸= ∅, this degree is > 0, and thus the power series Γ (E, 𝑤) is annihilated by 𝜀 (since

𝜀 annihilates any homogeneous power series in QSym whose degree is > 0).

Proof of Theorem 1.4.2. We shall prove Theorem 1.4.2 by strong induction over |𝐸|.

The induction base (|𝐸| = 0) is left to the reader; we start with the induction step.

Consider a tertispecial double poset E = (𝐸,<1, <2) with |𝐸| > 0 and a map 𝑤 :

𝐸 → {1, 2, 3, . . .}, and assume that Theorem 1.4.2 is proven for all tertispecial double

posets of smaller size.

We have |𝐸| > 0 and thus 𝐸 ̸= ∅. Hence, Lemma 1.6.3 (b) shows that 𝜀 (Γ (E, 𝑤)) =

0. Thus, (𝑢 ∘ 𝜀) (Γ (E, 𝑤)) = 𝑢

⎛⎝𝜀 (Γ (E, 𝑤))⏟  ⏞  
=0

⎞⎠ = 𝑢 (0) = 0.

The upper commutative pentagon of (1.2) shows that 𝑢 ∘ 𝜀 = 𝑚 ∘ (𝑆 ⊗ id) ∘

Δ. Applying both sides of this equality to Γ (E, 𝑤), we obtain (𝑢 ∘ 𝜀) (Γ (E, 𝑤)) =
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(𝑚 ∘ (𝑆 ⊗ id) ∘Δ) (Γ (E, 𝑤)). Since (𝑢 ∘ 𝜀) (Γ (E, 𝑤)) = 0, this becomes

0 = (𝑚 ∘ (𝑆 ⊗ id) ∘Δ) (Γ (E, 𝑤)) = 𝑚 ((𝑆 ⊗ id) (Δ (Γ (E, 𝑤))))

= 𝑚

⎛⎝(𝑆 ⊗ id)

⎛⎝ ∑︁
(𝑃,𝑄)∈AdmE

Γ (E |𝑃 , 𝑤 |𝑃 )⊗ Γ (E |𝑄, 𝑤 |𝑄)

⎞⎠⎞⎠ (by (1.8))

= 𝑚

⎛⎝ ∑︁
(𝑃,𝑄)∈AdmE

𝑆 (Γ (E |𝑃 , 𝑤 |𝑃 ))⊗ Γ (E |𝑄, 𝑤 |𝑄)

⎞⎠
=

∑︁
(𝑃,𝑄)∈AdmE

𝑆 (Γ (E |𝑃 , 𝑤 |𝑃 )) Γ (E |𝑄, 𝑤 |𝑄)

= 𝑆 (Γ (E |𝐸, 𝑤 |𝐸)) Γ (E |∅, 𝑤 |∅) +
∑︁

(𝑃,𝑄)∈AdmE;
|𝑃 |<|𝐸|

𝑆 (Γ (E |𝑃 , 𝑤 |𝑃 )) Γ (E |𝑄, 𝑤 |𝑄)

(1.14)

(since the only pair (𝑃,𝑄) ∈ AdmE satisfying |𝑃 | = |𝐸| is (𝐸,∅), whereas all other

pairs (𝑃,𝑄) ∈ AdmE satisfy |𝑃 | < |𝐸|).

But whenever (𝑃,𝑄) ∈ AdmE is such that |𝑃 | < |𝐸|, the double poset E |𝑃=

(𝑃,<1, <2) is tertispecial (by Lemma 1.6.2), and therefore we have 𝑆 (Γ (E |𝑃 , 𝑤 |𝑃 )) =

𝑆 (Γ ((𝑃,<1, <2) , 𝑤 |𝑃 )) = (−1)|𝑃 | Γ ((𝑃,>1, <2) , 𝑤 |𝑃 ) (by the induction hypothe-

sis). Hence, (1.14) rewrites as

0 = 𝑆

⎛⎝Γ

⎛⎝E |𝐸⏟ ⏞ 
=E

, 𝑤 |𝐸⏟ ⏞ 
=𝑤

⎞⎠⎞⎠ Γ (E |∅, 𝑤 |∅)⏟  ⏞  
=Γ((∅,<1,<2),𝑤|∅)=1
(by Lemma 1.6.3 (a))

+
∑︁

(𝑃,𝑄)∈AdmE;
|𝑃 |<|𝐸|

(−1)|𝑃 | Γ ((𝑃,>1, <2) , 𝑤 |𝑃 ) Γ (E |𝑄, 𝑤 |𝑄)

= 𝑆 (Γ (E, 𝑤)) +
∑︁

(𝑃,𝑄)∈AdmE;
|𝑃 |<|𝐸|

(−1)|𝑃 | Γ ((𝑃,>1, <2) , 𝑤 |𝑃 ) Γ (E |𝑄, 𝑤 |𝑄) .
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Thus,

𝑆 (Γ (E, 𝑤)) = −
∑︁

(𝑃,𝑄)∈AdmE;
|𝑃 |<|𝐸|

(−1)|𝑃 | Γ ((𝑃,>1, <2) , 𝑤 |𝑃 ) Γ (E |𝑄, 𝑤 |𝑄) . (1.15)

We shall now prove that

0 =
∑︁

(𝑃,𝑄)∈AdmE

(−1)|𝑃 | Γ ((𝑃,>1, <2) , 𝑤 |𝑃 ) Γ (E |𝑄, 𝑤 |𝑄) . (1.16)

But first, let us explain how this will complete our proof. In fact, the only pair

(𝑃,𝑄) ∈ AdmE satisfying |𝑃 | = |𝐸| is (𝐸,∅), whereas all other pairs (𝑃,𝑄) ∈ AdmE

satisfy |𝑃 | < |𝐸|. Hence, if (1.16) is proven, then we can conclude that

0 =
∑︁

(𝑃,𝑄)∈AdmE

(−1)|𝑃 | Γ ((𝑃,>1, <2) , 𝑤 |𝑃 ) Γ (E |𝑄, 𝑤 |𝑄)

= (−1)|𝐸| Γ

⎛⎝(𝐸,>1, <2) , 𝑤 |𝐸⏟ ⏞ 
=𝑤

⎞⎠ Γ (E |∅, 𝑤 |∅)⏟  ⏞  
=Γ((∅,<1,<2),𝑤|∅)=1

+
∑︁

(𝑃,𝑄)∈AdmE;
|𝑃 |<|𝐸|

(−1)|𝑃 | Γ ((𝑃,>1, <2) , 𝑤 |𝑃 ) Γ (E |𝑄, 𝑤 |𝑄)

= (−1)|𝐸| Γ ((𝐸,>1, <2) , 𝑤)

+
∑︁

(𝑃,𝑄)∈AdmE;
|𝑃 |<|𝐸|

(−1)|𝑃 | Γ ((𝑃,>1, <2) , 𝑤 |𝑃 ) Γ (E |𝑄, 𝑤 |𝑄) ,

so that

(−1)|𝐸| Γ ((𝐸,>1, <2) , 𝑤) = −
∑︁

(𝑃,𝑄)∈AdmE;
|𝑃 |<|𝐸|

(−1)|𝑃 | Γ ((𝑃,>1, <2) , 𝑤 |𝑃 ) Γ (E |𝑄, 𝑤 |𝑄)

= 𝑆

⎛⎝Γ

⎛⎝ E⏟ ⏞ 
=(𝐸,<1,<2)

, 𝑤

⎞⎠⎞⎠ (by (1.15))

= 𝑆 (Γ ((𝐸,<1, <2) , 𝑤)) ,
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and thus 𝑆 (Γ ((𝐸,<1, <2)) , 𝑤) = (−1)|𝐸| Γ ((𝐸,>1, <2) , 𝑤), which completes the in-

duction step and thus the proof of Theorem 1.4.2. It thus remains to prove (1.16).

For every subset 𝑃 of 𝐸, we have

Γ ((𝑃,>1, <2) , 𝑤 |𝑃 ) =
∑︁

𝜋 is a (𝑃,>1,<2)-partition

x𝜋,𝑤|𝑃

(by the definition of Γ ((𝑃,>1, <2) , 𝑤 |𝑃 ))

=
∑︁

𝜎 is a (𝑃,>1,<2)-partition

x𝜎,𝑤|𝑃 . (1.17)

For every subset 𝑄 of 𝐸, we have

Γ

⎛⎜⎝ E |𝑄⏟ ⏞ 
=(𝑄,<1,<2)

, 𝑤 |𝑄

⎞⎟⎠ = Γ ((𝑄,<1, <2) , 𝑤 |𝑄)

=
∑︁

𝜋 is a (𝑄,<1,<2)-partition

x𝜋,𝑤|𝑄

(by the definition of Γ ((𝑄,<1, <2) , 𝑤 |𝑄))

=
∑︁

𝜏 is a (𝑄,<1,<2)-partition

x𝜏,𝑤|𝑄 . (1.18)
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Now,

∑︁
(𝑃,𝑄)∈AdmE

(−1)|𝑃 | Γ ((𝑃,>1, <2) , 𝑤 |𝑃 )⏟  ⏞  
=

∑︀
𝜎 is a (𝑃,>1,<2)-partition

x𝜎,𝑤|𝑃

(by (1.17))

Γ (E |𝑄, 𝑤 |𝑄)⏟  ⏞  
=

∑︀
𝜏 is a (𝑄,<1,<2)-partition

x𝜏,𝑤|𝑄

(by (1.18))

=
∑︁

(𝑃,𝑄)∈AdmE

(−1)|𝑃 |

⎛⎝ ∑︁
𝜎 is a (𝑃,>1,<2)-partition

x𝜎,𝑤|𝑃

⎞⎠⎛⎝ ∑︁
𝜏 is a (𝑄,<1,<2)-partition

x𝜏,𝑤|𝑄

⎞⎠
=

∑︁
(𝑃,𝑄)∈AdmE

(−1)|𝑃 |
∑︁

𝜎 is a (𝑃,>1,<2)-partition

∑︁
𝜏 is a (𝑄,<1,<2)-partition

x𝜎,𝑤|𝑃x𝜏,𝑤|𝑄

=
∑︁

(𝑃,𝑄)∈AdmE

(−1)|𝑃 |
∑︁
(𝜎,𝜏);

𝜎:𝑃→{1,2,3,...};
𝜏 :𝑄→{1,2,3,...};

𝜎 is a (𝑃,>1,<2)-partition;
𝜏 is a (𝑄,<1,<2)-partition

x𝜎,𝑤|𝑃x𝜏,𝑤|𝑄

=
∑︁

(𝑃,𝑄)∈AdmE

(−1)|𝑃 |
∑︁

𝜋:𝐸→{1,2,3,...};
𝜋|𝑃 is a (𝑃,>1,<2)-partition;
𝜋|𝑄 is a (𝑄,<1,<2)-partition

x𝜋|𝑃 ,𝑤|𝑃x𝜋|𝑄,𝑤|𝑄⏟  ⏞  
=x𝜋,𝑤⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

here, we have substituted (𝜋 |𝑃 , 𝜋 |𝑄) for (𝜎, 𝜏) in the inner sum,

since every pair (𝜎, 𝜏) consisting of a map 𝜎 : 𝑃 → {1, 2, 3, . . .}

and a map 𝜏 : 𝑄 → {1, 2, 3, . . .}

can be written as (𝜋 |𝑃 , 𝜋 |𝑄) for a unique 𝜋 : 𝐸 → {1, 2, 3, . . .}

(namely, for the 𝜋 : 𝐸 → {1, 2, 3, . . .} that is defined to send every

𝑒 ∈ 𝑃 to 𝜎 (𝑒) and to send every 𝑒 ∈ 𝑄 to 𝜏 (𝑒) )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

∑︁
(𝑃,𝑄)∈AdmE

(−1)|𝑃 |
∑︁

𝜋:𝐸→{1,2,3,...};
𝜋|𝑃 is a (𝑃,>1,<2)-partition;
𝜋|𝑄 is a (𝑄,<1,<2)-partition

x𝜋,𝑤

=
∑︁

𝜋:𝐸→{1,2,3,...}

⎛⎜⎜⎜⎜⎜⎝
∑︁

(𝑃,𝑄)∈AdmE;
𝜋|𝑃 is a (𝑃,>1,<2)-partition;
𝜋|𝑄 is a (𝑄,<1,<2)-partition

(−1)|𝑃 |

⎞⎟⎟⎟⎟⎟⎠x𝜋,𝑤.

In order to prove that this sum is 0 (and thus to prove (1.16) and finish our proof

of Theorem 1.4.2), it therefore is enough to show that for every map 𝜋 : 𝐸 →
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{1, 2, 3, . . .}, we have

∑︁
(𝑃,𝑄)∈AdmE;

𝜋|𝑃 is a (𝑃,>1,<2)-partition;
𝜋|𝑄 is a (𝑄,<1,<2)-partition

(−1)|𝑃 | = 0. (1.19)

Hence, let us fix a map 𝜋 : 𝐸 → {1, 2, 3, . . .}. Our goal is now to prove (1.19). To

do so, we denote by 𝑍 the set of all (𝑃,𝑄) ∈ AdmE such that 𝜋 |𝑃 is a (𝑃,>1, <2)-

partition and 𝜋 |𝑄 is a (𝑄,<1, <2)-partition. We are going to define an involution

𝑇 : 𝑍 → 𝑍 of the set 𝑍 having the property that, for any (𝑃,𝑄) ∈ 𝑍, if we write

𝑇 ((𝑃,𝑄)) in the form (𝑃 ′, 𝑄′), then (−1)|𝑃
′| = − (−1)|𝑃 |. Once such an involution 𝑇

is found, it will be clear that it matches the addends on the left hand side of (1.19)

into pairs of mutually cancelling addends22, and so (1.19) will follow and we will be

done. It thus remains to find 𝑇 .

The definition of 𝑇 is simple (although it will take us a while to prove that it

is well-defined): Let 𝐹 be the subset of 𝐸 consisting of those 𝑒 ∈ 𝐸 which have

minimum 𝜋 (𝑒). Then, 𝐹 is a nonempty subposet of the poset (𝐸,<2), and hence has

a minimal element 𝑓 (that is, an element 𝑓 such that no 𝑔 ∈ 𝐹 satisfies 𝑔 <2 𝑓). Fix

such an 𝑓 . Now, the map 𝑇 sends a (𝑃,𝑄) ∈ 𝑍 to

⎧⎪⎨⎪⎩(𝑃 ∪ {𝑓} , 𝑄 ∖ {𝑓}) , if 𝑓 /∈ 𝑃 ;

(𝑃 ∖ {𝑓} , 𝑄 ∪ {𝑓}) , if 𝑓 ∈ 𝑃

.

In order to prove that the map 𝑇 is well-defined, we need to prove that its output

values all belong to 𝑍. In other words, we need to prove that⎧⎪⎨⎪⎩(𝑃 ∪ {𝑓} , 𝑄 ∖ {𝑓}) , if 𝑓 /∈ 𝑃 ;

(𝑃 ∖ {𝑓} , 𝑄 ∪ {𝑓}) , if 𝑓 ∈ 𝑃

∈ 𝑍 (1.20)

for every (𝑃,𝑄) ∈ 𝑍.

Proof of (1.20): Fix (𝑃,𝑄) ∈ 𝑍. Thus, (𝑃,𝑄) is an element of AdmE with the

property that 𝜋 |𝑃 is a (𝑃,>1, <2)-partition and 𝜋 |𝑄 is a (𝑄,<1, <2)-partition.

22In fact, the (−1)|𝑃
′| = − (−1)

|𝑃 | condition makes it clear that 𝑇 has no fixed points. Therefore,
to each addend on the left hand side of (1.19) corresponds an addend with opposite sign, which
cancels it: Namely, for each (𝐴,𝐵) ∈ 𝑍, the addend for (𝑃,𝑄) = (𝐴,𝐵) is cancelled by the addend
for (𝑃,𝑄) = 𝑇 ((𝐴,𝐵)).
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From (𝑃,𝑄) ∈ AdmE, we see that 𝑃 ∩𝑄 = ∅ and 𝑃 ∪𝑄 = 𝐸, and furthermore

that

no 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄 satisfy 𝑞 <1 𝑝. (1.21)

We know that 𝑓 belongs to the set 𝐹 , which is the subset of 𝐸 consisting of those

𝑒 ∈ 𝐸 which have minimum 𝜋 (𝑒). Thus,

𝜋 (𝑓) ≤ 𝜋 (ℎ) for every ℎ ∈ 𝐸. (1.22)

Moreover,

𝜋 (𝑓) < 𝜋 (ℎ) for every ℎ ∈ 𝐸 satisfying ℎ <2 𝑓 (1.23)

23.

We need to prove (1.20). We are in one of the following two cases:

Case 1: We have 𝑓 ∈ 𝑃 .

Case 2: We have 𝑓 /∈ 𝑃 .

Let us first consider Case 1. In this case, we have 𝑓 ∈ 𝑃 .

Recall that 𝑃 ∩𝑄 = ∅ and 𝑃 ∪𝑄 = 𝐸. From this, we easily obtain (𝑃 ∖ {𝑓}) ∩

(𝑄 ∪ {𝑓}) = ∅ and (𝑃 ∖ {𝑓}) ∪ (𝑄 ∪ {𝑓}) = 𝐸.

Furthermore, there exist no 𝑝 ∈ 𝑃 ∖{𝑓} and 𝑞 ∈ 𝑄∪{𝑓} such that 𝑞 is <1-covered

by 𝑝 24. Hence, Lemma 1.6.1 (applied to 𝑃 ∖ {𝑓} and 𝑄∪ {𝑓} instead of 𝑃 and 𝑄)

23Proof of (1.23): Let ℎ ∈ 𝐸 be such that ℎ <2 𝑓 . We must prove (1.23). Indeed, assume the
contrary. Thus, 𝜋 (𝑓) ≥ 𝜋 (ℎ). Combined with (1.22), this shows that 𝜋 (𝑓) = 𝜋 (ℎ). Our definition
of 𝐹 shows that 𝐹 is the subset of 𝐸 consisting of those 𝑒 ∈ 𝐸 satisfying 𝜋 (𝑒) = 𝜋 (𝑓) (since 𝑓 ∈ 𝐹 ).
Therefore, ℎ ∈ 𝐹 (since 𝜋 (ℎ) = 𝜋 (𝑓)). But 𝑓 is a minimal element of 𝐹 . In other words, no 𝑔 ∈ 𝐹
satisfies 𝑔 <2 𝑓 . This contradicts the fact that ℎ ∈ 𝐹 satisfies ℎ <2 𝑓 . This contradiction proves
that our assumption was wrong, qed.

24Proof. Assume the contrary. Thus, there exist 𝑝 ∈ 𝑃 ∖ {𝑓} and 𝑞 ∈ 𝑄 ∪ {𝑓} such that 𝑞 is
<1-covered by 𝑝. Consider such 𝑝 and 𝑞.

We know that 𝑞 is <1-covered by 𝑝, and thus we have 𝑞 <1 𝑝. Also, 𝑝 ∈ 𝑃 ∖ {𝑓} ⊆ 𝑃 . Hence,
if we had 𝑞 ∈ 𝑄, then we would obtain a contradiction to (1.21). Hence, we cannot have 𝑞 ∈ 𝑄.
Therefore, 𝑞 = 𝑓 (since 𝑞 ∈ 𝑄 ∪ {𝑓} but not 𝑞 ∈ 𝑄). Hence, 𝑓 = 𝑞 <1 𝑝, so that 𝑝 >1 𝑓 . Therefore,
𝜋 (𝑝) ≤ 𝜋 (𝑓) (since 𝜋 |𝑃 is a (𝑃,>1, <2)-partition, and since both 𝑓 and 𝑝 belong to 𝑃 ).

Now, recall that 𝑞 is <1-covered by 𝑝. Hence, 𝑞 and 𝑝 are <2-comparable (since 𝐸 is tertispecial).
In other words, 𝑓 and 𝑝 are <2-comparable (since 𝑞 = 𝑓). In other words, either 𝑓 <2 𝑝 or 𝑓 = 𝑝 or
𝑝 <2 𝑓 . But 𝑝 <2 𝑓 cannot hold (because if we had 𝑝 <2 𝑓 , then (1.23) (applied to ℎ = 𝑝) would
lead to 𝜋 (𝑓) < 𝜋 (𝑝), which would contradict 𝜋 (𝑝) ≤ 𝜋 (𝑓)), and 𝑓 = 𝑝 cannot hold either (since
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shows that (𝑃 ∖ {𝑓} , 𝑄 ∪ {𝑓}) ∈ AdmE.

Furthermore, 𝜋 |𝑃 is a (𝑃,>1, <2)-partition, and therefore

𝜋 |𝑃∖{𝑓} is a (𝑃 ∖ {𝑓} , >1, <2)-partition (since 𝑃 ∖ {𝑓} ⊆ 𝑃 ).

Furthermore, 𝜋 |𝑄∪{𝑓} is a (𝑄 ∪ {𝑓} , <1, <2)-partition25.

Altogether, we now know that (𝑃 ∖ {𝑓} , 𝑄 ∪ {𝑓}) ∈ AdmE, that 𝜋 |𝑃∖{𝑓} is a

(𝑃 ∖ {𝑓} , >1, <2)-partition, and that 𝜋 |𝑄∪{𝑓} is a (𝑄 ∪ {𝑓} , <1, <2)-partition. In

other words, (𝑃 ∖ {𝑓} , 𝑄 ∪ {𝑓}) ∈ 𝑍 (by the definition of 𝑍). Thus,

⎧⎪⎨⎪⎩(𝑃 ∪ {𝑓} , 𝑄 ∖ {𝑓}) , if 𝑓 /∈ 𝑃 ;

(𝑃 ∖ {𝑓} , 𝑄 ∪ {𝑓}) , if 𝑓 ∈ 𝑃

= (𝑃 ∖ {𝑓} , 𝑄 ∪ {𝑓}) (since 𝑓 ∈ 𝑃 )

∈ 𝑍.

Hence, (1.20) is proven in Case 1.

Let us next consider Case 2. In this case, we have 𝑓 /∈ 𝑃 .

Recall that 𝑃 ∩𝑄 = ∅ and 𝑃 ∪𝑄 = 𝐸. From this, we easily obtain (𝑃 ∪ {𝑓}) ∩

(𝑄 ∖ {𝑓}) = ∅ and (𝑃 ∪ {𝑓}) ∪ (𝑄 ∖ {𝑓}) = 𝐸.

Furthermore, there exist no 𝑝 ∈ 𝑃 ∪{𝑓} and 𝑞 ∈ 𝑄∖{𝑓} such that 𝑞 is <1-covered

by 𝑝 26. Hence, Lemma 1.6.1 (applied to 𝑃 ∪ {𝑓} and 𝑄 ∖ {𝑓} instead of 𝑃 and 𝑄)

𝑓 <1 𝑝). Thus, we must have 𝑓 <2 𝑝.
Now, 𝜋 |𝑃 is a (𝑃,>1, <2)-partition. Hence, 𝜋 (𝑝) < 𝜋 (𝑓) (since 𝑝 >1 𝑓 and 𝑓 <2 𝑝, and

since 𝑝 and 𝑓 both lie in 𝑃 ). But (1.22) (applied to ℎ = 𝑝) shows that 𝜋 (𝑓) ≤ 𝜋 (𝑝). Hence,
𝜋 (𝑝) < 𝜋 (𝑓) ≤ 𝜋 (𝑝), a contradiction. Thus, our assumption was wrong, qed.

25Proof. In order to prove this, we need to verify the following two claims:
Claim 1: Every 𝑎 ∈ 𝑄 ∪ {𝑓} and 𝑏 ∈ 𝑄 ∪ {𝑓} satisfying 𝑎 <1 𝑏 satisfy 𝜋 (𝑎) ≤ 𝜋 (𝑏);
Claim 2: Every 𝑎 ∈ 𝑄 ∪ {𝑓} and 𝑏 ∈ 𝑄 ∪ {𝑓} satisfying 𝑎 <1 𝑏 and 𝑏 <2 𝑎 satisfy 𝜋 (𝑎) < 𝜋 (𝑏).
Proof of Claim 1: Let 𝑎 ∈ 𝑄 ∪ {𝑓} and 𝑏 ∈ 𝑄 ∪ {𝑓} be such that 𝑎 <1 𝑏. We need to prove that

𝜋 (𝑎) ≤ 𝜋 (𝑏). If 𝑎 = 𝑓 , then this follows immediately from (1.22) (applied to ℎ = 𝑏). Hence, we
WLOG assume that 𝑎 ̸= 𝑓 . Thus, 𝑎 ∈ 𝑄 (since 𝑎 ∈ 𝑄∪{𝑓}). Now, if 𝑏 ∈ 𝑃 , then 𝑎 <1 𝑏 contradicts
(1.21) (applied to 𝑝 = 𝑏 and 𝑞 = 𝑎). Hence, we cannot have 𝑏 ∈ 𝑃 . Therefore, 𝑏 ∈ 𝐸 ∖ 𝑃 = 𝑄 (since
𝑃 ∩ 𝑄 = ∅ and 𝑃 ∪ 𝑄 = 𝐸). Thus, 𝜋 (𝑎) ≤ 𝜋 (𝑏) follows immediately from the fact that 𝜋 |𝑄 is a
(𝑄,<1, <2)-partition (since 𝑎 ∈ 𝑄 and 𝑏 ∈ 𝑄). This proves Claim 1.

Proof of Claim 2: Let 𝑎 ∈ 𝑄 ∪ {𝑓} and 𝑏 ∈ 𝑄 ∪ {𝑓} be such that 𝑎 <1 𝑏 and 𝑏 <2 𝑎. We need
to prove that 𝜋 (𝑎) < 𝜋 (𝑏). If 𝑎 = 𝑓 , then this follows immediately from (1.23) (applied to ℎ = 𝑏).
Hence, we WLOG assume that 𝑎 ̸= 𝑓 . Thus, 𝑎 ∈ 𝑄 (since 𝑎 ∈ 𝑄 ∪ {𝑓}). Now, if 𝑏 ∈ 𝑃 , then
𝑎 <1 𝑏 contradicts (1.21) (applied to 𝑝 = 𝑏 and 𝑞 = 𝑎). Hence, we cannot have 𝑏 ∈ 𝑃 . Therefore,
𝑏 ∈ 𝐸 ∖𝑃 = 𝑄 (since 𝑃 ∩𝑄 = ∅ and 𝑃 ∪𝑄 = 𝐸). Thus, 𝜋 (𝑎) < 𝜋 (𝑏) follows immediately from the
fact that 𝜋 |𝑄 is a (𝑄,<1, <2)-partition (since 𝑎 ∈ 𝑄 and 𝑏 ∈ 𝑄). This proves Claim 2.

Now, both Claim 1 and Claim 2 are proven, and we are done.
26Proof. Assume the contrary. Thus, there exist 𝑝 ∈ 𝑃 ∪ {𝑓} and 𝑞 ∈ 𝑄 ∖ {𝑓} such that 𝑞 is
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shows that (𝑃 ∪ {𝑓} , 𝑄 ∖ {𝑓}) ∈ AdmE.

Furthermore, 𝜋 |𝑄 is a (𝑄,<1, <2)-partition, and therefore 𝜋 |𝑄∖{𝑓} is a

(𝑄 ∖ {𝑓} , <1, <2)-partition (since 𝑄 ∖ {𝑓} ⊆ 𝑄).

Furthermore, 𝜋 |𝑃∪{𝑓} is a (𝑃 ∪ {𝑓} , >1, <2)-partition27.

Altogether, we now know that (𝑃 ∪ {𝑓} , 𝑄 ∖ {𝑓}) ∈ AdmE, that 𝜋 |𝑃∪{𝑓} is a

(𝑃 ∪ {𝑓} , >1, <2)-partition, and that 𝜋 |𝑄∖{𝑓} is a (𝑄 ∖ {𝑓} , <1, <2)-partition. In

other words, (𝑃 ∪ {𝑓} , 𝑄 ∖ {𝑓}) ∈ 𝑍 (by the definition of 𝑍). Thus,

⎧⎪⎨⎪⎩(𝑃 ∪ {𝑓} , 𝑄 ∖ {𝑓}) , if 𝑓 /∈ 𝑃 ;

(𝑃 ∖ {𝑓} , 𝑄 ∪ {𝑓}) , if 𝑓 ∈ 𝑃

= (𝑃 ∪ {𝑓} , 𝑄 ∖ {𝑓}) (since 𝑓 /∈ 𝑃 )

∈ 𝑍.

<1-covered by 𝑝. Consider such 𝑝 and 𝑞.
We have 𝑓 /∈ 𝑃 and thus 𝑓 ∈ 𝐸 ∖ 𝑃 = 𝑄 (since 𝑃 ∩𝑄 = ∅ and 𝑃 ∪𝑄 = 𝐸).
We know that 𝑞 is <1-covered by 𝑝, and thus we have 𝑞 <1 𝑝. Also, 𝑞 ∈ 𝑄 ∖ {𝑓} ⊆ 𝑄. Hence,

if we had 𝑝 ∈ 𝑃 , then we would obtain a contradiction to (1.21). Hence, we cannot have 𝑝 ∈ 𝑃 .
Therefore, 𝑝 = 𝑓 (since 𝑝 ∈ 𝑃 ∪ {𝑓} but not 𝑝 ∈ 𝑃 ). Hence, 𝑞 <1 𝑝 = 𝑓 . Therefore, 𝜋 (𝑞) ≤ 𝜋 (𝑓)
(since 𝑞 ∈ 𝑄 and 𝑓 ∈ 𝑄, and since 𝜋 |𝑄 is a (𝑄,<1, <2)-partition). Thus, we cannot have 𝑞 <2 𝑓
(because if we had 𝑞 <2 𝑓 , then (1.23) (applied to ℎ = 𝑞) would show that 𝜋 (𝑓) < 𝜋 (𝑞), which
would contradict 𝜋 (𝑞) ≤ 𝜋 (𝑓)).

Now, recall that 𝑞 is <1-covered by 𝑝. Hence, 𝑞 and 𝑝 are <2-comparable (since 𝐸 is tertispecial).
In other words, 𝑞 and 𝑓 are <2-comparable (since 𝑝 = 𝑓). In other words, either 𝑞 <2 𝑓 or 𝑞 = 𝑓
or 𝑓 <2 𝑞. But we cannot have 𝑞 <2 𝑓 (as we have just shown), and we cannot have 𝑞 = 𝑓 either
(since 𝑞 <1 𝑓). Thus, we must have 𝑓 <2 𝑞.

From 𝑞 <1 𝑓 and 𝑓 <2 𝑞, we conclude that 𝜋 (𝑞) < 𝜋 (𝑓) (since 𝜋 |𝑄 is a (𝑄,<1, <2)-partition,
and since 𝑞 ∈ 𝑄 and 𝑓 ∈ 𝑄). But (1.22) (applied to ℎ = 𝑞) shows that 𝜋 (𝑓) ≤ 𝜋 (𝑞). Hence,
𝜋 (𝑞) < 𝜋 (𝑓) ≤ 𝜋 (𝑞), a contradiction. Thus, our assumption was wrong, qed.

27Proof. In order to prove this, we need to verify the following two claims:
Claim 1: Every 𝑎 ∈ 𝑃 ∪ {𝑓} and 𝑏 ∈ 𝑃 ∪ {𝑓} satisfying 𝑎 >1 𝑏 satisfy 𝜋 (𝑎) ≤ 𝜋 (𝑏);
Claim 2: Every 𝑎 ∈ 𝑃 ∪ {𝑓} and 𝑏 ∈ 𝑃 ∪ {𝑓} satisfying 𝑎 >1 𝑏 and 𝑏 <2 𝑎 satisfy 𝜋 (𝑎) < 𝜋 (𝑏).
Proof of Claim 1: Let 𝑎 ∈ 𝑃 ∪ {𝑓} and 𝑏 ∈ 𝑃 ∪ {𝑓} be such that 𝑎 >1 𝑏. We need to prove that

𝜋 (𝑎) ≤ 𝜋 (𝑏). If 𝑎 = 𝑓 , then this follows immediately from (1.22) (applied to ℎ = 𝑏). Hence, we
WLOG assume that 𝑎 ̸= 𝑓 . Thus, 𝑎 ∈ 𝑃 (since 𝑎 ∈ 𝑃 ∪{𝑓}). Now, if 𝑏 ∈ 𝑄, then 𝑏 <1 𝑎 contradicts
(1.21) (applied to 𝑝 = 𝑎 and 𝑞 = 𝑏). Hence, we cannot have 𝑏 ∈ 𝑄. Therefore, 𝑏 ∈ 𝐸 ∖𝑄 = 𝑃 (since
𝑃 ∩ 𝑄 = ∅ and 𝑃 ∪ 𝑄 = 𝐸). Thus, 𝜋 (𝑎) ≤ 𝜋 (𝑏) follows immediately from the fact that 𝜋 |𝑃 is a
(𝑃,>1, <2)-partition (since 𝑎 ∈ 𝑃 and 𝑏 ∈ 𝑃 ). This proves Claim 1.

Proof of Claim 2: Let 𝑎 ∈ 𝑃 ∪ {𝑓} and 𝑏 ∈ 𝑃 ∪ {𝑓} be such that 𝑎 >1 𝑏 and 𝑏 <2 𝑎. We need
to prove that 𝜋 (𝑎) < 𝜋 (𝑏). If 𝑎 = 𝑓 , then this follows immediately from (1.23) (applied to ℎ = 𝑏).
Hence, we WLOG assume that 𝑎 ̸= 𝑓 . Thus, 𝑎 ∈ 𝑃 (since 𝑎 ∈ 𝑃 ∪ {𝑓}). Now, if 𝑏 ∈ 𝑄, then
𝑏 <1 𝑎 contradicts (1.21) (applied to 𝑝 = 𝑎 and 𝑞 = 𝑏). Hence, we cannot have 𝑏 ∈ 𝑄. Therefore,
𝑏 ∈ 𝐸 ∖𝑄 = 𝑃 (since 𝑃 ∩𝑄 = ∅ and 𝑃 ∪𝑄 = 𝐸). Thus, 𝜋 (𝑎) < 𝜋 (𝑏) follows immediately from the
fact that 𝜋 |𝑃 is a (𝑃,>1, <2)-partition (since 𝑎 ∈ 𝑃 and 𝑏 ∈ 𝑃 ). This proves Claim 2.

Now, both Claim 1 and Claim 2 are proven, and we are done.
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Hence, (1.20) is proven in Case 2.

We have now proven (1.20) in both Cases 1 and 2. Thus, (1.20) always holds. In

other words, the map 𝑇 is well-defined.

What the map 𝑇 does to a pair (𝑃,𝑄) ∈ 𝑍 can be described as moving the

element 𝑓 from the set where it resides (either 𝑃 or 𝑄) to the other set. Clearly,

doing this twice gives us the original pair back. Hence, the map 𝑇 is an involution.

Furthermore, for any (𝑃,𝑄) ∈ 𝑍, if we write 𝑇 ((𝑃,𝑄)) in the form (𝑃 ′, 𝑄′), then

(−1)|𝑃
′| = − (−1)|𝑃 | (because 𝑃 ′ =

⎧⎪⎨⎪⎩𝑃 ∪ {𝑓} , if 𝑓 /∈ 𝑃 ;

𝑃 ∖ {𝑓} , if 𝑓 ∈ 𝑃

). As we have already

explained, this proves (1.19). And this, in turn, completes the induction step of the

proof of Theorem 1.4.2.

1.7 Proof of Theorem 1.4.6

Before we begin proving Theorem 1.4.6, we state a criterion for E-partitions that is

less wasteful (in the sense that it requires fewer verifications) than the definition:

Lemma 1.7.1. Let E = (𝐸,<1, <2) be a tertispecial double poset. Let 𝜑 : 𝐸 →

{1, 2, 3, . . .} be a map. Assume that the following two conditions hold:

∙ Condition 1: If 𝑒 ∈ 𝐸 and 𝑓 ∈ 𝐸 are such that 𝑒 is <1-covered by 𝑓 , and if

we have 𝑒 <2 𝑓 , then 𝜑 (𝑒) ≤ 𝜑 (𝑓).

∙ Condition 2: If 𝑒 ∈ 𝐸 and 𝑓 ∈ 𝐸 are such that 𝑒 is <1-covered by 𝑓 , and if

we have 𝑓 <2 𝑒, then 𝜑 (𝑒) < 𝜑 (𝑓).

Then, 𝜑 is an E-partition.

Proof of Lemma 1.7.1. For any 𝑎 ∈ 𝐸 and 𝑏 ∈ 𝐸, we define a subset [𝑎, 𝑏] of 𝐸 as in

the proof of Lemma 1.6.1.

We need to show that 𝜑 is an E-partition. In other words, we need to prove the

following two claims:
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Claim 1: Every 𝑒 ∈ 𝐸 and 𝑓 ∈ 𝐸 satisfying 𝑒 <1 𝑓 satisfy 𝜑 (𝑒) ≤ 𝜑 (𝑓).

Claim 2: Every 𝑒 ∈ 𝐸 and 𝑓 ∈ 𝐸 satisfying 𝑒 <1 𝑓 and 𝑓 <2 𝑒 satisfy 𝜑 (𝑒) < 𝜑 (𝑓).

Proof of Claim 1: Assume the contrary. Thus, there exists a pair (𝑒, 𝑓) ∈ 𝐸 × 𝐸

satisfying 𝑒 <1 𝑓 but not 𝜑 (𝑒) ≤ 𝜑 (𝑓). Such a pair will be called a malrelation. Fix

a malrelation (𝑢, 𝑣) for which the value |[𝑢, 𝑣]| is minimum (such a (𝑢, 𝑣) exists, since

there exists a malrelation). Thus, 𝑢 ∈ 𝐸 and 𝑣 ∈ 𝐸 and 𝑢 <1 𝑣 but not 𝜑 (𝑢) ≤ 𝜑 (𝑣).

If 𝑢 was <1-covered by 𝑣, then we would obtain 𝜑 (𝑢) ≤ 𝜑 (𝑣) 28, which would

contradict the assumption that we do not have 𝜑 (𝑢) ≤ 𝜑 (𝑣). Hence, 𝑢 is not <1-

covered by 𝑣. Consequently, there exists a 𝑤 ∈ 𝐸 such that 𝑢 <1 𝑤 <1 𝑣 (since

𝑢 <1 𝑣). Consider this 𝑤. Applying (1.11) to 𝑎 = 𝑢, 𝑐 = 𝑤 and 𝑏 = 𝑣, we see that

both numbers |[𝑢,𝑤]| and |[𝑤, 𝑣]| are smaller than |[𝑢, 𝑣]|, and therefore neither (𝑢,𝑤)

nor (𝑤, 𝑣) is a malrelation (since we picked (𝑢, 𝑣) to be a malrelation with minimum

|[𝑢, 𝑣]|). Therefore, we have 𝜑 (𝑢) ≤ 𝜑 (𝑤) and 𝜑 (𝑤) ≤ 𝜑 (𝑣) (since 𝑢 <1 𝑤 and

𝑤 <1 𝑣). Combining these two inequalities, we obtain 𝜑 (𝑢) ≤ 𝜑 (𝑣). This contradicts

the assumption that we do not have 𝜑 (𝑢) ≤ 𝜑 (𝑣). This contradiction concludes the

proof of Claim 1.

Instead of Claim 2, we shall prove the following stronger claim:

Claim 3: Every 𝑒 ∈ 𝐸 and 𝑓 ∈ 𝐸 satisfying 𝑒 <1 𝑓 and not 𝑒 <2 𝑓 satisfy

𝜑 (𝑒) < 𝜑 (𝑓).

Proof of Claim 3: Assume the contrary. Thus, there exists a pair (𝑒, 𝑓) ∈ 𝐸 × 𝐸

satisfying 𝑒 <1 𝑓 and not 𝑒 <2 𝑓 but not 𝜑 (𝑒) < 𝜑 (𝑓). Such a pair will be called a

malrelation. Fix a malrelation (𝑢, 𝑣) for which the value |[𝑢, 𝑣]| is minimum (such a

(𝑢, 𝑣) exists, since there exists a malrelation). Thus, 𝑢 ∈ 𝐸 and 𝑣 ∈ 𝐸 and 𝑢 <1 𝑣

and not 𝑢 <2 𝑣 but not 𝜑 (𝑢) < 𝜑 (𝑣).

If 𝑢 was <1-covered by 𝑣, then we would obtain 𝜑 (𝑢) < 𝜑 (𝑣) easily29, which

28Proof. Assume that 𝑢 is <1-covered by 𝑣. Thus, 𝑢 and 𝑣 are <2-comparable (since the poset E
is tertispecial). In other words, we have either 𝑢 <2 𝑣 or 𝑢 = 𝑣 or 𝑣 <2 𝑢. In the first of these three
cases, we obtain 𝜑 (𝑢) ≤ 𝜑 (𝑣) by applying Condition 1 to 𝑒 = 𝑢 and 𝑓 = 𝑣. In the third of these
cases, we obtain 𝜑 (𝑢) < 𝜑 (𝑣) (and thus 𝜑 (𝑢) ≤ 𝜑 (𝑣)) by applying Condition 2 to 𝑒 = 𝑢 and 𝑓 = 𝑣.
The second of these cases cannot happen because 𝑢 <1 𝑣. Thus, we always have 𝜑 (𝑢) ≤ 𝜑 (𝑣), qed.

29Proof. Assume that 𝑢 is <1-covered by 𝑣. Thus, 𝑢 and 𝑣 are <2-comparable (since the poset E
is tertispecial). In other words, we have either 𝑢 <2 𝑣 or 𝑢 = 𝑣 or 𝑣 <2 𝑢. Since neither 𝑢 <2 𝑣 nor
𝑢 = 𝑣 can hold (indeed, 𝑢 <2 𝑣 is ruled out by assumption, whereas 𝑢 = 𝑣 is ruled out by 𝑢 <1 𝑣),
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would contradict the assumption that we do not have 𝜑 (𝑢) < 𝜑 (𝑣). Hence, 𝑢 is not

<1-covered by 𝑣. Consequently, there exists a 𝑤 ∈ 𝐸 such that 𝑢 <1 𝑤 <1 𝑣 (since

𝑢 <1 𝑣). Consider this 𝑤. Applying (1.11) to 𝑎 = 𝑢, 𝑐 = 𝑤 and 𝑏 = 𝑣, we see that

both numbers |[𝑢,𝑤]| and |[𝑤, 𝑣]| are smaller than |[𝑢, 𝑣]|, and therefore neither (𝑢,𝑤)

nor (𝑤, 𝑣) is a malrelation (since we picked (𝑢, 𝑣) to be a malrelation with minimum

|[𝑢, 𝑣]|).

But 𝜑 (𝑣) ≤ 𝜑 (𝑢) (since we do not have 𝜑 (𝑢) < 𝜑 (𝑣)). On the other hand, 𝑢 <1 𝑤

and therefore 𝜑 (𝑢) ≤ 𝜑 (𝑤) (by Claim 1). Furthermore, 𝑤 <1 𝑣 and thus 𝜑 (𝑤) ≤ 𝜑 (𝑣)

(by Claim 1). The chain of inequalities 𝜑 (𝑣) ≤ 𝜑 (𝑢) ≤ 𝜑 (𝑤) ≤ 𝜑 (𝑣) ends with the

same term that it begins with; therefore, it must be a chain of equalities. In other

words, we have 𝜑 (𝑣) = 𝜑 (𝑢) = 𝜑 (𝑤) = 𝜑 (𝑣).

Now, using 𝜑 (𝑤) = 𝜑 (𝑣), we can see that 𝑤 <2 𝑣 30. The same argument

(applied to 𝑢 and 𝑤 instead of 𝑤 and 𝑣) shows that 𝑢 <2 𝑤. Thus, 𝑢 <2 𝑤 <2 𝑣,

which contradicts the fact that we do not have 𝑢 <2 𝑣. This contradiction proves

Claim 3.

Proof of Claim 2: The condition “𝑓 <2 𝑒” is stronger than “not 𝑒 <2 𝑓 ”. Thus,

Claim 2 follows from Claim 3.

Claims 1 and 2 are now both proven, and so Lemma 1.7.1 follows.

Proof of Lemma 1.4.5. Consider the following three logical statements:

Statement 1: The orbit 𝑂 is 𝐸-coeven.

Statement 2: All elements of 𝑂 are 𝐸-coeven.

Statement 3: At least one element of 𝑂 is 𝐸-coeven.

Statements 1 and 2 are equivalent (according to the definition of when an orbit

is 𝐸-coeven). Our goal is to prove that Statements 1 and 3 are equivalent (because

this is precisely what Lemma 1.4.5 says). Thus, it clearly suffices to show that State-

ments 2 and 3 are equivalent. Since Statement 2 obviously implies Statement 3, we

we thus have 𝑣 <2 𝑢. Therefore, 𝜑 (𝑢) < 𝜑 (𝑣) by Condition 2 (applied to 𝑒 = 𝑢 and 𝑓 = 𝑣), qed.
30Proof. Assume the contrary. Thus, we do not have 𝑤 <2 𝑣. But 𝜑 (𝑤) = 𝜑 (𝑣) shows that

we do not have 𝜑 (𝑤) < 𝜑 (𝑣). Hence, (𝑤, 𝑣) is a malrelation (since 𝑤 <1 𝑣 and not 𝑤 <2 𝑣 but
not 𝜑 (𝑤) < 𝜑 (𝑣)). This contradicts the fact that (𝑤, 𝑣) is not a malrelation. This contradiction
completes the proof.
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therefore only need to show that Statement 3 implies Statement 2. Thus, assume

that Statement 3 holds. We need to prove that Statement 2 holds.

There exists at least one 𝐸-coeven 𝜑 ∈ 𝑂 (because we assumed that Statement

3 holds). Consider this 𝜑. Now, let 𝜋 ∈ 𝑂 be arbitrary. We shall show that 𝜋 is

𝐸-coeven.

We know that 𝜑 is 𝐸-coeven. In other words,

every 𝑔 ∈ 𝐺 satisfying 𝑔𝜑 = 𝜑 is 𝐸-even. (1.24)

Now, let 𝑔 ∈ 𝐺 be such that 𝑔𝜋 = 𝜋. Since 𝜑 belongs to the 𝐺-orbit 𝑂, we have

𝑂 = 𝐺𝜑. Now, 𝜋 ∈ 𝑂 = 𝐺𝜑. In other words, there exists some ℎ ∈ 𝐺 such that

𝜋 = ℎ𝜑. Consider this ℎ. We have 𝑔𝜋 = 𝜋. Since 𝜋 = ℎ𝜑, this rewrites as 𝑔ℎ𝜑 = ℎ𝜑.

In other words, ℎ−1𝑔ℎ𝜑 = 𝜑. Thus, (1.24) (applied to ℎ−1𝑔ℎ instead of 𝑔) shows that

ℎ−1𝑔ℎ is 𝐸-even. In other words,

the action of ℎ−1𝑔ℎ on 𝐸 is an even permutation of 𝐸. (1.25)

Now, let 𝜀 be the group homomorphism from 𝐺 to Aut𝐸 which describes the

𝐺-action on 𝐸. Then, 𝜀 (ℎ−1𝑔ℎ) is the action of ℎ−1𝑔ℎ on 𝐸, and thus is an even

permutation of 𝐸 (by (1.25)).

But since 𝜀 is a group homomorphism, we have 𝜀 (ℎ−1𝑔ℎ) = 𝜀 (ℎ)−1 𝜀 (𝑔) 𝜀 (ℎ).

Thus, the permutations 𝜀 (ℎ−1𝑔ℎ) and 𝜀 (𝑔) of 𝐸 are conjugate. Since the permutation

𝜀 (ℎ−1𝑔ℎ) is even, this shows that the permutation 𝜀 (𝑔) is even. In other words, the

action of 𝑔 on 𝐸 is an even permutation of 𝐸. In other words, 𝑔 is 𝐸-even.

Now, let us forget that we fixed 𝑔. We thus have shown that every 𝑔 ∈ 𝐺 satisfying

𝑔𝜋 = 𝜋 is 𝐸-even. In other words, 𝜋 is 𝐸-coeven.

Let us now forget that we fixed 𝜋. Thus, we have proven that every 𝜋 ∈ 𝑂 is

𝐸-coeven. In other words, Statement 2 holds. We have thus shown that Statement

3 implies Statement 2. Consequently, Statements 2 and 3 are equivalent, and so the

proof of Lemma 1.4.5 is complete.
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Next, we will show three simple properties of posets on which groups act.

Proposition 1.7.2. Let 𝐸 be a set. Let <1 be a strict partial order relation on

𝐸. Let 𝐺 be a finite group which acts on 𝐸. Assume that 𝐺 preserves the relation

<1.

Let 𝑔 ∈ 𝐺. Let 𝐸𝑔 be the set of all orbits under the action of 𝑔 on 𝐸. Define a

binary relation <𝑔
1 on 𝐸𝑔 by

(𝑢 <𝑔
1 𝑣) ⇐⇒ (there exist 𝑎 ∈ 𝑢 and 𝑏 ∈ 𝑣 with 𝑎 <1 𝑏) .

Then, <𝑔
1 is a strict partial order relation.

Proposition 1.7.2 is precisely [Joch13, Lemma 2.4], but let us outline the proof for

the sake of completeness:

Proof of Proposition 1.7.2. Let us first show that the relation <𝑔
1 is irreflexive. In-

deed, assume the contrary. Thus, there exists a 𝑢 ∈ 𝐸𝑔 such that 𝑢 <𝑔
1 𝑢. Consider

this 𝑢. Since 𝑢 <𝑔
1 𝑢, there exist 𝑎 ∈ 𝑢 and 𝑏 ∈ 𝑢 with 𝑎 <1 𝑏. Consider these 𝑎 and

𝑏. There exists a 𝑘 ∈ N such that 𝑏 = 𝑔𝑘𝑎 (since 𝑎 and 𝑏 both lie in one and the same

𝑔-orbit 𝑢). Consider this 𝑘.

The 𝑔-orbit 𝑢 of 𝑎 is finite (since 𝑔 is finite). Thus, there exists a positive integer

𝑛 such that 𝑔𝑛𝑎 = 𝑎. Consider this 𝑛. Notice that 𝑔𝑛𝑝𝑎 = (𝑔𝑛)𝑝 𝑎 = 𝑎 for every 𝑝 ∈ N

(since 𝑔𝑛𝑎 = 𝑎).

Now, 𝑎 <1 𝑏 = 𝑔𝑘𝑎. Since 𝐺 preserves the relation <1, this shows that ℎ𝑎 <1 ℎ𝑔
𝑘𝑎

for every ℎ ∈ 𝐺. Thus, 𝑔ℓ𝑘𝑎 <1 𝑔ℓ𝑘𝑔𝑘𝑎 for every ℓ ∈ N. Hence, 𝑔ℓ𝑘𝑎 <1 𝑔ℓ𝑘𝑔𝑘𝑎 =

𝑔(ℓ+1)𝑘𝑎 for every ℓ ∈ N. Consequently, 𝑔0𝑘𝑎 <1 𝑔1𝑘𝑎 <1 𝑔2𝑘𝑎 <1 · · · <1 𝑔𝑛𝑘𝑎. Thus,

𝑔0𝑘𝑎 <1 𝑔
𝑛𝑘𝑎 = 𝑎 (since 𝑔𝑛𝑝𝑎 = 𝑎 for every 𝑝 ∈ N), which contradicts 𝑔0𝑘𝑎 = 1𝐺𝑎 = 𝑎.

This contradiction proves that our assumption was wrong. Hence, the relation <𝑔
1 is

irreflexive.

Let us next show that the relation <𝑔
1 is transitive. Indeed, let 𝑢, 𝑣 and 𝑤 be three

elements of 𝐸𝑔 such that 𝑢 <𝑔
1 𝑣 and 𝑣 <𝑔

1 𝑤. We must prove that 𝑢 <𝑔
1 𝑤.

There exist 𝑎 ∈ 𝑢 and 𝑏 ∈ 𝑣 with 𝑎 <1 𝑏 (since 𝑢 <𝑔
1 𝑣). Consider these 𝑎 and 𝑏.
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There exist 𝑎′ ∈ 𝑣 and 𝑏′ ∈ 𝑤 with 𝑎′ <1 𝑏
′ (since 𝑣 <𝑔

1 𝑤). Consider these 𝑎′ and

𝑏′.

The elements 𝑏 and 𝑎′ lie in one and the same 𝑔-orbit (namely, in 𝑣). Hence, there

exists some 𝑘 ∈ N such that 𝑎′ = 𝑔𝑘𝑏. Consider this 𝑘. We have 𝑎 <1 𝑏 and thus

𝑔𝑘𝑎 <1 𝑔𝑘𝑏 (since 𝐺 preserves the relation <1). Hence, 𝑔𝑘𝑎 <1 𝑔𝑘𝑏 = 𝑎′ <1 𝑏′. Since

𝑔𝑘𝑎 ∈ 𝑢 (because 𝑎 ∈ 𝑢) and 𝑏′ ∈ 𝑤, this shows that 𝑢 <𝑔
1 𝑤. We thus have proven

that the relation <𝑔
1 is transitive.

Now, we know that the relation <𝑔
1 is irreflexive and transitive, and thus also

antisymmetric (since every irreflexive and transitive binary relation is antisymmetric).

In other words, <𝑔
1 is a strict partial order relation. This proves Proposition 1.7.2.

Remark 1.7.3. Proposition 1.7.2 can be generalized: Let 𝐸 be a set. Let <1 be a

strict partial order relation on 𝐸. Let 𝐺 be a finite group which acts on 𝐸. Assume

that 𝐺 preserves the relation <1. Let 𝐻 be a subgroup of 𝐺. Let 𝐸𝐻 be the set of

all orbits under the action of 𝐻 on 𝐸. Define a binary relation <𝐻
1 on 𝐸𝐻 by

(︀
𝑢 <𝐻

1 𝑣
)︀
⇐⇒ (there exist 𝑎 ∈ 𝑢 and 𝑏 ∈ 𝑣 with 𝑎 <1 𝑏) .

Then, <𝐻
1 is a strict partial order relation.

This result (whose proof is quite similar to that of Proposition 1.7.2) implicitly

appears in [Stan84, p. 30].

Proposition 1.7.4. Let E = (𝐸,<1, <2) be a tertispecial double poset. Let 𝐺 be

a finite group which acts on 𝐸. Assume that 𝐺 preserves both relations <1 and

<2.

Let 𝑔 ∈ 𝐺. Let 𝐸𝑔 be the set of all orbits under the action of 𝑔 on 𝐸. Define a

binary relation <𝑔
1 on 𝐸𝑔 by

(𝑢 <𝑔
1 𝑣) ⇐⇒ (there exist 𝑎 ∈ 𝑢 and 𝑏 ∈ 𝑣 with 𝑎 <1 𝑏) .
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Define a binary relation <𝑔
2 on 𝐸𝑔 by

(𝑢 <𝑔
2 𝑣) ⇐⇒ (there exist 𝑎 ∈ 𝑢 and 𝑏 ∈ 𝑣 with 𝑎 <2 𝑏) .

Let E𝑔 be the triple (𝐸𝑔, <𝑔
1, <

𝑔
2). Then, E𝑔 is a tertispecial double poset.

Proof of Proposition 1.7.4. Both relations <1 and <2 are strict partial order relations

(since E is a double poset). Proposition 1.7.2 shows that <𝑔
1 is a strict partial order

relation. Proposition 1.7.2 (applied to <2 and <𝑔
2 instead of <1 and <𝑔

1) shows that

<𝑔
2 is a strict partial order relation. Thus, E𝑔 = (𝐸𝑔, <𝑔

1, <
𝑔
2) is a double poset. It

remains to show that this double poset E𝑔 is tertispecial.

Let 𝑢 and 𝑣 be two elements of 𝐸𝑔 such that 𝑢 is <𝑔
1-covered by 𝑣. We shall prove

that 𝑢 and 𝑣 are <𝑔
2-comparable.

We have 𝑢 <𝑔
1 𝑣 (since 𝑢 is <𝑔

1-covered by 𝑣). In other words, there exist 𝑎 ∈ 𝑢

and 𝑏 ∈ 𝑣 with 𝑎 <1 𝑏. Consider these 𝑎 and 𝑏.

If there was a 𝑐 ∈ 𝐸 satisfying 𝑎 <1 𝑐 <1 𝑏, then we would have 𝑢 <𝑔
1 𝑤 <𝑔

1 𝑣 with

𝑤 being the 𝑔-orbit of 𝑐, and this would contradict the condition that 𝑢 is <𝑔
1-covered

by 𝑣. Hence, no such 𝑐 can exist. In other words, 𝑎 is <1-covered by 𝑏. Thus, 𝑎 and

𝑏 are <2-comparable (since the double poset E is tertispecial). Consequently, 𝑢 and

𝑣 are <𝑔
2-comparable.

Now, let us forget that we fixed 𝑢 and 𝑣. We thus have shown that if 𝑢 and

𝑣 are two elements of 𝐸𝑔 such that 𝑢 is <𝑔
1-covered by 𝑣, then 𝑢 and 𝑣 are <𝑔

2-

comparable. In other words, the double poset E𝑔 = (𝐸𝑔, <𝑔
1, <

𝑔
2) is tertispecial. This

proves Proposition 1.7.4.

Proposition 1.7.5. Let E = (𝐸,<1, <2) be a tertispecial double poset. Let 𝐺 be

a finite group which acts on 𝐸. Assume that 𝐺 preserves both relations <1 and

<2.

Let 𝑔 ∈ 𝐺. Define the set 𝐸𝑔, the relations <𝑔
1 and <𝑔

2 and the triple E𝑔 as in

Proposition 1.7.4. Thus, E𝑔 is a tertispecial double poset (by Proposition 1.7.4).

There is a bijection Φ between
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∙ the maps 𝜋 : 𝐸 → {1, 2, 3, . . .} satisfying 𝑔𝜋 = 𝜋

and

∙ the maps 𝜋 : 𝐸𝑔 → {1, 2, 3, . . .}.

Namely, this bijection Φ sends any map 𝜋 : 𝐸 → {1, 2, 3, . . .} satisfying 𝑔𝜋 = 𝜋

to the map 𝜋 : 𝐸𝑔 → {1, 2, 3, . . .} defined by

𝜋 (𝑢) = 𝜋 (𝑎) for every 𝑢 ∈ 𝐸𝑔 and 𝑎 ∈ 𝑢.

(The well-definedness of this map 𝜋 is easy to see: Indeed, from 𝑔𝜋 = 𝜋, we can

conclude that any two elements 𝑎1 and 𝑎2 of a given 𝑔-orbit 𝑢 satisfy 𝜋 (𝑎1) =

𝜋 (𝑎2).)

Consider this bijection Φ. Let 𝜋 : 𝐸 → {1, 2, 3, . . .} be a map satisfying 𝑔𝜋 = 𝜋.

(a) If 𝜋 is an E-partition, then Φ (𝜋) is an E𝑔-partition.

(b) If Φ (𝜋) is an E𝑔-partition, then 𝜋 is an E-partition.

(c) Let 𝑤 : 𝐸 → {1, 2, 3, . . .} be map. Define a map 𝑤𝑔 : 𝐸𝑔 → {1, 2, 3, . . .} by

𝑤𝑔 (𝑢) =
∑︁
𝑎∈𝑢

𝑤 (𝑎) for every 𝑢 ∈ 𝐸𝑔.

Then, xΦ(𝜋),𝑤𝑔 = x𝜋,𝑤.

Proof of Proposition 1.7.5 (sketched). The definition of Φ shows that

(Φ (𝜋)) (𝑢) = 𝜋 (𝑎) for every 𝑢 ∈ 𝐸𝑔 and 𝑎 ∈ 𝑢. (1.26)

(a) Assume that 𝜋 is an E-partition. We want to show that Φ (𝜋) is an E𝑔-

partition. In order to do so, we can use Lemma 1.7.1 (applied to E𝑔, (𝐸𝑔, <𝑔
1, <

𝑔
2)

and Φ (𝜋) instead of E, (𝐸,<1, <2) and 𝜑); we only need to check the following two
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conditions:

Condition 1: If 𝑒 ∈ 𝐸𝑔 and 𝑓 ∈ 𝐸𝑔 are such that 𝑒 is <𝑔
1-covered by 𝑓 , and if we

have 𝑒 <𝑔
2 𝑓 , then (Φ (𝜋)) (𝑒) ≤ (Φ (𝜋)) (𝑓).

Condition 2: If 𝑒 ∈ 𝐸𝑔 and 𝑓 ∈ 𝐸𝑔 are such that 𝑒 is <𝑔
1-covered by 𝑓 , and if we

have 𝑓 <𝑔
2 𝑒, then (Φ (𝜋)) (𝑒) < (Φ (𝜋)) (𝑓).

Proof of Condition 1: Let 𝑒 ∈ 𝐸𝑔 and 𝑓 ∈ 𝐸𝑔 be such that 𝑒 is <𝑔
1-covered by 𝑓 .

Assume that we have 𝑒 <𝑔
2 𝑓 .

We have 𝑒 <𝑔
1 𝑓 (because 𝑒 is <𝑔

1-covered by 𝑓). In other words, there exist

𝑎 ∈ 𝑒 and 𝑏 ∈ 𝑓 satisfying 𝑎 <1 𝑏. Consider these 𝑎 and 𝑏. Since 𝜋 is an E-

partition, we have 𝜋 (𝑎) ≤ 𝜋 (𝑏) (since 𝑎 <1 𝑏). But the definition of Φ (𝜋) shows

that (Φ (𝜋)) (𝑒) = 𝜋 (𝑎) (since 𝑎 ∈ 𝑒) and (Φ (𝜋)) (𝑓) = 𝜋 (𝑏) (since 𝑏 ∈ 𝑓). Thus,

(Φ (𝜋)) (𝑒) = 𝜋 (𝑎) ≤ 𝜋 (𝑏) = (Φ (𝜋)) (𝑓). Hence, Condition 1 is proven.

Proof of Condition 2: Let 𝑒 ∈ 𝐸𝑔 and 𝑓 ∈ 𝐸𝑔 be such that 𝑒 is <𝑔
1-covered by 𝑓 .

Assume that we have 𝑓 <𝑔
2 𝑒.

We have 𝑒 <𝑔
1 𝑓 (because 𝑒 is <𝑔

1-covered by 𝑓). In other words, there exist 𝑎 ∈ 𝑒

and 𝑏 ∈ 𝑓 satisfying 𝑎 <1 𝑏. Consider these 𝑎 and 𝑏.

If there was a 𝑐 ∈ 𝐸 satisfying 𝑎 <1 𝑐 <1 𝑏, then the 𝑔-orbit 𝑤 of this 𝑐 would

satisfy 𝑒 <𝑔
1 𝑤 <𝑔

1 𝑓 , which would contradict the fact that 𝑒 is <𝑔
1-covered by 𝑓 .

Hence, there exists no such 𝑐. In other words, 𝑎 is <1-covered by 𝑏 (since 𝑎 <1 𝑏).

Therefore, 𝑎 and 𝑏 are <2-comparable (since E is tertispecial). In other words, we

have either 𝑎 <2 𝑏 or 𝑎 = 𝑏 or 𝑏 <2 𝑎. Since 𝑎 <2 𝑏 is impossible (because if we had

𝑎 <2 𝑏, then we would have 𝑒 <𝑔
2 𝑓 (since 𝑎 ∈ 𝑒 and 𝑏 ∈ 𝑓), which would contradict

𝑓 <𝑔
2 𝑒 (since <𝑔

2 is a strict partial order relation)), and since 𝑎 = 𝑏 is impossible

(because 𝑎 <1 𝑏), we therefore must have 𝑏 <2 𝑎. But since 𝜋 is an E-partition,

we have 𝜋 (𝑎) < 𝜋 (𝑏) (since 𝑎 <1 𝑏 and 𝑏 <2 𝑎). But the definition of Φ (𝜋) shows

that (Φ (𝜋)) (𝑒) = 𝜋 (𝑎) (since 𝑎 ∈ 𝑒) and (Φ (𝜋)) (𝑓) = 𝜋 (𝑏) (since 𝑏 ∈ 𝑓). Thus,

(Φ (𝜋)) (𝑒) = 𝜋 (𝑎) < 𝜋 (𝑏) = (Φ (𝜋)) (𝑓). Hence, Condition 2 is proven.

Thus, Condition 1 and Condition 2 are proven. Hence, Proposition 1.7.5 (a) is

proven.

(b) Assume that Φ (𝜋) is an E𝑔-partition. We want to show that 𝜋 is an E-
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partition. In order to do so, we can use Lemma 1.7.1 (applied to 𝜑 = 𝜋); we only

need to check the following two conditions:

Condition 1: If 𝑒 ∈ 𝐸 and 𝑓 ∈ 𝐸 are such that 𝑒 is <1-covered by 𝑓 , and if we

have 𝑒 <2 𝑓 , then 𝜋 (𝑒) ≤ 𝜋 (𝑓).

Condition 2: If 𝑒 ∈ 𝐸 and 𝑓 ∈ 𝐸 are such that 𝑒 is <1-covered by 𝑓 , and if we

have 𝑓 <2 𝑒, then 𝜋 (𝑒) < 𝜋 (𝑓).

Proof of Condition 1: Let 𝑒 ∈ 𝐸 and 𝑓 ∈ 𝐸 be such that 𝑒 is <1-covered by 𝑓 .

Assume that we have 𝑒 <2 𝑓 .

We have 𝑒 <1 𝑓 (since 𝑒 is <1-covered by 𝑓). Let 𝑢 and 𝑣 be the 𝑔-orbits of 𝑒 and

𝑓 , respectively. Thus, 𝑢 and 𝑣 belong to 𝐸𝑔, and satisfy 𝑢 <𝑔
1 𝑣 (since 𝑒 <1 𝑓). Hence,

(Φ (𝜋)) (𝑢) ≤ (Φ (𝜋)) (𝑣) (since Φ (𝜋) is an E𝑔-partition). But the definition of Φ (𝜋)

shows that (Φ (𝜋)) (𝑢) = 𝜋 (𝑒) (since 𝑒 ∈ 𝑢) and (Φ (𝜋)) (𝑣) = 𝜋 (𝑓) (since 𝑓 ∈ 𝑣).

Thus, 𝜋 (𝑒) = (Φ (𝜋)) (𝑢) ≤ (Φ (𝜋)) (𝑣) = 𝜋 (𝑓). Hence, Condition 1 is proven.

Proof of Condition 2: Let 𝑒 ∈ 𝐸 and 𝑓 ∈ 𝐸 be such that 𝑒 is <1-covered by 𝑓 .

Assume that we have 𝑓 <2 𝑒.

We have 𝑒 <1 𝑓 (since 𝑒 is <1-covered by 𝑓). Let 𝑢 and 𝑣 be the 𝑔-orbits of 𝑒

and 𝑓 , respectively. Thus, 𝑢 and 𝑣 belong to 𝐸𝑔, and satisfy 𝑢 <𝑔
1 𝑣 (since 𝑒 <1 𝑓)

and 𝑣 <𝑔
2 𝑢 (since 𝑓 <2 𝑒). Hence, (Φ (𝜋)) (𝑢) < (Φ (𝜋)) (𝑣) (since Φ (𝜋) is an E𝑔-

partition). But the definition of Φ (𝜋) shows that (Φ (𝜋)) (𝑢) = 𝜋 (𝑒) (since 𝑒 ∈ 𝑢)

and (Φ (𝜋)) (𝑣) = 𝜋 (𝑓) (since 𝑓 ∈ 𝑣). Thus, 𝜋 (𝑒) = (Φ (𝜋)) (𝑢) < (Φ (𝜋)) (𝑣) = 𝜋 (𝑓).

Hence, Condition 2 is proven.

Thus, Condition 1 and Condition 2 are proven. Hence, Proposition 1.7.5 (b) is

proven.

57



(c) The definition of xΦ(𝜋),𝑤𝑔 shows that

xΦ(𝜋),𝑤𝑔 =
∏︁
𝑒∈𝐸𝑔

𝑥
𝑤𝑔(𝑒)
(Φ(𝜋))(𝑒) =

∏︁
𝑢∈𝐸𝑔

𝑥
𝑤𝑔(𝑢)
(Φ(𝜋))(𝑢)⏟  ⏞  

=
∏︀
𝑎∈𝑢

𝑥
𝑤(𝑎)
(Φ(𝜋))(𝑢)

(since 𝑤𝑔(𝑢)=
∑︀
𝑎∈𝑢

𝑤(𝑎))

=
∏︁
𝑢∈𝐸𝑔

∏︁
𝑎∈𝑢

𝑥
𝑤(𝑎)
(Φ(𝜋))(𝑢)⏟  ⏞  
=𝑥

𝑤(𝑎)
𝜋(𝑎)

(by (1.26))

=
∏︁
𝑢∈𝐸𝑔

∏︁
𝑎∈𝑢⏟  ⏞  

=
∏︀

𝑎∈𝐸

𝑥
𝑤(𝑎)
𝜋(𝑎) =

∏︁
𝑎∈𝐸

𝑥
𝑤(𝑎)
𝜋(𝑎) =

∏︁
𝑒∈𝐸

𝑥
𝑤(𝑒)
𝜋(𝑒) = x𝜋,𝑤

(by the definition of x𝜋,𝑤). This proves Proposition 1.7.5 (c).

Our next lemma is a standard argument in Pólya enumeration theory (compare

it with the proof of Burnside’s lemma):

Lemma 1.7.6. Let 𝐺 be a finite group. Let 𝐹 be a finite 𝐺-set. Let 𝑂 be a

𝐺-orbit on 𝐹 , and let 𝜋 ∈ 𝑂.

(a) We have
1

|𝑂|
=

1

|𝐺|
∑︁
𝑔∈𝐺;
𝑔𝜋=𝜋

1. (1.27)

(b) Let 𝐸 be a further finite 𝐺-set. For every 𝑔 ∈ 𝐺, let sign𝐸 𝑔 denote the sign of

the permutation of 𝐸 that sends every 𝑒 ∈ 𝐸 to 𝑔𝑒. (Thus, 𝑔 ∈ 𝐺 is 𝐸-even

if and only if sign𝐸 𝑔 = 1.) Then,⎧⎪⎪⎨⎪⎪⎩
1

|𝑂|
, if 𝑂 is 𝐸-coeven;

0, if 𝑂 is not 𝐸-coeven
=

1

|𝐺|
∑︁
𝑔∈𝐺;
𝑔𝜋=𝜋

sign𝐸 𝑔. (1.28)

Proof of Lemma 1.7.6. Let Stab𝐺 𝜋 denote the stabilizer of 𝜋; this is the subgroup

{𝑔 ∈ 𝐺 | 𝑔𝜋 = 𝜋} of 𝐺. The 𝐺-orbit of 𝜋 is 𝑂 (since 𝑂 is a 𝐺-orbit on 𝐹 , and since
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𝜋 ∈ 𝑂). In other words, 𝑂 = 𝐺𝜋. Therefore,

|𝑂| = |𝐺𝜋| = |𝐺|
|Stab𝐺 𝜋|

(by the orbit-stabilizer theorem) and thus

1

|𝑂|
=

|Stab𝐺 𝜋|
|𝐺|

. (1.29)

(a) We have ∑︁
𝑔∈𝐺;
𝑔𝜋=𝜋

1 =

⃒⃒⃒⃒
⃒⃒{𝑔 ∈ 𝐺 | 𝑔𝜋 = 𝜋}⏟  ⏞  

=Stab𝐺 𝜋

⃒⃒⃒⃒
⃒⃒ = |Stab𝐺 𝜋| .

Hence,
1

|𝐺|
∑︁
𝑔∈𝐺;
𝑔𝜋=𝜋

1

⏟  ⏞  
=|Stab𝐺 𝜋|

=
1

|𝐺|
|Stab𝐺 𝜋| = |Stab𝐺 𝜋|

|𝐺|
=

1

|𝑂|

(by (1.29)). This proves Lemma 1.7.6 (a).

(b) We need to prove (1.28). Assume first that 𝑂 is 𝐸-coeven. Thus, 𝜋 is 𝐸-coeven

(by the definition of what it means for 𝑂 to be 𝐸-coeven). This means that every

𝑔 ∈ 𝐺 satisfying 𝑔𝜋 = 𝜋 is 𝐸-even. Hence, every 𝑔 ∈ 𝐺 satisfying 𝑔𝜋 = 𝜋 satisfies

sign𝐸 𝑔 = 1. Thus,

1

|𝐺|
∑︁
𝑔∈𝐺;
𝑔𝜋=𝜋

sign𝐸 𝑔⏟  ⏞  
=1

=
1

|𝐺|
∑︁
𝑔∈𝐺;
𝑔𝜋=𝜋

1 =
1

|𝑂|
(by (1.27))

=

⎧⎪⎪⎨⎪⎪⎩
1

|𝑂|
, if 𝑂 is 𝐸-coeven;

0, if 𝑂 is not 𝐸-coeven
(since 𝑂 is 𝐸-coeven) .

Thus, we have proven (1.28) under the assumption that 𝑂 is 𝐸-coeven. We can

therefore WLOG assume the opposite now. Thus, assume that 𝑂 is not 𝐸-coeven.

Hence, no element of 𝑂 is 𝐸-coeven (due to the contrapositive of Lemma 1.4.5). In

particular, 𝜋 is not 𝐸-coeven. In other words, not every 𝑔 ∈ 𝐺 satisfying 𝑔𝜋 = 𝜋 is
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𝐸-even. In other words, not every 𝑔 ∈ Stab𝐺 𝜋 is 𝐸-even (since the elements 𝑔 ∈ 𝐺

satisfying 𝑔𝜋 = 𝜋 are exactly the elements 𝑔 ∈ Stab𝐺 𝜋). In other words, not every

𝑔 ∈ Stab𝐺 𝜋 satisfies sign𝐸 𝑔 = 1.

Now, the map

Stab𝐺 𝜋 → {1,−1} , 𝑔 ↦→ sign𝐸 𝑔

is a group homomorphism (since the sign of a permutation is multiplicative) and is

not the trivial homomorphism (since not every 𝑔 ∈ Stab𝐺 𝜋 satisfies sign𝐸 𝑔 = 1).

Hence, it must send exactly half the elements of Stab𝐺 𝜋 to 1 and the other half to

−1. Therefore, the addends in the sum
∑︀

𝑔∈Stab𝐺 𝜋

sign𝐸 𝑔 cancel each other out (one

half of them are 1, and the others are −1). Therefore,
∑︀

𝑔∈Stab𝐺 𝜋

sign𝐸 𝑔 = 0, so that

1

|𝐺|
∑︁

𝑔∈Stab𝐺 𝜋

sign𝐸 𝑔⏟  ⏞  
=0

= 0 =

⎧⎪⎪⎨⎪⎪⎩
1

|𝑂|
, if 𝑂 is 𝐸-coeven;

0, if 𝑂 is not 𝐸-coeven

(since 𝑂 is not 𝐸-coeven). Thus,

1

|𝐺|
∑︁
𝑔∈𝐺;
𝑔𝜋=𝜋⏟ ⏞ 

=
∑︀

𝑔∈Stab𝐺 𝜋

sign𝐸 𝑔 =
1

|𝐺|
∑︁

𝑔∈Stab𝐺 𝜋

sign𝐸 𝑔 =

⎧⎪⎪⎨⎪⎪⎩
1

|𝑂|
, if 𝑂 is 𝐸-coeven;

0, if 𝑂 is not 𝐸-coeven
.

This proves (1.28). Lemma 1.7.6 (b) is thus proven.

Proof of Theorem 1.4.6 (sketched). For every 𝑔 ∈ 𝐺, define a tertispecial double

poset E𝑔 = (𝐸𝑔, <𝑔
1, <

𝑔
2) as follows:

Let 𝐸𝑔 be the set of all orbits under the action of 𝑔 on 𝐸. Define a binary relation

<𝑔
1 on 𝐸𝑔 by

(𝑢 <𝑔
1 𝑣) ⇐⇒ (there exist 𝑎 ∈ 𝑢 and 𝑏 ∈ 𝑣 with 𝑎 <1 𝑏) .
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Similarly, define a strict partial order relation <𝑔
2 on 𝐸𝑔 by

(𝑢 <𝑔
2 𝑣) ⇐⇒ (there exist 𝑎 ∈ 𝑢 and 𝑏 ∈ 𝑣 with 𝑎 <2 𝑏) .

Finally, set E𝑔 = (𝐸𝑔, <𝑔
1, <

𝑔
2). Proposition 1.7.4 shows that this E𝑔 is a tertispecial

double poset.

Furthermore, for every 𝑔 ∈ 𝐺, define a map 𝑤𝑔 : 𝐸𝑔 → {1, 2, 3, . . .} by 𝑤𝑔 (𝑢) =∑︀
𝑎∈𝑢

𝑤 (𝑎). (Since 𝐺 preserves 𝑤, the numbers 𝑤 (𝑎) for all 𝑎 ∈ 𝑢 are equal (for given

𝑢), and thus
∑︀
𝑎∈𝑢

𝑤 (𝑎) can be rewritten as |𝑢| · 𝑤 (𝑏) for any particular 𝑏 ∈ 𝑢.) Now,

𝑆 (Γ ((𝐸𝑔, <𝑔
1, <

𝑔
2) , 𝑤

𝑔)) = (−1)|𝐸
𝑔 | Γ ((𝐸𝑔, >𝑔

1, <
𝑔
2) , 𝑤

𝑔) (1.30)

(by Theorem 1.4.2, applied to ((𝐸𝑔, <𝑔
1, <

𝑔
2) , 𝑤

𝑔) instead of ((𝐸,<1, <2) , 𝑤)).

For every 𝑔 ∈ 𝐺, we have

∑︁
𝜋 is an E-partition;

𝑔𝜋=𝜋

x𝜋,𝑤 = Γ (E𝑔, 𝑤𝑔) (1.31)

31.
31Proof of (1.31): Let 𝑔 ∈ 𝐺. In Proposition 1.7.5, we have introduced a bijection Φ between

∙ the maps 𝜋 : 𝐸 → {1, 2, 3, . . .} satisfying 𝑔𝜋 = 𝜋

and

∙ the maps 𝜋 : 𝐸𝑔 → {1, 2, 3, . . .}.

Parts (a) and (b) of Proposition 1.7.5 show that this bijection Φ restricts to a bijection between

∙ the E-partitions 𝜋 : 𝐸 → {1, 2, 3, . . .} satisfying 𝑔𝜋 = 𝜋

and

∙ the E𝑔-partitions 𝜋 : 𝐸𝑔 → {1, 2, 3, . . .}.

Hence, ∑︁
𝜋 is an E𝑔-partition

x𝜋,𝑤𝑔 =
∑︁

𝜋 is an E-partition;
𝑔𝜋=𝜋

xΦ(𝜋),𝑤𝑔⏟  ⏞  
=x𝜋,𝑤

(by Proposition (1.7.5) (c))

=
∑︁

𝜋 is an E-partition;
𝑔𝜋=𝜋

x𝜋,𝑤,

whence
∑︀

𝜋 is an E-partition;
𝑔𝜋=𝜋

x𝜋,𝑤 =
∑︀

𝜋 is an E𝑔-partition
x𝜋,𝑤𝑔 = Γ (E𝑔, 𝑤𝑔). This proves (1.31).
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It is clearly sufficient to prove Theorem 1.4.6 for k = Z (since all the power series

that we are discussing are defined functorially in k, and thus any identity between

these series that holds over Z must hold over any k). Therefore, it is sufficient to

prove Theorem 1.4.6 for k = Q (since QSymZ embeds into QSymQ
32). Thus, we

WLOG assume that k = Q. This will allow us to divide by positive integers.

Every 𝐺-orbit 𝑂 on ParE satisfies

1

|𝑂|
∑︁
𝜋∈𝑂

x𝜋,𝑤⏟ ⏞ 
=x𝑂,𝑤

(since x𝑂,𝑤 is defined
to be x𝜋,𝑤)

=
1

|𝑂|
∑︁
𝜋∈𝑂

x𝑂,𝑤⏟  ⏞  
=|𝑂|x𝑂,𝑤

=
1

|𝑂|
|𝑂|x𝑂,𝑤 = x𝑂,𝑤. (1.32)

32Here, we are using the notation QSymk for the Hopf algebra QSym defined over a base ring k.
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Now,

Γ (E, 𝑤,𝐺) =
∑︁

𝑂 is a 𝐺-orbit on ParE

x𝑂,𝑤⏟ ⏞ 
=

1

|𝑂|
∑︀

𝜋∈𝑂
x𝜋,𝑤

(by (1.32))

=
∑︁

𝑂 is a 𝐺-orbit on ParE

1

|𝑂|
∑︁
𝜋∈𝑂

x𝜋,𝑤

=
∑︁

𝑂 is a 𝐺-orbit on ParE

∑︁
𝜋∈𝑂

1

|𝑂|⏟ ⏞ 
=

1

|𝐺|
∑︀

𝑔∈𝐺;
𝑔𝜋=𝜋

1

(by (1.27), applied to 𝐹=ParE)

x𝜋,𝑤

=
∑︁

𝑂 is a 𝐺-orbit on ParE

∑︁
𝜋∈𝑂⏟  ⏞  

=
∑︀

𝜋∈ParE
=

∑︀
𝜋 is an E-partition

⎛⎜⎝ 1

|𝐺|
∑︁
𝑔∈𝐺;
𝑔𝜋=𝜋

1

⎞⎟⎠x𝜋,𝑤

=
∑︁

𝜋 is an E-partition

⎛⎜⎝ 1

|𝐺|
∑︁
𝑔∈𝐺;
𝑔𝜋=𝜋

1

⎞⎟⎠x𝜋,𝑤 =
1

|𝐺|
∑︁

𝜋 is an E-partition

∑︁
𝑔∈𝐺;
𝑔𝜋=𝜋⏟  ⏞  

=
∑︀
𝑔∈𝐺

∑︀
𝜋 is an E-partition;

𝑔𝜋=𝜋

x𝜋,𝑤

=
1

|𝐺|
∑︁
𝑔∈𝐺

∑︁
𝜋 is an E-partition;

𝑔𝜋=𝜋

x𝜋,𝑤

⏟  ⏞  
=Γ(E𝑔 ,𝑤𝑔)
(by (1.31))

=
1

|𝐺|
∑︁
𝑔∈𝐺

Γ

⎛⎜⎝ E𝑔⏟ ⏞ 
=(𝐸𝑔 ,<𝑔

1,<
𝑔
2)

, 𝑤𝑔

⎞⎟⎠ =
1

|𝐺|
∑︁
𝑔∈𝐺

Γ ((𝐸𝑔, <𝑔
1, <

𝑔
2) , 𝑤

𝑔) . (1.33)

Hence, Γ (E, 𝑤,𝐺) ∈ QSym (by Proposition 1.3.5).

Applying the map 𝑆 to both sides of the equality (1.33), we obtain

𝑆 (Γ (E, 𝑤,𝐺)) =
1

|𝐺|
∑︁
𝑔∈𝐺

𝑆 (Γ ((𝐸𝑔, <𝑔
1, <

𝑔
2) , 𝑤

𝑔))⏟  ⏞  
=(−1)|𝐸

𝑔 |Γ((𝐸𝑔 ,>𝑔
1,<

𝑔
2),𝑤𝑔)

(by (1.30))

=
1

|𝐺|
∑︁
𝑔∈𝐺

(−1)|𝐸
𝑔 | Γ ((𝐸𝑔, >𝑔

1, <
𝑔
2) , 𝑤

𝑔) . (1.34)
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On the other hand, for every 𝑔 ∈ 𝐺, let sign𝐸 𝑔 denote the sign of the permutation

of 𝐸 that sends every 𝑒 ∈ 𝐸 to 𝑔𝑒. Thus, 𝑔 ∈ 𝐺 is 𝐸-even if and only if sign𝐸 𝑔 = 1.

Now, every 𝐺-orbit 𝑂 on ParE and every 𝜋 ∈ 𝑂 satisfy⎧⎪⎪⎨⎪⎪⎩
1

|𝑂|
, if 𝑂 is 𝐸-coeven;

0, if 𝑂 is not 𝐸-coeven
=

1

|𝐺|
∑︁
𝑔∈𝐺;
𝑔𝜋=𝜋

sign𝐸 𝑔 (1.35)

(by (1.28), applied to 𝐹 = ParE). Furthermore,

sign𝐸 𝑔 = (−1)|𝐸|−|𝐸𝑔 | (1.36)

for every 𝑔 ∈ 𝐺 33.

33Proof of (1.36): Let 𝑔 ∈ 𝐺. Recall that sign𝐸 𝑔 is the sign of the permutation of 𝐸
that sends every 𝑒 ∈ 𝐸 to 𝑔𝑒. But if 𝜎 is a permutation of a finite set 𝑋, then the sign
of 𝜎 is (−1)

|𝑋|−|𝑋𝜎|, where 𝑋𝜎 is the set of all cycles of 𝜎. Applying this to 𝑋 = 𝐸, 𝜎 =
(the permutation of 𝐸 that sends every 𝑒 ∈ 𝐸 to 𝑔𝑒) and 𝑋𝜎 = 𝐸𝑔, we see that the sign of the per-
mutation of 𝐸 that sends every 𝑒 ∈ 𝐸 to 𝑔𝑒 is (−1)

|𝐸|−|𝐸𝑔|. In other words, sign𝐸 𝑔 = (−1)
|𝐸|−|𝐸𝑔|,

qed.
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Now,

Γ+ (E, 𝑤,𝐺)

=
∑︁

𝑂 is an 𝐸-coeven 𝐺-orbit on ParE

x𝑂,𝑤⏟ ⏞ 
=

1

|𝑂|
∑︀

𝜋∈𝑂
x𝜋,𝑤

(by (1.32))

=
∑︁

𝑂 is an 𝐸-coeven 𝐺-orbit on ParE

1

|𝑂|
∑︁
𝜋∈𝑂

x𝜋,𝑤

=
∑︁

𝑂 is a 𝐺-orbit on ParE

⎧⎪⎪⎨⎪⎪⎩
1

|𝑂|
, if 𝑂 is 𝐸-coeven;

0, if 𝑂 is not 𝐸-coeven

∑︁
𝜋∈𝑂

x𝜋,𝑤

⎛⎜⎜⎜⎝
here, we have extended the sum to all 𝐺-orbits

on ParE (not just the 𝐸-coeven ones); but all new addends are 0

and therefore do not influence the value of the sum

⎞⎟⎟⎟⎠

=
∑︁

𝑂 is a 𝐺-orbit on ParE

∑︁
𝜋∈𝑂

⎧⎪⎪⎨⎪⎪⎩
1

|𝑂|
, if 𝑂 is 𝐸-coeven;

0, if 𝑂 is not 𝐸-coeven⏟  ⏞  
=

1

|𝐺|
∑︀

𝑔∈𝐺;
𝑔𝜋=𝜋

sign𝐸 𝑔

(by (1.35))

x𝜋,𝑤

=
∑︁

𝑂 is a 𝐺-orbit on ParE

∑︁
𝜋∈𝑂⏟  ⏞  

=
∑︀

𝜋∈ParE
=

∑︀
𝜋 is an E-partition

⎛⎜⎝ 1

|𝐺|
∑︁
𝑔∈𝐺;
𝑔𝜋=𝜋

sign𝐸 𝑔

⎞⎟⎠x𝜋,𝑤

=
∑︁

𝜋 is an E-partition

⎛⎜⎝ 1

|𝐺|
∑︁
𝑔∈𝐺;
𝑔𝜋=𝜋

sign𝐸 𝑔

⎞⎟⎠x𝜋,𝑤 =
1

|𝐺|
∑︁

𝜋 is an E-partition

∑︁
𝑔∈𝐺;
𝑔𝜋=𝜋⏟  ⏞  

=
∑︀
𝑔∈𝐺

∑︀
𝜋 is an E-partition;

𝑔𝜋=𝜋

(sign𝐸 𝑔)x𝜋,𝑤

=
1

|𝐺|
∑︁
𝑔∈𝐺

sign𝐸 𝑔⏟  ⏞  
=(−1)|𝐸|−|𝐸𝑔 |

(by (1.36))

∑︁
𝜋 is an E-partition;

𝑔𝜋=𝜋

x𝜋,𝑤

⏟  ⏞  
=Γ(E𝑔 ,𝑤𝑔)
(by (1.31))

=
1

|𝐺|
∑︁
𝑔∈𝐺

(−1)|𝐸|−|𝐸𝑔 | Γ (E𝑔, 𝑤𝑔) . (1.37)
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Hence, Γ+ (E, 𝑤,𝐺) ∈ QSym (by Proposition 1.3.5).

The group 𝐺 preserves the relation >1 (since it preserves the relation <1). Hence,

applying (1.37) to (𝐸,>1, <2) instead of E, we obtain

Γ+ ((𝐸,>1, <2) , 𝑤,𝐺) =
1

|𝐺|
∑︁
𝑔∈𝐺

(−1)|𝐸|−|𝐸𝑔 | Γ ((𝐸𝑔, >𝑔
1, <

𝑔
2) , 𝑤

𝑔) .

Multiplying both sides of this equality by (−1)|𝐸|, we transform it into

(−1)|𝐸| Γ+ ((𝐸,>1, <2) , 𝑤,𝐺) =
1

|𝐺|
∑︁
𝑔∈𝐺

(−1)|𝐸| (−1)|𝐸|−|𝐸𝑔 |⏟  ⏞  
=(−1)|𝐸

𝑔 |

Γ ((𝐸𝑔, >𝑔
1, <

𝑔
2) , 𝑤

𝑔)

=
1

|𝐺|
∑︁
𝑔∈𝐺

(−1)|𝐸
𝑔 | Γ ((𝐸𝑔, >𝑔

1, <
𝑔
2) , 𝑤

𝑔)

= 𝑆 (Γ (E, 𝑤,𝐺)) (by (1.34)) .

This proves Theorem 1.4.6.

1.8 Application: Jochemko’s theorem

We shall now demonstrate an application of Theorem 1.4.6: namely, we will use

it to provide an alternative proof of [Joch13, Theorem 2.13]. The way we derive

[Joch13, Theorem 2.13] from Theorem 1.4.6 is classical, and in fact was what originally

motivated the discovery of Theorem 1.4.6 (although, of course, it cannot be conversely

derived from [Joch13, Theorem 2.13], so it is an actual generalization).

An intermediate step between [Joch13, Theorem 2.13] and Theorem 1.4.6 will be

the following fact:

Corollary 1.8.1. Let E = (𝐸,<1, <2) be a tertispecial double poset. Let 𝑤 :

𝐸 → {1, 2, 3, . . .}. Let 𝐺 be a finite group which acts on 𝐸. Assume that 𝐺

preserves both relations <1 and <2, and also preserves 𝑤. For every 𝑞 ∈ N, let

Par𝑞 E denote the set of all E-partitions whose image is contained in {1, 2, . . . , 𝑞}.

Then, the group 𝐺 also acts on Par𝑞 E; namely, Par𝑞 E is a 𝐺-subset of the 𝐺-set
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{1, 2, . . . , 𝑞}𝐸 (see Definition 1.4.4 (d) for the definition of the latter).

(a) There exists a unique polynomial ΩE,𝐺 ∈ Q [𝑋] such that every 𝑞 ∈ N satisfies

ΩE,𝐺 (𝑞) = (the number of all 𝐺-orbits on Par𝑞 E) . (1.38)

(b) This polynomial satisfies

ΩE,𝐺 (−𝑞)

= (−1)|𝐸| (the number of all even 𝐺-orbits on Par𝑞 (𝐸,>1, <2))

= (−1)|𝐸| (the number of all even 𝐺-orbits on Par𝑞 (𝐸,<1, >2)) (1.39)

for all 𝑞 ∈ N.

Proof of Corollary 1.8.1 (sketched). Set k = Q. For any 𝑓 ∈ QSym and any 𝑞 ∈ N,

we define an element ps1 (𝑓) (𝑞) ∈ Q by

ps1 (𝑓) (𝑞) = 𝑓

⎛⎝1, 1, . . . , 1⏟  ⏞  
𝑞 times

, 0, 0, 0, . . .

⎞⎠
(that is, ps1 (𝑓) (𝑞) is the result of substituting 1 for 𝑥1, 𝑥2, . . . , 𝑥𝑞 and 0 for

𝑥𝑞+1, 𝑥𝑞+2, 𝑥𝑞+3, . . . in the power series 𝑓).

(a) Consider the elements Γ (E, 𝑤,𝐺) and Γ+ (E, 𝑤,𝐺) of QSym defined in The-

orem 1.4.6. Observe that Par𝑞 E is a 𝐺-subset of ParE.

Now, [GriRei15, Proposition 7.7 (i)] shows that, for any given 𝑓 ∈ QSym, there

exists a unique polynomial in Q [𝑋] whose value on each 𝑞 ∈ N equals ps1 (𝑓) (𝑞).

Applying this to 𝑓 = Γ (E, 𝑤,𝐺), we conclude that there exists a unique polynomial

in Q [𝑋] whose value on each 𝑞 ∈ N equals ps1 (Γ (E, 𝑤,𝐺)) (𝑞). But since every 𝑞 ∈ N

67



satisfies

ps1 (Γ (E, 𝑤,𝐺)) (𝑞) = (Γ (E, 𝑤,𝐺))⏟  ⏞  
=

∑︀
𝑂 is a 𝐺-orbit on ParE

x𝑂,𝑤

⎛⎝1, 1, . . . , 1⏟  ⏞  
𝑞 times

, 0, 0, 0, . . .

⎞⎠

=
∑︁

𝑂 is a 𝐺-orbit on ParE

x𝑂,𝑤

⎛⎝1, 1, . . . , 1⏟  ⏞  
𝑞 times

, 0, 0, 0, . . .

⎞⎠
⏟  ⏞  

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if 𝑂 ⊆ Par𝑞 E;

0, if 𝑂 ̸⊆ Par𝑞 E

=
∑︁

𝑂 is a 𝐺-orbit on ParE

⎧⎪⎨⎪⎩1, if 𝑂 ⊆ Par𝑞 E;

0, if 𝑂 ̸⊆ Par𝑞 E

=
∑︁

𝑂 is a 𝐺-orbit on Par𝑞 E

1 = (the number of all 𝐺-orbits on Par𝑞 E) ,

(1.40)

this rewrites as follows: There exists a unique polynomial in Q [𝑋] whose value on

each 𝑞 ∈ N equals (the number of all 𝐺-orbits on Par𝑞 E). This proves Corollary

1.8.1 (a).

(b) [GriRei15, Proposition 7.7 (i)] shows that, for any given 𝑓 ∈ QSym, there

exists a unique polynomial in Q [𝑋] whose value on each 𝑞 ∈ N equals ps1 (𝑓) (𝑞).

This polynomial is denoted by ps1 (𝑓) in [GriRei15, Proposition 7.7]. From our above

proof of Corollary 1.8.1 (a), we see that

ΩE,𝐺 = ps1 (Γ (E, 𝑤,𝐺)) .

But [GriRei15, Proposition 7.7 (iii)] shows that, for any 𝑓 ∈ QSym and 𝑚 ∈ N,

we have ps1 (𝑆 (𝑓)) (𝑚) = ps1 (𝑓) (−𝑚). Applying this to 𝑓 = Γ (E, 𝑤,𝐺), we obtain

ps1 (𝑆 (Γ (E, 𝑤,𝐺))) (𝑚) = ps1 (Γ (E, 𝑤,𝐺))⏟  ⏞  
=ΩE,𝐺

(−𝑚) = ΩE,𝐺 (−𝑚)
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for any 𝑚 ∈ N. Thus, any 𝑚 ∈ N satsfies

ΩE,𝐺 (−𝑚) = ps1

⎛⎜⎜⎜⎜⎝ 𝑆 (Γ (E, 𝑤,𝐺))⏟  ⏞  
=(−1)|𝐸|Γ+((𝐸,>1,<2),𝑤,𝐺)

(by Theorem 1.4.6)

⎞⎟⎟⎟⎟⎠ (𝑚)

= ps1
(︁
(−1)|𝐸| Γ+ ((𝐸,>1, <2) , 𝑤,𝐺)

)︁
(𝑚)

= (−1)|𝐸| ps1
(︀
Γ+ ((𝐸,>1, <2) , 𝑤,𝐺)

)︀
(𝑚) .

Renaming 𝑚 as 𝑞 in this equality, we see that every 𝑞 ∈ N satisfies

ΩE,𝐺 (−𝑞) = (−1)|𝐸| ps1
(︀
Γ+ ((𝐸,>1, <2) , 𝑤,𝐺)

)︀
(𝑞) . (1.41)

But just as we proved (1.40), we can show that every 𝑞 ∈ N satisfies

ps1
(︀
Γ+ (E, 𝑤,𝐺)

)︀
(𝑞) = (the number of all even 𝐺-orbits on Par𝑞 E) .

Applying this to (𝐸,>1, <2) instead of E, we obtain

ps1
(︀
Γ+ ((𝐸,>1, <2) , 𝑤,𝐺)

)︀
(𝑞)

= (the number of all even 𝐺-orbits on Par𝑞 (𝐸,>1, <2)) .

Now, (1.41) becomes

ΩE,𝐺 (−𝑞) = (−1)|𝐸| ps1
(︀
Γ+ ((𝐸,>1, <2) , 𝑤,𝐺)

)︀
(𝑞)⏟  ⏞  

=(the number of all even 𝐺-orbits on Par𝑞(𝐸,>1,<2))

= (−1)|𝐸| (the number of all even 𝐺-orbits on Par𝑞 (𝐸,>1, <2)) .

In order to prove Corollary 1.8.1 (b), it thus remains to show that

(the number of all even 𝐺-orbits on Par𝑞 (𝐸,>1, <2))

= (the number of all even 𝐺-orbits on Par𝑞 (𝐸,<1, >2)) (1.42)
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for every 𝑞 ∈ N.

Proof of (1.42): Let 𝑞 ∈ N. Let 𝑤0 : {1, 2, . . . , 𝑞} → {1, 2, . . . , 𝑞} be the map

sending each 𝑖 ∈ {1, 2, . . . , 𝑞} to 𝑞 + 1− 𝑖. Then, the map

Par𝑞 (𝐸,>1, <2) → Par𝑞 (𝐸,<1, >2) , 𝜋 ↦→ 𝑤0 ∘ 𝜋

is an isomorphism of 𝐺-sets (this is easy to check). Thus,

Par𝑞 (𝐸,>1, <2) ∼= Par𝑞 (𝐸,<1, >2) as 𝐺-sets. From this, (1.42) follows (by functori-

ality, if one wishes).

The proof of Corollary 1.8.1 (b) is now complete.

Now, the second formula of [Joch13, Theorem 2.13] follows from our (1.39), ap-

plied to E = (𝑃,≺, <𝜔) (where <𝜔 is the partial order on 𝑃 given by (𝑝 <𝜔 𝑞) ⇐⇒

(𝜔 (𝑝) < 𝜔 (𝑞))). The first formula of [Joch13, Theorem 2.13] can also be derived from

our above arguments. We leave the details to the reader.
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Chapter 2

Dual immaculate creation operators

and a dendriform algebra structure

on the quasisymmetric functions

Abstract

The dual immaculate functions are a basis of the ring QSym of quasisymmetric func-
tions, and form one of the most natural analogues of the Schur functions. The dual
immaculate function corresponding to a composition is a weighted generating func-
tion for immaculate tableaux in the same way as a Schur function is for semistandard
Young tableaux; an “immaculate tableau” is defined similarly to a semistandard Young
tableau, but the shape is a composition rather than a partition, and only the first col-
umn is required to strictly increase (whereas the other columns can be arbitrary; but
each row has to weakly increase). Dual immaculate functions have been introduced
by Berg, Bergeron, Saliola, Serrano and Zabrocki in arXiv:1208.5191, and have since
been found to possess numerous nontrivial properties.

In this note, we prove a conjecture of Mike Zabrocki which provides an alternative
construction for the dual immaculate functions in terms of certain "vertex operators".
The proof uses a dendriform structure on the ring QSym; we discuss the relation of
this structure to known dendriform structures on the combinatorial Hopf algebras
FQSym and WQSym.
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2.1 Introduction

The three most well-known combinatorial Hopf algebras that are defined over any

commutative ring k are the Hopf algebra of symmetric functions (denoted Sym), the

Hopf algebra of quasisymmetric functions (denoted QSym), and that of noncommu-

tative symmetric functions (denoted NSym). The first of these three has been studied

for several decades, while the latter two are newer; we refer to [HaGuKi10, Chapters

4 and 6] and [GriRei15, Chapters 2 and 5] for expositions of them1. All three of these

Hopf algebras are known to carry multiple algebraic structures, and have several bases

of combinatorial and algebraic significance. The Schur functions – forming a basis of

Sym – are probably the most important of these bases; a natural question is thus to

seek similar bases for QSym and NSym.

Several answers to this question have been suggested, but the simplest one ap-

pears to be given in a 2013 paper by Berg, Bergeron, Saliola, Serrano and Zabrocki

[BBSSZ13a]: They define the immaculate (noncommutative symmetric) functions

(which form a basis of NSym) and the dual immaculate (quasi-symmetric) functions

(which form a basis of QSym). These two bases are mutually dual and satisfy ana-

logues of various properties of the Schur functions. Among these are a Littlewood-

Richardson rule [BBSSZ13b], a Pieri rule [BSOZ13], and a representation-theoretical

interpretation [BBSSZ13c]. The immaculate functions can be defined by an analogue

of the Jacobi-Trudi identity (see [BBSSZ13a, Remark 3.28] for details), whereas the

dual immaculate functions can be defined as generating functions for “immaculate

tableaux” in analogy to the Schur functions being generating functions for semistan-

dard tableaux (see Proposition 2.4.4 below).

The original definition of the immaculate functions ([BBSSZ13a, Definition 3.2])

is by applying a sequence of so-called noncommutative Bernstein operators to the

constant power series 1 ∈ NSym. Around 2013, Mike Zabrocki conjectured that

the dual immaculate functions can be obtained by a similar use of “quasi-symmetric

1Historically, the origin of the noncommutative symmetric functions is in [GKLLRT95], whereas
the quasisymmetric functions have been introduced in [Gessel84]. See also [Stan99, Section 7.19]
specifically for the quasisymmetric functions and their enumerative applications (although the Hopf
algebra structure does not appear in this source).
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Bernstein operators”. The purpose of this note is to prove this conjecture (Corollary

2.5.6 below). Along the way, we define certain new binary operations on QSym; two

of them give rise to a structure of a dendriform algebra [EbrFar08], which seems to

be interesting in its own right.

This note is organized as follows: In Section 2.2, we recall basic properties of

quasisymmetric (and symmetric) functions and introduce the notations that we shall

use. In Section 2.3, we define two binary operations ≺ and Á on the power series ring

k [[𝑥1, 𝑥2, 𝑥3, . . .]] and show that they restrict to operations on QSym which interact

with the Hopf algebra structure of QSym in a useful way. In Section 2.4, we define the

dual immaculate functions, and show that this definition agrees with the one given

in [BBSSZ13a, Remark 3.28]; we then give a combinatorial interpretation of dual

immaculate functions (which is not new, but has apparently never been explicitly

stated). In Section 2.5, we prove Zabrocki’s conjecture. In Section 2.6, we discuss

how our binary operations can be lifted to noncommutative power series and restrict

to operations on WQSym, which are closely related to similar operations that have

appeared in the literature. In the final Section 2.7, we ask some further questions.

This Chapter is a modified version of the preprint arXiv:1410.0079v6. It follows

partly the default version of the preprint, partly the detailed version (which is avail-

able as an ancillary file).

Acknowledgments

Mike Zabrocki kindly shared his conjecture with me during my visit to University of

York, Toronto in March 2014. I am also grateful to Nantel Bergeron for his invitation

and hospitality. An anonymous referee made numerous helpful remarks.

2.2 Quasisymmetric functions

We assume that the reader is familiar with the basics of the theory of symmetric and

quasisymmetric functions (as presented, e.g., in [HaGuKi10, Chapters 4 and 6] and

[GriRei15, Chapters 2 and 5]). However, let us define all the notations that we need
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(not least because they are not consistent across literature). We shall try to have our

notations match those used in [BBSSZ13a, Section 2] as much as possible.

We use N to denote the set {0, 1, 2, . . .}.

A composition means a finite sequence of positive integers. For instance, (2, 3)

and (1, 5, 1) are compositions. The empty composition (i.e., the empty sequence

()) is denoted by ∅. We denote by Comp the set of all compositions. For every

composition 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ), we denote by |𝛼| the size of the composition 𝛼; this

is the nonnegative integer 𝛼1+𝛼2+ · · ·+𝛼ℓ. If 𝑛 ∈ N, then a composition of 𝑛 simply

means a composition having size 𝑛. A nonempty composition means a composition

that is not empty (or, equivalently, that has size > 0).

Let k be a commutative ring (which, for us, means a commutative ring with

unity). This k will stay fixed throughout the paper. We shall define our symmetric

and quasisymmetric functions over this commutative ring k. 2 Every tensor sign ⊗

without a subscript should be understood to mean ⊗k.

Let 𝑥1, 𝑥2, 𝑥3, . . . be countably many distinct indeterminates. We let Mon be the

free abelian monoid on the set {𝑥1, 𝑥2, 𝑥3, . . .} (written multiplicatively); it consists of

elements of the form 𝑥𝑎1
1 𝑥𝑎2

2 𝑥𝑎3
3 · · · for finitely supported (𝑎1, 𝑎2, 𝑎3, . . .) ∈ N∞ (where

“finitely supported” means that all but finitely many positive integers 𝑖 satisfy 𝑎𝑖 = 0).

A monomial will mean an element of Mon. Thus, monomials are combinatorial

objects (without coefficients), independent of k.

We consider the k-algebra k [[𝑥1, 𝑥2, 𝑥3, . . .]] of (commutative) power series in

countably many distinct indeterminates 𝑥1, 𝑥2, 𝑥3, . . . over k. By abuse of notation,

we shall identify every monomial 𝑥𝑎1
1 𝑥𝑎2

2 𝑥𝑎3
3 · · · ∈ Mon with the corresponding element

𝑥𝑎1
1 ·𝑥𝑎2

2 ·𝑥𝑎3
3 · · · · of k [[𝑥1, 𝑥2, 𝑥3, . . .]] when necessary (e.g., when we speak of the sum

of two monomials or when we multiply a monomial with an element of k); however,

monomials don’t live in k [[𝑥1, 𝑥2, 𝑥3, . . .]] per se3.
2We do not require anything from k other than being a commutative ring. Some authors prefer

to work only over specific rings k, such as Z or Q (for example, [BBSSZ13a] always works over Q).
Usually, their results (and often also their proofs) nevertheless are just as valid over arbitrary k. We
see no reason to restrict our generality here.

3This is a technicality. Indeed, the monomials 1 and 𝑥1 are distinct, but the corresponding
elements 1 and 𝑥1 of k [[𝑥1, 𝑥2, 𝑥3, . . .]] are identical when k = 0. So we could not regard the
monomials as lying in k [[𝑥1, 𝑥2, 𝑥3, . . .]] by default.

74



The k-algebra k [[𝑥1, 𝑥2, 𝑥3, . . .]] is a topological k-algebra; its topology is the prod-

uct topology4. The polynomial ring k [𝑥1, 𝑥2, 𝑥3, . . .] is a dense subset of

k [[𝑥1, 𝑥2, 𝑥3, . . .]] with respect to this topology. This allows to prove certain iden-

tities in the k-algebra k [[𝑥1, 𝑥2, 𝑥3, . . .]] (such as the associativity of multiplication,

just to give a stupid example) by first proving them in k [𝑥1, 𝑥2, 𝑥3, . . .] (that is, for

polynomials), and then arguing that they follow by density in k [[𝑥1, 𝑥2, 𝑥3, . . .]].

If m is a monomial, then Suppm will denote the subset

{𝑖 ∈ {1, 2, 3, . . .} | the exponent with which 𝑥𝑖 occurs in m is > 0}

of {1, 2, 3, . . .}; this subset is finite. The degree degm of a monomial m = 𝑥𝑎1
1 𝑥𝑎2

2 𝑥𝑎3
3 · · ·

is defined to be 𝑎1 + 𝑎2 + 𝑎3 + · · · ∈ N.

A power series 𝑃 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]] is said to be bounded-degree if there exists

an 𝑁 ∈ N such that every monomial of degree > 𝑁 appears with coefficient 0 in 𝑃 .

Let k [[𝑥1, 𝑥2, 𝑥3, . . .]]bdd denote the k-subalgebra of k [[𝑥1, 𝑥2, 𝑥3, . . .]] formed by the

bounded-degree power series in k [[𝑥1, 𝑥2, 𝑥3, . . .]].

The k-algebra of symmetric functions over k is defined as the k-subalgebra of

k [[𝑥1, 𝑥2, 𝑥3, . . .]]bdd consisting of all bounded-degree power series which are invariant

under any permutation of the indeterminates. This k-subalgebra is denoted by Sym.

(Notice that Sym is denoted Λ in [GriRei15].) As a k-module, Sym is known to have

several bases, such as the basis of complete homogeneous symmetric functions (ℎ𝜆)

and that of the Schur functions (𝑠𝜆), both indexed by the integer partitions.

4More precisely, this topology is defined as follows (see also [GriRei15, Section 2.6]):
We endow the ring k with the discrete topology. To define a topology on the k-algebra

k [[𝑥1, 𝑥2, 𝑥3, . . .]], we (temporarily) regard every power series in k [[𝑥1, 𝑥2, 𝑥3, . . .]] as the family
of its coefficients. Thus, k [[𝑥1, 𝑥2, 𝑥3, . . .]] becomes a product of infinitely many copies of k (one for
each monomial). This allows us to define a product topology on k [[𝑥1, 𝑥2, 𝑥3, . . .]]. This product
topology is the topology that we will be using whenever we make statements about convergence in
k [[𝑥1, 𝑥2, 𝑥3, . . .]] or write down infinite sums of power series. A sequence (𝑎𝑛)𝑛∈N of power series
converges to a power series 𝑎 with respect to this topology if and only if for every monomial m, all
sufficiently high 𝑛 ∈ N satisfy

(the coefficient of m in 𝑎𝑛) = (the coefficient of m in 𝑎) .

Note that this is not the topology obtained by taking the completion of k [𝑥1, 𝑥2, 𝑥3, . . .] with
respect to the standard grading (in which all 𝑥𝑖 have degree 1). Indeed, this completion is not even
the whole k [[𝑥1, 𝑥2, 𝑥3, . . .]].
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Two monomials m and n are said to be pack-equivalent if they have the form

m = 𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

and n = 𝑥𝛼1
𝑗1
𝑥𝛼2
𝑗2

· · ·𝑥𝛼ℓ
𝑗ℓ

for some ℓ ∈ N, some positive integers 𝛼1,

𝛼2, . . ., 𝛼ℓ, some positive integers 𝑖1, 𝑖2, . . ., 𝑖ℓ satisfying 𝑖1 < 𝑖2 < · · · < 𝑖ℓ, and

some positive integers 𝑗1, 𝑗2, . . ., 𝑗ℓ satisfying 𝑗1 < 𝑗2 < · · · < 𝑗ℓ
5. A power

series 𝑃 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]] is said to be quasisymmetric if any two pack-equivalent

monomials have equal coefficients in 𝑃 . The k-algebra of quasisymmetric functions

over k is defined as the k-subalgebra of k [[𝑥1, 𝑥2, 𝑥3, . . .]]bdd consisting of all bounded-

degree power series which are quasisymmetric. It is clear that Sym ⊆ QSym.

For every composition 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ), the monomial quasisymmetric func-

tion 𝑀𝛼 is defined by

𝑀𝛼 =
∑︁

1≤𝑖1<𝑖2<···<𝑖ℓ

𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]]bdd .

One easily sees that 𝑀𝛼 ∈ QSym for every 𝛼 ∈ Comp. It is well-known that

(𝑀𝛼)𝛼∈Comp is a basis of the k-module QSym; this is the so-called monomial ba-

sis of QSym. Other bases of QSym exist as well, some of which we are going to

encounter below.

It is well-known that the k-algebras Sym and QSym can be canonically endowed

with Hopf algebra structures such that Sym is a Hopf subalgebra of QSym. We refer to

[HaGuKi10, Chapters 4 and 6] and [GriRei15, Chapters 2 and 5] for the definitions of

these structures (and for a definition of the notion of a Hopf algebra); at this point, let

us merely state a few properties. The comultiplication Δ : QSym → QSym⊗QSym

of QSym satisfies

Δ(𝑀𝛼) =
ℓ∑︁

𝑖=0

𝑀(𝛼1,𝛼2,...,𝛼𝑖) ⊗𝑀(𝛼𝑖+1,𝛼𝑖+2,...,𝛼ℓ)

for every 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) ∈ Comp. The counit 𝜀 : QSym → k of QSym satisfies

𝜀 (𝑀𝛼) =

⎧⎨⎩ 1, if 𝛼 = ∅;

0, if 𝛼 ̸= ∅
for every 𝛼 ∈ Comp.

5For instance, the monomial 𝑥4
1𝑥

2
2𝑥3𝑥

6
7 is pack-equivalent to 𝑥4

2𝑥
2
4𝑥4𝑥

6
5, but not to 𝑥2

2𝑥
4
1𝑥3𝑥

6
7.
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We shall always use the notation Δ for the comultiplication of a Hopf algebra,

the notation 𝜀 for the counit of a Hopf algebra, and the notation 𝑆 for the antipode

of a Hopf algebra. Occasionally we shall use Sweedler’s notation for working with

coproducts of elements of a Hopf algebra6.

If 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) is a composition of an 𝑛 ∈ N, then we define a subset 𝐷 (𝛼)

of {1, 2, . . . , 𝑛− 1} by

𝐷 (𝛼) = {𝛼1, 𝛼1 + 𝛼2, 𝛼1 + 𝛼2 + 𝛼3, . . . , 𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ−1} .

This subset 𝐷 (𝛼) is called the set of partial sums of the composition 𝛼; see [GriRei15,

Definition 5.10] for its further properties. Most importantly, a composition 𝛼 of size

𝑛 can be uniquely reconstructed from 𝑛 and 𝐷 (𝛼).

If 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) is a composition of an 𝑛 ∈ N, then the fundamental qua-

sisymmetric function 𝐹𝛼 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]]bdd can be defined by

𝐹𝛼 =
∑︁

𝑖1≤𝑖2≤···≤𝑖𝑛;
𝑖𝑗<𝑖𝑗+1 if 𝑗∈𝐷(𝛼)

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛 . (2.1)

(This is only one of several possible definitions of 𝐹𝛼. In [GriRei15, Definition 5.15],

the power series 𝐹𝛼 is denoted by 𝐿𝛼 and defined differently; but [GriRei15, Proposi-

tion 5.17] proves the equivalence of this definition with ours.7) One can easily see that

𝐹𝛼 ∈ QSym for every 𝛼 ∈ Comp. The family (𝐹𝛼)𝛼∈Comp is a basis of the k-module

QSym as well; it is called the fundamental basis of QSym.

6In a nutshell, Sweedler’s notation (or, more precisely, the special case of Sweedler’s notation
that we will use) consists in writing

∑︀
(𝑐)

𝑐(1)⊗ 𝑐(2) for the tensor Δ(𝑐) ∈ 𝐶⊗𝐶, where 𝑐 is an element

of a k-coalgebra 𝐶. The sum
∑︀
(𝑐)

𝑐(1) ⊗ 𝑐(2) symbolizes a representation of the tensor Δ(𝑐) as a sum

𝑁∑︀
𝑖=1

𝑐1,𝑖 ⊗ 𝑐2,𝑖 of pure tensors; it allows us to manipulate Δ(𝑐) without having to explicitly introduce

the 𝑁 and the 𝑐1,𝑖 and the 𝑐2,𝑖. For instance, if 𝑓 : 𝐶 → k is a k-linear map, then we can write∑︀
(𝑐)

𝑓
(︀
𝑐(1)
)︀
𝑐(2) for

𝑁∑︀
𝑖=1

𝑓 (𝑐1,𝑖) 𝑐2,𝑖. Of course, we need to be careful not to use Sweedler’s notation

for terms which do depend on the specific choice of the 𝑁 and the 𝑐1,𝑖 and the 𝑐2,𝑖; for instance, we
must not write

∑︀
(𝑐)

𝑐2(1)𝑐(2).

7In fact, [GriRei15, (5.5)] is exactly our equality (2.1).
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2.3 Restricted-product operations

We shall now define two binary operations on k [[𝑥1, 𝑥2, 𝑥3, . . .]].

Definition 2.3.1. We define a binary operation ≺ : k [[𝑥1, 𝑥2, 𝑥3, . . .]] ×

k [[𝑥1, 𝑥2, 𝑥3, . . .]] → k [[𝑥1, 𝑥2, 𝑥3, . . .]] (written in infix notation8) by the require-

ments that it be k-bilinear and continuous with respect to the topology on

k [[𝑥1, 𝑥2, 𝑥3, . . .]] and that it satisfy

m ≺ n =

⎧⎨⎩ m · n, if min (Suppm) < min (Supp n) ;

0, if min (Suppm) ≥ min (Supp n)
(2.2)

for any two monomials m and n.

Some clarifications are in order. First, we are using ≺ as an operation symbol

(rather than as a relation symbol as it is commonly used)9. Second, we consider min∅

to be ∞, and this symbol ∞ is understood to be greater than every integer10. Hence,

m ≺ 1 = m for every nonconstant monomial m, and 1 ≺ m = 0 for every monomial

m.

Let us first see why the operation ≺ in Definition 2.3.1 is well-defined. Recall

that the topology on k [[𝑥1, 𝑥2, 𝑥3, . . .]] is the product topology. Hence, if ≺ is to be

k-bilinear and continuous with respect to it, we must have(︃ ∑︁
m∈Mon

𝜆mm

)︃
≺

(︃ ∑︁
n∈Mon

𝜇nn

)︃
=
∑︁

m∈Mon

∑︁
n∈Mon

𝜆m𝜇nm ≺ n

for any families (𝜆m)m∈Mon ∈ kMon and (𝜇n)n∈Mon ∈ kMon of scalars. Combined with

(2.2), this uniquely determines ≺ . Therefore, the binary operation ≺ satisfying the

conditions of Definition 2.3.1 is unique (if it exists). But it also exists, because if we

8By this we mean that we write 𝑎 ≺ 𝑏 instead of ≺ (𝑎, 𝑏).
9Of course, the symbol has been chosen because it is reminiscent of the smaller symbol in

“min (Suppm) < min (Supp n)”.
10but not greater than itself
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define a binary operation ≺ on k [[𝑥1, 𝑥2, 𝑥3, . . .]] by the explicit formula

(︃ ∑︁
m∈Mon

𝜆mm

)︃
≺

(︃ ∑︁
n∈Mon

𝜇nn

)︃
=

∑︁
(m,n)∈Mon×Mon ;

min(Suppm)<min(Supp n)

𝜆m𝜇nmn

for all (𝜆m)m∈Mon ∈ kMon and (𝜇n)n∈Mon ∈ kMon,

then it clearly satisfies the conditions of Definition 2.3.1 (and is well-defined).

The operation ≺ is not associative; however, it is part of what is called a den-

driform algebra structure on k [[𝑥1, 𝑥2, 𝑥3, . . .]] (and on QSym, as we shall see below).

The following remark (which will not be used until Section 2.6, and thus can be

skipped by a reader not familiar with dendriform algebras) provides some details:

Remark 2.3.2. Let us define another binary operation ⪰ on k [[𝑥1, 𝑥2, 𝑥3, . . .]]

similarly to ≺ except that we set

m ⪰ n =

⎧⎨⎩ m · n, if min (Suppm) ≥ min (Supp n) ;

0, if min (Suppm) < min (Supp n)
.

Then, the structure (k [[𝑥1, 𝑥2, 𝑥3, . . .]] , ≺ , ⪰) is a dendriform algebra augmented

to satisfy [EbrFar08, (15)]. In particular, any three elements 𝑎, 𝑏 and 𝑐 of

k [[𝑥1, 𝑥2, 𝑥3, . . .]] satisfy

𝑎 ≺ 𝑏+ 𝑎 ⪰ 𝑏 = 𝑎𝑏;

(𝑎 ≺ 𝑏) ≺ 𝑐 = 𝑎 ≺ (𝑏𝑐) ;

(𝑎 ⪰ 𝑏) ≺ 𝑐 = 𝑎 ⪰ (𝑏 ≺ 𝑐) ;

𝑎 ⪰ (𝑏 ⪰ 𝑐) = (𝑎𝑏) ⪰ 𝑐.

Now, we introduce another binary operation.
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Definition 2.3.3. We define a binary operation Á : k [[𝑥1, 𝑥2, 𝑥3, . . .]] ×

k [[𝑥1, 𝑥2, 𝑥3, . . .]] → k [[𝑥1, 𝑥2, 𝑥3, . . .]] (written in infix notation) by the require-

ments that it be k-bilinear and continuous with respect to the topology on

k [[𝑥1, 𝑥2, 𝑥3, . . .]] and that it satisfy

m Á n =

⎧⎨⎩ m · n, if max (Suppm) ≤ min (Supp n) ;

0, if max (Suppm) > min (Supp n)

for any two monomials m and n.

Here, max∅ is understood as 0. The welldefinedness of the operation Á in Defi-

nition 2.3.3 is proven in the same way as that of the operation ≺ .

Let us make a simple observation which will not be used until Section 2.6, but

provides some context:

Proposition 2.3.4. The binary operation Á is associative. It is also unital (with

1 serving as the unity).

Proof of Proposition 2.3.4. Let us first show that Á is associative.

In order to show this, we must prove that

(𝑎 Á 𝑏) Á 𝑐 = 𝑎 Á (𝑏 Á 𝑐) (2.3)

for any three elements 𝑎, 𝑏 and 𝑐 of k [[𝑥1, 𝑥2, 𝑥3, . . .]].

But if m, n and p are three monomials, then the definition of Á readily shows

that

(m Á n) Á p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mnp, if max (Suppm) ≤ min (Supp n)

and max (Supp (mn)) ≤ min (Supp p) ;

0, otherwise
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and

m Á (n Á p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mnp, if max (Supp n) ≤ min (Supp p)

and max (Suppm) ≤ min (Supp (np)) ;

0, otherwise

;

thus, (m Á n) Á p = m Á (n Á p) (since it is straightforward to check that the condi-

tion (max (Suppm) ≤ min (Supp n) and max (Supp (mn)) ≤ min (Supp p)) is equiva-

lent to the condition

(max (Supp n) ≤ min (Supp p) and max (Suppm) ≤ min (Supp (np))) 11). In other

words, the equality (2.3) holds when 𝑎, 𝑏 and 𝑐 are monomials. Thus, this equality

also holds whenever 𝑎, 𝑏 and 𝑐 are polynomials (since it is k-linear in 𝑎, 𝑏 and 𝑐), and

consequently also holds whenever 𝑎, 𝑏 and 𝑐 are power series (since it is continuous

in 𝑎, 𝑏 and 𝑐). This proves that Á is associative.

The proof of the fact that Á is unital (with unity 1) is similar and left to the

reader. Proposition 2.3.4 is thus shown.

Here is another property of Á that will not be used until Section 2.6:

Proposition 2.3.5. Every 𝑎 ∈ QSym and 𝑏 ∈ QSym satisfy 𝑎 ≺ 𝑏 ∈ QSym and

𝑎 Á 𝑏 ∈ QSym.

For example, we can explicitly describe the operation Á on the monomial basis

(𝑀𝛾)𝛾∈Comp of QSym. Namely, any two nonempty compositions 𝛼 and 𝛽 satisfy

𝑀𝛼 Á𝑀𝛽 = 𝑀[𝛼,𝛽] +𝑀𝛼⊙𝛽, where [𝛼, 𝛽] and 𝛼⊙ 𝛽 are two compositions defined by

[(𝛼1, 𝛼2, . . . , 𝛼ℓ) , (𝛽1, 𝛽2, . . . , 𝛽𝑚)] = (𝛼1, 𝛼2, . . . , 𝛼ℓ, 𝛽1, 𝛽2, . . . , 𝛽𝑚) ;

(𝛼1, 𝛼2, . . . , 𝛼ℓ)⊙ (𝛽1, 𝛽2, . . . , 𝛽𝑚) = (𝛼1, 𝛼2, . . . , 𝛼ℓ−1, 𝛼ℓ + 𝛽1, 𝛽2, 𝛽3, . . . , 𝛽𝑚) .

12 If one of 𝛼 and 𝛽 is empty, then 𝑀𝛼 Á𝑀𝛽 = 𝑀[𝛼,𝛽].

11Indeed, both conditions are equivalent to
(max (Suppm) ≤ min (Supp n) and max (Suppm) ≤ min (Supp p) and max (Supp n) ≤ min (Supp p)).

12What we call [𝛼, 𝛽] is denoted by 𝛼 · 𝛽 in [GriRei15, before Proposition 5.7].
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Proposition 2.3.5 can reasonably be called obvious; the below proof owes its length

mainly to the difficulty of formalizing the intuition.

Proof of Proposition 2.3.5. We shall first introduce a few more notations.

If m is a monomial, then the Parikh composition of m is defined as follows: Write

m in the form m = 𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

for some ℓ ∈ N, some positive integers 𝛼1, 𝛼2, . . .,

𝛼ℓ, and some positive integers 𝑖1, 𝑖2, . . ., 𝑖ℓ satisfying 𝑖1 < 𝑖2 < · · · < 𝑖ℓ. Notice that

this way of writing m is unique. Then, the Parikh composition of m is defined to be

the composition (𝛼1, 𝛼2, . . . , 𝛼ℓ).

We denote by Parikhm the Parikh composition of a monomial m. Now, it is easy

to see that the definition of a monomial quasisymmetric function 𝑀𝛼 can be rewritten

as follows: For every 𝛼 ∈ Comp, we have

𝑀𝛼 =
∑︁

m∈Mon;
Parikhm=𝛼

m. (2.4)

(Indeed, for any given composition 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ), the monomials m satisfying

Parikhm = 𝛼 are precisely the monomials of the form 𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · · 𝑥𝛼ℓ
𝑖ℓ

with 𝑖1, 𝑖2, . . .,

𝑖ℓ being positive integers satisfying 𝑖1 < 𝑖2 < · · · < 𝑖ℓ.)

Now, pack-equivalent monomials can be characterized as follows: Two monomials

m and n are pack-equivalent if and only if they have the same Parikh composition.

Now, we come to the proof of Proposition 2.3.5.

Let us first fix two compositions 𝛼 and 𝛽. We shall prove that 𝑀𝛼 ≺ 𝑀𝛽 ∈ QSym.

Write the compositions 𝛼 and 𝛽 as 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) and (𝛽1, 𝛽2, . . . , 𝛽𝑚). Let

𝒮0 denote the ℓ-element set {0}×{1, 2, . . . , ℓ}. Let 𝒮1 denote the 𝑚-element set {1}×

{1, 2, . . . ,𝑚}. Let 𝒮 denote the (ℓ+𝑚)-element set 𝒮0∪𝒮1. Let inc0 : {1, 2, . . . , ℓ} →

𝒮 be the map which sends every 𝑝 ∈ {1, 2, . . . , ℓ} to (0, 𝑝) ∈ 𝒮0 ⊆ 𝒮. Let inc1 :

{1, 2, . . . ,𝑚} → 𝒮 be the map which sends every 𝑞 ∈ {1, 2, . . . ,𝑚} to (1, 𝑞) ∈ 𝒮1 ⊆ 𝒮.

82



Define a map 𝜌 : 𝒮 → {1, 2, 3, . . .} by setting

𝜌 (0, 𝑝) = 𝛼𝑝 for all 𝑝 ∈ {1, 2, . . . , ℓ} ;

𝜌 (1, 𝑞) = 𝛽𝑞 for all 𝑞 ∈ {1, 2, . . . ,𝑚} .

For every composition 𝛾 = (𝛾1, 𝛾2, . . . , 𝛾𝑛), we define a 𝛾-smap to be a map 𝑓 :

𝒮 → {1, 2, . . . , 𝑛} satisfying the following three properties:

∙ The maps 𝑓 ∘ inc0 and 𝑓 ∘ inc1 are strictly increasing.

∙ We have13 min (𝑓 (𝒮0)) < min (𝑓 (𝒮1)).

∙ Every 𝑢 ∈ {1, 2, . . . , 𝑛} satisfies

∑︁
𝑠∈𝑓−1(𝑢)

𝜌 (𝑠) = 𝛾𝑢.

These three properties will be called the three defining properties of a 𝛾-smap.

Now, we make the following claim:

Claim 1: Let q be any monomial. Let 𝛾 be the Parikh composition of q. The

coefficient of q in 𝑀𝛼 ≺ 𝑀𝛽 equals the number of all 𝛾-smaps.

Proof of Claim 1: Write the composition 𝛾 in the form 𝛾 = (𝛾1, 𝛾2, . . . , 𝛾𝑛). Write

the monomial q in the form q = 𝑥𝛾1
𝑘1
𝑥𝛾2
𝑘2
· · ·𝑥𝛾𝑛

𝑘𝑛
for some positive integers 𝑘1, 𝑘2, . . .,

𝑘𝑛 satisfying 𝑘1 < 𝑘2 < · · · < 𝑘𝑛. (This is possible because (𝛾1, 𝛾2, . . . , 𝛾𝑛) = 𝛾 is the

Parikh composition of q.) Then, Supp q = {𝑘1, 𝑘2, . . . , 𝑘𝑛}.

13Keep in mind that we set min∅ = ∞.
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From (2.4), we get 𝑀𝛼 =
∑︀

m∈Mon;
Parikhm=𝛼

m. Similarly, 𝑀𝛽 =
∑︀

n∈Mon;
Parikh n=𝛽

n. Hence,

𝑀𝛼 ≺ 𝑀𝛽

=

⎛⎜⎝ ∑︁
m∈Mon;

Parikhm=𝛼

m

⎞⎟⎠ ≺

⎛⎜⎜⎝ ∑︁
n∈Mon;

Parikh n=𝛽

n

⎞⎟⎟⎠
=

∑︁
m∈Mon;

Parikhm=𝛼

∑︁
n∈Mon;

Parikh n=𝛽

m ≺ n⏟  ⏞  
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mn, if min (Suppm) < min (Supp n) ;

0, if min (Suppm) ≥ min (Supp n)
(by the definition of ≺ on monomials)

(since the operation ≺ is k-bilinear and continuous)

=
∑︁

m∈Mon;
Parikhm=𝛼

∑︁
n∈Mon;

Parikh n=𝛽

⎧⎨⎩ mn, if min (Suppm) < min (Supp n) ;

0, if min (Suppm) ≥ min (Supp n)

=
∑︁

(m,n)∈Mon×Mon;
Parikhm=𝛼;
Parikh n=𝛽;

min(Suppm)<min(Supp n)

mn.

Thus, the coefficient of q in 𝑀𝛼 ≺ 𝑀𝛽 equals the number of all pairs (m, n) ∈

Mon×Mon such that Parikhm = 𝛼, Parikh n = 𝛽, min (Suppm) < min (Supp n)

and mn = q. These pairs shall be called spairs. (The concept of a spair depends on

q; we nevertheless omit q from the notation, since we regard q as fixed.)

Now, we shall construct a bijection between the 𝛾-smaps and the spairs.

Indeed, we first define a map Φ from the set of 𝛾-smaps to the set of spairs as

follows: Let 𝑓 : 𝒮 → {1, 2, . . . , 𝑛} be a 𝛾-smap. Then, Φ (𝑓) is defined to be the spair

(︃
ℓ∏︁

𝑝=1

𝑥
𝛼𝑝

𝑘𝑓(0,𝑝)
,

𝑚∏︁
𝑞=1

𝑥
𝛽𝑞

𝑘𝑓(1,𝑞)

)︃
.

14

14This is a well-defined spair, for the following reasons:

∙ The first defining property of a 𝛾-smap can be rewritten as “𝑓 (0, 1) < 𝑓 (0, 2) < · · · <
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Conversely, we define a map Ψ from the set of spairs to the set of 𝛾-smaps as

follows: Let (m, n) be a spair. Then, we write the monomial m in the form m =

𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

for some positive integers 𝑖1, 𝑖2, . . ., 𝑖ℓ satisfying 𝑖1 < 𝑖2 < · · · < 𝑖ℓ

(this is possible since Parikhm = 𝛼), and we write the monomial n in the form

n = 𝑥𝛽1

𝑗1
𝑥𝛽2

𝑗2
· · ·𝑥𝛽𝑚

𝑗𝑚
for some positive integers 𝑗1, 𝑗2, . . ., 𝑗𝑚 satisfying 𝑗1 < 𝑗2 <

· · · < 𝑗𝑚 (this is possible since Parikh n = 𝛽). Of course, Suppm = {𝑖1, 𝑖2, . . . , 𝑖ℓ}

and Supp n = {𝑗1, 𝑗2, . . . , 𝑗𝑚}, so that min {𝑖1, 𝑖2, . . . , 𝑖ℓ} < min {𝑗1, 𝑗2, . . . , 𝑗𝑚} (since

𝑓 (0, ℓ) and 𝑓 (1, 1) < 𝑓 (1, 2) < · · · < 𝑓 (1,𝑚)”. Combined with 𝑘1 < 𝑘2 < · · · < 𝑘𝑛, this
shows that 𝑘𝑓(0,1) < 𝑘𝑓(0,2) < · · · < 𝑘𝑓(0,ℓ) and 𝑘𝑓(1,1) < 𝑘𝑓(1,2) < · · · < 𝑘𝑓(1,𝑚). Hence,

Parikh

(︃
ℓ∏︀

𝑝=1
𝑥
𝛼𝑝

𝑘𝑓(0,𝑝)

)︃
= 𝛼 and Parikh

(︃
𝑚∏︀
𝑞=1

𝑥
𝛽𝑞

𝑘𝑓(1,𝑞)

)︃
= 𝛽.

∙ The second defining property of a 𝛾-smap shows that min (𝑓 (𝒮0)) < min (𝑓 (𝒮1)), so

that 𝑘min(𝑓(𝒮0)) < 𝑘min(𝑓(𝒮1)) (since 𝑘1 < 𝑘2 < · · · < 𝑘𝑛). But Supp

(︃
ℓ∏︀

𝑝=1
𝑥
𝛼𝑝

𝑘𝑓(0,𝑝)

)︃
=

{︀
𝑘𝑓(𝑠) | 𝑠 ∈ 𝒮0

}︀
and thus min

(︃
Supp

(︃
ℓ∏︀

𝑝=1
𝑥
𝛼𝑝

𝑘𝑓(0,𝑝)

)︃)︃
= min

{︀
𝑘𝑓(𝑠) | 𝑠 ∈ 𝒮0

}︀
= 𝑘min(𝑓(𝒮0))

(since 𝑘1 < 𝑘2 < · · · < 𝑘𝑛). Similarly, min

(︃
Supp

(︃
𝑚∏︀
𝑞=1

𝑥
𝛽𝑞

𝑘𝑓(1,𝑞)

)︃)︃
= 𝑘min(𝑓(𝒮1)). Hence,

min

(︃
Supp

(︃
ℓ∏︁

𝑝=1

𝑥
𝛼𝑝

𝑘𝑓(0,𝑝)

)︃)︃
= 𝑘min(𝑓(𝒮0)) < 𝑘min(𝑓(𝒮1)) = min

(︃
Supp

(︃
𝑚∏︁
𝑞=1

𝑥
𝛽𝑞

𝑘𝑓(1,𝑞)

)︃)︃
.

∙ The third defining property of a 𝛾-smap shows that
∑︀

𝑠∈𝑓−1(𝑢)

𝜌 (𝑠) = 𝛾𝑢 for every 𝑢 ∈

{1, 2, . . . , 𝑛}. Now, every 𝑝 ∈ {1, 2, . . . , ℓ} satisfies 𝛼𝑝 = 𝜌 (0, 𝑝). Hence,
ℓ∏︀

𝑝=1
𝑥
𝛼𝑝

𝑘𝑓(0,𝑝)
=

ℓ∏︀
𝑝=1

𝑥
𝜌(0,𝑝)
𝑘𝑓(0,𝑝)

=
∏︀

𝑠∈𝒮0

𝑥
𝜌(𝑠)
𝑘𝑓(𝑠)

. Similarly,
𝑚∏︀
𝑞=1

𝑥
𝛽𝑞

𝑘𝑓(1,𝑞)
=

∏︀
𝑠∈𝒮1

𝑥
𝜌(𝑠)
𝑘𝑓(𝑠)

. Multiplying these two iden-

tities, we obtain(︃
ℓ∏︁

𝑝=1

𝑥
𝛼𝑝

𝑘𝑓(0,𝑝)

)︃(︃
𝑚∏︁
𝑞=1

𝑥
𝛽𝑞

𝑘𝑓(1,𝑞)

)︃

=

(︃∏︁
𝑠∈𝒮0

𝑥
𝜌(𝑠)
𝑘𝑓(𝑠)

)︃(︃∏︁
𝑠∈𝒮1

𝑥
𝜌(𝑠)
𝑘𝑓(𝑠)

)︃
=
∏︁
𝑠∈𝒮

𝑥
𝜌(𝑠)
𝑘𝑓(𝑠)

=

𝑛∏︁
𝑢=1

∏︁
𝑠∈𝑓−1(𝑢)

𝑥
𝜌(𝑠)
𝑘𝑓(𝑠)⏟  ⏞  

=𝑥
𝜌(𝑠)
𝑘𝑢

(since 𝑓(𝑠)=𝑢)

=

𝑛∏︁
𝑢=1

∏︁
𝑠∈𝑓−1(𝑢)

𝑥
𝜌(𝑠)
𝑘𝑢⏟  ⏞  

=𝑥𝛾𝑢
𝑘𝑢

(since
∑︀

𝑠∈𝑓−1(𝑢)

𝜌(𝑠)=𝛾𝑢)

=

𝑛∏︁
𝑢=1

𝑥𝛾𝑢

𝑘𝑢
= 𝑥𝛾1

𝑘1
𝑥𝛾2

𝑘2
· · ·𝑥𝛾𝑛

𝑘𝑛
= q.
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min (Suppm) < min (Supp n)).

Now, we define a map 𝑓 : 𝒮 → {1, 2, . . . , 𝑛} as follows:

∙ For every 𝑝 ∈ {1, 2, . . . , ℓ}, we let 𝑓 (0, 𝑝) be the unique 𝑟 ∈ {1, 2, . . . , 𝑛} such

that 𝑖𝑝 = 𝑘𝑟. 15

∙ For every 𝑞 ∈ {1, 2, . . . ,𝑚}, we let 𝑓 (1, 𝑞) be the unique 𝑟 ∈ {1, 2, . . . , 𝑛} such

that 𝑗𝑞 = 𝑘𝑟. 16

It is now straightforward to show that 𝑓 is a 𝛾-smap.17 We define Ψ(m, n) to be

this 𝛾-smap 𝑓 .
15To prove that this is well-defined, we need to show that this 𝑟 exists and is unique. The

uniqueness of 𝑟 is obvious (since 𝑘1 < 𝑘2 < · · · < 𝑘𝑛). To prove its existence, we notice that
𝑖𝑝 ∈ Suppm (since m = 𝑥𝛼1

𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

and 𝛼𝑝 > 0) and thus 𝑖𝑝 ∈ Suppm ⊆ Supp (mn)⏟  ⏞  
=q

= Supp q =

{𝑘1, 𝑘2, . . . , 𝑘𝑛}.
16This is again well-defined, for similar reasons as the 𝑟 in the definition of 𝑓 (0, 𝑝).
17Indeed:

∙ The first defining property of a 𝛾-smap holds. (Proof: Let us show that 𝑓 ∘ inc0 is strictly
increasing (the proof for 𝑓 ∘ inc1 is similar). Assume it is not. Then there exist some 𝑝, 𝑝′ ∈
{1, 2, . . . , ℓ} satisfying 𝑝 < 𝑝′ and (𝑓 ∘ inc0) (𝑝) ≥ (𝑓 ∘ inc0) (𝑝′). Consider these 𝑝, 𝑝′. We have
𝑝 < 𝑝′, and therefore 𝑖𝑝 < 𝑖𝑝′ (since 𝑖1 < 𝑖2 < · · · < 𝑖ℓ). But (𝑓 ∘ inc0) (𝑝) ≥ (𝑓 ∘ inc0) (𝑝′),
and thus 𝑘(𝑓∘inc0)(𝑝) ≥ 𝑘(𝑓∘inc0)(𝑝′) (since 𝑘1 < 𝑘2 < · · · < 𝑘𝑛). Since 𝑘(𝑓∘inc0)(𝑝) = 𝑘𝑓(0,𝑝) = 𝑖𝑝
(by the definition of 𝑓 (0, 𝑝)) and similarly 𝑘(𝑓∘inc0)(𝑝′) = 𝑖𝑝′ , this rewrites as 𝑖𝑝 ≥ 𝑖𝑝′ . This
contradicts 𝑖𝑝 < 𝑖𝑝′ . This contradiction completes the proof.)

∙ The second defining property of a 𝛾-smap holds. (Proof: We WLOG assume that ℓ and
𝑚 are positive, since the other case is straightforward. We have 𝑖1 < 𝑖2 < · · · < 𝑖ℓ. In
other words, 𝑘𝑓(0,1) < 𝑘𝑓(0,2) < · · · < 𝑘𝑓(0,ℓ) (since 𝑘𝑓(0,𝑝) = 𝑖𝑝 for every 𝑝 ∈ {1, 2, . . . , ℓ}).
Hence, 𝑓 (0, 1) < 𝑓 (0, 2) < · · · < 𝑓 (0, ℓ) (since 𝑘1 < 𝑘2 < · · · < 𝑘𝑛). Hence,
min (𝑓 (𝒮0)) = 𝑓 (0, 1). Similarly, min (𝑓 (𝒮1)) = 𝑓 (1, 1). But from 𝑖1 < 𝑖2 < · · · < 𝑖ℓ,
we obtain 𝑖1 = min {𝑖1, 𝑖2, . . . , 𝑖ℓ}; similarly, 𝑗1 = min {𝑗1, 𝑗2, . . . , 𝑗𝑚}. Hence, 𝑘𝑓(0,1) = 𝑖1 =
min {𝑖1, 𝑖2, . . . , 𝑖ℓ} < min {𝑗1, 𝑗2, . . . , 𝑗𝑚} = 𝑗1 = 𝑘𝑓(1,1), so that 𝑓 (0, 1) < 𝑓 (1, 1) (since
𝑘1 < 𝑘2 < · · · < 𝑘𝑛). Hence, min (𝑓 (𝒮0)) = 𝑓 (0, 1) < 𝑓 (1, 1) = min (𝑓 (𝒮1)), qed.)

∙ The third defining property of a 𝛾-smap holds. (Proof: We have

m = 𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

=

ℓ∏︁
𝑝=1

𝑥
𝛼𝑝

𝑖𝑝⏟ ⏞ 
=𝑥

𝜌(0,𝑝)
𝑘𝑓(0,𝑝)

(since 𝛼𝑝=𝜌(0,𝑝)
and 𝑖𝑝=𝑘𝑓(0,𝑝))

=

ℓ∏︁
𝑝=1

𝑥
𝜌(0,𝑝)
𝑘𝑓(0,𝑝)

=
∏︁
𝑠∈𝒮0

𝑥
𝜌(𝑠)
𝑘𝑓(𝑠)

and similarly n =
∏︀

𝑠∈𝒮1

𝑥
𝜌(𝑠)
𝑘𝑓(𝑠)

. Hence,

mn =

(︃∏︁
𝑠∈𝒮0

𝑥
𝜌(𝑠)
𝑘𝑓(𝑠)

)︃(︃∏︁
𝑠∈𝒮1

𝑥
𝜌(𝑠)
𝑘𝑓(𝑠)

)︃
=
∏︁
𝑠∈𝒮

𝑥
𝜌(𝑠)
𝑘𝑓(𝑠)

(since 𝒮 = 𝒮0 ∪ 𝒮1 and 𝒮0 ∩ 𝒮1 = ∅) .
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We thus have defined a map Φ from the set of 𝛾-smaps to the set of spairs, and a

map Ψ from the set of spairs to the set of 𝛾-smaps. It is straightforward to see that

these two maps Φ and Ψ are mutually inverse, and thus Φ is a bijection. We thus have

found a bijection between the set of 𝛾-smaps and the set of spairs. Consequently, the

number of all 𝛾-smaps equals the number of all spairs.

Now, recall that the coefficient of q in 𝑀𝛼 ≺ 𝑀𝛽 equals the number of all spairs.

Hence, the coefficient of q in 𝑀𝛼 ≺ 𝑀𝛽 equals the number of all 𝛾-smaps (since the

number of all 𝛾-smaps equals the number of all spairs). In other words, Claim 1 is

proven.

Claim 1 shows that the coefficient of a monomial q in 𝑀𝛼 ≺ 𝑀𝛽 depends not on q

but only on the Parikh composition of q. Thus, any two pack-equivalent monomials

have equal coefficients in 𝑀𝛼 ≺ 𝑀𝛽 (since any two pack-equivalent monomials have

the same Parikh composition). In other words, the power series 𝑀𝛼 ≺ 𝑀𝛽 is quasisym-

metric. Since 𝑀𝛼 ≺ 𝑀𝛽 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]]bdd, this yields that 𝑀𝛼 ≺ 𝑀𝛽 ∈ QSym.

[At this point, let us remark that we can give an explicit formula for 𝑀𝛼 ≺ 𝑀𝛽:

Namely,

𝑀𝛼 ≺ 𝑀𝛽 =
∑︁

𝛾∈Comp

s𝛾𝛼,𝛽𝑀𝛾, (2.5)

where s𝛾𝛼,𝛽 is the number of all 𝛾-smaps. Indeed, for every monomial q, the coefficient

of q on the left-hand side of (2.5) equals s𝛾𝛼,𝛽 where 𝛾 is the Parikh composition of

q (because of Claim 1), whereas the coefficient of q on the right-hand side of (2.5)

also equals s𝛾𝛼,𝛽 (for obvious reasons). Hence, every monomial has equal coefficients

on the two sides of (2.5), and so (2.5) holds. Of course, (2.5) again proves that

𝑀𝛼 ≺ 𝑀𝛽 ∈ QSym, since the sum
∑︀

𝛾∈Comp

s𝛾𝛼,𝛽𝑀𝛾 has only finitely many nonzero

addends (indeed, 𝛾-smaps can only exist if |𝛾| ≤ |𝛼|+ |𝛽|).]

Now, let us forget that we fixed 𝛼 and 𝛽. We thus have shown that every two

Thus,
∏︀
𝑠∈𝒮

𝑥
𝜌(𝑠)
𝑘𝑓(𝑠)

= mn = q = 𝑥𝛾1

𝑘1
𝑥𝛾2

𝑘2
· · ·𝑥𝛾𝑛

𝑘𝑛
. Now, for any 𝑢 ∈ {1, 2, . . . , 𝑛}, the exponent

of 𝑥𝑘𝑢
on the left hand side of this equality is

∑︀
𝑠∈𝑓−1(𝑢)

𝜌 (𝑠) (since 𝑘1 < 𝑘2 < · · · < 𝑘𝑛),

whereas the exponent of 𝑥𝑘𝑢
on the right hand side is 𝛾𝑢. Comparing these coefficients, we

find
∑︀

𝑠∈𝑓−1(𝑢)

𝜌 (𝑠) = 𝛾𝑢.)
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compositions 𝛼 and 𝛽 satisfy 𝑀𝛼 ≺ 𝑀𝛽 ∈ QSym.

Now, let 𝑎 ∈ QSym and 𝑏 ∈ QSym. We shall only prove that 𝑎 ≺ 𝑏 ∈ QSym (since

the proof of 𝑎 Á 𝑏 ∈ QSym is very similar18).

The statement that we need to prove (𝑎 ≺ 𝑏 ∈ QSym) is k-linear in each of 𝑎 and

𝑏. Hence, we can WLOG assume that both 𝑎 and 𝑏 are elements of the monomial

basis of QSym. Assume this. Thus, 𝑎 = 𝑀𝛼 and 𝑏 = 𝑀𝛽 for some compositions

𝛼 and 𝛽. Consider these 𝛼 and 𝛽. Now, as we know, 𝑀𝛼 ≺ 𝑀𝛽 ∈ QSym, so that

𝑎⏟ ⏞ 
=𝑀𝛼

≺ 𝑏⏟ ⏞ 
=𝑀𝛽

= 𝑀𝛼 ≺ 𝑀𝛽 ∈ QSym. This completes our proof of Proposition 2.3.5.

Remark 2.3.6. The proof of Proposition 2.3.5 given above actually yields a com-

binatorial formula for 𝑀𝛼 ≺ 𝑀𝛽 whenever 𝛼 and 𝛽 are two compositions. Namely,

let 𝛼 and 𝛽 be two compositions. Then,

𝑀𝛼 ≺ 𝑀𝛽 =
∑︁

𝛾∈Comp

s𝛾𝛼,𝛽𝑀𝛾, (2.6)

where s𝛾𝛼,𝛽 is the number of all smaps (𝛼, 𝛽) → 𝛾. Here a smap (𝛼, 𝛽) → 𝛾 means

what was called a 𝛾-smap in the above proof of Proposition 2.3.5.

This is similar to the well-known formula for 𝑀𝛼𝑀𝛽 (see, for example,

[GriRei15, Proposition 5.3]) which (translated into our language) states that

𝑀𝛼𝑀𝛽 =
∑︁

𝛾∈Comp

t𝛾𝛼,𝛽𝑀𝛾, (2.7)

where t𝛾𝛼,𝛽 is the number of all overlapping shuffles (𝛼, 𝛽) → 𝛾. Here, the overlap-

ping shuffles (𝛼, 𝛽) → 𝛾 are defined in the same way as the 𝛾-smaps, with the only

difference that the second of the three properties that define a 𝛾-smap (namely,

the property min (𝑓 (𝒮0)) < min (𝑓 (𝒮1))) is omitted. Needless to say, (2.7) can be

proven similarly to our proof of (2.6) above.

Here is a somewhat nontrivial property of Á and ≺ :

18Alternatively, of course, 𝑎 Á 𝑏 ∈ QSym can be checked using the formula 𝑀𝛼 Á𝑀𝛽 = 𝑀[𝛼,𝛽] +
𝑀𝛼⊙𝛽 (which is easily proven). However, there is no such simple proof for 𝑎 ≺ 𝑏 ∈ QSym.
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Theorem 2.3.7. Let 𝑆 denote the antipode of the Hopf algebra QSym. Let us

use Sweedler’s notation
∑︀
(𝑏)

𝑏(1) ⊗ 𝑏(2) for Δ(𝑏), where 𝑏 is any element of QSym.

Then, ∑︁
(𝑏)

(︀
𝑆
(︀
𝑏(1)
)︀
Á 𝑎
)︀
𝑏(2) = 𝑎 ≺ 𝑏

for any 𝑎 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]] and 𝑏 ∈ QSym.

Proof of Theorem 2.3.7. Let 𝑎 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]]. We can WLOG assume that 𝑎 is

a monomial (because all operations in sight are k-linear and continuous). So assume

this. That is, 𝑎 = n for some monomial n. Consider this n. Let 𝑘 = min (Supp n).

Notice that 𝑘 ∈ {1, 2, 3, . . .} ∪ {∞}.

(Some remarks about ∞ are in order. We use ∞ as an object which is greater

than every integer. We will use summation signs like
∑︀

1≤𝑖1<𝑖2<···<𝑖ℓ≤𝑘

and
∑︀

𝑘<𝑖1<𝑖2<···<𝑖ℓ

in

the following. Both of these summation signs range over (𝑖1, 𝑖2, . . . , 𝑖ℓ) ∈ {1, 2, 3, . . .}ℓ

satisfying certain conditions (1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖ℓ ≤ 𝑘 in the first case, and

𝑘 < 𝑖1 < 𝑖2 < · · · < 𝑖ℓ in the second case). In particular, none of the 𝑖1, 𝑖2, . . . , 𝑖ℓ is

allowed to be ∞ (unlike 𝑘). So the summation
∑︀

1≤𝑖1<𝑖2<···<𝑖ℓ≤𝑘

is identical to
∑︀

1≤𝑖1<𝑖2<···<𝑖ℓ

when 𝑘 = ∞, whereas the summation
∑︀

𝑘<𝑖1<𝑖2<···<𝑖ℓ

is empty when 𝑘 = ∞ unless ℓ = 0.

(If ℓ = 0, then the summation
∑︀

𝑘<𝑖1<𝑖2<···<𝑖ℓ

ranges over the empty 0-tuple, no matter

what 𝑘 is.)

We shall also use an additional symbol ∞+ 1, which is understood to be greater

than every element of {1, 2, 3, . . .} ∪ {∞}.)

Every composition 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) satisfies

𝑎 ≺ 𝑀𝛼 =

(︃ ∑︁
𝑘<𝑖1<𝑖2<···<𝑖ℓ

𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

)︃
· 𝑎 (2.8)

19.

19Proof of (2.8): Let 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) be a composition. The definition of 𝑀𝛼 yields 𝑀𝛼 =
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Let us define a map B𝑘 : k [[𝑥1, 𝑥2, 𝑥3, . . .]] → k [[𝑥1, 𝑥2, 𝑥3, . . .]] by

B𝑘 (𝑝) = 𝑝 (𝑥1, 𝑥2, . . . , 𝑥𝑘, 0, 0, 0, . . .) for every 𝑝 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]]

(where 𝑝 (𝑥1, 𝑥2, . . . , 𝑥𝑘, 0, 0, 0, . . .) has to be understood as 𝑝 (𝑥1, 𝑥2, 𝑥3, . . .) = 𝑝 when

𝑘 = ∞). Then, B𝑘 is an evaluation map (in an appropriate sense) and thus a

continuous k-algebra homomorphism. Any monomial m satisfies

B𝑘 (m) =

⎧⎨⎩ m, if max (Suppm) ≤ 𝑘;

0, if max (Suppm) > 𝑘
(2.9)

∑︀
1≤𝑖1<𝑖2<···<𝑖ℓ

𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

. Combined with 𝑎 = n, this yields

𝑎 ≺ 𝑀𝛼 = n ≺

⎛⎝ ∑︁
1≤𝑖1<𝑖2<···<𝑖ℓ

𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

⎞⎠
=

∑︁
1≤𝑖1<𝑖2<···<𝑖ℓ

n ≺
(︀
𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

)︀⏟  ⏞  
=

⎧⎨⎩ n · 𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ
, if min (Supp n) < min {𝑖1, 𝑖2, . . . , 𝑖ℓ} ;

0, if min (Supp n) ≥ min {𝑖1, 𝑖2, . . . , 𝑖ℓ}
(by the definition of ≺ on monomials)

(since ≺ is k-bilinear and continuous)

=
∑︁

1≤𝑖1<𝑖2<···<𝑖ℓ

{︂
n · 𝑥𝛼1

𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ
, if min (Supp n) < min {𝑖1, 𝑖2, . . . , 𝑖ℓ} ;

0, if min (Supp n) ≥ min {𝑖1, 𝑖2, . . . , 𝑖ℓ}

=
∑︁

1≤𝑖1<𝑖2<···<𝑖ℓ;
min(Supp n)<min{𝑖1,𝑖2,...,𝑖ℓ}⏟  ⏞  
=

∑︀
min(Suppn)<𝑖1<𝑖2<···<𝑖ℓ

=
∑︀

𝑘<𝑖1<𝑖2<···<𝑖ℓ

(since min(Supp n)=𝑘)

n⏟ ⏞ 
=𝑎

·𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

=
∑︁

𝑘<𝑖1<𝑖2<···<𝑖ℓ

𝑎 · 𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

=

(︃ ∑︁
𝑘<𝑖1<𝑖2<···<𝑖ℓ

𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

)︃
· 𝑎.

This proves (2.8).
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20. Any 𝑝 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]] satisfies

𝑝 Á 𝑎 = 𝑎 ·B𝑘 (𝑝) (2.10)

21. Also, every composition 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) satisfies

B𝑘 (𝑀𝛼) =
∑︁

1≤𝑖1<𝑖2<···<𝑖ℓ≤𝑘

𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

(2.12)

22.

We shall use one further obvious observation: If 𝑖1, 𝑖2, . . . , 𝑖ℓ are some positive

20Proof. Let m be a monomial. Then,

B𝑘 (m) = m (𝑥1, 𝑥2, . . . , 𝑥𝑘, 0, 0, 0, . . .) (by the definition of B𝑘)

= (the result of replacing the indeterminates 𝑥𝑘+1, 𝑥𝑘+2, 𝑥𝑘+3, . . . by 0 in m)

=

{︂
m, if none of the indeterminates 𝑥𝑘+1, 𝑥𝑘+2, 𝑥𝑘+3, . . . appears in m;
0, if some of the indeterminates 𝑥𝑘+1, 𝑥𝑘+2, 𝑥𝑘+3, . . . appear in m

=

{︂
m, if max (Suppm) ≤ 𝑘;
0, if max (Suppm) > 𝑘

(because none of the indeterminates 𝑥𝑘+1, 𝑥𝑘+2, 𝑥𝑘+3, . . . appears in m if and only if max (Suppm) ≤
𝑘). This proves (2.9).

21Proof of (2.10): Fix 𝑝 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]]. Since the equality (2.10) is k-linear and continuous
in 𝑝, we can WLOG assume that 𝑝 is a monomial. Assume this. Hence, 𝑝 = m for some monomial
m. Consider this m. We have

B𝑘

⎛⎝ 𝑝⏟ ⏞ 
=m

⎞⎠ = B𝑘 (m) =

{︂
m, if max (Suppm) ≤ 𝑘;
0, if max (Suppm) > 𝑘

(2.11)

(by (2.9)). Now,

𝑝⏟ ⏞ 
=m

Á 𝑎⏟ ⏞ 
=n

= m Á n =

{︂
m · n, if max (Suppm) ≤ min (Supp n) ;
0, if max (Suppm) > min (Supp n)

(by the definition of Á )

=

{︂
m · n, if max (Suppm) ≤ 𝑘;
0, if max (Suppm) > 𝑘

(since min (Supp n) = 𝑘)

= n⏟ ⏞ 
=𝑎

·
{︂

m, if max (Suppm) ≤ 𝑘;
0, if max (Suppm) > 𝑘⏟  ⏞  

=B𝑘(𝑝)
(by (2.11))

= 𝑎 ·B𝑘 (𝑝) .

This proves (2.10).
22Proof of (2.12): Let 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) be a composition. The definition of 𝑀𝛼 yields 𝑀𝛼 =
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integers satisfying 𝑖1 < 𝑖2 < · · · < 𝑖ℓ, then

there exists exactly one 𝑗 ∈ {0, 1, . . . , ℓ} satisfying 𝑖𝑗 ≤ 𝑘 < 𝑖𝑗+1 (2.13)

(where 𝑖0 is to be understood as 1, and 𝑖ℓ+1 as ∞+ 1).

Let us now notice that every 𝑓 ∈ QSym satisfies

𝑎𝑓 =
∑︁
(𝑓)

B𝑘

(︀
𝑓(1)
)︀ (︀

𝑎 ≺ 𝑓(2)
)︀
. (2.14)

Proof of (2.14): Both sides of the equality (2.14) are k-linear in 𝑓 . Hence, it is

enough to check (2.14) on the basis (𝑀𝛾)𝛾∈Comp of QSym, that is, to prove that (2.14)

holds whenever 𝑓 = 𝑀𝛾 for some 𝛾 ∈ Comp. In other words, it is enough to show

∑︀
1≤𝑖1<𝑖2<···<𝑖ℓ

𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

. Applying the map B𝑘 to both sides of this equality, we obtain

B𝑘 (𝑀𝛼) = B𝑘

⎛⎝ ∑︁
1≤𝑖1<𝑖2<···<𝑖ℓ

𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

⎞⎠
=

∑︁
1≤𝑖1<𝑖2<···<𝑖ℓ

B𝑘

(︀
𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

)︀⏟  ⏞  
=

⎧⎨⎩ 𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ
, if max

(︀
Supp

(︀
𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

)︀)︀
≤ 𝑘;

0, if max
(︀
Supp

(︀
𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

)︀)︀
> 𝑘

(by (2.9), applied to m=𝑥
𝛼1
𝑖1

𝑥
𝛼2
𝑖2

···𝑥𝛼ℓ
𝑖ℓ

)

(since B𝑘 is k-linear and continuous)

=
∑︁

1≤𝑖1<𝑖2<···<𝑖ℓ

{︂
𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ
, if max

(︀
Supp

(︀
𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

)︀)︀
≤ 𝑘;

0, if max
(︀
Supp

(︀
𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

)︀)︀
> 𝑘⏟  ⏞  

=

⎧⎨⎩ 𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ
, if max {𝑖1, 𝑖2, . . . , 𝑖ℓ} ≤ 𝑘;

0, if max {𝑖1, 𝑖2, . . . , 𝑖ℓ} > 𝑘

(since Supp
(︁
𝑥
𝛼1
𝑖1

𝑥
𝛼2
𝑖2

···𝑥𝛼ℓ
𝑖ℓ

)︁
={𝑖1,𝑖2,...,𝑖ℓ})

=
∑︁

1≤𝑖1<𝑖2<···<𝑖ℓ

{︂
𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ
, if max {𝑖1, 𝑖2, . . . , 𝑖ℓ} ≤ 𝑘;

0, if max {𝑖1, 𝑖2, . . . , 𝑖ℓ} > 𝑘

=
∑︁

1≤𝑖1<𝑖2<···<𝑖ℓ;
max{𝑖1,𝑖2,...,𝑖ℓ}≤𝑘⏟  ⏞  
=

∑︀
1≤𝑖1<𝑖2<···<𝑖ℓ≤𝑘

𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

=
∑︁

1≤𝑖1<𝑖2<···<𝑖ℓ≤𝑘

𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ
.

This proves (2.12).
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that

𝑎𝑀𝛾 =
∑︁
(𝑀𝛾)

B𝑘

(︁
(𝑀𝛾)(1)

)︁
·
(︁
𝑎 ≺ (𝑀𝛾)(2)

)︁
for every 𝛾 ∈ Comp .

But this is easily done: Let 𝛾 ∈ Comp. Write 𝛾 in the form 𝛾 = (𝛾1, 𝛾2, . . . , 𝛾ℓ).

Then,

∑︁
(𝑀𝛾)

B𝑘

(︁
(𝑀𝛾)(1)

)︁
·
(︁
𝑎 ≺ (𝑀𝛾)(2)

)︁

=
ℓ∑︁

𝑗=0

B𝑘

(︀
𝑀(𝛾1,𝛾2,...,𝛾𝑗)

)︀⏟  ⏞  
=

∑︀
1≤𝑖1<𝑖2<···<𝑖𝑗≤𝑘

𝑥
𝛾1
𝑖1

𝑥
𝛾2
𝑖2

···𝑥
𝛾𝑗
𝑖𝑗

(by (2.12))

·
(︀
𝑎 ≺ 𝑀(𝛾𝑗+1,𝛾𝑗+2,...,𝛾ℓ)

)︀⏟  ⏞  
=

⎛⎝ ∑︀
𝑘<𝑖1<𝑖2<···<𝑖ℓ−𝑗

𝑥
𝛾𝑗+1
𝑖1

𝑥
𝛾𝑗+2
𝑖2

···𝑥𝛾ℓ
𝑖ℓ−𝑗

⎞⎠·𝑎

(by (2.8))⎛⎝since
∑︁
(𝑀𝛾)

(𝑀𝛾)(1) ⊗ (𝑀𝛾)(2) = Δ(𝑀𝛾) =
ℓ∑︁

𝑗=0

𝑀(𝛾1,𝛾2,...,𝛾𝑗) ⊗𝑀(𝛾𝑗+1,𝛾𝑗+2,...,𝛾ℓ)

⎞⎠
=

ℓ∑︁
𝑗=0

⎛⎝ ∑︁
1≤𝑖1<𝑖2<···<𝑖𝑗≤𝑘

𝑥𝛾1
𝑖1
𝑥𝛾2
𝑖2
· · · 𝑥𝛾𝑗

𝑖𝑗

⎞⎠⎛⎝ ∑︁
𝑘<𝑖1<𝑖2<···<𝑖ℓ−𝑗

𝑥
𝛾𝑗+1

𝑖1
𝑥
𝛾𝑗+2

𝑖2
· · ·𝑥𝛾ℓ

𝑖ℓ−𝑗

⎞⎠
⏟  ⏞  

=
∑︀

𝑘<𝑖𝑗+1<𝑖𝑗+2<···<𝑖ℓ

𝑥
𝛾𝑗+1
𝑖𝑗+1

𝑥
𝛾𝑗+2
𝑖𝑗+2

···𝑥𝛾ℓ
𝑖ℓ

(here, we have renamed the summation index
(𝑖1,𝑖2,...,𝑖ℓ−𝑗) as (𝑖𝑗+1,𝑖𝑗+2,...,𝑖ℓ))

·𝑎

=
ℓ∑︁

𝑗=0

⎛⎝ ∑︁
1≤𝑖1<𝑖2<···<𝑖𝑗≤𝑘

𝑥𝛾1
𝑖1
𝑥𝛾2
𝑖2
· · ·𝑥𝛾𝑗

𝑖𝑗

⎞⎠⎛⎝ ∑︁
𝑘<𝑖𝑗+1<𝑖𝑗+2<···<𝑖ℓ

𝑥
𝛾𝑗+1

𝑖𝑗+1
𝑥
𝛾𝑗+2

𝑖𝑗+2
· · ·𝑥𝛾ℓ

𝑖ℓ

⎞⎠ · 𝑎

=
ℓ∑︁

𝑗=0

∑︁
1≤𝑖1<𝑖2<···<𝑖𝑗≤𝑘

∑︁
𝑘<𝑖𝑗+1<𝑖𝑗+2<···<𝑖ℓ⏟  ⏞  

=
∑︀

1≤𝑖1<𝑖2<···<𝑖ℓ

∑︀
𝑗∈{0,1,...,ℓ};
𝑖𝑗≤𝑘<𝑖𝑗+1

(where 𝑖0 is to be understood as 1, and 𝑖ℓ+1 as ∞+1)

(︁
𝑥𝛾1
𝑖1
𝑥𝛾2
𝑖2
· · · 𝑥𝛾𝑗

𝑖𝑗

)︁(︁
𝑥
𝛾𝑗+1

𝑖𝑗+1
𝑥
𝛾𝑗+2

𝑖𝑗+2
· · ·𝑥𝛾ℓ

𝑖ℓ

)︁
⏟  ⏞  

=𝑥
𝛾1
𝑖1

𝑥
𝛾2
𝑖2

···𝑥𝛾ℓ
𝑖ℓ

·𝑎

=
∑︁

1≤𝑖1<𝑖2<···<𝑖ℓ

∑︁
𝑗∈{0,1,...,ℓ};
𝑖𝑗≤𝑘<𝑖𝑗+1

𝑥𝛾1
𝑖1
𝑥𝛾2
𝑖2
· · ·𝑥𝛾ℓ

𝑖ℓ

⏟  ⏞  
this sum has precisely one addend,

(because of (2.13)),
and thus equals 𝑥

𝛾1
𝑖1

𝑥
𝛾2
𝑖2

···𝑥𝛾ℓ
𝑖ℓ

·𝑎 =
∑︁

1≤𝑖1<𝑖2<···<𝑖ℓ

𝑥𝛾1
𝑖1
𝑥𝛾2
𝑖2
· · ·𝑥𝛾ℓ

𝑖ℓ⏟  ⏞  
=𝑀𝛾

·𝑎

= 𝑀𝛾 · 𝑎 = 𝑎𝑀𝛾,

93



qed. Thus, (2.14) is proven.

Now, every 𝑏 ∈ QSym satisfies

∑︁
(𝑏)

(︀
𝑆
(︀
𝑏(1)
)︀
Á 𝑎
)︀⏟  ⏞  

=𝑎·B𝑘(𝑆(𝑏(1)))
(by (2.10), applied to 𝑝=𝑆(𝑏(1)))

𝑏(2)

=
∑︁
(𝑏)

𝑎 ·B𝑘

(︀
𝑆
(︀
𝑏(1)
)︀)︀

𝑏(2) =
∑︁
(𝑏)

B𝑘

(︀
𝑆
(︀
𝑏(1)
)︀)︀

· 𝑎𝑏(2)⏟ ⏞ 
=

∑︀
(𝑏(2))

B𝑘

(︂
(𝑏(2))(1)

)︂(︂
𝑎≺(𝑏(2))(2)

)︂
(by (2.14), applied to 𝑓=𝑏(2))

=
∑︁
(𝑏)

B𝑘

(︀
𝑆
(︀
𝑏(1)
)︀)︀⎛⎜⎝∑︁

(𝑏(2))

B𝑘

(︁(︀
𝑏(2)
)︀
(1)

)︁(︁
𝑎 ≺

(︀
𝑏(2)
)︀
(2)

)︁⎞⎟⎠
=
∑︁
(𝑏)

∑︁
(𝑏(2))

B𝑘

(︀
𝑆
(︀
𝑏(1)
)︀)︀

B𝑘

(︁(︀
𝑏(2)
)︀
(1)

)︁(︁
𝑎 ≺

(︀
𝑏(2)
)︀
(2)

)︁
=
∑︁
(𝑏)

∑︁
(𝑏(1))

B𝑘

(︁
𝑆
(︁(︀

𝑏(1)
)︀
(1)

)︁)︁
B𝑘

(︁(︀
𝑏(1)
)︀
(2)

)︁
⏟  ⏞  

=B𝑘

⎛⎜⎝ ∑︀
(𝑏(1))

𝑆

(︂
(𝑏(1))(1)

)︂
·(𝑏(1))(2)

⎞⎟⎠
(since B𝑘 is a k-algebra homomorphism)

(︀
𝑎 ≺ 𝑏(2)

)︀

⎛⎜⎝ since the coassociativity of Δ yields∑︀
(𝑏)

∑︀
(𝑏(2))

𝑏(1) ⊗
(︀
𝑏(2)
)︀
(1)

⊗
(︀
𝑏(2)
)︀
(2)

=
∑︀
(𝑏)

∑︀
(𝑏(1))

(︀
𝑏(1)
)︀
(1)

⊗
(︀
𝑏(1)
)︀
(2)

⊗ 𝑏(2)

⎞⎟⎠

=
∑︁
(𝑏)

B𝑘

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑︁
(𝑏(1))

𝑆
(︁(︀

𝑏(1)
)︀
(1)

)︁ (︀
𝑏(1)
)︀
(2)⏟  ⏞  

=𝜀(𝑏(1))
(by one of the defining equations of the antipode)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(︀
𝑎 ≺ 𝑏(2)

)︀

=
∑︁
(𝑏)

B𝑘

(︀
𝜀
(︀
𝑏(1)
)︀)︀⏟  ⏞  

=𝜀(𝑏(1))
(since B𝑘 is a k-algebra

homomorphism, and
𝜀(𝑏(1))∈k is a scalar)

(︀
𝑎 ≺ 𝑏(2)

)︀
=
∑︁
(𝑏)

𝜀
(︀
𝑏(1)
)︀
·
(︀
𝑎 ≺ 𝑏(2)

)︀
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=
∑︁
(𝑏)

𝑎 ≺
(︀
𝜀
(︀
𝑏(1)
)︀
𝑏(2)
)︀
= 𝑎 ≺

⎛⎝∑︁
(𝑏)

𝜀
(︀
𝑏(1)
)︀
𝑏(2)

⎞⎠
⏟  ⏞  

=𝑏

= 𝑎 ≺ 𝑏.

This proves Theorem 2.3.7.

Let us connect the Á operation with the fundamental basis of QSym:

Proposition 2.3.8. For any two compositions 𝛼 and 𝛽, define a composition 𝛼⊙𝛽

as follows:

– If 𝛼 is empty, then set 𝛼⊙ 𝛽 = 𝛽.

– Otherwise, if 𝛽 is empty, then set 𝛼⊙ 𝛽 = 𝛼.

– Otherwise, define 𝛼⊙ 𝛽 as (𝛼1, 𝛼2, . . . , 𝛼ℓ−1, 𝛼ℓ + 𝛽1, 𝛽2, 𝛽3, . . . , 𝛽𝑚), where 𝛼

is written as 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) and where 𝛽 is written as 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑚).

Then, any two compositions 𝛼 and 𝛽 satisfy

𝐹𝛼 Á 𝐹𝛽 = 𝐹𝛼⊙𝛽.

Our proof of this proposition will rely on the following lemma:

Lemma 2.3.9. If 𝐺 is a set of integers and 𝑟 is an integer, then we let 𝐺+𝑟 denote

the set {𝑔 + 𝑟 | 𝑔 ∈ 𝐺} of integers.

Let 𝑝 ∈ N and 𝑞 ∈ N. Let 𝛼 be a composition of 𝑝. Let 𝛽 be a composition of

𝑞. Consider the composition 𝛼⊙ 𝛽 defined in Proposition 2.3.8.

(a) Then, 𝛼 ⊙ 𝛽 is a composition of 𝑝 + 𝑞 satisfying 𝐷 (𝛼⊙ 𝛽) = 𝐷 (𝛼) ∪

(𝐷 (𝛽) + 𝑝).

(b) Also, define a composition [𝛼, 𝛽] by [𝛼, 𝛽] = (𝛼1, 𝛼2, . . . , 𝛼ℓ, 𝛽1, 𝛽2, . . . , 𝛽𝑚),

where 𝛼 and 𝛽 are written in the forms 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) and 𝛽 =

(𝛽1, 𝛽2, . . . , 𝛽𝑚). Assume that 𝑝 > 0 and 𝑞 > 0. Then, [𝛼, 𝛽] is a composition

of 𝑝+ 𝑞 satisfying 𝐷 ([𝛼, 𝛽]) = 𝐷 (𝛼) ∪ {𝑝} ∪ (𝐷 (𝛽) + 𝑝).

(Actually, part (b) of this lemma will not be used until much later, but part (a)

will be used soon.)
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Proof of Lemma 2.3.9. Write 𝛼 in the form 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ). Thus, |𝛼| = 𝛼1 +

𝛼2 + · · ·+ 𝛼ℓ, so that 𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ = |𝛼| = 𝑝 (since 𝛼 is a composition of 𝑝).

Write 𝛽 in the form 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑚). Thus, |𝛽| = 𝛽1 + 𝛽2 + · · ·+ 𝛽𝑚, so that

𝛽1 + 𝛽2 + · · ·+ 𝛽𝑚 = |𝛽| = 𝑞 (since 𝛽 is a composition of 𝑞).

We have 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑚), and thus

𝐷 (𝛽) = {𝛽1, 𝛽1 + 𝛽2, 𝛽1 + 𝛽2 + 𝛽3, . . . , 𝛽1 + 𝛽2 + · · ·+ 𝛽𝑚−1}

(by the definition of 𝐷 (𝛽))

= {𝛽1 + 𝛽2 + · · ·+ 𝛽𝑗 | 𝑗 ∈ {1, 2, . . . ,𝑚− 1}} .

Also, 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ), and thus

𝐷 (𝛼) = {𝛼1, 𝛼1 + 𝛼2, 𝛼1 + 𝛼2 + 𝛼3, . . . , 𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ−1}

(by the definition of 𝐷 (𝛼))

= {𝛼1 + 𝛼2 + · · ·+ 𝛼𝑖 | 𝑖 ∈ {1, 2, . . . , ℓ− 1}} .

(a) If 𝛼 or 𝛽 is empty, then Lemma 2.3.9 (a) holds for obvious reasons (because

of the definition of 𝛼 ⊙ 𝛽 in this case). Thus, we WLOG assume that neither 𝛼 nor

𝛽 is empty.

We have 𝛼 ⊙ 𝛽 = (𝛼1, 𝛼2, . . . , 𝛼ℓ−1, 𝛼ℓ + 𝛽1, 𝛽2, 𝛽3, . . . , 𝛽𝑚) (by the definition of

𝛼⊙ 𝛽) and thus

|𝛼⊙ 𝛽| = 𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ−1 + (𝛼ℓ + 𝛽1) + 𝛽2 + 𝛽3 + · · ·+ 𝛽𝑚

= (𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ)⏟  ⏞  
=𝑝

+(𝛽1 + 𝛽2 + · · ·+ 𝛽𝑚)⏟  ⏞  
=𝑞

= 𝑝+ 𝑞.

Thus, 𝛼 ⊙ 𝛽 is a composition of 𝑝 + 𝑞. Hence, it remains to show that 𝐷 (𝛼⊙ 𝛽) =

𝐷 (𝛼) ∪ (𝐷 (𝛽) + 𝑝).
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Now, 𝛼⊙ 𝛽 = (𝛼1, 𝛼2, . . . , 𝛼ℓ−1, 𝛼ℓ + 𝛽1, 𝛽2, 𝛽3, . . . , 𝛽𝑚), so that

𝐷 (𝛼⊙ 𝛽)

= {𝛼1, 𝛼1 + 𝛼2, 𝛼1 + 𝛼2 + 𝛼3, . . . , 𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ−1,

𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ−1 + (𝛼ℓ + 𝛽1) , 𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ−1 + (𝛼ℓ + 𝛽1) + 𝛽2,

𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ−1 + (𝛼ℓ + 𝛽1) + 𝛽2 + 𝛽3, . . . ,

𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ−1 + (𝛼ℓ + 𝛽1) + 𝛽2 + 𝛽3 + · · ·+ 𝛽𝑚−1}

(by the definition of 𝐷 (𝛼⊙ 𝛽))

= {𝛼1 + 𝛼2 + · · ·+ 𝛼𝑖 | 𝑖 ∈ {1, 2, . . . , ℓ− 1}}⏟  ⏞  
=𝐷(𝛼)

∪

⎧⎪⎪⎪⎨⎪⎪⎪⎩𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ−1 + (𝛼ℓ + 𝛽1) + 𝛽2 + 𝛽3 + · · ·+ 𝛽𝑗⏟  ⏞  
=(𝛼1+𝛼2+···+𝛼ℓ)+(𝛽1+𝛽2+···+𝛽𝑗)
=(𝛽1+𝛽2+···+𝛽𝑗)+(𝛼1+𝛼2+···+𝛼ℓ)

| 𝑗 ∈ {1, 2, . . . ,𝑚− 1}

⎫⎬⎭
= 𝐷 (𝛼) ∪

⎧⎨⎩(𝛽1 + 𝛽2 + · · ·+ 𝛽𝑗) + (𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ)⏟  ⏞  
=𝑝

| 𝑗 ∈ {1, 2, . . . ,𝑚− 1}

⎫⎬⎭
= 𝐷 (𝛼) ∪ {(𝛽1 + 𝛽2 + · · ·+ 𝛽𝑗) + 𝑝 | 𝑗 ∈ {1, 2, . . . ,𝑚− 1}}⏟  ⏞  

={𝛽1+𝛽2+···+𝛽𝑗 | 𝑗∈{1,2,...,𝑚−1}}+𝑝

= 𝐷 (𝛼) ∪

⎛⎜⎝{𝛽1 + 𝛽2 + · · ·+ 𝛽𝑗 | 𝑗 ∈ {1, 2, . . . ,𝑚− 1}}⏟  ⏞  
=𝐷(𝛽)

+𝑝

⎞⎟⎠
= 𝐷 (𝛼) ∪ (𝐷 (𝛽) + 𝑝) .

This completes the proof of Lemma 2.3.9 (a).

(b) We have 𝑝 > 0. Thus, the composition 𝛼 is nonempty (since 𝛼 is a com-

position of 𝑝). In other words, the composition (𝛼1, 𝛼2, . . . , 𝛼ℓ) is nonempty (since

𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ)). Hence, ℓ > 0.

We have 𝑞 > 0. Thus, the composition 𝛽 is nonempty (since 𝛽 is a compo-
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sition of 𝑞). In other words, the composition (𝛽1, 𝛽2, . . . , 𝛽𝑚) is nonempty (since

𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑚)). Hence, 𝑚 > 0.

We have [𝛼, 𝛽] = (𝛼1, 𝛼2, . . . , 𝛼ℓ, 𝛽1, 𝛽2, . . . , 𝛽𝑚) (by the definition of [𝛼, 𝛽]) and

thus

|𝛼⊙ 𝛽| = 𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ + 𝛽1 + 𝛽2 + · · ·+ 𝛽𝑚

= (𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ)⏟  ⏞  
=𝑝

+(𝛽1 + 𝛽2 + · · ·+ 𝛽𝑚)⏟  ⏞  
=𝑞

= 𝑝+ 𝑞.

Thus, [𝛼, 𝛽] is a composition of 𝑝 + 𝑞. Hence, it remains to show that 𝐷 ([𝛼, 𝛽]) =

𝐷 (𝛼) ∪ (𝐷 (𝛽) + 𝑝).
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Now, [𝛼, 𝛽] = (𝛼1, 𝛼2, . . . , 𝛼ℓ, 𝛽1, 𝛽2, . . . , 𝛽𝑚), so that

𝐷 ([𝛼, 𝛽])

= {𝛼1, 𝛼1 + 𝛼2, 𝛼1 + 𝛼2 + 𝛼3, . . . , 𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ−1,

𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ−1 + 𝛼ℓ, 𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ−1 + 𝛼ℓ + 𝛽1,

𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ−1 + 𝛼ℓ + 𝛽1 + 𝛽2, . . . ,

𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ−1 + 𝛼ℓ + 𝛽1 + 𝛽2 + · · ·+ 𝛽𝑚−1}

(by the definition of 𝐷 ([𝛼, 𝛽]))

= {𝛼1 + 𝛼2 + · · ·+ 𝛼𝑖 | 𝑖 ∈ {1, 2, . . . , ℓ− 1}}⏟  ⏞  
=𝐷(𝛼)

∪

⎧⎨⎩𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ⏟  ⏞  
=𝑝

⎫⎬⎭
∪

⎧⎪⎪⎪⎨⎪⎪⎪⎩𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ−1 + 𝛼ℓ + 𝛽1 + 𝛽2 + · · ·+ 𝛽𝑗⏟  ⏞  
=(𝛼1+𝛼2+···+𝛼ℓ)+(𝛽1+𝛽2+···+𝛽𝑗)
=(𝛽1+𝛽2+···+𝛽𝑗)+(𝛼1+𝛼2+···+𝛼ℓ)

| 𝑗 ∈ {1, 2, . . . ,𝑚− 1}

⎫⎬⎭
= 𝐷 (𝛼) ∪ {𝑝} ∪

⎧⎨⎩(𝛽1 + 𝛽2 + · · ·+ 𝛽𝑗) + (𝛼1 + 𝛼2 + · · ·+ 𝛼ℓ)⏟  ⏞  
=𝑝

| 𝑗 ∈ {1, 2, . . . ,𝑚− 1}

⎫⎬⎭
= 𝐷 (𝛼) ∪ {𝑝} ∪ {(𝛽1 + 𝛽2 + · · ·+ 𝛽𝑗) + 𝑝 | 𝑗 ∈ {1, 2, . . . ,𝑚− 1}}⏟  ⏞  

={𝛽1+𝛽2+···+𝛽𝑗 | 𝑗∈{1,2,...,𝑚−1}}+𝑝

= 𝐷 (𝛼) ∪ {𝑝} ∪

⎛⎜⎝{𝛽1 + 𝛽2 + · · ·+ 𝛽𝑗 | 𝑗 ∈ {1, 2, . . . ,𝑚− 1}}⏟  ⏞  
=𝐷(𝛽)

+𝑝

⎞⎟⎠
= 𝐷 (𝛼) ∪ {𝑝} ∪ (𝐷 (𝛽) + 𝑝) .

This completes the proof of Lemma 2.3.9 (b).
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Proof of Proposition 2.3.8. If either 𝛼 or 𝛽 is empty, then this is obvious (since Á is

unital with 1 as its unity, and since 𝐹∅ = 1). So let us WLOG assume that neither

is. Write 𝛼 as 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ), and write 𝛽 as 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑚). Thus, ℓ and

𝑚 are positive (since 𝛼 and 𝛽 are nonempty).

Let 𝑝 = |𝛼| and 𝑞 = |𝛽|. Thus, 𝑝 and 𝑞 are positive (since 𝛼 and 𝛽 are nonempty).

Recall that we use the notation 𝐷 (𝛼) for the set of partial sums of a composition

𝛼. If 𝐺 is a set of integers and 𝑟 is an integer, then we let 𝐺 + 𝑟 denote the set

{𝑔 + 𝑟 | 𝑔 ∈ 𝐺} of integers.

Lemma 2.3.9 (a) shows that 𝛼⊙𝛽 is a composition of 𝑝+𝑞 satisfying 𝐷 (𝛼⊙ 𝛽) =

𝐷 (𝛼) ∪ (𝐷 (𝛽) + 𝑝).

Applying (2.1) to 𝑝 instead of 𝑛, we obtain

𝐹𝛼 =
∑︁

𝑖1≤𝑖2≤···≤𝑖𝑝;
𝑖𝑗<𝑖𝑗+1 if 𝑗∈𝐷(𝛼)

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑝 . (2.15)

Applying (2.1) to 𝑞 and 𝛽 instead of 𝑛 and 𝛼, we obtain

𝐹𝛽 =
∑︁

𝑖1≤𝑖2≤···≤𝑖𝑞 ;
𝑖𝑗<𝑖𝑗+1 if 𝑗∈𝐷(𝛽)

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑞 =
∑︁

𝑖𝑝+1≤𝑖𝑝+2≤···≤𝑖𝑝+𝑞 ;
𝑖𝑗<𝑖𝑗+1 if 𝑗∈𝐷(𝛽)+𝑝

𝑥𝑖𝑝+1𝑥𝑖𝑝+2 · · · 𝑥𝑖𝑝+𝑞

(here, we renamed the summation index (𝑖1, 𝑖2, . . . , 𝑖𝑞) as (𝑖𝑝+1, 𝑖𝑝+2, . . . , 𝑖𝑝+𝑞)). This,
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together with (2.15), yields

𝐹𝛼 Á 𝐹𝛽

=

⎛⎜⎜⎝ ∑︁
𝑖1≤𝑖2≤···≤𝑖𝑝;

𝑖𝑗<𝑖𝑗+1 if 𝑗∈𝐷(𝛼)

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑝

⎞⎟⎟⎠ Á
⎛⎜⎜⎝ ∑︁

𝑖𝑝+1≤𝑖𝑝+2≤···≤𝑖𝑝+𝑞 ;
𝑖𝑗<𝑖𝑗+1 if 𝑗∈𝐷(𝛽)+𝑝

𝑥𝑖𝑝+1𝑥𝑖𝑝+2 · · ·𝑥𝑖𝑝+𝑞

⎞⎟⎟⎠
=

∑︁
𝑖1≤𝑖2≤···≤𝑖𝑝;

𝑖𝑗<𝑖𝑗+1 if 𝑗∈𝐷(𝛼)

∑︁
𝑖𝑝+1≤𝑖𝑝+2≤···≤𝑖𝑝+𝑞 ;
𝑖𝑗<𝑖𝑗+1 if 𝑗∈𝐷(𝛽)+𝑝

(︀
𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑝

)︀
Á
(︀
𝑥𝑖𝑝+1𝑥𝑖𝑝+2 · · ·𝑥𝑖𝑝+𝑞

)︀⏟  ⏞  
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑝𝑥𝑖𝑝+1𝑥𝑖𝑝+2 · · ·𝑥𝑖𝑝+𝑞 , if 𝑖𝑝 ≤ 𝑖𝑝+1;

0, if 𝑖𝑝 > 𝑖𝑝+1

(by the definition of Á on monomials)

=
∑︁

𝑖1≤𝑖2≤···≤𝑖𝑝;
𝑖𝑗<𝑖𝑗+1 if 𝑗∈𝐷(𝛼)

∑︁
𝑖𝑝+1≤𝑖𝑝+2≤···≤𝑖𝑝+𝑞 ;
𝑖𝑗<𝑖𝑗+1 if 𝑗∈𝐷(𝛽)+𝑝

⎧⎨⎩ 𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑝𝑥𝑖𝑝+1𝑥𝑖𝑝+2 · · ·𝑥𝑖𝑝+𝑞 , if 𝑖𝑝 ≤ 𝑖𝑝+1;

0, if 𝑖𝑝 > 𝑖𝑝+1

=
∑︁

𝑖1≤𝑖2≤···≤𝑖𝑝;
𝑖𝑗<𝑖𝑗+1 if 𝑗∈𝐷(𝛼);
𝑖𝑝+1≤𝑖𝑝+2≤···≤𝑖𝑝+𝑞 ;
𝑖𝑗<𝑖𝑗+1 if 𝑗∈𝐷(𝛽)+𝑝;

𝑖𝑝≤𝑖𝑝+1⏟  ⏞  
=

∑︀
𝑖1≤𝑖2≤···≤𝑖𝑝+𝑞 ;

𝑖𝑗<𝑖𝑗+1 if 𝑗∈𝐷(𝛼)∪(𝐷(𝛽)+𝑝)

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑝𝑥𝑖𝑝+1𝑥𝑖𝑝+2 · · · 𝑥𝑖𝑝+𝑞⏟  ⏞  
=𝑥𝑖1

𝑥𝑖2
···𝑥𝑖𝑝+𝑞

=
∑︁

𝑖1≤𝑖2≤···≤𝑖𝑝+𝑞 ;
𝑖𝑗<𝑖𝑗+1 if 𝑗∈𝐷(𝛼)∪(𝐷(𝛽)+𝑝)

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑝+𝑞 . (2.16)

On the other hand, 𝛼⊙𝛽 is a composition of 𝑝+ 𝑞 satisfying 𝐷 (𝛼⊙ 𝛽) = 𝐷 (𝛼)∪

(𝐷 (𝛽) + 𝑝). Thus, (2.1) (applied to 𝛼⊙ 𝛽 and 𝑝+ 𝑞 instead of 𝛼 and 𝑛) yields

𝐹𝛼⊙𝛽 =
∑︁

𝑖1≤𝑖2≤···≤𝑖𝑝+𝑞 ;
𝑖𝑗<𝑖𝑗+1 if 𝑗∈𝐷(𝛼⊙𝛽)

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑝+𝑞 =
∑︁

𝑖1≤𝑖2≤···≤𝑖𝑝+𝑞 ;
𝑖𝑗<𝑖𝑗+1 if 𝑗∈𝐷(𝛼)∪(𝐷(𝛽)+𝑝)

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑝+𝑞

(since 𝐷 (𝛼⊙ 𝛽) = 𝐷 (𝛼)∪(𝐷 (𝛽) + 𝑝)). Compared with (2.16), this yields 𝐹𝛼 Á 𝐹𝛽 =

𝐹𝛼⊙𝛽. This proves Proposition 2.3.8.

For our goals, we need a certain particular case of Proposition 2.3.8. Namely, let

us recall that for every 𝑚 ∈ N, the 𝑚-th complete homogeneous symmetric function
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ℎ𝑚 is defined as the element
∑︀

1≤𝑖1≤𝑖2≤···≤𝑖𝑚

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑚 of Sym. It is easy to see that

ℎ𝑚 = 𝐹(𝑚) for every positive integer 𝑚. From this, we obtain:

Corollary 2.3.10. For any two compositions 𝛼 and 𝛽, define a composition 𝛼⊙𝛽

as in Proposition 2.3.8. Then, every composition 𝛼 and every positive integer 𝑚

satisfy

𝐹𝛼⊙(𝑚) = 𝐹𝛼 Á ℎ𝑚. (2.17)

Proof of Corollary 2.3.10. Let 𝛼 be a composition. Let 𝑚 be a positive integer. Recall

that ℎ𝑚 = 𝐹(𝑚). Proposition 2.3.8 yields 𝐹𝛼 Á 𝐹(𝑚) = 𝐹𝛼⊙(𝑚). Hence, 𝐹𝛼⊙(𝑚) =

𝐹𝛼 Á 𝐹(𝑚)⏟ ⏞ 
=ℎ𝑚

= 𝐹𝛼 Á ℎ𝑚. This proves Corollary 2.3.10.

Remark 2.3.11. We can also define a binary operation ź : k [[𝑥1, 𝑥2, 𝑥3, . . .]] ×

k [[𝑥1, 𝑥2, 𝑥3, . . .]] → k [[𝑥1, 𝑥2, 𝑥3, . . .]] (written in infix notation) by the require-

ments that it be k-bilinear and continuous with respect to the topology on

k [[𝑥1, 𝑥2, 𝑥3, . . .]] and that it satisfy

m ź n =

⎧⎨⎩ m · n, if max (Suppm) < min (Supp n) ;

0, if max (Suppm) ≥ min (Supp n)

for any two monomials m and n. (Recall that max∅ = 0 and min∅ = ∞.)

This operation ź shares some of the properties of Á (in particular, it is asso-

ciative and has neutral element 1); an analogue of Theorem 2.3.7 says that

∑︁
(𝑏)

(︀
𝑆
(︀
𝑏(1)
)︀
ź 𝑎
)︀
𝑏(2) = 𝑎 ⪯ 𝑏

for any 𝑎 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]] and 𝑏 ∈ QSym, where 𝑎 ⪯ 𝑏 stands for 𝑏 ⪰ 𝑎. (Of

course, we could also define ⪯ by changing the “<” into a “≤” and the “≥” into a

“>” in the definition of ≺ .)
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2.4 Dual immaculate functions and the operation ≺

We will now study the dual immaculate functions defined in [BBSSZ13a]. However,

instead of defining them as was done in [BBSSZ13a, Section 3.7], we shall give a

different (but equivalent) definition. First, we introduce immaculate tableaux (which

we define as in [BBSSZ13a, Definition 3.9]), which are an analogue of the well-known

semistandard Young tableaux (also known as “column-strict tableaux”)23:

Definition 2.4.1. Let 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) be a composition.

(a) The Young diagram of 𝛼 will mean the subset

{(𝑖, 𝑗) ∈ Z2 | 1 ≤ 𝑖 ≤ ℓ; 1 ≤ 𝑗 ≤ 𝛼𝑖} of Z2. It is denoted by 𝑌 (𝛼).

(b) An immaculate tableau of shape 𝛼 will mean a map 𝑇 : 𝑌 (𝛼) → {1, 2, 3, . . .}

which satisfies the following two axioms:

1. We have 𝑇 (𝑖, 1) < 𝑇 (𝑗, 1) for any integers 𝑖 and 𝑗 satisfying 1 ≤ 𝑖 < 𝑗 ≤ ℓ.

2. We have 𝑇 (𝑖, 𝑢) ≤ 𝑇 (𝑖, 𝑣) for any integers 𝑖, 𝑢 and 𝑣 satisfying 1 ≤ 𝑖 ≤ ℓ

and 1 ≤ 𝑢 < 𝑣 ≤ 𝛼𝑖.

The entries of an immaculate tableau 𝑇 mean the images of elements of 𝑌 (𝛼)

under 𝑇 .

We will use the same graphical representation of immaculate tableaux (analo-

gous to the “English notation” for semistandard Young tableaux) that was used in

[BBSSZ13a]: An immaculate tableau 𝑇 of shape 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) is represented

as a table whose rows are left-aligned (but can have different lengths), and whose

𝑖-th row (counted from top) has 𝛼𝑖 boxes, which are respectively filled with the en-

tries 𝑇 (𝑖, 1), 𝑇 (𝑖, 2), . . ., 𝑇 (𝑖, 𝛼𝑖) (from left to right). For example, an immaculate

tableau 𝑇 of shape (3, 1, 2) is represented by the picture

𝑎1,1𝑎1,2𝑎1,3

𝑎2,1

𝑎3,1𝑎3,2

,

23See, e.g., [Stan99, Chapter 7] for a study of semistandard Young tableaux. We will not use them
in this note; however, our terminology for immaculate tableaux will imitate some of the classical
terminology defined for semistandard Young tableaux.
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where 𝑎𝑖,𝑗 = 𝑇 (𝑖, 𝑗) for every (𝑖, 𝑗) ∈ 𝑌 ((3, 1, 2)). Thus, the first of the above

two axioms for an immaculate tableau 𝑇 says that the entries of 𝑇 are strictly

increasing down the first column of 𝑌 (𝛼), whereas the second of the above two

axioms says that the entries of 𝑇 are weakly increasing along each row of 𝑌 (𝛼).

(c) Let 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑘) be a composition of |𝛼|. An immaculate tableau 𝑇

of shape 𝛼 is said to have content 𝛽 if every 𝑗 ∈ {1, 2, 3, . . .} satisfies

⃒⃒
𝑇−1 (𝑗)

⃒⃒
=

⎧⎨⎩ 𝛽𝑗, if 𝑗 ≤ 𝑘;

0, if 𝑗 > 𝑘
.

Notice that not every immaculate tableau has a content (with this definition), be-

cause we only allow compositions as contents. More precisely, if 𝑇 is an immaculate

tableau of shape 𝛼, then there exists a composition 𝛽 such that 𝑇 has content 𝛽 if

and only if there exists a 𝑘 ∈ N such that 𝑇 (𝑌 (𝛼)) = {1, 2, . . . , 𝑘}.

(d) Let 𝛽 be a composition of |𝛼|. Then, 𝐾𝛼,𝛽 denotes the number of immac-

ulate tableaux of shape 𝛼 and content 𝛽.

For future reference, let us notice that if 𝛼 is a nonempty composition and if 𝑇 is

an immaculate tableau of shape 𝛼, then

the smallest entry of 𝑇 is 𝑇 (1, 1) (2.18)

(because every (𝑖, 𝑗) ∈ 𝑌 (𝛼) satisfies 𝑇 (1, 1) ≤ 𝑇 (𝑖, 1) ≤ 𝑇 (𝑖, 𝑗)). Moreover, if 𝛼 is

a composition, if 𝑇 is an immaculate tableau of shape 𝛼, and if (𝑖, 𝑗) ∈ 𝑌 (𝛼) is such

that 𝑖 > 1, then

𝑇 (1, 1) < 𝑇 (𝑖, 1) ≤ 𝑇 (𝑖, 𝑗) . (2.19)

Definition 2.4.2. Let 𝛼 be a composition. The dual immaculate function S*
𝛼

corresponding to 𝛼 is defined as the quasisymmetric function

∑︁
𝛽|=|𝛼|

𝐾𝛼,𝛽𝑀𝛽.
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This definition is not identical to the definition of S*
𝛼 used in [BBSSZ13a], but it

is equivalent to it, as the following proposition shows.

Proposition 2.4.3. Definition 2.4.2 is equivalent to the definition of S*
𝛼 used in

[BBSSZ13a].

Proof of Proposition 2.4.3. Let ≤ℓ denote the lexicographic order on compositions.

Let 𝛼 be a composition. Then, [BBSSZ13a, Proposition 3.36] yields the following:

(the dual immaculate function S*
𝛼 as defined in [BBSSZ13a]) =

∑︁
𝛽|=|𝛼|;
𝛽≤ℓ𝛼

𝐾𝛼,𝛽𝑀𝛽.

Compared with

(the dual immaculate function S*
𝛼 as defined in Definition 2.4.2)

=
∑︁
𝛽|=|𝛼|

𝐾𝛼,𝛽𝑀𝛽 =
∑︁
𝛽|=|𝛼|;
𝛽≤ℓ𝛼

𝐾𝛼,𝛽𝑀𝛽 +
∑︁
𝛽|=|𝛼|;

not 𝛽≤ℓ𝛼

𝐾𝛼,𝛽⏟ ⏞ 
=0

(by [BBSSZ13a, Proposition 3.15 (2)])

𝑀𝛽

=
∑︁
𝛽|=|𝛼|;
𝛽≤ℓ𝛼

𝐾𝛼,𝛽𝑀𝛽 +
∑︁
𝛽|=|𝛼|;

not 𝛽≤ℓ𝛼

0𝑀𝛽

⏟  ⏞  
=0

=
∑︁
𝛽|=|𝛼|;
𝛽≤ℓ𝛼

𝐾𝛼,𝛽𝑀𝛽,

this yields

(the dual immaculate function S*
𝛼 as defined in [BBSSZ13a])

= (the dual immaculate function S*
𝛼 as defined in Definition 2.4.2) .

Hence, Definition 2.4.2 is equivalent to the definition of S*
𝛼 used in [BBSSZ13a]. This

proves Proposition 2.4.3.

It is helpful to think of dual immaculate functions as analogues of Schur func-

tions obtained by replacing semistandard Young tableaux by immaculate tableaux.

Definition 2.4.2 is the analogue of the well-known formula 𝑠𝜆 =
∑︀
𝜇⊢|𝜆|

𝑘𝜆,𝜇𝑚𝜇 for any

partition 𝜆, where 𝑠𝜆 denotes the Schur function corresponding to 𝜆, where 𝑚𝜇 de-
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notes the monomial symmetric function corresponding to the partition 𝜇, and where

𝑘𝜆,𝜇 is the (𝜆, 𝜇)-th Kostka number (i.e., the number of semistandard Young tableaux

of shape 𝜆 and content 𝜇). The following formula for the S*
𝛼 (known to the authors

of [BBSSZ13a] but not explicitly stated in their work) should not come as a surprise:

Proposition 2.4.4. Let 𝛼 be a composition. Then,

S*
𝛼 =

∑︁
𝑇 is an immaculate
tableau of shape 𝛼

x𝑇 .

Here, x𝑇 is defined as
∏︀

(𝑖,𝑗)∈𝑌 (𝛼)

𝑥𝑇 (𝑖,𝑗) when 𝑇 is an immaculate tableau of shape 𝛼.

Before we prove this proposition, let us state a fundamental and simple lemma:

Lemma 2.4.5. (a) If 𝐼 is a finite subset of {1, 2, 3, . . .}, then there exists a unique

strictly increasing bijection {1, 2, . . . , |𝐼|} → 𝐼. Let us denote this bijection by 𝑟𝐼 .

Its inverse 𝑟−1
𝐼 is obviously again a strictly increasing bijection.

Now, let 𝛼 be a composition.

(b) If 𝑇 is an immaculate tableau of shape 𝛼, then 𝑟−1
𝑇 (𝑌 (𝛼)) ∘ 𝑇 (remember

that immaculate tableaux are maps from 𝑌 (𝛼) to {1, 2, 3, . . .}) is an immaculate

tableau of shape 𝛼 as well, and has the additional property that there exists a

unique composition 𝛽 of |𝛼| such that 𝑟−1
𝑇 (𝑌 (𝛼)) ∘ 𝑇 has content 𝛽.

(c) Let 𝑄 be an immaculate tableau of shape 𝛼. Let 𝛽 be a composition of |𝛼|

such that 𝑄 has content 𝛽. Then,

𝑀𝛽 =
∑︁

𝑇 is an immaculate
tableau of shape 𝛼;

𝑟−1
𝑇 (𝑌 (𝛼))

∘𝑇=𝑄

x𝑇 . (2.20)

Proof of Lemma 2.4.5. (a) Lemma 2.4.5 (a) is obvious.

(b) Let 𝑇 be an immaculate tableau of shape 𝛼. Then, 𝑟−1
𝑇 (𝑌 (𝛼))∘𝑇 is an immaculate
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tableau of shape 𝛼 as well24. Let 𝑅 = 𝑟−1
𝑇 (𝑌 (𝛼)) ∘ 𝑇 : 𝑌 (𝛼) → {1, 2, . . . , |𝑇 (𝑌 (𝛼))|}.

Then,

𝑅⏟ ⏞ 
=𝑟−1

𝑇 (𝑌 (𝛼))
∘𝑇

(𝑌 (𝛼)) =
(︁
𝑟−1
𝑇 (𝑌 (𝛼)) ∘ 𝑇

)︁
(𝑌 (𝛼))

= 𝑟−1
𝑇 (𝑌 (𝛼)) (𝑇 (𝑌 (𝛼))) = {1, 2, . . . , |𝑇 (𝑌 (𝛼))|} .

Hence, (|𝑅−1 (1)| , |𝑅−1 (2)| , . . . , |𝑅−1 (|𝑇 (𝑌 (𝛼))|)|) is a composition. Therefore, there

exists a unique composition 𝛽 of |𝛼| such that 𝑅 has content 𝛽 (namely, 𝛽 =

(|𝑅−1 (1)| , |𝑅−1 (2)| , . . . , |𝑅−1 (|𝑇 (𝑌 (𝛼))|)|)). In other words, there exists a unique

composition 𝛽 of |𝛼| such that 𝑟−1
𝑇 (𝑌 (𝛼)) ∘ 𝑇 has content 𝛽 (since 𝑅 = 𝑟−1

𝑇 (𝑌 (𝛼)) ∘ 𝑇 ).

This completes the proof of Lemma 2.4.5 (b).

(c) If 𝑇 is a map 𝑌 (𝛼) → {1, 2, 3, . . .} satisfying 𝑟−1
𝑇 (𝑌 (𝛼)) ∘ 𝑇 = 𝑄, then 𝑇 is

automatically an immaculate tableau of shape 𝛼 25. Hence, the summation sign

“
∑︀

𝑇 is an immaculate
tableau of shape 𝛼;

𝑟−1
𝑇 (𝑌 (𝛼))

∘𝑇=𝑄

” on the right hand side of (2.20) can be replaced by “
∑︀

𝑇 :𝑌 (𝛼)→{1,2,3,...};
𝑟−1
𝑇 (𝑌 (𝛼))

∘𝑇=𝑄

”.

Hence, ∑︁
𝑇 is an immaculate
tableau of shape 𝛼;

𝑟−1
𝑇 (𝑌 (𝛼))

∘𝑇=𝑄

x𝑇 =
∑︁

𝑇 :𝑌 (𝛼)→{1,2,3,...};
𝑟−1
𝑇 (𝑌 (𝛼))

∘𝑇=𝑄

x𝑇 .

Now, let us write the composition 𝛽 in the form (𝛽1, 𝛽2, . . . , 𝛽ℓ). Then, we have

⃒⃒
𝑄−1 (𝑘)

⃒⃒
=

⎧⎨⎩ 𝛽𝑘, if 𝑘 ≤ ℓ;

0, if 𝑘 > ℓ
for every positive integer 𝑘 (2.21)

(since 𝑄 has content 𝛽). Hence, 𝑄 (𝑌 (𝛼)) = {1, 2, . . . , ℓ}. As a consequence, the maps

24This is because the map 𝑟−1
𝑇 (𝑌 (𝛼)) is strictly increasing, and the inequality conditions which

decide whether a map 𝑌 (𝛼) → {1, 2, 3, . . .} is an immaculate tableau of shape 𝛼 are preserved under
composition with a strictly increasing map.

25Proof. Let 𝑇 be a map 𝑌 (𝛼) → {1, 2, 3, . . .} satisfying 𝑟−1
𝑇 (𝑌 (𝛼)) ∘𝑇 = 𝑄. Thus, 𝑇 = 𝑟𝑇 (𝑌 (𝛼)) ∘𝑄.

Since 𝑄 is an immaculate tableau of shape 𝛼, this shows that 𝑇 is an immaculate tableau of shape
𝛼 (since the map 𝑟𝑇 (𝑌 (𝛼)) is strictly increasing, and the inequality conditions which decide whether
a map 𝑌 (𝛼) → {1, 2, 3, . . .} is an immaculate tableau of shape 𝛼 are preserved under composition
with a strictly increasing map).
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𝑇 : 𝑌 (𝛼) → {1, 2, 3, . . .} satisfying 𝑟−1
𝑇 (𝑌 (𝛼)) ∘𝑇 = 𝑄 are in 1-to-1 correspondence with

the ℓ-element subsets of {1, 2, 3, . . .} (the correspondence sends a map 𝑇 to the ℓ-

element subset 𝑇 (𝑌 (𝛼)), and the inverse correspondence sends an ℓ-element subset 𝐼

to the map 𝑟𝐼 ∘𝑄). But these latter subsets, in turn, are in 1-to-1 correspondence with

the strictly increasing length-ℓ sequences (𝑖1 < 𝑖2 < · · · < 𝑖ℓ) of positive integers (the

correspondence sends a subset 𝐺 to the sequence (𝑟𝐺 (1) , 𝑟𝐺 (2) , . . . , 𝑟𝐺 (ℓ)); of course,

this latter sequence is just the list of all elements of 𝐺 in increasing order). Composing

these two 1-to-1 correspondences, we conclude that the maps 𝑇 : 𝑌 (𝛼) → {1, 2, 3, . . .}

satisfying 𝑟−1
𝑇 (𝑌 (𝛼)) ∘ 𝑇 = 𝑄 are in 1-to-1 correspondence with the strictly increasing

length-ℓ sequences (𝑖1 < 𝑖2 < · · · < 𝑖ℓ) of positive integers (the correspondence sends a

map 𝑇 to the sequence
(︀
𝑟𝑇 (𝑌 (𝛼)) (1) , 𝑟𝑇 (𝑌 (𝛼)) (2) , . . . , 𝑟𝑇 (𝑌 (𝛼)) (ℓ)

)︀
), and this correspon-

dence has the property that x𝑇 = 𝑥𝛽1

𝑖1
𝑥𝛽2

𝑖2
· · ·𝑥𝛽ℓ

𝑖ℓ
whenever some map 𝑇 gets sent to

some sequence (𝑖1 < 𝑖2 < · · · < 𝑖ℓ) (because if some map 𝑇 gets sent to some sequence

(𝑖1 < 𝑖2 < · · · < 𝑖ℓ), then (𝑖1, 𝑖2, . . . , 𝑖ℓ) =
(︀
𝑟𝑇 (𝑌 (𝛼)) (1) , 𝑟𝑇 (𝑌 (𝛼)) (2) , . . . , 𝑟𝑇 (𝑌 (𝛼)) (ℓ)

)︀
,

so that every 𝑘 ∈ {1, 2, . . . , ℓ} satisfies 𝑖𝑘 = 𝑟𝑇 (𝑌 (𝛼)) (𝑘), and now we have

x𝑇 =
∏︁

(𝑖,𝑗)∈𝑌 (𝛼)

𝑥𝑇 (𝑖,𝑗) =
ℓ∏︁

𝑘=1

∏︁
(𝑖,𝑗)∈𝑌 (𝛼);
𝑄(𝑖,𝑗)=𝑘

𝑥𝑇 (𝑖,𝑗)⏟  ⏞  
=𝑥𝑟𝑇 (𝑌 (𝛼))(𝑄(𝑖,𝑗))

(since 𝑇 (𝑖,𝑗)=𝑟𝑇 (𝑌 (𝛼))(𝑄(𝑖,𝑗))

(because 𝑟−1
𝑇 (𝑌 (𝛼))

∘𝑇=𝑄

and thus 𝑇=𝑟𝑇 (𝑌 (𝛼))∘𝑄))

(since 𝑄 (𝑌 (𝛼)) = {1, 2, . . . , ℓ})

=
ℓ∏︁

𝑘=1

∏︁
(𝑖,𝑗)∈𝑌 (𝛼);
𝑄(𝑖,𝑗)=𝑘⏟  ⏞  

=
∏︀

(𝑖,𝑗)∈𝑄−1(𝑘)

𝑥𝑟𝑇 (𝑌 (𝛼))(𝑄(𝑖,𝑗))⏟  ⏞  
=𝑥𝑟𝑇 (𝑌 (𝛼))(𝑘)

(since 𝑄(𝑖,𝑗)=𝑘)

=
ℓ∏︁

𝑘=1

∏︁
(𝑖,𝑗)∈𝑄−1(𝑘)

𝑥𝑟𝑇 (𝑌 (𝛼))(𝑘)⏟  ⏞  
=𝑥
|𝑄−1(𝑘)|
𝑟𝑇 (𝑌 (𝛼))(𝑘)

=𝑥
|𝑄−1(𝑘)|
𝑖𝑘

(since 𝑟𝑇 (𝑌 (𝛼))(𝑘)=𝑖𝑘)

=
ℓ∏︁

𝑘=1

𝑥
|𝑄−1(𝑘)|
𝑖𝑘⏟  ⏞  
=𝑥

𝛽𝑘
𝑖𝑘

(since |𝑄−1(𝑘)|=𝛽𝑘

(by (2.21)))

=
ℓ∏︁

𝑘=1

𝑥𝛽𝑘
𝑖𝑘

= 𝑥𝛽1

𝑖1
𝑥𝛽2

𝑖2
· · ·𝑥𝛽ℓ

𝑖ℓ
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). Hence, ∑︁
𝑇 :𝑌 (𝛼)→{1,2,3,...};

𝑟−1
𝑇 (𝑌 (𝛼))

∘𝑇=𝑄

x𝑇 =
∑︁

1≤𝑖1<𝑖2<···<𝑖ℓ

𝑥𝛽1

𝑖1
𝑥𝛽2

𝑖2
· · ·𝑥𝛽ℓ

𝑖ℓ
= 𝑀𝛽

(by the definition of 𝑀𝛽). Altogether, we thus have

∑︁
𝑇 is an immaculate
tableau of shape 𝛼;

𝑟−1
𝑇 (𝑌 (𝛼))

∘𝑇=𝑄

x𝑇 =
∑︁

𝑇 :𝑌 (𝛼)→{1,2,3,...};
𝑟−1
𝑇 (𝑌 (𝛼))

∘𝑇=𝑄

x𝑇 = 𝑀𝛽.

This proves Lemma 2.4.5 (c).

Proof of Proposition 2.4.4. For every finite subset 𝐼 of {1, 2, 3, . . .}, we shall use the

notation 𝑟𝐼 introduced in Lemma 2.4.5 (a). Recall Lemma 2.4.5 (b); it says that if

𝑇 is an immaculate tableau of shape 𝛼, then 𝑟−1
𝑇 (𝑌 (𝛼)) ∘ 𝑇 is an immaculate tableau of

shape 𝛼 as well, and has the additional property that there exists a unique composition

𝛽 of |𝛼| such that 𝑟−1
𝑇 (𝑌 (𝛼)) ∘ 𝑇 has content 𝛽.

Now,

S*
𝛼 =

∑︁
𝛽|=|𝛼|

𝐾𝛼,𝛽𝑀𝛽⏟  ⏞  
=

∑︀
𝑄 is an immaculate
tableau of shape 𝛼

and content 𝛽

𝑀𝛽

(by the definition of 𝐾𝛼,𝛽)

=
∑︁
𝛽|=|𝛼|

∑︁
𝑄 is an immaculate
tableau of shape 𝛼

and content 𝛽

𝑀𝛽. (2.22)

But (2.20) shows that every composition 𝛽 of |𝛼| satisfies

∑︁
𝑄 is an immaculate
tableau of shape 𝛼

and content 𝛽

𝑀𝛽 =
∑︁

𝑄 is an immaculate
tableau of shape 𝛼

and content 𝛽

∑︁
𝑇 is an immaculate
tableau of shape 𝛼;

𝑟−1
𝑇 (𝑌 (𝛼))

∘𝑇=𝑄

x𝑇 =
∑︁

𝑇 is an immaculate
tableau of shape 𝛼

such that 𝑟−1
𝑇 (𝑌 (𝛼))

∘𝑇
has content 𝛽

x𝑇

(because for every immaculate tableau 𝑇 of shape 𝛼, the map 𝑟−1
𝑇 (𝑌 (𝛼)) ∘ 𝑇 is an
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immaculate tableau of shape 𝛼 as well). Substituting this into (2.22), we obtain

S*
𝛼 =

∑︁
𝛽|=|𝛼|

∑︁
𝑄 is an immaculate
tableau of shape 𝛼

and content 𝛽

𝑀𝛽

⏟  ⏞  
=

∑︀
𝑇 is an immaculate
tableau of shape 𝛼

such that 𝑟−1
𝑇 (𝑌 (𝛼))

∘𝑇
has content 𝛽

x𝑇

=
∑︁
𝛽|=|𝛼|

∑︁
𝑇 is an immaculate
tableau of shape 𝛼

such that 𝑟−1
𝑇 (𝑌 (𝛼))

∘𝑇
has content 𝛽

x𝑇 =
∑︁

𝑇 is an immaculate
tableau of shape 𝛼

x𝑇

(because for every immaculate tableau 𝑇 of shape 𝛼, there exists a unique composition

𝛽 of |𝛼| such that 𝑟−1
𝑇 (𝑌 (𝛼)) ∘ 𝑇 has content 𝛽), whence Proposition 2.4.4 follows.

Corollary 2.4.6. Let 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) be a composition with ℓ > 0. Let 𝛼

denote the composition (𝛼2, 𝛼3, . . . , 𝛼ℓ) of |𝛼| − 𝛼1. Then,

S*
𝛼 = ℎ𝛼1 ≺ S*

𝛼.

Here, ℎ𝑛 denotes the 𝑛-th complete homogeneous symmetric function for every

𝑛 ∈ N.

Proof of Corollary 2.4.6. Proposition 2.4.4 shows that

S*
𝛼 =

∑︁
𝑇 is an immaculate
tableau of shape 𝛼

x𝑇 =
∑︁

𝑄 is an immaculate
tableau of shape 𝛼

x𝑄 (2.23)

(here, we have renamed the summation index 𝑇 as 𝑄).

Let 𝑛 = 𝛼1. If 𝑖1, 𝑖2, . . . , 𝑖𝑛 are positive integers satisfying 𝑖1 ≤ 𝑖2 ≤ · · · ≤ 𝑖𝑛, and
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if 𝑇 is an immaculate tableau of shape 𝛼, then

(𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛) ≺ x𝑇

=

⎧⎨⎩ 𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛x𝑇 , if min (Supp (𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛)) < min (Supp (x𝑇 )) ;

0, if min (Supp (𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛)) ≥ min (Supp (x𝑇 ))

(by the definition of ≺ on monomials)

=

⎧⎨⎩ 𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛x𝑇 , if 𝑖1 < min (𝑇 (𝑌 (𝛼))) ;

0, if 𝑖1 ≥ min (𝑇 (𝑌 (𝛼)))
(2.24)

(since min (Supp (𝑥𝑖1𝑥𝑖2 · · · 𝑥𝑖𝑛)) = 𝑖1 and Supp (x𝑇 ) = 𝑇 (𝑌 (𝛼))) .

But from 𝑛 = 𝛼1, we obtain ℎ𝑛 = ℎ𝛼1 , so that ℎ𝛼1 = ℎ𝑛 =
∑︀

𝑖1≤𝑖2≤···≤𝑖𝑛

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛

and S*
𝛼 =

∑︀
𝑇 is an immaculate
tableau of shape 𝛼

x𝑇 (by Proposition 2.4.4). Hence,

ℎ𝛼1 ≺ S*
𝛼

=

(︃ ∑︁
𝑖1≤𝑖2≤···≤𝑖𝑛

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛

)︃
≺

⎛⎜⎝ ∑︁
𝑇 is an immaculate
tableau of shape 𝛼

x𝑇

⎞⎟⎠
=

∑︁
𝑖1≤𝑖2≤···≤𝑖𝑛

∑︁
𝑇 is an immaculate
tableau of shape 𝛼

(𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛) ≺ x𝑇⏟  ⏞  
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛x𝑇 , if 𝑖1 < min (𝑇 (𝑌 (𝛼))) ;

0, if 𝑖1 ≥ min (𝑇 (𝑌 (𝛼)))
(by (2.24))

=
∑︁

𝑖1≤𝑖2≤···≤𝑖𝑛

∑︁
𝑇 is an immaculate
tableau of shape 𝛼

⎧⎨⎩ 𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛x𝑇 , if 𝑖1 < min (𝑇 (𝑌 (𝛼))) ;

0, if 𝑖1 ≥ min (𝑇 (𝑌 (𝛼)))

=
∑︁

𝑖1≤𝑖2≤···≤𝑖𝑛;
𝑇 is an immaculate
tableau of shape 𝛼;
𝑖1<min(𝑇 (𝑌 (𝛼)))

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛x𝑇 . (2.25)

We need to check that this equals S*
𝛼 =

∑︀
𝑄 is an immaculate
tableau of shape 𝛼

x𝑄.

Now, let us define a map Φ from:
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∙ the set of all pairs ((𝑖1, 𝑖2, . . . , 𝑖𝑛) , 𝑇 ), where 𝑖1, 𝑖2, . . ., 𝑖𝑛 are positive integers

satisfying 𝑖1 ≤ 𝑖2 ≤ · · · ≤ 𝑖𝑛, and where 𝑇 is an immaculate tableau of shape 𝛼

satisfying 𝑖1 < min (𝑇 (𝑌 (𝛼)))

to:

∙ the set of all immaculate tableaux of shape 𝛼.

Namely, we define the image of a pair ((𝑖1, 𝑖2, . . . , 𝑖𝑛) , 𝑇 ) under Φ to be the im-

maculate tableau obtained by adding a new row, filled with the entries 𝑖1, 𝑖2, . . . , 𝑖𝑛

(from left to right), to the top26 of the tableau 𝑇 27.

This map Φ is a bijection28, and has the property that if 𝑄 denotes the image of

a pair ((𝑖1, 𝑖2, . . . , 𝑖𝑛) , 𝑇 ) under the bijection Φ, then x𝑄 = 𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛x𝑇 . Hence,

∑︁
𝑄 is an immaculate
tableau of shape 𝛼

x𝑄 =
∑︁

𝑖1≤𝑖2≤···≤𝑖𝑛;
𝑇 is an immaculate
tableau of shape 𝛼;
𝑖1<min(𝑇 (𝑌 (𝛼)))

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛x𝑇 .

In light of (2.23) and (2.25), this rewrites as S*
𝛼 = ℎ𝛼1 ≺ S*

𝛼. So Corollary 2.4.6 is

proven.

Corollary 2.4.7. Let 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) be a composition. Then,

S*
𝛼 = ℎ𝛼1 ≺ (ℎ𝛼2 ≺ (· · · ≺ (ℎ𝛼ℓ

≺ 1) · · · )) .

Proof of Corollary 2.4.7. We prove Corollary 2.4.7 by induction over ℓ:

26Here, we are using the graphical representation of immaculate tableaux introduced in Definition
2.4.1.

27Formally speaking, this means that the image of ((𝑖1, 𝑖2, . . . , 𝑖𝑛) , 𝑇 ) is the map 𝑌 (𝛼) →

{1, 2, 3, . . .} which sends every (𝑢, 𝑣) ∈ 𝑌 (𝛼) to
{︂

𝑖𝑣, if 𝑢 = 1;
𝑇 (𝑢− 1, 𝑣) , if 𝑢 ̸= 1

. Proving that

this map is an immaculate tableau is easy.
28Proof. The injectivity of the map Φ is obvious. Its surjectivity follows from the observation

that if 𝑄 is an immaculate tableau of shape 𝛼, then the first entry of its top row is smaller than the
smallest entry of the immaculate tableau formed by all other rows of 𝑄. (This is a consequence of
(2.19), applied to 𝑄 instead of 𝑇 .)
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Induction base: If ℓ = 0, then 𝛼 = ∅ and thus S*
𝛼 = S*

∅ = 1. But if ℓ = 0,

then we also have ℎ𝛼1 ≺ (ℎ𝛼2 ≺ (· · · ≺ (ℎ𝛼ℓ
≺ 1) · · · )) = 1. Hence, if ℓ = 0, then

S*
𝛼 = 1 = ℎ𝛼1 ≺ (ℎ𝛼2 ≺ (· · · ≺ (ℎ𝛼ℓ

≺ 1) · · · )). Thus, Corollary 2.4.7 is proven when

ℓ = 0. The induction base is complete.

Induction step: Let 𝐿 be a positive integer. Assume that Corollary 2.4.7 holds for

ℓ = 𝐿− 1. We now need to prove that Corollary 2.4.7 by holds for ℓ = 𝐿.

So let 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) be a composition with ℓ = 𝐿. Then, ℓ = 𝐿 > 0. Now,

let 𝛼 denote the composition (𝛼2, 𝛼3, . . . , 𝛼ℓ) of |𝛼| −𝛼1. Then, Corollary 2.4.6 yields

S*
𝛼 = ℎ𝛼1 ≺ S*

𝛼. But by our induction hypothesis, we can apply Corollary 2.4.7 to

𝛼 = (𝛼2, 𝛼3, . . . , 𝛼ℓ) instead of 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) (since ℓ− 1 = 𝐿− 1). As a result,

we obtain S*
𝛼 = ℎ𝛼2 ≺ (ℎ𝛼3 ≺ (· · · ≺ (ℎ𝛼ℓ

≺ 1) · · · )). Hence,

S*
𝛼 = ℎ𝛼1 ≺ S*

𝛼⏟ ⏞ 
=ℎ𝛼2 ≺(ℎ𝛼3 ≺(···≺(ℎ𝛼ℓ

≺1)··· ))

= ℎ𝛼1 ≺ (ℎ𝛼2 ≺ (ℎ𝛼3 ≺ (· · · ≺ (ℎ𝛼ℓ
≺ 1) · · · )))

= ℎ𝛼1 ≺ (ℎ𝛼2 ≺ (· · · ≺ (ℎ𝛼ℓ
≺ 1) · · · )) .

Now, let us forget that we fixed 𝛼. We thus have shown that

S*
𝛼 = ℎ𝛼1 ≺ (ℎ𝛼2 ≺ (· · · ≺ (ℎ𝛼ℓ

≺ 1) · · · )) for every composition 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ)

which satisfies ℓ = 𝐿. In other words, Corollary 2.4.7 holds for ℓ = 𝐿. This completes

the induction step. The induction proof of Corollary 2.4.7 is thus complete.

2.5 An alternative description of ℎ𝑚 ≺

In this section, we shall also use the Hopf algebra of noncommutative symmetric

functions. This Hopf algebra (a noncommutative one, for a change) is denoted by

NSym and has been discussed in [GriRei15, Section 5] and [HaGuKi10, Chapter 6];

all we need to know about it are the following properties:

∙ There is a nondegenerate pairing between NSym and QSym, that is, a non-

degenerate k-bilinear form NSym×QSym → k. We shall denote this bilinear
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form by (·, ·). This k-bilinear form is a Hopf algebra pairing, i.e., it satisfies

(𝑎𝑏, 𝑐) =
∑︁
(𝑐)

(︀
𝑎, 𝑐(1)

)︀ (︀
𝑏, 𝑐(2)

)︀
(2.26)

for all 𝑎 ∈ NSym , 𝑏 ∈ NSym and 𝑐 ∈ QSym;

(1, 𝑐) = 𝜀 (𝑐) for all 𝑐 ∈ QSym;

∑︁
(𝑎)

(︀
𝑎(1), 𝑏

)︀ (︀
𝑎(2), 𝑐

)︀
= (𝑎, 𝑏𝑐)

for all 𝑎 ∈ NSym , 𝑏 ∈ QSym and 𝑐 ∈ QSym;

(𝑎, 1) = 𝜀 (𝑎) for all 𝑎 ∈ NSym;

(𝑆 (𝑎) , 𝑏) = (𝑎, 𝑆 (𝑏)) for all 𝑎 ∈ NSym and 𝑏 ∈ QSym

(where we use Sweedler’s notation).

∙ There is a basis of the k-module NSym which is dual to the fundamental basis

(𝐹𝛼)𝛼∈Comp of QSym with respect to the bilinear form (·, ·). This basis is called

the ribbon basis and will be denoted by (𝑅𝛼)𝛼∈Comp.

Both of these properties are immediate consequences of the definitions of NSym

and of (𝑅𝛼)𝛼∈Comp given in [GriRei15, Section 5] (although other sources define these

objects differently, and then the properties no longer are immediate). The notations

we are using here are the same as the ones used in [GriRei15, Section 5] (except that

[GriRei15, Section 5] calls 𝐿𝛼 what we denote by 𝐹𝛼), and only slightly differ from

those in [BBSSZ13a] (namely, [BBSSZ13a] denotes the pairing (·, ·) by ⟨·, ·⟩ instead).

We need some more definitions. For any 𝑔 ∈ NSym, let L𝑔 : NSym → NSym

denote the left multiplication by 𝑔 on NSym (that is, the k-linear map NSym →

NSym, 𝑓 ↦→ 𝑔𝑓). For any 𝑔 ∈ NSym, let 𝑔⊥ : QSym → QSym be the k-linear map

adjoint to L𝑔 : NSym → NSym with respect to the pairing (·, ·) between NSym and
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QSym. Thus, for any 𝑔 ∈ NSym, 𝑎 ∈ NSym and 𝑐 ∈ QSym, we have

(︀
𝑎, 𝑔⊥𝑐

)︀
=

⎛⎝L𝑔 𝑎⏟ ⏞ 
=𝑔𝑎

, 𝑐

⎞⎠ = (𝑔𝑎, 𝑐) . (2.27)

The following fact is well-known (and also is an easy formal consequence of the defi-

nition of 𝑔⊥ and of (2.26)):

Lemma 2.5.1. Every 𝑔 ∈ NSym and 𝑓 ∈ QSym satisfy

𝑔⊥𝑓 =
∑︁
(𝑓)

(︀
𝑔, 𝑓(1)

)︀
𝑓(2). (2.28)

Proof of Lemma 2.5.1. Let 𝑔 ∈ NSym and 𝑓 ∈ QSym. For every 𝑎 ∈ NSym, we have

(︀
𝑎, 𝑔⊥𝑓

)︀
=

⎛⎜⎜⎝ L𝑔 𝑎⏟ ⏞ 
=𝑔𝑎

(by the definition of L𝑔 )

, 𝑓

⎞⎟⎟⎠
⎛⎝ since the map 𝑔⊥ is adjoint to L𝑔

with respect to the pairing (·, ·)

⎞⎠

= (𝑔𝑎, 𝑓) =
∑︁
(𝑓)

(︀
𝑔, 𝑓(1)

)︀ (︀
𝑎, 𝑓(2)

)︀ ⎛⎝ by (2.26), applied to 𝑔, 𝑎 and 𝑓

instead of 𝑎, 𝑏 and 𝑐

⎞⎠
=

⎛⎝𝑎,
∑︁
(𝑓)

(︀
𝑔, 𝑓(1)

)︀
𝑓(2)

⎞⎠ (since the pairing (·, ·) is k-bilinear) .

Since the pairing (·, ·) is nondegenerate, this entails that 𝑔⊥𝑓 =
∑︀
(𝑓)

(︀
𝑔, 𝑓(1)

)︀
𝑓(2). This

proves Lemma 2.5.1.

For any composition 𝛼, we define a composition 𝜔 (𝛼) as follows: Let 𝑛 = |𝛼|, and

write 𝛼 as 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ). Let rev𝛼 denote the composition (𝛼ℓ, 𝛼ℓ−1, . . . , 𝛼1)

of 𝑛. Then, 𝜔 (𝛼) shall be the unique composition 𝛽 of 𝑛 which satisfies 𝐷 (𝛽) =

{1, 2, . . . , 𝑛− 1}∖𝐷 (rev𝛼). (This definition is identical with that in [GriRei15, Defi-

nition 5.22]. Some authors denote 𝜔 (𝛼) by 𝛼′ instead.) We notice that 𝜔 (𝜔 (𝛼)) = 𝛼

for any composition 𝛼.

Here is a simple property of the composition 𝜔 (𝛼) that will later be used:
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Proposition 2.5.2. (a) We have 𝜔 ([𝛼, 𝛽]) = 𝜔 (𝛽) ⊙ 𝜔 (𝛼) for any two composi-

tions 𝛼 and 𝛽.

(b) We have 𝜔 (𝛼⊙ 𝛽) = [𝜔 (𝛽) , 𝜔 (𝛼)] for any two compositions 𝛼 and 𝛽.

(c) We have 𝜔 (𝜔 (𝛾)) = 𝛾 for every composition 𝛾.

Proof of Proposition 2.5.2. For any composition 𝛼, we define a composition rev𝛼 as

follows: Let 𝑛 = |𝛼|, and write 𝛼 as 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ). Let rev𝛼 denote the

composition (𝛼ℓ, 𝛼ℓ−1, . . . , 𝛼1) of 𝑛. (This definition of rev𝛼 is the same as the one

we gave above during the definition of 𝜔 (𝛼).) Clearly,

|rev 𝛾| = |𝛾| for any composition 𝛾. (2.29)

It is easy to see that

rev ([𝛼, 𝛽]) = [rev 𝛽, rev𝛼] and (2.30)

rev (𝛼⊙ 𝛽) = (rev 𝛽)⊙ (rev𝛼) (2.31)

for any two compositions 𝛼 and 𝛽.

Recall that a composition 𝛾 of a nonnegative integer 𝑛 is uniquely determined by

the set 𝐷 (𝛾) and the number 𝑛. Thus, if 𝛾1 and 𝛾2 are two compositions of one and

the same nonnegative integer 𝑛 satisfying 𝐷 (𝛾1) = 𝐷 (𝛾2), then

𝛾1 = 𝛾2. (2.32)

For every composition 𝛾, we define a composition 𝜌 (𝛾) as follows: Let 𝑛 = |𝛾|. Let

𝜌 (𝛾) be the unique composition 𝛽 of 𝑛 which satisfies 𝐷 (𝛽) = {1, 2, . . . , 𝑛− 1}∖𝐷 (𝛾).

(This is well-defined, because for every subset 𝑇 of {1, 2, . . . , 𝑛− 1}, there exists a

unique composition 𝜏 of 𝑛 which satisfies 𝐷 (𝜏) = 𝑇 .) Notice that

|𝜌 (𝛾)| = |𝛾| for any composition 𝛾. (2.33)
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Also, if 𝑛 ∈ N, and if 𝛾 is a composition of 𝑛, then

𝐷 (𝜌 (𝛾)) = {1, 2, . . . , 𝑛− 1} ∖𝐷 (𝛾) (2.34)

(by the definition of 𝜌 (𝛾)).

Notice also that

𝜔 (𝛼) = 𝜌 (rev𝛼) for any composition 𝛼 (2.35)

29.

Now, we shall prove that

𝜌 ([𝛼, 𝛽]) = 𝜌 (𝛼)⊙ 𝜌 (𝛽) (2.36)

for any two compositions 𝛼 and 𝛽.

Proof of (2.36): Let 𝛼 and 𝛽 be two compositions. Let 𝑝 = |𝛼| and 𝑞 = |𝛽|; thus,

𝛼 and 𝛽 are compositions of 𝑝 and 𝑞, respectively. We WLOG assume that both

compositions 𝛼 and 𝛽 are nonempty (since otherwise, (2.36) is fairly obvious). The

composition 𝛼 is a composition of 𝑝. Thus, 𝑝 > 0 (since 𝛼 is nonempty). Similarly,

𝑞 > 0.

Hence, [𝛼, 𝛽] is a composition of 𝑝 + 𝑞 satisfying 𝐷 ([𝛼, 𝛽]) = 𝐷 (𝛼) ∪ {𝑝} ∪

29Proof of (2.35): Let 𝛼 be a composition. Let 𝑛 = |𝛼|. Thus, 𝛼 is a composition of 𝑛. Hence, 𝜔 (𝛼)
is a composition of 𝑛 as well. Also, rev𝛼 is a composition of 𝑛. Now, the definition of 𝜌 (rev𝛼) shows
that 𝜌 (rev𝛼) is the unique composition 𝛽 of 𝑛 which satisfies 𝐷 (𝛽) = {1, 2, . . . , 𝑛− 1} ∖𝐷 (rev𝛼).
Hence, 𝜌 (rev𝛼) is a composition of 𝑛 and satisfies 𝐷 (𝜌 (rev𝛼)) = {1, 2, . . . , 𝑛− 1} ∖𝐷 (rev𝛼).

On the other hand, 𝜔 (𝛼) is the unique composition 𝛽 of 𝑛 which satisfies 𝐷 (𝛽) = {1, 2, . . . , 𝑛− 1}∖
𝐷 (rev𝛼) (by the definition of 𝜔 (𝛼)). Thus, 𝜔 (𝛼) is a composition of 𝑛 and satisfies 𝐷 (𝜔 (𝛼)) =
{1, 2, . . . , 𝑛− 1} ∖𝐷 (rev𝛼).

Hence,
𝐷 (𝜌 (rev𝛼)) = {1, 2, . . . , 𝑛− 1} ∖𝐷 (rev𝛼) = 𝐷 (𝜔 (𝛼)) .

Applying (2.32) to 𝛾1 = 𝜌 (rev𝛼) and 𝛾2 = 𝜔 (𝛼), we therefore obtain 𝜌 (rev𝛼) = 𝜔 (𝛼). Qed.
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(𝐷 (𝛽) + 𝑝) (by Lemma 2.3.9 (b)). The definition of 𝜌 ([𝛼, 𝛽]) thus yields

𝐷 (𝜌 ([𝛼, 𝛽])) = {1, 2, . . . , 𝑝+ 𝑞 − 1} ∖ 𝐷 ([𝛼, 𝛽])⏟  ⏞  
=𝐷(𝛼)∪{𝑝}∪(𝐷(𝛽)+𝑝)

= {1, 2, . . . , 𝑝+ 𝑞 − 1} ∖ ({𝑝} ∪𝐷 (𝛼) ∪ (𝐷 (𝛽) + 𝑝)) . (2.37)

Applying (2.33) to 𝛾 = 𝛼, we obtain |𝜌 (𝛼)| = |𝛼| = 𝑝. Thus, 𝜌 (𝛼) is a composition

of 𝑝. Similarly, 𝜌 (𝛽) is a composition of 𝑞. Thus, Lemma 2.3.9 (a) (applied to 𝜌 (𝛼)

and 𝜌 (𝛽) instead of 𝛼 and 𝛽) shows that 𝜌 (𝛼) ⊙ 𝜌 (𝛽) is a composition of 𝑝 + 𝑞

satisfying 𝐷 (𝜌 (𝛼)⊙ 𝜌 (𝛽)) = 𝐷 (𝜌 (𝛼)) ∪ (𝐷 (𝜌 (𝛽)) + 𝑝). Also, applying (2.33) to

𝛾 = [𝛼, 𝛽], we obtain |𝜌 ([𝛼, 𝛽])| = |[𝛼, 𝛽]| = 𝑝 + 𝑞 (since [𝛼, 𝛽] is a composition of

𝑝+ 𝑞). In other words, 𝜌 ([𝛼, 𝛽]) is a composition of 𝑝+ 𝑞.

But the definition of 𝜌 (𝛼) shows that 𝐷 (𝜌 (𝛼)) = {1, 2, . . . , 𝑝− 1} ∖𝐷 (𝛼). Also,

the definition of 𝜌 (𝛽) shows that 𝐷 (𝜌 (𝛽)) = {1, 2, . . . , 𝑞 − 1} ∖𝐷 (𝛽). Hence,

𝐷 (𝜌 (𝛽))⏟  ⏞  
={1,2,...,𝑞−1}∖𝐷(𝛽)

+𝑝 = ({1, 2, . . . , 𝑞 − 1} ∖𝐷 (𝛽)) + 𝑝

= ({1, 2, . . . , 𝑞 − 1}+ 𝑝)⏟  ⏞  
={𝑝+1,𝑝+2,...,𝑝+𝑞−1}

∖ (𝐷 (𝛽) + 𝑝)

= {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+ 𝑞 − 1} ∖ (𝐷 (𝛽) + 𝑝) .

Also, 𝐷 (𝛽) ⊆ {1, 2, . . . , 𝑞 − 1}, so that

𝐷 (𝛽) + 𝑝 ⊆ {1, 2, . . . , 𝑞 − 1}+ 𝑝 = {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+ 𝑞 − 1}.

Now, it is well-known that if 𝑋, 𝑌 , 𝑋 ′ and 𝑌 ′ are four sets such that 𝑋 ′ ⊆ 𝑋,

𝑌 ′ ⊆ 𝑌 and 𝑋 ∩ 𝑌 = ∅, then

(𝑋 ∖𝑋 ′) ∪ (𝑌 ∖ 𝑌 ′) = (𝑋 ∪ 𝑌 ) ∖ (𝑋 ′ ∪ 𝑌 ′) . (2.38)
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Now,

𝐷 (𝜌 (𝛼)⊙ 𝜌 (𝛽))

= 𝐷 (𝜌 (𝛼))⏟  ⏞  
={1,2,...,𝑝−1}∖𝐷(𝛼)

∪ (𝐷 (𝜌 (𝛽)) + 𝑝)⏟  ⏞  
={𝑝+1,𝑝+2,...,𝑝+𝑞−1}∖(𝐷(𝛽)+𝑝)

= ({1, 2, . . . , 𝑝− 1} ∖𝐷 (𝛼)) ∪ ({𝑝+ 1, 𝑝+ 2, . . . , 𝑝+ 𝑞 − 1} ∖ (𝐷 (𝛽) + 𝑝))

= ({1, 2, . . . , 𝑝− 1} ∪ {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+ 𝑞 − 1})⏟  ⏞  
={1,2,...,𝑝+𝑞−1}∖{𝑝}

∖ (𝐷 (𝛼) ∪ (𝐷 (𝛽) + 𝑝))⎛⎝ by (2.38), applied to 𝑋 = {1, 2, . . . , 𝑝− 1} ,

𝑌 = {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+ 𝑞 − 1} , 𝑋 ′ = 𝐷 (𝛼) and 𝑌 ′ = 𝐷 (𝛽) + 𝑝

⎞⎠
= ({1, 2, . . . , 𝑝+ 𝑞 − 1} ∖ {𝑝}) ∖ (𝐷 (𝛼) ∪ (𝐷 (𝛽) + 𝑝))

= {1, 2, . . . , 𝑝+ 𝑞 − 1} ∖ ({𝑝} ∪𝐷 (𝛼) ∪ (𝐷 (𝛽) + 𝑝))⏟  ⏞  
=𝐷(𝛼)∪{𝑝}∪(𝐷(𝛽)+𝑝)

= {1, 2, . . . , 𝑝+ 𝑞 − 1} ∖ ({𝑝} ∪𝐷 (𝛼) ∪ (𝐷 (𝛽) + 𝑝))

= 𝐷 (𝜌 ([𝛼, 𝛽])) (by (2.37)) .

Thus, (2.32) (applied to 𝑛 = 𝑝+ 𝑞, 𝛾1 = 𝜌 (𝛼)⊙ 𝜌 (𝛽) and 𝛾2 = 𝜌 ([𝛼, 𝛽])) shows that

𝜌 (𝛼)⊙ 𝜌 (𝛽) = 𝜌 ([𝛼, 𝛽]). This proves (2.36).

(a) Let 𝛼 and 𝛽 be two compositions. Then, (2.35) yields 𝜔 (𝛼) = 𝜌 (rev𝛼). Also,

(2.35) (applied to 𝛽 instead of 𝛼) yields 𝜔 (𝛽) = 𝜌 (rev 𝛽).

From (2.35) (applied to [𝛼, 𝛽] instead of 𝛼), we obtain

𝜔 ([𝛼, 𝛽]) = 𝜌

⎛⎜⎜⎜⎝rev ([𝛼, 𝛽])⏟  ⏞  
=[rev 𝛽,rev𝛼]
(by (2.30))

⎞⎟⎟⎟⎠ = 𝜌 ([rev 𝛽, rev𝛼])

= 𝜌 (rev 𝛽)⏟  ⏞  
=𝜔(𝛽)

⊙ 𝜌 (rev𝛼)⏟  ⏞  
=𝜔(𝛼)

⎛⎝ by (2.36), applied to rev 𝛽

and rev𝛼 instead of 𝛼 and 𝛽

⎞⎠
= 𝜔 (𝛽)⊙ 𝜔 (𝛼) .
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This proves Proposition 2.5.2 (a).

(c) First of all, it is clear that

rev (rev 𝛾) = 𝛾 for every composition 𝛾. (2.39)

Furthermore,

𝜌 (𝜌 (𝛾)) = 𝛾 for every composition 𝛾 (2.40)

30.

On the other hand, if 𝐺 is a set of integers and 𝑟 is an integer, then we let 𝑟 −𝐺

denote the set {𝑟 − 𝑔 | 𝑔 ∈ 𝐺} of integers. Then, for any 𝑛 ∈ N and any composition

𝛾 of 𝑛, we have

𝐷 (rev 𝛾) = 𝑛−𝐷 (𝛾) (2.41)

31.

30Proof of (2.40): Let 𝛾 be a composition. Let 𝑛 = |𝛾|. Thus, 𝛾 is a composition of
𝑛. The definition of 𝜌 (𝛾) shows that 𝜌 (𝛾) is the unique composition 𝛽 of 𝑛 which satisfies
𝐷 (𝛽) = {1, 2, . . . , 𝑛− 1} ∖ 𝐷 (𝛾). Thus, 𝜌 (𝛾) is a composition of 𝑛 and satisfies 𝐷 (𝜌 (𝛾)) =
{1, 2, . . . , 𝑛− 1} ∖𝐷 (𝛾).

Therefore, the definition of 𝜌 (𝜌 (𝛾)) shows that 𝜌 (𝜌 (𝛾)) is the unique composition 𝛽 of 𝑛 which
satisfies 𝐷 (𝛽) = {1, 2, . . . , 𝑛− 1} ∖ 𝐷 (𝜌 (𝛾)). Thus, 𝜌 (𝜌 (𝛾)) is a composition of 𝑛 and satisfies
𝐷 (𝜌 (𝜌 (𝛾))) = {1, 2, . . . , 𝑛− 1} ∖𝐷 (𝜌 (𝛾)). Hence,

𝐷 (𝜌 (𝜌 (𝛾))) = {1, 2, . . . , 𝑛− 1} ∖ 𝐷 (𝜌 (𝛾))⏟  ⏞  
={1,2,...,𝑛−1}∖𝐷(𝛾)

= {1, 2, . . . , 𝑛− 1} ∖ ({1, 2, . . . , 𝑛− 1} ∖𝐷 (𝛾))

= 𝐷 (𝛾) (since 𝐷 (𝛾) ⊆ {1, 2, . . . , 𝑛− 1}) .

Hence, (2.32) (applied to 𝛾1 = 𝜌 (𝜌 (𝛾)) and 𝛾2 = 𝛾) shows that 𝜌 (𝜌 (𝛾)) = 𝛾. This proves (2.40).
31Proof of (2.41): Let 𝑛 ∈ N. Let 𝛾 be a composition of 𝑛. Thus, 𝛾 is a composition satisfying

|𝛾| = 𝑛.
Write 𝛾 in the form 𝛾 = (𝛾1, 𝛾2, . . . , 𝛾ℓ). Then, rev 𝛾 = (𝛾ℓ, 𝛾ℓ−1, . . . , 𝛾1) (by the definition of

rev 𝛾). Also, from 𝛾 = (𝛾1, 𝛾2, . . . , 𝛾ℓ), we obtain |𝛾| = 𝛾1+𝛾2+ · · ·+𝛾ℓ, whence 𝛾1+𝛾2+ · · ·+𝛾ℓ =
|𝛾| = 𝑛. Hence, every 𝑖 ∈ {1, 2, . . . , ℓ− 1} satisfies

𝑛 = 𝛾1 + 𝛾2 + · · ·+ 𝛾ℓ = (𝛾1 + 𝛾2 + · · ·+ 𝛾𝑖) + (𝛾𝑖+1 + 𝛾𝑖+2 + · · ·+ 𝛾ℓ)⏟  ⏞  
=𝛾ℓ+𝛾ℓ−1+···+𝛾𝑖+1

= (𝛾1 + 𝛾2 + · · ·+ 𝛾𝑖) + (𝛾ℓ + 𝛾ℓ−1 + · · ·+ 𝛾𝑖+1) . (2.42)
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Now,

𝜌 (rev 𝛾) = rev (𝜌 (𝛾)) for every composition 𝛾 (2.44)

32.

Now, let 𝛾 be a composition. Then, (2.35) (applied to 𝛼 = 𝛾) yields 𝜔 (𝛾) =

Also, 𝛾 = (𝛾1, 𝛾2, . . . , 𝛾ℓ), so that the definition of 𝐷 (𝛾) yields

𝐷 (𝛾) = {𝛾1, 𝛾1 + 𝛾2, 𝛾1 + 𝛾2 + 𝛾3, . . . , 𝛾1 + 𝛾2 + · · ·+ 𝛾ℓ−1}
= {𝛾1 + 𝛾2 + · · ·+ 𝛾𝑖 | 𝑖 ∈ {1, 2, . . . , ℓ− 1}} . (2.43)

But rev 𝛾 = (𝛾ℓ, 𝛾ℓ−1, . . . , 𝛾1). Hence, the definition of 𝐷 (rev 𝛾) yields

𝐷 (rev 𝛾) = {𝛾ℓ, 𝛾ℓ + 𝛾ℓ−1, 𝛾ℓ + 𝛾ℓ−1 + 𝛾ℓ−2, . . . , 𝛾ℓ + 𝛾ℓ−1 + 𝛾ℓ−2 + · · ·+ 𝛾2}

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩𝛾ℓ + 𝛾ℓ−1 + · · ·+ 𝛾𝑖+1⏟  ⏞  
=𝑛−(𝛾1+𝛾2+···+𝛾𝑖)

(by (2.42))

| 𝑖 ∈ {1, 2, . . . , ℓ− 1}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= {𝑛− (𝛾1 + 𝛾2 + · · ·+ 𝛾𝑖) | 𝑖 ∈ {1, 2, . . . , ℓ− 1}}
= 𝑛− {𝛾1 + 𝛾2 + · · ·+ 𝛾𝑖 | 𝑖 ∈ {1, 2, . . . , ℓ− 1}}⏟  ⏞  

=𝐷(𝛾)
(by (2.43))

= 𝑛−𝐷 (𝛾) .

This proves (2.41).
32Proof of (2.44): Let 𝛾 be a composition. Let 𝑛 = |𝛾|. Thus, 𝛾 is a composition of 𝑛.
Now, (2.33) (applied to rev 𝛾 instead of 𝛾) yields |𝜌 (rev 𝛾)| = |rev 𝛾| = |𝛾| (by (2.29)). Also, (2.29)

(applied to 𝜌 (𝛾) instead of 𝛾) yields |rev (𝜌 (𝛾))| = |𝜌 (𝛾)| = |𝛾| (by (2.33)). Now, |𝜌 (rev 𝛾)| = |𝛾| =
𝑛, |rev 𝛾| = |𝛾| = 𝑛, |𝜌 (𝛾)| = |𝛾| = 𝑛 and |rev (𝜌 (𝛾))| = |𝛾| = 𝑛. Hence, all of 𝜌 (rev 𝛾), rev 𝛾, 𝜌 (𝛾)
and rev (𝜌 (𝛾)) are compositions of 𝑛.

Applying (2.34) to rev 𝛾 instead of 𝛾, we obtain

𝐷 (𝜌 (rev 𝛾)) = {1, 2, . . . , 𝑛− 1}⏟  ⏞  
=𝑛−{1,2,...,𝑛−1}

∖𝐷 (rev 𝛾)⏟  ⏞  
=𝑛−𝐷(𝛾)
(by (2.41))

= (𝑛− {1, 2, . . . , 𝑛− 1}) ∖ (𝑛−𝐷 (𝛾))

= 𝑛− ({1, 2, . . . , 𝑛− 1} ∖𝐷 (𝛾))⏟  ⏞  
=𝐷(𝜌(𝛾))
(by (2.34))

= 𝑛−𝐷 (𝜌 (𝛾)) .

Comparing this with

𝐷 (rev (𝜌 (𝛾))) = 𝑛−𝐷 (𝜌 (𝛾)) (by (2.41), applied to 𝜌 (𝛾) instead of 𝛾) ,

we obtain 𝐷 (𝜌 (rev 𝛾)) = 𝐷 (rev (𝜌 (𝛾))). Hence, (2.32) (applied to 𝛾1 = 𝜌 (rev 𝛾) and 𝛾2 =
rev (𝜌 (𝛾))) yields 𝜌 (rev 𝛾) = rev (𝜌 (𝛾)). This proves (2.44).
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𝜌 (rev 𝛾) = rev (𝜌 (𝛾)) (by (2.44)). But (2.35) (applied to 𝛼 = 𝜔 (𝛾)) yields

𝜔 (𝜔 (𝛾)) = 𝜌

⎛⎜⎝rev

⎛⎜⎝ 𝜔 (𝛾)⏟  ⏞  
=rev(𝜌(𝛾))

⎞⎟⎠
⎞⎟⎠ = 𝜌

⎛⎜⎜⎜⎜⎜⎜⎝rev (rev (𝜌 (𝛾)))⏟  ⏞  
=𝜌(𝛾)

(by (2.39), applied to
𝜌(𝛾) instead of 𝛾)

⎞⎟⎟⎟⎟⎟⎟⎠
= 𝜌 (𝜌 (𝛾)) = 𝛾 (by (2.40)) .

This proves Proposition 2.5.2 (c).

(b) Let 𝛼 and 𝛽 be two compositions. Then, Proposition 2.5.2 (a) (applied to

𝜔 (𝛽) and 𝜔 (𝛼) instead of 𝛼 and 𝛽) yields

𝜔 ([𝜔 (𝛽) , 𝜔 (𝛼)]) = 𝜔 (𝜔 (𝛼))⏟  ⏞  
=𝛼

(by Proposition 2.5.2 (c),
applied to 𝛾=𝛼)

⊙ 𝜔 (𝜔 (𝛽))⏟  ⏞  
=𝛽

(by Proposition 2.5.2 (c),
applied to 𝛾=𝛽)

= 𝛼⊙ 𝛽.

Hence, 𝛼⊙ 𝛽 = 𝜔 ([𝜔 (𝛽) , 𝜔 (𝛼)]). Applying the map 𝜔 to both sides of this equality,

we conclude that

𝜔 (𝛼⊙ 𝛽) = 𝜔 (𝜔 ([𝜔 (𝛽) , 𝜔 (𝛼)])) = [𝜔 (𝛽) , 𝜔 (𝛼)]

(by Proposition 2.5.2 (c), applied to 𝛾 = [𝜔 (𝛽) , 𝜔 (𝛼)]). This proves Proposition

2.5.2 (b).

The notion of 𝜔 (𝛼) gives rise to a simple formula for the antipode 𝑆 of the Hopf

algebra QSym in terms of its fundamental basis:

Proposition 2.5.3. Let 𝛼 be a composition. Then, 𝑆 (𝐹𝛼) = (−1)|𝛼| 𝐹𝜔(𝛼).

This is proven in [GriRei15, Proposition 5.23].

We now state the main result of this note:
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Theorem 2.5.4. Let 𝑓 ∈ QSym and let 𝑚 be a positive integer. For any two

compositions 𝛼 and 𝛽, define a composition 𝛼⊙ 𝛽 as in Proposition 2.3.8. Then,

ℎ𝑚 ≺ 𝑓 =
∑︁

𝛼∈Comp

(−1)|𝛼| 𝐹𝛼⊙(𝑚)𝑅
⊥
𝜔(𝛼)𝑓.

(Here, the sum on the right hand side converges, because all but finitely many

compositions 𝛼 satisfy 𝑅⊥
𝜔(𝛼)𝑓 = 0 for degree reasons.)

The proof is based on the following simple lemma:

Lemma 2.5.5. Let 𝑎 ∈ QSym and 𝑓 ∈ QSym. Then,

∑︁
𝛼∈Comp

(−1)|𝛼| (𝐹𝛼 Á 𝑎)𝑅⊥
𝜔(𝛼)𝑓 = 𝑎 ≺ 𝑓.

Proof of Lemma 2.5.5. The basis (𝐹𝛼)𝛼∈Comp of QSym and the basis (𝑅𝛼)𝛼∈Comp of

NSym are dual bases. Thus,

∑︁
𝛼∈Comp

𝐹𝛼 (𝑅𝛼, 𝑔) = 𝑔 for every 𝑔 ∈ QSym . (2.45)

Let us use Sweedler’s notation. The map Comp → Comp, 𝛼 ↦→ 𝜔 (𝛼) is a bijection

(since 𝜔 (𝜔 (𝛼)) = 𝛼 for any composition 𝛼). Hence, we can substitute 𝜔 (𝛼) for 𝛼 in
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the sum
∑︀

𝛼∈Comp

(−1)|𝛼| (𝐹𝛼 Á 𝑎)𝑅⊥
𝜔(𝛼)𝑓 . We thus obtain

∑︁
𝛼∈Comp

(−1)|𝛼| (𝐹𝛼 Á 𝑎)𝑅⊥
𝜔(𝛼)𝑓

=
∑︁

𝛼∈Comp

(−1)|𝜔(𝛼)|⏟  ⏞  
=(−1)|𝛼|

(since |𝜔(𝛼)|=|𝛼|)

(︀
𝐹𝜔(𝛼) Á 𝑎

)︀
𝑅⊥

𝜔(𝜔(𝛼))⏟  ⏞  
=𝑅⊥

𝛼
(since 𝜔(𝜔(𝛼))=𝛼)

𝑓

=
∑︁

𝛼∈Comp

(−1)|𝛼|
(︀
𝐹𝜔(𝛼) Á 𝑎

)︀
𝑅⊥

𝛼 𝑓⏟ ⏞ 
=
∑︀
(𝑓)
(𝑅𝛼,𝑓(1))𝑓(2)

(by (2.28))

=
∑︁

𝛼∈Comp

(−1)|𝛼|
(︀
𝐹𝜔(𝛼) Á 𝑎

)︀∑︁
(𝑓)

(︀
𝑅𝛼, 𝑓(1)

)︀
𝑓(2)

=
∑︁
(𝑓)

∑︁
𝛼∈Comp

(−1)|𝛼|
(︀
𝐹𝜔(𝛼) Á 𝑎

)︀ (︀
𝑅𝛼, 𝑓(1)

)︀
𝑓(2)

=
∑︁
(𝑓)

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝ ∑︁

𝛼∈Comp

(−1)|𝛼| 𝐹𝜔(𝛼)⏟  ⏞  
=𝑆(𝐹𝛼)

(by Proposition 2.5.3)

(︀
𝑅𝛼, 𝑓(1)

)︀
⎞⎟⎟⎟⎠ Á 𝑎

⎞⎟⎟⎟⎠ 𝑓(2)

=
∑︁
(𝑓)

(︃(︃ ∑︁
𝛼∈Comp

𝑆 (𝐹𝛼)
(︀
𝑅𝛼, 𝑓(1)

)︀)︃
Á 𝑎

)︃
𝑓(2)

=
∑︁
(𝑓)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑︁

𝛼∈Comp

𝐹𝛼

(︀
𝑅𝛼, 𝑓(1)

)︀
⏟  ⏞  

=𝑓(1)
(by (2.45), applied to 𝑔=𝑓(1))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Á 𝑎

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑓(2) =

∑︁
(𝑓)

(︀
𝑆
(︀
𝑓(1)
)︀
Á 𝑎
)︀
𝑓(2) = 𝑎 ≺ 𝑓

(by Theorem 2.3.7, applied to 𝑏 = 𝑓). This proves Lemma 2.5.5.

Proof of Theorem 2.5.4. We have

∑︁
𝛼∈Comp

(−1)|𝛼| 𝐹𝛼⊙(𝑚)⏟  ⏞  
=𝐹𝛼Áℎ𝑚

(by (2.17))

𝑅⊥
𝜔(𝛼)𝑓

=
∑︁

𝛼∈Comp

(−1)|𝛼| (𝐹𝛼 Á ℎ𝑚)𝑅
⊥
𝜔(𝛼)𝑓 = ℎ𝑚 ≺ 𝑓
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(by Lemma 2.5.5, applied to 𝑎 = ℎ𝑚). This proves Theorem 2.5.4.

As a consequence, we obtain the following result, conjectured by Mike Zabrocki

(private correspondence):

Corollary 2.5.6. For every positive integer 𝑚, define a k-linear operator W𝑚 :

QSym → QSym by

W𝑚 =
∑︁

𝛼∈Comp

(−1)|𝛼| 𝐹𝛼⊙(𝑚)𝑅
⊥
𝜔(𝛼)

(where 𝐹𝛼⊙(𝑚) means left multiplication by 𝐹𝛼⊙(𝑚)). Then, every composition

𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) satisfies

S*
𝛼 = (W𝛼1 ∘W𝛼2 ∘ · · · ∘W𝛼ℓ

) (1) .

Proof of Corollary 2.5.6. For every positive integer 𝑚 and every 𝑓 ∈ QSym, we have

W𝑚𝑓 =
∑︁

𝛼∈Comp

(−1)|𝛼| 𝐹𝛼⊙(𝑚)𝑅
⊥
𝜔(𝛼)𝑓 = ℎ𝑚 ≺ 𝑓 (by Theorem 2.5.4) .

Hence, by induction, for every composition 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ), we have

W𝛼1 (W𝛼2 (· · · (W𝛼ℓ
(1)) · · · )) = ℎ𝛼1 ≺ (ℎ𝛼2 ≺ (· · · ≺ (ℎ𝛼ℓ

≺ 1) · · · )) = S*
𝛼

(by Corollary 2.4.7). In other words,

S*
𝛼 = W𝛼1 (W𝛼2 (· · · (W𝛼ℓ

(1)) · · · )) = (W𝛼1 ∘W𝛼2 ∘ · · · ∘W𝛼ℓ
) (1) .

This proves Corollary 2.5.6.

Let us finish this section with two curiosities: two analogues of Theorem 2.5.4,

one of which can be viewed as an “𝑚 = 0 version” and the other as a “negative 𝑚

version”. We begin with the “𝑚 = 0 one”, as it is the easier one to state:
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Proposition 2.5.7. Let 𝑓 ∈ QSym. Then,

𝜀 (𝑓) =
∑︁

𝛼∈Comp

(−1)|𝛼| 𝐹𝛼𝑅
⊥
𝜔(𝛼)𝑓.

Proof of Proposition 2.5.7. Let us use Sweedler’s notation. The map

Comp → Comp, 𝛼 ↦→ 𝜔 (𝛼)

is a bijection (since 𝜔 (𝜔 (𝛼)) = 𝛼 for any composition 𝛼). Hence, we can substitute

𝜔 (𝛼) for 𝛼 in the sum∑︀
𝛼∈Comp

(−1)|𝛼| 𝐹𝛼𝑅
⊥
𝜔(𝛼)𝑓 . We thus obtain

∑︁
𝛼∈Comp

(−1)|𝛼| 𝐹𝛼𝑅
⊥
𝜔(𝛼)𝑓

=
∑︁

𝛼∈Comp

(−1)|𝜔(𝛼)|⏟  ⏞  
=(−1)|𝛼|

(since |𝜔(𝛼)|=|𝛼|)

𝐹𝜔(𝛼) 𝑅⊥
𝜔(𝜔(𝛼))⏟  ⏞  
=𝑅⊥

𝛼
(since 𝜔(𝜔(𝛼))=𝛼)

𝑓 =
∑︁

𝛼∈Comp

(−1)|𝛼| 𝐹𝜔(𝛼)⏟  ⏞  
=𝑆(𝐹𝛼)

(by Proposition 2.5.3)

𝑅⊥
𝛼 𝑓⏟ ⏞ 

=
∑︀
(𝑓)
(𝑅𝛼,𝑓(1))𝑓(2)

(by (2.28))

=
∑︁

𝛼∈Comp

𝑆 (𝐹𝛼)
∑︁
(𝑓)

(︀
𝑅𝛼, 𝑓(1)

)︀
𝑓(2) =

∑︁
𝛼∈Comp

∑︁
(𝑓)

𝑆 (𝐹𝛼)
(︀
𝑅𝛼, 𝑓(1)

)︀
𝑓(2)

=
∑︁
(𝑓)

(︃ ∑︁
𝛼∈Comp

𝑆 (𝐹𝛼)
(︀
𝑅𝛼, 𝑓(1)

)︀)︃
𝑓(2) =

∑︁
(𝑓)

𝑆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑︁

𝛼∈Comp

𝐹𝛼

(︀
𝑅𝛼, 𝑓(1)

)︀
⏟  ⏞  

=𝑓(1)
(by (2.45), applied to 𝑔=𝑓(1))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑓(2)

=
∑︁
(𝑓)

𝑆
(︀
𝑓(1)
)︀
𝑓(2) = 𝜀 (𝑓)

(by one of the defining properties of the antipode). This proves Proposition 2.5.7.

The “negative 𝑚” analogue is less obvious:33

33Proposition 2.5.8 does not literally involve a negative 𝑚, but it involves an element 𝐹
∖𝑚
𝛼 which

can be viewed as “something like 𝐹(𝛼)⊙(−𝑚)”.
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Proposition 2.5.8. Let 𝑓 ∈ QSym and let 𝑚 be a positive integer. For any

composition 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ), we define an element 𝐹
∖𝑚
𝛼 of QSym as follows:

∙ If ℓ = 0 or 𝛼ℓ < 𝑚, then 𝐹
∖𝑚
𝛼 = 0.

∙ If 𝛼ℓ = 𝑚, then 𝐹
∖𝑚
𝛼 = 𝐹(𝛼1,𝛼2,...,𝛼ℓ−1).

∙ If 𝛼ℓ > 𝑚, then 𝐹
∖𝑚
𝛼 = 𝐹(𝛼1,𝛼2,...,𝛼ℓ−1,𝛼ℓ−𝑚).

(Here, any equality or inequality in which 𝛼ℓ is mentioned is understood to

include the statement that ℓ > 0.)

Then,

(−1)𝑚
∑︁

𝛼∈Comp

(−1)|𝛼| 𝐹 ∖𝑚
𝛼 𝑅⊥

𝜔(𝛼)𝑓 = 𝜀
(︀
𝑅⊥

(1𝑚)𝑓
)︀
.

Here, (1𝑚) denotes the composition

⎛⎝1, 1, . . . , 1⏟  ⏞  
𝑚 times

⎞⎠.

Proof of Proposition 2.5.8. Let us first make some auxiliary observations.

Any two elements 𝑎 and 𝑏 of NSym satisfy

(𝑎𝑏)⊥ = 𝑏⊥ ∘ 𝑎⊥ (2.46)

34.

For every two compositions 𝛼 and 𝛽, we define a composition [𝛼, 𝛽] by [𝛼, 𝛽] =

34Proof of (2.46): Let 𝑎 and 𝑏 be two elements of NSym. Let 𝑐 ∈ QSym. Then,

(𝑎𝑏)
⊥
𝑐 =

∑︁
(𝑐)

(︀
𝑎𝑏, 𝑐(1)

)︀⏟  ⏞  
=

∑︀
(𝑐(1))

(︁
𝑎,(𝑐(1))(1)

)︁(︁
𝑏,(𝑐(1))(2)

)︁
(by (2.26), applied to 𝑐(1) instead of 𝑐)

𝑐(2) (by (2.28), applied to 𝑔 = 𝑎𝑏 and 𝑓 = 𝑐)

=
∑︁
(𝑐)

∑︁
(𝑐(1))

(︁
𝑎,
(︀
𝑐(1)
)︀
(1)

)︁(︁
𝑏,
(︀
𝑐(1)
)︀
(2)

)︁
𝑐(2) =

∑︁
(𝑐)

∑︁
(𝑐(2))

(︀
𝑎, 𝑐(1)

)︀ (︁
𝑏,
(︀
𝑐(2)
)︀
(1)

)︁ (︀
𝑐(2)
)︀
(2)⎛⎝ since the coassociativity of Δ yields∑︀

(𝑐)

∑︀
(𝑐(1))

(︀
𝑐(1)
)︀
(1)

⊗
(︀
𝑐(1)
)︀
(2)

⊗ 𝑐(2) =
∑︀
(𝑐)

∑︀
(𝑐(2))

𝑐(1) ⊗
(︀
𝑐(2)
)︀
(1)

⊗
(︀
𝑐(2)
)︀
(2)

⎞⎠
=
∑︁
(𝑐)

(︀
𝑎, 𝑐(1)

)︀ ∑︁
(𝑐(2))

(︁
𝑏,
(︀
𝑐(2)
)︀
(1)

)︁ (︀
𝑐(2)
)︀
(2)

.
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(𝛼1, 𝛼2, . . . , 𝛼ℓ, 𝛽1, 𝛽2, . . . , 𝛽𝑚), where 𝛼 and 𝛽 are written as 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) and

𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑚). We further define a composition 𝛼 ⊙ 𝛽 as in Proposition 2.3.8.

Then, every two nonempty compositions 𝛼 and 𝛽 satisfy

𝑅𝛼𝑅𝛽 = 𝑅[𝛼,𝛽] +𝑅𝛼⊙𝛽. (2.47)

(This is part of [GriRei15, Theorem 5.42(c)].) Now it is easy to see that

𝑅𝜔([𝛼,(𝑚)]) +𝑅𝜔(𝛼⊙(𝑚)) = 𝑅(1𝑚)𝑅𝜔(𝛼) (2.48)

for every nonempty composition 𝛼 35. Hence, for every nonempty composition 𝛼,

Compared with

(︀
𝑏⊥ ∘ 𝑎⊥

)︀
(𝑐) = 𝑏⊥

⎛⎜⎜⎜⎜⎜⎜⎝ 𝑎⊥𝑐⏟ ⏞ 
=
∑︀
(𝑐)
(𝑎,𝑐(1))𝑐(2)

(by (2.28), applied to 𝑔=𝑎 and 𝑓=𝑐)

⎞⎟⎟⎟⎟⎟⎟⎠ = 𝑏⊥

⎛⎝∑︁
(𝑐)

(︀
𝑎, 𝑐(1)

)︀
𝑐(2)

⎞⎠

=
∑︁
(𝑐)

(︀
𝑎, 𝑐(1)

)︀
𝑏⊥
(︀
𝑐(2)
)︀⏟  ⏞  

=
∑︀

(𝑐(2))

(︁
𝑏,(𝑐(2))(1)

)︁
(𝑐(2))(2)

(by (2.28), applied to 𝑔=𝑏 and 𝑓=𝑐(2))

(︀
since the map 𝑏⊥ is k-linear

)︀

=
∑︁
(𝑐)

(︀
𝑎, 𝑐(1)

)︀ ∑︁
(𝑐(2))

(︁
𝑏,
(︀
𝑐(2)
)︀
(1)

)︁ (︀
𝑐(2)
)︀
(2)

,

this yields (𝑎𝑏)
⊥
𝑐 =

(︀
𝑏⊥ ∘ 𝑎⊥

)︀
(𝑐).

Now, let us forget that we fixed 𝑐. We thus have shown that (𝑎𝑏)
⊥
𝑐 =

(︀
𝑏⊥ ∘ 𝑎⊥

)︀
(𝑐) for every

𝑐 ∈ QSym. In other words, (𝑎𝑏)⊥ = 𝑏⊥ ∘ 𝑎⊥. This proves (2.46).
35Proof of (2.48): Let 𝛼 be a nonempty composition. Proposition 2.5.2 (a) shows that

𝜔 ([𝛼, 𝛽]) = 𝜔 (𝛽) ⊙ 𝜔 (𝛼) for every nonempty composition 𝛽. Applying this to 𝛽 = (𝑚), we
obtain 𝜔 ([𝛼, (𝑚)]) = 𝜔 ((𝑚))⏟  ⏞  

=(1𝑚)

⊙𝜔 (𝛼) = (1𝑚) ⊙ 𝜔 (𝛼). But Proposition 2.5.2(b) shows that

𝜔 (𝛼⊙ 𝛽) = [𝜔 (𝛽) , 𝜔 (𝛼)] for every nonempty composition 𝛽. Applying this to 𝛽 = (𝑚), we obtain

𝜔 (𝛼⊙ (𝑚)) =

⎡⎢⎣𝜔 ((𝑚))⏟  ⏞  
=(1𝑚)

, 𝜔 (𝛼)

⎤⎥⎦ = [(1𝑚) , 𝜔 (𝛼)]. Now,

𝑅𝜔([𝛼,(𝑚)]) +𝑅𝜔(𝛼⊙(𝑚)) = 𝑅𝜔(𝛼⊙(𝑚)) +𝑅𝜔([𝛼,(𝑚)]) = 𝑅[(1𝑚),𝜔(𝛼)] +𝑅(1𝑚)⊙𝜔(𝛼)

(since 𝜔 (𝛼⊙ (𝑚)) = [(1𝑚) , 𝜔 (𝛼)] and 𝜔 ([𝛼, (𝑚)]) = (1𝑚)⊙ 𝜔 (𝛼))

= 𝑅(1𝑚)𝑅𝜔(𝛼)

(since (2.47) (applied to (1𝑚) and 𝜔 (𝛼) instead of 𝛼 and 𝛽) shows that 𝑅(1𝑚)𝑅𝜔(𝛼) = 𝑅[(1𝑚),𝜔(𝛼)] +
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we have ⎛⎜⎝𝑅𝜔([𝛼,(𝑚)]) +𝑅𝜔(𝛼⊙(𝑚))⏟  ⏞  
=𝑅(1𝑚)𝑅𝜔(𝛼)

⎞⎟⎠
⊥

=
(︀
𝑅(1𝑚)𝑅𝜔(𝛼)

)︀⊥
= 𝑅⊥

𝜔(𝛼) ∘𝑅⊥
(1𝑚) (2.49)

(by (2.46), applied to 𝑎 = 𝑅(1𝑚) and 𝑏 = 𝑅𝜔(𝛼)).

We furthermore notice that 𝜔 (∅) = ∅ and thus 𝑅⊥
𝜔(∅) = 𝑅⊥

∅ = id (since 𝑅∅ = 1).

Now,

∑︁
(𝛼1,𝛼2,...,𝛼ℓ)∈Comp;

𝛼ℓ=𝑚

(−1)|(𝛼1,𝛼2,...,𝛼ℓ)|⏟  ⏞  
=(−1)|(𝛼1,𝛼2,...,𝛼ℓ−1,𝑚)|

(since 𝛼ℓ=𝑚)

𝐹
∖𝑚
(𝛼1,𝛼2,...,𝛼ℓ)⏟  ⏞  

=𝐹(𝛼1,𝛼2,...,𝛼ℓ−1)
(since 𝛼ℓ=𝑚)

𝑅⊥
𝜔((𝛼1,𝛼2,...,𝛼ℓ))⏟  ⏞  

=𝑅⊥
𝜔((𝛼1,𝛼2,...,𝛼ℓ−1,𝑚))

(since 𝛼ℓ=𝑚)

𝑓

=
∑︁

(𝛼1,𝛼2,...,𝛼ℓ)∈Comp;
𝛼ℓ=𝑚⏟  ⏞  

=
∑︀

(𝛼1,𝛼2,...,𝛼ℓ−1)∈Comp

(−1)|(𝛼1,𝛼2,...,𝛼ℓ−1,𝑚)|⏟  ⏞  
=(−1)|(𝛼1,𝛼2,...,𝛼ℓ−1)|+𝑚

𝐹(𝛼1,𝛼2,...,𝛼ℓ−1) 𝑅⊥
𝜔((𝛼1,𝛼2,...,𝛼ℓ−1,𝑚))⏟  ⏞  

=𝑅⊥
𝜔([(𝛼1,𝛼2,...,𝛼ℓ−1),(𝑚)])

(since (𝛼1,𝛼2,...,𝛼ℓ−1,𝑚)
=[(𝛼1,𝛼2,...,𝛼ℓ−1),(𝑚)])

𝑓

=
∑︁

(𝛼1,𝛼2,...,𝛼ℓ−1)∈Comp

(−1)|(𝛼1,𝛼2,...,𝛼ℓ−1)|+𝑚 𝐹(𝛼1,𝛼2,...,𝛼ℓ−1)𝑅
⊥
𝜔([(𝛼1,𝛼2,...,𝛼ℓ−1),(𝑚)])𝑓

=
∑︁

𝛼∈Comp

(−1)|𝛼|+𝑚 𝐹𝛼𝑅
⊥
𝜔([𝛼,(𝑚)])𝑓

(here, we have substituted 𝛼 for (𝛼1, 𝛼2, . . . , 𝛼ℓ−1) in the sum)

= (−1)|∅|+𝑚 𝐹∅𝑅
⊥
𝜔([∅,(𝑚)])𝑓 +

∑︁
𝛼∈Comp;

𝛼 is nonempty

(−1)|𝛼|+𝑚 𝐹𝛼𝑅
⊥
𝜔([𝛼,(𝑚)])𝑓 (2.50)

𝑅(1𝑚)⊙𝜔(𝛼)). This proves (2.48).
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(here, we have split off the addend for 𝛼 = ∅ from the sum). On the other hand,

∑︁
(𝛼1,𝛼2,...,𝛼ℓ)∈Comp;

𝛼ℓ>𝑚

(−1)|(𝛼1,𝛼2,...,𝛼ℓ)| 𝐹
∖𝑚
(𝛼1,𝛼2,...,𝛼ℓ)⏟  ⏞  

=𝐹(𝛼1,𝛼2,...,𝛼ℓ−1,𝛼ℓ−𝑚)
(since 𝛼ℓ>𝑚)

𝑅⊥
𝜔((𝛼1,𝛼2,...,𝛼ℓ))

𝑓

=
∑︁

(𝛼1,𝛼2,...,𝛼ℓ)∈Comp;
𝛼ℓ>𝑚

(−1)|(𝛼1,𝛼2,...,𝛼ℓ)| 𝐹(𝛼1,𝛼2,...,𝛼ℓ−1,𝛼ℓ−𝑚)𝑅
⊥
𝜔((𝛼1,𝛼2,...,𝛼ℓ))

𝑓

=
∑︁

(𝛼1,𝛼2,...,𝛼ℓ)∈Comp;
ℓ>0

(−1)|(𝛼1,𝛼2,...,𝛼ℓ−1,𝛼ℓ+𝑚)|⏟  ⏞  
=(−1)|(𝛼1,𝛼2,...,𝛼ℓ)|+𝑚

𝐹(𝛼1,𝛼2,...,𝛼ℓ)

𝑅⊥
𝜔((𝛼1,𝛼2,...,𝛼ℓ−1,𝛼ℓ+𝑚))⏟  ⏞  
=𝑅⊥

𝜔((𝛼1,𝛼2,...,𝛼ℓ)⊙(𝑚))
(since (𝛼1,𝛼2,...,𝛼ℓ−1,𝛼ℓ+𝑚)=(𝛼1,𝛼2,...,𝛼ℓ)⊙(𝑚))

𝑓

⎛⎝ here, we have substituted (𝛼1, 𝛼2, . . . , 𝛼ℓ)

for (𝛼1, 𝛼2, . . . , 𝛼ℓ−1, 𝛼ℓ −𝑚) in the sum

⎞⎠
=

∑︁
(𝛼1,𝛼2,...,𝛼ℓ)∈Comp;

ℓ>0

(−1)|(𝛼1,𝛼2,...,𝛼ℓ)|+𝑚 𝐹(𝛼1,𝛼2,...,𝛼ℓ)𝑅
⊥
𝜔((𝛼1,𝛼2,...,𝛼ℓ)⊙(𝑚))𝑓

=
∑︁

𝛼∈Comp;
𝛼 is nonempty

(−1)|𝛼|+𝑚 𝐹𝛼𝑅
⊥
𝜔(𝛼⊙(𝑚))𝑓 (2.51)

(here, we have substituted 𝛼 for (𝛼1, 𝛼2, . . . , 𝛼ℓ) in the sum).
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But

∑︁
𝛼∈Comp

(−1)|𝛼| 𝐹 ∖𝑚
𝛼 𝑅⊥

𝜔(𝛼)𝑓

=
∑︁

(𝛼1,𝛼2,...,𝛼ℓ)∈Comp

(−1)|(𝛼1,𝛼2,...,𝛼ℓ)| 𝐹
∖𝑚
(𝛼1,𝛼2,...,𝛼ℓ)

𝑅⊥
𝜔((𝛼1,𝛼2,...,𝛼ℓ))

𝑓

(here, we have renamed the summation index 𝛼 as (𝛼1, 𝛼2, . . . , 𝛼ℓ))

=
∑︁

(𝛼1,𝛼2,...,𝛼ℓ)∈Comp;
ℓ=0 or 𝛼ℓ<𝑚

(−1)|(𝛼1,𝛼2,...,𝛼ℓ)| 𝐹
∖𝑚
(𝛼1,𝛼2,...,𝛼ℓ)⏟  ⏞  

=0
(since ℓ=0 or 𝛼ℓ<𝑚)

𝑅⊥
𝜔((𝛼1,𝛼2,...,𝛼ℓ))

𝑓

+
∑︁

(𝛼1,𝛼2,...,𝛼ℓ)∈Comp;
𝛼ℓ=𝑚

(−1)|(𝛼1,𝛼2,...,𝛼ℓ)| 𝐹
∖𝑚
(𝛼1,𝛼2,...,𝛼ℓ)

𝑅⊥
𝜔((𝛼1,𝛼2,...,𝛼ℓ))

𝑓

⏟  ⏞  
=(−1)|∅|+𝑚𝐹∅𝑅⊥

𝜔([∅,(𝑚)])
𝑓+

∑︀
𝛼∈Comp;

𝛼 is nonempty

(−1)|𝛼|+𝑚𝐹𝛼𝑅⊥
𝜔([𝛼,(𝑚)])

𝑓

(by (2.50))

+
∑︁

(𝛼1,𝛼2,...,𝛼ℓ)∈Comp;
𝛼ℓ>𝑚

(−1)|(𝛼1,𝛼2,...,𝛼ℓ)| 𝐹
∖𝑚
(𝛼1,𝛼2,...,𝛼ℓ)

𝑅⊥
𝜔((𝛼1,𝛼2,...,𝛼ℓ))

𝑓

⏟  ⏞  
=

∑︀
𝛼∈Comp;

𝛼 is nonempty

(−1)|𝛼|+𝑚𝐹𝛼𝑅⊥
𝜔(𝛼⊙(𝑚))

𝑓

(by (2.51))

=
∑︁

(𝛼1,𝛼2,...,𝛼ℓ)∈Comp;
ℓ=0 or 𝛼ℓ<𝑚

(−1)|(𝛼1,𝛼2,...,𝛼ℓ)| 0𝑅⊥
𝜔((𝛼1,𝛼2,...,𝛼ℓ))

𝑓

⏟  ⏞  
=0

+ (−1)|∅|+𝑚 𝐹∅𝑅
⊥
𝜔([∅,(𝑚)])𝑓 +

∑︁
𝛼∈Comp;

𝛼 is nonempty

(−1)|𝛼|+𝑚 𝐹𝛼𝑅
⊥
𝜔([𝛼,(𝑚)])𝑓

+
∑︁

𝛼∈Comp;
𝛼 is nonempty

(−1)|𝛼|+𝑚 𝐹𝛼𝑅
⊥
𝜔(𝛼⊙(𝑚))𝑓
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= (−1)|∅|+𝑚 𝐹∅𝑅
⊥
𝜔([∅,(𝑚)])𝑓 +

∑︁
𝛼∈Comp;

𝛼 is nonempty

(−1)|𝛼|+𝑚 𝐹𝛼𝑅
⊥
𝜔([𝛼,(𝑚)])𝑓

+
∑︁

𝛼∈Comp;
𝛼 is nonempty

(−1)|𝛼|+𝑚 𝐹𝛼𝑅
⊥
𝜔(𝛼⊙(𝑚))𝑓

= (−1)|∅|+𝑚 𝐹∅ 𝑅⊥
𝜔([∅,(𝑚)])⏟  ⏞  
=𝑅⊥

(1𝑚)

(since 𝜔([∅,(𝑚)])=𝜔((𝑚))=(1𝑚))

𝑓

+
∑︁

𝛼∈Comp;
𝛼 is nonempty

(−1)|𝛼|+𝑚 𝐹𝛼

(︀
𝑅𝜔([𝛼,(𝑚)]) +𝑅𝜔(𝛼⊙(𝑚))

)︀⊥⏟  ⏞  
=𝑅⊥

𝜔(𝛼)
∘𝑅⊥

(1𝑚)

(by (2.49))

𝑓

= (−1)|∅|+𝑚 𝐹∅ 𝑅⊥
(1𝑚)𝑓⏟  ⏞  

=𝑅⊥
𝜔(∅)(𝑅⊥

(1𝑚)
𝑓)

(since 𝑅⊥
𝜔(∅)

=id and thus

𝑅⊥
𝜔(∅)(𝑅⊥

(1𝑚)
𝑓)=𝑅⊥

(1𝑚)
𝑓)

+
∑︁

𝛼∈Comp;
𝛼 is nonempty

(−1)|𝛼|+𝑚 𝐹𝛼

(︀
𝑅⊥

𝜔(𝛼) ∘𝑅⊥
(1𝑚)

)︀
𝑓⏟  ⏞  

=𝑅⊥
𝜔(𝛼)

(︁
𝑅⊥

(1𝑚)
𝑓
)︁

= (−1)|∅|+𝑚 𝐹∅𝑅
⊥
𝜔(∅)

(︀
𝑅⊥

(1𝑚)𝑓
)︀
+

∑︁
𝛼∈Comp;

𝛼 is nonempty

(−1)|𝛼|+𝑚 𝐹𝛼𝑅
⊥
𝜔(𝛼)

(︀
𝑅⊥

(1𝑚)𝑓
)︀

=
∑︁

𝛼∈Comp

(−1)|𝛼|+𝑚⏟  ⏞  
=(−1)𝑚(−1)|𝛼|

𝐹𝛼𝑅
⊥
𝜔(𝛼)

(︀
𝑅⊥

(1𝑚)𝑓
)︀ ⎛⎝ here, we have incorporated the

𝛼 = ∅ addend into the sum

⎞⎠
= (−1)𝑚

∑︁
𝛼∈Comp

(−1)|𝛼| 𝐹𝛼𝑅
⊥
𝜔(𝛼)

(︀
𝑅⊥

(1𝑚)𝑓
)︀
.

Multiplying both sides of this equality with (−1)𝑚, we obtain

(−1)𝑚
∑︁

𝛼∈Comp

(−1)|𝛼| 𝐹 ∖𝑚
𝛼 𝑅⊥

𝜔(𝛼)𝑓 =
∑︁

𝛼∈Comp

(−1)|𝛼| 𝐹𝛼𝑅
⊥
𝜔(𝛼)

(︀
𝑅⊥

(1𝑚)𝑓
)︀
.

Comparing this with

𝜀
(︀
𝑅⊥

(1𝑚)𝑓
)︀
=

∑︁
𝛼∈Comp

(−1)|𝛼| 𝐹𝛼𝑅
⊥
𝜔(𝛼)

(︀
𝑅⊥

(1𝑚)𝑓
)︀

(by Proposition 2.5.7, applied to 𝑅⊥
(1𝑚)𝑓 instead of 𝑓), we obtain

(−1)𝑚
∑︁

𝛼∈Comp

(−1)|𝛼| 𝐹 ∖𝑚
𝛼 𝑅⊥

𝜔(𝛼)𝑓 = 𝜀
(︀
𝑅⊥

(1𝑚)𝑓
)︀
.
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This proves Proposition 2.5.8.

2.6 Lifts to WQSym and FQSym

We have so far been studying the Hopf algebras Sym, QSym and NSym. These are

merely the tip of an iceberg; dozens of combinatorial Hopf algebras are currently

known, many of which are extensions of these. In this final section, we shall discuss

how (and whether) our operations ≺ and Á as well as some similar operations can

be lifted to the bigger Hopf algebras WQSym and FQSym. We shall give no proofs,

as these are not difficult and the whole discussion is tangential to this note.

Let us first define these two Hopf algebras (which are discussed, for example, in

[FoiMal14]).

We start with WQSym. (Our definition of WQSym follows the papers of the

Marne-la-Vallée school, such as [AFNT13, Section 5.1]36; it will differ from that in

[FoiMal14], but we will explain why it is equivalent.)

Let 𝑋1, 𝑋2, 𝑋3, . . . be countably many distinct symbols. These symbols will be

called letters. We define a word to be an ℓ-tuple of elements of {𝑋1, 𝑋2, 𝑋3, . . .}

for some ℓ ∈ N. Thus, for example, (𝑋3, 𝑋5, 𝑋2) and (𝑋6) are words. We denote

the empty word () by 1, and we often identify the one-letter word (𝑋𝑖) with the

symbol 𝑋𝑖 for every 𝑖 > 0. For any two words 𝑢 = (𝑋𝑖1 , 𝑋𝑖2 , . . . , 𝑋𝑖𝑛) and 𝑣 =

(𝑋𝑗1 , 𝑋𝑗2 , . . . , 𝑋𝑗𝑚), we define the concatenation 𝑢𝑣 as the word

(𝑋𝑖1 , 𝑋𝑖2 , . . . , 𝑋𝑖𝑛 , 𝑋𝑗1 , 𝑋𝑗2 , . . . , 𝑋𝑗𝑚). Concatenation is an associative operation and

the empty word 1 is a neutral element for it; thus, the words form a monoid. We let

Wrd denote this monoid. This monoid is the free monoid on the set {𝑋1, 𝑋2, 𝑋3, . . .}.

Concatenation allows us to rewrite any word (𝑋𝑖1 , 𝑋𝑖2 , . . . , 𝑋𝑖𝑛) in the shorter form

𝑋𝑖1𝑋𝑖2 · · ·𝑋𝑖𝑛 .

Notice that Mon (the set of all monomials) is also a monoid under multiplication.

We can thus define a monoid homomorphism 𝜋 : Wrd → Mon by 𝜋 (𝑋𝑖) = 𝑥𝑖 for all

𝑖 ∈ {1, 2, 3, . . .}. This homomorphism 𝜋 is surjective.

36where WQSym is denoted by WQSym
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We define k ⟨⟨X⟩⟩ to be the k-module kWrd; its elements are all families (𝜆𝑤)𝑤∈Wrd ∈

kWrd. We define a multiplication on k ⟨⟨X⟩⟩ by

(𝜆𝑤)𝑤∈Wrd · (𝜇𝑤)𝑤∈Wrd =

⎛⎝ ∑︁
(𝑢,𝑣)∈Wrd2; 𝑢𝑣=𝑤

𝜆𝑢𝜇𝑣

⎞⎠
𝑤∈Wrd

. (2.52)

This makes k ⟨⟨X⟩⟩ into a k-algebra, with unity (𝛿𝑤,1)𝑤∈Wrd. This k-algebra is called

the k-algebra of noncommutative power series in 𝑋1, 𝑋2, 𝑋3, . . .. For every 𝑢 ∈ Wrd,

we identify the word 𝑢 with the element (𝛿𝑤,𝑢)𝑤∈Wrd of k ⟨⟨X⟩⟩ 37. The k-algebra

k ⟨⟨X⟩⟩ becomes a topological k-algebra via the product topology (recalling that

k ⟨⟨X⟩⟩ = kWrd as sets). Thus, every element (𝜆𝑤)𝑤∈Wrd of k ⟨⟨X⟩⟩ can be rewritten

in the form
∑︀

𝑤∈Wrd

𝜆𝑤𝑤. This turns the equality (2.52) into a distributive law (for

infinite sums), and explains why we refer to elements of k ⟨⟨X⟩⟩ as “noncommutative

power series”. We think of words as noncommutative analogues of monomials.

The degree of a word 𝑤 will mean its length (i.e., the integer 𝑛 for which 𝑤 is an

𝑛-tuple). Let k ⟨⟨X⟩⟩bdd denote the k-subalgebra of k ⟨⟨X⟩⟩ formed by the bounded-

degree noncommutative power series38 in k ⟨⟨X⟩⟩. The surjective monoid homomor-

phism 𝜋 : Wrd → Mon canonically gives rise to surjective k-algebra homomorphisms

k ⟨⟨X⟩⟩ → k [[𝑥1, 𝑥2, 𝑥3, . . .]] and k ⟨⟨X⟩⟩bdd → k [[𝑥1, 𝑥2, 𝑥3, . . .]]bdd, which we also

denote by 𝜋. Notice that the k-algebra k ⟨⟨X⟩⟩bdd is denoted 𝑅 ⟨X⟩ in [GriRei15,

Section 8.1].

If 𝑤 is a word, then we denote by Supp𝑤 the subset

{𝑖 ∈ {1, 2, 3, . . .} | the symbol 𝑋𝑖 is an entry of 𝑤}

of {1, 2, 3, . . .}. Notice that Supp𝑤 = Supp (𝜋 (𝑤)) is a finite set.

A word 𝑤 is said to be packed if there exists an ℓ ∈ N such that Supp𝑤 =

{1, 2, . . . , ℓ}.

37This identification is harmless, since the map Wrd → k ⟨⟨X⟩⟩ , 𝑢 ↦→ (𝛿𝑤,𝑢)𝑤∈Wrd is a monoid
homomorphism from Wrd to (k ⟨⟨X⟩⟩ , ·). (However, it fails to be injective if k = 0.)

38A noncommutative power series (𝜆𝑤)𝑤∈Wrd ∈ k ⟨⟨X⟩⟩ is said to be bounded-degree if there is an
𝑁 ∈ N such that every word 𝑤 of length > 𝑁 satisfies 𝜆𝑤 = 0.

134



For each word 𝑤, we define a packed word pack𝑤 as follows: Replace the smallest

letter39 that appears in 𝑤 by 𝑋1, the second-smallest letter by 𝑋2, etc..40 This word

pack𝑤 is called the packing of 𝑤. For example, pack (𝑋3𝑋1𝑋6𝑋1) = 𝑋2𝑋1𝑋3𝑋1.

For every packed word 𝑢, we define an element M𝑢 of k ⟨⟨X⟩⟩bdd by

M𝑢 =
∑︁

𝑤∈Wrd;
pack𝑤=𝑢

𝑤.

(This element M𝑢 is denoted 𝑃𝑢 in [AFNT13, Section 5.1].) We denote by WQSym

the k-submodule of k ⟨⟨X⟩⟩bdd spanned by the M𝑢 for all packed words 𝑢. It is known

that WQSym is a k-subalgebra of k ⟨⟨X⟩⟩bdd which can furthermore be endowed with

a Hopf algebra structure (the so-called Hopf algebra of word quasisymmetric func-

tions) such that 𝜋 restricts to a Hopf algebra surjection WQSym → QSym. Notice

that 𝜋 (M𝑢) = 𝑀Parikh(𝜋(𝑢)) for every packed word 𝑢, where the Parikh composition

Parikhm of any monomial m is defined as in the proof of Proposition 2.3.5.

The elements M𝑢 with 𝑢 ranging over all packed words form a basis of the k-

module WQSym, which is usually called the monomial basis41. Furthermore, the

product of two such elements can be computed by the well-known formula42

M𝑢M𝑣 =
∑︁

𝑤 is a packed word;
pack(𝑤[:ℓ])=𝑢; pack(𝑤[ℓ:])=𝑣

M𝑤, (2.53)

where ℓ is the length of 𝑢, and where we use the notation 𝑤 [: ℓ] for the word formed

by the first ℓ letters of 𝑤 and we use the notation 𝑤 [ℓ :] for the word formed by

the remaining letters of 𝑤. This equality (which should be considered a noncom-

mutative analogue of (2.7), and can be proven similarly) makes it possible to give

39We use the total ordering on the set {𝑋1, 𝑋2, 𝑋3, . . .} given by 𝑋1 < 𝑋2 < 𝑋3 < · · · .
40Here is a more pedantic way to restate this definition: Write 𝑤 as (𝑋𝑖1 , 𝑋𝑖2 , . . . , 𝑋𝑖ℓ), and let

𝐼 = Supp𝑤 (so that 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖ℓ}). Let 𝑟𝐼 be the unique increasing bijection {1, 2, . . . , |𝐼|} → 𝐼.
Then, pack𝑤 denotes the word

(︁
𝑋𝑟−1

𝐼 (𝑖1)
, 𝑋𝑟−1

𝐼 (𝑖2)
, . . . , 𝑋𝑟−1

𝐼 (𝑖ℓ)

)︁
.

41Sometimes it is parametrized not by packed words but instead by set compositions (i.e., ordered
set partitions) of sets of the form {1, 2, . . . , 𝑛} with 𝑛 ∈ N. But the packed words of length 𝑛 are in a
1-to-1 correspondence with set compositions of {1, 2, . . . , 𝑛}, so this is merely a matter of relabelling.

42This formula appears in [MeNoTh11, Proposition 4.1].
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an alternative definition of WQSym, by defining WQSym as the free k-module with

basis (M𝑢)𝑢 is a packed word and defining multiplication using (2.53). This is precisely

the approach taken in [FoiMal14, Section 1.1].

The Hopf algebra WQSym has also appeared under the name NCQSym (“qua-

sisymmetric functions in noncommuting variables”) in [BerZab05, Section 5.2] and

other sources.

We now define five binary operations ≺ , ∘, ≻ , Á , and ź on k ⟨⟨X⟩⟩.

Definition 2.6.1. (a) We define a binary operation ≺ : k ⟨⟨X⟩⟩ × k ⟨⟨X⟩⟩ →

k ⟨⟨X⟩⟩ (written in infix notation) by the requirements that it be k-bilinear and

continuous with respect to the topology on k ⟨⟨X⟩⟩ and that it satisfy

𝑢 ≺ 𝑣 =

⎧⎨⎩ 𝑢𝑣, if min (Supp𝑢) < min (Supp 𝑣) ;

0, if min (Supp𝑢) ≥ min (Supp 𝑣)

for any two words 𝑢 and 𝑣.

(b) We define a binary operation ∘ : k ⟨⟨X⟩⟩ × k ⟨⟨X⟩⟩ → k ⟨⟨X⟩⟩ (written

in infix notation) by the requirements that it be k-bilinear and continuous with

respect to the topology on k ⟨⟨X⟩⟩ and that it satisfy

𝑢 ∘ 𝑣 =

⎧⎨⎩ 𝑢𝑣, if min (Supp𝑢) = min (Supp 𝑣) ;

0, if min (Supp𝑢) ̸= min (Supp 𝑣)

for any two words 𝑢 and 𝑣.

(c) We define a binary operation ≻ : k ⟨⟨X⟩⟩ × k ⟨⟨X⟩⟩ → k ⟨⟨X⟩⟩ (written

in infix notation) by the requirements that it be k-bilinear and continuous with

respect to the topology on k ⟨⟨X⟩⟩ and that it satisfy

𝑢 ≻ 𝑣 =

⎧⎨⎩ 𝑢𝑣, if min (Supp𝑢) > min (Supp 𝑣) ;

0, if min (Supp𝑢) ≤ min (Supp 𝑣)

for any two words 𝑢 and 𝑣.

(d) We define a binary operation Á : k ⟨⟨X⟩⟩ × k ⟨⟨X⟩⟩ → k ⟨⟨X⟩⟩ (written

136



in infix notation) by the requirements that it be k-bilinear and continuous with

respect to the topology on k ⟨⟨X⟩⟩ and that it satisfy

𝑢 Á 𝑣 =

⎧⎨⎩ 𝑢𝑣, if max (Supp𝑢) ≤ min (Supp 𝑣) ;

0, if max (Supp𝑢) > min (Supp 𝑣)

for any two words 𝑢 and 𝑣.

(e) We define a binary operation ź : k ⟨⟨X⟩⟩ × k ⟨⟨X⟩⟩ → k ⟨⟨X⟩⟩ (written

in infix notation) by the requirements that it be k-bilinear and continuous with

respect to the topology on k ⟨⟨X⟩⟩ and that it satisfy

𝑢 ź 𝑣 =

⎧⎨⎩ 𝑢𝑣, if max (Supp𝑢) < min (Supp 𝑣) ;

0, if max (Supp𝑢) ≥ min (Supp 𝑣)

for any two words 𝑢 and 𝑣.

The first three of these five operations are closely related to those defined by

Novelli and Thibon in [NovThi05a]; the main difference is the use of minima instead

of maxima in our definitions.

The operations ≺ , Á and ź on WQSym lift the operations ≺ , Á and ź on

QSym. More precisely, any 𝑎 ∈ k ⟨⟨X⟩⟩ and 𝑏 ∈ k ⟨⟨X⟩⟩ satisfy

𝜋 (𝑎) ≺ 𝜋 (𝑏) = 𝜋 (𝑎 ≺ 𝑏) = 𝜋 (𝑏 ≻ 𝑎) ;

𝜋 (𝑎) Á 𝜋 (𝑏) = 𝜋 (𝑎 Á 𝑏) ;

𝜋 (𝑎) ź 𝜋 (𝑏) = 𝜋 (𝑎 ź 𝑏)

(and similar formulas would hold for ∘ and ≻ had we bothered to define such opera-

tions on QSym). Also, using the operation ⪰ defined in Remark 2.3.2, we have

𝜋 (𝑎) ⪰ 𝜋 (𝑏) = 𝜋 (𝑎 ≻ 𝑏+ 𝑎 ∘ 𝑏) for any 𝑎 ∈ k ⟨⟨X⟩⟩ and 𝑏 ∈ k ⟨⟨X⟩⟩ .

We now have the following analogue of Proposition 2.3.5:
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Proposition 2.6.2. Every 𝑎 ∈ WQSym and 𝑏 ∈ WQSym satisfy 𝑎 ≺ 𝑏 ∈ WQSym,

𝑎 ∘ 𝑏 ∈ WQSym, 𝑎 ≻ 𝑏 ∈ WQSym, 𝑎 Á 𝑏 ∈ WQSym and 𝑎 ź 𝑏 ∈ WQSym.

The proof of Proposition 2.6.2 is easier than that of Proposition 2.3.5; we omit it

here. In analogy to Remark 2.3.6 and to (2.53), let us give explicit formulas for these

five operations on the basis (M𝑢)𝑢 is a packed word of WQSym:

Remark 2.6.3. Let 𝑢 and 𝑣 be two packed words. Let ℓ be the length of 𝑢. Then:

(a) We have

M𝑢 ≺ M𝑣 =
∑︁

𝑤 is a packed word;
pack(𝑤[:ℓ])=𝑢; pack(𝑤[ℓ:])=𝑣;

min(Supp(𝑤[:ℓ]))<min(Supp(𝑤[ℓ:]))

M𝑤.

(b) We have

M𝑢 ∘M𝑣 =
∑︁

𝑤 is a packed word;
pack(𝑤[:ℓ])=𝑢; pack(𝑤[ℓ:])=𝑣;

min(Supp(𝑤[:ℓ]))=min(Supp(𝑤[ℓ:]))

M𝑤.

(c) We have

M𝑢 ≻ M𝑣 =
∑︁

𝑤 is a packed word;
pack(𝑤[:ℓ])=𝑢; pack(𝑤[ℓ:])=𝑣;

min(Supp(𝑤[:ℓ]))>min(Supp(𝑤[ℓ:]))

M𝑤.

(d) We have

M𝑢 ÁM𝑣 =
∑︁

𝑤 is a packed word;
pack(𝑤[:ℓ])=𝑢; pack(𝑤[ℓ:])=𝑣;

max(Supp(𝑤[:ℓ]))≤min(Supp(𝑤[ℓ:]))

M𝑤.

The sum on the right hand side consists of two addends (unless 𝑢 or 𝑣 is empty),

namely M𝑢𝑣+ℎ−1 and M𝑢𝑣+ℎ , where ℎ = max (Supp𝑢), and where 𝑣+𝑗 denotes the

word obtained by replacing every letter 𝑋𝑘 in 𝑣 by 𝑋𝑘+𝑗.
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(e) We have

M𝑢 źM𝑣 =
∑︁

𝑤 is a packed word;
pack(𝑤[:ℓ])=𝑢; pack(𝑤[ℓ:])=𝑣;

max(Supp(𝑤[:ℓ]))<min(Supp(𝑤[ℓ:]))

M𝑤.

The sum on the right hand side consists of one addend only, namely M𝑢𝑣+ℎ .

Let us now move on to the combinatorial Hopf algebra FQSym, which is known as

the Malvenuto-Reutenauer Hopf algebra or the Hopf algebra of free quasi-symmetric

functions. We shall define it as a Hopf subalgebra of WQSym. This is not identical

to the definition in [GriRei15, Section 8.1], but equivalent to it.

For every 𝑛 ∈ N, we let S𝑛 be the symmetric group on the set {1, 2, . . . , 𝑛}. (This

notation is identical with that in [GriRei15]. It has nothing to do with the S𝛼 from

[BBSSZ13a].) We let S denote the disjoint union
⨆︀

𝑛∈N S𝑛. We identify permutations

in S with certain words – namely, every permutation 𝜋 ∈ S is identified with the

word
(︀
𝑋𝜋(1), 𝑋𝜋(2), . . . , 𝑋𝜋(𝑛)

)︀
, where 𝑛 is such that 𝜋 ∈ S𝑛. The words thus identified

with permutations in S are precisely the packed words which do not have repeated

elements.

For every word 𝑤, we define a word std𝑤 ∈ S as follows: Write 𝑤 in the

form (𝑋𝑖1 , 𝑋𝑖2 , . . . , 𝑋𝑖𝑛). Then, std𝑤 shall be the unique permutation 𝜋 ∈ S𝑛 such

that, whenever 𝑢 and 𝑣 are two elements of {1, 2, . . . , 𝑛} satisfying 𝑢 < 𝑣, we have

(𝜋 (𝑢) < 𝜋 (𝑣) if and only if 𝑖𝑢 ≤ 𝑖𝑣). Equivalently (and less formally), std𝑤 is the

word which is obtained by

∙ replacing the leftmost smallest letter of 𝑤 by 𝑋1, and marking it as “processed”;

∙ then replacing the leftmost smallest letter of 𝑤 that is not yet processed by 𝑋2,

and marking it as “processed”;

∙ then replacing the leftmost smallest letter of 𝑤 that is not yet processed by 𝑋3,

and marking it as “processed”;

∙ etc., until all letters of 𝑤 are processed.

139



For instance, std (𝑋3𝑋5𝑋2𝑋3𝑋2𝑋3) = 𝑋3𝑋6𝑋1𝑋4𝑋2𝑋5 (which, regarded as per-

mutation, is the permutation written in one-line notation as (3, 6, 1, 4, 2, 5)).

We call std𝑤 the standardization of 𝑤.

Now, for every 𝜎 ∈ S, we define an element G𝜎 ∈ WQSym by

G𝜎 =
∑︁

𝑤 is a packed word;
std𝑤=𝜎

M𝑤 =
∑︁

𝑤∈Wrd;
std𝑤=𝜎

𝑤.

(The second equality sign can easily be checked.) Then, the k-submodule of WQSym

spanned by (G𝜎)𝜎∈S turns out to be a Hopf subalgebra, with basis (G𝜎)𝜎∈S. This

Hopf subalgebra is denoted by FQSym. This definition is not identical with the one

given in [GriRei15, Section 8.1]; however, it gives an isomorphic Hopf algebra, as our

G𝜎 correspond to the images of the 𝐺𝜎 introduced in [GriRei15, Section 8.1] under

the embedding FQSym → 𝑅
⟨︀
{𝑋𝑖}𝑖∈𝐼

⟩︀
also defined therein.

Only two of the five operations ≺ , ∘, ≻ , Á , and ź defined in Definition 2.6.1

can be restricted to binary operations on FQSym:

Proposition 2.6.4. Every 𝑎 ∈ FQSym and 𝑏 ∈ FQSym satisfy 𝑎 ≻ 𝑏 ∈ FQSym

and 𝑎 Á 𝑏 ∈ FQSym.

Moreover, we have the following explicit formulas on the basis (G𝜎)𝜎∈S:

Remark 2.6.5. Let 𝜎 ∈ S and 𝜏 ∈ S. Let ℓ be the length of 𝜎 (so that 𝜎 ∈ Sℓ).

(a) We have

G𝜎 ≻ G𝜏 =
∑︁
𝜋∈S;

std(𝜋[:ℓ])=𝜎; std(𝜋[ℓ:])=𝜏 ;
min(Supp(𝜋[:ℓ]))>min(Supp(𝜋[ℓ:]))

G𝜋.

(b) We have

G𝜎 Á G𝜏 =
∑︁
𝜋∈S;

std(𝜋[:ℓ])=𝜎; std(𝜋[ℓ:])=𝜏 ;
max(Supp(𝜋[:ℓ]))≤min(Supp(𝜋[ℓ:]))

G𝜋.
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The sum on the right hand side consists of one addend only, namely G𝜎𝜏+ℓ .

The statements of Remark 2.6.5 can be easily derived from Remark 2.6.3. The

proof for (a) rests on the following simple observations:

∙ Every word 𝑤 satisfies std (pack𝑤) = std𝑤.

∙ Every 𝑛 ∈ N, every word 𝑤 of length 𝑛 and every ℓ ∈ {0, 1, . . . , 𝑛} satisfy

std ((std𝑤) [: ℓ]) = std (𝑤 [: ℓ]) and std ((std𝑤) [ℓ :]) = std (𝑤 [ℓ :]) .

∙ Every 𝑛 ∈ N, every word 𝑤 of length 𝑛 and every ℓ ∈ {0, 1, . . . , 𝑛} satisfy the

equivalence

(min (Supp (𝑤 [: ℓ])) > min (Supp (𝑤 [ℓ :])))

⇐⇒ (min (Supp ((std𝑤) [: ℓ])) > min (Supp ((std𝑤) [ℓ :]))) .

The third of these three observations would fail if the greater sign were to be

replaced by a smaller sign; this is essentially why FQSym ⊆ WQSym is not closed

under ≺ .

The operation ≻ on FQSym defined above is closely related to the operation ≻

on FQSym introduced by Foissy in [Foissy07, Section 4.2]. Indeed, the latter differs

from the former in the use of max instead of min.

2.7 Epilogue

We have introduced five binary operations ≺ , ∘, ≻ , Á , and ź on k [[𝑥1, 𝑥2, 𝑥3, . . .]]

and their restrictions to QSym; we have further introduced five analogous operations

on k ⟨⟨X⟩⟩ and their restrictions to WQSym (as well as the restrictions of two of

them to FQSym). We have used these operations (specifically, ≺ and Á) to prove a

formula (Corollary 2.5.6) for the dual immaculate functions S*
𝛼. Along the way, we

have found that the S*
𝛼 can be obtained by repeated application of the operation ≺
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(Corollary 2.4.7). A similar (but much more obvious) result can be obtained for the

fundamental quasisymmetric functions: For every 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ) ∈ Comp, we

have

𝐹𝛼 = ℎ𝛼1 ź ℎ𝛼2 ź · · · ź ℎ𝛼ℓ
ź 1

(we do not use parentheses here, since ź is associative). This shows that the k-algebra

(QSym, ź) is free. Moreover,

𝐹𝜔(𝛼) = 𝑒𝛼ℓ
Á 𝑒𝛼ℓ−1

Á · · · Á 𝑒𝛼1 Á 1,

where 𝑒𝑚 stands for the 𝑚-th elementary symmetric function; thus, the k-algebra

(QSym, Á) is also free.43 (Incidentally, this shows that 𝑆 (𝑎 ź 𝑏) = 𝑆 (𝑏) Á 𝑆 (𝑎) for

any 𝑎, 𝑏 ∈ QSym. But this does not hold for 𝑎, 𝑏 ∈ WQSym.)

One might wonder what “functions” can be similarly constructed using the op-

erations ≺ , ∘, ≻ , Á , and ź in WQSym, using the noncommutative analogues

𝐻𝑚 =
∑︀

𝑖1≤𝑖2≤···≤𝑖𝑚

𝑋𝑖1𝑋𝑖2 · · ·𝑋𝑖𝑚 = G(1,2,...,𝑚) and 𝐸𝑚 =
∑︀

𝑖1>𝑖2>···>𝑖𝑚

𝑋𝑖1𝑋𝑖2 · · ·𝑋𝑖𝑚 =

G(𝑚,𝑚−1,...,1) of ℎ𝑚 and 𝑒𝑚. (These analogues actually live in NSym, where NSym is

embedded into FQSym as in [GriRei15, Corollary 8.14]; but the operations do not

preserve NSym, and only two of them preserve FQSym.) However, it seems somewhat

tricky to ask the right questions here; for instance, the k-linear span of the ≻ -closure

of {𝐻𝑚 | 𝑚 ≥ 0} is not a k-subalgebra of FQSym (since 𝐻2𝐻1 is not a k-linear

combination of 𝐻3, 𝐻1 ≻ (𝐻1 ≻ 𝐻1), (𝐻1 ≻ 𝐻1) ≻ 𝐻1, 𝐻1 ≻ 𝐻2 and 𝐻2 ≻ 𝐻1).

On the other hand, one might also try to write down the set of identities satisfied by

the operations ·, ≺ , ∘, ⪰ , Á and ź on the various spaces (k [[𝑥1, 𝑥2, 𝑥3, . . .]], QSym,

k ⟨⟨X⟩⟩, WQSym and FQSym), or by subsets of these operations; these identities

could then be used to define new operads, i.e., algebraic structures comprising a k-

module and some operations on it that imitate (some of) the operations ·, ≺ , ∘, ⪰ ,

Á and ź . For instance, apart from being associative, the operations Á and ź on

43We owe these two observations to the referee.
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k ⟨⟨X⟩⟩ satisfy the identity

(𝑎 Á 𝑏) ź 𝑐+ (𝑎 ź 𝑏) Á 𝑐 = 𝑎 Á (𝑏 ź 𝑐) + 𝑎 ź (𝑏 Á 𝑐) (2.54)

for all 𝑎, 𝑏, 𝑐 ∈ k ⟨⟨X⟩⟩. This follows from the (easily verified) identities

(𝑎 Á 𝑏) ź 𝑐− 𝑎 Á (𝑏 ź 𝑐) = 𝜀 (𝑏) (𝑎 ź 𝑐− 𝑎 Á 𝑐) ;

(𝑎 ź 𝑏) Á 𝑐− 𝑎 ź (𝑏 Á 𝑐) = 𝜀 (𝑏) (𝑎 Á 𝑐− 𝑎 ź 𝑐) ,

where 𝜀 : k ⟨⟨X⟩⟩ → k is the map which sends every noncommutative power series

to its constant term. The equality (2.54) (along with the associativity of Á and ź)

makes (k ⟨⟨X⟩⟩ , Á , ź) into what is called an 𝐴𝑠⟨2⟩-algebra (see [Zinbie10, p. 39]). Is

QSym or WQSym a free 𝐴𝑠⟨2⟩-algebra? What if we add the existence of a common

neutral element for the operations Á and ź to the axioms of this operad?
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Chapter 3

The Bernstein homomorphism via

Aguiar-Bergeron-Sottile universality

Abstract

If 𝐻 is a commutative connected graded Hopf algebra over a commutative ring k,
then a certain canonical k-algebra homomorphism 𝐻 → 𝐻⊗QSymk is defined, where
QSymk denotes the Hopf algebra of quasisymmetric functions. This homomorphism
generalizes the “internal comultiplication” on QSymk, and extends what Hazewinkel
(in §18.24 of his “Witt vectors”) calls the Bernstein homomorphism.

We construct this homomorphism with the help of the universal property of
QSymk as a combinatorial Hopf algebra (a well-known result by Aguiar, Bergeron
and Sottile) and extension of scalars (the commutativity of 𝐻 allows us to consider,
for example, 𝐻 ⊗QSymk as an 𝐻-Hopf algebra, and this change of viewpoint signif-
icantly extends the reach of the universal property).

***

One of the most important aspects of QSym (the Hopf algebra of quasisymmetric

functions) is a universal property discovered by Aguiar, Bergeron and Sottile in 2003

[ABS03]; among other applications, it gives a unifying framework for various qua-

sisymmetric and symmetric functions constructed from combinatorial objects (e.g.,

the chromatic symmetric function of a graph).

On the other hand, let Λk be the Hopf algebra of symmetric functions over a
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commutative ring k. If 𝐻 is any commutative cocommutative connected graded

k-Hopf algebra, then a certain k-algebra homomorphism 𝐻 → 𝐻 ⊗ Λk (not a Hopf

algebra homomorphism!) was defined by Joseph N. Bernstein, and used by Zelevinsky

in [Zelevi81, §5.2] to classify PSH-algebras. In [Haz08, §18.24], Hazewinkel observed

that this homomorphism generalizes the second comultiplication of Λk, and asked for

“more study” and a better understanding of this homomorphism.

In this note, I shall define an extended version of this homomorphism: a k-algebra

homomorphism 𝐻 → 𝐻 ⊗ QSymk for any commutative (but not necessarily cocom-

mutative) connected graded k-Hopf algebra 𝐻. This homomorphism, which I will call

the Bernstein homomorphism, will generalize the second comultiplication of QSymk,

or rather its variant with the two tensorands flipped. When 𝐻 is cocommutative,

this homomorphism has its image contained in 𝐻 ⊗Λk and thus becomes Bernstein’s

original homomorphism.

The Bernstein homomorphism 𝐻 → 𝐻 ⊗ QSymk is not fully new (although I

have not seen it appear explicitly in the literature). Its dual version is a coalgebra

homomorphism 𝐻 ′ ⊗ NSymk → 𝐻 ′, where 𝐻 ′ is a cocommutative connected graded

Hopf algebra; i.e., it is an action of NSymk on any such 𝐻 ′. This action is implicit in

the work of Patras and Reutenauer on descent algebras, and a variant of it for Hopf

monoids instead of Hopf algebras appears in [Aguiar13, Propositions 84 and 88, and

especially the Remark after Proposition 88]. What I believe to be new in this note

is the way I will construct the Bernstein homomorphism: as a consequence of the

Aguiar-Bergeron-Sottile universal property of QSym, but applied not to the k-Hopf

algebra QSymk but to the 𝐻-Hopf algebra QSym𝐻 . The commutativity of 𝐻 is being

used here to deploy 𝐻 as the base ring.
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3.1 Definitions and conventions

For the rest of this note, we fix a commutative ring1 k. All tensor signs (⊗) without

a subscript will mean ⊗k. We shall use the notions of k-algebras, k-coalgebras and

k-Hopf algebras as defined (e.g.) in [GriRei15, Chapter 1]. We shall also use the

notions of graded k-algebras, graded k-coalgebras and graded k-Hopf algebras as

defined in [GriRei15, Chapter 1]; in particular, we shall not use the topologists’ sign

conventions2. The comultiplication and the counit of a k-coalgebra 𝐶 will be denoted

by Δ𝐶 and 𝜀𝐶 , respectively; when the 𝐶 is unambiguously clear from the context, we

will omit it from the notation (so we will just write Δ and 𝜀).

If 𝑉 and 𝑊 are two k-modules, then we let 𝜏𝑉,𝑊 be the k-linear map 𝑉 ⊗𝑊 →

𝑊 ⊗ 𝑉, 𝑣 ⊗ 𝑤 ↦→ 𝑤 ⊗ 𝑣. This k-linear map 𝜏𝑉,𝑊 is called the twist map, and is a

k-module isomorphism.

The next two definitions are taken from [GriRei15, §1.4]3:

Definition 3.1.1. Let 𝐴 be a k-algebra. Let 𝑚𝐴 denote the k-linear map 𝐴⊗𝐴 →

𝐴, 𝑎 ⊗ 𝑏 ↦→ 𝑎𝑏. Let 𝑢𝐴 denote the k-linear map k → 𝐴, 𝜆 ↦→ 𝜆 · 1𝐴. (The maps

𝑚𝐴 and 𝑢𝐴 are often denoted by 𝑚 and 𝑢 when 𝐴 is unambiguously clear from the

context.) For any 𝑘 ∈ N, we define a k-linear map 𝑚(𝑘−1) : 𝐴⊗𝑘 → 𝐴 recursively

as follows: We set 𝑚(−1) = 𝑢𝐴, 𝑚(0) = id𝐴 and

𝑚(𝑘) = 𝑚 ∘
(︀
id𝐴 ⊗𝑚(𝑘−1)

)︀
for every 𝑘 ≥ 1.

The maps 𝑚(𝑘−1) : 𝐴⊗𝑘 → 𝐴 are called the iterated multiplication maps of 𝐴.

Notice that for every k ∈ N, the map 𝑚(𝑘−1) is the k-linear map 𝐴⊗𝑘 → 𝐴

which sends every 𝑎1 ⊗ 𝑎2 ⊗ · · · ⊗ 𝑎𝑘 ∈ 𝐴⊗𝑘 to 𝑎1𝑎2 · · · 𝑎𝑘.

1The word “ring” always means “associative ring with 1” in this note. Furthermore, a k-algebra
(when k is a commutative ring) means a k-module 𝐴 equipped with a ring structure such that the
multiplication map 𝐴×𝐴 → 𝐴 is k-bilinear.

2Thus, the twist map 𝑉 ⊗ 𝑉 → 𝑉 ⊗ 𝑉 for a graded k-module 𝑉 sends 𝑣 ⊗ 𝑤 ↦→ 𝑤 ⊗ 𝑣, even if 𝑣
and 𝑤 are homogeneous of odd degree.

3The objects we are defining are classical and standard; however, the notation we are using for
them is not. For example, what we call Δ(𝑘−1) in Definition 3.1.2 is denoted by Δ𝑘−1 in [Sweed69],
and is called Δ(𝑘) in [Fresse14, §7.1].
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Definition 3.1.2. Let 𝐶 be a k-coalgebra. For any 𝑘 ∈ N, we define a k-linear

map Δ(𝑘−1) : 𝐶 → 𝐶⊗𝑘 recursively as follows: We set Δ(−1) = 𝜀𝐶 , Δ(0) = id𝐶 and

Δ(𝑘) =
(︀
id𝐶 ⊗Δ(𝑘−1)

)︀
∘Δ for every 𝑘 ≥ 1.

The maps Δ(𝑘−1) : 𝐶 → 𝐶⊗𝑘 are called the iterated comultiplication maps of 𝐶.

A composition shall mean a finite sequence of positive integers. The size of a

composition 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑘) is defined to be the nonnegative integer 𝛼1 + 𝛼2 +

· · ·+ 𝛼𝑘, and is denoted by |𝛼|. Let Comp denote the set of all compositions.

Let N denote the set {0, 1, 2, . . .}.

Definition 3.1.3. Let 𝐻 be a graded k-module. For every 𝑛 ∈ N, we let 𝜋𝑛 : 𝐻 →

𝐻 be the canonical projection of 𝐻 onto the 𝑛-th graded component 𝐻𝑛 of 𝐻. We

shall always regard 𝜋𝑛 as a map from 𝐻 to 𝐻, not as a map from 𝐻 to 𝐻𝑛, even

though its image is 𝐻𝑛.

For every composition 𝛼 = (𝑎1, 𝑎2, . . . , 𝑎𝑘), we let 𝜋𝛼 : 𝐻⊗𝑘 → 𝐻⊗𝑘 be the

tensor product 𝜋𝑎1 ⊗ 𝜋𝑎2 ⊗ · · · ⊗ 𝜋𝑎𝑘 of the canonical projections 𝜋𝑎𝑖 : 𝐻 → 𝐻.

Thus, the image of 𝜋𝛼 can be identified with 𝐻𝑎1 ⊗𝐻𝑎2 ⊗ · · · ⊗𝐻𝑎𝑘 .

Let QSymk denote the k-Hopf algebra of quasisymmetric functions defined over k.

(This is defined and denoted by 𝒬𝑆𝑦𝑚 in [ABS03, §3]; it is also defined and denoted

by QSym in [GriRei15, Chapter 5].) We shall follow the notations and conventions

of [GriRei15, §5.1] as far as QSymk is concerned; in particular, we regard QSymk

as a subring of the ring k [[𝑥1, 𝑥2, 𝑥3, . . .]] of formal power series in countably many

indeterminates 𝑥1, 𝑥2, 𝑥3, . . ..

Let 𝜀𝑃 denote the k-linear map QSymk → k sending every 𝑓 ∈ QSymk to

𝑓 (1, 0, 0, 0, . . .) ∈ k. (This map 𝜀𝑃 is denoted by 𝜁𝒬 in [ABS03, §4] and by 𝜁𝑄 in

[GriRei15, Example 7.2].) Notice that 𝜀𝑃 is a k-algebra homomorphism.
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Definition 3.1.4. For every composition 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼ℓ), we define a power

series 𝑀𝛼 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]] by

𝑀𝛼 =
∑︁

1≤𝑖1<𝑖2<···<𝑖ℓ

𝑥𝛼1
𝑖1
𝑥𝛼2
𝑖2

· · ·𝑥𝛼ℓ
𝑖ℓ

(where the sum is over all strictly increasing ℓ-tuples (𝑖1 < 𝑖2 < · · · < 𝑖ℓ) of positive

integers). It is well-known (and easy to check) that this 𝑀𝛼 belongs to QSymk. The

power series 𝑀𝛼 is called the monomial quasisymmetric function corresponding to

𝛼. The family (𝑀𝛼)𝛼∈Comp is a basis of the k-module QSymk; this is the so-called

monomial basis of QSymk. (See [ABS03, §3] and [GriRei15, §5.1] for more about

this basis.)

It is well-known that every (𝑏1, 𝑏2, . . . , 𝑏ℓ) ∈ Comp satisfies

Δ
(︀
𝑀(𝑏1,𝑏2,...,𝑏ℓ)

)︀
=

ℓ∑︁
𝑖=0

𝑀(𝑏1,𝑏2,...,𝑏𝑖) ⊗𝑀(𝑏𝑖+1,𝑏𝑖+2,...,𝑏ℓ) (3.1)

and

𝜀
(︀
𝑀(𝑏1,𝑏2,...,𝑏ℓ)

)︀
=

⎧⎪⎨⎪⎩1, if ℓ = 0;

0, if ℓ ̸= 0

.

These two equalities can be used as a definition of the k-coalgebra structure on QSymk

(because (𝑀𝛼)𝛼∈Comp is a basis of the k-module QSymk, and thus the k-linear maps

Δ and 𝜀 are uniquely determined by their values on the 𝑀𝛼).

3.2 The Aguiar-Bergeron-Sottile theorem

The cornerstone of the Aguiar-Bergeron-Sottile paper [ABS03] is the following result:

Theorem 3.2.1. Let k be a commutative ring. Let 𝐻 be a connected graded

k-Hopf algebra. Let 𝜁 : 𝐻 → k be a k-algebra homomorphism.

(a) Then, there exists a unique graded k-coalgebra homomorphism Ψ : 𝐻 →
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QSymk for which the diagram

𝐻
Ψ //

𝜁
��

QSym

𝜀𝑃
||

k

is commutative.

(b) This unique k-coalgebra homomorphism Ψ : 𝐻 → QSymk is a k-Hopf

algebra homomorphism.

(c) For every composition 𝛼 = (𝑎1, 𝑎2, . . . , 𝑎𝑘), define a k-linear map 𝜁𝛼 : 𝐻 → k

as the composition

𝐻 Δ(𝑘−1)
// 𝐻⊗𝑘 𝜋𝛼 // 𝐻⊗𝑘 𝜁⊗𝑘

// k⊗𝑘
∼= // k .

(Here, the map k⊗𝑘
∼=−→ k is the canonical k-algebra isomorphism from k⊗𝑘 to

k. Recall also that Δ(𝑘−1) : 𝐻 → 𝐻⊗𝑘 is the “iterated comultiplication map”; see

[GriRei15, §1.4] for its definition. The map 𝜋𝛼 : 𝐻⊗𝑘 → 𝐻⊗𝑘 is the one defined in

Definition 3.1.3.)

Then, the unique k-coalgebra homomorphism Ψ of Theorem 3.2.1 (a) is given

by the formula

Ψ(ℎ) =
∑︁

𝛼∈Comp;
|𝛼|=𝑛

𝜁𝛼 (ℎ) ·𝑀𝛼 whenever 𝑛 ∈ N and ℎ ∈ 𝐻𝑛.

(Recall that 𝐻𝑛 denotes the 𝑛-th graded component of 𝐻.)

(d) The unique k-coalgebra homomorphism Ψ of Theorem 3.2.1 (a) is also

given by

Ψ(ℎ) =
∑︁

𝛼∈Comp

𝜁𝛼 (ℎ) ·𝑀𝛼 for every ℎ ∈ 𝐻

(in particular, the sum on the right hand side of this equality has only finitely

many nonzero addends).

(e) Assume that the k-coalgebra 𝐻 is cocommutative. Then, the unique k-
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coalgebra homomorphism Ψ of Theorem 3.2.1 (a) satisfies Ψ(𝐻) ⊆ Λk, where Λk

is the k-algebra of symmetric functions over k. (See [GriRei15, §2] for the definition

of Λk. We regard Λk as a k-subalgebra of QSymk in the usual way.)

Parts (a), (b) and (c) of Theorem 3.2.1 are proven in [ABS03, proof of Theorem

4.1] and [GriRei15, proof of Theorem 7.3] (although we are using different notations

here4, and avoiding the standing assumptions of [ABS03] which needlessly require k to

be a field and 𝐻 to be of finite type). Theorem 3.2.1 (d) easily follows from Theorem

3.2.1 (c)5. Theorem 3.2.1 (e) appears in [GriRei15, Remark 7.4] (and something very

close is proven in [ABS03, Theorem 4.3]). For the sake of completeness, let me give

some details on the proof of Theorem 3.2.1 (e):

Proof of Theorem 3.2.1 (e). Let 𝜀𝑝 : Λk → k be the restriction of the k-algebra

homomorphism 𝜀𝑃 : QSymk → k to Λk. From [ABS03, Theorem 4.3], we know that
4The paper [ABS03] defines a combinatorial coalgebra to be a pair (𝐻, 𝜁) consisting of a connected

graded k-coalgebra 𝐻 (where “connected” means that 𝜀 |𝐻0 : 𝐻0 → k is a k-module isomorphism)
and a k-linear map 𝜁 : 𝐻 → k satisfying 𝜁 |𝐻0= 𝜀 |𝐻0 . Furthermore, it defines a morphism
from a combinatorial coalgebra (𝐻 ′, 𝜁 ′) to a combinatorial coalgebra (𝐻, 𝜁) to be a homomorphism
𝛼 : 𝐻 ′ → 𝐻 of graded k-coalgebras for which the diagram

𝐻 ′ 𝛼 //

𝜁′
  

𝐻

𝜁
��

k

is commutative. Theorem 3.2.1 (a) translates into this language as follows: There exists a unique
morphism from the combinatorial coalgebra (𝐻, 𝜁) to the combinatorial coalgebra (QSymk, 𝜀𝑃 ).
(Apart from this, [ABS03] is also using the notations k, ℋ, 𝒬𝑆𝑦𝑚 and 𝜁𝒬 for what we call k, 𝐻,
QSymk and 𝜀𝑃 .)

5Proof. Let Ψ be the unique k-coalgebra homomorphism Ψ of Theorem 3.2.1 (a). It is easy to
see that every 𝑛 ∈ N, every composition 𝛼 with |𝛼| ≠ 𝑛 and every ℎ ∈ 𝐻𝑛 satisfy 𝜁𝛼 (ℎ) = 0 (because

𝜋𝛼

⎛⎝Δ(𝑘−1)

⎛⎝ ℎ⏟ ⏞ 
∈𝐻𝑛

⎞⎠⎞⎠ ∈ 𝜋𝛼

(︀
Δ(𝑘−1) (𝐻𝑛)

)︀
= 0 (for reasons of gradedness)). Hence, for every 𝑛 ∈ N

and every ℎ ∈ 𝐻𝑛, we have∑︁
𝛼∈Comp

𝜁𝛼 (ℎ) ·𝑀𝛼 =
∑︁

𝛼∈Comp;
|𝛼|=𝑛

𝜁𝛼 (ℎ) ·𝑀𝛼 +
∑︁

𝛼∈Comp;
|𝛼|̸=𝑛

𝜁𝛼 (ℎ)⏟  ⏞  
=0

·𝑀𝛼

=
∑︁

𝛼∈Comp;
|𝛼|=𝑛

𝜁𝛼 (ℎ) ·𝑀𝛼 = Ψ(ℎ) (by Theorem 3.2.1 (c)) .

Both sides of this equality are k-linear in ℎ; thus, it also holds for every ℎ ∈ 𝐻 (even if ℎ is not
homogeneous). This proves Theorem 3.2.1 (d).
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there exists a unique graded k-coalgebra homomorphism Ψ′ : 𝐻 → Λk for which the

diagram

𝐻
Ψ′

//

𝜁
��

Λk

𝜀𝑝
~~

k

(3.2)

is commutative. Consider this Ψ′. Let 𝜄 : Λk → QSymk be the canonical inclusion

map; this is a k-Hopf algebra homomorphism. Also, 𝜀𝑝 = 𝜀𝑃 ∘ 𝜄 (by the definition of

𝜀𝑝). The commutative diagram (3.2) yields 𝜁 = 𝜀𝑝⏟ ⏞ 
=𝜀𝑃 ∘𝜄

∘Ψ′ = 𝜀𝑃 ∘ 𝜄 ∘Ψ′.

Now, consider the unique k-coalgebra homomorphism Ψ of Theorem 3.2.1 (a).

Due to its uniqueness, it has the following property: If ̃︀Ψ is any k-coalgebra homo-

morphism 𝐻 → QSymk for which the diagram

𝐻
̃︀Ψ //

𝜁
��

QSym

𝜀𝑃
||

k

(3.3)

is commutative, then ̃︀Ψ = Ψ. Applying this to ̃︀Ψ = 𝜄∘Ψ′, we obtain 𝜄∘Ψ′ = Ψ (since

the diagram (3.3) is commutative for ̃︀Ψ = 𝜄 ∘ Ψ′ (because 𝜁 = 𝜀𝑃 ∘ 𝜄 ∘ Ψ′)). Hence,

Ψ⏟ ⏞ 
=𝜄∘Ψ′

(𝐻) = (𝜄 ∘Ψ′) (𝐻) = 𝜄

⎛⎝Ψ′ (𝐻)⏟  ⏞  
⊆Λk

⎞⎠ ⊆ 𝜄 (Λk) = Λk. This proves Theorem 3.2.1

(e).

Remark 3.2.2. Let k, 𝐻 and 𝜁 be as in Theorem 3.2.1. Then, the k-module

Hom (𝐻,k) of all k-linear maps from 𝐻 to k has a canonical structure of a k-

algebra; its unity is the map 𝜀 ∈ Hom (𝐻,k), and its multiplication is the binary

operation F defined by

𝑓F𝑔 = 𝑚k ∘ (𝑓 ⊗ 𝑔) ∘Δ𝐻 : 𝐻 → k for every 𝑓, 𝑔 ∈ Hom (𝐻,k)

(where 𝑚k is the canonical isomorphism k ⊗ k → k). This k-algebra is called

the convolution algebra of 𝐻 and k; it is a particular case of the construction in

[GriRei15, Definition 1.27]. Using this convolution algebra, we can express the map
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𝜁𝛼 in Theorem 3.2.1 (c) as follows: For every composition 𝛼 = (𝑎1, 𝑎2, . . . , 𝑎𝑘), the

map 𝜁𝛼 : 𝐻 → k is given by

𝜁𝛼 = (𝜁 ∘ 𝜋𝑎1)F (𝜁 ∘ 𝜋𝑎2)F · · ·F (𝜁 ∘ 𝜋𝑎𝑘) .

(This follows from [GriRei15, Exercise 1.43].)

3.3 Extension of scalars and (k, 𝐴)-coalgebra homo-

morphisms

Various applications of Theorem 3.2.1 can be found in [ABS03] and [GriRei15, Chap-

ter 7]. We are going to present another application, which we will obtain by “leverag-

ing” Theorem 3.2.1 through an extension-of-scalars argument6. Let us first introduce

some more notations.

Definition 3.3.1. Let 𝐻 be a k-algebra (possibly with additional structure, such

as a grading or a Hopf algebra structure). Then, 𝐻 will mean the k-algebra 𝐻

without any additional structure (for instance, the k-coalgebra structure on 𝐻 is

forgotten if 𝐻 was a k-bialgebra, and the grading is forgotten if 𝐻 was graded).

Sometimes we will use the notation 𝐻 even when 𝐻 has no additional structure

beyond being a 𝐻-algebra; in this case, it means the same as 𝐻, just stressing the

fact that it is a plain k-algebra with nothing up its sleeves.

In other words, 𝐻 will denote the image of 𝐻 under the forgetful functor from

whatever category 𝐻 belongs to to the category of k-algebras. We shall often use

𝐻 and 𝐻 interchangeably, whenever 𝐻 is merely a k-algebra or the other structures

on 𝐻 cannot cause confusion.

6I have learned this extension-of-scalars trick from Petracci’s [Petra02, proof of Lemma 2.1.1];
similar ideas appear in various other algebraic arguments.
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Definition 3.3.2. Let 𝐴 be a commutative k-algebra.

(a) If 𝐻 is a k-module, then 𝐴⊗𝐻 will be understood to mean the 𝐴-module

𝐴⊗𝐻, on which 𝐴 acts by the rule

𝑎 (𝑏⊗ ℎ) = 𝑎𝑏⊗ ℎ for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 and ℎ ∈ 𝐻.

This 𝐴-module 𝐴⊗𝐻 is called the k-module 𝐻 with scalars extended to 𝐴.

We can define a functor Modk → Mod𝐴 (where Mod𝐵 denotes the category of

𝐵-modules) which sends every object 𝐻 ∈ Modk to 𝐴⊗𝐻 and every morphism 𝑓 ∈

Modk (𝐻1, 𝐻2) to id⊗𝑓 ∈ Mod𝐴 (𝐴⊗𝐻1, 𝐴⊗𝐻2); this functor is called extension

of scalars (from k to 𝐴).

(b) If 𝐻 is a graded k-module, then the 𝐴-module 𝐴⊗𝐻 canonically becomes

a graded 𝐴-module (namely, its 𝑛-th graded component is 𝐴⊗𝐻𝑛, where 𝐻𝑛 is the

𝑛-th graded component of 𝐻). Notice that even if 𝐴 is graded, we disregard its

grading when defining the grading on 𝐴 ⊗𝐻; this is why we are calling it 𝐴 ⊗𝐻

and not 𝐴⊗𝐻.

As before, we can define a functor from the category of graded k-modules to

the category of graded 𝐴-modules (which functor sends every object 𝐻 to 𝐴⊗𝐻),

which is called extension of scalars.

(c) If 𝐻 is a k-algebra, then the 𝐴-module 𝐴 ⊗ 𝐻 becomes an 𝐴-algebra ac-

cording to the rule

(𝑎⊗ ℎ) (𝑏⊗ 𝑔) = 𝑎𝑏⊗ ℎ𝑔 for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴, ℎ ∈ 𝐻 and 𝑔 ∈ 𝐻.

(This is, of course, the same rule as used in the standard definition of the tensor

product 𝐴⊗𝐻; but notice that we are regarding 𝐴⊗𝐻 as an 𝐴-algebra, not just as

a k-algebra.) This 𝐴-algebra 𝐴⊗𝐻 is called the k-algebra 𝐻 with scalars extended

to 𝐴.

As before, we can define a functor from the category of k-algebras to the cate-

gory of 𝐴-algebras (which functor sends every object 𝐻 to 𝐴⊗𝐻), which is called
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extension of scalars.

(d) If 𝐻 is a k-coalgebra, then the 𝐴-module 𝐴⊗𝐻 becomes an 𝐴-coalgebra.

Namely, its comultiplication is defined to be

id𝐴 ⊗Δ𝐻 : 𝐴⊗𝐻 → 𝐴⊗ (𝐻 ⊗𝐻) ∼= (𝐴⊗𝐻)⊗𝐴 (𝐴⊗𝐻) ,

and its counit is defined to be

id𝐴 ⊗𝜀𝐻 : 𝐴⊗𝐻 → 𝐴⊗ k ∼= 𝐴

(recalling that Δ𝐻 and 𝜀𝐻 are the comultiplication and the counit of 𝐻, respec-

tively). Note that both the comultiplication and the counit are 𝐴-linear, so this

𝐴-coalgebra 𝐴⊗𝐻 is well-defined. This 𝐴-coalgebra 𝐴⊗𝐻 is called the k-coalgebra

𝐻 with scalars extended to 𝐴.

As before, we can define a functor from the category of k-coalgebras to the

category of 𝐴-coalgebras (which functor sends every object 𝐻 to 𝐴⊗𝐻), which is

called extension of scalars.

Notice that 𝐴 ⊗ 𝐻 is an 𝐴-coalgebra, not a k-coalgebra. If 𝐴 has a pre-

existing k-coalgebra structure, then the 𝐴-coalgebra structure on 𝐴 ⊗ 𝐻 usually

has nothing to do with the k-coalgebra structure on 𝐴⊗𝐻 obtained by tensoring

the k-coalgebras 𝐴 and 𝐻.

(e) If 𝐻 is a k-bialgebra, then the 𝐴-module 𝐴 ⊗𝐻 becomes an 𝐴-bialgebra.

(Namely, the 𝐴-algebra structure and the 𝐴-coalgebra structure previously defined

on 𝐴 ⊗𝐻, combined, form an 𝐴-bialgebra structure.) This 𝐴-bialgebra 𝐴 ⊗𝐻 is

called the k-bialgebra 𝐻 with scalars extended to 𝐴.

As before, we can define a functor from the category of k-bialgebras to the

category of 𝐴-bialgebras (which functor sends every object 𝐻 to 𝐴⊗𝐻), which is

called extension of scalars.

(f) Similarly, extension of scalars is defined for k-Hopf algebras, graded k-

bialgebras, etc.. Again, all structures on 𝐴 that go beyond the k-algebra structure
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are irrelevant and can be forgotten.

Definition 3.3.3. Let 𝐴 be a commutative k-algebra.

(a) Let 𝐻 be a k-module, and let 𝐺 be an 𝐴-module. For any k-linear map

𝑓 : 𝐻 → 𝐺, we let 𝑓 ♯ denote the 𝐴-linear map

𝐴⊗𝐻 → 𝐺, 𝑎⊗ ℎ ↦→ 𝑎𝑓 (ℎ) .

(It is easy to see that this latter map is indeed well-defined and 𝐴-linear.) For any

𝐴-linear map 𝑔 : 𝐴⊗𝐻 → 𝐺, we let 𝑔♭ denote the k-linear map

𝐻 → 𝐺, ℎ ↦→ 𝑔 (1⊗ ℎ) .

Sometimes we will use the notations 𝑓 ♯(𝐴,k) and 𝑔♭(𝐴,k) instead of 𝑓 ♯ and 𝑔♭ when

the 𝐴 and the k are not clear from the context.

It is easy to see that
(︀
𝑓 ♯
)︀♭

= 𝑓 for any k-linear map 𝑓 : 𝐻 → 𝐺, and that(︀
𝑔♭
)︀♯

= 𝑔 for any 𝐴-linear map 𝑔 : 𝐴⊗𝐻 → 𝐺. Thus, the maps

{k-linear maps 𝐻 → 𝐺} → {𝐴-linear maps 𝐴⊗𝐻 → 𝐺} ,

𝑓 ↦→ 𝑓 ♯ (3.4)

and

{𝐴-linear maps 𝐴⊗𝐻 → 𝐺} → {k-linear maps 𝐻 → 𝐺} ,

𝑔 ↦→ 𝑔♭ (3.5)

are mutually inverse.

This is a particular case of an adjunction between functors (namely, the

Hom-tensor adjunction, with a slight simplification, also known as the induction-

restriction adjunction); this is also the reason why we are using the ♯ and ♭ nota-

tions. The maps (3.4) and (3.5) are natural in 𝐻 and 𝐺.
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(b) Let 𝐻 be a k-coalgebra, and let 𝐺 be an 𝐴-coalgebra. A k-linear map

𝑓 : 𝐻 → 𝐺 is said to be a (k, 𝐴)-coalgebra homomorphism if the 𝐴-linear map

𝑓 ♯ : 𝐴⊗𝐻 → 𝐺 is an 𝐴-coalgebra homomorphism.

Proposition 3.3.4. Let 𝐴 be a commutative k-algebra. Let 𝐻 be a k-algebra.

Let 𝐺 be an 𝐴-algebra. Let 𝑓 : 𝐻 → 𝐺 be a k-linear map. Then, 𝑓 is a k-algebra

homomorphism if and only if 𝑓 ♯ is an 𝐴-algebra homomorphism.

Proof of Proposition 3.3.4. Straightforward and left to the reader. (The main step is

to observe that 𝑓 ♯ is an 𝐴-algebra homomorphism if and only if every 𝑎, 𝑏 ∈ 𝐴 and

ℎ, 𝑔 ∈ 𝐻 satisfy 𝑓 ♯ ((𝑎⊗ ℎ) (𝑏⊗ 𝑔)) = 𝑓 ♯ (𝑎⊗ ℎ) 𝑓 ♯ (𝑏⊗ 𝑔). This is because the tensor

product 𝐴⊗𝐻 is spanned by pure tensors.)

Proposition 3.3.5. Let 𝐴 be a commutative k-algebra. Let 𝐻 be a graded k-

module. Let 𝐺 be an 𝐴-module. Let 𝑓 : 𝐻 → 𝐺 be a k-linear map. Then, the

k-linear map 𝑓 is graded if and only if the k-linear map 𝑓 ♯ is graded.

Proof of Proposition 3.3.5. Again, straightforward and therefore omitted.

Let us first prove some easily-checked properties of (k, 𝐴)-coalgebra homomor-

phisms.

Proposition 3.3.6. Let k be a commutative ring. Let 𝐴 be a commutative k-

algebra. Let 𝐻 be a k-coalgebra. Let 𝐺 and 𝐼 be two 𝐴-coalgebras. Let 𝑓 :

𝐻 → 𝐺 be a (k, 𝐴)-coalgebra homomorphism. Let 𝑔 : 𝐺 → 𝐼 be an 𝐴-coalgebra

homomorphism. Then, 𝑔 ∘ 𝑓 is a (k, 𝐴)-coalgebra homomorphism.

Proof of Proposition 3.3.6. Since 𝑓 is a (k, 𝐴)-coalgebra homomorphism, the map

𝑓 ♯ : 𝐴⊗𝐻 → 𝐺 is an 𝐴-coalgebra homomorphism. Now, straightforward elementwise

computation (using the fact that the map 𝑓 is k-linear, and the map 𝑔 is 𝐴-linear)

shows that

(𝑔 ∘ 𝑓)♯ = 𝑔 ∘ 𝑓 ♯. (3.6)
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Thus, (𝑔 ∘ 𝑓)♯ is an 𝐴-coalgebra homomorphism (since 𝑔 and 𝑓 ♯ are 𝐴-coalgebra

homomorphisms). In other words, 𝑔 ∘ 𝑓 is a (k, 𝐴)-coalgebra homomorphism. This

proves Proposition 3.3.6.

Proposition 3.3.7. Let k be a commutative ring. Let 𝐴 be a commutative k-

algebra. Let 𝐹 and 𝐻 be two k-coalgebras. Let 𝐺 be an 𝐴-coalgebra. Let 𝑓 :

𝐻 → 𝐺 be a (k, 𝐴)-coalgebra homomorphism. Let 𝑒 : 𝐹 → 𝐻 be a k-coalgebra

homomorphism. Then, 𝑓 ∘ 𝑒 is a (k, 𝐴)-coalgebra homomorphism.

Proof of Proposition 3.3.7. Since 𝑓 is a (k, 𝐴)-coalgebra homomorphism, the map 𝑓 ♯ :

𝐴⊗𝐻 → 𝐺 is an 𝐴-coalgebra homomorphism. The map id𝐴 ⊗𝑒 : 𝐴⊗𝐹 → 𝐴⊗𝐻 is an

𝐴-coalgebra homomorphism (since 𝑒 : 𝐹 → 𝐻 is a k-coalgebra homomorphism). Now,

straightforward computation shows that (𝑓 ∘ 𝑒)♯ = 𝑓 ♯ ∘ (id𝐴 ⊗𝑒). Hence, (𝑓 ∘ 𝑒)♯ is an

𝐴-coalgebra homomorphism (since 𝑓 ♯ and id𝐴⊗𝑒 are 𝐴-coalgebra homomorphisms).

In other words, 𝑓 ∘ 𝑒 is a (k, 𝐴)-coalgebra homomorphism. This proves Proposition

3.3.7.

Proposition 3.3.8. Let k be a commutative ring. Let 𝐴 be a commutative k-

algebra. Let 𝐻 be a k-coalgebra. Let 𝐺 be an 𝐴-coalgebra. Let 𝐵 be a commutative

𝐴-algebra. Let 𝑝 : 𝐴 → 𝐵 be an 𝐴-algebra homomorphism. (Actually, 𝑝 is uniquely

determined by the 𝐴-algebra structure on 𝐵.) Let 𝑝𝐺 : 𝐺 → 𝐵 ⊗𝐴 𝐺 be the

canonical 𝐴-module homomorphism defined as the composition

𝐺
∼=−→ 𝐴⊗𝐴 𝐺

𝑝⊗𝐴id−→ 𝐵 ⊗𝐴 𝐺.

Let 𝑓 : 𝐻 → 𝐺 be a (k, 𝐴)-coalgebra homomorphism. Then, 𝑝𝐺 ∘ 𝑓 : 𝐻 → 𝐵⊗𝐴 𝐺

is a (k, 𝐵)-coalgebra homomorphism.

Proof of Proposition 3.3.8. Since 𝑓 is a (k, 𝐴)-coalgebra homomorphism, the map

𝑓 ♯ = 𝑓 ♯(𝐴,k) : 𝐴⊗𝐻 → 𝐺 is an 𝐴-coalgebra homomorphism. Thus, the map id𝐵 ⊗𝐴𝑓
♯ :

𝐵 ⊗𝐴 (𝐴⊗𝐻) → 𝐵 ⊗𝐴 𝐺 is a 𝐵-coalgebra homomorphism.

Let 𝜅 : 𝐵⊗𝐻 → 𝐵⊗𝐴 (𝐴⊗𝐻) be the canonical 𝐵-module isomorphism (sending

each 𝑏 ⊗ ℎ ∈ 𝐵 ⊗ 𝐻 to 𝑏 ⊗𝐴 (1⊗ ℎ)). It is well-known that 𝜅 is a 𝐵-coalgebra
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isomorphism7. Thus,
(︀
id𝐵 ⊗𝐴𝑓

♯
)︀
∘ 𝜅 is a 𝐵-coalgebra homomorphism (since both

id𝐵 ⊗𝐴𝑓
♯ and 𝜅 are 𝐵-coalgebra homomorphisms).

The definition of 𝑝𝐺 yields that

𝑝𝐺 (𝑢) = 1⊗𝐴 𝑢 (3.7)

for every 𝑢 ∈ 𝐺.

The map 𝑝𝐺∘𝑓 : 𝐻 → 𝐵⊗𝐴𝐺 gives rise to a map (𝑝𝐺 ∘ 𝑓)♯(𝐵,k) : 𝐵⊗𝐻 → 𝐵⊗𝐴𝐺.

But easy computations show that (𝑝𝐺 ∘ 𝑓)♯(𝐵,k) =
(︀
id𝐵 ⊗𝐴𝑓

♯
)︀
∘ 𝜅 (because the map

(𝑝𝐺 ∘ 𝑓)♯(𝐵,k) sends a pure tensor 𝑏⊗ℎ ∈ 𝐵⊗𝐻 to 𝑏 (𝑝𝐺 ∘ 𝑓) (ℎ)⏟  ⏞  
=𝑝𝐺(𝑓(ℎ))=1⊗𝐴𝑓(ℎ)

(by (3.7))

= 𝑏 (1⊗𝐴 𝑓 (ℎ)) =

𝑏⊗𝐴 𝑓 (ℎ), whereas the map
(︀
id𝐵 ⊗𝐴𝑓

♯
)︀
∘ 𝜅 sends a pure tensor 𝑏⊗ ℎ ∈ 𝐵 ⊗𝐻 to

(︀(︀
id𝐵 ⊗𝐴𝑓

♯
)︀
∘ 𝜅
)︀
(𝑏⊗ ℎ) =

(︀
id𝐵 ⊗𝐴𝑓

♯
)︀⎛⎜⎝𝜅 (𝑏⊗ ℎ)⏟  ⏞  

=𝑏⊗𝐴(1⊗ℎ)

⎞⎟⎠ =
(︀
id𝐵 ⊗𝐴𝑓

♯
)︀
(𝑏⊗𝐴 (1⊗ ℎ))

= 𝑏⊗𝐴 𝑓 ♯ (1⊗ ℎ)⏟  ⏞  
=1𝑓(ℎ)=𝑓(ℎ)

= 𝑏⊗𝐴 𝑓 (ℎ)

as well). Thus, (𝑝𝐺 ∘ 𝑓)♯(𝐵,k) is a 𝐵-coalgebra homomorphism (since
(︀
id𝐵 ⊗𝐴𝑓

♯
)︀
∘

𝜅 is a 𝐵-coalgebra homomorphism). In other words, 𝑝𝐺 ∘ 𝑓 is a (k, 𝐵)-coalgebra

homomorphism. This proves Proposition 3.3.8.

Proposition 3.3.9. Let k be a commutative ring. Let 𝐴 and 𝐵 be two commu-

tative k-algebras. Let 𝐻 and 𝐺 be two k-coalgebras. Let 𝑓 : 𝐻 → 𝐴 ⊗ 𝐺 be a

(k, 𝐴)-coalgebra homomorphism. Let 𝑝 : 𝐴 → 𝐵 be a k-algebra homomorphism.

Then, (𝑝⊗ id) ∘ 𝑓 : 𝐻 → 𝐵 ⊗𝐺 is a (k, 𝐵)-coalgebra homomorphism.

Proof of Proposition 3.3.9. Consider 𝐵 as an 𝐴-algebra by means of the k-algebra

homomorphism 𝑝 : 𝐴 → 𝐵. Thus, 𝑝 becomes an 𝐴-algebra homomorphism 𝐴 → 𝐵.

Now, 𝐴⊗𝐺 is an 𝐴-coalgebra. Let 𝑝𝐴⊗𝐺 : 𝐴⊗𝐺 → 𝐵 ⊗𝐴 (𝐴⊗𝐺) be the canonical

7In fact, it is part of the natural isomorphism Ind𝐵𝐴 ∘ Ind𝐴k ∼= Ind𝐵k , where Ind𝑄𝑃 means extension of
scalars from 𝑃 to 𝑄 (as a functor from the category of 𝑃 -coalgebras to the category of 𝑄-coalgebras).
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𝐴-module homomorphism defined as the composition

𝐴⊗𝐺
∼=−→ 𝐴⊗𝐴 (𝐴⊗𝐺)

𝑝⊗𝐴id−→ 𝐵 ⊗𝐴 (𝐴⊗𝐺) .

Proposition 3.3.8 (applied to 𝐴 ⊗ 𝐺 and 𝑝𝐴⊗𝐺 instead of 𝐺 and 𝑝𝐺) shows that

𝑝𝐴⊗𝐺 ∘ 𝑓 : 𝐻 → 𝐵 ⊗𝐴 (𝐴⊗𝐺) is a (k, 𝐵)-coalgebra homomorphism.

But let 𝜑 be the canonical 𝐵-module isomorphism 𝐵⊗𝐴(𝐴⊗𝐺) → (𝐵 ⊗𝐴 𝐴)⏟  ⏞  
∼=𝐵

⊗𝐺 →

𝐵⊗𝐺. Then, 𝜑 is a 𝐵-coalgebra homomorphism, and has the property that 𝑝⊗ id =

𝜑∘𝑝𝐴⊗𝐺 as maps 𝐴⊗𝐺 → 𝐵⊗𝐺 (this can be checked by direct computation). Now,

(𝑝⊗ id)⏟  ⏞  
=𝜑∘𝑝𝐴⊗𝐺

∘𝑓 = 𝜑 ∘ 𝑝𝐴⊗𝐺 ∘ 𝑓 = 𝜑 ∘ (𝑝𝐴⊗𝐺 ∘ 𝑓)

must be a (k, 𝐵)-coalgebra homomorphism (by Proposition 3.3.6, since 𝑝𝐴⊗𝐺 ∘ 𝑓 is a

(k, 𝐵)-coalgebra homomorphism and since 𝜑 is a 𝐵-coalgebra homomorphism). This

proves Proposition 3.3.9.

Proposition 3.3.10. Let k be a commutative ring. Let 𝐴 and 𝐵 be two com-

mutative k-algebras. Let 𝐻 be a k-coalgebra. Let 𝐺 be an 𝐴-coalgebra. Let

𝑓 : 𝐻 → 𝐺 be a (k, 𝐴)-coalgebra homomorphism. Then, id⊗𝑓 : 𝐵 ⊗𝐻 → 𝐵 ⊗𝐺

is a (𝐵,𝐵 ⊗ 𝐴)-coalgebra homomorphism.

Proof of Proposition 3.3.10. Since 𝑓 is a (k, 𝐴)-coalgebra homomorphism, the map

𝑓 ♯ = 𝑓 ♯(𝐴,k) : 𝐴⊗𝐻 → 𝐺 is an 𝐴-coalgebra homomorphism. Thus, the map id𝐵 ⊗𝑓 ♯ :

𝐵 ⊗ (𝐴⊗𝐻) → 𝐵 ⊗𝐺 is a 𝐵-coalgebra homomorphism.

But the 𝐵-linear map id⊗𝑓 : 𝐵 ⊗𝐻 → 𝐵 ⊗ 𝐺 gives rise to a 𝐵 ⊗ 𝐴-linear map

(id⊗𝑓)♯(𝐵⊗𝐴,𝐵) : (𝐵 ⊗ 𝐴)⊗𝐵 (𝐵 ⊗𝐻) → 𝐵 ⊗𝐺.

Now, let 𝛾 be the canonical 𝐵-module isomorphism (𝐵 ⊗ 𝐴)⊗𝐵 (𝐵 ⊗𝐻) → 𝐵 ⊗

(𝐴⊗𝐻) (sending each (𝑏⊗ 𝑎) ⊗𝐵 (𝑏′ ⊗ ℎ) ∈ (𝐵 ⊗ 𝐴) ⊗𝐵 (𝐵 ⊗𝐻) to 𝑏𝑏′ ⊗ (𝑎⊗ ℎ)).

Then, 𝛾 is a 𝐵-coalgebra isomorphism (this is easy to check). Hence,
(︀
id𝐵 ⊗𝑓 ♯

)︀
∘ 𝛾

is a 𝐵-coalgebra isomorphism (since id𝐵 ⊗𝑓 ♯ and 𝛾 are 𝐵-coalgebra isomorphisms).
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Now, it is straightforward to see that (id⊗𝑓)♯(𝐵⊗𝐴,𝐵) =
(︀
id𝐵 ⊗𝑓 ♯

)︀
∘ 𝛾 8. Hence,

the map (id⊗𝑓)♯(𝐵⊗𝐴,𝐵) is a 𝐵-coalgebra homomorphism (since
(︀
id𝐵 ⊗𝑓 ♯

)︀
∘ 𝛾 is a 𝐵-

coalgebra homomorphism). In other words, id⊗𝑓 : 𝐵⊗𝐻 → 𝐵⊗𝐺 is a (𝐵,𝐵 ⊗ 𝐴)-

coalgebra homomorphism. This proves Proposition 3.3.10.

Proposition 3.3.11. Let k be a commutative ring. Let 𝐴 be a commutative k-

algebra. Let 𝐵 be a commutative 𝐴-algebra. Let 𝐻 be a k-coalgebra. Let 𝐺 be

an 𝐴-coalgebra. Let 𝐼 be a 𝐵-coalgebra. Let 𝑓 : 𝐻 → 𝐺 be a (k, 𝐴)-coalgebra

homomorphism. Let 𝑔 : 𝐺 → 𝐼 be an (𝐴,𝐵)-coalgebra homomorphism. Then,

𝑔 ∘ 𝑓 : 𝐻 → 𝐼 is a (k, 𝐵)-coalgebra homomorphism.

Proof of Proposition 3.3.11. Since 𝑓 is a (k, 𝐴)-coalgebra homomorphism, the map

𝑓 ♯(𝐴,k) : 𝐴⊗𝐻 → 𝐺 is an 𝐴-coalgebra homomorphism. Thus, the map id𝐵 ⊗𝐴𝑓
♯(𝐴,k) :

𝐵 ⊗𝐴 (𝐴⊗𝐻) → 𝐵 ⊗𝐴 𝐺 is a 𝐵-coalgebra homomorphism.

Since 𝑔 : 𝐺 → 𝐼 is an (𝐴,𝐵)-coalgebra homomorphism, the map 𝑔♯(𝐵,𝐴) : 𝐵 ⊗𝐴

𝐺 → 𝐼 is a 𝐵-coalgebra homomorphism.

Let 𝛿 : 𝐵⊗𝐻 → 𝐵⊗𝐴 (𝐴⊗𝐻) be the canonical 𝐵-module isomorphism (sending

each 𝑏⊗ ℎ to 𝑏⊗𝐴 (1⊗ ℎ)). Then, 𝛿 is a 𝐵-coalgebra isomorphism. Straightforward

elementwise computation shows that (𝑔 ∘ 𝑓)♯(𝐵,k) = 𝑔♯(𝐵,𝐴)∘
(︀
id𝐵 ⊗𝐴𝑓

♯(𝐴,k)
)︀
∘𝛿. Hence,

(𝑔 ∘ 𝑓)♯(𝐵,k) is a 𝐵-coalgebra homomorphism (since 𝑔♯(𝐵,𝐴), id𝐵 ⊗𝐴𝑓
♯(𝐴,k) and 𝛿 are

𝐵-coalgebra homomorphisms). In other words, 𝑔 ∘ 𝑓 : 𝐻 → 𝐼 is a (k, 𝐵)-coalgebra

homomorphism. This proves Proposition 3.3.11.

With these basics in place, we can now “escalate” Theorem 3.2.1 to the following

setting:

Corollary 3.3.12. Let k be a commutative ring. Let 𝐻 be a connected graded

k-Hopf algebra. Let 𝐴 be a commutative k-algebra. Let 𝜉 : 𝐻 → 𝐴 be a k-algebra

homomorphism.
8Indeed, it suffices to check it on pure tensors, i.e., to prove that

(id⊗𝑓)
♯(𝐵⊗𝐴,𝐵)

((𝑏⊗ 𝑎)⊗𝐵 (𝑏′ ⊗ ℎ)) =
(︀(︀
id𝐵 ⊗𝑓 ♯

)︀
∘ 𝛾
)︀
((𝑏⊗ 𝑎)⊗𝐵 (𝑏′ ⊗ ℎ))

for each 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 𝑏′ ∈ 𝐵 and ℎ ∈ 𝐻. But this is easy (both sides turn out to be 𝑏𝑏′ ⊗𝐵 𝑎𝑓 (ℎ)).

161



(a) Then, there exists a unique graded (k, 𝐴)-coalgebra homomorphism Ξ :

𝐻 → 𝐴⊗QSymk for which the diagram

𝐻 Ξ //

𝜉
��

𝐴⊗QSym

id𝐴⊗𝜀𝑃
yy

𝐴

(3.8)

is commutative (where we regard id𝐴 ⊗𝜀𝑃 : 𝐴 ⊗ QSymk → 𝐴 ⊗ k as a map from

𝐴⊗QSymk to 𝐴, by canonically identifying 𝐴⊗ k with 𝐴).

(b) This unique (k, 𝐴)-coalgebra homomorphism Ξ : 𝐻 → 𝐴 ⊗ QSymk is a

k-algebra homomorphism.

(c) For every composition 𝛼 = (𝑎1, 𝑎2, . . . , 𝑎𝑘), define a k-linear map 𝜉𝛼 : 𝐻 →

𝐴 (not to k !) as the composition

𝐻
Δ(𝑘−1)

// 𝐻⊗𝑘 𝜋𝛼 // 𝐻⊗𝑘 𝜉⊗𝑘
// 𝐴⊗𝑘 𝑚(𝑘−1)

// 𝐴 .

(Recall that Δ(𝑘−1) : 𝐻 → 𝐻⊗𝑘 and 𝑚(𝑘−1) : 𝐴⊗𝑘 → 𝐴 are the “iterated comulti-

plication and multiplication maps”; see [GriRei15, §1.4] for their definitions. The

map 𝜋𝛼 : 𝐻⊗𝑘 → 𝐻⊗𝑘 is the one defined in Definition 3.1.3.)

Then, the unique (k, 𝐴)-coalgebra homomorphism Ξ of Corollary 3.3.12 (a) is

given by

Ξ (ℎ) =
∑︁

𝛼∈Comp

𝜉𝛼 (ℎ)⊗𝑀𝛼 for every ℎ ∈ 𝐻

(in particular, the sum on the right hand side of this equality has only finitely

many nonzero addends).

(d) If the k-coalgebra 𝐻 is cocommutative, then Ξ (𝐻) is a subset of the subring

𝐴⊗ Λk of 𝐴⊗QSymk, where Λk is the k-algebra of symmetric functions over k.

Proof of Corollary 3.3.12. We have 𝐴⊗QSymk
∼= QSym𝐴 as 𝐴-bialgebras canonically

(since QSymk is defined functorially in k, with a basis that is independent of k).

Recall that we have defined a k-algebra homomorphism 𝜀𝑃 : QSymk → k. We

shall now denote this 𝜀𝑃 by 𝜀𝑃,k in order to stress that it depends on k. Similarly, an
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m-algebra homomorphism 𝜀𝑃,m : QSymm → m is defined for any commutative ring

m. In particular, an 𝐴-algebra homomorphism 𝜀𝑃,𝐴 : QSym𝐴 → 𝐴 is defined. The

definitions of 𝜀𝑃,m for all m are essentially identical; thus, the map 𝜀𝑃,𝐴 : QSym𝐴 → 𝐴

can be identified with the map id𝐴 ⊗𝜀𝑃,k : 𝐴 ⊗ QSymk → 𝐴 ⊗ k (if we identify

𝐴⊗QSymk with QSym𝐴 and identify 𝐴⊗k with 𝐴). We shall use this identification

below.

The k-linear map 𝜉 : 𝐻 → 𝐴 induces an 𝐴-linear map 𝜉♯ : 𝐴 ⊗𝐻 → 𝐴 (defined

by 𝜉♯ (𝑎⊗ ℎ) = 𝑎𝜉 (ℎ) for all 𝑎 ∈ 𝐴 and ℎ ∈ 𝐻). Proposition 3.3.4 (applied to 𝐺 = 𝐴

and 𝑓 = 𝜉) shows that 𝜉♯ is an 𝐴-algebra homomorphism (since 𝜉 is a k-algebra

homomorphism).

Theorem 3.2.1 (a) (applied to 𝐴, 𝐴⊗𝐻 and 𝜉♯ instead of k, 𝐻 and 𝜁) shows that

there exists a unique graded 𝐴-coalgebra homomorphism Ψ : 𝐴 ⊗ 𝐻 → QSym𝐴 for

which the diagram

𝐴⊗𝐻
Ψ //

𝜉♯
""

QSym𝐴

𝜀𝑃,𝐴
{{

𝐴

(3.9)

is commutative. Since we are identifying the map 𝜀𝑃,𝐴 : QSym𝐴 → 𝐴 with the map

id𝐴 ⊗𝜀𝑃,k : 𝐴⊗ QSymk → 𝐴⊗ k = 𝐴, we can rewrite this as follows: There exists a

unique graded 𝐴-coalgebra homomorphism Ψ : 𝐴 ⊗𝐻 → 𝐴 ⊗ QSymk for which the

diagram

𝐴⊗𝐻
Ψ //

𝜉♯
""

𝐴⊗QSym

id𝐴⊗𝜀𝑃,k
yy

𝐴

is commutative. In other words, there exists a unique graded 𝐴-coalgebra homomor-

phism Ψ : 𝐴⊗𝐻 → 𝐴⊗ QSymk such that (id𝐴 ⊗𝜀𝑃,k) ∘ Ψ = 𝜉♯. Let us refer to this

observation as the intermediate universal property.

The (k, 𝐴)-coalgebra homomorphisms 𝐻 → 𝐴 ⊗ QSymk are in a 1-to-1 corre-

spondence with the 𝐴-coalgebra homomorphisms 𝐴⊗𝐻 → 𝐴⊗QSymk, which is the

same as the 𝐴-coalgebra homomorphisms 𝐴 ⊗ 𝐻 → QSym𝐴 (since 𝐴 ⊗ QSymk
∼=

QSym𝐴). The correspondence is given by sending a (k, 𝐴)-coalgebra homomorphism
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Ξ : 𝐻 → 𝐴⊗QSymk to the 𝐴-coalgebra homomorphism Ξ♯ : 𝐴⊗𝐻 → 𝐴⊗QSymk.

Moreover, this correspondence has the property that Ξ is graded if and only if Ξ♯

is (according to Proposition 3.3.5). Thus, this correspondence restricts to a corre-

spondence between the graded (k, 𝐴)-coalgebra homomorphisms 𝐻 → 𝐴 ⊗ QSymk

and the graded 𝐴-coalgebra homomorphisms 𝐴⊗𝐻 → 𝐴⊗ QSymk. Using this cor-

respondence, we can rewrite the intermediate universal property as follows: There

exists a unique graded (k, 𝐴)-coalgebra homomorphism Ξ : 𝐻 → 𝐴 ⊗ QSymk such

that (id𝐴 ⊗𝜀𝑃,k) ∘ Ξ♯ = 𝜉♯. In other words, there exists a unique graded (k, 𝐴)-

coalgebra homomorphism Ξ : 𝐻 → 𝐴 ⊗ QSymk such that ((id𝐴 ⊗𝜀𝑃,k) ∘ Ξ)♯ = 𝜉♯

(since (3.6) shows that ((id𝐴⊗𝜀𝑃,k) ∘ Ξ)♯ = (id𝐴⊗𝜀𝑃,k) ∘ Ξ♯). In other words, there

exists a unique graded (k, 𝐴)-coalgebra homomorphism Ξ : 𝐻 → 𝐴 ⊗ QSymk such

that (id𝐴⊗𝜀𝑃,k) ∘ Ξ = 𝜉 (since the map (3.4) is a bijection). In other words, there

exists a unique graded (k, 𝐴)-coalgebra homomorphism Ξ : 𝐻 → 𝐴 ⊗ QSymk for

which the diagram (3.8) is commutative. This proves Corollary 3.3.12 (a).

By tracing back the above argument, we see that it yields an explicit construction

of the unique graded (k, 𝐴)-coalgebra homomorphism Ξ : 𝐻 → 𝐴⊗QSymk for which

the diagram (3.8) is commutative: Namely, it is defined by Ξ♯ = Ψ, where Ψ is

the unique graded 𝐴-coalgebra homomorphism Ψ : 𝐴 ⊗ 𝐻 → QSym𝐴 for which the

diagram (3.9) is commutative. Consider these Ξ and Ψ.

Theorem 3.2.1 (b) (applied to 𝐴, 𝐴 ⊗ 𝐻 and 𝜉♯ instead of k, 𝐻 and 𝜁) shows

that Ψ : 𝐴 ⊗𝐻 → QSym𝐴 is an 𝐴-Hopf algebra homomorphism, thus an 𝐴-algebra

homomorphism. In other words, Ξ♯ : 𝐴 ⊗ 𝐻 → 𝐴 ⊗ QSymk is an 𝐴-algebra homo-

morphism (since Ξ♯ : 𝐴⊗𝐻 → 𝐴⊗QSymk is the same as Ψ : 𝐴⊗𝐻 → QSym𝐴, up

to our identifications). Hence, Ξ : 𝐻 → 𝐴⊗QSymk is a k-algebra homomorphism as

well (by Proposition 3.3.4, applied to 𝐴, 𝐴⊗ QSymk and Ξ instead of 𝐴, 𝐺 and 𝑓).

This proves Corollary 3.3.12 (b).

(c) Theorem 3.2.1 (d) (applied to 𝐴, 𝐴⊗𝐻 and 𝜉♯ instead of k, 𝐻 and 𝜁) shows

that Ψ is given by

Ψ(ℎ) =
∑︁

𝛼∈Comp

(︀
𝜉♯
)︀
𝛼
(ℎ) ·𝑀𝛼 for every ℎ ∈ 𝐴⊗𝐻, (3.10)
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where the map
(︀
𝜉♯
)︀
𝛼
: 𝐴⊗𝐻 → 𝐴 is defined in the same way as the map 𝜁𝛼 : 𝐻 → k

was defined in Theorem 3.2.1 (d) (but for 𝐴, 𝐴⊗𝐻 and 𝜉♯ instead of k, 𝐻 and 𝜁).

Notice that (3.10) is an equality inside QSym𝐴. Recalling that we are identifying

QSym𝐴 with 𝐴 ⊗ QSymk, we can rewrite it as an equality in 𝐴 ⊗ QSymk; it then

takes the form

Ψ(ℎ) =
∑︁

𝛼∈Comp

(︀
𝜉♯
)︀
𝛼
(ℎ)⊗𝑀𝛼 for every ℎ ∈ 𝐴⊗𝐻. (3.11)

Let 𝜄𝐻 be the k-module homomorphism

𝐻 → 𝐴⊗𝐻, ℎ ↦→ 1⊗ ℎ.

Also, for every 𝑘 ∈ N, we let 𝜄𝑘 be the k-module homomorphism

𝐻⊗𝑘 → (𝐴⊗𝐻)⊗𝐴𝑘 , 𝑔 ↦→ 1⊗ 𝑔 ∈ 𝐴⊗𝐻⊗𝑘 ∼= (𝐴⊗𝐻)⊗𝐴𝑘

(where 𝑈⊗𝐴𝑘 denotes the 𝑘-th tensor power of an 𝐴-module 𝑈); this homomorphism

sends every ℎ1 ⊗ ℎ2 ⊗ · · · ⊗ ℎ𝑘 ∈ 𝐻⊗𝑘 to (1⊗ ℎ1)⊗𝐴 (1⊗ ℎ2)⊗𝐴 · · · ⊗𝐴 (1⊗ ℎ𝑘).

On the other hand, fix some 𝛼 ∈ Comp. Write the composition 𝛼 in the form

𝛼 = (𝑎1, 𝑎2, . . . , 𝑎𝑘). The diagram

𝐻
Δ(𝑘−1)

//

𝜉𝛼

))

𝜄𝐻

��

𝐻⊗𝑘
𝜋𝛼

//

𝜄𝑘

��

𝐻⊗𝑘

𝜉⊗𝑘
//

𝜄𝑘

��

𝐴⊗𝑘

𝑚(𝑘−1)

// 𝐴

id

��

𝐴⊗𝐻 Δ(𝑘−1)
//

(𝜉♯)
𝛼

55(𝐴⊗𝐻)⊗𝐴𝑘 𝜋𝛼 // (𝐴⊗𝐻)⊗𝐴𝑘 (𝜉♯)
⊗𝐴𝑘

// 𝐴⊗𝐴𝑘 ∼= // 𝐴

is commutative9. Therefore,
(︀
𝜉♯
)︀
𝛼
∘ 𝜄𝐻 = id ∘𝜉𝛼 = 𝜉𝛼.

9Proof. In fact:
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Now, forget that we fixed 𝛼. We thus have shown that

(︀
𝜉♯
)︀
𝛼
∘ 𝜄𝐻 = 𝜉𝛼 for every 𝛼 ∈ Comp . (3.12)

∙ Its upper pentagon is commutative (by the definition of 𝜉𝛼).

∙ Its lower pentagon is commutative (by the definition of
(︀
𝜉♯
)︀
𝛼
).

∙ Its left square is commutative (since the operation Δ(𝑘−1) on a k-coalgebra is functorial with
respect to the base ring, i.e., commutes with extension of scalars).

∙ Its middle square is commutative (since the operation 𝜋𝛼 on a graded k-module is functorial
with respect to the base ring, i.e., commutes with extension of scalars).

∙ Its right rectangle is commutative. (Indeed, every ℎ1, ℎ2, . . . , ℎ𝑘 ∈ 𝐻 satisfy(︁
id ∘𝑚(𝑘−1) ∘ 𝜉⊗𝑘

)︁
(ℎ1 ⊗ ℎ2 ⊗ · · · ⊗ ℎ𝑘)

= 𝑚(𝑘−1)

⎛⎜⎝𝜉⊗𝑘 (ℎ1 ⊗ ℎ2 ⊗ · · · ⊗ ℎ𝑘)⏟  ⏞  
=𝜉(ℎ1)⊗𝜉(ℎ2)⊗···⊗𝜉(ℎ𝑘)

⎞⎟⎠ = 𝑚(𝑘−1) (𝜉 (ℎ1)⊗ 𝜉 (ℎ2)⊗ · · · ⊗ 𝜉 (ℎ𝑘))

= 𝜉 (ℎ1) 𝜉 (ℎ2) · · · 𝜉 (ℎ𝑘)

and thus(︁(︀
𝜉♯
)︀⊗𝐴𝑘 ∘ 𝜄𝑘

)︁
(ℎ1 ⊗ ℎ2 ⊗ · · · ⊗ ℎ𝑘)

=
(︀
𝜉♯
)︀⊗𝐴𝑘

(𝜄𝑘 (ℎ1 ⊗ ℎ2 ⊗ · · · ⊗ ℎ𝑘))⏟  ⏞  
=(1⊗ℎ1)⊗𝐴(1⊗ℎ2)⊗𝐴···⊗𝐴(1⊗ℎ𝑘)

=
(︀
𝜉♯
)︀⊗𝐴𝑘 (︀

(1⊗ ℎ1)⊗𝐴 (1⊗ ℎ2)⊗𝐴 · · · ⊗𝐴 (1⊗ ℎ𝑘)
)︀

= 𝜉♯ (1⊗ ℎ1)⊗𝐴 𝜉♯ (1⊗ ℎ2)⊗𝐴 · · · ⊗𝐴 𝜉♯ (1⊗ ℎ𝑘)

= 𝜉 (ℎ1)⊗𝐴 𝜉 (ℎ2)⊗𝐴 · · · ⊗𝐴 𝜉 (ℎ𝑘)
(︀
since 𝜉♯ (1⊗ 𝑦) = 𝜉 (𝑦) for every 𝑦 ∈ 𝐻

)︀
= 𝜉 (ℎ1) 𝜉 (ℎ2) · · · 𝜉 (ℎ𝑘)

(︁
since 𝐴⊗𝐴𝑘 ∼= 𝐴

)︁
=
(︁
id ∘𝑚(𝑘−1) ∘ 𝜉⊗𝑘

)︁
(ℎ1 ⊗ ℎ2 ⊗ · · · ⊗ ℎ𝑘) .

Hence,
(︀
𝜉♯
)︀⊗𝐴𝑘 ∘ 𝜄𝑘 = id ∘𝑚(𝑘−1) ∘ 𝜉⊗𝑘. In other words, the right rectangle is commutative.)
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Now, every ℎ ∈ 𝐻 satisfies

Ξ (ℎ) = Ξ♯⏟ ⏞ 
=Ψ

(1⊗ ℎ) = Ψ (1⊗ ℎ)

=
∑︁

𝛼∈Comp

(︀
𝜉♯
)︀
𝛼
(1⊗ ℎ)⏟  ⏞  
=𝜄𝐻(ℎ)

⊗𝑀𝛼 (by (3.11), applied to 1⊗ ℎ instead of ℎ)

=
∑︁

𝛼∈Comp

(︀
𝜉♯
)︀
𝛼
(𝜄𝐻 (ℎ))⏟  ⏞  

=((𝜉♯)
𝛼
∘𝜄𝐻)(ℎ)

⊗𝑀𝛼 =
∑︁

𝛼∈Comp

(︀(︀
𝜉♯
)︀
𝛼
∘ 𝜄𝐻

)︀⏟  ⏞  
=𝜉𝛼

(by (3.12))

(ℎ)⊗𝑀𝛼

=
∑︁

𝛼∈Comp

𝜉𝛼 (ℎ)⊗𝑀𝛼.

This proves Corollary 3.3.12 (c).

(d) Assume that the k-coalgebra 𝐻 is cocommutative. Then, the 𝐴-coalgebra

𝐴⊗𝐻 is cocommutative as well.

Let us first see why 𝐴 ⊗ Λk is a subring of 𝐴 ⊗ QSymk. Indeed, recall that

we are using the standard 𝐴-Hopf algebra isomorphism 𝐴 ⊗ QSymk → QSym𝐴 to

identify QSym𝐴 with 𝐴⊗QSymk. Similarly, let us use the standard 𝐴-Hopf algebra

isomorphism 𝐴 ⊗ Λk → Λ𝐴 to identify Λ𝐴 with 𝐴 ⊗ Λk. Now, 𝐴 ⊗ Λk = Λ𝐴 ⊆

QSym𝐴 = 𝐴⊗QSymk.

Theorem 3.2.1 (e) (applied to 𝐴, 𝐴⊗𝐻 and 𝜉♯ instead of k, 𝐻 and 𝜁) shows that

Ψ(𝐴⊗𝐻) ⊆ Λ𝐴 = 𝐴⊗Λk. Since Ψ = Ξ♯, this rewrites as Ξ♯ (𝐴⊗𝐻) ⊆ 𝐴⊗Λk. But

Ξ (𝐻) ⊆ Ξ♯ (𝐴⊗𝐻) (since every ℎ ∈ 𝐻 satisfies Ξ (ℎ) = Ξ♯ (1⊗ ℎ) ∈ Ξ♯ (𝐴⊗𝐻)).

Hence, Ξ (𝐻) ⊆ Ξ♯ (𝐴⊗𝐻) ⊆ 𝐴⊗ Λk. This proves Corollary 3.3.12 (d).

Remark 3.3.13. Let k, 𝐻, 𝐴 and 𝜉 be as in Corollary 3.3.12. Then, the k-

module Hom (𝐻,𝐴) of all k-linear maps from 𝐻 to 𝐴 has a canonical structure

of a k-algebra; its unity is the map 𝑢𝐴 ∘ 𝜀𝐻 ∈ Hom (𝐻,𝐴) (where 𝑢𝐴 : k → 𝐴 is

the k-linear map sending 1 to 1), and its multiplication is the binary operation F

defined by

𝑓F𝑔 = 𝑚𝐴 ∘ (𝑓 ⊗ 𝑔) ∘Δ𝐻 : 𝐻 → 𝐴 for every 𝑓, 𝑔 ∈ Hom (𝐻,𝐴)
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(where 𝑚𝐴 is the k-linear map 𝐴⊗𝐴 → 𝐴, 𝑎⊗𝑏 ↦→ 𝑎𝑏). This k-algebra is called the

convolution algebra of 𝐻 and 𝐴; it is precisely the k-algebra defined in [GriRei15,

Definition 1.27]. Using this k-algebra, we can express the map 𝜉𝛼 in Theorem 3.2.1

(c) as follows: For every composition 𝛼 = (𝑎1, 𝑎2, . . . , 𝑎𝑘), the map 𝜉𝛼 : 𝐻 → 𝐴 is

given by

𝜉𝛼 = (𝜉 ∘ 𝜋𝑎1)F (𝜉 ∘ 𝜋𝑎2)F · · ·F (𝜉 ∘ 𝜋𝑎𝑘) .

(This follows easily from [GriRei15, Exercise 1.43].)

3.4 The second comultiplication on QSymk

Convention 3.4.1. In the following, we do not identify compositions with infinite

sequences, as several authors do. As a consequence, the composition (1, 3) does

not equal the vector (1, 3, 0) or the infinite sequence (1, 3, 0, 0, 0, . . .).

We now recall the definition of the second comultiplication (a.k.a. internal comulti-

plication) of QSymk. Several definitions of this operation appear in the literature; we

shall use the one in [Haz08, §11.39]:10

Definition 3.4.2. (a) Given a 𝑢× 𝑣-matrix 𝐴 = (𝑎𝑖,𝑗)1≤𝑖≤𝑢, 1≤𝑗≤𝑣 ∈ N𝑢×𝑣 (where

𝑢, 𝑣 ∈ N) with nonnegative entries, we define three tuples of nonnegative integers:

∙ The 𝑣-tuple column𝐴 ∈ N𝑣 is the 𝑣-tuple whose 𝑗-th entry is
𝑢∑︀

𝑖=1

𝑎𝑖,𝑗 (that is,

the sum of all entries in the 𝑗-th column of 𝐴) for each 𝑗. (In other words,

column𝐴 is the sum of all rows of 𝐴, regarded as vectors.)

∙ The 𝑢-tuple row𝐴 ∈ N𝑢 is the 𝑢-tuple whose 𝑖-th entry is
𝑣∑︀

𝑗=1

𝑎𝑖,𝑗 (that is, the

sum of all entries in the 𝑖-th row of 𝐴) for each 𝑖. (In other words, row𝐴 is

the sum of all columns of 𝐴, regarded as vectors.)

10The second comultiplication seems to be as old as QSymk; it first appeared in Gessel’s [Gessel84,
§4] (the same article where QSymk was first defined).
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∙ The 𝑢𝑣-tuple read𝐴 ∈ N𝑢𝑣 is the 𝑢𝑣-tuple whose (𝑣 (𝑖− 1) + 𝑗)-th entry is

𝑎𝑖,𝑗 for all 𝑖 ∈ {1, 2, . . . , 𝑢} and 𝑗 ∈ {1, 2, . . . , 𝑣}. In other words,

read𝐴

= (𝑎1,1, 𝑎1,2, . . . , 𝑎1,𝑣, 𝑎2,1, 𝑎2,2, . . . , 𝑎2,𝑣, . . . , 𝑎𝑢,1, 𝑎𝑢,2, . . . , 𝑎𝑢,𝑣) .

We say that the matrix 𝐴 is column-reduced if column𝐴 is a composition (i.e.,

contains no zero entries). Equivalently, 𝐴 is column-reduced if and only if no

column of 𝐴 is the 0 vector.

We say that the matrix 𝐴 is row-reduced if row𝐴 is a composition (i.e., contains

no zero entries). Equivalently, 𝐴 is row-reduced if and only if no row of 𝐴 is the 0

vector.

We say that the matrix 𝐴 is reduced if 𝐴 is both column-reduced and row-

reduced.

(b) If 𝑤 ∈ N𝑘 is a 𝑘-tuple of nonnegative integers (for some 𝑘 ∈ N), then 𝑤red

shall mean the composition obtained from 𝑤 by removing each entry that equals

0. For instance, (3, 1, 0, 1, 0, 0, 2)red = (3, 1, 1, 2).

(c) Let N∙,∙
red denote the set of all reduced matrices in N𝑢×𝑣, where 𝑢 and 𝑣 both

range over N. In other words, we set

N∙,∙
red =

⋃︁
(𝑢,𝑣)∈N2

{︀
𝐴 ∈ N𝑢×𝑣 | 𝐴 is reduced

}︀
.

(d) Let Δ𝑃 : QSymk → QSymk⊗QSymk be the k-linear map defined by

setting

Δ𝑃 (𝑀𝛼) =
∑︁

𝐴∈N∙,∙
red;

(read𝐴)red=𝛼

𝑀row𝐴 ⊗𝑀column𝐴 for each 𝛼 ∈ Comp .

This map Δ𝑃 is called the second comultiplication (or internal comultiplication) of

QSymk.
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(e) Let 𝜏 denote the twist map 𝜏QSymk,QSymk
: QSymk ⊗QSymk →

QSymk⊗QSymk. Let Δ′
𝑃 = 𝜏 ∘Δ𝑃 : QSymk → QSymk⊗QSymk.

Example 3.4.3. The matrix

⎛⎜⎜⎜⎝
1 0 2 0

2 0 0 5

0 0 3 1

⎞⎟⎟⎟⎠ ∈ N3×4 is row-reduced but not

column-reduced (and thus not reduced). If we denote it by 𝐴, then row𝐴 = (3, 7, 4)

and column𝐴 = (3, 0, 5, 6) and read𝐴 = (1, 0, 2, 0, 2, 0, 0, 5, 0, 0, 3, 1).

Proposition 3.4.4. The k-algebra QSymk, equipped with comultiplication Δ𝑃

and counit 𝜀𝑃 , is a k-bialgebra (albeit not a connected graded one, and not a Hopf

algebra).

Proposition 3.4.4 is a well-known fact (appearing, for example, in [MalReu95, first

paragraph of §3]), but we shall actually derive it further below using our results.

3.5 The (generalized) Bernstein homomorphism

Let us now define the Bernstein homomorphism of a commutative connected graded

k-Hopf algebra, generalizing [Haz08, §18.24]:
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Definition 3.5.1. Let k be a commutative ring. Let 𝐻 be a commutative con-

nected graded k-Hopf algebra. For every composition 𝛼 = (𝑎1, 𝑎2, . . . , 𝑎𝑘), define a

k-linear map 𝜉𝛼 : 𝐻 → 𝐻 (not to k !) as the composition

𝐻
Δ(𝑘−1)

// 𝐻⊗𝑘 𝜋𝛼 // 𝐻⊗𝑘 𝑚(𝑘−1)
// 𝐻 .

(Recall that Δ(𝑘−1) : 𝐻 → 𝐻⊗𝑘 and 𝑚(𝑘−1) : 𝐻⊗𝑘 → 𝐻 are the “iterated co-

multiplication and multiplication maps”; see [GriRei15, §1.4] for their definitions.

The map 𝜋𝛼 : 𝐻⊗𝑘 → 𝐻⊗𝑘 is the one defined in Definition 3.1.3.) Define a map

𝛽𝐻 : 𝐻 → 𝐻 ⊗QSymk by

𝛽𝐻 (ℎ) =
∑︁

𝛼∈Comp

𝜉𝛼 (ℎ)⊗𝑀𝛼 for every ℎ ∈ 𝐻. (3.13)

It is easy to see that this map 𝛽𝐻 is well-defined (i.e., the sum on the right hand

side of (3.13) has only finitely many nonzero addends11) and k-linear.

Remark 3.5.2. Let k and 𝐻 be as in Definition 3.5.1. Then, the k-module

Hom (𝐻,𝐻) of all k-linear maps from 𝐻 to 𝐻 has a canonical structure of a

k-algebra, defined as in Remark 3.3.13 (for 𝐴 = 𝐻). Using this k-algebra, we

can express the map 𝜉𝛼 in Theorem 3.2.1 (c) as follows: For every composition

𝛼 = (𝑎1, 𝑎2, . . . , 𝑎𝑘), the map 𝜉𝛼 : 𝐻 → 𝐴 is given by

𝜉𝛼 = 𝜋𝑎1F𝜋𝑎2F · · ·F𝜋𝑎𝑘 .

(This follows easily from [GriRei15, Exercise 1.43].)

The graded k-Hopf algebra QSymk is commutative and connected; thus, Definition

3.5.1 (applied to 𝐻 = QSymk) constructs a k-linear map 𝛽QSymk
: QSymk → QSymk⊗

11Proof. Let ℎ ∈ 𝐻. Then, there exists some 𝑁 ∈ N such that ℎ ∈ 𝐻0 + 𝐻1 + · · · + 𝐻𝑁−1

(since ℎ ∈ 𝐻 =
⨁︀
𝑖∈N

𝐻𝑖). Consider this 𝑁 . Now, it is easy to see that every composition 𝛼 =

(𝑎1, 𝑎2, . . . , 𝑎𝑘) of size ≥ 𝑁 satisfies
(︀
𝜋𝛼 ∘Δ(𝑘−1)

)︀
(ℎ) = 0 (because Δ(𝑘−1) (ℎ) is concentrated in

the first 𝑁 homogeneous components of the graded k-module 𝐻⊗𝑘, and all of these components are
annihilated by 𝜋𝛼) and therefore 𝜉𝛼 (ℎ) = 0. Thus, the sum on the right hand side of (3.13) has only
finitely many nonzero addends (namely, all its addends with |𝛼| ≥ 𝑁 are 0).
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QSymk. We shall now prove that this map is identical with the Δ′
𝑃 from Definition

3.4.2 (e):

Proposition 3.5.3. We have 𝛽QSymk
= Δ′

𝑃 .

Before we prove this, let us recall a basic formula for multiplication of monomial

quasisymmetric functions:

Proposition 3.5.4. Let 𝑘 ∈ N. Let 𝛼1, 𝛼2, . . . , 𝛼𝑘 be 𝑘 compositions. Let N𝑘,∙
Cred

denote the set of all column-reduced matrices in N𝑘×𝑣 with 𝑣 ranging over N. In

other words, let

N𝑘,∙
Cred =

⋃︁
𝑣∈N

{︀
𝐴 ∈ N𝑘×𝑣 | 𝐴 is column-reduced

}︀
.

Then,

𝑀𝛼1𝑀𝛼2 · · ·𝑀𝛼𝑘
=

∑︁
𝐴∈N𝑘,∙

Cred;

(𝐴𝑔,∙)
red=𝛼𝑔 for each 𝑔

𝑀column𝐴.

Here, 𝐴𝑖,∙ denotes the 𝑖-th row of 𝐴 (regarded as a list of nonnegative integers).

Notice that the 𝑘 = 2 case of Proposition 3.5.4 is a restatement of the standard

formula for the multiplication of monomial quasisymmetric functions (e.g., [GriRei15,

Proposition 5.3]12 or [Haz08, §11.26]). The general case is still classical, but since an

explicit proof is hard to locate in the literature, let me sketch it here.

Proof of Proposition 3.5.4. We begin by introducing notations:

∙ Let N𝑘,∞ denote the set of all matrices with 𝑘 rows (labelled 1, 2, . . . , 𝑘) and

countably many columns (labelled 1, 2, 3, . . .) whose entries all belong to N.

∙ Let N𝑘,∞
fin denote the set of all matrices in N𝑘,∞ which have only finitely many

nonzero entries.
12Actually, [GriRei15, Proposition 5.3] is slightly more general (the 𝑘 = 2 case of Proposition 3.5.4

is obtained from [GriRei15, Proposition 5.3] by setting 𝐼 = {1, 2, 3, . . .}). That said, our proof can
easily be extended to work in this greater generality.
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∙ Let N∞ denote the set of all infinite sequences (𝑎1, 𝑎2, 𝑎3, . . .) of elements of N.

∙ Let N∞
fin denote the set of all sequences in N∞ which have only finitely many

nonzero entries.

∙ For every 𝐵 ∈ N𝑘,∞
fin and 𝑖 ∈ {1, 2, . . . , 𝑘}, we let 𝐵𝑖,∙ ∈ N∞

fin be the 𝑖-th row of

𝐵.

∙ For every 𝐵 = (𝑏𝑖,𝑗)1≤𝑖≤𝑘, 1≤𝑗 ∈ N𝑘,∞
fin , we let column𝐵 ∈ N∞

fin be the sequence

whose 𝑗-th entry is
𝑘∑︀

𝑖=1

𝑎𝑖,𝑗 (that is, the sum of all entries in the 𝑗-th column of

𝐵) for each 𝑗. (In other words, column𝐵 is the sum of all rows of 𝐵, regarded

as vectors.)

∙ We extend Definition 3.4.2 (b) to the case when 𝑤 ∈ N∞
fin: If 𝑤 ∈ N∞

fin, then

𝑤red shall mean the composition obtained from 𝑤 by removing each entry that

equals 0 13.

∙ For every 𝛽 = (𝑏1, 𝑏2, 𝑏3, . . .) ∈ N∞
fin, we define a monomial x𝛽 in the indetermi-

nates 𝑥1, 𝑥2, 𝑥3, . . . by

x𝛽 = 𝑥𝑏1
1 𝑥

𝑏2
2 𝑥

𝑏3
3 · · · .

Then, it is easy to see that

𝑀𝛼 =
∑︁

𝛽∈N∞
fin;

𝛽red=𝛼

x𝛽 for every composition 𝛼. (3.14)

13Here is a more rigorous definition of 𝑤red: Let 𝑤 = (𝑤1, 𝑤2, 𝑤3, . . .). Let 𝒥 be the set of all
positive integers 𝑗 such that 𝑤𝑗 ̸= 0. Let (𝑗1 < 𝑗2 < · · · < 𝑗ℎ) be the list of all elements of 𝒥 , in
increasing order. Then, 𝑤red is defined to be the composition (𝑤𝑗1 , 𝑤𝑗2 , . . . , 𝑤𝑗ℎ).

This rigorous definition of 𝑤red has the additional advantage of making sense in greater generality
than “remove each entry that equals 0”; namely, it still works when 𝑤 ∈ N𝐼

fin for some totally ordered
set 𝐼.
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Now,

𝑀𝛼1𝑀𝛼2 · · ·𝑀𝛼𝑘

=
𝑘∏︁

𝑔=1

𝑀𝛼𝑔⏟ ⏞ 
=

∑︀
𝛽∈N∞

fin;

𝛽red=𝛼𝑔

x𝛽

(by (3.14))

=
𝑘∏︁

𝑔=1

∑︁
𝛽∈N∞

fin;

𝛽red=𝛼𝑔

x𝛽

=
∑︁

(𝛽1,𝛽2,...,𝛽𝑘)∈(N∞
fin)

𝑘
;

(𝛽𝑔)
red=𝛼𝑔 for each 𝑔

x𝛽1x𝛽2 · · ·x𝛽𝑘 =
∑︁

𝐵∈N𝑘,∞
fin ;

(𝐵𝑔,∙)
red=𝛼𝑔 for each 𝑔

x𝐵1,∙x𝐵2,∙ · · ·x𝐵𝑘,∙⏟  ⏞  
=xcolumn𝐵

(since column𝐵 is the sum of the
rows of 𝐵 (as vectors))⎛⎜⎜⎜⎝

here, we have substituted (𝐵1,∙, 𝐵2,∙, . . . , 𝐵𝑘,∙) for

(𝛽1, 𝛽2, . . . , 𝛽𝑘) in the sum, since the map

N𝑘,∞
fin → (N∞

fin)
𝑘 , 𝐵 ↦→ (𝐵1,∙, 𝐵2,∙, . . . , 𝐵𝑘,∙) is a bijection

⎞⎟⎟⎟⎠
=

∑︁
𝐵∈N𝑘,∞

fin ;

(𝐵𝑔,∙)
red=𝛼𝑔 for each 𝑔

xcolumn𝐵. (3.15)

Now, let us introduce one more notation: For every matrix 𝐵 ∈ N𝑘,∞
fin , let 𝐵Cred be

the matrix obtained from 𝐵 by removing all zero columns (i.e., all columns containing

only zeroes)14. It is easy to see that 𝐵Cred ∈ N𝑘,∙
Cred for every 𝐵 ∈ N𝑘,∞

fin . Moreover,

every 𝐵 ∈ N𝑘,∞
fin satisfies the following fact: If 𝐴 = 𝐵Cred, then

(𝐵𝑔,∙)
red = (𝐴𝑔,∙)

red for each 𝑔 (3.16)

(indeed, 𝐴𝑔,∙ is obtained from 𝐵𝑔,∙ by removing some zero entries).

14Again, we can define 𝐵Cred more rigorously as follows: Let 𝒥 be the set of all positive integers
𝑗 such that the 𝑗-th column of 𝐵 is nonzero. Let (𝑗1 < 𝑗2 < · · · < 𝑗ℎ) be the list of all elements of
𝒥 , in increasing order. Then, 𝐵Cred is defined to be the 𝑘 × ℎ-matrix whose columns (from left to
right) are the 𝑗1-th column of 𝐵, the 𝑗2-nd column of 𝐵, . . ., the 𝑗ℎ-th column of 𝐵.
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Now, (3.15) becomes

𝑀𝛼1𝑀𝛼2 · · ·𝑀𝛼𝑘
=

∑︁
𝐵∈N𝑘,∞

fin ;

(𝐵𝑔,∙)
red=𝛼𝑔 for each 𝑔

xcolumn𝐵

=
∑︁

𝐴∈N𝑘,∙
Cred

∑︁
𝐵∈N𝑘,∞

fin ;

(𝐵𝑔,∙)
red=𝛼𝑔 for each 𝑔;

𝐵Cred=𝐴⏟  ⏞  
=

∑︀
𝐵∈N𝑘,∞

fin ;

𝐵Cred=𝐴;

(𝐵𝑔,∙)
red=𝛼𝑔 for each 𝑔

=
∑︀

𝐵∈N𝑘,∞
fin ;

𝐵Cred=𝐴;

(𝐴𝑔,∙)
red=𝛼𝑔 for each 𝑔

(because if 𝐵Cred=𝐴, then (𝐵𝑔,∙)
red=(𝐴𝑔,∙)

red

for each 𝑔 (because of (3.16)))

xcolumn𝐵

(︁
since 𝐵Cred ∈ N𝑘,∙

Cred for each 𝐵 ∈ N𝑘,∞
fin

)︁
=

∑︁
𝐴∈N𝑘,∙

Cred

∑︁
𝐵∈N𝑘,∞

fin ;

𝐵Cred=𝐴;

(𝐴𝑔,∙)
red=𝛼𝑔 for each 𝑔⏟  ⏞  

=
∑︀

𝐴∈N𝑘,∙
Cred;

(𝐴𝑔,∙)
red=𝛼𝑔 for each 𝑔

∑︀
𝐵∈N𝑘,∞

fin ;

𝐵Cred=𝐴

xcolumn𝐵

=
∑︁

𝐴∈N𝑘,∙
Cred;

(𝐴𝑔,∙)
red=𝛼𝑔 for each 𝑔

∑︁
𝐵∈N𝑘,∞

fin ;

𝐵Cred=𝐴

xcolumn𝐵. (3.17)

But for every matrix 𝐴 ∈ N𝑘,∙
Cred, we have

∑︁
𝐵∈N𝑘,∞

fin ;

𝐵Cred=𝐴

xcolumn𝐵 = 𝑀column𝐴. (3.18)

Proof of (3.18): Let 𝐴 ∈ N𝑘,∙
Cred. We need to prove (3.18).

For every 𝐵 ∈ N𝑘,∞
fin , we have (column𝐵)red = column

(︀
𝐵Cred

)︀
(because first taking

the sum of each column of 𝐵 and then removing the zeroes among these sums results

in the same list as first removing the zero columns of 𝐵 and then taking the sum of

each remaining column). Thus, for every 𝐵 ∈ N𝑘,∞
fin satisfying 𝐵Cred = 𝐴, we have
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column𝐵 ∈ N∞
fin and (column𝐵)red = column

(︀
𝐵Cred

)︀⏟  ⏞  
=𝐴

= column𝐴. Hence, the map

{︁
𝐵 ∈ N𝑘,∞

fin | 𝐵Cred = 𝐴
}︁
→
{︀
𝛽 ∈ N∞

fin | 𝛽red = column𝐴
}︀
,

𝐵 ↦→ column𝐵 (3.19)

is well-defined.

On the other hand, if 𝛽 ∈ N∞
fin satisfies 𝛽red = column𝐴, then there exists a unique

𝐵 ∈ N𝑘,∞
fin satisfying 𝐵Cred = 𝐴 and column𝐵 = 𝛽 15. In other words, the map (3.19)

15Namely, this 𝐵 can be computed as follows: Write the sequence 𝛽 in the form 𝛽 = (𝛽1, 𝛽2, 𝛽3, . . .).
Let (𝑖1 < 𝑖2 < · · · < 𝑖ℎ) be the list of all 𝑐 satisfying 𝛽𝑐 ̸= 0, written in increasing order. Then, 𝐵
shall be the matrix whose 𝑖1-st, 𝑖2-nd, . . ., 𝑖ℎ-th columns are the columns of 𝐴 (from left to right),
whereas all its other columns are 0.

Let us briefly sketch a proof of the fact that this 𝐵 is indeed an element of N𝑘,∙
fin satisfying 𝐵Cred = 𝐴

and column𝐵 = 𝛽:
Indeed, it is clear that 𝐵 ∈ N𝑘,∙

fin .
We shall now show that

(the 𝑗-th entry of column𝐵) = 𝛽𝑗 (3.20)

for every 𝑗 ∈ {1, 2, 3, . . .}.
Proof of (3.20): Let 𝑗 ∈ {1, 2, 3, . . .}. We must prove (3.20). We are in one of the following two

cases:
Case 1: We have 𝑗 ∈ {𝑖1, 𝑖2, . . . , 𝑖ℎ}.
Case 2: We have 𝑗 /∈ {𝑖1, 𝑖2, . . . , 𝑖ℎ}.
Let us first consider Case 1. In this case, we have 𝑗 ∈ {𝑖1, 𝑖2, . . . , 𝑖ℎ}. Hence, there exists a

𝑔 ∈ {1, 2, . . . , ℎ} such that 𝑗 = 𝑖𝑔. Consider this 𝑔. Now,

(the 𝑗-th entry of column𝐵)

=

⎛⎜⎝the sum of the entries of the 𝑗⏟ ⏞ 
=𝑖𝑔

-th column of 𝐵

⎞⎟⎠

=

⎛⎜⎜⎜⎜⎝the sum of the entries of the 𝑖𝑔-th column of 𝐵⏟  ⏞  
=(the 𝑔-th column of 𝐴)
(by the definition of 𝐵)

⎞⎟⎟⎟⎟⎠
= (the sum of the entries of the 𝑔-th column of 𝐴)

=

⎛⎜⎜⎜⎜⎝the 𝑔-th entry of column𝐴⏟  ⏞  
=𝛽red=(𝛽𝑖1

,𝛽𝑖2
,...,𝛽𝑖ℎ)

(by the definition of 𝛽red)

⎞⎟⎟⎟⎟⎠
= (the 𝑔-th entry of (𝛽𝑖1 , 𝛽𝑖2 , . . . , 𝛽𝑖ℎ)) = 𝛽𝑖𝑔 = 𝛽𝑗 (since 𝑖𝑔 = 𝑗) .

Thus, (3.20) is proven in Case 1.
Let us now consider Case 2. In this case, we have 𝑗 /∈ {𝑖1, 𝑖2, . . . , 𝑖ℎ}. Hence, 𝑗 does not belong
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is bijective. Thus, we can substitute 𝛽 for column𝐵 in the sum
∑︀

𝐵∈N𝑘,∞
fin ;

𝐵Cred=𝐴

xcolumn𝐵, and

obtain ∑︁
𝐵∈N𝑘,∞

fin ;

𝐵Cred=𝐴

xcolumn𝐵 =
∑︁

𝛽∈N∞
fin;

𝛽red=column𝐴

x𝛽 = 𝑀column𝐴

(by (3.14), applied to 𝛼 = column𝐴). This proves (3.18).

Now, (3.17) becomes

𝑀𝛼1𝑀𝛼2 · · ·𝑀𝛼𝑘
=

∑︁
𝐴∈N𝑘,∙

Cred;

(𝐴𝑔,∙)
red=𝛼𝑔 for each 𝑔

∑︁
𝐵∈N𝑘,∞

fin ;

𝐵Cred=𝐴

xcolumn𝐵

⏟  ⏞  
=𝑀column𝐴
(by (3.18))

=
∑︁

𝐴∈N𝑘,∙
Cred;

(𝐴𝑔,∙)
red=𝛼𝑔 for each 𝑔

𝑀column𝐴.

to the list (𝑖1 < 𝑖2 < · · · < 𝑖ℎ). In other words, 𝑗 does not belong to the list of all 𝑐 ∈ {1, 2, 3, . . .}
satisfying 𝛽𝑐 ̸= 0 (since this list is (𝑖1 < 𝑖2 < · · · < 𝑖ℎ)). Hence, 𝛽𝑗 = 0.

Recall that 𝑗 /∈ {𝑖1, 𝑖2, . . . , 𝑖ℎ}. Hence, the 𝑗-th column of 𝐵 is the 0 vector (by the definition of
𝐵). Now,

(the 𝑗-th entry of column𝐵)

=

⎛⎜⎝the sum of the entries of the 𝑗-th column of 𝐵⏟  ⏞  
=(the 0 vector)

⎞⎟⎠
= (the sum of the entries of the 0 vector)
= 0 = 𝛽𝑗 .

Thus, (3.20) is proven in Case 2.
Hence, (3.20) is proven in both Cases 1 and 2. Thus, the proof of (3.20) is complete.
Now, from (3.20), we immediately obtain column𝐵 = (𝛽1, 𝛽2, 𝛽3, . . .) = 𝛽.
It remains to prove that 𝐵Cred = 𝐴. This can be done as follows: We have 𝐴 ∈ N𝑘,∙

Cred; thus,
the matrix 𝐴 is column-reduced. Hence, no column of 𝐴 is the zero vector. Therefore, none of the
𝑖1-st, 𝑖2-nd, . . ., 𝑖ℎ-th columns of 𝐵 is the zero vector (since these columns are the columns of 𝐴).
On the other hand, each of the remaining columns of 𝐵 is the zero vector (due to the definition of
𝐵). Thus, the set of all positive integers 𝑗 such that the 𝑗-th column of 𝐵 is nonzero is precisely
{𝑖1, 𝑖2, . . . , 𝑖ℎ}. The list of all elements of this set, in increasing order, is (𝑖1 < 𝑖2 < · · · < 𝑖ℎ). Hence,
the definition of 𝐵Cred shows that 𝐵Cred is the 𝑘 × ℎ-matrix whose columns (from left to right) are
the 𝑖1-th column of 𝐵, the 𝑖2-nd column of 𝐵, . . ., the 𝑖ℎ-th column of 𝐵. Since these columns are
precisely the columns of 𝐴, this entails that 𝐵Cred is the matrix 𝐴. In other words, 𝐵Cred = 𝐴.

Thus, we have proven that 𝐵 is an element of N𝑘,∙
fin satisfying 𝐵Cred = 𝐴 and column𝐵 = 𝛽. It is

fairly easy to see that it is the only such element (because the condition column𝐵 = 𝛽 determines
which columns of 𝐵 are nonzero, whereas the condition 𝐵Cred = 𝐴 determines the precise values of
these columns).
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This proves Proposition 3.5.4.

We need one more piece of notation:

Definition 3.5.5. We define a (multiplicative) monoid structure on the set Comp

as follows: If 𝛼 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) and 𝛽 = (𝑏1, 𝑏2, . . . , 𝑏𝑚) are two compositions,

then we set 𝛼𝛽 = (𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑏1, 𝑏2, . . . , 𝑏𝑚). Thus, Comp becomes a monoid

with neutral element ∅ = () (the empty composition). (This monoid is actually

the free monoid on the set {1, 2, 3, . . .}.)

Proposition 3.5.6. Let 𝛾 ∈ Comp and 𝑘 ∈ N. Then,

Δ(𝑘−1)𝑀𝛾 =
∑︁

(𝛾1,𝛾2,...,𝛾𝑘)∈Comp𝑘;
𝛾1𝛾2···𝛾𝑘=𝛾

𝑀𝛾1 ⊗𝑀𝛾2 ⊗ · · · ⊗𝑀𝛾𝑘 .

Proof of Proposition 3.5.6 (sketched). We can rewrite (3.1) as follows:

Δ𝑀𝛽 =
∑︁

(𝜎,𝜏)∈Comp×Comp;
𝜎𝜏=𝛽

𝑀𝜎 ⊗𝑀𝜏 for every 𝛽 ∈ Comp . (3.21)

Proposition 3.5.6 can easily be proven by induction using (3.21).

Proof of Proposition 3.5.3. Fix 𝛼 ∈ Comp and 𝛾 ∈ Comp. Write 𝛼 in the form

𝛼 = (𝑎1, 𝑎2, . . . , 𝑎𝑘); thus, a k-linear map 𝜉𝛼 : QSymk → QSymk is defined (as in

Definition 3.5.1, applied to 𝐻 = QSymk).

We shall prove that

𝜉𝛼 (𝑀𝛾) =
∑︁

𝐴∈N∙,∙
red;

(read𝐴)red=𝛾;
row𝐴=𝛼

𝑀column𝐴. (3.22)
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Proof of (3.22): The definition of 𝜉𝛼 yields 𝜉𝛼 = 𝑚(𝑘−1) ∘ 𝜋𝛼 ∘Δ(𝑘−1). Thus,

𝜉𝛼 (𝑀𝛾) =
(︀
𝑚(𝑘−1) ∘ 𝜋𝛼 ∘Δ(𝑘−1)

)︀
(𝑀𝛾)

=
(︀
𝑚(𝑘−1) ∘ 𝜋𝛼

)︀ (︀
Δ(𝑘−1) (𝑀𝛾)

)︀⏟  ⏞  
=

∑︀
(𝛾1,𝛾2,...,𝛾𝑘)∈Comp𝑘;

𝛾1𝛾2···𝛾𝑘=𝛾

𝑀𝛾1⊗𝑀𝛾2⊗···⊗𝑀𝛾𝑘

(by Proposition 3.5.6)

=
(︀
𝑚(𝑘−1) ∘ 𝜋𝛼

)︀⎛⎜⎜⎝ ∑︁
(𝛾1,𝛾2,...,𝛾𝑘)∈Comp𝑘;

𝛾1𝛾2···𝛾𝑘=𝛾

𝑀𝛾1 ⊗𝑀𝛾2 ⊗ · · · ⊗𝑀𝛾𝑘

⎞⎟⎟⎠
=

∑︁
(𝛾1,𝛾2,...,𝛾𝑘)∈Comp𝑘;

𝛾1𝛾2···𝛾𝑘=𝛾

𝑚(𝑘−1) (𝜋𝛼 (𝑀𝛾1 ⊗𝑀𝛾2 ⊗ · · · ⊗𝑀𝛾𝑘))⏟  ⏞  
=𝜋𝑎1(𝑀𝛾1)⊗𝜋𝑎2(𝑀𝛾2)⊗···⊗𝜋𝑎𝑘(𝑀𝛾𝑘)

(since 𝜋𝛼=𝜋𝑎1⊗𝜋𝑎2⊗···⊗𝜋𝑎𝑘
)

=
∑︁

(𝛾1,𝛾2,...,𝛾𝑘)∈Comp𝑘;
𝛾1𝛾2···𝛾𝑘=𝛾

𝑚(𝑘−1) (𝜋𝑎1 (𝑀𝛾1)⊗ 𝜋𝑎2 (𝑀𝛾2)⊗ · · · ⊗ 𝜋𝑎𝑘 (𝑀𝛾𝑘))⏟  ⏞  
=𝜋𝑎1(𝑀𝛾1)·𝜋𝑎2(𝑀𝛾2)·····𝜋𝑎𝑘(𝑀𝛾𝑘)=

𝑘∏︀
𝑔=1

𝜋𝑎𝑔(𝑀𝛾𝑔)

=
∑︁

(𝛾1,𝛾2,...,𝛾𝑘)∈Comp𝑘;
𝛾1𝛾2···𝛾𝑘=𝛾

𝑘∏︁
𝑔=1

𝜋𝑎𝑔

(︀
𝑀𝛾𝑔

)︀⏟  ⏞  
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑀𝛾𝑔 , if |𝛾𝑔| = 𝑎𝑔;

0, if |𝛾𝑔| ≠ 𝑎𝑔
(since the power series 𝑀𝛾𝑔 is
homogeneous of degree |𝛾𝑔 |)

=
∑︁

(𝛾1,𝛾2,...,𝛾𝑘)∈Comp𝑘;
𝛾1𝛾2···𝛾𝑘=𝛾

𝑘∏︁
𝑔=1

⎧⎪⎨⎪⎩𝑀𝛾𝑔 , if |𝛾𝑔| = 𝑎𝑔;

0, if |𝛾𝑔| ≠ 𝑎𝑔⏟  ⏞  
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑘∏︀
𝑔=1

𝑀𝛾𝑔 , if |𝛾𝑔| = 𝑎𝑔 for all 𝑔;

0, otherwise

=
∑︁

(𝛾1,𝛾2,...,𝛾𝑘)∈Comp𝑘;
𝛾1𝛾2···𝛾𝑘=𝛾

⎧⎪⎪⎨⎪⎪⎩
𝑘∏︀

𝑔=1

𝑀𝛾𝑔 , if |𝛾𝑔| = 𝑎𝑔 for all 𝑔;

0, otherwise
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=
∑︁

(𝛾1,𝛾2,...,𝛾𝑘)∈Comp𝑘;
𝛾1𝛾2···𝛾𝑘=𝛾;

|𝛾𝑔 |=𝑎𝑔 for all 𝑔

𝑘∏︁
𝑔=1

𝑀𝛾𝑔⏟  ⏞  
=𝑀𝛾1𝑀𝛾2 ···𝑀𝛾𝑘

=
∑︀

𝐴∈N𝑘,∙
Cred;

(𝐴𝑔,∙)
red=𝛾𝑔 for each 𝑔

𝑀column𝐴

(by Proposition 3.5.4, applied to
𝛼𝑖=𝛾𝑖)

(3.23)

(here, we have filtered out the zero addends) (3.24)

=
∑︁

(𝛾1,𝛾2,...,𝛾𝑘)∈Comp𝑘;
𝛾1𝛾2···𝛾𝑘=𝛾;

|𝛾𝑔 |=𝑎𝑔 for all 𝑔

∑︁
𝐴∈N𝑘,∙

Cred;

(𝐴𝑔,∙)
red=𝛾𝑔 for each 𝑔⏟  ⏞  

=
∑︀

(𝛾1,𝛾2,...,𝛾𝑘)∈Comp𝑘

∑︀
𝐴∈N𝑘,∙

Cred;

(𝐴𝑔,∙)
red=𝛾𝑔 for each 𝑔;
𝛾1𝛾2···𝛾𝑘=𝛾;

|𝛾𝑔 |=𝑎𝑔 for all 𝑔

𝑀column𝐴

=
∑︁

(𝛾1,𝛾2,...,𝛾𝑘)∈Comp𝑘

∑︁
𝐴∈N𝑘,∙

Cred;

(𝐴𝑔,∙)
red=𝛾𝑔 for each 𝑔;
𝛾1𝛾2···𝛾𝑘=𝛾;

|𝛾𝑔 |=𝑎𝑔 for all 𝑔⏟  ⏞  
=

∑︀
𝐴∈N𝑘,∙

Cred;

(𝐴𝑔,∙)
red=𝛾𝑔 for each 𝑔;

(𝐴1,∙)
red(𝐴2,∙)

red···(𝐴𝑘,∙)
red

=𝛾;

|(𝐴𝑔,∙)
red|=𝑎𝑔 for all 𝑔

(here, we have replaced every 𝛾𝑔
in the conditions (𝛾1𝛾2···𝛾𝑘=𝛾)
and (|𝛾𝑔 |=𝑎𝑔 for all 𝑔) by the

corresponding (𝐴𝑔,∙)
red, because

of the condition that (𝐴𝑔,∙)
red=𝛾𝑔)

𝑀column𝐴

=
∑︁

(𝛾1,𝛾2,...,𝛾𝑘)∈Comp𝑘

∑︁
𝐴∈N𝑘,∙

Cred;

(𝐴𝑔,∙)
red=𝛾𝑔 for each 𝑔;

(𝐴1,∙)
red(𝐴2,∙)

red···(𝐴𝑘,∙)
red

=𝛾;

|(𝐴𝑔,∙)
red|=𝑎𝑔 for all 𝑔⏟  ⏞  

=
∑︀

𝐴∈N𝑘,∙
Cred;

(𝐴1,∙)
red(𝐴2,∙)

red···(𝐴𝑘,∙)
red

=𝛾;

|(𝐴𝑔,∙)
red|=𝑎𝑔 for all 𝑔

𝑀column𝐴
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=
∑︁

𝐴∈N𝑘,∙
Cred;

(𝐴1,∙)
red(𝐴2,∙)

red···(𝐴𝑘,∙)
red

=𝛾;

|(𝐴𝑔,∙)
red|=𝑎𝑔 for all 𝑔

𝑀column𝐴. (3.25)

Now, we observe that every 𝐴 ∈ N𝑘,∙
Cred satisfies

(𝐴1,∙)
red (𝐴2,∙)

red · · · (𝐴𝑘,∙)
red = (read𝐴)red (3.26)

16.

Also, for every every 𝐴 ∈ N𝑘,∙
Cred, we have the logical equivalence

(︁⃒⃒⃒
(𝐴𝑔,∙)

red
⃒⃒⃒
= 𝑎𝑔 for all 𝑔

)︁
⇐⇒ (row𝐴 = 𝛼) (3.27)

17.

16Proof of (3.26): Let 𝐴 ∈ N𝑘,∙
Cred.

Let N∙ be the set of all finite lists of nonnegative integers. Then, Comp ⊆ N∙. In Definition
3.5.5, we have defined a monoid structure on the set Comp. We can extend this monoid structure
to the set N∙ (by the same rule: namely, if 𝛼 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) and 𝛽 = (𝑏1, 𝑏2, . . . , 𝑏𝑚), then
𝛼𝛽 = (𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑏1, 𝑏2, . . . , 𝑏𝑚)). (Of course, this monoid N∙ is just the free monoid on the set
N.) Using the latter structure, we can rewrite the definition of read𝐴 as follows:

read𝐴 = 𝐴1,∙𝐴2,∙ · · ·𝐴𝑘,∙.

Clearly, the map N∙ → Comp, 𝛽 ↦→ 𝛽red is a monoid homomorphism. Thus,

(𝐴1,∙)
red

(𝐴2,∙)
red · · · (𝐴𝑘,∙)

red
=

⎛⎜⎝𝐴1,∙𝐴2,∙ · · ·𝐴𝑘,∙⏟  ⏞  
=read𝐴

⎞⎟⎠
red

= (read𝐴)
red

.

This proves (3.26).
17Proof of (3.27): Let 𝐴 ∈ N𝑘,∙

Cred. Then, every 𝑔 ∈ {1, 2, . . . , 𝑘} satisfies⃒⃒⃒
(𝐴𝑔,∙)

red
⃒⃒⃒
=
(︁
sum of all entries of (𝐴𝑔,∙)

red
)︁
= (sum of all nonzero entries in 𝐴𝑔,∙)(︁

by the definition of (𝐴𝑔,∙)
red
)︁

= (sum of all nonzero entries in the 𝑔-th row of 𝐴)

= (sum of all entries in the 𝑔-th row of 𝐴) = (the 𝑔-th entry of row𝐴) .
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Also, every 𝐴 ∈ N𝑘,∙
Cred satisfying row𝐴 = 𝛼 belongs to N∙,∙

red
18. Conversely,

every 𝐴 ∈ N∙,∙
red satisfying row𝐴 = 𝛼 belongs to N𝑘,∙

Cred
19. Combining these two

observations, we see that⎛⎝ the matrices 𝐴 ∈ N𝑘,∙
Cred satisfying row𝐴 = 𝛼

are precisely the matrices 𝐴 ∈ N∙,∙
red satisfying row𝐴 = 𝛼

⎞⎠ . (3.28)

Now, (3.25) becomes

𝜉𝛼 (𝑀𝛾) =
∑︁

𝐴∈N𝑘,∙
Cred;

(𝐴1,∙)
red(𝐴2,∙)

red···(𝐴𝑘,∙)
red

=𝛾;

|(𝐴𝑔,∙)
red|=𝑎𝑔 for all 𝑔⏟  ⏞  

=
∑︀

𝐴∈N𝑘,∙
Cred;

(read𝐴)red=𝛾;
row𝐴=𝛼

(by (3.26) and (3.27))

𝑀column𝐴 =
∑︁

𝐴∈N𝑘,∙
Cred;

(read𝐴)red=𝛾;
row𝐴=𝛼⏟  ⏞  

=
∑︀

𝐴∈N∙,∙
red;

(read𝐴)red=𝛾;
row𝐴=𝛼

(by (3.28))

𝑀column𝐴

=
∑︁

𝐴∈N∙,∙
red;

(read𝐴)red=𝛾;
row𝐴=𝛼

𝑀column𝐴.

This proves (3.22).

Hence, we have the following chain of equivalences:⎛⎜⎜⎝ ⃒⃒⃒
(𝐴𝑔,∙)

red
⃒⃒⃒

⏟  ⏞  
=(the 𝑔-th entry of row𝐴)

= 𝑎𝑔 for all 𝑔

⎞⎟⎟⎠
⇐⇒ ((the 𝑔-th entry of row𝐴) = 𝑎𝑔 for all 𝑔)

⇐⇒

⎛⎝row𝐴 = (𝑎1, 𝑎2, . . . , 𝑎𝑘)⏟  ⏞  
=𝛼

⎞⎠ = (row𝐴 = 𝛼) .

This proves (3.27).
18Proof. Let 𝐴 ∈ N𝑘,∙

Cred be such that row𝐴 = 𝛼. We must show that 𝐴 ∈ N∙,∙
red. The sequence

row𝐴 = 𝛼 is a composition; hence, 𝐴 is row-reduced. Since 𝐴 is also column-reduced (because
𝐴 ∈ N𝑘,∙

Cred), this shows that 𝐴 is reduced. Hence, 𝐴 ∈ N∙,∙
red, qed.

19Proof. Let 𝐴 ∈ N∙,∙
red be such that row𝐴 = 𝛼. We must show that 𝐴 ∈ N𝑘,∙

Cred. The number
of rows of 𝐴 is clearly the length of the vector row𝐴 (where the “length” of a vector just means
its number of entries). But this length is 𝑘 (since row𝐴 = 𝛼 = (𝑎1, 𝑎2, . . . , 𝑎𝑘)). Therefore, the
number of rows of 𝐴 is 𝑘. Also, 𝐴 is reduced (since 𝐴 ∈ N∙,∙

red) and therefore column-reduced. Hence,
𝐴 ∈ N𝑘,∙

Cred (since 𝐴 is column-reduced and the number of rows of 𝐴 is 𝑘), qed.
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Now, forget that we fixed 𝛼 and 𝛾. For every 𝛾 ∈ Comp, we have

𝛽QSymk
(𝑀𝛾) =

∑︁
𝛼∈Comp

𝜉𝛼 (𝑀𝛾)⏟  ⏞  
=

∑︀
𝐴∈N∙,∙

red;
(read𝐴)red=𝛾;

row𝐴=𝛼

𝑀column𝐴

(by (3.22))

⊗𝑀𝛼

(︀
by the definition of 𝛽QSymk

)︀

=
∑︁

𝛼∈Comp

∑︁
𝐴∈N∙,∙

red;
(read𝐴)red=𝛾;

row𝐴=𝛼

𝑀column𝐴 ⊗ 𝑀𝛼⏟ ⏞ 
=𝑀row𝐴

(since row𝐴=𝛼)

=
∑︁

𝛼∈Comp

∑︁
𝐴∈N∙,∙

red;
(read𝐴)red=𝛾;

row𝐴=𝛼⏟  ⏞  
=

∑︀
𝐴∈N∙,∙

red;
(read𝐴)red=𝛾;
row𝐴∈Comp

𝑀column𝐴 ⊗𝑀row𝐴

=
∑︁

𝐴∈N∙,∙
red;

(read𝐴)red=𝛾;
row𝐴∈Comp

𝑀column𝐴 ⊗𝑀row𝐴. (3.29)

But every 𝐴 ∈ N∙,∙
red satisfies row𝐴 ∈ Comp 20. Hence, the summation sign∑︀

𝐴∈N∙,∙
red;

(read𝐴)red=𝛾;
row𝐴∈Comp

on the right hand side of (3.29) can be replaced by
∑︀

𝐴∈N∙,∙
red;

(read𝐴)red=𝛾

. Thus,

(3.29) becomes

𝛽QSymk
(𝑀𝛾) =

∑︁
𝐴∈N∙,∙

red;
(read𝐴)red=𝛾;
row𝐴∈Comp⏟  ⏞  

=
∑︀

𝐴∈N∙,∙
red;

(read𝐴)red=𝛾

𝑀column𝐴 ⊗𝑀row𝐴

=
∑︁

𝐴∈N∙,∙
red;

(read𝐴)red=𝛾

𝑀column𝐴 ⊗𝑀row𝐴. (3.30)

20Proof. Let 𝐴 ∈ N∙,∙
red. Then, the matrix 𝐴 is reduced, and therefore row-reduced. In other words,

row𝐴 is a composition. In other words, row𝐴 ∈ Comp, qed.
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On the other hand, every 𝛾 ∈ Comp satisfies

Δ′
𝑃⏟ ⏞ 

=𝜏∘Δ𝑃

(𝑀𝛾) = (𝜏 ∘Δ𝑃 ) (𝑀𝛾) = 𝜏

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Δ𝑃 (𝑀𝛾)⏟  ⏞  

=
∑︀

𝐴∈N∙,∙
red;

(read𝐴)red=𝛾

𝑀row𝐴⊗𝑀column𝐴

(by the definition of Δ𝑃 )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝜏

⎛⎜⎜⎜⎝ ∑︁
𝐴∈N∙,∙

red;

(read𝐴)red=𝛾

𝑀row𝐴 ⊗𝑀column𝐴

⎞⎟⎟⎟⎠ =
∑︁

𝐴∈N∙,∙
red;

(read𝐴)red=𝛾

𝑀column𝐴 ⊗𝑀row𝐴

(by the definition of 𝜏)

= 𝛽QSymk
(𝑀𝛾) (by (3.30)) .

Since both maps Δ′
𝑃 and 𝛽QSymk

are k-linear, this yields Δ′
𝑃 = 𝛽QSymk

(since (𝑀𝛾)𝛾∈Comp

is a basis of the k-module QSymk). This proves Proposition 3.5.3.

The next theorem is an analogue for QSym of the Bernstein homomorphism

([Haz08, §18.24]) for the symmetric functions:

Theorem 3.5.7. Let k be a commutative ring. Let 𝐻 be a commutative connected

graded k-Hopf algebra. For every composition 𝛼, define a k-linear map 𝜉𝛼 : 𝐻 → 𝐻

as in Definition 3.5.1. Define a map 𝛽𝐻 : 𝐻 → 𝐻 ⊗QSymk as in Definition 3.5.1.

(a) The map 𝛽𝐻 is a k-algebra homomorphism 𝐻 → 𝐻⊗QSymk and a graded

(k, 𝐻)-coalgebra homomorphism.

(b) We have (id⊗𝜀𝑃 )∘𝛽𝐻 = id, where we regard id⊗𝜀𝑃 : 𝐻⊗QSymk → 𝐻⊗k

as a map from 𝐻 ⊗QSymk to 𝐻 (by identifying 𝐻 ⊗ k with 𝐻).

(c) Define a map Δ′
𝑃 : QSymk → QSymk ⊗QSymk as in Definition 3.4.2 (e).

The diagram

𝐻
𝛽𝐻 //

𝛽𝐻

��

𝐻 ⊗QSym

𝛽𝐻⊗id

��

𝐻 ⊗QSym
id⊗Δ′

𝑃

// 𝐻 ⊗QSym⊗QSym
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is commutative.

(d) If the k-coalgebra 𝐻 is cocommutative, then 𝛽𝐻 (𝐻) is a subset of the

subring 𝐻 ⊗ Λk of 𝐻 ⊗QSymk, where Λk is the k-algebra of symmetric functions

over k.

Parts (b) and (c) of Theorem 3.5.7 can be combined into “𝛽𝐻 makes 𝐻 into a

QSym2-comodule, where QSym2 is the coalgebra (QSym,Δ′
𝑃 , 𝜀𝑃 )” (the fact that this

QSym2 is actually a coalgebra follows from Proposition 3.4.4).

What Hazewinkel actually calls the Bernstein homomorphism in [Haz08, §18.24]

is the k-algebra homomorphism 𝐻 → 𝐻 ⊗ Λk obtained from our map 𝛽𝐻 : 𝐻 →

𝐻⊗QSymk by restricting the codomain when 𝐻 is both commutative and cocommu-

tative21. His observation that the second comultiplication of Λk is a particular case

of the Bernstein homomorphism is what gave the original motivation for the present

note; its analogue for QSymk is our Proposition 3.5.3.

Proof of Theorem 3.5.7. Set 𝐴 = 𝐻 and 𝜉 = id. Then, the map 𝜉𝛼 defined in

Corollary 3.3.12 (c) is precisely the map 𝜉𝛼 defined in Definition 3.5.1 (because

𝜉⊗𝑘 = id⊗𝑘 = id). Thus, we can afford calling both maps 𝜉𝛼 without getting confused.

(a) Corollary 3.3.12 (a) shows that there exists a unique graded (k, 𝐴)-coalgebra

homomorphism Ξ : 𝐻 → 𝐴 ⊗ QSymk for which the diagram (3.8) is commutative.

Since 𝐴 = 𝐻 and 𝜉 = id, we can rewrite this as follows: There exists a unique graded

(k, 𝐻)-coalgebra homomorphism Ξ : 𝐻 → 𝐻 ⊗QSymk for which the diagram

𝐻 Ξ //

id
��

𝐻 ⊗QSym

id𝐻⊗𝜀𝑃
yy

𝐻

(3.31)

is commutative. Consider this Ξ. Corollary 3.3.12 (c) shows that this homomorphism

21Hazewinkel neglects to require the cocommutativity of 𝐻 in [Haz08, §18.24], but he uses it
nevertheless.
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Ξ is given by

Ξ (ℎ) =
∑︁

𝛼∈Comp

𝜉𝛼 (ℎ)⊗𝑀𝛼 for every ℎ ∈ 𝐻.

Comparing this equality with (3.13), we obtain Ξ (ℎ) = 𝛽𝐻 (ℎ) for every ℎ ∈ 𝐻. In

other words, Ξ = 𝛽𝐻 . Thus, 𝛽𝐻 is a graded (k, 𝐻)-coalgebra homomorphism (since

Ξ is a graded (k, 𝐻)-coalgebra homomorphism).

Corollary 3.3.12 (b) shows that Ξ is a k-algebra homomorphism. In other words,

𝛽𝐻 is a k-algebra homomorphism (since Ξ = 𝛽𝐻). This completes the proof of

Theorem 3.5.7 (a).

(b) Consider the map Ξ defined in our above proof of Theorem 3.5.7 (a). We

have shown that Ξ = 𝛽𝐻 .

The commutative diagram (3.31) shows that (id⊗𝜀𝑃 ) ∘ Ξ = id. In other words,

(id⊗𝜀𝑃 ) ∘ 𝛽𝐻 = id (since Ξ = 𝛽𝐻). This proves Theorem 3.5.7 (b).

(c) Theorem 3.5.7 (a) shows that the map 𝛽𝐻 is a k-algebra homomorphism

𝐻 → 𝐻 ⊗ QSymk and a graded (k, 𝐻)-coalgebra homomorphism. Theorem 3.5.7

(a) (applied to QSymk instead of 𝐻) shows that the map 𝛽QSymk
is a k-algebra

homomorphism QSymk → QSymk ⊗ QSymk and a graded
(︁
k,QSymk

)︁
-coalgebra

homomorphism. Since Δ′
𝑃 = 𝛽QSymk

(by Proposition 3.5.3), this rewrites as follows:

The map Δ′
𝑃 is a k-algebra homomorphism QSymk → QSymk⊗QSymk and a graded(︁

k,QSymk

)︁
-coalgebra homomorphism.

Applying Corollary 3.3.12 (a) to 𝐻 ⊗ QSymk and 𝛽𝐻 instead of 𝐴 and 𝜉, we

see that there exists a unique graded
(︁
k, 𝐻 ⊗QSymk

)︁
-coalgebra homomorphism

Ξ : 𝐻 → 𝐻 ⊗QSymk ⊗QSymk for which the diagram

𝐻
Ξ //

𝛽𝐻 $$

𝐻 ⊗QSym⊗QSym

id𝐻⊗QSym⊗𝜀𝑃uu

𝐻 ⊗QSym

(3.32)

is commutative. Thus, if we have two graded
(︁
k, 𝐻 ⊗QSymk

)︁
-coalgebra homomor-
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phisms Ξ : 𝐻 → 𝐻 ⊗QSymk ⊗QSymk for which the diagram (3.32) is commutative,

then these two homomorphisms must be identical. We will now show that the two

homomorphisms (𝛽𝐻 ⊗ id) ∘ 𝛽𝐻 and (id⊗Δ′
𝑃 ) ∘ 𝛽𝐻 both fit the bill; this will then

yield that (𝛽𝐻 ⊗ id) ∘ 𝛽𝐻 = (id⊗Δ′
𝑃 ) ∘ 𝛽𝐻 , and thus Theorem 3.5.7 (c) will follow.

Recall that 𝛽𝐻 and Δ′
𝑃 are graded maps. Thus, so are (𝛽𝐻 ⊗ id) ∘ 𝛽𝐻 and

(id⊗Δ′
𝑃 ) ∘ 𝛽𝐻 . Moreover, 𝛽𝐻 is a (k, 𝐻)-coalgebra homomorphism, and Δ′

𝑃 is a(︁
k,QSymk

)︁
-coalgebra homomorphism. From this, it is easy to see that (𝛽𝐻 ⊗ id)∘𝛽𝐻

and (id⊗Δ′
𝑃 ) ∘ 𝛽𝐻 are

(︁
k, 𝐻 ⊗QSymk

)︁
-coalgebra homomorphisms22.

Now, we shall show that the diagrams

𝐻
(𝛽𝐻⊗id)∘𝛽𝐻

//

𝛽𝐻 $$

𝐻 ⊗QSym⊗QSym

id𝐻⊗QSym⊗𝜀𝑃uu

𝐻 ⊗QSym

(3.33)

and

𝐻
(id⊗Δ′

𝑃 )∘𝛽𝐻
//

𝛽𝐻 $$

𝐻 ⊗QSym⊗QSym

id𝐻⊗QSym⊗𝜀𝑃uu

𝐻 ⊗QSym

(3.34)

are commutative. This follows from the computations

(︁
id𝐻⊗QSymk

⊗𝜀𝑃

)︁
∘ (𝛽𝐻 ⊗ id)⏟  ⏞  

=𝛽𝐻⊗𝜀𝑃=𝛽𝐻∘(id⊗𝜀𝑃 )

∘𝛽𝐻 = 𝛽𝐻 ∘ (id⊗𝜀𝑃 ) ∘ 𝛽𝐻⏟  ⏞  
=id

(by Theorem 3.5.7 (b))

= 𝛽𝐻

22Proof. Proposition 3.3.9 (applied to 𝐻, 𝐻⊗QSymk, 𝐻, QSymk, 𝛽𝐻 and 𝛽𝐻 instead of 𝐴, 𝐵, 𝐻,
𝐺, 𝑓 and 𝑝) shows that (𝛽𝐻 ⊗ id) ∘ 𝛽𝐻 is a

(︁
k, 𝐻 ⊗QSymk

)︁
-coalgebra homomorphism. It remains

to show that (id⊗Δ′
𝑃 ) ∘ 𝛽𝐻 is a

(︁
k, 𝐻 ⊗QSymk

)︁
-coalgebra homomorphism.

Recall that Δ′
𝑃 is a

(︁
k,QSymk

)︁
-coalgebra homomorphism QSymk → QSymk ⊗QSymk. Hence,

Proposition 3.3.10 (applied to QSymk, 𝐻, QSymk, QSymk ⊗ QSymk and Δ′
𝑃 instead of 𝐴, 𝐵,

𝐻, 𝐺 and 𝑓) shows that id⊗Δ′
𝑃 : 𝐻 ⊗ QSymk → 𝐻 ⊗ QSymk ⊗ QSymk is an

(︁
𝐻,𝐻 ⊗QSymk

)︁
-

coalgebra homomorphism. Therefore, Proposition 3.3.11 (applied to 𝐻, 𝐻⊗QSymk, 𝐻, 𝐻⊗QSymk,
𝐻⊗QSymk⊗QSymk, 𝛽𝐻 and id⊗Δ′

𝑃 instead of 𝐴, 𝐵, 𝐻, 𝐺, 𝐼, 𝑓 and 𝑔) shows that (id⊗Δ′
𝑃 )∘𝛽𝐻

is a
(︁
k, 𝐻 ⊗QSymk

)︁
-coalgebra homomorphism. This completes the proof.
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and ⎛⎜⎜⎝ id𝐻⊗QSymk⏟  ⏞  
=id𝐻 ⊗ idQSymk

⊗𝜀𝑃

⎞⎟⎟⎠ ∘

⎛⎜⎝ id⏟ ⏞ 
=id𝐻

⊗ Δ′
𝑃⏟ ⏞ 

=𝛽QSymk

⎞⎟⎠ ∘ 𝛽𝐻

=
(︁
id𝐻 ⊗ idQSymk

⊗𝜀𝑃

)︁
∘
(︀
id𝐻 ⊗𝛽QSymk

)︀⏟  ⏞  
=id𝐻 ⊗

(︁(︁
idQSymk

⊗𝜀𝑃

)︁
∘𝛽QSymk

)︁
∘𝛽𝐻

=

⎛⎜⎜⎜⎜⎜⎜⎝id𝐻 ⊗
(︁(︁

idQSymk
⊗𝜀𝑃

)︁
∘ 𝛽QSymk

)︁
⏟  ⏞  

=id
(by Theorem 3.5.7 (b),

applied to QSymk instead of 𝐻)

⎞⎟⎟⎟⎟⎟⎟⎠ ∘ 𝛽𝐻

= (id𝐻 ⊗ id)⏟  ⏞  
=id

∘𝛽𝐻 = 𝛽𝐻 .

Thus, we know that (𝛽𝐻 ⊗ id) ∘ 𝛽𝐻 and (id⊗Δ′
𝑃 ) ∘ 𝛽𝐻 are two graded(︁

k, 𝐻 ⊗QSymk

)︁
-coalgebra homomorphisms Ξ : 𝐻 → 𝐻 ⊗ QSymk ⊗ QSymk for

which the diagram (3.32) is commutative (since the diagrams (3.33) and (3.34) are

commutative). But we have shown before that any two such homomorphisms must

be identical. Thus, we conclude that (𝛽𝐻 ⊗ id)∘𝛽𝐻 = (id⊗Δ′
𝑃 )∘𝛽𝐻 . This completes

the proof of Theorem 3.5.7 (c).

(d) Consider the map Ξ defined in our above proof of Theorem 3.5.7 (a). We

have shown that Ξ = 𝛽𝐻 .

Assume that 𝐻 is cocommutative. Corollary 3.3.12 (d) then shows that Ξ (𝐻) is

a subset of the subring 𝐴⊗ Λk of 𝐴⊗QSymk. In other words, 𝛽𝐻 (𝐻) is a subset of

the subring 𝐻 ⊗Λk of 𝐻 ⊗QSymk (since Ξ = 𝛽𝐻 and 𝐴 = 𝐻). This proves Theorem

3.5.7 (d).

(Alternatively, we could prove (d) by checking that for any element ℎ of a com-

mutative cocommutative Hopf algebra 𝐻, the element 𝜉𝛼 (ℎ) of 𝐻 depends only on

the result of sorting 𝛼, rather than on the composition 𝛼 itself.)

Proof of Proposition 3.4.4. Let 𝜏 be the twist map 𝜏QSymk,QSymk
: QSymk⊗QSymk →
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QSymk ⊗QSymk. This twist map clearly satisfies 𝜏 ∘ 𝜏 = id. Hence, 𝜏 ∘ Δ′
𝑃⏟ ⏞ 

=𝜏∘Δ𝑃

=

𝜏 ∘ 𝜏⏟ ⏞ 
=id

∘Δ𝑃 = Δ𝑃 .

Theorem 3.5.7 (c) (applied to 𝐻 = QSymk) shows that the diagram

QSym
𝛽QSym

//

𝛽QSym

��

QSym⊗QSym

𝛽QSym⊗id

��

QSym⊗QSym
id⊗Δ′

𝑃

// QSym⊗QSym⊗QSym

is commutative. In other words, (id⊗Δ′
𝑃 ) ∘ 𝛽QSymk

=
(︀
𝛽QSymk

⊗ id
)︀
∘ 𝛽QSymk

. Since

𝛽QSymk
= Δ′

𝑃 (by Proposition 3.5.3), this rewrites as (id⊗Δ′
𝑃 )∘Δ′

𝑃 = (Δ′
𝑃 ⊗ id)∘Δ′

𝑃 .

Thus, the operation Δ′
𝑃 is coassociative. Therefore, the operation Δ𝑃 = 𝜏 ∘ Δ′

𝑃

is also coassociative (because the coassociativity of a map 𝐻 → 𝐻 ⊗ 𝐻 does not

change if we compose this map with the twist map 𝜏𝐻,𝐻 : 𝐻 ⊗ 𝐻 → 𝐻 ⊗ 𝐻). It is

furthermore easy to see that the operation 𝜀𝑃 is counital with respect to the operation

Δ𝑃 (see, for example, [Haz08, §11.45]). Hence, the k-module QSymk, equipped with

the comultiplication Δ𝑃 and the counit 𝜀𝑃 , is a k-coalgebra. Our goal is to prove

that it is a k-bialgebra. Hence, it remains to show that Δ𝑃 and 𝜀𝑃 are k-algebra

homomorphisms. For 𝜀𝑃 , this is again obvious (indeed, 𝜀𝑃 sends any 𝑓 ∈ QSymk to

𝑓 (1, 0, 0, 0, . . .)). It remains to prove that Δ𝑃 is a k-algebra homomorphism.

The map 𝛽QSymk
is a k-algebra homomorphism QSymk → QSymk ⊗ QSymk (by

Theorem 3.5.7 (a), applied to 𝐻 = QSymk). In other words, the map Δ′
𝑃 is a

k-algebra homomorphism QSymk → QSymk ⊗QSymk (since 𝛽QSymk
= Δ′

𝑃 , and

since QSymk = QSymk as k-algebras). Thus, Δ𝑃 = 𝜏 ∘ Δ′
𝑃 is also a k-algebra

homomorphism (since both 𝜏 and Δ′
𝑃 are k-algebra homomorphisms). This completes

the proof of Proposition 3.4.4.

3.6 Remark on antipodes

We have hitherto not really used the antipode of a Hopf algebra; thus, we could just

as well have replaced the words “Hopf algebra” by “bialgebra” throughout the entire
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preceding text23. Let us now connect the preceding results with antipodes.

The antipode of any Hopf algebra 𝐻 will be denoted by 𝑆𝐻 .

Proposition 3.6.1. Let k be a commutative ring. Let 𝐴 be a commutative k-

algebra. Let 𝐻 be a k-Hopf algebra. Let 𝐺 be an 𝐴-Hopf algebra. Then, every

k-algebra homomorphism 𝑓 : 𝐻 → 𝐺 which is a (k, 𝐴)-coalgebra homomorphism

must also satisfy 𝑓 ∘ 𝑆𝐻 = 𝑆𝐺 ∘ 𝑓 .

Proof of Proposition 3.6.1. We know that 𝐻 is a k-Hopf algebra. Thus, 𝐴⊗𝐻 is an

𝐴-Hopf algebra. Its definition by extending scalars yields that its antipode is given

by 𝑆𝐴⊗𝐻 = id𝐴 ⊗𝑆𝐻 .

Let 𝑓 : 𝐻 → 𝐺 be a k-algebra homomorphism which is a (k, 𝐴)-coalgebra homo-

morphism. Then, 𝑓 ♯ : 𝐴 ⊗ 𝐻 → 𝐺 is an 𝐴-coalgebra homomorphism (since 𝑓 is a

(k, 𝐴)-coalgebra homomorphism) and an 𝐴-algebra homomorphism (by Proposition

3.3.4). Hence, 𝑓 ♯ is an 𝐴-bialgebra homomorphism, thus an 𝐴-Hopf algebra homo-

morphism (since every 𝐴-bialgebra homomorphism between two 𝐴-Hopf algebras is

an 𝐴-Hopf algebra homomorphism). Thus, 𝑓 ♯ commutes with the antipodes, i.e.,

satisfies 𝑓 ♯ ∘ 𝑆𝐴⊗𝐻 = 𝑆𝐺 ∘ 𝑓 ♯.

Now, let 𝜄 be the canonical k-module homomorphism 𝐻 → 𝐴 ⊗ 𝐻, ℎ ↦→ 1 ⊗ ℎ.

Then, (id𝐴 ⊗𝑆𝐻) ∘ 𝜄 = 𝜄 ∘ 𝑆𝐻 . On the other hand, 𝑓 ♯ ∘ 𝜄 = 𝑓 (this is easy to check).

Thus,

𝑓⏟ ⏞ 
=𝑓♯∘𝜄

∘𝑆𝐻 = 𝑓 ♯ ∘ 𝜄 ∘ 𝑆𝐻⏟  ⏞  
=(id𝐴 ⊗𝑆𝐻)∘𝜄

= 𝑓 ♯ ∘ (id𝐴 ⊗𝑆𝐻)⏟  ⏞  
=𝑆𝐴⊗𝐻

∘𝜄 = 𝑓 ♯ ∘ 𝑆𝐴⊗𝐻⏟  ⏞  
=𝑆𝐺∘𝑓♯

∘𝜄

= 𝑆𝐺 ∘ 𝑓 ♯ ∘ 𝜄⏟  ⏞  
=𝑓

= 𝑆𝐺 ∘ 𝑓.

This proves Proposition 3.6.1.

23That said, we would not have gained anything this way, because any connected graded k-
bialgebra is a k-Hopf algebra (see [GriRei15, Proposition 1.36]).
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Corollary 3.6.2. Let k be a commutative ring. Let 𝐻 be a commutative connected

graded k-Hopf algebra. Define a map 𝛽𝐻 : 𝐻 → 𝐻⊗QSymk as in Definition 3.5.1.

Then,

𝛽𝐻 ∘ 𝑆𝐻 =
(︀
id𝐻 ⊗𝑆QSymk

)︀
∘ 𝛽𝐻 .

Proof of Corollary 3.6.2. Theorem 3.5.7 (a) shows that the map 𝛽𝐻 is a k-algebra

homomorphism 𝐻 → 𝐻 ⊗ QSymk and a graded (k, 𝐻)-coalgebra homomorphism.

Thus, Proposition 3.6.1 (applied to 𝐴 = 𝐻, 𝐺 = 𝐻 ⊗ QSymk and 𝑓 = 𝛽𝐻) shows

that 𝛽𝐻 ∘ 𝑆𝐻 = 𝑆𝐻⊗QSymk
∘ 𝛽𝐻 .

But the 𝐻-Hopf algebra 𝐻 ⊗ QSymk is defined by extension of scalars; thus, its

antipode is given by 𝑆𝐻⊗QSymk
= id𝐻 ⊗𝑆QSymk

. Hence,

𝛽𝐻 ∘ 𝑆𝐻 = 𝑆𝐻⊗QSymk⏟  ⏞  
=id𝐻 ⊗𝑆QSymk

∘𝛽𝐻 =
(︀
id𝐻 ⊗𝑆QSymk

)︀
∘ 𝛽𝐻 .

This proves Corollary 3.6.2.

Corollary 3.6.3. Let k be a commutative ring. Let 𝐻 be a commutative connected

graded k-Hopf algebra. Define a map 𝛽𝐻 : 𝐻 → 𝐻⊗QSymk as in Definition 3.5.1.

Then,

𝑆𝐻 =
(︀
id𝐻 ⊗

(︀
𝜀𝑃 ∘ 𝑆QSymk

)︀)︀
∘ 𝛽𝐻 .

Proof of Corollary 3.6.3. We have

(︀
id𝐻 ⊗

(︀
𝜀𝑃 ∘ 𝑆QSymk

)︀)︀⏟  ⏞  
=(id𝐻 ⊗𝜀𝑃 )∘(id𝐻 ⊗𝑆QSymk)

∘𝛽𝐻 = (id𝐻 ⊗𝜀𝑃 ) ∘
(︀
id𝐻 ⊗𝑆QSymk

)︀
∘ 𝛽𝐻⏟  ⏞  

=𝛽𝐻∘𝑆𝐻
(by Corollary 3.6.2)

= (id𝐻 ⊗𝜀𝑃 ) ∘ 𝛽𝐻⏟  ⏞  
=id

(by Theorem 3.5.7 (b))

∘𝑆𝐻 = 𝑆𝐻 ,

and thus Corollary 3.6.3 is proven.
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Remark 3.6.4. What I find remarkable about Corollary 3.6.3 is that it provides

a formula for the antipode 𝑆𝐻 of 𝐻 in terms of 𝛽𝐻 and QSymk. Thus, in order to

understand the antipode of 𝐻, it suffices to study the map 𝛽𝐻 and the antipode of

QSymk well enough.

Similar claims can be made about other endomorphisms of 𝐻, such as the

Dynkin idempotent or the Eulerian idempotent (when k is a Q-algebra). Better

yet, we can regard the map 𝛽𝐻 : 𝐻 → 𝐻 ⊗ QSymk as an “embedding” of the

k-Hopf algebra 𝐻 into the 𝐻-Hopf algebra 𝐻 ⊗ QSymk
∼= QSym𝐻 . Here, I am

using the word “embedding” in scare quotes, since this map is not a Hopf algebra

homomorphism (its domain and its target are Hopf algebras over different base

rings); nevertheless, the map 𝛽𝐻 is injective (by Theorem 3.5.7 (b)), and the

corresponding map (𝛽𝐻)
♯ : 𝐻 ⊗𝐻 → 𝐻 ⊗QSymk (sending every 𝑎⊗ℎ to 𝑎𝛽𝐻 (ℎ))

is a graded 𝐻-Hopf algebra homomorphism (because it is graded, an 𝐻-algebra

homomorphism and an 𝐻-coalgebra homomorphism); this shows that 𝛽𝐻 commutes

with various maps defined canonically in terms of a commutative connected graded

Hopf algebra. It appears possible to use this for proving identities in commutative

connected graded Hopf algebra.

3.7 Questions

Let me finish with some open-ended questions, which probably are not particularly

insightful, but (in my opinion) rather natural.

Question 3.7.1. It is well-known (see, e.g., [GriRei15, §5.3]) that the graded Hopf-

algebraic dual of the graded Hopf algebra QSym is a graded Hopf algebra NSym.

The second comultiplication Δ𝑃 and the second counit 𝜀𝑃 on QSym dualize to

a second multiplication 𝑚𝑃 and a second unit 𝑢𝑃 on NSym, albeit 𝑢𝑃 does not

really live inside NSym (in fact, it lives in the completion of NSym with respect to

its grading). We denote the “almost-k-bialgebra” (NSym,𝑚𝑃 , 𝑢𝑃 ,Δ, 𝜀) (“almost”

because 𝑢𝑃 /∈ NSym) by NSym2.
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We can more or less dualize Theorem 3.5.7. As a result, instead of a QSym2-

comodule structure on every commutative graded connected Hopf algebra 𝐻, we

obtain an NSym2-module structure on every cocommutative graded connected Hopf

algebra 𝐻. This structure is rather well-known: (I believe) it has 𝐻𝛼 ∈ NSym2

act as the convolution product 𝜋𝑎1F𝜋𝑎2F · · ·F𝜋𝑎𝑘 ∈ End𝐻 for every composition

𝛼 = (𝑎1, 𝑎2, . . . , 𝑎𝑘) (where F denotes the convolution product in End𝐻). This

should be somewhere in the papers by Patras and Reutenauer on descent algebras;

it is essentially the way to transfer information from the descent algebra NSym2

to a descent algebra (Endgraded 𝐻, ∘) of a cocommutative graded connected Hopf

algebra 𝐻.

Is it possible to prove that this works using universal properties like I have done

above for Theorem 3.5.7? (Just saying “dualize Theorem 3.5.7” is not enough,

because dualization over arbitrary commutative rings is a heuristic, not a proof

strategy; there does not seem to be a general theorem stating that “the dual of a

correct result is correct”, at least when the result has assumptions about gradedness

and similar things.)

If the answer is positive, can we use this to give a slick proof of Solomon’s

Mackey formula? (I am not saying that there is need for slick proofs of this formula

– not after those by Gessel and Bidigare –, but it would be interesting to have a

new one. I am thinking of letting both NSym2 and the symmetric groups act on

the tensor algebra 𝑇 (𝑉 ) of an infinite-dimensional free k-module 𝑉 ; one then only

needs to check that the actions match.)

Note that if 𝑢 and 𝑣 are two elements of NSym2, then the action of the NSym-

product 𝑢𝑣 (not the NSym2-product!) on 𝐻 is the convolution of the actions of 𝑢

and 𝑣. So the action map NSym2 → End𝐻 takes the multiplication of NSym2 to

composition, and the multiplication of NSym to convolution.

Question 3.7.2. In Question 3.7.1, we found a k-algebra homomorphism

NSym2 → (End𝐻, ∘) for every cocommutative connected graded Hopf algebra 𝐻.

This is functorial in 𝐻, and so is really a map from the constant functor NSym2
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to the functor

{cocommutative connected graded Hopf algebras} → {k-modules} ,

𝐻 ↦→ End𝐻.

Does the image of this action span (up to topology) the whole functor? I guess

I am badly abusing categorical language here, so let me restate the question in

simpler terms: If a natural endomorphism of the k-module 𝐻 is given for every

cocommutative connected graded Hopf algebra 𝐻, and this endomorphism is known

to annihilate all homogeneous components 𝐻𝑚 for sufficiently high 𝑚 (this is what

I mean by “up to topology”), then must there be an element 𝑣 of NSym2 such that

this endomorphism is the action of 𝑣 ?

If the answer is “No”, then does it change if we require the endomorphism of 𝐻

to be graded? If we require k to be a field of characteristic 0 ?

What if we restrict ourselves to commutative cocommutative connected graded

Hopf algebras? At least then, if k is a finite field F𝑞, there are more natural

endomorphisms of 𝐻, such as the Frobenius morphism 𝑥 ↦→ 𝑥𝑞 and its powers.

One can then ask for the graded endomorphisms of 𝐻, but actually it is also

interesting to see how the full k-algebra of natural endomorphisms looks like (how

do the endomorphisms coming from NSym2 interact with the Frobenii?). And what

about characteristic 0 here?

Question 3.7.3. What are the natural endomorphisms of connected graded Hopf

algebras, without any cocommutativity or commutativity assumption? I suspect

that they will form a connected graded Hopf algebra, with two multiplications (one

for composition and the other for convolution), but now with a basis indexed by

“mopiscotions” (i.e., pairs (𝛼, 𝜎) of a composition 𝛼 and a permutation 𝜎 ∈ Sℓ(𝛼)).

Is this a known combinatorial Hopf algebra?
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Question 3.7.4. Can we extend the map 𝛽𝐻 : 𝐻 → 𝐻 ⊗ QSymk to a map

𝐻 → 𝐻 ⊗ 𝑈 for some combinatorial Hopf algebra 𝑈 bigger than QSymk ? What

if we require some additional (say, dendriform?) structure on 𝐻 ? Can we achieve

𝑈 = NCQSymk or 𝑈 = DoublePosetsk (the combinatorial Hopf algebra of double

posets, which is defined for k = Z and denoted by ZD in [MalReu09], and can

be similarly defined over any k) ? (I am singling out these two Hopf algebras

because they have fairly nice internal comultiplications. Actually, the internal

comultiplication of NCQSymk is the key to Bidigare’s proof of Solomon’s Mackey

formula [Schock04, §2], and I feel it will tell us more if we listen to it.)

Aguiar suggests that the map 𝐻 → 𝐻⊗NCQSymk I am looking for is the dual

of his action of the Tits algebra on Hopf monoids [Aguiar13, Proposition 88].

Question 3.7.5. Do we gain anything from applying Corollary 3.6.2 to 𝐻 =

QSymk (thus getting a statement about Δ′
𝑃 ) ? Probably not much for Δ′

𝑃 that

the Marne-la-Vallée people haven’t already found using virtual alphabets (the dual

version is the statement that 𝑆 (𝑎 * 𝑏) = 𝑎 * 𝑆 (𝑏) for all 𝑎, 𝑏 ∈ NSymk, where * is

the internal product).

Question 3.7.6. From Theorem 3.5.7 (a) and Proposition 3.5.3, we can conclude

that Δ′
𝑃 is a

(︁
k,QSymk

)︁
-coalgebra homomorphism. If I am not mistaken, this

can be rewritten as the equality

(𝐴𝐵) *𝐺 =
∑︁
(𝐺)

(︀
𝐴 *𝐺(1)

)︀ (︀
𝐵 *𝐺(2)

)︀
(using Sweedler’s notation)

for any three elements 𝐴, 𝐵 and 𝐺 of NSym. This is the famous splitting formula.

Now, it is known from [DHNT08, §7] that the same splitting formula holds

when 𝐴 and 𝐵 are elements of FQSym (into which NSym is known to inject), as

long as 𝐺 is still an element of NSym (actually, it can be an element of the bigger

Patras-Reutenauer algebra, but let us settle for NSym so far). Can this be proven

in a similar vein? How much of the Marne-la-Vallée theory follows from Theorem

3.2.1?
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Chapter 4

A note on non-broken-circuit sets and

the chromatic polynomial

Abstract

We demonstrate several generalizations of a classical formula for the chromatic poly-
nomial of a graph – namely, of Whitney’s theorem. One generalization allows the
exclusion of only some broken circuits, whereas another weighs these broken circuits
with weight monomials instead of excluding them; yet another extends the theorem to
the chromatic symmetric functions, and yet another replaces the graph by a matroid.
Most of these generalizations can be combined (albeit not all of them: matroids do
not seem to have chromatic symmetric functions).

***

The purpose of this note is to demonstrate several generalizations of Whitney’s the-

orem [BlaSag86] – a classical formula for the chromatic polynomial of a graph. The

directions in which we generalize this formula are the following:

∙ Instead of summing over the sets which contain no broken circuits, we can sum

over the sets which are “K-free” (i.e., contain no element of K as a subset),

where K is some fixed set of broken circuits (in particular, K can be ∅, yielding

another well-known formula for the chromatic polynomial).

∙ Even more generally, instead of summing over K-free subsets, we can make a
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weighted sum over all subsets, where the weight depends on the broken circuits

contained in the subset.

∙ Analogous (and more general) results hold for chromatic symmetric functions.

∙ Analogous (and more general) results hold for matroids instead of graphs.

Note that, to my knowledge, the last two generalizations cannot be combined:

Unlike graphs, matroids do not seem to have a well-defined notion of a chromatic

symmetric function.

We shall explore these generalizations in the note below. We shall also use them to

prove an apparently new formula for the chromatic polynomial of a graph obtained

from a transitive digraph by forgetting the orientations of the edges (Proposition

4.4.2). This latter formula was suggested to me as a conjecture by Alexander Post-

nikov, during a discussion on hyperplane arrangements on a space with a bilinear

form; it is this formula which gave rise to this whole note. The subject of hyperplane

arrangements, however, will not be breached here.

Acknowledgments

I thank Alexander Postnikov and Richard Stanley for discussions on hyperplane ar-

rangements that led to the results in this note.

4.1 Definitions and a main result

4.1.1 Graphs and colorings

This note will be concerned with finite graphs. While some results of this note can

be generalized to matroids, we shall not discuss this generalization here. Let us start

with the definition of a graph that we shall be using:
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Definition 4.1.1. (a) If 𝑉 is any set, then
(︂
𝑉

2

)︂
will denote the set of all 2-element

subsets of 𝑉 . In other words, if 𝑉 is any set, then we set

(︂
𝑉

2

)︂
= {𝑆 ∈ 𝒫 (𝑉 ) | |𝑆| = 2}

= {{𝑠, 𝑡} | 𝑠 ∈ 𝑉, 𝑡 ∈ 𝑉, 𝑠 ̸= 𝑡}

(where 𝒫 (𝑉 ) denotes the powerset of 𝑉 ).

(b) A graph means a pair (𝑉,𝐸), where 𝑉 is a set, and where 𝐸 is a subset of(︂
𝑉

2

)︂
. A graph (𝑉,𝐸) is said to be finite if the set 𝑉 is finite. If 𝐺 = (𝑉,𝐸) is

a graph, then the elements of 𝑉 are called the vertices of the graph 𝐺, while the

elements of 𝐸 are called the edges of the graph 𝐺. If 𝑒 is an edge of a graph 𝐺,

then the two elements of 𝑒 are called the endpoints of the edge 𝑒. If 𝑒 = {𝑠, 𝑡} is

an edge of a graph 𝐺, then we say that the edge 𝑒 connects the vertices 𝑠 and 𝑡 of

𝐺.

Comparing our definition of a graph with some of the other definitions used in the

literature, we thus observe that our graphs are undirected (i.e., their edges are sets,

not pairs), loopless (i.e., the two endpoints of an edge must always be distinct), edge-

unlabelled (i.e., their edges are just 2-element sets of vertices, rather than objects

with “their own identity”), and do not have multiple edges (or, more precisely, there

is no notion of several edges connecting two vertices, since the edges form a set, nor

a multiset, and do not have labels).

Definition 4.1.2. Let 𝐺 = (𝑉,𝐸) be a graph. Let 𝑋 be a set.

(a) An 𝑋-coloring of 𝐺 is defined to mean a map 𝑉 → 𝑋.

(b) An 𝑋-coloring 𝑓 of 𝐺 is said to be proper if every edge {𝑠, 𝑡} ∈ 𝐸 satisfies

𝑓 (𝑠) ̸= 𝑓 (𝑡).
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4.1.2 Symmetric functions

We shall now briefly introduce the notion of symmetric functions. We shall not use any

nontrivial results about symmetric functions; we will merely need some notations.1

In the following, N means the set {0, 1, 2, . . .}. Also, N+ shall mean the set

{1, 2, 3, . . .}.

A partition will mean a sequence (𝜆1, 𝜆2, 𝜆3, . . .) ∈ N∞ of nonnegative integers

such that 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ · · · and such that all sufficiently high integers 𝑖 ≥ 1 satisfy

𝜆𝑖 = 0. If 𝜆 = (𝜆1, 𝜆2, 𝜆3, . . .) is a partition, and if a positive integer 𝑛 is such that

all integers 𝑖 ≥ 𝑛 satisfy 𝜆𝑖 = 0, then we shall identify the partition 𝜆 with the finite

sequence (𝜆1, 𝜆2, . . . , 𝜆𝑛−1). Thus, for example, the sequences (3, 1) and (3, 1, 0) and

the partition (3, 1, 0, 0, 0, . . .) are all identified. Every weakly decreasing finite list of

positive integers thus is identified with a unique partition.

Let k be a commutative ring with unity. We shall keep k fixed throughout the

paper. The reader will not be missing out on anything if she assumes that k = Z.

We consider the k-algebra k [[𝑥1, 𝑥2, 𝑥3, . . .]] of (commutative) power series in

countably many distinct indeterminates 𝑥1, 𝑥2, 𝑥3, . . . over k. It is a topological k-

algebra2. A power series 𝑃 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]] is said to be bounded-degree if there

exists an 𝑁 ∈ N such that every monomial of degree > 𝑁 appears with coefficient

0 in 𝑃 . A power series 𝑃 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]] is said to be symmetric if and only

if 𝑃 is invariant under any permutation of the indeterminates. We let Λ be the

subset of k [[𝑥1, 𝑥2, 𝑥3, . . .]] consisting of all symmetric bounded-degree power series

𝑃 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]]. This subset Λ is a k-subalgebra of k [[𝑥1, 𝑥2, 𝑥3, . . .]], and is

called the k-algebra of symmetric functions over k.

We shall now define the few families of symmetric functions that we will be con-

1For an introduction to symmetric functions, see any of [Stan99, Chapter 7], [Martin15, Chapter
9] and [GriRei15, Chapter 2] (and a variety of other texts).

2See [GriRei15, Section 2.6] or Section 1.2 of this thesis for the definition of its topology. This
topology makes sure that a sequence (𝑃𝑛)𝑛∈N of power series converges to some power series 𝑃 if
and only if, for every monomial m, all sufficiently high 𝑛 ∈ N satisfy

(the m-coefficient of 𝑃𝑛) = (the m-coefficient of 𝑃 )

(where the meaning of “sufficiently high” can depend on the m).
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cerned with in this note. The first are the power-sum symmetric functions :

Definition 4.1.3. Let 𝑛 be a positive integer. We define a power series 𝑝𝑛 ∈

k [[𝑥1, 𝑥2, 𝑥3, . . .]] by

𝑝𝑛 = 𝑥𝑛
1 + 𝑥𝑛

2 + 𝑥𝑛
3 + · · · =

∑︁
𝑗≥1

𝑥𝑛
𝑗 . (4.1)

This power series 𝑝𝑛 lies in Λ, and is called the 𝑛-th power-sum symmetric function.

We also set 𝑝0 = 1 ∈ Λ. Thus, 𝑝𝑛 is defined not only for all positive integers 𝑛,

but also for all 𝑛 ∈ N.

Definition 4.1.4. Let 𝜆 = (𝜆1, 𝜆2, 𝜆3, . . .) be a partition. We define a power series

𝑝𝜆 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]] by

𝑝𝜆 =
∏︁
𝑖≥1

𝑝𝜆𝑖
.

This is well-defined, because the infinite product
∏︀
𝑖≥1

𝑝𝜆𝑖
converges (indeed, all but

finitely many of its factors are 1 (because every sufficiently high integer 𝑖 satisfies

𝜆𝑖 = 0 and thus 𝑝𝜆𝑖
= 𝑝0 = 1)).

We notice that every partition 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑘) (written as a finite list of

nonnegative integers) satisfies

𝑝𝜆 = 𝑝𝜆1𝑝𝜆2 · · · 𝑝𝜆𝑘
. (4.2)

4.1.3 Chromatic symmetric functions

The next symmetric functions we introduce are the actual subject of this note; they

are the chromatic symmetric functions and originate in [Stanle95, Definition 2.1]:
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Definition 4.1.5. Let 𝐺 = (𝑉,𝐸) be a finite graph. For every N+-coloring 𝑓 : 𝑉 →

N+, we let x𝑓 denote the monomial
∏︀
𝑣∈𝑉

𝑥𝑓(𝑣) in the indeterminates 𝑥1, 𝑥2, 𝑥3, . . ..

We define a power series 𝑋𝐺 ∈ k [[𝑥1, 𝑥2, 𝑥3, . . .]] by

𝑋𝐺 =
∑︁

𝑓 :𝑉→N+ is a
proper N+-coloring of 𝐺

x𝑓 .

This power series 𝑋𝐺 is called the chromatic symmetric function of 𝐺.

We have 𝑋𝐺 ∈ Λ for every finite graph 𝐺 = (𝑉,𝐸); this will follow from Theorem

4.1.8 further below (but is also rather obvious).

We notice that 𝑋𝐺 is denoted by Ψ [𝐺] in [GriRei15, §7.3.3].

4.1.4 Connected components

We shall now briefly recall the notion of connected components of a graph.

Definition 4.1.6. Let 𝐺 = (𝑉,𝐸) be a finite graph. Let 𝑢 and 𝑣 be two elements

of 𝑉 (that is, two vertices of 𝐺). A walk from 𝑢 to 𝑣 in 𝐺 will mean a sequence

(𝑤0, 𝑤1, . . . , 𝑤𝑘) of elements of 𝑉 such that 𝑤0 = 𝑢 and 𝑤𝑘 = 𝑣 and

({𝑤𝑖, 𝑤𝑖+1} ∈ 𝐸 for every 𝑖 ∈ {0, 1, . . . , 𝑘 − 1}) .

We say that 𝑢 and 𝑣 are connected (in 𝐺) if there exists a walk from 𝑢 to 𝑣 in 𝐺.

Definition 4.1.7. Let 𝐺 = (𝑉,𝐸) be a graph.

(a) We define a binary relation ∼𝐺 (written infix) on the set 𝑉 as follows: Given

𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑉 , we set 𝑢 ∼𝐺 𝑣 if and only if 𝑢 and 𝑣 are connected (in 𝐺). It is

well-known that this relation ∼𝐺 is an equivalence relation. The ∼𝐺-equivalence

classes are called the connected components of 𝐺.

(b) Assume that the graph 𝐺 is finite. We let 𝜆 (𝐺) denote the list of the sizes

of all connected components of 𝐺, in weakly decreasing order. (Each connected
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component should contribute only one entry to the list.) We view 𝜆 (𝐺) as a

partition (since 𝜆 (𝐺) is a weakly decreasing finite list of positive integers).

Now, we can state a formula for chromatic symmetric functions:

Theorem 4.1.8. Let 𝐺 = (𝑉,𝐸) be a finite graph. Then,

𝑋𝐺 =
∑︁
𝐹⊆𝐸

(−1)|𝐹 | 𝑝𝜆(𝑉,𝐹 ).

(Here, of course, the pair (𝑉, 𝐹 ) is regarded as a graph, and the expression 𝜆 (𝑉, 𝐹 )

is understood according to Definition 4.1.7 (b).)

This theorem is not new; it appears, e.g., in [Stanle95, Theorem 2.5]. We shall

show a far-reaching generalization of it (Theorem 4.1.11) soon.

4.1.5 Circuits and broken circuits

Let us now define the notions of cycles and circuits of a graph:

Definition 4.1.9. Let 𝐺 = (𝑉,𝐸) be a graph. A cycle of 𝐺 denotes a list

(𝑣1, 𝑣2, . . . , 𝑣𝑚+1) of elements of 𝑉 with the following properties:

∙ We have 𝑚 > 1.

∙ We have 𝑣𝑚+1 = 𝑣1.

∙ The vertices 𝑣1, 𝑣2, . . . , 𝑣𝑚 are pairwise distinct.

∙ We have {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐸 for every 𝑖 ∈ {1, 2, . . . ,𝑚}.

If (𝑣1, 𝑣2, . . . , 𝑣𝑚+1) is a cycle of 𝐺, then the set

{{𝑣1, 𝑣2} , {𝑣2, 𝑣3} , . . . , {𝑣𝑚, 𝑣𝑚+1}} is called a circuit of 𝐺.
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Definition 4.1.10. Let 𝐺 = (𝑉,𝐸) be a graph. Let 𝑋 be a totally ordered set.

Let ℓ : 𝐸 → 𝑋 be a function. We shall refer to ℓ as the labeling function. For every

edge 𝑒 of 𝐺, we shall refer to ℓ (𝑒) as the label of 𝑒.

A broken circuit of 𝐺 means a subset of 𝐸 having the form 𝐶 ∖ {𝑒}, where 𝐶 is

a circuit of 𝐺, and where 𝑒 is the unique edge in 𝐶 having maximum label (among

the edges in 𝐶). Of course, the notion of a broken circuit of 𝐺 depends on the

function ℓ; however, we suppress the mention of ℓ in our notation, since we will not

consider situations where two different ℓ’s coexist.

Thus, if 𝐺 is a graph with a labeling function, then any circuit 𝐶 of 𝐺 gives rise to

a broken circuit provided that among the edges in 𝐶, only one attains the maximum

label. (If more than one of the edges of 𝐶 attains the maximum label, then 𝐶 does

not give rise to a broken circuit.) Notice that two different circuits may give rise to

one and the same broken circuit.

Theorem 4.1.11. Let 𝐺 = (𝑉,𝐸) be a finite graph. Let 𝑋 be a totally ordered

set. Let ℓ : 𝐸 → 𝑋 be a function. Let K be some set of broken circuits of 𝐺 (not

necessarily containing all of them). Let 𝑎𝐾 be an element of k for every 𝐾 ∈ K.

Then,

𝑋𝐺 =
∑︁
𝐹⊆𝐸

(−1)|𝐹 |

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐹

𝑎𝐾

⎞⎟⎟⎠ 𝑝𝜆(𝑉,𝐹 ).

(Here, of course, the pair (𝑉, 𝐹 ) is regarded as a graph, and the expression 𝜆 (𝑉, 𝐹 )

is understood according to Definition 4.1.7 (b).)

Before we come to the proof of this result, let us explore some of its particular

cases. First, a definition is in order:

Definition 4.1.12. Let 𝐸 be a set. Let K be a subset of the powerset of 𝐸 (that

is, a set of subsets of 𝐸). A subset 𝐹 of 𝐸 is said to be K-free if 𝐹 contains no

𝐾 ∈ K as a subset. (For instance, if K = ∅, then every subset 𝐹 of 𝐸 is K-free.)
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Corollary 4.1.13. Let 𝐺 = (𝑉,𝐸) be a finite graph. Let 𝑋 be a totally ordered

set. Let ℓ : 𝐸 → 𝑋 be a function. Let K be some set of broken circuits of 𝐺 (not

necessarily containing all of them). Then,

𝑋𝐺 =
∑︁
𝐹⊆𝐸;

𝐹 is K-free

(−1)|𝐹 | 𝑝𝜆(𝑉,𝐹 ).

Corollary 4.1.14. Let 𝐺 = (𝑉,𝐸) be a finite graph. Let 𝑋 be a totally ordered

set. Let ℓ : 𝐸 → 𝑋 be a function. Then,

𝑋𝐺 =
∑︁
𝐹⊆𝐸;

𝐹 contains no broken
circuit of 𝐺 as a subset

(−1)|𝐹 | 𝑝𝜆(𝑉,𝐹 ).

Corollary 4.1.14 appears in [Stanle95, Theorem 2.9], at least in the particular case

in which ℓ is supposed to be injective.

Let us now see how Theorem 4.1.8, Corollary 4.1.13 and Corollary 4.1.14 can be

derived from Theorem 4.1.11:

Proof of Corollary 4.1.13 using Theorem 4.1.11. For every subset 𝐹 of 𝐸, we have

∏︁
𝐾∈K;
𝐾⊆𝐹

0 =

⎧⎪⎨⎪⎩1, if 𝐹 is K-free;

0, if 𝐹 is not K-free
(4.3)

(because if 𝐹 is K-free, then the product
∏︀

𝐾∈K;
𝐾⊆𝐹

0 is empty and thus equals 1; otherwise,

the product
∏︀

𝐾∈K;
𝐾⊆𝐹

0 contains at least one factor and thus equals 0). Now, Theorem
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4.1.11 (applied to 0 instead of 𝑎𝐾) yields

𝑋𝐺 =
∑︁
𝐹⊆𝐸

(−1)|𝐹 |

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐹

0

⎞⎟⎟⎠
⏟  ⏞  

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if 𝐹 is K-free;

0, if 𝐹 is not K-free
(by (4.3))

𝑝𝜆(𝑉,𝐹 )

=
∑︁
𝐹⊆𝐸

(−1)|𝐹 |

⎧⎪⎨⎪⎩1, if 𝐹 is K-free;

0, if 𝐹 is not K-free
𝑝𝜆(𝑉,𝐹 ) =

∑︁
𝐹⊆𝐸;

𝐹 is K-free

(−1)|𝐹 | 𝑝𝜆(𝑉,𝐹 ).

This proves Corollary 4.1.13.

Proof of Corollary 4.1.14 using Corollary 4.1.13. Corollary 4.1.14 follows from Corol-

lary 4.1.13 when K is set to be the set of all broken circuits of 𝐺.

Proof of Theorem 4.1.8 using Theorem 4.1.11. Let 𝑋 be the totally ordered set {1},

and let ℓ : 𝐸 → 𝑋 be the only possible map. Let K be the empty set. Clearly, K is

a set of broken circuits of 𝐺. For every 𝐹 ⊆ 𝐸, the product
∏︀

𝐾∈K;
𝐾⊆𝐹

0 is empty (since 𝐾

is the empty set), and thus equals 1. Now, Theorem 4.1.11 (applied to 0 instead of

𝑎𝐾) yields

𝑋𝐺 =
∑︁
𝐹⊆𝐸

(−1)|𝐹 |

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐹

0

⎞⎟⎟⎠
⏟  ⏞  

=1

𝑝𝜆(𝑉,𝐹 ) =
∑︁
𝐹⊆𝐸

(−1)|𝐹 | 𝑝𝜆(𝑉,𝐹 ).

This proves Theorem 4.1.8.
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4.2 Proof of Theorem 4.1.11

We shall now prepare for the proof of Theorem 4.1.11 with some notations and some

lemmas. Our proof will imitate [BlaSag86, proof of Whitney’s theorem].

4.2.1 Eqs 𝑓 and basic lemmas

Definition 4.2.1. Let 𝑉 and 𝑋 be two sets. Let 𝑓 : 𝑉 → 𝑋 be a map. We let

Eqs 𝑓 denote the subset

{︀
{𝑠, 𝑡} | (𝑠, 𝑡) ∈ 𝑉 2, 𝑠 ̸= 𝑡 and 𝑓 (𝑠) = 𝑓 (𝑡)

}︀
of
(︂
𝑉

2

)︂
. (This is well-defined, because any two elements 𝑠 and 𝑡 of 𝑉 satisfying

𝑠 ̸= 𝑡 clearly satisfy {𝑠, 𝑡} ∈
(︂
𝑉

2

)︂
.)

We shall now state some first properties of this notion:

Lemma 4.2.2. Let 𝐺 = (𝑉,𝐸) be a graph. Let 𝑋 be a set. Let 𝑓 : 𝑉 → 𝑋 be a

map. Then, the 𝑋-coloring 𝑓 of 𝐺 is proper if and only if 𝐸 ∩ Eqs 𝑓 = ∅.

Proof of Lemma 4.2.2. The set 𝐸 ∩ Eqs 𝑓 is precisely the set of edges {𝑠, 𝑡} of 𝐺

satisfying 𝑓 (𝑠) = 𝑓 (𝑡); meanwhile, the 𝑋-coloring 𝑓 is called proper if and only if no

such edges exist. Thus, Lemma 4.2.2 becomes obvious.

Lemma 4.2.3. Let 𝐺 = (𝑉,𝐸) be a graph. Let 𝑋 be a set. Let 𝑓 : 𝑉 → 𝑋 be

a map. Let 𝐶 be a circuit of 𝐺. Let 𝑒 ∈ 𝐶 be such that 𝐶 ∖ {𝑒} ⊆ Eqs 𝑓 . Then,

𝑒 ∈ 𝐸 ∩ Eqs 𝑓 .

Proof of Lemma 4.2.3. The set 𝐶 is a circuit of 𝐺. Hence, we can write 𝐶 in the

form

𝐶 = {{𝑣1, 𝑣2} , {𝑣2, 𝑣3} , . . . , {𝑣𝑚, 𝑣𝑚+1}}

for some cycle (𝑣1, 𝑣2, . . . , 𝑣𝑚+1) of 𝐺. Consider this cycle (𝑣1, 𝑣2, . . . , 𝑣𝑚+1). According

to the definition of a “cycle”, the cycle (𝑣1, 𝑣2, . . . , 𝑣𝑚+1) is a list of elements of 𝑉 having

the following properties:
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∙ We have 𝑚 > 1.

∙ We have 𝑣𝑚+1 = 𝑣1.

∙ The vertices 𝑣1, 𝑣2, . . . , 𝑣𝑚 are pairwise distinct.

∙ We have {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐸 for every 𝑖 ∈ {1, 2, . . . ,𝑚}.

Recall that 𝑒 ∈ 𝐶. We can thus WLOG assume that 𝑒 = {𝑣𝑚, 𝑣𝑚+1} (since oth-

erwise, we can simply relabel the vertices along the cycle (𝑣1, 𝑣2, . . . , 𝑣𝑚+1)). Assume

this. Since {𝑣𝑚, 𝑣𝑚+1} = 𝑒, we have

𝐶 ∖ {𝑒} = {{𝑣1, 𝑣2} , {𝑣2, 𝑣3} , . . . , {𝑣𝑚−1, 𝑣𝑚}}

(since 𝑣1, 𝑣2, . . . , 𝑣𝑚 are distinct, and since 𝑚 > 1 and 𝑣𝑚+1 = 𝑣1). For every 𝑖 ∈

{1, 2, . . . ,𝑚− 1}, we have 𝑓 (𝑣𝑖) = 𝑓 (𝑣𝑖+1) (since

{𝑣𝑖, 𝑣𝑖+1} ⊆ {{𝑣1, 𝑣2} , {𝑣2, 𝑣3} , . . . , {𝑣𝑚−1, 𝑣𝑚}} = 𝐶 ∖ {𝑒} ⊆ Eqs 𝑓

). Hence, 𝑓 (𝑣1) = 𝑓 (𝑣2) = · · · = 𝑓 (𝑣𝑚), so that 𝑓 (𝑣𝑚) = 𝑓

⎛⎝ 𝑣1⏟ ⏞ 
=𝑣𝑚+1

⎞⎠ = 𝑓 (𝑣𝑚+1).

Thus, {𝑣𝑚, 𝑣𝑚+1} ∈ Eqs 𝑓 . Thus, 𝑒 = {𝑣𝑚, 𝑣𝑚+1} ∈ Eqs 𝑓 . Combined with 𝑒 ∈ 𝐸,

this yields 𝑒 ∈ 𝐸 ∩ Eqs 𝑓 . This proves Lemma 4.2.3.

Lemma 4.2.4. Let (𝑉,𝐵) be a finite graph. Then,

∑︁
𝑓 :𝑉→N+;
𝐵⊆Eqs 𝑓

x𝑓 = 𝑝𝜆(𝑉,𝐵)

(Here, x𝑓 is defined as in Definition 4.1.5, and the expression 𝜆 (𝑉,𝐵) is understood

according to Definition 4.1.7 (b).)

Proof of Lemma 4.2.4. Let (𝐶1, 𝐶2, . . . , 𝐶𝑘) be a list of all connected components

of (𝑉,𝐵), ordered such that |𝐶1| ≥ |𝐶2| ≥ · · · ≥ |𝐶𝑘|. 3 Then, 𝜆 (𝑉,𝐵) =

3Every connected component of (𝑉,𝐵) should appear exactly once in this list.
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(|𝐶1| , |𝐶2| , . . . , |𝐶𝑘|) (by the definition of 𝜆 (𝑉,𝐵)). Hence, (4.2) (applied to 𝜆 (𝑉,𝐵)

and |𝐶𝑖| instead of 𝜆 and 𝜆𝑖) shows that

𝑝𝜆(𝑉,𝐵) = 𝑝|𝐶1|𝑝|𝐶2| · · · 𝑝|𝐶𝑘| =
𝑘∏︁

𝑖=1

𝑝|𝐶𝑖|. (4.4)

But for every 𝑖 ∈ {1, 2, . . . , 𝑘}, we have 𝑝|𝐶𝑖| =
∑︀

𝑠∈N+

𝑥
|𝐶𝑖|
𝑠 (by the definition of 𝑝|𝐶𝑖|).

Hence, (4.4) becomes

𝑝𝜆(𝑉,𝐵) =
𝑘∏︁

𝑖=1

𝑝|𝐶𝑖|⏟ ⏞ 
=

∑︀
𝑠∈N+

𝑥
|𝐶𝑖|
𝑠

=
𝑘∏︁

𝑖=1

∑︁
𝑠∈N+

𝑥|𝐶𝑖|
𝑠 =

∑︁
(𝑠1,𝑠2,...,𝑠𝑘)∈(N+)𝑘

𝑘∏︁
𝑖=1

𝑥|𝐶𝑖|
𝑠𝑖

(4.5)

(by the product rule).

The list (𝐶1, 𝐶2, . . . , 𝐶𝑘) contains all connected components of (𝑉,𝐵), each exactly

once. Thus, 𝑉 =
⨆︀𝑘

𝑖=1𝐶𝑖.

We now define a map

Φ : (N+)
𝑘 → {𝑓 : 𝑉 → N+ | 𝐵 ⊆ Eqs 𝑓}

as follows: Given any (𝑠1, 𝑠2, . . . , 𝑠𝑘) ∈ (N+)
𝑘, we let Φ (𝑠1, 𝑠2, . . . , 𝑠𝑘) be the map

𝑉 → N+ which sends every 𝑣 ∈ 𝑉 to 𝑠𝑖, where 𝑖 ∈ {1, 2, . . . , 𝑘} is such that 𝑣 ∈ 𝐶𝑖.

(This is well-defined, because for every 𝑣 ∈ 𝑉 , there exists a unique 𝑖 ∈ {1, 2, . . . , 𝑘}

such that 𝑣 ∈ 𝐶𝑖; this follows from 𝑉 =
⨆︀𝑘

𝑖=1 𝐶𝑖.) This map Φ is well-defined,

because for every (𝑠1, 𝑠2, . . . , 𝑠𝑘) ∈ (N+)
𝑘, the map Φ (𝑠1, 𝑠2, . . . , 𝑠𝑘) actually belongs

to {𝑓 : 𝑉 → N+ | 𝐵 ⊆ Eqs 𝑓} 4.

A moment’s thought reveals that the map Φ is injective5. Let us now show that

the map Φ is surjective.

4Proof. We just need to check that 𝐵 ⊆ Eqs (Φ (𝑠1, 𝑠2, . . . , 𝑠𝑘)). But this is easy: For every
(𝑢, 𝑣) ∈ 𝐵, the vertices 𝑢 and 𝑣 of (𝑉,𝐵) lie in one and the same connected component 𝐶𝑖 of the
graph (𝑉,𝐵), and thus (by the definition of Φ (𝑠1, 𝑠2, . . . , 𝑠𝑘)) the map Φ (𝑠1, 𝑠2, . . . , 𝑠𝑘) sends both
of them to 𝑠𝑖; but this shows that (𝑢, 𝑣) ∈ Eqs (Φ (𝑠1, 𝑠2, . . . , 𝑠𝑘)).

5In fact, we can reconstruct (𝑠1, 𝑠2, . . . , 𝑠𝑘) ∈ (N+)
𝑘 from its image Φ (𝑠1, 𝑠2, . . . , 𝑠𝑘), because

each 𝑠𝑖 is the image of any element of 𝐶𝑖 under Φ (𝑠1, 𝑠2, . . . , 𝑠𝑘) (and this allows us to compute 𝑠𝑖,
since 𝐶𝑖 is nonempty).
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In order to show this, we must prove that every map 𝑓 : 𝑉 → N+ satisfying

𝐵 ⊆ Eqs 𝑓 has the form Φ (𝑠1, 𝑠2, . . . , 𝑠𝑘) for some (𝑠1, 𝑠2, . . . , 𝑠𝑘) ∈ (N+)
𝑘. So let us fix

a map 𝑓 : 𝑉 → N+ satisfying 𝐵 ⊆ Eqs 𝑓 . We must find some (𝑠1, 𝑠2, . . . , 𝑠𝑘) ∈ (N+)
𝑘

such that 𝑓 = Φ(𝑠1, 𝑠2, . . . , 𝑠𝑘).

We have 𝐵 ⊆ Eqs 𝑓 . Thus, for every {𝑠, 𝑡} ∈ 𝐵, we have {𝑠, 𝑡} ∈ 𝐵 ⊆ Eqs 𝑓 and

thus

𝑓 (𝑠) = 𝑓 (𝑡) . (4.6)

Now, if 𝑥 and 𝑦 are two elements of 𝑉 lying in the same connected component of

(𝑉,𝐵), then

𝑓 (𝑥) = 𝑓 (𝑦) (4.7)

6. In other words, the map 𝑓 is constant on each connected component of (𝑉,𝐵).

Thus, the map 𝑓 is constant on 𝐶𝑖 for each 𝑖 ∈ {1, 2, . . . , 𝑘} (since 𝐶𝑖 is a connected

component of (𝑉,𝐵)). Hence, for each 𝑖 ∈ {1, 2, . . . , 𝑘}, we can define a positive

integer 𝑠𝑖 ∈ N+ to be the image of any element of 𝐶𝑖 under 𝑓 (this is well-defined,

because 𝑓 is constant on 𝐶𝑖 and thus the choice of the element does not matter).

Define 𝑠𝑖 ∈ N+ for each 𝑖 ∈ {1, 2, . . . , 𝑘} this way. Thus, we have defined a 𝑘-tuple

(𝑠1, 𝑠2, . . . , 𝑠𝑘) ∈ (N+)
𝑘. Now, 𝑓 = Φ(𝑠1, 𝑠2, . . . , 𝑠𝑘) (this follows immediately by

recalling the definitions of Φ and 𝑠𝑖).

Let us now forget that we fixed 𝑓 . We thus have shown that for every map

𝑓 : 𝑉 → N+ satisfying 𝐵 ⊆ Eqs 𝑓 , there exists some (𝑠1, 𝑠2, . . . , 𝑠𝑘) ∈ (N+)
𝑘 such

that 𝑓 = Φ(𝑠1, 𝑠2, . . . , 𝑠𝑘). In other words, the map Φ is surjective. Since Φ is both

injective and surjective, we conclude that Φ is a bijection.

6Proof of (4.7): Let 𝑥 and 𝑦 be two elements of 𝑉 lying in the same connected component of
(𝑉,𝐵). Then, the vertices 𝑥 and 𝑦 are connected by a walk in the graph (𝑉,𝐵) (by the definition
of a “connected component”). Let (𝑣0, 𝑣1, . . . , 𝑣𝑗) be this walk (regarded as a sequence of vertices);
thus, 𝑣0 = 𝑥 and 𝑣𝑗 = 𝑦. For every 𝑖 ∈ {0, 1, . . . , 𝑗 − 1}, we have {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐵 (since (𝑣0, 𝑣1, . . . , 𝑣𝑗)
is a walk in the graph (𝑉,𝐵)) and thus 𝑓 (𝑣𝑖) = 𝑓 (𝑣𝑖+1) (by (4.6), applied to (𝑠, 𝑡) = (𝑣𝑖, 𝑣𝑖+1)). In

other words, 𝑓 (𝑣0) = 𝑓 (𝑣1) = · · · = 𝑓 (𝑣𝑗). Hence, 𝑓 (𝑣0) = 𝑓 (𝑣𝑗), so that 𝑓

⎛⎝ 𝑥⏟ ⏞ 
=𝑣0

⎞⎠ = 𝑓 (𝑣0) =

𝑓

⎛⎜⎝ 𝑣𝑗⏟ ⏞ 
=𝑦

⎞⎟⎠ = 𝑓 (𝑦), qed.
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Moreover, it is straightforward to see that every map (𝑠1, 𝑠2, . . . , 𝑠𝑘) ∈ (N+)
𝑘

satisfies

xΦ(𝑠1,𝑠2,...,𝑠𝑘) =
𝑘∏︁

𝑖=1

𝑥|𝐶𝑖|
𝑠𝑖

(4.8)

(by the definitions of xΦ(𝑠1,𝑠2,...,𝑠𝑘) and of Φ). Now,

∑︁
𝑓 :𝑉→N+;
𝐵⊆Eqs 𝑓

x𝑓 =
∑︁

(𝑠1,𝑠2,...,𝑠𝑘)∈(N+)𝑘

xΦ(𝑠1,𝑠2,...,𝑠𝑘)⏟  ⏞  
=

𝑘∏︀
𝑖=1

𝑥
|𝐶𝑖|
𝑠𝑖

(by (4.8))⎛⎜⎜⎜⎝
here, we have substituted Φ (𝑠1, 𝑠2, . . . , 𝑠𝑘) for 𝑓 in the sum,

since the map Φ : (N+)
𝑘 → {𝑓 : 𝑉 → N+ | 𝐵 ⊆ Eqs 𝑓}

is a bijection

⎞⎟⎟⎟⎠
=

∑︁
(𝑠1,𝑠2,...,𝑠𝑘)∈(N+)𝑘

𝑘∏︁
𝑖=1

𝑥|𝐶𝑖|
𝑠𝑖

= 𝑝𝜆(𝑉,𝐵) (by (4.5)) .

This proves Lemma 4.2.4.

Lemma 4.2.5. Let 𝐺 = (𝑉,𝐸) be a finite graph. Let 𝑋 be a totally ordered set.

Let ℓ : 𝐸 → 𝑋 be a function. Let 𝐾 be a broken circuit of 𝐺. Then, 𝐾 ̸= ∅.

Proof of Lemma 4.2.5. The set 𝐾 is a broken circuit of 𝐺, and thus is a circuit of 𝐺

with an edge removed (by the definition of a broken circuit). Thus, the set 𝐾 contains

at least 1 edge (since every circuit of 𝐺 contains at least 2 edges). This proves Lemma

4.2.5.

4.2.2 Alternating sums

We shall now come to less simple lemmas.

Definition 4.2.6. We shall use the so-called Iverson bracket notation: If 𝒮 is any

logical statement, then [𝒮] shall mean the integer

⎧⎪⎨⎪⎩1, if 𝒮 is true;

0, if 𝒮 is false
.
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The following lemma is probably the most crucial one in this note:

Lemma 4.2.7. Let 𝐺 = (𝑉,𝐸) be a finite graph. Let 𝑋 be a totally ordered set.

Let ℓ : 𝐸 → 𝑋 be a function. Let K be some set of broken circuits of 𝐺 (not

necessarily containing all of them). Let 𝑎𝐾 be an element of k for every 𝐾 ∈ K.

Let 𝑌 be any set. Let 𝑓 : 𝑉 → 𝑌 be any map. Then,

∑︁
𝐵⊆𝐸∩Eqs 𝑓

(−1)|𝐵|
∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾 = [𝐸 ∩ Eqs 𝑓 = ∅] .

Proof of Lemma 4.2.7. We WLOG assume that 𝐸 ∩ Eqs 𝑓 ̸= ∅ (since otherwise, the

claim is obvious7). Thus, [𝐸 ∩ Eqs 𝑓 = ∅] = 0.

Pick any 𝑑 ∈ 𝐸 ∩ Eqs 𝑓 with maximum ℓ (𝑑) (among all 𝑑 ∈ 𝐸 ∩ Eqs 𝑓). (This is

clearly possible, since 𝐸 ∩ Eqs 𝑓 ̸= ∅.) Define two subsets 𝒰 and 𝒱 of 𝒫 (𝐸 ∩ Eqs 𝑓)

as follows:

𝒰 = {𝐹 ∈ 𝒫 (𝐸 ∩ Eqs 𝑓) | 𝑑 /∈ 𝐹} ;

𝒱 = {𝐹 ∈ 𝒫 (𝐸 ∩ Eqs 𝑓) | 𝑑 ∈ 𝐹} .

Thus, we have 𝒫 (𝐸 ∩ Eqs 𝑓) = 𝒰 ∪ 𝒱 , and the sets 𝒰 and 𝒱 are disjoint. Now, we

define a map Φ : 𝒰 → 𝒱 by

(Φ (𝐵) = 𝐵 ∪ {𝑑} for every 𝐵 ∈ 𝒰) .

7In (slightly) more detail: If 𝐸 ∩ Eqs 𝑓 = ∅, then the sum
∑︀

𝐵⊆𝐸∩Eqs 𝑓

(−1)
|𝐵| ∏︀

𝐾∈K;
𝐾⊆𝐵

𝑎𝐾 has only

one addend (namely, the addend for 𝐵 = ∅), and thus simplifies to

(−1)
|∅|⏟  ⏞  

=(−1)0=1

∏︁
𝐾∈K;
𝐾⊆∅⏟ ⏞ 
=

∏︀
𝐾∈K;
𝐾=∅

𝑎𝐾 =
∏︁

𝐾∈K;
𝐾=∅

𝑎𝐾 = (empty product)
(︂

since no 𝐾 ∈ K satisfies 𝐾 = ∅
(by Lemma 4.2.5)

)︂

= 1 = [𝐸 ∩ Eqs 𝑓 = ∅] .
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This map Φ is well-defined (because for every 𝐵 ∈ 𝒰 , we have 𝐵 ∪ {𝑑} ∈ 𝒱 8) and

a bijection9. Moreover, every 𝐵 ∈ 𝒰 satisfies

(−1)|Φ(𝐵)| = − (−1)|𝐵| (4.9)

10.

Now, we claim that, for every 𝐵 ∈ 𝒰 and every 𝐾 ∈ K, we have the following

logical equivalence:

(𝐾 ⊆ 𝐵) ⇐⇒ (𝐾 ⊆ Φ (𝐵)) . (4.10)

Proof of (4.10): Let 𝐵 ∈ 𝒰 and 𝐾 ∈ K. We must prove the equivalence (4.10).

The definition of Φ yields Φ (𝐵) = 𝐵∪{𝑑} ⊇ 𝐵, so that 𝐵 ⊆ Φ (𝐵). Hence, if 𝐾 ⊆ 𝐵,

then 𝐾 ⊆ 𝐵 ⊆ Φ (𝐵). Therefore, the forward implication of the equivalence (4.10)

is proven. It thus remains to prove the backward implication of this equivalence. In

other words, it remains to prove that if 𝐾 ⊆ Φ (𝐵), then 𝐾 ⊆ 𝐵. So let us assume

that 𝐾 ⊆ Φ (𝐵).

We want to prove that 𝐾 ⊆ 𝐵. Assume the contrary. Thus, 𝐾 ̸⊆ 𝐵. We have

𝐾 ∈ K. Thus, 𝐾 is a broken circuit of 𝐺 (since K is a set of broken circuits of 𝐺).

In other words, 𝐾 is a subset of 𝐸 having the form 𝐶 ∖ {𝑒}, where 𝐶 is a circuit of

𝐺, and where 𝑒 is the unique edge in 𝐶 having maximum label (among the edges in

𝐶) (because this is how a broken circuit is defined). Consider these 𝐶 and 𝑒. Thus,

𝐾 = 𝐶 ∖ {𝑒}.

The element 𝑒 is the unique edge in 𝐶 having maximum label (among the edges

in 𝐶). Thus, if 𝑒′ is any edge in 𝐶 satisfying ℓ (𝑒′) ≥ ℓ (𝑒), then

𝑒′ = 𝑒. (4.11)

8This follows from the fact that 𝑑 ∈ 𝐸 ∩ Eqs 𝑓 .
9Its inverse is the map Ψ : 𝒱 → 𝒰 defined by (Ψ (𝐵) = 𝐵 ∖ {𝑑} for every 𝐵 ∈ 𝒱).

10Proof. Let 𝐵 ∈ 𝒰 . Thus, 𝑑 /∈ 𝐵 (by the definition of 𝒰). Now,

⃒⃒⃒⃒
⃒⃒⃒ Φ (𝐵)⏟  ⏞  
=𝐵∪{𝑑}

⃒⃒⃒⃒
⃒⃒⃒ = |𝐵 ∪ {𝑑}| = |𝐵| + 1

(since 𝑑 /∈ 𝐵), so that (−1)
|Φ(𝐵)|

= − (−1)
|𝐵|, qed.

213



But 𝐾⏟ ⏞ 
⊆Φ(𝐵)=𝐵∪{𝑑}

∖ {𝑑} ⊆ (𝐵 ∪ {𝑑}) ∖ {𝑑} ⊆ 𝐵.

If we had 𝑑 /∈ 𝐾, then we would have 𝐾∖{𝑑} = 𝐾 and therefore 𝐾 = 𝐾∖{𝑑} ⊆ 𝐵;

this would contradict 𝐾 ̸⊆ 𝐵. Hence, we cannot have 𝑑 /∈ 𝐾. We thus must have

𝑑 ∈ 𝐾. Hence, 𝑑 ∈ 𝐾 = 𝐶 ∖ {𝑒}. Hence, 𝑑 ∈ 𝐶 and 𝑑 ̸= 𝑒.

But 𝐶 ∖ {𝑒} = 𝐾 ⊆ Φ (𝐵) ⊆ 𝐸 ∩ Eqs 𝑓 (since Φ (𝐵) ∈ 𝒫 (𝐸 ∩ Eqs 𝑓)), so that

𝐶 ∖{𝑒} ⊆ 𝐸 ∩Eqs 𝑓 ⊆ Eqs 𝑓 . Hence, Lemma 4.2.3 (applied to 𝑌 instead of 𝑋) shows

that 𝑒 ∈ 𝐸 ∩ Eqs 𝑓 . Thus, ℓ (𝑑) ≥ ℓ (𝑒) (since 𝑑 was defined to be an element of

𝐸 ∩ Eqs 𝑓 with maximum ℓ (𝑑) among all 𝑑 ∈ 𝐸 ∩ Eqs 𝑓).

Also, 𝑑 ∈ 𝐶. Since ℓ (𝑑) ≥ ℓ (𝑒), we can therefore apply (4.11) to 𝑒′ = 𝑑. We thus

obtain 𝑑 = 𝑒. This contradicts 𝑑 ̸= 𝑒. This contradiction proves that our assumption

was wrong. Hence, 𝐾 ⊆ 𝐵 is proven. Thus, we have proven the backward implication

of the equivalence (4.10); this completes the proof of (4.10).

Now, recall that we have 𝒫 (𝐸 ∩ Eqs 𝑓) = 𝒰∪𝒱 , and the sets 𝒰 and 𝒱 are disjoint.

Hence, the sum
∑︀

𝐵⊆𝐸∩Eqs 𝑓
(−1)|𝐵| ∏︀

𝐾∈K;
𝐾⊆𝐵

𝑎𝐾 can be split into two sums as follows:

∑︁
𝐵⊆𝐸∩Eqs 𝑓

(−1)|𝐵|
∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

=
∑︁
𝐵∈𝒰

(−1)|𝐵|⏟  ⏞  
=−(−1)|Φ(𝐵)|

(by (4.9))

∏︁
𝐾∈K;
𝐾⊆𝐵⏟ ⏞ 

=
∏︀

𝐾∈K;
𝐾⊆Φ(𝐵)

(because of the equivalence (4.10))

𝑎𝐾 +
∑︁
𝐵∈𝒱

(−1)|𝐵|
∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⏟  ⏞  
=

∑︀
𝐵∈𝒰

(−1)|Φ(𝐵)| ∏︀
𝐾∈K;

𝐾⊆Φ(𝐵)

𝑎𝐾

(here, we have substituted Φ(𝐵) for 𝐵 in the sum,
since the map Φ:𝒰→𝒱 is a bijection)

=
∑︁
𝐵∈𝒰

(︁
− (−1)|Φ(𝐵)|

)︁ ∏︁
𝐾∈K;

𝐾⊆Φ(𝐵)

𝑎𝐾 +
∑︁
𝐵∈𝒰

(−1)|Φ(𝐵)|
∏︁
𝐾∈K;

𝐾⊆Φ(𝐵)

𝑎𝐾

= −
∑︁
𝐵∈𝒰

(−1)|Φ(𝐵)|
∏︁
𝐾∈K;

𝐾⊆Φ(𝐵)

𝑎𝐾 +
∑︁
𝐵∈𝒰

(−1)|Φ(𝐵)|
∏︁
𝐾∈K;

𝐾⊆Φ(𝐵)

𝑎𝐾

= 0 = [𝐸 ∩ Eqs 𝑓 = ∅] (since [𝐸 ∩ Eqs 𝑓 = ∅] = 0) . (4.12)

This proves Lemma 4.2.7.
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We now finally proceed to the proof of Theorem 4.1.11:

Proof of Theorem 4.1.11. The definition of 𝑋𝐺 shows that

𝑋𝐺 =
∑︁

𝑓 :𝑉→N+ is a
proper N+-coloring of 𝐺

x𝑓

=
∑︁

𝑓 :𝑉→N+

⎡⎢⎢⎢⎢⎢⎢⎣ 𝑓 is a proper N+-coloring of 𝐺⏟  ⏞  
⇐⇒ (the N+-coloring 𝑓 of 𝐺 is proper)

⇐⇒ (𝐸∩Eqs 𝑓=∅)
(by Lemma 4.2.2, applied to N+ instead of 𝑋)

⎤⎥⎥⎥⎥⎥⎥⎦x𝑓

=
∑︁

𝑓 :𝑉→N+

[𝐸 ∩ Eqs 𝑓 = ∅]⏟  ⏞  
=

∑︀
𝐵⊆𝐸∩Eqs 𝑓

(−1)|𝐵| ∏︀
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

(by Lemma 4.2.7, applied to 𝑌=N+)

x𝑓

=
∑︁

𝑓 :𝑉→N+

∑︁
𝐵⊆𝐸∩Eqs 𝑓⏟  ⏞  
=

∑︀
𝐵⊆𝐸;

𝐵⊆Eqs 𝑓

(−1)|𝐵|

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠x𝑓 =
∑︁

𝑓 :𝑉→N+

∑︁
𝐵⊆𝐸;

𝐵⊆Eqs 𝑓⏟  ⏞  
=

∑︀
𝐵⊆𝐸

∑︀
𝑓 :𝑉→N+;
𝐵⊆Eqs 𝑓

(−1)|𝐵|

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠x𝑓

=
∑︁
𝐵⊆𝐸

∑︁
𝑓 :𝑉→N+;
𝐵⊆Eqs 𝑓

(−1)|𝐵|

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠x𝑓 =
∑︁
𝐵⊆𝐸

(−1)|𝐵|

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠ ∑︁
𝑓 :𝑉→N+;
𝐵⊆Eqs 𝑓

x𝑓

⏟  ⏞  
=𝑝𝜆(𝑉,𝐵)

(by Lemma 4.2.4)

=
∑︁
𝐵⊆𝐸

(−1)|𝐵|

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠ 𝑝𝜆(𝑉,𝐵) =
∑︁
𝐹⊆𝐸

(−1)|𝐹 |

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐹

𝑎𝐾

⎞⎟⎟⎠ 𝑝𝜆(𝑉,𝐹 )

(here, we have renamed the summation index 𝐵 as 𝐹 ). This proves Theorem 4.1.11.

Thus, Theorem 4.1.11 is proven; as we know, this entails the correctness of The-

orem 4.1.8, Corollary 4.1.13 and Corollary 4.1.14.
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4.3 The chromatic polynomial

4.3.1 Definition

We have so far studied the chromatic symmetric function. We shall now apply the

above results to the chromatic polynomial. The definition of the chromatic polynomial

rests upon the following fact:

Theorem 4.3.1. Let 𝐺 = (𝑉,𝐸) be a finite graph. Then, there exists a unique

polynomial 𝑃 ∈ Z [𝑥] such that every 𝑞 ∈ N satisfies

𝑃 (𝑞) = (the number of all proper {1, 2, . . . , 𝑞} -colorings of 𝐺) .

Definition 4.3.2. Let 𝐺 = (𝑉,𝐸) be a finite graph. Theorem 4.3.1 shows

that there exists a polynomial 𝑃 ∈ Z [𝑥] such that every 𝑞 ∈ N satisfies

𝑃 (𝑞) = (the number of all proper {1, 2, . . . , 𝑞} -colorings of 𝐺). This polynomial

𝑃 is called the chromatic polynomial of 𝐺, and will be denoted by 𝜒𝐺.

We shall later prove Theorem 4.3.1 (as a consequence of something stronger that

we show). First, we shall state some formulas for the chromatic polynomial which are

analogues of results proven before for the chromatic symmetric function.

4.3.2 Formulas for 𝜒𝐺

Before we state several formulas for 𝜒𝐺, we need to introduce one more notation:

Definition 4.3.3. Let 𝐺 be a finite graph. We let conn𝐺 denote the number of

connected components of 𝐺.

The following results are analogues of Theorem 4.1.8, Theorem 4.1.11, Corollary

4.1.13 and Corollary 4.1.14, respectively:
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Theorem 4.3.4. Let 𝐺 = (𝑉,𝐸) be a finite graph. Then,

𝜒𝐺 =
∑︁
𝐹⊆𝐸

(−1)|𝐹 | 𝑥conn(𝑉,𝐹 ).

(Here, of course, the pair (𝑉, 𝐹 ) is regarded as a graph, and the expression

conn (𝑉, 𝐹 ) is understood according to Definition 4.3.3.)

Theorem 4.3.5. Let 𝐺 = (𝑉,𝐸) be a finite graph. Let 𝑋 be a totally ordered

set. Let ℓ : 𝐸 → 𝑋 be a function. Let K be some set of broken circuits of 𝐺 (not

necessarily containing all of them). Let 𝑎𝐾 be an element of k for every 𝐾 ∈ K.

Then,

𝜒𝐺 =
∑︁
𝐹⊆𝐸

(−1)|𝐹 |

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐹

𝑎𝐾

⎞⎟⎟⎠𝑥conn(𝑉,𝐹 ).

(Here, of course, the pair (𝑉, 𝐹 ) is regarded as a graph, and the expression

conn (𝑉, 𝐹 ) is understood according to Definition 4.3.3.)

Corollary 4.3.6. Let 𝐺 = (𝑉,𝐸) be a finite graph. Let 𝑋 be a totally ordered

set. Let ℓ : 𝐸 → 𝑋 be a function. Let K be some set of broken circuits of 𝐺 (not

necessarily containing all of them). Then,

𝜒𝐺 =
∑︁
𝐹⊆𝐸;

𝐹 is K-free

(−1)|𝐹 | 𝑥conn(𝑉,𝐹 ).

Corollary 4.3.7. Let 𝐺 = (𝑉,𝐸) be a finite graph. Let 𝑋 be a totally ordered

set. Let ℓ : 𝐸 → 𝑋 be a function. Then,

𝜒𝐺 =
∑︁
𝐹⊆𝐸;

𝐹 contains no broken
circuit of 𝐺 as a subset

(−1)|𝐹 | 𝑥conn(𝑉,𝐹 ).
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4.3.3 Proofs

There are two approaches to these results: One is to derive them similarly to how we

derived the analogous results about 𝑋𝐺; the other is to derive them from the latter.

We shall take the first approach, since it yields a proof of the classical Theorem 4.3.1

“for free”. We begin with an analogue of Lemma 4.2.4:

Lemma 4.3.8. Let (𝑉,𝐵) be a finite graph. Let 𝑞 ∈ N. Then,

∑︁
𝑓 :𝑉→{1,2,...,𝑞};

𝐵⊆Eqs 𝑓

1 = 𝑞conn(𝑉,𝐵).

(Here, the expression conn (𝑉,𝐵) is understood according to Definition 4.1.7 (b).)

One way to prove Lemma 4.3.8 is to evaluate the equality given by Lemma 4.2.4

at 𝑥𝑘 =

⎧⎪⎨⎪⎩1, if 𝑘 ≤ 𝑞

0, if 𝑘 > 𝑞

. Another proof can be obtained by mimicking our proof of

Lemma 4.2.4:

Proof of Lemma 4.3.8. Define (𝐶1, 𝐶2, . . . , 𝐶𝑘) as in the proof of Lemma 4.2.4. Thus,

conn (𝑉,𝐵) = 𝑘. Define a map Φ as in the proof of Lemma 4.2.4, but with N+

replaced by {1, 2, . . . , 𝑞}. Then,

Φ : {1, 2, . . . , 𝑞}𝑘 → {𝑓 : 𝑉 → {1, 2, . . . , 𝑞} | 𝐵 ⊆ Eqs 𝑓}
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is a bijection11. Now,

∑︁
𝑓 :𝑉→{1,2,...,𝑞};

𝐵⊆Eqs 𝑓

1

=
∑︁

(𝑠1,𝑠2,...,𝑠𝑘)∈{1,2,...,𝑞}𝑘
1

⎛⎜⎜⎜⎝
here, we have substituted Φ (𝑠1, 𝑠2, . . . , 𝑠𝑘) for 𝑓 in the sum,

since the map Φ : {1, 2, . . . , 𝑞}𝑘 → {𝑓 : 𝑉 → {1, 2, . . . , 𝑞} | 𝐵 ⊆ Eqs 𝑓}

is a bijection

⎞⎟⎟⎟⎠
=
(︁
the number of all (𝑠1, 𝑠2, . . . , 𝑠𝑘) ∈ {1, 2, . . . , 𝑞}𝑘

)︁
= 𝑞𝑘 = 𝑞conn(𝑉,𝐵) (since 𝑘 = conn (𝑉,𝐵)) .

This proves Lemma 4.3.8.

We shall now show a weaker version of Theorem 4.3.5 (as a stepping stone to the

actual theorem):

Lemma 4.3.9. Let 𝐺 = (𝑉,𝐸) be a finite graph. Let 𝑋 be a totally ordered set.

Let ℓ : 𝐸 → 𝑋 be a function. Let K be some set of broken circuits of 𝐺 (not

necessarily containing all of them). Let 𝑎𝐾 be an element of k for every 𝐾 ∈ K.

Let 𝑞 ∈ N. Then,

(the number of all proper {1, 2, . . . , 𝑞} -colorings of 𝐺)

=
∑︁
𝐹⊆𝐸

(−1)|𝐹 |

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐹

𝑎𝐾

⎞⎟⎟⎠ 𝑞conn(𝑉,𝐹 ).

(Here, of course, the pair (𝑉, 𝐹 ) is regarded as a graph, and the expression

conn (𝑉, 𝐹 ) is understood according to Definition 4.3.3.)

11This can be shown in the same way as for the map Φ in the proof of Lemma 4.2.4; we just have
to replace every N+ by {1, 2, . . . , 𝑞}.
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Proof of Lemma 4.3.9. We have12

(the number of all proper {1, 2, . . . , 𝑞} -colorings of 𝐺)

=
∑︁

𝑓 :𝑉→{1,2,...,𝑞}

⎡⎢⎢⎢⎢⎢⎢⎣𝑓 is a proper {1, 2, . . . , 𝑞} -coloring of 𝐺⏟  ⏞  
⇐⇒ (the {1,2,...,𝑞}-coloring 𝑓 of 𝐺 is proper)

⇐⇒ (𝐸∩Eqs 𝑓=∅)
(by Lemma 4.2.2, applied to {1,2,...,𝑞} instead of 𝑋)

⎤⎥⎥⎥⎥⎥⎥⎦
=

∑︁
𝑓 :𝑉→{1,2,...,𝑞}

[𝐸 ∩ Eqs 𝑓 = ∅]⏟  ⏞  
=

∑︀
𝐵⊆𝐸∩Eqs 𝑓

(−1)|𝐵| ∏︀
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

(by Lemma 4.2.7, applied to 𝑌=N+)

=
∑︁

𝑓 :𝑉→{1,2,...,𝑞}

∑︁
𝐵⊆𝐸∩Eqs 𝑓⏟  ⏞  
=

∑︀
𝐵⊆𝐸;

𝐵⊆Eqs 𝑓

(−1)|𝐵|

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠ =
∑︁

𝑓 :𝑉→{1,2,...,𝑞}

∑︁
𝐵⊆𝐸;

𝐵⊆Eqs 𝑓⏟  ⏞  
=

∑︀
𝐵⊆𝐸

∑︀
𝑓 :𝑉→N+;
𝐵⊆Eqs 𝑓

(−1)|𝐵|

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠

=
∑︁
𝐵⊆𝐸

∑︁
𝑓 :𝑉→{1,2,...,𝑞};

𝐵⊆Eqs 𝑓

(−1)|𝐵|

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠ =
∑︁
𝐵⊆𝐸

(−1)|𝐵|

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠ ∑︁
𝑓 :𝑉→{1,2,...,𝑞};

𝐵⊆Eqs 𝑓

1

⏟  ⏞  
=𝑞conn(𝑉,𝐵)

(by Lemma 4.3.8)

=
∑︁
𝐵⊆𝐸

(−1)|𝐵|

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠ 𝑞conn(𝑉,𝐵) =
∑︁
𝐹⊆𝐸

(−1)|𝐹 |

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐹

𝑎𝐾

⎞⎟⎟⎠ 𝑞conn(𝑉,𝐹 )

(here, we have renamed the summation index 𝐵 as 𝐹 ). This proves Theorem 4.1.11.

From Lemma 4.3.9, we obtain the following consequence:

12We are again using the Iverson bracket notation, as defined in Definition 4.2.6.

220



Lemma 4.3.10. Let 𝐺 = (𝑉,𝐸) be a finite graph. Let 𝑞 ∈ N. Then,

(the number of all proper {1, 2, . . . , 𝑞} -colorings of 𝐺)

=
∑︁
𝐹⊆𝐸

(−1)|𝐹 | 𝑞conn(𝑉,𝐹 ).

(Here, of course, the pair (𝑉, 𝐹 ) is regarded as a graph, and the expression

conn (𝑉, 𝐹 ) is understood according to Definition 4.3.3.)

Proof of Lemma 4.3.10. This is derived from Lemma 4.3.9 in the same way as The-

orem 4.1.8 was derived from Theorem 4.3.5.

Next, we recall a classical fact about a polynomials over fields: Namely, if a poly-

nomial (in one variable) over a field has infinitely many roots, then this polynomial

is 0. Let us state this more formally:

Proposition 4.3.11. Let 𝐾 be a field. Let 𝑃 ∈ 𝐾 [𝑥] be a polynomial over 𝐾.

Assume that there are infinitely many 𝜆 ∈ 𝐾 satisfying 𝑃 (𝜆) = 0. Then, 𝑃 = 0.

We shall use the following consequence of this proposition:

Corollary 4.3.12. Let 𝑅 be an integral domain. Assume that the canonical ring

homomorphism from the ring Z to the ring 𝑅 is injective. Let 𝑃 ∈ 𝑅 [𝑥] be a

polynomial over 𝑅. Assume that 𝑃 (𝑞 · 1𝑅) = 0 for every 𝑞 ∈ N (where 1𝑅 denotes

the unity of 𝑅). Then, 𝑃 = 0.

Proof of Corollary 4.3.12. Let 𝐾 denote the fraction field of the integral domain 𝑅.

We regard 𝑅 and 𝑅 [𝑥] as subrings of 𝐾 and 𝐾 [𝑥], respectively. By assumption, we

have 𝑃 (𝑞 · 1𝑅) = 0 for every 𝑞 ∈ N. But the elements 𝑞 · 1𝑅 of 𝑅 for 𝑞 ∈ N are

pairwise distinct (since the canonical ring homomorphism from the ring Z to the ring

𝑅 is injective). Hence, there are infinitely many 𝜆 ∈ 𝐾 satisfying 𝑃 (𝜆) = 0 (namely,

𝜆 = 𝑞 · 1𝑅 for all 𝑞 ∈ N). Thus, Proposition 4.3.11 shows that 𝑃 = 0. This proves

Corollary 4.3.12.

We can now prove the classical Theorem 4.3.1:

221



Proof of Theorem 4.3.1. We need to show that there exists a unique polynomial 𝑃 ∈

Z [𝑥] such that every 𝑞 ∈ N satisfies

𝑃 (𝑞) = (the number of all proper {1, 2, . . . , 𝑞} -colorings of 𝐺) .

To see that such a polynomial exists, we notice that 𝑃 =
∑︀
𝐹⊆𝐸

(−1)|𝐹 | 𝑥conn(𝑉,𝐹 ) is

such a polynomial (by Lemma 4.3.10). It remains to prove that such a polynomial is

unique. This follows from the fact that if two polynomials 𝑃1 ∈ Z [𝑥] and 𝑃2 ∈ Z [𝑥]

satisfy

𝑃1 (𝑞) = 𝑃2 (𝑞) for all 𝑞 ∈ N,

then 𝑃1 = 𝑃2
13. Theorem 4.3.1 is therefore proven.

Next, it is the turn of Theorem 4.3.5:

Proof of Theorem 4.3.5. Let 𝑅 be the polynomial ring Z [𝑦𝐾 | 𝐾 ∈ K], where 𝑦𝐾 is

a new indeterminate for each 𝐾 ∈ K.

The claim of Theorem 4.3.5 is a polynomial identity in the elements 𝑎𝐾 of k.

Hence, we can WLOG assume that k = 𝑅 and 𝑎𝐾 = 𝑦𝐾 for each 𝐾 ∈ K. Assume

this. Thus, k is an integral domain, and the canonical ring homomorphism from the

ring Z to the ring k is injective.

For every 𝑞 ∈ N, we have

𝜒𝐺 (𝑞) = (the number of all proper {1, 2, . . . , 𝑞} -colorings of 𝐺)

(by the definition of the chromatic polynomial 𝜒𝐺)

=
∑︁
𝐹⊆𝐸

(−1)|𝐹 |

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐹

𝑎𝐾

⎞⎟⎟⎠ 𝑞conn(𝑉,𝐹 ) (4.13)

13This fact follows from Corollary 4.3.12 (applied to 𝑅 = Z and 𝑃 = 𝑃1 − 𝑃2).
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(by Lemma 4.3.9). Define a polynomial 𝑃 ∈ k [𝑥] by

𝑃 = 𝜒𝐺 −
∑︁
𝐹⊆𝐸

(−1)|𝐹 |

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐹

𝑎𝐾

⎞⎟⎟⎠𝑥conn(𝑉,𝐹 ). (4.14)

Then, for every 𝑞 ∈ N, we have

𝑃

⎛⎝𝑞 · 1k⏟  ⏞  
=𝑞

⎞⎠ = 𝑃 (𝑞) = 𝜒𝐺 (𝑞)−
∑︁
𝐹⊆𝐸

(−1)|𝐹 |

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐹

𝑎𝐾

⎞⎟⎟⎠ 𝑞conn(𝑉,𝐹 ) (by (4.14))

= 0 (by (4.13)) .

Thus, Corollary 4.3.12 (applied to 𝑅 = k) shows that 𝑃 = 0. In light of (4.14), this

rewrites as follows:

𝜒𝐺 =
∑︁
𝐹⊆𝐸

(−1)|𝐹 |

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐹

𝑎𝐾

⎞⎟⎟⎠𝑥conn(𝑉,𝐹 ).

This proves Theorem 4.3.5.

Now that Theorem 4.3.5 is proven, we could derive Theorem 4.3.4, Corollary

4.3.6 and Corollary 4.3.7 from it in the same way as we have derived Theorem 4.1.8,

Corollary 4.1.13 and Corollary 4.1.14 from Theorem 4.1.11. We leave the details to

the reader.

4.3.4 Special case: Whitney’s Broken-Circuit Theorem

Corollary 4.3.7 is commonly stated in the following simplified (if less general) form:
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Corollary 4.3.13. Let 𝐺 = (𝑉,𝐸) be a finite graph. Let 𝑋 be a totally ordered

set. Let ℓ : 𝐸 → 𝑋 be an injective function. Then,

𝜒𝐺 =
∑︁
𝐹⊆𝐸;

𝐹 contains no broken
circuit of 𝐺 as a subset

(−1)|𝐹 | 𝑥|𝑉 |−|𝐹 |.

Corollary 4.3.13 is known as Whitney’s Broken-Circuit theorem (see, e.g.,

[BlaSag86]).

Notice that ℓ is required to be injective in Corollary 4.3.13; the purpose of this

requirement is to ensure that every circuit of 𝐺 has a unique edge 𝑒 with maximum

ℓ (𝑒), and thus induces a broken circuit of 𝐺. The proof of Corollary 4.3.13 relies on

the following standard result:

Lemma 4.3.14. Let (𝑉, 𝐹 ) be a finite graph. Assume that (𝑉, 𝐹 ) has no circuits.

Then, conn (𝑉, 𝐹 ) = |𝑉 | − |𝐹 |.

(A graph which has no circuits is commonly known as a forest.)

Lemma 4.3.14 is both extremely elementary and well-known; for example, it ap-

pears in [Bona11, Proposition 10.6] and in [Bollob79, §I.2, Corollary 6]. Let us now

see how it entails Corollary 4.3.13:

Proof of Corollary 4.3.13. Corollary 4.3.13 follows from Corollary 4.3.7. Indeed, the

injectivity of ℓ shows that every circuit of 𝐺 has a unique edge 𝑒 with maximum ℓ (𝑒),

and thus contains a broken circuit of 𝐺. Therefore, if a subset 𝐹 of 𝐸 contains no

broken circuit of 𝐺 as a subset, then 𝐹 contains no circuit of 𝐺 either, and therefore

the graph (𝑉, 𝐹 ) contains no circuits; but this entails that conn (𝑉, 𝐹 ) = |𝑉 | − |𝐹 |

(by Lemma 4.3.14). Hence, Corollary 4.3.7 immediately yields Corollary 4.3.13.

4.4 Application to transitive directed graphs

We shall now see an application of Corollary 4.3.6 to graphs which are obtained

from certain directed graphs by “forgetting the directions of the edges”. Let us first
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introduce the notations involved:

Definition 4.4.1. (a) A digraph means a pair (𝑉,𝐴), where 𝑉 is a set, and where

𝐴 is a subset of 𝑉 2. Digraphs are also called directed graphs. A digraph (𝑉,𝐴) is

said to be finite if the set 𝑉 is finite. If 𝐷 = (𝑉,𝐴) is a digraph, then the elements

of 𝑉 are called the vertices of the digraph 𝐷, while the elements of 𝐴 are called the

arcs (or the directed edges) of the digraph 𝐷. If 𝑎 = (𝑣, 𝑤) is an arc of a digraph

𝐷, then 𝑣 is called the source of 𝑎, whereas 𝑤 is called the target of 𝑎.

(b) A digraph (𝑉,𝐴) is said to be loopless if every 𝑣 ∈ 𝑉 satisfies (𝑣, 𝑣) /∈ 𝐴.

(In other words, a digraph is loopless if and only if it has no arc whose source and

target are identical.)

(c) A digraph (𝑉,𝐴) is said to be transitive if it has the following property:

For any 𝑢 ∈ 𝑉 , 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑉 satisfying (𝑢, 𝑣) ∈ 𝐴 and (𝑣, 𝑤) ∈ 𝐴, we have

(𝑢,𝑤) ∈ 𝐴.

(d) A digraph (𝑉,𝐴) is said to be 2-path-free if there exist no three elements

𝑢, 𝑣 and 𝑤 of 𝑉 satisfying (𝑢, 𝑣) ∈ 𝐴 and (𝑣, 𝑤) ∈ 𝐴.

(e) Let 𝐷 = (𝑉,𝐴) be a loopless digraph. Define a map set : 𝐴 →
(︂
𝑉

2

)︂
by

setting

(set (𝑣, 𝑤) = {𝑣, 𝑤} for every (𝑣, 𝑤) ∈ 𝐴) .

(It is easy to see that set is well-defined, because (𝑉,𝐴) is loopless.) The graph

(𝑉, set𝐴) will be denoted by 𝐷.

We can now state our application of Corollary 4.3.6, answering a question sug-

gested by Alexander Postnikov:

Proposition 4.4.2. Let 𝐷 = (𝑉,𝐴) be a finite transitive loopless digraph. Then,

𝜒𝐷 =
∑︁
𝐹⊆𝐴;

the digraph (𝑉,𝐹 ) is 2-path-free

(−1)|𝐹 | 𝑥conn(𝑉,set𝐹 ).

Proof of Proposition 4.4.2. Let 𝐸 = set𝐴. Then, the definition of 𝐷 yields 𝐷 =
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(︃
𝑉, set𝐴⏟  ⏞  

=𝐸

)︃
= (𝑉,𝐸).

The map set : 𝐴 →
(︂
𝑉

2

)︂
(which sends every arc (𝑣, 𝑤) ∈ 𝐴 to {𝑣, 𝑤} ∈

(︂
𝑉

2

)︂
)

restricts to a surjection 𝐴 → 𝐸 (since 𝐸 = set𝐴). Let us denote this surjection by 𝜋.

Thus, 𝜋 is a map from 𝐴 to 𝐸 sending each arc (𝑣, 𝑤) ∈ 𝐴 to {𝑣, 𝑤} ∈ 𝐸. We shall

soon see that 𝜋 is a bijection.

We define a partial order on the set 𝑉 as follows: For 𝑖 ∈ 𝑉 and 𝑗 ∈ 𝑉 , we set

𝑖 < 𝑗 if and only if (𝑖, 𝑗) ∈ 𝐴 (that is, if and only if there is an arc from 𝑖 to 𝑗 in 𝐷).

This is a well-defined partial order14. Thus, 𝑉 becomes a poset. For every 𝑖 ∈ 𝑉 and

𝑗 ∈ 𝑉 satisfying 𝑖 ≤ 𝑗, we let [𝑖, 𝑗] denote the interval {𝑘 ∈ 𝑉 | 𝑖 ≤ 𝑘 ≤ 𝑗} of the

poset 𝑉 .

There exist no 𝑖, 𝑗 ∈ 𝑉 such that both (𝑖, 𝑗) and (𝑗, 𝑖) belong to 𝐴 (because if

such 𝑖 and 𝑗 would exist, then they would satisfy 𝑖 < 𝑗 and 𝑗 < 𝑖, but this would

contradict the fact that 𝑉 is a poset). Hence, the projection 𝜋 : 𝐴 → 𝐸 is injective,

and thus bijective (since we already know that 𝜋 is surjective). Hence, its inverse

map 𝜋−1 : 𝐸 → 𝐴 is well-defined. For every subset 𝐹 of 𝐸, we have

𝐹 = 𝜋
(︀
𝜋−1 (𝐹 )

)︀
(since 𝜋 is bijective)

= set
(︀
𝜋−1 (𝐹 )

)︀
(4.15)

(since 𝜋 is a restriction of the map set).

For any (𝑢, 𝑣) ∈ 𝐴 and any subset 𝐹 of 𝐸, we have the following logical equiva-

lence:

({𝑢, 𝑣} ∈ 𝐹 ) ⇐⇒
(︀
(𝑢, 𝑣) ∈ 𝜋−1 (𝐹 )

)︀
(4.16)

15.

14Indeed, the relation < that we have just defined is transitive (since the digraph (𝑉,𝐴) is tran-
sitive) and antisymmetric (since the digraph (𝑉,𝐴) is loopless).

15Proof of (4.16): Let (𝑢, 𝑣) ∈ 𝐴, and let 𝐹 be a subset of 𝐸. We need to prove the equivalence
(4.16).

From (𝑢, 𝑣) ∈ 𝐴, we see that 𝜋 (𝑢, 𝑣) is well-defined. The definition of 𝜋 shows that 𝜋 (𝑢, 𝑣) =
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Define a function ℓ′ : 𝐴 → N by

ℓ′ (𝑖, 𝑗) = |[𝑖, 𝑗]| for all (𝑖, 𝑗) ∈ 𝐴.

Define a function ℓ : 𝐸 → N by ℓ = ℓ′ ∘ 𝜋−1. Thus, ℓ ∘ 𝜋 = ℓ′. Therefore,

ℓ

⎛⎜⎝{𝑖, 𝑗}⏟  ⏞  
=𝜋(𝑖,𝑗)

⎞⎟⎠ = (ℓ ∘ 𝜋)⏟  ⏞  
=ℓ′

(𝑖, 𝑗) = ℓ′ (𝑖, 𝑗) = |[𝑖, 𝑗]| (4.17)

for all (𝑖, 𝑗) ∈ 𝐴.

Let K be the set

{{{𝑖, 𝑘} , {𝑘, 𝑗}} | (𝑖, 𝑘) ∈ 𝐴 and (𝑘, 𝑗) ∈ 𝐴} .

Each 𝐾 ∈ K is a broken circuit of 𝐷 16. Thus, K is a set of broken circuits of 𝐷.

{𝑢, 𝑣}. Hence, we have the following chain of equivalences:⎛⎜⎝ {𝑢, 𝑣}⏟  ⏞  
=𝜋(𝑢,𝑣)

∈ 𝐹

⎞⎟⎠ ⇐⇒ (𝜋 (𝑢, 𝑣) ∈ 𝐹 ) ⇐⇒
(︀
(𝑢, 𝑣) ∈ 𝜋−1 (𝐹 )

)︀
.

This proves (4.16).
16Proof. Let 𝐾 ∈ K. Then, 𝐾 = {{𝑖, 𝑘} , {𝑘, 𝑗}} for some (𝑖, 𝑘) ∈ 𝐴 and (𝑘, 𝑗) ∈ 𝐴 (by the

definition of K). Consider these (𝑖, 𝑘) and (𝑘, 𝑗). Since (𝑉,𝐴) is transitive, we have (𝑖, 𝑗) ∈ 𝐴. Thus,
{𝑖, 𝑘}, {𝑘, 𝑗} and {𝑖, 𝑗} are edges of 𝐷. These edges form a circuit of 𝐷. In particular, 𝑖, 𝑗 and 𝑘
are pairwise distinct.

Applications of (4.17) yield ℓ ({𝑖, 𝑗}) = |[𝑖, 𝑗]|, ℓ ({𝑖, 𝑘}) = |[𝑖, 𝑘]| and ℓ ({𝑘, 𝑗}) = |[𝑘, 𝑗]|.
But we have 𝑖 < 𝑘 (since (𝑖, 𝑘) ∈ 𝐴) and 𝑘 < 𝑗 (since (𝑘, 𝑗) ∈ 𝐴). Hence, [𝑖, 𝑘] is a proper subset of

[𝑖, 𝑗]. (It is proper because it does not contain 𝑗, whereas [𝑖, 𝑗] does.) Hence, |[𝑖, 𝑘]| < |[𝑖, 𝑗]|. Thus,
ℓ ({𝑖, 𝑗}) = |[𝑖, 𝑗]| > |[𝑖, 𝑘]| = ℓ ({𝑖, 𝑘}). Similarly, ℓ ({𝑖, 𝑗}) > ℓ ({𝑘, 𝑗}). The last two inequalities
show that {𝑖, 𝑗} is the unique edge of the circuit {{𝑖, 𝑘} , {𝑘, 𝑗} , {𝑖, 𝑗}} having maximum label. Hence,
{{𝑖, 𝑘} , {𝑘, 𝑗} , {𝑖, 𝑗}} ∖ {{𝑖, 𝑗}} is a broken circuit of 𝐷. Since

{{𝑖, 𝑘} , {𝑘, 𝑗} , {𝑖, 𝑗}} ∖ {{𝑖, 𝑗}} = {{𝑖, 𝑘} , {𝑘, 𝑗}} (since 𝑖, 𝑗 and 𝑘 are pairwise distinct)
= 𝐾,

this shows that 𝐾 is a broken circuit of 𝐷, qed.
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A subset 𝐹 of 𝐸 is K-free if and only if the digraph (𝑉, 𝜋−1 (𝐹 )) is 2-path-free17.

Now, Corollary 4.3.6 (applied to 𝑋 = N and 𝐺 = 𝐷) shows that

𝜒𝐷 =
∑︁
𝐹⊆𝐸;

𝐹 is K-free⏟  ⏞  
=

∑︀
𝐹⊆𝐸;

the digraph (𝑉,𝜋−1(𝐹 )) is 2-path-free
(since we have just shown that

a subset 𝐹 of 𝐸 is K-free if and only if
the digraph (𝑉,𝜋−1(𝐹 )) is 2-path-free)

(−1)|𝐹 |⏟  ⏞  
=(−1)|𝜋−1(𝐹 )|

(since 𝜋 is bijective)

𝑥conn(𝑉,𝐹 )⏟  ⏞  
=𝑥

conn(𝑉,set(𝜋−1(𝐹 )))
(by (4.15))

=
∑︁
𝐹⊆𝐸;

the digraph (𝑉,𝜋−1(𝐹 )) is 2-path-free

(−1)|𝜋
−1(𝐹 )| 𝑥conn(𝑉,set(𝜋−1(𝐹 )))

=
∑︁
𝐵⊆𝐴;

the digraph (𝑉,𝐵) is 2-path-free

(−1)|𝐵| 𝑥conn(𝑉,set𝐵)

⎛⎜⎜⎜⎜⎜⎜⎝
here, we have substituted 𝐵 for 𝜋−1 (𝐹 ) in the sum,

since the map 𝜋 : 𝐴 → 𝐸 is bijective and thus induces

a bijection from the subsets of 𝐸 to the subsets of 𝐴

sending each 𝐹 ⊆ 𝐸 to 𝜋−1 (𝐹 )

⎞⎟⎟⎟⎟⎟⎟⎠
=

∑︁
𝐹⊆𝐴;

the digraph (𝑉,𝐹 ) is 2-path-free

(−1)|𝐹 | 𝑥conn(𝑉,set𝐹 )

17Proof. Let 𝐹 be a subset of 𝐸. Then, we have the following equivalence of statements:

(𝐹 is K-free)
⇐⇒ ({{𝑖, 𝑘} , {𝑘, 𝑗}} ̸⊆ 𝐹 whenever (𝑖, 𝑘) ∈ 𝐴 and (𝑘, 𝑗) ∈ 𝐴)

(by the definition of K)
⇐⇒ (no (𝑖, 𝑘) ∈ 𝐴 and (𝑘, 𝑗) ∈ 𝐴 satisfy {{𝑖, 𝑘} , {𝑘, 𝑗}} ⊆ 𝐹 )

⇐⇒ (no (𝑖, 𝑘) ∈ 𝐴 and (𝑘, 𝑗) ∈ 𝐴 satisfy {𝑖, 𝑘} ∈ 𝐹 and {𝑘, 𝑗} ∈ 𝐹 )

⇐⇒
(︀
no (𝑖, 𝑘) ∈ 𝐴 and (𝑘, 𝑗) ∈ 𝐴 satisfy (𝑖, 𝑘) ∈ 𝜋−1 (𝐹 ) and {𝑘, 𝑗} ∈ 𝐹

)︀(︂
because for (𝑖, 𝑘) ∈ 𝐴, we have {𝑖, 𝑘} ∈ 𝐹 if and only if (𝑖, 𝑘) ∈ 𝜋−1 (𝐹 )

(by (4.16), applied to 𝑢 = 𝑖 and 𝑣 = 𝑘)

)︂
⇐⇒

(︀
no (𝑖, 𝑘) ∈ 𝐴 and (𝑘, 𝑗) ∈ 𝐴 satisfy (𝑖, 𝑘) ∈ 𝜋−1 (𝐹 ) and (𝑘, 𝑗) ∈ 𝜋−1 (𝐹 )

)︀(︂
because for (𝑘, 𝑗) ∈ 𝐴, we have {𝑘, 𝑗} ∈ 𝐹 if and only if (𝑘, 𝑗) ∈ 𝜋−1 (𝐹 )

(by (4.16), applied to 𝑢 = 𝑘 and 𝑣 = 𝑗)

)︂
⇐⇒

(︀
the digraph

(︀
𝑉, 𝜋−1 (𝐹 )

)︀
is 2-path-free

)︀
(by the definition of “2-path-free”) ,

qed.
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(here, we have renamed the summation index 𝐵 as 𝐹 ). This proves Proposition

4.4.2.

4.5 A matroidal generalization

4.5.1 An introduction to matroids

We shall now present a result that can be considered as a generalization of Theorem

4.3.5 in a different direction than Theorem 4.1.11: namely, a formula for the charac-

teristic polynomial of a matroid. Let us first recall the basic notions from the theory

of matroids that will be needed to state it.

First, we introduce some basic poset-related terminology:

Definition 4.5.1. Let 𝑃 be a poset.

(a) An element 𝑣 of 𝑃 is said to be maximal (with respect to 𝑃 ) if and only if

every 𝑤 ∈ 𝑃 satisfying 𝑤 ≥ 𝑣 must satisfy 𝑤 = 𝑣.

(b) An element 𝑣 of 𝑃 is said to be minimal (with respect to 𝑃 ) if and only if

every 𝑤 ∈ 𝑃 satisfying 𝑤 ≤ 𝑣 must satisfy 𝑤 = 𝑣.

Definition 4.5.2. For any set 𝐸, we shall regard the powerset 𝒫 (𝐸) as a poset

(with respect to inclusion). Thus, any subset 𝒮 of 𝒫 (𝐸) also becomes a poset,

and therefore the notions of “minimal” and “maximal” elements in 𝒮 make sense.

Beware that these notions are not related to size; i.e., a maximal element of 𝒮

might not be a maximum-size element of 𝒮.

Now, let us define the notion of “matroid” that we will use:

Definition 4.5.3. (a) A matroid means a pair (𝐸, ℐ) consisting of a finite set 𝐸

and a set ℐ ⊆ 𝒫 (𝐸) satisfying the following axioms:

∙ Matroid axiom 1: We have ∅ ∈ ℐ.

∙ Matroid axiom 2: If 𝑌 ∈ ℐ and 𝑍 ∈ 𝒫 (𝐸) are such that 𝑍 ⊆ 𝑌 , then 𝑍 ∈ ℐ.
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∙ Matroid axiom 3: If 𝑌 ∈ ℐ and 𝑍 ∈ ℐ are such that |𝑌 | < |𝑍|, then there

exists some 𝑥 ∈ 𝑍 ∖ 𝑌 such that 𝑌 ∪ {𝑥} ∈ ℐ.

(b) Let (𝐸, ℐ) be a matroid. A subset 𝑆 of 𝐸 is said to be independent (for this

matroid) if and only if 𝑆 ∈ ℐ. The set 𝐸 is called the ground set of the matroid

(𝐸, ℐ).

Different texts give different definitions of a matroid; these definitions are (mostly)

equivalent, but not always in the obvious way18. Definition 4.5.3 is how a matroid

is defined in [Schrij13, §10.1] and in [Martin15, Definition 3.15] (where it is called a

“(matroid) independence system”). There exist other definitions of a matroid, which

turn out to be equivalent. The definition of a matroid given in Stanley’s [Stanley06,

Definition 3.8] is directly equivalent to Definition 4.5.3, with the only differences that

∙ Stanley replaces Matroid axiom 1 by the requirement that ℐ ̸= ∅ (which is, of

course, equivalent to Matroid axiom 1 as long as Matroid axiom 2 is assumed),

and

∙ Stanley replaces Matroid axiom 3 by the requirement that for every 𝑇 ∈ 𝒫 (𝐸),

all maximal elements of ℐ ∩𝒫 (𝑇 ) have the same cardinality19 (this requirement

is equivalent to Matroid axiom 3 as long as Matroid axiom 2 is assumed).

We now introduce some terminology related to matroids:

Definition 4.5.4. Let 𝑀 = (𝐸, ℐ) be a matroid.

(a) We define a function 𝑟𝑀 : 𝒫 (𝐸) → N by setting

𝑟𝑀 (𝑆) = max {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑆} for every 𝑆 ⊆ 𝐸. (4.18)

18I.e., it sometimes happens that two different texts both define a matroid as a pair (𝐸,𝑈) of a
finite set 𝐸 and a subset 𝑈 ⊆ 𝒫 (𝐸), but they require these pairs (𝐸,𝑈) to satisfy non-equivalent
axioms, and the equivalence between their definitions is more complicated than just “a pair (𝐸,𝑈)
is a matroid for one definition if and only if it is a matroid for the other”.

19Here, as we have already explained, we regard ℐ ∩ 𝒫 (𝑇 ) as a poset with respect to inclusion.
Thus, an element 𝑌 of this poset is maximal if and only if there exists no 𝑍 ∈ ℐ ∩ 𝒫 (𝑇 ) such that
𝑌 is a proper subset of 𝑍.
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(Note that the right hand side of (4.18) is well-defined, because there exists at least

one 𝑍 ∈ ℐ satisfying 𝑍 ⊆ 𝑆 (namely, 𝑍 = ∅).) If 𝑆 is a subset of 𝐸, then the

nonnegative integer 𝑟𝑀 (𝑆) is called the rank of 𝑆 (with respect to 𝑀). It is clear

that 𝑟𝑀 is a weakly increasing function from the poset 𝒫 (𝐸) to N.

(b) If 𝑘 ∈ N, then a 𝑘-flat of 𝑀 means a subset of 𝐸 which has rank 𝑘 and is

maximal among all such subsets (i.e., it is not a proper subset of any other subset

having rank 𝑘). (Beware: Not all 𝑘-flats have the same size.) A flat of 𝑀 is a

subset of 𝐸 which is a 𝑘-flat for some 𝑘 ∈ N. We let Flats𝑀 denote the set of all

flats of 𝑀 ; thus, Flats𝑀 is a subposet of 𝒫 (𝐸).

(c) A circuit of 𝑀 means a minimal element of 𝒫 (𝐸) ∖ ℐ. (That is, a circuit

of 𝑀 means a subset of 𝐸 which is not independent (for 𝑀) and which is minimal

among such subsets.)

(d) An element 𝑒 of 𝐸 is said to be a loop (of 𝑀) if {𝑒} /∈ ℐ. The matroid 𝑀

is said to be loopless if no loops (of 𝑀) exist.

Notice that the function that we called 𝑟𝑀 in Definition 4.5.4 (a) is denoted by

rk in Stanley’s [Stanley06, Lecture 3].

One of the most classical examples of a matroid is the graphical matroid of a

graph:

Example 4.5.5. Let 𝐺 = (𝑉,𝐸) be a finite graph. Define a subset ℐ of 𝒫 (𝐸) by

ℐ = {𝑇 ∈ 𝒫 (𝐸) | 𝑇 contains no circuit of 𝐺 as a subset} .

Then, (𝐸, ℐ) is a matroid; it is called the graphical matroid (or the cycle matroid)

of 𝐺. It has the following properties:

∙ The matroid (𝐸, ℐ) is loopless.

∙ For each 𝑇 ∈ 𝒫 (𝐸), we have

𝑟(𝐸,ℐ) (𝑇 ) = |𝑉 | − conn (𝑉, 𝑇 )
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(where conn (𝑉, 𝑇 ) is defined as in Definition 4.3.3).

∙ The circuits of the matroid (𝐸, ℐ) are precisely the circuits of the graph 𝐺.

∙ The flats of the matroid (𝐸, ℐ) are related to colorings of 𝐺. More precisely:

For each set 𝑋 and each 𝑋-coloring 𝑓 of 𝐺, the set 𝐸 ∩ Eqs 𝑓 is a flat of

(𝐸, ℐ). Every flat of (𝐸, ℐ) can be obtained in this way when 𝑋 is chosen

large enough; but often, several distinct 𝑋-colorings 𝑓 lead to one and the

same flat 𝐸 ∩ Eqs 𝑓 .

We recall three basic facts that are used countless times in arguing about matroids:

Lemma 4.5.6. Let 𝑀 = (𝐸, ℐ) be a matroid. Let 𝑇 ∈ ℐ. Then, 𝑟𝑀 (𝑇 ) = |𝑇 |.

Proof of Lemma 4.5.6. We have 𝑇 ∈ ℐ and 𝑇 ⊆ 𝑇 . Thus, 𝑇 is a 𝑍 ∈ ℐ satisfying

𝑍 ⊆ 𝑇 . Therefore, |𝑇 | ∈ {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑇}, so that

|𝑇 | ≤ max {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑇} (4.19)

(since any element of a set of integers is smaller or equal to the maximum of this set).

On the other hand, the definition of 𝑟𝑀 yields

𝑟𝑀 (𝑇 ) = max {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑇} .

Hence, (4.19) rewrites as follows:

|𝑇 | ≤ 𝑟𝑀 (𝑇 ) .

Also,

𝑟𝑀 (𝑇 ) = max {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑇} (by the definition of 𝑟𝑀)

∈ {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑇}
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(since the maximum of any set belongs to this set). Thus, there exists a 𝑍 ∈ ℐ

satisfying 𝑍 ⊆ 𝑇 and 𝑟𝑀 (𝑇 ) = |𝑍|. Consider this 𝑍. From 𝑍 ⊆ 𝑇 , we obtain

|𝑍| ≤ |𝑇 |, so that 𝑟𝑀 (𝑇 ) = |𝑍| ≤ |𝑇 |. Combining this with |𝑇 | ≤ 𝑟𝑀 (𝑇 ), we obtain

𝑟𝑀 (𝑇 ) = |𝑇 |. This proves Lemma 4.5.6.

Lemma 4.5.7. Let 𝑀 = (𝐸, ℐ) be a matroid. Let 𝑄 ∈ 𝒫 (𝐸) ∖ ℐ. Then, there

exists a circuit 𝐶 of 𝑀 such that 𝐶 ⊆ 𝑄.

Proof of Lemma 4.5.7. We have 𝑄 ∈ 𝒫 (𝐸) ∖ ℐ. Thus, there exists at least one

𝐶 ∈ 𝒫 (𝐸) ∖ ℐ such that 𝐶 ⊆ 𝑄 (namely, 𝐶 = 𝑄). Thus, there also exists a minimal

such 𝐶. Consider this minimal 𝐶. We know that 𝐶 is a minimal element of 𝒫 (𝐸)∖ℐ

such that 𝐶 ⊆ 𝑄. In other words, 𝐶 is an element of 𝒫 (𝐸)∖ℐ satisfying 𝐶 ⊆ 𝑄, and

moreover,

every 𝐷 ∈ 𝒫 (𝐸) ∖ ℐ satisfying 𝐷 ⊆ 𝑄 and 𝐷 ⊆ 𝐶 must satisfy 𝐷 = 𝐶. (4.20)

Thus, 𝐶 is a minimal element of 𝒫 (𝐸) ∖ ℐ 20. In other words, 𝐶 is a circuit of

𝑀 (by the definition of a “circuit”). This circuit 𝐶 satisfies 𝐶 ⊆ 𝑄. Thus, we have

constructed a circuit 𝐶 of 𝑀 satisfying 𝐶 ⊆ 𝑄. Lemma 4.5.7 is thus proven.

Lemma 4.5.8. Let 𝑀 = (𝐸, ℐ) be a matroid. Let 𝑇 be a subset of 𝐸. Let 𝑆 ∈ ℐ

be such that 𝑆 ⊆ 𝑇 . Then, there exists an 𝑆 ′ ∈ ℐ satisfying 𝑆 ⊆ 𝑆 ′ ⊆ 𝑇 and

|𝑆 ′| = 𝑟𝑀 (𝑇 ).

Proof of Lemma 4.5.8. Clearly, there exists at least one 𝑆 ′ ∈ ℐ satisfying 𝑆 ⊆ 𝑆 ′ ⊆ 𝑇

(namely, 𝑆 ′ = 𝑆). Hence, there exists a maximal such 𝑆 ′. Let 𝑄 be such a maximal

𝑆 ′. Thus, 𝑄 is an element of ℐ satisfying 𝑆 ⊆ 𝑄 ⊆ 𝑇 .

20Proof. We need to show that every 𝐷 ∈ 𝒫 (𝐸) ∖ ℐ satisfying 𝐷 ⊆ 𝐶 must satisfy 𝐷 = 𝐶 (since
we already know that 𝐶 ∈ 𝒫 (𝐸) ∖ ℐ).

So let 𝐷 ∈ 𝒫 (𝐸) ∖ ℐ be such that 𝐷 ⊆ 𝐶. Then, 𝐷 ⊆ 𝐶 ⊆ 𝑄. Hence, (4.20) shows that 𝐷 = 𝐶.
This completes our proof.
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Recall that

𝑟𝑀 (𝑇 ) = max {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑇} (by the definition of 𝑟𝑀)

∈ {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑇}

(since the maximum of any set must belong to this set). Hence, there exists some

𝑍 ∈ ℐ satisfying 𝑍 ⊆ 𝑇 and 𝑟𝑀 (𝑇 ) = |𝑍|. Denote such a 𝑍 by 𝑊 . Thus, 𝑊 is an

element of ℐ satisfying 𝑊 ⊆ 𝑇 and 𝑟𝑀 (𝑇 ) = |𝑊 |.

We have |𝑄| ∈ {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑇} (since 𝑄 ∈ ℐ and 𝑄 ⊆ 𝑇 ). Since any

element of a set is smaller or equal to the maximum of this set, this entails that

|𝑄| ≤ max {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑇} = 𝑟𝑀 (𝑇 ) = |𝑊 |.

Now, assume (for the sake of contradiction) that |𝑄| ̸= |𝑊 |. Thus, |𝑄| < |𝑊 |

(since |𝑄| ≤ |𝑊 |). Hence, Matroid axiom 3 (applied to 𝑌 = 𝑄 and 𝑍 = 𝑊 ) shows

that there exists some 𝑥 ∈ 𝑊 ∖𝑄 such that 𝑄 ∪ {𝑥} ∈ ℐ. Consider this 𝑥. We have

𝑥 ∈ 𝑊 ∖ 𝑄 ⊆ 𝑊 ⊆ 𝑇 , so that 𝑄 ∪ {𝑥} ⊆ 𝑇 (since 𝑄 ⊆ 𝑇 ). Also, 𝑥 /∈ 𝑄 (since

𝑥 ∈ 𝑊 ∖𝑄).

Recall that 𝑄 is a maximal 𝑆 ′ ∈ ℐ satisfying 𝑆 ⊆ 𝑆 ′ ⊆ 𝑇 . Thus, if some 𝑆 ′ ∈ ℐ

satisfies 𝑆 ⊆ 𝑆 ′ ⊆ 𝑇 and 𝑆 ′ ⊇ 𝑄, then 𝑆 ′ = 𝑄. Applying this to 𝑆 ′ = 𝑄 ∪ {𝑥},

we obtain 𝑄 ∪ {𝑥} = 𝑄 (since 𝑆 ⊆ 𝑄 ⊆ 𝑄 ∪ {𝑥} ⊆ 𝑇 and 𝑄 ∪ {𝑥} ⊇ 𝑄). Thus,

𝑥 ∈ 𝑄. But this contradicts 𝑥 /∈ 𝑄. This contradiction shows that our assumption

(that |𝑄| ≠ |𝑊 |) was wrong. Hence, |𝑄| = |𝑊 | = 𝑟𝑀 (𝑇 ). Thus, there exists an

𝑆 ′ ∈ ℐ satisfying 𝑆 ⊆ 𝑆 ′ ⊆ 𝑇 and |𝑆 ′| = 𝑟𝑀 (𝑇 ) (namely, 𝑆 ′ = 𝑄). This proves

Lemma 4.5.8.

4.5.2 The lattice of flats

We shall now show a lemma that can be regarded as an alternative criterion for a

subset of 𝐸 to be a flat:

Lemma 4.5.9. Let 𝑀 = (𝐸, ℐ) be a matroid. Let 𝑇 be a subset of 𝐸. Then, the

following statements are equivalent:

234



Statement F1: The set 𝑇 is a flat of 𝑀 .

Statement F2: If 𝐶 is a circuit of 𝑀 , and if 𝑒 ∈ 𝐶 is such that 𝐶 ∖ {𝑒} ⊆ 𝑇 ,

then 𝐶 ⊆ 𝑇 .

Proof of Lemma 4.5.9. Proof of the implication F1 =⇒ F2: Assume that Statement

F1 holds. We must prove that Statement F2 holds.

Let 𝐶 be a circuit of 𝑀 . Let 𝑒 ∈ 𝐶 be such that 𝐶 ∖ {𝑒} ⊆ 𝑇 . We must prove

that 𝐶 ⊆ 𝑇 .

Assume the contrary. Thus, 𝐶 ̸⊆ 𝑇 . Combining this with 𝐶 ∖ {𝑒} ⊆ 𝑇 , we obtain

𝑒 /∈ 𝑇 . Hence, 𝑇 is a proper subset of 𝑇 ∪ {𝑒}.

We have assumed that Statement F1 holds. In other words, the set 𝑇 is a flat of

𝑀 . In other words, there exists some 𝑘 ∈ N such that 𝑇 is a 𝑘-flat of 𝑀 . Consider

this 𝑘.

The set 𝑇 is a 𝑘-flat of 𝑀 , thus a subset of 𝐸 which has rank 𝑘 and is maximal

among all such subsets. In other words, 𝑟𝑀 (𝑇 ) = 𝑘, but every subset 𝑆 of 𝐸 for

which 𝑇 is a proper subset of 𝑆 must satisfy

𝑟𝑀 (𝑆) ̸= 𝑘. (4.21)

Applying (4.21) to 𝑆 = 𝑇 ∪{𝑒}, we obtain 𝑟𝑀 (𝑇 ∪ {𝑒}) ̸= 𝑘. Since 𝑇 ∪{𝑒} ⊇ 𝑇 (and

since the function 𝑟𝑀 : 𝒫 (𝐸) → N is weakly increasing), we have 𝑟𝑀 (𝑇 ∪ {𝑒}) ≥

𝑟𝑀 (𝑇 ) = 𝑘. Combined with 𝑟𝑀 (𝑇 ∪ {𝑒}) ̸= 𝑘, this yields 𝑟𝑀 (𝑇 ∪ {𝑒}) > 𝑘. Thus,

𝑟𝑀 (𝑇 ∪ {𝑒}) ≥ 𝑘 + 1.

Notice that 𝐶 ∖{𝑒} is a proper subset of 𝐶 (since 𝑒 ∈ 𝐶). The set 𝐶 is a circuit of

𝑀 , thus a minimal element of 𝒫 (𝐸) ∖ ℐ (by the definition of a “circuit”). Hence, no

proper subset of 𝐶 belongs to 𝒫 (𝐸)∖ℐ (because 𝐶 is minimal). In other words, every

proper subset of 𝐶 belongs to ℐ. Applying this to the proper subset 𝐶 ∖ {𝑒} of 𝐶, we

conclude that 𝐶 ∖ {𝑒} belongs to ℐ. Hence, Lemma 4.5.8 (applied to 𝑆 = 𝐶 ∖ {𝑒})

shows that there exists an 𝑆 ′ ∈ ℐ satisfying 𝐶 ∖ {𝑒} ⊆ 𝑆 ′ ⊆ 𝑇 and |𝑆 ′| = 𝑟𝑀 (𝑇 ).

Denote this 𝑆 ′ by 𝑆. Thus, 𝑆 is an element of ℐ satisfying 𝐶 ∖ {𝑒} ⊆ 𝑆 ⊆ 𝑇 and

|𝑆| = 𝑟𝑀 (𝑇 ).
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Furthermore, 𝑆 ⊆ 𝑇 ⊆ 𝑇 ∪ {𝑒}. Thus, Lemma 4.5.8 (applied to 𝑇 ∪ {𝑒} instead

of 𝑇 ) shows that there exists an 𝑆 ′ ∈ ℐ satisfying 𝑆 ⊆ 𝑆 ′ ⊆ 𝑇 ∪ {𝑒} and |𝑆 ′| =

𝑟𝑀 (𝑇 ∪ {𝑒}). Consider this 𝑆 ′.

We have |𝑆 ′| = 𝑟𝑀 (𝑇 ∪ {𝑒}) > 𝑟𝑀 (𝑇 ). Hence, 𝑆 ′ ̸⊆ 𝑇 21. Combining this with

𝑆 ′ ⊆ 𝑇 ∪ {𝑒}, we obtain 𝑒 ∈ 𝑆 ′. Combining this with 𝐶 ∖ {𝑒} ⊆ 𝑆 ′, we find that

(𝐶 ∖ {𝑒})∪ {𝑒} ⊆ 𝑆 ′. Thus, 𝐶 = (𝐶 ∖ {𝑒})∪ {𝑒} ⊆ 𝑆 ′. Since 𝑆 ′ ∈ ℐ, this entails that

𝐶 ∈ ℐ (by Matroid axiom 2). But 𝐶 ∈ 𝒫 (𝐸) ∖ ℐ (since 𝐶 is a minimal element of

𝒫 (𝐸) ∖ ℐ), so that 𝐶 /∈ ℐ. This contradicts 𝐶 ∈ ℐ. This contradiction shows that

our assumption was wrong. Hence, 𝐶 ⊆ 𝑇 is proven. Therefore, Statement F2 holds.

Thus, the implication F1 =⇒ F2 is proven.

Proof of the implication F2 =⇒ F1: Assume that Statement F2 holds. We must

prove that Statement F1 holds.

Let 𝑘 = 𝑟𝑀 (𝑇 ). We shall show that 𝑇 is a 𝑘-flat of 𝑀 .

Let 𝑊 be a subset of 𝐸 which has rank 𝑘 and satisfies 𝑇 ⊆ 𝑊 . We shall show

that 𝑇 = 𝑊 .

Indeed, assume the contrary. Thus, 𝑇 ̸= 𝑊 . Combined with 𝑇 ⊆ 𝑊 , this shows

that 𝑇 is a proper subset of 𝑊 . Thus, there exists an 𝑒 ∈ 𝑊 ∖ 𝑇 . Consider this 𝑒.

We have 𝑒 /∈ 𝑇 (since 𝑒 ∈ 𝑊 ∖ 𝑇 ).

We have

𝑘 = 𝑟𝑀 (𝑇 ) = max {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑇} (by the definition of 𝑟𝑀)

∈ {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑇}

(since the maximum of a set must belong to that set). Hence, there exists some 𝑍 ∈ ℐ

satisfying 𝑍 ⊆ 𝑇 and 𝑘 = |𝑍|. Denote this 𝑍 by 𝐾. Thus, 𝐾 is an element of ℐ and

21Proof. Assume the contrary. Thus, 𝑆′ ⊆ 𝑇 . Hence, 𝑆′ is an element of ℐ and satisfies 𝑆′ ⊆ 𝑇 .
Thus, |𝑆′| ∈ {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑇}.

Now, the definition of 𝑟𝑀 yields

𝑟𝑀 (𝑇 ) = max {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑇} ≥ |𝑆′|

(since |𝑆′| ∈ {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑇}). This contradicts |𝑆′| > 𝑟𝑀 (𝑇 ). This contradiction proves
that our assumption was wrong, qed.
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satisfies 𝐾 ⊆ 𝑇 and 𝑘 = |𝐾|. Notice that 𝑒 /∈ 𝑇 , so that 𝑒 /∈ 𝐾 (since 𝐾 ⊆ 𝑇 ).

We have 𝑟𝑀 (𝑊 ) = 𝑘 (since 𝑊 has rank 𝑘). Hence, 𝐾 ∪ {𝑒} /∈ ℐ 22. In other

words, 𝐾 ∪ {𝑒} ∈ 𝒫 (𝐸) ∖ ℐ. Hence, Lemma 4.5.7 (applied to 𝑄 = 𝐾 ∪ {𝑒}) shows

that there exists a circuit 𝐶 of 𝑀 such that 𝐶 ⊆ 𝐾 ∪ {𝑒}. Consider this 𝐶. From

𝐶 ⊆ 𝐾 ∪ {𝑒}, we obtain 𝐶 ∖ {𝑒} ⊆ 𝐾 ⊆ 𝑇 .

From 𝐶 ∖ {𝑒} ⊆ 𝐾, we conclude (using Matroid axiom 2) that 𝐶 ∖ {𝑒} ∈ ℐ (since

𝐾 ∈ ℐ). On the other hand, 𝐶 is a circuit of 𝑀 . In other words, 𝐶 is a minimal

element of 𝒫 (𝐸) ∖ ℐ (by the definition of a “circuit”). Hence, 𝐶 ∈ 𝒫 (𝐸) ∖ ℐ, so that

𝐶 /∈ ℐ. Hence, 𝑒 ∈ 𝐶 (since otherwise, we would have 𝐶 ∖ {𝑒} = 𝐶 /∈ ℐ, which would

contradict 𝐶 ∖ {𝑒} ∈ ℐ). Now, Statement F2 shows that 𝐶 ⊆ 𝑇 . Hence, 𝑒 ∈ 𝐶 ⊆ 𝑇 ,

which contradicts 𝑒 /∈ 𝑇 .

This contradiction shows that our assumption was wrong. Hence, 𝑇 = 𝑊 is

proven.

Now, forget that we fixed 𝑊 . Thus, we have shown that if 𝑊 is a subset of 𝐸

which has rank 𝑘 and satisfies 𝑇 ⊆ 𝑊 , then 𝑇 = 𝑊 . In other words, 𝑇 is a subset of

𝐸 which has rank 𝑘 and is maximal among all such subsets (because we already know

that 𝑇 has rank 𝑟𝑀 (𝑇 ) = 𝑘). In other words, 𝑇 is a 𝑘-flat of 𝑀 (by the definition of

a “𝑘-flat”). Thus, 𝑇 is a flat of 𝑀 . In other words, Statement F1 holds. This proves

the implication F2 =⇒ F1.

We have now proven the implications F1 =⇒ F2 and F2 =⇒ F1. Together, these

implications show that Statements F1 and F2 are equivalent. This proves Lemma

4.5.9.

Corollary 4.5.10. Let 𝑀 = (𝐸, ℐ) be a matroid. Let 𝐹1, 𝐹2, . . . , 𝐹𝑘 be flats of

𝑀 . Then, 𝐹1 ∩ 𝐹2 ∩ · · · ∩ 𝐹𝑘 is a flat of 𝑀 . (Notice that 𝑘 is allowed to be 0 here;

in this case, the empty intersection 𝐹1 ∩ 𝐹2 ∩ · · · ∩ 𝐹𝑘 is to be interpreted as 𝐸.)

Proof of Corollary 4.5.10. Lemma 4.5.9 gives a necessary and sufficient criterion for
22Proof. Assume the contrary. Thus, 𝐾 ∪ {𝑒} ∈ ℐ. Thus, 𝑟𝑀 (𝐾 ∪ {𝑒}) = |𝐾 ∪ {𝑒}| (by Lemma

4.5.6). Thus, 𝑟𝑀 (𝐾 ∪ {𝑒}) = |𝐾 ∪ {𝑒}| > |𝐾| (since 𝑒 /∈ 𝐾).
But 𝐾 ∪ {𝑒} ⊆ 𝑊 (since 𝐾 ⊆ 𝑇 ⊆ 𝑊 and 𝑒 ∈ 𝑊 ∖ 𝑇 ⊆ 𝑊 ). Since the function 𝑟𝑀 is weakly

increasing, this yields 𝑟𝑀 (𝐾 ∪ {𝑒}) ≤ 𝑟𝑀 (𝑊 ) = 𝑘 = |𝐾|. This contradicts 𝑟𝑀 (𝐾 ∪ {𝑒}) > |𝐾|.
This contradiction proves that our assumption was wrong, qed.
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a subset 𝑇 of 𝐸 to be a flat of 𝑀 . It is easy to see that if this criterion is satisfied for

𝑇 = 𝐹1, for 𝑇 = 𝐹2, etc., and for 𝑇 = 𝐹𝑘, then it is satisfied for 𝑇 = 𝐹1∩𝐹2∩· · ·∩𝐹𝑘.

In other words, if 𝐹1, 𝐹2, . . . , 𝐹𝑘 are flats of 𝑀 , then 𝐹1 ∩ 𝐹2 ∩ · · · ∩ 𝐹𝑘 is a flat of 𝑀 .
23 This proves Corollary 4.5.10.

Corollary 4.5.10 (a well-known fact, which is left to the reader to prove in [Stanley06,

§3.1]) allows us to define the closure of a set in a matroid:

Definition 4.5.11. Let 𝑀 = (𝐸, ℐ) be a matroid. Let 𝑇 be a subset of 𝐸. The

closure of 𝑇 is defined to be the intersection of all flats of 𝑀 which contain 𝑇 as

a subset. In other words, the closure of 𝑇 is defined to be
⋂︀

𝐹∈Flats𝑀 ;
𝑇⊆𝐹

𝐹 . The closure

of 𝑇 is denoted by 𝑇 .

The following proposition gathers some simple properties of closures in matroids:

Proposition 4.5.12. Let 𝑀 = (𝐸, ℐ) be a matroid.

(a) If 𝑇 is a subset of 𝐸, then 𝑇 is a flat of 𝑀 satisfying 𝑇 ⊆ 𝑇 .

(b) If 𝐺 is a flat of 𝑀 , then 𝐺 = 𝐺.

(c) If 𝑇 is a subset of 𝐸 and if 𝐺 is a flat of 𝑀 satisfying 𝑇 ⊆ 𝐺, then 𝑇 ⊆ 𝐺.

(d) If 𝑆 and 𝑇 are two subsets of 𝐸 satisfying 𝑆 ⊆ 𝑇 , then 𝑆 ⊆ 𝑇 .

(e) If the matroid 𝑀 is loopless, then ∅ = ∅.
23Here is this argument in slightly more detail:
For every 𝑖 ∈ {1, 2, . . . , 𝑘}, the following statement holds: If 𝐶 is a circuit of 𝑀 , and if 𝑒 ∈ 𝐶 is

such that 𝐶 ∖ {𝑒} ⊆ 𝐹𝑖, then
𝐶 ⊆ 𝐹𝑖. (4.22)

Proof of (4.22): Let 𝑖 ∈ {1, 2, . . . , 𝑘}. Then, the set 𝐹𝑖 is a flat of 𝑀 . In other words, Statement
F1 of Lemma 4.5.9 is satisfied for 𝑇 = 𝐹𝑖. Therefore, Statement F2 of Lemma 4.5.9 must also be
satisfied for 𝑇 = 𝐹𝑖 (since Lemma 4.5.9 shows that the Statements F1 and F2 are equivalent). In
other words, if 𝐶 is a circuit of 𝑀 , and if 𝑒 ∈ 𝐶 is such that 𝐶 ∖ {𝑒} ⊆ 𝐹𝑖, then 𝐶 ⊆ 𝐹𝑖. This proves
(4.22).

Now, let 𝐶 be a circuit of 𝑀 , and let 𝑒 ∈ 𝐶 be such that 𝐶 ∖ {𝑒} ⊆ 𝐹1 ∩ 𝐹2 ∩ · · · ∩ 𝐹𝑘. For every
𝑖 ∈ {1, 2, . . . , 𝑘}, we have 𝐶 ∖ {𝑒} ⊆ 𝐹1 ∩𝐹2 ∩ · · · ∩𝐹𝑘 ⊆ 𝐹𝑖, and therefore 𝐶 ⊆ 𝐹𝑖 (by (4.22)). So we
have shown the inclusion 𝐶 ⊆ 𝐹𝑖 for each 𝑖 ∈ {1, 2, . . . , 𝑘}. Combining these 𝑘 inclusions, we obtain
𝐶 ⊆ 𝐹1 ∩ 𝐹2 ∩ · · · ∩ 𝐹𝑘.

Now, forget that we fixed 𝐶. We thus have shown that if 𝐶 is a circuit of 𝑀 , and if 𝑒 ∈ 𝐶 is such
that 𝐶 ∖ {𝑒} ⊆ 𝐹1 ∩ 𝐹2 ∩ · · · ∩ 𝐹𝑘, then 𝐶 ⊆ 𝐹1 ∩ 𝐹2 ∩ · · · ∩ 𝐹𝑘. In other words, Statement F2 of
Lemma 4.5.9 is satisfied for 𝑇 = 𝐹1 ∩ 𝐹2 ∩ · · · ∩ 𝐹𝑘. Therefore, Statement F1 of Lemma 4.5.9 must
also be satisfied for 𝑇 = 𝐹1 ∩ 𝐹2 ∩ · · · ∩ 𝐹𝑘 (since Lemma 4.5.9 shows that the Statements F1 and
F2 are equivalent). In other words, the set 𝐹1 ∩ 𝐹2 ∩ · · · ∩ 𝐹𝑘 is a flat of 𝑀 . Qed.
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(f) Every subset 𝑇 of 𝐸 satisfies 𝑟𝑀 (𝑇 ) = 𝑟𝑀
(︀
𝑇
)︀
.

(g) If 𝑇 is a subset of 𝐸 and if 𝐺 is a flat of 𝑀 , then the conditions
(︀
𝑇 ⊆ 𝐺

)︀
and (𝑇 ⊆ 𝐺) are equivalent.

Proof of Proposition 4.5.12. (a) The set Flats𝑀 is a subset of the finite set 𝒫 (𝐸),

and thus itself finite.

Let 𝑇 be a subset of 𝐸. The closure 𝑇 of 𝑇 is defined as
⋂︀

𝐹∈Flats𝑀 ;
𝑇⊆𝐹

𝐹 . Now,

Corollary 4.5.10 shows that any intersection of finitely many flats of 𝑀 is a flat of 𝑀 .

Hence,
⋂︀

𝐹∈Flats𝑀 ;
𝑇⊆𝐹

𝐹 (being an intersection of finitely many flats of 𝑀 24) is a flat of

𝑀 . In other words, 𝑇 is a flat of 𝑀 (since 𝑇 =
⋂︀

𝐹∈Flats𝑀 ;
𝑇⊆𝐹

𝐹 ).

Also, 𝑇 ⊆ 𝐹 for every 𝐹 ∈ Flats𝑀 satisfying 𝑇 ⊆ 𝐹 . Hence, 𝑇 ⊆
⋂︀

𝐹∈Flats𝑀 ;
𝑇⊆𝐹

𝐹 = 𝑇 .

This completes the proof of Proposition 4.5.12 (a).

(c) Let 𝑇 be a subset of 𝐸, and let 𝐺 be a flat of 𝑀 satisfying 𝑇 ⊆ 𝐺. Then, 𝐺

is an element of Flats𝐺 satisfying 𝑇 ⊆ 𝐺. Hence, 𝐺 is one term in the intersection⋂︀
𝐹∈Flats𝑀 ;

𝑇⊆𝐹

𝐹 . Thus,
⋂︀

𝐹∈Flats𝑀 ;
𝑇⊆𝐹

𝐹 ⊆ 𝐺. But the definition of 𝑇 yields 𝑇 =
⋂︀

𝐹∈Flats𝑀 ;
𝑇⊆𝐹

𝐹 ⊆

𝐺. This proves Proposition 4.5.12 (c).

(b) Let 𝐺 be a flat of 𝑀 . Proposition 4.5.12 (b) (applied to 𝑇 = 𝐺) yields 𝐺 ⊆ 𝐺.

But Proposition 4.5.12 (a) (applied to 𝑇 = 𝐺) shows that 𝐺 is a flat of 𝑀 satisfying

𝐺 ⊆ 𝐺. Combining 𝐺 ⊆ 𝐺 with 𝐺 ⊆ 𝐺, we obtain 𝐺 = 𝐺. This proves Proposition

4.5.12 (b).

(d) Let 𝑆 and 𝑇 be two subsets of 𝐸 satisfying 𝑆 ⊆ 𝑇 . Proposition 4.5.12 (a)

shows that 𝑇 is a flat of 𝑀 satisfying 𝑇 ⊆ 𝑇 . Now, 𝑆 ⊆ 𝑇 ⊆ 𝑇 . Hence, Proposition

4.5.12 (b) (applied to 𝑆 and 𝑇 instead of 𝑇 and 𝐺) shows 𝑆 ⊆ 𝑇 . This proves

Proposition 4.5.12 (d).

(e) Assume that the matroid 𝑀 is loopless. In other words, no loops (of 𝑀) exist.

The definition of 𝑟𝑀 quickly yields 𝑟𝑀 (∅) = 0. In other words, the set ∅ has

rank 0. We shall now show that ∅ is a 0-flat of 𝑀 .
24“Finitely many” since the set Flats𝑀 is finite.
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Indeed, let 𝑊 be a subset of 𝐸 which has rank 0 and satisfies ∅ ⊆ 𝑊 . We shall

show that ∅ = 𝑊 .

Assume the contrary. Thus, ∅ ̸= 𝑊 . Hence, 𝑊 has an element 𝑤. Consider this

𝑤. The element 𝑤 of 𝐸 is not a loop (since no loops exist). In other words, we cannot

have {𝑤} /∈ ℐ (since 𝑤 is a loop if and only if {𝑤} /∈ ℐ (by the definition of a loop)).

In other words, we must have {𝑤} ∈ ℐ. Clearly, {𝑤} ⊆ 𝑊 (since 𝑤 ∈ 𝑊 ). Thus,

{𝑤} is a 𝑍 ∈ ℐ satisfying 𝑍 ⊆ 𝑊 . Thus, |{𝑤}| ∈ {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑊}.

But 𝑊 has rank 0. In other words,

0 = 𝑟𝑀 (𝑊 ) = max {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑊} (by the definition of 𝑟𝑀)

≥ |{𝑤}| (since |{𝑤}| ∈ {|𝑍| | 𝑍 ∈ ℐ and 𝑍 ⊆ 𝑊})

= 1,

which is absurd. This contradiction shows that our assumption was wrong. Hence,

∅ = 𝑊 is proven.

Let us now forget that we fixed 𝑊 . We thus have proven that if 𝑊 is any subset

of 𝐸 which has rank 0 and satisfies ∅ ⊆ 𝑊 , then ∅ = 𝑊 . Thus, ∅ is a subset

of 𝐸 which has rank 0 and is maximal among all such subsets (because we already

know that ∅ has rank 0). In other words, ∅ is a 0-flat of 𝑀 (by the definition of a

“0-flat”). Thus, ∅ is a flat of 𝑀 . Thus, Proposition 4.5.12 (b) (applied to 𝐺 = ∅)

yields ∅ = ∅. This proves Proposition 4.5.12 (e).

(f) Let 𝑇 be a subset of 𝐸. We have 𝑇 ⊆ 𝑇 (by Proposition 4.5.12 (a)), and thus

𝑟𝑀 (𝑇 ) ≤ 𝑟𝑀
(︀
𝑇
)︀

(since the function 𝑟𝑀 is weakly increasing).

Let 𝑘 = 𝑟𝑀 (𝑇 ). Thus, there exists a 𝑄 ∈ 𝒫 (𝐸) satisfying 𝑇 ⊆ 𝑄 and 𝑘 = 𝑟𝑀 (𝑄)

(namely, 𝑄 = 𝑇 ). Hence, there exists a maximal such 𝑄. Denote this 𝑄 by 𝑅. Thus,

𝑅 is a maximal 𝑄 ∈ 𝒫 (𝐸) satisfying 𝑇 ⊆ 𝑄 and 𝑘 = 𝑟𝑀 (𝑄). In particular, 𝑅 is an

element of 𝒫 (𝐸) and satisfies 𝑇 ⊆ 𝑅 and 𝑘 = 𝑟𝑀 (𝑅).

Now, 𝑅 is a subset of 𝐸 (since 𝑅 ∈ 𝒫 (𝐸)) and has rank 𝑟𝑀 (𝑅) = 𝑘. Thus, 𝑅 is a

subset of 𝐸 which has rank 𝑘. Furthermore, 𝑅 is maximal among all such subsets25.

25Proof. Let 𝑊 be any subset of 𝐸 which has rank 𝑘 and satisfies 𝑊 ⊇ 𝑅. We must prove that
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Thus, 𝑅 is a 𝑘-flat of 𝑀 (by the definition of a “𝑘-flat”), and therefore a flat of

𝑀 . Now, Proposition 4.5.12 (c) (applied to 𝐺 = 𝑅) shows that 𝑇 ⊆ 𝑅. Since the

function 𝑟𝑀 is weakly increasing, this yields 𝑟𝑀
(︀
𝑇
)︀
≤ 𝑟𝑀 (𝑅) = 𝑘. Combining this

with 𝑘 = 𝑟𝑀 (𝑇 ) ≤ 𝑟𝑀
(︀
𝑇
)︀
, we obtain 𝑟𝑀

(︀
𝑇
)︀
= 𝑘 = 𝑟𝑀 (𝑇 ). This proves Proposition

4.5.12 (f).

(g) Let 𝑇 be a subset of 𝐸. Let 𝐺 be a flat of 𝑀 . Proposition 4.5.12 (a) shows

that 𝑇 ⊆ 𝑇 . Hence, if 𝑇 ⊆ 𝐺, then 𝑇 ⊆ 𝑇 ⊆ 𝐺. Thus, we have proven the implication(︀
𝑇 ⊆ 𝐺

)︀
=⇒ (𝑇 ⊆ 𝐺). The reverse implication (i.e., the implication (𝑇 ⊆ 𝐺) =⇒(︀

𝑇 ⊆ 𝐺
)︀
) follows from Proposition 4.5.12 (c). Combining these two implications,

we obtain the equivalence
(︀
𝑇 ⊆ 𝐺

)︀
⇐⇒ (𝑇 ⊆ 𝐺). This proves Proposition 4.5.12

(g).

We shall now recall a few more classical notions related to posets:

Definition 4.5.13. Let 𝑃 be a poset.

(a) An element 𝑝 ∈ 𝑃 is said to be a global minimum of 𝑃 if every 𝑞 ∈ 𝑃

satisfies 𝑝 ≤ 𝑞. Clearly, a global minimum of 𝑃 is unique if it exists.

(b) An element 𝑝 ∈ 𝑃 is said to be a global maximum of 𝑃 if every 𝑞 ∈ 𝑃

satisfies 𝑝 ≥ 𝑞. Clearly, a global maximum of 𝑃 is unique if it exists.

(c) Let 𝑥 and 𝑦 be two elements of 𝑃 . An upper bound of 𝑥 and 𝑦 (in 𝑃 ) means

an element 𝑧 ∈ 𝑃 satisfying 𝑧 ≥ 𝑥 and 𝑧 ≥ 𝑦. A join (or least upper bound) of 𝑥

and 𝑦 (in 𝑃 ) means an upper bound 𝑧 of 𝑥 and 𝑦 such that every upper bound 𝑧′

of 𝑥 and 𝑦 satisfies 𝑧′ ≥ 𝑧. In other words, a join of 𝑥 and 𝑦 is a global minimum of

the subposet {𝑤 ∈ 𝑃 | 𝑤 ≥ 𝑥 and 𝑤 ≥ 𝑦} of 𝑃 . Thus, a join of 𝑥 and 𝑦 is unique

if it exists.

(d) Let 𝑥 and 𝑦 be two elements of 𝑃 . A lower bound of 𝑥 and 𝑦 (in 𝑃 ) means

an element 𝑧 ∈ 𝑃 satisfying 𝑧 ≤ 𝑥 and 𝑧 ≤ 𝑦. A meet (or greatest lower bound) of

𝑥 and 𝑦 (in 𝑃 ) means a lower bound 𝑧 of 𝑥 and 𝑦 such that every lower bound 𝑧′

𝑊 = 𝑅.
We have 𝑊 ∈ 𝒫 (𝐸), 𝑇 ⊆ 𝑅 ⊆ 𝑊 and 𝑘 = 𝑟𝑀 (𝑊 ) (since 𝑊 has rank 𝑘). Thus, 𝑊 is a 𝑄 ∈ 𝒫 (𝐸)

satisfying 𝑇 ⊆ 𝑄 and 𝑘 = 𝑟𝑀 (𝑄). But recall that 𝑅 is a maximal such 𝑄. Hence, if 𝑊 ⊇ 𝑅, then
𝑊 = 𝑅. Therefore, 𝑊 = 𝑅 (since we know that 𝑊 ⊇ 𝑅). Qed.
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of 𝑥 and 𝑦 satisfies 𝑧′ ≤ 𝑧. In other words, a meet of 𝑥 and 𝑦 is a global maximum

of the subposet {𝑤 ∈ 𝑃 | 𝑤 ≤ 𝑥 and 𝑤 ≤ 𝑦} of 𝑃 . Thus, a meet of 𝑥 and 𝑦 is

unique if it exists.

(e) The poset 𝑃 is said to be a lattice if and only if it has a global minimum

and a global maximum, and every two elements of 𝑃 have a meet and a join.

Proposition 4.5.14. Let 𝑀 = (𝐸, ℐ) be a matroid. The subposet Flats𝑀 of the

poset 𝒫 (𝐸) is a lattice.

Proof of Proposition 4.5.14. By the definition of a lattice, it suffices to check the

following four claims:

Claim 1: The poset Flats𝑀 has a global minimum.

Claim 2: The poset Flats𝑀 has a global maximum.

Claim 3: Every two elements of Flats𝑀 have a meet (in Flats𝑀).

Claim 4: Every two elements of Flats𝑀 have a join (in Flats𝑀).

Proof of Claim 1: Applying Proposition 4.5.12 (a) to 𝑇 = ∅, we see that ∅ is a

flat of 𝑀 satisfying ∅ ⊆ ∅. In particular, ∅ is a flat of 𝑀 , so that ∅ ∈ Flats𝑀 . If

𝐺 is a flat of 𝑀 , then ∅ ⊆ 𝐺 (by Proposition 4.5.12 (c), applied to 𝑇 = ∅). Hence,

∅ is a global minimum of the poset Flats𝑀 . Thus, the poset Flats𝑀 has a global

minimum. This proves Claim 1.

Proof of Claim 2: Applying Proposition 4.5.12 (a) to 𝑇 = 𝐸, we see that 𝐸 is a

flat of 𝑀 satisfying 𝐸 ⊆ 𝐸. From 𝐸 ⊆ 𝐸, we conclude that 𝐸 = 𝐸. Thus, 𝐸 is a flat

of 𝑀 (since 𝐸 is a flat of 𝑀). In other words, 𝐸 ∈ Flats𝑀 . If 𝐺 is a flat of 𝑀 , then

𝐸 ⊇ 𝐺 (obviously). Hence, 𝐸 is a global maximum of the poset Flats𝑀 . Thus, the

poset Flats𝑀 has a global maximum. This proves Claim 2.

Proof of Claim 3: Let 𝐹 and 𝐺 be two elements of Flats𝑀 . We have to prove

that 𝐹 and 𝐺 have a meet.

We know that 𝐹 and 𝐺 are elements of Flats𝑀 , thus flats of 𝑀 . Hence, Corollary

4.5.10 shows that 𝐹 ∩ 𝐺 is a flat of 𝑀 . In other words, 𝐹 ∩ 𝐺 ∈ Flats𝑀 . Clearly,

𝐹 ∩ 𝐺 ⊆ 𝐹 and 𝐹 ∩ 𝐺 ⊆ 𝐺; thus, 𝐹 ∩ 𝐺 is a lower bound of 𝐹 and 𝐺 in Flats𝑀 .
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Also, every lower bound 𝐻 of 𝐹 and 𝐺 in Flats𝑀 satisfies 𝐻 ⊆ 𝐹 ∩𝐺 26. Hence,

𝐹 ∩𝐺 is a meet of 𝐹 and 𝐺. Thus, 𝐹 and 𝐺 have a meet. This proves Claim 3.

Proof of Claim 4: Let 𝐹 and 𝐺 be two elements of Flats𝑀 . We have to prove

that 𝐹 and 𝐺 have a join.

We know that 𝐹 and 𝐺 are elements of Flats𝑀 , thus flats of 𝑀 . Proposition 4.5.12

(a) (applied to 𝑇 = 𝐹 ∪𝐺) shows that 𝐹 ∪𝐺 is a flat of 𝑀 satisfying 𝐹 ∪𝐺 ⊆ 𝐹 ∪𝐺.

Now, 𝐹 ∪𝐺 ∈ Flats𝑀 (since 𝐹 ∪𝐺 is a flat of 𝑀). Clearly, 𝐹 ⊆ 𝐹 ∪ 𝐺 ⊆ 𝐹 ∪𝐺

and 𝐺 ⊆ 𝐹 ∪ 𝐺 ⊆ 𝐹 ∪𝐺; thus, 𝐹 ∪𝐺 is an upper bound of 𝐹 and 𝐺 in Flats𝑀 .

Also, every upper bound 𝐻 of 𝐹 and 𝐺 in Flats𝑀 satisfies 𝐻 ⊇ 𝐹 ∪𝐺 27. Hence,

𝐹 ∪𝐺 is a join of 𝐹 and 𝐺. Thus, 𝐹 and 𝐺 have a join. This proves Claim 4.

We have now proven all four Claims 1, 2, 3, and 4. Thus, Proposition 4.5.14 is

proven.

Definition 4.5.15. Let 𝑀 = (𝐸, ℐ) be a matroid. Proposition 4.5.14 shows that

the subposet Flats𝑀 of the poset 𝒫 (𝐸) is a lattice. This subposet Flats𝑀 is

called the lattice of flats of 𝑀 . (Beware: It is a subposet, but not a sublattice of

𝒫 (𝐸), since its join is not a restriction of the join of 𝒫 (𝐸).)

The lattice of flats Flats𝑀 of a matroid 𝑀 is denoted by 𝐿 (𝑀) in [Stanley06,

§3.2].

Next, we recall the definition of the Möbius function of a poset (see, e.g., [Stanley06,

Definition 1.2] or [Martin15, §5.2]):

Definition 4.5.16. Let 𝑃 be a poset.

(a) If 𝑥 and 𝑦 are two elements of 𝑃 satisfying 𝑥 ≤ 𝑦, then the set

{𝑧 ∈ 𝑃 | 𝑥 ≤ 𝑧 ≤ 𝑦} is denoted by [𝑥, 𝑦].

(b) A subset of 𝑃 is called a closed interval of 𝑃 if it has the form [𝑥, 𝑦] for

two elements 𝑥 and 𝑦 of 𝑃 satisfying 𝑥 ≤ 𝑦.
26Proof. Let 𝐻 be a lower bound of 𝐹 and 𝐺 in Flats𝑀 . Thus, 𝐻 ⊆ 𝐹 and 𝐻 ⊆ 𝐺. Combining

these two inclusions, we obtain 𝐻 ⊆ 𝐹 ∩𝐺, qed.
27Proof. Let 𝐻 be an upper bound of 𝐹 and 𝐺 in Flats𝑀 . Thus, 𝐻 ⊇ 𝐹 and 𝐻 ⊇ 𝐺. Combining

these two inclusions, we obtain 𝐻 ⊇ 𝐹 ∪ 𝐺. But 𝐻 ∈ Flats𝑀 ; thus, 𝐻 is a flat of 𝑀 . Since 𝐻
satisfies 𝐹 ∪ 𝐺 ⊆ 𝐻, we therefore obtain 𝐹 ∪𝐺 ⊆ 𝐻 (by Proposition 4.5.12 (c), applied to 𝐹 ∪ 𝐺
and 𝐻 instead of 𝑇 and 𝐺). In other words, 𝐻 ⊇ 𝐹 ∪𝐺, qed.

243



(c) We denote by Int𝑃 the set of all closed intervals of 𝑃 .

(d) If 𝑓 : Int𝑃 → Z is any map, then the image 𝑓 ([𝑥, 𝑦]) of a closed interval

[𝑥, 𝑦] ∈ Int𝑃 under 𝑓 will be abbreviated by 𝑓 (𝑥, 𝑦).

(e) Assume that every closed interval of 𝑃 is finite. The Möbius function of

the poset 𝑃 is defined to be the unique function 𝜇 : Int𝑃 → Z having the following

two properties:

∙ We have

𝜇 (𝑥, 𝑥) = 1 for every 𝑥 ∈ 𝑃. (4.23)

∙ We have

𝜇 (𝑥, 𝑦) = −
∑︁
𝑧∈𝑃 ;
𝑥≤𝑧<𝑦

𝜇 (𝑥, 𝑧) for all 𝑥, 𝑦 ∈ 𝑃 satisfying 𝑥 < 𝑦. (4.24)

(It is easy to see that these two properties indeed determine 𝜇 uniquely.) This

Möbius function is denoted by 𝜇.

We can now define the characteristic polynomial of a matroid 𝑀 , following

[Stanley06, (22)]28:

Definition 4.5.17. Let 𝑀 = (𝐸, ℐ) be a matroid. Let 𝑚 = 𝑟𝑀 (𝐸). The charac-

teristic polynomial 𝜒𝑀 of the matroid 𝑀 is defined to be the polynomial

∑︁
𝐹∈Flats𝑀

𝜇 (∅, 𝐹 )𝑥𝑚−𝑟𝑀 (𝐹 ) ∈ Z [𝑥]

(where 𝜇 is the Möbius function of the lattice Flats𝑀). We further define a

polynomial ̃︀𝜒𝑀 ∈ Z [𝑥] by ̃︀𝜒𝑀 = [∅ = ∅]𝜒𝑀 . Here, we are using the Iverson

28Our notation slightly differs from that in [Stanley06, (22)]. Namely, we use 𝑥 as the indeter-
minate, while Stanley instead uses 𝑡. Stanley also denotes the global minimum ∅ of Flats𝑀 bŷ︀0.
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bracket notation (as in Definition 4.2.6). If the matroid 𝑀 is loopless, then

̃︀𝜒𝑀 = [∅ = ∅]⏟  ⏞  
=1

(by Proposition 4.5.12 (e))

𝜒𝑀 = 𝜒𝑀 .

Example 4.5.18. Let 𝐺 = (𝑉,𝐸) be a finite graph. Consider the graphical ma-

troid (𝐸, ℐ) defined as in Example 4.5.5. Then, the characteristic polynomial 𝜒(𝐸,ℐ)

of this matroid is connected to the chromatic polynomial 𝜒𝐺 of the graph 𝐺 as fol-

lows:

𝑥conn𝐺 · 𝜒(𝐸,ℐ) (𝑥) = 𝜒𝐺 (𝑥) .

4.5.3 Generalized formulas

Let us next define broken circuits of a matroid 𝑀 = (𝐸, ℐ). Stanley, in [Stanley06,

§4.1], defines them in terms of a total ordering 𝒪 on the set 𝐸, whereas we shall use

a “labeling function” ℓ : 𝐸 → 𝑋 instead (as in the case of graphs); our setting is

slightly more general than Stanley’s.

Definition 4.5.19. Let 𝑀 = (𝐸, ℐ) be a matroid. Let 𝑋 be a totally ordered set.

Let ℓ : 𝐸 → 𝑋 be a function. We shall refer to ℓ as the labeling function. For every

𝑒 ∈ 𝐸, we shall refer to ℓ (𝑒) as the label of 𝑒.

A broken circuit of 𝑀 means a subset of 𝐸 having the form 𝐶 ∖ {𝑒}, where 𝐶

is a circuit of 𝑀 , and where 𝑒 is the unique element of 𝐶 having maximum label

(among the elements of 𝐶). Of course, the notion of a broken circuit of 𝑀 depends

on the function ℓ; however, we suppress the mention of ℓ in our notation, since we

will not consider situations where two different ℓ’s coexist.

We shall now state analogues (and, in light of Example 4.5.18, generalizations,

although we shall not elaborate on the few minor technicalities of seeing them as

such) of Theorem 4.3.5, Theorem 4.3.4, Corollary 4.3.6, Corollary 4.3.7 and Corollary

4.3.13:
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Theorem 4.5.20. Let 𝑀 = (𝐸, ℐ) be a matroid. Let 𝑚 = 𝑟𝑀 (𝐸). Let 𝑋 be a

totally ordered set. Let ℓ : 𝐸 → 𝑋 be a function. Let K be some set of broken

circuits of 𝑀 (not necessarily containing all of them). Let 𝑎𝐾 be an element of k

for every 𝐾 ∈ K. Then,

̃︀𝜒𝑀 =
∑︁
𝐹⊆𝐸

(−1)|𝐹 |

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐹

𝑎𝐾

⎞⎟⎟⎠𝑥𝑚−𝑟𝑀 (𝐹 ).

Theorem 4.5.21. Let 𝑀 = (𝐸, ℐ) be a matroid. Let 𝑚 = 𝑟𝑀 (𝐸). Then,

̃︀𝜒𝑀 =
∑︁
𝐹⊆𝐸

(−1)|𝐹 | 𝑥𝑚−𝑟𝑀 (𝐹 ).

Corollary 4.5.22. Let 𝑀 = (𝐸, ℐ) be a matroid. Let 𝑚 = 𝑟𝑀 (𝐸). Let 𝑋 be a

totally ordered set. Let ℓ : 𝐸 → 𝑋 be a function. Let K be some set of broken

circuits of 𝑀 (not necessarily containing all of them). Then,

̃︀𝜒𝑀 =
∑︁
𝐹⊆𝐸;

𝐹 is K-free

(−1)|𝐹 | 𝑥𝑚−𝑟𝑀 (𝐹 ).

Corollary 4.5.23. Let 𝑀 = (𝐸, ℐ) be a matroid. Let 𝑚 = 𝑟𝑀 (𝐸). Let 𝑋 be a

totally ordered set. Let ℓ : 𝐸 → 𝑋 be a function. Then,

̃︀𝜒𝑀 =
∑︁
𝐹⊆𝐸;

𝐹 contains no broken
circuit of 𝑀 as a subset

(−1)|𝐹 | 𝑥𝑚−𝑟𝑀 (𝐹 ).
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Corollary 4.5.24. Let 𝑀 = (𝐸, ℐ) be a matroid. Let 𝑚 = 𝑟𝑀 (𝐸). Let 𝑋 be a

totally ordered set. Let ℓ : 𝐸 → 𝑋 be an injective function. Then,

̃︀𝜒𝑀 =
∑︁
𝐹⊆𝐸;

𝐹 contains no broken
circuit of 𝑀 as a subset

(−1)|𝐹 | 𝑥𝑚−|𝐹 |.

We notice that Corollary 4.5.24 is equivalent to [Stanley06, Theorem 4.12] (at

least when 𝑀 is loopless).

Before we prove these results, let us state a lemma which will serve as an analogue

of Lemma 4.2.7:

Lemma 4.5.25. Let 𝑀 = (𝐸, ℐ) be a matroid. Let 𝑋 be a totally ordered set.

Let ℓ : 𝐸 → 𝑋 be a function. Let K be some set of broken circuits of 𝑀 (not

necessarily containing all of them). Let 𝑎𝐾 be an element of k for every 𝐾 ∈ K.

Let 𝐹 be any flat of 𝑀 . Then,

∑︁
𝐵⊆𝐹

(−1)|𝐵|
∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾 = [𝐹 = ∅] . (4.25)

(Again, we are using the Iverson bracket notation as in Definition 4.2.6.)

Proof of Lemma 4.5.25. Our proof will imitate the proof of Lemma 4.2.7 much of the

time (with 𝐸∩Eqs 𝑓 replaced by 𝐹 ); thus, we will allow ourselves some more brevity.

We WLOG assume that 𝐹 ̸= ∅ (since otherwise, the claim is obvious29). Thus,

[𝐹 = ∅] = 0.
29Proof. Assume that 𝐹 = ∅. We must show that the claim is obvious.
Let us first show that no 𝐾 ∈ K satisfies 𝐾 = ∅. Indeed, assume the contrary. Thus, there exists

a 𝐾 ∈ K satisfying 𝐾 = ∅. In other words, ∅ ∈ K. Thus, ∅ is a broken circuit of 𝑀 (since K is a
set of broken circuits of 𝑀). Therefore, ∅ is obtained from a circuit of 𝑀 by removing one element
(by the definition of a broken circuit). This latter circuit must therefore be a one-element set, i.e.,
it has the form {𝑒} for some 𝑒 ∈ 𝐸. Consider this 𝑒. Thus, {𝑒} is a circuit of 𝑀 .

But 𝐹 is a flat of 𝑀 . In other words, Statement F1 (of Lemma 4.5.9) holds for 𝑇 = 𝐹 . Hence,
Statement F2 (of Lemma 4.5.9) also holds for 𝑇 = 𝐹 (since Lemma 4.5.9 shows that these two
statements are equivalent). Applying Statement F2 to 𝑇 = 𝐹 and 𝐶 = {𝑒}, we thus obtain {𝑒} ⊆ 𝐹
(because {𝑒} ∖ {𝑒} = ∅ ⊆ 𝐹 ). Thus, 𝑒 ∈ {𝑒} ⊆ 𝐹 = ∅, which is absurd. This contradiction proves
that our assumption was wrong.

Hence, we have shown that no 𝐾 ∈ K satisfies 𝐾 = ∅. But from 𝐹 = ∅, we see that the sum
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Pick any 𝑑 ∈ 𝐹 with maximum ℓ (𝑑) (among all 𝑑 ∈ 𝐹 ). (This is clearly possible,

since 𝐹 ̸= ∅.) Define two subsets 𝒰 and 𝒱 of 𝒫 (𝐹 ) as follows:

𝒰 = {𝑇 ∈ 𝒫 (𝐹 ) | 𝑑 /∈ 𝑇} ;

𝒱 = {𝑇 ∈ 𝒫 (𝐹 ) | 𝑑 ∈ 𝑇} .

Thus, we have 𝒫 (𝐹 ) = 𝒰 ∪ 𝒱 , and the sets 𝒰 and 𝒱 are disjoint. Now, we define a

map Φ : 𝒰 → 𝒱 by

(Φ (𝐵) = 𝐵 ∪ {𝑑} for every 𝐵 ∈ 𝒰) .

This map Φ is well-defined (because for every 𝐵 ∈ 𝒰 , we have 𝐵 ∪ {𝑑} ∈ 𝒱 30) and

a bijection31. Moreover, every 𝐵 ∈ 𝒰 satisfies

(−1)|Φ(𝐵)| = − (−1)|𝐵| (4.26)

32.

Now, we claim that, for every 𝐵 ∈ 𝒰 and every 𝐾 ∈ K, we have the following

logical equivalence:

(𝐾 ⊆ 𝐵) ⇐⇒ (𝐾 ⊆ Φ (𝐵)) . (4.27)

Proof of (4.27): Let 𝐵 ∈ 𝒰 and 𝐾 ∈ K. We must prove the equivalence (4.27).

The definition of Φ yields Φ (𝐵) = 𝐵∪{𝑑} ⊇ 𝐵, so that 𝐵 ⊆ Φ (𝐵). Hence, if 𝐾 ⊆ 𝐵,

∑︀
𝐵⊆𝐹

(−1)
|𝐵| ∏︀

𝐾∈K;
𝐾⊆𝐵

𝑎𝐾 has only one addend (namely, the addend for 𝐵 = ∅), and thus simplifies to

(−1)
|∅|⏟  ⏞  

=(−1)0=1

∏︁
𝐾∈K;
𝐾⊆∅⏟ ⏞ 
=

∏︀
𝐾∈K;
𝐾=∅

𝑎𝐾 =
∏︁

𝐾∈K;
𝐾=∅

𝑎𝐾 = (empty product) (since no 𝐾 ∈ K satisfies 𝐾 = ∅)

= 1 = [𝐹 = ∅] (since 𝐹 = ∅) .

Thus, Lemma 4.5.25 is proven.
30This follows from the fact that 𝑑 ∈ 𝐹 .
31Its inverse is the map Ψ : 𝒱 → 𝒰 defined by (Ψ (𝐵) = 𝐵 ∖ {𝑑} for every 𝐵 ∈ 𝒱).
32Proof. This is proven exactly like we proved (4.9).
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then 𝐾 ⊆ 𝐵 ⊆ Φ (𝐵). Therefore, the forward implication of the equivalence (4.27)

is proven. It thus remains to prove the backward implication of this equivalence. In

other words, it remains to prove that if 𝐾 ⊆ Φ (𝐵), then 𝐾 ⊆ 𝐵. So let us assume

that 𝐾 ⊆ Φ (𝐵).

We want to prove that 𝐾 ⊆ 𝐵. Assume the contrary. Thus, 𝐾 ̸⊆ 𝐵. We have

𝐾 ∈ K. Thus, 𝐾 is a broken circuit of 𝑀 (since K is a set of broken circuits of 𝑀).

In other words, 𝐾 is a subset of 𝐸 having the form 𝐶 ∖{𝑒}, where 𝐶 is a circuit of 𝑀 ,

and where 𝑒 is the unique element of 𝐶 having maximum label (among the elements

of 𝐶) (because this is how a broken circuit is defined). Consider these 𝐶 and 𝑒. Thus,

𝐾 = 𝐶 ∖ {𝑒}.

The element 𝑒 is the unique element of 𝐶 having maximum label (among the

elements of 𝐶). Thus, if 𝑒′ is any element of 𝐶 satisfying ℓ (𝑒′) ≥ ℓ (𝑒), then

𝑒′ = 𝑒. (4.28)

But 𝐾⏟ ⏞ 
⊆Φ(𝐵)=𝐵∪{𝑑}

∖ {𝑑} ⊆ (𝐵 ∪ {𝑑}) ∖ {𝑑} ⊆ 𝐵.

If we had 𝑑 /∈ 𝐾, then we would have 𝐾∖{𝑑} = 𝐾 and therefore 𝐾 = 𝐾∖{𝑑} ⊆ 𝐵;

this would contradict 𝐾 ̸⊆ 𝐵. Hence, we cannot have 𝑑 /∈ 𝐾. We thus must have

𝑑 ∈ 𝐾. Hence, 𝑑 ∈ 𝐾 = 𝐶 ∖ {𝑒}. Hence, 𝑑 ∈ 𝐶 and 𝑑 ̸= 𝑒.

But 𝐶 ∖ {𝑒} = 𝐾 ⊆ Φ (𝐵) ⊆ 𝐹 (since Φ (𝐵) ∈ 𝒫 (𝐹 )). On the other hand,

Statement F1 (of Lemma 4.5.9) holds for 𝑇 = 𝐹 (since 𝐹 is a flat of 𝑀). Hence,

Statement F2 (of Lemma 4.5.9) also holds for 𝑇 = 𝐹 (since Lemma 4.5.9 shows that

these two statements are equivalent). Thus, from 𝐶 ∖ {𝑒} ⊆ 𝐹 , we obtain 𝐶 ⊆ 𝐹 .

Thus, 𝑒 ∈ 𝐶 ⊆ 𝐹 . Consequently, ℓ (𝑑) ≥ ℓ (𝑒) (since 𝑑 was defined to be an element

of 𝐹 with maximum ℓ (𝑑) among all 𝑑 ∈ 𝐹 ).

Also, 𝑑 ∈ 𝐶. Since ℓ (𝑑) ≥ ℓ (𝑒), we can therefore apply (4.28) to 𝑒′ = 𝑑. We thus

obtain 𝑑 = 𝑒. This contradicts 𝑑 ̸= 𝑒. This contradiction proves that our assumption

was wrong. Hence, 𝐾 ⊆ 𝐵 is proven. Thus, we have proven the backward implication

of the equivalence (4.27); this completes the proof of (4.27).
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Now, proceeding as in the proof of (4.12), we can show that

∑︁
𝐵⊆𝐹

(−1)|𝐵|
∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾 = [𝐹 = ∅] .

This proves Lemma 4.5.25.

We shall furthermore use a classical and fundamental result on the Möbius function

of any finite poset:

Proposition 4.5.26. Let 𝑃 be a finite poset. Let 𝜇 denote the Möbius function

of 𝑃 .

(a) For any 𝑥 ∈ 𝑃 and 𝑦 ∈ 𝑃 , we have

∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

𝜇 (𝑥, 𝑧) = [𝑥 = 𝑦] . (4.29)

(b) For any 𝑥 ∈ 𝑃 and 𝑦 ∈ 𝑃 , we have

∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

𝜇 (𝑧, 𝑦) = [𝑥 = 𝑦] . (4.30)

(c) Let k be a Z-module. Let (𝛽𝑥)𝑥∈𝑃 be a family of elements of k. Then, every

𝑧 ∈ 𝑃 satisfies

𝛽𝑧 =
∑︁
𝑦∈𝑃 ;
𝑦≤𝑧

𝜇 (𝑦, 𝑧)
∑︁
𝑥∈𝑃 ;
𝑥≤𝑦

𝛽𝑥.

For the sake of completeness, let us give a self-contained proof of this proposition

(slicker arguments appear in the literature33):

Proof of Proposition 4.5.26. (a) Let 𝑥 ∈ 𝑃 and 𝑦 ∈ 𝑃 . We must prove the equality

(4.29). We are in one of the following three cases:

Case 1: We have 𝑥 = 𝑦.
33For example, Proposition 4.5.26 (c) is equivalent to the =⇒ implication of [Martin15, (5.1a)].
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Case 2: We have 𝑥 < 𝑦.

Case 3: We have neither 𝑥 = 𝑦 nor 𝑥 < 𝑦.

Let us first consider Case 1. In this case, we have 𝑥 = 𝑦. Hence, the sum∑︀
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

𝜇 (𝑥, 𝑧) contains only one addend – namely, the addend for 𝑧 = 𝑥. Thus,

∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

𝜇 (𝑥, 𝑧) = 𝜇 (𝑥, 𝑥) = 1 (by the definition of the Möbius function)

= [𝑥 = 𝑦] (since 𝑥 = 𝑦) .

Thus, (4.29) is proven in Case 1.

Let us now consider Case 2. In this case, we have 𝑥 < 𝑦. Hence, 𝑥 ̸= 𝑦, so

that [𝑥 = 𝑦] = 0. Now, 𝑦 is an element of 𝑃 satisfying 𝑥 ≤ 𝑦 ≤ 𝑦. Thus, the sum∑︀
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

𝜇 (𝑥, 𝑧) contains an addend for 𝑧 = 𝑦. Splitting off this addend, we obtain

∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

𝜇 (𝑥, 𝑧) =
∑︁
𝑧∈𝑃 ;

𝑥≤𝑧≤𝑦; 𝑧 ̸=𝑦⏟  ⏞  
=

∑︀
𝑧∈𝑃 ;
𝑥≤𝑧<𝑦

𝜇 (𝑥, 𝑧) + 𝜇 (𝑥, 𝑦)⏟  ⏞  
=−

∑︀
𝑧∈𝑃 ;
𝑥≤𝑧<𝑦

𝜇(𝑥,𝑧)

(by (4.24))

=
∑︁
𝑧∈𝑃 ;
𝑥≤𝑧<𝑦

𝜇 (𝑥, 𝑧) +

⎛⎜⎜⎝−
∑︁
𝑧∈𝑃 ;
𝑥≤𝑧<𝑦

𝜇 (𝑥, 𝑧)

⎞⎟⎟⎠ = 0 = [𝑥 = 𝑦] .

Hence, (4.29) is proven in Case 2.

Finally, let us consider Case 3. In this case, we have neither 𝑥 = 𝑦 nor 𝑥 < 𝑦.

Thus, we do not have 𝑥 ≤ 𝑦. Hence, there exists no 𝑧 ∈ 𝑃 satisfying 𝑥 ≤ 𝑧 ≤ 𝑦.

Thus, ∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

𝜇 (𝑥, 𝑧) = (empty sum) = 0 = [𝑥 = 𝑦]

(since we do not have 𝑥 = 𝑦). Thus, (4.29) is proven in Case 3.

Hence, (4.29) is proven in all three cases. This proves Proposition 4.5.26 (a).
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(b) For any two elements 𝑢 and 𝑣 of 𝑃 , we define a subset [𝑢, 𝑣] of 𝑃 by

[𝑢, 𝑣] = {𝑤 ∈ 𝑃 | 𝑢 ≤ 𝑤 ≤ 𝑣} .

Thus subset [𝑢, 𝑣] is finite (since 𝑃 is finite), and thus its size |[𝑢, 𝑣]| is a nonnegative

integer.

We shall now prove Proposition 4.5.26 (b) by strong induction on |[𝑥, 𝑦]|:

Induction step: Let 𝑁 ∈ N. Assume that Proposition 4.5.26 (b) holds whenever

|[𝑥, 𝑦]| < 𝑁 . We must now prove that Proposition 4.5.26 (b) holds whenever |[𝑥, 𝑦]| =

𝑁 .

We have assumed that Proposition 4.5.26 (b) holds whenever |[𝑥, 𝑦]| < 𝑁 . In

other words, we have assumed the following claim:

Claim 1: For any 𝑥 ∈ 𝑃 and 𝑦 ∈ 𝑃 satisfying |[𝑥, 𝑦]| < 𝑁 , we have

∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

𝜇 (𝑧, 𝑦) = [𝑥 = 𝑦] .

Now, let 𝑥 and 𝑦 be two elements of 𝑃 satisfying |[𝑥, 𝑦]| = 𝑁 . We are going to

prove that ∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

𝜇 (𝑧, 𝑦) = [𝑥 = 𝑦] . (4.31)

We are in one of the following three cases:

Case 1: We have 𝑥 = 𝑦.

Case 2: We have 𝑥 < 𝑦.

Case 3: We have neither 𝑥 = 𝑦 nor 𝑥 < 𝑦.

In Case 1 and in Case 3, we can prove (4.31) in exactly the same way as (in our

above proof of Proposition 4.5.26 (a)) we have proven (4.29). Thus, it remains only

to prove (4.31) in Case 2. In other words, we can WLOG assume that we are in Case

2.

Assume this. Hence, 𝑥 < 𝑦, so that [𝑥 = 𝑦] = 0.
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For every 𝑡 ∈ 𝑃 satisfying 𝑥 ≤ 𝑡 < 𝑦, we have

|[𝑥, 𝑡]| < 𝑁 (4.32)

34. Therefore, for every 𝑡 ∈ 𝑃 satisfying 𝑥 ≤ 𝑡 < 𝑦, we have

∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑡

𝜇 (𝑧, 𝑡) = [𝑥 = 𝑡] (4.33)

(by Claim 1, applied to 𝑡 instead of 𝑦). Also, for every 𝑢 ∈ 𝑃 and 𝑣 ∈ 𝑃 , we have

∑︁
𝑡∈𝑃 ;
𝑢≤𝑡≤𝑣

𝜇 (𝑢, 𝑡) = [𝑢 = 𝑣] (4.34)

35.

34Proof of (4.32): Let 𝑡 ∈ 𝑃 be such that 𝑥 ≤ 𝑡 < 𝑦. We shall proceed in several steps:

∙ We have

[𝑥, 𝑡] = {𝑤 ∈ 𝑃 | 𝑥 ≤ 𝑤 ≤ 𝑡} (by the definition of [𝑥, 𝑡])

⊆ {𝑤 ∈ 𝑃 | 𝑥 ≤ 𝑤 ≤ 𝑦}
(︂

because every 𝑤 ∈ 𝑃 satisfying 𝑤 ≤ 𝑡
must also satisfy 𝑤 ≤ 𝑦 (since 𝑡 < 𝑦)

)︂
= [𝑥, 𝑦] (by the definition of [𝑥, 𝑦]) .

∙ We have 𝑡 < 𝑦. Thus, we do not have 𝑦 ≤ 𝑡. Hence, we do not have 𝑥 ≤ 𝑦 ≤ 𝑡. Hence,
𝑦 /∈ [𝑥, 𝑡]. But 𝑦 ∈ [𝑥, 𝑦] (since 𝑥 ≤ 𝑦 ≤ 𝑦). Hence, the sets [𝑥, 𝑡] and [𝑥, 𝑦] are distinct (since
the latter contains 𝑦 but the former does not). Combining this with [𝑥, 𝑡] ⊆ [𝑥, 𝑦], we conclude
that [𝑥, 𝑡] is a proper subset of [𝑥, 𝑦]. Hence, |[𝑥, 𝑡]| < |[𝑥, 𝑦]| = 𝑁 . This proves (4.32).

35Proof of (4.34): Let 𝑢 ∈ 𝑃 and 𝑣 ∈ 𝑃 . Proposition 4.5.26 (a) (applied to 𝑥 = 𝑢 and 𝑦 = 𝑣)
shows that

∑︀
𝑧∈𝑃 ;

𝑢≤𝑧≤𝑣

𝜇 (𝑢, 𝑡) = [𝑢 = 𝑣]. Now,

∑︁
𝑡∈𝑃 ;

𝑢≤𝑡≤𝑣

𝜇 (𝑢, 𝑡) =
∑︁
𝑧∈𝑃 ;

𝑢≤𝑧≤𝑣

𝜇 (𝑢, 𝑡) (here, we have substituted 𝑧 for 𝑡 in the sum)

= [𝑢 = 𝑣] .

This proves (4.34).
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Now,

∑︁
(𝑧,𝑡)∈𝑃 2;
𝑥≤𝑧≤𝑡≤𝑦⏟  ⏞  

=
∑︀

𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

∑︀
𝑡∈𝑃 ;
𝑧≤𝑡≤𝑦

𝜇 (𝑧, 𝑡)

=
∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

∑︁
𝑡∈𝑃 ;
𝑧≤𝑡≤𝑦

𝜇 (𝑧, 𝑡)

⏟  ⏞  
=[𝑧=𝑦]

(by (4.34)
(applied to 𝑢=𝑧 and 𝑣=𝑦))

=
∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

[𝑧 = 𝑦]

=
∑︁
𝑧∈𝑃 ;

𝑥≤𝑧≤𝑦 and 𝑧=𝑦

[𝑧 = 𝑦]⏟  ⏞  
=1

(since 𝑧=𝑦)

+
∑︁
𝑧∈𝑃 ;

𝑥≤𝑧≤𝑦 and 𝑧 ̸=𝑦

[𝑧 = 𝑦]⏟  ⏞  
=0

(since 𝑧 ̸=𝑦)

(since every 𝑧 ∈ 𝑃 satisfies either 𝑧 = 𝑦 or 𝑧 ̸= 𝑦 (but not both))

=
∑︁
𝑧∈𝑃 ;

𝑥≤𝑧≤𝑦 and 𝑧=𝑦⏟  ⏞  
=

∑︀
𝑧∈{𝑤∈𝑃 | 𝑥≤𝑤≤𝑦 and 𝑤=𝑦}

1 +
∑︁
𝑧∈𝑃 ;

𝑥≤𝑧≤𝑦 and 𝑧 ̸=𝑦

0

⏟  ⏞  
=0

=
∑︁

𝑧∈{𝑤∈𝑃 | 𝑥≤𝑤≤𝑦 and 𝑤=𝑦}

1

=

⃒⃒⃒⃒
⃒⃒⃒{𝑤 ∈ 𝑃 | 𝑥 ≤ 𝑤 ≤ 𝑦 and 𝑤 = 𝑦}⏟  ⏞  

={𝑦}

⃒⃒⃒⃒
⃒⃒⃒ = |{𝑦}| = 1.
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Hence,

1 =
∑︁

(𝑧,𝑡)∈𝑃 2;
𝑥≤𝑧≤𝑡≤𝑦⏟  ⏞  

=
∑︀

𝑡∈𝑃 ;
𝑥≤𝑡≤𝑦

∑︀
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑡

𝜇 (𝑧, 𝑡) =
∑︁
𝑡∈𝑃 ;
𝑥≤𝑡≤𝑦

∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑡

𝜇 (𝑧, 𝑡)

=
∑︁
𝑡∈𝑃 ;

𝑥≤𝑡≤𝑦 and 𝑡=𝑦⏟  ⏞  
=

∑︀
𝑡∈{𝑤∈𝑃 | 𝑥≤𝑤≤𝑦 and 𝑤=𝑦}

=
∑︀

𝑡∈{𝑦}
(since {𝑤∈𝑃 | 𝑥≤𝑤≤𝑦 and 𝑤=𝑦}={𝑦})

∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑡

𝜇 (𝑧, 𝑡) +
∑︁
𝑡∈𝑃 ;

𝑥≤𝑡≤𝑦 and �̸�=𝑦

∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑡

𝜇 (𝑧, 𝑡)

⏟  ⏞  
=[𝑥=𝑡]

(by (4.33)
(since 𝑡<𝑦 (because 𝑡≤𝑦

and �̸�=𝑦)) and 𝑥≤𝑡)

(since every 𝑡 ∈ 𝑃 satisfies either 𝑡 = 𝑦 or 𝑡 ̸= 𝑦 (but not both))

=
∑︁
𝑡∈{𝑦}

∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑡

𝜇 (𝑧, 𝑡)

⏟  ⏞  
=

∑︀
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

𝜇(𝑧,𝑦)

+
∑︁
𝑡∈𝑃 ;

𝑥≤𝑡≤𝑦 and �̸�=𝑦

[𝑥 = 𝑡]

=
∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

𝜇 (𝑧, 𝑦) +
∑︁
𝑡∈𝑃 ;

𝑥≤𝑡≤𝑦 and 𝑡 ̸=𝑦

[𝑥 = 𝑡] .
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Subtracting
∑︀
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

𝜇 (𝑧, 𝑦) from both sides of this equality, we obtain

1−
∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

𝜇 (𝑧, 𝑦)

=
∑︁
𝑡∈𝑃 ;

𝑥≤𝑡≤𝑦 and �̸�=𝑦

[𝑥 = 𝑡]

=
∑︁
𝑡∈𝑃 ;

𝑥≤𝑡≤𝑦 and 𝑡=𝑥 and �̸�=𝑦⏟  ⏞  
=

∑︀
𝑡∈{𝑧∈𝑃 | 𝑥≤𝑧≤𝑦 and 𝑧=𝑥 and 𝑧 ̸=𝑦}

=
∑︀

𝑡∈{𝑥}
(since {𝑧∈𝑃 | 𝑥≤𝑧≤𝑦 and 𝑧=𝑥 and 𝑧 ̸=𝑦}={𝑥})

[𝑥 = 𝑡]⏟  ⏞  
=1

(since 𝑥=𝑡)

+
∑︁
𝑡∈𝑃 ;

𝑥≤𝑡≤𝑦 and �̸�=𝑥 and �̸�=𝑦

[𝑥 = 𝑡]⏟  ⏞  
=0

(since 𝑥 ̸=𝑡)

(since every 𝑡 ∈ 𝑃 satisfies either 𝑡 = 𝑥 or 𝑡 ̸= 𝑥 (but not both))

=
∑︁
𝑡∈{𝑥}

1 +
∑︁
𝑡∈𝑃 ;

𝑥≤𝑡≤𝑦 and �̸�=𝑥 and �̸�=𝑦

0

⏟  ⏞  
=0

=
∑︁
𝑡∈{𝑥}

1 = 1.

Solving this equality for
∑︀
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

𝜇 (𝑧, 𝑦), we obtain

∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

𝜇 (𝑧, 𝑦) = 1− 1 = 0 = [𝑥 = 𝑦]

(since 𝑥 < 𝑦). Thus, (4.31) is proven.

Let us now forget that we fixed 𝑥 and 𝑦. We thus have proven that for any 𝑥 ∈ 𝑃

and 𝑦 ∈ 𝑃 satisfying |[𝑥, 𝑦]| = 𝑁 , we have

∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑦

𝜇 (𝑧, 𝑦) = [𝑥 = 𝑦] .

In other words, Proposition 4.5.26 (b) holds whenever |[𝑥, 𝑦]| = 𝑁 . This completes

the induction step. Thus, Proposition 4.5.26 (b) is proven by induction.
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(c) For every 𝑣 ∈ 𝑃 , we have

∑︁
𝑦∈𝑃 ;
𝑦≤𝑣

𝜇 (𝑦, 𝑣)
∑︁
𝑥∈𝑃 ;
𝑥≤𝑦

𝛽𝑥

=
∑︁
𝑧∈𝑃 ;
𝑧≤𝑣

𝜇 (𝑧, 𝑣)
∑︁
𝑥∈𝑃 ;
𝑥≤𝑧

𝛽𝑥

⎛⎝ here, we have renamed the summation

index 𝑦 as 𝑧 in the outer sum

⎞⎠
=
∑︁
𝑧∈𝑃 ;
𝑧≤𝑣

∑︁
𝑥∈𝑃 ;
𝑥≤𝑧⏟  ⏞  

=
∑︀
𝑥∈𝑃

∑︀
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑣

𝜇 (𝑧, 𝑣) 𝛽𝑥 =
∑︁
𝑥∈𝑃

∑︁
𝑧∈𝑃 ;
𝑥≤𝑧≤𝑣

𝜇 (𝑧, 𝑣)

⏟  ⏞  
=[𝑥=𝑣]

(by Proposition 4.5.26 (b)
(applied to 𝑦=𝑣))

𝛽𝑥

=
∑︁
𝑥∈𝑃

[𝑥 = 𝑣] 𝛽𝑥 =
∑︁
𝑥∈𝑃 ;
𝑥=𝑣

[𝑥 = 𝑣]⏟  ⏞  
=1

(since 𝑥=𝑣)

𝛽𝑥 +
∑︁
𝑥∈𝑃 ;
𝑥 ̸=𝑣

[𝑥 = 𝑣]⏟  ⏞  
=0

(since �̸�=𝑣)

𝛽𝑥

(since every 𝑥 ∈ 𝑃 satisfies either 𝑥 = 𝑣 or 𝑥 ̸= 𝑣 (but not both))

=
∑︁
𝑥∈𝑃 ;
𝑥=𝑣

𝛽𝑥 +
∑︁
𝑥∈𝑃 ;
𝑥 ̸=𝑣

0𝛽𝑥

⏟  ⏞  
=0

=
∑︁
𝑥∈𝑃 ;
𝑥=𝑣

𝛽𝑥 = 𝛽𝑣 (since 𝑣 ∈ 𝑃 ) .

Renaming 𝑣 as 𝑧 in this result, we obtain precisely Proposition 4.5.26 (c).

Proof of Theorem 4.5.20. If 𝑇 is a subset of 𝐸, then 𝑇 is a flat of 𝑀 (by Proposition

4.5.12 (a)). In other words, if 𝑇 is a subset of 𝐸, then 𝑇 ∈ Flats𝑀 . Renaming 𝑇 as

𝐵 in this statement, we conclude that if 𝐵 is a subset of 𝐸, then 𝐵 ∈ Flats𝑀 .

For every 𝐹 ∈ Flats𝑀 , define an element 𝛽𝐹 ∈ k by

𝛽𝐹 =
∑︁
𝐵⊆𝐸;
𝐵=𝐹

(−1)|𝐵|

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠ .

Now, using Lemma 4.5.25, we can easily see that

∑︁
𝐺∈Flats𝑀 ;

𝐺⊆𝐹

𝛽𝐺 = [𝐹 = ∅] for every 𝐹 ∈ Flats𝑀 (4.35)
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36.

Let 𝜇 be the Möbius function of the lattice Flats𝑀 . The element ∅ is the global

minimum of the poset Flats𝑀 . 37 In particular, ∅ ∈ Flats𝑀 and ∅ ⊆ 𝐹 . Hence,

𝜇 (∅, 𝐹 ) is well-defined.

Now, fix 𝐹 ∈ Flats𝑀 . Proposition 4.5.26 (c) (applied to 𝑃 = Flats𝑀 and 𝑧 = 𝐹 )

36Proof of (4.35): Let 𝐹 ∈ Flats𝑀 . Thus, 𝐹 is a flat of 𝑀 .
If 𝐵 is a subset of 𝐸, then the statements

(︀
𝐵 ⊆ 𝐹

)︀
and (𝐵 ⊆ 𝐹 ) are equivalent. (This follows

from Proposition 4.5.12 (g), applied to 𝑇 = 𝐵 and 𝐺 = 𝐹 .)
Now, ∑︁

𝐺∈Flats𝑀 ;
𝐺⊆𝐹

𝛽𝐺⏟ ⏞ 
=

∑︀
𝐵⊆𝐸;

𝐵=𝐺

(−1)|𝐵|

⎛⎜⎜⎜⎝ ∏︀
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎟⎠
(by the definition of 𝛽𝐺)

=
∑︁

𝐺∈Flats𝑀 ;
𝐺⊆𝐹

∑︁
𝐵⊆𝐸;

𝐵=𝐺⏟  ⏞  
=

∑︀
𝐵⊆𝐸;

𝐵⊆𝐹
(because if 𝐵 is a subset of 𝐸,

then 𝐵∈Flats𝑀)

(−1)
|𝐵|

⎛⎜⎜⎝ ∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠

=
∑︁
𝐵⊆𝐸;

𝐵⊆𝐹⏟  ⏞  
=

∑︀
𝐵⊆𝐸;
𝐵⊆𝐹

(because if 𝐵 is a subset of 𝐸, then
the statements (𝐵⊆𝐹) and (𝐵⊆𝐹 ) are

equivalent)

(−1)
|𝐵|

⎛⎜⎜⎝ ∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠ =
∑︁
𝐵⊆𝐸;
𝐵⊆𝐹⏟  ⏞  
=

∑︀
𝐵⊆𝐹

(−1)
|𝐵|

⎛⎜⎜⎝ ∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠

=
∑︁
𝐵⊆𝐹

(−1)
|𝐵|

⎛⎜⎜⎝ ∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠ = [𝐹 = ∅] (by (4.25)) .

This proves (4.35).
37This was proven during our proof of Proposition 4.5.14.
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shows that

𝛽𝐹 =
∑︁

𝑦∈Flats𝑀 ;
𝑦⊆𝐹

𝜇 (𝑦, 𝐹 )
∑︁

𝑥∈Flats𝑀 ;
𝑥⊆𝑦

𝛽𝑥

(since the relation ≤ of the poset Flats𝑀 is ⊆)

=
∑︁

𝐻∈Flats𝑀 ;
𝐻⊆𝐹

𝜇 (𝐻,𝐹 )
∑︁

𝐺∈Flats𝑀 ;
𝐺⊆𝐻

𝛽𝐺

⏟  ⏞  
=[𝐻=∅]

(by (4.35), applied to
𝐻 instead of 𝐹 )

(here, we renamed the summation indices 𝑦 and 𝑥 as 𝐻 and 𝐺)

=
∑︁

𝐻∈Flats𝑀 ;
𝐻⊆𝐹

𝜇 (𝐻,𝐹 ) [𝐻 = ∅]

=
∑︁

𝐻∈Flats𝑀 ;
𝐻⊆𝐹 ;
𝐻=∅

𝜇 (𝐻,𝐹 ) [𝐻 = ∅]⏟  ⏞  
=1

(since 𝐻=∅)

+
∑︁

𝐻∈Flats𝑀 ;
𝐻⊆𝐹 ;
𝐻 ̸=∅

𝜇 (𝐻,𝐹 ) [𝐻 = ∅]⏟  ⏞  
=0

(since 𝐻 ̸=∅)

=
∑︁

𝐻∈Flats𝑀 ;
𝐻⊆𝐹 ;
𝐻=∅⏟  ⏞  

=
∑︀

𝐻∈Flats𝑀 ;
𝐻=∅

(since the condition 𝐻⊆𝐹
is automatically implied by

the condition 𝐻=∅)

𝜇 (𝐻,𝐹 )

=
∑︁

𝐻∈Flats𝑀 ;
𝐻=∅

𝜇 (𝐻,𝐹 ) . (4.36)

Now, we shall prove that

𝛽𝐹 = [∅ = ∅]𝜇 (∅, 𝐹 ) . (4.37)

Proof of (4.37): We are in one of the following two cases:

Case 1: We have ∅ = ∅.

Case 2: We have ∅ ̸= ∅.

Let us consider Case 1 first. In this case, we have ∅ = ∅. Hence, ∅ = ∅ ∈

Flats𝑀 . Thus, the sum
∑︀

𝐻∈Flats𝑀 ;
𝐻=∅

𝜇 (𝐻,𝐹 ) has exactly one addend: namely, the ad-
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dend for 𝐻 = ∅. Thus,
∑︀

𝐻∈Flats𝑀 ;
𝐻=∅

𝜇 (𝐻,𝐹 ) = 𝜇

⎛⎝ ∅⏟ ⏞ 
=∅

, 𝐹

⎞⎠ = 𝜇 (∅, 𝐹 ). Thus, (4.36)

becomes 𝛽𝐹 =
∑︀

𝐻∈Flats𝑀 ;
𝐻=∅

𝜇 (𝐻,𝐹 ) = 𝜇 (∅, 𝐹 ). Comparing this with [∅ = ∅]⏟  ⏞  
=1

(since ∅=∅)

𝜇 (∅, 𝐹 ) =

𝜇 (∅, 𝐹 ), we obtain 𝛽𝐹 = [∅ = ∅]𝜇 (∅, 𝐹 ). Thus, (4.37) is proven in Case 1.

Let us now consider Case 2. In this case, we have ∅ ̸= ∅. Thus, there exists

no 𝐻 ∈ Flats𝑀 such that 𝐻 = ∅ 38. Hence, the sum
∑︀

𝐻∈Flats𝑀 ;
𝐻=∅

𝜇 (𝐻,𝐹 ) is

empty. Thus,
∑︀

𝐻∈Flats𝑀 ;
𝐻=∅

𝜇 (𝐻,𝐹 ) = (empty sum) = 0, so that (4.36) becomes 𝛽𝐹 =∑︀
𝐻∈Flats𝑀 ;

𝐻=∅

𝜇 (𝐻,𝐹 ) = 0. Comparing this with [∅ = ∅]⏟  ⏞  
=0

(since ∅̸=∅)

𝜇 (∅, 𝐹 ) = 0, we obtain 𝛽𝐹 =

[∅ = ∅]𝜇 (∅, 𝐹 ). Thus, (4.37) is proven in Case 2.

Now, we have proven (4.37) in both possible Cases 1 and 2. Thus, (4.37) always

holds.

Now, let us forget that we fixed 𝐹 . We thus have proven (4.37) for each 𝐹 ∈

Flats𝑀 .

38Proof. Assume the contrary. Thus, there exists some 𝐻 ∈ Flats𝑀 such that 𝐻 = ∅. In other
words, ∅ ∈ Flats𝑀 . Hence, ∅ is a flat of 𝑀 . Proposition 4.5.12 (b) (applied to 𝐺 = ∅) thus shows
that ∅ = ∅. This contradicts ∅ ̸= ∅. This contradiction proves that our assumption was wrong,
qed.
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Now,

∑︁
𝐹⊆𝐸

(−1)|𝐹 |

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐹

𝑎𝐾

⎞⎟⎟⎠𝑥𝑚−𝑟𝑀 (𝐹 )

=
∑︁
𝐵⊆𝐸⏟ ⏞ 

=
∑︀

𝐹∈Flats𝑀

∑︀
𝐵⊆𝐸;
𝐵=𝐹

(because if 𝐵 is a subset of 𝐸,
then 𝐵∈Flats𝑀)

(−1)|𝐵|

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠ 𝑥𝑚−𝑟𝑀 (𝐵)⏟  ⏞  
=𝑥𝑚−𝑟𝑀 (𝐵)

(since Proposition 4.5.12 (f) (applied to 𝑇=𝐵)
shows that 𝑟𝑀 (𝐵)=𝑟𝑀(𝐵))

(here, we have renamed the summation index 𝐹 as 𝐵)

=
∑︁

𝐹∈Flats𝑀

∑︁
𝐵⊆𝐸;
𝐵=𝐹

(−1)|𝐵|

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠𝑥𝑚−𝑟𝑀(𝐵)⏟  ⏞  
=𝑥𝑚−𝑟𝑀 (𝐹 )

(since 𝐵=𝐹 )

=
∑︁

𝐹∈Flats𝑀

∑︁
𝐵⊆𝐸;
𝐵=𝐹

(−1)|𝐵|

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐵

𝑎𝐾

⎞⎟⎟⎠
⏟  ⏞  

=𝛽𝐹=[∅=∅]𝜇(∅,𝐹)
(by (4.37))

𝑥𝑚−𝑟𝑀 (𝐹 )

=
∑︁

𝐹∈Flats𝑀

[∅ = ∅]𝜇 (∅, 𝐹 )𝑥𝑚−𝑟𝑀 (𝐹 )

= [∅ = ∅]
∑︁

𝐹∈Flats𝑀

𝜇 (∅, 𝐹 )𝑥𝑚−𝑟𝑀 (𝐹 ). (4.38)

But the definition of 𝜒𝑀 yields 𝜒𝑀 =
∑︀

𝐹∈Flats𝑀
𝜇 (∅, 𝐹 )𝑥𝑚−𝑟𝑀 (𝐹 ). The definition

of ̃︀𝜒𝑀 yields

̃︀𝜒𝑀 = [∅ = ∅] 𝜒𝑀⏟ ⏞ 
=

∑︀
𝐹∈Flats𝑀

𝜇(∅,𝐹)𝑥𝑚−𝑟𝑀 (𝐹 )

= [∅ = ∅]
∑︁

𝐹∈Flats𝑀

𝜇 (∅, 𝐹 )𝑥𝑚−𝑟𝑀 (𝐹 )

=
∑︁
𝐹⊆𝐸

(−1)|𝐹 |

⎛⎜⎜⎝∏︁
𝐾∈K;
𝐾⊆𝐹

𝑎𝐾

⎞⎟⎟⎠𝑥𝑚−𝑟𝑀 (𝐹 ) (by (4.38)) .
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This proves Theorem 4.5.20.

Proof of Corollary 4.5.22. Corollary 4.5.22 can be derived from Theorem 4.5.20 in

the same way as Corollary 4.1.13 was derived from Theorem 4.1.11.

Proof of Theorem 4.5.21. Theorem 4.5.21 can be derived from Theorem 4.5.20 in the

same way as Theorem 4.1.8 was derived from Theorem 4.1.11.

Proof of Corollary 4.5.23. Corollary 4.5.23 follows from Corollary 4.5.22 when K is

set to be the set of all broken circuits of 𝑀 .

Proof of Corollary 4.5.24. If 𝐹 is a subset of 𝐸 such that 𝐹 contains no broken circuit

of 𝑀 as a subset, then

𝑟𝑀 (𝐹 ) = |𝐹 | (4.39)

39. Now, Corollary 4.5.23 yields

̃︀𝜒𝑀 =
∑︁
𝐹⊆𝐸;

𝐹 contains no broken
circuit of 𝑀 as a subset

(−1)|𝐹 | 𝑥𝑚−𝑟𝑀 (𝐹 )⏟  ⏞  
=𝑥𝑚−|𝐹 |

(by (4.39))

=
∑︁
𝐹⊆𝐸;

𝐹 contains no broken
circuit of 𝑀 as a subset

(−1)|𝐹 | 𝑥𝑚−|𝐹 |.

This proves Corollary 4.5.24.

39Proof of (4.39): Let 𝐹 be a subset of 𝐸 such that 𝐹 contains no broken circuit of 𝑀 as a subset.
We shall show that 𝐹 ∈ ℐ. Indeed, assume the contrary. Thus, 𝐹 /∈ ℐ, so that 𝐹 ∈ 𝒫 (𝐸) ∖ ℐ.

Hence, there exists a circuit 𝐶 of 𝑀 such that 𝐶 ⊆ 𝐹 (according to Lemma 4.5.7, applied to 𝑄 = 𝐹 ).
Consider this 𝐶. The set 𝐶 is a circuit, and thus nonempty (because the empty set is in ℐ). Let 𝑒
be the unique element of 𝐶 having maximum label. (This is clearly well-defined, since the labeling
function ℓ is injective). Then, 𝐶 ∖{𝑒} is a broken circuit of 𝑀 (by the definition of a broken circuit).
Thus, 𝐹 contains a broken circuit of 𝑀 as a subset (since 𝐶 ∖ {𝑒} ⊆ 𝐶 ⊆ 𝐹 ). This contradicts
the fact that 𝐹 contains no broken circuit of 𝑀 as a subset. This contradiction shows that our
assumption was wrong. Hence, 𝐹 ∈ ℐ is proven.

Thus, Lemma 4.5.6 (applied to 𝑇 = 𝐹 ) shows that 𝑟𝑀 (𝐹 ) = |𝐹 |, qed.
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Chapter 5

Proof of a conjecture of Bergeron,

Ceballos and Labbé (joint work with

Alexander Postnikov)

Abstract

The reduced expressions for a given element 𝑤 of a Coxeter group (𝑊,𝑆) can be
regarded as the vertices of a directed graph ℛ (𝑤); its arcs correspond to the braid
moves. Specifically, an arc goes from a reduced expression −→𝑎 to a reduced expression−→
𝑏 when

−→
𝑏 is obtained from −→𝑎 by replacing a contiguous subword of the form 𝑠𝑡𝑠𝑡 · · ·

(for some distinct 𝑠, 𝑡 ∈ 𝑆) by 𝑡𝑠𝑡𝑠 · · · (where both subwords have length 𝑚𝑠,𝑡, the
order of 𝑠𝑡 ∈ 𝑊 ). We prove a strong bipartiteness-type result for this graph ℛ (𝑤):
Not only does every cycle of ℛ (𝑤) have even length; actually, the arcs of ℛ (𝑤) can
be colored (with colors corresponding to the type of braid moves used), and to every
color 𝑐 corresponds an “opposite” color 𝑐op (corresponding to the reverses of the braid
moves with color 𝑐), and for any color 𝑐, the number of arcs in any given cycle of
ℛ (𝑤) having color in {𝑐, 𝑐op} is even. This is a generalization and strengthening of a
2014 result by Bergeron, Ceballos and Labbé.
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Introduction

Let (𝑊,𝑆) be a Coxeter group1 with Coxeter matrix (𝑚𝑠,𝑠′)(𝑠,𝑠′)∈𝑆×𝑆, and let 𝑤 ∈ 𝑊 .

Consider a directed graph ℛ (𝑤) whose vertices are the reduced expressions for 𝑤,

and whose arcs are defined as follows: The graph ℛ (𝑤) has an arc from a reduced

expression −→𝑎 to a reduced expression
−→
𝑏 whenever

−→
𝑏 can be obtained from −→𝑎 by

replacing some contiguous subword of the form (𝑠, 𝑡, 𝑠, 𝑡, . . .)⏟  ⏞  
𝑚𝑠,𝑡 factors

by (𝑡, 𝑠, 𝑡, 𝑠, . . .)⏟  ⏞  
𝑚𝑠,𝑡 factors

, where 𝑠

and 𝑡 are two distinct elements of 𝑆. (This replacement is called an (𝑠, 𝑡)-braid move.)

The directed graph ℛ (𝑤) (or, rather, its undirected version) has been studied

many times; see, for example, [ReiRoi11] and the references therein. In this note,

we shall prove a bipartiteness-type result for ℛ (𝑤). Its simplest aspect (actually, a

corollary) is the fact that ℛ (𝑤) is bipartite (i.e., every cycle of ℛ (𝑤) has even length);

but we shall concern ourselves with stronger statements. We can regard ℛ (𝑤) as an

edge-colored directed graph: Namely, whenever a reduced expression
−→
𝑏 is obtained

from a reduced expression −→𝑎 by an (𝑠, 𝑡)-braid move, we color the arc from −→𝑎 to
−→
𝑏 with the conjugacy class2 [(𝑠, 𝑡)] of the pair (𝑠, 𝑡) ∈ 𝑆 × 𝑆. Our result (Theorem

5.2.3) then states that, for every such color [(𝑠, 𝑡)], every cycle of ℛ (𝑤) has as many

arcs colored [(𝑠, 𝑡)] as it has arcs colored [(𝑡, 𝑠)], and that the total number of arcs

colored [(𝑠, 𝑡)] and [(𝑡, 𝑠)] in any given cycle is even. This generalizes and strengthens

a result of Bergeron, Ceballos and Labbé [BeCeLa14, Theorem 3.1].

5.1 A motivating example

Before we introduce the general setting, let us demonstrate it on a simple example.

This example is not necessary for the rest of this note (and can be skipped by the

1All terminology and notation that appears in this introduction will later be defined in more
detail.

2A conjugacy class here means an equivalence class under the relation ∼ on the set 𝑆×𝑆, which
is given by(︀

(𝑠, 𝑡) ∼ (𝑠′, 𝑡′) ⇐⇒ there exists a 𝑞 ∈ 𝑊 such that 𝑞𝑠𝑞−1 = 𝑠′ and 𝑞𝑡𝑞−1 = 𝑡′
)︀
.

The conjugacy class of an (𝑠, 𝑡) ∈ 𝑆 × 𝑆 is denoted by [(𝑠, 𝑡)].
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reader3); it merely provides some intuition and motivation for the definitions to come.

For this example, we fix an integer 𝑛 ≥ 1, and we let 𝑊 be the symmetric group 𝑆𝑛

of the set {1, 2, . . . , 𝑛}. For each 𝑖 ∈ {1, 2, . . . , 𝑛− 1}, let 𝑠𝑖 ∈ 𝑊 be the transposition

which switches 𝑖 with 𝑖 + 1 (while leaving the remaining elements of {1, 2, . . . , 𝑛}

unchanged). Let 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛−1} ⊆ 𝑊 . The pair (𝑊,𝑆) is an example of what

is called a Coxeter group (see, e.g., [Bourba81, Chapter 4] and [Lusztig14, §1]); more

precisely, it is known as the Coxeter group 𝐴𝑛−1. In particular, 𝑆 is a generating set

for 𝑊 , and the group 𝑊 can be described by the generators 𝑠1, 𝑠2, . . . , 𝑠𝑛−1 and the

relations

𝑠2𝑖 = id for every 𝑖 ∈ {1, 2, . . . , 𝑛− 1} ; (5.1)

𝑠𝑖𝑠𝑗 = 𝑠𝑗𝑠𝑖 for every 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛− 1} such that |𝑖− 𝑗| > 1; (5.2)

𝑠𝑖𝑠𝑗𝑠𝑖 = 𝑠𝑗𝑠𝑖𝑠𝑗 for every 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛− 1} such that |𝑖− 𝑗| = 1. (5.3)

This is known as the Coxeter presentation of 𝑆𝑛, and is due to Moore (see, e.g.,

[Willia03, Theorem 1.2.4]).

Given any 𝑤 ∈ 𝑊 , there exists a tuple (𝑎1, 𝑎2, . . . , 𝑎𝑘) of elements of 𝑆 such that

𝑤 = 𝑎1𝑎2 · · · 𝑎𝑘 (since 𝑆 generates 𝑊 ). Such a tuple is called a reduced expression for

𝑤 if its length 𝑘 is minimal among all such tuples (for the given 𝑤). For instance, when

𝑛 = 4, the permutation 𝜋 ∈ 𝑆4 = 𝑊 that is written as (3, 1, 4, 2) in one-line notation

has reduced expressions (𝑠2, 𝑠1, 𝑠3) and (𝑠2, 𝑠3, 𝑠1); in fact, 𝜋 = 𝑠2𝑠1𝑠3 = 𝑠2𝑠3𝑠1. (We

are following the convention by which the product 𝑢 ∘ 𝑣 = 𝑢𝑣 of two permutations

𝑢, 𝑣 ∈ 𝑆𝑛 is defined to be the permutation sending each 𝑖 to 𝑢 (𝑣 (𝑖)).)

Given a 𝑤 ∈ 𝑊 , the set of reduced expressions for 𝑤 has an additional structure

of a directed graph. Namely, the equalities (5.2) and (5.3) show that, given a reduced

expression −→𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑘) for 𝑤 ∈ 𝑊 , we can obtain another reduced expression

in any of the following two ways:

∙ Pick some 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛− 1} such that |𝑖− 𝑗| > 1, and pick any factor of

3All notations introduced in Section 5.1 should be understood as local to this section; they will
not be used beyond it (and often will be replaced by eponymic notations for more general objects).
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the form (𝑠𝑖, 𝑠𝑗) in −→𝑎 (that is, a pair of adjacent entries of −→𝑎 , the first of which

is 𝑠𝑖 and the second of which is 𝑠𝑗), provided that such a factor exists, and

replace this factor by (𝑠𝑗, 𝑠𝑖).

∙ Alternatively, pick some 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛− 1} such that |𝑖− 𝑗| = 1, and pick

any factor of the form (𝑠𝑖, 𝑠𝑗, 𝑠𝑖) in −→𝑎 , provided that such a factor exists, and

replace this factor by (𝑠𝑗, 𝑠𝑖, 𝑠𝑗).

In both cases, we obtain a new reduced expression for 𝑤 (provided that the re-

spective factors exist). We say that this new expression is obtained from −→𝑎 by an

(𝑠𝑖, 𝑠𝑗)-braid move, or (when we do not want to mention 𝑠𝑖 and 𝑠𝑗) by a braid move.

For instance, the reduced expression (𝑠2, 𝑠1, 𝑠3) for 𝜋 = (3, 1, 4, 2) ∈ 𝑆4 is obtained

from the reduced expression (𝑠2, 𝑠3, 𝑠1) by an (𝑠3, 𝑠1)-braid move, and conversely

(𝑠2, 𝑠3, 𝑠1) is obtained from (𝑠2, 𝑠1, 𝑠3) by an (𝑠1, 𝑠3)-braid move.

Now, we can define a directed graph ℛ0 (𝑤) whose vertices are the reduced expres-

sions for 𝑤, and which has an edge from −→𝑎 to
−→
𝑏 whenever

−→
𝑏 is obtained from −→𝑎 by

a braid move (of either sort). For instance, let 𝑛 = 5, and let 𝑤 be the permutation

written in one-line notation as (3, 2, 1, 5, 4). Then, ℛ0 (𝑤) looks as follows:

(𝑠2, 𝑠4, 𝑠1, 𝑠2)

(𝑠4,𝑠1)
++

(𝑠2,𝑠4)
ss

(𝑠2, 𝑠1, 𝑠4, 𝑠2)

(𝑠1,𝑠4)

kk
(𝑠4,𝑠2)

  

(𝑠4, 𝑠2, 𝑠1, 𝑠2)

(𝑠4,𝑠2) 33

(𝑠2,𝑠1)

��

(𝑠2, 𝑠1, 𝑠2, 𝑠4)(𝑠2,𝑠4)

``

(𝑠2,𝑠1)

��

(𝑠4, 𝑠1, 𝑠2, 𝑠1)

(𝑠1,𝑠2)

EE

(𝑠4,𝑠1)

  

(𝑠1, 𝑠2, 𝑠1, 𝑠4)

(𝑠1,𝑠2)

EE

(𝑠1,𝑠4)
ss

(𝑠1, 𝑠4, 𝑠2, 𝑠1)(𝑠1,𝑠4)

``

(𝑠4,𝑠2)
++

(𝑠1, 𝑠2, 𝑠4, 𝑠1)

(𝑠2,𝑠4)

kk

(𝑠4,𝑠1) 33

.

Here, we have “colored” (i.e., labelled) every arc
(︁−→𝑎 ,

−→
𝑏
)︁

with the pair (𝑠𝑖, 𝑠𝑗) such

that
−→
𝑏 is obtained from −→𝑎 by an (𝑠𝑖, 𝑠𝑗)-braid move.

In our particular case, the graph ℛ0 (𝑤) consists of a single bidirected cycle. This is

not true in general, but certain things hold in general. First, it is clear that whenever
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an arc from some vertex −→𝑎 to some vertex
−→
𝑏 has color (𝑠𝑖, 𝑠𝑗), then there is an arc

with color (𝑠𝑗, 𝑠𝑖) from
−→
𝑏 to −→𝑎 . Thus, ℛ0 (𝑤) can be regarded as an undirected graph

(at the expense of murkying up the colors of the arcs). Furthermore, every reduced

expression for 𝑤 can be obtained from any other by a sequence of braid moves (this

is the Matsumoto-Tits theorem; it appears, e.g., in [Lusztig14, Theorem 1.9]). Thus,

the graph ℛ0 (𝑤) is strongly connected.

What do the cycles of ℛ0 (𝑤) have in common? Walking down the long cycle in

the graph ℛ0 (𝑤) for 𝑤 = (3, 2, 1, 5, 4) ∈ 𝑆5 counterclockwise, we observe that the

(𝑠1, 𝑠2)-braid move is used once (i.e., we traverse precisely one arc with color (𝑠1, 𝑠2)),

the (𝑠2, 𝑠1)-braid move once, the (𝑠1, 𝑠4)-braid move twice, the (𝑠4, 𝑠1)-braid move

once, the (𝑠2, 𝑠4)-braid move once, and the (𝑠4, 𝑠2)-braid move twice. In particular:

∙ The total number of (𝑠𝑖, 𝑠𝑗)-braid moves with |𝑖− 𝑗| = 1 used is even (namely,

2).

∙ The total number of (𝑠𝑖, 𝑠𝑗)-braid moves with |𝑖− 𝑗| > 1 used is even (namely,

6).

This example alone is scant evidence of any general result, but both evenness

patterns persist for general 𝑛, for any 𝑤 ∈ 𝑆𝑛 and any directed cycle in ℛ0 (𝑤). We

can simplify the statement if we change our coloring to a coarser one. Namely, let M

denote the subset {(𝑠, 𝑡) ∈ 𝑆 × 𝑆 | 𝑠 ̸= 𝑡} = {(𝑠𝑖, 𝑠𝑗) | 𝑖 ̸= 𝑗} of 𝑆 × 𝑆. We define

a binary relation ∼ on M by

(︀
(𝑠, 𝑡) ∼ (𝑠′, 𝑡′) ⇐⇒ there exists a 𝑞 ∈ 𝑊 such that 𝑞𝑠𝑞−1 = 𝑠′ and 𝑞𝑡𝑞−1 = 𝑡′

)︀
.

This relation ∼ is an equivalence relation; it thus gives rise to a quotient set M/ ∼.

It is easy to see that the quotient set M/ ∼ has exactly two elements (for 𝑛 ≥ 4): the

equivalence class of all (𝑠𝑖, 𝑠𝑗) with |𝑖− 𝑗| = 1, and the equivalence class of all (𝑠𝑖, 𝑠𝑗)

with |𝑖− 𝑗| > 1. Let us now define an edge-colored directed graph ℛ (𝑤) by starting

with ℛ0 (𝑤), and replacing each color (𝑠𝑖, 𝑠𝑗) by its equivalence class [(𝑠𝑖, 𝑠𝑗)]. Thus,

in ℛ (𝑤), the arcs are colored with the (at most two) elements of M/ ∼. Now, our
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evenness patterns can be restated as follows: For any 𝑛 ∈ N, any 𝑤 ∈ 𝑆𝑛 and any

color 𝑐 ∈ M/ ∼, any directed cycle of ℛ (𝑤) has an even number of arcs with color 𝑐.

This can be generalized further to every Coxeter group, with a minor caveat.

Namely, let (𝑊,𝑆) be a Coxeter group with Coxeter matrix (𝑚𝑠,𝑠′)(𝑠,𝑠′)∈𝑆×𝑆. Notions

such as reduced expressions and braid moves still make sense (see below for references

and definitions). We redefine M as {(𝑠, 𝑡) ∈ 𝑆 × 𝑆 | 𝑠 ̸= 𝑡 and 𝑚𝑠,𝑡 < ∞} (since

pairs (𝑠, 𝑡) with 𝑚𝑠,𝑡 = ∞ do not give rise to braid moves). Unlike in the case of

𝑊 = 𝑆𝑛, it is not necessarily true that (𝑠, 𝑡) ∼ (𝑡, 𝑠) for every (𝑠, 𝑡) ∈ M. We define

[(𝑠, 𝑡)]op = [(𝑡, 𝑠)]. The evenness pattern now has to be weakened as follows: For every

𝑤 ∈ 𝑊 and any color 𝑐 ∈ M/ ∼, any directed cycle of ℛ (𝑤) has an even number of

arcs whose color belongs to {𝑐, 𝑐op}. (For 𝑊 = 𝑆𝑛, we have 𝑐 = 𝑐op, and thus this

recovers our old evenness patterns.) This is part of the main theorem we will prove

in this note – namely, Theorem 5.2.3 (b); it extends a result [BeCeLa14, Theorem

3.1] obtained by Bergeron, Ceballos and Labbé by geometric means. The other part

of the main theorem (Theorem 5.2.3 (a)) states that any directed cycle of ℛ (𝑤) has

as many arcs with color 𝑐 as it has arcs with color 𝑐op.

5.2 The theorem

In the following, we shall use the notations of [Lusztig14, §1] concerning Coxeter

groups. (These notations are compatible with those of [Bourba81, Chapter 4], except

that Bourbaki writes 𝑚 (𝑠, 𝑠′) instead of 𝑚𝑠,𝑠′ , and speaks of “Coxeter systems” instead

of “Coxeter groups”.)

We fix a Coxeter group4 (𝑊,𝑆) with Coxeter matrix (𝑚𝑠,𝑠′)(𝑠,𝑠′)∈𝑆×𝑆. Thus, 𝑊 is

4Let us give a brief definition of Coxeter groups and Coxeter matrices:
A Coxeter group is a pair (𝑊,𝑆), where 𝑊 is a group, and where 𝑆 is a finite subset of 𝑊 having

the following property: There exists a matrix (𝑚𝑠,𝑠′)(𝑠,𝑠′)∈𝑆×𝑆 ∈ {1, 2, 3, . . . ,∞}𝑆×𝑆 such that

∙ every 𝑠 ∈ 𝑆 satisfies 𝑚𝑠,𝑠 = 1;

∙ every two distinct elements 𝑠 and 𝑡 of 𝑆 satisfy 𝑚𝑠,𝑡 = 𝑚𝑡,𝑠 ≥ 2;

∙ the group 𝑊 can be presented by the generators 𝑆 and the relations

(𝑠𝑡)
𝑚𝑠,𝑡 = 1 for all (𝑠, 𝑡) ∈ 𝑆 × 𝑆 satisfying 𝑚𝑠,𝑡 ̸= ∞.
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a group, and 𝑆 is a set of elements of order 2 in 𝑊 such that for every (𝑠, 𝑠′) ∈ 𝑆×𝑆,

the element 𝑠𝑠′ ∈ 𝑊 has order 𝑚𝑠,𝑠′ . (See, e.g., [Lusztig14, Proposition 1.3(b)] for

this well-known fact.)

We let M denote the subset

{(𝑠, 𝑡) ∈ 𝑆 × 𝑆 | 𝑠 ̸= 𝑡 and 𝑚𝑠,𝑡 < ∞}

of 𝑆×𝑆. (This is denoted by 𝐼 in [Bourba81, Chapter 4, n∘ 1.3].) We define a binary

relation ∼ on M by

(︀
(𝑠, 𝑡) ∼ (𝑠′, 𝑡′) ⇐⇒ there exists a 𝑞 ∈ 𝑊 such that 𝑞𝑠𝑞−1 = 𝑠′ and 𝑞𝑡𝑞−1 = 𝑡′

)︀
.

It is clear that this relation ∼ is an equivalence relation; it thus gives rise to a quotient

set M/ ∼. For every pair 𝑃 ∈ M, we denote by [𝑃 ] the equivalence class of 𝑃 with

respect to this relation ∼.

We set N = {0, 1, 2, . . .}.

A word will mean a 𝑘-tuple for some 𝑘 ∈ N. A subword of a word (𝑠1, 𝑠2, . . . , 𝑠𝑘)

will mean a word of the form
(︀
𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑝

)︀
, where 𝑖1, 𝑖2, . . . , 𝑖𝑝 are elements of

{1, 2, . . . , 𝑘} satisfying 𝑖1 < 𝑖2 < · · · < 𝑖𝑝. For instance, (1), (3, 5), (1, 3, 5), ()

and (1, 5) are subwords of the word (1, 3, 5). A factor of a word (𝑠1, 𝑠2, . . . , 𝑠𝑘) will

mean a word of the form (𝑠𝑖+1, 𝑠𝑖+2, . . . , 𝑠𝑖+𝑚) for some 𝑖 ∈ {0, 1, . . . , 𝑘} and some

𝑚 ∈ {0, 1, . . . , 𝑘 − 𝑖}. For instance, (1), (3, 5), (1, 3, 5) and () are factors of the word

(1, 3, 5), but (1, 5) is not.

We recall that a reduced expression for an element 𝑤 ∈ 𝑊 is a 𝑘-tuple (𝑠1, 𝑠2, . . . , 𝑠𝑘)

of elements of 𝑆 such that 𝑤 = 𝑠1𝑠2 · · · 𝑠𝑘, and such that 𝑘 is minimum (among all

such tuples). The length of a reduced expression for 𝑤 is called the length of 𝑤, and

is denoted by 𝑙 (𝑤). Thus, a reduced expression for an element 𝑤 ∈ 𝑊 is a 𝑘-tuple

In this case, the matrix (𝑚𝑠,𝑠′)(𝑠,𝑠′)∈𝑆×𝑆 is called the Coxeter matrix of (𝑊,𝑆). It is well-known
(see, e.g., [Lusztig14, §1]) that any Coxeter group has a unique Coxeter matrix, and conversely, for
every finite set 𝑆 and any matrix (𝑚𝑠,𝑠′)(𝑠,𝑠′)∈𝑆×𝑆 ∈ {1, 2, 3, . . . ,∞}𝑆×𝑆 satisfying the first two of
the three requirements above, there exists a unique (up to isomorphism preserving 𝑆) Coxeter group
(𝑊,𝑆).
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(𝑠1, 𝑠2, . . . , 𝑠𝑘) of elements of 𝑆 such that 𝑤 = 𝑠1𝑠2 · · · 𝑠𝑘 and 𝑘 = 𝑙 (𝑤).

Definition 5.2.1. Let 𝑤 ∈ 𝑊 . Let −→𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑘) and
−→
𝑏 = (𝑏1, 𝑏2, . . . , 𝑏𝑘)

be two reduced expressions for 𝑤.

Let (𝑠, 𝑡) ∈ M. We say that
−→
𝑏 is obtained from −→𝑎 by an (𝑠, 𝑡)-braid move if

−→
𝑏 can be obtained from −→𝑎 by finding a factor of −→𝑎 of the form (𝑠, 𝑡, 𝑠, 𝑡, 𝑠, . . .)⏟  ⏞  

𝑚𝑠,𝑡 elements

and replacing it by (𝑡, 𝑠, 𝑡, 𝑠, 𝑡, . . .)⏟  ⏞  
𝑚𝑠,𝑡 elements

.

We notice that if
−→
𝑏 is obtained from −→𝑎 by an (𝑠, 𝑡)-braid move, then −→𝑎 is

obtained from
−→
𝑏 by an (𝑡, 𝑠)-braid move.

Definition 5.2.2. Let 𝑤 ∈ 𝑊 . We define an edge-colored directed graph ℛ (𝑤),

whose arcs are colored with elements of M/ ∼, as follows:

∙ The vertex set of ℛ (𝑤) shall be the set of all reduced expressions for 𝑤.

∙ The arcs of ℛ (𝑤) are defined as follows: Whenever (𝑠, 𝑡) ∈ M, and whenever
−→𝑎 and

−→
𝑏 are two reduced expressions for 𝑤 such that

−→
𝑏 is obtained from

−→𝑎 by an (𝑠, 𝑡)-braid move, we draw an arc from 𝑠 to 𝑡 with color [(𝑠, 𝑡)].

Theorem 5.2.3. Let 𝑤 ∈ 𝑊 . Let 𝐶 be a (directed) cycle in the graph ℛ (𝑤).

Let 𝑐 = [(𝑠, 𝑡)] ∈ M/ ∼ be an equivalence class with respect to ∼. Let 𝑐op be the

equivalence class [(𝑡, 𝑠)] ∈ M/ ∼. Then:

(a) The number of arcs colored 𝑐 appearing in the cycle 𝐶 equals the number

of arcs colored 𝑐op appearing in the cycle 𝐶.

(b) The number of arcs whose color belongs to {𝑐, 𝑐op} appearing in the cycle

𝐶 is even.

None of the parts (a) and (b) of Theorem 5.2.3 is a trivial consequence of the

other: When 𝑐 = 𝑐op, the statement of Theorem 5.2.3 (a) is obvious and does not

imply part (b).

Theorem 5.2.3 (b) generalizes [BeCeLa14, Theorem 3.1] in two directions: First,

Theorem 5.2.3 is stated for arbitrary Coxeter groups, rather than only for finite
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Coxeter groups as in [BeCeLa14]. Second, in the terms of [BeCeLa14, Remark 3.3],

we are working with sets 𝑍 that are “stabled by conjugation instead of automorphism”.

5.3 The strategy

We shall now introduce some notations and state some auxiliary results that will

be used to prove Theorem 5.2.3. Our strategy of proof is inspired by that used

in [BeCeLa14, §3.4] and thus (indirectly) also by that in [ReiRoi11, §3, and proof

of Corollary 5.2]; however, we shall avoid any use of geometry (such as roots and

hyperplane arrangements), and work entirely with the Coxeter group itself.

We denote the subset
⋃︀

𝑥∈𝑊
𝑥𝑆𝑥−1 of 𝑊 by 𝑇 . The elements of 𝑇 are called the

reflections (of 𝑊 ). They all have order 2. (The notation 𝑇 is used here in the same

meaning as in [Lusztig14, §1] and in [Bourba81, Chapter 4, n∘ 1.4].)

Definition 5.3.1. For every 𝑘 ∈ N, we consider the set 𝑊 𝑘 as a left 𝑊 -set by the

rule

𝑤 (𝑤1, 𝑤2, . . . , 𝑤𝑘) = (𝑤𝑤1, 𝑤𝑤2, . . . , 𝑤𝑤𝑘) ,

and as a right 𝑊 -set by the rule

(𝑤1, 𝑤2, . . . , 𝑤𝑘)𝑤 = (𝑤1𝑤,𝑤2𝑤, . . . , 𝑤𝑘𝑤) .

Definition 5.3.2. Let 𝑠 and 𝑡 be two distinct elements of 𝑇 . Let 𝑚𝑠,𝑡 denote the

order of the element 𝑠𝑡 ∈ 𝑊 . (This extends the definition of 𝑚𝑠,𝑡 for 𝑠, 𝑡 ∈ 𝑆.)

Assume that 𝑚𝑠,𝑡 < ∞. We let 𝐷𝑠,𝑡 denote the subgroup of 𝑊 generated by 𝑠

and 𝑡. Then, 𝐷𝑠,𝑡 is a dihedral group (since 𝑠 and 𝑡 are two distinct nontrivial

involutions, and since any group generated by two distinct nontrivial involutions

is dihedral). We denote by 𝜌𝑠,𝑡 the word

(︀
(𝑠𝑡)0 𝑠, (𝑠𝑡)1 𝑠, . . . , (𝑠𝑡)𝑚𝑠,𝑡−1 𝑠

)︀
=

⎛⎝𝑠, 𝑠𝑡𝑠, 𝑠𝑡𝑠𝑡𝑠, . . . , 𝑠𝑡𝑠𝑡𝑠 · · · 𝑠⏟  ⏞  
2𝑚𝑠,𝑡−1 factors

⎞⎠ ∈ (𝐷𝑠,𝑡)
𝑚𝑠,𝑡 .
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The reversal of a word (𝑎1, 𝑎2, . . . , 𝑎𝑘) is defined to be the word (𝑎𝑘, 𝑎𝑘−1, . . . , 𝑎1).

The following proposition collects some simple properties of the words 𝜌𝑠,𝑡. We

delay its proof until the next section, to avoid cluttering up this part of the note.

Proposition 5.3.3. Let 𝑠 and 𝑡 be two distinct elements of 𝑇 such that 𝑚𝑠,𝑡 < ∞.

Then:

(a) The word 𝜌𝑠,𝑡 consists of reflections in 𝐷𝑠,𝑡, and contains every reflection in

𝐷𝑠,𝑡 exactly once.

(b) The word 𝜌𝑡,𝑠 is the reversal of the word 𝜌𝑠,𝑡.

(c) Let 𝑞 ∈ 𝑊 . Then, the word 𝑞𝜌𝑡,𝑠𝑞
−1 is the reversal of the word 𝑞𝜌𝑠,𝑡𝑞

−1.

Definition 5.3.4. Let −→𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑘) ∈ 𝑆𝑘. Then, Invs−→𝑎 is defined to be

the 𝑘-tuple (𝑡1, 𝑡2, . . . , 𝑡𝑘) ∈ 𝑇 𝑘, where we set

𝑡𝑖 = (𝑎1𝑎2 · · · 𝑎𝑖−1) 𝑎𝑖 (𝑎1𝑎2 · · · 𝑎𝑖−1)
−1 for every 𝑖 ∈ {1, 2, . . . , 𝑘} .

Remark 5.3.5. Let 𝑤 ∈ 𝑊 . Let −→𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑘) be a reduced expression

for 𝑤. The 𝑘-tuple Invs−→𝑎 is denoted by Φ (−→𝑎 ) in [Bourba81, Chapter 4, n∘ 1.4],

and is closely connected to various standard constructions in Coxeter group theory.

A well-known fact states that the set of all entries of Invs−→𝑎 depends only on 𝑤

(but not on −→𝑎 ); this set is called the (left) inversion set of 𝑤. The 𝑘-tuple Invs−→𝑎

contains each element of this set exactly once (see Proposition 5.3.6 below); it thus

induces a total order on this set.

Proposition 5.3.6. Let 𝑤 ∈ 𝑊 .

(a) If −→𝑎 is a reduced expression for 𝑤, then all entries of the tuple Invs−→𝑎 are

distinct.

(b) Let (𝑠, 𝑡) ∈ M. Let −→𝑎 and
−→
𝑏 be two reduced expressions for 𝑤 such that

−→
𝑏 is obtained from −→𝑎 by an (𝑠, 𝑡)-braid move. Then, there exists a 𝑞 ∈ 𝑊 such
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that Invs
−→
𝑏 is obtained from Invs−→𝑎 by replacing a particular factor of the form

𝑞𝜌𝑠,𝑡𝑞
−1 by its reversal5.

Again, we refer to the next section for the proof of Proposition 5.3.6.

The following fact is rather easy (but will be proven in detail in the next section):

Proposition 5.3.7. Let 𝑤 ∈ 𝑊 . Let 𝑠 and 𝑡 be two distinct elements of 𝑇 such

that 𝑚𝑠,𝑡 < ∞. Let −→𝑎 be a reduced expression for 𝑤.

(a) The word 𝜌𝑠,𝑡 appears as a subword of Invs−→𝑎 at most one time.

(b) The words 𝜌𝑠,𝑡 and 𝜌𝑡,𝑠 cannot both appear as subwords of Invs−→𝑎 .

We now let N denote the subset
⋃︀

𝑥∈𝑊
𝑥M𝑥−1 of 𝑇×𝑇 . Clearly, M ⊆ N. Moreover,

for every (𝑠, 𝑡) ∈ N, we have 𝑠 ̸= 𝑡 and 𝑚𝑠,𝑡 < ∞ (because (𝑠, 𝑡) ∈ N =
⋃︀

𝑥∈𝑊
𝑥M𝑥−1,

and because these properties are preserved by conjugation). Thus, for every (𝑠, 𝑡) ∈ N,

the word 𝜌𝑠,𝑡 is well-defined and has length 𝑚𝑠,𝑡.

We define a binary relation ≈ on N by

(︀
(𝑠, 𝑡) ≈ (𝑠′, 𝑡′) ⇐⇒ there exists a 𝑞 ∈ 𝑊 such that 𝑞𝑠𝑞−1 = 𝑠′ and 𝑞𝑡𝑞−1 = 𝑡′

)︀
.

It is clear that this relation ≈ is an equivalence relation; it thus gives rise to a quotient

set N/ ≈. For every pair 𝑃 ∈ N, we denote by [[𝑃 ]] the equivalence class of 𝑃 with

respect to this relation ≈.

The relation ∼ on M is the restriction of the relation ≈ to M. Hence, every

equivalence class 𝑐 with respect to ∼ is a subset of an equivalence class with respect

to ≈. We denote the latter equivalence class by 𝑐N. Thus, [𝑃 ]N = [[𝑃 ]] for every

𝑃 ∈ M.

We notice that the set N is invariant under switching the two elements of a pair

(i.e., for every (𝑢, 𝑣) ∈ N, we have (𝑣, 𝑢) ∈ N). Moreover, the relation ≈ is preserved

under switching the two elements of a pair (i.e., if (𝑠, 𝑡) ≈ (𝑠′, 𝑡′), then (𝑡, 𝑠) ≈ (𝑡′, 𝑠′)).

This shall be tacitly used in the following proofs.

5See Definition 5.3.1 for the meaning of 𝑞𝜌𝑠,𝑡𝑞−1.
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Definition 5.3.8. Let 𝑤 ∈ 𝑊 . Let −→𝑎 be a reduced expression for 𝑤.

(a) For any (𝑠, 𝑡) ∈ N, we define an element has𝑠,𝑡
−→𝑎 ∈ {0, 1} by

has𝑠,𝑡
−→𝑎 =

⎧⎪⎨⎪⎩1, if 𝜌𝑠,𝑡 appears as a subword of Invs−→𝑎 ;

0, otherwise
.

(Keep in mind that we are speaking of subwords, not just factors, here.)

(b) Consider the free Z-module Z [N] with basis N. We define an element

Has−→𝑎 ∈ Z [N] by

Has−→𝑎 =
∑︁

(𝑠,𝑡)∈N

has𝑠,𝑡
−→𝑎 · (𝑠, 𝑡)

(where the (𝑠, 𝑡) stands for the basis element (𝑠, 𝑡) ∈ N of Z [N]).

We can now state the main result that we will use to prove Theorem 5.2.3:

Theorem 5.3.9. Let 𝑤 ∈ 𝑊 . Let (𝑠, 𝑡) ∈ M. Let −→𝑎 and
−→
𝑏 be two reduced

expressions for 𝑤 such that
−→
𝑏 is obtained from −→𝑎 by an (𝑠, 𝑡)-braid move.

Proposition 5.3.6 (b) shows that there exists a 𝑞 ∈ 𝑊 such that Invs
−→
𝑏 is

obtained from Invs−→𝑎 by replacing a particular factor of the form 𝑞𝜌𝑠,𝑡𝑞
−1 by its

reversal. Consider this 𝑞. Set 𝑠′ = 𝑞𝑠𝑞−1 and 𝑡′ = 𝑞𝑡𝑞−1; thus, 𝑠′ and 𝑡′ are

reflections and satisfy 𝑚𝑠′,𝑡′ = 𝑚𝑠,𝑡 < ∞. Also, the definitions of 𝑠′ and 𝑡′ yield

(𝑠′, 𝑡′) = 𝑞 (𝑠, 𝑡)⏟ ⏞ 
∈M

𝑞−1 ∈ 𝑞M𝑞−1 ⊆ N. Similarly, (𝑡′, 𝑠′) ∈ N (since (𝑡, 𝑠) ∈ M).

Now, we have

Has
−→
𝑏 = Has−→𝑎 − (𝑠′, 𝑡′) + (𝑡′, 𝑠′) . (5.4)

5.4 The proof

By now, we owe the reader several proofs. Let us first see how Theorem 5.2.3 follows

from Theorem 5.3.9:

Proof of Theorem 5.2.3. We shall use the Iverson bracket notation: i.e., if 𝒜 is any
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logical statement, then we shall write [𝒜] for the integer

⎧⎪⎨⎪⎩1, if 𝒜 is true;

0, if 𝒜 is false
.

For every 𝑧 ∈ Z [N] and 𝑛 ∈ N, we let coord𝑛 𝑧 ∈ Z be the 𝑛-coordinate of 𝑧 (with

respect to the basis N of Z [N]).

For every 𝑧 ∈ Z [N] and 𝑁 ⊆ N, we set coord𝑁 𝑧 =
∑︀
𝑛∈𝑁

coord𝑛 𝑧.

We have 𝑐 = [(𝑠, 𝑡)], thus 𝑐N = [[(𝑠, 𝑡)]] and 𝑐op = [(𝑡, 𝑠)]. From the latter equality,

we obtain (𝑐op)N = [[(𝑡, 𝑠)]].

Let −→𝑐1 ,−→𝑐2 , . . . ,−→𝑐𝑘 ,−−→𝑐𝑘+1 be the vertices on the cycle 𝐶 (listed in the order they are

encountered when we traverse the cycle, starting at some arbitrarily chosen vertex on

the cycle and going until we return to the starting point). Thus:

∙ We have −−→𝑐𝑘+1 =
−→𝑐1 .

∙ There is an arc from −→𝑐𝑖 to −−→𝑐𝑖+1 for every 𝑖 ∈ {1, 2, . . . , 𝑘}.

Fix 𝑖 ∈ {1, 2, . . . , 𝑘}. Then, there is an arc from −→𝑐𝑖 to −−→𝑐𝑖+1. In other words, there

exists some (𝑠𝑖, 𝑡𝑖) ∈ M such that −−→𝑐𝑖+1 is obtained from −→𝑐𝑖 by an (𝑠𝑖, 𝑡𝑖)-braid move.

Consider this (𝑠𝑖, 𝑡𝑖). Thus,

the color of the arc from −→𝑐𝑖 to −−→𝑐𝑖+1 is [(𝑠𝑖, 𝑡𝑖)] . (5.5)

Proposition 5.3.6 (b) (applied to −→𝑐𝑖 , −−→𝑐𝑖+1, 𝑠𝑖 and 𝑡𝑖 instead of −→𝑎 ,
−→
𝑏 , 𝑠 and 𝑡) shows

that there exists a 𝑞 ∈ 𝑊 such that Invs−−→𝑐𝑖+1 is obtained from Invs−→𝑐𝑖 by replacing a

particular factor of the form 𝑞𝜌𝑠𝑖,𝑡𝑖𝑞
−1 by its reversal. Let us denote this 𝑞 by 𝑞𝑖. Set

𝑠′𝑖 = 𝑞𝑖𝑠𝑖𝑞
−1
𝑖 and 𝑡′𝑖 = 𝑞𝑖𝑡𝑖𝑞

−1
𝑖 . Thus, 𝑠′𝑖 ̸= 𝑡′𝑖 (since 𝑠𝑖 ̸= 𝑡𝑖) and 𝑚𝑠′𝑖,𝑡

′
𝑖
= 𝑚𝑠𝑖,𝑡𝑖 < ∞

(since (𝑠𝑖, 𝑡𝑖) ∈ M). Also, the definitions of 𝑠′𝑖 and 𝑡′𝑖 yield (𝑠′𝑖, 𝑡
′
𝑖) =

(︀
𝑞𝑖𝑠𝑖𝑞

−1
𝑖 , 𝑞𝑖𝑡𝑖𝑞

−1
𝑖

)︀
=

𝑞𝑖 (𝑠𝑖, 𝑡𝑖)⏟  ⏞  
∈M

𝑞−1
𝑖 ∈ 𝑞𝑖M𝑞−1

𝑖 ⊆ N. From 𝑠′𝑖 = 𝑞𝑖𝑠𝑖𝑞
−1
𝑖 and 𝑡′𝑖 = 𝑞𝑖𝑡𝑖𝑞

−1
𝑖 , we obtain (𝑠′𝑖, 𝑡

′
𝑖) ≈

(𝑠𝑖, 𝑡𝑖).

We shall now show that

coord𝑐N (Has−−→𝑐𝑖+1 − Has−→𝑐𝑖 ) = [[(𝑠𝑖, 𝑡𝑖)] = 𝑐op]− [[(𝑠𝑖, 𝑡𝑖)] = 𝑐] . (5.6)
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Proof of (5.6): We have the following chain of logical equivalences:

⎛⎝(𝑡′𝑖, 𝑠
′
𝑖) ∈ 𝑐N⏟ ⏞ 

=[[(𝑠,𝑡)]]

⎞⎠
⇐⇒ ((𝑡′𝑖, 𝑠

′
𝑖) ∈ [[(𝑠, 𝑡)]]) ⇐⇒ ((𝑡′𝑖, 𝑠

′
𝑖) ≈ (𝑠, 𝑡)) ⇐⇒ ((𝑠′𝑖, 𝑡

′
𝑖) ≈ (𝑡, 𝑠))

⇐⇒ ((𝑠𝑖, 𝑡𝑖) ≈ (𝑡, 𝑠)) (since (𝑠′𝑖, 𝑡
′
𝑖) ≈ (𝑠𝑖, 𝑡𝑖))

⇐⇒ ((𝑠𝑖, 𝑡𝑖) ∼ (𝑡, 𝑠)) (since the restriction of the relation ≈ to M is ∼)

⇐⇒

⎛⎝(𝑠𝑖, 𝑡𝑖) ∈ [(𝑡, 𝑠)]⏟  ⏞  
=𝑐op

⎞⎠ ⇐⇒ ((𝑠𝑖, 𝑡𝑖) ∈ 𝑐op) ⇐⇒ ([(𝑠𝑖, 𝑡𝑖)] = 𝑐op) .

Hence,

[(𝑡′𝑖, 𝑠
′
𝑖) ∈ 𝑐N] = [[(𝑠𝑖, 𝑡𝑖)] = 𝑐op] . (5.7)

Also, we have the following chain of logical equivalences:⎛⎝(𝑠′𝑖, 𝑡
′
𝑖) ∈ 𝑐N⏟ ⏞ 

=[[(𝑠,𝑡)]]

⎞⎠
⇐⇒ ((𝑠′𝑖, 𝑡

′
𝑖) ∈ [[(𝑠, 𝑡)]]) ⇐⇒ ((𝑠′𝑖, 𝑡

′
𝑖) ≈ (𝑠, 𝑡))

⇐⇒ ((𝑠𝑖, 𝑡𝑖) ≈ (𝑠, 𝑡)) (since (𝑠′𝑖, 𝑡
′
𝑖) ≈ (𝑠𝑖, 𝑡𝑖))

⇐⇒ ((𝑠𝑖, 𝑡𝑖) ∼ (𝑠, 𝑡)) (since the restriction of the relation ≈ to M is ∼)

⇐⇒

⎛⎝(𝑠𝑖, 𝑡𝑖) ∈ [(𝑠, 𝑡)]⏟  ⏞  
=𝑐

⎞⎠ ⇐⇒ ((𝑠𝑖, 𝑡𝑖) ∈ 𝑐) ⇐⇒ ([(𝑠𝑖, 𝑡𝑖)] = 𝑐) .

Hence,

[(𝑠′𝑖, 𝑡
′
𝑖) ∈ 𝑐N] = [[(𝑠𝑖, 𝑡𝑖)] = 𝑐] . (5.8)

Applying (5.4) to −→𝑐𝑖 , −−→𝑐𝑖+1, 𝑠𝑖, 𝑡𝑖, 𝑞𝑖, 𝑠′𝑖 and 𝑡′𝑖 instead of −→𝑎 ,
−→
𝑏 , 𝑠, 𝑡, 𝑞, 𝑠′ and 𝑡′,

we obtain Has−−→𝑐𝑖+1 = Has−→𝑐𝑖 − (𝑠′𝑖, 𝑡
′
𝑖) + (𝑡′𝑖, 𝑠

′
𝑖). In other words, Has−−→𝑐𝑖+1 − Has−→𝑐𝑖 =
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(𝑡′𝑖, 𝑠
′
𝑖)− (𝑠′𝑖, 𝑡

′
𝑖). Thus,

coord𝑐N (Has−−→𝑐𝑖+1 − Has−→𝑐𝑖 )

= coord𝑐N ((𝑡′𝑖, 𝑠
′
𝑖)− (𝑠′𝑖, 𝑡

′
𝑖)) = coord𝑐N (𝑡′𝑖, 𝑠

′
𝑖)⏟  ⏞  

=[(𝑡′𝑖,𝑠′𝑖)∈𝑐N]
=[[(𝑠𝑖,𝑡𝑖)]=𝑐op]

(by (5.7))

− coord𝑐N (𝑠′𝑖, 𝑡
′
𝑖)⏟  ⏞  

=[(𝑠′𝑖,𝑡′𝑖)∈𝑐N]
=[[(𝑠𝑖,𝑡𝑖)]=𝑐]

(by (5.8))

= [[(𝑠𝑖, 𝑡𝑖)] = 𝑐op]− [[(𝑠𝑖, 𝑡𝑖)] = 𝑐] .

This proves (5.6).

Now, let us forget that we fixed 𝑖. Thus, for every 𝑖 ∈ {1, 2, . . . , 𝑘}, we have

defined (𝑠𝑖, 𝑡𝑖) ∈ M satisfying (5.5) and (5.6).

Now,

𝑘∑︁
𝑖=1

coord𝑐N (Has−−→𝑐𝑖+1 − Has−→𝑐𝑖 )⏟  ⏞  
=coord𝑐N(Has−−→𝑐𝑖+1)−coord𝑐N(Has−→𝑐𝑖)

=
𝑘∑︁

𝑖=1

(coord𝑐N (Has−−→𝑐𝑖+1)− coord𝑐N (Has−→𝑐𝑖 )) = 0

(by the telescope principle). Hence,

0 =
𝑘∑︁

𝑖=1

coord𝑐N (Has−−→𝑐𝑖+1 − Has−→𝑐𝑖 )⏟  ⏞  
=[[(𝑠𝑖,𝑡𝑖)]=𝑐op]−[[(𝑠𝑖,𝑡𝑖)]=𝑐]

(by (5.6))

=
𝑘∑︁

𝑖=1

([[(𝑠𝑖, 𝑡𝑖)] = 𝑐op]− [[(𝑠𝑖, 𝑡𝑖)] = 𝑐])
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=
𝑘∑︁

𝑖=1

⎡⎢⎢⎢⎢⎣ [(𝑠𝑖, 𝑡𝑖)]⏟  ⏞  
=(the color of the arc from −→𝑐𝑖 to −−→𝑐𝑖+1)

(by (5.5))

= 𝑐op

⎤⎥⎥⎥⎥⎦

−
𝑘∑︁

𝑖=1

⎡⎢⎢⎢⎢⎣ [(𝑠𝑖, 𝑡𝑖)]⏟  ⏞  
=(the color of the arc from −→𝑐𝑖 to −−→𝑐𝑖+1)

(by (5.5))

= 𝑐

⎤⎥⎥⎥⎥⎦
=

𝑘∑︁
𝑖=1

[(the color of the arc from −→𝑐𝑖 to −−→𝑐𝑖+1) = 𝑐op]⏟  ⏞  
=(the number of arcs colored 𝑐op appearing in 𝐶)

−
𝑘∑︁

𝑖=1

[(the color of the arc from −→𝑐𝑖 to −−→𝑐𝑖+1) = 𝑐]⏟  ⏞  
=(the number of arcs colored 𝑐 appearing in 𝐶)

= (the number of arcs colored 𝑐op appearing in 𝐶)

− (the number of arcs colored 𝑐 appearing in 𝐶) .

In other words, the number of arcs colored 𝑐 appearing in 𝐶 equals the number of

arcs colored 𝑐op appearing in 𝐶. This proves Theorem 5.2.3 (a).

(b) If 𝑐 ̸= 𝑐op, then Theorem 5.2.3 (b) follows immediately from Theorem 5.2.3

(a). Thus, for the rest of this proof, assume that 𝑐 = 𝑐op (without loss of generality).

We have [(𝑠, 𝑡)] = 𝑐 = 𝑐op = [(𝑡, 𝑠)], so that (𝑡, 𝑠) ∼ (𝑠, 𝑡). Hence, (𝑡, 𝑠) ≈ (𝑠, 𝑡)

(since ∼ is the restriction of the relation ≈ to M).

Fix some total order on the set 𝑆. Let 𝑑 be the subset {(𝑢, 𝑣) ∈ 𝑐N | 𝑢 < 𝑣} of

𝑐N.

Fix 𝑖 ∈ {1, 2, . . . , 𝑘}. We shall now show that

coord𝑑 (Has
−−→𝑐𝑖+1 − Has−→𝑐𝑖 ) ≡ [[(𝑠𝑖, 𝑡𝑖)] = 𝑐] mod 2. (5.9)

Proof of (5.9): Define 𝑞𝑖, 𝑠′𝑖 and 𝑡′𝑖 as before. We have 𝑠′𝑖 ̸= 𝑡′𝑖. Hence, either 𝑠′𝑖 < 𝑡′𝑖

or 𝑡′𝑖 < 𝑠′𝑖.
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Applying (5.4) to −→𝑐𝑖 , −−→𝑐𝑖+1, 𝑠𝑖, 𝑡𝑖, 𝑞𝑖, 𝑠′𝑖 and 𝑡′𝑖 instead of −→𝑎 ,
−→
𝑏 , 𝑠, 𝑡, 𝑞, 𝑠′ and 𝑡′,

we obtain Has−−→𝑐𝑖+1 = Has−→𝑐𝑖 − (𝑠′𝑖, 𝑡
′
𝑖) + (𝑡′𝑖, 𝑠

′
𝑖). In other words, Has−−→𝑐𝑖+1 − Has−→𝑐𝑖 =

(𝑡′𝑖, 𝑠
′
𝑖)− (𝑠′𝑖, 𝑡

′
𝑖). Thus,

coord𝑑 (Has
−−→𝑐𝑖+1 − Has−→𝑐𝑖 )

= coord𝑑 ((𝑡
′
𝑖, 𝑠

′
𝑖)− (𝑠′𝑖, 𝑡

′
𝑖)) = coord𝑑 (𝑡

′
𝑖, 𝑠

′
𝑖)⏟  ⏞  

=[(𝑡′𝑖,𝑠′𝑖)∈𝑑]

− coord𝑑 (𝑠
′
𝑖, 𝑡

′
𝑖)⏟  ⏞  

=[(𝑠′𝑖,𝑡′𝑖)∈𝑑]

= [(𝑡′𝑖, 𝑠
′
𝑖) ∈ 𝑑]− [(𝑠′𝑖, 𝑡

′
𝑖) ∈ 𝑑]

≡

⎡⎢⎢⎢⎢⎣ (𝑡′𝑖, 𝑠
′
𝑖) ∈ 𝑑⏟  ⏞  

⇐⇒ ((𝑡′𝑖,𝑠′𝑖)∈𝑐N and 𝑡′𝑖<𝑠′𝑖)
(by the definition of 𝑑)

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣ (𝑠′𝑖, 𝑡
′
𝑖) ∈ 𝑑⏟  ⏞  

⇐⇒ ((𝑠′𝑖,𝑡′𝑖)∈𝑐N and 𝑠′𝑖<𝑡′𝑖)
(by the definition of 𝑑)

⎤⎥⎥⎥⎥⎦
=

⎡⎣(𝑡′𝑖, 𝑠′𝑖) ∈ 𝑐N⏟ ⏞ 
=[[(𝑠,𝑡)]]

and 𝑡′𝑖 < 𝑠′𝑖

⎤⎦+

⎡⎣(𝑠′𝑖, 𝑡′𝑖) ∈ 𝑐N⏟ ⏞ 
=[[(𝑠,𝑡)]]

and 𝑠′𝑖 < 𝑡′𝑖

⎤⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(𝑡′𝑖, 𝑠

′
𝑖) ∈ [[(𝑠, 𝑡)]]⏟  ⏞  

⇐⇒ ((𝑡′𝑖,𝑠′𝑖)≈(𝑠,𝑡))
⇐⇒ ((𝑠′𝑖,𝑡′𝑖)≈(𝑡,𝑠))
⇐⇒ ((𝑠𝑖,𝑡𝑖)≈(𝑠,𝑡))

(since (𝑠′𝑖,𝑡′𝑖)≈(𝑠𝑖,𝑡𝑖)

and (𝑡,𝑠)≈(𝑠,𝑡))

and 𝑡′𝑖 < 𝑠′𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(𝑠′𝑖, 𝑡

′
𝑖) ∈ [[(𝑠, 𝑡)]]⏟  ⏞  

⇐⇒ ((𝑠′𝑖,𝑡′𝑖)≈(𝑠,𝑡))
⇐⇒ ((𝑠𝑖,𝑡𝑖)≈(𝑠,𝑡))

(since (𝑠′𝑖,𝑡′𝑖)≈(𝑠𝑖,𝑡𝑖))

and 𝑠′𝑖 < 𝑡′𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [(𝑠𝑖, 𝑡𝑖) ≈ (𝑠, 𝑡) and 𝑡′𝑖 < 𝑠′𝑖] + [(𝑠𝑖, 𝑡𝑖) ≈ (𝑠, 𝑡) and 𝑠′𝑖 < 𝑡′𝑖]

=

⎡⎢⎢⎢⎢⎢⎢⎣ (𝑠𝑖, 𝑡𝑖) ≈ (𝑠, 𝑡)⏟  ⏞  
⇐⇒ ((𝑠𝑖,𝑡𝑖)∼(𝑠,𝑡))

(since the restriction of the
relation ≈ to M is ∼)

⎤⎥⎥⎥⎥⎥⎥⎦ (because either 𝑠′𝑖 < 𝑡′𝑖 or 𝑡′𝑖 < 𝑠′𝑖)

=

⎡⎢⎣ (𝑠𝑖, 𝑡𝑖) ∼ (𝑠, 𝑡)⏟  ⏞  
⇐⇒ ((𝑠𝑖,𝑡𝑖)∈[(𝑠,𝑡)])

⎤⎥⎦ =

⎡⎣(𝑠𝑖, 𝑡𝑖) ∈ [(𝑠, 𝑡)]⏟  ⏞  
=𝑐

⎤⎦ =

⎡⎢⎣ (𝑠𝑖, 𝑡𝑖) ∈ 𝑐⏟  ⏞  
⇐⇒ ([(𝑠𝑖,𝑡𝑖)]=𝑐)

⎤⎥⎦
= [[(𝑠𝑖, 𝑡𝑖)] = 𝑐] mod 2.
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This proves (5.9).

Now,

𝑘∑︁
𝑖=1

coord𝑑 (Has
−−→𝑐𝑖+1 − Has−→𝑐𝑖 )⏟  ⏞  

=coord𝑑(Has−−→𝑐𝑖+1)−coord𝑑(Has−→𝑐𝑖)

=
𝑘∑︁

𝑖=1

(coord𝑑 (Has
−−→𝑐𝑖+1)− coord𝑑 (Has

−→𝑐𝑖 )) = 0

(by the telescope principle). Hence,

0 =
𝑘∑︁

𝑖=1

coord𝑑 (Has
−−→𝑐𝑖+1 − Has−→𝑐𝑖 )⏟  ⏞  

≡[[(𝑠𝑖,𝑡𝑖)]=𝑐]mod 2
(by (5.9))

≡
𝑘∑︁

𝑖=1

⎡⎢⎢⎢⎢⎣ [(𝑠𝑖, 𝑡𝑖)]⏟  ⏞  
=(the color of the arc from −→𝑐𝑖 to −−→𝑐𝑖+1)

(by (5.5))

= 𝑐

⎤⎥⎥⎥⎥⎦
=

𝑘∑︁
𝑖=1

[(the color of the arc from −→𝑐𝑖 to −−→𝑐𝑖+1) = 𝑐]

= (the number of arcs colored 𝑐 appearing in 𝐶)mod 2.

Thus, the number of arcs colored 𝑐 appearing in 𝐶 is even. In other words, the

number of arcs whose color belongs to {𝑐} appearing in 𝐶 is even. In other words,

the number of arcs whose color belongs to {𝑐, 𝑐op} appearing in 𝐶 is even (since{︃
𝑐, 𝑐op⏟ ⏞ 

=𝑐

}︃
= {𝑐, 𝑐} = {𝑐}). This proves Theorem 5.2.3 (b).

Now we shall prove the auxiliary results we have stated without proof in the

previous section.

Proof of Proposition 5.3.3. (a) We need to prove three claims:

Claim 1: Every entry of the word 𝜌𝑠,𝑡 is a reflection in 𝐷𝑠,𝑡.

Claim 2: The entries of the word 𝜌𝑠,𝑡 are distinct.

Claim 3: Every reflection in 𝐷𝑠,𝑡 is an entry of the word 𝜌𝑠,𝑡.

Proof of Claim 1: We must show that (𝑠𝑡)𝑘 𝑠 is a reflection in 𝐷𝑠,𝑡 for every
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𝑘 ∈ {0, 1, . . . ,𝑚𝑠,𝑡 − 1}. Thus, fix 𝑘 ∈ {0, 1, . . . ,𝑚𝑠,𝑡 − 1}. Then,

(𝑠𝑡)𝑘 𝑠 = 𝑠𝑡𝑠𝑡 · · · 𝑠⏟  ⏞  
2𝑘+1 factors

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑠𝑡𝑠𝑡 · · · 𝑡⏟  ⏞  
𝑘 factors

𝑠 𝑡𝑠𝑡𝑠 · · · 𝑠⏟  ⏞  
𝑘 factors

, if 𝑘 is even;

𝑠𝑡𝑠𝑡 · · · 𝑠⏟  ⏞  
𝑘 factors

𝑡 𝑠𝑡𝑠𝑡 · · · 𝑠⏟  ⏞  
𝑘 factors

, if 𝑘 is odd

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑠𝑡𝑠𝑡 · · · 𝑡⏟  ⏞  
𝑘 factors

𝑠

(︃
𝑠𝑡𝑠𝑡 · · · 𝑡⏟  ⏞  
𝑘 factors

)︃−1

, if 𝑘 is even;

𝑠𝑡𝑠𝑡 · · · 𝑠⏟  ⏞  
𝑘 factors

𝑡

(︃
𝑠𝑡𝑠𝑡 · · · 𝑠⏟  ⏞  
𝑘 factors

)︃−1

, if 𝑘 is odd⎛⎜⎜⎜⎜⎜⎝
since 𝑡𝑠𝑡𝑠 · · · 𝑠⏟  ⏞  

𝑘 factors

=

(︃
𝑠𝑡𝑠𝑡 · · · 𝑡⏟  ⏞  
𝑘 factors

)︃−1

if 𝑘 is even,

and 𝑠𝑡𝑠𝑡 · · · 𝑠⏟  ⏞  
𝑘 factors

=

(︃
𝑠𝑡𝑠𝑡 · · · 𝑠⏟  ⏞  
𝑘 factors

)︃−1

if 𝑘 is odd

⎞⎟⎟⎟⎟⎟⎠ .

Hence, (𝑠𝑡)𝑘 𝑠 is conjugate to either 𝑠 or 𝑡 (depending on whether 𝑘 is even or odd).

Thus, (𝑠𝑡)𝑘 𝑠 is a reflection. Also, it clearly lies in 𝐷𝑠,𝑡. This proves Claim 1.

Proof of Claim 2: The element 𝑠𝑡 of 𝑊 has order 𝑚𝑠,𝑡. Thus, the elements

(𝑠𝑡)0 , (𝑠𝑡)1 , . . . , (𝑠𝑡)𝑚𝑠,𝑡−1 are all distinct. Hence, the elements

(𝑠𝑡)0 𝑠, (𝑠𝑡)1 𝑠, . . . , (𝑠𝑡)𝑚𝑠,𝑡−1 𝑠 are all distinct. In other words, the entries of the word

𝜌𝑠,𝑡 are all distinct. Claim 2 is proven.

Proof of Claim 3: The dihedral group 𝐷𝑠,𝑡 has 2𝑚𝑠,𝑡 elements6, of which at most

𝑚𝑠,𝑡 are reflections7. But the word 𝜌𝑠,𝑡 has length 𝑚𝑠,𝑡, and all its entries are reflections

in 𝐷𝑠,𝑡 (by Claim 1); hence, it contains 𝑚𝑠,𝑡 reflections in 𝐷𝑠,𝑡 (by Claim 2). Since

𝐷𝑠,𝑡 has only at most 𝑚𝑠,𝑡 reflections, this shows that every reflection in 𝐷𝑠,𝑡 is an

entry of the word 𝜌𝑠,𝑡. Claim 3 is proven.

This finishes the proof of Proposition 5.3.3 (a).

(b) We have 𝜌𝑠,𝑡 =
(︀
(𝑠𝑡)0 𝑠, (𝑠𝑡)1 𝑠, . . . , (𝑠𝑡)𝑚𝑠,𝑡−1 𝑠

)︀
and

6since it is generated by two distinct involutions 𝑠 ̸= 1 and 𝑡 ̸= 1 whose product 𝑠𝑡 has order 𝑚𝑠,𝑡
7Proof. Consider the group homomorphism sgn : 𝑊 → {1,−1} defined in [Lusztig14, §1.1]. The

group homomorphism sgn |𝐷𝑠,𝑡
: 𝐷𝑠,𝑡 → {1,−1} sends either none or 𝑚𝑠,𝑡 elements of 𝐷𝑠,𝑡 to −1.

Thus, this homomorphism sgn |𝐷𝑠,𝑡 sends at most 𝑚𝑠,𝑡 elements of 𝐷𝑠,𝑡 to −1. Since it must send
every reflection to −1, this shows that at most 𝑚𝑠,𝑡 elements of 𝐷𝑠,𝑡 are reflections.

(Actually, we can replace “at most” by “exactly” here, but we won’t need this.)
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𝜌𝑡,𝑠 =
(︀
(𝑡𝑠)0 𝑡, (𝑡𝑠)1 𝑡, . . . , (𝑡𝑠)𝑚𝑠,𝑡−1 𝑡

)︀
(since 𝑚𝑡,𝑠 = 𝑚𝑠,𝑡). Thus, in order to prove

Proposition 5.3.3 (b), we must merely show that (𝑠𝑡)𝑘 𝑠 = (𝑡𝑠)𝑚𝑠,𝑡−1−𝑘 𝑡 for every

𝑘 ∈ {0, 1, . . . ,𝑚𝑠,𝑡 − 1}.

So fix 𝑘 ∈ {0, 1, . . . ,𝑚𝑠,𝑡 − 1}. Then,

(𝑠𝑡)𝑘 𝑠 ·
(︁
(𝑡𝑠)𝑚𝑠,𝑡−1−𝑘 𝑡

)︁−1

= (𝑠𝑡)𝑘 𝑠 𝑡−1⏟ ⏞ 
=𝑡

(︁
(𝑡𝑠)𝑚𝑠,𝑡−1−𝑘

)︁−1

⏟  ⏞  
=(𝑠−1𝑡−1)𝑚𝑠,𝑡−1−𝑘

= (𝑠𝑡)𝑘 𝑠𝑡⏟  ⏞  
=(𝑠𝑡)𝑘+1

(︃
𝑠−1⏟ ⏞ 
=𝑠

𝑡−1⏟ ⏞ 
=𝑡

)︃𝑚𝑠,𝑡−1−𝑘

= (𝑠𝑡)𝑘+1 (𝑠𝑡)𝑚𝑠,𝑡−1−𝑘 = (𝑠𝑡)𝑚𝑠,𝑡 = 1,

so that (𝑠𝑡)𝑘 𝑠 = (𝑡𝑠)𝑚𝑠,𝑡−1−𝑘 𝑡. This proves Proposition 5.3.3 (b).

(c) Let 𝑞 ∈ 𝑊 . Proposition 5.3.3 (b) shows that the word 𝜌𝑡,𝑠 is the reversal

of the word 𝜌𝑠,𝑡. Hence, the word 𝑞𝜌𝑡,𝑠𝑞
−1 is the reversal of the word 𝑞𝜌𝑠,𝑡𝑞

−1 (since

the word 𝑞𝜌𝑡,𝑠𝑞
−1 is obtained from 𝜌𝑡,𝑠 by conjugating each letter by 𝑞, and the word

𝑞𝜌𝑠,𝑡𝑞
−1 is obtained from 𝜌𝑠,𝑡 in the same way). This proves Proposition 5.3.3 (c).

Proof of Proposition 5.3.6. Let −→𝑎 be a reduced expression for 𝑤. Write −→𝑎 as

(𝑎1, 𝑎2, . . . , 𝑎𝑘). Then, the definition of Invs−→𝑎 shows that Invs−→𝑎 = (𝑡1, 𝑡2, . . . , 𝑡𝑘),

where the 𝑡𝑖 are defined by

𝑡𝑖 = (𝑎1𝑎2 · · · 𝑎𝑖−1) 𝑎𝑖 (𝑎1𝑎2 · · · 𝑎𝑖−1)
−1 for every 𝑖 ∈ {1, 2, . . . , 𝑘} .

Now, every 𝑖 ∈ {1, 2, . . . , 𝑘} satisfies

𝑡𝑖 = (𝑎1𝑎2 · · · 𝑎𝑖−1) 𝑎𝑖 (𝑎1𝑎2 · · · 𝑎𝑖−1)
−1⏟  ⏞  

=𝑎−1
𝑖−1𝑎

−1
𝑖−2···𝑎

−1
1 =𝑎𝑖−1𝑎𝑖−2···𝑎1

(since each 𝑎𝑗 belongs to 𝑆)

= (𝑎1𝑎2 · · · 𝑎𝑖−1) 𝑎𝑖 (𝑎𝑖−1𝑎𝑖−2 · · · 𝑎1)

= 𝑎1𝑎2 · · · 𝑎𝑖−1𝑎𝑖𝑎𝑖−1 · · · 𝑎2𝑎1.

But [Lusztig14, Proposition 1.6 (a)] (applied to 𝑞 = 𝑘 and 𝑠𝑖 = 𝑎𝑖) shows that the

elements 𝑎1, 𝑎1𝑎2𝑎1, 𝑎1𝑎2𝑎3𝑎2𝑎1, . . . , 𝑎1𝑎2 · · · 𝑎𝑘−1𝑎𝑘𝑎𝑘−1 · · · 𝑎2𝑎1 are distinct8. In other

words, the elements 𝑡1, 𝑡2, . . . , 𝑡𝑘 are distinct (since
8This also follows from [Bourba81, Chapter 4, n∘ 1.4, Lemme 2].
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𝑡𝑖 = 𝑎1𝑎2 · · · 𝑎𝑖−1𝑎𝑖𝑎𝑖−1 · · · 𝑎2𝑎1 for every 𝑖 ∈ {1, 2, . . . , 𝑘}). In other words, all entries

of the tuple Invs−→𝑎 are distinct. Proposition 5.3.6 (a) is proven.

(b) We need to prove that there exists a 𝑞 ∈ 𝑊 such that Invs
−→
𝑏 is obtained from

Invs−→𝑎 by replacing a particular factor of the form 𝑞𝜌𝑠,𝑡𝑞
−1 by its reversal.

We set 𝑚 = 𝑚𝑠,𝑡 (for the sake of brevity).

Write −→𝑎 as (𝑎1, 𝑎2, . . . , 𝑎𝑘).

The word
−→
𝑏 can be obtained from −→𝑎 by finding a factor of −→𝑎 of the form

(𝑠, 𝑡, 𝑠, 𝑡, 𝑠, . . .)⏟  ⏞  
𝑚𝑠,𝑡 elements

and replacing it by (𝑡, 𝑠, 𝑡, 𝑠, 𝑡, . . .)⏟  ⏞  
𝑚𝑠,𝑡 elements

(by the definition of an “(𝑠, 𝑡)-braid

move”). In other words, the word
−→
𝑏 can be obtained from −→𝑎 by finding a factor of

−→𝑎 of the form (𝑠, 𝑡, 𝑠, 𝑡, 𝑠, . . .)⏟  ⏞  
𝑚 elements

and replacing it by (𝑡, 𝑠, 𝑡, 𝑠, 𝑡, . . .)⏟  ⏞  
𝑚 elements

(since 𝑚𝑠,𝑡 = 𝑚). In

other words, there exists an 𝑝 ∈ {0, 1, . . . , 𝑘 −𝑚} such that (𝑎𝑝+1, 𝑎𝑝+2, . . . , 𝑎𝑝+𝑚) =

(𝑠, 𝑡, 𝑠, 𝑡, 𝑠, . . .)⏟  ⏞  
𝑚 elements

, and the word
−→
𝑏 can be obtained by replacing the (𝑝+ 1)-st through

(𝑝+𝑚)-th entries of −→𝑎 by (𝑡, 𝑠, 𝑡, 𝑠, 𝑡, . . .)⏟  ⏞  
𝑚 elements

. Consider this 𝑝. Write
−→
𝑏 as (𝑏1, 𝑏2, . . . , 𝑏𝑘)

(this is possible since
−→
𝑏 has the same length as −→𝑎 ). Thus,

(𝑎1, 𝑎2, . . . , 𝑎𝑝) = (𝑏1, 𝑏2, . . . , 𝑏𝑝) , (5.10)

(𝑎𝑝+1, 𝑎𝑝+2, . . . , 𝑎𝑝+𝑚) = (𝑠, 𝑡, 𝑠, 𝑡, 𝑠, . . .)⏟  ⏞  
𝑚 elements

, (5.11)

(𝑏𝑝+1, 𝑏𝑝+2, . . . , 𝑏𝑝+𝑚) = (𝑡, 𝑠, 𝑡, 𝑠, 𝑡, . . .)⏟  ⏞  
𝑚 elements

, (5.12)

(𝑎𝑝+𝑚+1, 𝑎𝑝+𝑚+2, . . . , 𝑎𝑘) = (𝑏𝑝+𝑚+1, 𝑏𝑝+𝑚+2, . . . , 𝑏𝑘) . (5.13)

Write the 𝑘-tuples Invs−→𝑎 and Invs
−→
𝑏 as (𝛼1, 𝛼2, . . . , 𝛼𝑘) and (𝛽1, 𝛽2, . . . , 𝛽𝑘), respec-

tively. Their definitions show that

𝛼𝑖 = (𝑎1𝑎2 · · · 𝑎𝑖−1) 𝑎𝑖 (𝑎1𝑎2 · · · 𝑎𝑖−1)
−1 (5.14)

and

𝛽𝑖 = (𝑏1𝑏2 · · · 𝑏𝑖−1) 𝑏𝑖 (𝑏1𝑏2 · · · 𝑏𝑖−1)
−1 (5.15)
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for every 𝑖 ∈ {1, 2, . . . , 𝑘}.

Now, set 𝑞 = 𝑎1𝑎2 · · · 𝑎𝑝. From (5.10), we see that 𝑞 = 𝑏1𝑏2 · · · 𝑏𝑝 as well. In order

to prove Proposition 5.3.6 (b), it clearly suffices to show that Invs
−→
𝑏 is obtained

from Invs−→𝑎 by replacing a particular factor of the form 𝑞𝜌𝑠,𝑡𝑞
−1 – namely, the factor

(𝛼𝑝+1, 𝛼𝑝+2, . . . , 𝛼𝑝+𝑚) – by its reversal.

So let us show this. In view of Invs−→𝑎 = (𝛼1, 𝛼2, . . . , 𝛼𝑘) and

Invs
−→
𝑏 = (𝛽1, 𝛽2, . . . , 𝛽𝑘), it clearly suffices to prove the following claims:

Claim 1: We have 𝛽𝑖 = 𝛼𝑖 for every 𝑖 ∈ {1, 2, . . . , 𝑝}.

Claim 2: We have (𝛼𝑝+1, 𝛼𝑝+2, . . . , 𝛼𝑝+𝑚) = 𝑞𝜌𝑠,𝑡𝑞
−1.

Claim 3: The 𝑚-tuple (𝛽𝑝+1, 𝛽𝑝+2, . . . , 𝛽𝑝+𝑚) is the reversal of (𝛼𝑝+1, 𝛼𝑝+2, . . . , 𝛼𝑝+𝑚).

Claim 4: We have 𝛽𝑖 = 𝛼𝑖 for every 𝑖 ∈ {𝑝+𝑚+ 1, 𝑝+𝑚+ 2, . . . , 𝑘}.

Proof of Claim 1: Let 𝑖 ∈ {1, 2, . . . , 𝑝}. Then, (5.10) shows that 𝑎𝑔 = 𝑏𝑔 for every

𝑔 ∈ {1, 2, . . . , 𝑖}. Now, (5.14) becomes

𝛼𝑖 = (𝑎1𝑎2 · · · 𝑎𝑖−1) 𝑎𝑖 (𝑎1𝑎2 · · · 𝑎𝑖−1)
−1 = (𝑏1𝑏2 · · · 𝑏𝑖−1) 𝑏𝑖 (𝑏1𝑏2 · · · 𝑏𝑖−1)

−1

(since 𝑎𝑔 = 𝑏𝑔 for every 𝑔 ∈ {1, 2, . . . , 𝑖})

= 𝛽𝑖 (by (5.15)) .

This proves Claim 1.

Proof of Claim 2: We have

𝜌𝑠,𝑡 =
(︀
(𝑠𝑡)0 𝑠, (𝑠𝑡)1 𝑠, . . . , (𝑠𝑡)𝑚𝑠,𝑡−1 𝑠

)︀
=
(︀
(𝑠𝑡)0 𝑠, (𝑠𝑡)1 𝑠, . . . , (𝑠𝑡)𝑚−1 𝑠

)︀
(since 𝑚𝑠,𝑡 = 𝑚). Hence,

𝑞𝜌𝑠,𝑡𝑞
−1 = 𝑞

(︀
(𝑠𝑡)0 𝑠, (𝑠𝑡)1 𝑠, . . . , (𝑠𝑡)𝑚−1 𝑠

)︀
𝑞−1

=
(︀
𝑞 (𝑠𝑡)0 𝑠𝑞−1, 𝑞 (𝑠𝑡)1 𝑠𝑞−1, . . . , 𝑞 (𝑠𝑡)𝑚−1 𝑠𝑞−1

)︀
.

Thus, in order to prove (𝛼𝑝+1, 𝛼𝑝+2, . . . , 𝛼𝑝+𝑚) = 𝑞𝜌𝑠,𝑡𝑞
−1, it suffices to show that

𝛼𝑝+𝑖 = 𝑞 (𝑠𝑡)𝑖−1 𝑠𝑞−1 for every 𝑖 ∈ {1, 2, . . . ,𝑚}. So let us fix 𝑖 ∈ {1, 2, . . . ,𝑚}.
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We have

𝑎1𝑎2 · · · 𝑎𝑝+𝑖−1 = (𝑎1𝑎2 · · · 𝑎𝑝)⏟  ⏞  
=𝑞

(𝑎𝑝+1𝑎𝑝+2 · · · 𝑎𝑝+𝑖−1)⏟  ⏞  
=𝑠𝑡𝑠𝑡 · · ·⏟  ⏞  

𝑖−1 factors
(by (5.11))

= 𝑞 𝑠𝑡𝑠𝑡 · · ·⏟  ⏞  
𝑖−1 factors

.

Hence,

(𝑎1𝑎2 · · · 𝑎𝑝+𝑖−1)
−1 =

⎛⎝𝑞 𝑠𝑡𝑠𝑡 · · ·⏟  ⏞  
𝑖−1 factors

⎞⎠−1

= · · · 𝑡−1𝑠−1𝑡−1𝑠−1⏟  ⏞  
𝑖−1 factors

𝑞−1

= · · · 𝑡𝑠𝑡𝑠⏟  ⏞  
𝑖−1 factors

𝑞−1
(︀
since 𝑠−1 = 𝑠 and 𝑡−1 = 𝑡

)︀
.

Also,

(𝑎1𝑎2 · · · 𝑎𝑝+𝑖−1) 𝑎𝑝+𝑖 = 𝑎1𝑎2 · · · 𝑎𝑝+𝑖 = (𝑎1𝑎2 · · · 𝑎𝑝)⏟  ⏞  
=𝑞

(𝑎𝑝+1𝑎𝑝+2 · · · 𝑎𝑝+𝑖)⏟  ⏞  
=𝑠𝑡𝑠𝑡 · · ·⏟  ⏞  

𝑖 factors
(by (5.11))

= 𝑞 𝑠𝑡𝑠𝑡 · · ·⏟  ⏞  
𝑖 factors

.

Now, (5.14) (applied to 𝑝+ 𝑖 instead of 𝑖) yields

𝛼𝑝+𝑖 = (𝑎1𝑎2 · · · 𝑎𝑝+𝑖−1) 𝑎𝑝+𝑖⏟  ⏞  
=𝑞 𝑠𝑡𝑠𝑡 · · ·⏟  ⏞  

𝑖 factors

(𝑎1𝑎2 · · · 𝑎𝑝+𝑖−1)
−1⏟  ⏞  

=· · · 𝑡𝑠𝑡𝑠⏟  ⏞  
𝑖−1 factors

𝑞−1

= 𝑞 𝑠𝑡𝑠𝑡 · · ·⏟  ⏞  
𝑖 factors

· · · 𝑡𝑠𝑡𝑠⏟  ⏞  
𝑖−1 factors⏟  ⏞  

=𝑠𝑡𝑠𝑡 · · · 𝑠⏟  ⏞  
2𝑖−1 factors

=(𝑠𝑡)𝑖−1𝑠

𝑞−1

= 𝑞 (𝑠𝑡)𝑖−1 𝑠𝑞−1.

This completes the proof of (𝛼𝑝+1, 𝛼𝑝+2, . . . , 𝛼𝑝+𝑚) = 𝑞𝜌𝑠,𝑡𝑞
−1. Hence, Claim 2 is

proven.

Proof of Claim 3: In our proof of Claim 2, we have shown that

(𝛼𝑝+1, 𝛼𝑝+2, . . . , 𝛼𝑝+𝑚) = 𝑞𝜌𝑠,𝑡𝑞
−1. The same argument (applied to

−→
𝑏 , (𝑏1, 𝑏2, . . . , 𝑏𝑘),

(𝛽1, 𝛽2, . . . , 𝛽𝑘), 𝑡 and 𝑠 instead of −→𝑎 , (𝑎1, 𝑎2, . . . , 𝑎𝑘), (𝛼1, 𝛼2, . . . , 𝛼𝑘), 𝑠 and 𝑡) shows

that (𝛽𝑝+1, 𝛽𝑝+2, . . . , 𝛽𝑝+𝑚) = 𝑞𝜌𝑡,𝑠𝑞
−1 (where we now use (5.12) instead of (5.11), and

use 𝑞 = 𝑏1𝑏2 · · · 𝑏𝑝 instead of 𝑞 = 𝑎1𝑎2 · · · 𝑎𝑝).
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Now, recall that the word 𝑞𝜌𝑡,𝑠𝑞
−1 is the reversal of the word 𝑞𝜌𝑠,𝑡𝑞

−1. Since

(𝛼𝑝+1, 𝛼𝑝+2, . . . , 𝛼𝑝+𝑚) = 𝑞𝜌𝑠,𝑡𝑞
−1 and (𝛽𝑝+1, 𝛽𝑝+2, . . . , 𝛽𝑝+𝑚) = 𝑞𝜌𝑡,𝑠𝑞

−1, this means

that the word (𝛽𝑝+1, 𝛽𝑝+2, . . . , 𝛽𝑝+𝑚) is the reversal of (𝛼𝑝+1, 𝛼𝑝+2, . . . , 𝛼𝑝+𝑚). This

proves Claim 3.

Proof of Claim 4: Since 𝑚 = 𝑚𝑠,𝑡, we have 𝑠𝑡𝑠𝑡 · · ·⏟  ⏞  
𝑚 factors

= 𝑡𝑠𝑡𝑠 · · ·⏟  ⏞  
𝑚 factors

(this is one of

the braid relations of our Coxeter group). Let us set 𝑥 = 𝑠𝑡𝑠𝑡 · · ·⏟  ⏞  
𝑚 factors

= 𝑡𝑠𝑡𝑠 · · ·⏟  ⏞  
𝑚 factors

. Now,

(5.11) yields 𝑎𝑝+1𝑎𝑝+2 · · · 𝑎𝑝+𝑚 = 𝑠𝑡𝑠𝑡 · · ·⏟  ⏞  
𝑚 factors

= 𝑥. Similarly, from (5.12), we obtain

𝑏𝑝+1𝑏𝑝+2 · · · 𝑏𝑝+𝑚 = 𝑥.

Let 𝑖 ∈ {𝑝+𝑚+ 1, 𝑝+𝑚+ 2, . . . , 𝑘}. Thus,

𝑎1𝑎2 · · · 𝑎𝑖−1 = (𝑎1𝑎2 · · · 𝑎𝑝)⏟  ⏞  
=𝑞

(𝑎𝑝+1𝑎𝑝+2 · · · 𝑎𝑝+𝑚)⏟  ⏞  
=𝑥

(𝑎𝑝+𝑚+1𝑎𝑝+𝑚+2 · · · 𝑎𝑖−1)⏟  ⏞  
=𝑏𝑝+𝑚+1𝑏𝑝+𝑚+2···𝑏𝑖−1

(by (5.13))

= 𝑞𝑥 (𝑏𝑝+𝑚+1𝑏𝑝+𝑚+2 · · · 𝑏𝑖−1) .

Comparing this with

𝑏1𝑏2 · · · 𝑏𝑖−1 = (𝑏1𝑏2 · · · 𝑏𝑝)⏟  ⏞  
=𝑞

(𝑏𝑝+1𝑏𝑝+2 · · · 𝑏𝑝+𝑚)⏟  ⏞  
=𝑥

(𝑏𝑝+𝑚+1𝑏𝑝+𝑚+2 · · · 𝑏𝑖−1)

= 𝑞𝑥 (𝑏𝑝+𝑚+1𝑏𝑝+𝑚+2 · · · 𝑏𝑖−1) ,

we obtain 𝑎1𝑎2 · · · 𝑎𝑖−1 = 𝑏1𝑏2 · · · 𝑏𝑖−1. Also, 𝑎𝑖 = 𝑏𝑖 (by (5.13)). Now, (5.14) becomes

𝛼𝑖 =

⎛⎝𝑎1𝑎2 · · · 𝑎𝑖−1⏟  ⏞  
=𝑏1𝑏2···𝑏𝑖−1

⎞⎠ 𝑎𝑖⏟ ⏞ 
=𝑏𝑖

⎛⎝𝑎1𝑎2 · · · 𝑎𝑖−1⏟  ⏞  
=𝑏1𝑏2···𝑏𝑖−1

⎞⎠−1

= (𝑏1𝑏2 · · · 𝑏𝑖−1) 𝑏𝑖 (𝑏1𝑏2 · · · 𝑏𝑖−1)
−1

= 𝛽𝑖 (by (5.15)) .

This proves Claim 4.

Hence, all four claims are proven, and the proof of Proposition 5.3.6 (b) is com-

plete.

Proof of Proposition 5.3.7. (a) This follows from the fact that the word 𝜌𝑠,𝑡 has length
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𝑚𝑠,𝑡 ≥ 2 > 0, and from Proposition 5.3.6 (a).

(b) Assume the contrary. Then, both words 𝜌𝑠,𝑡 and 𝜌𝑡,𝑠 appear as a subword of

Invs−→𝑎 . By Proposition 5.3.3 (b), this means that both the word 𝜌𝑠,𝑡 and its reversal

appear as a subword of Invs−→𝑎 . Since the word 𝜌𝑠,𝑡 has length 𝑚𝑠,𝑡 ≥ 2, this means

that at least one letter of 𝜌𝑠,𝑡 appears twice in Invs−→𝑎 . This contradicts Proposition

5.3.6 (a). This contradiction concludes our proof.

Before we finally prove Theorem 5.3.9, we show a lemma:

Lemma 5.4.1. Let (𝑠, 𝑡) ∈ M and (𝑢, 𝑣) ∈ N. Let 𝑞 ∈ 𝑊 . Assume that 𝑢 ∈

𝑞𝐷𝑠,𝑡𝑞
−1 and 𝑣 ∈ 𝑞𝐷𝑠,𝑡𝑞

−1. Then, 𝑚𝑠,𝑡 = 𝑚𝑢,𝑣.

Proof of Lemma 5.4.1. Claim 1: Lemma 5.4.1 holds in the case when (𝑢, 𝑣) ∈ M.

Proof. Assume that (𝑢, 𝑣) ∈ M. Thus, 𝑢, 𝑣 ∈ 𝑆. Let 𝐼 be the subset {𝑠, 𝑡} of 𝑆.

We shall use the notations of [Lusztig14, §9]. In particular, 𝑙 (𝑟) denotes the length

of any element 𝑟 ∈ 𝑊 .

We have 𝑊𝐼 = 𝐷𝑠,𝑡. Consider the coset 𝑊𝐼𝑞
−1 of 𝑊𝐼 . From [Lusztig14, Lemma

9.7 (a)] (applied to 𝑎 = 𝑞−1), we know that this coset 𝑊𝐼𝑞
−1 has a unique element of

minimal length. Let 𝑤 be this element. Thus, 𝑤 ∈ 𝑊𝐼𝑞
−1, so that 𝑊𝐼𝑤 = 𝑊𝐼𝑞

−1.

Now,

𝑞⏟ ⏞ 
=(𝑞−1)−1

𝑊𝐼⏟ ⏞ 
=(𝑊𝐼)

−1

=
(︀
𝑞−1
)︀−1

(𝑊𝐼)
−1 =

⎛⎝𝑊𝐼𝑞
−1⏟  ⏞  

=𝑊𝐼𝑤

⎞⎠−1

= (𝑊𝐼𝑤)
−1 = 𝑤−1𝑊𝐼 .

Let 𝑢′ = 𝑤𝑢𝑤−1 and 𝑣′ = 𝑤𝑣𝑤−1.

We have 𝑢 ∈ 𝑞 𝐷𝑠,𝑡⏟ ⏞ 
=𝑊𝐼

𝑞−1 = 𝑞𝑊𝐼𝑞
−1⏟  ⏞  

=𝑊𝐼𝑤

= 𝑞𝑊𝐼⏟ ⏞ 
=𝑤−1𝑊𝐼

𝑤 = 𝑤−1𝑊𝐼𝑤. In other words,

𝑤𝑢𝑤−1 ∈ 𝑊𝐼 . In other words, 𝑢′ ∈ 𝑊𝐼 (since 𝑢′ = 𝑤𝑢𝑤−1). Similarly, 𝑣′ ∈ 𝑊𝐼 .

We have 𝑢′ = 𝑤𝑢𝑤−1, hence 𝑢′𝑤 = 𝑤𝑢. But [Lusztig14, Lemma 9.7 (b)] (applied

to 𝑎 = 𝑞−1 and 𝑦 = 𝑢′) shows that 𝑙 (𝑢′𝑤) = 𝑙 (𝑢′) + 𝑙 (𝑤). Hence,

𝑙 (𝑢′) + 𝑙 (𝑤) = 𝑙

(︃
𝑢′𝑤⏟ ⏞ 
=𝑤𝑢

)︃
= 𝑙 (𝑤𝑢) = 𝑙 (𝑤)± 1 (since 𝑢 ∈ 𝑆) .
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Subtracting 𝑙 (𝑤) from this equality, we obtain 𝑙 (𝑢′) = ±1, and thus 𝑙 (𝑢′) = 1, so

that 𝑢′ ∈ 𝑆. Combined with 𝑢′ ∈ 𝑊𝐼 , this shows that 𝑢′ ∈ 𝑆 ∩ 𝑊𝐼 = 𝐼. Similarly,

𝑣′ ∈ 𝐼.

We have 𝑢 ̸= 𝑣 (since (𝑢, 𝑣) ∈ N), thus 𝑤𝑢𝑤−1 ̸= 𝑤𝑣𝑤−1, thus 𝑢′ = 𝑤𝑢𝑤−1 ̸=

𝑤𝑣𝑤−1 = 𝑣′. Thus, 𝑢′ and 𝑣′ are two distinct elements of the two-element set 𝐼 =

{𝑠, 𝑡}. Hence, either (𝑢′, 𝑣′) = (𝑠, 𝑡) or (𝑢′, 𝑣′) = (𝑡, 𝑠). In either of these two cases,

we have 𝑚𝑢′,𝑣′ = 𝑚𝑠,𝑡. But since 𝑢′ = 𝑤𝑢𝑤−1 and 𝑣′ = 𝑤𝑣𝑤−1, we have 𝑚𝑢′,𝑣′ = 𝑚𝑢,𝑣.

Hence, 𝑚𝑠,𝑡 = 𝑚𝑢′,𝑣′ = 𝑚𝑢,𝑣. This proves Claim 1.

Claim 2: Lemma 5.4.1 holds in the general case.

Proof. Consider the general case. We have (𝑢, 𝑣) ∈ N =
⋃︀

𝑥∈𝑊
𝑥M𝑥−1. Thus, there

exists some 𝑥 ∈ 𝑊 such that (𝑢, 𝑣) ∈ 𝑥M𝑥−1. Consider this 𝑥. From (𝑢, 𝑣) ∈ 𝑥M𝑥−1,

we obtain 𝑥−1 (𝑢, 𝑣)𝑥 ∈ M. In other words, (𝑥−1𝑢𝑥, 𝑥−1𝑣𝑥) ∈ M. Moreover,

𝑥−1 𝑢⏟ ⏞ 
∈𝑞𝐷𝑠,𝑡𝑞−1

𝑥 ∈ 𝑥−1𝑞𝐷𝑠,𝑡 𝑞−1𝑥⏟ ⏞ 
=(𝑥−1𝑞)−1

= 𝑥−1𝑞𝐷𝑠,𝑡

(︀
𝑥−1𝑞

)︀−1
,

and similarly 𝑥−1𝑣𝑥 ∈ 𝑥−1𝑞𝐷𝑠,𝑡 (𝑥
−1𝑞)

−1. Hence, Claim 1 (applied to (𝑥−1𝑢𝑥, 𝑥−1𝑣𝑥)

and 𝑥−1𝑞 instead of (𝑢, 𝑣) and 𝑞) shows that 𝑚𝑠,𝑡 = 𝑚𝑥−1𝑢𝑥,𝑥−1𝑣𝑥 = 𝑚𝑢,𝑣. This proves

Claim 2, and thus proves Lemma 5.4.1.

Proof of Theorem 5.3.9. Conjugation by 𝑞 (that is, the map 𝑊 → 𝑊, 𝑥 ↦→ 𝑞𝑥𝑞−1) is

a group endomorphism of 𝑊 . Hence, for every 𝑖 ∈ N, we have

𝑞 (𝑠𝑡)𝑖 𝑠𝑞−1 =

⎛⎝(︀𝑞𝑠𝑞−1
)︀⏟  ⏞  

=𝑠′

⎛⎝𝑞𝑡𝑞−1⏟  ⏞  
=𝑡′

⎞⎠𝑖⎞⎠(︀𝑞𝑠𝑞−1
)︀⏟  ⏞  

=𝑠′

= (𝑠′𝑡′)
𝑖
𝑠′. (5.16)

Let 𝑚 = 𝑚𝑠,𝑡. We have

𝜌𝑠,𝑡 =
(︀
(𝑠𝑡)0 𝑠, (𝑠𝑡)1 𝑠, . . . , (𝑠𝑡)𝑚𝑠,𝑡−1 𝑠

)︀
=
(︀
(𝑠𝑡)0 𝑠, (𝑠𝑡)1 𝑠, . . . , (𝑠𝑡)𝑚−1 𝑠

)︀
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(since 𝑚𝑠,𝑡 = 𝑚) and thus

𝑞𝜌𝑠,𝑡𝑞
−1 = 𝑞

(︀
(𝑠𝑡)0 𝑠, (𝑠𝑡)1 𝑠, . . . , (𝑠𝑡)𝑚−1 𝑠

)︀
𝑞−1

=
(︀
𝑞 (𝑠𝑡)0 𝑠𝑞−1, 𝑞 (𝑠𝑡)1 𝑠𝑞−1, . . . , 𝑞 (𝑠𝑡)𝑚−1 𝑠𝑞−1

)︀
=
(︁
(𝑠′𝑡′)

0
𝑠′, (𝑠′𝑡′)

1
𝑠′, . . . , (𝑠′𝑡′)

𝑚−1
𝑠′
)︁

⎛⎝ since every 𝑖 ∈ {0, 1, . . . ,𝑚− 1} satisfies

𝑞 (𝑠𝑡)𝑖 𝑠𝑞−1 = (𝑠′𝑡′)𝑖 𝑠′ (by (5.16))

⎞⎠
=
(︁
(𝑠′𝑡′)

0
𝑠′, (𝑠′𝑡′)

1
𝑠′, . . . , (𝑠′𝑡′)

𝑚𝑠′,𝑡′−1
𝑠′
)︁

(since 𝑚 = 𝑚𝑠,𝑡 = 𝑚𝑠′,𝑡′)

= 𝜌𝑠′,𝑡′ (by the definition of 𝜌𝑠′,𝑡′) .

The word
−→
𝑏 is obtained from −→𝑎 by an (𝑠, 𝑡)-braid move. Hence, the word −→𝑎 can

be obtained from
−→
𝑏 by a (𝑡, 𝑠)-braid move.

From (𝑠′, 𝑡′) ∈ N, we obtain 𝑠′ ̸= 𝑡′. Hence, (𝑠′, 𝑡′) ̸= (𝑡′, 𝑠′).

From 𝑠′ = 𝑞𝑠𝑞−1 and 𝑡′ = 𝑞𝑡𝑞−1, we obtain 𝐷𝑠′,𝑡′ = 𝑞𝐷𝑠,𝑡𝑞
−1 (since conjugation by

𝑞 is a group endomorphism of 𝑊 ).

Proposition 5.3.3 (c) shows that the word 𝑞𝜌𝑡,𝑠𝑞
−1 is the reversal of the word

𝑞𝜌𝑠,𝑡𝑞
−1. Hence, the word 𝑞𝜌𝑠,𝑡𝑞

−1 is the reversal of the word 𝑞𝜌𝑡,𝑠𝑞
−1.

Recall that Invs
−→
𝑏 is obtained from Invs−→𝑎 by replacing a particular factor of

the form 𝑞𝜌𝑠,𝑡𝑞
−1 by its reversal. Since this latter reversal is 𝑞𝜌𝑡,𝑠𝑞

−1 (as we have

previously seen), this shows that Invs
−→
𝑏 has a factor of 𝑞𝜌𝑡,𝑠𝑞−1 in the place where

the word Invs−→𝑎 had the factor 𝑞𝜌𝑠,𝑡𝑞
−1. Hence, Invs−→𝑎 can, in turn, be obtained

from Invs
−→
𝑏 by replacing a particular factor of the form 𝑞𝜌𝑡,𝑠𝑞

−1 by its reversal (since

the reversal of 𝑞𝜌𝑡,𝑠𝑞−1 is 𝑞𝜌𝑠,𝑡𝑞
−1). Thus, our situation is symmetric with respect to

𝑠 and 𝑡; more precisely, we wind up in an analogous situation if we replace 𝑠, 𝑡, −→𝑎 ,
−→
𝑏 , 𝑠′ and 𝑡′ by 𝑡, 𝑠,

−→
𝑏 , −→𝑎 , 𝑡′ and 𝑠′, respectively.

We shall prove the following claims:

Claim 1: Let (𝑢, 𝑣) ∈ N be such that (𝑢, 𝑣) ̸= (𝑠′, 𝑡′) and (𝑢, 𝑣) ̸= (𝑡′, 𝑠′). Then,

has𝑢,𝑣
−→
𝑏 = has𝑢,𝑣

−→𝑎 .

Claim 2: We have has𝑠′,𝑡′
−→
𝑏 = has𝑠′,𝑡′

−→𝑎 − 1.
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Claim 3: We have has𝑡′,𝑠′
−→
𝑏 = has𝑡′,𝑠′

−→𝑎 + 1.

Proof of Claim 1: Assume the contrary. Thus, has𝑢,𝑣
−→
𝑏 ̸= has𝑢,𝑣

−→𝑎 . Hence, one

of the numbers has𝑢,𝑣
−→
𝑏 and has𝑢,𝑣

−→𝑎 equals 1 and the other equals 0 (since both

has𝑢,𝑣
−→
𝑏 and has𝑢,𝑣

−→𝑎 belong to {0, 1}). Without loss of generality, we assume that

has𝑢,𝑣
−→𝑎 = 1 and has𝑢,𝑣

−→
𝑏 = 0 (because in the other case, we can replace 𝑠, 𝑡, −→𝑎 ,

−→
𝑏 ,

𝑠′ and 𝑡′ by 𝑡, 𝑠,
−→
𝑏 , −→𝑎 , 𝑡′ and 𝑠′, respectively).

The elements 𝑢 and 𝑣 are two distinct reflections (since (𝑢, 𝑣) ∈ N).

Write the tuple Invs−→𝑎 as (𝛼1, 𝛼2, . . . , 𝛼𝑘). The tuple Invs
−→
𝑏 has the same length

as Invs−→𝑎 , since Invs
−→
𝑏 is obtained from Invs−→𝑎 by replacing a particular factor of

the form 𝑞𝜌𝑠,𝑡𝑞
−1 by its reversal. Hence, write the tuple Invs

−→
𝑏 as (𝛽1, 𝛽2, . . . , 𝛽𝑘).

From has𝑢,𝑣
−→𝑎 = 1, we obtain that 𝜌𝑢,𝑣 appears as a subword of Invs−→𝑎 . In other

words, 𝜌𝑢,𝑣 =
(︀
𝛼𝑖1 , 𝛼𝑖2 , . . . , 𝛼𝑖𝑓

)︀
for some integers 𝑖1, 𝑖2, . . . , 𝑖𝑓 satisfying 1 ≤ 𝑖1 < 𝑖2 <

· · · < 𝑖𝑓 ≤ 𝑘. Consider these 𝑖1, 𝑖2, . . . , 𝑖𝑓 . From has𝑢,𝑣
−→
𝑏 = 0, we conclude that 𝜌𝑢,𝑣

does not appear as a subword of Invs
−→
𝑏 .

On the other hand, Invs
−→
𝑏 is obtained from Invs−→𝑎 by replacing a particular factor

of the form 𝑞𝜌𝑠,𝑡𝑞
−1 by its reversal. This factor has length 𝑚𝑠,𝑡 = 𝑚; thus, it has the

form (𝛼𝑝+1, 𝛼𝑝+2, . . . , 𝛼𝑝+𝑚) for some 𝑝 ∈ {0, 1, . . . , 𝑘 −𝑚}. Consider this 𝑝. Thus,

(𝛼𝑝+1, 𝛼𝑝+2, . . . , 𝛼𝑝+𝑚) = 𝑞𝜌𝑠,𝑡𝑞
−1 =

(︁
(𝑠′𝑡′)

0
𝑠′, (𝑠′𝑡′)

1
𝑠′, . . . , (𝑠′𝑡′)

𝑚−1
𝑠′
)︁
.

In other words,

𝛼𝑝+𝑖 = (𝑠′𝑡′)
𝑖−1

𝑠′ for every 𝑖 ∈ {1, 2, . . . ,𝑚} . (5.17)

We now summarize:

∙ The word 𝜌𝑢,𝑣 appears as the subword
(︀
𝛼𝑖1 , 𝛼𝑖2 , . . . , 𝛼𝑖𝑓

)︀
of Invs−→𝑎 , but does

not appear as a subword of Invs
−→
𝑏 .

∙ The word Invs
−→
𝑏 is obtained from Invs−→𝑎 by replacing the factor

(𝛼𝑝+1, 𝛼𝑝+2, . . . , 𝛼𝑝+𝑚) by its reversal.
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Thus, replacing the factor (𝛼𝑝+1, 𝛼𝑝+2, . . . , 𝛼𝑝+𝑚) in Invs−→𝑎 by its reversal must

mess up the subword
(︀
𝛼𝑖1 , 𝛼𝑖2 , . . . , 𝛼𝑖𝑓

)︀
of Invs−→𝑎 badly enough that it no longer

appears as a subword (not even in different positions). This can only happen if at

least two of the integers 𝑖1, 𝑖2, . . . , 𝑖𝑓 lie in the interval {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+𝑚}.

Hence, at least two of the integers 𝑖1, 𝑖2, . . . , 𝑖𝑓 lie in the interval

{𝑝+ 1, 𝑝+ 2, . . . , 𝑝+𝑚}. In particular, there must be a 𝑔 ∈ {1, 2, . . . , 𝑓 − 1} such

that the integers 𝑖𝑔 and 𝑖𝑔+1 lie in the interval {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+𝑚} (since 𝑖1 <

𝑖2 < · · · < 𝑖𝑓 ). Consider this 𝑔. From 𝑖1 < 𝑖2 < · · · < 𝑖𝑓 , we obtain 𝑖𝑔 < 𝑖𝑔+1.

We have 𝑖𝑔 ∈ {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+𝑚}. In other words, 𝑖𝑔 = 𝑝 + 𝑟𝑔 for some

𝑟𝑔 ∈ {1, 2, . . . ,𝑚}. Consider this 𝑟𝑔.

We have 𝑖𝑔+1 ∈ {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+𝑚}. In other words, 𝑖𝑔+1 = 𝑝+𝑟𝑔+1 for some

𝑟𝑔+1 ∈ {1, 2, . . . ,𝑚}. Consider this 𝑟𝑔+1.

We have 𝑝 + 𝑟𝑔 = 𝑖𝑔 < 𝑖𝑔+1 = 𝑝 + 𝑟𝑔+1, thus 𝑟𝑔 < 𝑟𝑔+1. Since both 𝑟𝑔 and

𝑟𝑔+1 are elements of {1, 2, . . . ,𝑚}, this shows that 𝑟𝑔+1 − 𝑟𝑔 ∈ {1, 2, . . . ,𝑚− 1}. Set

𝑁 = 𝑟𝑔+1 − 𝑟𝑔; thus, 𝑁 = 𝑟𝑔+1 − 𝑟𝑔 ∈ {1, 2, . . . ,𝑚− 1}.

We have
(︀
𝛼𝑖1 , 𝛼𝑖2 , . . . , 𝛼𝑖𝑓

)︀
= 𝜌𝑢,𝑣 =

(︀
(𝑢𝑣)0 𝑢, (𝑢𝑣)1 𝑢, . . . , (𝑢𝑣)𝑚𝑢,𝑣−1 𝑢

)︀
(by the

definition of 𝜌𝑢,𝑣). Hence, 𝛼𝑖𝑔 = (𝑢𝑣)𝑔−1 𝑢 and 𝛼𝑖𝑔+1 = (𝑢𝑣)𝑔 𝑢. Now,

(𝑢𝑣)𝑔−1 𝑢 = 𝛼𝑖𝑔 = 𝛼𝑝+𝑟𝑔 (since 𝑖𝑔 = 𝑝+ 𝑟𝑔)

= (𝑠′𝑡′)
𝑟𝑔−1

𝑠′ (by (5.17), applied to 𝑖 = 𝑟𝑔)

and

(𝑢𝑣)𝑔 𝑢 = 𝛼𝑖𝑔+1 = 𝛼𝑝+𝑟𝑔+1 (since 𝑖𝑔+1 = 𝑝+ 𝑟𝑔+1)

= (𝑠′𝑡′)
𝑟𝑔+1−1

𝑠′ (by (5.17), applied to 𝑖 = 𝑟𝑔+1) .
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Hence,

((𝑢𝑣)𝑔 𝑢)⏟  ⏞  
=(𝑠′𝑡′)𝑟𝑔+1−1𝑠′

⎛⎜⎝ (𝑢𝑣)𝑔−1 𝑢⏟  ⏞  
=(𝑠′𝑡′)𝑟𝑔−1𝑠′

⎞⎟⎠
−1

=
(︁
(𝑠′𝑡′)

𝑟𝑔+1−1
𝑠′
)︁(︁

(𝑠′𝑡′)
𝑟𝑔−1

𝑠′
)︁−1

= (𝑠′𝑡′)
𝑟𝑔+1−𝑟𝑔 = (𝑠′𝑡′)

𝑁

(since 𝑟𝑔+1 − 𝑟𝑔 = 𝑁). Compared with ((𝑢𝑣)𝑔 𝑢)
(︀
(𝑢𝑣)𝑔−1 𝑢

)︀−1
= 𝑢𝑣, this yields

𝑢𝑣 = (𝑠′𝑡′)
𝑁 ∈ 𝐷𝑠′,𝑡′ .

Now, (𝑢𝑣)−𝑔 (𝑢𝑣)𝑔 𝑢 = 𝑢, so that

𝑢 =

⎛⎝ 𝑢𝑣⏟ ⏞ 
∈𝐷𝑠′,𝑡′

⎞⎠−𝑔

(𝑢𝑣)𝑔 𝑢⏟  ⏞  
=(𝑠′𝑡′)𝑟𝑔+1−1𝑠′∈𝐷𝑠′,𝑡′

∈ (𝐷𝑠′,𝑡′)
−𝑔 𝐷𝑠′,𝑡′ ⊆ 𝐷𝑠′,𝑡′ .

Now, both 𝑢 and 𝑢𝑣 belong to the subgroup 𝐷𝑠′,𝑡′ of 𝑊 . Thus, so does 𝑢−1 (𝑢𝑣). In

other words, 𝑢−1 (𝑢𝑣) ∈ 𝐷𝑠′,𝑡′ , so that 𝑣 = 𝑢−1 (𝑢𝑣) ∈ 𝐷𝑠′,𝑡′ .

Furthermore, we have

𝛼𝑖1 = 𝑢 and 𝛼𝑖𝑓 = 𝑣

9.

Now, we have 𝑖1 ∈ {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+𝑚} 10 and 𝑖𝑓 ∈ {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+𝑚}

9Proof. From
(︀
𝛼𝑖1 , 𝛼𝑖2 , . . . , 𝛼𝑖𝑓

)︀
=
(︁
(𝑢𝑣)

0
𝑢, (𝑢𝑣)

1
𝑢, . . . , (𝑢𝑣)

𝑚𝑢,𝑣−1
𝑢
)︁
, we obtain 𝛼𝑖1 =

(𝑢𝑣)
0⏟  ⏞  

=1

𝑢 = 𝑢.

We have (𝑢𝑣)
𝑚𝑢,𝑣 = 1, and thus (𝑢𝑣)

𝑚𝑢,𝑣−1
= (𝑢𝑣)

−1
= 𝑣−1𝑢−1.

From
(︀
𝛼𝑖1 , 𝛼𝑖2 , . . . , 𝛼𝑖𝑓

)︀
=
(︁
(𝑢𝑣)

0
𝑢, (𝑢𝑣)

1
𝑢, . . . , (𝑢𝑣)

𝑚𝑢,𝑣−1
𝑢
)︁
, we obtain 𝛼𝑖𝑓 = (𝑢𝑣)

𝑚𝑢,𝑣−1⏟  ⏞  
=𝑣−1𝑢−1

𝑢 =

𝑣−1𝑢−1𝑢 = 𝑣−1 = 𝑣 (since 𝑣 is a reflection), qed.
10Proof. The element 𝑢 is a reflection and lies in 𝐷𝑠′,𝑡′ . Hence, Proposition 5.3.3 (a) (applied

to 𝑠′ and 𝑡′ instead of 𝑠 and 𝑡) shows that the word 𝜌𝑠′,𝑡′ contains 𝑢. Since 𝜌𝑠′,𝑡′ = 𝑞𝜌𝑠,𝑡𝑞
−1 =

(𝛼𝑝+1, 𝛼𝑝+2, . . . , 𝛼𝑝+𝑚), this shows that the word (𝛼𝑝+1, 𝛼𝑝+2, . . . , 𝛼𝑝+𝑚) contains 𝑢. In other words,
𝑢 = 𝛼𝑀 for some 𝑀 ∈ {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+𝑚}. Consider this 𝑀 .

But Proposition 5.3.6 (a) shows that all entries of the tuple Invs−→𝑎 are distinct. In other words,
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11. Thus, all of the integers 𝑖1, 𝑖2, . . . , 𝑖𝑓 belong to {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+𝑚} (since

𝑖1 < 𝑖2 < · · · < 𝑖𝑓 ).

Now, recall that 𝑓 is the length of the word 𝜌𝑢,𝑣 (since 𝜌𝑢,𝑣 =
(︀
𝛼𝑖1 , 𝛼𝑖2 , . . . , 𝛼𝑖𝑓

)︀
),

and thus equals 𝑚𝑢,𝑣. Thus, 𝑓 = 𝑚𝑢,𝑣.

But 𝑢 ∈ 𝐷𝑠′,𝑡′ = 𝑞𝐷𝑠,𝑡𝑞
−1 and 𝑣 ∈ 𝐷𝑠′,𝑡′ = 𝑞𝐷𝑠,𝑡𝑞

−1. Hence, Lemma 5.4.1 yields

𝑚𝑠,𝑡 = 𝑚𝑢,𝑣. Since 𝑚 = 𝑚𝑠,𝑡 and 𝑓 = 𝑚𝑢,𝑣, this rewrites as 𝑚 = 𝑓 .

Recall that all of the integers 𝑖1, 𝑖2, . . . , 𝑖𝑓 belong to {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+𝑚}.

Since 𝑖1 < 𝑖2 < · · · < 𝑖𝑓 and 𝑓 = 𝑚, these integers 𝑖1, 𝑖2, . . . , 𝑖𝑓 form a strictly

increasing sequence of length 𝑚. Thus, (𝑖1, 𝑖2, . . . , 𝑖𝑓 ) is a strictly increasing sequence

of length 𝑚 whose entries belong to {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+𝑚}. But the only such

sequence is (𝑝+ 1, 𝑝+ 2, . . . , 𝑝+𝑚) (because the set {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+𝑚} has

only 𝑚 elements). Thus, (𝑖1, 𝑖2, . . . , 𝑖𝑓 ) = (𝑝+ 1, 𝑝+ 2, . . . , 𝑝+𝑚). In particular,

𝑖1 = 𝑝+ 1 and 𝑖𝑓 = 𝑝+𝑚.

Now, 𝛼𝑖1 = 𝑢, so that

𝑢 = 𝛼𝑖1 = 𝛼𝑝+1 (since 𝑖1 = 𝑝+ 1)

= (𝑠′𝑡′)
1−1⏟  ⏞  

=1

𝑠′ (by (5.17), applied to 𝑖 = 1)

= 𝑠′.

Also, 𝛼𝑖𝑓 = 𝑣, so that

𝑣 = 𝛼𝑖𝑓 = 𝛼𝑝+𝑚 (since 𝑖𝑓 = 𝑝+𝑚)

= (𝑠′𝑡′)
𝑚−1⏟  ⏞  

=(𝑠′𝑡′)−1

(since (𝑠′𝑡′)𝑚=1
(since 𝑚=𝑚𝑠,𝑡=𝑚𝑠′,𝑡′ ))

𝑠′ (by (5.17), applied to 𝑖 = 𝑚)

= (𝑠′𝑡′)
−1

𝑠′ = 𝑡′.

the elements 𝛼1, 𝛼2, . . . , 𝛼𝑘 are pairwise distinct (since those are the entries of Invs−→𝑎 ). Hence, from
𝛼𝑖1 = 𝑢 = 𝛼𝑀 , we obtain 𝑖1 = 𝑀 ∈ {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+𝑚}. Qed.

11Proof. The proof of this is essentially analogous to the proof of 𝑖1 ∈ {𝑝+ 1, 𝑝+ 2, . . . , 𝑝+𝑚},
with 𝑣 occasionally replacing 𝑢.
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Combined with 𝑢 = 𝑠′, this yields (𝑢, 𝑣) = (𝑠′, 𝑡′), which contradicts (𝑢, 𝑣) ̸= (𝑠′, 𝑡′).

This contradiction proves that our assumption was wrong. Claim 1 is proven.

Proof of Claim 2: The word Invs
−→
𝑏 is obtained from Invs−→𝑎 by replacing a par-

ticular factor of the form 𝑞𝜌𝑠,𝑡𝑞
−1 by its reversal. Thus, the word Invs−→𝑎 has a factor

of the form 𝑞𝜌𝑠,𝑡𝑞
−1. Since 𝑞𝜌𝑠,𝑡𝑞

−1 = 𝜌𝑠′,𝑡′ , this means that the word Invs−→𝑎 has a

factor of the form 𝜌𝑠′,𝑡′ . Consequently, the word Invs−→𝑎 has a subword of the form

𝜌𝑠′,𝑡′ . In other words, has𝑠′,𝑡′ −→𝑎 = 1.

The same argument (applied to 𝑡, 𝑠,
−→
𝑏 , −→𝑎 , 𝑡′ and 𝑠′ instead of 𝑠, 𝑡, −→𝑎 ,

−→
𝑏 , 𝑠′

and 𝑡′) shows that has𝑡′,𝑠′
−→
𝑏 = 1. In other words, the word Invs

−→
𝑏 has a subword

of the form 𝜌𝑡′,𝑠′ . Hence, the word Invs
−→
𝑏 has no subword of the form 𝜌𝑠′,𝑡′ (because

Proposition 5.3.7 (b) (applied to
−→
𝑏 , 𝑠′ and 𝑡′ instead of −→𝑎 , 𝑠 and 𝑡) shows that the

words 𝜌𝑠′,𝑡′ and 𝜌𝑡′,𝑠′ cannot both appear as subwords of Invs
−→
𝑏 ). In other words,

has𝑠′,𝑡′
−→
𝑏 = 0.

Combining this with has𝑠′,𝑡′
−→𝑎 = 1, we immediately obtain has𝑠′,𝑡′

−→
𝑏 = has𝑠′,𝑡′

−→𝑎 −

1. Thus, Claim 2 is proven.

Proof of Claim 3: Applying Claim 2 to 𝑡, 𝑠,
−→
𝑏 , −→𝑎 , 𝑡′ and 𝑠′ instead of 𝑠, 𝑡, −→𝑎 ,

−→
𝑏 , 𝑠′

and 𝑡′, we obtain has𝑡′,𝑠′
−→𝑎 = has𝑡′,𝑠′

−→
𝑏 −1. In other words, has𝑡′,𝑠′

−→
𝑏 = has𝑡′,𝑠′

−→𝑎 +1.

This proves Claim 3.

Now, our goal is to prove that Has
−→
𝑏 = Has−→𝑎 −(𝑠′, 𝑡′)+(𝑡′, 𝑠′). But the definition
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of Has
−→
𝑏 yields

Has
−→
𝑏

=
∑︁

(𝑢,𝑣)∈N

has𝑢,𝑣
−→
𝑏 · (𝑢, 𝑣)

=
∑︁

(𝑢,𝑣)∈N;
(𝑢,𝑣)̸=(𝑠′,𝑡′);
(𝑢,𝑣)̸=(𝑡′,𝑠′)

has𝑢,𝑣
−→
𝑏⏟  ⏞  

=has𝑢,𝑣
−→𝑎

(by Claim 1)

· (𝑢, 𝑣) + has𝑠′,𝑡′
−→
𝑏⏟  ⏞  

=has𝑠′,𝑡′
−→𝑎 −1

(by Claim 2)

· (𝑠′, 𝑡′) + has𝑡′,𝑠′
−→
𝑏⏟  ⏞  

=has𝑡′,𝑠′
−→𝑎 +1

(by Claim 3)

· (𝑡′, 𝑠′)

(since (𝑠′, 𝑡′) ̸= (𝑡′, 𝑠′))

=
∑︁

(𝑢,𝑣)∈N;
(𝑢,𝑣)̸=(𝑠′,𝑡′);
(𝑢,𝑣)̸=(𝑡′,𝑠′)

has𝑢,𝑣
−→𝑎 · (𝑢, 𝑣) + (has𝑠′,𝑡′

−→𝑎 − 1) · (𝑠′, 𝑡′) + (has𝑡′,𝑠′
−→𝑎 + 1) · (𝑡′, 𝑠′)

=
∑︁

(𝑢,𝑣)∈N;
(𝑢,𝑣)̸=(𝑠′,𝑡′);
(𝑢,𝑣)̸=(𝑡′,𝑠′)

has𝑢,𝑣
−→𝑎 · (𝑢, 𝑣) + has𝑠′,𝑡′

−→𝑎 · (𝑠′, 𝑡′)− (𝑠′, 𝑡′) + has𝑡′,𝑠′
−→𝑎 · (𝑡′, 𝑠′) + (𝑡′, 𝑠′)

=
∑︁

(𝑢,𝑣)∈N;
(𝑢,𝑣)̸=(𝑠′,𝑡′);
(𝑢,𝑣)̸=(𝑡′,𝑠′)

has𝑢,𝑣
−→𝑎 · (𝑢, 𝑣) + has𝑠′,𝑡′

−→𝑎 · (𝑠′, 𝑡′) + has𝑡′,𝑠′
−→𝑎 · (𝑡′, 𝑠′)

⏟  ⏞  
=

∑︀
(𝑢,𝑣)∈N

has𝑢,𝑣
−→𝑎 ·(𝑢,𝑣)

(since (𝑠′,𝑡′ )̸=(𝑡′,𝑠′))

− (𝑠′, 𝑡′) + (𝑡′, 𝑠′)

=
∑︁

(𝑢,𝑣)∈N

has𝑢,𝑣
−→𝑎 · (𝑢, 𝑣)⏟  ⏞  

=Has−→𝑎

− (𝑠′, 𝑡′) + (𝑡′, 𝑠′) = Has−→𝑎 − (𝑠′, 𝑡′) + (𝑡′, 𝑠′) .

This proves Theorem 5.3.9.
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