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Abstract

In 1983, Ira Gessel introduced the ring of quasisymmetric functions (QSym), an ex-
tension of the ring of symmetric functions and nowadays one of the standard examples
of a combinatorial Hopf algebra. In this thesis, I elucidate three aspects of its theory:

1) Gessel’s P-partition enumerators are quasisymmetric functions that generalize,
and share many properties of, the Schur functions; their Hopf-algebraic antipode sat-
isfies a simple and explicit formula. Malvenuto and Reutenauer have generalized this
formula to quasisymmetric functions “associated to a set of equalities and inequali-
ties”. I reformulate their generalization in the handier terminology of double posets,
and present a new proof and an even further generalization in which a group acts on
the double poset.

2) There is a second bialgebra structure on QSym, with its own “internal” comul-
tiplication. I show how this bialgebra can be constructed using the Aguiar-Bergeron-
Sottile universal property of QSym by extending the base ring; the same approach
also constructs the so-called “Bernstein homomorphism”, which makes any connected
graded commutative Hopf algebra into a comodule over this second bialgebra QSym.

3) I prove a recursive formula for the “dual immaculate quasisymmetric functions”
(a certain special case of P-partition enumerators) conjectured by Mike Zabrocki. The
proof introduces a dendriform algebra structure on QSym.

Two further results appearing in this thesis, but not directly connected to QSym,
are:

4) generalizations of Whitney’s formula for the chromatic polynomial of a graph
in terms of broken circuits. One of these generalizations involves weights assigned to
the broken circuits. A formula for the chromatic symmetric function is also obtained.

5) a proof of a conjecture by Bergeron, Ceballos and Labbé on reduced-word
graphs in Coxeter groups (joint work with Alexander Postnikov). Given an element
of a Coxeter group, we can form a graph whose vertices are the reduced expressions
of this element, and whose edges connect two reduced expressions which are “a sin-
gle braid move apart”. The simplest part of the conjecture says that this graph is
bipartite; we show finer claims about its cycles.
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Preface

Mountains will labour: what’s

born? A ridiculous mouse!

Horace

This thesis gathers some of the work I have done within the last five years. It is,

per se, not an integral whole, but four of its five chapters are united by a common

thread (quasisymmetric and symmetric functions). Specifically, the thesis consists of

the following:

Chapter 1:

Chapter 2:

Double posets and the antipode of QSym. This chapter (which also ap-
pears on the arXiv as preprint arXiv:1509.08355v2) reproves and gen-
eralizes a formula for the antipode of certain quasisymmetric functions
due to Malvenuto and Reutenauer. Only basic knowledge of quasisym-
metric functions is assumed, and an even more basic understanding of
Hopf algebras (reading |[GriReil5) §1 and §5] should be more than suf-
ficient).

Dual immaculate creation operators and a dendriform algebra structure
on the quasisymmetric functions. This chapter (which has also been
posted on the arXiv as preprint arXiv:1410.0079v6 in a slightly mod-
ified editiorﬂ) constructs four new operations on the ring of quasisym-
metric functions, two of which make it into a dendriform algebra. The

operations are used to prove a conjecture of Mike Zabrocki that gives an

More precisely, the preprint arXiv:1410.0079v6 comes in two versions: a short (“default”) one,
and a detailed one (available as an ancillary file). Our Chapter 2 is a mix of the two.
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Chapter 3:

Chapter 4:

alternative definition of the so-called “dual immaculate quasisymmetric
functions” (an analogue of the Schur functions). This paper has been
accepted for publication at the Canadian Journal of Mathematics; it is
fairly light on prerequisites (again, the reader will find everything she
needs in [GriReild, §1 and §5], except for some further material from

|GriReil5, §8] used in the last section).

The Bernstein homomorphism via Aguiar-Bergeron-Sottile universal-
ity. In this chapter (which has also been released on the arXiv as
preprint arXiv:1604.02969v2), I use the Aguiar-Bergeron-Sottile uni-
versal property of the ring of quasisymmetric functions to construct
(what Hazewinkel calls) the Bernstein homomorphism (actually, a gen-
eralization thereof), which generalizes the internal comultiplication on
quasisymmetric functions. The reader is, again, expected to have a good
understanding of Hopf algebras and quasisymmetric functions ([GriReil5,
§1, §5 and §7|); prior familiarity with the internal comultiplication is not

required.

A note on non-broken-circuit sets and the chromatic polynomial. This
chapter (also appearing on the arXiv as preprint arXiv:1604.03063v1)
explores several generalizations of Whitney’s formula for the chromatic
polynomial of a graph in terms of subsets containing no broken cir-
cuits. In particular, the graph is replaced by the matroid, the chromatic
polynomial by the chromatic symmetric function (although not both at
once!), and the subsets containing no broken circuits are replaced by
subsets avoiding a certain pre-selected set of broken circuits). This note
has an expositive character, even if the generalizations are new (to my
knowledge); in particular, I believe it to be readable with no preknowl-

edge whatsoever in algebraic combinatoricsE]

2Remarkably, the main lemma in this chapter (Lemma [4.2.7) is proven using a bijection ® highly
reminiscent of the involution T in the proof of Theorem in Chapter 1. (Actually, ® can be
extended to an involution, thus making the analogy even more palpable.) This suggests a connection
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Chapter 5: Proof of a conjecture of Bergeron, Ceballos and Labbé (joint work with
Alexander Postnikov). This chapter (which also appears on the arXiv
as preprint arXiv:1603.03138v1) proves a conjecture about reduced
words of elements in Coxeter groups (more precisely, about cycles in
reduced word graphs). Unlike the previous four chapters, this one has
no direct connection with combinatorial Hopf algebras and symmetric
functions; the reader is assumed to be familiar with basic combinatorial

properties of Coxeter groups [Lusztigl4].

Various other work done during my stay at MIT has not found its way into this
thesis, including the two-part paper, joint with Tom Roby, on birational rowmo-
tion |GriRob15]; the study of dual stable Grothendieck polynomials, joint with Pavel
Galashin and Gaku Liu [GaGrLil6]; and some minor results that have become exer-

cises in [GriReil5].

between the two results and possibly even a common generalization; I have not, however, been able
to take hold of such a generalization so far.
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Chapter 1

Double posets and the antipode of
QSym

Abstract

We assign a quasisymmetric function to every double poset (that is, every finite set
endowed with two partial orders) and any weight function on its ground set. This
generalizes well-known objects such as monomial and fundamental quasisymmetric
functions, (skew) Schur functions, dual immaculate functions, and quasisymmetric
(P, w)-partition enumerators. We then prove a formula for the antipode of this func-
tion that holds under certain conditions (which are satisfied when the second order of
the double poset is total, but also in some other cases); this restates (in a way that to
us seems more natural) a result by Malvenuto and Reutenauer, but our proof is new
and self-contained. We generalize it further to an even more comprehensive setting,
where a group acts on the double poset by automorphisms.

1.1 Introduction

Double posets and E-partitions (for E a double poset) have been introduced by Clau-
dia Malvenuto and Christophe Reutenauer [MalReu09| in order to construct a com-
binatorial Hopf algebra which harbors a noticeable amount of structure, including an
analogue of the Littlewood-Richardson rule and a lift of the internal product oper-
ation of the Malvenuto-Reutenauer Hopf algebra of permutations. In this note, we

shall employ these same notions to restate in a simpler form, and reprove in a more
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elementary fashion, a formula for the antipode in the Hopf algebra QSym of qua-
sisymmetric functions due to (the same) Malvenuto and Reutenauer (generalizing an
earlier result by Gessel), and extend it further to a case in which a group acts on the
double poset.

In the present version of the paper, some (classical and/or straightforward) proofs
are missing or sketched. A more detailed version exists, in which at least a few of

these proofs are elaborated on mord]

Acknowledgments

Katharina Jochemko’s work [Jochl3| provoked this research. I learnt a lot about

QSym from Victor Reiner.

1.2 Quasisymmetric functions

Let us first briefly introduce the notations that will be used in the following.

We set N = {0,1,2,...}. A composition means a finite sequence of positive
integers. We let Comp be the set of all compositions. For n € N, a composition of n
means a composition whose entries sum to n (that is, a composition (g, s, ..., )
satisfying oy + ag + - -+ + o = n).

Let k be an arbitrary commutative ring. We shall keep k fixed throughout this

paper. We consider the k-algebra k [[x1, 9, 23, . . .]] of formal power series in infinitely
many (commuting) indeterminates xy, zo,x3,... over k. A monomial shall always
mean a monomial (without coefficients) in the variables z1, s, z3, . . .. E]

Tt can be downloaded from http://web.mit.edu/~darij/www/algebra/dp-abstr-long.pdf
2For the sake of completeness, let us give a detailed definition of monomials and of the topology

on k[[x1,z2,23,...]]. (This definition also appears in Section [2.2] of this thesis.)
Let x1, %2, x3, ... be countably many distinct symbols. We let Mon be the free abelian monoid on
the set {1, z2, x3, ...} (written multiplicatively); it consists of elements of the form z{*z5225® - - - for

finitely supported (a1, as, as,...) € N*° (where “finitely supported” means that all but finitely many
positive integers i satisfy a; = 0). A monomial will mean an element of Mon. Thus, a monomial is
a combinatorial object, independent of k; it does not carry a coefficient.

We consider the k-algebra k[[x1,z2,23,...]] of (commutative) power series in countably many
distinct indeterminates x1, x3, x3, ... over k. By abuse of notation, we shall identify every monomial
xtxg?xs® - -+ € Mon with the corresponding element z{* - x5? - 25® - - -+ of k[[z1, x2,z3,...]] when

16
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Inside the k-algebra k [[x1, 2, z3, . . .]] is a subalgebra k [[z1, 3, 23, . . ]|, 4 consist-
ing of the bounded-degree formal power series; these are the power series f for which
there exists a d € N such that no monomial of degree > d appears in f E| This
k-subalgebra k [[z1, 2o, 23, . . ]}, 4y becomes a topological k-algebra, by inheriting the

topology from k [[x1, zo, x3, .. .]].

Two monomials m and n are said to be pack—equivalentﬁ if they have the forms

al ..as ay ai .a2 ay . . . . . .
wglwg? - wgt and x5 257 - - - 25! for two strictly increasing sequences (i < iy < - -+ < i)
and (j; < jo < -+ < jig) of positive integers and one (common) sequence (ay, as, . .., ay)

of positive integers.ﬂ A power series f € k[[x1,x2, 23, ...]] is said to be quasisymmet-
ric if every two pack-equivalent monomials have equal coefficients in front of them

in f. It is easy to see that the quasisymmetric power series form a k-subalgebra of

necessary (e.g., when we speak of the sum of two monomials or when we multiply a monomial with an
element of k). (To be very pedantic, this identification is slightly dangerous, because it can happen
that two distinct monomials in Mon get identified with two identical elements of k [[x1, z2, z3, .. .]].
However, this can only happen when the ring k is trivial, and even then it is not a real problem
unless we infer the equality of monomials from the equality of their counterparts in k [[z1, z2, z3, . . .]],
which we are not going to do.)

We furthermore endow the ring k [[z1, 22, x3, .. .]] with the following topology (as in [GriReil5l
Section 2.6]):

We endow the ring k with the discrete topology. To define a topology on the k-algebra
k[[z1,z2,23,...]], we (temporarily) regard every power series in k[[z1,22,23,...]] as the family
of its coefficients (indexed by the set Mon). More precisely, we have a k-module isomorphism

H k—>k[[x1,x2,x3,...]], ()‘m)meMon’_) Z Am .

meMon meMon

We use this isomorphism to transport the product topology on  [] kto k[[z1, 22,23, ...]]. The re-
méeMon
sulting topology on k [[x1, x9, x3, .. .]] turns k [[z1, z2, 23, . . .]] into a polynomial k-algebra; this is the

topology that we will be using whenever we make statements about convergence in k [[z1, z2, T3, . . .]]
or write down infinite sums of power series. A sequence (a,,),, e of power series converges to a power
series a with respect to this topology if and only if for every monomial m, all sufficiently high n € N
satisfy

(the coefficient of m in a,,) = (the coeflicient of m in a).

Note that this topological k-algebra k [[x1,z2, z3,...]] is not the completion of k [z1, 22, 23, .. .|
with respect to the standard grading (in which all z; have degree 1). (They are distinct even as
sets.)

3The degree of a monomial z{*x52x4? - - - is defined to be the nonnegative integer a; +as+az+- .
A monomial m is said to appear in a power series f € k[[x1,xa,x3,...]] if and only if the coefficient

of m in f is nonzero.

4Pack-equivalence and the related notions of packed combinatorial objects that we will encounter
below originate in work of Hivert, Novelli and Thibon [NovThi05]. Simple as they are, they are of
great help in dealing with quasisymmetric functions.

°For instance, x3z373 is pack-equivalent to z¥x422 but not to razia3.
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k [[x1, 22, x5, .. .]]; but usually one is interested in the set of quasisymmetric bounded-
degree power series in k [[z1, x9, 23, .. .]]. This latter set is a k-subalgebra of

k [[z1, 22, 23, .. ]|, qq, and is known as the k-algebra of quasisymmetric functions over
k. It is denoted by QSym. It is clear that symmetric functions (in the usual sense
of this word in combinatorics — so, really, symmetric bounded-degree power series
in k[[z1, 22, 23,...]]) form a k-subalgebra of QSym. The quasisymmetric functions
have a rich theory which is related to, and often sheds new light on, the classical
theory of symmetric functions; expositions can be found in [Stan99, §§7.19, 7.23| and

IGriReil5l §85-6] and other sources.

As a k-module, QSym has a basis (M,,) indexed by all compositions, where

aceComp

the quasisymmetric function M, for a given composition « is defined as follows:

Writing «v as (o, o, . .., o), we set
_ al o2 %0
M, = E x; Xy T, = E m
11 <to<--<tg m is a monomial
pack-equivalent
to z?lzgz--x?[

(where the i in the first sum are positive integers). This basis (M,) is known

acComp
as the monomial basis of QSym, and is the simplest to define among many. (We shall

briefly encounter another basis in Example [1.3.6])

The k-algebra QQSym can be endowed with a structure of a k-coalgebra which,
combined with its k-algebra structure, turns it into a Hopf algebra. We refer to
the literature both for the theory of coalgebras and Hopf algebras (see [Montg93]|,
|GriReil5] §1], [Manchon04, §1-§2|, [Abe77], [Sweed69], [DNROI] or [Fresseld, Chap-
ter 7|) and for a deeper study of the Hopf algebra QSym (see [Malve93|, [HaGuKil0)
Chp. 6] or |GriReil5 §5]); in this note we shall need but the very basics of this

structure, and so it is only them that we introduce.

We define a k-linear map A : QSym — QSym ® QSym (here and in the following,

18



all tensor products are over k by default) by requiring that

4

A (M(a17a27-~-704£)> = Z M(Cv170127~--701k) ® M(ak+1aak+2u---70‘£) (1'1)
k=0
for every (aq,an,...,ap) € Comp

ﬂ We further define a k-linear map ¢ : QSym — k by requiring that
€ (M(al,%”_,ae)) = 00 for every (ai,an,...,ap) € Comp

|Z|. (Equivalently, £ sends every power series f € QSym to the result f(0,0,0,...)
of substituting zeroes for the variables xq,x9,x3,... in f. The map A can also be
described in such terms, but with greater difficulty [GriReil), (5.3)].) It is well-known

that these maps A and € make the three diagrams

QSym = QSym ® QSym
Al lA@id

QSym ® QSym —aen QSym ® QSym ® QSym

QSym S SN QSym ® QSym , QSym S SN QSym ® QSym
2 le@id 2 lid@a
k ® QSym QSym ® k

(where the 2 arrows are the canonical isomorphisms) commutative, and so (QSym, A, ¢)
is what is commonly called a k-coalgebra. Furthermore, A and ¢ are k-algebra homo-
morphisms, which is what makes this k-coalgebra QSym into a k-bialgebra. Finally,
let m : QSym ® QSym — QSym be the k-linear map sending every pure tensor a ® b
to ab, and let u : k — QSym be the k-linear map sending 1 € k to 1 € QSym. Then,

6This definition relies on the fact that (M,) is a basis of the k-module QSym.

acComp

1, if u=uv;

"Here, 6,,., is defined to be . " whenever u and v are two objects.
’ 0, ifuz#wv

19



there exists a unique k-linear map S : QSym — QSym making the diagram

QSym ® QSym _ sed QSym ® QSym (1.2)

A m

QSym < k - QSym

m

A
id®s
QSym ® QSym ——=22 4 QSym ® QSym
commutative. This map S is known as the antipode of QSym. It is known to be
an involution and an algebra automorphism of QSym, and its action on the various
quasisymmetric functions defined combinatorially is the main topic of this note. The

existence of the antipode S makes QSym into a Hopf algebra.

1.3 Double posets

Next, we shall introduce the notion of a double poset, following Malvenuto and

Reutenauer [MalReu09).

Definition 1.3.1. (a) We shall encode posets as pairs (P, <), where P is a set
and < is a strict partial order relation (i.e., an irreflexive, transitive and
antisymmetric binary relation) on the set P; this relation < will be regarded
as the smaller relation of the poset. (All binary relations will be written in

infix notation: i.e., we write “a < b” for “a is related to b by the relation <”.)

(b) If < is a strict partial order relation on a set P, and if a and b are two
elements of P, then we say that a and b are <-comparable if we have either
a<bora=>borb< a. A strict partial order relation < on a set P is said

to be a total order if and only if every two elements of P are <-comparable.

(c) If < is astrict partial order relation on a set P, and if a and b are two elements
of P, then we say that a is <-covered by b if we have a < b and there exists

no ¢ € P satisfying a < ¢ < b. (For instance, if < is the standard smaller

relation on Z, then each i € Z is <-covered by i + 1.)

20



(d) A double poset is defined as a triple (E, <y, <2) where E is a finite set and

<43 and <5 are two strict partial order relations on F.

(e) A double poset (F, <1, <) is said to be special if the relation < is a total

order.

(f) A double poset (F,<j,<3) is said to be semispecial if every two <i-

comparable elements of F are <s-comparable.

(g) A double poset (F, <;, <2) is said to be tertispecial if it satisfies the following
condition: If @ and b are two elements of E such that a is <;-covered by b,

then a and b are <s-comparable.

(h) If < is a binary relation on a set P, then the opposite relation of < is defined
to be the binary relation > on the set P which is defined as follows: For any

e € Pand f € P, we have e > f if and only if f < e. Notice that if < is a

strict partial order relation, then so is the opposite relation > of <.

Clearly, every special double poset is semispecial, and every semispecial double

poset is tertispecial ff
Definition 1.3.2. If E = (E, <1, <2) is a double poset, then an E-partition shall
mean a map ¢ : £ — {1,2,3,...} such that:

e cvery e € F and f € F satisfying e <; f satisfy ¢ (e) < ¢ (f);

e every ¢ € F and f € F satisfying e <; f and f <5 e satisfy ¢ (e) < ¢ (f).

8The notions of a double poset and of a special double poset come from [MalReu09]. The notion
of a “tertispecial double poset” (Dog Latin for “slightly less special than semispecial”) appears to be
new and arguably sounds artificial, but is the most suitable setting for some of the results below
(and appears in nature, beyond the particular case of special double posets — see Example .
We shall not use semispecial double posets in the following; they were only introduced as a middle
ground between special and tertispecial double posets with a less daunting definition.
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Example 1.3.3. The notion of an E-partition (which was inspired by the earlier
notions of P-partitions and (P, w)-partitions as studied by Gessel and Stanleyﬂ)

generalizes various well-known combinatorial concepts. For example:

e If <, is the same order as <; (or any extension of this order), then E-
partitions are weakly increasing maps from the poset (F,<;) to the totally

ordered set {1,2,3,...}.

o If <, is the opposite relation of <; (or any extension of this opposite relation),
then E-partitions are strictly increasing maps from the poset (F, <;) to the

totally ordered set {1,2,3,...}.

For a more interesting example, let p = (1, pio, 13, . ..) and A = (A1, Ag, Az, .. .)
be two partitions such that © C . (See |GriReil5l §2] for the notations we are
using here.) The skew Young diagram Y (A/u) is then defined as the set of all
(i,7) € {1,2,3,...}” satisfying j; < j < ;. On this set Y (\/p), we define two

partial order relations <; and <y by
(i,5) <1 (,)') <= (1 < and j < j"and (i,7) # (¢, j))

and

(i,5) <2 (7', j") <= (i =" and j < j" and (i,5) # (V',5)).

The resulting double poset Y (A/u) = (Y (A/p), <1, <2) has the property that the
Y (A\/p)-partitions are precisely the semistandard tableaux of shape A/u. (Again,
see [GriReil5) §2] for the meaning of these words.)

This double poset Y (A/u) is not special (in general), but it is tertispecial.
(Indeed, if a and b are two elements of Y (\/u) such that a is <j-covered by b, then
a is either the left neighbor of b or the top neighbor of b, and thus we have either
a <3 b (in the former case) or b <5 a (in the latter case).) Some authors prefer to

use a special double poset instead, which is defined as follows: We define a total
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order <; on Y (A/u) by

(i,7) <n (',j') <= (i >4 or (i =74 and j < j')).

Then, Y, (A/pn) = (Y (M), <1,<p) is a special double poset, and the Y}, (A/p)-

partitions are precisely the semistandard tableaux of shape \/pu.

We now assign a certain formal power series to every double poset:

Definition 1.3.4. If E = (F, <4, <) is a double poset, and w : E — {1,2,3,...}

is a map, then we define a power series I' (E, w) € k [[x1, z9, 73, ...]] by
['(E,w) = Z X s where X, = H xr((ee)).
7 is an E-partition eck

The following fact is easy to see (but will be reproven below):

Proposition 1.3.5. Let E = (FE,<;,<3) be a double poset, and w : F —
{1,2,3,...} be amap. Then, I' (E,w) € QSym.

Example 1.3.6. The power series I' (E,w) generalize various well-known qua-

sisymmetric functions.

(a) IfE = (F, <, <) is a double poset, and w : E — {1,2,3,...} is the constant

function sending everything to 1, then I' (E,w) = > X, where
7 is an E-partition
Xr = ][ ®ze). We shall denote this power series I' (E,w) by I' (E); it is
eclk
exactly what has been called T' (E) in [MalReu09, §2.2]. All results proven

below for I' (E, w) can be applied to I' (E), yielding simpler (but less general)

statements.

9See [Gessell5] for the history of these notions, and see [Gessel84], [Stan71], [Stanlll, §3.15]
and [Stan99l §7.19] for some of their theory. Mind that these sources use different and sometimes
incompatible notations — e.g., the P-partitions of [Stanlll §3.15] and [Gesselld] differ from those of
[Gessel84] by a sign reversal.
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(b)

If £ ={1,2,...,¢} for some ¢ € N, if <; is the usual total order inher-
ited from Z, and if <, is the opposite relation of <, then the special dou-

ble poset E = (F, <y, <) satisfies I' (E,w) = M,, where « is the compo-

sition (w(1),w(2),...,w(¢)). Thus, the elements of the monomial basis
(Ma) qecomp are special cases of the functions I' (E, w).
Let o = (g, aa,...,a0) be a composition of a nonnegative integer n. Let

D («) be the set {aq,0q + a9, 04 +ag+ag,...,a0 +ag+ -+ a1} Let
E be the set {1,2,...,n}, and let <; be the total order inherited on E from

Z. Let <5 be some partial order on E with the property that
1+ 1<91 for every i € D («)

and

i<gi+1 forevery i € {1,2,...,n— 1} \ D ().

(There are several choices for such an order; in particular, we can find one

which is a total order.) Then,

(B, <1, <2)) = Z Ly Lig *** Ti,

BRSZASERST
i1j<ij4+1 whenever jeD(a)

= > Mg.

B is a composition of n; D(8)DD(«)

This power series is known as the a-th fundamental quasisymmetric function,
usually called F,, (in [BBSSZI13al §2.4] and Section [2.2] of this thesis) or L,
(in [Stan99, §7.19| or [GriReildl, Def. 5.15]).

Let E be one of the two double posets Y (A/p) and Y}, (A/u) defined as in
Example for two partitions ¢ and A\. Then, I' (E) is the skew Schur

function s)/,,.

Similarly, dual immaculate functions as defined in [BBSSZ13al, §3.7] can be
realized as I' (E) for conveniently chosen E (see Proposition [2.4.4)), which
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helped the author to prove one of their properties (see Chapter 2 of this

thesis). (The E-partitions here are the so-called immaculate tableaux.)

(f) When the relation <5 of a double poset E = (F, <1, <3) is a total order (i.e.,
when the double poset E is special), the E-partitions are precisely the reverse
(P,w)-partitions (for P = (F, <;) and w being a labelling of P dictated by
<3) in the terminology of [Stan99, §7.19|, and the power series I' (E) is the
Kp,, of [Stan99, §7.19]. This can also be rephrased using the notations of
[GriReil5) §5.2]: When the relation < of a double poset E = (E, <1, <3) is a
total order, we can relabel the elements of E by the integers 1,2, ..., n in such
a way that 1 <5 2 <9 --- <9 n; then, the E-partitions are the P-partitions
in the terminology of |GriReild, Def. 5.12|, where P is the labelled poset
(E,<4); and furthermore, our I" (E) is the Fp (x) of |GriReil5, Def. 5.12].
Conversely, if P is a labelled poset, then the Fp (x) of [GriReil5l, Def. 5.12]

is our I' (P, <p, <z)).

1.4 The antipode theorem

We now come to the main results of this note. We first state a theorem and a
corollary which are not new, but will be reproven in a more self-contained way which
allows them to take their (well-deserved) place as fundamental results rather than

afterthoughts in the theory of QSym.

I Definition 1.4.1. We let S denote the antipode of QSym.
Theorem 1.4.2. Let (E, <, <2) be a tertispecial double poset. Let w : £ —

{1,2,3,...}. Then, S (I ((E,<1,<2),w)) = (=D)FIT((E,>1,<,),w), where >

denotes the opposite relation of <.
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Corollary 1.4.3. Let (F,<;,<2) be a tertispecial double poset.  Then,
ST ((E,<1,<2)) = (=1)IT ((E,>1,<3)), where >; denotes the opposite re-

lation of <;.

We shall give examples for consequences of these facts shortly (Example ,
but let us first explain where they have already appeared. Corollary[I.4.3]is equivalent
to [GriReil5, Corollary 5.27['7 (a result found by Malvenuto and Reutenauer, as well
as by Ehrenborg in an equivalent form). Theorem is equivalent to Malvenuto’s
and Reutenauer’s [MalReu98, Theorem 3.1[1] We nevertheless believe that our ver-
sions of these facts are more natural and simpler than the ones appearing in existing
literaturelﬂ, and if not, then at least their proofs below are more in the nature of
things.

To these known results, we add another, which seems to be unknown so far (prob-
ably because it is far harder to state in the terminologies of (P,w)-partitions or
equality-and-inequality conditions appearing in literature). First, we need to intro-

duce some notation:

107t is easiest to derive [GriReil5, Corollary 5.27] from our Corollary as this only requires
setting E = (P, <p,<z) (this is a special double poset, thus in particular a tertispecial one) and
noticing that I' (P, <p,<z)) = Fp(x) and I' ((P,>p,<z)) = Fpore (x), where all unexplained
notations are defined in [GriReil5, Chp. 5]. But one can also proceed in the opposite direction.

UThis equivalence requires a bit of work to set up. To derive [MalReu98, Theorem 3.1| from our
Theorem [T.4.2] it is enough to contract all undirected edges in G, denoting the vertex set of the new
graph by E, and then define two order relations <; and <5 on E by

(a <1 b) <= (a # b, and there exists a path from a to b in G)

and
(a <2 b) <= (a # b, and there exists a path from a to b in G’).

The map w sends every e € E to the number of vertices of G that became e when the edges were
contracted. To show that the resulting double poset (F, <1, <2) is tertispecial, we must notice that if
a is <j-covered by b, then G had an edge from one of the vertices that became a to one of the vertices
that became b. The “x;’s in X satisfying a set of conditions” (in the language of [MalReu98|, Section
3]) are then in 1-to-1 correspondence with (E, <1, <s)-partitions (at least when X = {1,2,3,...});
this is not immediately obvious but not hard to check either (the acyclicity of G and G’ is used in
the proof). As a result, [MalReu98, Theorem 3.1] follows from Theorem above. With some
harder work, one can conversely derive our Theorem from [MalReu98, Theorem 3.1].

12That said, we would not be surprised if Malvenuto and Reutenauer are aware of them and just
have not published them; after all, they have discovered both the original version of Theorem
in [MalReu98| and the notion of double posets in [MalReu09].
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Definition 1.4.4. Let G be a group, and let E be a G-set.

(a)

Let < be a strict partial order relation on E. We say that G preserves the
relation < if the following holds: For every g € GG, a € E and b € F satisfying

a < b, we have ga < gb.

Let w: F — {1,2,3,...}. We say that G preserves w if every g € G and
e € E satisty w (ge) = w (e).

Let g € G. Assume that the set E is finite. We say that g is E-even if the
action of g on F (that is, the permutation of E that sends every e € F to

ge) is an even permutation of FE.

If X is any set, then the set X of all maps £ — X becomes a G-set in the
following way: For any 7 € X¥ and g € G, we define the element gr € XF

to be the map sending each ¢ € E to 7 (g 'e).

Let F' be a further G-set. Assume that the set E is finite. An element 7 € F
is said to be E-coeven if every g € G satisfying gr = 7 is F-even. A G-orbit

O on F is said to be E-coeven if all elements of O are E-coeven.

Before we come to the promised result, let us state a simple fact:

Lemma 1.4.5. Let G be a group. Let F' and E be G-sets such that E is finite.

Let O be a G-orbit on F. Then, O is E-coeven if and only if at least one element

of O is E-coeven.

Theorem 1.4.6. Let E = (E, <, <3) be a tertispecial double poset. Let ParE

denote the set of all E-partitions. Let w : £ — {1,2,3,...}. Let G be a finite

group which acts on E. Assume that G preserves both relations <; and <5, and

also preserves w. Then, G acts also on the set Par E of all E-partitions; namely,

ParE is a G-subset of the G-set {1,2,3,...}” (see Definition m (d) for the

definition of the latter). For any G-orbit O on Par E, we define a monomial xo
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by

Xow = Xrw for some element 7 of O

(this does not depend on the choice of 7). Let

I'(E,w,G) = Z X0

O is a G-orbit on ParE

and

' E,wG) = Z XOw-

O is an E-coeven G-orbit on ParE

Then, I' (E, w,G) and I'" (E, w, G) belong to QSym and satisfy

ST (E,w,G) = (-1t (B, >, <s),0,G).

This theorem, which combines Theorem with the ideas of Pélya enumeration,
is inspired by Jochemko’s reciprocity result for order polynomials [Jochl3l Theorem
2.8], which can be obtained from it by specializations (see Section for the details

of how Jochemko’s result follows from ours).

We shall now review a number of particular cases of Theorem [[.4.2] Details on

most of them will be provided in forthcoming work.

Example 1.4.7. (a) Corollary follows from Theorem by letting w be

the function which is constantly 1.

(b) Let « = (aq,a9,...,a4) be a composition of a nonnegative integer n, and
let E = (E, <y, <) be the double poset defined in Example [1.3.6) (b). Let
w:{1,2,...,0} - {1,2,3,...} be the map sending every i to a;. As Exam-
ple [1.3.6] (b) shows, we have I' (E, w) = M,. Thus, applying Theorem [1.4.2]
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to these E and w yields

S(Ma) = (=1)'T((E,>1,<2),w) = (=1)° D aftaf .-

i1 i2 (7]
112022 >0y
= (—1) 2 g = (—1)f M
- 11 V12 (7 v
i1 <12<---<iy 7 is a composition of n;

D(v)CED((ag,ap—1,..,01))

This is the formula for S (M,) given in [Malve93, (4.26)], in [GriReil5, Theo-
rem 5.11], and in [BenSagl4], Theorem 4.1] (originally due to Ehrenborg and
to Malvenuto and Reutenauer). It also shows that the I' (E, w) for varying

E and w span the k-module QSym.

(¢) Applying Corollary to the double poset of Example[1.3.6] (c) (where the

relation <, is chosen to be a total order) yields the formula for the antipode of
a fundamental quasisymmetric function ([Malve93, (4.27)], [GriReil5, (5.9)],
[BenSag14, Theorem 5.1]).

(d) Let us use the notations of Example [1.3.3] For any partition A, let A" denote

the conjugate partition of A\. Let u and A be two partitions satisfying u C A.
Then, there is a bijection 7 : Y (A\/u) — Y (A'/u") sending each (i,j) €
Y (A/p) to (j,7). This bijection is an isomorphism of double posets from

(Y (N ), >1,<2) to (Y (A\'/u!),>1,>2). Thus, applying Corollary to
the tertispecial double poset Y (A/u), we obtain

ST Y (M) = (DMT((Y (M) >1. <2))
= (=DM (Y (N /) >1,>9)) - (1.3)

But from Example (d), we know that I'(Y (A\/p)) = sa/u. More-

over, a similar argument using [GriReild, Remark 2.12] shows that

L ((Y (N/ub),>1,>2)) = sxt/,e. Hence, (L.3)) rewrites as

S (sa) = (=) sy . (1.4)
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This is a well-known formula, and is usually stated for S being the antipode
of the Hopf algebra of symmetric (rather than quasisymmetric) functions,

but the latter antipode is a restriction of the antipode of QSym.

It is also possible (but more difficult) to derive (1.4) by using the double
poset Yy (A/p) instead of Y (A/p). (This boils down to what was done in
[GriReil5l proof of Corollary 5.29].)

(e) Two results of Benedetti and Sagan [BenSagl4, Theorems 8.1-8.2] on the
antipodes of immaculate functions can be obtained from Corollary using

dualization.

1.5 Lemmas: packed E-partitions and comultiplica-
tions

We shall now prepare for the proofs of our results. To this end, we introduce the

notion of a packed map.

Definition 1.5.1. (a) An initial interval will mean a set of the form {1,2,... ¢}

for some ¢ € N.

(b) If T is a set and = : T — {1,2,3,...} is a map, then 7 is said to be

packed if 7 (T) is an initial interval. Clearly, this initial interval must be

{1,2,..., |7 (T)]}.

Proposition 1.5.2. Let E = (E,<;,<3) be a double poset. Let w : E —

{1,2,3,...} be a map. For every packed map 7 : £ — {1,2,3,...}, we define

ev, ™ to be the composition (ay, as,...,ay), where ¢ = |7 (E)| (so that 7 (F) =
{1,2,...,¢}, since 7 is packed), and where each «; is defined as >  w(e). Then,
ecm—1(3)

I'(E,w)= > My, o- (1.5)

¢ is a packed E-partition
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Proof of Proposition[1.5.3. For every finite subset T of {1,2,3,...}, there exists a
unique strictly increasing bijection {1,2,...,|T|} — T. We shall denote this bijec-
tion by rp. For every map m : E — {1,2,3,...}, we define the packing of 7 as
the map r;(lE) om : F — {1,2,3,...}; this is a packed map (indeed, its image is
{1,2,...,|7 (F)|}), and will be denoted by pack 7. This map pack 7 is an E-partition
if and only if 7 is an E-partition}

We shall show that for every packed E-partition ¢, we have

7 is an E-partition; pack m=¢

Once this is proven, it will follow that

['(E,w) = Z X = Z Z X

7 is an E-partition @ is a packed E-partition 7 is an E-partition; pack m=¢
A g

~~

=Mev,, ¢

(by (L.6))

(since packm is a packed E-partition for every E-partition )

= Z Mevw ©s

p is a packed E-partition

and Proposition will be proven.

So it remains to prove (1.6). Let ¢ be a packed E-partition. Let ¢ = |p (E)];
thus ¢ (E) = {1,2,..., ¢} (since ¢ is packed). Let a; = > w(e) for every i €

e€p~1(i)
{1,2,...,0}; thus, evy, ¢ = (a1, qs,...,a0) (by the definition of ev,, ¢). Then, the

BIndeed, packm = r;(lE) om. Since rn(g) is strictly increasing, we thus see that, for any given
e € F and f € F, the equivalences

((pack7) (e) < (packm) (f)) <= (7 (e) < 7 (f))

and
((pack) (e) < (packT) (f)) <= (7 (e) <7 (f))

hold. Hence, pack 7 is an E-partition if and only if 7 is an E-partition.
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right hand side of (1.6)) rewrites as follows:

¢
_ a1 .02 Qe [e%%
MeVuNP - Z x“ xlz 'riz - H 'rik
11 <tg<---<ip . 1 <tg<---<tp k=1 E‘ w(e)
:H x. b _ eco—1(k)
k=1 =iy,
(since ap= >,  w(e))
eco— (k)
(e)
Sy na oy oo s
k 123
. LT e ——
1 <tg<---<tp k=1 w(e) 11 <12 <<ty k=1 ecE; Lpe) k w(e)
= X, =x.
eepl:[l(k) k bo(e)
] (since k=y(e))
= 11 22
e€E; p(e)=k h
14
I B I o
2o (e) Lo(e)
11<ig<--<ig k=1 e€F; p(e)=k i1 <io<-<iy e€E
w(e)
ele_[E Yp(e)
_ w(e) _ E
- E , H Trr(pe)) - Frropw (L.7)
TC{1,2,3,..}; |T|=¢ c€E TC{1,2,3,...}; |T|=¢

w(e)

AL roe)

=Xrpop,w

[

On the other hand, recall that ¢ is an E-partition. Hence, every map 7 satisfying
packm = ¢ is an E-partition (because, as we know, pack 7 is an E-partition if and
only if 7 is an E-partition). Thus, the E-partitions 7 satisfying packm = ¢ are

precisely the maps 7 : F — {1,2,3,...} satisfying pack m = ¢. Hence,

X w

2

7 is an E-partition; pack m=¢

(because if 7 : £ — {1,2,3,..

X w

2.

mE—{1,2,3,...}; packm=¢p

D

3yt |TI=8mE—{1,2

E X w

TC{1,2 13,-.}; packm=p; T(E)=T

.} is a map satisfying packm = ¢, then |7 (E)|

=/

14In the second-to-last equality, we have used the fact that the strictly increasing sequences

(i < iz <

< ig) of positive integers are in bijection with the subsets T' C {1,2,3,..
|T| = ¢. The bijection sends a sequence (i1 < iy < ---
sends every T to the sequence (rp (1),77 (2),...,7r7

(I71)-
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E[). But for every (-element subset T of {1,2,3,...}, there exists exactly one 7 : £ —
{1,2,3,...} satisfying pack m = ¢ and 7 (F) = T namely, 7 = rrogp E Therefore,

for every (-element subset T" of {1,2,3,...}, we have

E Xrw = Xrpop,w-

mE—{1,2,3,...}; packm=¢; 7(E)=T

Hence,
> Xew = ) > Xr
7 is an E-partition; pack m=¢ TC{1,2,3,...}; |T|=t m:E—{1,2,3,...}; packm=¢; 7(E)=T
N ~~ >
=Xrpop,w

= § Xrpopw = Mevwap

TC{1,23,..}; |T|=t

15 Proof. Let m: E — {1,2,3,...} be a map satisfying pack ™ = ¢. The definition of pack 7 yields
pack ™ = 1y om. Hence, |(pack ™) (E)| = |(rg 0 7) (B)| = |1 ( (B))| = Im (B)] (since -,
is a bijection). Since packm = ¢, this rewrites as |p (E)| = |7 (E)|. Hence, |7 (E)| = |¢ (E)| = ¢,
qed.

16 Proof. Let T be an f-element subset of {1,2,3,...}. We need to show that there exists exactly
one 7 : E — {1,2,3,...} satisfying packm = ¢ and 7 (E) = T: namely, 7 = rr o ¢. In other words,
we need to prove the following two claims:

Claim 1: The map rr o isamap 7 : F — {1,2,3,...} satisfying packm = ¢ and 7 (E) = T.

Claim 2: If m: E — {1,2,3,...} is a map satisfying packm = ¢ and « (E) = T, then 7 = rp o ¢.

Proof of Claim 1. We have (rpoy)(E) = rr | ¢ (E) =
——
={1,2,....0}
rp 1,2,..., 14 =rr({1,2,...,|T|}) =T (by the definition of rr). Now, the
=|T)
(since T is ¢-element)
definition of pack (r1 o ¢) shows that
pack (17 0 9) = 1.} o ) © (rr o @) =77 0 (rr o) (since (rp o) (E) =T)

:SO.

Thus, the map rrop: E — {1,2,3,...} satisfies pack (rr o ¢) = ¢ and (rp o) (E) = T. In other
words, rpopisamap w: E — {1,2,3,...} satisfying packm = ¢ and 7 (E) = T'. This proves Claim
1.

Proof of Claim 2. Let m : E — {1,2,3,...} be a map satisfying packm = ¢ and 7 (E) = T.
The definition of pack 7 shows that packw = r;(lE) om = rptom (since 7(E) = T). Hence,
r;l o7 = packm™ = ¢, so that m = rp o . This proves Claim 2.

Now, both Claims 1 and 2 are proven; hence, our proof is complete.
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(by - Thus, is proven, and with it Proposition m O

Proof of Proposition[1.3.5. Proposition follows immediately from
Proposition [I.5.2] O

We shall now describe the coproduct of I'' (E, w), essentially giving the proof that
is left to the reader in [MalReu09, Theorem 2.2].

Definition 1.5.3. Let E = (F, <1, <3) be a double poset.

(a) Then, Adm E will mean the set of all pairs (P, @), where P and () are subsets
of F satisfying PN = @ and PU @ = E and having the property that
nop € P and q € @ satisfy ¢ <; p. These pairs (P,Q) are called the
admissible partitions of E. (In the terminology of [MalReu09|, they are the

decompositions of (E,<y).)

(b) For any subset T" of E, we let E |1 denote the double poset (T, <i, <3), where
<y and <5 (by abuse of notation) denote the restrictions of the relations <;

and <5 to T

Proposition 1.5.4. Let E = (E,<;,<32) be a double poset. Let w : E —
{1,2,3,...} be a map. Then,

ATEw)= > T(Epw|p)T(E|gwlg). (1.8)
(P,Q)€EAdmE

A particular case of Proposition [1.5.4] (namely, the case when w (e) = 1 for each
e € E) appears in [Malve93, Théoréme 4.16].

We shall now outline a proof of this fact. The proof relies on a simple bijection
that an experienced combinatorialist will have no trouble finding (and proving even

less); let us just give a brief outline of the argumenlE]:

17See the detailed version of this note for an (almost) completely written-out proof; I am afraid
that the additional level of detail is of no help to the understanding.
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Proof of Proposition[1.5.4] Whenever o = (ay, g, ..., ay) is a composition and k €
{0,1,...,¢}, we introduce the notation «[: k] for the composition (ay,as, ..., a),
and the notation « [k :] for the composition (a1, @ki2,...,a¢). Now, the formula

(1.1) can be rewritten as follows:

l
A (MCM) = Z Ma[:k] ® Ma[k:] (19)

k=0

for every ¢ € N and every composition o with ¢ entries.

Now, applying A to the equality (1.5)) yields

A((E,w)) = ) A (Mey, o)
¢ is a packed E-partition lo(B)|
= X Mievw 901 @Mev o)k
(by ([9))
le(E)]

— Z Z M(evw ©)[:k] X M(evw ©)[k:]- (110)

¢ is a packed E-partition k=0

On the other hand, rewriting each of the tensorands on the right hand side of

(1.8)) using (|1.5), we obtain

Y. TE[pwlp) @l (E|gwle)

(P,Q)EAdM E

= E E Mve|p‘P ® 5 Mevw|an
(P,Q)EAdmE \ ¢ is a packed E|p-partition ¢ is a packed E|g-partition

= E E Mevw\PU ® 5 Mevw‘QT
(P,Q)EAdm E \ o is a packed E|p-partition T is a packed E|qg-partition

- Z Z Z Mevw‘PO' ®Mevw‘QT-

(P,Q)€AdmE ¢ is a packed E|p-partition 7 is a packed E|g-partition

We need to prove that the right hand sides of this equality and of ((1.10]) are equal
(because then, it will follow that so are the left hand sides, and thus Proposition m

will be proven). For this, it is clearly enough to exhibit a bijection between
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e the pairs (p, k) consisting of a packed E-partition p and a k € {0,1,..., ¢ (E)|}
and

e the triples ((P, Q) , 0, 7) consisting of a (P, Q) € Adm E, a packed E |p-partition

o and a packed E |o-partition 7

which bijection has the property that whenever it maps (¢, k) to ((P,Q),o0,7), we
have the equalities (evy, ¢)[: k] = evy), 0 and (evy @) [k:] = evy), 7. Such a bi-
jection is easy to construct: Given (p,k), it sets P = ¢ ' ({1,2,...,k}), Q =
e ' {k+1L,k+2,....|¢(E)}), 0 = ¢ |p and 7 = pack (¢ |g) [F] Conversely,
given ((P,Q),0,7), the inverse bijection sets k = |o (P)| and constructs ¢ as the

o(e), ifee P;
map F — {1,2,3,...} which sends every e € E to . Prov-

T(e)+k, ifeeq
ing that this alleged bijection and its alleged inverse bijection are well-defined and

actually mutually inverse is straightforward and left to the reader@. O

18We notice that these P, Q, o and T satisfy o (e) = ¢ (e) for every e € P, and 7 (e) = ¢ (e) — k
for every e € Q.

19The only part of the argument that is a bit trickier is proving the well-definedness of the inverse
bijection: We need to show that if ((P,Q),o0,7) is a triple consisting of a (P,Q) € AdmE, a
packed E |p-partition o and a packed E |g-partition 7, and if we set k = |o (P)|, then the map

o(e), ifee P;

is actually a packed E-
T(e)+k, ifee@ yarp

¢ : E — {1,2,3,...} which sends every e € E to {

partition.

Indeed, it is clear that this map ¢ is packed. It remains to show that it is an E-partition. To do
so, we must prove the following two claims:

Claim 1: Every e € E and f € F satisfying e <; f satisty ¢ (e) < ¢ (f).

Claim 2: Every e € E and f € F satisfying e <; f and f <5 e satisfy ¢ (e) < ¢ (f).

We shall only prove Claim 1 (as the proof of Claim 2 is similar). So let e € E and f € F be such
that e <1 f. We need to show that ¢ (¢) < ¢ (f). We are in one of the following four cases:

Case 1: We have e € P and f € P.

Case 2: We have e € P and f € Q.

Case 3: We have e € Q and f € P.

Case 4: We have e € Q and f € Q.

In Case 1, our claim ¢ (e) < ¢ (f) follows from the assumption that o is an E | p-partition (because
in Case 1, we have ¢ (e) = o (e) and ¢ (f) = o (f)). In Case 4, it follows from the assumption that
7 is an E |g-partition (since in Case 4, we have ¢ (e) =7 (e) + k and ¢ (f) =7 (f) + k). In Case 2,
it clearly holds (indeed, if e € P, then the definition of ¢ yields ¢ (¢) = o (¢) < k, and if f € @, then
the definition of ¢ yields ¢ (f) = 7 (f) + k > k; therefore, in Case 2, we have p(e) < k < ¢ (f)).
Finally, Case 3 is impossible (because having e € Q and f € P and e <; f would contradict
(P,Q) € AdmE). Thus, we have proven the claim in each of the four cases, and consequently Claim
1 is proven. As we have said above, Claim 2 is proven similarly.
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We note in passing that there is also a rule for multiplying quasisymmetric func-
tions of the form I' (E,w). Namely, if E and F are two double posets and u and
v are corresponding maps, then I' (E, u) ' (F,v) = I' (EF,w) for a map w which is
defined to be u on the subset E of EF, and v on the subset F of EF. Here, EF
is a double poset defined as in [MalReu09, §2.1]. Combined with Proposition m,
this fact gives a combinatorial proof for the fact that QSym is a k-algebra, as well
as for some standard formulas for multiplications of quasisymmetric functions; simi-
larly, Proposition can be used to derive the well-known formulas for AM,, AL,,

Asy, ete. (although, of course, we have already used the formula for AM, in our

proof of Proposition [1.5.4)).

1.6 Proof of Theorem [1.4.2

Before we come to the proof of Theorem [1.4.2] let us state three simple lemmas:

Lemma 1.6.1. Let E = (F, <y, <3) be a double poset. Let P and @ be subsets
of E such that PN@Q = @ and PU(Q = E. Assume that there exist no p € P and
q € @ such that ¢ is <j-covered by p. Then, (P,Q) € Adm E.

Proof of Lemma[1.6.1. For any a € E and b € E, we let [a, b] denote the subset
{e€ E|a<ye<yb} of E. It is clear that if a, b and ¢ are three elements of F
satisfying a <; ¢ <; b, then both [a,c] and [c,b] are proper subsets of [a,b], and

therefore
both numbers |[a, ]| and |[c,b]| are smaller than |[a,b]|. (1.11)

A pair (p,q) € P x @Q is said to be a malposition if it satisfies ¢ <; p. Now,
let us assume (for the sake of contradiction) that there exists a malposition. Fix a
malposition (u,v) for which the value |[u,v]| is minimum. Thus, v € P, v € @ and
v <3 u, but v is not <j-covered by wu (since there exist no p € P and ¢ € @ such
that ¢ is <j-covered by p). Hence, there exists a w € E such that v <; w <; u
(since v <y u). Consider this w. Applying to a = v, c = w and b = u, we see
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that both numbers |[u, w]| and |[w, v]| are smaller than |[u,v]|, and therefore neither
(u,w) nor (w,v) is a malposition (since we picked (u,v) to be a malposition with
minimum |[u,v]|). But w € E = PU(Q), so that either w € Porw € Q. If w € P,
then (w,v) is a malposition; if w € @, then (u,w) is a malposition. In either case,
we obtain a contradiction to the fact that neither (u,w) nor (w,v) is a malposition.
This contradiction shows that our assumption was wrong. Hence, there exists no

malposition. Consequently, (P, Q) € AdmE. ]

Lemma 1.6.2. Let E = (E, <1, <3) be a tertispecial double poset. Let (P,Q) €

AdmE. Then, E |p is a tertispecial double poset.

Proof of Lemma[1.6.9. We need to show that the double poset E |p= (P, <1, <2) is
tertispecial. In other words, we need to show that if @ and b are two elements of P such
that a is <;-covered by b as element of the set P, then a and b are <2—Comparableﬂ

Let a and b be two elements of P such that a is <;-covered by b as element of the

set P. Thus, a <; b, and
there exists no ¢ € P satisfying a <; ¢ <; b. (1.12)

Now, if ¢ € E is such that a <; ¢ <y b, then ¢ must belong to P E, which entails
a contradiction to (1.12)). Thus, there is no ¢ € FE satisfying a <; ¢ <1 b. Therefore
(and because we have a <y b), we see that a is <;-covered by b as element of the set

E. Since E is tertispecial, this yields that a and b are <,-comparable.

20Here, we are using the following notation: If T is a subset of E, and if v and v are two elements
of T', then we say that “u is <;-covered by v as element of the set 77 if and only if u is <; r-covered
by v, where <; r denotes the relation <; on the set T' (not the relation <; on the set E). In
general, saying that u is <j-covered by v as element of the set T is not equivalent to saying that
u is <j-covered by v as element of the set F (because there might be an element w of F satisfying
u <1 w <1 v, but no such element that belongs to T'). Rather, u is <;-covered by v as element of
the set T if and only if u <1 v and there exists no w € T satisfying u <; w <3 v.
2 Proof. Assume the contrary. Thus, ¢ ¢ P. But (P,Q) € AdmE. Thus, PNQ =2, PUQ = E,
and
no p € P and g € @ satisfy g <1 p. (1.13)

From ¢ € E and ¢ ¢ P, we obtain c € E\ P C @ (since PUQ = E). Applying (1.13) to p = b and
q = ¢, we thus conclude that we cannot have ¢ <; b. This contradicts ¢ <; b. This contradiction
shows that our assumption was false, gqed.
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Thus, we have shown that if ¢ and b are two elements of P such that a is <;-

covered by b as element of the set P, then a and b are <s-comparable. This proves

Lemma [1.6.2

We could similarly show that E |g is a tertispecial double poset; but we will not
Q
use this.) O

Lemma 1.6.3. Let E = (F, <y, <3) be a double poset. Let w: F — {1,2,3,...}

be a map.
(a) If £ = o, then I'(E,w) = 1.

(b) If £ # @, then ¢ (I' (E,w)) = 0.

Proof of Lemma[1.6.3 (a) Part (a) is obvious (since there is only one E-partition

when F = @).
(b) Observe that I' (E, w) is a homogeneous power series of degree Y w (e). When
ecl

E # @, this degree is > 0, and thus the power series I' (E, w) is annihilated by ¢ (since

¢ annihilates any homogeneous power series in QSym whose degree is > 0). [

Proof of Theorem[1.4.2 We shall prove Theorem by strong induction over |E|.
The induction base (|E| = 0) is left to the reader; we start with the induction step.
Consider a tertispecial double poset E = (E, <y, <) with |E| > 0 and a map w :
E — {1,2,3,...}, and assume that Theorem is proven for all tertispecial double

posets of smaller size.

We have |E| > 0 and thus F # @. Hence, Lemmall.6.3|(b) shows that ¢ (I" (E,w)) =

0. Thus, (uoe) (I'(E,w))=u | e(I'(E,w)) | =u(0)=0.
=0
The upper commutative pentagon of (1.2)) shows that woe = mo (S®id) o

A. Applying both sides of this equality to I' (E, w), we obtain (uvoe¢) (I' (E,w)) =

39



(mo(S®id) o A) (I' (E,w)). Since (uoe) (I'(E,w)) = 0, this becomes

0=(mo(S®id) o A)(I'(E,w)) =m((S®id) (A(T (E,w))))

=m | (S®id) Y TEpwlp) T (Elgwlg) (by (L.8))
(P,Q)EAdm E

—m Y STElpwp) T (E|gwlg)

(P,Q)EAdm E
= Y  STE[pw|p)T(E|gwl)
(P,Q)eAdm E
=STE|gw|e)TElpwl)+ Y,  STEpw|p)T(E|gwlg)
(P,Q)€Adm E;
|PI<|E|

(1.14)

(since the only pair (P, Q) € Adm E satisfying |P| = |E| is (£, @), whereas all other
pairs (P, Q) € Adm E satisty |P| < |E]).

But whenever (P,Q) € AdmE is such that |P| < |E|, the double poset E |p=
(P, <1, <2) is tertispecial (by Lemmal[l.6.2), and therefore we have S (I' (E |p, w |p)) =
ST (P, <y, <2),wl|p) = (=D)FIT((P,>,<3),w|p) (by the induction hypothe-
sis). Hence, rewrites as

0=S|T|E|gwlg ['(E|z,wlg)
AV —r
=E =w =I'((9,<1,<2),w|z)=1
(by Lemma(a)
£ (C)AT(P <) w )T (E g o)
(P,Q)EAdm E;
|P|<|E|
P
=STEw)+ Y, ()T (P>1<), 0T (Elgwlq).
(P,Q)eAdm E;
|PI<|E]|
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Thus,

SCEw) == > ()P >1,<),w[p)T (Elgwle). (1.15)

(P,Q)EAdmM E;
|PI<|E|

We shall now prove that

0= Y DITUP >, <),wp) T (Blgwlg). (1.16)
(P,Q)EAdm E

But first, let us explain how this will complete our proof. In fact, the only pair
(P, Q) € Adm E satisfying |P| = |E| is (E, @), whereas all other pairs (P, Q) € Adm E
satisfy |P| < |E|. Hence, if (1.16)) is proven, then we can conclude that

0=" > ()T (P>1,<2),w|p)T(E g wlq)
(P,Q)EAdm E

= (DA [ (B> <) wlp | TE5w)
-~ ~Y~——

=w =I'((9,<1,<2),w|g)=1
+ > ()PP <) w [p) T (E |gow o)
(P,Q)€Adm E;
|PI<|E|

= (_1)‘E| r ((E7 >1s <2) vw)

+ Z (_1)‘1)‘ F((Pa >15 <2) y W |P)F (E |Q7w |Q)7

(P,Q)EAdm E;
|PI<|E|
so that
(_1)|E|F((E7>17<2>7w) = - Z (_1>‘P|F((P7>17<2)7w ’P>F(E |Q7w |Q)
(P,Q)cAdm E;
|PI<|E|
_s(r| B (by (CT5))
=(E,<1,<2)

= ST ((E, <1,<2),w)),
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and thus S (I' ((E, <1, <3)),w) = (=1)"IT ((E, >1, <) ,w), which completes the in-
duction step and thus the proof of Theorem [1.4.2 It thus remains to prove ([1.16]).

For every subset P of E, we have

L((P,>1,<2),w|p) = Z Xrw|p

w is a (P,>1,<2)-partition

(by the definition of I' (P, >1, <2),w |p))
_ 3 X 0] (1.17)

o is a (P,>1,<2)-partition

For every subset ) of E, we have

r E |Q , W |Q = F((Qu <1, <2) , W |Q)

= § Xr,wlg

mis a (Q,<1,<2)-partition

(by the definition of " ((Q, <1, <2),w |g))
_ 3 Xr ol (1.18)

T is a (Q,<1,<2)-partition
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Now,

[P
> (=) T((P,>1,<2),w |p) I'(E [g,w |q)
P,Q)cAdmE e
( Q) m = Z Xo,w|P = Z x‘r,w\Q
o is a (P,>1,<g)-partition T is a (Q,<1,<g)-partition
(by (LI7)) (by (1.18))
_ E |P]
- <_1) Xa’,u)|p XTﬂ“"Q
(P,Q)EAdm E o is a (P,>1,<2)-partition Tis a (Q,<1,<2)-partition
_ E |P]
- <_1) Xa)wlPXva|Q
(P,Q)eEAdm E o is a (P,>1,<2)-partition 7 is a (Q,<1,<2)-partition
_ E |P]
= (_1) Xow|pXrwlg
(P,Q)EAdm E (0,7);
o:P—{1,2,3,...};
7:Q—{1,2,3,...};

o is a (P,>1,<2)-partition;
T is a (Q,<1,<2)-partition

— (_1)|P| x x
= 2rlpwlpA7lgwlq

(P,Q)EAdm E mE—{1,2,3,...}; 7;
w|p is a (P,>1,<2)-partition; oW
m|g is a (Q,<1,<2)-partition

here, we have substituted (7 |p, 7 |g) for (o,7) in the inner sum,

since every pair (o,7) consisting of a map o : P — {1,2,3,...}
and amap 7:Q — {1,2,3,...}

can be written as (7 |p, 7 |g) for a unique 7 : £ — {1,2,3,...}

(namely, for the 7 : E — {1,2,3,...} that is defined to send every

e € P too(e) and to send every e € Q to 7 (e))

= > (-p” > X0

(P,Q)EAdm E mE—{1,2,3,...};
w|p is a (P,>1,<2)-partition;
g is a (Q,<1,<2)-partition

- 3 (=D | xr -

mE—={1,23,...} P,Q)eAdm E;
>1,<2)-partition;

(
|p is a (P,
a (Q,<1,<2)-partition

g is

In order to prove that this sum is 0 (and thus to prove (1.16)) and finish our proof
of Theorem [1.4.2)), it therefore is enough to show that for every map = : F —
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{1,2,3,...}, we have

> (-1 =o. (1.19)

(P,Q)€EAdm E;
| p is a (P,>1,<2)-partition;
m|g is a (Q,<1,<2)-partition

Hence, let us fix amap 7 : E — {1,2,3,...}. Our goal is now to prove . To
do so, we denote by Z the set of all (P, Q) € AdmE such that 7 |p is a (P, >, <s)-
partition and 7 |g is a (@, <y, <2)-partition. We are going to define an involution
T : Z — Z of the set Z having the property that, for any (P, Q) € Z, if we write
T ((P,Q)) in the form (P, Q"), then (—1)|Pl‘ = — (=1)""I. Once such an involution T
is found, it will be clear that it matches the addends on the left hand side of
into pairs of mutually cancelling addendﬁ, and so (1.19)) will follow and we will be
done. It thus remains to find 7.

The definition of T is simple (although it will take us a while to prove that it
is well-defined): Let F' be the subset of E consisting of those ¢ € E which have
minimum 7 (e). Then, F' is a nonempty subposet of the poset (F, <s), and hence has

a minimal element f (that is, an element f such that no g € F satisfies g <, f). Fix

(PU{fr,Q\{r}), it f¢Pr
(PA\{f}t,QuU{SfY), iffep

In order to prove that the map T is well-defined, we need to prove that its output

such an f. Now, the map T sends a (P, Q) € Z to

values all belong to Z. In other words, we need to prove that

(PU{f},@Q\{f}), it f¢&Pp; .
(PA\{f},QU{f}), iffeP

Z (1.20)

for every (P,Q) € Z.
Proof of (1.20): Fix (P,Q) € Z. Thus, (P,Q) is an element of Adm E with the

property that 7 |p is a (P, >}, <¢)-partition and 7 |g is a (@, <1, <2)-partition.

22In fact, the (—1)|Pl| =— (—1)“3| condition makes it clear that 7" has no fixed points. Therefore,
to each addend on the left hand side of corresponds an addend with opposite sign, which
cancels it: Namely, for each (A, B) € Z, the addend for (P, Q) = (4, B) is cancelled by the addend
for (P, Q) =T ((A,B)).
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From (P, Q) € Adm E, we see that PN Q = & and PUQ = F, and furthermore
that
no p € P and q € @ satisfy g <; p. (1.21)

We know that f belongs to the set F', which is the subset of E consisting of those

e € F which have minimum 7 (e). Thus,
7 (f) < m(h) for every h € E. (1.22)
Moreover,
7 (f) <m(h) for every h € E satisfying h <o f (1.23)

=l
We need to prove . We are in one of the following two cases:
Case 1: We have f € P.
Case 2: We have f ¢ P.
Let us first consider Case 1. In this case, we have f € P.

Recall that PNQ = @ and P U Q = E. From this, we easily obtain (P \ {f}) N

(QU{f}) =@ and (P\{fHU(QU{f}) = E.
Furthermore, there exist no p € P\ {f} and ¢ € QU{f} such that ¢ is <;-covered

by p P4 Hence, Lemma (applied to P\ {f} and QU {f} instead of P and Q)

23 Proof of : Let h € E be such that h <5 f. We must prove . Indeed, assume the
contrary. Thus, m (f) > 7 (h). Combined with (1.22)), this shows that « (f) = 7 (h). Our definition
of F shows that F is the subset of E consisting of those e € E satisfying 7 (e) = 7 (f) (since f € F).
Therefore, h € F (since 7 (h) = 7 (f)). But f is a minimal element of F. In other words, no g € F’
satisfies g <o f. This contradicts the fact that h € F satisfies h <o f. This contradiction proves
that our assumption was wrong, qed.

24 Proof. Assume the contrary. Thus, there exist p € P\ {f} and ¢ € Q U {f} such that ¢ is
<4-covered by p. Consider such p and q.

We know that ¢ is <j-covered by p, and thus we have ¢ <1 p. Also, p € P\ {f} C P. Hence,
if we had ¢ € @, then we would obtain a contradiction to (1.2I). Hence, we cannot have ¢ € Q.
Therefore, ¢ = f (since ¢ € Q U {f} but not ¢ € Q). Hence, f = g <1 p, so that p > f. Therefore,
7 (p) <7 (f) (since 7 |p is a (P, >1, <g)-partition, and since both f and p belong to P).

Now, recall that ¢ is <j-covered by p. Hence, ¢ and p are <o-comparable (since E is tertispecial).
In other words, f and p are <s-comparable (since ¢ = f). In other words, either f <3 por f =p or
p <o f. But p <5 f cannot hold (because if we had p <5 f, then (applied to h = p) would
lead to 7 (f) < 7 (p), which would contradict 7 (p) < 7 (f)), and f = p cannot hold either (since
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shows that (P\ {f},QU{f}) € AdmE.

Furthermore, 7 |p is a (P, >1, <y)-partition, and therefore
T [Py is a (P\ {f},>1, <z)-partition (since P\ {f} C P).

Furthermore, 7 |quisy is a (Q U {f}, <1, <2)—partitionﬁ.

Altogether, we now know that (P\ {f}, QU {f}) € AdmE, that 7 |p\(s} is a
(P\{f},>1,<2)-partition, and that 7 |gusy is a (Q U {f}, <1, <2)-partition. In
other words, (P \ {f},QU{f}) € Z (by the definition of Z). Thus,

P , , if P;
POVRQAMD HTER b oulsy) (s e P)
(P\{/}.QU{SY), iffeP

€ Z.

Hence, ([1.20]) is proven in Case 1.

Let us next consider Case 2. In this case, we have f ¢ P.

Recall that PNQ = & and PU Q = E. From this, we easily obtain (P U{f}) N
(@Q\{/}) =@ and (PU{f}HU@Q\{S}) = E.

Furthermore, there exist no p € PU{f} and g € @\ {f} such that ¢ is <;-covered
by p m Hence, Lemma m (applied to PU{f} and @ \ {f} instead of P and Q)

f <1 p). Thus, we must have f <s p.

Now, m |p is a (P,>1,<2)-partition. Hence, 7 (p) < 7 (f) (since p >; f and f <3 p, and
since p and f both lie in P). But (applied to h = p) shows that 7 (f) < 7 (p). Hence,
m(p) <7 (f) <7 (p), a contradiction. Thus, our assumption was wrong, ged.

25 Proof. In order to prove this, we need to verify the following two claims:

Claim 1: Every a € QU {f} and b € Q U {f} satisfying a <y b satisty 7 (a) < 7 (b);

Claim 2: Every a € QU {f} and b € QU {f} satisfying a <1 b and b <5 a satisfy 7 (a) < 7 ().

Proof of Claim 1: Let a € QU {f} and b € Q U {f} be such that a <; b. We need to prove that
m(a) < w(b). If a = f, then this follows immediately from (applied to h = b). Hence, we
WLOG assume that a # f. Thus, a € Q (since a € QU {f}). Now, if b € P, then a <y b contradicts
(1.21)) (applied to p = b and ¢ = a). Hence, we cannot have b € P. Therefore, b € E\ P = Q (since
PN@ =2 and PUQ = E). Thus, 7 (a) < 7 (b) follows immediately from the fact that 7 |g is a
(Q, <1, <2)-partition (since a € @ and b € Q). This proves Claim 1.

Proof of Claim 2: Let a € QU {f} and b € Q U {f} be such that a <7 b and b <3 a. We need
to prove that 7 (a) < 7 (b). If a = f, then this follows immediately from (applied to h = b).
Hence, we WLOG assume that a # f. Thus, a € Q (since a € QU {f}). Now, if b € P, then
a <1 b contradicts (1.21]) (applied to p = b and ¢ = a). Hence, we cannot have b € P. Therefore,
be E\P=Q (since PNQ =@ and PUQ = E). Thus, 7 (a) < 7 (b) follows immediately from the
fact that 7 |g is a (@, <1, <g)-partition (since a € @ and b € @)). This proves Claim 2.

Now, both Claim 1 and Claim 2 are proven, and we are done.

26 Proof. Assume the contrary. Thus, there exist p € PU{f} and ¢ € Q \ {f} such that q is
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shows that (PU{f},Q\ {f}) € AdmE.

Furthermore, 7 |g is a (Q, <1, <g)-partition, and therefore 7 |g\(s} is a
(Q\{[f}, <1, <o)-partition (since @\ {f} C Q).
Furthermore, 7 |pugpy is a (PU{f},>1, <2)—partitionm.

Altogether, we now know that (PU{f},Q\{f}) € AdmE, that 7 |pugs is a
(PU{f},>1, <g)-partition, and that 7 |g\(s} is a (Q\ {f}, <1, <2)-partition. In
other words, (PU{f},Q\ {f}) € Z (by the definition of Z). Thus,

(PU{f},Q\{/}), it f¢&Pp;
(PA{f},QU{S}, iffePp

= (PU{r}.Q\{/}) (since f ¢ P)

€ Z.

<1-covered by p. Consider such p and q.

We have f ¢ P and thus f € E\ P=Q (since PNQ =@ and PUQ = E).

We know that ¢ is <j-covered by p, and thus we have ¢ <1 p. Also, ¢ € @\ {f} C Q. Hence,
if we had p € P, then we would obtain a contradiction to . Hence, we cannot have p € P.
Therefore, p = f (since p € P U {f} but not p € P). Hence, ¢ <1 p = f. Therefore, 7 (q) < 7 (f)
(since ¢ € @Q and f € @, and since 7 |g is a (Q, <1, <2)-partition). Thus, we cannot have ¢ <o f
(because if we had ¢ <2 f, then (applied to h = ¢) would show that = (f) < 7 (g), which
would contradict 7 (q) < 7 (f)).

Now, recall that ¢ is <;-covered by p. Hence, ¢ and p are <s-comparable (since E is tertispecial).
In other words, ¢ and f are <g-comparable (since p = f). In other words, either ¢ <a f or ¢ = f
or f <5 q. But we cannot have g <5 f (as we have just shown), and we cannot have ¢ = f either
(since ¢ <1 f). Thus, we must have f <5 gq.

From ¢ <7 f and f <3 ¢, we conclude that 7 (¢) < 7 (f) (since 7 |g is a (Q, <1, <z)-partition,
and since ¢ € @Q and f € Q). But (applied to h = ¢q) shows that « (f) < 7 (¢q). Hence,
7 (q) <7 (f) <7(q), a contradiction. Thus, our assumption was wrong, qed.

27 Proof. In order to prove this, we need to verify the following two claims:

Claim 1: Every a € PU{f} and b € P U {f} satisfying a >1 b satisfy 7 (a) < 7 (b);

Claim 2: Every a € PU{f} and b € PU {f} satisfying a > b and b <5 a satisfy 7 (a) < 7 (b).

Proof of Claim 1: Let a € PU{f} and b € PU{f} be such that a >; b. We need to prove that
m(a) < mw(b). If a = f, then this follows immediately from (applied to h = b). Hence, we
WLOG assume that a # f. Thus, a € P (since a € PU{f}). Now, if b € @, then b <; a contradicts
(1.21)) (applied to p = a and ¢ = b). Hence, we cannot have b € Q). Therefore, b € E'\ Q = P (since
PNn@Q =@ and PUQ = E). Thus, 7 (a) < 7 (b) follows immediately from the fact that = |p is a
(P,>1, <2)-partition (since a € P and b € P). This proves Claim 1.

Proof of Claim 2: Let a € PU{f} and b € PU {f} be such that a >1 b and b <3 a. We need
to prove that 7 (a) < 7 (b). If a = f, then this follows immediately from (|1.23) (applied to h = b).
Hence, we WLOG assume that a # f. Thus, a € P (since a € PU{f}). Now, if b € @, then
b <1 a contradicts (1.21)) (applied to p = a and ¢ = b). Hence, we cannot have b € ). Therefore,
be E\Q =P (since PNQ = and PUQ = E). Thus, 7 (a) < 7 (b) follows immediately from the
fact that « |p is a (P,>1, <g)-partition (since a € P and b € P). This proves Claim 2.

Now, both Claim 1 and Claim 2 are proven, and we are done.
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Hence, ([1.20]) is proven in Case 2.
We have now proven ([1.20]) in both Cases 1 and 2. Thus, (1.20) always holds. In

other words, the map T is well-defined.
What the map T does to a pair (P,Q) € Z can be described as moving the
element f from the set where it resides (either P or @) to the other set. Clearly,

doing this twice gives us the original pair back. Hence, the map T is an involution.

Furthermore, for any (P,Q) € Z, if we write T ((P,Q)) in the form (P, ('), then

/ PU{f}, iff¢P:
(_1)|P| = —(—1)|P| (because P’ = t} ¢ ). As we have already

P\{f}, iffer
explained, this proves (1.19). And this, in turn, completes the induction step of the

proof of Theorem [1.4.2] O

1.7 Proof of Theorem [1.4.6

Before we begin proving Theorem [1.4.6] we state a criterion for E-partitions that is

less wasteful (in the sense that it requires fewer verifications) than the definition:

Lemma 1.7.1. Let E = (F, <1, <3) be a tertispecial double poset. Let ¢ : E —

{1,2,3,...} be a map. Assume that the following two conditions hold:

o Condition 1: If e € E and f € E are such that e is <;-covered by f, and if
we have e <y f, then ¢ (e) < ¢ (f).

o (Condition 2: If e € E and f € E are such that e is <;-covered by f, and if
we have f <5 e, then ¢ (e) < ¢ (f).

Then, ¢ is an E-partition.

Proof of Lemma[1.71] For any a € E and b € E, we define a subset [a,b] of E as in
the proof of Lemma [1.6.1]
We need to show that ¢ is an E-partition. In other words, we need to prove the

following two claims:
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Claim 1: Every e € E and f € F satisfying e <; f satisfy ¢ (e) < ¢ (f).

Claim 2: Every e € E and f € F satisfying e <; f and f <5 e satisfy ¢ (e) < ¢ (f).

Proof of Claim 1: Assume the contrary. Thus, there exists a pair (e, f) € E X F
satisfying e <; f but not ¢ (e) < ¢ (f). Such a pair will be called a malrelation. Fix
a malrelation (u,v) for which the value |[u, v]| is minimum (such a (u,v) exists, since
there exists a malrelation). Thus, u € E and v € E and v <; v but not ¢ (u) < ¢ (v).

If u was <j-covered by v, then we would obtain ¢ (u) < ¢ (v) @, which would
contradict the assumption that we do not have ¢ (u) < ¢ (v). Hence, u is not <;-
covered by v. Consequently, there exists a w € E such that u <; w <; v (since
u <y v). Consider this w. Applying to a = u, c = w and b = v, we see that
both numbers |[u, w]| and |[w, v]| are smaller than |[u, v]|, and therefore neither (u,w)
nor (w,v) is a malrelation (since we picked (u,v) to be a malrelation with minimum
|[u,v]|). Therefore, we have ¢ (u) < ¢ (w) and ¢ (w) < ¢(v) (since u <3 w and
w <3 v). Combining these two inequalities, we obtain ¢ (u) < ¢ (v). This contradicts
the assumption that we do not have ¢ (u) < ¢ (v). This contradiction concludes the
proof of Claim 1.

Instead of Claim 2, we shall prove the following stronger claim:

Claim 3: Every e € E and f € FE satisfying e <; f and not e <y f satisty
b(e) < 6 ()

Proof of Claim 3: Assume the contrary. Thus, there exists a pair (e, f) € E x F
satisfying e <; f and not e <5 f but not ¢ (e) < ¢ (f). Such a pair will be called a
malrelation. Fix a malrelation (u,v) for which the value |[u,v]| is minimum (such a
(u,v) exists, since there exists a malrelation). Thus, v € F and v € E and u <; v
and not u <9 v but not ¢ (u) < ¢ (v).

If u was <;-covered by v, then we would obtain ¢ (u) < ¢ (v) easily, which

28 Proof. Assume that u is <j-covered by v. Thus, u and v are <s-comparable (since the poset E
is tertispecial). In other words, we have either u <q v or u = v or v <2 u. In the first of these three
cases, we obtain ¢ (u) < ¢ (v) by applying Condition 1 to e = w and f = v. In the third of these
cases, we obtain ¢ (u) < ¢ (v) (and thus ¢ (u) < ¢ (v)) by applying Condition 2 to e = w and f = v.
The second of these cases cannot happen because u <; v. Thus, we always have ¢ (u) < ¢ (v), qed.

29 Proof. Assume that u is <j-covered by v. Thus, u and v are <s-comparable (since the poset E
is tertispecial). In other words, we have either u <5 v or w = v or v <5 u. Since neither u <5 v nor
u = v can hold (indeed, u <5 v is ruled out by assumption, whereas v = v is ruled out by u <; v),
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would contradict the assumption that we do not have ¢ (u) < ¢ (v). Hence, u is not
<;-covered by v. Consequently, there exists a w € E such that u <; w <; v (since
u <1 v). Consider this w. Applying (1.11)) to a = u, ¢ = w and b = v, we see that
both numbers |[u, w]| and |[w, v]| are smaller than |[u, v]|, and therefore neither (u,w)
nor (w,v) is a malrelation (since we picked (u,v) to be a malrelation with minimum
|[u, v]])-

But ¢ (v) < ¢ (u) (since we do not have ¢ (u) < ¢ (v)). On the other hand, v <; w
and therefore ¢ (u) < ¢ (w) (by Claim 1). Furthermore, w <; v and thus ¢ (w) < ¢ (v)
(by Claim 1). The chain of inequalities ¢ (v) < ¢ (u) < ¢ (w) < ¢ (v) ends with the
same term that it begins with; therefore, it must be a chain of equalities. In other
words, we have ¢ (v) = ¢ (u) = ¢ (w) = ¢ (v).

Now, using ¢ (w) = ¢ (v), we can see that w <g v m The same argument
(applied to v and w instead of w and v) shows that v <, w. Thus, u <y w <5 v,
which contradicts the fact that we do not have u <5 v. This contradiction proves
Claim 3.

Proof of Claim 2: The condition “f <5 €” is stronger than “not e <5 f”. Thus,
Claim 2 follows from Claim 3.

Claims 1 and 2 are now both proven, and so Lemma [I.7.1] follows. ]

Proof of Lemma[1.4.5 Consider the following three logical statements:

Statement 1: The orbit O is E-coeven.

Statement 2: All elements of O are E-coeven.

Statement 3: At least one element of O is E-coeven.

Statements 1 and 2 are equivalent (according to the definition of when an orbit
is F-coeven). Our goal is to prove that Statements 1 and 3 are equivalent (because
this is precisely what Lemma says). Thus, it clearly suffices to show that State-

ments 2 and 3 are equivalent. Since Statement 2 obviously implies Statement 3, we

we thus have v <9 u. Therefore, ¢ (u) < ¢ (v) by Condition 2 (applied to e = uw and f = v), ged.

30 Proof. Assume the contrary. Thus, we do not have w <3 v. But ¢ (w) = ¢ (v) shows that
we do not have ¢ (w) < ¢ (v). Hence, (w,v) is a malrelation (since w <; v and not w <2 v but
not ¢ (w) < ¢(v)). This contradicts the fact that (w,v) is not a malrelation. This contradiction
completes the proof.
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therefore only need to show that Statement 3 implies Statement 2. Thus, assume

that Statement 3 holds. We need to prove that Statement 2 holds.

There exists at least one E-coeven ¢ € O (because we assumed that Statement
3 holds). Consider this ¢. Now, let 7 € O be arbitrary. We shall show that 7 is

FE-coeven.

We know that ¢ is E-coeven. In other words,

every g € (G satisfying gp = ¢ is E-even. (1.24)

Now, let g € G be such that gm = 7. Since ¢ belongs to the G-orbit O, we have
O = G¢. Now, m € O = G¢. In other words, there exists some h € G such that
m = h¢. Consider this h. We have gm = 7. Since m = h¢, this rewrites as gh¢ = ho.
In other words, h~tgh¢ = ¢. Thus, (applied to h~'gh instead of g) shows that

h=tgh is E-even. In other words,

the action of A~ 'gh on E is an even permutation of E. (1.25)

Now, let £ be the group homomorphism from G to Aut £ which describes the
G-action on E. Then, ¢ (h™'gh) is the action of h~'gh on E, and thus is an even

permutation of E (by ((1.25])).

But since € is a group homomorphism, we have ¢ (h~'gh) = e (h) ' e (g)e (h).
Thus, the permutations € (h~'gh) and € (g) of E are conjugate. Since the permutation
e (h~tgh) is even, this shows that the permutation ¢ (g) is even. In other words, the

action of g on F is an even permutation of E. In other words, g is E-even.
Now, let us forget that we fixed g. We thus have shown that every g € G satisfying
gm = mis E-even. In other words, 7 is E-coeven.

Let us now forget that we fixed w. Thus, we have proven that every 7 € O is
E-coeven. In other words, Statement 2 holds. We have thus shown that Statement
3 implies Statement 2. Consequently, Statements 2 and 3 are equivalent, and so the

proof of Lemma is complete. O
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Next, we will show three simple properties of posets on which groups act.

Proposition 1.7.2. Let E be a set. Let <; be a strict partial order relation on
E. Let G be a finite group which acts on E. Assume that G preserves the relation
<3.

Let g € G. Let EY be the set of all orbits under the action of g on E. Define a

binary relation <Y on EY by

(u <§ v) <= (there exist a € v and b € v with a <; b).

Then, <{ is a strict partial order relation.

Proposition is precisely [JochI3l Lemma 2.4], but let us outline the proof for

the sake of completeness:

Proof of Proposition[1.7.3. Let us first show that the relation <{ is irreflexive. In-
deed, assume the contrary. Thus, there exists a u € EY such that u <{ u. Consider
this u. Since u <{ u, there exist a € u and b € u with a <; b. Consider these a and
b. There exists a k € N such that b = g*a (since a and b both lie in one and the same
g-orbit u). Consider this k.

The g-orbit u of a is finite (since ¢ is finite). Thus, there exists a positive integer
n such that ¢g"a = a. Consider this n. Notice that ¢"?a = (¢")" a = a for every p € N
(since g"a = a).

Now, a <; b = g*a. Since G preserves the relation <, this shows that ha <; hg*a
for every h € G. Thus, ¢*a <; ¢"*g*a for every ¢ € N. Hence, ¢"*a <, ¢*¢*a =

kg for every ¢ € N. Consequently, ¢%%a <, g'*a <1 ¢**a <1 --- <1 g™*a. Thus,

g
% a <1 g"*a = a (since g"Pa = a for every p € N), which contradicts ¢®*a = 1ga = a.
This contradiction proves that our assumption was wrong. Hence, the relation <{ is
irreflexive.

Let us next show that the relation < is transitive. Indeed, let u, v and w be three

elements of EY such that u <{ v and v <§ w. We must prove that u <{ w.

There exist a € u and b € v with a <y b (since u <{ v). Consider these a and b.
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There exist a’ € v and b’ € w with o’ <; ¥’ (since v < w). Consider these a’ and
b

The elements b and @’ lie in one and the same g-orbit (namely, in v). Hence, there
exists some k € N such that @’ = ¢*b. Consider this k. We have a <; b and thus
g*a <1 g*b (since G preserves the relation <;). Hence, g*a <; g¥b = a’ <, . Since
g*a € u (because a € u) and V' € w, this shows that u <¢ w. We thus have proven

that the relation <{ is transitive.

Now, we know that the relation <J is irreflexive and transitive, and thus also
antisymmetric (since every irreflexive and transitive binary relation is antisymmetric).

In other words, < is a strict partial order relation. This proves Proposition|1.7.2, [

Remark 1.7.3. Proposition can be generalized: Let E be a set. Let <; be a
strict partial order relation on E. Let GG be a finite group which acts on E. Assume
that G preserves the relation <;. Let H be a subgroup of G. Let E¥ be the set of

all orbits under the action of H on E. Define a binary relation < on E# by
(u <i' v) <=> (there exist a € u and b € v with a <1 b).

Then, <!’ is a strict partial order relation.

This result (whose proof is quite similar to that of Proposition [1.7.2)) implicitly

appears in [Stan84, p. 30].

Proposition 1.7.4. Let E = (F, <, <3) be a tertispecial double poset. Let G be
a finite group which acts on E. Assume that GG preserves both relations <; and
<9.

Let g € G. Let EY9 be the set of all orbits under the action of g on E. Define a

binary relation <{ on EY by

(u <{ v) <= (there exist a € u and b € v with a <; D).
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Define a binary relation <3 on EY by

(u <§ v) <= (there exist a € v and b € v with a <3 b).

Let EY be the triple (EY, <{, <J). Then, EY is a tertispecial double poset.

Proof of Proposition[1.7.4]. Both relations <; and <, are strict partial order relations
(since E is a double poset). Proposition shows that <{ is a strict partial order
relation. Proposition [1.7.2] (applied to <, and <§ instead of <; and <¢) shows that
<3 is a strict partial order relation. Thus, EY = (EY9, <{, <J) is a double poset. It
remains to show that this double poset EY is tertispecial.

Let u and v be two elements of EY such that u is <{-covered by v. We shall prove
that u and v are <j-comparable.

We have u <{ v (since u is <§-covered by v). In other words, there exist a € u
and b € v with a <; b. Consider these a and b.

If there was a ¢ € F satisfying a <; ¢ <; b, then we would have v <{ w <{ v with
w being the g-orbit of ¢, and this would contradict the condition that u is <{-covered
by v. Hence, no such ¢ can exist. In other words, a is <i-covered by b. Thus, a and
b are <s-comparable (since the double poset E is tertispecial). Consequently, u and
v are <j-comparable.

Now, let us forget that we fixed v and v. We thus have shown that if u and
v are two elements of FY such that u is <{-covered by v, then u and v are <3-

comparable. In other words, the double poset E9 = (E9, <, <9) is tertispecial. This
proves Proposition [1.7.4] O

Proposition 1.7.5. Let E = (E, <y, <3) be a tertispecial double poset. Let G be
a finite group which acts on E. Assume that G preserves both relations <; and
<q.

Let g € G. Define the set EY, the relations < and <§ and the triple Ef as in
Proposition [1.7.4] Thus, EY is a tertispecial double poset (by Proposition [1.7.4)).

There is a bijection ® between
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e the maps 7 : E — {1,2,3,...} satisfying gn =7

and

e the maps 7: EY9 — {1,2,3,...}.

Namely, this bijection ® sends any map 7 : £ — {1,2,3,...} satistying g7 =7
to the map 7 : £9 — {1,2,3,...} defined by

T (u) = m(a) for every uw € EY and a € u.

(The well-definedness of this map 7 is easy to see: Indeed, from gm = 7, we can

conclude that any two elements a; and ay of a given g-orbit u satisfy 7 (a;) =

m(as).)

Consider this bijection ®. Let 7 : E — {1,2,3,...} be a map satisfying gm = 7.
(a) If 7 is an E-partition, then ® (7) is an E9-partition.
(b) If ® () is an E9-partition, then 7 is an E-partition.

(¢) Let w: F — {1,2,3,...} be map. Define a map w? : £9 — {1,2,3,...} by

w? (u) = Zw (a) for every u € EY.

acu

Then, X¢(r)ws = Xrw-

Proof of Proposition (sketched). The definition of ® shows that
(P (m)) (u) =7 (a) for every u € EY and a € u. (1.26)

(a) Assume that 7 is an E-partition. We want to show that & () is an E¢-
partition. In order to do so, we can use Lemma [I.7.1] (applied to E9, (E9, <{, <9)

and @ (7) instead of E, (F, <1, <3) and ¢); we only need to check the following two
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conditions:

Condition 1: If e € E9 and f € EY are such that e is <Y-covered by f, and if we
have e <§ f, then (® (7)) (e) < (P (7)) (f)-

Condition 2: If e € E9 and f € EY are such that e is <Y-covered by f, and if we
have f <3 e, then (® (7)) (e) < (® (7)) (f).

Proof of Condition 1: Let e € E9 and f € EY9 be such that e is <{-covered by f.
Assume that we have e <3 f.

We have e <{ f (because e is <{-covered by f). In other words, there exist
a € e and b € f satisfying a <; b. Consider these a and b. Since 7 is an E-
partition, we have 7 (a) < 7 (b) (since a <; b). But the definition of ® (7) shows
that (® (7)) (e) = 7 (a) (since a € e) and (P (7)) (f) = 7 (b) (since b € f). Thus,
(@ (7)) (e) =7 (a) <7 (b) = (P (m))(f). Hence, Condition 1 is proven.

Proof of Condition 2: Let e € E9 and f € EY9 be such that e is <{-covered by f.
Assume that we have f <J e.

We have e <{ f (because e is <{-covered by f). In other words, there exist a € e
and b € f satisfying a <; b. Consider these a and b.

If there was a ¢ € E satisfying a <; ¢ <; b, then the g-orbit w of this ¢ would
satisfy e <§ w <{ f, which would contradict the fact that e is <{-covered by f.
Hence, there exists no such c¢. In other words, a is <;-covered by b (since a <; b).
Therefore, a and b are <;-comparable (since E is tertispecial). In other words, we
have either a <o b or a = b or b <5 a. Since a <5 b is impossible (because if we had
a <9 b, then we would have e <J f (since a € e and b € f), which would contradict
[ <§ e (since <j is a strict partial order relation)), and since a = b is impossible
(because a <; b), we therefore must have b <5 a. But since 7 is an E-partition,
we have 7 (a) < 7 (b) (since a <1 b and b <3 a). But the definition of ® (7) shows
that (® (7)) (e) = 7w (a) (since a € e) and (P (7)) (f) = 7 (b) (since b € f). Thus,
(®(m))(e) =7 (a) <m(b) =(P(m))(f). Hence, Condition 2 is proven.

Thus, Condition 1 and Condition 2 are proven. Hence, Proposition [1.7.5] (a) is
proven.

(b) Assume that @ () is an E9-partition. We want to show that 7 is an E-
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partition. In order to do so, we can use Lemma (applied to ¢ = 7); we only

need to check the following two conditions:

Condition 1: If e € E and f € E are such that e is <j-covered by f, and if we
have e <s f, then 7 (e) < 7 (f).

Condition 2: If e € E and f € E are such that e is <;-covered by f, and if we

have f <5 e, then 7 (e) < 7 (f).

Proof of Condition 1: Let e € E and f € E be such that e is <;-covered by f.

Assume that we have e <5 f.

We have e <; f (since e is <j-covered by f). Let u and v be the g-orbits of e and
f, respectively. Thus, u and v belong to E9, and satisfy u < v (since e <; f). Hence,
(@ (7)) (u) < (P (7)) (v) (since P (m) is an EI-partition). But the definition of ® ()
shows that (® (7)) (u) = 7 (e) (since e € u) and (P (7)) (v) = 7 (f) (since f € v).
Thus, 7 (e) = (P (7)) (u) < (P (7)) (v) = 7 (f). Hence, Condition 1 is proven.

Proof of Condition 2: Let e € E and f € E be such that e is <;-covered by f.

Assume that we have f <, e.

We have e <; f (since e is <j-covered by f). Let u and v be the g-orbits of e
and f, respectively. Thus, v and v belong to EY, and satisfy v <{ v (since e <; f)
and v <J u (since f <5 e). Hence, (P (7)) (u) < (@ (7)) (v) (since ® () is an EI-
partition). But the definition of ® (7) shows that (® (7)) (u) = 7 (e) (since e € u)
and (® (7)) (v) = 7 (f) (since f € v). Thus, 7 (e) = (P (7)) (u) < (P (7)) (v) =7 (f).

Hence, Condition 2 is proven.

Thus, Condition 1 and Condition 2 are proven. Hence, Proposition m (b) is

proven.
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(c) The definition of X(x)we shows that

_ w9(e) _ wg(U) _
Xo(m),ws = H L(@(m)e) = H L(@(m)) (u) H HI@
ecE9 ueE9 H/(—/ ueE9 acu ~——~—" »
al;[um(‘”" )(u) =Tr(a)
(since w9 (u)= > w(a)) (by (L:26))
acu
_ w w(a) _
= H H‘Trr(a HI’ Hfl: = Xnw
uceFE9 acu a€E eck
——
=11
aclE
by the definition of x, ,,). This proves Proposition [1.7.5 (c). O
(by , p p

Our next lemma is a standard argument in Poélya enumeration theory (compare

it with the proof of Burnside’s lemma):

Lemma 1.7.6. Let G be a finite group. Let F' be a finite G-set. Let O be a
G-orbit on F, and let m € O.

(a) We have
U = ‘i Z (1.27)

(b) Let E be a further finite G-set. For every g € G, let signy, g denote the sign of
the permutation of F that sends every e € E to ge. (Thus, g € G is E-even
if and only if signg g = 1.) Then,

if O is E-coeven;

oF Z sign g. (1.28)
0, if O is not E-coeven HSGF

Proof of Lemma[1.7.6 Let Stabg m denote the stabilizer of m; this is the subgroup
{9 € G | gn =7} of G. The G-orbit of 7 is O (since O is a G-orbit on F', and since
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7 € O). In other words, O = Gr. Therefore,

|G|
O| =|Gr| = ———
O1= 1671 = 5o
(by the orbit-stabilizer theorem) and thus
1 ]Stabg 7T|
= 12806 T (1.29)
O] |G|
(a) We have
Zl— {oe@G ] gm = m}| = [Stabg | .
gEGﬂ. —Stabgﬂ'
Hence,
|Stabg 7T| 1
2 1 = lstaven] = Beperl L
P (IR
——
=|Stabg 7|

(by (1.29)). This proves Lemmal[l.7.6] (a).

(b) We need to prove (1.28). Assume first that O is E-coeven. Thus, 7 is E-coeven
(by the definition of what it means for O to be E-coeven). This means that every
g € G satisfying g = 7 is E-even. Hence, every g € (G satisfying gm = 7 satisfies

sighp g = 1. Thus,

geG,
g7r 7T gm=m

S
—lor

0, if O is not E-coeven

if O is E-coeven;
(since O is E-coeven) .

Thus, we have proven ([1.28) under the assumption that O is E-coeven. We can
therefore WLOG assume the opposite now. Thus, assume that O is not E-coeven.
Hence, no element of O is E-coeven (due to the contrapositive of Lemma |1.4.5). In

particular, 7 is not E-coeven. In other words, not every g € G satisfying gm = 7 is
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E-even. In other words, not every g € Stabg 7 is E-even (since the elements g € G
satisfying gm = 7 are exactly the elements g € Stabg 7). In other words, not every

g € Stabg 7 satisfies sign, g = 1.

Now, the map
Stabgm — {1, -1}, g —signgg

is a group homomorphism (since the sign of a permutation is multiplicative) and is
not the trivial homomorphism (since not every g € Stabg 7 satisfies signg g = 1).
Hence, it must send exactly half the elements of Stabs 7 to 1 and the other half to

—1. Therefore, the addends in the sum >  signg g cancel each other out (one

gEStabg T
half of them are 1, and the others are —1). Therefore, > signgg =0, so that
gEStabg 7
1 e
1 o if O is E-coeven;
geStabg 7 . 0, if O is not F-coeven

-~

=0

(since O is not E-coeven). Thus,

if O is E-coeven;

1 ) 1 ) 101’
@ Z 51gnEg:@ Z sighp g = 0|

G geStabg 7 0, if O is not E-coeven
~~
_gEStabG T
This proves (1.28)). Lemma [1.7.6] (b) is thus proven. O

Proof of Theorem[1.4.0] (sketched). For every g € G, define a tertispecial double

poset B9 = (B9, <{, <) as follows:

Let EY be the set of all orbits under the action of g on E. Define a binary relation
<{ on EY by

(u < v) <= (there exist a € u and b € v with a <1 b).
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Similarly, define a strict partial order relation <j on EY by
(u < v) <= (there exist a € v and b € v with a <3 b).

Finally, set E9 = (EY9, <{, <J). Proposition shows that this EY is a tertispecial
double poset.

Furthermore, for every g € G, define a map w9 : E9 — {1,2,3,...} by w9 (u) =
> w(a). (Since G preserves w, the numbers w (a) for all a € u are equal (for given
acu

u), and thus > w (a) can be rewritten as |u| - w (b) for any particular b € u.) Now,
acu

S(T (B, <f,<8),w") = ()T (B, >{, <§) ,w?) (1.30)

(by Theorem [1.4.2] applied to ((EY, <{,<3),w?) instead of ((E, <1, <2),w)).

For every g € GG, we have

> Xpw = [ (B9, w9) (1.31)

7 is an E-partition;
gm=m

E1

31 Proof of (1.31)): Let g € G. In Proposition we have introduced a bijection ® between

e the maps 7 : F — {1,2,3,...} satisfying gmr ==«

and
e the maps 7: E9 — {1,2,3,...}.

Parts (a) and (b) of Proposition show that this bijection ® restricts to a bijection between
e the E-partitions 7 : E — {1,2,3,...} satisfying gt =7

and

e the EY9-partitions 7 : £9 — {1,2,3,...}.

Hence,
§ Xrwe = § Xp(m),w9 = § Xrws
7 is an E9-partition 7 is an E-partition; 7x“ 7 is an E-partition;
= =X7,w =
(by Proposition ([1.7.5) (c))
whence > X = > Xr s =1 (EY,w9). This proves (1.31]).
7 is an E-partition; 7 is an E9-partition

gmw=m
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It is clearly sufficient to prove Theorem for k = Z (since all the power series
that we are discussing are defined functorially in k, and thus any identity between
these series that holds over Z must hold over any k). Therefore, it is sufficient to
prove Theorem for k = Q (since QSym; embeds into QSymg E[) Thus, we
WLOG assume that k = Q. This will allow us to divide by positive integers.

Every G-orbit O on Par E satisfies

1 1 1
— X = — Xow = — |0 X0w = X0w- (1.32)
o2 L 0] 2% = g

(since x4 is defined

to be XT\',’UJ) :Iolxo,w

32Here, we are using the notation QSym, for the Hopf algebra QSym defined over a base ring k.
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Now,

I'EwG) = Z XO.w = Z Z Xy

O is a G-orbit on ParE 1 O is a G-orbit on ParE 7T€O
=T Z Xr,w
|O| TeO
(by (L32))
> Y g
- Xraw
O is a G-orbit on ParE 7€O ‘O|
~—
1
—— Y 1
G gGG;

(by (1.27] apphed to F=ParE)

= 1 X w
O is a G- orblt on ParE7r€O gEG

weParE 7 is an E partition

- > Z X“U:| G| 2. > Xew

7 is an E-partition 7 is an E-partition g€G;

gn=m
- ¥
9€G 7 is an E-partition;
grn=m
X
|G| gZEC:? T is an gpzartltion; o
gn=m
=r ]?Dgwq)
(by (€.31))
Zr 19 Zr (B9, <9, <9),w?). (1.33)
|G| geG ~ |G| cG
:(Eg,<g7<2) 9

Hence, I' (E, w, G) € QSym (by Proposition [1.3.5]).

Applying the map S to both sides of the equality (1.33), we obtain

S (I (E,w,G)) ZS b))
g€G —(—1)l®* \r((Eg >1,<z)vwg>
(by (L:30)
Z DEID (B9, 59, <8) , w9). (1.34)

gEG’
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On the other hand, for every g € G, let signy g denote the sign of the permutation

of F that sends every e € E to ge. Thus, g € G is E-even if and only if signy g = 1.

Now, every G-orbit O on Par E and every 7 € O satisfy

1
o if O is E-coeven; 1
19 =G > signg g (1.35)
0, it O is not E-coeven G
(by (1.28)), applied to F' = Par E). Furthermore,
signy, g = (—1)F171#°] (1.36)

for every g € GG ﬁ

33 Proof of (1.36): Let g € G. Recall that signgg is the sign of the permutation of E

that sends every e € FE to ge.
of o is (—l)lx‘_lx |

, where X7 is the set of all cycles of o.

But if o is a permutation of a finite set X, then the sign
Applying this to X = E, 0 =

e permutation o that sends every e € 0 ge) an = , we see tha e sign o e per-
th tation of F th d FEtog d X7 =F9 that the sign of th

mutation of F that sends every e € E to ge is (—l)lEl_‘Eyl. In other words, signg g = (—1)

qed.

||| B
)
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Now,

I (E,w,G)

- ¥ SRS DI ) o

O is an E-coeven G-orbit on Par E 1 O is an E-coeven G-orbit on ParE 7T€O

X
|0\ o

(by (L:32))

1
o if O is E-coeven;
D SR S
O is a G-orbit on ParE 07 if O is not E-coeven 7€0
here, we have extended the sum to all G-orbits

on Par E (not just the E-coeven ones); but all new addends are 0

and therefore do not influence the value of the sum

if O is E-coeven;

1
-y oyl

O is a G-orbit on Par E 7€O 0’ if O is not E-coeven
A ~~ >
1
=77 2 signpg
‘G’ 9€G;
gr=m
(by (L.39))
= E E E SlgnE g X W
O is a G-orbit on Par E w€O gEG’
~ gr=m
= X = >

w€Par E 7 is an E-partition

= Z Z sighp g | Xrw = é Z Z (signg 9) Xr,w

7 is an E-partition gEG 7 is an E-partition g€G;
gr=m gr=m
vV 4
=2 >
9€G v is an E-partition;
gm=m
’G| E SlgnEg E X7r,w
1)|E\—|E9\ m is ang];lr-é)ﬁrtition;
oy @) S ~~ d
=I'(E9,w9)
(by (L.31))
E|—-|E9
\ (i IF(EQ w) . (1.37)
IG | GG ’
g
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Hence, I'" (E, w, G) € QSym (by Proposition [1.3.5]).
The group G preserves the relation > (since it preserves the relation <;). Hence,

applying (1.37) to (E, >1, <) instead of E, we obtain

F+ ((E7>17<2)7 | Z IE‘_‘E9|F(<E97>£1]7<3)7wg)‘

geG

Multiplying both sides of this equality by (—1)‘E|, we transform it into

(_1>|E‘ F+ ((E7>17<2) , W | Z lEl ‘E|_|E91F((Egv>€7<g)7wg)
geG

(-1

Z D)EIT (B9, >4, <§) ,w)

gGG

=S (EwC) (b [39).

This proves Theorem [1.4.6] O

1.8 Application: Jochemko’s theorem

We shall now demonstrate an application of Theorem [[.4.6f namely, we will use
it to provide an alternative proof of [JochI3l Theorem 2.13]. The way we derive
[Joch13, Theorem 2.13] from Theorem is classical, and in fact was what originally
motivated the discovery of Theorem (although, of course, it cannot be conversely
derived from [Jochl3, Theorem 2.13], so it is an actual generalization).

An intermediate step between [Joch13 Theorem 2.13| and Theorem will be

the following fact:

Corollary 1.8.1. Let E = (F,<;,<3) be a tertispecial double poset. Let w :
E — {1,2,3,...}. Let G be a finite group which acts on E. Assume that G
preserves both relations <; and <, and also preserves w. For every ¢ € N, let

Par, E denote the set of all E-partitions whose image is contained in {1,2,...,¢}.

Then, the group G also acts on Par, E; namely, Par, E is a G-subset of the G-set
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{1,2,...,q}" (see Definition m (d) for the definition of the latter).

(a) There exists a unique polynomial Qg ¢ € Q [X] such that every ¢ € N satisfies

Qg ¢ (¢) = (the number of all G-orbits on Par, E). (1.38)

(b) This polynomial satisfies

Qpc(—q)
= (=1)/¥! (the number of all even G-orbits on Par, (E,>1,<3))

= (=1)"¥ (the number of all even G-orbits on Par, (E, <1,>2)) (1.39)

for all ¢ € N.

Proof of Corollary (sketched). Set k = Q. For any f € QSym and any ¢ € N,
we define an element ps' (f) (¢) € Q by

ps' (f)(¢)=f|1,1,...,1,0,0,0,...
—_——
q times
(that is, ps' (f) (q) is the result of substituting 1 for x1, 2o, ..., 2z, and 0 for

Tgi1, Tg+2, Tgts, - - - 0 the power series f).

(a) Consider the elements I' (E,w,G) and I'" (E, w, G) of QSym defined in The-
orem Observe that Par, E is a G-subset of Par E.

Now, [GriReil5l Proposition 7.7 (i)] shows that, for any given f € QSym, there
exists a unique polynomial in Q[X] whose value on each ¢ € N equals ps' (f) (q).
Applying this to f =T (E,w, G), we conclude that there exists a unique polynomial
in Q [X] whose value on each ¢ € N equals ps' (T’ (E, w, G)) (q). But since every ¢ € N
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satisfies

1
s (' E,w, G = ' E,w,G 1,1,...,1,0,0,0,...
ps (I'( ) () (I'( )
= > X0,w q times
O is a G-orbit on ParE
= > Xow | 1,1,...,1,0,0,0,...
O is a G-orbit on Par E q times

1, if O C Par, E;

0, itO¢ParyE

_ 3 b

O is a G-orbit on ParE 0’ if O Z Parq E

it O C Par, E;

= Z 1 = (the number of all G-orbits on Par, E),

O is a G-orbit on Parg E

(1.40)

this rewrites as follows: There exists a unique polynomial in Q [X]| whose value on
each ¢ € N equals (the number of all G-orbits on Par,E). This proves Corollary
1.8.1] (a).

(b) |GriReil5, Proposition 7.7 (i)] shows that, for any given f € QSym, there
exists a unique polynomial in Q[X] whose value on each ¢ € N equals ps' (f) (q).

This polynomial is denoted by ps' (f) in [GriReil5, Proposition 7.7]. From our above
proof of Corollary (a), we see that

Qpo = pst (T (E,w,Q)).

But |GriReil5 Proposition 7.7 (iii)] shows that, for any f € QSym and m € N,
we have ps' (S (f)) (m) = ps' (f) (—m). Applying this to f =T (E, w, G), we obtain

ps' (S (' (E,w,G))) (m) = ps' (I'(B,w,G)) (-m) = Qp.¢ (—m)

~~

=Qg,c
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for any m € N. Thus, any m € N satsfies

Qe (—m) = ps’ S(T(E,w, Q) (m)
—_——
=(-DIPIrt((B,>1,<2)0,G)
(by Theorem [1.4.6)

— ps! ((_1)'E‘ T+ (B, >1, <s), w, G)) (m)

= (1) pst (T ((B,>1, <) ,w, G)) (m).
Renaming m as ¢ in this equality, we see that every ¢ € N satisfies
O (—q) = (1) ps" (T (B, >1, <2) w0, G)) (a). (1.41)
But just as we proved , we can show that every ¢ € N satisfies
ps' (I'" (E,w,G)) (¢) = (the number of all even G-orbits on Par,E).
Applying this to (F, >, <) instead of E, we obtain

ps' (T (B, >1,<1),w,G)) (q)

= (the number of all even G-orbits on Par, (E, >, <s)).

Now, ([1.41)) becomes

Qe (—q) = (D ps' (T (B, >1,<2) ,w,G)) (q)

J/

-~

=(the number of all even G-orbits on Parq(E,>1,<2))

= (=1)"¥! (the number of all even G-orbits on Par, (E,>1,<2)).

In order to prove Corollary (b), it thus remains to show that

(the number of all even G-orbits on Par, (E, >, <3))

= (the number of all even G-orbits on Par, (E, <1, >2)) (1.42)
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for every ¢ € N.

Proof of (1.49): Let ¢ € N. Let wy : {1,2,...,q} = {1,2,...,¢} be the map
sending each i € {1,2,...,q} to ¢+ 1 —i. Then, the map

Par, (E,>1, <) = Par, (E, <1,>2), T wyom

is an isomorphism of G-sets (this is easy to check). Thus,
Par, (E,>1, <) = Par, (E, <1,>2) as G-sets. From this, (1.42)) follows (by functori-
ality, if one wishes).

The proof of Corollary (b) is now complete. O

Now, the second formula of [Joch13, Theorem 2.13] follows from our (1.39)), ap-
plied to E = (P, <, <,) (where <, is the partial order on P given by (p <, q) <=
(w(p) <w(q))). The first formula of [JochI3 Theorem 2.13| can also be derived from

our above arguments. We leave the details to the reader.
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Chapter 2

Dual immaculate creation operators
and a dendriform algebra structure

on the quasisymmetric functions

Abstract

The dual immaculate functions are a basis of the ring QSym of quasisymmetric func-
tions, and form one of the most natural analogues of the Schur functions. The dual
immaculate function corresponding to a composition is a weighted generating func-
tion for immaculate tableaux in the same way as a Schur function is for semistandard
Young tableaux; an “immaculate tableau” is defined similarly to a semistandard Young
tableau, but the shape is a composition rather than a partition, and only the first col-
umn is required to strictly increase (whereas the other columns can be arbitrary; but
each row has to weakly increase). Dual immaculate functions have been introduced
by Berg, Bergeron, Saliola, Serrano and Zabrocki in arXiv:1208.5191, and have since
been found to possess numerous nontrivial properties.

In this note, we prove a conjecture of Mike Zabrocki which provides an alternative
construction for the dual immaculate functions in terms of certain "vertex operators".
The proof uses a dendriform structure on the ring QSym; we discuss the relation of
this structure to known dendriform structures on the combinatorial Hopf algebras

FQSym and WQSym.
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2.1 Introduction

The three most well-known combinatorial Hopf algebras that are defined over any
commutative ring k are the Hopf algebra of symmetric functions (denoted Sym), the
Hopf algebra of quasisymmetric functions (denoted QSym), and that of noncommu-
tative symmetric functions (denoted NSym). The first of these three has been studied
for several decades, while the latter two are newer; we refer to [HaGuKil0, Chapters
4 and 6] and [GriReil5, Chapters 2 and 5] for expositions of them[]] All three of these
Hopf algebras are known to carry multiple algebraic structures, and have several bases
of combinatorial and algebraic significance. The Schur functions — forming a basis of
Sym — are probably the most important of these bases; a natural question is thus to
seek similar bases for QSym and NSym.

Several answers to this question have been suggested, but the simplest one ap-
pears to be given in a 2013 paper by Berg, Bergeron, Saliola, Serrano and Zabrocki
IBBSSZ13a]: They define the immaculate (noncommutative symmetric) functions
(which form a basis of NSym) and the dual immaculate (quasi-symmetric) functions
(which form a basis of QSym). These two bases are mutually dual and satisfy ana-
logues of various properties of the Schur functions. Among these are a Littlewood-
Richardson rule [BBSSZ13b|, a Pieri rule [BSOZ13|, and a representation-theoretical
interpretation [BBSSZ13c|. The immaculate functions can be defined by an analogue
of the Jacobi-Trudi identity (see [BBSSZ13al Remark 3.28] for details), whereas the
dual immaculate functions can be defined as generating functions for “immaculate
tableaux” in analogy to the Schur functions being generating functions for semistan-
dard tableaux (see Proposition below).

The original definition of the immaculate functions (|[BBSSZ13al, Definition 3.2])
is by applying a sequence of so-called noncommutative Bernstein operators to the
constant power series 1 € NSym. Around 2013, Mike Zabrocki conjectured that

the dual immaculate functions can be obtained by a similar use of “quasi-symmetric

Historically, the origin of the noncommutative symmetric functions is in [GKLLRT95], whereas
the quasisymmetric functions have been introduced in [Gessel84]. See also [Stan99, Section 7.19]
specifically for the quasisymmetric functions and their enumerative applications (although the Hopf
algebra structure does not appear in this source).
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Bernstein operators”. The purpose of this note is to prove this conjecture (Corollary
below). Along the way, we define certain new binary operations on QSym; two
of them give rise to a structure of a dendriform algebra [EbrFar08|, which seems to
be interesting in its own right.

This note is organized as follows: In Section we recall basic properties of
quasisymmetric (and symmetric) functions and introduce the notations that we shall
use. In Section 2.3 we define two binary operations < and ¢ on the power series ring
k [[x1, 22, x3,...]] and show that they restrict to operations on QSym which interact
with the Hopf algebra structure of QSym in a useful way. In Section [2.4] we define the
dual immaculate functions, and show that this definition agrees with the one given
in [BBSSZ13al Remark 3.28|; we then give a combinatorial interpretation of dual
immaculate functions (which is not new, but has apparently never been explicitly
stated). In Section we prove Zabrocki’s conjecture. In Section , we discuss
how our binary operations can be lifted to noncommutative power series and restrict
to operations on WQSym, which are closely related to similar operations that have
appeared in the literature. In the final Section we ask some further questions.

This Chapter is a modified version of the preprint arXiv:1410.0079v6. It follows
partly the default version of the preprint, partly the detailed version (which is avail-

able as an ancillary file).
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2.2  Quasisymmetric functions

We assume that the reader is familiar with the basics of the theory of symmetric and
quasisymmetric functions (as presented, e.g., in [HaGuKil(0, Chapters 4 and 6| and

[GriReil5l Chapters 2 and 5]). However, let us define all the notations that we need

73


http://arxiv.org/abs/1410.0079v6

(not least because they are not consistent across literature). We shall try to have our
notations match those used in [BBSSZ13al Section 2| as much as possible.

We use N to denote the set {0,1,2,...}.

A composition means a finite sequence of positive integers. For instance, (2,3)
and (1,5,1) are compositions. The empty composition (i.e., the empty sequence
()) is denoted by @. We denote by Comp the set of all compositions. For every
composition a = (g, as, ..., ), we denote by |«| the size of the composition «; this
is the nonnegative integer ay +as+---+ay. If n € N, then a composition of n simply
means a composition having size n. A nonempty composition means a composition
that is not empty (or, equivalently, that has size > 0).

Let k be a commutative ring (which, for us, means a commutative ring with
unity). This k will stay fixed throughout the paper. We shall define our symmetric
and quasisymmetric functions over this commutative ring k. E| Every tensor sign ®
without a subscript should be understood to mean ®y.

Let x1, 29,23, ... be countably many distinct indeterminates. We let Mon be the
free abelian monoid on the set {z1, x9, z3, ...} (written multiplicatively); it consists of
elements of the form z{*z32x5® - - - for finitely supported (a1, ag, as, ...) € N> (where
“finitely supported” means that all but finitely many positive integers i satisfy a; = 0).
A monomial will mean an element of Mon. Thus, monomials are combinatorial

objects (without coefficients), independent of k.

We consider the k-algebra k|[[z, 22, z3,...]] of (commutative) power series in
countably many distinct indeterminates x1, xo, x3,... over k. By abuse of notation,
we shall identify every monomial 7' 25*2z5* - - - € Mon with the corresponding element

aftexg?eag® - of k[[zy, ke, 3, .. .]] when necessary (e.g., when we speak of the sum
of two monomials or when we multiply a monomial with an element of k); however,

monomials don’t live in k [[z1, 22, 73, . . .]] per s}

2We do not require anything from k other than being a commutative ring. Some authors prefer
to work only over specific rings k, such as Z or Q (for example, [BBSSZ13a| always works over Q).
Usually, their results (and often also their proofs) nevertheless are just as valid over arbitrary k. We
see no reason to restrict our generality here.

3This is a technicality. Indeed, the monomials 1 and z; are distinct, but the corresponding
elements 1 and z; of k[[z1, 2, x3,...]] are identical when k = 0. So we could not regard the
monomials as lying in k [[x1, 2, x3, .. .]] by default.
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The k-algebra k [[x1, z2, 73, . . .]] is a topological k-algebra; its topology is the prod-
uct topologyﬁ. The polynomial ring k [z, 22, x5, . ..] is a dense subset of
k [[x1, z2, x3,...]] with respect to this topology. This allows to prove certain iden-
tities in the k-algebra k [[x1, 29, x3,...]] (such as the associativity of multiplication,
just to give a stupid example) by first proving them in k[zq, z9, x3,...] (that is, for
polynomials), and then arguing that they follow by density in k [[z1, o, x3, .. .]].

If m is a monomial, then Supp m will denote the subset

{i€{1,2,3,...} | the exponent with which z; occurs in mis > 0}

of {1,2,3,...}; this subset is finite. The degree deg m of a monomial m = z{*x52z3* - - -

is defined to be a1 +as + a3+ --- € N.

A power series P € k[[z1, z2, 23, ...]] is said to be bounded-degree if there exists
an N € N such that every monomial of degree > N appears with coefficient 0 in P.
Let k [[z1, 22, 23, . . ]|, 4q denote the k-subalgebra of k [[x1, 22, z3, .. .]] formed by the
bounded-degree power series in k [[x1, 29, x3, . . .]].

The k-algebra of symmetric functions over k is defined as the k-subalgebra of
k [[z1, za, x3, .. ]|, 44 consisting of all bounded-degree power series which are invariant
under any permutation of the indeterminates. This k-subalgebra is denoted by Sym.
(Notice that Sym is denoted A in [GriReil5].) As a k-module, Sym is known to have
several bases, such as the basis of complete homogeneous symmetric functions (h))

and that of the Schur functions (s,), both indexed by the integer partitions.

4More precisely, this topology is defined as follows (see also [GriReil5, Section 2.6]):

We endow the ring k with the discrete topology. To define a topology on the k-algebra
k[[z1,z2,23,...]], we (temporarily) regard every power series in k[[z1,22,23,...]] as the family
of its coefficients. Thus, k [[z1, x2, 3, . ..]] becomes a product of infinitely many copies of k (one for
each monomial). This allows us to define a product topology on k[[z1, 22,3, ...]]. This product
topology is the topology that we will be using whenever we make statements about convergence in
k[[x1,2,23,...]] or write down infinite sums of power series. A sequence (ay), oy of power series
converges to a power series a with respect to this topology if and only if for every monomial m, all
sufficiently high n € N satisfy

(the coefficient of m in a,,) = (the coeflicient of m in a).

Note that this is not the topology obtained by taking the completion of k [x1, zo, z3,...] with
respect to the standard grading (in which all x; have degree 1). Indeed, this completion is not even
the whole k [[x1, 2, x3, .. .]].
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Two monomials m and n are said to be pack-equivalent if they have the form

a1 (2

a1 oo
i1

‘it andn=uw x5l -.il:j-‘f for some ¢ € N, some positive integers oy,

m = x;lry 0 0
Qa, ..., Qy, some positive integers iy, 1o, ..., iy satisfying i; < iy < --- < 1y, and
some positive integers ji, Jo, ..., jJ¢ satisfying j; < jo < -+ < Jy E| A power
series P € k[[x1, z9, x3,...]] is said to be quasisymmetric if any two pack-equivalent
monomials have equal coefficients in P. The k-algebra of quasisymmetric functions
over k is defined as the k-subalgebra of k [[z1, 22, 73, . . .]], 44 consisting of all bounded-
degree power series which are quasisymmetric. It is clear that Sym C QSym.

For every composition a = (ay, ag, ..., ay), the monomial quasisymmetric func-

tion M, is defined by

M, = Z rptal? - wg € K[[my, w3, ] paq -
1<i1 <ig < <ip
One easily sees that M, € QSym for every a € Comp. It is well-known that
(Ma)

acComp 18 @ basis of the k-module QSym; this is the so-called monomial ba-
sis of QSym. Other bases of QSym exist as well, some of which we are going to

encounter below.

It is well-known that the k-algebras Sym and QSym can be canonically endowed
with Hopf algebra structures such that Sym is a Hopf subalgebra of QSym. We refer to
[HaGuKil(, Chapters 4 and 6| and |GriReil5, Chapters 2 and 5] for the definitions of
these structures (and for a definition of the notion of a Hopf algebra); at this point, let
us merely state a few properties. The comultiplication A : QSym — QSym ® QSym
of QSym satisfies

¢
A (M) = Z Moy az,00) @ M1 ais,a)

1=0

for every o = (a1, g, ..., p) € Comp. The counit € : QSym — k of QSym satisfies

1, ifa=g;
e(M,) = for every a € Comp.
0, ifa#9

SFor instance, the monomial z}z3x328 is pack-equivalent to riz3z4xf, but not to z3xrizzaS.
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We shall always use the notation A for the comultiplication of a Hopf algebra,
the notation e for the counit of a Hopf algebra, and the notation S for the antipode
of a Hopf algebra. Occasionally we shall use Sweedler’s notation for working with

coproducts of elements of a Hopf algebraﬂ

If a = (g, a9, ...,qp) is a composition of an n € N, then we define a subset D («)

of {1,2,...,n— 1} by
D(a)={o, a1 +ag, a1 +az+az,...,00 + o+ + a1}

This subset D («) is called the set of partial sums of the composition «; see [GriReil5,
Definition 5.10] for its further properties. Most importantly, a composition « of size
n can be uniquely reconstructed from n and D («).

If @« = (aq,09,...,00) is a composition of an n € N, then the fundamental qua-

sisymmetric function F, € k[[x1,x2, x3, .. .|| 44 can be defined by

Fa = Z Li Ly ** Ly, - (21)

11 <12 <<ip;
ij<ij+1 lijD(O[)
(This is only one of several possible definitions of F,,. In [GriReil5l, Definition 5.15],
the power series F,, is denoted by L, and defined differently; but |[GriReil5l, Proposi-
tion 5.17| proves the equivalence of this definition with ours[[) One can easily see that

F, € QSym for every @ € Comp. The family (F,) is a basis of the k-module

a€eComp

QSym as well; it is called the fundamental basis of QSym.

6In a nutshell, Sweedler’s notation (or, more precisely, the special case of Sweedler’s notation
that we will use) consists in writing ) c(1) ® ¢(g) for the tensor A (¢) € C'® C, where c is an element
(e)

of a k-coalgebra C. The sum } ¢(1) ® ¢(2) symbolizes a representation of the tensor A (c) as a sum
N (e)

Z 1, ® ca; of pure tensors; it allows us to manipulate A (¢) without having to explicitly introduce
Eule N and the ¢;; and the cy;. For instance, if f : C' — k is a k-linear map, then we can write
> f(cqy) ) for g: f(c1,i)ca,i. Of course, we need to be careful not to use Sweedler’s notation
(c) =1

for terms which do depend on the specific choice of the N and the ¢; ; and the cp ;; for instance, we
must not write (2; c%l)c(g).
(&

"In fact, [GriReil5l (5.5)] is exactly our equality (2.1).
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2.3 Restricted-product operations

We shall now define two binary operations on k [[z1, z9, x3, .. .]].

Definition 2.3.1. We define a binary operation < : k/[[z1,29,23,...]] X
k [[1, 22, 73, ...]] = k[[@1,22,25,...]] (written in infix notationf) by the require-
ments that it be k-bilinear and continuous with respect to the topology on
k [[x1, 22, x3,...]] and that it satisfy

m-n, if min (Suppm) < min (Suppn);

m<n= (2.2)
0, if min (Suppm) > min (Suppn)

for any two monomials m and n.

Some clarifications are in order. First, we are using < as an operation symbol
(rather than as a relation symbol as it is commonly used)ﬂ Second, we consider min &
to be 0o, and this symbol co is understood to be greater than every integel™| Hence,

m < 1 = m for every nonconstant monomial m, and 1 < m = 0 for every monomial

m.
Let us first see why the operation < in Definition is well-defined. Recall
that the topology on k [[z1, 2, 3, ...]] is the product topology. Hence, if < is to be

k-bilinear and continuous with respect to it, we must have

(Z )\mm><(z unn>= > Apm<n

meEMon neMon meMon neEMon

for any families (\y) € kMo and (u,) € kMon of scalars. Combined with

meMon neMon

(2.2), this uniquely determines <. Therefore, the binary operation < satisfying the
conditions of Definition is unique (if it exists). But it also exists, because if we

8By this we mean that we write a < b instead of < (a,b).

90f course, the symbol has been chosen because it is reminiscent of the smaller symbol in
“min (Suppm) < min (Suppn)”.

O%but not greater than itself
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define a binary operation < on k [[x1, 29, x3, .. .]] by the explicit formula

(2 (g0) 5, o

meMon neMon €Mon x Mon;
min(Supp m)<min(Supp n)

for all (Am)penion € KM and (fn) penon € KM

then it clearly satisfies the conditions of Definition (and is well-defined).

The operation < is not associative; however, it is part of what is called a den-

driform algebra structure on k [[xy, 29, x3, . ..]] (and on QSym, as we shall see below).

The following remark (which will not be used until Section 2.6 and thus can be

skipped by a reader not familiar with dendriform algebras) provides some details:

Remark 2.3.2. Let us define another binary operation = on k|[[z1,z9,x3, ...

similarly to < except that we set

m-n, if min (Suppm) > min (Suppn);
m>-n= .
0, if min (Suppm) < min (Suppn)
Then, the structure (k[[x1,x2,x3,...]], <, =) is a dendriform algebra augmented

k [[x1, z9, x5, . . .]] satisfy

a<b+a>b=ab;
(a<b)<c=a=<(bc);
(a=b)<c=a>(b=<c);

ar (bxc)=(ab) = c.

Now, we introduce another binary operation.
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Definition 2.3.3. We define a binary operation ¢ : k[[zy, 29, 23,...]] X
k[[x1, 29, x3,...]] = k[[z1,22,23,...]] (written in infix notation) by the require-

ments that it be k-bilinear and continuous with respect to the topology on

k [[x1, 22, x3,...]] and that it satisfy
m-n, if max (Suppm) < min (Suppn);
mén=
0, if max (Suppm) > min (Supp n)

for any two monomials m and n.

Here, max @ is understood as 0. The welldefinedness of the operation ¢ in Defi-

nition is proven in the same way as that of the operation <.

Let us make a simple observation which will not be used until Section [2.6] but

provides some context:

Proposition 2.3.4. The binary operation ¢ is associative. It is also unital (with

1 serving as the unity).

Proof of Proposition[2.3.4). Let us first show that ¢ is associative.

In order to show this, we must prove that

(adb)dc=ad (boc) (2.3)

for any three elements a, b and c of k [[z1, 9, x3, . . ]].

But if m, n and p are three monomials, then the definition of ¢ readily shows

that

mnp, if max (Suppm) < min (Suppn)
(mén)dp= and max (Supp (mn)) < min (Suppp) ;

0, otherwise
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and

mnp, if max (Suppn) < min (Supp p)
mé (nép) = and max (Suppm) < min (Supp (np)); ;

0, otherwise

thus, (m ¢ n) ¢ p=m ¢ (n ¢ p) (since it is straightforward to check that the condi-
tion (max (Suppm) < min (Suppn) and max (Supp (mn)) < min (Suppp)) is equiva-
lent to the condition
(max (Suppn) < min (Suppp) and max (Suppm) < min (Supp (np))) [). In other
words, the equality holds when a, b and ¢ are monomials. Thus, this equality
also holds whenever a, b and ¢ are polynomials (since it is k-linear in a, b and ¢), and
consequently also holds whenever a, b and ¢ are power series (since it is continuous
in a, b and ¢). This proves that ¢ is associative.

The proof of the fact that ¢ is unital (with unity 1) is similar and left to the
reader. Proposition is thus shown. O

Here is another property of ¢ that will not be used until Section

Proposition 2.3.5. Every a € QSym and b € QSym satisfy a < b € QSym and
a$be QSym.

For example, we can explicitly describe the operation ¢ on the monomial basis
(M)
My & Mg = My, g + Moep, where [, f] and a © 8 are two compositions defined by

~eComp of QSym. Namely, any two nonempty compositions o and 3 satisfy

[(a17a27"'7af>7(617/327'"aﬁm)] = (a17a27'"7a€a61a62a"'75m>;

(1, 02,...,00) ©(Br, Bay -, Bn) = (1, 0,y 1,0 + B1, B2, B3, - -+, Bin) -

E If one of a and 3 is empty, then M, & Mg = M, g.

"Tndeed, both conditions are equivalent to
(max (Suppm) < min (Suppn) and max (Suppm) < min (Suppp) and max (Suppn) < min (Suppp)).
12What we call [, ] is denoted by a - 3 in [GriReil5) before Proposition 5.7].
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Proposition [2.3.5|can reasonably be called obvious; the below proof owes its length

mainly to the difficulty of formalizing the intuition.

Proof of Proposition[2.3.5. We shall first introduce a few more notations.

If m is a monomial, then the Parikh composition of m is defined as follows: Write
m in the form m = 7'} - - -x?f for some ¢ € N, some positive integers ay, as, ...,
oy, and some positive integers iy, is, ..., iy satisfying i1 < 75 < --- < iy,. Notice that
this way of writing m is unique. Then, the Parikh composition of m is defined to be

the composition (aq, @, ..., ay).

We denote by Parikh m the Parikh composition of a monomial m. Now, it is easy
to see that the definition of a monomial quasisymmetric function M, can be rewritten

as follows: For every a € Comp, we have

My= Y m (2.4)

meMon;
Parikh m=«

(Indeed, for any given composition o = (aq, ag, ..., ay), the monomials m satisfying

a1 .00 ayp

Parikhm = « are precisely the monomials of the form zf'@;? - - - 27f with i1, @9, ..,

i¢ being positive integers satisfying iy < is < -+ < iy.)
Now, pack-equivalent monomials can be characterized as follows: Two monomials
m and n are pack-equivalent if and only if they have the same Parikh composition.
Now, we come to the proof of Proposition [2.3.5]

Let us first fix two compositions a and . We shall prove that M, < Mz € QSym.

Write the compositions o and 5 as o = (ay, e, ..., ap) and (51, Ba, ..., Bm). Let
Sy denote the f-element set {0} x {1,2,...,¢}. Let S; denote the m-element set {1} x
{1,2,...,m}. Let § denote the (¢ + m)-element set SoUS;. Let incy : {1,2,...,¢} —
S be the map which sends every p € {1,2,...,¢} to (0,p) € S¢ € S. Let inc; :
{1,2,...,m} — S be the map which sends every ¢ € {1,2,...,m} to (1,¢) € §; C S.
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Define a map p: S — {1,2,3,...} by setting

p(0,p) =y for all p e {1,2,...,0};
p(l,q) =0, for all g € {1,2,...,m}.
For every composition v = (71,72, .., va), we define a y-smap to be a map f :

S — {1,2,...,n} satisfying the following three properties:

e The maps f oincy and f oinc; are strictly increasing.

e We havd™| min (f (Sy)) < min (f (S1)).

e Every u € {1,2,...,n} satisfies

> p(s) =

s€f=1(u)

These three properties will be called the three defining properties of a vy-smap.
Now, we make the following claim:

Claim 1: Let q be any monomial. Let v be the Parikh composition of q. The
coefficient of q in M, < Mg equals the number of all y-smaps.

Proof of Claim 1: Write the composition «y in the form v = (71,72, ..., 7). Write
the monomial g in the form q =z} 22 --- 2" for some positive integers ki, ks, ...,

k, satisfying ki < ko < --- < k,. (This is possible because (71,72, ...,7,) = 7 is the
Parikh composition of q.) Then, Supp q = {k1, ko, ..., k,}.

IBKeep in mind that we set min @ = oo.
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From (2.4), we get M, = > m. Similarly, M3 = > n. Hence,

meMon; neMon;
Parikh m=q« Parikh n=g8

Ma<M5

:Zm< Zn

méeMon,; neMon;
Parikh m=« Parikhn=g

-2 2 ST

mgMon; nQMon;
Parikhm=a Parikhn=8 | mn, if min (Suppm) < min (Suppn);

0, if min (Suppm) > min (Suppn)

(by the definition of < on monomials)

(since the operation < is k-bilinear and continuous)

= 2. X

meMon; neMon; 07 if min (Supp m) 2 min (Supp n)
Parikh m=« Parikh n=04

= Z mn.

(m,n)€Mon x Mon;
Parikh m=q;
Parikh n=p;

min(Supp m)<min(Supp n)

mn, if min (Suppm) < min (Suppn);

Thus, the coefficient of q in M, < Mg equals the number of all pairs (m,n) €
Mon x Mon such that Parikhm = «, Parikhn = £, min (Suppm) < min (Suppn)
and mn = q. These pairs shall be called spairs. (The concept of a spair depends on
q; we nevertheless omit g from the notation, since we regard q as fixed.)

Now, we shall construct a bijection between the y-smaps and the spairs.

Indeed, we first define a map ® from the set of y-smaps to the set of spairs as

follows: Let f:S — {1,2,...,n} be a y-smap. Then, @ (f) is defined to be the spair

V4 m
Qp Bq
T T .
Efo,p’ kra,q)
p=1 q=1

1 This is a well-defined spair, for the following reasons:

e The first defining property of a y-smap can be rewritten as “f(0,1) < f(0,2) < -+ <
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Conversely, we define a map ¥ from the set of spairs to the set of y-smaps as

follows: Let (m,n) be a spair. Then, we write the monomial m in the form m =

Tty xf;“ for some positive integers iy, ig, ..., iy satisfying i1 < s < -+ < iy

this is possible since Parikhm = «), and we write the monomial n in the form

n = xfjxf;xﬁf for some positive integers ji, Ja, ..., Jm satisfying j; < jo <
- < Jm (this is possible since Parikhn = (). Of course, Suppm = {iy,4s,...,0s}

and Suppn = {j1,J2, ..., Jm}, so that min {i1, s, ...,%} < min{ji, jo,...,Jm} (since

£(0,¢) and f(1,1) < f(1,2) < --- < f(1,m)”. Combined with k1 < ks < -+ < ky, this
shows that kf(o n < kf(072) < e < kf(oyg) and kf(l,l) < kf(LQ) < e < kf(l,m)' Hence,

kf(1,9)

Parikh <H xk;(o )) = a and Parikh (H al =p.

e The second defining property of a 4-smap shows that min (f (Sp)) < min(f(S1)), so

that Emin(r(sy)) < Emin(f(sy)) (since k1 < ko < --- < ky). But Supp H kf(o ”

¢
{k‘f(s) | se SO} and thus min (Supp (H a:z;f'(o p))) = min {kf(s) | s€ 80} = Fmin(£(50))
p=1 '
=1 Thya

)4 m
: Qp : Bq
i (S“PP (H xkﬂo,p))) = Fanin(£(50)) < Fmin(s(sy)) = min (SUPP ( Thya, q>>>
p=1 q=1

e The third defining property of a y-smap shows that > p(s) = =, for every u €
sef~1(u)

(since k1 < ko < -++ < ky). Similarly, min (Supp (H Ba )) = Kmin(r(s1))- Hence,

{1,2,...,n}. Now, every p € {1,2,...,(} satisfies o, = p(0,p). Hence, Hla:kf(op) =

¢
0, o .
]:[ fo"(;’Z) = I xzy), Similarly, ]:[ ka , = I1 xZ§S()>, Multiplying these two iden-
p=1 s€So g=1 EISS

tities, we obtain

_ p(s) p(s) | _ p(s p(s)
B (H JU’Cf(s)) ( xkf(S)) B Tl = H H Ty (o)
s€ seS u=1scf~1(u) ~—~—

,z£< s)

(since f(e) w)

n
_ p(s) w Yo _
S IO IS | R B
u=1 s€f=1(u)
~———
:mk

u
(ince X p(s)=1a)
sef~1(u)
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min (Suppm) < min (Suppn)).

Now, we define a map f:S — {1,2,...,n} as follows:

e For every p € {1,2,...,0}, we let f(0,p) be the unique r € {1,2,...,n} such
that i, = k.. [7]

e For every q € {1,2,...,m}, we let f(1,q) be the unique r € {1,2,...,n} such
that j, = k.. [

It is now straightforward to show that f is a 'y—smapm We define ¥ (m,n) to be
this y-smap f.

15To prove that this is well-defined, we need to show that this r exists and is unique. The
uniqueness of r is obvious (since k1 < ko < --- < k). To prove its existence, we notice that
aq 2

ip € Suppm (since m = x7'xy? - 27¢ and o, > 0) and thus 7, € Suppm C Supp (mn) = Suppq =
¢ ~——
=q
{k1,kay ... kn}.
16This is again well-defined, for similar reasons as the 7 in the definition of f (0,p).
"Indeed:

e The first defining property of a -smap holds. (Proof: Let us show that f oincg is strictly
increasing (the proof for f oinc; is similar). Assume it is not. Then there exist some p,p’ €
{1,2,...,¢} satisfying p < p’ and (f o incg) (p) > (f o incg) (p’). Consider these p,p’. We have
p < p', and therefore i, < i (since i3 < io < --- < ip). But (f oincy) (p) > (f oincy) (p),
and thus & foince)(p) = K(foince)(pr) (since ky < ko < -+ < kp). Since k(foince)(p) = Kr(0,p) = ip
(by the definition of f (0,p)) and similarly k(foincy)(p) = %p’, this rewrites as i, > i,. This
contradicts 4, < i,,. This contradiction completes the proof.)

e The second defining property of a y-smap holds. (Proof: We WLOG assume that ¢ and
m are positive, since the other case is straightforward. We have i; < is < -+ < 4p. In
other words, kf,1) < kf,2) < ==+ < k0,0 (since kg py = ip for every p € {1,2,...,£}).
Hence, f(0,1) < f(0,2) < --- < f(0,f) (since ky < ko < --- < k). Hence,
min (f (Sp)) = f(0,1). Similarly, min (f(S1)) = f(1,1). But from 43 < iz < -+ < iy,
we obtain 4; = min {iy,4,...,4¢}; similarly, j; = min {j1,j2,...,jm}. Hence, kf 1) = i1 =
min {iy,42,...,%} < min{ji,j2,...,Jm} = j1 = kfa,1), so that f(0,1) < f(1,1) (since
k1 < ko < -+ <ky). Hence, min (f (Sp)) = f(0,1) < f(1,1) = min (f (S1)), qed.)

e The third defining property of a y-smap holds. (Proof: We have

¢ ¢
«@ 0,
mzx?lxqz-”a?(»”:H 257 :sz( p) _ sz(.s)
1 2 e ip £(0,p) F(s)
p=1 ~~ p=1 s€So
—P(0:P)
“ ks (0.p)

(since ap=p(0,p)
and ip,=Fkg(0,p))

and similarly n = ] xi(v‘q) . Hence,
ses, Ko
_ (s) () | _ (s) - _ _
mn = < H J:Zf(s)> ( H xzf(s)> = .Z’Zf(s) (since S =S US; and Sy NSy = 9).
sESy SEST seS
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We thus have defined a map ® from the set of y-smaps to the set of spairs, and a
map VU from the set of spairs to the set of y-smaps. It is straightforward to see that
these two maps ® and ¥ are mutually inverse, and thus @ is a bijection. We thus have
found a bijection between the set of y-smaps and the set of spairs. Consequently, the
number of all v-smaps equals the number of all spairs.

Now, recall that the coefficient of q in M, < Mg equals the number of all spairs.
Hence, the coefficient of q in M, < Mz equals the number of all v-smaps (since the
number of all y-smaps equals the number of all spairs). In other words, Claim 1 is
proven.

Claim 1 shows that the coefficient of a monomial q in M, < Mz depends not on q
but only on the Parikh composition of q. Thus, any two pack-equivalent monomials
have equal coefficients in M, < Mj (since any two pack-equivalent monomials have
the same Parikh composition). In other words, the power series M, < M3 is quasisym-
metric. Since M, < Mg € k[[x1, 22, 23, .. ], qq, this yields that M, < Mz € QSym.

[At this point, let us remark that we can give an explicit formula for M, < Ms:
Namely,

Mo <M= > s),M, (2.5)

v€Comp
where 527 5 1s the number of all y-smaps. Indeed, for every monomial g, the coefficient
of q on the left-hand side of (2.5) equals s, ; where 7 is the Parikh composition of
q (because of Claim 1), whereas the coefficient of q on the right-hand side of (2.5)
also equals 5, s (for obvious reasons). Hence, every monomial has equal coefficients

on the two sides of (2.5), and so (2.5) holds. Of course, (2.5) again proves that

M, < Mg € QSym, since the sum > s/ sM, has only finitely many nonzero
v€Comp ’

addends (indeed, y-smaps can only exist if || < |o| + |5]).]

Now, let us forget that we fixed a and . We thus have shown that every two

Thus, [] ngj)) =mn=gq= xExZi . xz: Now, for any u € {1,2,...,n}, the exponent
seS
of z, on the left hand side of this equality is > p(s) (since k1 < ko < -++ < ky),

s€f=1(u)
whereas the exponent of xj, on the right hand side is 7,. Comparing these coeflicients, we

find = >5 p(s) =)
s€f~1(u)
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compositions a and 3 satisfy M, < Mz € QSym.

Now, let a € QSym and b € QSym. We shall only prove that a < b € QSym (since
the proof of a ¢ b € QSym is very simﬂa@.

The statement that we need to prove (a < b € QSym) is k-linear in each of a and
b. Hence, we can WLOG assume that both a and b are elements of the monomial
basis of QSym. Assume this. Thus, a = M, and b = My for some compositions

a and 3. Consider these o and 3. Now, as we know, M, < Mg € QSym, so that

a, <. b =M,~< Mse QSym. This completes our proof of Proposition[2.3.5, [
=M, =M;

Remark 2.3.6. The proof of Proposition given above actually yields a com-
binatorial formula for M, < Mz whenever o and 3 are two compositions. Namely,

let o and [ be two compositions. Then,

My < Mg= > s),M, (2.6)
y€Comp
where 517[3 is the number of all smaps («, 5) — 7. Here a smap («, B) — v means
what was called a y-smap in the above proof of Proposition [2.3.5]
This is similar to the well-known formula for M,Mjz (see, for example,

[GriReil5l Proposition 5.3]) which (translated into our language) states that

M Mg= > ,M, (2.7)

~€Comp
where tzyﬁ is the number of all overlapping shuffles («, 3) — 7. Here, the overlap-
ping shuffles (a, B) — ~yv are defined in the same way as the y-smaps, with the only
difference that the second of the three properties that define a «-smap (namely,
the property min (f (Sp)) < min (f (S1))) is omitted. Needless to say, (2.7]) can be

proven similarly to our proof of (2.6)) above.

Here is a somewhat nontrivial property of ¢ and <:

18 Alternatively, of course, a ¢ b € QSym can be checked using the formula M, ¢ Mg = M [.8] T
M,ep (which is easily proven). However, there is no such simple proof for a < b € QSym.
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Theorem 2.3.7. Let S denote the antipode of the Hopf algebra QSym. Let us

use Sweedler’s notation ) by ® by for A (b), where b is any element of QSym.
(0)
Then,

> (S(by) ¢ a)be =a<b

(0)

for any a € k[[z1, 22,23, ...]] and b € QSym.

Proof of Theorem[2.3.7] Let a € k[[x1, x2,x3,...]]. We can WLOG assume that a is
a monomial (because all operations in sight are k-linear and continuous). So assume
this. That is, a = n for some monomial n. Consider this n. Let & = min (Suppn).

Notice that k£ € {1,2,3,...} U{oo}.

(Some remarks about oo are in order. We use oo as an object which is greater

than every integer. We will use summation signs like > and > in
1<i1 <o < <ip<k k<i1<ig<-<ip

the following. Both of these summation signs range over (i1, s, . .., i) € {1,2,3,...}"
satisfying certain conditions (1 < i3 < iy < -+ < 7y < k in the first case, and
k < i3 < iy < --- < iy in the second case). In particular, none of the iy,1s, ..., is
allowed to be oo (unlike k). So the summation > is identical to >

1<i1 <o < <ip<k 1< <9<+ <iy
when k = oo, whereas the summation > is empty when k£ = oo unless ¢ = 0.

k<i1<ig<-<ip
(If £ =0, then the summation > ranges over the empty 0-tuple, no matter
k<ii<ig<-<ip

what k is.)

We shall also use an additional symbol oo + 1, which is understood to be greater

than every element of {1,2,3,...} U{oo}.)

Every composition oo = (av, g, . . ., ) satisfies

a< M, = < Z a:f‘lle---ng) a (2.8)

k<iy<ig<---<ig

[

19 Proof of (2.8): Let a = (a1, s,...,a¢) be a composition. The definition of M, yields M, =
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Let us define a map By : k [[x1, xo, x3,...]] = k[[z1, 22, 23,...]] by

%k (p) = p(l‘hx?a s al‘kaO?O)O: s ) for every p € k [[$17$2,I’3, c H

(where p (21,9, ...,2,0,0,0,...) has to be understood as p (x1, z3, x3,...) = p when
k = o0). Then, 9B is an evaluation map (in an appropriate sense) and thus a
continuous k-algebra homomorphism. Any monomial m satisfies

m, if max (Suppm) < k;

By, (m) = (2.9)
0, if max (Suppm) > k

ritap? a2y’ Combined with a = n, this yields
1<) <t <<ty
a{Ma:n‘< E x?lleQ..-xZZ

1<in <ip <+ <ig

= > n < (' 2y o)

1<ii<io<--<iyg

o PR P if min (Suppn) < min {iy,42,...,4%};
0, if min (Suppn) > min {iy,42,...,%}

(by the definition of < on monomials)

(since < is k-bilinear and continuous)

o o . P o
_ Z { nexptagt e agt, if min (Suppn) < min {é1,42,...,4¢};
o 0 if min (Suppn) > min {iq,is,....1
1<iy <ip <+ <ig ) ( pp )_ { 5 02, 5 é}
— S noafiat? gt = S @ 202 L g0
~— 01 T2 ig i1 Vi ie
1<ty <ig <+ <ig; —a k<ii<ig<---<iyg

min(Supp n)<min{iy,i2,...,50}

min(Supp n)<iy <ig<---<ip
k<iy<ig<--<ip
(since min(Supp n)=k)

— aq 02 7
= E l’il xh xiz a.

k<iyp<ig<---<ip

This proves ([2.8]).
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P Any p € k [[21, 22,23, . . .]] satisfies

pda=a-By(p) (2.10)
E|. Also, every composition a = (aq, e, ..., ay) satisfies
B (M,) = > R (2.12)

1<i1 <2< <1p <k

!

We shall use one further obvious observation: If 4q,%9,...,%, are some positive

20 Proof. Let m be a monomial. Then,

By (m) =m(x1,22,...,2,,0,0,0,...) (by the definition of By)
= (the result of replacing the indeterminates xg41, Tk+2, x+s, ... by 0 in m)
| m, if none of the indeterminates z41,Tk42, Tk13,... appears in m;
1 0, if some of the indeterminates xyy1, k42, Tk+3,... appear in m
| m, if max (Suppm) < k;
10, if max (Suppm) > k
ecause none of the indeterminates xgy1, Tr12, k13, - .. appears in m if and only if max (Suppm) <
b f the indeterminat + + + i if and only if S <

k). This proves ([2.9).

21 Proof of (2.1(}): Fix p € k[[x1, 72, 23,...]]. Since the equality is k-linear and continuous
in p, we can WLOG assume that p is a monomial. Assume this. Hence, p = m for some monomial
m. Consider this m. We have

_ _fm, if max (Suppm) < k;
B \pi/ = By (m) = { 0, if max (Suppm) > k (2.11)
(by (2.9)). Now,
_ _f men, if max (Suppm) < min (Suppn);
\I’i/ ¢ N ¢n= { 0, if max (Suppm) > min (Suppn)
=m =n

(by the definition of ¢)

_f m-n, if max (Suppm) < k; . . _
= { 0. if max (Suppm) > k (since min (Suppn) = k)
_oa A if max (Suppm) < k;
T~~~ | 0, if max (Suppm) > k

=B (p

(by (.11))
=a-Bi(p).

This proves ([2.10)).
22 Proof of (2.12): Let a = (a1, ,...,ap) be a composition. The definition of M, yields M, =
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integers satisfying i; < 19 < --- < 1y, then
there exists exactly one j € {0,1,...,¢} satisfying i; < k < 144

(where g is to be understood as 1, and 4,41 as co + 1).

Let us now notice that every f € QSym satisfies

af = Z%k (f(1)) (CL = f(2)) .
)

(2.13)

(2.14)

Proof of . Both sides of the equality (2.14]) are k-linear in f. Hence, it is

enough to check 1’ on the basis (Mv)yecomp of QSym, that is, to prove that

holds whenever f = M, for some v € Comp. In other words, it is enough to

aq .02
xil Z‘iz

1<ii<io< -+ <ig

-~z ‘. Applying the map B}, to both sides of this equality, we obtain

B (My) = By, Z i g

11 Vo ig
1<i <ig <<y

= 2 By () 2} - 2l))

1<dy <ia <<y

] 00 (o7} 3 (e pNNe ) (67 .
I A SRR e if max (Supp (317Z Tt Ty, )) <k;
- o a1 .02 (87
0, if max (Supp (2§82 - R )3 >k
(by @9), applied to m=a7" a2 -z7f)

(since By, is k-linear and continuous)

aq 0o Qy 3 Qg Q2 Qg .
_ { L R if max (Supp (a:Z TP T, )) <k;
Z 0 if max (Supp (xSt xS2 -zt 3 >k
1<iy <ig <+ <iy ’ ( pp( 1 12 L )
a2 (677 3 , y . .
) oadraly a2l if max {i1,i2,...,00} <k;
0, if max{il,ig,...,ig}>k
(since Supp(x?ll 93?22-~-z?;):{i17i2,..4,iz})
a0 (67 3 y y > .
_ Z LR PR A if max {i1,49,...,0¢} <k;
0, if max {iy,i9,...,00} >k

1<iy <ip <+ <ig

_ ar Qa0 _ oy e 0
= E T Ty ;. = E T Ty, z;,

1<0 <ip <+ <iyg; 1<i1<io< <1y <k
max{i iz, oorie} <k

1<iq <ig<-<ip<k

This proves (2.12).
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that

alM, = Z By ((MV)(1)> : (a < (Mv)(2)> for every v € Comp.
(AL

But this is easily done: Let v € Comp. Write « in the form v = (71,72, ...

Then,

> ((08))) - (0 < (0),))
(M)

77@)'

4
- E : By (M(%ﬁz,-.wj)) ’ (a = M('Yj+17’Yj+2:~--7’Y£))
- 472,57 o
1<iy<ig<o-<ij<k L2 Y = > x:f+1x323+2-~a:¥__ -a
(by @212)) k<iy<ig<-<ip_; J
(by (2-8))
12
since E (M'v)u) ® (Mv)(2) =A(M,) = E :M('n,'yz7~.-m) & My, 11 y120eive)
(M) 7=0
l
. Y1 .72 Vi Yi+1 Yi+2 - Ye .
= E E r)lw) i E x ) x| -a
7=0 1<y <ia<-+<i; <k k<iy<ig<-<ig_j
- o
Vv
— Vi1 V52 e
k<ijy1<ijpo<--<ip Il +2 U
(here, we have renamed the summation index
(i1i2,00nsi— ) @S (3541505 4200si))
l
_ Vi, LY Vitl Ytz e |
= E E T Ty Ty E x| a
7=0 1<i1 <in<-+<i; <k k<ijy1<ijpa<--<ig

.

¢
V102, 00 Vi+1, V542 e
E E E (:cil T, xij) (xml T, 5%) a

=0 1§i1<i2<"'<i]'§k k<i]'+1<ij+2<"~<ig ~~
J 1,72,

— e
~~ —$,Lv1 i2 Qﬁie

N

1<iy <ig<<ig j€{0,1,....0};
1;<k<iji1
(where 7 is to be understood as 1, and 11 as co+1)

. M2 LT L, TL12 L e
- Z Z Liy Liy Liy A= Z Liy Liy L, -

1<in<io<--<ig  j€{0,1,....0}; 1< <9< <ip
ij§k<i]‘+1 ~
A

~
this sum has precisely one addend,

(because of (2.13)),

and thus equals le z)2. gt
172 iy

=M, -a=aM,,
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ged. Thus, (2.14)) is proven.

Now, every b € QSym satisfies

Yoo (Shw) a) by
~—_——

® a8, (S(br)))

(by , applied to p:S(b(l)))

= a- B (S (b)) by = ) B (S (b)) - ab
2 2 (5 (o abey
| > | B () ) (4= (o) )
b(2)

(by (2.14), applied to f=b(s))

3B (S () Z%d o) (a2 Gu))
(b)

=22 B(s (bu) ) B (b)) (@< (b))
® (o)
—Z;gw( D)) B (b)) (0 < b)

J/

-~

—%, (( ) ) s((b(l))<1))~(b<1))(2>)

b
1)
(since By, is a k-algebra homomorphism)

since the coassociativity of A yields

> 3 by ® (b)) @ (bezy) o Z > (bw) gy ® (b)) o) @ by

®) (b)) ®) (b))

= > By > 5 (b)) (o), (a < b))
(®) (b))

J/

-~

:a(b(l))

(by one of the defining equations of the antipode)

= Z B (e (b)) (a=<be) =Y () (a=by)
\—v—/

(0)
==(bw))

(since By, is a k-algebra
homomorphism, and

a(b(l))ek is a scalar)
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= a=(e(bw)be) =a=< > bw)by | =a=<b.
(b) (b)

- s
g

This proves Theorem [2.3.7] O

Let us connect the ¢ operation with the fundamental basis of QSym:

Proposition 2.3.8. For any two compositions o and 3, define a composition a® 3
as follows:

— If a is empty, then set a © g = .

— Otherwise, if § is empty, then set « ® § = «.

— Otherwise, define a ® § as (aq, g, ..., qp_1,00 + B1, B2, B3, - - -, Bm), Where «
is written as a = (aq, ag, ..., ap) and where [ is written as 8 = (f1, B2, - - -, Bm)-

Then, any two compositions a and 3 satisfy

Fo ¢ Fs = Foup.

Our proof of this proposition will rely on the following lemma:

Lemma 2.3.9. If G is a set of integers and r is an integer, then we let G +r denote
the set {g+1r | g € G} of integers.

Let p € N and ¢ € N. Let a be a composition of p. Let 8 be a composition of
q. Consider the composition o ® § defined in Proposition [2.3.8

(a) Then, a ® § is a composition of p + ¢ satisfying D (a® ) = D (a) U
(D (B) +p).

(b) Also, define a composition [«, 5] by [«, 8] = (a1, g, ..., a0, B1, By -+, Bm)s
where a and [ are written in the forms a = (ay,a9,...,00) and =
(B1, B2, -y Pm). Assume that p > 0 and ¢ > 0. Then, [«, 3] is a composition
of p+ ¢ satistying D (o, B)) = D (a) U {p} U (D (8) +p).

(Actually, part (b) of this lemma will not be used until much later, but part (a)

will be used soon.)
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Proof of Lemma[2.3.9. Write « in the form « = (a1, 9,..., ). Thus, |a] = ag +

ag + -+ + oy, so that a; + s + -+ - + ay = |a] = p (since « is a composition of p).

Write 8 in the form 8 = (51, Bs, ..., Bm). Thus, || = 81 + B2 + - -+ + B, so that
B1+ Ba+ -+ Bm = |B] = ¢ (since § is a composition of q).

We have 5 = (1, B2, ..., 0m), and thus

D(B)={B1,Br+ B, Br+ Bo+Bsy ..., Bi+ Lot + Bt}
(by the definition of D (5))

={Bi+Ba+-+5 | j€{l,2,...,m—1}}.
Also, a = (ay, ag, ..., ap), and thus

D(Oé) = {Ozl,&l+062,041+C¥2+Ck3,...,6k1+042+“'+Oég,1}
(by the definition of D («))

:{Oz1+052+"'+04i | 26{1,2,76—1}}

(a) If « or g is empty, then Lemma (a) holds for obvious reasons (because
of the definition of & ® § in this case). Thus, we WLOG assume that neither a nor

B is empty.

We have o ©® 8 = (a1, 9,..., 1,00+ 51, B2, 03, ., Bm) (by the definition of
a ® () and thus

la@pfl=ar+as+ - +ar1+(ap+ 1)+ Pa+Bs+ -+ P

=(togt-ta)+(fitfot 4 0m) =P+a

=p =q

Thus, a ® § is a composition of p + ¢q. Hence, it remains to show that D (« ® ) =
D(a)U(D(B) +p).
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NOW7 a QB = (&1,@27 ceey Qp1, Oy +61a/627637 s 7ﬂm)7 so that

D(a®pB)

={a, a1 +ag, a1 +astas,...,a1 + s+ -+ ap,
ot o (o +P),ar+as+ -+ oy + (o + Br) + o,
ap+ay+-tap g+ (gt Bi) + B+ Bs
aptag+-Fap+(ag+ Bi) + B+ Pzt B}
(by the definition of D (o ® 3))

:\{a1+062+"'+0éi ‘ ZE{LQ,,@—l}E

—D(a)

Udqatar+ - Faa+(a+b)+Bh+0+ - +0

(al+a2+"'+06£‘),+(ﬁl+,82+'“+ﬁj)
(B1+B2++4B5)+(a1+as++ay)

| 7€{1,2,...,m—1}

=D()US (Bt fot -+ f)+(atas+-+a) | je{l,2,...,m—1}

=p

=D(@)U{(Bi+Pat-+)+p | je{l,2,....m—1}}

.

={B1+B2++B; |7e{1,2,...,m71}}+p

=D(@U | {Bi+B+ 48 | je{l2,....m—1}}+p

—D(p)

=D (@) U(D(B)+p)

This completes the proof of Lemma (a).

(b) We have p > 0. Thus, the composition « is nonempty (since « is a com-
position of p). In other words, the composition (ay,as,...,a) is nonempty (since

a = (ay,as,...,ap)). Hence, £ > 0.
We have ¢ > 0. Thus, the composition § is nonempty (since [ is a compo-
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sition of ¢). In other words, the composition (f,fs,...,5x,) is nonempty (since

B =(B1,B2,...,0m)). Hence, m > 0.

We have [a, 8] = (a1, @9, ..., 01,02, ..., Bm) (by the definition of [a, §]) and
thus

la@pfl=a+as+-Fog+ B+ Po+ 4 B

N N J

=ttt ta)+(Pit+fot 4 Pm) =P+ 0

=p =q

Thus, [, ] is a composition of p + ¢q. Hence, it remains to show that D ([«, 5]) =
D(a)U(D(B) +p)-
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NOW7 [aaﬁ] - (041,042,. <. aaﬁaﬁhﬂ%' .- aﬁm)a so that

D ([a, 5])
={a, a1+, 1 + s+ ag,...,a1 s+ + ap,
ayFoag oy oy, o+t A g+ B,
artay+-taprtart fi+ By
o tayt- o tagt BBt A B}
(by the definition of D ([, f]))

:{061+C¥2+"'—|—C¥i | Z€{1,2,,€—1}}

=D(a)

J

U 041+OZ2+"'+Ozg

=p

U 041—|—042—|—"'—|—Oég_1—|—0z5+61+52+"'—|—5J‘
=(a1+012+-~~+a;):-(ﬂ1+52+~~+ﬂj)
=(B1+P2++B;)+(a1+azs+-+ap)

| je{1,2,..., m—1}

:D(Q)U{p}u (61+ﬁ2+”'+6j‘>+(Oé1+062—|—--~—|—a[)

J

-

=p

| jef{1,2,...,m—1}

:D(a)U{p}U\{(Bl‘i‘BQ_""'"i_ﬁj)_"p | j€{1727"'7m_1}}

={B1+B2++B; | GE{1.2,m—1}}+p

=D(@U{ptU [ {Bi+Bt-+0 | je{1,2,... . m—1}}+p

—D(p)

=D (o) U{p} U (D(B) +p).
This completes the proof of Lemma (b).
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Proof of Proposition[2.3.8. If either « or § is empty, then this is obvious (since ¢ is
unital with 1 as its unity, and since F; = 1). So let us WLOG assume that neither
is. Write o as @ = (aq, a, ..., ay), and write 5 as f = (f1, B2, - - ., Bm). Thus, £ and

m are positive (since a and /3 are nonempty).

Let p = |a] and ¢ = |3|. Thus, p and ¢ are positive (since @ and f are nonempty).
Recall that we use the notation D («) for the set of partial sums of a composition
a. If G is a set of integers and r is an integer, then we let G + r denote the set

{g+7r | g€ G} of integers.

Lemma (a) shows that «® § is a composition of p+ ¢ satisfying D (o ® ) =
D (a)U (D (B) +p).

Applying (2.1)) to p instead of n, we obtain

Fa = Z LijgLijg **° ZL’Z'p. (215)

11 <ig <+ <ip;
ij<iji1 if j€D(a)

Applying (2.1]) to ¢ and S instead of n and «, we obtain

FB = § : xilwi2 e xiq = 2 : xip+1$ip+2 T ‘Iip+q

11 <ig < <ig; ip+1<ip 2 < Siptg;
i;<ij41 if JED(B) i;<ij1 if JED(B)+p
(here, we renamed the summation index (i1, s, ...,%) as (ipt1,ipt2,- .-, ipte)). Lhis,
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together with (2.15)), yields

F, ¢ Fj
- E : Tiy Tig -+ Ty, | @ E : Lipy1Lipya =" Lipyg
11 <ig < Lip; ip4+1<ipt2<-<ipig;
15 <tj41 if jeD(a) 15 <tjy1 if JED(B)+p
= z : 2 : \(xilxi? T xip) ¢ (xip+lxip+2 T xip+q)l
11502 < <idp;  Ipt1<ip42<-<iptg; e
ij<ijy1 if jeD(a) i5<ijy1 if jED(B)+p e o e S
) Ty T, Ty Ty T it i, < ipya;
0, if 4, > iy
(by the definition of ¢ on monomials)
Z Z ZL’ilxw v ZL'ipZEZ'p+1J]iP+2 R Iip+q, lf Zp S Zp-i-l;
i1 Sin<Sip; i1 <ipy2a<--iprgi | 0 if ip > ips
ij<ijy1 if jED(a) i5<ijiq1 if jED(B)+p
- z : LiyLig == ‘ripxip+lxip+2 T xizﬂrq
. g
11 <ig <+ <ip; _ .
TTipTipTipyg

i;<iji1 if jE€D(a);
ip+1<ip+2S-Slptg;
i <ijy1 if JED(B)+p;
ip<ip+1

(. 7
g

= >
11512 < <iptgq;
i;<ijy1 if JED()U(D(B)+p)

_ ) Ty Tiy - T (2.16)

11 <2< Sippg;
ij<ijia if jeD(a)U(D(B)+p)

On the other hand, a ® § is a composition of p + ¢ satisfying D (a ® 8) = D (a) U
(D (5) + p). Thus, (2.1) (applied to o @ 5 and p + ¢ instead of @ and n) yields

Foop = E TiyTig =+ Ly = E Ty Tijy w - L,y

11 <ig < <dptg; 11<i2<<ipytg;
i;<ij1 if JED(a®pB) ij<ijt1 if jED(a)U(D(B)+p)

(since D (a ® B) = D (a)U(D (5) + p)). Compared with (2.16]), this yields F,, ¢ Fz =
F,op. This proves Proposition [2.3.§] ]

For our goals, we need a certain particular case of Proposition Namely, let

us recall that for every m € N, the m-th complete homogeneous symmetric function

101



h,, is defined as the element > TiyTiy -+ * X
1<i1 <io < <im
by = Flmy for every positive integer m. From this, we obtain:

of Sym. It is easy to see that

m

Corollary 2.3.10. For any two compositions « and 3, define a composition a ®
as in Proposition [2.3.8. Then, every composition o and every positive integer m
satisfy

Foom) = Fa & . (2.17)

Proof of Corollary[2.5.10. Let a be a composition. Let m be a positive integer. Recall
that h,, = F(n). Proposition 2.3.8 yields Fy, ¢ F,ny = Faom)- Hence, Foomm) =

F, ¢ F,,) = Fy ¢ hy,. This proves Corollary [2.3.10} O
—~—

Remark 2.3.11. We can also define a binary operation X : k[[zq,z2,23,...]] X

k[[x1, 29, x3,...]] = k|[[z1,22,23,...]] (written in infix notation) by the require-

ments that it be k-bilinear and continuous with respect to the topology on

k [[x1, 22, x3,...]] and that it satisfy
m-n, if max (Suppm) < min (Suppn);
mXn=
0, if max (Suppm) > min (Suppn)

for any two monomials m and n. (Recall that max @ = 0 and min @ = 00.)
This operation X shares some of the properties of ¢ (in particular, it is asso-

ciative and has neutral element 1); an analogue of Theorem says that

Z (S (b(l)) K a) by =a=0b

(0)

for any a € k|[[x1, 29, x3,...]] and b € QSym, where a < b stands for b = a. (Of

course, we could also define < by changing the “<” into a “<” and the “>” into a

“>" in the definition of <.)
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2.4 Dual immaculate functions and the operation <

We will now study the dual immaculate functions defined in [BBSSZ13a]. However,
instead of defining them as was done in [BBSSZ13al, Section 3.7], we shall give a
different (but equivalent) definition. First, we introduce immaculate tableaux (which
we define as in [BBSSZ13al, Definition 3.9]), which are an analogue of the well-known

semistandard Young tableaux (also known as “column-strict tableaux”j?}

Definition 2.4.1. Let o = (v, g, . .., o) be a composition.

(a) The  Young diagram  of «  will mean  the  subset
{(i,5) €Z? | 1<i<l; 1<j <} of Z? It is denoted by Y («).

(b) An immaculate tableau of shape o will mean amap 7 : Y (o) — {1,2,3,...}

which satisfies the following two axioms:
1. We have T (i,1) < T (j,1) for any integers i and j satisfying 1 < i < j < /.

2. We have T (i,u) < T (i,v) for any integers i, u and v satisfying 1 < ¢ < ¢

and 1 <u<v <q;.

The entries of an immaculate tableau 7" mean the images of elements of Y («)
under 7.

We will use the same graphical representation of immaculate tableaux (analo-
gous to the “English notation” for semistandard Young tableaux) that was used in
IBBSSZ13al]: An immaculate tableau 7" of shape oo = (o, avg, . . ., ) is represented
as a table whose rows are left-aligned (but can have different lengths), and whose
i-th row (counted from top) has «; boxes, which are respectively filled with the en-
tries T' (i, 1), T'(4,2), ..., T (i, ;) (from left to right). For example, an immaculate
tableau T' of shape (3,1,2) is represented by the picture

(1,1|01,2|1,3

21

a3 1|32

2Gee, e.g., [Stan99, Chapter 7| for a study of semistandard Young tableaux. We will not use them
in this note; however, our terminology for immaculate tableaux will imitate some of the classical
terminology defined for semistandard Young tableaux.
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where a;; = T (i,7) for every (i,j) € Y ((3,1,2)). Thus, the first of the above
two axioms for an immaculate tableau T' says that the entries of T are strictly
increasing down the first column of Y («), whereas the second of the above two
axioms says that the entries of 1" are weakly increasing along each row of Y («).
(c) Let 8= (54, B2, - - -, Br) be a composition of |a|. An immaculate tableau T

of shape « is said to have content (3 if every j € {1,2,3,...} satisfies

77 6] = .
0, it >k

Notice that not every immaculate tableau has a content (with this definition), be-
cause we only allow compositions as contents. More precisely, if T is an immaculate
tableau of shape «, then there exists a composition S such that 71" has content 3 if
and only if there exists a k € N such that T'(Y (o)) = {1,2,...,k}.

(d) Let 8 be a composition of |@|. Then, K, 3 denotes the number of immac-

ulate tableaux of shape o and content .

For future reference, let us notice that if « is a nonempty composition and if 7" is

an immaculate tableau of shape «, then
the smallest entry of T"is 7' (1,1) (2.18)

(because every (i,j) € Y («) satisfies T'(1,1) < T'(i,1) < T (4,5)). Moreover, if « is
a composition, if T is an immaculate tableau of shape «, and if (i,7) € Y («) is such
that 7« > 1, then

T1,1) <T(i,1) <T(i,5). (2.19)

Definition 2.4.2. Let o be a composition. The dual immaculate function &

corresponding to « is defined as the quasisymmetric function

> KopMp.

BElal
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This definition is not identical to the definition of &% used in [BBSSZ13al, but it

is equivalent to it, as the following proposition shows.

Proposition 2.4.3. Definition is equivalent to the definition of &} used in
IBBSSZ13al.

Proof of Proposition[2.4.3. Let <, denote the lexicographic order on compositions.
Let « be a composition. Then, [BBSSZ13al, Proposition 3.36] yields the following:

(the dual immaculate function &}, as defined in [BBSSZ13a]) = Z K, 3Msg.

BE|al;
B<ea

Compared with

(the dual immaculate function &7, as defined in Definition [2.4.2))

SDILUED JPUEEDY Kos v
BElal BElal; BE|al; -0
B<ea not S<ya (by [BBSSZI3al Proposition 3.15 (2)])
= Y KasMs+ Y O0Mg= Y KopMp,
BEal; BE|al; BEal;
B not 8<pa B<
N———’

=0
this yields

(the dual immaculate function &, as defined in [BBSSZ13al)

= (the dual immaculate function &, as defined in Definition 2.4.2)) .

Hence, Definition is equivalent to the definition of &% used in [BBSSZ13a|. This
proves Proposition [2.4.3] O

It is helpful to think of dual immaculate functions as analogues of Schur func-

tions obtained by replacing semistandard Young tableaux by immaculate tableaux.

Definition [2.4.2] is the analogue of the well-known formula sy = ) k) ,m, for any
pIA|
partition A, where s, denotes the Schur function corresponding to A, where m, de-
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notes the monomial symmetric function corresponding to the partition i, and where
k»,. is the (A, pu)-th Kostka number (i.e., the number of semistandard Young tableaux
of shape A and content u). The following formula for the &7 (known to the authors
of [BBSSZ13a] but not explicitly stated in their work) should not come as a surprise:

Proposition 2.4.4. Let a be a composition. Then,

62 = Z XT.

T is an immaculate
tableau of shape a

Here, xp is defined as  [[ @7 ;) when T is an immaculate tableau of shape a.
(i.7)€Y (a)

Before we prove this proposition, let us state a fundamental and simple lemma:

Lemma 2.4.5. (a) If I is a finite subset of {1,2, 3, ...}, then there exists a unique
strictly increasing bijection {1,2,...,|I|} — I. Let us denote this bijection by r;.
Its inverse r; ' is obviously again a strictly increasing bijection.

Now, let @ be a composition.

(b) If T is an immaculate tableau of shape «a, then r;(ly(a)) o T (remember
that immaculate tableaux are maps from Y («) to {1,2,3,...}) is an immaculate
tableau of shape a as well, and has the additional property that there exists a
unique composition f of |a| such that T;(ly(a)) o T has content [3.

(c) Let @ be an immaculate tableau of shape «. Let § be a composition of |«

such that () has content 3. Then,

Mg = > X7 (2.20)

T is an immaculate
tableau of shape «;

—1
(v (a)) °T=Q

Proof of Lemma[2.4.5 (a) Lemma (a) is obvious.
1

(b) Let T" be an immaculate tableau of shape a. Then, Ty (a))© 1 1S an immaculate
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tableau of shape a as Wel. Let R = r;(ly(a)) oT :Y (o) = {1,2,...,|T (Y (a))[}
Then,

B V(@) = (1o T) (Y (@)

-1
="7(y (a))°T

= "oty (T (Y (@) ={1,2,...,|T (Y ()|}

Hence, (|[R7' (1), |R7*(2)],...,|R*(|T (Y («))|)]) is a composition. Therefore, there
exists a unique composition [ of |a| such that R has content § (namely, 8 =
(R, IR(2),..., ][R (T (Y («))])])). In other words, there exists a unique
composition § of |a| such that r;(ly(a)) o T has content § (since R = r;(ly(a)) oT).
This completes the proof of Lemma (b).

(c) If T'is a map Y (a) — {1,2,3,...} satisfying r;(ly(a)) oT = @, then T is

automatically an immaculate tableau of shape « E Hence, the summation sign

« > ” on the right hand side of (2.20)) can be replaced by “ > ”,
T is an immaculate T:Y (a)—{1,2,3,...};
tableau of shape «; -1 T—

v (a°T=Q "1y () °T =@
"T(Y (o))
Hence,
S Y
T is an immaculate TY (a)—{1,2,3,...};
tableau of shape «; o1 oT=Q
"0y () °T=Q T
Now, let us write the composition 5 in the form (S, 52, ..., ;). Then, we have
B B, if k< £ o
Q7' (k)| = for every positive integer &k  (2.21)
0, if k >/

(since @ has content ). Hence, @ (Y («)) = {1,2,...,¢}. Asa consequence, the maps

24This is because the map r;(ly(a)) is strictly increasing, and the inequality conditions which
decide whether a map Y () — {1,2,3,...} is an immaculate tableau of shape « are preserved under
composition with a strictly increasing map.

25 Proof. Let T be amap Y (a) — {1,2,3,...} satisfying r;(ly(a)) oT = Q. Thus, T = rp(y(a)) Q-
Since @ is an immaculate tableau of shape «, this shows that 7" is an immaculate tableau of shape
« (since the map TT(y () 18 strictly increasing, and the inequality conditions which decide whether
amap Y (a) = {1,2,3,...} is an immaculate tableau of shape « are preserved under composition
with a strictly increasing map).
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T:Y (o) = {1,2,3,...} satisfying r;(ly(a)) ol = () are in 1-to-1 correspondence with
the (-element subsets of {1,2,3,...} (the correspondence sends a map 7" to the (-
element subset 7' (Y («)), and the inverse correspondence sends an ¢-element subset [
to the map r;0Q)). But these latter subsets, in turn, are in 1-to-1 correspondence with
the strictly increasing length-¢ sequences (i; < iy < - -+ < i;) of positive integers (the
correspondence sends a subset G to the sequence (r¢ (1),7¢(2),...,7ra (£)); of course,
this latter sequence is just the list of all elements of GG in increasing order). Composing
these two 1-to-1 correspondences, we conclude that the maps T : Y (o) — {1,2,3,...}
satisfying r;(ly(a)) oT = @ are in 1-to-1 correspondence with the strictly increasing
length-¢ sequences (i; < iy < -+ < iy) of positive integers (the correspondence sends a
map 7 to the sequence (rr(y(a)) (1), r7(v(a) (2) 1 - -, T7(v(a)) (£))), and this correspon-

dence has the property that x; = xﬁleQ o -xff

whenever some map T gets sent to
some sequence (i; < iy < --- < i) (because if some map T gets sent to some sequence
(il <l <o < if)? then (ila i27 B 7i€) = (TT(Y(OC)) (1) y T'T(Y () (2) v TT(Y () (g))a

so that every k € {1,2,..., 0} satisfies iy = rr(y(a)) (k), and now we have

J4
X7 = H TT(i,5) = H H LT (i,5)

(1.)€Y (o) k=1 (i.5)eY (a); =z (@(i.1))
Qli=k T ()@
(since T'(3,j)= TT(Y(a))(Q(W))
(because rT(Y<a))0T:Q

and thus T=rp(y (4))°Q))

(since Q (Y (a)) = {1,2,....¢})

_H | )

OO
Q(i,j)=k (v (a)) )
~—— (since Q(i,j)=k)

(1,5)€Q 1 (k)
’

- H I #rowe=]1] xlf—l(k)l = [0 = aliale . ol

=1 ()eQ 1K) =l T k=1
/ =x.
K
|Q 1<k>| B |Q L) (since |Q 1 (k)|=6x
Ty (an® T (by @:21)))

(since TT(Y(a))(k) ir)
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). Hence,

_ B1,.B2 Be __
Z X7 = Z Ty X Ty, = Mg
T:Y (a)—{1,2,3,..}; 1<iy <ia < <iy
—1
r(y (a)) °T=Q

by the definition of Mg3). Altogether, we thus have
B

Z XT = Z XT:Mﬁ.

T is an immaculate TY (a)—{1,2,3,...};
tableau of shape «; -1 T—
(v (e °T =@

-1
TT(Y<Q))OT:Q

This proves Lemma (c). O

Proof of Proposition[2.4.4). For every finite subset I of {1,2,3,...}, we shall use the
notation r; introduced in Lemma (a). Recall Lemma (b); it says that if
T is an immaculate tableau of shape «, then r;(ly(a)) oT is an immaculate tableau of
shape a as well, and has the additional property that there exists a unique composition

S of |a| such that r;(ly y o T has content 3.

(a)

Now,
&L => Ko 3Msg => > Mj. (2.22)
BE|al — BE|a| Q is an immaculate
= > Mpg tableau of shape a

Q@ is an immaculate
tableau of shape «
and content (3

(by the definition of K, g)

and content (3

But (2.20]) shows that every composition [ of |«/| satisfies

R S S

Q@ is an immaculate Q@ is an immaculate T" is an immaculate T is an immaculate
tableau of shape « tableau of shape o tableau of shape «; tableau of shape «
and content 3 and content 3 T;(lY(a))OT:Q such that r;(lym))oT

has content 8

(because for every immaculate tableau T' of shape «, the map r;(ly(a)) oT is an
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immaculate tableau of shape « as well). Substituting this into (2.22]), we obtain

=Y Y m-y Y ue Y om

BE|a| Q is an immaculate BElal T is an immaculate T is an immaculate
tableau of shape « tableau of shape « tableau of shape «
-1
N and content 3 such that TT(Y<Q))OT
~~ has content 8

T is an immaculate
tableau of shape «
-1
such that TT(Y(a))OT
has content 8

(because for every immaculate tableau T of shape «, there exists a unique composition

B of |a| such that r;(ly(a)) o T has content (), whence Proposition [2.4.4] follows. [

Corollary 2.4.6. Let a = (ay,as,...,ap) be a composition with ¢ > 0. Let @

denote the composition (ag, as, ..., ap) of |a| — a;. Then,

& = ha, < G

Here, h, denotes the n-th complete homogeneous symmetric function for every

n € N.

Proof of Corollary[2.4.6 Proposition shows that

G = > Xp = > X0 (2.23)

T is an immaculate Q@ is an immaculate
tableau of shape a tableau of shape «

(here, we have renamed the summation index 7" as @)).

Let n = aq. If iq,149,...,14, are positive integers satisfying i; < ip < --- < 1,, and
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if T is an immaculate tableau of shape @, then

(@i @iy -+ 24,) < X7

Tiy iy + - Tiy X, if min (Supp (x;, 2, -+ - 24,)) < min (Supp (x7));

0, if min (Supp (i, 24, - - - ;,)) > min (Supp (x7))

(by the definition of < on monomials)

) maw,wXr if iy < min (T (Y (@))) ; (2.24)
0, if i > min (T (Y (@)))
(since min (Supp (x;, x4, - -+ x;,)) = 43 and Supp (x7) =T (Y (@))) .
But from n = oy, we obtain h,, = h,,, so that hy, = h, = > iy iy =+ X4,
i1<is <o <in
and &% = > xr (by Proposition 2.4.4)). Hence,
T is an immaculate
tableau of shape @
he, < 6%
= ( Z xilxiz R inn> =< Z XT
11 <ig<-+<ip T is an immaculate
tableau of shape &
= > > (@t 2,) < X1
11 <i9<--<inp T %Osl an irr%m}al,culatf he
rablean oEShApe d | @y, - @, X if iy < min (T (Y (@))) ;
0, if 17 > min (T (Y (@)))
(by (2:24))

Z Z Ty Tiy * - Ti X, if 11 < min (T (Y (@)));

11 <i2<--<ip T is an immaculate 07 if Z‘1 Z min (T (Y (a)))
tableau of shape &

= E Tiy Ty -+ + Ti, X (2.25)
11 Sig <o <
T is an immaculate
tableau of shape @;

i1<min(T(Y (@)))

We need to check that this equals G} = > XQ-

Q@ is an immaculate
tableau of shape «

Now, let us define a map ® from:
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e the set of all pairs ((i1,42,...,1,),7T), where iy, s, ..., i, are positive integers
satisfying 7; < iy < --- <14,, and where T is an immaculate tableau of shape @

satisfying i1 < min (7 (Y (@)))
to:
e the set of all immaculate tableaux of shape «.

Namely, we define the image of a pair ((i1,142,...,4,),7) under ® to be the im-
maculate tableau obtained by adding a new row, filled with the entries iy, o, ...,

(from left to right), to the topﬁ of the tableau T' m

This map ® is a bijection@, and has the property that if () denotes the image of

a pair ((i1,42,...,%,),T) under the bijection ®, then xo = x;,x;, - - - x;, Xr. Hence,
§ : XQ = E Ty Tiy *+ Tj, X
Q@ is an immaculate 11 <19 <-<in;
tableau of shape « T is an immaculate
tableau of shape @;
i1 <min(T(Y (@)))

In light of (2.23)) and (2.25)), this rewrites as &}, = h,, < &%. So Corollary is

proven. O

Corollary 2.4.7. Let a = (ay, g, . .., ay) be a composition. Then,

S =hay < (hay < (+++ < (ha, <1)-++)).

«

Proof of Corollary[2.4.7. We prove Corollary by induction over ¢:

26Here, we are using the graphical representation of immaculate tableaux introduced in Definition
£ Formally speaking, this means that the image of ((i1,i2,...,4,),T) is the map Y (a) —
Ty, ifu=1;

T(u—1,0), Al Proving that

{1,2,3,...} which sends every (u,v) € Y (a) to {

this map is an immaculate tableau is easy.

28 Proof. The injectivity of the map ® is obvious. Its surjectivity follows from the observation
that if @ is an immaculate tableau of shape «, then the first entry of its top row is smaller than the
smallest entry of the immaculate tableau formed by all other rows of Q. (This is a consequence of

(2.19), applied to @ instead of T'.)
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Induction base: If ¢ = 0, then o« = @ and thus &), = & = 1. But if £ = 0,
then we also have h,, < (hay < (-+- < (ha, <1)---)) = 1. Hence, if £ = 0, then
S =1=ha, < (hay < (-++ < (ha, <1)--+)). Thus, Corollary [2.4.7] is proven when
¢ = 0. The induction base is complete.

Induction step: Let L be a positive integer. Assume that Corollary holds for
¢ =L —1. We now need to prove that Corollary by holds for ¢ = L.

So let a = (ay, a, ..., q) be a composition with £ = L. Then, £ = L > 0. Now,
let @ denote the composition (ag, ag, . .., ay) of |a| — a;. Then, Corollary yields
&! = ho, < 6%. But by our induction hypothesis, we can apply Corollary to
a = (ag,as,...,q) instead of &« = (1, g, ..., ) (since f —1 =L —1). As a result,
we obtain 6% = hy, < (hay < (- < (ha, <1)--+)). Hence,

&) = ha, < &L = ha;, < (Pay < (Pay < (- < (ha, <1)--+)))
~~
=hay < (hag < (< (hay <1)-))

:ha1'<(ha2'<(""<(haz‘<1)"'>)‘

Now, let us forget that we fixed av. We thus have shown that

Sl = hay < (hay < (-++ < (ha, <1)---)) for every composition a = (ay, as, ..., ay)
which satisfies £ = L. In other words, Corollary holds for £ = L. This completes
the induction step. The induction proof of Corollary 2.4.7] is thus complete. O

2.5 An alternative description of h,, <

In this section, we shall also use the Hopf algebra of noncommutative symmetric
functions. This Hopf algebra (a noncommutative one, for a change) is denoted by
NSym and has been discussed in [GriReil5l, Section 5] and [HaGuKil0, Chapter 6];

all we need to know about it are the following properties:

e There is a nondegenerate pairing between NSym and QSym, that is, a non-

degenerate k-bilinear form NSym x QSym — k. We shall denote this bilinear
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form by (-, -). This k-bilinear form is a Hopf algebra pairing, i.e., it satisfies

(ab,c) = Z (a, c(l)) (b, 0(2)) (2.26)

()
for all a € NSym, b € NSym and ¢ € QSym;

(1L,e) =¢(c) for all ¢ € QSym;

> (aw,b) (a@),c) = (a,be)

(a)
for all @ € NSym, b € QSym and ¢ € QSym;

(a,1) =€ (a) for all @ € NSym;
(S(a),b) = (a,S (b)) for all a € NSym and b € QSym

(where we use Sweedler’s notation).

e There is a basis of the k-module NSym which is dual to the fundamental basis
(Fa) aecomp of QSym with respect to the bilinear form (-, -). This basis is called
the ribbon basis and will be denoted by (R,)

acComp”’

Both of these properties are immediate consequences of the definitions of NSym
and of (Ra),ccomp given in [GriReild, Section 5] (although other sources define these
objects differently, and then the properties no longer are immediate). The notations
we are using here are the same as the ones used in [GriReildl, Section 5| (except that
[GriReil5, Section 5| calls L, what we denote by F,), and only slightly differ from
those in [BBSSZ13a| (namely, [BBSSZ13a] denotes the pairing (-, -) by (-, ) instead).

We need some more definitions. For any g € NSym, let L, : NSym — NSym
denote the left multiplication by ¢ on NSym (that is, the k-linear map NSym —
NSym, f + gf). For any g € NSym, let g+ : QSym — QSym be the k-linear map
adjoint to L, : NSym — NSym with respect to the pairing (-,-) between NSym and
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QSym. Thus, for any ¢ € NSym, a € NSym and ¢ € QSym, we have
1) _
(a,g c) =|Lya,c| =(ga,c). (2.27)
~~
—ga

The following fact is well-known (and also is an easy formal consequence of the defi-

nition of g+ and of (2.26)):

Lemma 2.5.1. Every g € NSym and f € QSym satisfy

g-f= Z (9, f) feo- (2.28)
(f)

Proof of Lemma|2.5.1. Let g € NSym and f € QSym. For every a € NSym, we have

since the map ¢* is adjoint to L
(a,9"f) = Lya . f ’
~ with respect to the pairing (-, -)

=ga
(by the definition of Ly )

by ([2-26)), applied to g, a and f
= (gaa f) - Z (97 f(l)) (a'7 f(?))

(f) instead of a, b and ¢

=|a, Z (9, f) feo) (since the pairing (-,-) is k-bilinear) .
(£

Since the pairing (-, ) is nondegenerate, this entails that gt f = > (g, f(l)) J2).- This
(f)
proves Lemma [2.5.1] O

For any composition a, we define a composition w («) as follows: Let n = |/, and
write o as « = (aq, o, ..., qy). Let reva denote the composition (ay, a1, ..., aq)
of n. Then, w («) shall be the unique composition [ of n which satisfies D (8) =
{1,2,...,n—1}\ D (reva). (This definition is identical with that in [GriReil5, Defi-
nition 5.22]. Some authors denote w () by o/ instead.) We notice that w (w () = «
for any composition «.

Here is a simple property of the composition w («) that will later be used:
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Proposition 2.5.2. (a) We have w ([, 8]) = w () ® w (a) for any two composi-
tions a and f3.

(b) We have w (a ® ) = [w (B) ,w («)] for any two compositions o and f.

(c) We have w (w (7)) = ~ for every composition ~.

Proof of Proposition[2.5.3. For any composition «, we define a composition rev a as
follows: Let n = |af, and write o as o« = (a1, a9,...,ap). Let reva denote the
composition (ag, ay_1,...,a1) of n. (This definition of rev « is the same as the one

we gave above during the definition of w («).) Clearly,

lrevy| = |7 for any composition . (2.29)

It is easy to see that

rev (o, 5]) = [rev 5, rev ] and (2.30)

rev (a ® ) = (rev ) ©® (rev «) (2.31)

for any two compositions « and £.

Recall that a composition v of a nonnegative integer n is uniquely determined by
the set D () and the number n. Thus, if 7; and ~, are two compositions of one and

the same nonnegative integer n satisfying D (71) = D (72), then

"= e (2.32)

For every composition v, we define a composition p () as follows: Let n = |y|. Let
p () be the unique composition 3 of n which satisfies D (8) = {1,2,...,n — 1}\D (v).
(This is well-defined, because for every subset T of {1,2,...,n — 1}, there exists a

unique composition 7 of n which satisfies D (1) = T'.) Notice that

lo ()] = 17| for any composition 7. (2.33)
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Also, if n € N, and if v is a composition of n, then

D(p(’y)):{1727"'7n_1}\D(7) (234)

(by the definition of p (7)).

Notice also that

w(a) = p(reva) for any composition « (2.35)

El

Now, we shall prove that

p(la. B]) = p(e) © p(B) (2.36)

for any two compositions o and f.

Proof of (2.36): Let o and 3 be two compositions. Let p = |a| and ¢ = |3|; thus,
« and [ are compositions of p and ¢, respectively. We WLOG assume that both
compositions « and [ are nonempty (since otherwise, is fairly obvious). The
composition « is a composition of p. Thus, p > 0 (since « is nonempty). Similarly,

q > 0.

Hence, [a, ] is a composition of p + ¢ satisfying D ([o, 8]) = D (a) U {p} U

29 Proof of : Let o be a composition. Let n = |«|. Thus, « is a composition of n. Hence, w («)
is a composition of n as well. Also, rev « is a composition of n. Now, the definition of p (rev ) shows
that p (rev ) is the unique composition 8 of n which satisfies D (8) = {1,2,...,n— 1} \ D (reva).
Hence, p (rev ) is a composition of n and satisfies D (p (reva)) = {1,2,...,n— 1} \ D (rev a).

On the other hand, w () is the unique composition 8 of n which satisfies D () = {1,2,...,n — 1}
D (reva) (by the definition of w («)). Thus, w («) is a composition of n and satisfies D (w («)) =
{1,2,...,n =1} \ D (reva).

Hence,

D(p(reva)) ={1,2,...,n—1}\ D (reva) = D (w (@) .

Applying (2.32) to v1 = p (reva) and 72 = w (a), we therefore obtain p (reva) = w (o). Qed.
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(D (5) + p) (by Lemma (b)). The definition of p ([«, 5]) thus yields

D(p(le, ) ={1,2,....p+q—1}\ D (o, ])

=D(a)U{p}U(D(B)+p)

={L2,....p+q—\({p}UD () U(D(B)+Dp)). (2.37)

Applying toy = a, we obtain |p (a)| = |a| = p. Thus, p («) is a composition
of p. Similarly, p (f) is a composition of ¢. Thus, Lemma (a) (applied to p ()
and p(f) instead of a and () shows that p(a) ® p(f) is a composition of p + ¢
satistying D (p (@) © p(8)) = D (p(a)) U (D (p(8)) +p). Also, applying (2.33) to
v = [a, B], we obtain |p ([a, B])| = |[ev, B]| = p + ¢ (since [a, 8] is a composition of
p+ q). In other words, p ([, 5]) is a composition of p + q.

But the definition of p («) shows that D (p («)) = {1,2,...,p— 1} \ D («). Also,
the definition of p (/) shows that D (p(8)) ={1,2,...,q— 1} \ D (). Hence,

D(p®) +p={12....¢ =13\ D)) +p
——
={1,2,...,¢—1}\D(B)

={L2,....,q=1} +p)\ (D (B) +p)

(& S
-~

={p+1,p+2,....p+q—1}

={p+1,p+2,....p+q—13\(D(B)+p).

Also, D (B) € {1,2,...,q — 1}, so that
DB)+pC{l,2,....q—1}+p={p+1L,p+2,....p+q—1}.

Now, it is well-known that if X, Y, X’ and Y’ are four sets such that X’ C X,
Y'CY and X NY = @, then

(X\X)U[\Y) =(XUY)\ (X' UY. (2.38)
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Now,

D(p(a)®p(B))
= D(p() U  (D(p(B)+Dp)
——

J

-

={1,2,....,p—1\D(a) ={p+1,p+2,....p+q—1}\(D(B)+p)

={1,2,....p—1}uU{p+1,p+2,...,p+q—1})

- ~

(1.2, prq—11\{p}

\ (D () U(D(B) +p))
by ([2.38), applied to X = {1,2,...,p— 1},
Y={p+1Lp+2,....0+q—1}, X' =D (a) and Y =D (p) + p

={1L,2,...,p+q—=1}\{p}) \ (D () U(D(B) +p))
={1,2,...,p+q—=1}\({p}UD(a) U (D (B) +p))

N S

—D()U{p}U(D(B)+7)
={1,2,...,p+q—1}\({p}UD(a) U(D(B) +p))
=D (p([a, B])) (by 2.37).

Thus, (applied ton =p+¢q, 1 = p(a) ©® p(B) and v = p ([, 5])) shows that
p(a) ®p(B) = p(la,B]). This proves (2.36).

(a) Let o and § be two compositions. Then, (2.35)) yields w (a) = p (rev ). Also,
(2.35)) (applied to £ instead of «) yields w () = p (rev j3).

From ([2.35)) (applied to [a, (] instead of «), we obtain

w ([o, B]) = p | rev ([, B]) | = p([rev B,rev a])
N——

=[rev B,rev a]
(by (2.30))

= p(rev 5) O p(rev o)
—w(8) (@)

=w(f)Ow(a).

( by (2.36]), applied to rev g )

and rev « instead of o and [
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This proves Proposition (a).

(c) First of all, it is clear that

rev (revy) = vy for every composition 7. (2.39)

Furthermore,

plp(v) =7 for every composition (2.40)

9

On the other hand, if GG is a set of integers and r is an integer, then we let r — G
denote the set {r — g | g € G} of integers. Then, for any n € N and any composition

~ of n, we have

D (revy) =n— D (y) (2.41)

E1

30 Proof of : Let v be a composition. Let n = |y|. Thus, v is a composition of
n. The definition of p(v) shows that p(y) is the unique composition S of n which satisfies
D(B) = {1,2,...,n—1} \ D(y). Thus, p(v) is a composition of n and satisfies D (p(v)) =
{172,771*1}\D(’)/)

Therefore, the definition of p (p(y)) shows that p(p (7)) is the unique composition 5 of n which
satisfies D (8) = {1,2,...,n—=1} \ D(p(v)). Thus, p(p(v)) is a composition of n and satisfies
D(p(p(v))=11,2,...,n =1} \ D (p(7)). Hence,

Dp(p(v) ={1,2,...,n =13\ D(p())
={1,2,..,n=11\D(v)
={L,2,...,n—1}\({1,2,...,n—1}\ D (7))
=D (y) (since D (y) C{1,2,...,n—1}).

Hence, (2.32) (applied to 1 = p(p (7)) and 2 = ) shows that p(p(v)) = v. This proves (2.40).
31 Proof of : Let n € N. Let v be a composition of n. Thus, v is a composition satisfying

| = n.
Write 7 in the form v = (y1,72,...,7¢). Then, revy = (y¢,v¢-1,...,71) (by the definition of
revy). Also, from v = (v1,72,...,7¢), we obtain |y| = v1 +7y2+ - + ¢, whence y1 +y2+ - -+ =

|v] = n. Hence, every i € {1,2,...,¢ — 1} satisfies
n=y1+y -+ +tyw=Mm+tr+ o +%)+ it vie2 o+ %)

=Yet+ve—1+F+vita
=Mm+tre+-+7)+ et ve-1+ i) (2.42)
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Now,

p(revy) =rev(p (7)) for every composition ~y (2.44)

2

Now, let v be a composition. Then, (2.35) (applied to a = ) yields w (y) =

Also, v = (71,72, --,7¢), so that the definition of D () yields

Dy)={mm+rnt+r+y. ...n+r+ +v}

But revy = (¢, v¢-1,...,71). Hence, the definition of D (rev ) yields

D (vevy) = {ve,%e +ve-1,% + Ve—1 + Ye—2, - -y Ve + Ye—1 + Ye—2 + - + 72}

=Y +v—1+ Ay | 1€{,2,...,0—1}

=n—(v1+y2++7i)
(by (2.42] )

—n—{yit+yt-+v | ie{l,2,....0—1}}

D
(by (2.43))

=n—D(").

This proves ([2.41]).
32 Proof of : Let v be a composition. Let n = |y|. Thus, + is a composition of n.

Now, (applied to rev v instead of ) yields |p (revy)| = [rev 4| = |y| (by (2:29)). Also,
(applied 250} mstend of 2) ekl e (p (O] 1o (| o] by D). N o) 2
n, [revy| = |yl =mn, [p(y)] = |7[ =n and [rev (p (7)) = |7| = n. Hence, all of p (revy), revy, p(7)
and rev (p (y)) are compositions of n.

Applying to rev -y instead of 7, we obtain

D(p(revy)) ={1,2,...,n—1}\ D (rev~y)

=n—{1,2,..n-1}  =n—D(3)
(by (241))

=(n—-{12,....,n—1})\ (n— D))
=n—({1,2,....n—1}\D(v))

=D(p(v))
(by (2:34))

=n—D(p(7)).

Comparing this with

D (rev(p(v))) =n—D(p(7)) (by (2.41), applied to p (v) instead of 7),

we obtain D (p(revy)) = D(rev(p(y))). Hence, (2.32) (applied to 71 = p(revy) and o =
rev (p (7)) yields p (revy) =rev (p(vy)). This proves ([2.44]).
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p(revy) =rev (p (7)) (by (2.44)). But (2.35) (applied to a = w (7)) yields

ww) =p|rev | wi) || =0 reviev (o))
‘J A ~~ "y
=rev(p(v)) =p(7)

(by (2:39), applied to
p() instead of ~)

=plp(y) =7 (by ([2.40) .

This proves Proposition (c).
(b) Let a and § be two compositions. Then, Proposition (a) (applied to
w (B) and w («) instead of o and () yields

=a =p
(by Prop9s1t10n (c), (by Proposition (c),
applied to y=c) applied to y=p

=a®p.

Hence, a ® f = w ([w(B),w (a)]). Applying the map w to both sides of this equality,

we conclude that
w(@of)=ww(wB),w(@)]))=[wB),w()]

(by Proposition (c), applied to v = [w () ,w («)]). This proves Proposition
(b). a

The notion of w («) gives rise to a simple formula for the antipode S of the Hopf

algebra QSym in terms of its fundamental basis:
I Proposition 2.5.3. Let a be a composition. Then, S (F,) = (—1)! Foa)-

This is proven in [GriReild, Proposition 5.23].

We now state the main result of this note:
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Theorem 2.5.4. Let f € QSym and let m be a positive integer. For any two
compositions a and [, define a composition @ ®  as in Proposition [2.3.8] Then,

hin < f= Y (1) Fag(m) R f-

acComp

(Here, the sum on the right hand side converges, because all but finitely many

compositions « satisfy Rj;_(a) f =0 for degree reasons.)

The proof is based on the following simple lemma:

Lemma 2.5.5. Let a € QSym and f € QSym. Then,

> (-)NF, b a)RE L f=a=

aeComp

Proof of Lemma[2.5.5 The basis (Fi),ccomp Of Q@Sym and the basis (Ra),ccomp Of
NSym are dual bases. Thus,
Z F,(Ra,9) =g for every g € QSym. (2.45)

acComp

Let us use Sweedler’s notation. The map Comp — Comp, « — w («) is a bijection

(since w (w () = « for any composition «). Hence, we can substitute w («) for «v in
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the sum >0 (=1)*(F, ¢ a) Rof(a)f. We thus obtain

acComp

Z (—1>|a| (Fo ¢ a) RuL)(a)f

acComp
= > (O (Fuw ®a)  Riww) f

acComp B _1)‘04 :RVJ'

(since |w(a)|=|al]) (since w(w(ga))za)

= > (1) (Fua ®a) Rif

a€Comp

=(Zf)(Ravf<1>)f(2>
(by (2:28))

= > D(Faw ¢ a) Y (Ba fi) fo

aeComp f)
= Z > D (Faw ¢ a) (Ras f) feo

) acComp

= > (D)) (Raifw) | ¢ a| fo
0 —

aceCom
P =S(F.)
(by Proposition [2.5.3)

:Z( > S(F.) (R, fa ))m)m

(f) acComp

SI Y. Fa(Rafw) | ¢a|fe=>_(S(w) ®a)fey=a<f

(f) a€Comp (f)

=fu)
(by (2.43), applied to g=f(1))

(by Theorem [2.3.7 applied to b = f). This proves Lemma [2.5.5

Proof of Theorem[2.5.4] We have

Z (_1)‘04 Fa@(m) Ri(a)f

aceComp

:Fa ¢ h7n
(by @179)
= > (—DNE b)) RE G f =hn < f
a€eComp

124



(by Lemma applied to a = h,,). This proves Theorem [2.5.4] O

As a consequence, we obtain the following result, conjectured by Mike Zabrocki

(private correspondence):

Corollary 2.5.6. For every positive integer m, define a k-linear operator W, :
QSym — QSym by
— |ov| 1
W, = Z (_1) Fa@(m)Rw(a)

aceComp
(where Foo(m) means left multiplication by F,gm)). Then, every composition

a = (a1, s, ..., q) satisfies

Proof of Corollary[2.5.6. For every positive integer m and every f € QSym, we have

W,.f= Z (—1)'0‘| Fa@(m)Ri(a)f =hn,<f (by Theorem [2.5.4]) .
aeComp
Hence, by induction, for every composition oo = (aq, ag, ..., ay), we have

Wa, (Wa, (- (Wa, (1)) = hay < (hay < (- < (ha, < 1)) = &

o

(by Corollary [2.4.7)). In other words,

S, :Wa1 (Waz ("'(Woée (1)))) = (qu OWaQ O"'OWW) (1)

[0}

This proves Corollary [2.5.6] O

Let us finish this section with two curiosities: two analogues of Theorem [2.5.4]
one of which can be viewed as an “m = 0 version” and the other as a “negative m

version”. We begin with the “m = 0 one”, as it is the easier one to state:
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Proposition 2.5.7. Let f € QSym. Then,

e(f) = Z (—1)|Q‘FaR$(a)f-

a€eComp

Proof of Proposition[2.5.7. Let us use Sweedler’s notation. The map
Comp — Comp, o +— w (a)

is a bijection (since w (w (a)) = a for any composition «). Hence, we can substitute

w () for o in the sum

Z ( )‘04 F Rw(a)-f We thus Obtain

aeComp

Z (_1)‘06| FaRi(a)f

aeComp
= Z (_1)|w(a)| Fio(a) Ri;_ (w(a)) f= Z (_1)‘04 Fiy(a) R(Jx_f

aceComp — aceComp —

o] = —
=(-1) =Rt =S(Fa) 7Z(Ra7f(1))f(2)
(since |w(a)|=|al) (since w(w(a))=c) (by PI‘OpOblthn ()
(by (2.28)
Z S(Fa)z Ra, f)) fio) = Z ZS ) (Ra f1) f2)
acComp N acComp (f)

:Z< Z S (Fo) (Ra’f(l))> f(2):ZS Z Fo (Ra, f) | f»

f) acComp

=f)
(by (2.45), applied to g=f(1))

(f)

(by one of the defining properties of the antipode). This proves Proposition [2.5.7]

The “negative m” analogue is less obvious{|

33Proposition [2.5.8| does not literally 1nvolve a negative m, but it involves an element Fy "™ which
can be viewed as somethlng like Flayo(—m)™
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Proposition 2.5.8. Let f € QSym and let m be a positive integer. For any

composition o = (aq, g, . .., ap), we define an element FN™ of QSym as follows:
° IfﬁzOora4<m,thenF§m:0.
e If ay = m, then ™ — Flay a0 1).
e If oy > m, then Fo\ém = Flay,an,.ar_1,00-m)-

(Here, any equality or inequality in which ay, is mentioned is understood to

include the statement that ¢ > 0.)

Then,
=)™ Y (D) EY R f =€ (Rim ) -
aceComp
Here, (1™) denotes the composition | 1,1,...,1
—_———

m times

Proof of Proposition[2.5.8. Let us first make some auxiliary observations.
Any two elements a and b of NSym satisfy

(ab)" = bt oat (2.46)

E1

For every two compositions o and 3, we define a composition [a, 8] by [«, 5] =

34 Proof of : Let a and b be two elements of NSym. Let ¢ € QSym. Then,

(ab)J‘ c= Z (ab, c(1y) c(2) (by (2.28), applied to g = ab and f = ¢)

(o) -5 (a,(c(n)(l))(b’(c<1))(2)>
(cu))

(by (2.26), applied to c(1) instead of c)

=X Z (@ () o)) (b (c0) ) e = 22 D (aeqw) (5 (ee) o)) ()

© (ey) (©) (ee))
since the coassociativity of A yields
% (Z) (cw) ) ® (c) ) ® e = Z (Z) M ® (¢@) 1) © (@) ¢
¢ (e (©) (cez)

=> (o) Y (b’ (0(2))(1)) (@) )

(¢) (c2))
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(o1, o, ..., P, B2, ..., Bm), where a and [ are written as o = (v, ag, ..., ay) and
B = (Bi1,B2,--.,Bm). We further define a composition a ® 3 as in Proposition [2.3.8|

Then, every two nonempty compositions a and [ satisfy
RoRg = Rjq 5 + Racp- (2.47)
(This is part of [GriReil5, Theorem 5.42(c)|.) Now it is easy to see that
Ro(laym)) T Bu(aom) = Ram)Ru() (2.48)

for every nonempty composition «a ﬂ Hence, for every nonempty composition «,

Compared with

(b-oa™) (c) =0 ¢ =b" (Z (@ c1)) C(z))

:g(a@u))C(z) ©
(by -, applied to g=a and f=c)
Z a, ¢ 1) bt (0(2)) (since the map bt is k-linear)
——

©
=X (b’(c(z))(i))(c(Q))(2)
(e
(by , applied to g=b and f=c(s))

= Z) (a, C(l)) Z (b7 (C(Z))(l)) (6(2))(2) ’
(c

€(2)

this yields (ab)" ¢ = (bt oat) (c).
Now, let us forget that we fixed ¢. We thus have shown that (ab)" ¢ = (bt oat) (c) for every
¢ € QSym. In other words, (ab)™ = bt o at. This proves
35 Proof of ' Let a be a nonempty composition Proposmon 2| (a) shows that
w (e, B]) = (B) ©® w(a) for every nonempty composition J. Applying this to B = (m), we
obtain w ([a,(m)]) = w((m))Gw(a) = (1™) ® w(a). But Proposition [2.5.2b) shows that
~(im)
w(a®pP) =[w(h),w(a)] for every nonempty composition /5. Applying this to 5 = (m), we obtain

w(@e(m))=|w((m)),w(a)| =[(1™),w(a)]. Now,
———

=(1m)

Rey(ja,(m))) + Ruao(m) = Bu@om)) + Bu(a,m)]) = Biam)w@)] + Bam)ew(a)
(since w (@ ® (m)) = [(1") ,w ()] and w ([ex, (M)]) = (1) O w ()
= Rm)Rua)

(since (2.47) (applied to (1™) and w () instead of @ and 3) shows that Rm)Rua) = Rj(1m).w(a)] +
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we have

L
Room)) + Rotoom) | = (Ram Rue) ™ = R © Biim (2.49)

N /, w(a)

=Ram)Ry(a)

(by (2.46), applied to a = Rim) and b = Ry(q)).

We furthermore notice that w (&) = @ and thus Rf)(@) = RL =id (since Ry = 1).

Now,

[(a1,002,...,000)| \m 1
Z E_]‘) ., F(Clq,ag,.‘.,agl Rw((oq,az,...,ae))l f
(a1,02,...,a¢)€EComp; e ~~ VT
Qp=m :(_1)‘(al,ag,...,agil,mﬂ :F(a ,Q9, ..., oy ):Ri Q.o - m
(since ap=m) (sinlce2ag:7fz)l (((Sirll;;;e"::;;)l’ 2
a1,002,...,00_1,TM 1

= Z S—l)‘( 12 . )J‘F(Oéha%myae—l) \Rw((al,ag,...,ag_l,m)z f

(a1,02,...,a¢0)€Comp; o 7077“7() B m B N

N azjm ) =(~pllero2mar )+ —Ri([(al,ag,.,.,aé,l),<m)])

_ (since (au1,02,...,0—1,m)

(e1,09,.05 ay_q1)EComp :[(al’QQ"“’ae*I)’(m)])
_ (1,02, 00 —1) |+ il
= > (=D B oo, o) Bls(((an,az, a0 1),0m) |

(a1,02,...,a0_1)EComp
_ oo 4+m 1
= D (D) FaRia S

a€Comp

(here, we have substituted « for (ay,as,...,a, 1) in the sum)
_ |&|+m L lal+m iR
=(-1) FoR o, my) S + Z (=1) Fo R o, my) S (2.50)
acComp;

« is nonempty

R(l”)@w(a))- This proves "
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(here, we have split off the addend for « = & from the sum). On the other hand,

_ |(a1,a2,...,o¢5)\ \m L
E ( 1) F(Oq,az,...,ozg) Rw((al,ag,...,ag))f
(a17a27"'7a€)ecomp;
ap>m =Flay.az.0p_1.00-m)
(since ap>m)
_ E [(a1,02,.5000)| L
= <_1) F(m,az,-.-,ae—l7ae—m)Rw((al,a2,~~~,&z))f
(a1,02,...;a0)€Comp;
ap>m
o [(a1,a2,...,00_1,0p+m)|
= E \(—1) F(auaz,---,ae)
—~
(a1,a2,...é§6)600mp, :(_1)|(a1,a2 ,,,,, ap)|[+m
1
:Rw((oel,az,...,aefl,ae+m)l f

v~

=R
w((al,a2 ..... ae)(D(m))
(since (O‘l?aQ?“'?af—l 7aé+m):(a170527"'7042)@(7’”))

here, we have substituted (ay, o, ..., )

for (a1, as,..., 01,0 —m) in the sum

— [(a1,az,....a0)[+m 1
- Z <_1) o ‘ F(Oél70427-~-70¢e)Rw((al,ag,...,ag)(a(m))f
a1,a2,...,ap)EComp;
(0,00 €>6)6 P
— laf+m 1
- Z (_1) FaRw(oc@(m))f (251)
a€eComp;

« is nonempty

(here, we have substituted « for (ay,ag, ..., ) in the sum).
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But

Z (1) Fy" R f

aeComp

_ [(a1,02,.00)] 2\ 1
- Z (_1> n ‘ F(a17a2,.--7ae)R ((a1,02,.. ’5))f

(a1,02,...,a0)EComp

(here, we have renamed the summation index a as (g, as, ..., qp))
_ [(c1,02,...,000))| \m L
- Z (_1) o ‘ F(Oq,ozg,...,ag) Rw((alon ----- al))‘f
(a1,02,...,00)€Comp; v

£=0 or ap<m (since =0 or ay <m)

_ ‘(a17a2: ryes )| \m
+ § ( 1) F(al,ozg, e Rw((alya% 72))f
a1,a2,...,ap)EComp;
(a1 20%25721 p
_(_1\|9l+m € _1)lel+m L
=(=1)'"F"Fa R 14 (o £+ ae%):mp (DT B (o, ()
« is nonemf)ty
(by (2:50))
1\ a1,az,..00)] \m
+ § ( 1) F(al,aQ,, Rw((al,cm ,Oéz))f
(a1,az,...,00) EComp;
ap>m
— S (C)RmRRL
aeComp:; (a®(m))
« is nonempty
by E5T))

_ ‘(a17a27 1S | L
= > (=1) 0F(ar a2, f

(a1,02,...,0) €Comp;
£=0 or ay<m

(&

-~

=0

PR lal+m  pL
+ (—1) FoR o,y + Z (=1) Fo B (o,my

acComp;
« is nonempty

D DR G VR o oy

aceComp;
« is nonempty
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_ ( 1)|®\+m FQRJ_([g m)])f +

2

a€eComp;
« is nonempty

(=)™ FRY

m S

|a)+m
+ Z ( ]') F. Rw(a@(m))f
aeComp;
« is nonempty
_ |2]+m 1L
= (-1 F Rio.m) /
:Rém
(since w([@,(m)])=w((m))=(1"))
|a)+m 1
+ ) D E (Rugam )t Ruaowm)) [
« loséengggnnllji)ty —RL( ORﬁm)
(by ([2-49))
2 am) o\ w(a) (1m g

a€Comp;
:Ri_(z) (Ré‘lm)f) « is nonempty
(since Ri(g):id and thus

Ry (Bifimy £ ) =Riim) £)

( l)lemF@RL(@ (Rle)f) Z

a€eComp;
« is nonempty

> (VT FaRiw) (R f)
aeComp H_):X\

=(-1)"(=1

(0™ > (D EaRy) (R f) -

a€eComp

Multiplying both sides of this equality with (—1)",

0" ST )RR = Y

aeComp aeComp

Comparing this with

e (Riim)f)

aeComp

(_1)‘a|+m FaRi

=R (Bim) f)

(@ (Riim)f)

here, we have incorporated the

a = @ addend into the sum

we obtain

(—D FuR ) (R ) -

> (D ER G (Rl f)

(by Proposition W’ applied to R(Lm) f instead of f), we obtain

(=™ Z (—1)‘04 Fo\szj.)_(a)f =¢e (R(le)f)-

aceComp
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This proves Proposition [2.5.8] O

2.6 Lifts to WQSym and FQSym

We have so far been studying the Hopf algebras Sym, QSym and NSym. These are
merely the tip of an iceberg; dozens of combinatorial Hopf algebras are currently
known, many of which are extensions of these. In this final section, we shall discuss
how (and whether) our operations < and ¢ as well as some similar operations can
be lifted to the bigger Hopf algebras WQSym and FQSym. We shall give no proofs,
as these are not difficult and the whole discussion is tangential to this note.

Let us first define these two Hopf algebras (which are discussed, for example, in
[FoiMal14]).

We start with WQSym. (Our definition of WQSym follows the papers of the
Marne-la-Vallée school, such as [AFNTI13] Section 5.1]@]; it will differ from that in
[FoiMal14], but we will explain why it is equivalent.)

Let X1, X5, X3,... be countably many distinct symbols. These symbols will be
called letters. We define a word to be an (-tuple of elements of {X;, X5, X3,...}
for some ¢ € N. Thus, for example, (X3, X5, X5) and (Xg) are words. We denote
the empty word () by 1, and we often identify the one-letter word (X;) with the
X; ,X;,) and v =

symbol X; for every ¢ > 0. For any two words u = (X,

19 29 e

(Xj,, X,,, .-, Xj,.), we define the concatenation uv as the word
(X, Xy, oo, X, X5y, X,y o, X, ). Concatenation is an associative operation and

the empty word 1 is a neutral element for it; thus, the words form a monoid. We let
Wrd denote this monoid. This monoid is the free monoid on the set { X, X, X3,...}.
Concatenation allows us to rewrite any word (X;,, X;,,...,X;,) in the shorter form
Xi, Xy X,

Notice that Mon (the set of all monomials) is also a monoid under multiplication.
We can thus define a monoid homomorphism 7 : Wrd — Mon by 7 (X;) = x; for all

i€ {1,2,3,...}. This homomorphism 7 is surjective.

36where WQSym is denoted by WQSym
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We define k ((X)) to be the k-module k"'; its elements are all families (Ay) cya €
kW4, We define a multiplication on k ((X)) by

()\w)wGWrd ’ (Mw)wGWrd = Z )‘u,uv . (252>

2, 0
(u,0)€EWrd?; uv=w weWrd

This makes k ((X)) into a k-algebra, with unity (d,,1) This k-algebra is called

weWrd"

the k-algebra of noncommutative power series in X1, Xo, X3,.... For every u € Wrd,
we identify the word u with the element (duwu),cweq OF K ((X)) E] The k-algebra
k ((X)) becomes a topological k-algebra via the product topology (recalling that

k ((X)) = k™4 as sets). Thus, every element (\,) 4 of k ((X)) can be rewritten

wEWr

in the form > A,w. This turns the equality (2.52)) into a distributive law (for
weWrd
infinite sums), and explains why we refer to elements of k ((X)) as “noncommutative

power series”. We think of words as noncommutative analogues of monomials.

The degree of a word w will mean its length (i.e., the integer n for which w is an
n-tuple). Let k ((X)), 44 denote the k-subalgebra of k ((X)) formed by the bounded-
degree moncommutative power series>| in k ((X)). The surjective monoid homomor-
phism 7 : Wrd — Mon canonically gives rise to surjective k-algebra homomorphisms
k ((X)) = k[[z1, 22, 23,...]] and k ((X)), 44 — kllz1, 22, 23, .. .]],qq, Which we also
denote by m. Notice that the k-algebra k ((X)), 44 i denoted R (X) in |[GriReil5,
Section 8.1].

If w is a word, then we denote by Supp w the subset
{i €{1,2,3,...} | the symbol X; is an entry of w}

of {1,2,3,...}. Notice that Supp w = Supp (7 (w)) is a finite set.

A word w is said to be packed if there exists an ¢ € N such that Suppw =
{1,2,...,0}.

#"This identification is harmless, since the map Wrd — k ((X)), u — (6w,u),ceq 1S @ monoid
homomorphism from Wrd to (k ((X)),-). (However, it fails to be injective if k = 0.)

3 A noncommutative power series (M), ew € K ((X)) is said to be bounded-degree if there is an
N € N such that every word w of length > N satisfies A\, = 0.
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For each word w, we define a packed word pack w as follows: Replace the smallest
letteﬂ that appears in w by X, the second-smallest letter by X5, etc..@ This word
packw is called the packing of w. For example, pack (X3X;XsX7) = Xo X7 X3X;.

For every packed word u, we define an element M, of k ((X)), 4 by

M, = Z w.

weWrd;
pack w=u

(This element M, is denoted P, in [AFNT13| Section 5.1].) We denote by WQSym
the k-submodule of k ((X)), ;4 spanned by the M,, for all packed words w. It is known
that WQSym is a k-subalgebra of k ((X)), ;4 which can furthermore be endowed with
a Hopf algebra structure (the so-called Hopf algebra of word quasisymmetric func-
tions) such that 7 restricts to a Hopf algebra surjection WQSym — QSym. Notice
that m (M.,) = Mparikh(r(u)) for every packed word u, where the Parikh composition

Parikh m of any monomial m is defined as in the proof of Proposition [2.3.5]

The elements M, with u ranging over all packed words form a basis of the k-
module WQSym, which is usually called the monomial basis@. Furthermore, the

product of two such elements can be computed by the well-known formula@

M, M, = > M., (2.53)

w is a packed word;
pack(w[:{])=u; pack(w[l:])=v

where £ is the length of u, and where we use the notation w [: ] for the word formed
by the first ¢ letters of w and we use the notation w [ :] for the word formed by
the remaining letters of w. This equality (which should be considered a noncom-

mutative analogue of (2.7), and can be proven similarly) makes it possible to give

39We use the total ordering on the set {X;, Xo, X3,...} given by X; < Xo < X3 < ---.
40Here is a more pedantic way to restate this definition: Write w as (X;,, Xi,,...,X;,), and let
I = Suppw (so that I = {iy,42,...,4¢}). Let 71 be the unique increasing bijection {1,2,...,|I|} — I.

Then, packw denotes the word (X 1, X s X 1. )
Tr (7'1) Tr (W)

i)

41Sometimes it is parametrized not by packed words but instead by set compositions (i.e., ordered
set partitions) of sets of the form {1,2,...,n} with n € N. But the packed words of length n are in a
1-to-1 correspondence with set compositions of {1,2,...,n}, so this is merely a matter of relabelling.

42This formula appears in [MeNoThI1, Proposition 4.1].
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an alternative definition of WQSym, by defining WQSym as the free k-module with
basis (M), is a packed wora a0d defining multiplication using . This is precisely
the approach taken in [FoiMall4l, Section 1.1].

The Hopf algebra WQSym has also appeared under the name NCQSym (“qua-
sisymmetric functions in noncommuting variables”) in [BerZab05, Section 5.2| and
other sources.

We now define five binary operations <, o, >, ¢, and X on k ((X)).

Definition 2.6.1. (a) We define a binary operation < : k ((X)) x k ((X)) —
k ((X)) (written in infix notation) by the requirements that it be k-bilinear and
continuous with respect to the topology on k ((X)) and that it satisfy

uv, if min (Suppu) < min (Suppv);

U =<0 =
0, if min (Supp ) > min (Supp v)

for any two words u and v.

(b) We define a binary operation o : k ((X)) x k {((X)) — k ((X)) (written
in infix notation) by the requirements that it be k-bilinear and continuous with
respect to the topology on k ((X)) and that it satisfy

uv, if min (Supp u) = min (Suppv);

uov =
0, if min (Supp u) # min (Supp v)

for any two words u and v.

(c) We define a binary operation > : k ((X)) x k ((X)) — k((X)) (written
in infix notation) by the requirements that it be k-bilinear and continuous with
respect to the topology on k ((X)) and that it satisfy

uv, if min (Suppu) > min (Suppv);

U v =
0, if min (Suppu) < min (Supp v)

for any two words u and v.

(d) We define a binary operation ¢ : k ((X)) x k ((X)) — k ((X)) (written
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in infix notation) by the requirements that it be k-bilinear and continuous with
respect to the topology on k ((X)) and that it satisfy
uv, if max (Suppu) < min (Suppv);

udv=
0, if max (Supp u) > min (Suppv)

for any two words u and v.

(e) We define a binary operation X : k ((X)) x k ((X)) — k ((X)) (written
in infix notation) by the requirements that it be k-bilinear and continuous with
respect to the topology on k ((X)) and that it satisfy

uv, if max (Supp u) < min (Suppv);

uXv=
0, if max (Supp u) > min (Supp v)

for any two words u and v.

The first three of these five operations are closely related to those defined by
Novelli and Thibon in [NovThi05al; the main difference is the use of minima instead
of maxima in our definitions.

The operations <, ¢ and X on WQSym lift the operations <, ¢ and X on
QSym. More precisely, any a € k ((X)) and b € k ((X)) satisfy

m(a)<7m(b)=7(a<b)=m(b>a);
m(a) ¢ (b)) =m(adb);
m(a) X7 (b) =7 (a Xb)

(and similar formulas would hold for o and > had we bothered to define such opera-
tions on QSym). Also, using the operation > defined in Remark [2.3.2] we have
m(a)=7m(b)=m(a>b+aob) for any a € k ((X)) and b € k ((X)).

We now have the following analogue of Proposition [2.3.5}
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Proposition 2.6.2. Every a € WQSym and b € WQSym satisfy a < b € WQSym,
aobe WQSym, a > b€ WQSym, a $ b € WQSym and a X b € WQSym.

The proof of Proposition is easier than that of Proposition [2.3.5; we omit it
here. In analogy to Remark and to (2.53)), let us give explicit formulas for these

five operations on the basis (M,,) 4 of WQSym:

u is a packed wor

Remark 2.6.3. Let v and v be two packed words. Let ¢ be the length of u. Then:
(a) We have

M, <M, = Z M,,.

w is a packed word;
pack(w[:£])=u; pack(w[¢:])=wv;
min(Supp(w[:¢]))<min(Supp(w[¢:]))

(b) We have

M, o M, = Z M,,.

w is a packed word;
pack(w[:£])=u; pack(w[¢:])=wv;
min(Supp(w[:4])) ~min(Supp(w[£:]))

(c) We have

M, - M, = Z M,,.

w is a packed word;
pack(w[:4])=u; pack(w[¢:])=wv;
min(Supp(w|:£]))>min(Supp(w[£:]))

(d) We have

M, ¢ M, = Z M,,.

w is a packed word;
pack(w[:£])=u; pack(w[¢:])=v;
max(Supp(w[:£])) <min(Supp(w[£:]))

The sum on the right hand side consists of two addends (unless u or v is empty),

namely M, +n-1 and M,,+», where h = max (Suppu), and where v/ denotes the

word obtained by replacing every letter X in v by Xj, ;.
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(e) We have

M, X M, = > M,,.
w is a packed word;
pack(w[:£])=u; pack(w[¢:])=v;
max(Supp(w[:f]))<min(Supp(w([¢:]))

The sum on the right hand side consists of one addend only, namely M,,,+x.

Let us now move on to the combinatorial Hopf algebra FQSym, which is known as
the Malvenuto-Reutenauer Hopf algebra or the Hopf algebra of free quasi-symmetric
functions. We shall define it as a Hopf subalgebra of WQSym. This is not identical
to the definition in [GriReil5l Section 8.1], but equivalent to it.

For every n € N, we let &,, be the symmetric group on the set {1,2,...,n}. (This
notation is identical with that in [GriReil5|. It has nothing to do with the &, from
[BBSSZ13al.) We let & denote the disjoint union | |, .y &,. We identify permutations
in & with certain words — namely, every permutation 7 € & is identified with the
word (Xﬂ(l), Xr@)s s X,r(n)), where n is such that 7 € G,,. The words thus identified
with permutations in & are precisely the packed words which do not have repeated
elements.

For every word w, we define a word stdw € & as follows: Write w in the
form (X;,, Xiy, ..., X;,). Then, stdw shall be the unique permutation = € &,, such
that, whenever u and v are two elements of {1,2,...,n} satisfying u < v, we have
(m (u) < w(v) if and only if 7, <14,). Equivalently (and less formally), stdw is the
word which is obtained by

e replacing the leftmost smallest letter of w by X7, and marking it as “processed”;

e then replacing the leftmost smallest letter of w that is not yet processed by X5,

and marking it as “processed”;

e then replacing the leftmost smallest letter of w that is not yet processed by X3,

and marking it as “processed”;

e ctc., until all letters of w are processed.
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For instance, std (X3X5XoX3X0X3) = X3XX1 X4 XoX5 (which, regarded as per-
mutation, is the permutation written in one-line notation as (3,6, 1,4, 2,5)).
We call std w the standardization of w.

Now, for every o € &, we define an element G, € WQSym by

G, = Z M, = Zw.

w is a packed word; weWrd;
std w=o std w=o

(The second equality sign can easily be checked.) Then, the k-submodule of WQSym

spanned by (G,),cs turns out to be a Hopf subalgebra, with basis (G,),.s- This
Hopf subalgebra is denoted by FQSym. This definition is not identical with the one
given in |GriReild, Section 8.1]; however, it gives an isomorphic Hopf algebra, as our
G, correspond to the images of the G, introduced in |GriReild, Section 8.1| under
the embedding FQSym — R ({X;},;) also defined therein.

Only two of the five operations <, o, =, ¢, and X defined in Definition [2.6.1]

can be restricted to binary operations on FQSym:

Proposition 2.6.4. Every a € FQSym and b € FQSym satisfy a = b € FQSym
and a ¢ b € FQSym.

Moreover, we have the following explicit formulas on the basis (G,), s

Remark 2.6.5. Let 0 € G and 7 € S. Let ¢ be the length of o (so that o € &,).
(a) We have

G, -G, = Z G..

TEGS;
std(w[:4])=0o; std(w[:])=T;
min(Supp(w[:£]))>min(Supp(7[¢:]))

(b) We have

G, ¢ G, = g Gr.
TES;
std(w[:4])=c; std(w[t:])=T;
max(Supp(r[:£])) <min(Supp(7[¢:]))
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I The sum on the right hand side consists of one addend only, namely G, 1.

The statements of Remark [2.6.5 can be ecasily derived from Remark [2.6.3] The

proof for (a) rests on the following simple observations:

e Every word w satisfies std (packw) = std w.

e Every n € N, every word w of length n and every ¢ € {0,1,...,n} satisfy

std ((stdw) [: £]) = std (w [: £]) and std ((stdw) [¢:]) = std (w [€ :]) .

e Every n € N, every word w of length n and every ¢ € {0,1,...,n} satisfy the

equivalence

(min (Supp (w [: £])) > min (Supp (w [¢ :])))
<= (min (Supp ((stdw) [: £])) > min (Supp ((stdw) [¢ :]))).

The third of these three observations would fail if the greater sign were to be
replaced by a smaller sign; this is essentially why FQSym C WQSym is not closed
under <.

The operation > on FQSym defined above is closely related to the operation >
on FQSym introduced by Foissy in [Foissy07, Section 4.2]. Indeed, the latter differs

from the former in the use of max instead of min.

2.7 Epilogue

We have introduced five binary operations <, o, >, ¢ and X on k[[x1, z9, z3, .. ]]
and their restrictions to QSym; we have further introduced five analogous operations
on k ((X)) and their restrictions to WQSym (as well as the restrictions of two of
them to FQSym). We have used these operations (specifically, < and ¢) to prove a
formula (Corollary for the dual immaculate functions &Y. Along the way, we

have found that the &, can be obtained by repeated application of the operation <
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(Corollary [2.4.7). A similar (but much more obvious) result can be obtained for the
fundamental quasisymmetric functions: For every a = (o, as,...,ap) € Comp, we
have

Fo=hay X hay X+ X ha, X 1

(we do not use parentheses here, since X is associative). This shows that the k-algebra

(QSym, X) is free. Moreover,
Fo)y=¢€aq, $eq, , - dey &1,

where e,, stands for the m-th elementary symmetric function; thus, the k-algebra
(QSym, ¢) is also free[” (Incidentally, this shows that S (a X b) = S (b) ¢ S (a) for
any a,b € QSym. But this does not hold for a,b € WQSym.)

One might wonder what “functions” can be similarly constructed using the op-
erations <, o, =, ¢, and X in WQSym, using the noncommutative analogues
H, = Y, Xy X, Xi, = Gug,.m and E, = oo XX, X, =

i1 <ig <o i i1>i9> - >im
G(nm—1,..,1) of hy, and e,,. (These analogues actually live in NSym, where NSym is
embedded into FQSym as in |GriReil5, Corollary 8.14]; but the operations do not
preserve NSym, and only two of them preserve FQSym.) However, it seems somewhat
tricky to ask the right questions here; for instance, the k-linear span of the >-closure
of {H,, | m >0} is not a k-subalgebra of FQSym (since HyH; is not a k-linear

combination of Hg, Hl — (Hl - Hl); (Hl - Hl) >~ Hl, Hl - H2 and HQ >~ Hl)

On the other hand, one might also try to write down the set of identities satisfied by
the operations -, <, o, >, ¢ and X on the various spaces (k [[x1, z2, z3,...]], QSym,
k ((X)), WQSym and FQSym), or by subsets of these operations; these identities
could then be used to define new operads, i.e., algebraic structures comprising a k-
module and some operations on it that imitate (some of) the operations -, <, o, =,

¢ and X. For instance, apart from being associative, the operations ¢ and X on

43We owe these two observations to the referee.
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k ((X)) satisfy the identity
(@db)Xc+(aXb)dc=adbXc)+aX (P (2.54)
for all a,b,c € k ((X)). This follows from the (easily verified) identities

(@db)Xc—ad(bXc)=c(b)(aXc—adc);
(@aXb)dc—aX(bdc)=cb)(adc—aXc),

where ¢ : k ((X)) — k is the map which sends every noncommutative power series
to its constant term. The equality (along with the associativity of ¢ and X)
makes (k ((X)), ¢ , X) into what is called an As®-algebra (see [ZinbielQ, p. 39]). Is
QSym or WQSym a free As‘?-algebra? What if we add the existence of a common

neutral element for the operations ¢ and X to the axioms of this operad?
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Chapter 3

The Bernstein homomorphism via

Aguiar-Bergeron-Sottile universality

Abstract

If H is a commutative connected graded Hopf algebra over a commutative ring k,
then a certain canonical k-algebra homomorphism H — H ® QSym,, is defined, where
QSym,; denotes the Hopf algebra of quasisymmetric functions. This homomorphism
generalizes the “internal comultiplication” on QSym,, and extends what Hazewinkel
(in §18.24 of his “Witt vectors”) calls the Bernstein homomorphism.

We construct this homomorphism with the help of the universal property of
QSym,. as a combinatorial Hopf algebra (a well-known result by Aguiar, Bergeron
and Sottile) and extension of scalars (the commutativity of H allows us to consider,
for example, H ® QSym, as an H-Hopf algebra, and this change of viewpoint signif-
icantly extends the reach of the universal property).

kkk

One of the most important aspects of QSym (the Hopf algebra of quasisymmetric
functions) is a universal property discovered by Aguiar, Bergeron and Sottile in 2003
[ABS03|; among other applications, it gives a unifying framework for various qua-
sisymmetric and symmetric functions constructed from combinatorial objects (e.g.,
the chromatic symmetric function of a graph).

On the other hand, let Ay be the Hopf algebra of symmetric functions over a
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commutative ring k. If H is any commutative cocommutative connected graded
k-Hopf algebra, then a certain k-algebra homomorphism H — H ® Ay (not a Hopf
algebra homomorphism!) was defined by Joseph N. Bernstein, and used by Zelevinsky
in [Zelevi81l, §5.2] to classify PSH-algebras. In [Haz08, §18.24|, Hazewinkel observed
that this homomorphism generalizes the second comultiplication of Ay, and asked for

“more study” and a better understanding of this homomorphism.

In this note, I shall define an extended version of this homomorphism: a k-algebra
homomorphism H — H ® QSym, for any commutative (but not necessarily cocom-
mutative) connected graded k-Hopf algebra H. This homomorphism, which I will call
the Bernstein homomorphism, will generalize the second comultiplication of QSym,,
or rather its variant with the two tensorands flipped. When H is cocommutative,
this homomorphism has its image contained in H ® Ay and thus becomes Bernstein’s

original homomorphism.

The Bernstein homomorphism H — H ® QSym, is not fully new (although I
have not seen it appear explicitly in the literature). Its dual version is a coalgebra
homomorphism H’ ® NSym, — H’, where H’' is a cocommutative connected graded
Hopf algebra; i.e., it is an action of NSym, on any such H’. This action is implicit in
the work of Patras and Reutenauer on descent algebras, and a variant of it for Hopf
monoids instead of Hopf algebras appears in [Aguiarl3, Propositions 84 and 88, and
especially the Remark after Proposition 88]. What I believe to be new in this note
is the way I will construct the Bernstein homomorphism: as a consequence of the
Aguiar-Bergeron-Sottile universal property of QSym, but applied not to the k-Hopf
algebra QSym, but to the H-Hopf algebra QSym ;. The commutativity of H is being
used here to deploy H as the base ring.
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3.1 Definitions and conventions

For the rest of this note, we fix a commutative ringf] k. All tensor signs (®) without
a subscript will mean ®y. We shall use the notions of k-algebras, k-coalgebras and
k-Hopf algebras as defined (e.g.) in |GriReild, Chapter 1]. We shall also use the
notions of graded k-algebras, graded k-coalgebras and graded k-Hopf algebras as
defined in |GriReil5l, Chapter 1|; in particular, we shall not use the topologists’ sign
conventiong? The comultiplication and the counit of a k-coalgebra C will be denoted
by A¢ and e, respectively; when the C' is unambiguously clear from the context, we
will omit it from the notation (so we will just write A and ¢).

If V and W are two k-modules, then we let 7,y be the k-linear map V@ W —
WV, v®@wr— w®wv. This k-linear map 7y is called the twist map, and is a
k-module isomorphism.

The next two definitions are taken from [GriReil5) §1.4[}

Definition 3.1.1. Let A be a k-algebra. Let m 4 denote the k-linear map A® A —
A, a®b+ ab. Let us denote the k-linear map k — A, A — A - 14. (The maps
m4 and u 4 are often denoted by m and u when A is unambiguously clear from the

context.) For any k € N, we define a k-linear map m®*=1 : A%* — A recursively

D =y, m9 =idy and

as follows: We set m(

m* = mo (idA ®m(k’1)) for every k > 1.

The maps m®*=Y : A®% — A are called the iterated multiplication maps of A.

Notice that for every k € N, the map m®*~ is the k-linear map A®* — A

which sends every a; ® as ® - - - ® a € A®* to ajas - - - ay.

!The word “ring” always means “associative ring with 17 in this note. Furthermore, a k-algebra
(when k is a commutative ring) means a k-module A equipped with a ring structure such that the
multiplication map A x A — A is k-bilinear.

2Thus, the twist map V@ V — V @ V for a graded k-module V sends v ® w + w ® v, even if v
and w are homogeneous of odd degree.

3The objects we are defining are classical and standard; however, the notation we are using for
them is not. For example, what we call A*~1 in Definition is denoted by Aj_; in [Sweed69],
and is called A®) in [Fresseld) §7.1].
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Definition 3.1.2. Let C be a k-coalgebra. For any k € N, we define a k-linear

map AF=D . C — C®F recursively as follows: We set A = ¢4, A® =ids and

AP = (idc ®A('€_1)) oA for every k > 1.

The maps A*=1 . ¢ — C% are called the iterated comultiplication maps of C.

A composition shall mean a finite sequence of positive integers. The size of a
composition o = (ay, ag,...,qx) is defined to be the nonnegative integer a; + g +

-+« + ag, and is denoted by |a|. Let Comp denote the set of all compositions.

Let N denote the set {0,1,2,...}.

Definition 3.1.3. Let H be a graded k-module. For every n € N, we let 7, : H —
H be the canonical projection of H onto the n-th graded component H,, of H. We
shall always regard m, as a map from H to H, not as a map from H to H,, even
though its image is H,,.

For every composition a = (ay,as,...,a;), we let m, : H®* — H®* be the

tensor product m,, ® T, ® -+ ® m,, of the canonical projections m,, : H — H.

Thus, the image of 7, can be identified with H,, ® H,, ® --- ® H,,.

Let QSym, denote the k-Hopf algebra of quasisymmetric functions defined over k.
(This is defined and denoted by QSym in [ABS03, §3|; it is also defined and denoted
by QSym in |GriReil5, Chapter 5].) We shall follow the notations and conventions
of |GriReil5l, §5.1] as far as QSym, is concerned; in particular, we regard QSymy,
as a subring of the ring k [[z1, x2, 3, ...]] of formal power series in countably many
indeterminates x1, xs, T3, . . ..

Let ep denote the k-linear map QSym, — k sending every f € QSym, to
f(1,0,0,0,...) € k. (This map ep is denoted by (g in [ABS03, §4] and by (g in
IGriReil5l Example 7.2].) Notice that ep is a k-algebra homomorphism.
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Definition 3.1.4. For every composition o = (o, ag, ..., ), we define a power

series M, € k[[z1, 22, 23,...]] by

M, = Z LRy
1<41 <ig < <ip

(where the sum is over all strictly increasing ¢-tuples (i; < iy < --- < iz) of positive
integers). It is well-known (and easy to check) that this M, belongs to QSym,. The
power series M, is called the monomial quasisymmetric function corresponding to
a. The family (Ma)ecomp
monomial basis of QSymy. (See [ABS03, §3| and [GriReil5, §5.1] for more about
this basis.)

is a basis of the k-module QSym,; this is the so-called

It is well-known that every (b1, b, ..., by) € Comp satisfies

¢
A (M o) = Z My by, b)) @ Mb, by, b) (3.1)

=0

and

1, if£=0;

Y

e (M, o) = .
0, ifl+40

These two equalities can be used as a definition of the k-coalgebra structure on QSym,

(because (M,) is a basis of the k-module QSym,, and thus the k-linear maps

acComp

A and ¢ are uniquely determined by their values on the M,).

3.2 The Aguiar-Bergeron-Sottile theorem

The cornerstone of the Aguiar-Bergeron-Sottile paper [ABS03] is the following result:

Theorem 3.2.1. Let k be a commutative ring. Let H be a connected graded
k-Hopf algebra. Let ( : H — k be a k-algebra homomorphism.

(a) Then, there exists a unique graded k-coalgebra homomorphism ¥ : H —
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QSym, for which the diagram

H—Y . QSym

N A

is commutative.
(b) This unique k-coalgebra homomorphism ¥ : H — QSym, is a k-Hopf
algebra homomorphism.

(c) For every composition a = (aq, ag, . . ., ax), define a k-linear map (,, : H — k

as the composition

Ak—1) ek o

H H®k Ta H®k k®k k.

(Here, the map k® —» k is the canonical k-algebra isomorphism from k& to
k. Recall also that A=Y . H — H®* is the “iterated comultiplication map”;
|GriReil5) §1.4] for its definition. The map 7, : H®* — H®* is the one defined in
Definition [3.1.3])

Then, the unique k-coalgebra homomorphism ¥ of Theorem (a) is given
by the formula

Z Co (h) - M, whenever n € N and h € H,,.

a€eComp;
|a|=n

(Recall that H,, denotes the n-th graded component of H.)
(d) The unique k-coalgebra homomorphism ¥ of Theorem (a) is also
given by
Z Ca (h) - M, for every h € H

aceComp
(in particular, the sum on the right hand side of this equality has only finitely

many nonzero addends).

(e) Assume that the k-coalgebra H is cocommutative. Then, the unique k-
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coalgebra homomorphism ¥ of Theorem (a) satisfies U (H) C Ay, where Ay
is the k-algebra of symmetric functions over k. (See [GriReil5l §2| for the definition
of Ax. We regard Ay as a k-subalgebra of QSym,_in the usual way.)

Parts (a), (b) and (c) of Theorem are proven in [ABS03, proof of Theorem
4.1] and |GriReil5, proof of Theorem 7.3] (although we are using different notations
hereﬂ and avoiding the standing assumptions of [ABSO3] which needlessly require k to
be a field and H to be of finite type). Theorem [3.2.1] (d) easily follows from Theorem
(c)f} Theorem[3.2.1](e) appears in [GriReil5, Remark 7.4] (and something very
close is proven in [ABS03, Theorem 4.3]). For the sake of completeness, let me give

some details on the proof of Theorem (e):

Proof of Theorem (e). Let ¢, : Ax — k be the restriction of the k-algebra
homomorphism ep : QSym, — k to Ax. From [ABS03, Theorem 4.3|, we know that

4The paper [ABS03| defines a combinatorial coalgebra to be a pair (H, () consisting of a connected
graded k-coalgebra H (where “connected” means that ¢ |p,: Hy — k is a k-module isomorphism)
and a k-linear map ¢ : H — k satisfying ¢ |g,= ¢ |m,. Furthermore, it defines a morphism
from a combinatorial coalgebra (H’, (') to a combinatorial coalgebra (H, () to be a homomorphism
a: H — H of graded k-coalgebras for which the diagram

is commutative. Theorem (a) translates into this language as follows: There exists a unique
morphism from the combinatorial coalgebra (H,() to the combinatorial coalgebra (QSym,,ep).
(Apart from this, [ABS03] is also using the notations k, H, QSym and (g for what we call k, H,
QSymy, and ep.)

®Proof. Let ¥ be the unique k-coalgebra homomorphism ¥ of Theorem (a). It is easy to
see that every n € N, every composition « with |a| # n and every h € H,, satisty , (k) = 0 (because

To (A(k_l) ( h )) € o (A®=Y (H,)) = 0 (for reasons of gradedness)). Hence, for every n € N

EHn
and every h € H,,, we have

Z Ca(h)'MOz Z Ca(h)'Ma+ Z Ca(h)'Ma

acComp acComp; acComp; -0
laf=n laf#n =
= Y Calh) My =T(h) (by Theorem (c)).
a€Comp;
|| =n

Both sides of this equality are k-linear in h; thus, it also holds for every h € H (even if h is not
homogeneous). This proves Theorem (d).
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there exists a unique graded k-coalgebra homomorphism ¥’ : H — Ay for which the
diagram

H—Y A (3.2)
N,

is commutative. Consider this W'. Let ¢ : Ay — QSym, be the canonical inclusion

map; this is a k-Hopf algebra homomorphism. Also, £, = ep o ¢ (by the definition of
gp). The commutative diagram 1} yields ( = ¢, oV =¢cporo VW,
—~—

=epoL

Now, consider the unique k-coalgebra homomorphism ¥ of Theorem (a).
Due to its uniqueness, it has the following property: If U is any k-coalgebra homo-

morphism H — QSym, for which the diagram

H—2 QSym (3.3)

\/

is commutative, then ¥ = U. Applying this to ¥ = .0 ¥/, we obtain 1o ¥’ = ¥ (since
the diagram 1) is commutative for ¥ = ¢ o ¥’ (because ¢ = ep o 10 ¥)). Hence,

U (H)= (oV)(H) =1V (H)| Ct(Ax) = Ax. This proves Theorem [3.2.1
N ——

— ’
=1o0¥ gAk

(e). O

Remark 3.2.2. Let k, H and ¢ be as in Theorem [3.2.1] Then, the k-module
Hom (H, k) of all k-linear maps from H to k has a canonical structure of a k-
algebra; its unity is the map ¢ € Hom (H, k), and its multiplication is the binary
operation % defined by

fhg=mxo(f®g)oAy:H—k for every f,g € Hom (H, k)

(where my is the canonical isomorphism k ® k — k). This k-algebra is called

the convolution algebra of H and k; it is a particular case of the construction in

[GriReil5l Definition 1.27|. Using this convolution algebra, we can express the map
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(o in Theorem (c) as follows: For every composition o = (ay, aq, . .., ax), the

map (, : H — k is given by

Ca:(COWM)*<CO7TCL2)*~~~*(CO7T%).

(This follows from |GriReil5, Exercise 1.43].)

3.3 Extension of scalars and (k, A)-coalgebra homo-

morphisms

Various applications of Theorem can be found in [ABS03] and [GriReil5, Chap-
ter 7|. We are going to present another application, which we will obtain by “leverag-
ing” Theorem through an extension-of-scalars argument®l Let us first introduce

some more notations.

Definition 3.3.1. Let H be a k-algebra (possibly with additional structure, such
as a grading or a Hopf algebra structure). Then, H will mean the k-algebra H
without any additional structure (for instance, the k-coalgebra structure on H is
forgotten if H was a k-bialgebra, and the grading is forgotten if H was graded).
Sometimes we will use the notation H even when H has no additional structure
beyond being a H-algebra; in this case, it means the same as H, just stressing the
fact that it is a plain k-algebra with nothing up its sleeves.

In other words, H will denote the image of H under the forgetful functor from
whatever category H belongs to to the category of k-algebras. We shall often use

H and H interchangeably, whenever H is merely a k-algebra or the other structures

on H cannot cause confusion.

ST have learned this extension-of-scalars trick from Petracci’s [Petra02, proof of Lemma 2.1.1];
similar ideas appear in various other algebraic arguments.
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Definition 3.3.2. Let A be a commutative k-algebra.

(a) If H is a k-module, then A ® H will be understood to mean the A-module
A ® H, on which A acts by the rule

a(b®h)=ab®h foralla e A,be Aand h € H.

This A-module A ® H is called the k-module H with scalars extended to A.

We can define a functor Mody, — Mod 4 (where Modp denotes the category of
B-modules) which sends every object H € Mody to A® H and every morphism f €
Mody (Hy, Hs) toid®f € Mods (A ® Hy, A® H,); this functor is called eztension
of scalars (from k to A).

(b) If H is a graded k-module, then the A-module A ® H canonically becomes
a graded A-module (namely, its n-th graded component is A® H,,, where H,, is the
n-th graded component of H). Notice that even if A is graded, we disregard its
grading when defining the grading on A ® H; this is why we are calling it A ® H
and not A® H.

As before, we can define a functor from the category of graded k-modules to
the category of graded A-modules (which functor sends every object H to A® H),

which is called extension of scalars.

(c) If H is a k-algebra, then the A-module A ® H becomes an A-algebra ac-

cording to the rule

(a®@h)(b®g) =ab® hg forallae A, be A, h € H and g € H.

(This is, of course, the same rule as used in the standard definition of the tensor
product A® H; but notice that we are regarding A® H as an A-algebra, not just as
a k-algebra.) This A-algebra A® H is called the k-algebra H with scalars extended
to A.

As before, we can define a functor from the category of k-algebras to the cate-

gory of A-algebras (which functor sends every object H to A® H), which is called
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extension of scalars.

(d) If H is a k-coalgebra, then the A-module A ® H becomes an A-coalgebra.

Namely, its comultiplication is defined to be

idi®Ag: A®9H 2 A (HRH) =2 (AQH)®4(A® H),

and its counit is defined to be

idy®eg: AQH - Ak=A

(recalling that Ay and ey are the comultiplication and the counit of H, respec-
tively). Note that both the comultiplication and the counit are A-linear, so this
A-coalgebra A® H is well-defined. This A-coalgebra A® H is called the k-coalgebra
H with scalars extended to A.

As before, we can define a functor from the category of k-coalgebras to the
category of A-coalgebras (which functor sends every object H to A® H), which is

called extension of scalars.

Notice that A ® H is an A-coalgebra, not a k-coalgebra. If A has a pre-
existing k-coalgebra structure, then the A-coalgebra structure on A ® H usually
has nothing to do with the k-coalgebra structure on A ® H obtained by tensoring
the k-coalgebras A and H.

(e) If H is a k-bialgebra, then the A-module A ® H becomes an A-bialgebra.
(Namely, the A-algebra structure and the A-coalgebra structure previously defined
on A® H, combined, form an A-bialgebra structure.) This A-bialgebra A ® H is
called the k-bialgebra H with scalars extended to A.

As before, we can define a functor from the category of k-bialgebras to the
category of A-bialgebras (which functor sends every object H to A ® H), which is

called extension of scalars.

(f) Similarly, extension of scalars is defined for k-Hopf algebras, graded k-
bialgebras, etc.. Again, all structures on A that go beyond the k-algebra structure
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are irrelevant and can be forgotten.

Definition 3.3.3. Let A be a commutative k-algebra.
(a) Let H be a k-module, and let G be an A-module. For any k-linear map
f:H — G, welet f* denote the A-linear map

A® H— G, a®h—af(h).

(It is easy to see that this latter map is indeed well-defined and A-linear.) For any
A-linear map ¢ : A® H — G, we let ¢° denote the k-linear map

H— G, h—g(l®h).

Sometimes we will use the notations f#4% and ¢"(* instead of f* and ¢’ when
the A and the k are not clear from the context.

It is easy to see that (fﬁ)b = f for any k-linear map f : H — G, and that
(gb)ﬁ = g for any A-linear map g : A® H — (. Thus, the maps

{k-linear maps H — G} — {A-linear maps A® H — G},
[ ff (3.4)

and

{A-linear maps A ® H — G} — {k-linear maps H — G},

g g (3.5)

are mutually inverse.

This is a particular case of an adjunction between functors (namely, the
Hom-tensor adjunction, with a slight simplification, also known as the induction-
restriction adjunction); this is also the reason why we are using the § and b nota-

tions. The maps (3.4) and (3.5 are natural in H and G.
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(b) Let H be a k-coalgebra, and let G be an A-coalgebra. A k-linear map
f: H — G is said to be a (k, A)-coalgebra homomorphism if the A-linear map
ff: A® H — G is an A-coalgebra homomorphism.

Proposition 3.3.4. Let A be a commutative k-algebra. Let H be a k-algebra.
Let G be an A-algebra. Let f: H — G be a k-linear map. Then, f is a k-algebra

homomorphism if and only if f* is an A-algebra homomorphism.

Proof of Proposition[3.3.4]. Straightforward and left to the reader. (The main step is
to observe that f* is an A-algebra homomorphism if and only if every a,b € A and
h,g € H satisfy f*((a®h) (b®g)) = f*(a® h) f* (b® g). This is because the tensor
product A ® H is spanned by pure tensors.) ]

Proposition 3.3.5. Let A be a commutative k-algebra. Let H be a graded k-
module. Let G be an A-module. Let f : H — G be a k-linear map. Then, the
k-linear map f is graded if and only if the k-linear map f* is graded.

Proof of Proposition[3.3.5. Again, straightforward and therefore omitted. O

Let us first prove some easily-checked properties of (k, A)-coalgebra homomor-

phisms.

Proposition 3.3.6. Let k be a commutative ring. Let A be a commutative k-
algebra. Let H be a k-coalgebra. Let G and [ be two A-coalgebras. Let f :
H — G be a (k, A)-coalgebra homomorphism. Let g : G — I be an A-coalgebra

homomorphism. Then, go f is a (k, A)-coalgebra homomorphism.

Proof of Proposition[3.3.6. Since f is a (k, A)-coalgebra homomorphism, the map
ft: A® H — G is an A-coalgebra homomorphism. Now, straightforward elementwise
computation (using the fact that the map f is k-linear, and the map ¢ is A-linear)

shows that
(go f)f =gofh (3.6)
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Thus, (go f)ﬁ is an A-coalgebra homomorphism (since g and f* are A-coalgebra

homomorphisms). In other words, g o f is a (k, A)-coalgebra homomorphism. This

proves Proposition |3.3.6] O

Proposition 3.3.7. Let k be a commutative ring. Let A be a commutative k-
algebra. Let ' and H be two k-coalgebras. Let G' be an A-coalgebra. Let f :
H — G be a (k, A)-coalgebra homomorphism. Let e : F — H be a k-coalgebra

homomorphism. Then, f oe is a (k, A)-coalgebra homomorphism.

Proof of Proposition[3.3.7. Since f is a (k, A)-coalgebra homomorphism, the map f* :
A®H — G is an A-coalgebra homomorphism. The map idy ®e : AQF — A® H is an
A-coalgebra homomorphism (since e : F' — H is a k-coalgebra homomorphism). Now,
straightforward computation shows that (f o e)* = ffo (id4 ®e). Hence, (f o ¢)® is an
A-coalgebra homomorphism (since f* and id4 ®e are A-coalgebra homomorphisms).

In other words, f oe is a (k, A)-coalgebra homomorphism. This proves Proposition

B.3.7 O

Proposition 3.3.8. Let k be a commutative ring. Let A be a commutative k-
algebra. Let H be a k-coalgebra. Let G be an A-coalgebra. Let B be a commutative
A-algebra. Let p: A — B be an A-algebra homomorphism. (Actually, p is uniquely
determined by the A-algebra structure on B.) Let pg : G — B ®4 G be the

canonical A-module homomorphism defined as the composition
G AR G2 B, G.

Let f: H— G be a (k, A)-coalgebra homomorphism. Then, pgo f: H —- B®4 G

is a (k, B)-coalgebra homomorphism.

Proof of Proposition[3.3.8. Since f is a (k, A)-coalgebra homomorphism, the map
ft = fHAK) - A9 H — G is an A-coalgebra homomorphism. Thus, the map idg @4 f* :
B®4(A® H) - B®4 G is a B-coalgebra homomorphism.

Let k : B H— B®4(A® H) be the canonical B-module isomorphism (sending
cach b®@h € B H to b®4 (1®h)). It is well-known that x is a B-coalgebra
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isomorphis. Thus, (idB ®a fu) o k is a B-coalgebra homomorphism (since both
idg ®4f* and K are B-coalgebra homomorphisms).

The definition of pg yields that
pe(u) =1®au (3.7)

for every u € G.

The map pgof: H — B®4G gives rise to a map (pg o f)ﬁ(B’k) :BRH — B®4G.
But easy computations show that (pg o f)ﬂ(B’k) = (idB ®Afﬁ) ok (because the map
(pe © £)*PM sends a pure tensor boh € BoH tob  (pgo f)(h) =b(1®4 f(h)) =

~———
=pa(f(h)=1l®af(h)

(by 3:7)
b®a f(h), whereas the map (idB ®Afn) o k sends a pure tensor b®@ h € B® H to

((idp@af)or) (b@h) = (idg@af’) | k(b2 h) | = (idg@af?) (b@a (1@ h))

=b® 4 (1®h)
=b®@a ff(1®h) =b®a f(h)
—
=1f(h)=f(h)

as well). Thus, (pg o f)* " is a B-coalgebra homomorphism (since (idp ®af?) o
K is a B-coalgebra homomorphism). In other words, pg o f is a (k, B)-coalgebra

homomorphism. This proves Proposition |3.3.8| O

Proposition 3.3.9. Let k be a commutative ring. Let A and B be two commu-
tative k-algebras. Let H and G be two k-coalgebras. Let f : H - A® G be a
(k, A)-coalgebra homomorphism. Let p : A — B be a k-algebra homomorphism.

Then, (p®id)o f: H — B® G is a (k, B)-coalgebra homomorphism.

Proof of Proposition[3.3.9. Consider B as an A-algebra by means of the k-algebra
homomorphism p : A — B. Thus, p becomes an A-algebra homomorphism A — B.

Now, A ® G is an A-coalgebra. Let page : A® G — B®4 (A ® G) be the canonical

"In fact, it is part of the natural isomorphism Ind% o Indf >~ IndZ, where Indg means extension of
scalars from P to @) (as a functor from the category of P-coalgebras to the category of Q-coalgebras).
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A-module homomorphism defined as the composition

ARG 5 A4 (AG) 2 Be, (AR G).
Proposition m (applied to A ® G and pagq instead of G and pg) shows that
pasco f:H— B®s(A®G) is a (k, B)-coalgebra homomorphism.

But let ¢ be the canonical B-module isomorphism B&4(A ® G) — (B®4 A) G —
~p
B®G. Then, ¢ is a B-coalgebra homomorphism, and has the property that pRid =

$opagc as maps A® G — B® G (this can be checked by direct computation). Now,

(p@id)of =¢opagco f=¢o(pascof)

~——

=¢opAraG
must be a (k, B)-coalgebra homomorphism (by Proposition [3.3.6] since pagg o f is a
(k, B)-coalgebra homomorphism and since ¢ is a B-coalgebra homomorphism). This

proves Proposition |3.3.9] O

Proposition 3.3.10. Let k be a commutative ring. Let A and B be two com-
mutative k-algebras. Let H be a k-coalgebra. Let G be an A-coalgebra. Let
f+ H — G be a (k, A)-coalgebra homomorphism. Then, id®f: B H - B® G

is a (B, B ® A)-coalgebra homomorphism.

Proof of Proposition[3.53.10. Since f is a (k, A)-coalgebra homomorphism, the map
ft = fAk . A@ H — G is an A-coalgebra homomorphism. Thus, the map idg ® f* :
B®(A® H) — B® G is a B-coalgebra homomorphism.

But the B-linear map id®f : B® H — B ® G gives rise to a B ® A-linear map
(id@f) =42 (Be A) @p (B® H) - B® G.

Now, let v be the canonical B-module isomorphism (B® A)®p (B® H) - B®
(A® H) (sending each (b®a) ®p (' ®h) € (B®A) @ (B® H) to bl @ (a ® h)).
Then, v is a B-coalgebra isomorphism (this is easy to check). Hence, (idp @f*) oy

is a B-coalgebra isomorphism (since idp ® f* and 7 are B-coalgebra isomorphisms).
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Now, it is straightforward to see that (id ®f)ﬁ(§®é’§) = (idB ®f“) oy . Hence,

the map (id ®f)ﬁ(§®é,§)

is a B-coalgebra homomorphism (since (idB ® fﬁ) o~ isa B-
coalgebra homomorphism). In other words, id®f: B& H - B G isa (B,B® A)-

coalgebra homomorphism. This proves Proposition O

Proposition 3.3.11. Let k be a commutative ring. Let A be a commutative k-
algebra. Let B be a commutative A-algebra. Let H be a k-coalgebra. Let G be
an A-coalgebra. Let I be a B-coalgebra. Let f : H — G be a (k, A)-coalgebra
homomorphism. Let g : G — I be an (A, B)-coalgebra homomorphism. Then,

gof:H — Iisa (k, B)-coalgebra homomorphism.

Proof of Proposition[3.3.11. Since f is a (k, A)-coalgebra homomorphism, the map
fHAK) - A® H — G is an A-coalgebra homomorphism. Thus, the map idg ® 4 f# 4K
B®4(A® H) — B®a G is a B-coalgebra homomorphism.

Since g : G — I is an (A, B)-coalgebra homomorphism, the map ¢*Z4) : B @,
G — I is a B-coalgebra homomorphism.

Let 6 : B& H - B®4 (A® H) be the canonical B-module isomorphism (sending
each b®@h to b®4 (1 ® h)). Then, § is a B-coalgebra isomorphism. Straightforward
elementwise computation shows that (g o f )ﬁ(ﬁ’k) = gtBA)o (1d B @ fHA k)) od. Hence,
(go f)ﬁ(ﬁ’k) is a B-coalgebra homomorphism (since g#Z4) idg ®,f* 4K and § are
B-coalgebra homomorphisms). In other words, go f : H — [ is a (k, B)-coalgebra

homomorphism. This proves Proposition |3.3.11| O

With these basics in place, we can now “escalate” Theorem to the following
setting:

Corollary 3.3.12. Let k be a commutative ring. Let H be a connected graded
k-Hopf algebra. Let A be a commutative k-algebra. Let £ : H — A be a k-algebra

homomorphism.

8Indeed, it suffices to check it on pure tensors, i.e., to prove that

(d@f) BB (b a) @p (V @ h) = ((idp @f*) 07) (b@a) @5 (V' @ h))

foreach b€ B,a € A, b € B and h € H. But this is easy (both sides turn out to be bb' @ af (h)).
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(a) Then, there exists a unique graded (k, A)-coalgebra homomorphism = :

H — A ® QSym,_ for which the diagram

H—= +A®QSym (3.8)

\ %—:P

is commutative (where we regard idy ®ep : A ® QSym, — A ® k as a map from
A ® QSym, to A, by canonically identifying A ® k with A).

(b) This unique (k, A)-coalgebra homomorphism = : H — A ® QSym, is a
k-algebra homomorphism.

(c) For every composition o = (aq, as, ..., ax), define a k-linear map &, : H —

A (not to k !) as the composition

A(k—1)

H Hek T ek S gek mtD, 4
(Recall that A®=Y . H — H® and m*1 . A®% 5 A are the “iterated comulti-
plication and multiplication maps”; see |GriReild), §1.4] for their definitions. The
map 7, : H®* — H®* is the one defined in Definition [3.1.3])
Then, the unique (k, A)-coalgebra homomorphism = of Corollary (a) is
given by
=(h) = Z £ (h) @ M, for every h € H

a€Comp
(in particular, the sum on the right hand side of this equality has only finitely
many nonzero addends).

(d) If the k-coalgebra H is cocommutative, then = (H) is a subset of the subring
A ® Ay of A® QSym,, where Ay is the k-algebra of symmetric functions over k.

Proof of Corollary|3.5.14. We have A®QSym, = QSym 4 as A-bialgebras canonically
(since QSym, is defined functorially in k, with a basis that is independent of k).
Recall that we have defined a k-algebra homomorphism ¢p : QSym, — k. We

shall now denote this ep by epx in order to stress that it depends on k. Similarly, an
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m-algebra homomorphism €p, : QSym,, — m is defined for any commutative ring
m. In particular, an A-algebra homomorphism ep 4 : QSym, — A is defined. The
definitions of €pp, for all m are essentially identical; thus, the map ep4 : QSym, — A
can be identified with the map ids ®epy : A ® QSym, — A ® k (if we identify
A® QSym, with QSym, and identify A®k with A). We shall use this identification
below.

The k-linear map & : H — A induces an A-linear map & : A ® H — A (defined
by & (a ® h) = a& (h) for all a € A and h € H). Proposition [3.3.4] (applied to G = A
and f = &) shows that ¢ is an A-algebra homomorphism (since ¢ is a k-algebra
homomorphism).

Theorem [3.2.1] (a) (applied to A, A® H and &* instead of k, H and () shows that
there exists a unique graded A-coalgebra homomorphism ¥ : A ® H — QSym, for
which the diagram

A9H—2 QSym 4 (3.9)

N

is commutative. Since we are identifying the map ep4 : QSym, — A with the map
idgy ®epy : A® QSymy, - A®k = A, we can rewrite this as follows: There exists a
unique graded A-coalgebra homomorphism ¥ : A ® H — A ® QSym, for which the
diagram

A9H—Y L A®QSym

\ %—:pk

is commutative. In other words, there exists a unique graded A-coalgebra homomor-
phism ¥ : A® H — A ® QSym, such that (ids ®epy) o ¥ = &% Let us refer to this
observation as the intermediate universal property.

The (k, A)-coalgebra homomorphisms H — A ® QSym, are in a 1-to-1 corre-
spondence with the A-coalgebra homomorphisms A ® H — A ® QSym,, which is the
same as the A-coalgebra homomorphisms A ® H — QSym, (since A ® QSym,; =

QSym,). The correspondence is given by sending a (k, A)-coalgebra homomorphism
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Z: H — A® QSym, to the A-coalgebra homomorphism Z¢ : A ® H — A ® QSym,..
Moreover, this correspondence has the property that = is graded if and only if =*
is (according to Proposition . Thus, this correspondence restricts to a corre-
spondence between the graded (k, A)-coalgebra homomorphisms H — A ® QSym,
and the graded A-coalgebra homomorphisms A ® H — A ® QSym,. Using this cor-
respondence, we can rewrite the intermediate universal property as follows: There
exists a unique graded (k, A)-coalgebra homomorphism = : H — A ® QSym, such
that (ids ®epy) o =% = &% In other words, there exists a unique graded (k,A)-
coalgebra homomorphism = : H — A ® QSymy, such that ((id4 ®epk) o E)ﬁ = ¢t
(since shows that ((ids ®epy) 0 E)* = (ids ®epx) 0 ZF). In other words, there
exists a unique graded (k, A)-coalgebra homomorphism = : H — A ® QSym, such
that (id4 ®epx) o = = £ (since the map is a bijection). In other words, there
exists a unique graded (k, A)-coalgebra homomorphism = : H — A ® QSym, for
which the diagram (3.8) is commutative. This proves Corollary (a).

By tracing back the above argument, we see that it yields an explicit construction
of the unique graded (k, A)-coalgebra homomorphism = : H — A® QSym,_ for which
the diagram is commutative: Namely, it is defined by =f = ¥, where V¥ is
the unique graded A-coalgebra homomorphism ¥ : A ® H — QSym, for which the
diagram (3.9) is commutative. Consider these = and V.

Theorem (b) (applied to A, A® H and ¢* instead of k, H and () shows
that ¥ : A® H — QSym, is an A-Hopf algebra homomorphism, thus an A-algebra
homomorphism. In other words, =% : A® H — A ® QSym, is an A-algebra homo-
morphism (since Z% : A ® H — A ® QSym,, is the same as ¥ : A® H — QSym 4, up
to our identifications). Hence, =: H — A ® QSym, is a k-algebra homomorphism as
well (by Proposition [3.3.4] applied to A, A ® QSym, and E instead of A, G and f).
This proves Corollary (b).

(c) Theorem (d) (applied to A, A® H and £ instead of k, H and () shows
that WU is given by

U (h) = Z (fﬁ)a (h) - M, for every h € A® H, (3.10)

aeComp
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where the map (f“)a : A® H — A is defined in the same way as the map (, : H — k
was defined in Theorem (d) (but for A, A® H and &* instead of k, H and ().
Notice that is an equality inside QSym,. Recalling that we are identifying
QSym, with A ® QSym,, we can rewrite it as an equality in A ® QSym,; it then

takes the form

U (h) = Z ({n)a (h) ® M, for every h € A® H. (3.11)

aeComp

Let g be the k-module homomorphism
H—A®H, h—1®h.
Also, for every k € N, we let 1, be the k-module homomorphism
H® — (A® H)®4", g~ 10ge A® H® = (A® H)®*

(where U®4* denotes the k-th tensor power of an A-module U); this homomorphism
sends every hy @ ho @ -+ @ hy, € H¥ to (1@ h) @4 (1@ hy) @4+ @4 (1@ hy).
On the other hand, fix some o € Comp. Write the composition « in the form

a = (ay,as,...,a;). The diagram

€a

A(kfl) To £®k m(k—l)
kLH Jvl,k lbk idl
G
X

H—2"2 (A0 H)™s* — =y (A H)®a A%t ——— 4

-

(¢),

A

is commutativeﬂ Therefore, (fﬁ)a oty =ido&, = &,.

9 Proof. In fact:
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Now, forget that we fixed a. We thus have shown that

(fﬁ)a oty =&, for every a € Comp. (3.12)

e Its upper pentagon is commutative (by the definition of &,).

e Its lower pentagon is commutative (by the definition of (fﬁ)a).

o Its left square is commutative (since the operation A¥=1 on a k-coalgebra is functorial with
respect to the base ring, i.e., commutes with extension of scalars).

e Its middle square is commutative (since the operation 7, on a graded k-module is functorial
with respect to the base ring, i.e., commutes with extension of scalars).

e Its right rectangle is commutative. (Indeed, every hq, ho, ..., hy € H satisfy

(id om®*=1 o §®k) (hi @ hy @+ ® hy)

=mF D O (hy @hy @ @hg) | =mE D (€ (h) @€ (he) @ @€ (i)
=£(h1)®&(h2)®- @& (hi)

=& (h1)&(ha) - & (ha)
and thus
((f”)%k o Lk) (h1 @hy @ --- @ hy)
— ()" (e @h®---©hy))
=(1®h1)®A(1®0h2)R@a--®a(1Qhy)
= () (1@ h)@s(1@hy) @4 @4 (13 hy))
F(1h) @4 (1@ ha) @4 @4 & (1@ hy)
E(h1) ®@4&(ha)®a - R4 & (hi) (since E(1oy)=¢(y) for every y € H)
13

(h)€(ha)- € (h)  (since %2 = 4)
id om (=1 O§®k) (hi1®hy®--- R hy) .

Hence, (fﬁ)®ék o1, = idom =1 o ¢¥%_ In other words, the right rectangle is commutative.)
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Now, every h € H satisfies

—v
= Z (gﬁ)a (1®h)®@M, (by (3.11)), applied to 1 ® h instead of h)
a€eComp — i (h)

I
—~
2
~
Q
~
T
S
®
=

= > (&), 0m) ()& M,

a€Comp aeComp

=((€) our ) oy 1)

This proves Corollary [3.3.12f (c).

(d) Assume that the k-coalgebra H is cocommutative. Then, the A-coalgebra

A ® H is cocommutative as well.

Let us first see why A ® Ax is a subring of A ® QSym,. Indeed, recall that
we are using the standard A-Hopf algebra isomorphism A ® QSym, — QSym, to
identify QSym, with A ® QSym,. Similarly, let us use the standard A-Hopf algebra
isomorphism A ® Ay — A4 to identify Ay with A ® Ax. Now, A®@ Ax = Ay C
QSymy = A ® QSym,.

Theorem (e) (applied to A, A® H and & instead of k, H and () shows that
VU(A® H) C Ay = A®Ay. Since U = =* this rewrites as =F (A® H) C A® Ay. But
Z(H) C =¥ (A® H) (since every h € H satisfies Z(h) = Z* (1@ h) € = (A® H)).
Hence, = (H) C = (A® H) C A® Ay. This proves Corollary (d). O

Remark 3.3.13. Let k, H, A and £ be as in Corollary [3.3.12] Then, the k-
module Hom (H, A) of all k-linear maps from H to A has a canonical structure
of a k-algebra; its unity is the map us o ey € Hom (H, A) (where usy : k — A'is
the k-linear map sending 1 to 1), and its multiplication is the binary operation %

defined by

fHhg=mao(f®g)oAy:H— A for every f,g € Hom (H, A)
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(where m 4 is the k-linear map A® A — A, a®b +— ab). This k-algebra is called the
convolution algebra of H and A; it is precisely the k-algebra defined in [GriReil5),
Definition 1.27|. Using this k-algebra, we can express the map &, in Theorem m
(c) as follows: For every composition o = (ay,asg,...,ax), the map &, : H — Ais
given by

o = (§0Tq) K (0 mg,) K- K ({0Ty,).

(This follows easily from |GriReil5, Exercise 1.43].)

3.4 The second comultiplication on (QQSym,

Convention 3.4.1. In the following, we do not identify compositions with infinite
sequences, as several authors do. As a consequence, the composition (1,3) does

not equal the vector (1,3,0) or the infinite sequence (1, 3,0,0,0,...).

We now recall the definition of the second comultiplication (a.k.a. internal comulti-
plication) of QSym,. Several definitions of this operation appear in the literature; we

shall use the one in [Haz08, §11.39]{]

Definition 3.4.2. (a) Given a u x v-matrix A = (a;;),<;c, 1<j<, € N**" (Where

u,v € N) with nonnegative entries, we define three tuples of nonnegative integers:

u
e The v-tuple column A € N” is the v-tuple whose j-th entry is ) a; ; (that is,
i=1

the sum of all entries in the j-th column of A) for each j. (In other words,
column A is the sum of all rows of A, regarded as vectors.)
e The u-tuple row A € N* is the u-tuple whose i-th entry is ) a;; (that is, the
=1

j
sum of all entries in the i-th row of A) for each i. (In other words, row A is

the sum of all columns of A, regarded as vectors.)

0The second comultiplication seems to be as old as QSym,; it first appeared in Gessel’s [Gessel84,
§4] (the same article where QSym, was first defined).
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e The uv-tuple read A € N*¥ is the uv-tuple whose (v (i — 1) + j)-th entry is
a;; foralli € {1,2,...,u} and j € {1,2,...,v}. In other words,

read A

= (am, A1,2,..-,010,021,322, ., A2 ¢y, Qy 1, Ay 2, - - - 7au,v) .

We say that the matrix A is column-reduced if column A is a composition (i.e.,
contains no zero entries). Equivalently, A is column-reduced if and only if no
column of A is the 0 vector.

We say that the matrix A is row-reduced if row A is a composition (i.e., contains
no zero entries). Equivalently, A is row-reduced if and only if no row of A is the 0
vector.

We say that the matrix A is reduced if A is both column-reduced and row-

reduced.

(b) If w € N*¥ is a k-tuple of nonnegative integers (for some k € N), then w™?
shall mean the composition obtained from w by removing each entry that equals
0. For instance, (3,1,0,1,0,0,2)° = (3,1,1,2).

(c) Let N°% denote the set of all reduced matrices in N**V, where u and v both

range over N. In other words, we set

N»® = U {A e N | Ais reduced} .
(u,v)€EN2
(d) Let Ap : QSym, — QSym, ® QSym, be the k-linear map defined by
setting

Ap (M) = Z Miow 4 ® Meotumn A for each o € Comp.
AEN.7.'

red’

(read A)"*d=q

This map Ap is called the second comultiplication (or internal comultiplication) of

QSym,,.
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(e) Let 7 denote the twist map 7qgym_qQsym, : QSymy ® QSym;, —
QSymy ® QSymy,. Let Al =70 Ap : QSym, — QSym, ® QSym,,.

1 020
Example 3.4.3. The matrix 200 5 e N*** is row-reduced but not

0 0 31
column-reduced (and thus not reduced). If we denote it by A, then row A = (3,7,4)

and column A = (3,0,5,6) and read A = (1,0,2,0,2,0,0,5,0,0,3,1).

Proposition 3.4.4. The k-algebra QSym,, equipped with comultiplication Ap

and counit €p, is a k-bialgebra (albeit not a connected graded one, and not a Hopf

algebra).

Proposition is a well-known fact (appearing, for example, in [MalReu95|, first

paragraph of §3|), but we shall actually derive it further below using our results.

3.5 The (generalized) Bernstein homomorphism

Let us now define the Bernstein homomorphism of a commutative connected graded

k-Hopf algebra, generalizing [Haz08|, §18.24]:
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Definition 3.5.1. Let k be a commutative ring. Let H be a commutative con-
nected graded k-Hopf algebra. For every composition a = (ay, as, ..., ay), define a

k-linear map &, : H — H (not to k !) as the composition

A(k—1)
e

H gek T ek mtD g

(Recall that A®=D  H — H® and m®* =1 . H® — H are the “iterated co-
multiplication and multiplication maps”; see [GriReil5, §1.4| for their definitions.
The map 7, : H®* — H®* is the one defined in Definition [3.1.3]) Define a map
Bu : H — H ® QSymy by

B (h) = Z o (h) ® M, for every h € H. (3.13)

aeComp

It is easy to see that this map Sy is well-defined (i.e., the sum on the right hand
side of (3.13) has only finitely many nonzero addendd]) and k-linear.

Remark 3.5.2. Let k and H be as in Definition [3.5.1 Then, the k-module
Hom (H, H) of all k-linear maps from H to H has a canonical structure of a
k-algebra, defined as in Remark (for A = H). Using this k-algebra, we
can express the map &, in Theorem (c) as follows: For every composition
a = (ay,as,...,ax), the map &, : H — A is given by

goa = ﬂ—al*ﬂ—ag* T *Wak'

(This follows easily from |GriReil5 Exercise 1.43].)

The graded k-Hopf algebra QSym, is commutative and connected; thus, Definition
(applied to H = QSym,) constructs a k-linear map Sqgym, : QSym; — QSym; ®

YU Proof. Let h € H. Then, there exists some N € N such that h € Ho + H; + -+ + Hyn_1
(since h € H = @ H;). Consider this N. Now, it is easy to see that every composition o =
ieN
(a1,az,...,a;) of size > N satisfies (mq 0 A®~D) (h) = 0 (because A*~Y (h) is concentrated in
the first N homogeneous components of the graded k-module H®* and all of these components are
annihilated by m,) and therefore £, (h) = 0. Thus, the sum on the right hand side of has only
finitely many nonzero addends (namely, all its addends with |a| > N are 0).
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QSym,. We shall now prove that this map is identical with the A’ from Definition

(e):
| Proposition 3.5.3. We have Sqgym, = Alp.

Before we prove this, let us recall a basic formula for multiplication of monomial

quasisymmetric functions:

Proposition 3.5.4. Let k € N. Let ay,as,..., o, be k compositions. Let Né’;ed

denote the set of all column-reduced matrices in N**¥ with v ranging over N. In

other words, let

NS = U {A e N" | Ais column-reduced } .

veEN

Then,
Ma1Ma2 T Mozk - Z McolumnA-

k.o .
AENCred’
(Ag,e)"d=qy for cach g

Here, A; . denotes the i-th row of A (regarded as a list of nonnegative integers).

Notice that the k = 2 case of Proposition is a restatement of the standard
formula for the multiplication of monomial quasisymmetric functions (e.g., [GriReil5),
Proposition 5.3[ or [Haz08, §11.26]). The general case is still classical, but since an

explicit proof is hard to locate in the literature, let me sketch it here.

Proof of Proposition[3.5.4. We begin by introducing notations:

e Let N® denote the set of all matrices with k& rows (labelled 1,2,...,k) and

countably many columns (labelled 1,2,3,...) whose entries all belong to N.

o Let Ng’noo denote the set of all matrices in N®* which have only finitely many

nonzero entries.

12 Actually, [GriReil5, Proposition 5.3] is slightly more general (the k = 2 case of Propositionm
is obtained from [GriReil5, Proposition 5.3] by setting I = {1,2,3,...}). That said, our proof can
easily be extended to work in this greater generality.
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e Let N* denote the set of all infinite sequences (ay, as, as, ...) of elements of N.

o Let Ng° denote the set of all sequences in N> which have only finitely many

nonzero entries.

e For every B € Ngfo and ¢ € {1,2,...,k}, we let B;s € N be the i-th row of
B.

e For every B = Nﬁn , we let column B € Ng° be the sequence

(b}j)1<z<k 1<j
whose j-th entry is Z a;; (that is, the sum of all entries in the j-th column of

=1
B) for each j. (In other words, column B is the sum of all rows of B, regarded

as vectors. )

e We extend Definition [3.4.2] (b) to the case when w € Ng°: If w € N, then

w™? shall mean the composition obtained from w by removing each entry that

equals 0[]

e For every 3 = (b, ba, b3, ...) € N, we define a monomial x” in the indetermi-

nates x1,xs, T3,... by

B — phigheybs .
x" = a7y’ xy

Then, it is easy to see that

Z x? for every composition a. (3.14)

/BeNﬁn7
Bred_a

13Here is a more rigorous definition of w™: Let w = (wy,ws,ws,...). Let J be the set of all
positive integers j such that w; # 0. Let (j; < jo <--- < jp) be the list of all elements of 7, in
increasing order. Then, w*? is defined to be the composition (wj,,wj,, ..., w;, ).

This rigorous definition of w*®? has the additional advantage of making sense in greater generality
than “remove each entry that equals 0”; namely, it still works when w € NZ_ for some totally ordered
set I.
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SR |

=1 g=1 BENE;
= Z xP /Bred_a
BENES; 7
ﬁred:ag
(by (3.14))
— E xPixB2 .. xPr — E 2(B1,.XBQ,. .. ,XBk,ol
TV
k k,00 _ lumn B
N BeNg:™; =X
wlﬁrzé ’6’“)€(Nﬁn) ) (B )md_ ﬁnf h (since column B is the sum of the
(Bg)'*“=ay for each g g,e) TQglorcach g rows of B (as vectors))

here, we have substituted (Bj., B, ..., Bie) for
(B1, B2, ..., Bk) in the sum, since the map
Nghoo - (N{?ﬁl)k , B> (Bie,Bage,-..,Bge)is a bijection

= > xcoumn B, (3.15)

BENE;IOO;

(Bgy.)red:oag for each g

Now, let us introduce one more notation: For every matrix B € NE> | let B be
the matrix obtained from B by removing all zero columns (i.e., all columns containing
only Zeroes) It is easy to see that B¢d ¢ Nlé’r'ed for every B € ng’noo. Moreover,

every B € Ni™ satisfies the following fact: If A = B4 then
(Byo)™® = (A,.4)" for each g (3.16)

(indeed, A, . is obtained from B,, by removing some zero entries).

14 Again, we can define B¢ more rigorously as follows: Let J be the set of all positive integers
j such that the j-th column of B is nonzero. Let (j; < ja < --- < ji) be the list of all elements of
J, in increasing order. Then, B¢ is defined to be the k x h-matrix whose columns (from left to
right) are the ji-th column of B, the jo-nd column of B, ..., the j,-th column of B.
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Now, (3.15)) becomes

My M, M, = § xcotumn B
BENE;IOO;
(Bg,.)md:ag for each g

— 2 2 Xcolumn B

k.o k,00,
AeNCred BeNﬁn ’
(Bg,e)"*d=0y, for each g;
BCred_ g
N - 7
= = =
BENE>; BENE>;
fin fin
BCred:A; BCred:A;

(Bg.e)"®d=ay for each g (Ag,e)"*Y=ay for each g
(because if BCT*d=A, then (By,e¢)™%=(Ag,q¢)"¢

for each g (because of (3.16))))
(Since BOd ¢ N§*, for each B € N’g;j”)

— E E : Xcolumn B

AENG® BeNE>;
BchdZA;
(Ag,e)"®d=ay for each g
NS ~~ >
- > >
7. . 700.
AENCred’ BENﬁn ’

(Ag,e)™d=ay for each g BC™*d=A

-y T el (3.17)

k.o . k,00,
AeNCred’ BENﬁn ’

(Ag,e)*d=ay for each g BCT*d=A

k,e

But for every matrix A € N4, we have

Z Xcolumn B _ Mcolumn " (3 18)

BENE’:O;

BCred_ g4

Proof of : Let A € N’é’r'ed. We need to prove 1)

For every B € NE™ | we have (column B)™® = column (Brd) (because first taking
the sum of each column of B and then removing the zeroes among these sums results
in the same list as first removing the zero columns of B and then taking the sum of

each remaining column). Thus, for every B € Ngfo satisfying B¢ = A, we have
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column B € N and (column B)red = column (Bcred) = column A. Hence, the map

——
=A

{B e N | plred — A} — {BeNg | B = column A},

B +— column B (3.19)

is well-defined.
On the other hand, if 8 € N satisfies 5 = column A, then there exists a unique

B e ngfo satisfying B = A and column B = 3 . In other words, the map 1)

15Namely, this B can be computed as follows: Write the sequence 3 in the form 3 = (31, B2, 3, - - -)-
Let (i1 <ig < --- < i) be the list of all ¢ satisfying 8. # 0, written in increasing order. Then, B
shall be the matrix whose i1-st, io-nd, ..., i5-th columns are the columns of A (from left to right),
whereas all its other columns are 0.

Let us briefly sketch a proof of the fact that this B is indeed an element of NE;: satisfying B€med = A
and column B = £5:

Indeed, it is clear that B € me' .

We shall now show that

(the j-th entry of column B) = §; (3.20)

for every j € {1,2,3,...}.

Proof of : Let j € {1,2,3,...}. We must prove . We are in one of the following two
cases:

Case 1: We have j € {i1,i2,...,5}.

Case 2: We have j ¢ {i1,i2,...,9}.

Let us first consider Case 1. In this case, we have j € {iy,io,...,i5}. Hence, there exists a
g €{1,2,...,h} such that j = i,4. Consider this g. Now,

(the j-th entry of column B)

= | the sum of the entries of the j -th column of B
—~

=ig

= | the sum of the entries of the i4-th column of B

=(the g-th column of A)
(by the definition of B)

= (the sum of the entries of the g-th column of A)

= | the g-th entry of column A
—_—

=Bred=(/3i1 By a“'vBih)
(by the definition of Bred)

= (the g-th entry of (8, Bi,,---,Bi,)) = Bi, = B; (since iy = 7).
Thus, (3.20) is proven in Case 1.
Let us now consider Case 2. In this case, we have j ¢ {i1,ia,...,4,}. Hence, j does not belong

176



is bijective. Thus, we can substitute 3 for column B in the sum Y x®tmnB and
00,
BeNg™;
BCred:A
obtain
column B
g X = E Xﬂ = McolumnA
BeNk; BENEL;
BCred_ 4 Bred=column A

(by (3.14), applied to o = column A). This proves (3.18)).
Now, (3.17)) becomes

]\4@1]\4&2 . Mak — Z Z XcolumnB

k.o | k,00,
AeNGS s BeNg™;
(Ag,e)®d=ay for each g?cred:A
~
:Mc mpn A
(by (3.18))
- E McolumnA-
k.o
AENG? 1

(Ag,e)"®=ay for each g

to the list (i3 <ig < --- <ip). In other words, j does not belong to the list of all ¢ € {1,2,3,...}
satisfying . # 0 (since this list is (i1 <i2 < --- <13)). Hence, §; = 0.

Recall that j ¢ {i1,i2,...,9,}. Hence, the j-th column of B is the 0 vector (by the definition of
B). Now,

(the j-th entry of column B)

= | the sum of the entries of the j-th column of B

=(the 0 vector)

= (the sum of the entries of the 0 vector)

Thus, ) is proven in Case 2.

Hence, ([3.20)) is proven in both Cases 1 and 2. Thus, the proof of is complete.

Now, from (3.20), we immediately obtain column B = (51, 82, 33,...) = f.

It remains to prove that B€"d = A. This can be done as follows: We have A € N]é’r'ed; thus,
the matrix A is column-reduced. Hence, no column of A is the zero vector. Therefore, none of the
i1-st, io-nd, ..., i5-th columns of B is the zero vector (since these columns are the columns of A).
On the other hand, each of the remaining columns of B is the zero vector (due to the definition of
B). Thus, the set of all positive integers j such that the j-th column of B is nonzero is precisely
{1,42,...,in}. The list of all elements of this set, in increasing order, is (i1 < ia < --- < ip). Hence,
the definition of B¢ shows that B¢**4 is the k x h-matrix whose columns (from left to right) are
the ¢1-th column of B, the is-nd column of B, ..., the ij-th column of B. Since these columns are
precisely the columns of A, this entails that B4 is the matrix A. In other words, B4 = A.

Thus, we have proven that B is an element of Ng; satisfying B4 = A and column B = f. It is
fairly easy to see that it is the only such element (because the condition column B = 3 determines
which columns of B are nonzero, whereas the condition B®**d = A determines the precise values of
these columns).
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This proves Proposition [3.5.4] O

We need one more piece of notation:

Definition 3.5.5. We define a (multiplicative) monoid structure on the set Comp
as follows: If @ = (aj,as,...,a,) and B = (by,bs,...,b,) are two compositions,
then we set a8 = (ay,a9,...,a,,b1,b9,...,b,). Thus, Comp becomes a monoid

with neutral element @ = () (the empty composition). (This monoid is actually

the free monoid on the set {1,2,3,...}.)

Proposition 3.5.6. Let v € Comp and k£ € N. Then,

A(kil)Mv - Z My, @ My, @ -+ @ My,

(1,725 ) EComp*;
Y12 V="

Proof of Proposition (sketched). We can rewrite (3.1)) as follows:

AMp = Z M, ® M, for every 5 € Comp. (3.21)
(o,7)€Comp x Comp;
oT=p
Proposition can easily be proven by induction using (3.21]). ]

Proof of Proposition|3.5.5 Fix a € Comp and v € Comp. Write o in the form
a = (ay,as,...,a;); thus, a k-linear map &, : QSym, — QSym, is defined (as in
Definition applied to H = QSym,,).

We shall prove that

504 (M'Y) = Z McolumnA- (322)

AEN:C’ZI;

(read A)"d=x;
row A=«
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Proof of : The definition of &, yields &, = m®*=Y o 7w, o A®=D_ Thus,

o (M7> = (m(k_l) 0 Mg O A(k_l)) (MW)

—r
= Z M’Yl ®M,Y2®®M’Yk
('717’72,...,'yk)ecompk;
Y12 YR="Y

(by Proposition [3.5.6)

= (m(k_l) o 7ra) Z M, @M, ®---Q M,,
(71,72,--7k) €Comp”;
YLV Y=Y
= > (M, @M, 08 M,))
ompF: N
(71/7%71~%’.Y.1%)/Eg7 P =Tay (M“Yl)@”az (MW2)®'”®“% (M“/k)
(since Ta=Ta) @Tay® - ®a, )

- Z (n(k_l) (77-&1 (M'Yl) & Ta, (M’m) R (M'Yk>l

(71,725 7%) €Comp*; e k

Y12 VE=Y =Ta, (Mﬂ,1 )-wa2 (MWQ) ----- Tay, (ka )=g];[1 Tag (Myg)

= Z ﬁ Tag (M’Yg)

(V1,725---7%) EComp*; 9=1
Y12 V="

M, if 17y = ag:

07 lf |79‘ 7é ag
(since the power series M, is
homogeneous of degree |vg4|)

M

-z I

if ‘79’ = Qg;

(71,725---7k) EComp*; 9=1 |0, if Wg’ # ag
Y1V2 =Y N _
TV
k
M,,, if |y,| = a4 for all g;
={g=1
0, otherwise

k
II M,,, if |y = a4 for all g;
g=1

- ¥

(vug,.&,wgecgmp’“; 0, otherwise
ol A
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k

> 112, (3.23)

(719257 ) €Comp¥; g=1
Y1V2 V=5 S——
|vg|=ag for all g =My Moy, My,
= Z McolumnA
k.o .
AeNCred’

(Ag,e)"®d=~, for each g
(by Proposition [3.5.4] applied to

Q=5
Wi Y Z )
here, we have filtered out the zero addends 3.24
E E McolumnA
(1,727 ) EComp*; AeNFe
Y2 T =73 g ored
= (Ag,e)®“=n4 for each g
|vg|=agy for all g 9, 9
~ Vv
= > >
(71,v2,.4.,’y]c)ECompk AENgr.ed;
(Ag,O)red:Vg for each g;
Y1Y2+ =3

|vg|=ag for all g

Z Z M column A

k k,eo |
(Y1727 ) €Comp AeNE® &

(Ag,O)red:'Yg for each g;
Y2 Y=
|vg|=agy for all g

J

~~

%
!. .
AeNCred’
(Ag,.)redzvg for each g;
d
(Aly.)red(Az.)redm(Ah.)re —:
|(Ag7.)red
(here, we have replaced every ~q

in the conditions (y1y2 - yx=7)
and (]yg|=ay for all g) by the

corresponding (Ag,e)™?, because
of the condition that (Ag,.)redzyg)

Z Z M column A

=ay for all g

(71,72-7%) €Comp” AeNEe .
(Ag,e)®d=~, for each g;
(Al,.)red(AQ,.)rEd"'(Ak’.)red:ry;
|(Ag,.)md =ay for all g
N -~ S
= >
AENG i
(Aly.)red(AZ.)redm(Ak’.)red:’y;
|(Ag,.)md =ay for all g
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= Z McolumnA' (325)

AENIé’;ed;
T T red
(A1,0)" % (Az,e) % (Ape ) =7

|(Ag,o)red

=ay for all g

Now, we observe that every A € Né’;ed satisfies

(A1) (Age) - (Apa)™ = (read A)™ (3.26)

)

[

Also, for every every A € N]é’r'ed, we have the logical equivalence

(A

= a, for all g) — (tow A = ) (3.27)

16 Proof of : Let A € Ng’r’cd.

Let N*® be the set of all finite lists of nonnegative integers. Then, Comp C N°®. In Definition
we have defined a monoid structure on the set Comp. We can extend this monoid structure
to the set N* (by the same rule: namely, if « = (a1,as9,...,a,) and 8 = (b1, ba,...,by), then
af = (a1,as,...,0,,b1,ba,...,by)). (Of course, this monoid N*® is just the free monoid on the set
N.) Using the latter structure, we can rewrite the definition of read A as follows:

read A = A17.A27. s Ak7..

Clearly, the map N* — Comp, 3 — ("4 is a monoid homomorphism. Thus,

red

(A1) (A2.0) - (Ape) ™ = | AleAse - Are = (read A)™¢.
—_—————

s

=read A

This proves ([3.26)).
17 Proof of : Let A€ Ng%,. Then, every g € {1,2,...,k} satisfies

(40

= (sum of all entries of (Ag,)red) = (sum of all nonzero entries in Ay o)

(by the definition of (Ag,)red)

= (sum of all nonzero entries in the g-th row of A)

= (sum of all entries in the g-th row of A) = (the g-th entry of row A).
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Also, every A € NE° satisfying row A = a belongs to N Conversely,
every A € N%* satistying row A = a belongs to N&°., . Combining these two

observations, we see that

the matrices A € N]é’r'ed satisfying row A = « (3.28)
are precisely the matrices A € N°7% satisfying row A = «

Now, (3.25)) becomes

goz (M’y) = Z McolumnA = Z McolumnA

AENG g5 . AENCr.edd’
(Al’.)red(A2’.)red...(Ah.)re =; (read A)re =7;

|(A )md ot M row A=«

g,e =agy for all g
~~ d = >

= > AeN%S;
AENg’r'ed; (read A)**d=r;

read A)red— . row A=«

o Ay by B25))

(by (3:26) and ([3.27))

= E Mcolumn A-

AGN:L;;;

(read A)**d=r;
row A=«

This proves (3.22]).

Hence, we have the following chain of equivalences:

(Ag0)

—_————
=(the g-th entry of row A)

=a4 forall g

<= ((the g-th entry of row A) = a, for all g)

— |row A= (a1,a2,...,ar) | = (@ow A =0q).

=«

This proves (3.27).

18 Proof. Let A € Ni%, be such that row A = a. We must show that A € N%%. The sequence
row A = « is a composition; hence, A is row-reduced. Since A is also column-reduced (because
Ae Nlé’;ed), this shows that A is reduced. Hence, A € N33, ged.

19 Proof. Let A € N%§ be such that row A = a. We must show that A € N’é’;ed. The number
of rows of A is clearly the length of the vector row A (where the “length” of a vector just means
its number of entries). But this length is k (since row A = o = (a3, a2,...,a;)). Therefore, the
number of rows of A is k. Also, A is reduced (since A € N33) and therefore column-reduced. Hence,

Ae Né’;ed (since A is column-reduced and the number of rows of A is k), qed.
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Now, forget that we fixed a and ~. For every v € Comp, we have

(by the definition of BQSymk)

Basym, (M) = Z §a (M) Q@M
acComp _ Y
- Z McolumnA
AEN:;;;
(read A)**d=r;
row A=«

(by (322))

= E : E Mcolumn A ® Ma
~—~
aeComp AGN:éc'l; Moo
(read A)*®d=~; (since row A=q)
row A=«

- E § Mcolumn A® Mrow A
.7. .
acComp AeNDS;
(read A)™d=r;
row A=«
N TV

= >
AeNY;
(read A)"*d=r;
(3.29)

row A€Comp
E Mcolumn A® Mrow A-
AENTS;

(read A)™*d=r;
row AeComp

@ Hence, the summation sign

But every A € N satisfies row A € Comp
3.29) can be replaced by > . Thus,
AEN3;

(read A)™d=y

> on the right hand side of
AENRS;

(read A)"*d=r;

row A€Comp

(3-29) becomes

BQSymk (M'y) - Z McolumnA X MrowA
AENZ;

(read A)**d=r;
row AeComp

———
= >

.0

AeNred;

(read A)"*d=r
(3.30)

= Z McolumnA ® MI‘OWA‘

AENTG;
(read A)**d=

L)

20 Proof. Let A € N%5.
row A is a composition. In other words, row A € Comp, qed.
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On the other hand, every v € Comp satisfies

Ap (M) =(tolAp)(M,) =1 Ap (M)
—— ———
=70Ap = Z M:ow AQMcolumn A
AeN®®:

red’
(read A)**d=y
(by the definition of Ap)

=T E Mrow A® Mcolumn A - E Mcolumn A® Mrow A
AeNY; AeN%;
(read A)"*d=~ (read A)*®d=~

(by the definition of 7)

- /BQSymk (M"/) (by ) .

Since both maps A and Sqsym, are k-linear, this yields A = Bosym, (since (M) cqomp

is a basis of the k-module QSym, ). This proves Proposition [3.5.3 m

The next theorem is an analogue for QSym of the Bernstein homomorphism

(|[Haz08, §18.24]) for the symmetric functions:

Theorem 3.5.7. Let k be a commutative ring. Let H be a commutative connected
graded k-Hopf algebra. For every composition «, define a k-linear map &, : H — H
as in Definition [3.5.1] Define a map fy : H — H ® QSym, as in Definition [3.5.1]

(a) The map Sy is a k-algebra homomorphism H — H ® QSym, and a graded
(k, H)-coalgebra homomorphism.

(b) We have (id ®ep) o By = id, where we regard id ®ep : H®QSym,, — H®k
as a map from H ® QSym, to H (by identifying H ® k with H).

(c) Define a map A, : QSym,, — QSym, ® QSym,_ as in Definition (e).
The diagram

H on H ® QSym

51{ ,8H®idl

H ® QSym Tﬂ ® QSym ® QSym
1 P —_—
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is commutative.
(d) If the k-coalgebra H is cocommutative, then Sy (H) is a subset of the

subring H ® Ay of H ® QSym,, where Ay is the k-algebra of symmetric functions

over k.

Parts (b) and (c) of Theorem can be combined into “fy makes H into a
QSym,-comodule, where QSym, is the coalgebra (QSym, A, ep)” (the fact that this
QSym, is actually a coalgebra follows from Proposition .

What Hazewinkel actually calls the Bernstein homomorphism in [Haz08| §18.24]
is the k-algebra homomorphism H — H ® Ay obtained from our map Sy : H —
H ® QSym, by restricting the codomain when H is both commutative and cocommu-
tative@. His observation that the second comultiplication of Ay is a particular case
of the Bernstein homomorphism is what gave the original motivation for the present

note; its analogue for QSym, is our Proposition

Proof of Theorem[3.5.7]. Set A = H and £ = id. Then, the map £, defined in
Corollary (c) is precisely the map &, defined in Definition (because
£®% = id®" = id). Thus, we can afford calling both maps &, without getting confused.

(a) Corollary (a) shows that there exists a unique graded (k, A)-coalgebra
homomorphism = : H - A ® QSym, for which the diagram is commutative.
Since A = H and £ = id, we can rewrite this as follows: There exists a unique graded

(k, H)-coalgebra homomorphism = : H — H ® QSym,, for which the diagram

H—= H®QSym (3.31)

\ Af})

is commutative. Consider this =. Corollary|3.3.12| (c) shows that this homomorphism

2'Hazewinkel neglects to require the cocommutativity of H in [Haz08, §18.24], but he uses it
nevertheless.
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= is given by

(11

(h) = Z o (h) ® M, for every h € H.

acComp

Comparing this equality with (3.13), we obtain Z (h) = Sy (h) for every h € H. In
other words, = = Sy. Thus, 8y is a graded (k, H)-coalgebra homomorphism (since
= is a graded (k, H)-coalgebra homomorphism).

Corollary (b) shows that = is a k-algebra homomorphism. In other words,

Br is a k-algebra homomorphism (since = = fg). This completes the proof of

Theorem (a).

(b) Consider the map = defined in our above proof of Theorem (a). We
have shown that = = (.

The commutative diagram shows that (id ®ep) o = = id. In other words,
(id®ep) o By = id (since = = fy). This proves Theorem (b).

(c) Theorem (a) shows that the map [y is a k-algebra homomorphism
H — H ® QSym, and a graded (k, H)-coalgebra homomorphism. Theorem [3.5.7]
(a) (applied to QSym, instead of H) shows that the map SBqgym, is a k-algebra
homomorphism QSym, — QSym, ® QSym, and a graded (k,%) -coalgebra
homomorphism. Since A = Bqsym, (by Proposition [3.5.3)), this rewrites as follows:
The map A’ is a k-algebra homomorphism QSym, — QSym, ® QSym,, and a graded
(k, m>—coalgebra homomorphism.

Applying Corollary (a) to H® QSym, and g instead of A and &, we
see that there exists a unique graded (k,ﬂ ® m>—coalgebra homomorphism
E: H — H® QSym, ® QSym, for which the diagram

[1]

H

H ® QSym ® QSym (3.32)

Bu idggQsym®ep

H ® QSym

is commutative. Thus, if we have two graded (k, H® QSymk> -coalgebra homomor-
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phisms Z: H — H ® QSym, ® QSymy, for which the diagram 1' is commutative,
then these two homomorphisms must be identical. We will now show that the two
homomorphisms (g ® id) o By and (id ®A’%) o By both fit the bill; this will then
yield that (By ® id) o Sy = (id ®A’,) o By, and thus Theorem (c) will follow.

Recall that gy and A’ are graded maps. Thus, so are (fy ®id) o Sy and
(id®A%) o By. Moreover, Sy is a (k, H)-coalgebra homomorphism, and A’ is a
<k, m>—coalgebra homomorphism. From this, it is easy to see that (Sy ® id)o Sy
and (id @A) o By are (k, H® %) -coalgebra homomorphism.

Now, we shall show that the diagrams

H nidob H © QSym ® QSym (3.33)
k W@EP
H ® QSym
and
id®A’, )opB
H (19885 )05 H ® QSym @ QSym (3.34)
H ® QSym

are commutative. This follows from the computations

(idﬂ@)QSymk ®€P> o(fr®id)ofy = Pro (id®ep)ofuy = Bu

J/

=Bu®ep=PFpo(id ®ep) (by Theore:m (b))

22 Proof. Propositionm (applied to H, H®QSym,, H, QSym,, S and By instead of A, B, H,
G, f and p) shows that (8y ®id) o By is a (k,ﬂ ® QSymk>—coalgebra homomorphism. It remains
to show that (id ®@A%) o By is a (k,ﬂ ® QSymk)—coalgebra homomorphism.

Recall that A’ is a (k, QSymk) -coalgebra homomorphism QSym, — QSym, ® QSym,. Hence,
Proposition (applied to QSym,, H, QSym,, QSym, ® QSym, and A’ instead of A, B,
H, G and f) shows that id @A : H ® QSym, — H ® QSym, ® QSym, is an (ﬂ,ﬂ@ QSymk)—

coalgebra homomorphism. Therefore, Proposition 3.3.11| (applied to H, H®QSym,, H, H®QSym,,
H ®QSym, ® QSymy,, Sy and id A% instead of A, B, H, G, I, f and g) shows that (id @ AL) o Sy

is a (k7 H® QSymk>—coalgebra homomorphism. This completes the proof.
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and

idﬂ@stmk XKep | © id ® AZD o By
N —

=idg ® idstmk

= (idﬂ@idm ®€P) o (idﬂ ®BQSymk) °fu

[\ J/

:idﬂ ® ( (idﬁ:@fiP) OﬂQSymk)

1dﬂ® ((idQSymk ®5P> o ﬂQSymk> o BH

J/

~
=id
(by Theorem (b),
applied to QSymy instead of H)

= (idg ®id) ofy = fn.
7'd

Thus, we know that (Sy ® id) o Sy and (id ®A’%) o Sy are two graded
<k,ﬂ ® m> -coalgebra homomorphisms = : H — H ® QSymy, ® QSym, for
which the diagram (3.32) is commutative (since the diagrams and are
commutative). But we have shown before that any two such homomorphisms must
be identical. Thus, we conclude that (fy ® id) o By = (id ®A’) o . This completes
the proof of Theorem (c).

(d) Consider the map = defined in our above proof of Theorem (a). We
have shown that = = (.

Assume that H is cocommutative. Corollary (d) then shows that = (H) is
a subset of the subring A ® Ax of A ® QSym,. In other words, Sy (H) is a subset of
the subring H ® Ay of H® QSym,_ (since = = g and A = H). This proves Theorem
(a)

(Alternatively, we could prove (d) by checking that for any element h of a com-
mutative cocommutative Hopf algebra H, the element &, (h) of H depends only on

the result of sorting «, rather than on the composition « itself.) O

Proof of Proposition[3.4.4 Let T be the twist map 7qsym, qsym, : QSym, ® QSym, —
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QSym, ® QSym,.. This twist map clearly satisfies 7 o 7 = id. Hence, 7o A}, =
—~—

:TOAP
ToToAp = Ap.
~—~— P P

=id
Theorem (c) (applied to H = QSym,) shows that the diagram

BQSym

QSym QSym ® QSym
BQSme/ BQSym@ldl

QSym ® QSym e QSym ® QSym ® QSym

is commutative. In other words, (id ®A%) o Bosym, = (ﬁstmk ® id) °© BQsym, - Since
Basym, = A (by Proposition[3.5.3)), this rewrites as (id @A%) o Ap = (A% @ id) o Alp.
Thus, the operation A’ is coassociative. Therefore, the operation Ap = 70 A,
is also coassociative (because the coassociativity of a map H — H ® H does not
change if we compose this map with the twist map 7y : H @ H - H® H). It is
furthermore easy to see that the operation €p is counital with respect to the operation
Ap (see, for example, [Haz08| §11.45]). Hence, the k-module QSym,, equipped with
the comultiplication Ap and the counit ep, is a k-coalgebra. Our goal is to prove
that it is a k-bialgebra. Hence, it remains to show that Ap and ep are k-algebra
homomorphisms. For ep, this is again obvious (indeed, ep sends any f € QSym, to
f(1,0,0,0,...)). It remains to prove that Ap is a k-algebra homomorphism.

The map fqsym, 1s a k-algebra homomorphism QSym, — QSymy, ® QSym, (by
Theorem (a), applied to H = QSymy). In other words, the map A is a
k-algebra homomorphism QSym; — QSym, ® QSym, (since Bqgym, = A, and
since QSymy, = QSymy as k-algebras). Thus, Ap = 70 A, is also a k-algebra
homomorphism (since both 7 and A’ are k-algebra homomorphisms). This completes

the proof of Proposition [3.4.4] O

3.6 Remark on antipodes

We have hitherto not really used the antipode of a Hopf algebra; thus, we could just
as well have replaced the words “Hopf algebra” by “bialgebra” throughout the entire
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preceding text[z_gl Let us now connect the preceding results with antipodes.

The antipode of any Hopf algebra H will be denoted by Sp.

Proposition 3.6.1. Let k be a commutative ring. Let A be a commutative k-
algebra. Let H be a k-Hopf algebra. Let G be an A-Hopf algebra. Then, every

k-algebra homomorphism f : H — G which is a (k, A)-coalgebra homomorphism

must also satisfy fo Sy = Sgo f.

Proof of Proposition[3.0.1. We know that H is a k-Hopf algebra. Thus, A® H is an
A-Hopf algebra. Its definition by extending scalars yields that its antipode is given
by Sagn =1ida ®SH.

Let f: H — G be a k-algebra homomorphism which is a (k, A)-coalgebra homo-
morphism. Then, f* : A® H — G is an A-coalgebra homomorphism (since f is a
(k, A)-coalgebra homomorphism) and an A-algebra homomorphism (by Proposition
. Hence, f* is an A-bialgebra homomorphism, thus an A-Hopf algebra homo-
morphism (since every A-bialgebra homomorphism between two A-Hopf algebras is
an A-Hopf algebra homomorphism). Thus, f* commutes with the antipodes, i.e.,
satisfies f* o Syon = Sg o f*.

Now, let ¢ be the canonical k-module homomorphism H - A® H, h — 1 ® h.
Then, (idy ®Sy) ot =10 Sy. On the other hand, f%o: = f (this is easy to check).
Thus,

foSu=1'c o8y =fto(ida®Sp)or={oSenor
=ftor =(ida ®Sm)or =SaeH =Sgof?

— Sgo ffor=Sqo f.
=f

This proves Proposition [3.6.1] O

23That said, we would not have gained anything this way, because any connected graded k-
bialgebra is a k-Hopf algebra (see [GriReild, Proposition 1.36]).
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Corollary 3.6.2. Let k be a commutative ring. Let H be a commutative connected
graded k-Hopf algebra. Define a map Sy : H — H ® QSym, as in Definition [3.5.1]
Then,

B o Sy = (idy ®Sqsym,) © Ba-

Proof of Corollary[3.6.2 Theorem (a) shows that the map Sy is a k-algebra
homomorphism H — H ® QSym, and a graded (k, H)-coalgebra homomorphism.

Thus, Proposition (applied to A = H, G = H ® QSym, and f = () shows
that BH 0] SH = Sﬂ®stmk e} BH
But the H-Hopf algebra H ® QSym, is defined by extension of scalars; thus, its

antipode is given by Syeqsym, = idy ®Sqsym, - Hence,

Br oSy = SHeqsym, °Bu = (idH ®SQSymk) © fn-
———

=idy ®SQSymk

This proves Corollary [3.6.2| O

Corollary 3.6.3. Let k be a commutative ring. Let H be a commutative connected
graded k-Hopf algebra. Define a map Sy : H — H ® QSym, as in Definition [3.5.1]
Then,

Sy = (idy @ (ep © Sqsym,.) ) © Ba-

Proof of Corollary[53.6.3 We have

(idy ® (ep © Sosym,)) oBr = (idy ®ep) © (idy ®Sqsym, ) © B

-~

—(id idr ®S0Sym =BuoSH
¢ H®8P)o<1 H ®S5qsy k) (by Corollary 5.6.2)

= SidH ®ep) 0 ﬁ}i oSy = Su,

(by Theore:Iil (b))
and thus Corollary is proven. O
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Remark 3.6.4. What I find remarkable about Corollary is that it provides
a formula for the antipode Sy of H in terms of Sy and QSym,. Thus, in order to
understand the antipode of H, it suffices to study the map Sy and the antipode of
QSym,; well enough.

Similar claims can be made about other endomorphisms of H, such as the
Dynkin idempotent or the Eulerian idempotent (when k is a Q-algebra). Better
yet, we can regard the map By : H — H ® QSym, as an “embedding” of the
k-Hopf algebra H into the H-Hopf algebra H ® QSym, = QSym,. Here, I am
using the word “embedding” in scare quotes, since this map is not a Hopf algebra
homomorphism (its domain and its target are Hopf algebras over different base
rings); nevertheless, the map [y is injective (by Theorem (b)), and the
corresponding map (8y)* : H® H — H ® QSym, (sending every a ® h to a8y (h))
is a graded H-Hopf algebra homomorphism (because it is graded, an H-algebra
homomorphism and an H-coalgebra homomorphism); this shows that 55 commutes
with various maps defined canonically in terms of a commutative connected graded

Hopf algebra. It appears possible to use this for proving identities in commutative

connected graded Hopf algebra.

3.7 Questions

Let me finish with some open-ended questions, which probably are not particularly

insightful, but (in my opinion) rather natural.

Question 3.7.1. It is well-known (see, e.g., [GriReil5, §5.3]) that the graded Hopf-
algebraic dual of the graded Hopf algebra QSym is a graded Hopf algebra NSym.
The second comultiplication Ap and the second counit ep on QSym dualize to
a second multiplication mp and a second unit up on NSym, albeit up does not
really live inside NSym (in fact, it lives in the completion of NSym with respect to

its grading). We denote the “almost-k-bialgebra” (NSym,mp,up, A, ) (“almost”

because up ¢ NSym) by NSym,.
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We can more or less dualize Theorem [3.5.7] As a result, instead of a QSym,-
comodule structure on every commutative graded connected Hopf algebra H, we
obtain an NSym,-module structure on every cocommutative graded connected Hopf
algebra H. This structure is rather well-known: (I believe) it has H, € NSym,
act as the convolution product 7., %7, % - - %7, € End H for every composition
a = (ay,as,...,a;) (where % denotes the convolution product in End H). This
should be somewhere in the papers by Patras and Reutenauer on descent algebras;
it is essentially the way to transfer information from the descent algebra NSym,
to a descent algebra (Endgaded H,©) of a cocommutative graded connected Hopf
algebra H.

Is it possible to prove that this works using universal properties like I have done
above for Theorem W (Just saying “dualize Theorem ’ is not enough,
because dualization over arbitrary commutative rings is a heuristic, not a proof
strategy; there does not seem to be a general theorem stating that “the dual of a
correct result is correct”, at least when the result has assumptions about gradedness
and similar things.)

If the answer is positive, can we use this to give a slick proof of Solomon’s
Mackey formula? (I am not saying that there is need for slick proofs of this formula
— not after those by Gessel and Bidigare —, but it would be interesting to have a
new one. I am thinking of letting both NSym, and the symmetric groups act on
the tensor algebra 7' (V') of an infinite-dimensional free k-module V'; one then only
needs to check that the actions match.)

Note that if © and v are two elements of NSym,, then the action of the NSym-
product uv (not the NSym,-product!) on H is the convolution of the actions of u
and v. So the action map NSym, — End H takes the multiplication of NSym, to

composition, and the multiplication of NSym to convolution.

Question 3.7.2. In Question [3.7.1, we found a k-algebra homomorphism
NSym, — (End H, o) for every cocommutative connected graded Hopf algebra H.

This is functorial in H, and so is really a map from the constant functor NSym,
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to the functor

{cocommutative connected graded Hopf algebras} — {k-modules},

H — End H.

Does the image of this action span (up to topology) the whole functor? I guess
I am badly abusing categorical language here, so let me restate the question in
simpler terms: If a natural endomorphism of the k-module H is given for every
cocommutative connected graded Hopf algebra H, and this endomorphism is known
to annihilate all homogeneous components H,, for sufficiently high m (this is what
[ mean by “up to topology”), then must there be an element v of NSym, such that
this endomorphism is the action of v ?

If the answer is “No”, then does it change if we require the endomorphism of H
to be graded? If we require k to be a field of characteristic 0 7

What if we restrict ourselves to commutative cocommutative connected graded
Hopf algebras? At least then, if k is a finite field F,, there are more natural
endomorphisms of H, such as the Frobenius morphism x + 29 and its powers.
One can then ask for the graded endomorphisms of H, but actually it is also
interesting to see how the full k-algebra of natural endomorphisms looks like (how
do the endomorphisms coming from NSym, interact with the Frobenii?). And what

about characteristic 0 here?

Question 3.7.3. What are the natural endomorphisms of connected graded Hopf
algebras, without any cocommutativity or commutativity assumption? I suspect
that they will form a connected graded Hopf algebra, with two multiplications (one
for composition and the other for convolution), but now with a basis indexed by
“mopiscotions” (i.e., pairs (a, o) of a composition a and a permutation o € Sy(y)).

Is this a known combinatorial Hopf algebra?
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Question 3.7.4. Can we extend the map Sy : H — H ® QSym, to a map
H — H ® U for some combinatorial Hopt algebra U bigger than QSym, ? What
if we require some additional (say, dendriform?) structure on H 7 Can we achieve
U = NCQSym, or U = DoublePosetsy (the combinatorial Hopf algebra of double
posets, which is defined for k = Z and denoted by ZD in [MalReu09|, and can
be similarly defined over any k) ? (I am singling out these two Hopf algebras
because they have fairly nice internal comultiplications. Actually, the internal
comultiplication of NCQSym, is the key to Bidigare’s proof of Solomon’s Mackey
formula [Schock04, §2|, and T feel it will tell us more if we listen to it.)

Aguiar suggests that the map H — H ® NCQSym, I am looking for is the dual
of his action of the Tits algebra on Hopf monoids [Aguiarl3|, Proposition 88|.

Question 3.7.5. Do we gain anything from applying Corollary to H =
QSymy (thus getting a statement about A’%) 7 Probably not much for A’ that
the Marne-la-Vallée people haven’t already found using virtual alphabets (the dual
version is the statement that S (a *b) = a * .S (b) for all a,b € NSym,, where * is

the internal product).

Question 3.7.6. From Theorem (a) and Proposition [3.5.3, we can conclude
that A is a (k, QSymk>—coalgebra homomorphism. If I am not mistaken, this

can be rewritten as the equality

(AB) x G = Z (AxGp)) (B*G) (using Sweedler’s notation)
(@)
for any three elements A, B and G of NSym. This is the famous splitting formula.
Now, it is known from [DHNTOS, §7| that the same splitting formula holds
when A and B are elements of FQSym (into which NSym is known to inject), as
long as G is still an element of NSym (actually, it can be an element of the bigger
Patras-Reutenauer algebra, but let us settle for NSym so far). Can this be proven

in a similar vein? How much of the Marne-la-Vallée theory follows from Theorem

3.2, 1]
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Chapter 4

A note on non-broken-circuit sets and

the chromatic polynomial

Abstract

We demonstrate several generalizations of a classical formula for the chromatic poly-
nomial of a graph — namely, of Whitney’s theorem. One generalization allows the
exclusion of only some broken circuits, whereas another weighs these broken circuits
with weight monomials instead of excluding them; yet another extends the theorem to
the chromatic symmetric functions, and yet another replaces the graph by a matroid.
Most of these generalizations can be combined (albeit not all of them: matroids do
not seem to have chromatic symmetric functions).

kkk

The purpose of this note is to demonstrate several generalizations of Whitney’s the-
orem |BlaSag86] — a classical formula for the chromatic polynomial of a graph. The

directions in which we generalize this formula are the following:

e Instead of summing over the sets which contain no broken circuits, we can sum
over the sets which are “f-free” (i.e., contain no element of K as a subset),
where R is some fixed set of broken circuits (in particular, 8 can be @, yielding

another well-known formula for the chromatic polynomial).

e Even more generally, instead of summing over K-free subsets, we can make a
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weighted sum over all subsets, where the weight depends on the broken circuits

contained in the subset.
e Analogous (and more general) results hold for chromatic symmetric functions.

e Analogous (and more general) results hold for matroids instead of graphs.

Note that, to my knowledge, the last two generalizations cannot be combined:
Unlike graphs, matroids do not seem to have a well-defined notion of a chromatic
symmetric function.

We shall explore these generalizations in the note below. We shall also use them to
prove an apparently new formula for the chromatic polynomial of a graph obtained
from a transitive digraph by forgetting the orientations of the edges (Proposition
. This latter formula was suggested to me as a conjecture by Alexander Post-
nikov, during a discussion on hyperplane arrangements on a space with a bilinear
form,; it is this formula which gave rise to this whole note. The subject of hyperplane

arrangements, however, will not be breached here.

Acknowledgments

I thank Alexander Postnikov and Richard Stanley for discussions on hyperplane ar-

rangements that led to the results in this note.

4.1 Definitions and a main result

4.1.1 Graphs and colorings

This note will be concerned with finite graphs. While some results of this note can
be generalized to matroids, we shall not discuss this generalization here. Let us start

with the definition of a graph that we shall be using:
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vV
Definition 4.1.1. (a) If V is any set, then (2) will denote the set of all 2-element

subsets of V. In other words, if V' is any set, then we set

(5)=tsePm) 11s-2)

={{s;t} [ seV,teV, s#t}

(where P (V) denotes the powerset of V).

(b) A graph means a pair (V, E), where V' is a set, and where F is a subset of
(Z) A graph (V) E) is said to be finite if the set V is finite. If G = (V, E) is
a graph, then the elements of V' are called the vertices of the graph G, while the
elements of E are called the edges of the graph G. If e is an edge of a graph G,
then the two elements of e are called the endpoints of the edge e. If e = {s,t} is

an edge of a graph (G, then we say that the edge e connects the vertices s and t of

G.

Comparing our definition of a graph with some of the other definitions used in the
literature, we thus observe that our graphs are undirected (i.e., their edges are sets,
not pairs), loopless (i.e., the two endpoints of an edge must always be distinct), edge-
unlabelled (i.e., their edges are just 2-element sets of vertices, rather than objects
with “their own identity”), and do not have multiple edges (or, more precisely, there
is no notion of several edges connecting two vertices, since the edges form a set, nor

a multiset, and do not have labels).

Definition 4.1.2. Let G = (V, E) be a graph. Let X be a set.
(a) An X-coloring of G is defined to mean a map V" — X.
(b) An X-coloring f of G is said to be proper if every edge {s,t} € E satisfies

fs) # F(®).
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4.1.2 Symmetric functions

We shall now briefly introduce the notion of symmetric functions. We shall not use any
nontrivial results about symmetric functions; we will merely need some notations 1]

In the following, N means the set {0,1,2,...}. Also, N, shall mean the set
{1,2,3,...}.

A partition will mean a sequence (A1, A, Az, ...) € N* of nonnegative integers
such that A\; > Ay > A3 > --- and such that all sufficiently high integers ¢ > 1 satisfy
Ai = 0. If A= (A, Mg, A3, ...) is a partition, and if a positive integer n is such that
all integers ¢ > n satisfy A; = 0, then we shall identify the partition A with the finite
sequence (A1, Ag, ..., A,—1). Thus, for example, the sequences (3,1) and (3,1,0) and
the partition (3,1,0,0,0,...) are all identified. Every weakly decreasing finite list of
positive integers thus is identified with a unique partition.

Let k be a commutative ring with unity. We shall keep k fixed throughout the

paper. The reader will not be missing out on anything if she assumes that k = Z.

We consider the k-algebra k[[zq, 22, 23,...]] of (commutative) power series in
countably many distinct indeterminates xy, xs,x3,... over k. It is a topological k-
algebraf] A power series P € k[[z1, 22,23, ...]] is said to be bounded-degree if there

exists an N € N such that every monomial of degree > N appears with coefficient
0 in P. A power series P € k|[[x1, %9, 23,...]] is said to be symmetric if and only
if P is invariant under any permutation of the indeterminates. We let A be the
subset of k [[x1, z9, 3, ...]] consisting of all symmetric bounded-degree power series
P € k|[[x1,x9,23,...]]. This subset A is a k-subalgebra of k [[x1,x2, z3,...]], and is
called the k-algebra of symmetric functions over k.

We shall now define the few families of symmetric functions that we will be con-

IFor an introduction to symmetric functions, see any of [Stan99, Chapter 7|, [Martin15, Chapter
9] and [GriReil5, Chapter 2] (and a variety of other texts).

2See [GriReil5) Section 2.6] or Section of this thesis for the definition of its topology. This
topology makes sure that a sequence (P,), oy of power series converges to some power series P if
and only if, for every monomial m, all sufficiently high n € N satisfy

(the m-coefficient of P,) = (the m-coefficient of P)

(where the meaning of “sufficiently high” can depend on the m).
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cerned with in this note. The first are the power-sum symmetric functions:

Definition 4.1.3. Let n be a positive integer. We define a power series p, €

k [[x1, z2, x3,...]] by

Pn=1af +af+af 4 =) af. (4.1)
j>1
This power series p,, lies in A, and is called the n-th power-sum symmetric function.
We also set pg =1 € A. Thus, p, is defined not only for all positive integers n,
but also for all n € N.

Definition 4.1.4. Let A = (A1, Ay, A3, ...) be a partition. We define a power series

px € k[[x1, 29, x3,...]] by

PAZHPM

i>1

This is well-defined, because the infinite product [] pa, converges (indeed, all but
i>1
finitely many of its factors are 1 (because every sufficiently high integer i satisfies

Ai = 0 and thus py, = pp = 1)).

We notice that every partition A = (A, Ag,..., \g) (written as a finite list of

nonnegative integers) satisfies

DA = PaiPxs " * " DA (4.2)

4.1.3 Chromatic symmetric functions

The next symmetric functions we introduce are the actual subject of this note; they

are the chromatic symmetric functions and originate in [Stanle95, Definition 2.1]:
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Definition 4.1.5. Let G = (V, E) be a finite graph. For every N, -coloring f : V' —

Ny, we let x; denote the monomial [] () in the indeterminates x1,xs, 3, . . ..
veV
We define a power series X € k [[x1, 29, 73, ...]] by

XG = Z X

f:V—>Niisa
proper N -coloring of G

This power series X is called the chromatic symmetric function of G.

We have X¢ € A for every finite graph G = (V, E); this will follow from Theorem
further below (but is also rather obvious).
We notice that X¢ is denoted by ¥ [G] in [GriReil5), §7.3.3].

4.1.4 Connected components

We shall now briefly recall the notion of connected components of a graph.

Definition 4.1.6. Let G = (V, E) be a finite graph. Let u and v be two elements
of V' (that is, two vertices of G). A walk from u to v in G will mean a sequence

(wo, w1, ..., wy) of elements of V' such that wy = v and wy = v and

({wi, w1} € E for every i € {0,1,...,k—1}).

We say that u and v are connected (in G) if there exists a walk from u to v in G.

Definition 4.1.7. Let G = (V, E) be a graph.

(a) We define a binary relation ~¢ (written infix) on the set V" as follows: Given
u eV and v € V, we set u ~¢ v if and only if u and v are connected (in G). It is
well-known that this relation ~g is an equivalence relation. The ~g-equivalence

classes are called the connected components of G.

(b) Assume that the graph G is finite. We let A (G) denote the list of the sizes

of all connected components of GG, in weakly decreasing order. (Each connected
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component should contribute only one entry to the list.) We view A (G) as a

partition (since A (G) is a weakly decreasing finite list of positive integers).

Now, we can state a formula for chromatic symmetric functions:

Theorem 4.1.8. Let G = (V, E) be a finite graph. Then,

Xg = Z (—1)|F| DPA(V,F)-

FCE

(Here, of course, the pair (V| F') is regarded as a graph, and the expression A (V| F)
is understood according to Definition (b).)

This theorem is not new; it appears, e.g., in [Stanle95, Theorem 2.5]. We shall
show a far-reaching generalization of it (Theorem [4.1.11)) soon.

4.1.5 Circuits and broken circuits

Let us now define the notions of cycles and circuits of a graph:

Definition 4.1.9. Let G = (V,E) be a graph. A cycle of G denotes a list

(v1,V9, ..., Upne1) of elements of V' with the following properties:
e We have m > 1.
e We have v,,1 = v;.
e The vertices vy, vo, ..., v, are pairwise distinct.
e We have {v;,v;41} € E for every i € {1,2,...,m}.

If  (v1,v2,. ., Umy1) is a  cycle of @G, then  the set

{{v1, 02}, {va, 3}, .o, {Um, Umg1 }} is called a circuit of G.
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Definition 4.1.10. Let G = (V, F) be a graph. Let X be a totally ordered set.
Let ¢ : E — X be a function. We shall refer to ¢ as the labeling function. For every
edge e of G, we shall refer to £ (e) as the label of e.

A broken circuit of G means a subset of £ having the form C'\ {e}, where C is
a circuit of G, and where e is the unique edge in C' having maximum label (among
the edges in C'). Of course, the notion of a broken circuit of G depends on the
function ¢; however, we suppress the mention of £ in our notation, since we will not

consider situations where two different ¢’s coexist.

Thus, if G is a graph with a labeling function, then any circuit C' of G gives rise to

a broken circuit provided that among the edges in C, only one attains the maximum

label. (If more than one of the edges of C' attains the maximum label, then C' does

not give rise to a broken circuit.) Notice that two different circuits may give rise to

one and the same broken circuit.

Theorem 4.1.11. Let G = (V, E) be a finite graph. Let X be a totally ordered
set. Let £ : E'— X be a function. Let K be some set of broken circuits of G' (not

necessarily containing all of them). Let ax be an element of k for every K € R.

Then,

X =Y (=) ] ax [ Py

FCE KeR;
KCF

(Here, of course, the pair (V, F') is regarded as a graph, and the expression A (V| F)
is understood according to Definition (b).)

Before we come to the proof of this result, let us explore some of its particular

cases. First, a definition is in order:

Definition 4.1.12. Let E be a set. Let K be a subset of the powerset of £ (that
is, a set of subsets of F). A subset F' of E is said to be K-free if F' contains no
K € R as a subset. (For instance, if & = @, then every subset I of E is R-free.)
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Corollary 4.1.13. Let G = (V, E) be a finite graph. Let X be a totally ordered
set. Let £: E'— X be a function. Let K be some set of broken circuits of G' (not

necessarily containing all of them). Then,

Xo= > )"pywm.

FCE;
F is R-free

Corollary 4.1.14. Let G = (V, E) be a finite graph. Let X be a totally ordered
set. Let /: F — X be a function. Then,

Xa = Z (=) oy,

FCE;
F' contains no broken
circuit of G as a subset

Corollary |4.1.14| appears in [Stanle95, Theorem 2.9|, at least in the particular case

in which ¢ is supposed to be injective.

Let us now see how Theorem [£.1.§ Corollary and Corollary can be
derived from Theorem [LT.TTk

Proof of Corollary using Theorem [/.1.11]. For every subset F of E, we have

1, if F is R-free;
H 0= (4.3)
Kes; 0, if F'is not KR-free
KCF

(because if F' is R-free, then the product [] 0 is empty and thus equals 1; otherwise,

KeR;
KCF
the product [] O contains at least one factor and thus equals 0). Now, Theorem
Keg;
KCF
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4.1.11| (applied to 0 instead of ax) yields

Xe=>» (-1 ITo PAVF)

FCE KeSg;
KCF

1, if F'is R-free;

0, if F'is not R-free

(by (3))
1, if F is R-free;
FCE 0, if F is not R-free FCE;
F is R-free
This proves Corollary O

Proof of Corollary using Corollary[{.1.13. Corollary [£.1.14]follows from Corol-
lary when R is set to be the set of all broken circuits of G. O

Proof of Theorem using Theorem [{.1.11. Let X be the totally ordered set {1},
and let ¢ : ' — X be the only possible map. Let & be the empty set. Clearly, R is

a set of broken circuits of G. For every F' C E, the product [] 0 is empty (since K
KeR;
KCF

is the empty set), and thus equals 1. Now, Theorem [4.1.11] (applied to 0 instead of

ak) yields
Xe = Z (=" H 0 Py = Z (_1)‘F‘pA(V,F)-
FCE Kc§ FCE
KCF
=1
This proves Theorem |4.1.8 O
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4.2 Proof of Theorem 4.1.11]

We shall now prepare for the proof of Theorem with some notations and some
lemmas. Our proof will imitate [BlaSag86|, proof of Whitney’s theorem]|.

4.2.1 Eqgs f and basic lemmas

Definition 4.2.1. Let V and X be two sets. Let f : V — X be a map. We let
Eqgs f denote the subset

{{s,t} | (s,t) € V? s#tand f(s)=f(t)}

of (Z) (This is well-defined, because any two elements s and t of V' satisfying

s # t clearly satisfy {s,t} € <‘2/) )

We shall now state some first properties of this notion:

‘ Lemma 4.2.2. Let G = (V, E) be a graph. Let X be a set. Let f:V — X be a
map. Then, the X-coloring f of G is proper if and only if ENEqs f = @.

Proof of Lemma[4.2.9 The set E N Eqs f is precisely the set of edges {s,t} of G
satisfying f (s) = f (¢); meanwhile, the X-coloring f is called proper if and only if no
such edges exist. Thus, Lemma becomes obvious. O

Lemma 4.2.3. Let G = (V| E) be a graph. Let X be a set. Let f: V — X be
a map. Let C be a circuit of G. Let e € C be such that C'\ {e} C Eqs f. Then,
ec FENEgsf.

Proof of Lemma[4.2.5 The set C' is a circuit of G. Hence, we can write C in the

form

C= {{Ul’ UQ} ) {U27 U3} Yty {Uma Um—l—l}}
for some cycle (v1,vg, ..., Upy1) of G. Consider this cycle (vy,vg, ..., Upy1). According
to the definition of a “cycle”; the cycle (v, va, . .., vy41) is a list of elements of V having

the following properties:
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We have m > 1.

e We have v, 11 = ;.

The vertices vy, vy, ..., v, are pairwise distinct.

We have {v;,v;41} € E for every i € {1,2,...,m}.

Recall that e € C. We can thus WLOG assume that e = {v,,, 41} (since oth-
erwise, we can simply relabel the vertices along the cycle (v1,v9,...,Up41)). Assume

this. Since {vy,, vmi1} = €, we have

C\A{e} = {{vi, 0o}, {va,v3},. .., {vm-1,vm}}

(since vy, vy, ..., v, are distinct, and since m > 1 and v,,41 = v;). For every i €

{1,2,...,m — 1}, we have f (v;) = f (v;41) (since

{vi,vip1} € {{vr, 00}, {v2, 03}, .. {om_1,vm}} = C\ {e} CEqsf

). Hence, f(v1) = f(v2) = -+ = f(vn), so that f(v,) = f| v | = f(vmp)
—
=Um+1
Thus, {vm, Vmi1} € Eqs f. Thus, e = {vy,, vmi1} € Egs f. Combined with e € E,
this yields e € E N Eqs f. This proves Lemma [£.2.3] O

Lemma 4.2.4. Let (V, B) be a finite graph. Then,

Y. Xr=nws

f:V—=Ny;
BCEgs f

(Here, x; is defined as in Definition {4.1.5 and the expression A (V, B) is understood
according to Definition (b).)

Proof of Lemmal[{.2.4. Let (C1,Cs,...,Ck) be a list of all connected components
of (V,B), ordered such that |Ci| > [Co| > --+ > [Ck|.  [| Then, A(V,B) =

3Every connected component of (V, B) should appear exactly once in this list.
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(|C1],1Cs], ..., |Ck|]) (by the definition of A (V, B)). Hence, (4.2) (applied to A (V, B)
and |C;| instead of A and ;) shows that

k
PAV.E) = PleuPical - Piew = | | Pie. (4.4)
=1

But for every i € {1,2,...,k}, we have pjc;; = > |Gl (by the definition of p,).
seNy
Hence, (4.4)) becomes

k k k
PA(V,B) = H Dy = H Z !¢l = Z H:r;'f' (4.5)
-1

5 il i=1 seNy (51,52,..,8) E(Ny)F =1
= Ty

seNy

(by the product rule).
The list (Cy, Cy, ..., Cy) contains all connected components of (V, B), each exactly
once. Thus, V = |_|f:1 C;.

We now define a map
®: (N = {f:V =N, | BCEqsf}

as follows: Given any (sy,ss,...,5,) € (N,.)", we let ® (sq,ss,...,5,) be the map
V' — N, which sends every v € V to s;, where i € {1,2,...,k} is such that v € C;.
(This is well-defined, because for every v € V, there exists a unique ¢ € {1,2,...,k}
such that v € Cj; this follows from V = |_|f:1 C;.) This map ® is well-defined,
because for every (si, sg,...,sk) € (N+)k, the map ® (sq, s9,. .., sx) actually belongs
to{f:V —>N; | BCEgsf} f]

A moment’s thought reveals that the map & is injectiveﬂ Let us now show that

the map & is surjective.

4Proof. We just need to check that B C Eqs (® (s1,s2,...,5%)). But this is easy: For every
(u,v) € B, the vertices u and v of (V, B) lie in one and the same connected component C; of the
graph (V, B), and thus (by the definition of ® (s1, $2,...,sx)) the map ® (s, s2, ..., sx) sends both
of them to s;; but this shows that (u,v) € Eqs (P (s1,82,...,8k))-

°In fact, we can reconstruct (si,Sg,...,s;) € (N+)k from its image ® (s1,89,...,Sk), because
each s; is the image of any element of C; under ® (s1, so, ..., sk) (and this allows us to compute s;,
since C; is nonempty).
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In order to show this, we must prove that every map f : V — N, satisfying
B C Egs f has the form ® (sq, So, . . ., sx) for some (s1, sg, ..., Sk) € (N+)k. So let us fix
amap f:V — N, satisfying B C Egs f. We must find some (s1, s2, . .., sz) € (N,)*
such that f = ® (s, 82,...,58k).
We have B C Eqs f. Thus, for every {s,t} € B, we have {s,t} € B C Egs f and
thus
)= F ). (4.6)

Now, if z and y are two elements of V' lying in the same connected component of
(V, B), then
flx)=f(y) (4.7)

H. In other words, the map f is constant on each connected component of (V) B).
Thus, the map f is constant on C; for each i € {1,2,...,k} (since C; is a connected
component of (V,B)). Hence, for each i € {1,2,...,k}, we can define a positive
integer s; € N, to be the image of any element of C; under f (this is well-defined,
because f is constant on C; and thus the choice of the element does not matter).
Define s; € N, for each i € {1,2,...,k} this way. Thus, we have defined a k-tuple
(s1,82,...,55) € (NJ)". Now, f = ®(s1,5s,...,55) (this follows immediately by
recalling the definitions of ® and s;).

Let us now forget that we fixed f. We thus have shown that for every map
f 'V — N, satisfying B C Eqs f, there exists some (s1,Sg,...,8;) € (N+)k such
that f = ® (s1,59,...,8%). In other words, the map ® is surjective. Since ® is both

injective and surjective, we conclude that & is a bijection.

8 Proof of : Let  and y be two elements of V' lying in the same connected component of
(V, B). Then, the vertices x and y are connected by a walk in the graph (V, B) (by the definition
of a “connected component”). Let (vg, v1,...,v;) be this walk (regarded as a sequence of vertices);
thus, vo = « and v; = y. For every ¢ € {0,1,...,5 — 1}, we have {v;,v;11} € B (since (vo,v1,...,v;)
is a walk in the graph (V, B)) and thus f (v;) = f (vi+1) (by (4.6), applied to (s,t) = (v;,vi41)). In

other words, f (vo) = f(v1) = --- = f(v;). Hence, f(vo) = f (v;), so that f <z | = f(v) =

=v9
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Moreover, it is straightforward to see that every map (si,so,...

csi) € (N2)"

satisfies .
C;
XP(s1,52,..,8%) HxLZ | (4-8)
i=1
(by the definitions of Xg (s, s,,...s,) and of ®). Now,
Z Xp= Z X (s1,52,.,5%)
Jfé‘éENﬁ-; (51,82, Sk)E(N+)k |C |
CEqs f = H Zs
(by .
here, we have substituted ® (sq, sa,...,s;) for f in the sum,

since the map ® : (N,)* = {f:V = N, | BCEqs [}

is a bijection

= Z HI‘C‘ = PA(V,B) (by ) :

(51752 7777 Sk;) (N“')kl 1

This proves Lemma [4.2.4]

[]

Lemma 4.2.5. Let G = (V, E) be a finite graph. Let X be a totally ordered set.
Let /: E — X be a function. Let K be a broken circuit of G. Then, K # @.

Proof of Lemma[4.2.5 The set K is a broken circuit of GG, and thus is a circuit of G

with an edge removed (by the definition of a broken circuit). Thus, the set K contains

at least 1 edge (since every circuit of G contains at least 2 edges). This proves Lemma

4.2.0l

4.2.2 Alternating sums

We shall now come to less simple lemmas.

[]

Definition 4.2.6. We shall use the so-called Iverson bracket notation: If S is any

1
logical statement, then [S] shall mean the integer
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The following lemma is probably the most crucial one in this note:

Lemma 4.2.7. Let G = (V, E) be a finite graph. Let X be a totally ordered set.
Let £ : E — X be a function. Let 8 be some set of broken circuits of G (not

necessarily containing all of them). Let ax be an element of k for every K € R.

Let Y be any set. Let f:V — Y be any map. Then,

D

(D' T] ax = [ENEqs f = 2].
BCENEgs f Kes;
KCB

Proof of Lemma[4.2.77. We WLOG assume that £ N Eqs f # & (since otherwise, the
claim is obvioug). Thus, [E N Eqs f = @] = 0.

Pick any d € E N Eqs f with maximum ¢ (d) (among all d € E N Egs f). (This is

clearly possible, since F N Eqs f # &.) Define two subsets U and V of P (E N Eqs f)
as follows:

U={FeP(ENEasf) | d¢ F}:

V={FeP(ENEgf) | de F}.

Thus, we have P (ENEqgs f) =U UV, and the sets U and V are disjoint. Now, we
define a map & : U/ — V by

(®(B) = BU {d}

for every B € U).
"In (slightly) more detail: If £ N Eqs f = @, then the sum

oo 1)| ! I] ax has only
BCENEqgs f KeR;
KCB
one addend (namely, the addend for B = &), and thus simplifies to
since no K € R satisfies K = @
(—1)|g| H ag = H ax = (empty product) ( )
—— iin Rl (by Lemma }4.2.5))
=(-1)°=1 KgCy K=o
~——
=TI
KeR,;
K=0

=1=[ENnEgsf=2].
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This map ® is well-defined (because for every B € U, we have BU {d} € V ED and
a bijectionﬂ Moreover, every B € U satisfies

(_1)|‘I>(B)| _ (_1)|B| (4.9)

[

Now, we claim that, for every B € U and every K € R, we have the following
logical equivalence:

(K C B) « (KC®(B)). (4.10)

Proof of : Let B € U and K € K. We must prove the equivalence .
The definition of ® yields ® (B) = BU{d} D B, so that B C ® (B). Hence, if K C B,
then K C B C ®(B). Therefore, the forward implication of the equivalence
is proven. It thus remains to prove the backward implication of this equivalence. In
other words, it remains to prove that if K C ®(B), then K C B. So let us assume
that K C & (B).

We want to prove that K C B. Assume the contrary. Thus, K € B. We have
K € K. Thus, K is a broken circuit of G (since £ is a set of broken circuits of G).
In other words, K is a subset of E having the form C'\ {e}, where C' is a circuit of
G, and where e is the unique edge in C' having maximum label (among the edges in
C') (because this is how a broken circuit is defined). Consider these C' and e. Thus,
K =C\{e}.

The element e is the unique edge in C' having maximum label (among the edges

in C'). Thus, if ¢’ is any edge in C satisfying ¢ (¢) > ¢ (e), then

e =e. (4.11)

8This follows from the fact that d € E N Eqs f.
9ts inverse is the map ¥ : V — U defined by (¥ (B) = B\ {d} for every B € V).

10 Proof. Let B € U. Thus, d ¢ B (by the definition of U). Now, | ®(B) | = [BU{d}| = |B| +1
——

—BU{d}
(since d ¢ B), so that (—1)@(3)‘ = — (—1)|B‘7 qed.
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But K
~—

\{d} € (BU{d})\{d} € B.

Co(B)=BU{d}

If we had d ¢ K, then we would have K\ {d} = K and therefore K = K'\{d} C B;
this would contradict K ¢ B. Hence, we cannot have d ¢ K. We thus must have
d € K. Hence, d € K = C'\ {e}. Hence, d € C and d # e.

But C'\{e} = K C ®(B) C ENEgsf (since ®(B) € P(ENEgsf)), so that
C\{e} C ENEqgs f C Egs f. Hence, Lemma [4.2.3] (applied to Y instead of X) shows

that e € FNEqs f. Thus, £(d) > ¢(e) (since d was defined to be an element of
E N Egs f with maximum /¢ (d) among all d € E N Egs f).

Also, d € C. Since ¢ (d) > ¢ (e), we can therefore apply (4.11]) to ¢’ = d. We thus

obtain d = e. This contradicts d # e. This contradiction proves that our assumption

was wrong. Hence, K C B is proven. Thus, we have proven the backward implication

of the equivalence (4.10)); this completes the proof of (4.10)).

Now, recall that we have P (E N Eqs f) = YUV, and the sets U and V are disjoint.
Hence, the sum  >°

KeR;

(=1)"®! TT ax can be split into two sums as follows:
BCENEgs f
KCB

> DT ax
BCENEqs f Kes;
KCB

>, (7 11

2 : B

ar + (—1)‘ | H (057¢

Beu (—1)eB) Keg; Bey Ke#&;

=—(- KCB KCB
(by " v N -— J/
= TII _pled)l ax

KeR; BZE:L{( ) Klgﬁ;

KC®(B)
(because of the equivalence (4.10))

KC®(B)
(here, we have substituted ®(B) for B in the sum,
since the map ®:U{—V is a bijection)

_ Z (_ (_1)|<I>(B)|> H ax + Z (_1)|<1>(B)| H ax

KeR; BeUu KeR;
KCo(B) KC®(B)
SO TT e+ =0 [T ax
Beu Keg; BeUud KeR;
KC®(B)

KC®(B)

=0=[FNEgs f =2 (since [ENEgsf=2]=0).

(4.12)
This proves Lemma [1.2.7]
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We now finally proceed to the proof of Theorem 4.1.11};

Proof of Theorem |4.1.11. The definition of X shows that

XG = Z Xt

fiV—=Niisa
proper N4 -coloring of G

= Z f is a proper N, -coloring of Gi X

-~
<= (the Ny-coloring f of G is proper)
<= (ENEgs f=9)

(by Lemma [4.2.2] applied to N4 instead of X)

= Z \[EﬂEqsf:Q]/ X f

= > T e
BCEMEqgs f KeR;
KCB
(by Lemma[£.2.7] applied to Y=N)

— Z Z (_1)|B| HaK X; = Z Z (_1)|B| H“K X

f:V—=Ny BCENEgs f KeR, f:V—=N. BCE; KeR;
—_— KCB BCEgs f KCB
= > S——
BCE; = >
BCEqs f BCE f.V N,
BCEqs f
B B
=> > VP Tl aw [xr =2 0" JTax | > %
BCE f:V—N,; Kes; BCE Kes FV Ny
BCEgs f KCB KCB BCEqgs f
———
=PX(V,B
(by Lemma [4.2.4))
_ |B| _ |F|
= > (-1 ag [ pave = D (=1) aK | PAV.F)
BCE KeR; FCE KES;
KCB KCF

(here, we have renamed the summation index B as F'). This proves Theorem |4.1.11}
O

Thus, Theorem [4.1.11| is proven; as we know, this entails the correctness of The-
orem Corollary |4.1.13| and Corollary 4.1.14
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4.3 The chromatic polynomial

4.3.1 Definition

We have so far studied the chromatic symmetric function. We shall now apply the
above results to the chromatic polynomial. The definition of the chromatic polynomial

rests upon the following fact:

Theorem 4.3.1. Let G = (V, E) be a finite graph. Then, there exists a unique
polynomial P € Z [z] such that every ¢ € N satisfies

P (q) = (the number of all proper {1,2,...,q}-colorings of G).
Definition 4.3.2. Let G = (V,E) be a finite graph. Theorem shows

that there exists a polynomial P € Z][x] such that every ¢ € N satisfies
P (q) = (the number of all proper {1,2,...,q}-colorings of G). This polynomial

P is called the chromatic polynomial of GG, and will be denoted by x¢.

We shall later prove Theorem [£.3.1] (as a consequence of something stronger that
we show). First, we shall state some formulas for the chromatic polynomial which are

analogues of results proven before for the chromatic symmetric function.

4.3.2 Formulas for yg

Before we state several formulas for x, we need to introduce one more notation:

Definition 4.3.3. Let G be a finite graph. We let conn G denote the number of

connected components of G.

The following results are analogues of Theorem Theorem [4.1.11} Corollary
4.1.13| and Corollary [4.1.14] respectively:
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Theorem 4.3.4. Let G = (V, E) be a finite graph. Then,

FCE
(Here, of course, the pair (V) F) is regarded as a graph, and the expression

conn (V, F) is understood according to Definition [4.3.3])

Theorem 4.3.5. Let G = (V, E) be a finite graph. Let X be a totally ordered
set. Let £ : E'— X be a function. Let K be some set of broken circuits of G' (not

necessarily containing all of them). Let ax be an element of k for every K € R.

Then,

G = Z (_1)|F| H ax I_conn(V,F).

FCE KeR;
KCF

(Here, of course, the pair (V,F) is regarded as a graph, and the expression

conn (V, F) is understood according to Definition [4.3.3])

Corollary 4.3.6. Let G = (V, E) be a finite graph. Let X be a totally ordered
set. Let £: E'— X be a function. Let K be some set of broken circuits of G (not

necessarily containing all of them). Then,

FCE;
F is R-free

Corollary 4.3.7. Let G = (V, E) be a finite graph. Let X be a totally ordered
set. Let £ : E — X be a function. Then,

XG = > (— 1)1l geomn(VoF)

FCE;
F' contains no broken
circuit of G as a subset
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4.3.3 Proofs

There are two approaches to these results: One is to derive them similarly to how we
derived the analogous results about X¢; the other is to derive them from the latter.
We shall take the first approach, since it yields a proof of the classical Theorem
“for free”. We begin with an analogue of Lemma [4.2.4}

Lemma 4.3.8. Let (V, B) be a finite graph. Let ¢ € N. Then,

Z 1= qconn(V,B).

f:V%{1)27“'7q};
BCEqs f

(Here, the expression conn (V) B) is understood according to Definition (b).)

One way to prove Lemma is to evaluate the equality given by Lemma

1, ifk<gq

at xp = . Another proof can be obtained by mimicking our proof of
0, ifk>gq

Lemma [4.2.4}

Proof of Lemma[{.3.8 Define (Cy,Cs,...,Cy) as in the proof of Lemma|4.2.4 Thus,
conn (V,B) = k. Define a map ® as in the proof of Lemma but with N
replaced by {1,2,...,q}. Then,

d:{1,2,...,¢}" = {f:V—={1,2,...,q} | BCEqsf}
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is a bijection] Now,

oo

f:V%{1727'7Q};
BCEgs f

P
(31,52,...,sk)e{l,2,...,q}’C
here, we have substituted ® (sq, sq,...,s;) for f in the sum,
since the map ® : {1,2,...,q}k —{f:V—={12,...,q} | BCEqgsf}
is a bijection
= (the number of all (s1,s9,...,5;) € {1,2,... ,q}k>
=dq

conn(V,B)

k=g (since k = conn (V| B)) .

This proves Lemma [4.3.8] O

We shall now show a weaker version of Theorem m (as a stepping stone to the

actual theorem):

Lemma 4.3.9. Let G = (V, E) be a finite graph. Let X be a totally ordered set.
Let £ : E — X be a function. Let 8 be some set of broken circuits of G (not

necessarily containing all of them). Let ax be an element of k for every K € R.

Let ¢ € N. Then,

(the number of all proper {1,2,...,q}-colorings of G)

_ Z (_1)|F| H ax qconn(V,F)‘

FCE KER;
KCF

(Here, of course, the pair (V,F) is regarded as a graph, and the expression

conn (V, F') is understood according to Definition [4.3.3])

' This can be shown in the same way as for the map @ in the proof of Lemma we just have
to replace every Ny by {1,2,...,q}.
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Proof of Lemma[{.3.9. We havd™

(the number of all proper {1,2,...,q}-colorings of G)

= Z f is a proper {1,2,...,q}-coloring of G

fiV—={1,2,...,9} < (the {1,2,...,q}-coloring f of G is proper)
<= (ENEgs f=02)
| (by Lemma [£.2.2] applied to {1,2,...,q} instead of X) ]
= E [ENEgs f= 0]
V—={1,2,.. e
f _){ IE2) 7q} _ (71)‘8‘ H ax

BCENEgs f KeR;
KCB

(by Lemma [4.2.7] applied to Y=N})

= > > U Tae|= > > (WP [

f:V—={1.2,..,¢} BCENEgs f Kes; fiv—{12,..,q BCE; KER;
—_—— KCB BCEqs f KCB
= N ~~ 4
BCE; =3 >
BCEqu BCE f:V—Ny,;
BCEqs f
B B
=> > 0P I ex | =D 0P T ax Yoo
BCE f:V—{1,2,...,q}; Ke#; BCE KEeR; £V={1,2,...q};
BCEgs f KcB KCB BCEgs f
:qconn(V,B)
(by Lemma [£3.8)
B F
— E (_1)| | H ax Conn (V,B) _ E (_1)| | H ax Conn (V,F)
BCE KeR; FCFE KeR;
KCB KCF

(here, we have renamed the summation index B as F'). This proves Theorem [4.1.11]
O

From Lemma [4.3.9, we obtain the following consequence:

12\We are again using the Iverson bracket notation, as defined in Definition m
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Lemma 4.3.10. Let G = (V, E) be a finite graph. Let ¢ € N. Then,

(the number of all proper {1,2,...,q}-colorings of G)

_ Z (_1)|F| qconn(V,F).

FCE

(Here, of course, the pair (V) F) is regarded as a graph, and the expression

conn (V, F') is understood according to Definition [4.3.3])

Proof of Lemma[{.53.10. This is derived from Lemma in the same way as The-
orem 1.8 was derived from Theorem E.3.5 O

Next, we recall a classical fact about a polynomials over fields: Namely, if a poly-
nomial (in one variable) over a field has infinitely many roots, then this polynomial

is 0. Let us state this more formally:

Proposition 4.3.11. Let K be a field. Let P € K [z] be a polynomial over K.
Assume that there are infinitely many A € K satisfying P (A) = 0. Then, P = 0.

We shall use the following consequence of this proposition:

Corollary 4.3.12. Let R be an integral domain. Assume that the canonical ring
homomorphism from the ring Z to the ring R is injective. Let P € R|[z]| be a
polynomial over R. Assume that P (¢ - 1g) = 0 for every ¢ € N (where 15 denotes
the unity of R). Then, P = 0.

Proof of Corollary[{.5.19. Let K denote the fraction field of the integral domain R.
We regard R and R [z] as subrings of K and K [z], respectively. By assumption, we
have P(q-1g) = 0 for every ¢ € N. But the elements ¢ - 1z of R for ¢ € N are
pairwise distinct (since the canonical ring homomorphism from the ring Z to the ring
R is injective). Hence, there are infinitely many A\ € K satisfying P (\) = 0 (namely,
A =¢q-1g for all ¢ € N). Thus, Proposition shows that P = 0. This proves

Corollary O

We can now prove the classical Theorem [4.3.1}
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Proof of Theorem [{.5.1. We need to show that there exists a unique polynomial P €
Z |x] such that every ¢ € N satisfies

P (q) = (the number of all proper {1,2,...,q}-colorings of GG).

To see that such a polynomial exists, we notice that P = S (—1)Ifl geomn(ViF) g
FCE
such a polynomial (by Lemma [4.3.10). It remains to prove that such a polynomial is

unique. This follows from the fact that if two polynomials P, € Z [x] and P, € Z [x]

satisfy
Pi(q) = P (q) for all ¢ € N,
then P, = P, [] Theorem is therefore proven. O

Next, it is the turn of Theorem [£.3.5}

Proof of Theorem[{.3.5 Let R be the polynomial ring Z [yx | K € £], where yx is

a new indeterminate for each K € 8.

The claim of Theorem [4.3.5] is a polynomial identity in the elements ayx of k.
Hence, we can WLOG assume that k = R and ax = yx for each K € K Assume
this. Thus, k is an integral domain, and the canonical ring homomorphism from the
ring Z to the ring k is injective.

For every q € N, we have

Xc (¢) = (the number of all proper {1,2,...,q}-colorings of G)

(by the definition of the chromatic polynomial x¢)

= (=) T ax | g (4.13)

FCE Kes;
KCF

13This fact follows from Corollary 4.3.12[ (applied to R =Z and P = P; — P).
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(by Lemma [4.3.9). Define a polynomial P € k [z] by

p:XG— Z(_l)‘F‘ H ar Conn VF) (414)
FCE KeR,
KCF

Then, for every q € N, we have

Pla ) =Plo)=xcle) - > I ax [ g (by (.14))

= FCE Kes;
KCF

—0 (by (E13)).

Thus, Corollary [4.3.12] (applied to R = k) shows that P = 0. In light of (4.14]), this

rewrites as follows:

Yo = Z (_1)|F| H ax eonn VF)

FCE Kes;
KCF

This proves Theorem |4.3.5 O

Now that Theorem is proven, we could derive Theorem [4.3.4 Corollary
4.3.6| and Corollary from it in the same way as we have derived Theorem [4.1.8,
Corollary [£.1.13] and Corollary from Theorem [L.1.1T] We leave the details to

the reader.

4.3.4 Special case: Whitney’s Broken-Circuit Theorem

Corollary is commonly stated in the following simplified (if less general) form:
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Corollary 4.3.13. Let G = (V, E) be a finite graph. Let X be a totally ordered

set. Let £ : F — X be an injective function. Then,

Yo = Z (_1)|F| 2VI=IEL

FCE;
F' contains no broken
circuit of G as a subset

Corollary is known as Whitney’s Broken-Clircuit theorem (see, e.g.,
[BlaSag86] ).

Notice that ¢ is required to be injective in Corollary [4.3.13} the purpose of this
requirement is to ensure that every circuit of G has a unique edge e with maximum
¢ (e), and thus induces a broken circuit of G. The proof of Corollary relies on

the following standard result:

Lemma 4.3.14. Let (V. F') be a finite graph. Assume that (V, F') has no circuits.
Then, conn (V, F) = |V| — |F].

(A graph which has no circuits is commonly known as a forest.)

Lemma is both extremely elementary and well-known; for example, it ap-
pears in [Bonalll, Proposition 10.6] and in [Bollob79) §1.2, Corollary 6. Let us now
see how it entails Corollary [4.3.13}

Proof of Corollary[4.5.13 Corollary [4.3.13] follows from Corollary Indeed, the

injectivity of £ shows that every circuit of G has a unique edge e with maximum / (e),
and thus contains a broken circuit of G. Therefore, if a subset F' of E contains no
broken circuit of G as a subset, then F' contains no circuit of G either, and therefore
the graph (V, F) contains no circuits; but this entails that conn (V, F) = |V| — |F|

(by Lemma [4.3.14)). Hence, Corollary immediately yields Corollary [4.3.13] [

4.4 Application to transitive directed graphs

We shall now see an application of Corollary to graphs which are obtained

from certain directed graphs by “forgetting the directions of the edges”. Let us first
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introduce the notations involved:

Definition 4.4.1. (a) A digraph means a pair (V, A), where V is a set, and where
A is a subset of V2. Digraphs are also called directed graphs. A digraph (V, A) is
said to be finite if the set V' is finite. If D = (V, A) is a digraph, then the elements
of V are called the vertices of the digraph D, while the elements of A are called the
arcs (or the directed edges) of the digraph D. If a = (v, w) is an arc of a digraph
D, then v is called the source of a, whereas w is called the target of a.

(b) A digraph (V, A) is said to be loopless if every v € V satisfies (v,v) ¢ A.
(In other words, a digraph is loopless if and only if it has no arc whose source and
target are identical.)

(c) A digraph (V, A) is said to be transitive if it has the following property:
For any u € V, v € V and w € V satisfying (u,v) € A and (v,w) € A, we have
(u,w) € A.

(d) A digraph (V, A) is said to be 2-path-free if there exist no three elements
u, v and w of V satisfying (u,v) € A and (v, w) € A.

(e) Let D = (V, A) be a loopless digraph. Define a map set : A — (g) by
setting

(set (v, w) = {v,w} for every (v,w) € A).

(It is easy to see that set is well-defined, because (V, A) is loopless.) The graph
(V,set A) will be denoted by D.

We can now state our application of Corollary [4.3.6, answering a question sug-
gested by Alexander Postnikov:

Proposition 4.4.2. Let D = (V, A) be a finite transitive loopless digraph. Then,

XD = Z (_1)|F| xconn(V,set F)

FCA,;
the digraph (V,F) is 2-path-free

Proof of Proposition[{.4.3 Let E = set A. Then, the definition of D yields D =
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<V, set A) = (V, E).
<~

=E
V . V
The map set : A — 5 (which sends every arc (v,w) € A to {v,w} € i )
restricts to a surjection A — E (since F' = set A). Let us denote this surjection by 7.
Thus, 7 is a map from A to E sending each arc (v,w) € A to {v,w} € E. We shall

soon see that 7 is a bijection.

We define a partial order on the set V' as follows: For i € V and j € V, we set
i < jif and only if (i,7) € A (that is, if and only if there is an arc from ¢ to j in D).
This is a well-defined partial ordelﬂ. Thus, V' becomes a poset. For every ¢ € V' and
j € V satisfying i < j, we let [i,j] denote the interval {k € V | i <k < j} of the
poset V.

There exist no 4,j € V such that both (i,5) and (j,7) belong to A (because if
such ¢ and j would exist, then they would satisfy ¢+ < 7 and j < ¢, but this would
contradict the fact that V' is a poset). Hence, the projection 7w : A — FE is injective,
and thus bijective (since we already know that 7 is surjective). Hence, its inverse

map 7 : E — A is well-defined. For every subset F' of E, we have

F=x(r"(F)) (since 7 is bijective)

=set (77! (F)) (4.15)

(since 7 is a restriction of the map set).

For any (u,v) € A and any subset F' of E, we have the following logical equiva-
lence:

({u,v} € F) <= ((u,v) e 7' (F)) (4.16)

[

“4Tndeed, the relation < that we have just defined is transitive (since the digraph (V, A) is tran-
sitive) and antisymmetric (since the digraph (V, A) is loopless).

15 Proof of : Let (u,v) € A, and let F' be a subset of E. We need to prove the equivalence
(4.16]).

From (u,v) € A, we see that 7 (u,v) is well-defined. The definition of 7 shows that 7 (u,v) =
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Define a function ¢’ : A — N by

¢ (i,5) = Ili,J) for all (i, ) € A,

Define a function ¢ : E — N by £ = ' on~!. Thus, £ o 7w = {'. Therefore,

4 w = (Lom)(i,5) = (i,7) = [[i, ]]] (4.17)
—n(i,j) =t

for all (7,7) € A.
Let 8 be the set
[{{i, kY {k 1 | (k) € Aand (k,j) € A}.

Each K € R is a broken circuit of D E Thus, K is a set of broken circuits of D.

{u,v}. Hence, we have the following chain of equivalences:

{u,v} EF| < (r(u,v) €F) < ((u,v) en ' (F)).
——

=7(u,v)

This proves .

16 Proof. Let K € & Then, K = {{i,k},{k,j}} for some (i,k) € A and (k,j) € A (by the
definition of K). Consider these (i, k) and (k,j). Since (V, A) is transitive, we have (i, j) € A. Thus,
{i,k}, {k,j} and {4, j} are edges of D. These edges form a circuit of D. In particular, 4, j and k
are pairwise distinct.

Applications of (LT7) yield £ ({3, j}) = |[i, ]l £ ({i, k}) = [li, K] and € ({k,}) = |[k, ]I

But we have i < k (since (i,k) € A) and k < j (since (k, j) € A). Hence, [i, k] is a proper subset of
[i, j]. (It is proper because it does not contain j, whereas [¢, j] does.) Hence, |[i, k]| < |[¢, 5]|. Thus,
C{i, 3}) = |15, 4] > |li, k]| = £({i,k}). Similarly, £({i,5}) > €({k,j}). The last two inequalities
show that {7, j} is the unique edge of the circuit {{i, k},{k, j}, {i,j}} having maximum label. Hence,
{{i,k},{k,3},{3,5}} \ {{i,j}} is a broken circuit of D. Since

i, kY k31, {6, 33\ {4, 5} = {{i, k} , {k, j}} (since 4, j and k are pairwise distinct)
- K,

this shows that K is a broken circuit of D, ged.
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A subset F of E is f-free if and only if the digraph (V, 77! (F)) is 2-path-fred"]
Now, Corollary (applied to X = N and G = D) shows that

— [F| conn(V,F)
XD = E (—1) Z ’
D e
FCE; 1 conn(Vset(wfl(F)>>
F is R-free :(_1)|Tr <F>’ =z 7
_ T/ (since 7 is bijective) (by (4.15))
FCE;

the digraph (V,ﬂ'_l(F)) is 2-path-free
(since we have just shown that

a subset F' of E is R-free if and only if

the digraph (V,wfl(F)) is 2-path-free)

_ Z (_1)|7r71(F)| xconn(V,set(ﬂ'*l(F)))

FCE;
the digraph (V,w_l(F)) is 2-path-free

— Z (_1)|B\ a:conn(V,set B)

BCA,;
the digraph (V,B) is 2-path-free

here, we have substituted B for 77! (F) in the sum,

since the map 7 : A — FE is bijective and thus induces

a bijection from the subsets of E to the subsets of A
sending each F' C F to 7~ (F)

— Z (_1)|F| xconn(V,set F)

FCA;
the digraph (V,F) is 2-path-free

17 Proof. Let F be a subset of E. Then, we have the following equivalence of statements:

(F is R-free)
— ({{i,k},{k,j}} € F whenever (i,k) € A and (k,j) € A)
(by the definition of &)
<= (no (i,k) € Aand (k,j) € A satisty {{i,k},{k,j}} CF)
<= (no (i,k) € Aand (k,j) € Asatisty {i,k} € F and {k,j} € F)
< (no (i,k) € Aand (k,j) € Asatisfy (i,k) €~ (F) and {k,j} € F)
because for (i,k) € A, we have {i,k} € F if and only if (i,k) € 7! (F)
( (by 7 applied to u =7 and v = k) >
< (no (i,k) € Aand (k,j) € A satisfy (i,k) € v~' (F) and (k,j) € n~ ' (F))
because for (k,j) € A, we have {k,j} € F if and only if (k,j) € 7= (F)
( (by , applied to u =k and v = j) )
— (the digraph (V, T (F )) is 2—path—free) (by the definition of “2-path-free”) ,

qed.
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(here, we have renamed the summation index B as F'). This proves Proposition

442 O

4.5 A matroidal generalization

4.5.1 An introduction to matroids

We shall now present a result that can be considered as a generalization of Theorem
in a different direction than Theorem [4.1.11} namely, a formula for the charac-
teristic polynomial of a matroid. Let us first recall the basic notions from the theory
of matroids that will be needed to state it.

First, we introduce some basic poset-related terminology:

Definition 4.5.1. Let P be a poset.

(a) An element v of P is said to be mazimal (with respect to P) if and only if
every w € P satisfying w > v must satisfy w = v.

(b) An element v of P is said to be minimal (with respect to P) if and only if

every w € P satisfying w < v must satisfy w = v.

Definition 4.5.2. For any set F, we shall regard the powerset P (E) as a poset
(with respect to inclusion). Thus, any subset S of P (E) also becomes a poset,
and therefore the notions of “minimal” and “maximal” elements in S make sense.

Beware that these notions are not related to size; i.e., a maximal element of S

might not be a maximum-size element of S.
Now, let us define the notion of “matroid” that we will use:

Definition 4.5.3. (a) A matroid means a pair (F,Z) consisting of a finite set £
and a set Z C P (F) satisfying the following axioms:

e Matroid axiom 1: We have @ € 7.

o Matroid axiom 2: f Y € T and Z € P (E) are such that Z C Y, then Z € 7.
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o Matroid axiom 3: If Y € 7 and Z € T are such that |Y| < |Z]|, then there
exists some x € Z \ Y such that Y U{z} € Z.

(b) Let (E,Z) be a matroid. A subset S of E is said to be independent (for this
matroid) if and only if S € Z. The set E is called the ground set of the matroid
(E,T).

Different texts give different definitions of a matroid; these definitions are (mostly)
equivalent, but not always in the obvious way™} Definition is how a matroid
is defined in [Schrij13, §10.1] and in [Martinl5l Definition 3.15] (where it is called a
“(matroid) independence system”). There exist other definitions of a matroid, which
turn out to be equivalent. The definition of a matroid given in Stanley’s [Stanley06],

Definition 3.8| is directly equivalent to Definition [4.5.3] with the only differences that

e Stanley replaces Matroid axiom 1 by the requirement that Z # @& (which is, of
course, equivalent to Matroid axiom 1 as long as Matroid axiom 2 is assumed),

and

e Stanley replaces Matroid axiom 3 by the requirement that for every 7' € P (E),
all maximal elements of ZNP (T') have the same cardinality{"] (this requirement

is equivalent to Matroid axiom 3 as long as Matroid axiom 2 is assumed).

We now introduce some terminology related to matroids:

Definition 4.5.4. Let M = (E,Z) be a matroid.
(a) We define a function 7, : P (E) — N by setting

ry (S) =max{|Z| | Z€Zand Z C S} for every S C E. (4.18)

18] e., it sometimes happens that two different texts both define a matroid as a pair (E,U) of a
finite set E and a subset U C P (E), but they require these pairs (E,U) to satisfy non-equivalent
axioms, and the equivalence between their definitions is more complicated than just “a pair (E,U)
is a matroid for one definition if and only if it is a matroid for the other”.

9Here, as we have already explained, we regard Z NP (T) as a poset with respect to inclusion.
Thus, an element Y of this poset is maximal if and only if there exists no Z € ZN P (T') such that
Y is a proper subset of Z.
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(Note that the right hand side of is well-defined, because there exists at least
one Z € T satisfying Z C S (namely, Z = @).) If S is a subset of E, then the
nonnegative integer 7y, (S) is called the rank of S (with respect to M). It is clear
that 75 is a weakly increasing function from the poset P (E) to N.

(b) If £ € N, then a k-flat of M means a subset of E which has rank k and is
maximal among all such subsets (i.e., it is not a proper subset of any other subset
having rank k). (Beware: Not all k-flats have the same size.) A flat of M is a
subset of I/ which is a k-flat for some k£ € N. We let Flats M denote the set of all
flats of M; thus, Flats M is a subposet of P (E).

(c) A circuit of M means a minimal element of P (E) \ Z. (That is, a circuit
of M means a subset of E which is not independent (for M) and which is minimal
among such subsets.)

(d) An element e of E is said to be a loop (of M) if {e} ¢ Z. The matroid M

is said to be loopless if no loops (of M) exist.

Notice that the function that we called r), in Definition (a) is denoted by

rk in Stanley’s [Stanley06, Lecture 3|.

One of the most classical examples of a matroid is the graphical matroid of a

graph:

Example 4.5.5. Let G = (V, E) be a finite graph. Define a subset Z of P (E) by

I={T €P(E) | T contains no circuit of G as a subset} .

Then, (E,Z) is a matroid; it is called the graphical matroid (or the cycle matroid)
of G. It has the following properties:

e The matroid (F,Z) is loopless.

e For each T' € P (E), we have

rer (T) = |V|—conn (V,T)
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(where conn (V,T) is defined as in Definition |4.3.3]).
e The circuits of the matroid (F,Z) are precisely the circuits of the graph G.

e The flats of the matroid (E,Z) are related to colorings of G. More precisely:
For each set X and each X-coloring f of GG, the set £ N Eqs f is a flat of
(E,Z). Every flat of (E,Z) can be obtained in this way when X is chosen
large enough; but often, several distinct X-colorings f lead to one and the

same flat £ N Eqs f.

We recall three basic facts that are used countless times in arguing about matroids:
| Lemma 4.5.6. Let M = (E,Z) be a matroid. Let T € Z. Then, ry (T') = |T).

Proof of Lemmal[{.5.60,. We have T' € Z and T C T. Thus, T is a Z € T satisfying
Z CT. Therefore, |T| € {|Z| | Z €Z and Z C T}, so that

IT| <max{|Z| | Z€Zand Z C T} (4.19)

(since any element of a set of integers is smaller or equal to the maximum of this set).

On the other hand, the definition of rj; yields
ry(T)=max{|Z| | Z€Zand Z CT}.
Hence, rewrites as follows:
T <ry(T).
Also,

ry (7)) =max{|Z| | Z€eZand Z C T} (by the definition of ry)
e{|Z| | Z€Zand Z C T}
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(since the maximum of any set belongs to this set). Thus, there exists a Z € T
satisfying Z C T and ry (T) = |Z]. Consider this Z. From Z C T, we obtain
|Z] < |T, so that ry (T') = |Z| < |T|. Combining this with |T'| < 7y (T'), we obtain
ra (T) = |T'|. This proves Lemma [4.5.6] O

Lemma 4.5.7. Let M = (E,Z) be a matroid. Let @ € P (FE)\ Z. Then, there
exists a circuit C' of M such that C' C Q.

Proof of Lemma[4.5.7 We have @Q € P (F)\ Z. Thus, there exists at least one
C € P(E)\Z such that C' C @ (namely, C' = @Q). Thus, there also exists a minimal
such C. Consider this minimal C'. We know that C' is a minimal element of P (E)\Z
such that C' C @. In other words, C' is an element of P (F)\ Z satisfying C' C ), and

moreover,
every D € P (FE) \ Z satisfying D C Q and D C C must satisfy D = C.  (4.20)

Thus, C is a minimal element of P (E)\Z [l In other words, C' is a circuit of
M (by the definition of a “circuit”). This circuit C satisfies C' C (). Thus, we have
constructed a circuit C' of M satisfying C' C (). Lemma is thus proven. O]

Lemma 4.5.8. Let M = (E,Z) be a matroid. Let T be a subset of E. Let S € 7
be such that S C T. Then, there exists an S’ € T satisfying S C S’ C T and
S| = rar (T).

Proof of Lemma[4.5.8 Clearly, there exists at least one S” € T satisfying S C 8" C T
(namely, S” = S). Hence, there exists a maximal such S’. Let @) be such a maximal

S’. Thus, @ is an element of Z satisfying S C Q C T.

20 Proof. We need to show that every D € P (E) \ T satisfying D C C must satisfy D = C (since
we already know that C € P (E) \ 7).

So let D € P(E)\ Z be such that D C C. Then, D C C C Q. Hence, shows that D = C.
This completes our proof.
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Recall that

ry (T) =max{|Z| | Z€Zand Z C T} (by the definition of 7y;)

e{|Z| | ZeTand ZC T}

(since the maximum of any set must belong to this set). Hence, there exists some
Z € T satistying Z C T and 7y (T) = |Z]. Denote such a Z by W. Thus, W is an
element of Z satisfying W C T and ry, (T') = |W].

We have |Q| € {|Z| | Z€Z and Z C T} (since Q € Z and Q C T'). Since any
element of a set is smaller or equal to the maximum of this set, this entails that
Q| <max{|Z] | Z€Zand Z CT}=ry(T)=|W|.

Now, assume (for the sake of contradiction) that |Q| # |W|. Thus, |Q| < |[W|
(since |Q| < |W]). Hence, Matroid axiom 3 (applied to Y = @ and Z = W) shows
that there exists some z € W\ @ such that Q U {z} € Z. Consider this . We have
reW\NQCW CT,sothat QU {z} C T (since @ C T). Also, z ¢ @ (since
re W\ Q).

Recall that @ is a maximal S’ € 7 satisfying S C 5" C T'. Thus, if some S’ € 7
satisfies S C " C T and S’ O @, then S" = Q. Applying this to S’ = Q U {z},
we obtain QU {z} = @ (since S C Q C QU{z} C T and QU {z} O Q). Thus,
x € . But this contradicts x ¢ ). This contradiction shows that our assumption
(that |@Q| # |W|) was wrong. Hence, |Q| = |W/| = ry (T'). Thus, there exists an
S" € T satisfying S € 8" C T and |S'| = ry (T) (namely, S = @). This proves
Lemma [4.5.8| ]

4.5.2 The lattice of flats

We shall now show a lemma that can be regarded as an alternative criterion for a

subset of E to be a flat:

Lemma 4.5.9. Let M = (F,Z) be a matroid. Let T be a subset of E. Then, the

following statements are equivalent:
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Statement §1: The set T is a flat of M.
Statement Fo: If C'is a circuit of M, and if e € C is such that C'\ {e} C T,
then C CT.

Proof of Lemmal[{.5.9. Proof of the implication §1 = §2: Assume that Statement
$1 holds. We must prove that Statement §» holds.

Let C be a circuit of M. Let e € C' be such that C'\ {e} C T. We must prove
that C C T.

Assume the contrary. Thus, C' ¢ T. Combining this with C'\ {e} C T, we obtain
e ¢ T. Hence, T is a proper subset of T'U {e}.

We have assumed that Statement §; holds. In other words, the set 71" is a flat of
M. In other words, there exists some k € N such that T is a k-flat of M. Consider
this k.

The set T is a k-flat of M, thus a subset of £ which has rank £ and is maximal
among all such subsets. In other words, ry; (1)) = k, but every subset S of E for

which T is a proper subset of S must satisfy
ru (S) # k. (4.21)

Applying to S = T'U{e}, we obtain 5, (T'U {e}) # k. Since TU{e} O T (and
since the function ry; : P (E) — N is weakly increasing), we have ry, (T'U {e}) >
ra (T) = k. Combined with ry (T'U {e}) # k, this yields ry (T'U{e}) > k. Thus,
ry (TU{e}) >k+1.

Notice that C'\ {e} is a proper subset of C' (since e € C'). The set C is a circuit of
M, thus a minimal element of P (E) \ Z (by the definition of a “circuit”). Hence, no
proper subset of C' belongs to P (E)\Z (because C'is minimal). In other words, every
proper subset of C' belongs to Z. Applying this to the proper subset C'\ {e} of C, we
conclude that C'\ {e} belongs to Z. Hence, Lemma [4.5.8] (applied to S = C'\ {e})
shows that there exists an S’ € Z satisfying C'\ {e} C 5" C T and |S’"| = rp (7).
Denote this S” by S. Thus, S is an element of Z satisfying C'\ {e¢} € S C T and
|S| = rar (T).
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Furthermore, S C T' C T'U {e}. Thus, Lemma [£.5.8 (applied to 7' U {e} instead
of T') shows that there exists an S’ € Z satisfying S C 8" C T'U {e} and || =
rar (T'U {e}). Consider this S’

We have |S'| = rar (T U{e}) > ray (T). Hence, S’ Z T PY Combining this with
S" C T U{e}, we obtain e € S’. Combining this with C'\ {e} C ', we find that
(C\{e})u{e} C &' Thus, C = (C\ {e})U{e} C &' Since S’ € Z, this entails that
C € T (by Matroid axiom 2). But C' € P (F) \ Z (since C' is a minimal element of
P(E)\Z), so that C ¢ Z. This contradicts C' € Z. This contradiction shows that
our assumption was wrong. Hence, C' C T is proven. Therefore, Statement §, holds.
Thus, the implication §; = §» is proven.

Proof of the implication §» = §1: Assume that Statement §o holds. We must
prove that Statement §; holds.

Let k = rp (T'). We shall show that T is a k-flat of M.

Let W be a subset of E which has rank k and satisfies T C W. We shall show
that T'=W.

Indeed, assume the contrary. Thus, T # W. Combined with 7' C W, this shows
that T is a proper subset of W. Thus, there exists an e € W \ T'. Consider this e.
We have e ¢ T (since e € W\ T).

We have

k=ry(T)=max{|Z] | Z€Zand Z C T} (by the definition of 7y;)

e{lZ| | Z€eZand ZC T}

(since the maximum of a set must belong to that set). Hence, there exists some Z € 7

satisfying Z C T and k = |Z|. Denote this Z by K. Thus, K is an element of Z and

21 Proof. Assume the contrary. Thus, S’ C T. Hence, S’ is an element of T and satisfies S’ C T.
Thus, || €{|Z| | Z€Zand Z CT}.
Now, the definition of r,; yields

ry (T)=max{|Z] | Z€Zand Z CT} > |5

(since |S’| € {|Z| | Z€Z and Z C T}). This contradicts |S’| > rps (T'). This contradiction proves
that our assumption was wrong, qed.
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satisfies K C T and k = |K|. Notice that e ¢ T, so that e ¢ K (since K C T).

We have 7y (W) = k (since W has rank k). Hence, K U{e} ¢ Z [ In other
words, K U {e} € P(E)\Z. Hence, Lemma [4.5.7] (applied to @ = K U {e}) shows
that there exists a circuit C' of M such that C' C K U {e}. Consider this C'. From
C C K U{e}, we obtain C'\ {e} C K CT.

From C'\ {e} C K, we conclude (using Matroid axiom 2) that C'\ {e} € Z (since
K € 7). On the other hand, C is a circuit of M. In other words, C' is a minimal
element of P (F) \ Z (by the definition of a “circuit”). Hence, C' € P (E) \ Z, so that
C' ¢ Z. Hence, e € C (since otherwise, we would have C'\ {e} = C ¢ Z, which would
contradict C'\ {e} € Z). Now, Statement Fo shows that C' C T. Hence, e € C C T,
which contradicts e ¢ T.

This contradiction shows that our assumption was wrong. Hence, T" = W is
proven.

Now, forget that we fixed W. Thus, we have shown that if W is a subset of F
which has rank £ and satisfies T' C W, then T'= W. In other words, T is a subset of
E which has rank k and is maximal among all such subsets (because we already know
that 7" has rank ry, (T') = k). In other words, T is a k-flat of M (by the definition of
a “k-flat”). Thus, T is a flat of M. In other words, Statement §; holds. This proves
the implication §2 = §1.

We have now proven the implications §; = §» and §y = §1. Together, these

implications show that Statements §; and §» are equivalent. This proves Lemma

4.5.9 O

Corollary 4.5.10. Let M = (E,Z) be a matroid. Let Fy, Fy, ..., Fy be flats of
M. Then, FiNFyN---N Fy is a flat of M. (Notice that k is allowed to be 0 here;
in this case, the empty intersection F; N Fy N --- N F} is to be interpreted as E.)

Proof of Corollaryl|4.5.10 Lemma gives a necessary and sufficient criterion for

22 Proof. Assume the contrary. Thus, K U {e} € Z. Thus, s (K U{e}) = |K U {e}| (by Lemma

[4.5.6). Thus, rar (K U{e}) = |K U{e}| > |K]| (since e ¢ K).

But KU{e} CW (since K CT C W ande € W\T CW). Since the function r; is weakly
increasing, this yields ras (K U{e}) < rp (W) = k = |K|. This contradicts rp (K U{e}) > |K].
This contradiction proves that our assumption was wrong, qged.
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a subset T of F/ to be a flat of M. It is easy to see that if this criterion is satisfied for
T = F, for T = F;, etc., and for T' = F},, then it is satisfied for T'= FiNEFyN---NF}.
In other words, if F}, Fs, ..., F}, are flats of M, then Fi N FyN---N F} is a flat of M.

H This proves Corollary 4.5.10 [

Corollary4.5.10| (a well-known fact, which is left to the reader to prove in [Stanley06),

§3.1]) allows us to define the closure of a set in a matroid:

Definition 4.5.11. Let M = (F,Z) be a matroid. Let T" be a subset of E. The

closure of T is defined to be the intersection of all flats of M which contain T as

a subset. In other words, the closure of 7" is defined to be ()  F. The closure

FeFlats M;
TCF

of T is denoted by T.
The following proposition gathers some simple properties of closures in matroids:

Proposition 4.5.12. Let M = (E,Z) be a matroid.
(a) If T is a subset of E, then T is a flat of M satisfying T C T.
(b) If G is a flat of M, then G = G.
(c) If T'is a subset of E and if G is a flat of M satisfying T C G, then T C G.
(d) If S and T are two subsets of E satisfying S C T, then S C T.

(e) If the matroid M is loopless, then @ = @.

23Here is this argument in slightly more detail:
For every i € {1,2,...,k}, the following statement holds: If C is a circuit of M, and if e € C' is
such that C'\ {e} C F;, then
C CF,. (4.22)

Proof of @ : Let i € {1,2,...,k}. Then, the set F; is a flat of M. In other words, Statement
51 of Lemma [4.5.9] is satisfied for T = F;. Therefore, Statement §2 of Lemma must also be
satisfied for T = F; (since Lemma m shows that the Statements §; and Fo are equivalent). In
other words, if C is a circuit of M, and if e € C' is such that C'\ {e} C F;, then C C F;. This proves
@22).

Now, let C be a circuit of M, and let e € C be such that C'\ {e} C Fy N FaN---N Fy. For every
i€{1,2,...,k}, we have C'\ {e} C FyNF;N---NF}, C F}, and therefore C C F; (by ([£22)). So we
have shown the inclusion C' C F; for each i € {1,2,...,k}. Combining these k inclusions, we obtain
CCFHFNFkEKN---NFg.

Now, forget that we fixed C'. We thus have shown that if C is a circuit of M, and if e € C' is such
that C\ {e} C FiNFyN---NFg, then C C Fy N FyN---N Fj. In other words, Statement Fo of
Lemma is satisfied for T = Fy N Fy N --- N F}. Therefore, Statement §; of Lemma must
also be satisfied for T = Fy N F, N --- N Fy, (since Lemma m shows that the Statements §; and
§2 are equivalent). In other words, the set F; N FyN--- N Fy is a flat of M. Qed.
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(f) Every subset T of E satisfies 7y (T') = rar (T).
(g) If T is a subset of E and if G is a flat of M, then the conditions (T C G)

and (T C G) are equivalent.

Proof of Proposition[{.5.19 (a) The set Flats M is a subset of the finite set P (E),
and thus itself finite.
Let T be a subset of E. The closure T of T is defined as (] F. Now,

FeFlats M;
TCF

Corollary shows that any intersection of finitely many flats of M is a flat of M.
Hence, () F (being an intersection of finitely many flats of M |j> is a flat of

FeFlats M;
TCF B B
M. In other words, T"is a flat of M (since T'= (| F).
FeFlats M;
TCF
Also, T' C F for every F' € Flats M satisfying T C F. Hence, TC (| F=T.
FeFlats M;
TCF

This completes the proof of Proposition 4.5.12| (a).
(c) Let T be a subset of E, and let G be a flat of M satisfying " C G. Then, G
is an element of Flats G satisfying 7' C GG. Hence, G is one term in the intersection

N F. Thus, () F CG. But the definition of T yields T= (| F C

FeFlats M; FeFlats M; FeFlats M;
TCF TCF TCF

G. This proves Proposition |4.5.12f (c).
(b) Let G be a flat of M. Proposition4.5.12(b) (applied to T = G) yields G C G.

But Proposition (a) (applied to T' = G) shows that G is a flat of M satisfying
G CQG. Combining G C G with G C G, we obtain G = G. This proves Proposition
()

(d) Let S and T be two subsets of E satisfying S C T. Proposition (a)
shows that T is a flat of M satisfying T C T. Now, S C T C T. Hence, Proposition
(b) (applied to S and T instead of T and G) shows S C T. This proves
Proposition (d).

(e) Assume that the matroid M is loopless. In other words, no loops (of M) exist.

The definition of 73, quickly yields ry (@) = 0. In other words, the set @ has
rank 0. We shall now show that @ is a 0-flat of M.

24“Finitely many” since the set Flats M is finite.
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Indeed, let W be a subset of E which has rank 0 and satisfies @ C W. We shall
show that @ = W.

Assume the contrary. Thus, @ # W. Hence, W has an element w. Consider this
w. The element w of E is not a loop (since no loops exist). In other words, we cannot
have {w} ¢ Z (since w is a loop if and only if {w} ¢ Z (by the definition of a loop)).
In other words, we must have {w} € Z. Clearly, {w} C W (since w € W). Thus,
{w} is a Z € T satistying Z C W. Thus, {w}| €{|Z]| | Z€Z and Z C W}.

But W has rank 0. In other words,

O=ry (W)=max{|Z] | Z€Z and Z C W} (by the definition of 7,;)
> {w}] (since [{w}| €{|Z] | Z€Zand Z CW})

which is absurd. This contradiction shows that our assumption was wrong. Hence,
@ = W is proven.

Let us now forget that we fixed W. We thus have proven that if W is any subset
of ¥ which has rank 0 and satisfies @ C W, then & = W. Thus, @ is a subset
of E' which has rank 0 and is maximal among all such subsets (because we already
know that @ has rank 0). In other words, @ is a O-flat of M (by the definition of a
“0-flat”). Thus, @ is a flat of M. Thus, Proposition (b) (applied to G = @)
yields @ = @. This proves Proposition (e).

(f) Let T be a subset of E. We have T C T (by Proposition (a)), and thus
ra (T) < rar (T) (since the function 7y is weakly increasing).

Let k = rp (T). Thus, there exists a Q € P (E) satisfying T C Q and k = 7 (Q)
(namely, @@ = T'). Hence, there exists a maximal such ). Denote this @ by R. Thus,
R is a maximal ) € P (E) satisfying 7' C @ and k = ry, (Q). In particular, R is an
element of P (F) and satisfies T'C R and k = ry/ (R).

Now, R is a subset of F (since R € P (F)) and has rank 5, (R) = k. Thus, Ris a

subset of E which has rank k. Furthermore, R is maximal among all such subsetﬂ.

25 Proof. Let W be any subset of E which has rank k& and satisfies W O R. We must prove that
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Thus, R is a k-flat of M (by the definition of a “k-flat”), and therefore a flat of
M. Now, Proposition (c) (applied to G = R) shows that T C R. Since the
function r); is weakly increasing, this yields ry, (T) < 7y (R) = k. Combining this
with k =7y (T) <7y (T), we obtain 7, (T) =k = ry (T). This proves Proposition
(f)

(g) Let T be a subset of E. Let G be a flat of M. Proposition (a) shows
that T C T. Hence, if T C G, then T C T C G. Thus, we have proven the implication
(T € G) = (I' € G). The reverse implication (i.e., the implication (T C G) =
(T € G)) follows from Proposition (c). Combining these two implications,
we obtain the equivalence (T C G) <= (T C G). This proves Proposition

(2) 0

We shall now recall a few more classical notions related to posets:

Definition 4.5.13. Let P be a poset.

(a) An element p € P is said to be a global minimum of P if every ¢ € P
satisfies p < ¢q. Clearly, a global minimum of P is unique if it exists.

(b) An element p € P is said to be a global mazimum of P if every ¢ € P
satisfies p > ¢. Clearly, a global maximum of P is unique if it exists.

(c) Let z and y be two elements of P. An upper bound of x and y (in P) means
an element z € P satisfying z > x and z > y. A join (or least upper bound) of x
and y (in P) means an upper bound z of z and y such that every upper bound 2’
of x and y satisfies 2z’ > z. In other words, a join of x and ¥ is a global minimum of
the subposet {w € P | w > x and w > y} of P. Thus, a join of  and y is unique
if it exists.

(d) Let = and y be two elements of P. A lower bound of  and y (in P) means

an element z € P satisfying z < z and z < y. A meet (or greatest lower bound) of

x and y (in P) means a lower bound z of z and y such that every lower bound 2’

W =R.

Wehave W € P(E), T C RC W and k = rp; (W) (since W has rank k). Thus, Wisa @ € P (F)
satisfying T C @ and k = )7 (Q). But recall that R is a maximal such Q. Hence, if W D R, then
W = R. Therefore, W = R (since we know that W DO R). Qed.
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of x and y satisfies 2/ < z. In other words, a meet of x and y is a global maximum
of the subposet {w € P | w <z and w <y} of P. Thus, a meet of z and y is
unique if it exists.

(e) The poset P is said to be a lattice if and only if it has a global minimum

and a global maximum, and every two elements of P have a meet and a join.

Proposition 4.5.14. Let M = (E,Z) be a matroid. The subposet Flats M of the

poset P (E) is a lattice.

Proof of Proposition[{.5.14 By the definition of a lattice, it suffices to check the
following four claims:

Claim 1: The poset Flats M has a global minimum.

Claim 2: The poset Flats M has a global maximum.

Claim 3: Every two elements of Flats M have a meet (in Flats M).

Claim 4: Every two elements of Flats M have a join (in Flats M).

Proof of Claim 1: Applying Proposition (a) to T = @, we see that & is a
flat of M satisfying @ C &. In particular, & is a flat of M, so that & € Flats M. If
G is a flat of M, then @ C G (by Proposition (c), applied to T'= &). Hence,
& is a global minimum of the poset Flats M. Thus, the poset Flats M has a global
minimum. This proves Claim 1.

Proof of Claim 2: Applying Proposition (a) to T = E, we see that E is a
flat of M satisfying £ C E. From E C E, we conclude that E = E. Thus, F is a flat
of M (since E is a flat of M). In other words, E € Flats M. If G is a flat of M, then
E O G (obviously). Hence, E is a global maximum of the poset Flats M. Thus, the
poset Flats M has a global maximum. This proves Claim 2.

Proof of Claim 3: Let F and G be two elements of Flats M. We have to prove
that F' and G have a meet.

We know that F' and G are elements of Flats M, thus flats of M. Hence, Corollary
shows that F'N G is a flat of M. In other words, F'N G € Flats M. Clearly,
FNG C Fand FNG C G; thus, FN G is a lower bound of F and G in Flats M.

242



Also, every lower bound H of F' and G in Flats M satisfies H C FNG E] Hence,
FNGisameet of F and G. Thus, F and G have a meet. This proves Claim 3.

Proof of Claim 4: Let F and G be two elements of Flats M. We have to prove
that F' and G have a join.

We know that F' and G are elements of Flats M, thus flats of M. Proposition[4.5.12]
(a) (applied to T' = FUG) shows that F'U G is a flat of M satisfying FUG C F UG.
Now, FUG € Flats M (since F UG is a flat of M). Clearly, F C FUG C FUG
and G C FUG C FUG; thus, FUG is an upper bound of F' and G in Flats M.
Also, every upper bound H of F and G in Flats M satisfies H O FUG . Hence,
F UG is a join of F and G. Thus, F and G have a join. This proves Claim 4.

We have now proven all four Claims 1, 2, 3, and 4. Thus, Proposition is

proven. 0

Definition 4.5.15. Let M = (E,Z) be a matroid. Proposition [4.5.14] shows that
the subposet Flats M of the poset P (FE) is a lattice. This subposet Flats M is
called the lattice of flats of M. (Beware: It is a subposet, but not a sublattice of

P (E), since its join is not a restriction of the join of P (F).)

The lattice of flats Flats M of a matroid M is denoted by L (M) in [Stanley06,
§3.2].
Next, we recall the definition of the Mébius function of a poset (see, e.g., [Stanley06),

Definition 1.2] or [Martin15l, §5.2]):

Definition 4.5.16. Let P be a poset.

(a) If x and y are two elements of P satisfying x < y, then the set
{z€ P | z<z<y} is denoted by [z, y].

(b) A subset of P is called a closed interval of P if it has the form [x,y] for

two elements x and y of P satisfying x < .

26 Proof. Let H be a lower bound of F' and G in Flats M. Thus, H C F and H C G. Combining
these two inclusions, we obtain H C F'N G, qed.

27 Proof. Let H be an upper bound of F' and G in Flats M. Thus, H D F and H O G. Combining
these two inclusions, we obtain H O F U G. But H € Flats M; thus, H is a flat of M. Since H
satisfies F'U G C H, we therefore obtain UG C H (by Proposition (c), applied to FUG
and H instead of T and G). In other words, H O F UG, qed.
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(c) We denote by Int P the set of all closed intervals of P.

(d) If f : Int P — Z is any map, then the image f ([z,y]) of a closed interval
[z,y] € Int P under f will be abbreviated by f (z,v).

(e) Assume that every closed interval of P is finite. The Mdbius function of
the poset P is defined to be the unique function p : Int P — Z having the following

two properties:

e We have
p(r,z) =1 for every x € P. (4.23)
e We have
p(z,y) =— Z p(z, 2) for all x,y € P satisfying = <y. (4.24)
aczgezli;y

(It is easy to see that these two properties indeed determine p uniquely.) This

Moébius function is denoted by p.

We can now define the characteristic polynomial of a matroid M, following

[Stanley06}, (22)}

Definition 4.5.17. Let M = (E,Z) be a matroid. Let m = ry; (F). The charac-
teristic polynomial x s of the matroid M is defined to be the polynomial

> w@, F)am v e Z[a

FeFlats M

(where p is the Mobius function of the lattice Flats M). We further define a

polynomial Yy, € Z[z] by Xp = [F = ]| xm. Here, we are using the Iverson

280ur notation slightly differs from that in [Stanley06, (22)]. Namely, we use = as the indeter-
minate, while Stanley instead uses {. Stanley also denotes the global minimum & of Flats M by
0.
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bracket notation (as in Definition [4.2.6). If the matroid M is loopless, then

XM = & = 2] XM = XM-
—_——

=1
(by Proposition |4.5.12] (e))

Example 4.5.18. Let G = (V| E) be a finite graph. Consider the graphical ma-
troid (F,Z) defined as in Example{4.5.5| Then, the characteristic polynomial x (g z)
of this matroid is connected to the chromatic polynomial x¢ of the graph G as fol-

lows:

conn G

x X (7) = xe (2).

4.5.3 Generalized formulas

Let us next define broken circuits of a matroid M = (F,Z). Stanley, in [Stanley06,
§4.1], defines them in terms of a total ordering O on the set E, whereas we shall use
a “labeling function” ¢ : E — X instead (as in the case of graphs); our setting is

slightly more general than Stanley’s.

Definition 4.5.19. Let M = (F,Z) be a matroid. Let X be a totally ordered set.
Let ¢ : E — X be a function. We shall refer to ¢ as the labeling function. For every
e € I, we shall refer to ¢ (e) as the label of e.

A broken circuit of M means a subset of F having the form C'\ {e}, where C
is a circuit of M, and where e is the unique element of C' having maximum label
(among the elements of C'). Of course, the notion of a broken circuit of M depends

on the function ¢; however, we suppress the mention of ¢ in our notation, since we

will not consider situations where two different ¢’s coexist.

We shall now state analogues (and, in light of Example [4.5.18 generalizations,

although we shall not elaborate on the few minor technicalities of seeing them as

such) of Theorem [4.3.5, Theorem |4.3.4] Corollary 4.3.6 Corollary and Corollary
4.5. 13
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Theorem 4.5.20. Let M = (E,Z) be a matroid. Let m = ry (E). Let X be a
totally ordered set. Let ¢ : ' — X be a function. Let & be some set of broken
circuits of M (not necessarily containing all of them). Let ax be an element of k

for every K € K. Then,

Yo = Z (_1)|F| H ax v (F)

FCE Keg;
KCF

Theorem 4.5.21. Let M = (F,Z) be a matroid. Let m = ry; (E). Then,

Y = Z (_1>|F| M (F)
FCE

Corollary 4.5.22. Let M = (E,Z) be a matroid. Let m = ry; (E). Let X be a
totally ordered set. Let ¢ : E — X be a function. Let & be some set of broken

circuits of M (not necessarily containing all of them). Then,

FCE;
F' is R-free

Corollary 4.5.23. Let M = (E,Z) be a matroid. Let m = ry, (E). Let X be a
totally ordered set. Let ¢ : E — X be a function. Then,

=Y (e,

FCE;
F' contains no broken
circuit of M as a subset
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Corollary 4.5.24. Let M = (E,Z) be a matroid. Let m = ry; (E). Let X be a
totally ordered set. Let ¢ : F — X be an injective function. Then,

Xur = > (=1)TamIr,

FCE;
F' contains no broken
circuit of M as a subset

We notice that Corollary [4.5.24] is equivalent to [Stanley06, Theorem 4.12] (at
least when M is loopless).
Before we prove these results, let us state a lemma which will serve as an analogue

of Lemma [4.2.7F

Lemma 4.5.25. Let M = (F,Z) be a matroid. Let X be a totally ordered set.
Let ¢ : E — X be a function. Let & be some set of broken circuits of M (not
necessarily containing all of them). Let ax be an element of k for every K € R.

Let F' be any flat of M. Then,

SV ax = [F =2]. (4.25)

BCF KER;
KCB

(Again, we are using the Iverson bracket notation as in Definition [4.2.6])

Proof of Lemma[{.5.25 Our proof will imitate the proof of Lemma[£.2.7 much of the
time (with ENEqgs f replaced by F'); thus, we will allow ourselves some more brevity.

We WLOG assume that F' # & (since otherwise, the claim is obviou@. Thus,
[F=2]=0.

29 Proof. Assume that F = @. We must show that the claim is obvious.

Let us first show that no K € R satisfies K = @. Indeed, assume the contrary. Thus, there exists
a K € R satisfying K = @. In other words, & € R Thus, & is a broken circuit of M (since £ is a
set of broken circuits of M). Therefore, @ is obtained from a circuit of M by removing one element
(by the definition of a broken circuit). This latter circuit must therefore be a one-element set, i.e.,
it has the form {e} for some e € E. Consider this e. Thus, {e} is a circuit of M.

But F is a flat of M. In other words, Statement §; (of Lemma |4.5.9) holds for T = F. Hence,
Statement §2 (of Lemma also holds for T' = F (since Lemlg@ shows that these two
statements are equivalent). Applying Statement F2 to T'= F and C = {e}, we thus obtain {e} C F'
(because {e} \ {e} = @ C F). Thus, e € {e} C F = &, which is absurd. This contradiction proves
that our assumption was wrong.

Hence, we have shown that no K € R satisfies K = @. But from F = &, we see that the sum
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Pick any d € F with maximum ¢ (d) (among all d € F'). (This is clearly possible,
since F' # @.) Define two subsets U and V of P (F') as follows:

U={TeP(F) | d¢T):

V={TeP({F) | deT}.

Thus, we have P (F) = U UV, and the sets U and V are disjoint. Now, we define a
map ¢ : U — V by

(®(B) =BU{d} for every B € U) .

This map ® is well-defined (because for every B € U, we have BU{d} € V [") and
a bijectionP!] Moreover, every B € U satisfies

(_1)|‘1>(B)| _ (_1)|B|

(4.26)
E2
Now, we claim that, for every B € U and every K € K, we have the following
logical equivalence:

(K CB) < (KCo(B)).

(4.27)
Proof of : Let B € U and K € K. We must prove the equivalence (4.27))

BCF

The definition of ® yields ® (B) = BU{d} D B, so that B C ® (B). Hence, if K C B,

> (—1)'3‘ II ax has only one addend (namely, the addend for B = &), and thus simplifies to
Kegr;
KCB

(-1 H ag = H ax = (empty product)
———

(since no K € R satisfies K = @)
o KeS; Kes;
=(-1)"=1 KCgo K=o
——
=1
KeR;
K=92
=1=[F =2

(since F' = @).
Thus, Lemma is proven.

30This follows from the fact that d € F.
31ts inverse is the map W : V — U defined by (¥ (B) = B\ {d}

for every B € V).
32 Proof. This is proven exactly like we proved (4.9).
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then K C B C ®(B). Therefore, the forward implication of the equivalence (4.27)
is proven. It thus remains to prove the backward implication of this equivalence. In
other words, it remains to prove that if K C ® (B), then K C B. So let us assume
that K C & (B).

We want to prove that K C B. Assume the contrary. Thus, K € B. We have
K € R Thus, K is a broken circuit of M (since £ is a set of broken circuits of M).
In other words, K is a subset of E having the form C'\ {e}, where C'is a circuit of M,
and where e is the unique element of C' having maximum label (among the elements
of C') (because this is how a broken circuit is defined). Consider these C' and e. Thus,

K =C\{e}.

The element e is the unique element of C' having maximum label (among the

elements of C'). Thus, if ¢ is any element of C satisfying ¢ (¢/) > ¢ (e), then

¢ =e. (4.28)

But K \{d} c (BU{d})\{d} CB.
Cd(B)=BU{d}

If we had d ¢ K, then we would have K\ {d} = K and therefore K = K'\{d} C B;
this would contradict K ¢ B. Hence, we cannot have d ¢ K. We thus must have
d € K. Hence, d € K = C\ {e}. Hence, d € C and d # e.

But C\{e} = K C ®(B) C F (since ®(B) € P(F)). On the other hand,
Statement §; (of Lemma holds for " = F' (since F' is a flat of M). Hence,
Statement §, (of Lemma also holds for 7' = F' (since Lemma shows that
these two statements are equivalent). Thus, from C'\ {e} C F, we obtain C' C F.
Thus, e € C' C F. Consequently, ¢ (d) > ¢(e) (since d was defined to be an element

of F' with maximum ¢ (d) among all d € F)).

Also, d € C. Since ¢ (d) > ¢ (e), we can therefore apply (4.28) to ¢/ = d. We thus
obtain d = e. This contradicts d # e. This contradiction proves that our assumption

was wrong. Hence, K C B is proven. Thus, we have proven the backward implication

of the equivalence (4.27)); this completes the proof of (4.27)).
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Now, proceeding as in the proof of (4.12]), we can show that

S ()P ] ax = [F =2].

BCF KeR;
KCB

This proves Lemma |4.5.25| O]

We shall furthermore use a classical and fundamental result on the Mobius function

of any finite poset:

Proposition 4.5.26. Let P be a finite poset. Let p denote the Mobius function
of P.

(a) For any z € P and y € P, we have

S n(wz) ==y (4.29)

z€P;
z<z<y

(b) For any x € P and y € P, we have

Y ulzy) =lz=y. (4.30)

zZ€EP;
z<z<y

(c) Let k be a Z-module. Let ($3;),.p be a family of elements of k. Then, every

z € P satisfies

5,2:2#(%2)2590

yEeP; TEP;
y<z Ty

For the sake of completeness, let us give a self-contained proof of this proposition

(slicker arguments appear in the literaturelg_gbz

Proof of Proposition[{.5.20, (a) Let € P and y € P. We must prove the equality
(4.29). We are in one of the following three cases:
Case 1: We have x = y.

33For example, Proposition 4.5.26| (¢) is equivalent to the = implication of [Martin15l (5.1a)|.
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Case 2: We have x < y.
Case 3: We have neither x = y nor =z < y.

Let us first consider Case 1. In this case, we have x = y. Hence, the sum

> u(x,z) contains only one addend — namely, the addend for z = z. Thus,

ZEP;
z<z<y

Z p(z,z)=px,z) =1 (by the definition of the Mobius function)
vy

=[x =1y (since z =vy).

Thus, (4.29) is proven in Case 1.

Let us now consider Case 2. In this case, we have x < y. Hence, x # y, so
that [x = y] = 0. Now, y is an element of P satisfying + < y < y. Thus, the sum

> wu(z,z) contains an addend for z = y. Splitting off this addend, we obtain

z€P;
z<z<y

don@a= Y pla)+ ey

z€P; zeP; _ Z p(z,2)
<z . - ’
T<z<y T<ZSY; 2FY 2EP;
B "E r<z<y
=% (by (1:23))
r<z<y
= E p(z,z)+ | — E plz,z) | =0=[z=1y].
z€P; z€P;
r<z<y r<z<y

Hence, (4.29)) is proven in Case 2.

Finally, let us consider Case 3. In this case, we have neither x = y nor z < y.
Thus, we do not have < y. Hence, there exists no z € P satisfying x < z < y.

Thus,
S (@, 2) = (empty sum) = 0 = [z = y]

zEP;
z<z<y

(since we do not have z = y). Thus, (4.29) is proven in Case 3.

Hence, (4.29)) is proven in all three cases. This proves Proposition [4.5.26( (a).
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(b) For any two elements u and v of P, we define a subset [u,v] of P by
[u,v]={we P | u<w<v}.

Thus subset [u, v] is finite (since P is finite), and thus its size |[u, v]| is a nonnegative
integer.
We shall now prove Proposition (b) by strong induction on ||z, y||:
Induction step: Let N € N. Assume that Proposition (b) holds whenever
|[z,y]| < N. We must now prove that Proposition[4.5.26] (b) holds whenever |[z, y]| =
N.

We have assumed that Proposition |4.5.26| (b) holds whenever |[z,y]| < N. In

other words, we have assumed the following claim:

Claim 1: For any x € P and y € P satisfying |[x, y]| < N, we have

> nlzy) =lz=yl.

zEP;
z<z<y

Now, let  and y be two elements of P satisfying |[z,y]| = N. We are going to
prove that

> nlzy) =lz=y. (4.31)

zEP;
z<z<y

We are in one of the following three cases:

Case 1: We have x = y.

Case 2: We have x < y.

Case 3: We have neither x = y nor =z < y.

In Case 1 and in Case 3, we can prove in exactly the same way as (in our

above proof of Proposition [4.5.26| (a)) we have proven (4.29)). Thus, it remains only

to prove (4.31)) in Case 2. In other words, we can WLOG assume that we are in Case
2.

Assume this. Hence, x < y, so that [z = y] = 0.
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For every t € P satisfying x <t < y, we have
[z, t]] < N (4.32)
@. Therefore, for every t € P satisfying x <t < y, we have

Z p(z,t) =[xz =t (4.33)

zZ€EP;
r<z<t

(by Claim 1, applied to ¢ instead of y). Also, for every u € P and v € P, we have

Z p(u,t) = [u =] (4.34)

teP;
u<t<v

Eal

34 Proof of : Let t € P be such that x <t < y. We shall proceed in several steps:

e We have

[z,t]={weP | z<w<t} (by the definition of [z,t])

( because every w € P satisfying w <t )

C <w<
C{weP | z<w<y} must also satisfy w < y (since t < y)

= [z,y] (by the definition of [z,y]).

e We have t < y. Thus, we do not have y < t. Hence, we do not have x < y < t. Hence,
y ¢ [z,t]. But y € [z,y] (since z < y < y). Hence, the sets [z,t] and [z, y] are distinct (since
the latter contains y but the former does not). Combining this with [z, t] C [z, y], we conclude
that [z, ] is a proper subset of [z,y]. Hence, |[z,]| < |[z,y]| = N. This proves (4.32).

35 Proof of : Let w € P and v € P. Proposition [4.5.26 (a) (applied to z = u and y = v)
shows that > pu(u,t) = [u =v]. Now,
z€P;

u<lz<v
Z w(u,t) = Z w(u,t) (here, we have substituted z for ¢ in the sum)
teP; z€EP;
u<t<v u<z<v

=[u=1].

This proves (4.34)).
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Now,

S ulzt)

(zt)eP?;

r<z<t<y

——
= > X
zeP; tep;
