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Abstract

In this thesis we are primarily interested in studying how to suppress errors, perform sim-
ulation, and implement logic gates in quantum computation within the context of using
Hamiltonian controls. We also study the complexity class QMA-complete.

We first investigate a method (introduced by Jordan, Farhi, and Shor) for suppress-
ing environmentally induced errors in Hamiltonian-based quantum computation, involving
encoding the system with a quantum error-detecting code and enforcing energy penalties
against leaving the codespace. We prove that this method does work in principle: in the
limit of infinitely large penalties, local errors are completely suppressed. We further derive
bounds for the finite-penalty case and present numerical simulations suggesting that the
method achieves even greater protection than these bounds indicate.

We next consider the task of Hamiltonian simulation, i.e. effectively changing a sys-
tem Hamiltonian to some other desired Hamiltonian by applying external time-dependent
controls. We propose protocols for this task that rely solely on realistic bounded-strength
control Hamiltonians. For systems coupled to an uncontrollable environment, our approach
may be used to perform simulation while simultaneously suppressing unwanted decoherence.

We also consider the scenario of removing unwanted couplings in many-body quantum
systems obeying local system Hamiltonians and local environmental interactions. We present
protocols for efficiently switching off the Hamiltonian of a system, i.e. simulating the zero
Hamiltonian, using bounded-strength controls. To this end, we introduce the combinatorial
concept of balanced-cycle orthogonal arrays, show how to construct them from classical
error-correcting codes, and show how to use them to decouple 𝑛-qudit ℓ-local Hamiltonians
using protocols of length at most 𝑂(𝑛ℓ−1 log 𝑛).

We then present a scheme for implementing high-fidelity quantum gates using a few
interacting bosons obeying a Bose-Hubbard Hamiltonian on a line. We find high-fidelity
logic operations for a gate set (including the cnot gate) that is universal for quantum
information processing.

Lastly, we discuss the quantum complexity class QMA-complete, surveying all known
such problems, and we introduce the “quantum non-expander” problem, proving that it is
QMA-complete. A quantum expander is a type of rapidly-mixing quantum channel; we
show that estimating its mixing time is a co-QMA-complete problem.

Thesis Supervisor: Edward Farhi
Title: Cecil and Ida Green Professor of Physics; Director, Center for Theoretical Physics
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Chapter 0

Thesis introduction

Quantum computing proposes the exciting possibility of exploiting the ‘weirdness’ of quan-
tum mechanics to develop a new paradigm of computing. While quantum computers are
widely believed to be more powerful than classical computers for certain important tasks
(such as factoring and unstructured searches), the question of what computational power
practical quantum computation yields remains open. Moreover, it appears that the tech-
nology of scalable quantum computers is still beyond the near-future, so studying how to
overcome the obstacles that impede building even small-scale quantum computers is a crucial
topic to the field. This thesis addresses, in part, both of these questions.

In classical computing, by which we mean regular, non-quantum computing, the basic
unit of information is the bit – an object that can be in precisely one of two states, 0 or 1.
If we have 𝑛 bits, each of them is either 0 or 1, so a system of 𝑛 bits can always be specified
by 𝑛 parameters – one simply records the value of each bit. Note that there are 2𝑛 possible
𝑛-bit values. The quantum setting is much richer. And, to the best of our knowledge, it is
also fundamentally how our world really operates. Quantum mechanics allows for two-state
objects (e.g. an electron’s spin), so like a bit, such a system can be 0 or 1. But unlike a bit,
the quantum state need not be only 0 or 1; it can be in a superposition of both 0 and 1 “at
the same time”. Such a quantum bit is called a qubit. However, the fundamental difference
between classical and quantum computing is seen not from a single qubit but from many
qubits. For with 𝑛 qubits, each of the 2𝑛 possible 𝑛-bit values are now merely the basis states
allowed in the superposition. Specifying a system of 𝑛 qubits involves, in general, keeping
track of all 2𝑛 coefficients of each of those basis states, i.e. “how much” of the state is in each
of the 2𝑛 𝑛-bit values. This is not to say that quantum computers can yield exponentially
more information than classical computers. The information contained in these coefficients
is not immediately accessible. To obtain information from the state, one must measure
it, and when one measures a quantum state, the superposition collapses, giving just one
of the 2𝑛 classical bit strings. Indeed, someone with a background in stochastic (random)
processes may not think this quantum picture, as described so far, sounds particularly
powerful – one may think these coefficients represent mere probabilities, making a collection
of 𝑛 qubits no different from a probabilistic mixture of 𝑛 bits. But unlike probabilities,
these coefficients are not non-negative numbers; they can be negative (or even complex), so
that when processing quantum information, components of the superposition may undergo
complicated cancellations (interference) that cannot occur with random bits.

If this sounds complicated, it is because it is. We still have a long way to go in under-
standing how to harness the power of the quantum world for use in computation. Much
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progress has been made in the past three decades. Of particular interest are two algorithms
– Grover’s algorithm and Shor’s algorithm – that have attracted a lot of attention to the
field of quantum computing. Grover’s algorithm allows a quantum computer to search for a
marked item amongst 𝑁 items, taking only time proportional to

√
𝑁 to do so (as opposed

to the classical scenario, where such a search could require looking at all 𝑁 items and there-
fore takes time proportional to 𝑁). Shor’s algorithm allows a quantum computer to factor
integers (15 = 5 × 3 being a very simple example). This problem is believed to be difficult
for regular computers – one can factor 15 = 5 × 3 in their head, but even with a modern
supercomputer, factoring a 400-digit number seems to be extremely difficult. In fact, our
confidence in the difficulty of this problem has led to it being widely used in cryptography:
currently, sending sensitive information (like your credit card) over the internet relies on
techniques like RSA encryption to keep it secret, and the security of RSA relies solely on
the difficulty of factoring large numbers. Shor’s algorithm shows that a quantum computer
could factor integers efficiently and break RSA encryption easily.

Although there is much interest in the field of quantum computing, the goal of ac-
tually building a large-scale quantum computer currently remains beyond reach. One of
the greatest obstacles to accomplishing this goal is overcoming errors due to environmental
disturbance. A quantum system with unwanted interactions from an uncontrollable envi-
ronment will decohere, i.e. lose much of the extra quantum information held within the
superposition states. Practically, attempting to isolate the system from the environment
has limitations – after all, the device is meant to be a computer, necessitating control and
measurement via external interaction. A major push in the field of quantum computing has
therefore been towards suppressing and correcting errors arising during computation, and
much progress has been made, at least theoretically. Indeed, in the most common model of
quantum computing – the circuit model – it has been shown that, provided error rates are
below some constant value, arbitrarily-accurate quantum computation can, in principle, be
performed efficiently.

The circuit model describes quantum computation in terms of instantaneous operations
(gates), similar to the notion of logical and, or, not, and nand gates in classical circuits.
It is not, however, the only model of quantum computation. It is also somewhat of an
idealization, as it treats these gates as being implemented instantaneously without dealing
with the underlying physical machinery performing the operations. In quantum physics,
systems are generally described by Hamiltonians – operators defining the energy of the
system and responsible, via the Schrödinger equation, for their evolution. There are a
number of models of quantum computation described in terms of Hamiltonians, including
the original vision of quantum computation by Richard Feynman, who is often credited
with pioneering the field, as well as the model of adiabatic quantum computation, upon
which the widely-publicized (but non-universal) D-Wave architecture is based. Such models,
which we term Hamiltonian-based quantum computation in this thesis, involve specifying
the Hamiltonian of a system, evolving the system in time under this Hamiltonian (with
no intermediate measurements or instantaneous operations allowed), and performing a final
measurement. We will primarily focus on such a setting in this thesis, where systems, and
our control over them, are restricted to (non-instantaneous) Hamiltonian evolution. Within
this context:

∙ we analyse an error suppression technique for Hamiltonian-based quantum computa-
tion, proving that it works in principle;

∙ we develop protocols to efficiently eliminate a system’s unwanted internal and system-
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environment couplings;

∙ we develop protocols for Hamiltonian simulation (i.e. having a system defined by
one Hamiltonian behave as though it were defined by a different Hamiltonian), again
suppressing unwanted environmental disturbance; and

∙ we develop realizable or near-future-realizable Hamiltonians for implementing useful
quantum gates.

Another topic of interest when studying Hamiltonian models of quantum computing is what
computational power they provide. Historically, there has been a strong connection between
this question (at least for adiabatic quantum computing) and the study of the quantum
complexity class called QMA-complete. In this thesis,

∙ we discuss what problems are known to be in this class and

∙ we prove that it contains a particular problem involving so-called quantum expanders,
which are, among other things, related to the thermalization of quantum systems
coupled to an environment.

In the next section, we elaborate on these points, outlining the content that comprises this
thesis.

0.1 Outline

Each chapter in this thesis is self-contained, with its own bibliography and appendices (if
applicable) at the end of the chapter. First, in Chapter 1, we provide much of the back-
ground required for the remainder of the thesis, presenting a broad overview of the topics
needed to understand the later material. More technical background will be introduced in
the individual chapters as needed, as will references for further study. We now outline the
contents of these chapters (with references to the applicable background sections given in
parentheses).

As noted, a challenging obstacle towards building quantum computers is protecting them
from unwanted environmental disturbance. In the usual circuit model of quantum computa-
tion (Sec. 1.3), the theory of quantum error correction has been well-developed, suggesting
that, in principle, quantum computation can be performed in a manner resistant to such
environmental disturbance; however, the question of how well Hamiltonian-based quantum
computation models (Sec. 1.2) can be protected from error remains open. One proposal
(introduced by Jordan, Farhi, and Shor) for suppressing environmentally induced errors
in Hamiltonian-based quantum computation is the use of quantum error-detecting codes
(Sec. 1.5.2), together with energy penalties against leaving the codespace. In Chapter 2

we prove that this method does work in principle: in the limit of infinitely large penalties,
errors are completely suppressed. We also derive bounds for the finite-penalty case and
perform numerical simulations that suggest that the energy penalty method achieves even
greater protection than these bounds guarantee.

Related to the goal of the previous paragraph are Hamiltonian decoupling and Hamilto-
nian simulation, in the context of quantum control theory. In Hamiltonian decoupling, one
seeks to switch off the Hamiltonian of a system, removing unwanted internal and system-
environment couplings (the latter being responsible for decoherence errors). More generally,
in Hamiltonian simulation one is interested in removing these unwanted couplings while
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simultaneously effectively changing the system Hamiltonian to simulate a different, desired
Hamiltonian. These tasks would be useful, for example, for quantum memories and analogue
quantum simulators (Sec. 1.2.4), respectively, while addressing the ever-important objective
of suppressing environmental errors. In contrast to many previous protocols for these tasks
that rely on using instantaneous unitary pulses (which, in terms of Hamiltonians, require
controls of unbounded strength, and are therefore fundamentally unphysical), we are inter-
ested in the setting in which all controls can be described using bounded-strength Hamil-
tonians. In Chapter 3 we develop a control protocol for Hamiltonian simulation that uses
only bounded-strength controls by combining a Hamiltonian simulation scheme that uses
controls of unbounded-strength, with a bounded-strength decoupling scheme called Eulerian
decoupling.

Another issue for general-purpose decoupling and simulation protocols is that they are
often inefficient, requiring very long control sequences. By making physically-reasonable
assumptions about the quantum system of interest, however, we can hope to devise better
protocols. In Chapter 4 we develop efficient bounded-strength decoupling protocols for
local Hamiltonians, i.e. for quantum systems in which each qubit interacts with only a few
other qubits, as is typically the case in nature (Sec. 1.1.4). To do so, we introduce the
combinatorial concept of balanced-cycle orthogonal arrays, demonstrate how to construct
them from classical error-correcting codes (Sec. 1.5.1), and show how to exploit the locality
of the system with them to perform decoupling more efficiently.

While the previous topics address Hamiltonian-based quantum computation and Hamil-
tonian simulation, the most common model of quantum computation is the circuit model
(Sec. 1.3), in which computation is described by a sequence of unitary operations (gates).
As noted, this model is somewhat of an idealization, ignoring the question of how these uni-
tary operations are to be performed. Nonetheless, in a real physical system actualizing this
computation, each step is generally performed by implementing some corresponding Hamil-
tonian. Designing a physically-realizable Hamiltonian to implement a desired unitary gate,
while obeying the constraints of the physical platform available, is in general a non-trivial
problem. Inspired by continuous-time quantum walks (Sec. 1.2.3), in Chapter 5 we present
a method for implementing high-fidelity quantum logic gates using interacting bosons on a
one-dimensional lattice (Sec. 1.1.6). Specifically, constraining ourselves to experimentally
feasible system parameters, we present high-fidelity logic operations for a gate set, including
the cnot gate (Sec. 1.3.2), that is universal for quantum information processing.

Aside from the important question of how to practically implement quantum computa-
tion, another important question is what computational power the quantum setting provides.
This question is addressed by the field of quantum complexity theory (Sec. 1.4.2). In this
thesis, we are primarily interested in the quantum complexity class known as QMA-complete,
the quantum analogue of the classical class NP-complete. Informally, QMA-complete con-
sists of the problems whose solutions are believed to be hard to find – but easy to verify –
using a quantum computer. The development of the QMA-complete class and its most fa-
mous member, the local Hamiltonian problem (Sec. 1.4.3), has been highly connected to
analysing the power of using local Hamiltonians for Hamiltonian-based computation meth-
ods, notably that of adiabatic quantum computation (Sec. 1.2.1). A survey of all known
QMA-complete problems is the content of Chapter 7.

Adding to the list of known QMA-complete problems, in Chapter 6 we classify the
complexity of the quantum non-expander problem as being QMA-complete. Quantum
expanders are the quantum analogues of expander graphs (which play a prominent role in
computer science and discrete mathematics), and are related to the thermalization of open
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quantum systems. They are quantum operations (Sec. 1.1.5) that rapidly take quantum
states towards the maximally mixed state (Sec. 1.1.5), i.e. they always add entropy to states
that are far from totally random. We show that checking whether a given quantum operation
is a poor quantum expander is a QMA-complete problem. Aside from its applications to
physics, the result is interesting because QMA (unlike its classical counterpart) has relatively
few known complete problems aside from local Hamiltonian problems.
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Chapter 1

Background material

This chapter is primary tasked with reviewing the basics of quantum mechanics, classical
and quantum computing, computational complexity theory, and error-correcting codes. Al-
though we will briefly review some basics of quantum mechanics, this thesis assumes the
reader is comfortable with linear algebra and the Dirac ket notation of quantum physics.
We will also use, without much background explanation, some very basic terminology (and
occasionally facts) about groups, graphs, finite fields, and representation theory, but thor-
ough background in these topics is certainly not required. The majority of the information
present in this chapter can be found, with much greater thoroughness, in the excellent text-
book by Nielsen and Chuang [1]. The notes of Preskill [2] is also an excellent recommended
resource for the interested reader.

1.1 Quantum mechanics

We start our background material by reviewing the postulates of quantum mechanics as
they will pertain to quantum computing and the content later in this thesis.

1.1.1 Quantum states

To any (isolated) quantum system is associated a Hilbert space ℋ (for our purposes, a vector
space endowed with an inner product), known as its state space. The state of the quantum
system is a normalized vector in this space. The simplest non-trivial system has the state
space C2, describing a single qubit, whose states can be written as

|𝜓⟩ = 𝑐0|0⟩+ 𝑐1|1⟩ = 𝑐0

(︂
1
0

)︂
+ 𝑐1

(︂
0
1

)︂

where |0⟩ and |1⟩ are the standard basis vectors, written in Dirac ket notation, and 𝑐0, 𝑐1 ∈ C
are complex coefficients (also called amplitudes) satisfying |𝑐0|2 + |𝑐1|2 = 1. This latter con-
dition stems from the normalization condition of |𝜓⟩, namely ⟨𝜓|𝜓⟩ = 1. The overall phase
of the state does not matter: |𝜓⟩ and 𝑒𝑖𝛼 |𝜓⟩ represent the same state and are considered to
be equal up to phase.

Note that a qubit is a 2-dimensional system, with two basis vectors (|0⟩ and |1⟩), and may
naturally represent the state of a single 2-level particle, e.g. the spin of a single electron (with
|0⟩ representing spin up and |1⟩ representing spin down). One can also speak more generally
of 𝑑-dimensional systems, which are called qudits. In this case, the state space is C𝑑. A
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𝑑-dimensional qudit may, e.g., represent an atomic system that has 𝑑 levels of excitation
available. Quantum systems can also be infinite-dimensional, such as those describing a
particle travelling in continuous space; however, in quantum computing we are generally
interested in finite-dimensional systems and in this thesis we will implicitly assume that all
systems are finite-dimensional unless otherwise noted.

1.1.2 Measurement

Let {|𝜑1⟩, |𝜑2⟩, . . . , |𝜑𝐷⟩} be a set of orthonormal basis vectors of the state space. Given a
state |𝜓⟩, we can measure |𝜓⟩ in the basis. The result will be one of these basis vectors with
some probability. Specifically, we will obtain a result of |𝜑𝑖⟩ with probability

𝑝𝑖 = | ⟨𝜑𝑖|𝜓⟩ |2 .

Note that the state of the system changes by virtue of performing the measurement: it was
originally in the state |𝜓⟩ but, as a result of the measurement, has changed to the basis
vector |𝜑𝑖⟩ that we obtained from our measurement. Only if |𝜓⟩ was equal (up to phase) to
one of these basis vectors, say |𝜑𝑗⟩, are we guaranteed that the state will not be modified,
for in that case, the measurement will result in |𝜑𝑗⟩ = |𝜓⟩ with probability 𝑝𝑗 = 1. Much
more general and powerful formulations of measurement exist in quantum mechanics, but
they will not be needed in this thesis; we direct the interested reader to [1].

1.1.3 Hamiltonians and evolution

Having specified the state of a quantum system, we would like to understand how that
system evolves in time, in order that we may determine the state of the system at any
future time.

Hamiltonians

The time-evolution of a quantum system is governed by an linear operator called the Hamil-
tonian, 𝐻, of the system. The Hamiltonian may be time-dependent, in which case we often
write 𝐻(𝑡), or time-independent, in which case we simply write 𝐻. The Hamiltonian is a
Hermitian operator, meaning that 𝐻† = 𝐻, where † is used to denote the conjugate trans-
pose. Since we are primarily interested in finite-dimensional systems, 𝐻 can be thought of
as a matrix such that if one takes its transpose and complex conjugate, one obtains 𝐻 again.

In addition to governing time evolution, about which we shall elaborate shortly, Hamil-
tonians also govern the energetics of a system, as they are the operator corresponding to
energy. The allowed energy levels {𝐸𝛼} of the system are precisely the eigenvalues of 𝐻,
with corresponding energy eigenstates {|𝐸𝛼⟩},

𝐻|𝐸𝛼⟩ = 𝐸𝛼|𝐸𝛼⟩ .

Observe that, at least in discrete systems, the spectrum of allowed energies is restricted, in
contrast to the continuum allowed in classical mechanics.

In principle, we can measure the energy of a system, i.e. measure 𝐻. Indeed, we can
in principle measure any Hermitian operator 𝑀 . Suppose 𝑀 has eigenvalues {𝑚𝛼} and
eigenvectors {|𝑚𝛼⟩}, which because 𝑀 is Hermitian, we can take to be an orthonormal
basis for the system. One way to consider measuring 𝑀 for a state |𝜓⟩ is to measure |𝜓⟩ in
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the {|𝑚𝛼⟩} basis to obtain some resulting 𝑀 -eigenstate |𝑚𝛼⟩ with probability | ⟨𝑚𝛼|𝜓⟩ |2;
the measurement outcome is then the corresponding eigenvalue 𝑚𝛼. The expectation value
is therefore

∑︀
𝛼𝑚𝛼| ⟨𝑚𝛼|𝜓⟩ |2 = ⟨𝜓|𝑀 |𝜓⟩. Thus, if a state of the system is |𝜓⟩, its average

energy is
𝐸𝜓 =

∑︁

𝛼

𝐸𝛼| ⟨𝐸𝛼|𝜓⟩ |2 = ⟨𝜓|𝐻 |𝜓⟩ .

In the case of qubits, four extremely important Hermitian linear operators (matrices)
are the identity

1 =

(︂
1 0
0 1

)︂

and the three Pauli matrices,

𝑋 = 𝜎𝑋 =

(︂
0 1
1 0

)︂
, 𝑌 = 𝜎𝑌 =

(︂
0 −𝑖
𝑖 0

)︂
, 𝑍 = 𝜎𝑍 =

(︂
1 0
0 −1

)︂
.

In fact, these four matrices form a basis for the linear operators on C2. If 𝐴 is a linear
operator acting on qubits then it can be written as a linear combination of the Pauli matrices
and the identity,

𝐴 = 𝑎0 1+𝑎𝑥𝑋 + 𝑎𝑦𝑌 + 𝑎𝑧𝑍

for some complex numbers 𝑎0, 𝑎𝑥, 𝑎𝑦, 𝑎𝑧. We note that 𝐴 is Hermitian if and only if these
coefficients 𝑎0, 𝑎𝑥, 𝑎𝑦, 𝑎𝑧 are all real. We also note that 𝐴 is traceless if and only if 𝑎0 = 0.
Without loss of generality, we can always take a Hamiltonian to be traceless by shifting the
overall energy of the system by −𝑎0, and so we often will decompose a Hamiltonian on a
qubit system as

𝐻 = 𝑎𝑥𝑋 + 𝑎𝑦𝑌 + 𝑎𝑧𝑍 = 𝑎⃗ · 𝜎⃗ with 𝑎𝑥, 𝑎𝑦, 𝑎𝑧 ∈ R ,

where 𝑎⃗ = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) and 𝜎⃗ = (𝑋,𝑌, 𝑍).

As a very simple example, one could imagine a simple 1-qubit system operating under
the Hamiltonian 𝐻 = 𝜔𝑋, where 𝜔 is a constant with units of energy. The eigenstates of
this 𝐻 are proportional to |0⟩± |1⟩ with energy eigenvalues ±𝜔. In principle, any Hermitian
operator is eligible to be a Hamiltonian, although the Hamiltonians that arise in nature and
experiment are typically of a much more restricted form.

The Schrödinger equation and unitary evolution

Given a Hamiltonian 𝐻(𝑡) for a quantum system, the state of the system evolves according
to the Schrödinger equation

𝑖~
d

d𝑡
|𝜓(𝑡)⟩ = 𝐻(𝑡)|𝜓(𝑡)⟩

where |𝜓(𝑡)⟩ is the state of the system at time 𝑡, ~ is the reduced Planck constant, and 𝑖
is the imaginary unit, 𝑖 =

√
−1. Note that throughout this thesis, we generally use a unit

system in which ~ = 1 and therefore ignore ~ entirely. The Schrödinger equation implies
that if one knows the initial state of a system |𝜓(0)⟩ at time 𝑡 = 0, and one knows the
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Hamiltonian of the system, one can, in principle, calculate1 the state |𝜓(𝑡)⟩ of the system
at any future time 𝑡. Indeed, we can write

|𝜓(𝑡)⟩ = 𝑈(𝑡)|𝜓(0)⟩

where 𝑈(𝑡) is called the time-evolution operator (or sometimes the propagator). Math-
ematically, because 𝐻(𝑡) is Hermitian, 𝑈(𝑡) is a unitary linear operator, meaning that
𝑈 †(𝑡) = 𝑈−1(𝑡). Explicitly relating a unitary evolution operator and a Hermitian Hamilto-
nian, however, can be difficult.

If 𝐻(𝑡) = 𝐻 is time-independent, we can solve the Schrödinger equation by exponenti-
ating, obtaining

𝑈(𝑡) = 𝑒−𝑖𝐻𝑡 .

For example, for a single qubit, if 𝐻 = 𝜔 𝑛̂ · 𝜎⃗ for some real 𝜔, then 𝑈(𝑡) = 𝑒−𝑖𝜔𝑛̂·𝜎⃗𝑡 =
cos(𝜔𝑡) − 𝑖 sin(𝜔𝑡)𝑛̂ · 𝜎⃗, where |𝑛̂|2 = 1. If 𝐻(𝑡) is time-dependent, but always commutes
with itself at any time, i.e. [𝐻(𝑡1), 𝐻(𝑡2)] = 0 for all 𝑡1, 𝑡2, we can then write

𝑈(𝑡) = 𝑒−𝑖
∫︀ 𝑡
0 𝐻(𝜏)d𝜏 .

However, in the general time-dependent case, we cannot write a simple explicit expression
for 𝑈(𝑡) in terms of 𝐻(𝑡). In this case we may use a Dyson series expansion and formally
write

𝑈(𝑡) = 𝒯 exp

{︂
−𝑖
∫︁ 𝑡

0
𝐻(𝜏)d𝜏

}︂

where 𝒯 denotes the time-ordering operator,

𝒯 {𝐴(𝑡1)𝐵(𝑡2)} =

{︃
𝐴(𝑡1)𝐵(𝑡2), if 𝑡1 > 𝑡2,

𝐵(𝑡2)𝐴(𝑡1), if 𝑡1 < 𝑡2.

This expression can also be considered as shorthand for

𝑈(𝑡) = 1 + (−𝑖)
∫︁ 𝑡

0
d𝑡′𝐻(𝑡′) + (−𝑖)2

∫︁ 𝑡

0
d𝑡′
∫︁ 𝑡′

0
d𝑡′′𝐻(𝑡′)𝐻(𝑡′′) + · · ·

+ (−𝑖)𝑚
∫︁ 𝑡

0
d𝑡′
∫︁ 𝑡′

0
d𝑡′′ · · ·

∫︁ 𝑡(𝑚−1)

0
d𝑡(𝑚)𝐻(𝑡′)𝐻(𝑡′′) · · ·𝐻(𝑡(𝑚)) + · · · .

Evidently, it is not easy to calculate the evolution due to a time-dependent Hamiltonian in
general, which makes analysing the consequences of modifying the Hamiltonian of a system
(as will be done in Chapters 2, 3, and 4) quite challenging.

An alternative expansion for treating the general case is provided by the Magnus expan-
sion. Let us say that we are interested in evaluating 𝑈(𝑇 ) at some fixed time 𝑇 > 0. We
can associate an effective time-independent Hamiltonian 𝐻̄ to 𝑈(𝑇 ), so that 𝑈(𝑇 ), which
is the description of evolving under the time-dependent 𝐻(𝑡) for time 𝑇 , is mathematically
equivalent to evolving under the time-independent 𝐻̄ for the same length of time 𝑇 . We

1 This is, of course, assuming that no measurements were made – if the system is at any point measured,
the Measurement axiom of Sec. 1.1.2 dictates that the system abruptly changes probabilistically as we saw
above. We will evade the (perhaps philosophical) question of whether these two types of evolution can be
reconciled in a single framework.
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can therefore write
𝑈(𝑇 ) = exp(−𝑖𝐻̄𝑇 ).

The Magnus expansion allows us to calculate 𝐻̄ as

𝐻̄ = 𝐻̄(0) + 𝐻̄(1) + 𝐻̄(2) + · · · ,

where

𝐻̄(0) =
1

𝑇

∫︁ 𝑇

0
𝐻(𝜏)𝑑𝜏 ,

𝐻̄(1) =
−𝑖
2𝑇

∫︁ 𝑇

𝜏1=0

∫︁ 𝜏1

𝜏2=0
[𝐻(𝜏1), 𝐻(𝜏2)] 𝑑𝜏2𝑑𝜏1 ,

with higher order terms involving more integrals and more complicated commutators. In
this thesis we will only need to make use of the first order term, 𝐻̄(0), which can be seen to
be the average of 𝐻(𝑡) over time 𝑇 . For more information, including implicit formulae for
higher order terms, convergence theorems, and bounds on the accuracy of truncating the
series, consult [3].

1.1.4 Composite systems

Tensor products and bases

So far, we have described quantum systems acting on some Hilbert space, without worrying
about the structure of that Hilbert space. For a single qubit, qudit, or particle with only one
degree of freedom, this is often sufficient. However, we will usually be interested in composite
systems, composed of multiple particles or representing multiple qubits (or qudits). For this
we need tensor products spaces, which we very briefly review.

Let 𝑉 and 𝑊 be two Hilbert spaces with orthonormal bases {|𝑖⟩} and {|𝑗⟩} respectively.
Their tensor product, 𝑉 ⊗𝑊 , is the space spanned by {|𝑖⟩ ⊗ |𝑗⟩}, i.e. consists of vectors
that can be written in the form

∑︀
𝑖𝑗 𝑐𝑖𝑗 |𝑖⟩ ⊗ |𝑗⟩. Note that where no confusion will arise, we

may omit the tensor product symbol for states, writing |𝑖⟩|𝑗⟩, or even |𝑖𝑗⟩, to mean |𝑖⟩⊗ |𝑗⟩.
If the state of a system can be written in the form |𝜓𝑉 ⟩ ⊗ |𝜓𝑊 ⟩ =

(︁∑︀
𝑖 𝑎𝑖|𝑖⟩

)︁
⊗
(︁∑︀

𝑗 𝑏𝑗 |𝑗⟩
)︁

then we say the state is separable or unentangled ; otherwise, we say it is entangled.

Suppose that 𝐴 and 𝐵 are linear operators on 𝑉 and 𝑊 respectively. Then their tensor
product, 𝐴⊗𝐵, acts as (𝐴⊗𝐵)(

∑︀
𝑘 𝑐𝑘|𝑣𝑘⟩⊗ |𝑤𝑘⟩) =

∑︀
𝑘 𝑐𝑘(𝐴|𝑣𝑘⟩)⊗ (𝐵|𝑤𝑘⟩), where {|𝑣𝑘⟩}

and {|𝑤𝑘⟩} are vectors in 𝑉 and 𝑊 respectively, and 𝑐𝑘 ∈ C. Any linear operator on 𝑉 ⊗𝑊
can be written as a linear combination of tensor products, i.e. of the form

∑︀
𝑘 𝑐𝑘𝐴𝑘 ⊗ 𝐵𝑘,

which acts as
(︁∑︀

𝑘 𝑐𝑘𝐴𝑘 ⊗𝐵𝑘
)︁
|𝑣⟩ ⊗ |𝑤⟩ =

∑︀
𝑘

(︁
𝑐𝑘(𝐴𝑘 ⊗𝐵𝑘)(|𝑣⟩ ⊗ |𝑤⟩)

)︁
.

It is convenient to represent states and operators on finite-dimensional tensor prod-
uct spaces in a matrix form. Suppose {|𝑖⟩ : 𝑖 = 0, . . . , 𝐷𝑉 } and {|𝑗⟩ : 𝑗 = 0, . . . , 𝐷𝑊 } are
orthonormal bases of 𝑉 and 𝑊 , with dimensions |𝑉 | = 𝐷𝑉 + 1 and |𝑊 | = 𝐷𝑊 + 1 respec-
tively.2 If |𝑣⟩ ∈ 𝑉 and 𝐴 acts on 𝑉 , recall that we may write these in matrix form with

2Note that, for notational consistency, we start the enumeration at 0 as is typical in computer science,
but for notational simplicity here, end it at 𝐷𝑉 , so that |𝑉 | = 𝐷𝑉 + 1.
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respect to {|𝑖⟩ : 𝑖 = 0, . . . , 𝐷𝑉 } as

|𝑣⟩ ≡

⎛
⎜⎜⎜⎜⎜⎝

⟨0|𝑣⟩
⟨1|𝑣⟩
⟨2|𝑣⟩
...

⟨𝐷𝑉 |𝑣⟩

⎞
⎟⎟⎟⎟⎟⎠
, 𝐴 ≡

⎛
⎜⎜⎜⎜⎜⎝

⟨0|𝐴|0⟩ · · · ⟨0|𝐴|𝐷𝑉 ⟩
⟨1|𝐴|0⟩ · · · ⟨1|𝐴|𝐷𝑉 ⟩
⟨2|𝐴|0⟩ · · · ⟨2|𝐴|𝐷𝑉 ⟩

...
...

...
⟨𝐷𝑉 |𝐴|0⟩ · · · ⟨𝐷𝑉 |𝐴|𝐷𝑉 ⟩

⎞
⎟⎟⎟⎟⎟⎠
.

Note that we have used the natural ordering

|0⟩, |1⟩, |2⟩, . . . , |𝐷𝑉 ⟩

when ordering the rows and columns. Now, {|𝑖⟩ ⊗ |𝑗⟩ : 𝑖 = 0, . . . , 𝐷𝑉 , 𝑗 = 0, . . . , 𝐷𝑊 } is an
orthonormal basis of 𝑉 ⊗𝑊 . To use this in matrix form, we consider these basis vectors to
be ordered primarily according to 𝑉 and secondarily according to 𝑊 ; i.e. the order is

|00⟩, |01⟩, . . . , |0𝐷𝑊 ⟩, |10⟩, |11⟩, . . . , |1𝐷𝑊 ⟩, |20⟩, . . . , |𝐷𝑉𝐷𝑊 ⟩.

where we have suppressed the ⊗ notation. For example, if 𝑉 = 𝑊 = C2 each represented
qubits, then we order their tensor product basis as |00⟩, |01⟩, |10⟩, |11⟩; this ordering is con-
sistent with the order of integers represented in binary (00, 01, 10, and 11).

Adopting this convention, the (𝐷𝑉 +1)(𝐷𝑊 +1)× (𝐷𝑉 +1)(𝐷𝑊 +1) matrix form of the
tensor product 𝐴⊗𝐵 is given by the Kronecker product

𝐴⊗𝐵 ≡

⎛
⎜⎜⎜⎝

𝑎00𝐵 𝑎01𝐵 · · · 𝑎0𝐷𝑉
𝐵

𝑎10𝐵 𝑎11𝐵 · · · 𝑎1𝐷𝑉
𝐵

...
...

...
...

𝑎𝐷𝑉 0𝐵 𝑎𝐷𝑉 1𝐵 · · · 𝑎𝐷𝑉𝐷𝑉
𝐵

⎞
⎟⎟⎟⎠

where 𝑎𝑘ℓ is the (𝑘, ℓ) component of 𝐴, i.e. 𝑎𝑘ℓ = ⟨𝑘|𝐴|ℓ⟩.
We can define larger multi-qudit spaces similarly; an 𝑛-qudit space is the Hilbert space

given by (C𝑑)⊗𝑛 = C𝑑 ⊗ · · · ⊗ C𝑑 with 𝑛 copies of C𝑑. Of particular importance is the
case of 𝑛 qubits (𝑑 = 2). The standard basis, called the computational basis, is given by
{|𝑖⟩ : 𝑖 ∈ {0, 1}𝑛}, where {0, 1}𝑛 denotes the set of all 𝑛-tuples of binary numbers. Again,
when writing vectors and matrices, the order of these basis elements is in ascending numerical
order. For example, for 𝑛 = 3 the computational basis is, in order,

{|000⟩, |001⟩, |010⟩, |011⟩, |100⟩, |101⟩, |110⟩, |111⟩}.

Consider a 1-qubit system, C2. Recall that any linear operator 𝐴 on this space can
always be written as a linear combination of the Pauli matrices and the identity, 𝐴 =
𝑛0 1+𝑛𝑥𝑋 + 𝑛𝑦𝑌 + 𝑛𝑧𝑍, for some complex numbers 𝑛0, 𝑛𝑥, 𝑛𝑦, 𝑛𝑧. Moving to the 𝑛-qubit
case, if 𝐴 is a linear operator on 𝑛 qubits, we may write 𝐴 as a linear combination of the
𝑛-fold tensor products of Pauli matrices,

𝐴 =
∑︁

𝜎𝑖∈{1,𝑋,𝑌,𝑍}
𝑖=1,...,𝑛

𝑐𝜎1,...,𝜎𝑛 𝜎1 ⊗ · · · ⊗ 𝜎𝑛,

where the sum is over all possible choices of 𝜎𝑖 ∈ {1, 𝑋, 𝑌, 𝑍} for each qubit 𝑖 = 1, . . . , 𝑛
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and where 𝑐𝜎1,...,𝜎𝑛 are complex coefficients (or, if 𝐴 is Hermitian, real coefficients). In
general, this sum includes terms in which 𝜎1 ⊗ · · · ⊗ 𝜎𝑛 act non-trivially on each qubit,
i.e. in which none of the 𝜎𝑖 are equal to 1. For example, one can imagine a Hamiltonian
𝐻 = 𝑋⊗𝑋⊗· · ·⊗𝑋. This Hamiltonian indicates an interaction involving all 𝑛 qubits at the
same time. Indeed, even for very small 𝑡, the evolution of the system 𝑈 = 1−𝑖𝐻𝑡 + 𝑂(𝑡2)
will include the operation 𝑋 ⊗𝑋 ⊗ · · · ⊗𝑋, affecting all of the qubits together. In the next
subsection, we shall deal with more restricted operators, in which the number of non-trivial
𝜎𝑖 in any given term 𝜎1 ⊗ · · · ⊗ 𝜎𝑛 is limited.

Locality

In principle, any Hermitian matrix can serve as the Hamiltonian of a system. In nature
(and experiment), however, Hamiltonians generally have certain constraints. In particular,
it is typically the case that the interactions between different particles involve only a few
particles at a time. This property is called locality. We can further classify how local a
Hamiltonian is: we say that a Hamiltonian 𝐻 on 𝑛 qubits is an ℓ-local Hamiltonian if it can
be written as

𝐻 =
∑︁

𝑘

𝐻𝑘

where each 𝐻𝑘 acts non-trivially on at most ℓ of the 𝑛 qubits. That is, 𝐻 is ℓ-local if we
can write it as the sum of tensor products

𝐻 =
∑︁

𝑘

𝐻𝑘 =
∑︁

𝑘

ℎ𝑘,1 ⊗ · · · ⊗ ℎ𝑘,𝑛

where each ℎ𝑘,𝑖 is a Hermitian operator on qubit 𝑖 alone and where, for each 𝑘, at most ℓ of
these ℎ𝑘,𝑖 are not equal to the identity, i.e. for each 𝑘, |{ℎ𝑘,𝑖 ̸= 1 : 𝑖 = 1, . . . , 𝑛}| 6 ℓ.

Obviously, any Hamiltonian on 𝑛 qubits is ℓ-local for ℓ = 𝑛, but if it is also ℓ-local for some
small ℓ, typically a small constant like 2 or 3, then it is considered to be a local Hamiltonian.
In fact, in nature Hamiltonians are typically 2-local, meaning that only pairwise interactions
are present. Due to the ubiquity of locality in nature, locality will be a reoccurring theme
in this thesis. We will make locality assumptions in Chapters 2 and 4 to derive stronger
results than might be true in the general case. Moreover, as we will discuss in Sec. 1.4.3,
the concept of local Hamiltonians features prominently in the story of QMA-completeness,
which is studied in Chapters 6 and 7.

Note that in this definition of locality, which is standard in the quantum computing field,
there are no constraints on which particle (or qubit) interacts with which other particle – any
particle can interact with any other particle, as long as each of those interactions involves
only a few particles. Typically, however, there are also constraints as to which particles
may interact with each other. A common situation is that of particles fixed on a lattice,
where the particles can only interact substantially with their immediate neighbours. This
additional condition is referred to as geometric locality, and should not be confused with the
more general definition of locality used in this thesis and defined above.

Systems and Environments

Another situation in which treating a system as composite is important is when describing
a system coupled to an environment (also called a bath). In this case, we can imagine the
system and environment each described by some Hilbert space ℋ𝒮 and ℋℬ, respectively, so
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that the composite system-environment is the space ℋ = ℋ𝒮 ⊗ℋℬ. The Hamiltonian of the
system-environment can generically be written as

𝐻 = 𝐻𝒮 ⊗ 1ℬ +1𝒮 ⊗𝐻ℬ +
∑︁

𝛼

𝑆𝛼 ⊗𝐵𝛼

where𝐻𝒮 and each 𝑆𝛼 are Hermitian operators on the system,𝐻ℬ and each𝐵𝛼 are Hermitian
operators on the environment, and 1𝒮 and 1ℬ are the identity operators on the system and
environment respectively. In the absence of the 𝑆𝛼⊗𝐵𝛼 terms, the system and environment
are not coupled, and evolve separately from each other. Indeed, if 𝐻 = 𝐻𝒮 ⊗ 1ℬ +1𝒮 ⊗𝐻ℬ
then, necessarily, the unitary evolution 𝑈(𝑡) of the system-environment can be decomposed
as 𝑈(𝑡) = 𝑈𝒮(𝑡) ⊗ 𝑈ℬ(𝑡) where 𝑈𝒮(𝑡) and 𝑈ℬ(𝑡) are unitary operators on the system and
environment, respectively; consequently, any state |𝜓𝒮ℬ⟩ = |𝜓𝒮⟩⊗|𝜓ℬ⟩ evolves as |𝜓𝒮ℬ(𝑡)⟩ =
𝑈𝒮(𝑡)|𝜓𝒮(0)⟩ ⊗ 𝑈ℬ(𝑡)|𝜓ℬ(0)⟩, with the system unambiguously in the state 𝑈𝒮(𝑡)|𝜓𝒮(0)⟩.
However, in the presence of a coupling, i.e. where

∑︀
𝛼 𝑆𝛼 ⊗ 𝐵𝛼 ̸= 0, this is no longer true:

the combined evolution cannot generally be written in this form, and the presence of the
environment affects the evolution of the system, becoming entangled with it.

Typically, when using this formalism, the system is something that we can (at least par-
tially) control and that we are interested in measuring, say, for the purpose of computation.
The environment, on the other hand, is uncontrollable, and we are not interested in – or
even capable of – measuring it. A leading challenge in developing scalable, useful quantum
computers is overcoming environmental disturbance, and much of this thesis grapples with
this challenge.

1.1.5 Mixed states

So far, we have discussed quantum systems that are in some definite state, say |𝜓⟩. We
now briefly review the formalism applicable to statistical mixtures of quantum states, i.e.
a formalism that describes the situation where we only have partial information about the
state of the quantum system. This formalism makes use of what is called a density matrix

or density operator.
Suppose we have a quantum system that is known to be in one of a number of states

{|𝜓𝑖⟩}, each with probability 𝑝𝑖. Then the density operator for this ensemble is defined to
be the Hermitian operator

𝜌 =
∑︁

𝑖

𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖| .

The states {|𝜓𝑖⟩} need not be orthogonal and therefore the 𝑝𝑖 are not necessarily eigenvalues.
The eigenvalues of 𝜌 are nonetheless non-negative because 𝜌 is a positive operator: for any
|𝜑⟩, we have ⟨𝜑|𝜌|𝜑⟩ =

∑︀
𝑖 𝑝𝑖| ⟨𝜑|𝜓𝑖⟩ |2 > 0. Also note that because the system is definitely in

one of the states {|𝜓𝑖⟩}, we have
∑︀

𝑖 𝑝𝑖 = 1, and therefore Tr 𝜌 = 1. Indeed, these last two
features are the defining features of density matrices, and it can be shown that any operator
𝜌 is a density matrix for some set of states {|𝜓𝑖⟩} with some probabilities {𝑝𝑖} if and only
if 𝜌 is a positive operator and satisfies Tr 𝜌 = 1.

In the case where the quantum system is in a definite state, say |𝜓⟩, then 𝜌 = |𝜓⟩⟨𝜓|,
with a probability of 1 associated with |𝜓⟩. In this case, we describe the state as pure. If the
state is not pure, we call it mixed. If no information is known about the system at all, the
density matrix will be proportional to the identity matrix 1, and is referred to as maximally
mixed.
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To consider how measurement and evolution work in the density matrix formalism, one
need only realize that a density matrix is a convex combination of pure states. Evolution and
measurement distributions on the density matrix simply correspond to evolution and mea-
surement of each of these pure states, leaving the sum over the ensemble and the associated
probabilities 𝑝𝑖 unchanged. One thereby obtains the following.

Measurement: Let {|𝜑𝑗⟩} be a set of orthonormal basis vectors of the state space. Given
a density operator 𝜌, we can measure 𝜌 in this basis, obtaining a result of |𝜑𝑘⟩ with
probability

𝑝𝜑𝑘 = ⟨𝜑𝑘|𝜌|𝜑𝑘⟩
at which point the density operator of the system becomes |𝜑𝑘⟩⟨𝜑𝑘|.

Unitary Evolution: 𝜌(𝑡) evolves under the time-evolution operator 𝑈(𝑡) according to

𝜌(𝑡) = 𝑈(𝑡) 𝜌(0)𝑈(𝑡)† .

Although the density matrix formalism described above is defined for an ensemble of
quantum states with uncertainty as to which state the system is in, its primary use in this
thesis will be for describing parts of composite systems. Suppose a joint quantum system 𝐴𝐵
is in the state |𝜓⟩. We would like to describe the system of just 𝐴 alone. In the general case,
there is no pure quantum state associated with 𝐴, since the state may be entangled with 𝐵
as well. However, using the density operator formalism, we can ascribe a density matrix 𝜌
to the state of 𝐴 in such a way that all measurement outcomes for measurements performed
on 𝐴 alone are reproduced (in the sense of yielding the same measurement probability
distribution and final state). To this end, we define the reduced density operator for 𝐴 to be

𝜌 = Tr𝐵 |𝜓⟩⟨𝜓|

where Tr𝐵 is the partial trace over 𝐵, given by

Tr𝐵

(︁∑︁

𝑖𝑗𝑘ℓ

𝑐𝑖𝑗𝑘ℓ |𝑎𝑖⟩⟨𝑎𝑗 | ⊗ |𝑏𝑘⟩⟨𝑏ℓ|
)︁

=
∑︁

𝑖𝑗𝑘ℓ

𝑐𝑖𝑗𝑘ℓ |𝑎𝑖⟩⟨𝑎𝑗 |Tr
(︁
|𝑏𝑘⟩⟨𝑏ℓ|

)︁

=
∑︁

𝑖𝑗𝑘ℓ

𝑐𝑖𝑗𝑘ℓ ⟨𝑏ℓ|𝑏𝑘⟩ |𝑎𝑖⟩⟨𝑎𝑗 |

for any vectors {|𝑎𝑖⟩} and {|𝑏𝑖⟩} on 𝐴 and 𝐵 respectively. This formalism is particularly
useful for joint system-environment situations, where one is interested in the state of the
system but not the environment.

Suppose the system and environment are initially unentangled, say with the system in the
state |𝜓𝒮⟩ and the environment in the state |𝜓ℬ⟩, so that the joint system-environment state
is |𝜓𝒮⟩⊗|𝜓ℬ⟩. The density matrix of the joint system is therefore 𝜌𝒮ℬ = |𝜓𝒮⟩⟨𝜓𝒮 |⊗|𝜓ℬ⟩⟨𝜓ℬ|,
and the partial trace over the environment gives Trℬ(𝜌𝒮ℬ) = |𝜓𝒮⟩⟨𝜓𝒮 |, in agreement with our
initial statement that the system is in the pure state |𝜓𝒮⟩. More generally, we could imagine
the system and environment are initially unentangled but are each described by some density
matrix on their respective subsystems, so that 𝜌𝒮ℬ = 𝜌𝒮 ⊗𝜌ℬ. Again, Trℬ(𝜌𝒮ℬ) = 𝜌𝒮 . More
general still, the system-environment may not be unentangled at all, in which case we cannot
write 𝜌𝒮ℬ as the tensor product of two states. The density matrix Trℬ(𝜌𝒮ℬ) on the system,
however, will still describe the state of the system, in that any measurement performed on
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the system alone will give the same outcome distribution whether one uses 𝜌𝒮ℬ or Trℬ(𝜌𝒮ℬ);
the reader is invited to consult [1] for an explanation of why this is the case.

Quantum operations

It is an axiom of quantum mechanics that evolution of a quantum system is governed by
the Schrödinger equation, and therefore time-evolution is described by a unitary operator.
However, this only applies to the evolution of an isolated quantum system. To describe how
only a part of a quantum system evolves – say, a way to describe how the state of the system
evolves, without tracking how its adjoined environment evolves – we use the formalism of
so-called quantum operations.

An operator that maps linear operators (such as density matrices) to linear operators
is called a superoperator. Suppose that the system-environment is initially in the state
𝜌𝒮ℬ and evolves under the unitary 𝑈 , taking it to the state 𝑈𝜌𝒮ℬ𝑈 †. The system alone
(after the environment is traced out) is therefore initially described by the density matrix
𝜌𝒮 = Trℬ(𝜌𝒮ℬ), and afterwards is described by

ℰ(𝜌𝒮) = Trℬ(𝑈𝜌𝒮ℬ𝑈 †) ,

where the superoperator ℰ depends on the initial system-environment state 𝜌𝒮ℬ and its
unitary evolution. Thus, while the system-environment evolves under the unitary operator
𝑈 , the evolution of the density matrix of the system alone is described by the superoperator
ℰ acting on just the system. In general, the action of ℰ is more complicated than conjugation
by a unitary matrix (as would have been the case for an isolated system); we now proceed
to review the mathematical framework of such superoperators.

We define a superoperator ℰ to be a quantum operation if its action on density matrices
𝜌 can be written as

ℰ(𝜌) =
∑︁

𝑘

𝐸𝑘𝜌𝐸
†
𝑘

where the Kraus operators (also known as operation elements) {𝐸𝑘} satisfy the condition
∑︁

𝑘

𝐸†
𝑘𝐸𝑘 = 1 .

Quantum operations may also be called quantum channels and in Chapter 6 are referred to
as being admissible superoperators. We note in passing that this definition is equivalent to
saying that ℰ is a completely-positive trace-preserving linear map (a CPTP map), meaning
that Tr ℰ(𝜌) = Tr 𝜌 for all 𝜌 and (ℰ⊗ℐ)(𝐴) is positive for any positive operator 𝐴, where ℐ is
the identity superoperator (ℐ(𝜌) = 𝜌). For more information and generalizations, including
proofs that these mathematical formulations are equivalent to the idea of tracing out the
environment of a unitarily evolved system-environment, the reader is invited to consult the
chapter on quantum operations in [1].

1.1.6 Bosonic systems

Although quantum computing is often primarily interested in finite-dimensional systems,
we briefly mention here the case of bosonic systems, as will be relevant in Chapter 5. The
formalism of a simple isolated bosonic system is that of the quantum harmonic oscillator. An
arbitrary number of bosons can be present in such a system, with corresponding basis states
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{|𝑛⟩ : 𝑛 = 0, 1, 2, . . .} where 𝑛 is the number of bosons present. Two important operators for
this system are the annihilation (lowering) and creation (raising) operators, 𝑎 and 𝑎†, which
act as

𝑎|𝑛⟩ =
√
𝑛|𝑛− 1⟩

𝑎†|𝑛⟩ =
√
𝑛+ 1|𝑛+ 1⟩

and are related by the bosonic commutation relation [𝑎, 𝑎†] = 1. The states described above,
representing the number of bosons present, are eigenstates of the number operator 𝑁 = 𝑎†𝑎 .
The Hamiltonian describing a quantum harmonic oscillator is (up to a constant) proportional
to 𝑁 , so that the number basis states are also the energy eigenstates.

It is important to note that in the simple quantum harmonic oscillator Hamiltonian, 𝐻
is linearly proportional to 𝑁 , so that each additional boson contributes the same amount
of energy. In this sense, there are no interactions, since each boson only has the effect of
adding a constant amount of energy to the system. The Hamiltonian could also contain
terms that are non-linear in 𝑁 , representing interactions between bosons. For example, if
an additional term of 𝑁(𝑁 − 1) were present, which is non-zero if and only if at least two
bosons are present, this would indicate a multiple-particle interaction term.

As a further generalization of the harmonic oscillator Hamiltonian, one can consider
systems with multiple bosonic modes. For example, each mode might represent a lattice
site, again with an arbitrary number of particles (bosons) allowed in each site. Each mode
𝑚 will have its own creation, annihilation, and number operators, 𝑎†𝑚, 𝑎𝑚, and 𝑁𝑚, and may
then contribute a term to the Hamiltonian, so that 𝐻 has a term proportional to

∑︀
𝑚𝑁𝑚.

Indeed, this sum represents the simple case where these modes are all independent and no
interactions exist. However, the modes may not be independent.

Consider a system with two modes (𝑚 = 1, 2), starting in state |1, 0⟩, meaning that
mode 1 has one particle in it, while mode 2 has none. If we apply the operator 𝑎†2𝑎1 to this
state, the result will be the state |0, 1⟩; the particle has “hopped” from mode 1 to mode 2. If
such operators are present in the Hamiltonian, then the fact that the Hamiltonian governs
time evolution implies that such operations act during evolution, allowing such hopping over
time.

An important Hamiltonian with all of these features is the (generalized) Bose-Hubbard
model,

𝐻 =
∑︁

𝑚

𝐸𝑚𝑁𝑚 +
∑︁

⟨𝑙,𝑚⟩
𝐽𝑙,𝑚𝑎

†
𝑙 𝑎𝑚 +

Γ

2

∑︁

𝑚

𝑁𝑚(𝑁𝑚 − 1) (1.1)

where 𝐸𝑚 is the energy corresponding to mode 𝑚 (if there were no interactions or hopping),
𝐽𝑙,𝑚 governs the inter-mode hopping, and Γ is a non-linear interaction energy resulting from
the presence of multiple particles in the same mode. This Hamiltonian, which is especially
applicable to modelling cold atoms in optical lattices, will be useful in Chapter 5.

1.2 Hamiltonian-based quantum computing

As we noted before, a quantum system’s energetics, interactions, and time evolution is gov-
erned by its Hamiltonian. In this sense, from a physicist’s perspective, it is natural to
develop quantum computing architectures defined by Hamiltonians. This differs, however,
from the more common, computer-science-like perspective of theoretical quantum computa-
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tion defined by the application of local unitary operations, called gates. The circuit model
will be discussed later in Sec. 1.3. In the current section, we discuss some ideas behind the
Hamiltonian-based approach, which is a main theme in this thesis.

There are a number of quantum computing models based explicitly on Hamiltonians.
Many of these are provably equivalent in power to the circuit model of quantum computation.
We will review several of these models, all of whose basic idea is as follows. We start with
some initial quantum state |𝜓(0)⟩ that is easy to prepare. We then evolve under some
relatively simple, possibly time-dependent Hamiltonian, 𝐻(𝑡), for some length of time 𝑇 ,
to obtain a final state |𝜓(𝑇 )⟩. We then measure this final state, generally in an easy-to-
measure basis such as the computational basis. We design our algorithm so that measuring
|𝜓(𝑇 )⟩ should yield some information about the solution to the computational problem of
interest, with the details of the problem being used in some form to dictate our choice of
|𝜓(0)⟩, 𝐻(𝑡), and/or 𝑇 . Although 𝐻(𝑡) may be time-dependent, it generally is simple to
describe and implement and is of bounded strength (not requiring unbounded amounts of
energy). Preferably, it should also be physically reasonable, satisfying, for example, locality
constraints, although one may still be interested in theoretical models that employ less-than-
physically-reasonable Hamiltonians too. Note that in this model as we have defined it, only
a single measurement is performed, at the very end of the computation.

1.2.1 Adiabatic quantum computation

One of the most famous Hamiltonian-based quantum computing models is adiabatic quantum
computation, introduced in [4]. Suppose we have a Hamiltonian 𝐻𝑓 , whose ground state (the
state with the lowest eigenvalue) is the solution to a computational problem of interest. For
example, perhaps we seek to solve a classical optimization problem, finding the minimum
value 𝑧 = 𝑧min of some cost function 𝐶(𝑧), a real function of binary strings 𝑧. Then we
can interpret 𝐶(𝑧) to be a Hamiltonian, 𝐻𝑓 =

∑︀
𝑧 𝐶(𝑧) |𝑧⟩⟨𝑧|, diagonal in the binary string

{|𝑧⟩} basis, with ground state |𝑧min⟩. Preparing this ground state directly may be difficult,
equivalent to solving the optimization problem, since we do not know ahead of time the
value of 𝑧min. However, in the adiabatic model, we start by preparing the ground state of
a different Hamiltonian 𝐻𝑖, whose ground state is easy to prepare, and evolve the system
according to a time-dependent Hamiltonian 𝐻(𝑡) that interpolates between the two. For
example, we might use the Hamiltonian

𝐻(𝑡) =
(︁

1− 𝑡

𝑇

)︁
𝐻𝑖 +

𝑡

𝑇
𝐻𝑓 , 0 6 𝑡 6 𝑇,

where 𝑇 is the total evolution time; initially, 𝐻(0) = 𝐻𝑖, and finally, 𝐻(𝑇 ) = 𝐻𝑓 . According
to the adiabatic theorem [5, 6] of quantum mechanics, provided that this evolution is done
slowly enough (i.e. provided that 𝑇 is large enough in the interpolation given above), if we
start in the ground state of 𝐻𝑖 then we will finish in a state very close to the ground state
of 𝐻𝑓 . For example, we may choose 𝐻𝑖 = −∑︀𝑖𝑋𝑖 to be the sum of Pauli 𝑋 operators on
each qubit, whose ground state is the uniform superposition, proportional to

∑︁

𝑧

|𝑧⟩ = (|0⟩+ |1⟩)⊗ · · · ⊗ (|0⟩+ |1⟩),

and (relatively) easy to prepare for our initial state |𝜓(0)⟩. Under the adiabatic scenario of a
slowly-varying Hamiltonian, since the final state |𝜓(𝑇 )⟩ is close to |𝑧min⟩, a final measurement
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gives 𝑧min with high probability. For an analysis on what constitutes as sufficiently slowly-
varying, and the corresponding requirements on the eigenvalue spectrum of 𝐻(𝑡), the reader
is invited to consult [4].

Adiabatic quantum computation is known to be universal, i.e., is equivalent in compu-
tational power to the circuit model [7], albeit not in the form of the optimization algorithm
described above. Indeed, an algorithm for factoring has been developed and implemented
using this model [8], reportedly [9] factoring 56153 = 233 × 241. A related computational
method, quantum annealing, is essentially a form of the adiabatic quantum computing model
in the presence of an environment, and is most famous for being the goal of the D-Wave
processor [10].

1.2.2 Feynman’s model

Another class of Hamiltonian-based quantum computation models are those based on Feyn-
man’s original vision of a quantum computing device [11] in 1985. One way of formulating
this type of computer is as follows. Suppose we have some initial state |𝜓0⟩, to which we
wish to apply a sequence of unitary operations, 𝑈 = 𝑈𝐿𝑈𝐿−1 · · ·𝑈2𝑈1, obtaining a final state
|𝜓𝐿⟩ = 𝑈 |𝜓0⟩ that encodes the solution to our computation. Such a scenario is easy to un-
derstand in light of the circuit model of computation, which we address shortly in Sec. 1.3,
with the unitaries 𝑈𝑖 representing individual computational gates that we wish to apply.
Suppose, however, that we wish to do this using Hamiltonian-based quantum computation.
Perhaps, for example, we need to use a single time-independent Hamiltonian, ruling out the
application of a series of unitary gates. A time-independent Hamiltonian giving rise to 𝑈
via the Schrödinger equation may be horrendously complicated and non-local, even if each
of the individual gates 𝑈𝑖 is easy to implement with some local Hamiltonian.

The Feynman-type method of computation proceeds as follows. In addition to the com-
putational space in which |𝜓0⟩ lives, which we call the work register, we adjoin another space
span{|𝑡⟩ : 𝑡 = 0, . . . , 𝐿}, called the clock register. We then construct the time-independent
Hamiltonian

𝐻 =
𝐿∑︁

𝑡=1

𝑈𝑡 ⊗ |𝑡⟩⟨𝑡− 1|+ 𝑈 †
𝑡 ⊗ |𝑡− 1⟩⟨𝑡| .

Note that 𝑡 here does not refer to time, but rather the clock-states; 𝐻 is time-independent.
This operator is Hermitian, and therefore in principle can serve as a Hamiltonian. Assuming
the unitary gates 𝑈𝑖 are local (operating on only a few qubits each), 𝐻 can also be made
local by a clever choice of the clock register {|𝑡⟩}. If one starts with the initial state |𝜓0⟩⊗|0⟩
and evolves under 𝐻, the state will become a “history” state – a superposition over states(︁
𝑈𝑡𝑈𝑡−1 · · ·𝑈1|𝜓0⟩

)︁
⊗ |𝑡⟩. Measuring the clock register will yield a value of 𝑡 = 𝐿 with a

reasonably large probability (assuming 𝐿 is not too large), and when this occurs, the work
register will contain the final state |𝜓𝐿⟩ = 𝑈𝐿𝑈𝐿−1 · · ·𝑈2𝑈1|𝜓0⟩ as desired. Straightforward
techniques exist to amplify the probability of obtaining this outcome to be very high.

Aside from being one of the first models of quantum computation, this model is use-
ful in providing equivalencies between the circuit model and Hamiltonian-based models of
quantum computation (such as the adiabatic model discussed above). It is also the father of
similar models, such as the Margolus [12] and Lloyd-Terhal [13] models of quantum compu-
tation. Furthermore, it has played an important role in analysing the computational power
of different Hamiltonians, as will be discussed in Sec. 1.4.3.
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1.2.3 Continuous-time quantum walks

The continuous-time quantum walk model of computation was introduced in [14]. The idea
is to perform a computation by analysing the dynamics of a quantum particle on a graph
(i.e. a set of discrete points in space, connected to each other in some way). Suppose we have
some weighted, undirected graph with vertices {𝑖}. Associate with this a state space {|𝑖⟩}
corresponding to the vertices. For our purposes, we define a continuous-time quantum walk
by interpreting the adjacency matrix of the graph as a time-independent Hamiltonian 𝐻,
meaning that ⟨𝑖|𝐻|𝑗⟩ is equal to the weight of the edge connecting vertices 𝑖 and 𝑗 (or equal
to 0 if no edge connects them). The state of the system is some |𝜓⟩, which can be interpreted
as a wavefunction on the discrete space of the vertices. We start in some initial state |𝜓(0)⟩
(e.g. a state localized to some particular vertex, or a state representing a travelling wave
through some part of the graph), evolve under the Hamiltonian for some time 𝑡, and then
measure whether the wavefunction is found in some subset 𝑆 of the vertices, giving yes

with probability
∑︀

𝑖∈𝑆 | ⟨𝑖|𝜓(𝑡)⟩ |2. In some sense, the dynamics of any time-independent
Hamiltonian can be interpreted as a quantum walk, including the Feynman model discussed
above. In the present discussion, however, we use quantum walks to denote a walk described
explicitly on a graph, which is typically sparse or planar.

Continuous-time quantum walks are the quantum analogue of continuous-time random
walks and can be used for computation. In this model, one encodes a problem in a graph,
and therefore in a Hamiltonian, such that the above procedure constitutes an algorithm for
the problem. To show one way in which this model can work, we briefly present (without
proof) how a continuous-time quantum walk can be used to solve a Grover-type problem,
formulated as computing the 𝑁 -bit or function (i.e. for any 𝑁 -bit input 𝑥, or(𝑥) = 0 for
𝑥 = 0 and or(𝑥) = 1 otherwise). A graph, i.e. Hamiltonian 𝐻𝑥, to solve this problem is
shown in Fig. 1-1, for the problem of distinguishing whether 𝑥 = 0 vs. 𝑥 has precisely one
non-zero bit. This graph involves a “runway” attached to a modified binary tree with an
extra connection on the top row of the tree depending on the input 𝑥. One can show that
if the initial state is a travelling wave on the runway (specifically, ⟨𝑣|𝜓(0)⟩ ∝ 𝑒−𝑖𝑣𝜋/2 for 𝑣
on the runway) and evolved for time proportional to

√
𝑁 under 𝐻𝑥, a measurement on the

even nodes of the last third of the runway sites yields no with high probability if 𝑥 = 0,
and yes otherwise. In this way, starting with the appropriate initial state, evolving under
the input-dependent Hamiltonian 𝐻𝑥, to which we assume we have access (even though we
assume we do not necessarily know the value of 𝑥), and measuring the appropriate sites, one
can calculate the value of or(𝑥). Many other continuous-time quantum walk algorithms
exist, and the model has been proven to be universal for quantum computation [15] (and
see also a generalization in [16]).

1.2.4 Analogue Hamiltonian simulation and algorithms

While the previous models are (at least theoretically) capable of general-purpose quantum
computation, we note that it may also be useful to consider quantum computing devices
with more modest goals. One of the main motivations for quantum computing is quantum
simulation, where we would like to study the properties of some specific quantum system,
say one modelled by a Hamiltonian 𝐻̃, without having direct access to such a system. To
simulate a quantum system on a classical computer is typically difficult, due to the former’s
much larger state space – for example, an 𝑛-bit state has 𝑛 parameters, but to describe
a generic quantum system of 𝑛 spin-12 particles requires 2𝑛 parameters. While a universal
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(a)

(b)

Figure 1-1: Graphs for the 16-bit or problem for (a) an input of 𝑥 = 0000000000000000
(with an empty top row in the graph) and (b) an input of 𝑥 = 0000000000000001 (with a
single node in the top row). The Hamiltonian 𝐻𝑥 consists of two parts: a runway attached
to a modified binary tree, and an input-specific part consisting of an extra vertex and edge
corresponding to the location of the 1 (if any is present) in the input 𝑥. Straight edges have
weight 1 and slanted edges have weight 1

4√2
. The tree to accomplish this task was derived

using span programs [17].
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quantum computer – say, one using the circuit model – can simulate quantum systems
[18], we can also imagine an analogue, possibly-non-universal quantum device designed to
simulate some class of quantum systems. That is, we can imagine a system obeying some
Hamiltonian 𝐻 but that is able to effectively approximate the evolution of a system obeying
𝐻̃. This idea will be made clearer in Chapter 3 where we describe one such method.

One obvious use of quantum simulation might be for quantum chemistry or condensed-
matter physics, where one may want to determine properties of a quantum system, modelled
by some Hamiltonian, that one has not yet manufactured. We may also be interested in
Hamiltonians that, rather than modelling a physical system, implement an algorithm. As
an example of an interesting Hamiltonian used for algorithmic purposes, we briefly discuss
the “analogue” (continuous-time) version of Grover’s algorithm presented in [19]. Suppose
we are looking for some special 𝑛-bit string 𝑧0 out of all possible 𝑛-bit strings, but have no
information about 𝑧0 itself other than some way of querying whether or not a given number
𝑧 is the desired bit-string 𝑧0. This is the problem addressed by Grover’s algorithm [20],
which presents a quantum circuit given access to a quantum oracle that may be thusly
queried. In the Hamiltonian-based algorithm of [19] for this problem, we assume that we
have access to (but no information about) the Hamiltonian 𝐻𝑧0 = |𝑧0⟩⟨𝑧0|, as well as the
problem-independent Hamiltonian 𝐻𝐷 = |𝑠⟩⟨𝑠|, where |𝑠⟩ = 2−𝑛/2

∑︀
𝑧 |𝑧⟩ is the uniform

superposition over all 𝑛-bit bit-strings. We evolve under the time-independent Hamiltonian

𝐻 = 𝐻𝐷 +𝐻𝑧0 = |𝑠⟩⟨𝑠|+ |𝑧0⟩⟨𝑧0|

starting from the uniform superposition |𝑠⟩. Then by measuring the state of the system (in
the |𝑧⟩ basis) at time 𝑇 = 𝜋2𝑛/2−1, the desired bit-string 𝑧0 will be obtained.

1.3 Circuit model

An alternative approach for quantum computation, and the one discussed most often, is the
circuit model of quantum computation. Rather than specifying the Hamiltonian describing
a quantum system, the circuit model focuses on viewing the evolution of the system as a
sequence of instantaneous unitary operations, called gates. Each quantum gate acts on a
small number of qubits and serves as a building block for the overall quantum computation.
They are (to some extent) analogous to the logic gates that appear in classical computing,
such as not, and, or, and nand. Before discussing the quantum case, let us first review
the classical case.

1.3.1 Classical circuits

The classical circuit model is a model of classical computation, equivalent in power to other
common models (such as “Turing machines”), and is in some respects an idealization of the
circuitry in modern digital devices. The model involves two main parts. There are wires,
each of which carries a bit of information (0 or 1), and logical operations, or gates, that are
performed on these wires. Conventionally, the circuit is taken to be acyclic, i.e. none of the
wires can form loops. Some gates act on a single wire, others act on multiple wires. The
most important 1-bit (i.e. single-wire) gate is the not gate; important 2-bit gates include
the and, or, xor (i.e. “exclusive-or”), and nand (i.e. “not-and”) gates. Additionally,
wires can copy information, in the fanout operation, where a wire splits into two, each
carrying a copy of the original information. The action of these gates and operations can
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Figure 1-2: A circuit that takes in two 1-bit numbers, 𝑥 and 𝑦, and computes 𝑧 = 𝑥 + 𝑦,
with output 𝑧 written in binary, 𝑧 = 𝑧1𝑧0. The gate elements present in the circuit are
indicated on the right.

be understood from the following truth tables; understand 0 to represent false and 1 to
represent true.

𝑥 𝑦 and(𝑥, 𝑦) or(𝑥, 𝑦) xor(𝑥, 𝑦) nand(𝑥, 𝑦)
0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 1
1 1 1 1 0 0

𝑥 not(𝑥)
0 1
1 0

𝑥 fanout(𝑥)
0 0, 0
1 1, 1

A circuit, composed of wires and gates, can perform computational tasks: the front of the
wires are initialized to some bit values (typically encoding the problem input), flow through
the gates, and the information present at the ends of the wires is then read as output. As an
extremely simple example, the half-adder circuit shown in Fig. 1-2 adds two 1-bit numbers
together, giving a 2-bit output.

In classical circuits, one generally take for granted access to constant bits and to fanout.
But we may ask what other gates are required to perform certain computations. It is
well known that the set of and, or, and not is universal – any circuit, no matter how
complicated, can be built up from these operations, with more complicated gates built out
of just these three gates. This set is larger than is necessary – the set of and and not are
universal, as or can be simulated with and and not. In fact, for universality it suffices to
have access to only the nand gate.

1.3.2 Quantum circuits

The basic idea of classical circuits, namely starting with some input bits, applying gates
to them in sequence, and measuring the final output, carries over to the quantum domain.
Instead of wires carrying bits (0 or 1), they now carry qubits (in general, a superposition
over bit-strings |0 · · · 0⟩, . . . , |1 · · · 1⟩), and instead of applying logic gates to the bits, there
are now quantum gates applied to the qubits. Measurement of each qubit can be performed
at the end in the computational basis, {|0⟩, |1⟩}, although due to the probabilistic nature of
quantum measurements, the outcome will in general be non-deterministic.

We have already discussed qubits and measurement above, so our discussion here will
primarily focus on the nature of quantum gates. Observe that the equivalent of the classical
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not gate is the Pauli 𝑋 operation, since it flips |0⟩ ↔ |1⟩. Many other classical logic gates,
however, do not carry over directly into the quantum domain. In quantum mechanics,
quantum states (including qubits), evolve in time under the action of a unitary operator.
Quantum gates must therefore be unitary. A consequence of this is that quantum gates
must be reversible: if a quantum system evolves in time according to some unitary 𝑈 , then,
by definition of unitarity, there exists an inverse operation 𝑈−1 = 𝑈 † that will undo this
evolution. This excludes the possibility of the 2-bit-to-1-bit functions like and, or, xor, and
nand discussed above, since given their (1-bit) output, there is no way to always reconstruct
their (2-bit) input. Moreover, fanout is impossible due to the no-cloning theorem, which
states that arbitrary quantum information cannot be copied perfectly. So a quantum gate
with 𝑛 input qubits must also have 𝑛 output qubits, and the gates we saw in classical
computing are not the gates that appear in quantum circuits.

Furthermore, while in classical computing only four 1-bit-to-1-bit functions are possible,
namely the no-op (𝑥 → 𝑥), not (0 ↔ 1), constant-1 (𝑥 → 1) and constant-0 (𝑥 →
0), there are many different 1-qubit-to-1-qubit gates, namely the whole set of single-qubit
unitaries

{𝑒−𝑖(𝛼1+𝜃𝑛̂·𝜎⃗) : 𝛼 ∈ R, 𝜃 ∈ R, 𝑛̂ ∈ R3, |𝑛̂|2 = 1}.
When considering multi-qubit operations, even more possible unitaries exist. Depending
on physical capabilities, the vast majority of these might be very hard to produce directly,
and the continuous nature of the parameter space can make such a general set of limited
value for algorithm design. We therefore often limit our focus to much smaller gate sets that
include only certain unitary matrices.

Some very important single-qubit unitary gates include the identity and the Pauli ma-
trices,

1 =

(︂
1 0
0 1

)︂
, 𝑋 =

(︂
0 1
1 0

)︂
, 𝑌 =

(︂
0 −𝑖
𝑖 0

)︂
, 𝑍 =

(︂
1 0
0 −1

)︂
.

Note that 𝑋, 𝑌 , and 𝑍 here are the same Pauli Hermitian matrices discussed earlier; they
are very important matrices both when thinking about Hamiltonians as well as unitary
matrices. In the former case, this is because they, along with the identity 1, form a basis
for 2 × 2 Hermitian matrices. In the latter case, this is because 𝑋 serves as the quantum
bit-flip operator,

𝑋(𝑎|0⟩+ 𝑏|1⟩) = 𝑎|1⟩+ 𝑏|0⟩,
while 𝑍 serves as the phase-flip operator,

𝑍(𝑎|0⟩+ 𝑏|1⟩) = 𝑎|0⟩ − 𝑏|1⟩,

and 𝑌 = 𝑖𝑋𝑍 performs both operations together.

Some other important single-qubit gates are the Hadamard gate 𝐻, the phase gates 𝑅𝜃,
and the 𝑇 gate,

𝐻 =
1√
2

(︂
1 1
1 −1

)︂
, 𝑅𝜃 =

(︂
1 0
0 𝑒𝑖𝜃

)︂
, 𝑇 =

(︂
1 0

0 𝑒𝑖𝜋/4

)︂
.

The Hadamard 𝐻 (not to be confused with the Hamiltonian of a quantum system, which is
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also designated by 𝐻) is useful as an easy way to generate superpositions, since

𝐻|0⟩ = 1√
2
(|0⟩+ |1⟩),

while the phase gates are a generalization of the 𝑍 gate, but with phases other than −1
being applied to |1⟩:

𝑅𝜃(𝑎|0⟩+ 𝑏|1⟩) = 𝑎|0⟩+ 𝑒𝑖𝜃𝑏|1⟩ .
The 𝑇 gate is simply an important special case, 𝑇 = 𝑅𝜋/4.

A very important two-qubit gate is the controlled-not gate, or cnot gate,

cnot =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠

which acts on the computational basis by flipping the second qubit if and only if the first
qubit is a |1⟩:

cnot |0⟩ ⊗ |𝜓⟩ = |0⟩ ⊗ |𝜓⟩
cnot |1⟩ ⊗ |𝜓⟩ = |1⟩ ⊗ (𝑋 |𝜓⟩).

In this sense, the action of the cnot is controlled by the first qubit, which dictates whether
it performs a not (𝑋) operation. As a quantum gate, its action on superposition states is
defined by linearity. We can also consider generalizations of the cnot gate that are controlled
by more than one qubit, and we can consider operations beyond just 𝑋. A controlled-𝑈
gate on 𝑚 + 1 qubits that is controlled by 𝑚 qubits will apply 𝑈 to the (𝑚 + 1)th qubit if
all of the first 𝑚 qubits are |1⟩, but perform no action if any of the first 𝑚 qubits are |0⟩.
The basic elements of a quantum circuit, including circuit element diagrams for some of the
gates just described, is shown in Fig. 1-3.

As in the classical circuit case, where we discussed some logic gate sets that are uni-
versal for classical circuits, one may ask what quantum gate sets are universal for quantum
computation. One universal set is cnot together with all single-qubit unitary operations,
{cnot} ∪ {𝑒−𝑖(𝛼1+𝜃𝑛̂·𝜎⃗)}: any unitary operator acting on 𝑛 qubits can be decomposed ex-
actly as the product of some sequence of cnot and single-qubit gates applied to those qubits.
One may be concerned by the fact that this gate set is infinite – we have included in it an
uncountably infinite number of single-qubit gates; contrast this with the classical case, where
a single nand gate suffices. Fortunately, it can be shown that approximately universal gate
sets exist, containing only a finite number of gates, with which any unitary operator can be
approximately decomposed to arbitrary precision as a product of gates drawn from the set.
An (approximate) universal gate set of particular importance is the set {cnot, 𝐻, 𝑇}, since
it can be shown that any single-qubit unitary can be approximated arbitrarily accurately as
some product involving only 𝐻 and 𝑇 operations.

We conclude this section by noting that an advantage of the quantum circuit model
is that it is relatively straightforward, in principle, to determine what the output of the
circuit will be: one need merely perform matrix and vector multiplication of the gates
and states. One generally assumes that gates are performed instantaneously, acting in
sequence, so that the evolution of the quantum state can be mapped through the passage
of a discretized time. One need not worry about the complicated piecewise-time-dependent
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Circuit element Meaning

one qubit (wire)

m
/ m qubits (a bundle of m wires)

U a gate, applying the unitary U

measurement in the {|0〉, |1〉} basis

|0〉 a qubit prepared in the |0〉 state

• a CNOT gate, controlled on the top qubit

•
•
U

a multi-controlled-U gate

|0〉 H • H

|0〉 V

Figure 1-3: (Top) Elements of a quantum circuit. (Bottom) A very simple quantum circuit,
containing Hadamard gates and a controlled-𝑉 gate for some single-qubit unitary operator
𝑉 . This particular circuit is of no particular interest to us here, but for the interested
reader we note that it is the so-called Hadamard test, used for estimating matrix entries
of the unitary 𝑉 . The top qubit register, after measuring, will output a 0 with probability
1
2(1 + Re⟨0|𝑉 |0⟩), and therefore repeated uses of the circuit will allow one to estimate the
value of Re⟨0|𝑉 |0⟩. The Hadamard test will be used in Chapter 6.
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Hamiltonian that may be required to give rise to this evolution, as one need only worry about
implementing each gate in sequence. Fundamentally it is important to realize, however, that
any actual implementation using a quantum apparatus is governed by some Hamiltonian, so
it is important to consider the task of engineering physically-realizable Hamiltonians that
give rise to useful gates (as we do in Chapter 5), and natural to also focus on inventing
– and exploring the viability of – Hamiltonian-based models of computation, like the ones
mentioned in Sec. 1.2.

1.4 Complexity theory

Having discussed models of computation, a natural question to ask, for a given algorithm,
is how long it takes to run. In the circuit setting, we may ask how many gates a particular
algorithm requires, or how deep its circuit must be. To perform a given algorithm on 𝑛
bits (or qubits), does one need a circuit that has 2𝑛 gates, or does there exist a circuit that
uses only 𝑛2 gates? Conversely, we may ask what can be done assuming access to only
some number of gates, some amount of time, or some other set of resources. These are
the questions of computational complexity theory. In this section we provide a very brief
background to the aspects of complexity theory that will appear in this thesis.

1.4.1 Brief mathematical background

Decision problems

A decision problem is a yes-no problem. For example, the question “given integers 𝑥, 𝑦, and
𝑧, is it true that 𝑥+ 𝑦 = 𝑧?” is a decision problem. A specific instance of the problem, say
“is 2 + 3 = 78?”, will have an answer of either yes or no. We formalize this notion using
bit-strings.

We define a language to be some subset 𝐿 ⊂ {0, 1}*, where {0, 1}* denotes the set of all
possible bit-strings of any finite length. Let 𝑥 be a bit-string, 𝑥 ∈ {0, 1}*. We sometimes
denote the length of 𝑥, i.e. the number of bits in 𝑥, by the notation |𝑥|. The bit-string 𝑥
represents a specific instance of a problem. Any language 𝐿 represents a decision problem,
the problem being “given a bit-string 𝑥, is 𝑥 in 𝐿?”

For example, consider the very simple decision problem of determining, given an input
𝑥, whether 𝑥 contains an equal number of 0s and 1s. Then 𝐿 is the set of all (finite-
length) strings that do have an equal number of 0s and 1s. The problem can be equivalently
formulated as determining, given a specific bit-string 𝑥, whether it is in 𝐿 or not. Here, 𝑥
is a specific instance of the problem (e.g. 10011111), in that we ask of 𝑥 the question posed
by 𝐿 (whether 𝑥 ∈ 𝐿, or equivalently, whether 𝑥 has an equal number of 0s and 1s).

Languages and their instances can be much more interesting than this example, however.
One might, for example, consider the problem of 3-colouring which asks, given a graph,
can the vertices be coloured using only 3 colours in such a way that no two vertices of the
same colour are connected by an edge. Here the problem instance 𝑥 represents a graph, but
there are ways of formulating a description of a graph using a bit-string, so 3-colouring
fits the definition of a decision problem given above.

On the one hand, decision problems are very limited, containing only functions that
map bit-strings to a single bit (representing true or false). Nevertheless, it turns out that
many, many useful computational problems can be phrased in terms of decision problems.
Furthermore, many other problems involving more complicated functions or optimization,

37



can often be converted into decision problems without significantly changing their overall
computational difficulty. Therefore, because their true-false answers makes them simpler to
analyse, they are a natural focal point for the field of computational complexity.

Asymptotics

We say that a function 𝑓(𝑛) is 𝑂(𝑔(𝑛)), or 𝑓(𝑛) = 𝑂(𝑔(𝑛)), or 𝑓(𝑛) 6 𝑂(𝑔(𝑛)), where
𝑔(𝑛) is some function, if there exist constants 𝑁 and 𝑐 such that for all 𝑛 > 𝑁 , we have
𝑓(𝑛) 6 𝑐𝑔(𝑛). In other words, 𝑓(𝑛) is 𝑂(𝑔(𝑛)) if 𝑓(𝑛) is eventually always less than some
multiple of 𝑔(𝑛). Loosely speaking, 𝑓(𝑛) is not growing qualitatively faster than 𝑔(𝑛) is.
We say that 𝑓(𝑛) is poly(𝑛) if there exists some integer 𝑚 such that 𝑓(𝑛) is 𝑂(𝑛𝑚), i.e. if
𝑓(𝑛) is bounded by some polynomial in 𝑛, and then we may write 𝑓(𝑛) 6 poly(𝑛) or even
𝑓(𝑛) = poly(𝑛). For example, the function 𝑛 log 𝑛 is asymptotically bounded above by 𝑛2,
i.e. 𝑛 log 𝑛 6 𝑂(𝑛2), and therefore is also poly(𝑛). On the other hand, 2𝑛 is not poly(𝑛):
there is no polynomial that is eventually always larger than 2𝑛.

1.4.2 Complexity classes

P, NP, and QMA

While the field of computational complexity is very large, we draw the reader’s attention
to a few particularly important classes. The class P is the class of problems solvable in
polynomial time. Loosely speaking, a decision problem language 𝐿 is in P if there is a
classical (deterministic) algorithm that solves 𝐿 in polynomial time. Recall that by solving
𝐿, we mean that given any bit-string 𝑥, we wish to determine whether 𝑥 is in 𝐿 or not, i.e.
have an algorithm that answers true if 𝑥 ∈ 𝐿 and false if 𝑥 /∈ 𝐿. If there is a classical
algorithm that, given any 𝑛-bit 𝑥, correctly determines whether 𝑥 ∈ 𝐿, requiring a runtime
of no more than poly(𝑛), then we say that 𝐿 is in 𝑃 .

More precisely, we say that 𝐿 is in P (𝐿 ∈P) if there exists a family of classical algorithms
(e.g. in the form of classical circuits) {𝐶𝑛}, with 𝐶𝑛 taking 𝑛 bits and outputting 1 bit,
such that for any input 𝑥, 𝐶|𝑥| outputs

𝐶|𝑥|(𝑥) =

{︃
1, 𝑥 ∈ 𝐿
0, 𝑥 /∈ 𝐿

and takes time poly(|𝑥|) to do so. Further, this family of algorithms has to be simple to
describe and generate; this can be made precise using the notion of Turing machines, but
is beyond our scope here. Most languages are not in 𝐿: they simply cannot be solved using
merely polynomial time. Those that are in P are generally considered easy to solve, i.e. they
can be solved efficiently.

Some problems may be difficult to solve, but are easy to verify if an explanation of
the answer is provided. A good analogy of this idea can be seen in the game of Sudoku,
where it may be difficult and time-consuming to solve a given Sudoku puzzle, but if someone
gives you the puzzle already filled in, it is very easy to validate that the solution is correct.
The class of problems in which it is easy to verify the solution, given sufficient but concise
evidence, is called NP. This evidence, called a witness or proof, must be a bit-string whose
length is short. Loosely, a language 𝐿 is in NP if there exist verifier algorithms {𝐶} such
that
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∙ if 𝑥 ∈ 𝐿 then there exists a witness 𝑤 of poly(|𝑥|) bits such that 𝐶(𝑥,𝑤) = 1,

∙ if 𝑥 /∈ 𝐿 then for all possible witnesses 𝑤 of poly(|𝑥|) bits, 𝐶(𝑥,𝑤) = 0.

The actual acronym NP stands for “non-deterministic polynomial time”, for reasons that
we shall not explain here; it emphatically does not stand for “not polynomial time”. A
famous open question is whether every problem that is easy to check is also easy to solve,
i.e. whether P=NP.

A quantum analogue of P is the class known as BQP (bounded-error quantum polyno-
mial time), in which the algorithms now must be quantum circuits that run in polynomial
time and are simple to describe. Because the output of quantum circuits are generally prob-
abilistic, the requirement on their output is relaxed: the algorithm need only output the
correct answer with high probability. Similarly, a quantum analogue of NP is QMA (Quan-
tum Merlin-Arthur), in which the verifier algorithm is a quantum circuit and the witness is
a quantum state. More precise definitions will be given in later chapters as needed.

In addition to the open question of whether P=NP, it is unknown precisely where the
quantum analogues fit. Although it is known that P⊆BQP⊆QMA and P⊆NP⊆QMA,
the following relationships are widely (but not universally) conjectured to be true:

(conjectures) P ( BQP ( QMA, P( NP ( QMA, NP ̸= BQP,

i.e. it is conjectured that all four classes are distinct. The first of these reflects the belief that
quantum computers are more powerful than classical computers. The second conjectured
inequality reflects the belief that the hardest QMA problems cannot be solved efficiently,
even by quantum computers.

Hardness and completeness

In addition to classifying problems according to their complexity class, we would like to have
a notion of what it means for one problem to be harder than another, or for one problem to
be harder than all the problems in a particular class. Suppose that one can easily transform
one problem, 𝐿1, into another problem, 𝐿2. The ability to solve 𝐿2 then implies the ability
to solve 𝐿1. Such a transformation is called a hardness reduction, and the fact that it exists
from 𝐿1 to 𝐿2 indicates that solving 𝐿2 is at least as hard as solving 𝐿1 – after all, it means
that if I have the ability to solve 𝐿2 then I can also solve 𝐿1.

To be more precise, suppose that we would like to determine whether a given problem
instance 𝑥 is in the language 𝐿1. Further suppose that we have a hardness reduction3 from
𝐿1 to 𝐿2, meaning that we have a way of converting 𝑥 into a (possibly) different problem 𝑥̄
for the language 𝐿2 such that

𝑥 ∈ 𝐿1 if and only if 𝑥̄ ∈ 𝐿2 .

If we have access to an algorithm for 𝐿2, along with our algorithm for converting problem
instances from 𝐿1 to 𝐿2, then we can also solve 𝐿1: given 𝑥, convert it into 𝑥̄, use the algo-
rithm to determine whether 𝑥̄ ∈ 𝐿2, and thereby determine whether 𝑥 ∈ 𝐿1. To reflect our
demand that the transformation is easy to perform, we further demand that this reduction
algorithm itself take only polynomial time (i.e. be a polynomial-time reduction).

3This type of reduction is called a Karp reduction. Other types of reductions exist.
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Now suppose that a problem 𝐿 is at least as hard as every problem 𝐿′ in a complexity
class 𝐴, in the sense that for every 𝐿′ ∈ 𝐴 there is a reduction from 𝐿′ to 𝐿. Then we say
that 𝐿 is 𝐴-hard. If 𝐿 itself is also in 𝐴, we say that 𝐿 is 𝐴-complete:

𝐿 is 𝐴-complete iff 𝐿 ∈ 𝐴 and every 𝐿′ ∈ 𝐴 can be reduced to 𝐿 in polynomial time.

For example, the problem of 3-colouring is NP-complete, which means that it is the
hardest problem in NP. There are many such problems, all equivalent in hardness to each
other, that are the (or more precisely, a) hardest problem in NP.

1.4.3 Hamiltonian complexity and QMA-completeness

The primary interest of quantum complexity theory in this thesis will be in Chapters 6
and 7, where we will focus on QMA-completeness. It is therefore worthwhile to note an
important example of a QMA-complete problem here, namely the local Hamiltonian

problem, which is particularly important to Hamiltonian-based quantum computation. The
𝑘-local Hamiltonian problem is the problem of estimating the lowest eigenvalue of a
𝑘-local Hamiltonian, or slightly more precisely, given a 𝑘-local Hamiltonian (in the sense
described in Sec. 1.1.4), determining whether its lowest eigenvalue is below a specified value
or else is above another value. A rigorous definition will be given in Chapter 7. This
problem is QMA-complete for arbitrary 𝑘-local Hamiltonians with constant 𝑘 > 2 [21].
It is in QMA because if given the ground state of the local Hamiltonian, i.e. the state
with the lowest eigenvalue, it is easy to estimate its eigenvalue (using a “phase estimation”
algorithm) and therefore verify whether the ground-state energy is sufficiently low. To
prove that the problem is QMA-hard, one has to show that any QMA problem can be
converted into a local Hamiltonian problem. To do this, one can use the Feynman-type
Hamiltonian-based quantum computation method of Sec. 1.2.2: by definition, any QMA
problem has a verifier circuit that accepts, with high probability, valid (and only valid)
witness states, so one can construct a Feynman-style Hamiltonian based on this verifier
circuit that has a sufficiently small lowest eigenvalue if and only if its ground state is a
history state corresponding to the verification of a valid witness. Moreover, one can ensure
that this Hamiltonian is local. Consequently, estimating the ground-state energy of this
local Hamiltonian is equivalent to determining whether a valid witness exists, and therefore
to solving the original QMA problem from which the Hamiltonian was constructed.

One can further ask whether the problem of estimating the ground-state energy remains
QMA-complete when the type of Hamiltonian is even further restricted. That is, in addition
to demanding locality, one may also stipulate other physical requirements of the Hamilto-
nian – such as that it represents a translationally invariant system of particles on a line
or that it obeys the Bose-Hubbard model of Eq. (1.1) – and ask whether estimating the
ground-state energy is still QMA-complete. These are important questions in the field of
Hamiltonian complexity, which studies how “powerful” different Hamiltonians are. A ques-
tion of particular interest is how powerful an adiabatic quantum computer (as described
in Sec. 1.2.1) can be if its Hamiltonian is restricted to some physically-realizable form. As
we noted, the adiabatic quantum computation model is theoretically universal for quantum
computation, but if the type of Hamiltonian used is restricted, is this still true? There
is a strong similarity between the Feynman-like circuit-to-Hamiltonian methods used for
proving that various Hamiltonians are universal for adiabatic quantum computation and for
proving that the local Hamiltonian problem remains QMA-complete when restricted to
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various Hamiltonian forms, so the study of these topics is highly interlinked. In this sense,
the field of QMA-completeness is closely tied to the study of quantum computation with
Hamiltonians.

1.5 Error-correcting codes

So far, in our discussions of classical and quantum computation, we have mostly dealt with
the ideal scenario in which no errors occur. For many purposes in classical computing, this
idealization is justifiable – the error rate of RAM in household computers is sufficiently low
that we don’t generally worry about it; however, in other cases, such as storing information
on CDs, the possibility of errors needs to be taken into account. In quantum computation,
errors are a severe issue, and their suppression and correction is a major area of research.
This issue is particularly acute because states in superposition are often extremely fragile,
and if they decohere and consequently “act classically”, the advantage of quantum computa-
tion over classical computation can be lost. One way to detect and correct errors is by first
encoding information. We now review this method, first for classical information and then
for quantum information.

1.5.1 Classical linear error-correcting codes

Suppose that we have a noisy classical system of bits, so that each bit has some probability
that its value will randomly flip 0 ↔ 1. To protect our information, we use the idea of
redundancy in order to encode each bit of information as several bits. If any one of these
bits gets corrupted, we can detect that an error has occurred and potentially fix it. For
example, we can use a 3-bit repetition code, mapping a single logical bit of information to
three physical bits as

0→ 000 and 1→ 111 .

If a bit flip occurs to any one bit of these three bits, the original information can still be
recovered, by mapping

000, 001, 010, 100→ 0

111, 110, 101, 011→ 1 .

Of course, if two bits had flipped, the recovery process will err, corrupting the data. But
provided that the probability of a bit flip is sufficiently low, the probability of a double-bit-
flip is very small, and we have reduced the overall probability of error.

This 3-bit repetition code is very simple, encoding a single bit as three physical bits, but
more sophisticated methods can be used for encoding larger numbers of bits in efficient ways.
The key requirement is that when decoding corrupted encoded messages, one can determine
the original message, distinguishing it from other potential messages. One type of classical
code that is particularly important, especially in the context of this thesis, is that of linear
codes. A linear code can be understood as a code that uses a linear transformation, i.e. a
matrix, to encode messages. For example, for the 3-bit repetition code, we can see that the
matrix

𝐺 =

⎛
⎝

1
1
1

⎞
⎠
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maps the vector 0 to
(︁

0
0
0

)︁
and 1 to

(︁
1
1
1

)︁
, as described above.

More formally, a classical linear [𝑛, 𝑘] code maps 𝑘-bit messages into 𝑛-bit messages.
The number 𝑛 is called the length of the code, while 𝑘 is called its dimension. The matrix
𝐺 that is associated with the code is an 𝑛 × 𝑘 matrix over Z2 (i.e. of 0s and 1s) called
the generator matrix. If 𝑥 ∈ Z𝑘2 is a message then its encoded form is 𝐺𝑥 ∈ Z𝑛2 , where
all operations are performed mod 2, and is called a codeword. The space of all possible
codewords, 𝐶 = {𝐺𝑥 : 𝑥 ∈ Z𝑘2}, is called the codespace, and is a vector space of dimension
𝑘.

Any 𝑛 × 𝑘 matrix 𝐺 defines a linear code, provided that the columns of 𝐺 are linearly
independent (otherwise the encodes messages would not be unique), but not all such codes
are useful. For the code to be useful, the encoded messages must be sufficiently different
from each other (as 000 and 111 are from each other) so that bit-flip errors do not corrupt
the information. To consider the effectiveness of the code, we make the following definitions.

Define the weight of a vector 𝑥 = (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ Z𝑛2 , to be the number of non-zero bits
in 𝑥, i.e. wt(𝑥) = |{𝑖 ∈ {1, . . . , 𝑛} : 𝑥𝑖 ̸= 0}|. The distance between two vectors 𝑥, 𝑦 ∈ Z𝑛2 is
the weight of their difference, wt(𝑥 − 𝑦), i.e. the number of coordinates in which 𝑥 and 𝑦
differ. The distance of a linear code is defined to be 𝑑 = min{wt(𝑐) : 𝑐 ∈ 𝐶, 𝑐 ̸= 𝑜}, where 𝑜
denotes the zero vector. That is, the distance of a linear code is the minimum distance of
any non-zero vector from the zero vector. Equivalently (by linearity), this is the minimum
distance between any two distinct codewords of the code. An [𝑛, 𝑘] code with distance 𝑑 is
also called an [𝑛, 𝑘, 𝑑] code, explicitly specifying its distance.

Suppose 𝑥 is a codeword of an [𝑛, 𝑘, 𝑑] code and suppose that we flip 𝑡 > 0 of its bits,
giving us a new vector 𝑥′. Provided that 𝑡 6 𝑑 − 1, the resulting vector 𝑥′ cannot be
a codeword (otherwise this codeword would be distance 𝑡 < 𝑑 from 𝑥, contradicting the
definition of 𝑑). Thus, by simply checking whether the encoded message is a codeword or
not, we can detect that an error involving fewer than 𝑑 bit-flips has occurred. We can
therefore say that this code is a (𝑑− 1)-bit error-detecting code.

Moreover, if 2𝑡 + 1 6 𝑑, we can not only detect, but also correct the error, as we now
explain. Since 𝑡 < 𝑑 we can certainly tell that an error has occurred, as 𝑥′ will not be
a codeword. We can then ask what the original codeword that gave rise to 𝑥′ could be.
Suppose that we guess that 𝑦 was the original codeword, where 𝑦 is any codeword that
could give rise to 𝑥′ with at most 𝑡 bit-flips. Then because 𝑥 and 𝑥′ differ in at most 𝑡
coordinates, and because 𝑦 and 𝑥′ can differ in at most 𝑡 coordinates, 𝑥 and 𝑦 can differ
in at most 2𝑡 coordinates. That is, the distance between the codewords 𝑥 and 𝑦 is at most
2𝑡 < 2𝑡 + 1 6 𝑑. Thus, by definition of 𝑑, we must have 𝑦 = 𝑥, i.e. there is only one
possible candidate codeword that could have given rise to 𝑥′, and so we can (in principle)
determine the original encoded message 𝑥. We can therefore say that this code is a

(︀
𝑑−1
2

)︀
-bit

error-correcting code. We see clearly that the distance of the code determines how useful
the code is for error detection and correction.

The above discussion is for linear codes over Z2, i.e. involving bits (0 and 1). One can
also speak more generally of linear codes over any finite field F, but the ideas are similar.
This more general formulation will be used (and precisely defined) in Chapter 4. Also note
that we have only discussed how to efficiently encode data using linear codes. An equally
important aspect of linear codes is being able to then efficiently decode the encoded messages.
We will not make use of decoding in this thesis; interested readers may consult [1] or any
number of resources on the topic of linear codes.
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1.5.2 Quantum error-detecting/correcting codes

The theory of classical error-detecting codes does not directly apply to the quantum setting,
largely because in the quantum case more can go wrong than simple bit-flips. The states
|000⟩+ |111⟩ and |000⟩− |111⟩ are distinct (and in fact orthogonal) states, even though they
are not related by exchanging any number of 0s and 1s; the error that occurs in going from
one of these states to the other is a phase-flip, flipping the relative phase in the superposition
(in the computational basis). Indeed, a bit-flip on a single qubit corresponds to applying
the Pauli operator 𝑋, since it interchanges the states |0⟩ ↔ |1⟩, but we can also imagine an
error caused by applying the 𝑍 operation,

𝑍(𝑎|0⟩+ 𝑏|1⟩) = 𝑎|0⟩ − 𝑏|1⟩,

i.e. a phase-flip. We could further have an error caused by applying 𝑌 = 𝑖𝑋𝑍, which is
equivalent (up to phase) to applying a 𝑍 and 𝑋 error sequentially. Most generally (but
ignoring irrelevant global phase), we could write any single-qubit unitary error as 𝑒𝑖𝜖𝑛̂·𝜎⃗ =
cos(𝜖)1+𝑖 sin(𝜖)𝑛̂ · 𝜎⃗ for some 𝜖 and unit vector 𝑛̂. At this point it may seem that quantum
computation is like analogue classical computation rather than digital computation, suffering
from continuous noise and unpredictability.

Fortunately, a rich theory of a quantum error-correcting codes has been developed. In
this thesis, we will need very little of this theory, and therefore will content ourselves here
to give an example of an error-correcting code and to address a few of the features that we
will need in later chapters. We do note that it suffices to be able to detect (and correct)
𝑋 and 𝑍 errors. The idea is as follows. Suppose we could detect any arbitrary single-qubit
𝑋 and/or 𝑍 error. Then if a state |𝜓⟩ has an arbitrary error 𝑒𝑖𝜖𝑛̂·𝜎⃗ |𝜓⟩ applied, the state
becomes

cos(𝜖) |𝜓⟩+𝑖 sin(𝜖)𝑛𝑥𝑋 |𝜓⟩+𝑖 sin(𝜖)𝑛𝑧𝑍 |𝜓⟩− sin(𝜖)𝑛𝑦𝑋𝑍 |𝜓⟩ .
This state can be interpreted as a superposition over four states, namely the states in which
one of the following four errors is applied to |𝜓⟩: no error, an 𝑋 error, a 𝑍 error, or both
a 𝑍 and 𝑋 error. If we can perform a measurement to detect 𝑋 and/or 𝑍 errors, this
superposition will collapse into the state corresponding to the error we determined, and
therefore the state truly becomes 𝐸 |𝜓⟩ with the error (or lack thereof) 𝐸 ∈ {1, 𝑋, 𝑍,𝑋𝑍}
that we ascertained from our measurement. In other words, the ability to detect arbitrary
single-qubit errors is equivalent to the ability to detect single-qubit Pauli (𝑋, 𝑌 , 𝑍) errors.

Shor’s 9-qubit code

Recall that in the classical case, an [𝑛, 𝑘] code encodes 𝑘-bit messages into 𝑛-bit messages.
We use a similar notation in the quantum case, that an [[𝑛, 𝑘]] quantum code encodes 𝑘
qubits as 𝑛 qubits. Consider the following [[9, 1]] code mapping 1 qubit into 9 qubits as

|0⟩ → |0𝐿⟩ =
1√
8

(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)

|1⟩ → |1𝐿⟩ =
1√
8

(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩) .

We say that a state in {𝑎|0𝐿⟩+ 𝑏|1𝐿⟩} is a logical qubit or logical state, composed of 9 physical
qubits: such as state is physically 9 qubits large, but we regard it as representing only a
single qubit of (“logical”) information. Observe that both |0𝐿⟩ and |1𝐿⟩ are +1 eigenstates
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of the operators
𝑍1𝑍2, 𝑍4𝑍5, 𝑍7𝑍8,

𝑍2𝑍3, 𝑍5𝑍6, 𝑍8𝑍9,

𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6, 𝑋4𝑋5𝑋6𝑋7𝑋8𝑋9,

where 𝑋𝑖 denotes the Pauli 𝑋 operator on qubit 𝑖 (and similarly for 𝑍𝑖). Therefore, by
measuring any encoded state 𝑎|0𝐿⟩ + 𝑏|1𝐿⟩ using these operators, the state will not be
modified, and a value of +1 will be obtained. However, if a bit-flip error 𝑋𝑖 occurs on qubit
𝑖, the state will become a −1 eigenstate of at least one of the above operators, namely the
𝑍𝑍 operator(s) that involve qubit 𝑖. Similarly, if a phase-flip error 𝑍𝑖 occurs on qubit 𝑖,
the state will become a −1 eigenstate of the 𝑋𝑋𝑋𝑋𝑋𝑋 operator(s) that involve qubit 𝑖.
Thus, by measuring the state using these operators, one can ascertain whether a bit-flip or
a phase-flip has occurred (by the presence of the −1 measured value for the appropriate
operator). This encoding is evidently a quantum error-detecting code.

Moreover, it is not hard to see that that this code is a quantum error-correcting code,
capable of correcting arbitrary single-qubit errors. Suppose, for example, that measurement
of these operators yielded +1, except for the 𝑍1𝑍2 and 𝑍2𝑍3 operators, which yielded −1.
Suppose further that we knew that the error was a single-qubit bit-flip and/or phase-flip error
on one of the qubits. Then the error must have been a bit-flip on qubit 2, because that is the
only error that would be consistent with our measurements. Applying 𝑋2 therefore restores
the original state. Thus we have not only been able to detect that an error has occurred,
but have obtained enough information to correct the error as well, without damaging the
state.

Codespace projectors

An alternative way of viewing a quantum code is in terms of its codespace and its codespace
projector. Consider a single-qubit code, mapping |0⟩ and |1⟩ to |0𝐿⟩ and |1𝐿⟩, respectively.
The codespace, i.e. the vector space of all valid codewords formed by this mapping, is
𝐶 = {𝑎|0𝐿⟩+ 𝑏|1𝐿⟩ : |𝑎|2 + |𝑏|2 = 1}. Suppose that the code can detect Pauli errors, by
which we mean that any Pauli error 𝜎 ∈ {𝑋,𝑌, 𝑍} takes codewords that are in this codespace
to states that are orthogonal to the codespace:

|𝜓⟩ ∈ 𝐶 implies that ⟨𝜑|
(︀
𝜎 |𝜓⟩

)︀
= 0 for all |𝜑⟩ ∈ 𝐶 and 𝜎 ∈ {𝑋,𝑌, 𝑍} .

Measuring whether a given state is in the codespace thus reveals whether a quantum error has
occurred. Note that if no error occurred, the state remains unaffected by this measurement
(since the measurement merely reveals whether the state is in the codespace). However, if a
Pauli error has occurred, this will be detected. It is in this sense that the code is a quantum
error-detecting code.

It will be useful to consider the codespace projection operator,

𝑃 = |0𝐿⟩⟨0𝐿|+ |1𝐿⟩⟨1𝐿| ,

of the quantum error-detecting code. For any valid codeword |𝜓⟩ = 𝑎|0𝐿⟩+ 𝑏|1𝐿⟩, we have
𝑃 |𝜓⟩ = |𝜓⟩, so |𝜓⟩ has 𝑃 -eigenvalue 1; however, if a Pauli error 𝜎 occurred then we have

𝑃𝜎 |𝜓⟩ = 0 for 𝜎 ∈ {𝑋,𝑌, 𝑍} ,
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so 𝑃𝜎 |𝜓⟩ has 𝑃 -eigenvalue 0. Thus, measuring the value of the observable 𝑃 , i.e. whether
the state is in the codespace, reveals whether an error has occurred, with 0 indicating an
error and 1 indicating no error. Since this is true for any |𝜓⟩ ∈ 𝐶, we can equivalently write
the condition of our error-detecting code as

𝑃𝜎𝑃 = 0 for 𝜎 ∈ {𝑋,𝑌, 𝑍}.

We note in passing that this condition is actually more stringent than is necessary –
this condition is sufficient, not necessary – but we adopt this viewpoint for simplicity. We
also note that there is a similar condition for quantum error-correcting codes, but we need
not elaborate on this here since we do not make use of it in this thesis. For more details,
consult [1].

In addition to the codespace projection operator, used for detecting whether a state is
a codeword, we can also consider other useful operators that act on codewords. Consider a
single qubit encoded using a quantum error-detecting code. Some very useful operations on
a single qubit are the Pauli operators 𝑋 and 𝑍 (and 𝑌 = 𝑖𝑋𝑍) that map

𝑋|0⟩ = |1⟩, 𝑍|0⟩ = |0⟩,
𝑋|1⟩ = |0⟩, 𝑍|1⟩ = −|1⟩.

We can also find operations on the codewords (i.e. on logical qubits) in the same way; such
operators are called logical operators, as they act on the logical states in the same way as
their counterparts do on unencoded states. The logical operators 𝑋𝐿 and 𝑍𝐿 corresponding
to 𝑋 and 𝑍 satisfy

𝑋𝐿|0𝐿⟩ = |1𝐿⟩, 𝑍𝐿|0𝐿⟩ = |0𝐿⟩,
𝑋𝐿|1𝐿⟩ = |0𝐿⟩, 𝑍𝐿|1𝐿⟩ = −|1𝐿⟩.

These operators are generally not unique but always exist; indeed, the following are imme-
diate tautological examples:

𝑋𝐿 = |0𝐿⟩⟨1𝐿|+ |1𝐿⟩⟨0𝐿| , 𝑍𝐿 = |0𝐿⟩⟨0𝐿| − |1𝐿⟩⟨1𝐿| , and 𝑌𝐿 = 𝑖𝑍𝐿𝑋𝐿.

In the circuit model, where useful operators are generally unitary, we would choose logical
operators that are unitary (unlike the examples give above). Such logical operators, together
with special methods of measurement and state preparation, are important ingredients in
fault-tolerant circuit-model quantum computation, where it has been shown that, provided
error rates are sufficiently low, arbitrary precision can efficiently be achieved in the quantum
circuit-model. In Hamiltonian-based quantum computing, useful operators are generally
Hermitian, so we would choose logical operators that are Hermitian (like the examples
above, although these examples are not necessarily the best choice). Although no fault-
tolerant theorems are known for Hamiltonian-based quantum computation, we will make use
of Hermitian logical operators in the next chapter, where we will prove how quantum error-
detecting codes can be used to suppress errors in Hamiltonian-based quantum computation.
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Chapter 2

Error suppression in

Hamiltonian-based quantum

computation using energy penalties

In this chapter, we consider the use of quantum error-detecting codes, together with energy
penalties against leaving the codespace, as a method for suppressing environmentally induced
errors in Hamiltonian-based quantum computation. This method was introduced in [1] in the
context of quantum adiabatic computation, but we consider it more generally. Specifically,
we consider a computational Hamiltonian, which has been encoded using the logical qubits
of a single-qubit error-detecting code, coupled to an environment of qubits by interaction
terms that act one-locally on the system. Additional energy penalty terms penalize states
outside of the codespace. We prove that in the limit of infinitely large penalties, one-local
errors are completely suppressed (Theorem 2.1), and we derive some bounds for the finite
penalty case [Eqs. (2.30) and (2.32)]. In particular, we show that, under reasonable physical
assumptions, to attain good protection it suffices for the energy penalty to grow polynomially
in the size of the system. Our proof technique involves exact integration of the Schrödinger
equation, making no use of master equations or their assumptions. We perform long-time
numerical simulations on a small (one logical qubit) computational system coupled to an
environment and the results suggest that the energy penalty method achieves even greater
protection than our bounds indicate.

This chapter is adapted from [2], which was joint work with Edward Farhi and Leo Zhou.

2.1 Introduction

A major problem on the road to building scalable quantum computers is the difficult task of
protecting the system from errors, such as those due to unwanted environmental interactions.
In the usual circuit model of quantum computation, the theory of quantum error correction
has been well-developed, culminating in the threshold theorem [3–7], which proves that,
provided the error rate in a quantum computing system can be reduced to below a certain
threshold, errors can be suppressed arbitrarily well using quantum error-correcting codes.
The situation for the Hamiltonian model of quantum computation as used in, for example,
adiabatic quantum computing, continuous-time quantum walks, and Hamiltonian simulation
problems, is less understood and no fault-tolerant theorem is known. In this chapter, we
take steps towards establishing such a theorem.
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In the Hamiltonian model, the computational system is described by a Hamiltonian,
which is a (possibly time-dependent) Hermitian operator, 𝐻comp, that governs the time-
evolution of the system according to

𝑖
d

d𝑡
|𝜑(𝑡)⟩ = 𝐻comp(𝑡)|𝜑(𝑡)⟩ ,

where |𝜑(𝑡)⟩ is the state of the computational system at time 𝑡. In this model, the goal
is to evolve some initial state |𝜑(0)⟩ to a final state |𝜑(𝑇 )⟩, the measurement of which
reveals some information about the problem to be solved. Note that no instantaneous
unitary gates are applied, nor are any intermediate measurements performed. To con-
sider the effects of unwanted environmental interaction, one must consider the Hamiltonian
𝐻comp+𝐻environment+𝐻interaction that governs the evolution of the entire system-environment
supersystem. The goal of error suppression is to ensure that the state of the system at time
𝑇 is approximately as though the evolution had been governed by just 𝐻comp alone.

It is not clear how to adapt the successful error-correcting code techniques of the circuit
model to the Hamiltonian model. In a conventional quantum error-correcting code [8],
each qubit is encoded as a logical qubit, comprised of several physical qubits, so that the
occurrence of any single-qubit error on any physical qubit can be detected. The use of such
a code in the error-correcting circuit model essentially consists of four steps: the state is
encoded, the state is allowed to evolve, a measurement is made to determine what error has
occurred (if any), and gates are applied to correct that error. In our Hamiltonian model,
we do not allow intermediate measurements or the application of instantaneous gates, and
therefore rule out any active determination and correction of errors; thus, a different strategy
is required.

The error suppression strategy used in this chapter is that of energy penalties, first
suggested in [1], in which the system Hamiltonian is modified according to a quantum error-
detecting code and a constant (time-independent) term is added to the Hamiltonian. This
extra term, the energy penalty, penalizes states that have been corrupted by, say, single-qubit
errors. It is believed that such a penalty will suppress the occurrence of environmentally
induced errors, as it imposes an energy barrier that must be surmounted for an error to
occur. In this work, we prove that, in principle, this energy penalty method does indeed
work; we show that it successfully suppresses errors arbitrarily well when the penalty is
arbitrarily large. (Throughout the chapter we concentrate on 1-local errors and use a 1-
qubit error-detecting code. In the appendix, however, we show that this result can be
generalized to 𝑘-local errors when using a 𝑘-qubit error-detecting code.) We also explore (in
the 1-local error case) how well the penalty terms work when the penalty is not infinite but
of a reasonable size. We then show the results of small-system numerical simulations that
suggest that the achieved protection is even better than our bounds can predict.

We note that since we will not be performing active error correction, we do not need an
error-correcting code, which gives information about which error occurred; rather, it suffices
to use an error-detecting code, which only detects whether any error has occurred.

An error suppression technique using energy penalties has recently [9] been applied to
the quantum annealing paradigm of computation. However, that method differs from the
one discussed in this chapter, as its energy penalty does not suppress phase-flip errors,
while the penalty used in this chapter suppresses arbitrary single-qubit errors. Other previ-
ously suggested Hamiltonian-model error-suppression methods include exploiting the Zeno
effect [10, 11] and using dynamical decoupling [12–15]. Some of these techniques require
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intermediate measurements, which is outside of the Hamiltonian paradigm, or require the
ability to add rapidly time-dependent control terms to the Hamiltonian. The energy penalty
method used in this chapter remains in the Hamiltonian model paradigm and requires only
the addition of a constant term to the encoded Hamiltonian. It would therefore be useful
even when intermediate measurements and fast, active control are not available. A discus-
sion of the similarity between the energy penalty, Zeno, and dynamical decoupling methods
can be found in [16,17].

2.2 Quantum error-detecting codes

We first review some basic facts about quantum error-detecting codes. Suppose that we have
an [[ℓ, 1]] quantum error-detecting code, meaning that by encoding a single qubit as a logical
qubit comprised of ℓ physical qubits, we can detect arbitrary 1-qubit errors. Throughout
this chapter, we use this code to protect our system of 𝑛 qubits, meaning that each qubit
of the original 𝐻comp is encoded to be ℓ qubits, so that the full encoded system consists of
𝑛𝑠 = ℓ𝑛 qubits.

Specifically, for each qubit register 𝑖, the original computational basis states |0⟩𝑖 and |1⟩𝑖
are encoded as the ℓ-qubit logical states |0𝐿⟩𝑖 and |1𝐿⟩𝑖. The codespace of the 𝑖th logical
qubit is then the span of the logical states, {𝑎|0𝐿⟩𝑖 + 𝑏|1𝐿⟩𝑖 : |𝑎|2 + |𝑏|2 = 1}. Associated
with this codespace is the projection operator

𝑃𝑖 = |0𝐿⟩⟨0𝐿|𝑖 + |1𝐿⟩⟨1𝐿|𝑖 ,

where 𝑃𝑖 acts as the identity on all physical qubits other than those associated with the
logical qubit 𝑖. Note that states in the codespace are invariant under 𝑃𝑖, whereas 𝑃𝑖 kills
states that are orthogonal to the codespace of the 𝑖th qubit.

Saying that the code can detect arbitrary 1-qubit errors is equivalent to saying that the
code detects all single-qubit Pauli errors, i.e. an error caused by the application of a Pauli
operator (𝑋, 𝑌 , or 𝑍) to any single physical qubit. Thus, for any single Pauli operator 𝜎
acting on one of the ℓ physical qubits comprising logical qubit 𝑖, we have

𝑃𝑖𝜎𝑃𝑖 = 0 . (2.1)

The full codespace for the entire logical space (over all 𝑛 logical qubits) corresponds to the
projector

𝑃 = 𝑃1𝑃2 · · ·𝑃𝑛 . (2.2)

The quantum code also allows us to “encode” the Pauli operators 𝑋, 𝑌 , and 𝑍 as
logical operators 𝑋𝐿, 𝑌𝐿, and 𝑍𝐿. Logical operators are Hermitian operators that have
the same effect on the logical basis states as their corresponding Pauli operators have on
the corresponding basis states. Furthermore, the logical operators associated with qubit 𝑖
commute with the codespace projector 𝑃𝑖, i.e. 𝑋𝐿𝑃𝑖 = 𝑃𝑖𝑋𝐿, and similarly for 𝑌𝐿 and 𝑍𝐿.

As a concrete example, consider the 4-qubit code of Jordan-Farhi-Shor [1], in which

|0𝐿⟩ =
1

2

(︁
|0000⟩+ 𝑖|0011⟩+ 𝑖|1100⟩+ |1111⟩

)︁

|1𝐿⟩ =
1

2

(︁
− |1010⟩+ 𝑖|1001⟩+ 𝑖|0110⟩ − |0101⟩

)︁
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and

𝑋𝐿 = 𝑌 ⊗ 1⊗𝑌 ⊗ 1
𝑌𝐿 = −1⊗𝑋 ⊗𝑋 ⊗ 1
𝑍𝐿 = 𝑍 ⊗ 𝑍 ⊗ 1⊗1 .

Observe that the logical operators have the same effect on logical qubits as do the operators
to which they correspond have on unencoded qubits; e.g. 𝑋𝐿|0𝐿⟩ = |1𝐿⟩.

Using the logical operators, we can encode the Hamiltonian that acts on the system.
Suppose that 𝐻comp is some Hermitian operator on the original (𝑛-qubit) system. Because
the Pauli matrices (along with the identity) form a basis for all 2 × 2 matrices, we may
generically write

𝐻comp(𝑡) =
∑︁

𝜎𝑖∈{1,𝑋,𝑌,𝑍}
𝑖=1,...,𝑛

𝑐𝜎1,...,𝜎𝑛(𝑡) 𝜎1 ⊗ · · · ⊗ 𝜎𝑛,

where the sum is over all possible choices of 𝜎𝑖 ∈ {1, 𝑋, 𝑌, 𝑍} for each 𝑖. We may therefore
encode the Hamiltonian by replacing 𝑋,𝑌, 𝑍 with 𝑋𝐿, 𝑌𝐿, 𝑍𝐿 in the sum above, to obtain

𝐻L
comp(𝑡) =

∑︁

𝜎𝑖∈{1,𝑋𝐿,𝑌𝐿,𝑍𝐿}
𝑖=1,...,𝑛

𝑐𝜎1,...,𝜎𝑛(𝑡) 𝜎1 ⊗ · · · ⊗ 𝜎𝑛,

which is a Hamiltonian on the 𝑛𝑠-qubit encoded space built entirely out of logical operators
(and 1). Since each logical operator commutes with each 𝑃𝑖, 𝐻L

comp also commutes with
each 𝑃𝑖 and with 𝑃 .

Observe that the logical operators in the Jordan-Farhi-Shor code are all 2-local. The
encoding in this case thus doubles the locality of the original Hamiltonian, so that if the
original Hamiltonian is 2-local, the encoded one is 4-local. As [1] points out, such an encoding
is optimal (in terms of locality) if the code is to protect against arbitrary 1-qubit errors.

2.3 The Hamiltonian model and energy penalties

In this chapter we consider a system coupled to an environment. We do not attempt to
modify the environment or the system-environment interaction. However, we assume that
we can modify the Hamiltonian of the system, and do so in two ways. As just discussed, we
encode the original computational Hamiltonian in a quantum code. Furthermore, we add
extra terms (acting only on the system) that penalize system states that are outside of the
codespace.

The combined system-environment Hamiltonian, 𝐻, after encoding and penalty modifi-
cations, consists of three parts, and can be written as

𝐻 = 𝐻0 + 𝜆𝑉 + 𝐸𝑃 𝑄̃ .

We discuss each of these parts in turn.

1. The first term is
𝐻0 = 𝐻L

comp ⊗ 1env +1sys⊗𝐻env ,

which governs the evolution in the absence of any system-environment interaction.
Both 𝐻L

comp and 𝐻env are in general time-dependent. Evolution under 𝐻L
comp alone is
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equivalent to evolution under 𝐻comp and represents the desired evolution we wish to
protect.

Because the system Hamiltonian is encoded, the system consists of 𝑛𝑠 = ℓ𝑛 qubits.
The size of the environment will play no role in our discussion, except when we do
simulations, and can be thought of as much larger than the system size.
Recall that 𝐻L

comp is built up from only logical operators and therefore commutes with
each 𝑃𝑖. Since 𝐻env (which acts only on the environment) trivially commutes with
each 𝑃𝑖, we have

[𝐻0, 𝑃𝑖] = 0 for 𝑖 = 1, . . . , 𝑛.

2. 𝜆𝑉 is the error Hamiltonian, reflecting the coupling of the system to the environment,
with 𝜆 serving as a time-independent (presumably small) parameter indicating the
strength of the interaction (with units of energy), and 𝑉 a Hermitian operator acting
on the full system-environment space. Our code is designed to protect against 1-qubit
errors, so we assume a 1-qubit error model, i.e. that 𝑉 acts 1-locally on the system.
Thus, we can write 𝑉 as a sum of terms

𝑉 =

𝑛𝑠∑︁

𝑠=1

∑︁

𝜇=𝑋,𝑌,𝑍

𝜎𝑠𝜇 ⊗𝐵𝑠
𝜇 (2.3)

where 𝜎𝑠𝜇 is the 𝜇th Pauli matrix acting on physical system qubit 𝑠 and each 𝐵𝑠
𝜇 is

some operator acting on a set of environmental qubits. We also allow the possibility
that 𝐵𝑠

𝜇 = 1, which could represent 1-local system control errors independent of the
environment.

For convenience, we group terms in 𝑉 according to the logical system qubit on which
they act, so that

𝑉 =
𝑛∑︁

𝑖=1

𝑉𝑖 (2.4)

where each 𝑉𝑖 is an operator whose 1-local action on the system is only on the ℓ
system qubits that comprise logical qubit 𝑖. Observe that 𝑉𝑖 causes 1-local errors on
the system, as per Eq. (2.3), and that we are using a code that can detect arbitrary
1-qubit errors, as per Eq. (2.1). Thus, we have that

𝑃𝑖𝑉𝑖𝑃𝑖 = 0 for 𝑖 = 1, . . . , 𝑛

which is crucial to our later analysis.

3. 𝐸𝑃 𝑄̃ is our time-independent energy penalty, which penalizes states outside of the
codespace. Specifically, 𝐸𝑃 is a real constant with units of energy and 𝑄̃ is the sum
of the projectors 𝑄𝑖 = 1−𝑃𝑖, i.e.

𝑄̃ =
𝑛∑︁

𝑖=1

𝑄𝑖 =
𝑛∑︁

𝑖=1

(1−𝑃𝑖) , (2.5)

so we have a separate energy penalty for each logical qubit. In this context, 𝑄̃ is to
be understood as 𝑄̃ ⊗ 1env, since only the system is encoded. Observe that a state
|𝜓⟩ is in the codespace if and only if 𝑄̃ |𝜓⟩ = 0, so 𝐸𝑃 𝑄̃ applies an energy penalty of
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magnitude at least |𝐸𝑃 | to states outside of (i.e. orthogonal to) the codespace.

We point out that 𝑄̃ is the sum of codespace projectors, differing from the penalty
used in [1] which is a sum of codespace stabilizer generators. Note that the locality of
𝑄̃ is that of each 𝑃𝑖, which is at most ℓ (i.e. 4 in the case of the Jordan-Farhi-Shor
code).

The key point in this model is that 𝑉 acts precisely 1-locally on the system and we are
using a quantum code that can detect 1-qubit system errors. This enables us to penalize
the states that arise from the action of 𝑉 , and therefore have hope of suppressing 𝑉 ’s
effect. We can similarly consider the case in which 𝑉 acts 𝑘-locally on the system as long
as the quantum code can detect 𝑘-qubit errors. However, we consider only the 1-local case
throughout the main text of the chapter, leaving the more general case to the appendix.

2.4 Error suppression through energy penalties

2.4.1 The infinite 𝐸𝑃 case

We first address the question of whether adding an energy penalty works even in principle;
that is, we want to show that if 𝐸𝑃 is arbitrarily large, errors are suppressed arbitrarily well.
Let 𝑈0(𝑡) and 𝑈(𝑡) be the evolution operators corresponding to the desired Hamiltonian,
𝐻0 = 𝐻L

comp +𝐻env, and the actual Hamiltonian, 𝐻 = 𝐻0 + 𝜆𝑉 +𝐸𝑃 𝑄̃, respectively. That
is, 𝑈0(𝑡) and 𝑈(𝑡) obey

𝑖
d

d𝑡
𝑈0(𝑡) = 𝐻0(𝑡)𝑈0(𝑡), 𝑈0(0) = 1 (2.6)

𝑖
d

d𝑡
𝑈(𝑡) = 𝐻(𝑡)𝑈(𝑡), 𝑈(0) = 1 .

We wish to show that in the codespace, as 𝐸𝑃 →∞, 𝑈(𝑡) acts as 𝑈0(𝑡). Our approach will
be to show that the error induced by 𝑉 is modulated by a term oscillating with frequency
𝐸𝑃 in such a way so that for large 𝐸𝑃 such errors are suppressed.

Our first step is to view 𝜆𝑉 as a perturbation and to work in the interaction picture
using

𝐻0𝑃 (𝑡) = 𝐻0(𝑡) + 𝐸𝑃 𝑄̃

as the reference Hamiltonian. This corresponds to the evolution operator 𝑈0𝑃 (𝑡), which
obeys

𝑖
d

d𝑡
𝑈0𝑃 (𝑡) = 𝐻0𝑃 (𝑡)𝑈0𝑃 (𝑡), 𝑈0𝑃 (0) = 1 .

Because 𝐻0 commutes with each 𝑃𝑖, and therefore with 𝑄̃, we have that

𝑈0𝑃 (𝑡) = 𝑈0(𝑡)𝑈𝑃 (𝑡) , (2.7)

where the evolution operator due to the error penalty alone is

𝑈𝑃 (𝑡) = 𝑒−𝑖𝐸𝑃 𝑄̃𝑡 .

Now, the interaction picture evolution operator

𝑈𝐼 ≡ 𝑈 †
0𝑃𝑈
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obeys

𝑖
d

d𝑡
𝑈𝐼 = 𝜆𝑉𝐼𝑈𝐼 ,

where
𝜆𝑉𝐼(𝑡) = 𝜆𝑈 †

0𝑃 (𝑡)𝑉 (𝑡)𝑈0𝑃 (𝑡) . (2.8)

These are just the usual interaction picture equations with a reference Hamiltonian 𝐻0𝑃

and a perturbation 𝜆𝑉 . Taking conjugates, we get

𝑈 †
𝐼 = 𝑈 †𝑈0𝑃 = 𝑈 †𝑈0𝑈𝑃 (2.9)

and
d

d𝑡
𝑈 †
𝐼 = 𝑖𝜆𝑈 †

𝐼𝑉𝐼 , (2.10)

which upon integration gives

𝑈 †
𝐼 (𝑇 ) = 1+𝑖𝜆

∫︁ 𝑇

0
𝑈 †
𝐼𝑉𝐼d𝑡 . (2.11)

Note that 𝑄̃𝑃 = 0, so
𝑈𝑃 (𝑡)𝑃 = 𝑒−𝑖𝐸𝑃 𝑄̃𝑡𝑃 = 𝑃 (2.12)

and therefore
𝑈 †
𝐼𝑃 = 𝑈 †𝑈0𝑃 .

Now, we multiply Eq. (2.11) on the right by 𝑃 , and use this last relation, to get

𝑈 †(𝑇 )𝑈0(𝑇 )𝑃 = 𝑃 + 𝑖𝜆

∫︁ 𝑇

0
𝑈 †
𝐼𝑉𝐼𝑃d𝑡 .

Multiplying this by 𝑈(𝑇 ) gives

𝑈0(𝑇 )𝑃 = 𝑈(𝑇 )𝑃 + 𝑖𝜆𝑈(𝑇 )

∫︁ 𝑇

0
𝑈 †
𝐼𝑉𝐼𝑃d𝑡 , (2.13)

which we can use to track the difference between the evolutions (in the codespace) with and
without the coupling to the environment. Our goal is to show that as 𝐸𝑃 goes to infinity,
this difference goes to zero. To this end, let

𝐹 (𝑡) =

∫︁ 𝑡

0
𝑉𝐼(𝜏)𝑃d𝜏 . (2.14)

Using integration by parts, we see that

∫︁ 𝑇

0
𝑈 †
𝐼𝑉𝐼𝑃d𝑡 =

∫︁ 𝑇

0
𝑈 †
𝐼

d𝐹

d𝑡
d𝑡 = 𝑈 †

𝐼 (𝑇 )𝐹 (𝑇 )−
∫︁ 𝑇

0

d𝑈 †
𝐼

d𝑡
𝐹d𝑡

= 𝑈 †
𝐼 (𝑇 )𝐹 (𝑇 )− 𝑖𝜆

∫︁ 𝑇

0
𝑈 †
𝐼𝑉𝐼𝐹d𝑡 ,

where Eq. (2.10) was used to obtain the final equality. Applying Eqs. (2.9) and (2.8) we can
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write this as ∫︁ 𝑇

0
𝑈 †
𝐼𝑉𝐼𝑃d𝑡 = 𝑈 †(𝑇 )𝑈0𝑃 (𝑇 )𝐹 (𝑇 )− 𝑖𝜆

∫︁ 𝑇

0
𝑈 †𝑉 𝑈0𝑃𝐹d𝑡

and using this in Eq. (2.13) we find that

𝑈(𝑇 )𝑃 = 𝑈0(𝑇 )𝑃 − 𝑖𝜆
[︁
𝑈0𝑃 (𝑇 )𝐹 (𝑇 )− 𝑖𝜆𝑈(𝑇 )

∫︁ 𝑇

0
𝑈 †𝑉 𝑈0𝑃𝐹d𝑡

]︁
, (2.15)

which is an exact expression and not just an expansion in 𝜆.

We now focus on the operator 𝐹 (𝑡) defined in Eq. (2.14), which using Eq. (2.8) for 𝑉𝐼
and Eq. (2.7) for 𝑈0𝑃 is

𝐹 (𝑡) =

∫︁ 𝑡

0
𝑈 †
𝑃𝑈

†
0𝑉 𝑈0𝑈𝑃𝑃d𝜏 .

𝑃 commutes with 𝐻0, and therefore also with 𝑈0. Because of this and Eq. (2.12) we have

𝐹 (𝑡) =

∫︁ 𝑡

0
𝑈 †
0𝑒
𝑖𝐸𝑃 𝑄̃𝜏𝑉 𝑃𝑈0d𝜏 .

Consider
𝑒𝑖𝐸𝑃 𝑄̃𝜏𝑉 𝑃 = 𝑒𝑖𝐸𝑃 𝑄̃𝜏 (𝑉1 + · · ·+ 𝑉𝑛)𝑃 (2.16)

where we have written 𝑉 as the sum over terms associated with each logical qubit, as in
Eq. (2.4). From the definitions in Eqs. (2.2) and (2.5), the first term is

𝑒𝑖𝐸𝑃 𝑄̃𝜏𝑉1𝑃 = 𝑒𝑖𝐸𝑃𝑄1𝜏𝑒𝑖𝐸𝑃𝑄2𝜏 · · · 𝑒𝑖𝐸𝑃𝑄𝑛𝜏𝑉1𝑃1 · · ·𝑃𝑛 .

But, 𝑃2𝑃3 · · ·𝑃𝑛 commutes with 𝑉1, and 𝑃𝑖𝑄𝑖 = 0 for all 𝑖, so we get

𝑒𝑖𝐸𝑃 𝑄̃𝜏𝑉1𝑃 = 𝑒𝑖𝐸𝑃𝑄1𝜏𝑉1𝑃1 · · ·𝑃𝑛 . (2.17)

Our code protects against single-qubit errors and we are assuming that the coupling to the
environment involves only single-qubit terms, so again,

𝑃1𝑉1𝑃1 = 0

which implies that
𝑉1𝑃1 = 𝑄1𝑉1𝑃1 . (2.18)

Because 𝑄1 is a projector, we have that

𝑒𝑖𝐸𝑃𝑄1𝜏𝑄1 = 𝑒𝑖𝐸𝑃 𝜏𝑄1 . (2.19)

The previous equations combine to give

𝑒𝑖𝐸𝑃 𝑄̃𝜏𝑉1𝑃 = 𝑒𝑖𝐸𝑃 𝜏𝑉1𝑃

and accordingly,
𝑒𝑖𝐸𝑃 𝑄̃𝜏𝑉 𝑃 = 𝑒𝑖𝐸𝑃 𝜏𝑉 𝑃 . (2.20)
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Returning to 𝐹 (𝑡), we thus have

𝐹 (𝑡) =

∫︁ 𝑡

0
𝑒𝑖𝐸𝑃 𝜏𝑈 †

0(𝜏)𝑉 (𝜏)𝑈0(𝜏)𝑃d𝜏 . (2.21)

Observe that 𝑈 †
0(𝜏)𝑉 (𝜏)𝑈0(𝜏)𝑃 is independent of 𝐸𝑃 . Therefore, we see that when 𝐸𝑃

is large, the integrand of 𝐹 is a rapidly oscillating function of 𝜏 due to the 𝑒𝑖𝐸𝑃 𝜏 . We can
apply the Riemann-Lebesgue lemma to conclude that 𝐹 vanishes as 𝐸𝑃 goes to infinity. To
be explicit, we perform an integration by parts to see that

𝐹 (𝑡) =

∫︁ 𝑡

0
𝑒𝑖𝐸𝑃 𝜏𝑈 †

0𝑉 𝑈0𝑃d𝜏

=
1

𝑖𝐸𝑃

[︁
𝑒𝑖𝐸𝑃 𝑡𝑈 †

0(𝑡)𝑉 (𝑡)𝑈0(𝑡)− 𝑉 (0)−
∫︁ 𝑡

0
𝑒𝑖𝐸𝑃 𝜏

d

d𝜏
(𝑈 †

0𝑉 𝑈0)d𝜏
]︁
𝑃 . (2.22)

The first two terms in the brackets do not grow with 𝐸𝑃 and the third is bounded by 𝑡
times the maximum magnitude of d

d𝜏 (𝑈 †
0𝑉 𝑈0) which is independent of 𝐸𝑃 . So as 𝐸𝑃 goes

to infinity, 𝐹 (𝑡) goes to zero. Since both terms in the brackets in Eq. (2.15) contain 𝐹 and
are otherwise bounded independent of 𝐸𝑃 , we have our 𝐸𝑃 goes to infinity result:

Theorem 2.1. Suppose that the Hamiltonian of a system coupled to an environment is

𝐻 = 𝐻L
comp +𝐻env + 𝜆𝑉 + 𝐸𝑃 𝑄̃,

where 𝑉 acts 1-locally on the system, 𝐻L
comp is encoded in a quantum code that can

detect single-qubit errors, and 𝑄̃ is the operator defined in Eq. (2.5). Then, in the
limit of an infinitely large energy penalty (positive or negative), the actual evolution
in the codespace is as if there were no errors due to 𝑉 ; i.e. for any time 𝑇 ,

lim
𝐸𝑃→±∞

𝑈(𝑇 )𝑃 = 𝑈0(𝑇 )𝑃 ,

where 𝑈 and 𝑈0 are the actual and error-free evolution operators defined in Eq. (2.6)
and 𝑃 is the codespace projection operator of Eq. (2.2).

This result applies to the evolution of both the system and the environment, and is
therefore stronger than what we need, which is only that the system evolution be protected.
We view our infinite 𝐸𝑃 result as the starting point for large, but finite, 𝐸𝑃 investigations.

Although throughout this chapter we have focused only on the simplest case, where
𝑉 acts 1-locally on the system and a 1-qubit quantum error-detection code is used, this
simplification is not necessary. The theorem still holds as long as the error-detecting code
can detect the errors that 𝑉 causes, i.e. as long as 𝑃𝑉 𝑃 = 0, and therefore includes cases
where 𝑉 acts 𝑘-locally as long as the code can detect 𝑘-local errors. We show a proof of this
in the appendix. The remainder of the chapter addresses the case where 𝑉 acts 1-locally
but in which we use a finite, rather than infinite, penalty 𝐸𝑃 .
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2.4.2 The finite 𝐸𝑃 case

Frequency Analysis

We have just seen that for infinitely large 𝐸𝑃 , the evolution in the codespace in the presence
of noise is the same as the desired noise-free evolution. We now want to know how large 𝐸𝑃
must be to assure us that 𝐹 (𝑡) is very small, so that the actual evolution in the codespace
is close to the desired one. It is helpful to consider the “natural frequencies” present in the
expression for 𝐹 (𝑡), as given by Eq. (2.21), which we informally analyse now.

If 𝑓(𝑡) is a (suitably nice) complex function, and 𝑓(𝜔) is its Fourier transform, then

∫︁ 𝑡

0
d𝜏𝑒𝑖𝐸𝑃 𝜏𝑓(𝜏) =

∫︁ 𝑡

0
d𝜏𝑒𝑖𝐸𝑃 𝜏

∫︁ ∞

−∞
d𝜔𝑒−𝑖𝜔𝜏𝑓(𝜔) =

∫︁ ∞

−∞
d𝜔

𝑒𝑖(𝐸𝑃−𝜔)𝑡 − 1

𝑖(𝐸𝑃 − 𝜔)
𝑓(𝜔) .

Suppose that there exists an 𝜔𝑐 such that 𝑓(𝜔) is non-negligible only for |𝜔| < 𝜔𝑐. Then

∫︁ 𝑡

0
d𝜏𝑒𝑖𝐸𝑃 𝜏𝑓(𝜏) ≈

∫︁

|𝜔|6𝜔𝑐

d𝜔
𝑒𝑖(𝐸𝑃−𝜔)𝑡 − 1

𝑖(𝐸𝑃 − 𝜔)
𝑓(𝜔) .

Now, if 𝐸𝑃 is much larger than 𝜔𝑐, we can replace 1/(𝐸𝑃 −𝜔) by 1/𝐸𝑃 in this integral, and
may therefore conclude that the integral is small (shrinking as 1/𝐸𝑃 ).

The question is, therefore, what are the natural frequencies of 𝑈 †
0(𝜏)𝑉 (𝜏)𝑈0(𝜏)? If they

are not too large, then 𝐹 (𝑡) should be small for reasonably large values of 𝐸𝑃 . Consider first
the time-independent case, in which 𝐻0 and 𝑉 are time-independent, so 𝑈0(𝜏) = 𝑒−𝑖𝐻0𝜏 .
Certainly 𝑈0 will have extremely large frequencies, namely 𝑒−𝑖𝐸𝜏 where 𝐸 are eigenenergies
of 𝐻0; since 𝐻0 includes the environment, 𝐸 can scale with the size of the environment
and be extremely large. However, the frequencies of 𝑈 †

0𝑉 𝑈0, are expected to be much
smaller. Inserting two complete sets of 𝐻0 energy eigenstates, |𝐸⟩, we see that in the time-
independent case,

𝑈 †
0(𝜏)𝑉 𝑈0(𝜏) =

∑︁

𝐸,𝐸′

𝑒𝑖(𝐸−𝐸′)𝜏 |𝐸⟩⟨𝐸|𝑉
⃒⃒
𝐸′⟩︀⟨︀𝐸′⃒⃒ ,

indicating that the frequencies are the energy differences induced by 𝑉 . If 𝑉 acts locally, we
expect it would be unable to change the energy of the system/environment by a large amount
– for example, it is unlikely that flipping just two spins in a spin chain will change the energy
of the entire chain by more than a small amount. Therefore, we expect that ⟨𝐸|𝑉 |𝐸′⟩ is very
small when |𝐸 −𝐸′| is large. If we make 𝐸𝑃 larger than the largest |𝐸 −𝐸′| corresponding
to any non-negligible ⟨𝐸|𝑉 |𝐸′⟩, we can conclude that 𝐹 is small. To be more precise would
require a specific model for the system, environment, and interaction. Still, we can make
some progress on bounding 𝐹 , even in the general time-dependent case.

Bounding 𝐹

We now bound the norm of 𝐹 (𝑡) =
∫︀ 𝑡
0 𝑒

𝑖𝐸𝑃 𝜏𝑈 †
0(𝜏)𝑉 (𝜏)𝑈0(𝜏)𝑃d𝜏 . Since the norm of 𝑉 is

expected to grow linearly in the size of the system, and therefore in 𝑛, one would naively
expect the same of 𝐹 . However, the fact that each logical qubit is independently encoded
allows us to do slightly better. Recall from Eq. (2.4) that we can write 𝑉 as a sum of terms,
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𝑉𝑖, where each 𝑉𝑖 acts only on the 𝑖th logical system qubit (as well as the environment). Let

𝐹𝑖(𝑡) =

∫︁ 𝑡

0
𝑒𝑖𝐸𝑃 𝜏𝑈 †

0(𝜏)𝑉𝑖(𝜏)𝑈0(𝜏)𝑃d𝜏

so

𝐹 =
𝑛∑︁

𝑖=1

𝐹𝑖 .

We now show that
‖𝐹‖ 6 √𝑛max

𝑖
‖𝐹𝑖‖ . (2.23)

Proof. Observe that

𝐹 †𝐹 =

𝑛∑︁

𝑖,𝑗=1

𝐹 †
𝑖 𝐹𝑗

=
𝑛∑︁

𝑖,𝑗=1

∫︁ 𝑡

0

∫︁ 𝑡

0
d𝜏1d𝜏2𝑒

𝑖𝐸𝑃 (𝜏2−𝜏1)[𝑃𝑈 †
0(𝜏1)𝑉𝑖(𝜏1)𝑈0(𝜏1)][𝑈

†
0(𝜏2)𝑉𝑗(𝜏2)𝑈0(𝜏2)𝑃 ]

and consider the terms with 𝑖 ̸= 𝑗. In the leftmost 𝑃 there is a 𝑃𝑗 (i.e. 𝑃 = 𝑃𝑃𝑗) and
it commutes with 𝑈 †

0(𝜏1), 𝑉𝑖(𝜏1), 𝑈0(𝜏1), and 𝑈
†
0(𝜏2). But 𝑃𝑗𝑉𝑗𝑃 = 0 so these terms are 0.

Consequently, the sum is only over 𝑖 = 𝑗, i.e.

𝐹 †𝐹 =
𝑛∑︁

𝑖=1

𝐹 †
𝑖 𝐹𝑖 ,

and the claim follows since ‖𝐹‖2 = max|𝜓⟩ ⟨𝜓|𝐹 †𝐹 |𝜓⟩.

We now consider how to bound 𝐹𝑖 (for any logical qubit 𝑖). In deriving Eq. (2.22), we
assumed that d

d𝜏 (𝑈 †
0𝑉 𝑈0) is finite; we now explicitly bound this term. By Eq. (2.6), we have

d

d𝜏
(𝑈 †

0𝑉𝑖𝑈0) = −𝑖𝑈 †
0 [𝑉𝑖, 𝐻0]𝑈0 + 𝑈 †

0

d𝑉𝑖
d𝜏

𝑈0 .

Using this, Eq. (2.22) becomes

𝐹𝑖(𝑡) =
1

𝑖𝐸𝑃

[︁
𝑒𝑖𝐸𝑃 𝑡𝑈 †

0(𝑡)𝑉𝑖(𝑡)𝑈0(𝑡)−𝑉𝑖(0)+𝑖

∫︁ 𝑡

0
𝑒𝑖𝐸𝑃 𝜏𝑈 †

0 [𝑉𝑖, 𝐻0]𝑈0d𝜏−
∫︁ 𝑡

0
𝑒𝑖𝐸𝑃 𝜏𝑈 †

0

d𝑉𝑖
d𝜏

𝑈0d𝜏
]︁
𝑃

and taking the norm, using that ‖𝐴+𝐵‖ 6 ‖𝐴‖ + ‖𝐵‖, ‖𝐴𝐵‖ 6 ‖𝐴‖‖𝐵‖, ‖𝑈0‖ = 1, and
‖𝑃‖ = 1, we obtain

⃦⃦
⃦𝐹𝑖(𝑡)

⃦⃦
⃦ 6

1

|𝐸𝑃 |

(︂⃦⃦
⃦𝑉𝑖(𝑡)

⃦⃦
⃦+

⃦⃦
⃦𝑉𝑖(0)

⃦⃦
⃦+ max

𝜏

⃦⃦
⃦[𝑉𝑖(𝜏), 𝐻0(𝜏)]

⃦⃦
⃦𝑡+ max

𝜏

⃦⃦
⃦⃦d𝑉𝑖

d𝜏

⃦⃦
⃦⃦𝑡
)︂
. (2.24)

The norm
⃦⃦
⃦d𝑉𝑖

d𝜏

⃦⃦
⃦ will be bounded for reasonable 𝑉 . For example, if the system control

operations do not greatly change the environment surrounding each qubit, one expects that
each 𝑉𝑖 will likely stay fairly constant. Accordingly, we will ignore this term and the time

59



dependence of 𝑉𝑖, in which case
⃦⃦
⃦𝐹𝑖(𝑡)

⃦⃦
⃦ 6

1

|𝐸𝑃 |
(︁

2
⃦⃦
⃦𝑉𝑖
⃦⃦
⃦+ max

𝜏

⃦⃦
⃦[𝑉𝑖, 𝐻0(𝜏)]

⃦⃦
⃦𝑡
)︁
. (2.25)

The commutator [𝑉𝑖, 𝐻0] = [𝑉𝑖, 𝐻
L
comp +𝐻env] involves the environment Hamiltonian, which

may be extremely large; however, we now show that by making some reasonable physical
assumptions,

⃦⃦
⃦[𝑉𝑖, 𝐻0]

⃦⃦
⃦ is independent of the size of the system and environment.

First, we assume that 𝐻L
comp, 𝐻env, and 𝑉𝑖 are local operators. They can therefore each

be written as a sum of terms, each term involving only a few qubits. Second, we make
the assumption that each qubit (of the system and environment) appears in at most a
few of these local terms of 𝐻L

comp, 𝐻env, and 𝑉𝑖. For example, if a Hamiltonian is 2-local
and geometrically local, say on a cubic lattice, so that each qubit only interacts with its
immediate neighbours, then this restricts the number of terms in which any qubit appears,
say to six for the cubic lattice. In terms of operator norms, these assumptions translate as
follows.

For 𝑉𝑖 we have

𝑉𝑖 =

ℓ∑︁

𝑠=1

∑︁

𝜇=𝑋,𝑌,𝑍

𝜎𝑠𝜇 ⊗𝐵𝑠
𝜇

where the sum over 𝑠 is only over the ℓ system qubits that comprise the 𝑖th logical qubit.
𝐵𝑠
𝜇 is an environmental operator that couples to 𝜎𝑠𝜇 and only consists of a few local terms

(because system qubit 𝑠 only appears in a few local terms of 𝑉𝑖), each acting on only a few
environmental qubits (by locality). Therefore,

⃦⃦
𝐵𝑠
𝜇

⃦⃦
= 𝒪(1)

independent of the system and environment sizes. (Recall that the coupling, 𝜆, has units of
energy, so the 𝐵𝑠

𝜇 are dimensionless.) We thus have that

‖𝑉𝑖‖ = ℓ𝒪(1) . (2.26)

Now, 𝐻0 = 𝐻L
comp + 𝐻env and both terms contribute to the commutator [𝑉𝑖, 𝐻0]. Let

ℎ𝑠sys be the sum of all terms in 𝐻L
comp involving system qubit 𝑠, where 𝑠 is a part of logical

qubit 𝑖. Since there are only a few such terms, each of which acts on only a few system
qubits, we can assert that ⃦⃦

ℎ𝑠sys
⃦⃦

= ℰ𝒪(1)

where ℰ is an energy scale parameter whose size is on the order of the size of the individual
terms in 𝐻L

comp. Similarly, let ℎ𝑠env be the sum of all terms in 𝐻env that contain the environ-
mental qubits that appear in 𝐵𝑠

𝜇 for 𝜇 = 𝑋,𝑌, 𝑍. Since 𝐵𝑠
𝜇 involves only a few environment

qubits, which each appear in 𝐻env in only a few, local terms, we have that

‖ℎ𝑠env‖ = ℰ𝒪(1) .
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Then, since ‖𝐴+𝐵‖ 6 ‖𝐴‖+ ‖𝐵‖, ‖[𝐴,𝐵]‖ 6 2‖𝐴‖‖𝐵‖, and ‖𝐴⊗𝐵‖ = ‖𝐴‖‖𝐵‖,

⃦⃦
⃦[𝑉𝑖, 𝐻0]

⃦⃦
⃦ 6

ℓ∑︁

𝑠=1

∑︁

𝜇=𝑋,𝑌,𝑍

⃦⃦
⃦[𝜎𝑠𝜇 ⊗𝐵𝑠

𝜇, 𝐻
L
comp]

⃦⃦
⃦+

⃦⃦
⃦[𝜎𝑠𝜇 ⊗𝐵𝑠

𝜇, 𝐻env]
⃦⃦
⃦

=

ℓ∑︁

𝑠=1

∑︁

𝜇=𝑋,𝑌,𝑍

⃦⃦
⃦[𝜎𝑠𝜇 ⊗𝐵𝑠

𝜇, ℎ
𝑠
sys]
⃦⃦
⃦+

⃦⃦
⃦[𝜎𝑠𝜇 ⊗𝐵𝑠

𝜇, ℎ
𝑠
env]
⃦⃦
⃦

6 2
ℓ∑︁

𝑠=1

∑︁

𝜇=𝑋,𝑌,𝑍

⃦⃦
𝜎𝑠𝜇
⃦⃦⃦⃦
𝐵𝑠
𝜇

⃦⃦ (︀⃦⃦
ℎ𝑠sys

⃦⃦
+ ‖ℎ𝑠env‖

)︀
.

Thus, ⃦⃦
⃦[𝑉𝑖, 𝐻0]

⃦⃦
⃦ = ℓℰ𝒪(1) (2.27)

independent of 𝑛 and the size of the environment.

Applying the bounds of Eqs. (2.26) and (2.27) to Eq. (2.25) gives

‖𝐹𝑖(𝑡)‖ 6
1

|𝐸𝑃 |
[︀
ℓ𝒪(1) + ℓℰ𝑡𝒪(1)

]︀

and using this in Eq. (2.23), we obtain

‖𝐹 (𝑡)‖ 6
√
𝑛

|𝐸𝑃 |
ℓ
[︀
𝒪(1) + ℰ𝑡𝒪(1)

]︀
. (2.28)

The term that grows with 𝑡 represents a very weak bound for large 𝑡. We see from Eq. (2.21)
that 𝐹 (𝑡) is an integral over [0, 𝑡] of an oscillating integrand and such integrals typically do
not grow with 𝑡. For example, bounding

∫︁ 𝑡

0
sin(𝜔𝜏)d𝜏 6 𝑡 ,

while true, is not very helpful for large 𝑡. However, this is the best that we have been able
to do for the general problem at hand. In Sec. 2.5 we will look at the full 𝑡 dependence of
small systems using numerical simulation.

Fidelity calculation

Suppose the system/environment is initially in the pure state |𝜓⟩, and it evolves under 𝑈
for time 𝑇 . We begin in the codespace of the system, so 𝑃 |𝜓⟩ = |𝜓⟩. The fidelity squared,
ℱ2, between the desired final state, 𝑈0 |𝜓⟩, and the actual final state, 𝑈 |𝜓⟩, is given by

ℱ2 =
⃒⃒
⃒⟨𝜓|𝑈 †

0𝑈 |𝜓⟩
⃒⃒
⃒
2

=
⃒⃒
⃒⟨𝜓|𝑃𝑈 †

0𝑈𝑃 |𝜓⟩
⃒⃒
⃒
2
.

To evaluate this, we left-multiply Eq. (2.15) by 𝑃𝑈 †
0 , and use Eq. (2.12) to give

𝑃𝑈 †
0𝑈𝑃 = 𝑃 − 𝑖𝜆𝑃𝐹 − 𝜆2𝑃𝑈 †

0𝑈

∫︁ 𝑇

0
𝑈 †𝑉 𝑈0𝑃𝐹d𝑡 .
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Because 𝑃 commutes with 𝑈0 and 𝑃𝑉 𝑃 = 0, we see from Eq. (2.21) that 𝑃𝐹 = 0. Therefore,

𝑃𝑈 †
0𝑈𝑃 = 𝑃 − 𝜆2𝑃𝑈 †

0𝑈

∫︁ 𝑇

0
𝑈 †𝑉 𝑈0𝑃𝐹d𝑡 ,

so

⟨𝜓|𝑈 †
0𝑈 |𝜓⟩ = 1− 𝜆2 ⟨𝜓|𝑃𝑈 †

0𝑈

∫︁ 𝑇

0
𝑈 †𝑉 𝑈0𝑃𝐹d𝜏 |𝜓⟩ . (2.29)

Making the physical assumptions discussed above, we can immediately derive a bound
on the fidelity. From Eq. (2.26), ‖𝑉 ‖ = 𝑛ℓ𝒪(1), and using Eq. (2.28), along with the norm
properties of ‖𝐴𝐵‖ 6 ‖𝐴‖‖𝐵‖, ‖𝑈0‖ = ‖𝑈‖ = 1, and ‖𝑃‖ = 1, we obtain
⃒⃒
⃒⃒𝜆2 ⟨𝜓|𝑃𝑈 †

0𝑈

∫︁ 𝑇

0
𝑈 †𝑉 𝑈0𝑃𝐹d𝜏 |𝜓⟩

⃒⃒
⃒⃒ 6 𝜆2 max

06𝑡6𝑇
‖𝑉 ‖ ‖𝐹 (𝑡)‖𝑇 6

𝜆2𝑛3/2ℓ2

|𝐸𝑃 |
[︀
𝑇𝒪(1)+ℰ𝑇 2𝒪(1)

]︀
.

Therefore, by the reverse triangle inequality, the fidelity is bounded by

ℱ =
⃒⃒
⃒⟨𝜓|𝑈 †

0𝑈 |𝜓⟩
⃒⃒
⃒ =

⃒⃒
⃒⃒1−𝜆2 ⟨𝜓|𝑃𝑈 †

0𝑈

∫︁ 𝑇

0
𝑈 †𝑉 𝑈0𝑃𝐹d𝜏 |𝜓⟩

⃒⃒
⃒⃒ > 1−𝜆

2𝑛3/2ℓ2

|𝐸𝑃 |
[︀
𝑇𝒪(1)+ℰ𝑇 2𝒪(1)

]︀
,

so we are guaranteed good fidelity if we have

𝐸𝑃 & 𝜆2𝑛3/2ℓ2
[︀
𝑇𝒪(1) + ℰ𝑇 2𝒪(1)

]︀
, (2.30)

where by 𝒪(1) we mean the constants from Eqs. (2.26) and (2.27). For any efficient algo-
rithm, 𝑇 6 poly(𝑛), so since 𝜆, ℓ, and ℰ are independent of 𝑛, it suffices for 𝐸𝑃 to grow
polynomially in the number of logical qubits 𝑛.

We assume that 𝜆, the system-environment coupling, can be engineered to be small
compared to the magnitudes of the individual terms in 𝐻0. Accordingly, let us consider
⟨𝜓|𝑈 †

0𝑈 |𝜓⟩ to order 𝜆2. Working to this order, we can set 𝑈 = 𝑈0𝑃 (as would occur if 𝜆
were zero) on the right hand side of Eq. (2.29):

⟨𝜓|𝑈 †
0𝑈 |𝜓⟩ = 1− 𝜆2 ⟨𝜓|𝑃𝑈 †

0𝑈0𝑃

∫︁ 𝑇

0
𝑈 †
0𝑃𝑉 𝑈0𝑃𝐹d𝑡 |𝜓⟩ +𝒪

(︀
𝜆3
)︀
.

Recall from Eqs. (2.7) and (2.12) that 𝑈0𝑃 = 𝑈0𝑈𝑃 and 𝑃𝑈𝑃 = 𝑃 , so that 𝑃𝑈 †
0𝑈0𝑃 = 𝑃 .

Recalling the notation of Eq. (2.8) from the interaction picture, i.e. of 𝑉𝐼 ≡ 𝑈 †
0𝑃𝑉 𝑈0𝑃 , and

the definition of 𝐹 in Eq. (2.14), we therefore have

⟨𝜓|𝑈 †
0𝑈 |𝜓⟩ = 1− 𝜆2 ⟨𝜓|𝑃

∫︁ 𝑇

0
𝑉𝐼(𝑡)𝐹 (𝑡)d𝑡 |𝜓⟩ +𝒪

(︀
𝜆3
)︀

= 1− 𝜆2 ⟨𝜓|𝑃
∫︁ 𝑇

0
𝑉𝐼(𝑡)

∫︁ 𝑡

0
𝑉𝐼(𝜏)𝑃 d𝜏d𝑡 |𝜓⟩ +𝒪

(︀
𝜆3
)︀
.

With perfect error suppression, ℱ2 → 1, so 1 − ℱ2 is a measure of error suppression
failure. We calculate

1−ℱ2 = 1−
⃒⃒
⃒⟨𝜓|𝑈 †

0𝑈 |𝜓⟩
⃒⃒
⃒
2

= 𝜆2 ⟨𝜓|𝑃
∫︁ 𝑇

0
d𝑡

∫︁ 𝑡

0
d𝜏 𝑉𝐼(𝑡)𝑉𝐼(𝜏)𝑃 |𝜓⟩+ℎ.𝑐.+𝒪

(︀
𝜆3
)︀
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where h.c. denotes the Hermitian conjugate. But this conjugate involves

(︂∫︁ 𝑇

0
d𝑡

∫︁ 𝑡

0
d𝜏 𝑉𝐼(𝑡)𝑉𝐼(𝜏)

)︂†
=

∫︁ 𝑇

0
d𝑡

∫︁ 𝑡

0
d𝜏 𝑉 †

𝐼 (𝜏)𝑉 †
𝐼 (𝑡) =

∫︁ 𝑇

0
d𝜏

∫︁ 𝜏

0
d𝑡 𝑉𝐼(𝑡)𝑉𝐼(𝜏)

where in the last step we used the fact that 𝑉𝐼 is Hermitian and relabelled 𝑡↔ 𝜏 , showing
that this term is identical to the term of which it is the conjugate, except for the integration
region. The original integrates over a region with 𝜏 < 𝑡, while the conjugate integrates the
same integrand over a region with 𝑡 < 𝜏 , so their sum integrates over all 0 6 𝜏, 𝑡 6 𝑇 . Thus,

1−ℱ2 = 𝜆2 ⟨𝜓|𝑃
∫︁ 𝑇

0
d𝑡𝑉𝐼(𝑡)

∫︁ 𝑇

0
d𝜏𝑉𝐼(𝜏)𝑃 |𝜓⟩+𝒪

(︀
𝜆3
)︀

i.e.
1−ℱ2 = 𝜆2 ⟨𝜓|𝐹 †𝐹 |𝜓⟩+𝒪

(︀
𝜆3
)︀

so

1−ℱ2 6 𝜆2‖𝐹‖2 + 𝒪
(︀
𝜆3
)︀
. (2.31)

We see that a small ‖𝐹‖ corresponds to good error suppression.
We can combine this expression with Eq. (2.28) to obtain, at time 𝑇 ,

1−ℱ2(𝑇 ) 6
𝜆2𝑛

𝐸2
𝑃

ℓ2
[︀
𝒪(1) +𝒪(1) ℰ𝑇

]︀2
+ 𝒪

(︀
𝜆3
)︀
. (2.32)

It is possible to write an expression for the 𝜆3 contribution. We find that the leading term
in 1/𝐸𝑃 in the 𝜆3 contribution goes like 𝜆3𝑇/𝐸2

𝑃 . Again, we do not believe that this gives
a useful bound for large 𝑇 , but it may be useful in the small 𝑇 regime.

2.5 Numerical simulation for one logical qubit

In this section, we discuss the results of a numerical simulation of 1 logical qubit, encoded as
4 physical qubits using the Jordan-Farhi-Shor [1] code, coupled to an 8-qubit environment
according to

𝐻 = 𝐻L
comp +𝐻env + 𝜆𝑉 + 𝐸𝑃 𝑄̃ .

Since we track the evolution over long times, we find it too computationally expensive to
work with more than 12 qubits total; therefore, we analyse only one logical qubit coupled
to a modest size environment.

We choose the environment and the couplings as follows. The environment qubits are
arranged on a randomly chosen 3-regular graph and have 2-local interactions between nearest
neighbours. Each physical system qubit couples to a single, unique, randomly-selected
environment qubit. For simplicity, the environment and coupling Hamiltonians, 𝐻env and
𝑉 , are time-independent.

The environment Hamiltonian takes the form

𝐻env =
8∑︁

𝑎=1

𝛼𝑎(𝑛̂𝑎 · 𝜎⃗𝑎) +
∑︁

⟨𝑏,𝑐⟩
𝛼𝑏𝑐(𝑚̂𝑏 · 𝜎⃗𝑏)⊗ (ℓ̂𝑐 · 𝜎⃗𝑐)
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where each 𝑛̂𝑎, 𝑚̂𝑏, and ℓ̂𝑐 is a randomly chosen unit vector, 𝜎⃗𝑎 = (𝜎𝑎𝑋 , 𝜎
𝑎
𝑌 , 𝜎

𝑎
𝑍) are the Pauli

operators acting on environment qubit 𝑎, each 𝛼𝑎 and 𝛼𝑏𝑐 is a coefficient chosen at random
in the range of [0.9, 1.1], and

∑︀
⟨𝑏,𝑐⟩ denotes a sum over neighbouring environment qubits on

the 3-regular graph.
In this small simulation, with 1 logical qubit, the system size is 4. The system-environment

coupling has the form of Eq. (2.3), with the environmental operators chosen to be simple
single-qubit terms, and is given by

𝑉 =
4∑︁

𝑠=1

𝛽𝑠(𝑛̂𝑠 · 𝜎⃗𝑠) +
4∑︁

𝑠=1

𝛾𝑠(𝑚̂𝑠 · 𝜎⃗𝑠)⊗ (ℓ̂𝑠 · 𝜎⃗𝑠env)

where each 𝑛̂𝑠, 𝑚̂𝑠, and ℓ̂𝑠 is a randomly chosen unit vector, 𝜎⃗𝑠 are the Pauli operators acting
on system qubit 𝑠, and 𝜎⃗𝑠env are the Pauli operators acting on the environment qubit that
is coupled to system qubit 𝑠. Note that we have included single-qubit error terms, 𝑛̂𝑠 · 𝜎⃗𝑠,
that are not coupled to any environment qubits but may arise from pure system errors. The
coefficients 𝛽𝑠 and 𝛾𝑠 are each chosen at random in the range of [0.9, 1.1]. By design, 𝑉 acts
1-locally on the system.

The initial state is taken to be a pure product state of the system and environment,

|𝜓⟩ = |𝜓𝑠⟩ ⊗ |𝜓𝑒⟩ ,

where the initial environment state |𝜓𝑒⟩ is a random 8-qubit state. We will study different
choices for the initial system state |𝜓𝑠⟩ and the computational Hamiltonian 𝐻L

comp. In order
to compare the actual and desired dynamics, we evolve with 𝑈 and 𝑈0 defined in Eq. (2.6)
to obtain

|𝜑(𝑡)⟩ = 𝑈(𝑡) |𝜓⟩, 𝑡 ∈ [0, 𝑇 ]

|𝜑0(𝑡)⟩ = 𝑈0(𝑡) |𝜓⟩, 𝑡 ∈ [0, 𝑇 ] .

Note that because the system and environment are not coupled by 𝐻0, we can write

|𝜑0(𝑡)⟩ = |𝜑𝑠0(𝑡)⟩ ⊗ |𝜑𝑒0(𝑡)⟩

so that the state of the system at time 𝑡 is |𝜑𝑠0(𝑡)⟩, independent of the environment. In the
coupled case, on the other hand, the state of the system at time 𝑡 > 0 is described by a
density matrix,

𝜌(𝑡) = Trenv |𝜑(𝑡)⟩⟨𝜑(𝑡)| ,
where the environment qubits have been traced out.

At any time 𝑡, we compare the actual versus coupling-free evolutions using the following
measures:

∙ The squared fidelity of the total evolution,

ℱ2(𝑡) = | ⟨𝜑0(𝑡)|𝜑(𝑡)⟩ |2.

As a result of our theorem, this measure goes to 1 as 𝐸𝑃 → ±∞. This fidelity
also contains the fidelity of the environment’s evolution, and accordingly is a stronger
measure than what we need to track how well the computation is protected.
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∙ The squared fidelity of the system evolution,

ℱ2
𝑠 (𝑡) = ⟨𝜑𝑠0(𝑡)|𝜌(𝑡)|𝜑𝑠0(𝑡)⟩.

This measure determines if the quantum computation in the presence of the coupling
to the environment is following the desired evolution. The irrelevant bath degrees of
freedom are traced out.

We first perform numerical simulations for the time-independent computational Hamil-
tonian 𝐻L

comp = 𝑋𝐿. Figure 2-1 shows the results of a typical simulation with 𝜆 = 0.1 and
for a variety of 𝐸𝑃 values, for both fidelity measures defined above. The initial system state
in this case is a random superposition of |0𝐿⟩ and |1𝐿⟩, which can be viewed as a random
superposition of the codespace eigenstates of 𝐻L

comp = 𝑋𝐿, i.e. of

|±𝐿⟩ =
1√
2

(︁
|0𝐿⟩ ± |1𝐿⟩

)︁
.

We make the following observations:

∙ In the absence of an energy penalty, i.e. when 𝐸𝑃 = 0, the fidelities rapidly fall. We
see that ℱ2

𝑠 falls to a value of about 1/16, which is the expected fidelity between two
random 4-qubit system states. In other words, the state of the system is outside the
codespace and is uncorrelated with the state resulting from the desired evolution.

∙ For large 𝐸𝑃 , near-perfect fidelity is maintained for a long time, both for the system
(ℱ𝑠) and the system-environment (ℱ). However, the fidelity eventually falls, and does
so fairly abruptly (on a log-scale). This kind of behaviour would not be seen in a
low-order power series expansion in time and is certainly not seen in expressions like
Eq. (2.24) that have a linear term in 𝑡. Note that the larger the value of 𝐸𝑃 , the longer
near-perfect fidelity is maintained.

∙ For sufficiently large 𝐸𝑃 , the general behaviour is for the system fidelity ℱ𝑠 to approach
an asymptotic value for large 𝑡, about which it has small fluctuations. We have data
for times greater than what we plot here that supports this observation, but of course
we cannot draw firm conclusions about what happens as 𝑡→∞. Still, we can say that
the system fidelity stays fairly level away from zero at time scales much larger than
any natural time scale involved in the simulation.

∙ The total fidelity, ℱ , always falls to very close to 0 for very large 𝑡, indicating that the
environment state is not as well protected as the system state is. This is unsurprising,
as there is no preferred codespace for the environment.

∙ In Fig. 2-2, we see qualitatively the same behaviour for the same randomly chosen
𝐻env, 𝑉 , and |𝜓⟩, but with 𝜆 = 0.01 (rather than 𝜆 = 0.1). Note that for each 𝐸𝑃 ,
the smaller 𝜆 value allows for good protection for longer times than the larger 𝜆 value
allows.

It is interesting to compare the bounds of Eq. (2.31) and Eq. (2.25) with our numerical
observations. For the parameters used to generate Figs. 2-1 and 2-2, we have ‖𝑉 ‖ ≈ 7,
‖𝐻0‖ ≈ 12, and

⃦⃦
[𝑉,𝐻0]

⃦⃦
≈ 17 (significantly less than ‖𝑉 ‖ · ‖𝐻0‖, in accordance with our

previous discussion on locality). Equation (2.31) suggests that good fidelity squared, say of
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Figure 2-1: (Top) squared system fidelity, ℱ2
𝑠 , and (bottom) squared total fidelity, ℱ2, as

functions of time 𝑡 on a log-scale for 𝜆 = 0.1 and initial system state |𝜓𝑠⟩ = 𝛼|+𝐿⟩+ 𝛽|−𝐿⟩
with a random choice of 𝛼 and 𝛽 obeying |𝛼|2 + |𝛽|2 = 1. Results are shown for increasing
energy penalty strengths, 𝐸𝑃 . All data are for 𝐻L

comp = 𝑋𝐿 on a 4-qubit system, and for
a particular random instance of 𝐻env, 𝑉 , |𝜓𝑠⟩, and |𝜓𝑒⟩ with 8 environment qubits. The
dashed line in the top panel is at |𝛼|4 + |𝛽|4, which is 0.615 for this particular choice of |𝜓𝑠⟩;
its significance will be explained later. The dashed line at 1/16 is the expected long-time
system fidelity in the absence of protection.
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Figure 2-2: (Top) squared system fidelity, ℱ2
𝑠 , and (bottom) squared total fidelity, ℱ2, as

functions of time 𝑡 on a log-scale for 𝜆 = 0.01. All other values are identical to those of
Fig. 2-1, but the time scale has been increased because there is better protection for the
smaller value of 𝜆.
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Figure 2-3: The protection time, 𝑡prot, defined as the time at which the squared system
fidelity ℱ2

𝑠 drops to 0.9, versus 𝐸𝑃 /𝜆2 for a range of 𝐸𝑃 and 𝜆 values, specifically, 𝐸𝑃 ∈
{35, 45, . . . , 225} and 𝜆 ∈ {10−4, 3 · 10−4, 10−3, 3 · 10−3, 10−2, 3 · 10−2, 10−1, 3 · 10−1, 1} (each
of the 9 “clusters” of data in the figure corresponding to a different 𝜆 value.) All Hamiltonian
and initial state values (other than 𝐸𝑃 and 𝜆) are kept identical to those of Fig. 2-1. The
line shows that a linear relationship between 𝑡prot and 𝐸𝑃 /𝜆2 fits the data well.

0.9, can be achieved if 𝜆2‖𝐹‖2 . 0.1, so for 𝜆 = 0.1 we expect that we need ‖𝐹‖ . 3. The
bound in Eq. (2.25) indicates that for 𝐸𝑃 = 32, ‖𝐹‖ . 3 for 𝑇 . 5, so that these two bounds
together suggest that good fidelity can be maintained for time 𝑇 . 5 if 𝐸𝑃 = 32. However,
in Fig. 2-1 we see that, in this case, we can maintain good ℱ2 up to 𝑇 = 1000. Similarly,
for 𝜆 = 0.01 we expect that we need ‖𝐹‖ . 30 (from Eq. (2.31)), which for 𝐸𝑃 = 32 can
be guaranteed for 𝑇 . 60 (by Eq. (2.25)); however, Fig. 2-2 indicates that in this case we
can maintain good ℱ2 up to 𝑇 = 100, 000. We thus see that Eq. (2.25) is not really useful
for large 𝑇 , as our numerical results show good fidelity for far longer than our bounds can
guarantee.

To address the question of how long good fidelity can be maintained, we note that for
successful quantum computation it suffices to have high system fidelity ℱ𝑠; high total fidelity
ℱ is not required. Accordingly, we define the protection time, 𝑡prot, to be the time at which
the squared system fidelity ℱ2

𝑠 first drops to 0.9. In Fig. 2-3 we plot 𝑡prot for a variety of
values of 𝐸𝑃 ∈ [35, 225] and 𝜆 ∈ [10−4, 1] (with all other Hamiltonian and initial state values
held fixed). Observe that, to a very good approximation, the data fit the relation

𝑡prot ∝ 𝐸𝑃 /𝜆2

for larger values of 𝐸𝑃 . We will later show a simple model that is consistent with this
behaviour.

We next address the question of what the system fidelity falls to at late times for large
𝐸𝑃 . For the Hamiltonian 𝐻L

comp = 𝑋𝐿, given |𝜓𝑠⟩ we can actually predict the long-term
system fidelity. To help uncover this relationship, we plot in Fig. 2-4(a) the system fidelity
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(a) |𝜓𝑠⟩ = |0𝐿⟩

(b) |𝜓𝑠⟩ = |+𝐿⟩

Figure 2-4: Squared system fidelity ℱ2
𝑠 as a function of time 𝑡 on a log-scale for initial

states (a) |𝜓𝑠⟩ = |0𝐿⟩ and (b) |𝜓𝑠⟩ = |+𝐿⟩, with 𝐻L
comp = 𝑋𝐿 and 𝜆 = 0.1. All Hamiltonian

and initial environment state values are identical to those of Fig. 2-1. The dashed lines at
1/2 (in the top figure) and 1/16 (in both figures) serve as guides for the eye. Note that in
the bottom figure, for 𝐸𝑃 > 16, ℱ2

𝑠 remains close to 1 for the duration of the simulation.
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Figure 2-5: The long-term squared system fidelity, ℱ2
𝑠 , as a function of |𝛼|2, where the initial

system state is |𝜓𝑠⟩ = 𝛼|+𝐿⟩+ 𝛽|−𝐿⟩ and |𝛼|2 + |𝛽|2 = 1. The curve 𝑦 = |𝛼|4 + (1− |𝛼|2)2
is also shown, and the good fit is apparent. Each data point represents a random choice
for 𝛼 and 𝛽, as well as 𝑉 , 𝐻env, and the initial environment state |𝜓𝑒⟩. The computational
Hamiltonian is 𝐻L

comp = 𝑋𝐿 and 𝐸𝑃 = 128. Each data point is the average ℱ2
𝑠 (𝑇 ) over the

times 𝑇 = {1, 2, . . . , 10}× 108 to account for fluctuations in time of ℱ𝑠 about the long-term
system fidelity.

as a function of time, with |𝜓𝑠⟩ taken to be |0𝐿⟩. Note that the long-term system fidelity
is very near 1

2 for 𝐸𝑃 > 16. In Fig. 2-4(b) we show the same thing but with |𝜓𝑠⟩ = |+𝐿⟩,
an eigenstate of 𝑋𝐿, and see that the long-term system fidelity is very near 1 for 𝐸𝑃 > 16.
More generally, we observe that if we write

|𝜓𝑠⟩ = 𝛼|+𝐿⟩+ 𝛽|−𝐿⟩ , (2.33)

with |±𝐿⟩ being the codespace eigenstates of 𝑋𝐿 and |𝛼|2 + |𝛽|2 = 1, then the long-term
system fidelity is well approximated by |𝛼|4+ |𝛽|4. In Fig. 2-5 we show the long-term system
fidelity versus |𝛼|4+(1−|𝛼|2)2 for a set of randomly chosen |𝜓𝑠⟩ and the good fit is apparent.

We show in Fig. 2-6, for the three choices of |𝜓𝑠⟩ displayed in Figs. 2-1, 2-4(a), and
2-4(b), the probability to remain in the codespace, ⟨𝜑(𝑡)|𝑃 |𝜑(𝑡)⟩. We see that it is close to
1 for all displayed times for 𝐸𝑃 > 16, indicating that any loss of system fidelity is occurring
because of errors inside the codespace. With 𝐻L

comp = 𝑋𝐿, the desired evolution, starting
with the state in Eq. (2.33), is

|𝜑𝑠0(𝑡)⟩ = 𝛼𝑒−𝑖𝑡|+𝐿⟩+ 𝛽𝑒𝑖𝑡|−𝐿⟩

since the codespace eigenvalues of 𝑋𝐿 are ±1. Imagine that the only effect of the coupling
to the environment is to induce dephasing in the 𝐻L

comp energy eigenbasis. Then the density
matrix of the system will approach

𝜌(𝑡) = |𝛼|2
⃒⃒
+𝐿

⟩︀⟨︀
+𝐿

⃒⃒
+ |𝛽|2

⃒⃒
−𝐿
⟩︀⟨︀
−𝐿
⃒⃒
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(a) |𝜓𝑠⟩ = 𝛼|+𝐿⟩+ 𝛽|−𝐿⟩

(b) |𝜓𝑠⟩ = |0𝐿⟩

(c) |𝜓𝑠⟩ = |+𝐿⟩

Figure 2-6: The probability ⟨𝜑(𝑡)|𝑃 |𝜑(𝑡)⟩ of the system being found in the codespace for
the three different initial states used in Figs. 2-1, 2-4(a), and 2-4(b). The dashed line at
1/8 represents the expected probability for a maximally mixed 4-qubit state to be found in
the 1-qubit codespace. In all three cases, for 𝐸𝑃 > 16 the codespace probability is very near
1 for all displayed times.
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and the squared system fidelity, ⟨𝜑𝑠0(𝑡)|𝜌(𝑡)|𝜑𝑠0(𝑡)⟩, is |𝛼|4 + |𝛽|4. That the data in Fig. 2-5
match this is good evidence that the effect of the coupling to the environment is to cause
dephasing in the energy eigenbasis of 𝐻L

comp.
In our simulation we see that, for sufficiently large energy penalties, the system remains

in the codespace and decoheres inside the codespace via dephasing of the energy eigenstates.
We now present a simple phenomenological model that allows us to estimate 𝑡prot, the time
at which the effects of decoherence become appreciable. The model has three states. The
first two states are the codespace eigenstates, |+⟩ and |−⟩, of the logically-encoded two-
level computational Hamiltonian with energies 𝜔 and −𝜔. The third state is a penalty
state, representing all the states orthogonal to the codespace, and accordingly has energy
𝐸𝑃 ≫ 𝜔. The third state is coupled to the first two as a result of interactions with the
environment, so that the effective Hamiltonian is

𝐻eff =

⎡
⎣
𝜔 0 𝜆+
0 −𝜔 𝜆−
𝜆+ 𝜆− 𝐸𝑃

⎤
⎦ .

Here, 𝜆+ and 𝜆− are the effective couplings of the first two states to the penalty state, and
we assume that they are small compared to 𝜔. We imagine that 𝜆+ and 𝜆− are proportional
to some constant 𝜆 that represents the overall scale of the effective couplings. Expanding to
lowest order in 𝜆+, 𝜆−, and 1/𝐸𝑃 , we find that

⃦⃦
⟨−|𝑒−𝑖𝐻eff𝑡|+⟩

⃦⃦2
.
(︁𝜆+𝜆−
𝜔𝐸𝑃

)︁2
,

so in this model the transition probability between states |+⟩ and |−⟩ is negligible for all
time.

Treating the coupling as a perturbation, the effect of the coupling of the system states
to the penalty state is to shift their energies. The perturbed energies are calculated to be

𝐸± = ±𝜔 − 𝜆2±
𝐸𝑃

to lowest order in 𝜆+, 𝜆−, and 1/𝐸𝑃 . Thus in this little model, at time 𝑡, the interaction-
induced phase difference between |+⟩ and |−⟩ is

(︀
𝐸+ − 𝐸− − 2𝜔

)︀
𝑡 = −𝜆

2
+ − 𝜆2−
𝐸𝑃

𝑡

so that the characteristic dephasing time is proportional to 𝐸𝑃 /𝜆2 . Generalizing from the
toy model to an encoded two-level logical system with a coupling to the environment of size
𝜆 and energy penalty term of size 𝐸𝑃 , we guess that for large 𝐸𝑃 and small 𝜆,

𝑡prot ∝
𝐸𝑃
𝜆2

,

in agreement with the behaviour seen in Fig. 2-3.
Returning to the simulation results, we have seen that a sufficiently large energy penalty

keeps the system in the codespace, even for large 𝑡. We also presented evidence that deco-
herence inside the codespace occurs via dephasing in the energy basis. In particular, with a
time-independent 𝐻L

comp = 𝑋𝐿, starting in an energy eigenstate, say |+𝐿⟩, we find that for
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sufficiently large 𝐸𝑃 the system remains approximately in that eigenstate for the duration
of the simulation. In adiabatic quantum computation [18], the state of the system is ini-
tially the ground state of a time-dependent computational Hamiltonian and, provided that
the computational Hamiltonian is changed slowly enough, the evolving state is expected to
remain near the instantaneous ground state. One might therefore expect good fidelity in
the adiabatic computation case as well.

We now show the results of simulations for the one-logical-qubit adiabatic computation

𝐻L
comp(𝑡) =

(︂
1− 𝑡

𝑇

)︂
𝑋𝐿 +

𝑡

𝑇
𝑍𝐿 ,

where the initial system state |𝜓𝑠⟩ = 1√
2
(|0𝐿⟩ − |1𝐿⟩) is the ground state of 𝐻L

comp(0). The
results are shown in Fig. 2-7 for 𝑇 = 10, 000. Observe that for 𝐸𝑃 > 16, the system fidelity
remains very high for the duration of the computation.

We emphasize that our numerical results are for a small system (1 logical qubit made
of 4 physical qubits) coupled to a small environment (of 8 qubits). We do not know if the
observations we have made for one logical qubit will hold in more complicated systems with
many logical qubits. In particular, we would like to know if with a large number of qubits,
modest energy penalties can keep the system in the codespace and, if inside the codespace,
whether the decoherence is limited to dephasing in the energy basis. If so, this would be of
great help in protecting adiabatic quantum computation. Furthermore, we are concerned
that in our simulations, the size of the environment may be too small, especially given the
large values of 𝐸𝑃 that we are exploring. It would be disappointing if our encouraging
small-system simulation results are artifacts of having too small an environment or do not
reflect what actually happens in large systems. Nevertheless, these numerical results, in
conjunction with the proof that the energy penalty method works in the infinite 𝐸𝑃 limit,
suggest that the energy penalty method may be a useful approach towards the development
of fault-tolerant Hamiltonian-based quantum computing.

2.6 Outlook

To use the energy penalty method in an actual device, some practical hurdles remain to be
overcome. The logical operators used by the codes discussed in this chapter need to be at
least 4-local (in order to detect arbitrary 1-local errors), whereas physically implementable
Hamiltonians are generally constrained to be 2-local. The usual procedure to overcome such
locality constraints is to use so-called perturbative gadgets (as introduced in [19]), which
allow one to construct a 2-local Hamiltonian whose low-energy subspace approximates a
given desired Hamiltonian. Such techniques can perhaps be used here, too, to achieve error
suppression using only 2-local operations and energy penalties. Another technique that
might work for certain situations is to use codes that do not correct arbitrary errors but
have a smaller locality, similar to what was done in Ref. [9] in the context of quantum
annealing. This would be useful in situations in which it is known that only certain types
of errors are problematic. In addition to allowing for only 2-local Hamiltonians, such codes
may admit fewer physical qubits per logical qubit (i.e. a smaller value of ℓ), reducing the
total error on the system and enabling numerical simulations for a larger number of logical
qubits than we have been able to do here.

Another potential hurdle is the scaling of the energy penalty. To maintain a given desired
fidelity, it is possible that the magnitude of the required energy penalty 𝐸𝑃 depends on the
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Figure 2-7: For the adiabatic computation, 𝐻L
comp(𝑡) = (1− 𝑡

𝑇 )𝑋𝐿 + 𝑡
𝑇 𝑍𝐿 with 𝑇 = 10000,

the (top) squared system fidelity, ℱ2
𝑠 , and (bottom) squared total fidelity, ℱ2, as functions

of time 𝑡 for 𝜆 = 0.1. All data are for a particular random instance of 𝐻env, 𝑉 , and |𝜓𝑒⟩
with 8 environment qubits, with the system initially in the ground state of 𝐻L

comp(0). Note
that for 𝐸𝑃 > 16, we have nearly perfect system fidelity throughout the evolution.
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size of the system. Fortunately, Eq. (2.30) shows that under reasonable physical assumptions,
such a scaling is at most polynomial in the number, 𝑛, of logical qubits. We hope that
this inequality can be tightened further. For scalable implementation of Hamiltonian-based
quantum computing with error suppression, it is likely that changing the energy penalty
(even polynomially) to accommodate increases in the logical system size may be difficult to
do. For a practical fault-tolerant theorem, it would be desirable for the error-suppression
to be ultimately achieved through the addition of extra qubits, as in the circuit-model case,
rather than requiring hardware modifications (such as increasing the magnitude of energy
penalty terms). Recently, it has been shown [20] how 2-local perturbative gadgets can be
used to achieve effectively large energy penalties using much weaker energy interactions, at
the expensive of having additional qubits. It would be of great interest to see if such a
technique could be applied here to develop a threshold theorem for scalable Hamiltonian-
based quantum computing. Unfortunately, the technique in [20] requires a large overhead
in the number of interaction terms per qubit, which is likely physically unrealistic and is in
opposition to the physical assumptions we made in deriving our fidelity bounds. Nonetheless,
it may be a fruitful avenue for future research.

2.7 Conclusion

In this chapter, we considered the energy penalty method of error suppression, i.e., the
method of achieving error suppression by encoding a Hamiltonian using a quantum error-
detecting code and adding a constant term that penalizes states outside of the codespace.
We proved that this method does indeed work in principle. Specifically, we showed that, in
the limit of an infinitely large energy penalty, the actual evolution of the system is precisely
the evolution in the absence of unwanted control errors and environmental interactions,
provided that the code can detect these errors. Moreover, we have provided some bounds
governing the finite energy penalty scenario, allowing one to bound the energy penalty
required to attain the desired evolution with good fidelity. We believe that these bounds
can be improved, as supported by our numerical evidence for a single logical qubit, and
leave their tightening as an interesting open problem. We hope that progress in this area
will eventually lead to a practical fault-tolerant paradigm for Hamiltonian-based quantum
computation.

2.8 Afterword

The content of this chapter has generated interest, and after its publication in [2], sev-
eral papers advancing the topic have been published. In [21], Marvian and Lidar use a
non-perturbative approach that achieves similar bounds as our perturbative derivation of
Eq. (2.32). Of particular importance, using similar assumptions to the ones made in our
derivation of Eq. (2.28), namely locality and “geometric locality” of the environment and
its interactions, Marvian [22] showed that there exists a unitary describing the unwanted
evolution within the codespace alone that, if it could be rectified, would allow for protection
time scaling exponentially in 𝐸𝑃 . This helps explain the observation we found numerically
that for sufficiently large 𝐸𝑃 , decoherence occurs only within the codespace. His paper also
shows precisely how the degree of locality affects this protection.

75



76



Chapter appendices

2.A Beyond 1-local errors

In the main text of this chapter we focused on the simplest case, where 𝑉 acts 1-locally
on the system and the quantum error-detecting code can detect 1-qubit errors. In this
appendix we show that this simplification is not necessary. As long as the error-detecting
code can detect the errors that 𝑉 causes, our infinite energy penalty theorem still holds.
This includes, for example, the case where 𝑉 acts 𝑘-locally and the code can detect 𝑘-local
errors. Specifically, the only requirement on 𝑉 is that

𝑃𝑉 𝑃 = 0 . (2.34)

We now present a proof of this general case.

Define 𝑅𝑟 (for 𝑟 = 0, . . . , 𝑛) to be

𝑅𝑟 =
∑︁{︀

𝐴1 ⊗ · · · ⊗𝐴𝑛 : 𝐴𝑖 ∈ {𝑃𝑖, 𝑄𝑖} such that |{𝑖 : 𝐴𝑖 = 𝑄𝑖}| = 𝑟
}︀
,

where as before, 𝑃𝑖 is the codespace projector for the 𝑖th logical qubit and 𝑄𝑖 = 1−𝑃𝑖. In
other words, 𝑅𝑟 is the sum of all terms, each of which is a tensor product of a total of 𝑛 𝑃𝑖’s
and 𝑄𝑖’s, one for each logical qubit, such that precisely 𝑟 of these projectors are 𝑄𝑖’s. For
example, 𝑅0 = 𝑃 , 𝑅𝑛 = 𝑄1𝑄2 · · ·𝑄𝑛, and

𝑅1 = 𝑄1𝑃2 · · ·𝑃𝑛 + · · · + 𝑃1 · · ·𝑃𝑛−1𝑄𝑛 .

Observe that the 𝑅𝑟 are in fact a complete set of orthogonal projectors:

𝑅2
𝑟 = 𝑅𝑟 for all 𝑟

𝑅𝑟𝑅𝑟′ = 0 for 𝑟 ̸= 𝑟′

𝑛∑︁

𝑟=0

𝑅𝑟 = 1 ,

where the last equality can be obtained by expanding out 1 =
∏︀
𝑖(𝑃𝑖 +𝑄𝑖).

Now, recall that 𝑒𝑖𝐸𝑃 𝜏𝑄𝑖𝑃𝑖 = 𝑃𝑖 and that 𝑒𝑖𝐸𝑃 𝜏𝑄𝑖𝑄𝑖 = 𝑒𝑖𝐸𝑃 𝜏𝑄𝑖. Therefore, using the
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definition of 𝑄̃ in Eq. (2.5), we see that for any 𝑟,

𝑈 †
𝑃 (𝜏)𝑅𝑟 = 𝑒𝑖𝐸𝑃 𝜏𝑄̃𝑅𝑟

=
𝑛∏︁

𝑖=1

𝑒𝑖𝐸𝑃 𝜏𝑄𝑖𝑅𝑟

= 𝑒𝑖𝑟𝐸𝑃 𝜏𝑅𝑟

because each term in 𝑅𝑟 consists of precisely 𝑟 𝑄𝑖’s. Applying 𝑈
†
𝑃 to 1 =

∑︀𝑛
𝑟=0𝑅𝑟 therefore

lets us write

𝑈 †
𝑃 (𝜏) =

𝑛∑︁

𝑟=0

𝑒𝑖𝑟𝐸𝑃 𝜏𝑅𝑟

so that applying 𝑈 †
𝑃 to 𝑉 𝑃 gives

𝑈 †
𝑃𝑉 𝑃 =

𝑛∑︁

𝑟=0

𝑒𝑖𝑟𝐸𝑃 𝜏𝑅𝑟𝑉 𝑃 .

We now apply our key requirement of Eq. (2.34) to see that the 𝑟 = 0 term is 𝑅0𝑉 𝑃 =
𝑃𝑉 𝑃 = 0. Thus, we have

𝑈 †
𝑃𝑉 𝑃 =

𝑛∑︁

𝑟=1

𝑒𝑖𝑟𝐸𝑃 𝜏𝑅𝑟𝑉 𝑃 ,

instead of the 1-local version in Eq. (2.20), and our formula for 𝐹 from Eq. (2.21) therefore
generalizes to

𝐹 (𝑡) =
𝑛∑︁

𝑟=1

∫︁ 𝑡

0
𝑒𝑖𝑟𝐸𝑃 𝜏𝑅𝑟𝑈

†
0(𝜏)𝑉 (𝜏)𝑈0(𝜏)𝑃d𝜏 .

Note that every term in 𝐹 (𝑡) has a phase of 𝑒𝑖𝑟𝐸𝑃 𝜏 for some 𝑟 > 1. Applying the Riemann-
Lebesgue lemma, we again conclude that in the infinite 𝐸𝑃 limit, 𝐹 (𝑡)→ 0 and our theorem
follows. This form of 𝐹 may be useful in deriving finite energy penalty bounds in the case
where we have a code that can protect against more than 1-local errors.
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Chapter 3

Hamiltonian quantum simulation

with bounded-strength controls

Hamiltonian simulation is the task of effectively changing a fixed system Hamiltonian 𝐻 to
a desired target Hamiltonian 𝐻̃ by applying some external time-dependent control Hamilto-
nian 𝐻𝑐(𝑡). In many situations, the available controls are limited. In particular, the control
may be restricted to only part of the system, being unable to modify the environment.
Moreover, the available control Hamiltonians may be only one-local, whereas the system
Hamiltonian and the desired Hamiltonian may contain pairwise-interactions. Consequently,
this simulation goal may need to be accomplished only approximately and stroboscopically
(i.e., only at certain times), and the original system Hamiltonian𝐻 may be an essential ingre-
dient for success (the controls alone being insufficient). Past schemes for simulating general
Hamiltonians have relied on the ability to effect sequences of instantaneous, arbitrarily-
strong control Hamiltonians (bang-bang control); however, in many realistic settings, such
control is not available.

In this chapter, we propose dynamical control protocols for Hamiltonian simulation in
many-body quantum systems that avoid instantaneous control operations and rely solely on
realistic bounded-strength control Hamiltonians. Each simulation protocol consists of peri-
odic repetitions of a basic control block, constructed as a suitable modification of an “Eule-
rian decoupling cycle,” that would otherwise implement a trivial (zero) target Hamiltonian.
For an open quantum system coupled to an uncontrollable environment, our approach may
be employed to engineer an effective evolution that simulates a target Hamiltonian on the
system, while suppressing unwanted decoherence to leading order.

We also present illustrative applications to both closed- and open-system simulation set-
tings, with emphasis on the simulation of non-local (two-body) Hamiltonians using only local

(one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-
coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev’s
honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant
to the dynamical generation of a topologically protected quantum memory. Additional im-
plications for quantum information processing are discussed.

To be more precise, a version of our result can be phrased as follows. Consider the situ-
ation in which one has a system obeying a time-independent traceless Hamiltonian 𝐻, but
that one desires to simulate a system evolving under a time-independent traceless Hamilto-
nian 𝐻̃ for a time 𝑇 . Suppose that one has access to bounded-strength control Hamiltonians
such that they can implement, over a time ∆, unitaries {𝑈𝛾} corresponding to the generators

81



Γ = {𝛾} of a group 𝒢. Suppose further that the group 𝒢 = {𝑔} was chosen (as is always,
in principle, possible) to enable 𝐻̃ to be written in terms of 𝐻 and the unitaries 𝑈𝑔 (that
correspond to the group elements 𝑔 ∈ 𝒢) in the form

𝐻̃ =
∑︁

𝑔∈𝒢
𝑤𝑔𝑈

†
𝑔𝐻𝑈𝑔

for some non-negative weights 𝑤𝑔. Then one can simulate a system obeying 𝐻̃ for time 𝑇
using a protocol that takes time 𝑇𝑐 = 𝑁∆ + 𝑊𝑇 , where 𝑁 = |Γ||𝒢| and 𝑊 =

∑︀
𝑔∈𝒢 𝑤𝑔.

Specifically, the unitary evolution 𝑈(𝑡𝑀 ) of the system at times 𝑡𝑀 = 𝑀𝑇𝑐, for𝑀 = 1, 2, . . .,
obeys 𝑈(𝑡𝑀 ) = 𝑈̃(𝑡𝑀 ) + 𝑂[(𝑡𝑀‖𝐻‖)3] where 𝑈̃(𝑡𝑀 ) is the desired evolution corresponding
to 𝐻̃ at the stroboscopic simulation times 𝑡𝑀 = 𝑀𝑇 . This protocol is guaranteed to work
if the representation mapping 𝒢 to {𝑈𝑔} is irreducible, but we discuss – and provide explicit
examples of – situations using reducible representations (which can be more efficient) and
using more restricted controls. We also discuss the scenario of performing Hamiltonian
simulation while simultaneously decoupling from an uncontrollable environment.

This chapter is adapted from [1], which was joint work with Lorenza Viola and Pawel
Wocjan.

3.1 Introduction

The ability to accurately engineer the Hamiltonian of complex quantum systems is both a
fundamental control task and a prerequisite for quantum simulation [2–6], as originally envi-
sioned by Feynman. The basic idea underlying Hamiltonian simulation is to use an available
quantum system, together with available (classical or quantum) control resources, to emulate
the dynamical evolution that would have occurred under a different, desired Hamiltonian
not directly accessible to implementation. In fact, this idea may be more generally applied
to emulate a desired non-unitary (dissipative) evolution, see e.g. [7] for a recent survey. From
a control-theory standpoint, the simplest setting is provided by open-loop Hamiltonian en-

gineering in the time domain [8, 9], whereby coherent control over the system of interest
is achieved solely based on suitably-designed time-dependent modulation (most commonly,
sequences of control pulses), without access to ancillary quantum resources and/or measure-
ment and feedback. While open-loop Hamiltonian engineering techniques have their origin
and a long tradition in nuclear magnetic resonance (NMR) [10, 11], the underlying physi-
cal principles of “coherent averaging” have recently found widespread use in the context of
quantum information processing (QIP), leading in particular to dynamical symmetrization
and dynamical decoupling (DD) schemes for control and decoherence suppression in open
quantum systems [12–17].

As applications for both universally programmable (“digital”) and purpose-built (“ana-
logue”) quantum simulators continue to emerge across physics and chemistry [4–6, 18–20],
and implementations become closer to experimental reality [21–23], it is imperative to ex-
pand the repertoire of available quantum-simulation procedures, and scrutinize the validity
of the underlying control assumptions. While existing approaches differ considerably in their
details and an extended comparison is not our scope here, we are specifically interested in
advancing open-loop (analogue) Hamiltonian simulation schemes which, as mentioned, em-
ploy purely unitary control resources. With a few exceptions (notably, the use of so-called
“perturbation theory gadgets” [24]), such schemes have relied thus far on the ability to
implement sequences of effectively instantaneous, “bang-bang” (BB) control pulses [25–33].
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Although this is a convenient and often reasonable first approximation, instantaneous pulses
necessarily involve unbounded control amplitude and/or power, something which is out of
reach for many control devices of interest and is fundamentally unphysical. In the context
of DD, a general approach for achieving (to at least leading order) the same dynamical
symmetrization as in the BB limit was proposed in [34], based on the idea of continuously
applying bounded-strength control Hamiltonians according to an Eulerian cycle, performing
so-called Eulerian dynamical decoupling (EDD). From a Hamiltonian engineering perspec-
tive, EDD protocols translate directly into bounded-strength simulation schemes for specific
effective Hamiltonians – most commonly, the trivial (zero) Hamiltonian in the case of “non-
selective averaging” for quantum memory (or “time-suspension” in NMR terminology). More
recently, EDD has also served as the starting point for constructing bounded-strength gate

simulation schemes in the presence of decoherence, i.e. so-called dynamically corrected gates

(DCGs) for universal quantum computation [35–38].
In this work, we show that the approach of Eulerian control can be further systematically

exploited to construct bounded-strength Hamiltonian simulation schemes for a broad class
of target evolutions on both closed and open (finite-dimensional) quantum systems. In ad-
dition to being device-independent, our approach requires rather limited control resources –
basically, the implementer need only apply local (single-qubit) Hamiltonians with bounded
control strength to suitable subsets of target qubits. As such, these Eulerian simulation

protocols may substantially expand the control toolbox for programming complex Hamilto-
nians into a broad variety of existing or near-term quantum simulators subject to realistic
control assumptions.

The content is organized as follows. We begin in Sec. 3.2 by introducing the appropriate
control-theoretic framework and by reviewing the basic principles of open-loop simulation
via average Hamiltonian theory, along with its application to Hamiltonian simulation in
the BB setting. Section 3.3 is devoted to constructing and analysing simulation schemes
that employ bounded-strength controls: while Sec. 3.3.1 reviews the required background
on EDD, Sec. 3.3.2 introduces our new Eulerian simulation protocols for a general closed
quantum system, and Sec. 3.3.3 provides an explicit application to a simple two-qubit ex-
ample. In Sec. 3.3.4 we address the important problem of Hamiltonian simulation in the
presence of slowly-correlated (non-Markovian) decoherence, by identifying conditions under
which a desired Hamiltonian may be enacted on the target system while simultaneously de-
coupling the latter from its environment, and by contrasting Eulerian simulation protocols
with DCGs. Section 3.4 presents a number of illustrative applications of Eulerian simulation
in interacting multi-qubit networks. In particular, we provide explicit protocols to simulate
a large family of two-body Hamiltonians in Heisenberg-coupled spin systems that are ad-
ditionally exposed to arbitrary single-qubit depolarization or dephasing. We also present
a protocol to achieve Kitaev’s honeycomb lattice Hamiltonian starting from Ising-coupled
qubits. We conclude in Sec. 3.5.

3.2 Principles of Hamiltonian simulation

3.2.1 Control-theoretic framework

We consider a quantum system with associated Hilbert spaceℋ, whose evolution is described
by a time-independent Hamiltonian 𝐻. As mentioned, Hamiltonian simulation is the task
of making this system evolve under some other time-independent target Hamiltonian, say,
𝐻̃. Without loss of generality, both the input and the target Hamiltonians may be taken to
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be traceless.
Two related scenarios are worth distinguishing for QIP purposes, depending on how the

entire quantum system is related to the quantum system of interest, 𝒮 (also referred to as
the “target” henceforth):
∙ Closed-system simulation, in which case the entire system coincides with the quan-

tum system of interest, ℋ = ℋ𝒮 , which undergoes purely unitary (coherent) dynamics;
∙ Open-system simulation, in which case the system is a bipartite system on ℋ =

ℋ𝒮 ⊗ ℋℬ, where ℬ represents an uncontrollable environment (also referred to as a “bath”
henceforth), and the reduced dynamics of the target system 𝒮 is non-unitary.

In both cases, we shall assume the target system 𝒮 to be a network of interacting qudits,
hence ℋ𝒮 ≃ (C𝑑)⊗𝑛, for finite 𝑑 and 𝑛. In the general open-system scenario, the joint
Hamiltonian on ℋ may be expressed in the form

𝐻 = 𝐻𝒮 ⊗ 1ℬ +1𝒮 ⊗𝐻ℬ +
∑︁

𝛼

𝑆𝛼 ⊗𝐵𝛼, (3.1)

where the operators 𝐻𝒮 and 𝑆𝛼 act on ℋ𝒮 , 𝐻ℬ and 𝐵𝛼 act on ℋℬ, and all the bath operators
are assumed to be norm-bounded, but otherwise unspecified (potentially unknown). The
closed-system setting is recovered from Eq. (3.1) in the limit 𝑆𝛼 = 0. Likewise, we may
express the target Hamiltonian 𝐻̃ in a similar form, with two simulation tasks being of special
relevance: 𝑆𝛼 = 0, in which case the objective is to realize a desired system Hamiltonian
𝐻̃𝒮 while decoupling 𝒮 from its bath ℬ, thereby suppressing unwanted decoherence [14]; or,
more generally, 𝐻𝒮 ↦→ 𝐻̃𝒮 and 𝑆𝛼 ↦→ 𝑆𝛼, where the simulated, dynamically symmetrized
error generators 𝑆𝛼 may for instance allow for decoherence-free subspaces or subsystems to
exist [16,39].

To accomplish the goal of Hamiltonian simulation, we modify the free dynamics of the
system by an open-loop (i.e. feedback-free) controller acting on the target system according
to

𝐻 ↦→ 𝐻 +𝐻𝑐(𝑡). (3.2)

The control Hamiltonian 𝐻𝑐(𝑡) is (in general) piecewise time-dependent,

𝐻𝑐(𝑡) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ℎ1(𝑡), 𝑡 ∈ [0, 𝑡1]

ℎ2(𝑡− 𝑡1), 𝑡 ∈ [𝑡1, 𝑡2]

ℎ3(𝑡− 𝑡2), 𝑡 ∈ [𝑡2, 𝑡3]
...

,

successively applying Hamiltonians

ℎ𝑢(𝑡) = 𝑓𝑢(𝑡)𝑥𝑢 (3.3)

where the Hermitian operators {𝑥𝑢} and the real functions {𝑓𝑢(𝑡)} represent the available
control Hamiltonians and the corresponding, generally time-dependent, control inputs re-
spectively.

Let 𝑡 and 𝑡 denote the actual and the simulated time, respectively; that is, we wish to
simulate the evolution under 𝐻̃ for time 𝑡 by actually evolving under 𝐻 for time 𝑡. We
allow for 𝑡 ̸= 𝑡 in order to account for time-overhead in the simulation – for instance, an
overall scale factor 𝑡 = 𝑠𝑡, with 𝑠 > 0, in the simplest case [28,29]. If the operator 𝐻̃ −𝐻 is
contained in the admissible control set {𝑥𝑢}, the corresponding simulation problem is trivial
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and the desired time-evolution
𝑈̃(𝑡) = 𝑒−𝑖𝐻̃𝑡

can be exactly simulated continuously in time, with no overhead. However, this level of
control need not be available in settings of interest. For example, in open quantum systems
the control actions are necessarily restricted to the target system 𝒮 alone, i.e. 𝐻𝑐(𝑡) =
𝐻𝑐(𝑡)⊗ 1ℬ in Eq. (3.2).

In line with the general idea of “analogue” quantum simulation [4,5], we shall assume in
what follows a restricted set of control Hamiltonians (in a sense to be made more precise
later) and focus on the task of approximately simulating the desired time evolution 𝑈̃(𝑡) at
a single final time 𝑡 = 𝑇𝑓 , or more generally, stroboscopically at multiple times, that is, at
instants 𝑡 = 𝑡𝑀 , where

𝑡𝑀 = 𝑀𝑇, 𝑀 ∈ N,

and 𝑇 is a fixed minimum time interval. Choosing 𝑇 sufficiently small allows, in princi-
ple, any desired accuracy in the approximation to be met, with the limit 𝑇 → 0 formally
recovering the continuous limit.

Let 𝑈(𝑡) denote the unitary time-evolution propagator associated with the total Hamil-
tonian 𝐻 +𝐻𝑐(𝑡) in Eq. (3.2),

𝑈(𝑡) = 𝒯 exp

{︂
−𝑖
∫︁ 𝑡

0
[𝐻 +𝐻𝑐(𝜏)] 𝑑𝜏

}︂
, (3.4)

where we have set ~ = 1 and 𝒯 indicates time-ordering, as usual. For a given pair (𝐻, 𝐻̃),
we shall provide sufficient conditions for 𝐻̃ to be “reachable” from 𝐻. Moreover, when this
is satisfied, we show how to devise a cyclic control procedure 𝐻𝑐(𝑡) with some period 𝑇𝑐
such that the resulting time-evolution at times 𝑡 = 𝑡𝑀 , where

𝑡𝑀 = 𝑀𝑇𝑐 , 𝑀 ∈ N,

approximately yields the desired time-evolution at times 𝑡𝑀 , that is

𝑈(𝑡𝑀 ) ≈ 𝑈̃(𝑡𝑀 ), 𝑀 ∈ N. (3.5)

Note that for non-integer 𝑀 , 𝑈(𝑀𝑇𝑐) ̸≈ 𝑈̃(𝑀𝑇 ) in general – approximate equality is
only guaranteed stroboscopically. If, for a given set of control resources and a fixed input
Hamiltonian 𝐻, arbitrary target Hamiltonians 𝐻̃ are reachable, then the simulation scheme
is referred to as universal. In this case, complete controllability must be ensured by the
tunable Hamiltonians 𝑥𝑢 in conjunction with the always-on “drift” 𝐻𝒮 [9]. In contrast, we
shall be especially interested in situations where control over 𝒮 is more limited.

Hamiltonian simulation protocols are most conveniently constructed and analysed by
moving to the “toggling” frame (interaction picture) that is rotating with the control prop-
agator associated with 𝐻𝑐(𝑡),

𝑈𝑐(𝑡) = 𝒯 exp

{︂
−𝑖
∫︁ 𝑡

0
𝐻𝑐(𝜏) 𝑑𝜏

}︂
.

The evolution in this frame is generated by the time-dependent control-modulated Hamil-
tonian

𝐻 ′(𝑡) = 𝑈 †
𝑐 (𝑡) 𝐻 𝑈𝑐(𝑡) (3.6)
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with corresponding time-evolution operator

𝑈 ′(𝑡) = 𝒯 exp

{︂
−𝑖
∫︁ 𝑡

0
𝐻 ′(𝜏) 𝑑𝜏

}︂
.

The overall evolution, when written back in the Schrödinger picture, is given by

𝑈(𝑡) = 𝑈𝑐(𝑡)𝑈
′(𝑡) .

We design the periodic control Hamiltonian 𝐻𝑐(𝑡) such that 𝑈𝑐(𝑇𝑐) = 1; consequently,
𝑈𝑐(𝑡) is also periodic, and in particular, 𝑈𝑐(𝑡𝑀 ) = 1. Stroboscopically, the time-evolution
in the Schrödinger picture and the rotating frame are therefore the same:

𝑈(𝑡𝑀 ) = 𝑈 ′(𝑡𝑀 ).

Moreover, the periodicity of 𝑈𝑐(𝑡) implies that 𝐻 ′(𝑡) will also be periodic with period 𝑇𝑐, so
that the stroboscopic dynamics is given by 𝑈 ′(𝑡𝑀 ) = 𝑈 ′(𝑇𝑐)𝑀 ; thus,

𝑈(𝑡𝑀 ) = 𝑈 ′(𝑇𝑐)𝑀 . (3.7)

Average Hamiltonian theory [11,40] may be invoked to associate an effective time-independent
Hamiltonian 𝐻̄ to 𝑈 ′(𝑇𝑐) so that

𝑈 ′(𝑇𝑐) = exp(−𝑖𝐻̄𝑇𝑐)

or, using (3.7) to relate this to 𝑈(𝑡𝑀 ),

𝑈(𝑡𝑀 ) = exp(−𝑖𝐻̄𝑡𝑀 ) , (3.8)

where 𝐻̄ is determined by the Magnus expansion [41],

𝐻̄ = 𝐻̄(0) + 𝐻̄(1) + 𝐻̄(2) + · · · .

Explicitly, the leading-order term, determining evolution over a cycle up to the first order
in time, is given by

𝐻̄(0) =
1

𝑇𝑐

∫︁ 𝑇𝑐

0
𝐻 ′(𝜏)𝑑𝜏 =

1

𝑇𝑐

∫︁ 𝑇𝑐

0
𝑈 †
𝑐 (𝜏)𝐻𝑈𝑐(𝜏) 𝑑𝜏 , (3.9)

with (absolute) convergence being ensured as long as 𝑡‖𝐻‖ < 𝜋 [42]. Subject to the conver-
gence condition, higher-order corrections for evolution over time 𝑡 can also be upper-bounded
by (see Lemma 4 in [43])

⃦⃦
⃦

∞∑︁

ℓ=𝜅

𝑡𝐻̄(ℓ)
⃦⃦
⃦ 6 𝑐𝜅[ (𝑡‖𝐻‖)𝜅+1 ], 𝑐𝜅 = 𝑂(1). (3.10)

Ideally, one would like to achieve 𝐻̄𝑇𝑐 = 𝐻̃𝑇 , so that equality would hold in Eq. (3.5).
In what follows, we shall primarily focus on achieving first-order simulation instead, by
engineering the control propagator 𝑈𝑐(𝑡) in such a way that 𝐻̄(0)𝑇𝑐 = 𝐻̃𝑇 , so that to first
order

𝑈(𝑡𝑀 ) = 𝑒−𝑖𝐻̄𝑀𝑇𝑐 ≈ 𝑒−𝑖𝐻̄(0)𝑀𝑇𝑐 = 𝑒−𝑖𝐻̃𝑀𝑇 = 𝑈̃(𝑡𝑀 ), (3.11)
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or more precisely, using Eq. (3.10) with 𝜅 = 1,

𝑈(𝑡𝑀 ) = 𝑒−𝑖𝐻̄
(0)𝑀𝑇𝑐 +𝑂[(𝑀𝑇𝑐‖𝐻‖)2] = 𝑈̃(𝑡𝑀 ) +𝑂[(𝑀𝑇𝑐‖𝐻‖)2].

Thus if one desires to evolve under 𝐻̃ for a time 𝑡𝑀 then they can, to first order, instead
evolve under 𝐻 +𝐻𝑐(𝑡) for a time 𝑡𝑀 .

In general, the accuracy of the approximation 𝐻̄ ≈ 𝐻̄(0) improves as the “fast control
limit”, 𝑇𝑐 → 0, is approached. Physically, this corresponds to requiring that the shortest
control time scale (e.g., pulse separation) involved in the control sequence be sufficiently
small relative to the shortest correlation time of the dynamics induced by 𝐻 [40,44]. While
the problem of constructing arbitrary high-order Hamiltonian simulation schemes is of sepa-
rate interest, second-order simulation can be readily achieved, in principle, by ensuring that
𝑈𝑐(𝑡) is time-symmetric, namely, 𝑈𝑐(𝑡) = 𝑈𝑐(𝑇𝑐− 𝑡) for 𝑡 ∈ [0, 𝑇𝑐]. Since all odd-order Mag-
nus corrections vanish in this case [40], it follows (by again using Eq. (3.10), with 𝜅 = 2),
that 𝐻̄𝑇𝑐 = 𝐻̃𝑇 +𝑂[(‖𝐻‖𝑇𝑐)3], as desired.

3.2.2 Hamiltonian simulation with bang-bang controls

If instantaneous control pulses are realizable, BB Hamiltonian simulation provides the sim-
plest control setting for achieving the intended objective in Eq. (3.5). Two main assumptions
are involved: (i) First, we must be able to express the target Hamiltonian 𝐻̃ as

𝐻̃ =
𝑁∑︁

𝑗=1

𝑤𝑗𝑈
†
𝑗𝐻𝑈𝑗 , (3.12)

where {𝑈𝑗} are unitary operators on 𝒮 and the weights {𝑤𝑗} are non-negative real numbers
(not all zero); (ii) Second, we assume the available control resources in Eq. (3.3) include
a discrete set of instantaneous pulses on 𝒮, allowing the control propagator 𝑈𝑐(𝑡) to be a
piecewise-constant function over [0, 𝑇𝑐], so that the time-average in Eq. (3.9) can be expressed
as a convex, positive-weighted sum (as will be shown below). Equation (3.12) may be
interpreted as a definition for the target Hamiltonian 𝐻̃ to be considered reachable from 𝐻
given BB unitary control on 𝒮 alone. Such reachable Hamiltonians must then be at least as
“disordered” as the input one in the sense of majorization [17,28,29].

Equation (3.12) leads naturally to the following BB simulation scheme. Given simulation
weights {𝑤𝑗}, define the following simulation intervals

𝜏𝑗 = 𝑤𝑗𝑇 , (3.13)

and timing pattern

𝑡0 = 0 , 𝑡𝑗 =

𝑗∑︁

𝑘=1

𝜏𝑘. (3.14)

We construct the piecewise-constant control propagator (for the basic simulation block to
be repeated) as

𝑈𝑐(𝑡𝑗−1 + 𝜃) = 𝑈𝑗 , 𝜃 ∈ [0, 𝜏𝑗 ], 𝑗 = 1, . . . , 𝑁 . (3.15)
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The length of the control cycle is evidently

𝑇𝑐 ≡ 𝑡𝑁 =
𝑁∑︁

𝑗=1

𝑤𝑗𝑇 = 𝑊𝑇 (3.16)

where

𝑊 =
𝑁∑︁

𝑗=1

𝑤𝑗 > 0 .

By using Eq. (3.9), it is immediate to verify that

𝐻̄(0) =
1

𝑇𝑐

∫︁ 𝑇𝑐

𝑡=0
𝑈𝑐(𝑡)

†𝐻𝑈𝑐(𝑡)𝑑𝑡 =
1

𝑇𝑐

𝑁∑︁

𝑗=1

𝜏𝑗𝑈
†
𝑗𝐻𝑈𝑗 =

𝑇

𝑇𝑐
𝐻̃ ,

implementing the desired evolution, Eq. (3.11), with time overhead 𝑠 = 𝑊 , provided that
the convergence conditions for first-order simulation under 𝐻 are obeyed. Since in practice,
even in the absence of any control errors, technological limitations always constrain the cycle
duration to a finite minimum value 𝑇𝑐 > 0 [44], such convergence conditions upper-bound
the maximum simulated time 𝑡𝑀 up to which evolution under 𝐻̃ may be reliably simulated
using the physical Hamiltonian 𝐻.

In analogy with BB DD schemes, realizing the prescription of Eq. (3.15) requires one
to discontinuously change the control propagator 𝑈𝑐(𝑡) from 𝑈𝑗 to 𝑈𝑗+1 = (𝑈𝑗+1𝑈

†
𝑗 )𝑈𝑗 ,

via an instantaneous BB pulse 𝑈𝑗+1𝑈
†
𝑗 at the 𝑗th endpoint 𝑡𝑗 . As a result, despite its

conceptual simplicity, BB simulation is unrealistic whenever large control amplitudes are
not an option, and so the evolution induced by 𝐻 during the application of a control pulse
must be considered from the outset. This demands redesigning the basic control block in
such a way that the actions of 𝐻 and 𝐻𝑐(𝑡) are simultaneously taken into account.

3.3 Hamiltonian simulation with bounded controls

3.3.1 Eulerian simulation of the trivial Hamiltonian

The key to overcome the disadvantages of BB Hamiltonian simulation is to ensure that the
control propagator 𝑈𝑐(𝑡) varies continuously in time during each control cycle. We achieve
this goal by invoking Eulerian control design [34]. We begin by revisiting how, for the
special case of a target identity evolution (that is, 𝐻̃ = 0, corresponding to a no-op gate,
𝑈̃(𝑡𝑀 ) = 1), EDD can be naturally interpreted as a bounded-strength simulation scheme.
In the next section, we can then take up the task of non-trivial target Hamiltonians.

In the Eulerian approach, the available control resources include a specially-chosen dis-
crete set of unitary operations on 𝒮, say, {𝑈𝛾}, 𝛾 = 1, . . . , 𝐿, which are realized over a
finite time interval ∆ through application of some bounded-strength control Hamiltonians
{ℎ𝛾(𝑡)}, 𝛾 = 1, . . . , 𝐿, with |ℎ𝛾(𝑡)| 6 ℎmax <∞. That is,

𝑈𝛾 = 𝑢𝛾(∆) , 𝑢𝛾(𝛿) = 𝒯 exp
{︁
− 𝑖
∫︁ 𝛿

0
ℎ𝛾(𝜏)𝑑𝜏

}︁
. (3.17)

Note that for any given {𝑈𝛾}, the choice of the control Hamiltonians ℎ𝛾(𝑡) is not unique,
which allows for implementation flexibility.
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The unitaries {𝑈𝛾} are chosen to be the image of a generating set of a finite group under
a faithful, unitary, projective1 representation 𝜌 [34]. To elaborate, let 𝒢 = {𝑔} be a finite
group of order |𝒢| with a generating set Γ = {𝛾} of order |Γ| = 𝐿, so that each element in
𝒢 may be written as an ordered product of elements in Γ. The representation 𝜌 is a map
from 𝒢 into the set of unitaries on ℋ𝒮 ,

𝜌 : 𝑔 ↦→ 𝜌(𝑔) = 𝑈𝑔 , (3.18)

with image 𝐺 = {𝑈𝑔}. The unitaries 𝑈𝛾 in Eq. (3.17) are 𝜌(𝛾) for the generators, 𝛾 ∈ Γ.
To help specify the order of application of these unitaries in the protocol, we use a directed
graph as follows.

The Cayley graph 𝐶(𝒢,Γ) of 𝒢 relative to Γ is a directed graph whose vertices are labelled
by the group elements of 𝒢 and whose edges are “coloured” (labelled) by the generators. More
precisely, there is an arrow from vertex 𝑔 to another vertex 𝑔′ by a directed edge labelled
by generator 𝛾 if and only if 𝑔′ = 𝛾𝑔. The number of edges in 𝐶(𝒢,Γ) is thus equal to
𝑁 = |Γ||𝒢|.

An Eulerian cycle is a traversal of a directed graph that uses each edge exactly once
and starts and ends on the same vertex. Because a Cayley graph is regular, it always has
an Eulerian cycle whose length is necessarily 𝑁 [45, 46]. Without loss of generality, we
assume that this cycle starts (and ends) at the identity element of 𝒢. The Eulerian cycle
can therefore be described by the ordered list of the edges (generators) it traverses, which
we denote by

𝒞 = (𝛾1, . . . , 𝛾𝑁 ).

Note that the ordered list of vertices (group elements) visited is then (𝑔0, . . . , 𝑔𝑁 ) where
𝑔𝑗 = 𝛾𝑗𝑔𝑗−1 for 𝑗 = 1, . . . , 𝑁 and 𝑔𝑁 = 𝑔0 is the identity element.

Once a control Hamiltonian ℎ𝛾(𝜏) for implementing each generator 𝛾 as in Eq. (3.17)
is chosen, an EDD protocol (which is for simulating 𝐻̃ = 0) is constructed by assigning a
cycle time as 𝑇𝑐 = 𝑁∆ and by applying the control Hamiltonians ℎ𝛾(𝑡) sequentially in time,
following the order determined by the Eulerian cycle 𝒞. That is,

𝑈𝑐(0) = 1,

𝑈𝑐
(︀
𝑗∆ + 𝛿

)︀
= 𝑢𝛾𝑗+1(𝛿)𝑈𝑐 (𝑗∆) for j = 0, . . . ,N− 1, 𝛿 ∈ [0,∆] , (3.19)

so that Eq. (3.17) implies

𝑈𝑐(𝑗∆) = 𝑈𝛾𝑗𝑈𝑐 ((𝑗 − 1)∆) , 𝑗 = 1, . . . , 𝑁 , (3.20)

where 𝑈𝛾𝑗 is the image of the generator labelling the 𝑗th edge in 𝒞. As established in [34], and
as will be made clear in the next section, the lowest-order average Hamiltonian associated
to the above EDD cycle has the form

𝐻̄(0) = Π𝒢 [𝐹Γ(𝐻)],

1A projective representation need only be a homomorphism up to phase, i.e., it obeys 𝑈𝑔𝑔′ ∝ 𝑈𝑔𝑈𝑔′ for
𝑔, 𝑔′ ∈ 𝒢, with proportionality rather than equality.
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where for any operator 𝐴 acting on ℋ𝒮 , the map

Π𝒢(𝐴) =
1

|𝒢|
∑︁

𝑔∈𝒢
𝑈 †
𝑔𝐴𝑈𝑔 (3.21)

projects onto the centralizer of 𝒢 (i.e., Π𝒢(𝐴) commutes with all 𝑈𝑔 ∈ 𝐺), and

𝐹Γ(𝐴) =
1

|Γ|
∑︁

𝛾∈Γ

1

∆

∫︁ Δ

0
𝑢𝛾(𝜏)†𝐴𝑢𝛾(𝜏)𝑑𝜏 (3.22)

implements an average of 𝐴 over both the control interval and the group generators. Ac-
cordingly, bounded-strength simulation of 𝐻̃ = 0 is achieved provided that the following
DD condition is obeyed:

Π𝒢
[︀
𝐹Γ(𝐻)

]︀
= 0 . (3.23)

Note that, because 𝐻 is traceless, 𝐹Γ is trace-preserving, and Π𝒢(𝐴) commutes with all
𝑈𝑔 ∈ 𝐺 for any 𝐴, Eq. (3.23) is automatically ensured if the group representation acts
irreducibly on ℋ𝒮 , since then by Schur’s lemma, Π𝒢

[︀
𝐹Γ(𝐻)

]︀
∝ Tr(𝐹Γ(𝐻)) = Tr(𝐻) = 0.

In general, however, we do not assume that 𝜌 is irreducible.

3.3.2 Eulerian simulation protocols beyond no-op

We now show how the Eulerian cycle method can be extended to bounded-strength simu-
lation of a non-trivial class of target Hamiltonians (i.e. for 𝐻̃ ̸= 0). We assume that 𝐻̃ is
reachable from 𝐻 in the sense that it may be expressed as a convex mixture using the group
representatives 𝑈𝑔:

𝐻̃ =
∑︁

𝑔∈𝒢
𝑤𝑔𝑈

†
𝑔𝐻𝑈𝑔 , 𝑤𝑔 > 0, 𝑊 =

∑︁

𝑔∈𝒢
𝑤𝑔 > 0 ; (3.24)

this is similar to the condition in Eq. (3.12) for BB simulation, but with unitaries delineated
by a representation 𝜌 in Eq. (3.18). Similar to the EDD case of Sec. 3.3.1, we construct
the desired protocol starting from an Eulerian cycle 𝒞 = (𝛾1, . . . , 𝛾𝑁 ) on 𝐶(𝒢,Γ), but now
incorporating the weights that appear in Eq. (3.24).

The idea behind Eulerian simulation is to append, to each of the 𝑁 control slots that
define an EDD (𝐻̃ = 0) scheme, a variable-length free-evolution (or “coasting”) period
implementing a zero-Hamiltonian control, in such a way that the net simulated Hamiltonian
is modified from 𝐻̃ = 0 to 𝐻̃ ̸= 0 as given in Eq. (3.24). A pictorial representation of the
basic control block is given in Fig. 3-1. Each generator 𝑈𝛾 is implemented as in Eq. (3.17),
with ∆ the time duration required to implement each 𝛾, i.e. to smoothly change (or “ramp-
up”) the control propagator 𝑈𝑐(𝑡) from any 𝑈𝑔 to 𝑈𝛾𝑔 ∼= 𝑈𝛾𝑈𝑔 along the cycle, similar
to Eq. (3.19) of EDD. We emphasize that all such “ramping-up” control intervals have
the same length ∆. By contrast, each “coasting” interval is designed to keep the control
propagator constant at 𝑈𝑔 for a duration determined by the corresponding weight 𝑤𝑔, similar
to Eq. (3.15) of BB simulation. Since the control is switched off during coasting, continuity
of the control Hamiltonian 𝐻𝑐(𝑡) may be ensured, if desired, by additionally requiring that

ℎ𝛾(0) = ℎ𝛾(∆) = 0 , 𝛾 = 1, . . . , 𝐿. (3.25)
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Figure 3-1: Schematics of an Eulerian simulation protocol. The basic control block consists
of 𝑁 time intervals, each involving a “ramping-up” subinterval of fixed duration ∆, during
which 𝐻𝑐(𝑡) ̸= 0, followed by a “coasting” (free evolution) period of variable duration Θ𝑘,
as defined in Eq. (3.27), during which no control is applied. During the 𝑗th ramping-
up subinterval we apply ℎ𝛾𝑗 , i.e., the control Hamiltonian that realizes the generator 𝛾𝑗 ,
smoothly changing the control propagator from 𝑈𝑔𝑗−1 to 𝑈𝑔𝑗 . In this way, the control
protocol corresponding to Eqs. (3.29)-(3.30) is implemented. By construction, a standard
EDD cycle with 𝐻̃ = 0 (as in Sec. 3.3.1) is recovered by letting Θ𝑘 → 0 for all 𝑘, while in
the limit ∆→ 0 standard BB simulation of non-zero 𝐻̃ (as in Sec. 3.2.2) is implemented.

An Eulerian simulation protocol may be specified as follows. As before, let the 𝑗th time
interval be denoted as [𝑡𝑗−1, 𝑡𝑗 ], 𝑗 = 1, . . . , 𝑁 , with 𝑡0 = 0. Part of this interval will be the
∆-long ramping-up stage, the other part will be the coasting stage whose length we discuss
now. For 𝑔 ∈ 𝒢, let

𝜏𝑔 = 𝑤𝑔𝑇 , (3.26)

similar to Eq. (3.13) of the BB case. Following the order of the Eulerian cycle 𝒞 =
(𝛾1, . . . , 𝛾𝑁 ), we assign the duration of the 𝑗th coasting period as

Θ𝑗 =
𝜏𝑔𝑗
|Γ| , (3.27)

where 𝑔𝑗 is the 𝑗th vertex visited in the cycle, satisfying 𝑔𝑗 = 𝛾𝑗𝑔𝑗−1. This results in the
timing pattern

𝑡𝑗 =

𝑗∑︁

𝑘=1

(∆ + Θ𝑘) = 𝑗∆ +
1

|Γ|

𝑗∑︁

𝑘=1

𝜏𝑔𝑘 , (3.28)

and, using Eqs. (3.26) and (3.24) and that each 𝑔 ∈ 𝒢 appears precisely |Γ| times in the
cycle,

𝑇𝑐 ≡ 𝑡𝑁 = 𝑁∆ +𝑊𝑇 ,

which can be compared to the BB timing pattern in Eqs. (3.14) and (3.16).
Over the interval from 𝑡𝑗−1 to 𝑡𝑗 = 𝑡𝑗−1 + ∆ + Θ𝑗 , the Eulerian simulation control

Hamiltonian is

𝐻𝑐(𝑡𝑗−1 + 𝛿) = ℎ𝛾𝑗 (𝛿) for 𝛿 ∈ [0,∆]

𝐻𝑐(𝑡𝑗−1 + ∆ + 𝜃) = 0 for 𝜃 ∈ [0,Θ𝑗 ].

The resulting control propagator during the ramping-up and coasting subintervals is there-
fore

𝑈𝑐
(︀
𝑡𝑗−1 + 𝛿

)︀
= 𝑢𝛾𝑗 (𝛿)𝑈𝑔𝑗−1 for 𝛿 ∈ [0,∆] , (3.29)

𝑈𝑐
(︀
𝑡𝑗−1 + ∆ + 𝜃

)︀
= 𝑈𝑔𝑗 for 𝜃 ∈ [0,Θj] . (3.30)
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As Eq. (3.28) for the cycle times makes clear, the resulting protocol may be equivalently
interpreted in two ways: starting from an EDD cycle, corresponding to 𝑇𝑐 = 𝑁∆ and 𝐻̃ = 0,
we introduce the coasting periods to allow for non-trivial simulated dynamics to emerge; or,
starting from a BB simulation scheme for 𝐻̃, having cycle time 𝑇𝑐 = 𝑊𝑇 , we introduce the
ramping-up periods to allow for control Hamiltonians to be smoothly switched over time ∆.
Either way, bounded-strength protocols imply a time-overhead 𝑁∆ relative to the BB case,
recovering the BB limit as ∆→ 0 as expected.

The resulting first-order Hamiltonian 𝐻̄(0) under Eulerian simulation is derived by evalu-
ating the time-average in Eq. (3.9) with the control propagator given by Eqs. (3.29)-(3.30).
We obtain

𝐻̄(0) =
1

𝑇𝑐

∫︁ 𝑇𝑐

𝑡=0
𝑈𝑐(𝑡)

†𝐻𝑈𝑐(𝑡)𝑑𝑡

=
1

𝑇𝑐

𝑁∑︁

𝑗=1

[︂ ∫︁ Δ

𝛿=0
𝑈𝑐(𝑡𝑗−1 + 𝛿)†𝐻𝑈𝑐(𝑡𝑗−1 + 𝛿)𝑑𝛿 (3.31)

+

∫︁ Θ𝑗

𝜃=0
𝑈𝑐(𝑡𝑗−1 + ∆ + 𝜃)†𝐻𝑈𝑐(𝑡𝑗−1 + ∆ + 𝜃)𝑑𝜃

]︂

=
1

𝑇𝑐

𝑁∑︁

𝑗=1

[︂ ∫︁ Δ

𝛿=0
𝑈 †
𝑔𝑗−1

𝑢𝛾𝑗 (𝛿)
†𝐻𝑢𝛾𝑗 (𝛿)𝑈𝑔𝑗−1𝑑𝛿 +

∫︁ Θ𝑗

𝜃=0
𝑈 †
𝑔𝑗𝐻𝑈𝑔𝑗𝑑𝜃

]︂
(3.32)

=
1

𝑇𝑐

∑︁

𝑔∈𝒢

[︂
𝑈 †
𝑔

(︂∑︁

𝛾∈Γ

∫︁ Δ

𝛿=0
𝑢𝛾(𝛿)†𝐻𝑢𝛾(𝛿)𝑑𝛿

)︂
𝑈𝑔 + |Γ| 𝜏𝑔|Γ|𝑈

†
𝑔𝐻𝑈𝑔

]︂
, (3.33)

=
|𝒢||Γ|∆
𝑇𝑐

Π𝒢
(︀
𝐹Γ(𝐻)

)︀
+
𝑇

𝑇𝑐

∑︁

𝑔∈𝒢
𝑤𝑔𝑈

†
𝑔𝐻𝑈𝑔 , (3.34)

where Π𝐺 and 𝐹Γ are defined in Eqs. (3.21) and (3.22). In this derivation, Eqs. (3.31) and
(3.32) follow directly from the piecewise definition of 𝑈𝑐(𝑡). The next equality, Eq. (3.33),
follows from two basic properties of Eulerian cycles: firstly, in traversing the Cayley graph,
each group element 𝑔 is left exactly once by a 𝛾-labelled edge for each generator 𝛾 ∈ Γ;
secondly, and consequently, the list {𝑔1, 𝑔2, . . . , 𝑔𝑁} of the vertices that are being visited
contains each element 𝑔 ∈ 𝒢 precisely |Γ| times. Thus, provided that the DD condition of
Eq. (3.23), namely Π𝒢

(︀
𝐹Γ(𝐻)

)︀
= 0, is obeyed, and recalling Eq. (3.24), we finally obtain

𝐻̄(0) =
𝑁∆

𝑇𝑐
Π𝒢
(︀
𝐹Γ(𝐻)

)︀
+
𝑇

𝑇𝑐

∑︁

𝑔∈𝒢
𝑤𝑔𝑈

†
𝑔𝐻𝑈𝑔 =

𝑇

𝑇𝑐
𝐻̃ , (3.35)

which, as long as convergence holds, indeed achieves the intended first-order simulation goal,
Eq. (3.11).

As noted earlier, we can improve the the simulation accuracy by symmetrizing 𝑈𝑐(𝑡)
in time. In analogy to symmetrized EDD protocols [12], this can be easily accomplished
by running the protocol and then suitably running it again in reverse. Specifically, let the
duration of the coasting interval be changed as Θ𝑗 → Θ𝑗/2. Run the protocol as described
above until time 𝑡 = 𝑁∆ + 1

2𝑊𝑇 , the 1
2 resulting from the modified value of Θ𝑗 . Then,
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from time 𝑡 = 𝑁∆ + 1
2𝑊𝑇 until time 𝑡 = 𝑇𝑐 = 2𝑁∆ +𝑊𝑇 , modify Eqs. (3.29)-(3.30) to be

𝑈𝑐
[︀
𝑇𝑐 − (𝑡𝑗−1 + ∆) + 𝛿

]︀
= 𝑢𝛾𝑗 (∆− 𝛿)𝑈𝑔𝑗−1 for 𝛿 ∈ [0,∆] ,

𝑈𝑐
[︀
𝑇𝑐 − (𝑡𝑗−1 + ∆ + Θ𝑗) + 𝜃

]︀
= 𝑈𝑔𝑗 for 𝜃 ∈ [0,Θj] ,

for 𝑗 = 𝑁, . . . , 1. Provided that one is able to implement 𝑢𝛾𝑗 (∆− 𝛿), we again obtain

𝐻̄(0) = 2
𝑁∆

𝑇𝑐
Π𝒢
[︀
𝐹Γ(𝐻)

]︀
+
𝑇

𝑇𝑐

∑︁

𝑔∈𝒢
𝑤𝑔𝑈

†
𝑔𝐻𝑈𝑔 ,

while satisfying 𝑈𝑐(𝑡) = 𝑈𝑐(𝑇𝑐 − 𝑡) for 𝑡 ∈ [0, 𝑇𝑐], and hence ensuring that 𝐻̄(1) = 0.

3.3.3 Simple two-qubit example

By way of concrete illustration, it is useful to consider an explicit first-order Eulerian simu-
lation scheme in the simplest instance of 𝑛 = 2 qubits. Specifically, assume that the physical
Hamiltonian is an isotropic Heisenberg coupling of the form

𝐻 = 𝐻iso ≡ 𝐽(𝑋 ⊗𝑋 + 𝑌 ⊗ 𝑌 + 𝑍 ⊗ 𝑍) = 𝐽(𝑋1𝑋2 + 𝑌1𝑌2 + 𝑍1𝑍2),

where 𝐽 has units of energy and the third equality defines an equivalent compact notation.
We are interested in a class of target XYZ Hamiltonians of the form

𝐻̃ = 𝐻XYZ ≡ 𝐽𝑥𝑋1𝑋2 + 𝐽𝑦𝑌1𝑌2 + 𝐽𝑧𝑍1𝑍2, 𝐽𝑥, 𝐽𝑦, 𝐽𝑧 ∈ R. (3.36)

For instance, 𝐽𝑥 = 𝐽𝑦 but 𝐽𝑧 = 0 corresponds to an isotropic XX model, whereas if 𝐽𝑥 =
𝐽𝑦 ̸= 𝐽𝑧 ̸= 0, an XXZ interaction is obtained, the special value 𝐽𝑧 = −2𝐽𝑥 corresponding
to the important case of a dipolar Hamiltonian. Our construction of a simulation protocol
starts from observing that Hamiltonians in Eq. (3.36) are reachable from 𝐻, in the sense of
Eq. (3.24), even limited to just single-qubit control.

Specifically, let 𝒢 = Z2 × Z2 = Z2
2, and let the representation 𝜌 map (𝑛,𝑚) ∈ 𝒢 to

𝑋𝑛𝑍𝑚 ⊗ 1. That is, 𝒢 is mapped (up to phase) to the set of unitaries

{𝑈𝑔} = 𝐺1 ≡ {1⊗1, 𝑋 ⊗ 1, 𝑌 ⊗ 1, 𝑍 ⊗ 1} = {1, 𝑋1, 𝑌1, 𝑍1}. (3.37)

Choosing the generators of 𝒢 to be 𝛾𝑥,1 = (1, 0) ↦→ 𝑋1 and 𝛾𝑧,1 = (0, 1) ↦→ 𝑍1, we assume
that we have access to the control Hamiltonians

ℎ𝑥(𝑡) = 𝑓𝑥(𝑡)𝑋1 and ℎ𝑧(𝑡) = 𝑓𝑧(𝑡)𝑍1 ,

where the control inputs 𝑓𝑥(𝑡) and 𝑓𝑧(𝑡) satisfy 𝑓𝑢(0) = 0 = 𝑓𝑢(∆) and
∫︀ Δ
0 𝑓𝑢(𝜏)𝑑𝜏 = 𝜋/2,

for 𝑢 = 𝑥, 𝑧. Recalling Eq. (3.17), this yields the control propagators

𝑢𝑥(𝛿) = cos

[︂ ∫︁ 𝛿

0
𝑓𝑥(𝜏)𝑑𝜏

]︂
1−𝑖 sin

[︂ ∫︁ 𝛿

0
𝑓𝑥(𝜏)𝑑𝜏

]︂
𝑋1 ,

𝑢𝑧(𝛿) = cos

[︂ ∫︁ 𝛿

0
𝑓𝑧(𝜏)𝑑𝜏

]︂
1−𝑖 sin

[︂ ∫︁ 𝛿

0
𝑓𝑧(𝜏)𝑑𝜏

]︂
𝑍1,

with 𝑢𝑥(∆) = 𝑋1 and 𝑢𝑧(∆) = 𝑍1 (up to phase), as desired.
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Note that for any single-qubit Hamiltonians 𝐴 and 𝐵, averaging over the unitary group
in Eq. (3.37) results in the projection superoperator

Π𝒢(𝐴⊗𝐵) =
1

4

∑︁

𝑈∈{1,𝑋,𝑌,𝑍}
𝑈 †𝐴𝑈 ⊗𝐵 =

1

2
Tr(𝐴)1⊗𝐵. (3.38)

In general, the map 𝐹Γ is trace-preserving and, in this case, it acts non-trivially only on the
first qubit. Thus, 𝐹Γ is trace-preserving on the first qubit. Since each term in 𝐻 is traceless
in the first qubit, the decoupling condition Π𝒢 [𝐹Γ(𝐻)] = 0 follows directly from Eq. (3.38),
even though the relevant representation 𝜌 is, manifestly, reducible.

Having satisfied our main requirements, one can derive from Eq. (3.24) that the reacha-
bility of XYZ Hamiltonians in Eq. (3.36) is equivalent to the existence of a solution to the
set of conditions

𝐽(𝑤1 + 𝑤𝑋1 − 𝑤𝑌1 − 𝑤𝑍1) = 𝐽𝑥 ,

𝐽(𝑤1 − 𝑤𝑋1 + 𝑤𝑌1 − 𝑤𝑍1) = 𝐽𝑦 , (3.39)

𝐽(𝑤1 − 𝑤𝑋1 − 𝑤𝑌1 + 𝑤𝑍1) = 𝐽𝑧 ,

for non-negative weights 𝑤𝑔. While infinitely many choices exist in general, one likely wishes
for a solution that minimizes the total weight 𝑊 =

∑︀
𝑔 𝑤𝑔, keeping the simulation time

overhead to a minimum. For instance, it is easy to verify that a dipolar Hamiltonian of the
form

𝐻̃ = 𝐻dip ≡ −𝐽 (𝑋1𝑋2 + 𝑌1𝑌2 − 2𝑍1𝑍2) (3.40)

may be simulated with minimal time overhead by choosing weights

𝑤1 =
1

2
, 𝑤𝑋1 = 0 = 𝑤𝑌1 , 𝑤𝑍1 =

3

2
, (3.41)

i.e.
𝐻̃ = 1

2 1𝐻 1+3
2𝑍1𝐻𝑍1.

The Cayley graph associated with the resulting Eulerian simulation protocol is depicted in
Fig. 3-2, with the explicit timing structure of the control block as in Fig. 3-1 and 𝑁 =
2× 4 = 8 control segments per block. It is worth observing that although the weights 𝑤𝑋1

and 𝑤𝑌1 are zero in this particular case, all group members of 𝒢 are nonetheless required,
and the unitaries 𝑋1 and 𝑌1 still appear in the simulation scheme (during the ramping-up
subintervals, as evident from Eq. (3.29)). This is crucial to guarantee that the unwanted 𝐹Γ

term is projected out.

3.3.4 Eulerian simulation while decoupling from an environment

The ability to implement a desired Hamiltonian on the target system 𝒮, while switching
off (at least to leading order) the coupling to an uncontrollable environment ℬ, is highly
relevant to realistic QIP applications. That is, with reference to Eq. (3.1), the objective is
now to simultaneously achieve 𝐻̃𝒮 = 𝐻target and 𝑆𝛼 = 0, using a unitary control operation
𝑈𝑐(𝑡) acting on 𝒮 alone. Because the first-order Magnus term 𝐻̄(0) is additive [recall Eq.
(3.9)], it suffices to treat each summand of 𝐻 individually, allowing us to write the average
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Figure 3-2: Cayley graph for the Eulerian simulation of the dipolar Hamiltonian in
Heisenberg-coupled qubits. Vertices are labelled by group elements; edges are labelled by
group generators. Numbers in parentheses next to vertices indicate the weights 𝑤𝑔 of the
corresponding group elements 𝑔 in Eq. (3.41), which is proportional to the time 𝜏𝑔 = 𝑤𝑔𝑇
spent at vertex 𝑔 during the coasting subinterval; see also Fig. 3-1.

Hamiltonian 𝐻̄(0) in the form

𝐻̄(0) = 𝐻̄𝒮 ⊗ 1ℬ +
∑︁

𝛼

𝑆𝛼 ⊗𝐵𝛼 + 1𝒮 ⊗𝐻ℬ ,

where for a generic operator 𝐴 on ℋ𝒮 we have denoted

𝐴 =
1

𝑇𝑐

∫︁ 𝑇𝑐

0
𝑈 †
𝑐 (𝜏)𝐴𝑈𝑐(𝜏) 𝑑𝜏 .

We can then apply the analysis of Sec. 3.3.2 to the internal system Hamiltonian (𝐻̄𝒮) and
each error generator (𝑆𝛼) separately to obtain, in both cases, a simulated operator of the
form given in Eq. (3.34):

𝐴 =
𝑁∆

𝑇𝑐
Π𝒢
[︀
𝐹Γ(𝐴)

]︀
+
𝑇

𝑇𝑐

∑︁

𝑔∈𝒢
𝑤𝑔𝑈

†
𝑔𝐴𝑈𝑔 .

Since the task is to decouple 𝒮 from ℬ while maintaining the non-trivial evolution due
to 𝐻̃𝒮 = 𝐻target, the reachability condition of Eq. (3.24) must now ensure that

𝐻̃𝒮 =
∑︁

𝑔∈𝒢
𝑤𝑔𝑈

†
𝑔𝐻𝒮𝑈𝑔 , (3.42)

0 =
∑︁

𝑔∈𝒢
𝑤𝑔𝑈

†
𝑔𝑆𝛼𝑈𝑔 , ∀𝛼 . (3.43)

Similarly, it is necessary to extend the DD assumption of Eq. (3.23) to become

Π𝒢
[︀
𝐹Γ(𝐻𝒮)

]︀
= 0 , (3.44)

Π𝒢
[︀
𝐹Γ(𝑆𝛼)

]︀
= 0 , ∀𝛼 , (3.45)
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so that, similar to Eq. (3.35), 𝐴 = (𝑇/𝑇𝑐)𝐴 holds for each of the summands in𝐻. Altogether,
we recover

𝐻̄(0) =
𝑇

𝑇𝑐
𝐻̃𝒮 ⊗ 1ℬ +1𝒮 ⊗𝐻ℬ,

simulating 𝐻̃𝒮 while decoupling from the environment.
It is interesting in this context to highlight some similarities and differences to dynami-

cally corrected gates (DCGs) [35], which also use Eulerian control as their starting point and
are specifically designed to achieve a desired unitary evolution on the target system while
simultaneously removing decoherence to leading order [35, 36, 38] or, in principle, arbitrar-
ily high order [37]. By construction, the open-system simulation procedure just described
does provide a first-order DCG implementation for the target gate 𝑄 = exp(−𝑖𝐻̃𝒮𝑇 ); in
particular, the requirement that Eqs. (3.42)-(3.43) be obeyed together (for the same weights
𝑤𝑔) is effectively equivalent to evading the “no-go theorem” for black-box DCG construc-
tions established in [36], with the coasting intervals and the resulting “augmented” Cayley
graph playing a role similar in spirit to a (first-order) “balance-pair” implementation. De-
spite these formal similarities, the key difference between the two approaches is that DCGs
focus directly on synthesizing a particular unitary gate, as opposed to implementing some
specified Hamiltonian. As one consequence, the goal of DCGs is generally to perform a
desired unitary final-time propagator independently of the intervening dynamics, whereas
in Hamiltonian simulation, one may be interested in the evolution at intermediate times as
well (even if only strobscopically, at times 𝑀𝑇 for 𝑀 ∈ N). As also discussed in [28, 29],
gate synthesis is a weaker simulation notion in general, since inequivalent control protocols
may lead to the same end-time propagator. Furthermore, while the internal system Hamil-
tonian, 𝐻𝒮 , is a crucial input in a Hamiltonian simulation problem, it is effectively treated
as an unwanted error contribution in analytical DCG constructions, in which case complete
controllability over the target system must be supplied by the controls alone. Although
in more general (optimal-control inspired) DCG constructions [38], limited external control
is assumed and 𝐻𝒮 may become essential for universality to be maintained, emphasis re-
mains, as noted above, on end-time synthesis of a target unitary propagator. Finally, a
main intended application of DCGs is realizing low-error single- and two-qubit gates for use
within fault-tolerant quantum computing architectures, as opposed to robust Hamiltonian
engineering for many-body quantum simulators which is our focus here.

3.3.5 Eulerian simulation protocol requirements

Before presenting explicit applications, we summarize and critically assess the various re-
quirements that should be obeyed for Eulerian simulation to achieve the intended control
objective of Eq. (3.5) in a closed- or open-system setting:

1. Time independence. Both the internal Hamiltonian 𝐻 and the target Hamiltonian 𝐻̃
are taken to be time-independent (and, without loss of generality, traceless).

2. Reachability. The target Hamiltonian 𝐻̃ must be reachable from 𝐻, i.e., there must
be a control group 𝒢, with a faithful, unitary projective representation mapping 𝑔 ↦→
𝜌(𝑔) = 𝑈𝑔, such that Eq. (3.24) holds. For dynamically-corrected Eulerian simulation
in the presence of an environment, this requires, as noted, that for the same weights
{𝑤𝑔}, the desired system Hamiltonian 𝐻̃𝒮 is reachable from 𝐻𝒮 while the trivial (zero)
Hamiltonian is reachable from each error generator 𝑆𝛼 separately, such that both Eqs.
(3.42)-(3.43) hold together.
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3. Bounded control. For each generator 𝛾 of the chosen control group 𝒢, we need access to
bounded control Hamiltonians ℎ𝛾(𝑡), such that application of ℎ𝛾(𝑡) over a time interval
of duration ∆ realizes the group representative 𝑈𝛾 = 𝜌(𝛾) = 𝑢𝛾(∆), additionally
subject (if desired) to the continuity condition of Eq. (3.25).

4. Decoupling conditions. Suitable Π𝒢
[︀
𝐹Γ(𝐻)

]︀
= 0 DD conditions, Eq. (3.23) in a closed

system or Eqs. (3.44)-(3.45) in the open-system error-corrected case, must be fulfilled,
in order that undesired contributions to the simulated Hamiltonians be averaged out
by symmetry to leading order.

5. Time-efficiency. If the choice of 𝒢 is not unique for given (𝐻, 𝐻̃), the smallest group
should be chosen in order to keep the number of intervals per cycle, 𝑁 = |𝒢||Γ|, to
a minimum. In particular, efficient Hamiltonian simulation requires that |𝒢| (hence
also |Γ|) scales (at most) polynomially with the number of subsystems 𝑛. If, for fixed
𝒢, the choice of the simulation weights {𝑤𝑔} is not unique, then the combination with
the smallest total weight 𝑊 should likely be chosen in order to minimize the time
overhead.

The key simplification that the time-independence Assumption (1) introduces into the
problem is that the periodicity of the control action is directly transferred to the toggling-
frame Hamiltonian 𝐻 ′(𝑡) of Eq. (3.6), allowing one to simply focus on single-cycle evolution.
Although this assumption is strictly not fundamental, general time-dependent Hamiltonians
may need to be dealt with on a case-by-case basis (see also [47–49]). A situation of special
practical relevance arises in this context for open systems exposed to classical noise, in
which case ℋℬ ≃ C and the system-bath interaction in Eq. (3.1) is effectively replaced by
a classical, time-dependent stochastic field. Similar to DD and DCG schemes, Eulerian
simulation protocols remain applicable as long as the noise process is stationary and is
exhibiting correlations over sufficiently long time scales [12, 50].

The reachability Assumption (2) is a prerequisite for Eulerian Hamiltonian simulation
schemes: to simulate a target Hamiltonian 𝐻̃ using this method, one must find a control
group that appropriately relates 𝐻̃ to 𝐻. Although BB Hamiltonian simulation need not
be group-based, most BB schemes follow this design principle too. Note that in the case
of open systems, Assumption (2) also places demands on the relationship between 𝑆𝛼 and
𝐻𝒮 ; in particular, note that for non-zero 𝐻̃𝒮 , Eqs. (3.42)-(3.43) cannot hold simultaneously
if 𝐻𝒮 is a linear combination of 𝑆𝛼.

Assumption (3), restricting the admissible control resources to physical Hamiltonians
with bounded amplitude (thus finite control durations, as opposed to instantaneous im-
plementation of arbitrary group unitaries as in the BB case) is a basic assumption of the
Eulerian control approach. As remarked, our premise is that the available Hamiltonian
control is limited, restricted to only the target system (if the latter is coupled to an en-
vironment), and typically non-universal on ℋ𝒮 ; in particular, we cannot directly express
𝐻̃ = 𝐻 + 𝐻𝑐 and apply 𝐻𝑐 = 𝐻̃ −𝐻, or else the problem would be trivial. In addition to
error-corrected Hamiltonian simulation in open quantum systems, scenarios of great practi-
cal interest may arise when the control Hamiltonians are subject to more restrictive locality
constraints than the system and target Hamiltonians are (e.g., two-body simulation with
only one-local controls, as in our examples in Secs. 3.3.3 and 3.4).

The required decoupling conditions in Assumption (4) are automatically obeyed if the
representation 𝜌 acts irreducibly on ℋ𝒮 . This follows from Schur’s lemma, together with
the fact that the map 𝐹Γ defined in Eq. (3.22) is trace-preserving, and both 𝐻𝒮 and 𝑆𝛼 can
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be taken to be traceless. While convenient, however, irreducibility is not a requirement, as
already demonstrated by the two-qubit example of Sec. 3.3.3. When the representation 𝜌
is reducible, care must be taken in order to ensure that Assumption (4) is still obeyed. It
should be stressed that this condition is independent of the target Hamiltonian 𝐻̃. Therefore,
if the choice (𝒢, 𝜌) works for one Eulerian simulation scheme (whether 𝜌 is irreducible or
not), then it can be used for Eulerian simulation with any target 𝐻̃ that belongs to the
reachable set from 𝐻, i.e. that can satisfy Eq. (3.24).

We close this discussion by noting that it is always possible to find, for any finite-
dimensional target system 𝒮, a control group 𝒢 for which both Assumptions (2) and (4) are
satisfied, by resorting to the concept of a transformer [30]. A transformer is a pair (𝒢, 𝜌),
where 𝒢 is a finite group and 𝜌 is a faithful, unitary, projective representation from 𝒢 into
the set of unitaries on ℋ𝒮 , such that, for any traceless Hermitian operators 𝐴 and 𝐵 on ℋ𝒮
with 𝐴 ̸= 0, there exist non-negative weights {𝑤𝑔} such that one may express

𝐵 =
∑︁

𝑔∈𝒢
𝑤𝑔𝑈

†
𝑔𝐴𝑈𝑔 , 𝑤𝑔 > 0.

We illustrate this general idea in the simplest case of a single qubit, ℋ = ℋ𝒮 = C2. Let
𝑋,𝑌, 𝑍 denote the Pauli matrices and 𝑅 the unitary matrix

𝑅 =
𝑖− 1

2

(︂
𝑖 𝑖
−1 1

)︂
, (3.46)

which corresponds to a rotation by an angle 4𝜋/3 about an axis 𝑛̂ = (1, 1, 1)/
√

3. Direct
calculation shows that 𝑅3 = 1 and that conjugation by 𝑅 cyclically shifts the Pauli-matrices,
i.e.,

𝑅†𝑋𝑅 = 𝑌,

𝑅†𝑌 𝑅 = 𝑍,

𝑅†𝑍𝑅 = 𝑋.

Consider now the group 𝒢 given by the presentation

𝒢 = ⟨𝑥, 𝑦, 𝑧, 𝑟 | 𝑥2 = 𝑦2 = 𝑧2 = 𝑟3 = 1, 𝑥𝑧 = 𝑦, 𝑟−1𝑥𝑟 = 𝑦, 𝑟−1𝑦𝑟 = 𝑧, 𝑟−1𝑧𝑟 = 𝑥⟩.

Using the defining relations of this group, its elements can always be written as 𝑥𝑎𝑧𝑏𝑟𝑐, where
𝑎, 𝑏 ∈ {0, 1} and 𝑐 ∈ {0, 1, 2}. The assignment for 𝜌 given by 𝑥 ↦→ 𝑋, 𝑦 ↦→ 𝑌, 𝑧 ↦→ 𝑍, 𝑟 ↦→ 𝑅
yields a faithful, unitary, irreducible projective representation. It is shown in [30] that the
pair (𝒢, 𝜌) defines a transformer, i.e., any 2× 2 traceless matrix 𝐵 may be reached from any
fixed 2 × 2 traceless, nonzero matrix 𝐴, for suitable non-negative weights 𝑤𝑔. In the case
of a transformer, Assumption (2) is satisfied by definition, and Assumption (4) is satisfied
because the representation 𝜌 will automatically be irreducible2.

Since general transformer groups tend to be large, purely transformer-based simulation
schemes are inefficient. In practice, given the system Hamiltonian 𝐻𝒮 , the challenge is to

2 If 𝜌 were reducible then there would exist a non-trivial invariant subspace ℋ𝑖𝑛𝑣 ⊂ ℋ𝒮 such that
𝜌(𝐺)ℋ𝑖𝑛𝑣 ⊆ ℋ𝑖𝑛𝑣. Consequently, any Hamiltonian of the form 𝐻 =

∑︀
𝑖𝑗 𝑎𝑖𝑗 |𝑣𝑖⟩⟨𝑣𝑗 |, where {|𝑣𝑖⟩} is an

orthonormal basis for ℋ𝑖𝑛𝑣, can only be transformed to other Hamiltonians of this same form, and therefore
(𝐺, 𝜌) could not have been a transformer.
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find a group 𝒢 that grants a reasonably efficient scheme while satisfying Assumptions (2)
and (4), subject to the ability to implement the required control operations. As we shall see
in Sec. 3.4.3, transformer-inspired ideas may still prove useful in devising simulation schemes
in the presence of additional symmetry conditions.

3.4 Illustrative applications

In this section, we analyse different paradigmatic Hamiltonian simulation tasks motivated
by QIP applications. While a number of other interesting examples and generalizations
may be envisioned (as also further discussed in the Conclusions), our goal here is to give
a concrete sense of the usefulness and versatility of our Eulerian simulation approach in
physically realistic control settings. In particular, we focus on achieving (first-order) non-
local Hamiltonian simulation using only bounded-strength local (single-qubit) control, in both
closed and open multi-qubit systems.

3.4.1 Eulerian simulation in closed Heisenberg-coupled qubit networks

We begin by noting that the analysis and simulation protocols described for two Heisenberg-
coupled qubits in Sec. 3.3.3 may be easily generalized to a chain of 𝑛 qubits (or spins) subject
to nearest-neighbour (NN) homogeneous Heisenberg couplings, i.e., described by a physical
Hamiltonian of the form

𝐻 = 𝐻
(NN)
iso ≡

𝑛−1∑︁

𝑖=1

𝐽 (𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1 + 𝑍𝑖𝑍𝑖+1) =

𝑛−1∑︁

𝑖=1

𝐽 𝜎⃗𝑖 · 𝜎⃗𝑖+1, (3.47)

where for later reference we have introduced the standard compact notation 𝜎⃗𝑖 = (𝑋𝑖, 𝑌𝑖, 𝑍𝑖)
and we assume for concreteness that 𝑛 is even. Similarly, we would like to simulate a nearest-
neighbour XYZ Hamiltonian,

𝐻̃ = 𝐻
(NN)
XYZ ≡

𝑛−1∑︁

𝑖=1

(𝐽𝑥𝑋𝑖𝑋𝑖+1 + 𝐽𝑦𝑌𝑖𝑌𝑖+1 + 𝐽𝑧𝑍𝑖𝑍𝑖+1) . (3.48)

In this case, we need only change the unitary representation 𝜌 on Z2 × Z2 to be defined by
the two generators

𝛾𝑥,odd = (1, 0) ↦→ 𝑋 ⊗ 1⊗𝑋 ⊗ 1⊗ · · · ⊗𝑋 ⊗ 1 = 𝑋1𝑋3 · · ·𝑋𝑛−1

𝛾𝑧,odd = (0, 1) ↦→ 𝑍 ⊗ 1⊗𝑍 ⊗ 1⊗ · · · ⊗ 𝑍 ⊗ 1 = 𝑍1𝑍3 · · ·𝑍𝑛−1,

resulting in the set of unitaries

{𝑈𝑔} = 𝐺odd ≡ {1, 𝑋1𝑋3 · · ·𝑋𝑛−1, 𝑌1𝑌3 · · ·𝑌𝑛−1, 𝑍1𝑍3 · · ·𝑍𝑛−1}. (3.49)

Physically, the required generators 𝛾𝑥,odd and 𝛾𝑧,odd correspond to control Hamiltonians that
are still just sums of 1-local terms and that act non-trivially on odd qubits only:

ℎ𝑥(𝑡) = 𝑓𝑥(𝑡)(𝑋1 +𝑋3 + · · ·+𝑋𝑛−1), ℎ𝑧(𝑡) = 𝑓𝑧(𝑡)(𝑍1 + 𝑍3 + · · ·+ 𝑍𝑛−1).

We expect that the design of Eulerian simulation schemes for more general scenarios
where both the input and the target (𝐻, 𝐻̃) are arbitrary two-body Hamiltonians (including,
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for instance, long-range couplings) will greatly benefit from the existence of combinatorial
approaches for constructing efficient DD groups [48, 51]. A more in-depth analysis of this
topic is, however, beyond our current purpose.

3.4.2 Error-corrected Eulerian simulation in open Heisenberg-coupled
qubit networks

Imagine now that the Heisenberg-coupled system 𝒮 considered in the previous section, i.e.
Eq. (3.47), is coupled to an environment ℬ, and that the task is to achieve the desired XYZ
Hamiltonian simulation for Eq. (3.48) while also removing arbitrary linear decoherence to
leading order. The total input Hamiltonian has the form

𝐻 = 𝐻
(NN)
iso ⊗ 1ℬ + 1𝒮 ⊗𝐻ℬ +

𝑛∑︁

𝑖=1

𝜎⃗𝑖 ⊗ 𝐵⃗𝑖, 𝐵⃗𝑖 = (𝐵𝑥,𝑖, 𝐵𝑦,𝑖, 𝐵𝑧,𝑖), (3.50)

where 𝐻ℬ and 𝐵𝑢,𝑖, for each 𝑖 and 𝑢 = 𝑥, 𝑦, 𝑧, are operators acting on ℋℬ, whose norm is
sufficiently small to ensure convergence of the relevant Magnus series, similar to first-order
DCG constructions [35, 36]. The target Hamiltonian then reads

𝐻̃ = 𝐻
(NN)
XYZ ⊗ 1ℬ +1𝒮 ⊗𝐻ℬ,

in terms of suitable coupling-strength parameters 𝐽𝑢 as in Eq. (3.36). As before, we start
by analysing the case of 𝑛 = 2 qubits in full detail.

We must create a dynamically corrected simulation scheme that satisfies Eqs. (3.42)
and (3.43). Our strategy to synthesize this scheme involves two stages: (i) We will first
decouple 𝒮 from ℬ, while leaving the system Hamiltonian 𝐻𝒮 = 𝐻iso unaffected; (ii) We will
then apply the closed-system protocol of Sec. 3.3.3 to convert 𝐻iso into the target system
Hamiltonian 𝐻̃𝒮 = 𝐻XYZ. Once a suitable group and weights are identified in this way,
both stages are carried out simultaneously in application.

A suitable DD group able to suppress general linear decoherence is provided by 𝒢DD =
Z2 × Z2, under the 𝑛-fold tensor product representation yielding

{𝑈ℎ} = 𝐺GL ≡ {1, 𝑋(all), 𝑌 (all), 𝑍(all)} ≡ {1, 𝑋1𝑋2, 𝑌1𝑌2, 𝑍1𝑍2}, (3.51)

generated, for instance, by 𝛾𝑥,all = (1, 0) ↦→ 𝑋(all) = 𝑋1𝑋2 and 𝛾𝑧,all = (0, 1) ↦→ 𝑍(all) =
𝑍1𝑍2, which can be implemented using 1-local Hamiltonians. Define the superoperator ΦDD

to operate on generic operators 𝐴 on ℋ = ℋ𝒮 ⊗ℋℬ as

ΦDD(𝐴) =
1

4

(︁
𝐴+𝑋(all)𝐴𝑋(all) + 𝑌 (all)𝐴𝑌 (all) + 𝑍(all)𝐴𝑍(all)

)︁

corresponding to weights {𝑤ℎ} given by 𝑤1 = 𝑤𝑋1𝑋2 = 𝑤𝑌1𝑌2 = 𝑤𝑍1𝑍2 = 1/4. Observe that
ΦDD(𝜎⃗𝑖 ⊗ 𝐵⃗𝑖) = 0, whereas ΦDD(𝐻iso ⊗ 1) = 𝐻iso ⊗ 1 because

[𝐻iso, 𝑈ℎ] = 0, ∀𝑈ℎ ∈ 𝐺GL. (3.52)

Thus, using these weights allows us to accomplish step (i), decoupling 𝒮 from ℬ while
leaving 𝐻𝒮 unaffected; moreover, it does so with the order of 𝐺GL being minimal, |𝐺GL| = 4
independent of 𝑛.

In step (ii), to convert 𝐻iso to 𝐻XYZ, we still rely on the group Z2 × Z2, but now under
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a different representation. As in Sec. 3.3.3, we choose the representation yielding the set
𝐺1 = {1, 𝑋1, 𝑌1, 𝑍1} of Eq. (3.37), with the same single-qubit generators 𝛾𝑥,1 = (1, 0) ↦→ 𝑋1,
𝛾𝑧,1 = (0, 1) ↦→ 𝑍1, and the corresponding weights {𝑤𝑔1} determined by the solution of Eqs.
(3.39). With these weights, define the superoperator Φ1 to act as

Φ1(𝐴) = 𝑤1𝐴+ 𝑤𝑋1𝑋1𝐴𝑋1 + 𝑤𝑌1𝑌1𝐴𝑌1 + 𝑤𝑍1𝑍1𝐴𝑍1.

Then the combined action of the two superoperators ΦDD and Φ1 yields

Φ1[ΦDD(𝐴)] =
∑︁

𝑈𝑔1∈𝐺1

∑︁

𝑈ℎ∈𝐺GL

𝑤𝑔1𝑤ℎ𝑈
†
𝑔1𝑈

†
ℎ𝐴𝑈ℎ𝑈𝑔1 =

∑︁

𝑔∈𝒢
𝑤𝑔𝑈

†
𝑔𝐴𝑈𝑔, (3.53)

where 𝒢 = [Z2 × Z2]× [Z2 × Z2] ≃ Z4
2, with unitary representation elements corresponding

to the full Pauli group on two qubits,

{𝑈𝑔} = {𝑈ℎ𝑈𝑔1 : 𝑈ℎ ∈ 𝐺GL, 𝑈𝑔1 ∈ 𝐺1} ∼= {1, 𝑋, 𝑌, 𝑍}⊗2.

With these corresponding weights {𝑤𝑔}, we will satisfy both Eqs. (3.42) and (3.43) as re-
quired.

For the protocol to work, we additionally must show that (3.44) and (3.45) are satisfied.
The above representation from 𝒢 to {𝑈𝑔} is irreducible, with Π𝒢 manifestly implementing
the complete depolarizing channel on two qubits,

Π𝒢(𝐴) =
1

16

∑︁

𝑔∈𝒢
𝑈 †
𝑔𝐴𝑈𝑔 =

Tr(𝐴)

4
1, ∀𝐴.

Since all of the system terms in 𝐻 are traceless and 𝐹Γ is trace-preserving on the system,
we therefore see that the DD conditions of (3.44) and (3.45) are indeed satisfied. We thus
conclude that the Eulerian simulation scheme accomplishes its goal. Since |𝒢| = 16 and
|Γ| = 4, each simulation cycle will involve 𝑁 = 64 time segments, with the number of non-
zero weights (hence 𝑊 and the simulation time-overhead) being determined by the details
of the error model and/or the target Hamiltonian.

A practically important case, where simpler simulation schemes are possible, occurs if
qubits couple to their environment along a fixed axis, effectively corresponding to a purely

dephasing interaction – say, for concreteness, that 𝐵𝑥,𝑖 ̸= 0 but 𝐵𝑦,𝑖 = 𝐵𝑧,𝑖 = 0 for 𝑖 = 1, 2
in Eq. (3.50). A smaller DD group suffices in this case [36], namely 𝒢DD = Z2, represented
again in terms of collective qubit rotations,

{𝑈ℎ} = 𝐺Deph ≡ {1, 𝑍(all)} = {1, 𝑍1𝑍2}, (3.54)

and generated by the single element 𝛾𝑧,all, rather than requiring use of𝐺GL in Eq. (3.51). The
commutation relationship in Eq. (3.52) is maintained, still allowing our two-step procedure
to be followed. In this case, the combined group for simulation is 𝒢 = Z2 × [Z2 × Z2] ≃ Z3

2,
with |𝒢| = 8, |Γ| = 3, reducibly represented on the two-qubit space as

{𝑈𝑔} = {𝑈ℎ𝑈𝑔1 : 𝑈ℎ ∈ 𝐺Deph, 𝑈𝑔1 ∈ 𝐺1} ∼= {1, 𝑋1, 𝑌1, 𝑍1, 𝑍1𝑍2, 𝑌1𝑍2, 𝑋1𝑍2, 𝑍2}.
(3.55)

Suppose, for instance, that the task is to simulate the dipolar Hamiltonian 𝐻̃𝒮 = 𝐻dip

of Eq. (3.40). By following the above general procedure, with DD weights {𝑤ℎ} for 𝐺Deph

101



alone given by
𝑤1 = 1

2 , 𝑤𝑍1𝑍2 = 1
2 ,

and the 𝐺1 weights {𝑤𝑔1} given by Eq. (3.41) as

𝑤1 = 1
2 , 𝑤𝑍1 = 3

2 , 𝑤𝑋1 = 0, 𝑤𝑌1 = 0,

it is easy to see that Eq. (3.53) yields simulation weights {𝑤𝑔 = 𝑤ℎ𝑤𝑔1} of

𝑤1 = 1
4 , 𝑤𝑍1 = 3

4 , 𝑤𝑍2 = 3
4 , 𝑤𝑍1𝑍2 = 1

4 ,

with the remaining four weights equal to 0. While this implies that the simulation can now
be achieved with only 𝑁 = 8 × 3 = 24 segments per cycle and minimum weight 𝑊 = 2,
care is needed in ensuring that the DD conditions in Eqs. (3.44)-(3.45) for 𝐻𝒮 = 𝐻iso

and 𝑆𝛼 = 𝑋1, 𝑋2, are still obeyed despite the representation being reducible. This may be
checked by inspection. In particular, suppose that in Eq. (3.17) we use control Hamiltonians
ℎ𝛾(𝑡) proportional to 𝑋1, 𝑍1, and 𝑍1 + 𝑍2 to produce the generators 𝛾𝑥,1 ↦→ 𝑋1, 𝛾𝑧,1 ↦→ 𝑍1,
and 𝛾𝑧,all ↦→ 𝑍1𝑍2, respectively. The fact that Π𝒢

[︀
𝐹Γ(𝐻iso)

]︀
= 0 and Π𝒢

[︀
𝐹Γ(𝑋1)

]︀
= 0

follow from a trace argument like in Sec. 3.3.3. Each ℎ𝛾𝑗 is 1-local (or a sum thereof), so
each 𝑢𝛾𝑗 is a tensor product and conjugating by it is trace-preserving on the first qubit;
consequently, because 𝑋1 is traceless on the first qubit, all terms in 𝐹Γ(𝑋1) in Eq. (3.22) are
traceless on the first qubit and are therefore eliminated by averaging over the 𝐺1 unitaries in
Eq. (3.37). Similarly for 𝐻iso, which is also traceless on the first qubit. On the other hand,
𝑋2 is not traceless on the first qubit, but Π𝒢

[︀
𝐹Γ(𝑋2)

]︀
= 0 follows by analysing, for each

of the ℎ𝛾𝑗 , the structure of each 𝑢
†
𝛾𝑗 (𝑡)𝑋2𝑢𝛾𝑗 (𝑡) arising in 𝐹Γ(𝑋2): all such terms are linear

combinations of 𝑋2 and 𝑌2 and are all therefore eliminated by averaging over the 𝐺Deph

unitaries in Eq. (3.54). Thus, Eulerian Hamiltonian simulation in the presence of single-axis
errors can be efficiently achieved.

Again, the schemes we have presented for 𝑛 = 2 can be generalized to a chain consisting
of 𝑛 spins that interact according to a nearest-neighbour Heisenberg interaction and are each
linearly coupled to the environment, according to Eq. (3.50). As in Sec. 3.4.1, we can use
the unitaries of 𝐺odd in Eq. (3.49) for converting 𝐻(NN)

iso into 𝐻(NN)
XYZ , and combine them with

the DD unitaries 𝐺GL in Eq. (3.51) for decoupling. This yields the representation from the
group 𝒢 ≃ Z4

2 to the set
{𝑈𝑔} = 𝐺GL ×𝐺odd,

corresponding to generators 𝛾𝑥,all, 𝛾𝑧,all, 𝛾𝑥,odd, 𝛾𝑧,odd, all of which can be implemented using
only 1-local Hamiltonians. As before, each simulation cycle will consist, in the general case of
arbitrary linear decoherence, of 𝑁 = 16× 4 = 64 time segments. Despite the reducibility of
the above representation (with the full Pauli group on 𝑛 qubits consisting of 4𝑛 elements),
the DD conditions given by Eqs. (3.44)-(3.45) remain valid for reasons similar to those
outlined for 𝑛 = 2 under pure dephasing.

3.4.3 Eulerian simulation of Kitaev’s honeycomb lattice Hamiltonian

We return to Eulerian simulation in closed quantum systems, but tackle a more complicated
Hamiltonian of paradigmatic relevance to topological quantum memories, namely, Kitaev’s
honeycomb lattice model [52]. Suppose that our system consists of a network of qubits
arranged on a honeycomb lattice and interacting via near-neighbour Ising couplings. This
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(a) 𝐻, the honeycomb lattice with 𝑍𝑍
couplings

(b) 𝐻̃, Kitaev’s honeycomb lattice with
𝑋𝑋, 𝑌 𝑌 , and 𝑍𝑍 couplings

Figure 3-3: Input and target Hamiltonians on a 2D honeycomb lattice, where qubits are
placed at each vertex. (a) The system Hamiltonian 𝐻 describes a system where all adjacent
vertices have 𝑍𝑍 Ising couplings. (b) The target Hamiltonian 𝐻̃ realizes Kitaev’s honeycomb
lattice model, with 𝑋𝑋, 𝑌 𝑌 , and 𝑍𝑍 couplings depending on the type of the edge.

(a) 𝜌𝜎 (b) 𝜏𝜎 (c) 𝑅𝑔𝑙𝑜𝑏𝑎𝑙

Figure 3-4: (a) The unitary 𝜌𝜎, with 𝜎 on the vertices of every second forward-slash and
1 on all other vertices, where 𝜎 is a fixed 𝑋,𝑌, or 𝑍 operator. When 𝜎 = 𝑋 this is the
generator 𝜌𝑋 . (b) The unitary 𝜏𝜎, with 𝜎 on the vertices of every second back-slash, where
𝜎 is a fixed 𝑋,𝑌, or 𝑍 operator. When 𝜎 = 𝑋 this is the generator 𝜏𝑋 . (c) The generator
𝑅global, with 𝑅 at every vertex.

Hamiltonian 𝐻 is graphically displayed in Fig. 3-3(a), where vertices represent qubits and
edges represent two-qubit couplings of the form 𝑍𝑘𝑍ℓ, with vertices 𝑘 and ℓ being adjacent
in the graph and 𝑍𝑘 indicating, as before, the Pauli 𝑍 operator acting non-trivially only on
qubit 𝑘. The target Hamiltonian 𝐻̃ is shown in Fig. 3-3(b), where some of the edges are
now of the form 𝑋𝑘𝑋ℓ and 𝑌𝑘𝑌ℓ. In accordance with the figure, we shall henceforth call the
𝑋𝑋-edges forward-slashes, the 𝑌 𝑌 -edges back-slashes, and the 𝑍𝑍-edges verticals.

The basic idea to accomplish this simulation is to exploit the matrix𝑅, given in Eq. (3.46),
in conjunction with the symmetry of our problem: since all Hamiltonian terms are precisely
two-local and of the homogeneous form 𝜎 ⊗ 𝜎, it will be possible to avoid using the full
machinery of a transformer.

Consider the group 𝒢 generated by the three unitaries, 𝜌𝑋 , 𝜏𝑋 , and 𝑅global, where 𝜌𝑋 ,
shown in Fig. 3-4(a) with 𝜎 = 𝑋, has𝑋’s on every second forward-slash, 𝜏𝑋 , shown in Fig. 3-
4(b) with 𝜎 = 𝑋, has 𝑋’s on every second back-slash, and 𝑅global, shown in Fig. 3-4(c), has
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(a) Φ𝑋𝑋(𝐻) (b) Φ𝑌 𝑌 (𝐻) (c) Φ𝑍𝑍(𝐻)

Figure 3-5: The actions of the superoperators (a) Φ𝑋𝑋(𝐻) = 1
2𝑅

†
global𝐻𝑅global +

1
2(𝜌𝑋𝑅global)

†𝐻(𝜌𝑋𝑅global), leaving 𝑋𝑋 terms at forward-slashes only; (b) Φ𝑌 𝑌 (𝐻) =
1
2𝑅

2 †
global𝐻𝑅

2
global + 1

2(𝜏𝑋𝑅
2
global)

†𝐻(𝜏𝑋𝑅
2
global), leaving 𝑌 𝑌 terms at back-slashes only; and

(c) Φ𝑍𝑍(𝐻) = 1
2 1

†𝐻 1+1
2(𝜌𝑋𝜏𝑋)†𝐻(𝜌𝑋𝜏𝑋), leaving 𝑍𝑍 terms at verticals only.

𝑅 applied to every vertex. These unitaries can be generated by one-local Hamiltonians that
we assume that we can implement. By repeatedly conjugating 𝜌𝑋 and 𝜏𝑋 with 𝑅global, we
immediately see that we can also perform 𝜌𝜎 and 𝜏𝜎, shown in Figs. 3-4(a) and 3-4(b), for
any 𝜎 = 𝑋,𝑌, 𝑍. Note that up to phase, all such 𝜌 and 𝜏 commute. Because conjugation by
𝑅 maps Pauli matrices to Pauli matrices, for any Pauli 𝜎 we have 𝑅𝜎 = (𝑅𝜎𝑅−1)𝑅 = 𝜎′𝑅,
where 𝜎′ is another Pauli matrix. Thus, up to phase, we can write any element of 𝒢 in the
canonical form

𝑈𝑔 = 𝜌𝜏𝑅𝑎global, (3.56)

where 𝜌 ∈ {1, 𝜌𝑋 , 𝜌𝑌 , 𝜌𝑍}, 𝜏 ∈ {1, 𝜏𝑋 , 𝜏𝑌 , 𝜏𝑍}, 𝑎 ∈ {0, 1, 2}, and 𝑅𝑎global only appears on
the right.

To construct an Eulerian simulation protocol we must ensure two things: we must be
able to choose weights 𝑤𝑔 so that 𝐻̃ is reachable from 𝐻, i.e., obeys Eq. (3.24), and we must
ensure that the DD condition of Eq. (3.23) is also fulfilled. To accomplish the former, we
start with the fact that

1

2
1(𝑍 ⊗ 𝑍)1+

1

2
(𝑋 ⊗ 𝜎)(𝑍 ⊗ 𝑍)(𝑋 ⊗ 𝜎) =

{︂
𝑍 ⊗ 𝑍 if 𝜎 = X

0 if 𝜎 = 1
.

Observe that in 𝜌𝑋 , all forward-slash edges connect vertices that are acted upon by either
1⊗1 or 𝑋 ⊗ 𝑋, while all other edges connect vertices that are acted upon by 𝑋 ⊗ 1.
Consequently, 1

2 1
†𝐻 1+1

2𝜌
†
𝑋𝐻𝜌𝑋 removes all Hamiltonian terms except for those along

the forward-slashes; upon conjugating by 𝑅global, we may then convert these surviving 𝑍𝑍
terms to 𝑋𝑋 terms, as desired. To summarize,

Φ𝑋𝑋(𝐻) =
1

2
𝑅†

global𝐻𝑅global +
1

2
(𝜌𝑋𝑅global)

†𝐻(𝜌𝑋𝑅global)

gives the Hamiltonian shown in Fig. 3-5(a). Similarly, the effect of 1
2 1

†𝐻 1+1
2𝜏

†
𝑋𝐻𝜏𝑋 is to

leave precisely the back-slash edges, which can be converted from 𝑍𝑍 to 𝑌 𝑌 by conjugation
by 𝑅2

global. Thus,

Φ𝑌 𝑌 (𝐻) =
1

2
𝑅2 †

global𝐻𝑅
2
global +

1

2
(𝜏𝑋𝑅

2
global)

†𝐻(𝜏𝑋𝑅
2
global)
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gives the Hamiltonian shown in Fig. 3-5(b). Lastly, it is not hard to see that the product
𝜌𝑋𝜏𝑋 has 𝑋’s on every second row of verticals; accordingly,

Φ𝑍𝑍(𝐻) =
1

2
1†𝐻 1+

1

2
(𝜌𝑋𝜏𝑋)†𝐻(𝜌𝑋𝜏𝑋)

isolates precisely the verticals, giving the Hamiltonian shown in Fig. 3-5(c). In this case, no
𝑅-conjugation is necessary since we wish to maintain 𝑍𝑍 edges along the verticals. Putting
all these steps together, we conclude that

𝐻̃ =
1

2
𝑅†

global𝐻𝑅global +
1

2
(𝜌𝑋𝑅global)

†𝐻(𝜌𝑋𝑅global) +
1

2
𝑅2 †

global𝐻𝑅
2
global

+
1

2
(𝜏𝑋𝑅

2
global)

†𝐻(𝜏𝑋𝑅
2
global) +

1

2
1†𝐻 1+

1

2
(𝜌𝑋𝜏𝑋)†𝐻(𝜌𝑋𝜏𝑋),

thus providing the desired weights for the Eulerian protocol. Since there are |Γ| = 3 gener-
ators and, from Eq. (3.56), |𝒢| = 4× 4× 3 = 48 group elements, each control block consists
of 𝑁 = |𝒢||Γ| = 144 time intervals.

Lastly, we must verify that Π𝒢
[︀
𝐹Γ(𝐻)

]︀
= 0 of Eq. (3.23) holds. Note that 𝐹Γ(𝐻) acts

via conjugating each vertex by unitaries (since the generating pulses are one-local), and since
such an operation is trace-preserving at each vertex, this necessarily takes the precisely two-
local terms in 𝐻 to precisely two-local terms in 𝐹Γ(𝐻). Since no one-local terms can arise,
all terms are of the form 𝜎

(𝑘)
𝑢 ⊗𝜎(ℓ)𝑣 , where 𝑘 and ℓ are adjacent vertices, 𝜎𝑢, 𝜎𝑣 ∈ {𝑋,𝑌, 𝑍},

and 𝜎(𝑘)𝑢 denotes 𝜎𝑢 acting on vertex 𝑘. Thus, we may write

𝐹Γ(𝐻) =
∑︁

𝑘,ℓ adjacent

∑︁

𝑢,𝑣

𝑎(𝑘,ℓ)𝑢,𝑣 𝜎(𝑘)𝑢 ⊗ 𝜎(ℓ)𝑣

for some coefficients 𝑎(𝑘,ℓ)𝑢,𝑣 . Due to the canonical form of our group elements, Eq. (3.56), the
action of Π𝒢 reads

Π𝒢 [𝐹Γ(𝐻)] =
1

|𝒢|
2∑︁

𝑎=0

∑︁

𝜏

∑︁

𝜌

𝑅𝑎†𝜏𝜌𝐹Γ(𝐻) 𝜌𝜏𝑅𝑎,

where we sum over 𝜌 = 1, 𝜌𝑋 , 𝜌𝑌 , 𝜌𝑍 and 𝜏 = 1, 𝜏𝑋 , 𝜏𝑌 , 𝜏𝑍 . Just as we saw above that
the map 1

2 1𝐻 1+1
2𝜌𝑋𝐻𝜌𝑋 removes all non-forward-slash 𝑍𝑍 terms, the map

∑︀
𝜌 𝜌𝐹Γ(𝐻)𝜌

depolarizes precisely one vertex of each pair of non-forward-slash vertices, and therefore
suppresses all non-forward-slash terms. With only forward-slash terms remaining,

∑︁

𝜏

𝜏 [
∑︁

𝜌

𝜌𝐹Γ(𝐻)𝜌]𝜏 = 0,

since the 𝜏 -sum removes all non-back-slash terms. Thus, we conclude that Π𝒢
[︀
𝐹Γ(𝐻)

]︀
= 0,

as desired.

3.5 Conclusion and outlook

We have shown that the Eulerian cycle technique, successfully employed in both dynam-
ical decoupling schemes and dynamically corrected gates, can be extended to also enable
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Hamiltonian quantum simulation with realistic bounded-strength controls. For given internal
dynamics and control resources, we have characterized the family of reachable target Hamil-
tonians and provided constructive open-loop control protocols for stroboscopically imple-
menting a desired evolution in the family with accuracy (at least) up to the second order in
the sense of average Hamiltonian theory. We have additionally shown how Hamiltonian sim-
ulation may be accomplished in an open quantum system while simultaneously suppressing
unwanted decoherence, provided that appropriate time-scale requirements and decoupling
conditions are fulfilled, paving the way to dynamically corrected quantum simulation. The
usefulness and flexibility of our Eulerian simulation techniques have been explicitly illus-
trated through several QIP-motivated examples involving both unitary and open-system
dynamics on interacting qubit networks. In all cases, access to purely local (single-qubit)
control Hamiltonians is assumed, subject to the finite-amplitude constraint and the ability
to collectively apply such Hamiltonians to selected subsets of target qubits, for instance,
qubits belonging to regular lattice patterns in one- or two-dimensional arrays. It is worth
stressing that this level of control is in principle available in a variety of platforms for quan-
tum simulation, with such “spatially periodic” control operations often being amenable to
simple implementation, e.g. in optical lattices via globally applied pulses [4, 5, 7].

While it is our hope that our results may be of immediate relevance to ongoing efforts for
developing and programming quantum simulators in the laboratory, several possible gener-
alizations and further research questions are worth mentioning. As an additional simulation
problem dual to the one we analysed for Heisenberg-coupled spin chains, exploring schemes
where a target Heisenberg Hamiltonian is generated out of only Ising couplings would be of
interest, given the experimental availability of the latter in existing large-scale trapped-ion
simulators [22]. Likewise, an interesting issue is to explore the extent to which the proposed
Eulerian approach may find application in simulation schemes for more exotic Hamiltoni-
ans involving higher-order interactions, notably, as arising in the Kitaev toric code [18] and
lattice gauge theories [53].

From an implementation perspective, our present results call for further, dedicated analy-
sis of the impact of control errors, which are inevitably present in experiments and effectively
limit the maximum time over which the target dynamics may be reliably simulated. Since
Eulerian control design is inherently robust (to leading order) against systematic Hamilto-
nian errors along a full cycle [34,36], a similar degree of robustness may be expected for the
“ramping-up” portion of a simulation block. While we also expect that the requisite timing
precision in both “coasting” and “ramping-up” periods may be similar to the one demanded
by dynamical decoupling protocols [54], a detailed analysis is needed to establish quantita-
tive error bounds and avenues for enhancing fault-tolerance in a given physical architecture.
Partly related to that, an ambitious goal is to determine whether Hamiltonian simulation
schemes able to guarantee a minimum fidelity over arbitrarily long simulation times may be
devised, in the spirit of [54] for the particular case of the zero Hamiltonian.

Building on existing results for dynamical decoupling schemes [49], the use and possible
advantages of randomized simulation schemes in terms of robustness and/or efficiency may
be yet another avenue of investigation, especially in connection with large control groups.
Finally, it could be useful to explore whether bounded-strength simulation, as proposed
here, may be made compatible with open-loop filtering techniques for modulating coupling
strengths, such as recently proposed in [55], as well as in [56] in conjunction with non-unitary
open-loop control via field gradients.
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Chapter 4

Improved bounded-strength

decoupling schemes for local

Hamiltonians

In this chapter, we address the task of switching off the Hamiltonian of a system by removing
all internal and system-environment couplings. We propose dynamical decoupling schemes,
that use only bounded-strength controls, for quantum many-body systems with local system
Hamiltonians and local environmental couplings. To do so, we introduce the combinatorial
concept of balanced-cycle orthogonal arrays (BOAs) and show how to construct them from
classical error-correcting codes.

Like the Hamiltonian simulation protocols of Chapter 3, the BOA decoupling schemes

derived here use an “Eulerian decoupling” technique to dictate a sequence of 𝑁 bounded-
strength control operations to be applied. However, the goal of decoupling differs from the
content of Chapter 3 in that we are presently interested in simulating specifically the zero
Hamiltonian, rather than general Hamiltonians. The decoupling schemes can be used for the
purpose of quantum memories and may be useful as a primitive for more complex schemes,
such as Hamiltonian simulation (by adapting the techniques of Chapter 3). Although more
restricted in scope, the advantage of the BOA approach is that it exploits the presumed
locality of the unwanted couplings in order to accomplish decoupling very efficiently, leading
to much shorter control sequences than would otherwise be required. For use as a quantum
memory, this enables greater availability of the preserved quantum information (since, as
in Chapter 3, the decoupling method works only stroboscopically, simulating the absence
of evolution only at certain times); for use as a primitive in more complex protocols, a
shorter sequence translates to a less complicated building block that is faster and easier to
implement with less accumulation of error.

For the case of 𝑛 qubits and a 2-local Hamiltonian, the length, 𝑁 , of the BOA decoupling
schemes scale as 𝑂(𝑛 log 𝑛), improving over the previously best-known bounded-strength de-
coupling schemes that scaled quadratically with 𝑛. More generally, using BOAs constructed
from families of BCH codes, we show that bounded-strength decoupling for any ℓ-local
Hamiltonian, where ℓ > 2, can be achieved using decoupling schemes of length at most
𝑂(𝑛ℓ−1 log 𝑛).

This chapter is adapted from [1], which was joint work with Martin Roetteler and Pawel
Wocjan.
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4.1 Introduction

Consider a quantum system of 𝑛 interacting 𝑑-dimensional qudits with a time-independent
(possibly unknown) Hamiltonian 𝐻 acting on a Hilbert space ℋ ∼= (C𝑑)⊗𝑛. We make the
assumption that the system is ℓ-local, i.e. that 𝐻 can be written as the sum of operators,
each of which acts only on ℓ of the 𝑛 qudits. In nature it is usually the case that ℓ is small
even when 𝑛 is large. Without loss of generality, we also take 𝐻 to be traceless, and for
technical reasons, we assume that 𝑑 is a prime power (which includes the important case of
qubits, i.e. 𝑑 = 2).

We consider the task of decoupling, i.e. effectively switching off the Hamiltonian 𝐻
(including removing any couplings to the environment) so that the system effectively evolves
under the zero Hamiltonian. Such a task is important, for example, in the context of
quantum memory, where one desires to preserve the state of a quantum system.

To achieve this task, we assume that the natural dynamics of the system can be modified
by adjoining an open-loop (non-feedback) controller according to

𝐻 ↦→ 𝐻 +𝐻𝑐(𝑡) .

In practice, physical limitations restrict the types of control Hamiltonians available for use.
We consider the realistic setting in which 𝐻𝑐(𝑡) is only 1-local, i.e. due to our limited control
of the system, 𝐻𝑐 is the sum of operators that each act on only one qudit. We further impose
the constraint that our control Hamiltonian 𝐻𝑐(𝑡) is limited to be bounded-strength, i.e.
a sufficiently smooth bounded function. This is in contrast to the setting of bang-bang
control in which 𝐻𝑐(𝑡) can be a discontinuous function that takes values of arbitrarily large
norm. Our assumptions that the system Hamiltonian is an ℓ-local Hamiltonian acting on
a system of 𝑛 interacting qudits and that the control Hamiltonian is a 1-local bounded-
strength Hamiltonian reflect the typical composite nature of quantum systems and their
coupling locality as well as the limitations in implementing external controls.

Viola and Knill proposed a general method for bounded-strength decoupling; see [2]
and [3, Chapter 4]. Their method, often referred to as Eulerian decoupling, relies on Eulerian
cycles in Cayley graphs of a control group – a certain finite group of control unitaries that
can be implemented by switching on control Hamiltonians, from a finite set of available
control operations, for a fixed time. The Eulerian cycle dictates which control Hamiltonians
are applied in the different time-slots of the decoupling protocol.

The Eulerian method, as introduced in [2], does not make it possible to directly leverage
the fact that the system Hamiltonian is ℓ-local in order to obtain more efficient decoupling
schemes. However, in the setting of bang-bang control there do exist efficient decoupling
schemes that are specifically designed for composite quantum systems with ℓ-local system
Hamiltonians; see [4–6] and [3, Chapter 15]. In these schemes, the specification of which
bang-bang control unitaries are to be applied is chosen according to the entries of so-called
orthogonal arrays of strength ℓ. They are matrices with the property that any submatrix
formed by an arbitrary collection of ℓ rows satisfies a certain balancedness condition.

The work [7] presented a particular construction of decoupling schemes merging the
approaches of Eulerian (bounded-strength) decoupling together with orthogonal array (bang-
bang) decoupling. This construction yields schemes that require only bounded-strength
controls and exploit the composite structure of the quantum system (namely, the locality
of the system Hamiltonian) to achieve decoupling with fewer control operations. To do so,
these schemes introduce the concept of so-called Eulerian orthogonal arrays.
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The purpose of the present chapter is to further improve upon the method of [7] to
obtain bounded-strength decoupling schemes of even greater efficiency. To this end, we first
generalize the Eulerian method due to [2] by showing that it is also possible to achieve
decoupling with the help of so-called balanced cycles, which encompass Eulerian cycles as a
special case. We then show that bounded-strength decoupling of composite quantum systems
with local Hamiltonians can be accomplished based on the new concept of balanced-cycle
orthogonal arrays.

Note that all the schemes discussed above can also be applied to the situation of a general
open quantum system with joint Hamiltonian 𝐻 acting on a quantum system that is coupled
to an uncontrollable environment. Such a Hamiltonian has the form

𝐻 = 𝐻𝒮 ⊗ 1ℬ +1𝒮 ⊗𝐻ℬ +
∑︁

𝛼

𝑆𝛼 ⊗𝐵𝛼,

where the operators 𝐻𝒮 and 𝑆𝛼 act on the system and where the operators 𝐻ℬ and 𝐵𝛼
act on the environment. We assume that the system Hamiltonian 𝐻𝒮 and the operators
𝑆𝛼 are all ℓ-local. The decoupling goal in this case is to effectively switch off the system
Hamiltonian 𝐻𝒮 and remove all couplings to the environment. If, using controls that act
only on the system, one can effectively switch off all generic system Hamiltonians, then
such an operation will switch off 𝐻𝒮 and each 𝑆𝛼, thereby accomplishing decoupling.1 For
notational simplicity, the remainder of the chapter will therefore ignore the environment and
treat only the case of effectively switching off an arbitrary ℓ-local operator 𝐻.

4.2 Description of the control-theoretic model

Consider the group (F𝑞,+), the additive group of the finite field of order 𝑞 = 𝑑2, where 𝑑
(the dimension of the qudits) is some prime power. For the remainder of this chapter, let
𝜌 : F𝑞 → 𝒰(𝑑) be a faithful, irreducible, unitary, projective2 representation that maps the
elements of F𝑞 to 𝑑× 𝑑 unitary matrices, say 𝜌 : 𝑔 ↦→ 𝑈𝑔. That 𝑞 cannot be smaller than 𝑑2

for such a representation will be justified later in Remark 4.2; that 𝑞 = 𝑑2 suffices is justified
by the explicit example shown below.

We assume that for every 𝑔 ∈ F𝑞 we can implement 𝑈𝑔 on any qudit of our system in the
following sense: for every 𝑔, we can physically implement, over time 𝛿 ∈ [0,∆], a bounded-
strength single-qudit Hamiltonian ℎ𝑔(𝛿), corresponding to a single-qudit unitary evolution
operator 𝑢𝑔(𝛿), such that 𝑈𝑔 = 𝑢𝑔(∆) where ∆ is some fixed length of time. We assume that
we can do this on any qudit and, moreover, that we can do so for each of the 𝑛 qudits in
parallel. Note that this assumption obeys the practical control limitations discussed earlier.

Of particular interest, in the case of qubits (𝑑 = 2, 𝑞 = 4) we can consider the rep-
resentation 𝜌 : F4 → 𝒰(2) that maps the four elements of F4 to the four 2 × 2 Pauli
matrices {1, 𝑋, 𝑌, 𝑍}. Thus, it is assumed that we can physically implement any Pauli
operator on any qubit. Rather than assuming that 𝑞 = 4, this chapter will treat 𝑞 more
generally; however the reader is invited to think of the special case of qubits if desired.
For non-qubits, with 𝑞 > 4, we can generalize this example as follows. For a prime 𝑝, de-
fine 𝑋̃ =

∑︀𝑝−1
𝑗=0 |𝑗 + 1 mod 𝑝⟩⟨𝑗| and 𝑍 =

∑︀𝑝−1
𝑗=0 𝜔

𝑗 |𝑗⟩⟨𝑗|, where 𝜔 is a 𝑝th root of unity.
For prime 𝑑 = 𝑝, the map (𝑎, 𝑏) ↦→ 𝑋̃𝑎𝑍𝑏 defines a faithful, irreducible, unitary, projec-

1The remaining Hamiltonian term of 1𝒮 ⊗𝐻ℬ is inconsequential, as it does not affect the system at all.
2Projective representations need only be homomorphisms up to phase, i.e. obey 𝑈𝑔+ℎ ∝ 𝑈𝑔𝑈ℎ with

proportionality rather than equality.
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Figure 4-1: An 𝑛 × 𝑁 array, with each entry 𝑔𝑖𝑗 ∈ F𝑞, shown within the dashed lines.
Rows correspond to qudit numbers, columns to time slots (each of width ∆). This array
encapsulates the control sequence, with 𝐻𝑐(𝑡) = ℎ𝑔⃗𝑗 (𝛿) over 𝛿 ∈ [0,∆) during the interval
𝑡 ∈

[︀
(𝑗 − 1)∆, 𝑗∆

)︀
.

tive representation from Z𝑑 × Z𝑑 to 𝒰(𝑑). For a prime power 𝑑 = 𝑝𝑒 (for some 𝑒), map
((𝑎1, 𝑏1), . . . , (𝑎𝑒, 𝑏𝑒)) ↦→ 𝑋̃𝑎1𝑍𝑏1 ⊗ · · · ⊗ 𝑋̃𝑎𝑒𝑍𝑏𝑒 .

A decoupling protocol is defined by specifying a sequence of control Hamiltonians (equiv-
alently, control unitaries) to be applied. As shown in Fig. 4-1, we construct an 𝑛×𝑁 array
with entries from F𝑞, which we regard as a sequence of 𝑁 columns from F𝑛𝑞 . The 𝑗th column
𝑔⃗𝑗 = (𝑔1𝑗 , . . . , 𝑔𝑛𝑗)

𝑇 corresponds to the 𝑗th time interval
[︀
(𝑗 − 1)∆, 𝑗∆

]︀
of our protocol,

during which we apply the control Hamiltonian

ℎ𝑔⃗𝑗 (𝛿) = ℎ𝑔1𝑗 (𝛿)⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ℎ𝑔𝑛𝑗 (𝛿)

that gives rise to evolution 𝑢𝑔⃗𝑗 (𝛿) = 𝑢𝑔1𝑗 (𝛿)⊗ · · · ⊗ 𝑢𝑔𝑛𝑗 (𝛿) over 𝛿 ∈ [0,∆]. In other words,
for each 𝛿 ∈ [0,∆] and 𝑗 = 1, . . . , 𝑁 , 𝐻𝑐(𝑡) = ℎ𝑔⃗𝑗 (𝛿) where 𝑡 = (𝑗 − 1)∆ + 𝛿. The total time
required to apply the entire sequence, i.e. the control cycle length, is therefore 𝑇𝑐 = 𝑁∆, at
which point the control sequence can be repeated. Observe that for any 𝑡 = (𝑗 − 1)∆ + 𝛿,
the unitary evolution 𝑈𝑐(𝑡) corresponding to the control Hamiltonian consequently satisfies
𝑈𝑐(𝑡) = 𝑢𝑔⃗𝑗 (𝛿)𝑈𝑐

(︀
(𝑗 − 1)∆

)︀
.

According to average Hamiltonian theory [8–10], the resulting system evolution under
𝐻 +𝐻𝑐(𝑡) can be effectively approximated by

𝑈(𝑡) ≈ 𝑒−𝑖𝐻̄(0)𝑡

at times 𝑡 that are integer multiples of 𝑇𝑐, i.e. 𝑡 = 𝑚𝑇𝑐 for any 𝑚 ∈ N, where

𝐻̄(0) =
1

𝑇𝑐

∫︁ 𝑇𝑐

𝑡=0
𝑈𝑐(𝑡)

†𝐻𝑈𝑐(𝑡)𝑑𝑡

is time-independent and where 𝑈𝑐(𝑡) is the time evolution due to 𝐻𝑐(𝑡) alone. The goal of
decoupling, therefore, is to choose 𝑈𝑐(𝑡) such that 𝐻̄(0) = 0 for any 𝐻. It is in this sense that
we effectively switch off the Hamiltonian 𝐻. We refer the reader to Sec. 3.2.1 of Chapter 3
for a detailed description of the above control-theoretic model and the resulting effective
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time-evolution. We note, in particular, that although the approximation above is to leading
order (in the Magnus expansion of 𝑈𝑐(𝑡)†𝐻𝑈𝑐(𝑡)), the second-order term may be eliminated
by designing the control Hamiltonian to satisfy 𝑈𝑐(𝑡) = 𝑈𝑐(𝑇𝑐 − 𝑡) [10].

The efficiency of the protocol developed in this chapter is obtained by exploiting the
composite structure of the Hamiltonian, namely the fact that 𝐻 was assumed to be a
local Hamiltonian. By definition, an ℓ-local Hamiltonian 𝐻 on 𝑛 qudits can be written as
𝐻 =

∑︀
𝑘𝐻𝑘, where each 𝐻𝑘 acts non-trivially on at most ℓ of the 𝑛 qudits. In particular,

the ℓ = 2 case corresponds to Hamiltonians with only pairwise interactions. Our goal is to
create a protocol that decouples each 𝐻𝑘 simultaneously, and therefore decouples 𝐻. To see
that this would work, observe that for any protocol 𝑈𝑐(𝑡),

𝐻̄(0) =
1

𝑇𝑐

∫︁
𝑈𝑐(𝑡)

†𝐻𝑈𝑐(𝑡)𝑑𝑡 =
∑︁

𝑘

1

𝑇𝑐

∫︁
𝑈𝑐(𝑡)

†𝐻𝑘𝑈𝑐(𝑡)𝑑𝑡 =
∑︁

𝑘

𝐻̄
(0)
𝑘 .

4.3 Balanced cycles

The success of the decoupling protocol introduced in this chapter will rely on some basic
group theory, which we introduce now. Let 𝒢 be an Abelian group with a generating set
S ⊂ 𝒢, i.e. any element of 𝒢 can be written as a sum of elements from S .

Definition 4.1 (Cayley graph). The Cayley graph, Γ(𝒢,S ), of 𝒢 with respect to S is
a directed graph whose vertices are labelled by the group elements and whose edges are
labelled by the generators. More precisely, there is a directed edge labelled ¯s from vertex
`g ∈ 𝒢 to vertex ˛hffl ∈ 𝒢 iff ˛hffl = ¯s + `g for the generator ¯s ∈ S .

Definition 4.2 (Cycle). A cycle, L, on Γ(𝒢,S ) is a traversal on Γ that starts and ends on

the same vertex. We describe the cycle by the ordered list L𝒢 =
(︁

`g
0
, . . . , `g

𝑁−1

)︁
of elements

from 𝒢, indicating the order in which the elements are visited, with the understanding that
the cycle visits `g

𝑁
= `g

0
immediately after visiting `g

𝑁−1
. All the cycles in this chapter visit

every vertex at least once, so we assume without loss of generality that the first vertex
is the identity element, `e, of 𝒢. With this assumption we may equivalently represent the
cycle L𝒢 by specifying the edges traversed, i.e. LS = (¯s1, . . . , ¯s𝑁 ), where `g

𝑗
= ¯s𝑗 + `g

𝑗−1
for

𝑗 = 1, . . . , 𝑁 ; observe that we differentiate between these representations by the subscript
on L, but they both refer to the same cycle.

Note that a cycle may visit vertices more than once and may traverse edges multiple
times. We will be interested not only in the vertices, but also the specific labels leaving each
vertex; we denote by `g∙ ¯s−→ the ¯s-labelled edge leaving vertex `g.

Definition 4.3 (Balanced cycle). We say that L is a balanced cycle if ∀¯s ∈ S ,∃𝜇¯s > 0

such that ∀`g ∈ 𝒢, `g∙ ¯s−→ occurs exactly 𝜇¯s times; in other words, the cycle is balanced if it is
balanced with respect to each label ¯s ∈ S in the sense that it leaves each `g via label ¯s an
equal number of times (independent of `g). Consequently, each `g will appear in L precisely
𝜆 =

∑︀
¯s∈S 𝜇¯s times, independent of `g. Because a Cayley graph is a regular directed graph,

it always has a balanced cycle whose length is then necessarily 𝑁 = 𝜆|𝒢|.

An important special case of a balanced cycle is an Eulerian cycle on Γ(𝒢,S ), for which
𝜇¯s = 1 for every ¯s ∈ S . Examples of an Eulerian cycle and a non-Eulerian balanced cycle are
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(a) Eulerian cycle (b) Balanced cycle

Figure 4-2: (a) An Eulerian cycle on the Cayley graph Γ
(︁
Z3
2,
{︁(︁

1
0
0

)︁
,
(︁

0
1
0

)︁
,
(︁

0
0
1

)︁}︁)︁
, i.e. a

balanced cycle in which each edge label leaves each vertex precisely once. Vertices correspond

to the eight elements of Z3
2. Edge labels correspond to the three generators, namely

(︁
1
0
0

)︁

(purple),
(︁

0
1
0

)︁
(green), and

(︁
0
0
1

)︁
(blue). The cycle starts at

(︁
0
0
0

)︁
and follows the path indicated

(in ascending numerical order) by the circled integers (red). (b) A balanced cycle on the

Cayley graph Γ
(︁
Z2
2,
{︀(︀

0
1

)︀
,
(︀
1
1

)︀}︀)︁
. Vertices correspond to the four elements of Z2

2. Edge labels

correspond to the two generators, namely
(︀
0
1

)︀
(purple) and

(︀
1
1

)︀
(blue). The cycle starts at(︀

0
0

)︀
and follows the path indicated (in ascending numerical order) by the circled integers

(red). Observe that the cycle is indeed balanced: for each of the two edge labels, the edges
leave each vertex the same number of times, irrespective of vertex. Specifically, the

(︀
0
1

)︀
label

leaves each vertex precisely 𝜇(︁0
1

)︁ = 2 times, while the
(︀
1
1

)︀
label leaves each vertex precisely

𝜇(︁1
1

)︁ = 4 times.

shown in Fig. 4-2(a) and Fig. 4-2(b) respectively. In [2], Eulerian cycles were used to define
decoupling protocols that avoided the discontinuous nature of bang-bang decoupling. More
generally, one can define decoupling protocols based on balanced cycles (of which Eulerian
decoupling is a special case), to which we soon turn our attention. Note, however, that
this balanced-cycle decoupling protocol will not be the goal of this chapter. Indeed, such a
protocol will not exploit the composite structure of the Hamiltonian. Later we will utilize
the balanced-cycle decoupling on ℓ-qudit subsystems of a larger 𝑛 qudit space to develop
more efficient protocols; in the current section, however, we may regard ℓ as the size of the
entire system.

In exploiting the ℓ-local nature of 𝐻, we will find that we are primarily interested in the
group

𝒢 = Fℓ𝑞 = {(𝑎1, . . . , 𝑎ℓ)𝑇 : 𝑎𝑖 ∈ F𝑞}
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with some generating set S and the representation

𝜌⊗ℓ : 𝒢 → 𝒰(𝑑ℓ)

defined from our representation 𝜌 : F𝑞 → 𝒰(𝑑). Specifically, if `g = (𝑎1, . . . , 𝑎ℓ)
𝑇 ∈ 𝒢 and

𝜌(𝑎𝑖) = 𝑈𝑎𝑖 then 𝜌⊗ℓ(`g) = 𝑈`g = 𝑈𝑎1 ⊗ · · · ⊗ 𝑈𝑎ℓ . By our assumptions above, we can

physically implement 𝑈`g by applying the control unitary 𝑢`g(𝛿) (equivalently, the control

Hamiltonian ℎ`g(𝛿)) for time ∆. For example, in the case of qubits (𝑞 = 4), the group F4,

whose elements we denote3 as {0, 1, 𝛼, 𝛼+1}, is generated by the set 𝑆4 = {1, 𝛼}. We choose
S = {11, 𝛼1, . . . 1ℓ, 𝛼ℓ}, which is a generating set of 2ℓ elements for the group 𝒢 = Fℓ4, where
𝑥𝑖 here denotes the column (0, . . . , 0, 𝑥, 0, . . . , 0)𝑇 with 𝑥 ∈ F𝑞 in the 𝑖th position. In this
case we assume 𝜌(𝑎𝑖) = 𝑈𝑎𝑖 is a Pauli matrix, so 𝜌⊗ℓ(`g) is a tensor product of Pauli matrices.

The purpose for the group theory used in this chapter resides in the following observation
[3, Chapter 4]. We define the operator Π𝒢 to act on matrices 𝐴 as

Π𝒢(𝐴) =
1

|𝒢|
∑︁

`g∈𝒢
𝑈 †`g𝐴𝑈`g . (4.1)

Note that for every matrix 𝐴, Π𝒢(𝐴) commutes with all 𝑈`g (`g ∈ 𝒢). Thus, by Schur’s

lemma, since 𝜌 is irreducible4, we have Π𝒢(𝐴) = Tr(𝐴)
𝐷 1 (where 𝐷 is the dimension of the

Hilbert space). In particular then, if Tr(𝐴) = 0 then Π𝒢(𝐴) = 0.

Protocol 4.1 (Bounded-strength balanced-cycle decoupling). Let L be a balanced
cycle on Γ(𝒢,S ) of length 𝑁 = |𝒢|∑︀¯s 𝜇¯s = 𝜆|𝒢|, with group element representation L𝒢 =(︁

`g
0
, . . . , `g

𝑁−1

)︁
and generator representation LS = (¯s1, . . . , ¯s𝑁 ). For 𝑗 = 1, . . . , 𝑁 , set

𝑈𝑐(0) = 𝑈`e = 1 and

𝑈𝑐

(︁
(𝑗 − 1)∆ + 𝛿

)︁
= 𝑢¯s𝑗(𝛿) 𝑈𝑐

(︁
(𝑗 − 1)∆

)︁
, 𝛿 ∈ [0,∆].

Note that because5 𝑈¯s𝑗𝑈`g
𝑗−1

= 𝑈¯s𝑗+`g
𝑗−1

= 𝑈`g
𝑗

, this implies 𝑈𝑐(𝑗∆) = 𝑈`g
𝑗

(for 𝑗 =

0, . . . , 𝑁), i.e.

𝑈𝑐

(︁
(𝑗 − 1)∆ + 𝛿

)︁
= 𝑢¯s𝑗(𝛿) 𝑈`g

𝑗−1

, 𝛿 ∈ [0,∆]. (4.2)

The control cycle length is 𝑇𝑐 = 𝑁∆ = |𝒢|𝜆∆.

Theorem 4.1. The above balanced-cycle protocol performs bounded-strength decoupling.

Proof. Since L is a balanced cycle, `g∙ ¯s−→ occurs exactly 𝜇¯s times for every `g, ¯s pair. Thus
𝑢¯s(𝛿)𝑈`g appears exactly 𝜇¯s times in the protocol for each ¯s, `g, and so we have, for any

3Here the reader may prefer to equivalently think of the Abelian group as {1, 𝑧, 𝑥, 𝑦 = 𝑥𝑧 = 𝑧𝑥} with
generating set 𝑆4 = {𝑧, 𝑥}. Then we can use S = {𝑧(1), 𝑥(1), . . . 𝑧(ℓ), 𝑥(ℓ)} and 𝜌(𝑥) = 𝑋, 𝜌(𝑦) = 𝑌, and
𝜌(𝑧) = 𝑍. Be aware, however, that the group operation used throughout the chapter is denoted by + rather
than by multiplication, since it is inherited from the finite field.

4Schur’s lemma guarantees this directly when ℓ = 1. But then it also applies for ℓ = 2 since then for
any matrix 𝐴 =

∑︀
𝑖𝐵𝑖 ⊗ 𝐶𝑖, we have Π𝒢(𝐴) =

1
|𝒢|

∑︀
𝑖

∑︀
𝑎1,𝑎2∈F𝑞 𝑈

†
𝑎1
𝐵𝑖𝑈𝑎1 ⊗ 𝑈†

𝑎2
𝐶𝑖𝑈𝑎2 ∝

∑︀
𝑖 Tr𝐵𝑖Tr𝐶𝑖 =

Tr
∑︀

𝑖𝐵𝑖 ⊗ 𝐶𝑖 = Tr𝐴, and similarly for larger ℓ.
5up to phase, since 𝜌 is a projective representation; since we will only ever conjugate by 𝑈𝑐, the overall

phase is irrelevant and we shall simply ignore it.
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traceless 𝑑ℓ × 𝑑ℓ Hamiltonian 𝐻,

𝐻̄(0) =
1

𝑇𝑐

∫︁ 𝑇𝑐

𝑡=0
𝑈𝑐(𝑡)

†𝐻𝑈𝑐(𝑡)𝑑𝑡

=
1

𝑇𝑐

∑︁

`g
𝑈 †`g

[︃∑︁

¯s
𝜇¯s
∫︁ Δ

𝛿=0
𝑢¯s(𝛿)†𝐻𝑢¯s(𝛿)𝑑𝛿

]︃
𝑈`g

= Π𝒢
(︁
𝐹S (𝐻)

)︁

where Π𝒢 is defined in Eq. (4.1) and 𝐹S is defined by

𝐹S (𝐻) =
∑︁

¯s

𝜇¯s
𝜆∆

∫︁ Δ

𝛿=0
𝑢¯s(𝛿)†𝐻𝑢¯s(𝛿)𝑑𝛿 . (4.3)

Recall that Π𝒢 kills traceless matrices. Assuming that 𝐻 is traceless, and observing that
𝐹S is trace-preserving, we have that Π𝒢

(︁
𝐹S (𝐻)

)︁
= 0. We conclude that 𝐻̄(0) = 0, i.e. the

protocol succeeds at decoupling.

Remark 4.1. For simplicity, we have assumed that 𝜌 is irreducible. Then this protocol
works for any traceless time-independent 𝐻, even if 𝐻 is unknown. It is possible to define
protocols in which 𝜌 is not irreducible, in which case Π𝒢 need not kill all traceless matrices.
However, in such a case, one must take special care to ensure that Π𝒢 still kills 𝐹S (𝐻) for
the Hamiltonians of interest. See Chapter 3 for examples in a similar context, as well as
Example 4.3 later in this chapter.

Remark 4.2. Although Protocol 4.1 performs bounded-strength decoupling, it would gen-
erally not be an efficient protocol were it applied to the entire system (i.e. if ℓ were the
number of qudits of the entire system). Assuming that 𝜌 is irreducible, the representa-
tion 𝜌⊗ℓ : 𝒢 → 𝒰(𝑑ℓ) necessitates that |𝒢|, and therefore 𝑇𝑐, are exponential in ℓ. Indeed,
suppose we have a representation from 𝒢 to 𝒰(𝐷) such that for any 𝐷 × 𝐷 matrix 𝐴,
Π𝒢(𝐴) = Tr(𝐴)

𝐷 1𝐷 as we used in Theorem 4.1. Consider sending the bipartite entangled
state |𝜓⟩ = 1√

𝐷

∑︀𝐷
𝑗=1 |𝑗⟩ ⊗ |𝑗⟩, or more precisely, Ψ = |𝜓⟩⟨𝜓|, through the channel ℐ ⊗ Π𝒢

(where ℐ is the identity channel on a 𝐷-dimensional space) obtaining

∑︁

`g∈𝒢

1

|𝒢|(1𝐷 ⊗𝑈
†`g)Ψ(1𝐷 ⊗𝑈`g) = (ℐ ⊗Π𝒢)(Ψ) =

1

𝐷2
1𝐷 ⊗1𝐷 =

1

𝐷2
1𝐷2 .

The matrix rank of the right-hand side is 𝐷2. Using the fact that rank(𝐴+𝐵) 6 rank(𝐴) +

rank(𝐵) and that for each `g, rank( 1
|𝒢|(1⊗𝑈

†`g)Ψ(1⊗𝑈`g)) = rank(Ψ) = 1, the rank of the left-

hand side is at most |𝒢|; thus, |𝒢| > 𝐷2. Therefore, for the representation 𝜌⊗ℓ : 𝒢 → 𝒰(𝑑ℓ)
to succeed in the proof of Theorem 4.1, we require that |𝒢| > 𝑑2ℓ, which is exponential in
ℓ. Incidentally, by considering the case of ℓ = 1, we have justified why we could not have
chosen 𝑞 less than 𝑑2 in our irreducible representation 𝜌 : F𝑞 → 𝒰(𝑑).

Observe that the key to this protocol working is the fact that each 𝑢¯s(𝛿)𝑈`g shows up an

equal number of times, independent of `g, i.e. ∀¯s ∈ S ∃𝜇𝑠 > 0 such that ∀`g ∈ 𝒢, `g∙ ¯s−→ occurs
𝜇¯s times (independent of `g). In an Eulerian cycle, 𝜇¯s = 1 for every ¯s, which is certainly
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sufficient. All else being equal, given the choice between Eulerian and other balanced cycles,
we would choose Eulerian cycles as they will minimize 𝑁 and therefore 𝑇𝑐. However, we will
see that when considering the composite properties of a system (specifically that interactions
are local), we will be able to exploit the notion of balanced cycles to come up with a much
more efficient protocol.

4.4 Balanced-cycle Orthogonal Arrays

In Sec. 4.2 and Fig. 4-1, we indicated how we view our decoupling scheme as an array.
For the protocol to be efficient, we shall ensure that this array corresponds to what we
call a balanced-cycle orthogonal array (BOA). A BOA is a special type of orthogonal array
(OA), which we first define. We refer the reader to [11] for a thorough introduction to OAs,
particularly their relationship to linear codes (of which we shall later make use).

For notational consistency, we point out that throughout the remainder of this chapter
we adopt the notation that 𝒢 and S refer specifically to the group Fℓ𝑞 and a generating set
for Fℓ𝑞, respectively. Elements of 𝒢 will be denoted using script `g, elements of S will be

denoted using script ¯s, and cycles on 𝒢 will be denoted L. When other groups (such as F𝑞
or F𝑛𝑞 ) are being considered, other notation (such as 𝑔, 𝑚, 𝑆, 𝑠 and ℒ) will be used instead.

Definition 4.4 (Orthogonal array). An 𝑂𝐴𝜆(𝑁,𝑛, 𝑞, ℓ) orthogonal array on the alphabet
F𝑞 is an 𝑛×𝑁 array where each of the 𝑁 columns is a vector from F𝑛𝑞 such that every ℓ×𝑁
subarray (obtained by only considering a selection of just ℓ of the 𝑛 rows) contains each
possible ℓ-tuple of elements of F𝑞 (i.e. contains each 𝑐 ∈ Fℓ𝑞) precisely 𝜆 times as a column.
The number ℓ is called the strength of the OA.

Remark 4.3. To relate these numbers to those appearing elsewhere in this chapter,

∙ 𝑁 will correspond to number of steps in the decoupling protocol (i.e. the length of
our balanced cycle),

∙ 𝑛 will correspond to the number of 𝑑-dimensional qudits describing the system,

∙ 𝑞 = 𝑑2 (e.g. for qubits, 𝑑 = 2 and 𝑞 = 4),

∙ ℓ is the locality of the Hamiltonian (e.g. for pairwise interactions, ℓ = 2), and

∙ 𝜆 = 𝑁/𝑞ℓ will be the same 𝜆 as in our discussion of balanced cycles, 𝜆 =
∑︀

¯s 𝜇¯s.

Remark 4.4. Note that the order of the columns in the OA is irrelevant to whether the
array is an OA. Moreover, if 𝐴 = [⃗𝑎𝑖] is an 𝑂𝐴𝜆(𝑁,𝑛, 𝑞, ℓ) with columns 𝑎⃗1, . . . , 𝑎⃗𝑁 then
the matrix 𝐴′, whose columns consist of precisely 𝑟 copies of each 𝑎⃗𝑖 (in any order), is an
𝑂𝐴𝑟𝜆(𝑟𝑁, 𝑛, 𝑞, ℓ). Note, however, that while the order of the columns does not affect the OA
property of the array, when defining balanced-cycle orthogonal arrays (which we do next),
we will be highly concerned with the order of the columns in the array.

An example of an 𝑂𝐴2(8, 7, 2, 2) is shown in Fig. 4-3. Orthogonal arrays have been
used to construct bang-bang decoupling schemes (see [4–6] and [3, Chapter 15]). In order to
construct a bounded-strength scheme, we introduce the notion of a balanced-cycle orthogonal
array, defined as follows.
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Figure 4-3: Example of an 𝑂𝐴2(8, 7, 2, 2), i.e. an 𝑂𝐴𝜆(𝑁,𝑛, 𝑞, ℓ) with 𝑁 = 8 columns and
𝑛 = 7 rows on the finite field F𝑞 = Z2 of order 𝑞 = 2. Any subarray defined by any ℓ = 2
rows contains each 2-tuple precisely 𝜆 = 2 times. For example, rows 5 and 7 (highlighted)
form a 2 × 8 subarray in which

(︀
0
0

)︀
,
(︀
0
1

)︀
,
(︀
1
0

)︀
, and

(︀
1
1

)︀
each occur precisely twice. Note that

typically in this chapter, 𝑞 = 𝑑2 (for example, for qubits 𝑞 = 4), but for simplicity, the
example in this figure uses 𝑞 = 2.

Figure 4-4: Example of a 𝐵𝑂𝐴(24, 7, 2, 2), i.e. a 𝐵𝑂𝐴(𝑁,𝑛, 𝑞, ℓ) with 𝑁 = 24 columns and
𝑛 = 7 rows on the finite field F𝑞 = Z2 of order 𝑞 = 2. Any subarray defined by any ℓ = 2
rows defines a balanced cycle on the Cayley graph Γ(𝒢,S ) of 𝒢 = Fℓ𝑞 = Z2

2 with respect to
some generating set S (which may depend on the subarray). For example, rows 5 and 7
(highlighted) form a 2 × 24 subarray that defines the balanced cycle shown in Fig. 4-2(b).
The circled integers (red) correspond to the steps taken by the balanced cycle as shown in
that figure. Note that typically in this chapter, 𝑞 = 𝑑2 (for example, for qubits 𝑞 = 4), but
for simplicity, the BOA example shown here uses 𝑞 = 2. The method by which this BOA
was constructed is detailed in Example 4.1 of Sec. 4.8.

Definition 4.5 (Balanced-cycle orthogonal array). A 𝐵𝑂𝐴(𝑁,𝑛, 𝑞, ℓ) balanced-cycle

orthogonal array on the alphabet F𝑞 is an 𝑛×𝑁 array, 𝐴, where each of the 𝑁 columns is a
vector from F𝑛𝑞 such that every ℓ×𝑁 subarray (obtained by only considering a selection of
just ℓ of the 𝑛 rows) defines a balanced cycle on the Cayley graph of 𝒢 = Fℓ𝑞 with respect to
some generating set for 𝒢 (which may depend on the subarray). Specifically, if the entries
of 𝐴 are denoted 𝑎𝑖𝑗 (with 1 6 𝑖 6 𝑛 and 0 6 𝑗 6 𝑁 − 1), then for every choice of ℓ distinct
integers 𝑖1, . . . , 𝑖ℓ ∈ {1, . . . , 𝑛}, there is a generating set S for 𝒢 (which may, in general,
depend on 𝑖1, . . . , 𝑖ℓ) such that if `g

𝑗
= (𝑎𝑖1𝑗 , . . . , 𝑎𝑖ℓ𝑗)

𝑇 denotes the 𝑗th column of 𝐴 restricted

to rows 𝑖1, . . . , 𝑖ℓ, then L𝒢 =
(︁

`g
0
, . . . , `g

𝑁−1

)︁
defines a balanced cycle on Γ(𝒢,S ).

An example of a BOA is shown in Fig. 4-4. We defer the proof that BOAs exist to
Sec. 4.5. The remainder of the current section defines a decoupling protocol based on BOAs
and proves that it works to decouple ℓ-local Hamiltonians in 𝑛 qudit systems (ℓ 6 𝑛).
Working with ℓ qudits (rather than 𝑛 qudits), along with the promise that 𝐻 is ℓ-local, will
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enable us to give an efficient protocol.

Protocol 4.2 (Efficient, bounded-strength balanced-cycle decoupling based on

BOAs). Let 𝐴 = [⃗𝑎𝑗 ]𝑗=0,...,𝑁−1 be a 𝐵𝑂𝐴(𝑁,𝑛, 𝑞, ℓ) whose columns are denoted by the
vectors 𝑎⃗𝑗 = (𝑎1𝑗 , . . . , 𝑎𝑛𝑗)

𝑇 , where 𝑎𝑖𝑗 ∈ F𝑞 is the (𝑖, 𝑗) entry of 𝐴. For 𝑗 = 1, . . . , 𝑁 , let
𝑏⃗𝑗 = 𝑎⃗𝑗 − 𝑎⃗𝑗−1 be the transitions between the columns, treating 𝑎⃗𝑁 = 𝑎⃗0 = 0.

For 𝑗 = 1, . . . , 𝑁 , set 𝑈𝑐(0) = 1 and

𝑈𝑐

(︁
(𝑗 − 1)∆ + 𝛿

)︁
= 𝑢

𝑏⃗𝑗
(𝛿)𝑈𝑐

(︁
(𝑗 − 1)∆

)︁
, 𝛿 ∈ [0,∆];

note that this implies that 𝑈𝑐(𝑗∆) = 𝑈𝑎⃗𝑗 (for 𝑗 = 0, . . . , 𝑁). The control cycle length is
thus 𝑇𝑐 = 𝑁∆.

Theorem 4.2. The above protocol performs bounded-strength decoupling.

Proof. 𝐻 is an ℓ-local Hamiltonian, 𝐻 =
∑︀

𝑘𝐻𝑘 with each 𝐻𝑘 acting non-trivially on at
most ℓ qudits. Consider a term 𝐻𝑘, which acts non-trivially only on qudits denoted 𝑖1, . . . , 𝑖ℓ
and write 𝐻𝑘 = ℎ𝑘 ⊗ 1𝑛−ℓ, where ℎ𝑘 is understood to be a 𝑑ℓ × 𝑑ℓ matrix acting only on
these ℓ qudits and 1𝑛−ℓ is the identity matrix on the other 𝑛 − ℓ qudits. By definition of
a BOA, the ℓ ×𝑁 subarray of 𝐴 restricted to rows 𝑖1, . . . , 𝑖ℓ defines a balanced cycle L on
Γ(𝒢,S ) where S is some generating set of 𝒢 = Fℓ𝑞. The idea of the proof is to observe that
the protocol involving the columns 𝑎⃗𝑗 for decoupling 𝐻𝑘 is equivalent to a protocol involving
the subarray’s columns for decoupling ℎ𝑘; since the subarray defines a balanced cycle, we
can then invoke Protocol 4.1 to successfully decouple ℎ𝑘 and therefore 𝐻𝑘.

Let `g
𝑗

= (𝑎𝑖1𝑗 , . . . , 𝑎𝑖ℓ𝑗)
𝑇 denote the 𝑗th column of 𝐴 restricted to rows 𝑖1, . . . , 𝑖ℓ and

let ¯s𝑗 = `g
𝑗
− `g

𝑗−1
= (𝑏𝑖1𝑗 , . . . , 𝑏𝑖ℓ𝑗)

𝑇 , where 𝑏𝑖𝑗 is the 𝑖th entry of 𝑏⃗𝑗 . Then the cycle L is

represented as L𝒢 =
(︁

`g
0
, . . . , `g

𝑁−1

)︁
and LS = (¯s1, . . . , ¯s𝑁 ).

As in the proof of Theorem 4.1, we are interested in 𝑈𝑐(𝑡)†𝐻𝑘𝑈𝑐(𝑡). The control unitary
at time 𝑡 = (𝑗 − 1)∆ + 𝛿 is

𝑈𝑐

(︁
(𝑗 − 1)∆ + 𝛿

)︁
= 𝑢

𝑏⃗𝑗
(𝛿)𝑈𝑐

(︁
(𝑗 − 1)∆

)︁

= 𝑢
𝑏⃗𝑗

(𝛿)𝑈𝑎⃗𝑗−1

=
(︀
𝑢𝑏1𝑗 (𝛿)⊗ · · · ⊗ 𝑢𝑏𝑛𝑗

(𝛿)
)︀ (︁
𝑈𝑎1(𝑗−1)

⊗ · · · ⊗ 𝑈𝑎𝑛(𝑗−1)

)︁
.

Thus, when conjugating 𝐻𝑘 = ℎ𝑘 ⊗ 1𝑛−ℓ by 𝑈𝑐
(︀
(𝑗 − 1)∆ + 𝛿

)︀
, all of the unitaries not

acting on the ℓ-qudit subspace of ℎ𝑘 will commute through 𝐻𝑘 and cancel, leaving only
those corresponding to the ℓ-qudit subspace, i.e. those corresponding to the labels ¯s𝑗 and
`g
𝑗
. Explicitly,

𝑈𝑐

(︁
(𝑗 − 1)∆ + 𝛿

)︁†
𝐻𝑘 𝑈𝑐

(︁
(𝑗 − 1)∆ + 𝛿

)︁

=

[︂(︁
𝑈 †
𝑎𝑖1(𝑗−1)

⊗ · · · ⊗ 𝑈 †
𝑎𝑖ℓ(𝑗−1)

)︁(︁
𝑢𝑏𝑖1𝑗 (𝛿)

† ⊗ · · · ⊗ 𝑢𝑏𝑖ℓ𝑗 (𝛿)
†
)︁
ℎ𝑘

(︁
𝑢𝑏𝑖1𝑗 (𝛿)⊗ · · · ⊗ 𝑢𝑏𝑖ℓ𝑗 (𝛿)

)︁(︁
𝑈𝑎𝑖1(𝑗−1)

⊗ · · · ⊗ 𝑈𝑎𝑖ℓ(𝑗−1)

)︁]︂
⊗ 1𝑛−ℓ

= 𝑈 †`g
𝑗−1

𝑢¯s𝑗 (𝛿)† ℎ𝑘 𝑢¯s𝑗 (𝛿)𝑈`g
𝑗−1

⊗ 1𝑛−ℓ .
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Thus, the protocol of applying 𝑈𝑐 to 𝐻𝑘 is effectively the same as applying a protocol
𝑢¯s𝑗 (𝛿)𝑈`g

𝑗−1

to ℎ𝑘, following the balanced cycle L. Since this is precisely the scheme defined

in Protocol 4.1 applied to ℎ𝑘 (see Eq. (4.2)), we conclude from Theorem 4.1 that it decouples
ℎ𝑘. Consequently, 𝐻̄

(0)
𝑘 = ℎ̄

(0)
𝑘 ⊗ 1𝑛−ℓ = 0. This occurs for every term 𝐻𝑘 in 𝐻 =

∑︀
𝑘𝐻𝑘,

whence 𝐻 itself is decoupled: 𝐻̄(0) =
∑︀

𝑘 𝐻̄
(0)
𝑘 = 0.

Remark 4.5. Once we have a BOA scheme that can decouple a system of 𝑛 qudits, the
same scheme can be used (with the same BOA and therefore same length 𝑁) for a system
of 𝑛′ < 𝑛 qudits. This can be accomplished by simply ignoring 𝑛 − 𝑛′ of the qudits, i.e.
by having 𝑈𝑐 act as 1 on these 𝑛− 𝑛′ extra qudits (rather than as dictated by the original
protocol). The proof of Theorem 4.2 remains unaffected because 𝐻𝑘 acts trivially on these
extra qudits, i.e. they are not acted upon by ℎ𝑘.

Theorem 4.2 showed that decoupling protocols based on BOAs work, with control cycle
length proportional to the BOA parameter 𝑁 . We next show that BOAs can indeed be con-
structed and, moreover, that the construction gives rise to an efficient decoupling protocol,
in the sense that 𝑁 does not increase exponentially with 𝑛.

4.5 Construction of balanced-cycle orthogonal arrays

The existence of balanced-cycle orthogonal arrays follows naturally from constructions of
orthogonal arrays generated using classical linear codes, which we shall define shortly. We
first give a brief outline of our BOA construction. This construction is via the generator
matrix 𝐺 of a linear code, which is a linear mapping from F𝑘𝑞 to F𝑛𝑞 for some 𝑘 6 𝑛. If we
enumerate all elements of F𝑘𝑞 in an arbitrary order and consider their image under 𝐺, this
will form an OA of strength ℓ (for an appropriately chosen 𝑘). To obtain a BOA, we do
this enumeration according to the prescription of an Eulerian cycle on F𝑘𝑞 . In doing so, we
can guarantee that we always obtain a balanced cycle when we consider any submatrix of ℓ
rows, ultimately ensuring that any ℓ-local Hamiltonian term on those corresponding qudits
will be decoupled. We now prove this, starting with a definition of a classical linear code.

Definition 4.6 (Classical linear code). A classical linear [𝑛, 𝑘]𝑞 code, 𝐶, is a 𝑘-dimensional
subspace of the vector space F𝑛𝑞 . For any vector 𝑥 = (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ F𝑛𝑞 , define wt(𝑥) =
|{𝑖 ∈ {1, . . . , 𝑛} : 𝑥𝑖 ̸= 0}|. The distance of a linear code 𝐶 is defined to be min{wt(𝑐) :
𝑐 ∈ 𝐶, 𝑐 ̸= 𝑜}, where 𝑜 denotes the zero vector. An [𝑛, 𝑘]𝑞 linear code can be described by a
generator matrix 𝐺 of size 𝑛× 𝑘 with entries from F𝑞. 𝐺 maps the vectors 𝑚 ∈ F𝑘𝑞 onto the
elements (codewords) of 𝐶 so that 𝐶 = 𝐺[F𝑘𝑞 ] = {𝐺𝑚 ∈ F𝑛𝑞 : 𝑚 ∈ F𝑘𝑞}.

The dual code 𝐶⊥ of 𝐶 is defined by 𝐶⊥ = {𝑦 ∈ F𝑛𝑞 : 𝑥 · 𝑦 = 0 ∀𝑥 ∈ 𝐶} with the dot
product 𝑥 ·𝑦 =

∑︀𝑛
𝑖=1 𝑥𝑖𝑦𝑖. The dual code is also a classical linear code, namely an [𝑛, 𝑛−𝑘]𝑞

code with some distance 𝛿⊥ that we will refer to as the dual distance of 𝐶. Orthogonal
arrays can be constructed from linear codes, as the following theorem [11, Theorem 4.6]
establishes.

Theorem 4.3 (OAs from linear codes). Let 𝐶 be a linear [𝑛, 𝑘]𝑞 code with dual distance
𝛿⊥. The 𝑛 × 𝑞𝑘 matrix [𝐺𝑚]𝑚∈F𝑘

𝑞
, whose columns are the 𝑞𝑘 vectors 𝐺𝑚 ∈ F𝑛𝑞

(∀𝑚 ∈ F𝑘𝑞 ), is an 𝑂𝐴(𝑞𝑘, 𝑛, 𝑞, ℓ) with strength ℓ = 𝛿⊥ − 1.
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Figure 4-5: Names and relationships between various groups and cycles in the BOA con-
struction. The graph is a schematic of a Cayley graph. As explained in the text, the BOA,
𝐴𝐺ℒ, is the array form of 𝐺ℒ, which is the result of mapping an Eulerian cycle ℒ under the
linear code generating matrix 𝐺. As a BOA, 𝐴𝐺ℒ has the property that if one considers a
subarray of ℓ rows, the result describes a balanced cycle. Specifically, let 𝐼 ⊂ {1, 2, . . . , 𝑛}
be a subset of ℓ indices. (𝐺𝑚)𝐼 denotes the ℓ-tuple of elements of 𝐺𝑚 (itself an 𝑛-tuple)
corresponding to the indices 𝐼. The cycle L, composed of nodes (𝐺𝑚)𝐼 (in the same order
in which ℒ was composed of 𝑚), is shown to be a balanced cycle.

Let 𝐶 be an [𝑛, 𝑘]𝑞 with dual distance 𝛿⊥ = ℓ+ 1 and generating matrix 𝐺. Let ℒ be an
Eulerian cycle on the Cayley graph Γ(F𝑘𝑞 , 𝑆

(𝑘)
𝑞 ), where 𝑆(𝑘)

𝑞 is a generating set for F𝑘𝑞 ; thus,
we can write ℒF𝑘

𝑞
= (𝑚0, . . . ,𝑚𝑁−1) with transitions ℒ

𝑆
(𝑘)
𝑞

= (𝑠1, . . . , 𝑠𝑁 ) and 𝑁 = 𝑞𝑘 |𝑆(𝑘)
𝑞 |.

Because 𝑑 is a prime power, say 𝑑 = 𝑝𝑒 for some prime 𝑝, the minimal generating set is of
size |𝑆(𝑘)

𝑞 | = 2𝑘𝑒. We are interested in the image of the cycle in the codespace; thus, consider
the Eulerian cycle, denoted 𝐺ℒ, on Γ(𝐺[F𝑘𝑞 ], 𝐺[𝑆

(𝑘)
𝑞 ]), where 𝐺[F𝑘𝑞 ] = 𝐶 ⊂ F𝑛𝑞 is the image

of F𝑘𝑞 under 𝐺, i.e. is the codespace. In other words, 𝐺ℒF𝑘
𝑞

= (𝐺𝑚0, . . . , 𝐺𝑚𝑁−1) and
𝐺ℒ

𝑆
(𝑘)
𝑞

= (𝐺𝑠1, . . . , 𝐺𝑠𝑁 ).

To avoid possible confusion, we emphasize here that although we will use 𝐺ℒ to con-
struct a BOA, neither ℒ nor 𝐺ℒ will serve as the balanced cycle to which Theorem 4.1
applies (which is why we have used the notation ℒ rather than L). Rather, for our efficient
decoupling scheme, we construct an array 𝐴𝐺ℒ, dictated by 𝐺ℒ, and prove that the result is
a BOA by showing that if we consider any subarray of ℓ rows, it gives rise to some balanced
cycle L on 𝒢 = Fℓ𝑞. The notation and relationships of the various groups and cycles used in
this chapter is sketched in Fig. 4-5.

We turn 𝐺ℒ into an array 𝐴𝐺ℒ in the obvious way as follows. Each element 𝐺𝑚𝑗 of
𝐺ℒF𝑘

𝑞
is a column vector in F𝑛𝑞 . Therefore we may associate to 𝐺ℒ the 𝑛 × 𝑁 matrix

𝐴𝐺ℒ = [𝐺𝑚]𝑚∈ℒF𝑘𝑞
with elements 𝑎𝑖𝑗 = (𝐺𝑚𝑗)𝑖, so that the 𝑗th column of 𝐴𝐺ℒ is the vector

𝐺𝑚𝑗 , and the columns are arranged in the order of the Eulerian cycle 𝐺ℒ. Note that since
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we assumed that Eulerian cycles always start with the (additive) identity element, i.e. the
zero vector 𝑜 ∈ F𝑘𝑞 , and since 𝐺 maps the zero vector to the zero vector (𝐺𝑜 = 𝑜 ∈ F𝑛𝑞 ), the
first column of 𝐴𝐺ℒ is the zero vector of F𝑛𝑞 .

Lemma 4.4. 𝐴𝐺ℒ is an 𝑂𝐴𝑁/𝑞ℓ(𝑁,𝑛, 𝑞, ℓ) with 𝑁 = 𝑞𝑘 |𝑆(𝑘)
𝑞 |.

Proof. By Theorem 4.3, an array whose 𝑞𝑘 columns are the vectors of the codespace is an
OA. The columns of 𝐴𝐺ℒ are precisely |𝑆(𝑘)

𝑞 | copies of each vector in the codespace, and
therefore (using Remark 4.4), 𝐴𝐺ℒ is an 𝑂𝐴.

Let 𝑠 ∈ 𝑆(𝑘)
𝑞 . 𝐺𝑠 ∈ F𝑛𝑞 , so 𝐺𝑠 =

(︁
(𝐺𝑠)1, . . . , (𝐺𝑠)𝑛

)︁𝑇
, where we use the notation (𝐺𝑠)𝑖 ∈

F𝑞 to denote the 𝑖th component of the column vector 𝐺𝑠. Fix ℓ distinct numbers 𝑖1, . . . , 𝑖ℓ ∈
{1, . . . , 𝑛} and write 𝐼 = {𝑖1, . . . , 𝑖ℓ}. Let (𝐺𝑠)𝐼 denote the ℓ-tuple

(︁
(𝐺𝑠)𝑖1 , . . . , (𝐺𝑠)𝑖ℓ

)︁𝑇
.

Let S =
{︁

(𝐺𝑠)𝐼 : 𝑠 ∈ 𝑆(𝑘)
𝑞

}︁
.

Lemma 4.5. S is a generating set for 𝒢 = Fℓ𝑞.

Proof. Let `g ∈ 𝒢. By definition, since 𝐴𝐺ℒ = [𝐺𝑚]𝑚∈ℒF𝑘𝑞
is an OA of strength ℓ, the

ℓ × 𝑁 subarray obtained by only considering rows 𝑖1, . . . , 𝑖ℓ contains each possible ℓ-tuple
of elements of F𝑞, and therefore contains `g. Thus, ∃ 𝐺𝑚 such that (𝐺𝑚)𝐼 = `g. Since

𝑆
(𝑘)
𝑞 is a generating set for F𝑘𝑞 , ∃ 𝑢1, . . . , 𝑢𝑟 ∈ 𝑆

(𝑘)
𝑞 such that 𝑚 = 𝑢1 + · · · + 𝑢𝑟, and

therefore 𝐺𝑚 = 𝐺𝑢1 + · · · + 𝐺𝑢𝑟. But then (𝐺𝑢𝑗)𝐼 ∈ S for every 𝑗 = 1, . . . , 𝑟 and
`g = (𝐺𝑚)𝐼 = (𝐺𝑢1)𝐼 + · · ·+ (𝐺𝑢𝑟)𝐼 , whence S generates 𝒢.

Recall 𝐴𝐺ℒ = [𝐺𝑚]𝑚∈ℒF𝑘𝑞
and consider the ℓ × 𝑁 submatrix 𝐴ℓ = [`g

𝑗
] of 𝐴𝐺ℒ, whose

𝑗th column is `g
𝑗

= (𝐺𝑚𝑗)𝐼 ∈ 𝒢. Define the ordered list L𝒢 =
(︁

`g
0
, . . . , `g

𝑁−1

)︁
. Although L

depends on 𝐼, we suppress mention of this for notational simplicity.

Lemma 4.6. L is a balanced cycle on Γ(𝒢,S ).

Proof. Each `g ∈ 𝒢 is present in L𝒢 an equal number of times because 𝐴𝐺ℒ is an OA of
strength ℓ. The transitions in this cycle are ¯s𝑗 = `g

𝑗
− `g

𝑗−1
= (𝐺𝑚𝑗)𝐼−(𝐺𝑚𝑗−1)𝐼 = (𝐺𝑠𝑗)𝐼 ∈

S , so the transition representation LS = (¯s1, . . . , ¯s𝑁 ) consists of generators from S ; L is
therefore a cycle on the Cayley graph Γ(𝒢,S ). Moreover, because ℒ is an Eulerian cycle
and 𝐴𝐺ℒ is an OA, L is a balanced cycle (although not an Eulerian cycle): informally, each

𝐺𝑚∙𝐺𝑠−−→ occurs in 𝐺ℒ an equal (non-zero) number of times (namely once, independent of
𝐺𝑚) for each 𝐺𝑠, so each `g∙ ¯s−→ occurs in L an equal (non-zero) number of times (independent
of `g = (𝐺𝑚)𝐼 , since 𝐴𝐺ℒ is an OA) for each ¯s = (𝐺𝑠)𝐼 .

Explicitly, consider any `g ∈ 𝒢 and ¯s ∈ S . Let 𝑀`g = {𝑚 ∈ F𝑘𝑞 : (𝐺𝑚)𝐼 = `g}. ℒF𝑘
𝑞
is an

Eulerian cycle so each element in F𝑘𝑞 shows up precisely |𝑆(𝑘)
𝑞 | times in ℒF𝑘

𝑞
. In particular,

therefore, each 𝑚 ∈ 𝑀`g appears precisely |𝑆(𝑘)
𝑞 | times in ℒF𝑘

𝑞
, and consequently, `g shows

up in L precisely |𝑀`g||𝑆(𝑘)
𝑞 | times. But 𝐴𝐺ℒ is an OA of strength ℓ, so |𝑀`g||𝑆(𝑘)

𝑞 | must
then be independent of `g, and therefore |𝑀`g| is also independent of `g. Since ¯s ∈ S , let

𝑆¯s = {𝑠 ∈ 𝑆(𝑘)
𝑞 : (𝐺𝑠)𝐼 = ¯s}. This set is non-empty by definition of S . In general, |𝑆¯s|
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may depend on ¯s. Now, ∀𝑚 ∈𝑀`g and ∀𝑠 ∈ 𝑆¯s, the Eulerian property of ℒ guarantees that

𝐺𝑚∙𝐺𝑠−−→ occurs precisely once in 𝐺ℒ. Therefore, `g∙ ¯s−→ occurs in L precisely |𝑆¯s||𝑀`g| > 1

times, which is independent of `g. Thus L is a balanced cycle.

Together, the above lemmas prove the existence of BOAs and how to construct them
from classical linear codes.

Theorem 4.7. Let 𝐶, ℒ, and 𝐴𝐺ℒ be as above, i.e. 𝐶 is an [𝑛, 𝑘]𝑞 code with dual dis-
tance 𝛿⊥ = ℓ + 1 and generating matrix 𝐺, ℒ is an Eulerian cycle on the Cayley
graph Γ(F𝑘𝑞 , 𝑆

(𝑘)
𝑞 ), written ℒF𝑘

𝑞
= (𝑚0, . . . ,𝑚𝑁−1) and ℒ

𝑆
(𝑘)
𝑞

= (𝑠1, . . . , 𝑠𝑁 ), and

𝐴𝐺ℒ = [𝐺𝑚]𝑚∈ℒF𝑘𝑞
is an OA whose columns are the vectors 𝐺𝑚𝑗 . Then 𝐴𝐺ℒ is a

𝐵𝑂𝐴(𝑁,𝑛, 𝑞, ℓ) with 𝑁 = 𝑞𝑘|𝑆(𝑘)
𝑞 |.

Proof. For every choice of ℓ distinct integers 𝐼 = {𝑖1, . . . , 𝑖ℓ} ⊂ {1, . . . , 𝑛}, the set S ={︁
(𝐺𝑠)𝐼 : 𝑠 ∈ 𝑆(𝑘)

𝑞

}︁
is a generating set for 𝒢 (by Lemma 4.5) such that if `g

𝑗
denotes the

𝑗th column of 𝐴𝐺ℒ restricted to rows 𝑖1, . . . , 𝑖ℓ, then (by Lemma 4.6) L𝒢 =
(︁

`g
0
, . . . , `g

𝑁−1

)︁

defines a balanced cycle on Γ(𝒢,S ).

For 𝑛 interacting qudits of dimension 𝑑 = 𝑝𝑒 (for some prime 𝑝 and positive integer 𝑒)
that obey an ℓ-local Hamiltonian, this construction therefore allows

𝑁 = 𝑞𝑘|𝑆(𝑘)
𝑞 | = 𝑞𝑘2𝑘𝑒 (4.4)

where 𝑘 is the dimension of the code used and 𝑞 = 𝑑2. Observe that the BOA decoupling
protocol (Protocol 4.2) for this BOA construction has a control cycle length of

𝑇𝑐 = 𝑁∆ = 𝑑2𝑘2𝑘𝑒∆

where ∆ is some fixed length of time. For example, in the qubit (𝑑 = 2) case discussed
above, |𝑆(𝑘)

4 | = 2𝑘, whence 𝑇𝑐 = 𝑁∆ with 𝑁 = (2𝑘)4𝑘. To maximize efficiency for a given
𝑛 and ℓ, one should select a code that minimizes 𝑘 (equivalently, select a dual code that
maximizes 𝑘⊥ = 𝑛− 𝑘).

There exist many good families of classical linear codes. For instance, for 2-local in-
teractions, we can (as was done in [12] for OAs) rely on [𝑛, 𝑘]𝑞 Hamming codes with dual
distance 3 such that 𝑘 = log𝑞

(︀
(𝑞 − 1)𝑛 + 1

)︀
; our scheme then has 𝑁 scaling like 𝑛 log(𝑛).

This protocol is therefore much more efficient than a naive protocol of applying balanced-
cycle decoupling (including Eulerian decoupling) without exploiting the ℓ-local structure of
the Hamiltonian, which would have a control cycle length that scales exponentially with 𝑛.
It is also more efficient than the method of [7], which required 𝑁 = 𝑑4𝑘, i.e. whose scaling
for this case (ℓ = 2, using Hamming codes) is quadratic in 𝑛. Next, we address codes for
BOA construction with values of ℓ greater than 2.

4.6 BOA decoupling schemes from BCH codes

In this section we show how to construct schemes that achieve decoupling for ℓ-local Hamil-
tonians on ℋ ∼= (C𝑑)⊗𝑛 for arbitrary ℓ, 𝑛, and prime power 𝑑. Besides the machinery of
balanced-cycle orthogonal arrays (BOAs) that was introduced in the previous sections, our
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construction relies on BCH codes as a particular vehicle to construct good BOAs. The
choice of BCH codes results from the fact that they are among the best known codes for the
particular situation where the distance is a fixed, small number and the goal is to maximize
the overall code dimension. Using the dual of a BCH code when constructing the corre-
sponding orthogonal arrays, we obtain schemes with a designed OA strength (i.e. locality
ℓ) while having a small 𝑁 in the corresponding decoupling protocol. We begin by briefly
recalling some basics about BCH codes; for more details on finite fields and BCH codes see,
for example, the textbooks [13–15].

Definition 4.7 (BCH code). Let 𝛼 be a primitive 𝑛-th root of unity in the finite field
F𝑞𝑚 , where 𝑞 is a prime power, 𝑛 > 2, and 𝑚 > 1. A BCH code over F𝑞 of length 𝑛 and
designed distance 𝐷, where 2 6 𝐷 6 𝑛, is a cyclic polynomial code defined by the zeros

𝛼𝑏, 𝛼𝑏+1, . . . , 𝛼𝑏+𝐷−2,

where 𝑏 > 1 is a positive integer.

The generator polynomial 𝑔(𝑥) of the cyclic code introduced in Definition 4.7 is given by
𝑔(𝑥) = lcm(𝑀𝑏(𝑥),𝑀𝑏+1(𝑥), . . . ,𝑀𝑏+𝐷−2(𝑥)), where𝑀𝑖(𝑥) denotes the minimal polynomial
of 𝛼𝑖 over F𝑞. Note that even though the zeros of the code lie in an extension field F𝑞𝑚 over
F𝑞, the BCH code itself is a cyclic code over the ground field F𝑞. Furthermore, it is known
that a BCH code defined this way has a distance 𝛿 that is at least 𝐷, which is why 𝐷 is
sometimes called the “designed distance.” Note that the actual distance 𝛿 of the code might
exceed 𝐷. The possible lengths of BCH codes are quite restricted, as any admissible length
𝑛 must be a divisor of the order of the multiplicative group of F𝑞𝑚 , i.e. must be a divisor of
𝑞𝑚 − 1. In the following we restrict ourselves to the case where 𝑛 = 𝑞𝑚 − 1, which is called
the case of primitive BCH codes. Furthermore we only consider the case where 𝑏 = 1, which
is called the case of narrow-sense BCH codes. We denote these codes by BCH(F𝑞𝑚/F𝑞, 𝐷),
and we note that they always exist.

For any linear error-correcting code 𝐶 = [𝑛, 𝑘, 𝛿]𝑞 of length 𝑛, dimension 𝑘, and distance
𝛿, an extension 𝐶 ′ = [𝑛+ 1, 𝑘, 𝛿′ > 𝛿]𝑞 can be defined by adding another coordinate and an
overall parity check. At the level of parity check matrices, this corresponds to appending the
parity check matrix 𝑀 of 𝐶 with an all-zeros column 0 and an all-ones row 1𝑇 so that 𝐶 ′

has the new parity check matrix
[︂
1𝑇 1
𝑀 0

]︂
. For binary codes, the distance of the extension

is easy to characterize: if 𝛿 ≡ 0 mod 2 then 𝛿′ = 𝛿 and if 𝛿 ≡ 1 mod 2 then 𝛿′ = 𝛿 + 1. In
general over larger alphabets, however, it is possible that the distance increases even when
𝛿 is even. When applying an extension to the BCH codes introduced above, we use the
notation BCHext(F𝑞𝑚/F𝑞, 𝐷). We make use of the following theorem about such codes.

Theorem 4.8. Let F𝑞 be a finite field and let BCHext(F𝑞𝑚/F𝑞, 𝐷) = [𝑛, 𝑘, 𝛿]𝑞 be the exten-
sion of the primitive narrow-sense BCH code with designed distance 𝐷 constructed
in Definition 4.7, so 𝑛 = 𝑞𝑚 and 𝛿 > 𝐷. Assume that 𝐷 6 𝑞⌈𝑚/2⌉ + 2. Then the
dimension 𝑘 of the code satisfies 𝑘 > 𝑛−𝑚

⌈︀ 𝑞−1
𝑞 (𝐷 − 2)

⌉︀
− 1 > 𝑛−𝑚(𝐷 − 2)− 1.

See [16] for a proof of Theorem 4.8 that leverages the fact that the extended primitive narrow-
sense BCH codes are subfield subcodes of the Reed-Solomon codes. See also [15, Problem
8.12] and [17]. By combining Theorem 4.8 with the construction of Theorem 4.7 we now
obtain the following result regarding bounded-strength decoupling for ℓ-local Hamiltonians.
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Theorem 4.9. For any ℓ > 2, 𝑛 > (ℓ − 1)2, and 𝑞 = 𝑑2 with 𝑑 > 2 a prime power, there
exists a 𝐵𝑂𝐴(𝑁,𝑛, 𝑞, ℓ) whose length 𝑁 scales as 𝑁 = 𝑂(𝑛ℓ−1 log 𝑛). That is, there
exists a bounded-strength BOA decoupling scheme to switch off ℓ-local Hamiltonians
on 𝑛 interacting 𝑑-dimensional qudits that uses 𝑁 = 𝑂(𝑛ℓ−1 log 𝑛) time slices.

Proof. First, note that if 𝑛 is not of the special form 𝑛 = 𝑞𝑚 where 𝑚 > 1, then we can
always embed the 𝑛 qudits into a larger system of 𝑞𝑚 qudits with 𝑚 = ⌈log𝑞(𝑛)⌉, construct
a scheme for the larger system, and ignore the additional qudits (as per Remark 4.5). This
increases 𝑛 by a factor of at most 𝑞 and therefore doesn’t affect the statement of the theorem,
i.e. we can without loss of generality assume that 𝑛 = 𝑞𝑚 where 𝑚 > 1.

Now, we consider the code 𝐶 that is the dual of a 𝑘⊥-dimensional BCHext(F𝑞𝑚/F𝑞, 𝐷)
code with designed distance 𝐷 = ℓ+ 1. Thus 𝐶 has length 𝑛, dual distance 𝛿⊥ > 𝐷 = ℓ+ 1,
and, according to Theorem 4.8, dimension 𝑘 = 𝑛− 𝑘⊥ 6 𝑚(𝐷 − 2) + 1 = 𝑚(ℓ− 1) + 1. By
Theorem 4.3, this means that we can construct an 𝑛 × 𝑁𝑂𝐴 orthogonal array of strength
𝛿⊥−1 > ℓ from this code, where 𝑁𝑂𝐴 = 𝑞𝑘 6 𝑞𝑚(ℓ−1)+1 = 𝑞𝑛ℓ−1. According to Theorem 4.7,
the corresponding BOA has an overhead that scales at most logarithmically in 𝑛 since from
Eq. (4.4) we obtain the following bound on the length of the bounded-strength decoupling
scheme corresponding to the BOA: 𝑁𝐵𝑂𝐴 = 𝑞𝑘|𝑆(𝑘)

𝑞 | = 𝑞𝑘2𝑘𝑒 6 [𝑞𝑛ℓ−1][2(𝑚(ℓ− 1) + 1)𝑒] =
2𝑞𝑒𝑛ℓ−1[(ℓ− 1) log𝑞 𝑛+ 1] = 𝑂(𝑛ℓ−1 log 𝑛). This establishes the claimed bound.

In physical systems, the locality ℓ is generally a small fixed number, so the requirement
of 𝑛 > (ℓ−1)2 is inconsequential asymptotically, while for small 𝑛, one can (by Remark 4.5)
always artificially increase 𝑛 to satisfy it. Our main focus in Theorem 4.9 is on the asymp-
totic cost for fixed locality ℓ as the number 𝑛 of qudits grows. It should be noted that,
depending on the particular choice of 𝑞, ℓ, and 𝑛, further improvements over the bound
in Theorem 4.9 are possible; see e.g., [17, 18]. This in turn leads to further improvements
in the length of the decoupling schemes constructed via Theorem 4.7. For instance, for
2-local qubit Hamiltonians we saw at the end of Sec. 4.5 that Hamming codes can be used
to construct BOA decoupling schemes of length 𝑁 = 2[3𝑛 + 1] log4[3𝑛 + 1], giving a slight
improvement over schemes constructed from primitive BCH codes which lead to a scaling
of 𝑁 6 8𝑛[log4(𝑛) + 1].

4.7 Tables of best known BOA schemes for small systems

In the following, we present a summary of the best known BOA schemes for qubit (𝑑 = 2,
𝑞 = 4) and qutrit (𝑑 = 3, 𝑞 = 9) systems for a variety of small localities ℓ and system
sizes 𝑛. All schemes are obtained by our main construction in Theorem 4.7, where the
underlying classical linear codes are either taken from the literature or from the Magma [19]
database of best known linear codes which can be accessed using the Magma command
BestDimensionLinearCode(<field>, <length>, <distance>).

Recall from Remark 4.5 that if we have a BOA decoupling scheme for 𝑛 qudits, it can
also be used for smaller systems of 𝑛′ < 𝑛 qudits. Therefore, the best known BOA for 𝑛
qudits is also the best known BOA for all 𝑛′ < 𝑛 qudits unless a better BOA scheme for 𝑛′

is known. Table 4.1 summarizes the best known schemes for systems of 𝑛 qubits (𝑑 = 2),
for small values of 𝑛, that can be obtained from good linear codes. Similarly, Table 4.2
summarizes the best known schemes for systems of 𝑛 qutrits (𝑑 = 3), for small values of 𝑛.
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ℓ ∖ 𝑁 64 384 2 048 10 240 49 152 229 376 1 048 576
2 2–5𝑎 6–21𝑎 22–85𝑎 86–341𝑎 342–1 365𝑎 1 366–5 461𝑎 5 462–21 845𝑎

3 - 3–6𝑏 7–17𝑐 18–41𝑐 42–126𝑐 127–288𝑐 289–756𝑐

4 - - 4–5 6–11𝑑 12–21𝑒 22–43 44–85
5 - - - 5–6 7–12𝑓 13–20 21–27
6 - - - - 6–7 8–9 10–17
7 - - - - - 7–8 9–10
8 - - - - - - 8–9

Table 4.1: Table of the best known balanced-cycle orthogonal arrays (BOAs) for qubit
(𝑑 = 2) systems, indicating the number of qubits that can be decoupled by a BOA scheme
for the given locality and length. Shown are the locality ℓ of the underlying Hamiltonian from
2 up to 8 and length 𝑁 = 4𝑘2𝑘 of the BOA cycles from 64 up to 1 048 576, corresponding to
the values 𝑘 = 2, . . . , 8 in Eq. (4.4) with 𝑞 = 4 and 𝑒 = 1. Each entry in the table denotes the
range of the number 𝑛 of qubits that can be achieved by a BOA scheme of the corresponding
locality and length. For instance, the entry 7–17 at location (3, 2 048) indicates that in order
to decouple a 3-local Hamiltonian on a system with 𝑛 qubits, where 𝑛 ∈ {7, . . . , 17}, the
best known BOA schemes have 2 048 time steps. If the number of qubits is one higher,
e. g., 𝑛 = 18, then the currently best known BOA scheme would require 10 240 time steps.
Superscripts indicate if the dual codes [𝑛, 𝑘⊥, 𝛿⊥]4 underlying the BOAs were obtained by
a particular construction: a) all codes for ℓ = 2 were obtained from the Hamming code
family [𝑛, 𝑛− 𝑘, 3]4 with 𝑘 = log4(3𝑛+ 1); b) the code [6, 3, 4]4 is the Hexacode [13]; c) the
codes with parameters [17, 13, 4]4, [41, 36, 4]4, [126, 120, 4]4, [288, 281, 4]4, and [756, 748, 4]4
are based on caps in finite projective spaces which are sets of points of which no three are
collinear, see [18]; d) the code [11, 6, 5]4 is a quadratic residue code, see [11, 5.13] and [13]; e)
the code [21, 15, 5]4 is the Kschischang-Pasupathy code, see [20]; and f) the code [12, 6, 6]4
is a quadratic residue code, see [11, 5.13] and [13]. All other codes in the table are based on
the database of best known linear codes that is available in Magma [19].
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ℓ ∖ 𝑁 324 4 374 52 488 590 490 6 377 292 66 961 566
2 2–10𝑎 11–91𝑎 92–820𝑎 821–7 381𝑎 7 382–66 430𝑎 66 431–597 871𝑎

3 - 3–10𝑏 11–82𝑏 83–212𝑏 213–840𝑏 841–6 723𝑏

4 - - 4–10 11–20 21–72 73–96
5 - - - 5–10 11–16 17–73
6 - - - - 6–10 11–17
7 - - - - - 7–10

Table 4.2: Table of the best known balanced-cycle orthogonal arrays (BOAs) for qutrit
(𝑑 = 3) systems, indicating the number of qutrits that can be decoupled by a BOA scheme
for the given locality and length. Shown are the locality ℓ of the underlying Hamiltonian from
2 up to 7 and length 𝑁 = 9𝑘2𝑘 of the BOA cycles from 324 up to 66 961 566, corresponding
to the values 𝑘 = 2, . . . , 7 in Eq. (4.4) with 𝑞 = 9 and 𝑒 = 1. Each entry in the table
denotes the range of the number 𝑛 of qutrits that can be achieved by a BOA scheme of
the corresponding locality and length. Superscripts indicate if the dual codes [𝑛, 𝑘⊥, 𝛿⊥]9
underlying the BOAs were obtained by a particular construction: a) all codes for ℓ = 2 were
obtained from the Hamming code family [𝑛, 𝑛−𝑘, 3]9 with 𝑘 = log9(8𝑛+1); and b) the codes
with parameters [10, 7, 4]9, [82, 78, 4]9, [212, 207, 4]9, [840, 834, 4]9, and [6 723, 6 716, 4]9 are
based on caps in finite projective spaces, see [18]. All other codes in the table are based on
the database of best known linear codes that is available in Magma [19].

4.8 Examples

Example 4.1 (2-local decoupling of a diagonal Hamiltonian). We first consider a
simple case of decoupling a 2-local Hamiltonian on 7 qubits, where we assume (to simplify
the example) that the Hamiltonian is diagonal, i.e. consists only of Pauli 𝑍 operators. In this
case, it turns out that we need not use an irreducible representation and can consequently
use 𝑞 = 𝑑 = 2 (instead of 𝑞 = 𝑑2 = 4); to avoid clutter, we defer the proof that this works
to Example 4.3 where we will consider a similar situation. Because 𝑞 = 2, we use the group
F2 = Z2 = {0, 1} and choose the representation

𝜌 : Z2 → {1, 𝑋}, with 𝜌(0) = 1, 𝜌(1) = 𝑋

and corresponding control unitaries

𝑢0(𝛿) = 1, 𝑢1(𝛿) = 𝑒−𝑖𝑋𝛿, over time 𝛿 ∈ [0, 𝜋2 ]. (4.5)

Note that by evolving over time ∆ = 𝜋
2 , we can therefore implement (up to phase) 𝑢0(∆) =

1 = 𝜌(0) and 𝑢1(∆) = 𝑋 = 𝜌(1). We assume that we can perform these control unitaries
on any qubit.

With our constraints of 7 qubits (𝑛 = 7) with 2-local interactions (ℓ = 2) and our ability
to use 𝑞 = 2, we seek an [𝑛, 𝑘]𝑞 = [7, 𝑘]2 code with dual distance 𝛿⊥ = 3 = ℓ + 1 for some
(hopefully small) dimension 𝑘. We find that there is a [7, 3]2 code with this desired dual
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distance, given by the generator matrix

𝐺 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Observe that this code has dimension 𝑘 = 3, which will dictate the efficiency of the protocol.
Although irrelevant for our concerns here, one may observe that, as guaranteed by The-

orem 4.3, an array built from the codewords of this code is an orthogonal array; indeed, the
OA shown in Fig. 4-3 was constructed from this code. We, on the other hand, wish to create
a BOA from this code. As per Theorem 4.7, we start with the (additive) group F𝑘𝑞 = Z3

2

and choose the generating set 𝑆(𝑘)
𝑞 = 𝑆

(3)
2 =

{︁(︁
1
0
0

)︁
,
(︁

0
1
0

)︁
,
(︁

0
0
1

)︁}︁
. We set ℒ to be the Eulerian

cycle on the Cayley graph Γ
(︁
Z3
2, 𝑆

(3)
2

)︁
shown in Fig. 4-2(a), namely

ℒF3
2

=

(︃(︁
0
0
0

)︁
,
(︁

1
0
0

)︁
,
(︁

1
1
0

)︁
,
(︁

0
1
0

)︁
,
(︁

0
0
0

)︁
,
(︁

0
1
0

)︁
,
(︁

1
1
0

)︁
,
(︁

1
0
0

)︁
,
(︁

0
0
0

)︁
,
(︁

0
0
1

)︁
,
(︁

1
0
1

)︁
,

(︁
1
0
0

)︁
,
(︁

1
0
1

)︁
,
(︁

1
1
1

)︁
,
(︁

1
1
0

)︁
,
(︁

1
1
1

)︁
,
(︁

0
1
1

)︁
,
(︁

0
1
0

)︁
,
(︁

0
1
1

)︁
,
(︁

0
0
1

)︁
,
(︁

0
1
1

)︁
,
(︁

1
1
1

)︁
,
(︁

1
0
1

)︁
,
(︁

0
0
1

)︁)︃
.

We map this cycle under the action of the generator matrix 𝐺 to obtain the array 𝐴𝐺ℒ =
[𝐺𝑚]𝑚∈ℒF32

, which is precisely the array that was shown in Fig. 4-4. According to The-

orem 4.7, this is a 𝐵𝑂𝐴(𝑁,𝑛, 𝑞, ℓ) = 𝐵𝑂𝐴(24, 7, 2, 2) with 𝑁 = 𝑞𝑘|𝑆(3)
2 | = 23 · 3 = 24.

By definition, this means that every ℓ × 𝑁 subarray (obtained by only considering a se-
lection of just ℓ of the 𝑛 rows) defines a balanced cycle on the Cayley graph Γ(𝒢,S ) of
𝒢 = Fℓ𝑞 = Z2

2 with respect to some generating set S (which may depend on the subarray).
For example, look at rows 5 and 7, highlighted in Fig. 4-4. This defines the balanced cycle
on Γ

(︁
Z2
2,
{︀(︀

0
1

)︀
,
(︀
1
1

)︀}︀)︁
that was shown in Fig. 4-2(b). The generating set and balanced cycle

depend on the choice of rows, but by virtue of being a BOA, some balanced cycle will be
obtained for any choice of 2 rows.

According to Theorem 4.2, the protocol of Protocol 4.2 defined by this BOA performs
bounded-strength decoupling on our 7-qubit 2-local system. To construct this protocol, we
consider the transitions between the columns of the BOA, thereby defining the schedule
shown in Fig. 4-6. The control unitaries to be applied are defined by these transitions
and our choice of Eq. (4.5), which was chosen to be consistent with our representation 𝜌.

Specifically, according to Protocol 4.2, the control cycle evolution is 𝑈𝑐
(︁

(𝑗 − 1)∆ + 𝛿
)︁

=

𝑢
𝑏⃗𝑗

(𝛿)𝑈𝑐

(︁
(𝑗 − 1)∆

)︁
, 𝛿 ∈ [0,∆], where 𝑏⃗𝑗 is the 𝑗th column in Fig. 4-6. For example, in time

slot 5 the transition column is 𝑏⃗5 = (0, 1, 1, 0, 0, 1, 1)𝑇 , which corresponds to the unitary

𝑢
𝑏⃗5

(𝛿) = 𝑒−𝑖𝑋2𝛿𝑒−𝑖𝑋3𝛿𝑒−𝑖𝑋6𝛿𝑒−𝑖𝑋7𝛿

where 𝑋𝑖 denotes the Pauli 𝑋 operator on the 𝑖th qubit; in other words, we should apply
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Figure 4-6: A 7× 24 array defining the decoupling protocol in Example 4.1 in the format
of Fig. 4-1. Rows correspond to qubit numbers, columns correspond to time slots (each of
width ∆ = 𝜋

2 ), and entries correspond to unitary operators on qubits according to Eq. (4.5).

As per Protocol 4.2, the control cycle evolution is 𝑈𝑐
(︁

(𝑗 − 1)∆ + 𝛿
)︁

= 𝑢
𝑏⃗𝑗

(𝛿)𝑈𝑐

(︁
(𝑗 − 1)∆

)︁
,

𝛿 ∈ [0,∆], where 𝑏⃗𝑗 is the 𝑗th column. For example, because 𝑏⃗5 = (0, 1, 1, 0, 0, 1, 1)𝑇 , we
have 𝑢

𝑏⃗5
(𝛿) = 𝑢0⊗𝑢1⊗𝑢1⊗𝑢0⊗𝑢0⊗𝑢1⊗𝑢1 (𝛿) = 𝑒−𝑖𝑋2𝛿𝑒−𝑖𝑋3𝛿𝑒−𝑖𝑋6𝛿𝑒−𝑖𝑋7𝛿. This array was

formed from the transitions between the columns of the BOA in Fig. 4-4. If 𝑎⃗𝑗 denotes the
𝑗th column in the Fig. 4-4 BOA (with columns labelled 𝑗 = 0, . . . , 23), then 𝑏⃗𝑗 = 𝑎⃗𝑗 − 𝑎⃗𝑗−1

is the 𝑗th column in the present array (with columns labelled 𝑗 = 1, . . . , 24, and treating
𝑎⃗24 = 𝑎⃗0 = 0).

the control Hamilonian 𝐻𝑐(𝑡) = 𝑋2 + 𝑋3 + 𝑋6 + 𝑋7 during this time slot. This protocol
will decouple any 2-local 7-qubit diagonal Hamiltonian.

We emphasize that in this simple diagonal-Hamiltonian example, we were able to use
𝑞 = 𝑑 = 2 (for reasons that will be addressed in Example 4.3). If the Hamiltonian were
not known to be diagonal, this would not in general have been possible, and we would have
needed to instead use a [7, 𝑘]𝑞 code for 𝑞 = 4.

Example 4.2 (2-local decoupling using a Hamming code). Consider an arbitrary
2-local Hamiltonian 𝐻 on a system of 5 qubits. Then 𝐻 can be decoupled by applying a
BOA derived from the code dual to a [5, 3, 3]4 Hamming code, namely the [5, 2]4 code over
F4 with the generator matrix

𝐺 =

⎡
⎢⎢⎢⎢⎣

1 0
0 1
1 𝛼2

𝛼2 𝛼2

𝛼2 1

⎤
⎥⎥⎥⎥⎦
,

where 𝛼 is a primitive element of order 3 of F4. Note that we arrange the codewords as
column vectors, consistent with the notation used throughout this chapter and some – but
not all – of the literature. Since here 𝑘 = 2, 𝑑 = 2, and 𝑒 = 1, the corresponding BOA has
a total number of time steps given by 𝑁 = 𝑑2𝑘2𝑘𝑒 = 64. When arranged into the columns
of a 5 × 64 matrix, each of the 64 control Hamiltonians that are applied in this scheme
corresponds to one of the 16 codewords of the [5, 2]4 code.
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Example 4.3 (5-local decoupling of a diagonal Hamiltonian using a BCH code).

Recall from Remark 4.1 that if one is interested in decoupling a Hamiltonian of a particular
form, it may not be necessary for 𝜌 to be irreducible, and in such a case it may be possible
to choose a code over a field F𝑞 for which 𝑞 is less than 𝑑2. Consider a diagonal (i.e., 𝑍-only)
5-local Hamiltonian 𝐻 on a system of 16 qubits. Then 𝐻 can be decoupled by applying a
BOA derived from the dual code of a BCHext(F4

2/F2, 6) = [16, 7, 6]2, i.e. from a code over
F2 = Z2 with parameters [16, 9]2 and generator matrix

𝐺 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 1 0 0 1 1 1 0 0
0 1 1 0 0 1 1 1 0
0 0 1 1 0 0 1 1 1
1 1 0 1 0 1 1 1 1
1 0 1 0 0 1 0 1 1
1 0 0 1 1 1 0 0 1
1 0 0 0 1 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Due to the special structure of the Hamiltonian, we are able to choose 𝑞 = 𝑑 = 2 (rather
than 𝑞 = 𝑑2 = 4) in this case. Since 𝑘 = 9, 𝑑 = 2, 𝑒 = 1, and the Hamiltonian is 𝑍 only, the
corresponding BOA has a total number of time steps given by 𝑁 = 𝑑𝑘𝑘𝑒 = 4 608. When
arranged into the columns of an 16 × 4 608 matrix, each of the 4 608 control Hamiltonians
that are applied in this scheme corresponds to one of the 512 codewords of the [16, 9]2 code.

To construct our protocol from this code we first choose a generating set 𝑆(9)
2 for F9

2,
such as the 𝑘 = 9 standard basis vectors {(1, 0, 0, . . .)𝑇 , (0, 1, 0, 0, . . .)𝑇 , . . .}. We then find
an Eulerian cycle ℒ on the Cayley graph Γ(F9

2, 𝑆
(9)
2 ) and map it to an Eulerian cycle 𝐺ℒ

on the Cayley graph Γ(𝐺[F9
2], 𝐺[𝑆

(9)
2 ]) using the generator matrix above. Our choice of 𝑆(9)

2

as being the standard basis vectors would dictate that the transition labels 𝑏⃗ = 𝐺𝑠, for
𝑠 ∈ 𝑆(9)

2 , are simply the columns of 𝐺. Our BOA consists of the 29 = 512 16-bit codewords,
each appearing exactly 9 times according to the order specified by 𝐺ℒ. To use the BOA as
a decoupling scheme, we may choose

𝜌 : {0, 1} → {1, 𝑋}, with 𝜌(0) = 1, 𝜌(1) = 𝑋

and choose the corresponding single-qubit control unitaries to be

𝑢0(𝛿) = 1, 𝑢1(𝛿) = 𝑒−𝑖𝑋𝛿, over time 𝛿 ∈ [0, 𝜋2 ].

Observe that (ignoring global phase) 𝑢0(𝜋2 ) = 1 = 𝜌(0) and 𝑢1(𝜋2 ) = 𝑋 = 𝜌(1). The multi-
qubit control unitaries are defined by 𝑢

𝑏⃗
= 𝑢𝑏1 ⊗ · · · ⊗ 𝑢𝑏16 (for 𝑏⃗ ∈ {0, 1}16). For example,
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if 𝑠 = (1, 0, 0, . . . , 0)𝑇 , then 𝑏⃗ = 𝐺𝑠 is the first column of 𝐺 and

𝑢
𝑏⃗

= 𝑒−𝑖𝑋1𝛿𝑒−𝑖𝑋10𝛿𝑒−𝑖𝑋13𝛿𝑒−𝑖𝑋14𝛿𝑒−𝑖𝑋15𝛿𝑒−𝑖𝑋16𝛿

acting non-trivially on qubits 1, 10, 13, 14, 15, and 16. The control scheme in Protocol 4.2
is thus specified.

We now prove that this example works, even though 𝜌 is reducible (i.e. even though we
are choosing 𝑞 = 2 rather than 𝑞 = 4). As per the argument in the proof of Theorem 4.2,
we need only focus on a single 5-local term of 𝐻 (so assume without loss of generality
that 𝐻 consists of only one such term), we can ignore all but the 5 qubits on which it
acts non-trivially, and we need only speak of the 5-qubit unitaries 𝑢¯s(𝛿) that act on those
qubits and correspond to ¯s ∈ S (where S is the generator set for F5

2 derived from the BOA
for those 5 qubits). According to the proof of Theorem 4.1, our scheme works if and only

if Π𝒢
(︁
𝐹S (𝐻)

)︁
= 0. Here, however, 𝜌 is not irreducible, so Π𝒢 will not kill all traceless

operators; indeed, 𝑋-only operators commute with each 𝑈`g and are therefore unmodified by
Π𝒢 .

To show that Π𝒢
(︁
𝐹S (𝐻)

)︁
= 0 nevertheless holds, observe from Eq. (4.3) that each term

in 𝐹S (𝐻) is of the form 𝑢†¯s𝐻𝑢¯s. Now, 𝐻 is diagonal, i.e. a tensor product of only 1 and
𝑍, and 𝑢¯s(𝛿) is a tensor product of only 1 and 𝑒−𝑖𝑋𝛿. Therefore, because 𝑒𝑖𝑋𝛿𝑍𝑒−𝑖𝑋𝛿 =

cos(2𝛿)𝑍 + sin(2𝛿)𝑌 , we see that 𝑢†¯s𝐻𝑢¯s can be expanded as a sum of tensor products of 1,
𝑍 and 𝑌 . Moreover, because 𝐻 is traceless and conjugation by a unitary is trace-preserving,
this sum cannot contain a term proportional to the identity, 1⊗5. Thus, each of these terms
consists of at least one operator (which for notational purposes we take to be on the first
qubit) that is a 𝑍 or a 𝑌 , i.e. each can be written in the form 𝜎 ⊗ 𝐴, where 𝜎 ∈ {𝑌,𝑍}
and 𝐴 is some 4-fold tensor product of operators from {1, 𝑌, 𝑍}. Our protocol is defined
by a BOA of strength 5, so any subset of 5 rows of the BOA consists of all 25 5-tuples in
F5
2 repeated an equal number of times. Thus the sum in Π𝒢 involves conjugating by each
𝑈`g where 𝑈`g ranges over all 25 possible tensor products that can be formed on 5 qubits
using 1 and 𝑋. Focusing on the first qubit, we can equivalently say that the 𝑈`g range over

all possible 1⊗𝐵 and 𝑋 ⊗ 𝐵, where 𝐵 ranges over {𝐵2 ⊗ 𝐵3 ⊗ 𝐵4 ⊗ 𝐵5 : 𝐵𝑖 ∈ {1, 𝑋}}.
Conjugating 𝜎⊗𝐴 by 1⊗𝐵 yields either 𝜎⊗𝐴 or −𝜎⊗𝐴, whereas conjugating instead by
𝑋 ⊗𝐵 yields the same result but with the opposite sign (since 𝜎 ∈ {𝑌,𝑍}). In other words,
(1⊗𝐵)(𝜎⊗𝐴)(1⊗𝐵) + (𝑋 ⊗𝐵)(𝜎⊗𝐴)(𝑋 ⊗𝐵) = 0. Thus, the sum in Π𝒢 cancels in pairs,

i.e. Π𝒢
(︁
𝐹S (𝐻)

)︁
is indeed 0.

4.9 Conclusion

We have shown how to use bounded-strength controls to decouple 𝑛 interacting qudits of
dimension 𝑑 = 𝑝𝑒 (for some prime 𝑝 and positive integer 𝑒) that obey an ℓ-local Hamiltonian.
The system may be either closed or open (i.e. coupled to an environment), as long as both
the system Hamiltonian and the environmental couplings are ℓ-local on the system. The
decoupling scheme is described using a balanced-cycle orthogonal array, which we introduced
and showed how to construct from classical linear codes. To determine the best possible
scheme based on our method, we have to find the best linear error-correcting code 𝐶⊥ =
[𝑛, 𝑘⊥]𝑞 of length 𝑛 and distance at least ℓ+1. By the best, we mean 𝑘⊥ should be maximized
for the given system size (𝑛) and locality (ℓ). The construction in the present chapter yields
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a decoupling scheme that uses 𝑁 = 𝑑2𝑘2𝑘𝑒 time slices (of fixed length) where 𝑘 = 𝑛− 𝑘⊥.
Finding the best code is a key problem in the theory of error-correcting codes; ex-

tensive code tables have been compiled for small distances. For the important case of
qubits with 2-local interactions, for example, one can use Hamming codes over F4 such
that 𝑘 = log4(3𝑛+ 1), whence 𝑁 scales like 𝑛 log 𝑛. For higher degrees of locality, we can
use families of BCH codes to construct the decoupling schemes. The designed distance of
these codes is chosen based on the locality ℓ of the Hamiltonian, leading to a scaling of 𝑁 as
𝑛ℓ−1 log 𝑛. An open question is whether the schemes so derived are optimal in the asymptotic
sense, i.e. whether, for fixed ℓ and qudit dimension 𝑑, a better scaling with 𝑛 is possible. We
note that it is known [21] that when using bang-bang pulses, time at least Ω(𝑛) is necessary
to decouple general 2-body Hamiltonians, whereas our bounded-strength scheme takes time
𝑂(𝑛 log 𝑛) using Hamming codes for such Hamiltonians. Another interesting open question
is to develop a theory for systems with mixed qudit dimensions. All schemes derived here
are decoupling schemes up to first order, and while it is easy to extend this to second order
using symmetry, it would be interesting to find schemes that also achieve decoupling to
higher orders. Finally, we mention as an avenue for future research the application of the
derived bounded-strength decoupling schemes for the purpose of Hamiltonian simulation.
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Chapter 5

Quantum logic with interacting

bosons in 1D

In this chapter, we present a scheme for implementing high-fidelity quantum logic gates
using a few interacting bosons tunnelling on a one-dimensional lattice. The gate operation
is carried out by a single compact lattice described by a one-dimensional Bose-Hubbard
model with only nearest-neighbour hopping and on-site interactions. We find high-fidelity
deterministic logic operations for a gate set (including the cnot gate) that is universal for
quantum information processing. We discuss the applicability of this scheme in light of
recent developments in controlling and monitoring cold-atoms in optical lattices.

This chapter is adapted from [1], which was joint work with Yoav Lahini, Gregory R.
Steinbrecher, and Dirk Englund.

5.1 Introduction

The tunnelling or “hopping” of quantum particles on lattice potentials is a text-book exam-
ple of quantum dynamics. While a fundamental concept in the description of the solid state,
it was usually not directly relevant to experiments, as those usually could not resolve the
dynamics of individual quantum particles in a sample. In recent years, new ways of moni-
toring the evolution of quantum particles in lattice potentials have emerged in optics [2–8],
as well as in the field of ultra-cold atoms [9–14]. The degree of experimental control is
truly remarkable: it is possible to prepare an initial state with single-site and single-particle
resolution, to create a wide range of one- or two-dimensional lattice potentials, to determine
the interaction between the particles, and to directly monitor in real space the evolving
many-body distribution.

The ability to control and monitor quantum particles with such precision offers an in-
teresting route to the implementation of quantum information processing and quantum
computing schemes. Universal quantum computation has been theoretically shown possible
using the quantum walk [15,16] of interacting particles on certain non-trivial two-dimensional
lattices [17,18] and on one-dimensional lattices with a large number of degrees of freedom at
each lattice site [19–21]. However, an implementation using quantum particles hopping on
a simple one-dimensional lattice, without any additional degrees of freedom, has not been
reported. Such a geometry would greatly simplify the experimental implementation, bring-
ing it into the realm of recently reported experimental techniques [11, 13]. Furthermore,
one-dimensional implementations offer other important practical advantages, for example
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Figure 5-1: Illustration of one-dimensional quantum gates. (a) Qubits in the state |0⟩ and
|1⟩ with dual-rail encoding. (b) Implementation of a single-qubit gate. (c) Schematic of a
two-qubit system on a lattice.

freeing the second spatial dimension for important tasks such as error correction or con-
necting remote qubits. Other important tasks such as process tomography could still be
performed in 1D (see Appendix 5.B).

In this work, we show how it is possible to use multi-particle hopping in a simple geometry
— a one-dimensional lattice with only nearest-neighbour hopping and on-site interactions—
as a compact platform for implementing quantum logic. We demonstrate our approach by
detailing a set of lattice potentials that yield, with high fidelity, a universal set of quantum
gates with only two sites per qubit. Moreover, the required lattice potential for each gate
is time-invariant, simplifying the experimental implementation and possibly reducing the
total operation time. Thus, high-fidelity gates can be constructed with lower probabilities of
qubit-loss errors (i.e. lost particles during the computation) that necessitate computationally
costly error-correction procedures. While our analysis is general and should be applicable
to different quantum lattice systems, here we focus on interacting ultra-cold bosonic atoms
trapped in an optical lattice, which allows us to include experimentally relevant bounds
in the analysis. See [1] for a discussion of its application to nonlinear quantum photonic
systems.

The dynamics of bosonic particles on a lattice is described by the time-independent
many-body Bose-Hubbard Hamiltonian

𝐻 =
∑︁

𝑚

𝐸𝑚𝑁𝑚 +
∑︁

⟨𝑙,𝑚⟩
𝐽𝑙,𝑚𝑎

†
𝑙 𝑎𝑚 +

Γ

2

∑︁

𝑚

𝑁𝑚(𝑁𝑚 − 1) , (5.1)

where 𝐸𝑚 is the on-site energy of site 𝑚, 𝑎†𝑚∖𝑎𝑚 is the creation\annihilation operator for
a boson in site 𝑚, 𝑁𝑚 = 𝑎†𝑚𝑎𝑚 is the number operator, 𝐽𝑙,𝑚 6 0 is the tunnelling rate
between nearest neighbours, and Γ is the on-site interaction energy that arises when two
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or more bosons occupy the same site. The unitary transformation describing the evolution
of multiple quantum particles propagating on the lattice is given by 𝑒−𝑖𝐻𝑡, where 𝑡 is the
propagation time. The quantum logic gates discussed here will be implemented by evolving
under this Hamiltonian (with a suitable choice of parameters) for some predefined time 𝑡final
which we take to be 𝑡final = 1.

5.2 Defining qubits on a lattice

The basic element of interest for quantum gates of the type discussed here is the quantum bit,
or qubit. The quantum particles, however, evolve on a lattice according to the Hamiltonian
described in Eq. (5.1). To define our qubits on the lattice, we use a spatial encoding where
a qubit is physically implemented by a single boson in a pair of neighbouring potential wells
(see Fig. 5-1), with the states |0⟩ and |1⟩ of the qubit defined by the particle being in the left
or right well (i.e. dual-rail encoding). A single quantum particle can occupy the two sites
in a superposition, encoding a qubit without the need for additional degrees of freedom. In
this way, a system of 𝑛 qubits can be realized in one dimension with 𝑛 bosons and 2𝑛 lattice
sites, with one boson in the first two sites (representing the first qubit), one boson in the next
two sites (representing the second qubit), and so forth. Note that in this geometry, many
physically permitted states (e.g. those with more than one particle on the same site) are not
members of the logic space (i.e., the multi-qubit tensor-product space). Nevertheless, we
show that it is possible to engineer the lattice parameters such that, at time 𝑡 = 𝑡final = 1,
the transformation 𝑈 = 𝑒−𝑖𝐻 maps logic states only to other logic states with high fidelity,
even though states outside this subbasis are allowed at intermediate times.

5.3 Implementing quantum gates

Having defined our qubits, we turn to the task of designing a universal set of quantum
gates, i.e. finding lattice parameters that yield desired unitary transformations on the logical
space. Designing and building quantum logic gates remains one of the most difficult aspects
of quantum computing, and our case is no exception. From the physical description of a
given device — in our case, the lattice parameters — it is straightforward to write down
the many-particle Hamiltonian and to calculate the unitary evolution operator 𝑈 = 𝑒−𝑖𝐻

that fully describes the operation of the device. The inverse problem, however, is hard:
given a desired unitary 𝑈 , it is difficult to find a corresponding Hamiltonian that meets the
physical and geometrical constraints of the device, e.g. the one-dimensionality of the lattice.
Furthermore, if the logical quantum states are only a subset of the full Hilbert space, then
the quantum gate operation is only a sub-matrix of the overall evolution operator 𝑈 . In
this case, 𝑈 is not even uniquely defined by the desired gate operation. As described below,
we tackle these difficulties with a computational approach that finds appropriate lattice
parameters to approximate a given ideal gate operation with high fidelity.

There are many options for the selection of a universal set of gates. A useful choice is the
gate set of the controlled-NOT (cnot) operation, along with either all single-qubit rotations
or the Hadamard and phase-shift single-qubit gates [22]. We first discuss the single-qubit
gates, which are straightforward to calculate. We then elaborate on the construction of the
cnot gate, for which we take a computational approach.
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5.3.1 Single-qubit gates

We present the exact construction for a set of single-qubit gates that, together with the
cnot gate, make a universal quantum gate set. Since these are one-qubit operations, they
are implemented using one particle in two lattice sites. As such, the interaction (Γ) is
irrelevant and the matrix of lattice parameters

𝐺 =

(︂
𝐸1 𝐽12
𝐽12 𝐸2

)︂

(with 𝐽12 6 0) can be directly interpreted as the Hamiltonian governing the single particle.
The unitary gate, obtained by evolving with 𝐺 for a time 𝑡final = 1, is then 𝑈 = 𝑒−𝑖𝐺.

One simple universal quantum gate set includes the Hadamard gate and the phase-shift
gate (in addition to the cnot gate). The phase-shift gate is the simplest to implement. It
is composed of two decoupled lattice sites in which the on-site energy between the sites is

detuned. Specifically, to implement the single-qubit phase-shift operator 𝑅𝜃 =

(︂
1 0
0 𝑒𝑖𝜃

)︂
,

one may apply the single-qubit Hamiltonian

𝐺𝑅𝜃
=

(︂
0 0
0 −𝜃

)︂
. (5.2)

Next in complexity is the single-qubit Hadamard gate 𝐻 = 1√
2

(︂
1 1
1 −1

)︂
. The Hamil-

tonian and propagation time that generates the Hadamard transformation can be solved
analytically, and is given by

𝐺𝐻 =
𝜋

2
√

2

(︂ √
2− 1 −1

−1
√

2 + 1

)︂
. (5.3)

Note that a simple tunnelling between two identical wells for half the tunnelling time (anal-
ogous to the beamsplitter operation in linear optics) will not reproduce the Hadamard gate
in this case. Unlike the bulk quantum optics situation, in which the optical beamsplitter
can be asymmetric in phase and thus can reproduce the Hadamard gate exactly, under our
Hamiltonian dynamics the splitting is symmetric in phase and therefore modified tunnelling
rates and additional diagonal terms are required to correct the output phases. We note this
holds true also for integrated quantum photonics gates [23].

Alternatively, one can use the universal gate set of cnot together with all single-qubit
unitaries. Any single-qubit unitary, 𝑈 , can be implemented by first decomposing it in the
form [22]

𝑈 = 𝑒𝑖𝛼𝑅𝑧(𝛽)𝑅𝑥(𝛾)𝑅𝑧(𝛿) = 𝑒𝑖𝛼𝑅𝑧(𝛽)𝐻𝑅𝑧(𝛾)𝐻𝑅𝑧(𝛿) .

The 𝑧-rotation 𝑅𝑧(𝜃) =

(︂
𝑒−𝑖𝜃/2 0

0 𝑒𝑖𝜃/2

)︂
can be implemented with the Hamiltonian

𝐺𝑅𝑧(𝜃) =
𝜃

2

(︂
1 0
0 −1

)︂
,

or, equivalently up to phase, using 𝐺𝑅𝜃
above. The 𝑥-rotation 𝑅𝑥(𝜃) = exp

(︂
0 −𝑖 𝜃2
−𝑖 𝜃2 0

)︂
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can be implemented either with the Hamiltonian

𝐺𝑅𝑥(𝜃) =
4𝜋 − 𝜃

2

(︂
0 −1
−1 0

)︂
(5.4)

or by conjugating 𝑅𝑧(𝜃) by the Hadamard operation 𝐻 described earlier. The phase 𝑒𝑖𝛼 can

be implemented with 𝐺𝛼 = −𝛼
(︂

1 0
0 1

)︂
if desired.

5.3.2 cnot gate

To design the cnot gate, i.e. the two-qubit gate

cnot =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ,

with the dual-rail encoding, we consider a lattice with four sites and two bosons. This
problem then is defined by eight lattice parameters in Eq. (5.1): four on-site potential terms
(𝐸𝑚), three tunnelling terms (𝐽𝑙,𝑚), and the interaction parameter (Γ). The complete two-
body Hamiltonian 𝐻 is described by a 10× 10 matrix (the size of the Hilbert space for two
identical bosons in four modes). To perform the logical gate operation, the system is evolved
according to 𝑈 = 𝑒−𝑖𝐻 . The cnot gate operation is then given by a 4× 4 sub-matrix of 𝑈
over the logical basis states |1010⟩, |1001⟩, |0110⟩, |0101⟩ (presented here in the occupation
number basis); the other six basis states, while physically allowed, are not members of the
logical basis.

As explained above, finding the physical lattice parameters from the desired gate is a non-
trivial inverse problem. Using nonlinear optimization techniques [24–27] (as we will detail in
Sec. 5.5), we optimized the eight parameters of the system to maximize the fidelity of the gate
when acting on the logical input states under the constraint that the parameters represent a
physical one-dimensional lattice, i.e. that the on-site parameters are real, that the tunnelling
parameters are real and non-positive and connect only nearest-neighbouring sites, and that
the values of the on-site, tunnelling, and interaction terms are within experimentally relevant
bounds. Specifically, we demanded that −𝐽𝑚𝑎𝑥 6 𝐽𝑙,𝑚 6 0, −𝐽𝑚𝑎𝑥 6 𝐸𝑚 6 𝐽𝑚𝑎𝑥, and
Γ 6 Γ𝑚𝑎𝑥, where 𝐽𝑚𝑎𝑥 and Γ𝑚𝑎𝑥 are the largest allowed tunnelling rate and interaction level
in the optimization protocol. In our optimization we set 𝐽𝑚𝑎𝑥 = 4𝜋, limiting the maximum
number of tunnelling events (or Rabi-oscillations) to 4. In practice, this experimental bound
is dictated by the loss and decoherence rate of the system, determining the maximal relevant
propagation time. We also set Γ𝑚𝑎𝑥 = 10𝐽𝑚𝑎𝑥.

An example of a resulting lattice that yields the two-qubit cnot gate is given (to two
decimal places) by

𝐺cnot = 𝜋

⎛
⎜⎜⎝

0.40 0 0 0
0 1.82 −1.03 0
0 −1.03 −0.37 −3.80
0 0 −3.80 −0.66

⎞
⎟⎟⎠ (5.5)

with interaction strength Γ = 21.68𝜋. Here, the diagonal and off-diagonal entries of 𝐺cnot

represent the parameters 𝐸𝑚 and 𝐽𝑙,𝑚, respectively, of the Hamiltonian 𝐻. Eq. (5.5) repre-
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Figure 5-2: An implementation of the controlled-NOT (cnot) gate according to the recipe in
Eq. (5.5). (a) The real part and (b) the imaginary part of the two-particle unitary transform,
𝑈 . The cnot gate operation corresponds to the sub-matrix of the logic states, shown in
solid-colour bars and marked with red axis labels. Plots (c)-(f) show the position (in terms of
the lattice sites, 1-4) of the particle density as a function of time, 𝑡, revealing the operation
principle of the gate on each logical state (|00⟩, |10⟩, |01⟩, and |11⟩, respectively). One
observes that the target qubit (in sites 3 & 4) performs Rabi-oscillations that are perturbed
by the state of the control qubit (in sites 1 & 2) — the target qubit performs one fewer
Rabi-flip if the control qubit is in the |1⟩ state.

sents a recipe for a four-site lattice that yields a cnot gate with fidelity1 of 99.6%, whose
operation is summarized in Fig. 5-2.

If the bounds on the parameters are relaxed, the fidelity approaches even closer to
unity. Fig. 5-3 summarizes the optimization results. Fig. 5-3(a) shows the convergence of
independent runs with random starting points to the same final result. Fig. 5-3(b) presents
the expected gate fidelity vs. the maximally allowed values of the interaction Γ𝑚𝑎𝑥. For
a fixed maximal tunnelling of 𝐽𝑚𝑎𝑥 = 4𝜋, the fidelity achieves a value close to 0.95 at
Γ𝑚𝑎𝑥/𝐽𝑚𝑎𝑥 = 0.5 and then slowly approaches unity as this value is further increased. In a
system with a given Γ𝑚𝑎𝑥, it is still possible to improve the fidelity further by allowing more
tunnelling events to take place, i.e. increasing 𝐽𝑚𝑎𝑥; see Fig. 5-3(c).

We have performed an analysis of the effect of imperfections and noise, and found that
these are expected to have a negligible effect on the fidelity of the cnot gate. These results
are presented in Appendix 5.A. We therefore expect the main reduction in fidelity to occur
between the application of sequential gates, when the parameters of the system are modified.
Encouragingly, high-fidelity switching between potentials were reported recently [14].

1The fidelity used throughout this chapter is defined in Eq. (5.7) of Sec. 5.5.
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Figure 5-3: Optimization of the cnot gate fidelity. (a) Convergence of different optimization
runs to the optimal gate fidelity. The solid black line and the shaded area represents the
average and the standard deviation values over 512 runs. Seven example runs are shown
in the background (dotted lines). (b) Gate fidelity versus the maximum allowed interaction
level Γ𝑚𝑎𝑥, at a constant 𝐽𝑚𝑎𝑥 = 4𝜋. (c) Gate fidelity for different maximal tunnelling rates
𝐽𝑚𝑎𝑥 at a constant maximal interaction level of Γ𝑚𝑎𝑥 = 20𝜋.

5.4 Compiling a three-qubit primitive

Implementing a quantum algorithm using the scheme presented in this chapter will involve
several lattice configurations operating in sequence, as gates are sequentially applied in the
algorithm. In principle, because the gate set presented in this work is universal, any multi-
qubit operation can be broken down into a sequence of single- and two-qubit gates, and thus
implemented using the gates already presented. However, compiling common multi-step
operations into a single primitive based on a single, time-independent Hamiltonian could
reduce the possibility of errors arising from dynamic changes to the lattice. As an example,
we constructed a 3-qubit gate, shown in Fig. 5-4. This gate is useful, for instance, in the
2-bit Deutsch-Jozsa algorithm [28], performing the oracle for the function 𝑓(𝑥, 𝑦) = 𝑥 ⊕ 𝑦.
(All other oracles for the 2-bit Deutsch-Jozsa algorithm are either a simple variation of this
oracle or require only single-qubit gates plus at most one cnot gate.) Our computational
approach allowed us to find a set of lattice parameters that realizes the complete three-qubit
operation in a single gate. Fig. 5-4 presents an implementation of this three-qubit operation,
at a fidelity of 99.8%, using a single, one-dimensional six-site lattice:

𝐺 = 𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

5.98 0 0 0 0 0
0 7.13 −1.21 0 0 0
0 −1.21 0.14 −12.04 0 0
0 0 −12.04 0.18 −1.37 0
0 0 0 −1.37 11.69 0
0 0 0 0 0 −8.03

⎞
⎟⎟⎟⎟⎟⎟⎠

(5.6)
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Figure 5-4: A 3-qubit operation of 2 cnot gates (inset), compiled into a single gate 𝑈 . (a)
The real and (b) imaginary parts of our implementation of 𝑈 . Only the logical basis states
are shown.

with interaction strength Γ = 108.24𝜋. In this case too, the fidelity could be improved by
allowing larger tunnelling rates.

5.5 Computational methods

In this section, we detail the numerical methods used to find the gates presented in Secs. 5.3.2
and 5.4. We used a free-software implementation of a variety of numerical optimization
algorithms [24]. This enabled us to, with a single specification of cost function and con-
straints, compare the success and computational cost of a number of different optimization
approaches. We found that a randomly-seeded global optimization algorithm [25, 26] com-
bined with a gradient-free local algorithm [27] gave the best performance, both in terms of
number of iterations and computational run-time.

Careful selection of the cost function was crucial to the success of this work, and in-
teracted with the choice of the aforementioned algorithms, particularly the local optimizer.
Throughout this chapter, we define the fidelity of the gate in terms of the Hilbert-Schmidt
inner-product between the target unitary gate operation 𝑈0 and the unitary operation 𝑈
generated by the Hamiltonian at a given step of the optimization (restricted to the logical
subspace). Specifically, the fidelity is defined to be

𝐹 (𝑈0, 𝑈) = |⟨𝑈0, 𝑈⟩C| (5.7)

with

⟨𝑈0, 𝑈⟩C =
Tr(𝑈 †

0𝑈)

𝐷
,

where 𝐷 is the dimension of the logical space (4 for two-qubit gates). This fidelity can be
interpreted as a lower-bound average fidelity of the gate.

To be specific about the iterative numerical process, at each step we generated 𝑈 from a
vector corresponding to lattice parameters and calculated 𝐹 (𝑈0, 𝑈). Numerically, we found
that minimizing the function 1− 𝐹 2, rather than 1− 𝐹 , gave superior performance. In the
case of the algorithm given in Ref. [27], the reason for this is clear: the algorithm assumes
a quadratic cost function. However, we found that even with algorithms designed for linear
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cost functions (e.g. [29]), convergence was much slower than for the quadratic cost function.
Finally, in order to ensure that 𝑈 has the same global phase as 𝑈0 (this is for aesthetic

purposes, as 𝐹 (𝑈0, 𝑈) is invariant under multiplication by a global phase), we placed a cost
on the phase of the matrix element 𝑢1,1. We found this to be most efficiently implemented
by adding the term sin(arg(𝑢1,1))

2 to the cost function. This function is quadratic when
perturbed about zero, is non-negative, and is symmetric about 𝑘𝜋 for all 𝑘 ∈ Z, making it
an ideal candidate function. We verified that the introduction of this additional cost both
yielded a 𝑈 with appropriate phase (see Fig. 5-2) and did not result in a decreased fidelity
compared to optimization without this constraint.

5.6 Conclusions

We have shown how quantum logic gates can be realized with high fidelity using interacting
quantum particles hopping on a one-dimensional lattice. In particular, we gave a design for
a high-fidelity cnot gate along with exact descriptions of single-qubit rotations, a computa-
tionally complete set. Additionally, we demonstrated the compilation of a higher-order gate
operation into a single operation. Our approach carries several important advantages over
previous schemes. First, due to the dual-rail encoding we employ, the states of the system
can be prepared and measured by simply placing and detecting single quantum particles at
certain positions, both of which are straightforward in present experimental systems using
cold atoms [11]. Second, each quantum operation is carried out by a single, one-dimensional,
time-invariant lattice potential. Third, the devices we propose are compact lattices of size 2𝑛
(where 𝑛 is the number of qubits) that can be realized on a line of potential wells with only
nearest-neighbour hopping, in agreement with experimental capabilities. While focusing on
ultra-cold atoms for concreteness and to include experimental constraints, our scheme is
general and should be adaptable to other lattice quantum systems such as certain nonlinear
quantum-optical systems. In a broader context, the results reported here suggest that the
computational complexity of even simple 1D lattices is high, meaning it should be possible
to experimentally implement many-body processes that cannot be efficiently simulated on
classical computers. Although quantum computing in the gate model is the most obvious
application, this computational power need not be so limited and invites the construction
of new, different computational schemes that are more natural for the continuous nature of
the dynamics on a lattice.
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Chapter appendices

5.A Noise analysis

We have performed an analysis to test the robustness of our scheme to two general types
of perturbations. In the first, the perturbations are static (i.e. time-independent): the
parameters of the system are slightly randomized but are fixed in time. This simulates
the finite accuracy in experimentally implementing the different parameters of the system
(on-site potentials, tunnelling rates, etc.). The second type of perturbation is dynamic (i.e.
time-dependent), simulating noise – for example due to fluctuation in the power of the laser
that is generating the optical potential. We then compare them to typical experimental
values.

For our analysis, we performed Monte-Carlo simulations of perturbations to the lattice
parameters 𝐸𝑚, 𝐽𝑙,𝑚, and Γ for the cnot gate presented in Sec. 5.3.2. The perturbations
were drawn from zero-mean Normal distributions with varying standard deviations. The
standard deviation for each lattice parameter (defining the level of the perturbation) was
chosen as a fraction of the allowed experimental range for that parameter. Equivalently, the
RMS value of the noise measured in dBFS (decibels full-scale) was constant for all lattice
parameters at a given level of noise.

For the static perturbations, simulations were performed by calculating the fidelity of
the unitary transformation resulting from the disturbed lattice parameters, over 100,000
realizations. For the dynamic perturbations, simulations were performed by breaking down
the propagation into 1,000 steps, each with an independently perturbed unitary. The lattice
parameters for each of the 1,000 unitaries were drawn independently and in the same fashion
as for the static unitaries. Here, for each time-dependent level of disorder we simulated 1,000
perturbations (again, with 1,000 time-steps per simulation). This is not a comprehensive
analysis of time-dependent noise, but we believe it gives the correct order of magnitude for
these effects.

In Fig. 5-5 we plot the average relative change in fidelity ∆𝐹 = 𝐹Ideal−𝐹Noise

𝐹Ideal
vs. the noise

level in dBFS for both static and dynamic disorder. For noise levels at and below -20 dBFS,
these follow simple power-law relationships for which we have included fits. Note that while
∆𝐹 has a square-law relationship to static disorder, it has a linear relationship to dynamic
disorder.

The data points in the figure below correspond to the means of the Monte-Carlo samples
while the error bars correspond to one standard deviation. On this log-log scale and at low
noise, the magnitudes of these standard deviations seem to be independent of noise level;
for static disorder, the standard deviations are all approximately 4 dB while for dynamic
disorder they are approximately 5 dB.

We note that for the cold atoms experiments, both dynamic and static perturbations are
on the order of 10−3 of the expected value, i.e -30 dBFS [13,30] . According to our analysis
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Figure 5-5: Results of the perturbation analysis for the cnot gate in Sec. 5.3.2, showing the
relative change in fidelity ∆𝐹 due to time-independent (blue circles) and time-dependent
(red squares) perturbations. The error bars represent the standard deviation of the results
across realizations. The plot also includes fits to a linear (for dynamic perturbations) and
quadratic (for static perturbations) dependencies (solid lines).

this would correspond to a negligible cost in fidelity of about 10−4.
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5.B Quantum process tomography for cnot

In this appendix, we outline a very basic process tomography method for the cnot gate
described in this chapter. The idea of quantum process tomography [31] is to completely
determine the mathematical structure of a given operation (in our case, the cnot on two
qubits), by applying the operation to a variety of different input states and measuring each
of the resulting states in a variety of bases.

Tomography procedures allow much freedom in choosing input states and measurement
bases. We want to make such choices wisely to facilitate performing the procedure on our
particular experimental apparatus. Two main points guide these choices. One is that the
only two-qubit gate be the purported cnot gate itself – all other gates required for the
tomography should be relatively simple so that we adequately assess the cnot as the major
source of errors. The second is that the other gates be easy for the Bose-Hubbard model
to implement, preferably with as few gates as possible (since limitations in coherency times
may limit the number of gates reasonably performed using current technology). Here we
suggest input states and measurement bases to accomplish these goals, requiring only two
single-qubit Bose-Hubbard Hamiltonians (one prior to the cnot, and one following it) per
(computational) measurement. Specifically, each measurement in the tomography involves
applying an operation of the form (𝑉3⊗ 𝑉4) cnot (𝑉1⊗ 𝑉2) to a computational basis state,
followed by a measurement in the computational basis, where each 𝑉𝑖 can be performed
with a single one-qubit Bose-Hubbard Hamiltonian; we therefore need only keep the state
coherent for three consecutive operations.

In the following, we follow the quantum process tomography procedure outlined in
Ref. [22], which requires measuring Pauli observables. To measure a Pauli matrix 𝜎 ∈
{1, 𝑋, 𝑌, 𝑍}, one must perform a basis-transformation gate to the state so as to measure in
the eigenbasis of 𝜎. For 𝜎 = 1 and 𝑍, this is trivial, as the computational basis suffices;
however, for 𝜎 = 𝑋 and 𝑌 , it is recommended to measure in the following eigenbases, which
can be performed by first applying the following basis-transformation matrices,

𝑋 :

{︂
1√
2

(︂
1
1

)︂
,

1√
2

(︂
1
−1

)︂}︂
, 𝑈𝑋 =

1√
2

(︂
1 1
1 −1

)︂
(5.8)

and

𝑌 :

{︂
1√
2

(︂
1
𝑖

)︂
,

1√
2

(︂
𝑖
1

)︂}︂
, 𝑈𝑌 =

1√
2

(︂
1 −𝑖
−𝑖 1

)︂
. (5.9)

Observe that 𝑈𝑋 is the Hadamard matrix, the Hamiltonian for which was given in Eq. (5.3),
and that 𝑈𝑌 = 𝑅𝑥(𝜋/2), which is generated by the Hamiltonian in Eq. (5.4) with 𝜃 =
𝜋/2. Note that for 𝑌 we chose a non-standard orthonormal eigenbasis so that the basis-
transformation can be accomplished using a single Bose-Hubbard gate.

The input states required to perform the quantum process tomography procedure of
Ref. [22] are straightforward to produce. For example, one may use tensor products of the
following single-qubit input states: the computational basis states |0⟩ and |1⟩, the +1 𝑋-

eigenvector |+⟩ = 𝑈𝑋 |0⟩ = 1√
2

(︂
1
1

)︂
, and the +1 𝑌 -eigenvector |−⟩ = 𝑈 †

𝑌 |0⟩ = 1√
2

(︂
1
𝑖

)︂
,

where 𝑈𝑋 and 𝑈𝑌 are given in Eqs. (5.8) and (5.9). Note that 𝑈 †
𝑌 = 𝑅𝑥(7𝜋/2) can be

generated by the Hamiltonian in Eq. (5.4) with 𝜃 = 7𝜋/2.
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Chapter 6

Testing quantum expanders is

co-QMA-complete

A quantum expander is a unital quantum channel that is rapidly mixing, has only a few
Kraus operators, and can be implemented efficiently on a quantum computer. In this chap-
ter, we consider the problem of estimating the mixing time (i.e., the spectral gap) of a
quantum expander. We show that this problem is co-QMA-complete. This has applications
to testing randomized constructions of quantum expanders and to studying the thermaliza-
tion of open quantum systems.

This chapter is adapted from [1], which was joint work with Stephen P. Jordan, Yi-Kai
Liu, and Pawel Wocjan.

6.1 Introduction

A quantum expander is a unital quantum channel that is rapidly mixing. This means that,
with repeated applications of the channel, every quantum state is rapidly contracted to the
maximally mixed state, which is the channel’s unique fixed point. In addition, a quantum
expander has only a small number of Kraus operators, each of which is described by an
efficient quantum circuit. Quantum expanders are quantum analogues of expander graphs,
which play a prominent role in computer science and discrete mathematics [2]. The idea
of quantum expanders was introduced in [3, 4]; since then, several explicit constructions of
quantum expanders have been discovered, and quantum expanders have found various ap-
plications in quantum information theory, such as constructing quantum states with unusual
entanglement properties, and simulating thermalization in quantum systems [5–10].

Here we study the problem of estimating the mixing rate of a quantum expander. Given
a quantum channel Φ of the above form (a small number of Kraus operators, specified
by quantum circuits), this problem is to estimate the spectral gap of Φ. Such a problem
may arise in connection with randomized constructions of quantum expanders [10], where
with high probability one obtains a good expander, but it is not obvious how to test that
a particular instance of the construction is in fact good. In addition, this problem can
be viewed as a special case of a more general question: given an open quantum system,
determine whether it thermalizes, and on what time scale. (The behaviour of a quantum
expander is roughly equivalent to that of a quantum system with a particular weak coupling
to a bath of harmonic oscillators, as we shall discuss.)

Formally, we define the quantum non-expander problem (which is the complement of
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the above problem), and we give evidence that this problem is computationally intractable;
we prove that it is QMA-complete. Here QMA (Quantum Merlin-Arthur) is a complexity
class that is a quantum analogue of NP (Nondeterministic Polynomial Time) [11–13]. Prov-
ing that a problem is QMA-complete implies that it is equivalent (up to polynomial-time
reductions) to all other QMA-complete problems, a survey of which can be found in Chap-
ter 7 or [14]. In particular, this implies that the problem cannot be solved in polynomial time
(unless QMA = BQP). Furthermore, this implies that our original problem, the quantum
expander problem, is co-QMA-complete and therefore cannot be in QMA (unless QMA
= co-QMA). In other words, when a channel Φ is not a quantum expander, there is an
efficiently-verifiable quantum proof of that fact, but when Φ is a quantum expander, there
is no way of giving an efficiently-verifiable quantum proof (assuming QMA ̸= co-QMA).

6.2 Preliminaries

6.2.1 The quantum non-expander problem

We use the definition of explicit quantum expanders due to Ben-Aroya, Schwartz, and Ta-
Shma [5]. For an 𝑁 -dimensional Hilbert space ℋ, let 𝐿(ℋ) denote the space of linear
operators from ℋ to itself. A superoperator Φ : 𝐿(ℋ) → 𝐿(ℋ) is admissible if it is a
completely positive and trace-preserving map. An admissible superoperator is unital if
Φ
(︀
𝐼
)︀

= 𝐼, where 𝐼 = 1
𝑁 1 is the maximally mixed state on ℋ (where 1 is the identity

operator on ℋ). A unital superoperator is 𝐷-regular if it can be written as

Φ =
1

𝐷

𝐷∑︁

𝑑=1

Φ𝑑,

with each Φ𝑑 (for 𝑑 = 1, . . . , 𝐷) acting on arbitrary 𝐴 ∈ 𝐿(ℋ) as

Φ𝑑(𝐴) = 𝑈𝑑𝐴𝑈
†
𝑑

where the 𝑈𝑑 are unitary transformations on ℋ. The unitaries 𝑈𝑑 are called the operation
elements1 (or Kraus operators) of Φ, and 𝐷 is called the degree of Φ. A 𝐷-regular super-
operator is explicit if each of its operation elements 𝑈𝑑 can be implemented by a quantum
circuit of size polylog(𝑁), where 𝑁 is the dimension of ℋ.

Definition 6.1 (Quantum expander). A 𝐷-regular superoperator Φ : 𝐿(ℋ) → 𝐿(ℋ) is
a 𝜅-contractive expander if, for all 𝐴 ∈ 𝐿(ℋ) that are orthogonal to 𝐼 with respect to the

Hilbert-Schmidt inner product (i.e. Tr
[︁
𝐴𝐼
]︁

= 0, so 𝐴 is traceless), it holds that

‖Φ(𝐴)‖𝐹 ≤ 𝜅‖𝐴‖𝐹 . (6.1)

Here the Frobenius norm is given by ‖𝐴‖𝐹 =
√︁∑︀

𝑖,𝑗 |𝑎𝑖𝑗 |2, where 𝑎𝑖𝑗 are the entries of the
matrix 𝐴. The quantity 1− 𝜅, for the smallest such 𝜅 for Φ, is called the spectral gap of Φ.

Remark 6.1. The motivation for this definition can easily be seen from the following
argument. A good quantum expander Φ should rapidly send any density matrix 𝜌 to the

1Strictly speaking, the operation elements are 1√
𝐷
𝑈𝑑, but we will nonetheless refer to 𝑈𝑑 as being an

operation element.
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Figure 6-1: The quantum non-expander is to determine where, on the shown number
line, is the value of the contractivity 𝜅 of the given 𝐷-regular superoperator Φ. The YES
case corresponds to a bad expander (relative to the input parameters 𝛼 and 𝛽).

maximally mixed state 𝐼. Because Tr[𝜌] = 1 = Tr
[︁
𝐼
]︁
we can always write 𝜌 = 𝐼 +𝐴 where

Tr[𝐴] = 0. The requirement of Eq. (6.1) therefore formalizes the idea of Φ bringing 𝜌 towards
𝐼 by rapidly killing off the 𝐴 term. In this context Eq. (6.1) is equivalent to demanding

that
⃦⃦
⃦Φ(𝜌)− 𝐼

⃦⃦
⃦
F
6 𝜅

⃦⃦
⃦𝜌− 𝐼

⃦⃦
⃦
F
, which clearly encapsulates the idea of Φ rapidly sending

density matrices towards the maximally mixed state. Note that in this argument 𝐴 = 𝜌− 𝐼
is Hermitian; however, it can be shown that if Eq. (6.1) applies for traceless Hermitian
matrices, it also applies for traceless matrices in general, thus justifying Definition 6.1.

We consider the problem of estimating the mixing time of a quantum expander. Formally,
we study the following decision problem.

Definition 6.2 (Quantum non-expander problem). Fix some encoding such that
each string 𝑥 ∈ {0, 1}* specifies an explicit 𝐷-regular superoperator Φ : (C2)⊗𝑚 → (C2)⊗𝑚,
with operation elements 𝑈1, . . . , 𝑈𝐷, and two parameters 𝛼 > 𝛽.

We will consider instances which satisfy the following promises2: 𝑚 and 𝐷 are upper-
bounded by (fixed) polynomials in |𝑥|; the parameters 𝛼 and 𝛽 are polynomially separated,
i.e., they satisfy 𝛼 − 𝛽 ≥ 1

𝑞(|𝑥|) for some (fixed) polynomial 𝑞; and the operation elements
𝑈1, . . . , 𝑈𝐷 are given as quantum circuits of size at most 𝑟(|𝑥|) for some (fixed) polynomial
𝑟.

The quantum non-expander problem is the task of deciding which of the following
is correct, given the promise that exactly one of them is correct:

∙ Φ is not an 𝛼-contractive expander (YES case), or

∙ Φ is a 𝛽-contractive expander (NO case).

Thus the problem is to determine whether a given Φ is a bad quantum expander (has only
low contractivity), as sketched in Fig. 6-1.

6.2.2 Thermalization of open quantum systems

To motivate the quantum non-expander problem, we now describe a connection between
that problem and the study of thermalization in open quantum systems. We show an
example of a quantum system, coupled to a bath, where the system thermalizes and the
relaxation time is determined by the spectral gap of a certain quantum expander.

2Here |𝑥| denotes the length of the string 𝑥.
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Let the system consist of 𝑚 qubits, and fix some unitary transformations 𝑈𝑑 (for 𝑑 =
1, . . . , 𝐷) which act on (C2)⊗𝑚. Let the bath consist of a large number of harmonic oscil-
lators, with annihilation operators 𝑏𝑑𝑘 (for 𝑑 = 1, . . . , 𝐷 and 𝑘 ∈ Ω, where Ω is some large
set). Let the total Hamiltonian be

𝐻 = 𝐻𝑆 + 𝜀𝐻𝐼 +𝐻𝐵,

where the system Hamiltonian is 𝐻𝑆 = 0, the bath Hamiltonian is

𝐻𝐵 =
∑︁

𝑑

∑︁

𝑘

𝜔𝑘𝑏
†
𝑑𝑘𝑏𝑑𝑘,

and the system-bath coupling, of strength 𝜖, is described by the interaction Hamiltonian

𝐻𝐼 =
∑︁

𝑑

(𝑈𝑑 ⊗ 𝑓𝑑) + (𝑈 †
𝑑 ⊗ 𝑓

†
𝑑),

where the operators 𝑓𝑑 are defined by 𝑓𝑑 = 1√
|Ω|
∑︀

𝑘 𝑏𝑑𝑘.

In the weak-coupling limit (𝜀 → 0), the time evolution of the system is described by a
master equation [15]. Suppose the bath is in a thermal state, 𝜌𝐵 = (1/𝑍𝐵) exp(−𝐻𝐵/𝑇 ).
Then the master equation takes the form

𝑑

𝑑𝑡
𝜌𝑆(𝑡) = 𝑅0

∑︁

𝑑

(︁
𝑈𝑑𝜌𝑆(𝑡)𝑈 †

𝑑 − 𝜌𝑆(𝑡)
)︁

+𝑅1

∑︁

𝑑

(︁
𝑈 †
𝑑𝜌𝑆(𝑡)𝑈𝑑 − 𝜌𝑆(𝑡)

)︁
, (6.2)

where 𝜌𝑆(𝑡) is the state of the system at time 𝑡, and 𝑅0 and 𝑅1 are positive real numbers.
Equation (6.2) has two special features: there is no contribution from a “Lamb shift” Hamil-
tonian, and the dissipator is in diagonal form with Lindblad operators that are unitary.
(See [1] for the derivation of this equation.)

Now define the quantum channel

Φ(𝜌) =
𝑅0

(𝑅0 +𝑅1)𝐷

∑︁

𝑑

𝑈𝑑𝜌𝑈
†
𝑑 +

𝑅1

(𝑅0 +𝑅1)𝐷

∑︁

𝑑

𝑈 †
𝑑𝜌𝑈𝑑.

This channel Φ is a (non-uniform) mixture of unitary operations. In the special case where
the set of unitaries {𝑈𝑑 : 𝑑 = 1, . . . , 𝐷} is closed with respect to the adjoint operation (i.e.,
where for every 𝑑 ∈ {1, . . . , 𝐷}, there exists some 𝑒 ∈ {1, . . . , 𝐷} such that 𝑈𝑑 = 𝑈 †

𝑒 ), the
channel Φ can be written as

Φ(𝜌) =
1

𝐷

∑︁

𝑑

𝑈 †
𝑑𝜌𝑈𝑑,

hence Φ is a 𝐷-regular superoperator. The master equation can now be rewritten in terms
of Φ:

𝑑

𝑑𝑡
𝜌𝑆(𝑡) = (𝑅0 +𝑅1)𝐷

(︀
Φ− ℐ

)︀
(𝜌𝑆(𝑡)),

where ℐ denotes the identity channel. We can solve for 𝜌𝑆(𝑡), obtaining

𝜌𝑆(𝑡) = exp
(︁
𝑡 (𝑅0 +𝑅1)𝐷

(︀
Φ− ℐ

)︀)︁
(𝜌𝑆(0)).

This system converges to the maximally mixed state as 𝑡→∞, and the rate of conver-
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gence depends on the spectral gap of Φ. More precisely, write 𝜌𝑆(𝑡) = 𝐼 + 𝐴(𝑡) where 𝐴(𝑡)
is traceless. Then it can be verified that

‖𝐴(𝑡)‖𝐹 ≤ exp
(︀
− 𝑡 (𝑅0 +𝑅1)𝐷(1− 𝜅)

)︀
‖𝐴(0)‖𝐹 ,

where 1− 𝜅 is the spectral gap of Φ. The smaller the value of 𝜅, i.e. the larger the spectral
gap, the faster the state 𝜌𝑆(𝑡) will converge to the maximally mixed state 𝐼.

6.2.3 Quantum Merlin-Arthur

We will show that the quantum non-expander problem is QMA-complete, that is, it is
contained in QMA and every problem in QMA can be reduced to it in polynomial time.

The complexity class QMA consists of decision problems such that YES instances have
concise quantum proofs. The name QMA stands for Quantum Merlin-Arthur, which is
motivated by the following protocol. Given a problem instance 𝑥 (i.e. a string of |𝑥| bits),
and a language 𝐿 ∈ QMA, a computationally unbounded but untrustworthy prover, Merlin,
submits a quantum state of poly(|𝑥|) qubits as a purported proof that 𝑥 ∈ 𝐿. A verifier,
Arthur, who can perform polynomial size quantum computations, then processes this proof
and either accepts or rejects it. If 𝑥 ∈ 𝐿 then there exists some polynomial size quantum
state causing Arthur to accept with high probability (i.e. Merlin can successfully convince
Arthur), but if 𝑥 /∈ 𝐿 then Arthur will reject all states with high probability (i.e. Merlin
cannot cheat). QMA is a quantum analogue of MA, which is the probabilistic analogue of
NP. A formal definition of QMA is as follows.

Definition 6.3 (QMA(𝑎, 𝑏)). A language 𝐿 is in QMA(𝑎, 𝑏) if, for each 𝑥 ∈ {0, 1}*, one
can efficiently generate a quantum circuit 𝑉 with the following properties:

∙ 𝑉 acts on the Hilbert space 𝒲 ⊗𝒜 where

𝒲 = (C2)⊗𝑛𝑤 , 𝒜 = (C2)⊗𝑛𝑎 ,

and the functions 𝑛𝑤, 𝑛𝑎 : N→ N grow at most polynomially in |𝑥|;

∙ 𝑉 consists of 𝑠(|𝑥|) elementary gates where the function 𝑠 : N → N grows at most
polynomially in |𝑥|;

∙ if 𝑥 ∈ 𝐿 (YES case) then there exists a witness state |𝜓⟩ ∈ 𝒲 such that

‖𝑃𝑉 |𝜓⟩|0⟩‖2 ≥ 𝑎, (6.3)

where 𝑃 and |0⟩ are defined below;

∙ if 𝑥 /∈ 𝐿 (NO case) then for all states |𝜓⟩ ∈ 𝒲 we have that

‖𝑃𝑉 |𝜓⟩|0⟩‖2 ≤ 𝑏. (6.4)

Here𝒲 and 𝒜 are the witness and ancilla registers, respectively, and 𝑃 = |1⟩⟨1|⊗1 projects
onto the subspace of the first qubit of𝒲⊗𝒜 being in the state |1⟩, i.e. passing the verification
procedure. The state |0⟩ = |00 . . . 0⟩ is the all-zeros state on 𝒜.

Observe that 𝑉,𝒲,𝒜, 𝑛𝑎, 𝑛𝑤 and 𝑃 depend on 𝑥; however, to avoid unnecessarily com-
plicated notation, we do not indicate this explicitly.
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Remark 6.2. It is conventional to define QMA = QMA(23 ,
1
3). However, the complexity

class QMA(𝑎, 𝑏) is highly insensitive to the particular values of 𝑎 and 𝑏. In fact, even if 𝑎
and 𝑏 are functions of the problem size 𝑛, it remains true that QMA(𝑎(𝑛), 𝑏(𝑛)) = QMA
provided 𝑎(𝑛) − 𝑏(𝑛) > 1

𝑝(𝑛) for some polynomial 𝑝. It is always possible to achieve that
𝑎 = 1 − 𝜀 and 𝑏 = 𝜀 by increasing the size of the circuit by a factor polylog(1/𝜀) and
increasing 𝑛𝑎 by polylog(1/𝜀) qubits, with no change in 𝑛𝑤 [16, 17].

6.3 Quantum non-expander is in QMA

We now show that the problem defined in Definition 6.2 is in QMA. We first consider the
YES case. In this case, Merlin has to convince Arthur that there exists a traceless 2𝑚 × 2𝑚

matrix 𝐴 such that
‖Φ(𝐴)‖𝐹 > 𝛼‖𝐴‖𝐹 . (6.5)

Since Φ acts linearly, we may assume without loss of generality that ‖𝐴‖𝐹 = 1. Merlin
cannot directly send the matrix 𝐴 because it is an exponentially large matrix. Instead, he
can send the quantum certificate

|𝜓𝐴⟩ =
𝑁∑︁

𝑖,𝑗=1

𝑎𝑖𝑗 |𝑖⟩ ⊗ |𝑗⟩

encoding the matrix 𝐴, where 𝑁 = 2𝑚 is the dimension of the Hilbert space on which
𝐴 = [𝑎𝑖𝑗 ] acts. We show that |𝜓𝐴⟩ can serve as a witness, making it possible to convince
Arthur that the inequality in Eq. (6.5) holds.

Arthur’s verification protocol makes use of the following facts:

‖𝐴‖2𝐹 = ⟨𝜓𝐴|𝜓𝐴⟩,

Tr[𝐴] =
√
𝑁⟨𝜙|𝜓𝐴⟩,

where |𝜙⟩ = 1√
𝑁

∑︀𝑁
𝑖=1 |𝑖⟩ ⊗ |𝑖⟩, and

‖Φ(𝐴)‖2𝐹 = ⟨𝜓𝐴|𝑊 †𝑊 |𝜓𝐴⟩,

where

𝑊 =
1

𝐷

𝐷∑︁

𝑑=1

𝑈𝑑 ⊗ 𝑈𝑑

and 𝑈𝑑 denotes the complex conjugate of 𝑈𝑑.
First, to check whether Tr[𝐴] = 0, Arthur verifies that |𝜓𝐴⟩ is orthogonal to |𝜙⟩. Second,

to estimate the contractive factor, Arthur estimates the expectation value ⟨𝜓𝐴|𝑊 †𝑊 |𝜓𝐴⟩ of
𝑊 †𝑊 . For 𝑑, 𝑒 = 1, . . . , 𝐷, define the unitaries

𝑉𝑑,𝑒 = (𝑈 †
𝑑 ⊗ 𝑈𝑇𝑑 )(𝑈𝑒 ⊗ 𝑈 𝑒).

Note that 𝑉𝑑,𝑒 = 𝑉 †
𝑒,𝑑 and 𝑉𝑑,𝑑 = 1. The expectation value can be expressed as

⟨𝜓𝐴|𝑊 †𝑊 |𝜓𝐴⟩ =
1

𝐷2

∑︁

𝑑,𝑒

⟨𝜓𝐴|𝑉𝑑,𝑒|𝜓𝐴⟩ =
1

𝐷
+

2

𝐷2

∑︁

𝑑<𝑒

Re⟨𝜓𝐴|𝑉𝑑,𝑒|𝜓𝐴⟩.
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|0〉 H • H

|ψA〉 Vd,e

Figure 6-2: Hadamard test for 𝑉𝑑,𝑒

Arthur can estimate the values Re⟨𝜓𝐴|𝑉𝑑,𝑒|𝜓𝐴⟩ using the Hadamard test [shown in Fig. (6-
2)] since it will output 0 with probability Pr(0) = 1

2(1 + Re⟨𝜓𝐴|𝑉𝑑,𝑒|𝜓𝐴⟩). From this Arthur
can calculate ⟨𝜓𝐴|𝑊 †𝑊 |𝜓𝐴⟩ = ‖Φ(𝐴)‖2𝐹 and ensure that it exceeds 𝛼2.

Now consider the NO case. In this case, Arthur’s first measurement above, if it passes,
projects the state |𝜓𝐴⟩ onto the subspace orthogonal to |𝜙⟩; and by definition, all states
|𝜓𝐴⟩ in that subspace must satisfy

⟨𝜓𝐴|𝑊 †𝑊 |𝜓𝐴⟩ = ‖Φ(𝐴)‖2𝐹 6 𝛽2.

This shows that Merlin cannot cheat, that is, make Arthur believe that there exists a quan-
tum state with contractivity greater or equal to 𝛼, provided that Arthur estimates the
expected value sufficiently well and with sufficiently high probability of confidence.

As in the original definition of QMA in [12], we may assume that Arthur has multiple
copies of the quantum certificate |𝜓⟩ so that we can estimate the expected value sufficiently
well. Using the powerful technique of in-place amplification [16], we can transform a quantum
circuit requiring |𝜓⟩⊗𝑘 into one that requires only a single copy of |𝜓⟩.

6.4 Some technical tools

6.4.1 The Frobenius norm

In the proof that quantum non-expander is QMA-hard, we will frequently make use of
the Frobenius norm; we therefore present some useful facts about this norm here. If 𝐵 is a
matrix with entries 𝑏𝑖𝑗 , then the Frobenius norm is defined as

‖𝐵‖F =
√︁

Tr[𝐵†𝐵] =

√︃∑︁

𝑖𝑗

|𝑏𝑖𝑗 |2. (6.6)

We have the following identities: ‖𝐴⊗𝐵‖F = ‖𝐴‖F ‖𝐵‖F, Tr[𝐴⊗𝐵] = Tr[𝐴] Tr[𝐵], and of
course Tr[𝐴+𝐵] = Tr[𝐴] + Tr[𝐵]. If |𝜓⟩ and |𝜑⟩ are pure states then

⃦⃦
⃦ |𝜓⟩⟨𝜑|

⃦⃦
⃦
F

=
√︀
⟨𝜓|𝜓⟩ ⟨𝜑|𝜑⟩ =

⃦⃦
⃦|𝜓⟩

⃦⃦
⃦
⃦⃦
⃦|𝜑⟩

⃦⃦
⃦. (6.7)

Note that
⃦⃦
|0⟩⟨0|

⃦⃦
F

=
⃦⃦
|1⟩⟨1|

⃦⃦
F

= 1.
In this chapter we denote the Pauli matrices on one qubit by 𝜎𝑖, with 𝜎0 = 1, 𝜎1 = 𝜎𝑥,

𝜎2 = 𝜎𝑦, and 𝜎3 = 𝜎𝑧. Consider any traceless matrix 𝐴 that acts on some space C𝑑 ⊗ C2,
where we will refer to the second subspace (i.e. single-qubit subspace) as the indicator qubit
register. Because the Pauli matrices 𝜎𝑖 form a basis for the matrices acting on the indicator
qubit register, we can decompose 𝐴 as

∑︀3
𝑖=0𝐴𝑖⊗𝜎𝑖, where 𝐴𝑖 are matrices on the multi-qubit
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C𝑑 subspace (the combined witness and ancilla registers that we will see later). Because
𝜎𝑖 are traceless for 𝑖 = 1, 2, 3, the traceless condition on 𝐴 therefore becomes Tr[𝐴0] = 0.
Moreover, because the Pauli matrices are orthogonal with respect to the trace inner product
and all satisfy ‖𝜎𝑖‖2F = 2, we have ‖∑︀𝑖𝐴𝑖 ⊗ 𝜎𝑖‖2F =

∑︀
𝑖 ‖𝐴𝑖 ⊗ 𝜎𝑖‖2F = 2

∑︀
𝑖 ‖𝐴𝑖‖2F, giving the

inequality ⃦⃦
⃦⃦
⃦

3∑︁

𝑖=0

𝐴𝑖 ⊗ 𝜎𝑖
⃦⃦
⃦⃦
⃦
F

>
√

2 ‖𝐴0‖F . (6.8)

A quantum operation 𝐺 is called a pinching operator if 𝐺(𝐵) =
∑︀

𝑃 𝑃𝐵𝑃 where 𝑃 are
non-overlapping projectors with

∑︀
𝑃 𝑃 = 1. Pinching operators are trace preserving,

Tr

[︃∑︁

𝑃

𝑃𝐵𝑃

]︃
= Tr[𝐵] , (6.9)

and moreover, (by the “pinching inequality”) cannot increase Frobenius norm:
⃦⃦
⃦⃦
⃦
∑︁

𝑃

𝑃𝐵𝑃

⃦⃦
⃦⃦
⃦
F

6 ‖𝐵‖F . (6.10)

It should be noted that a quantum expander ℰ is also norm-non-increasing,

‖ℰ(𝐵)‖F 6 ‖𝐵‖F , (6.11)

and similarly for any projector 𝑃 ,

‖𝑃𝐵𝑃‖F 6 ‖𝐵‖F . (6.12)

6.4.2 Controlled expanders

The remainder of our chapter will make repeated use of controlled expanders, which we
introduce here. If 𝑈 is a unitary gate, we use the notation Λ𝑈 to indicate a controlled-𝑈
operation.

Definition 6.4 (Controlled expander). Let ℱ be a quantum expander with operation
elements {𝑈𝑖 : 𝑖 = 1 . . . 𝐷} so that ℱ(𝐵) = 1

𝐷

∑︀𝐷
𝑖=1 𝑈𝑖𝐵𝑈

†
𝑖 . The controlled expander Λℱ

is defined to be the 𝐷-regular superoperator whose operation elements are the controlled
unitaries {Λ𝑈𝑖 : 𝑖 = 1 . . . 𝐷}.

More explicitly, consider two registers, a control register and a target register, and sup-
pose that an expander ℱ acts on the target register as ℱ(𝐵) = 1

𝐷

∑︀𝐷
𝑖=1 𝑈𝑖𝐵𝑈

†
𝑖 . Decompose

the control register into two orthogonal subspaces, and let 𝑄 and 𝑃 be projectors onto these
two subspaces (so 𝑄+ 𝑃 = 1 and 𝑃𝑄 = 𝑄𝑃 = 0). Suppose that the controlled operations
Λ𝑈𝑖 are to be applied when the control register is in the subspace corresponding to 𝑃 ; thus
Λ𝑈𝑖 = 𝑃 ⊗ 𝑈𝑖 + 𝑄 ⊗ 1. Consider a matrix 𝐴 ⊗ 𝐵, where 𝐴 and 𝐵 act on the control and
target registers, respectively. Then the controlled expander Λℱ , with operation elements
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Λ𝑈𝑖, acts on 𝐴⊗𝐵 as

Λℱ (𝐴⊗𝐵) =
1

𝐷

𝐷∑︁

𝑖=1

[︁
(Λ𝑈𝑖)(𝐴⊗𝐵)(Λ𝑈 †

𝑖 )
]︁

=
1

𝐷

𝐷∑︁

𝑖=1

[︁
(𝑃 ⊗ 𝑈𝑖 +𝑄⊗ 1)(𝐴⊗𝐵)(𝑃 ⊗ 𝑈 †

𝑖 +𝑄⊗ 1)
]︁

=
1

𝐷

𝐷∑︁

𝑖=1

[︁
𝑃𝐴𝑃 ⊗ 𝑈𝑖𝐵𝑈 †

𝑖 + 𝑃𝐴𝑄⊗ 𝑈𝑖𝐵 +𝑄𝐴𝑃 ⊗𝐵𝑈 †
𝑖 +𝑄𝐴𝑄⊗𝐵

]︁

= 𝑃𝐴𝑃 ⊗ 1

𝐷

∑︁

𝑖

(𝑈𝑖𝐵𝑈
†
𝑖 ) + 𝑃𝐴𝑄⊗

(︃
1

𝐷

∑︁

𝑖

𝑈𝑖

)︃
𝐵 (6.13)

+𝑄𝐴𝑃 ⊗𝐵
(︃

1

𝐷

∑︁

𝑖

𝑈 †
𝑖

)︃
+𝑄𝐴𝑄⊗𝐵.

Note that if we impose on ℱ the requirement that
∑︁

𝑖

𝑈𝑖 = 0 (6.14)

then we obtain
Λℱ (𝐴⊗𝐵) = 𝑃𝐴𝑃 ⊗ℱ(𝐵) +𝑄𝐴𝑄⊗𝐵 (6.15)

which is how we would naturally desire a controlled expander to act. Unfortunately, unlike
Eq. (6.15), Eq. (6.13) has additional cross-terms whose elimination would greatly simplify
our future analysis.

We will, however, freely assume that Eq. (6.14) is satisfied, justified by the following
observation. If necessary, we may always increase the set of operation elements of ℱ from
{𝑈𝑖 : 𝑖 = 1 . . . 𝐷} to {𝑈𝑖 : 𝑖 = 1 . . . 𝐷} ∪ {−𝑈𝑖 : 𝑖 = 1 . . . 𝐷}. Such a change has no effect on
the original expander ℱ ; the expander ℱ(𝐵) = 1

𝐷

∑︀
(𝑈𝑖 𝐵 𝑈 †

𝑖 ) is invariant under 𝑈𝑖 ↔ −𝑈𝑖,
even though the controlled expander Λℱ(𝐵) = 1

𝐷

∑︀
(Λ𝑈𝑖 𝐵 Λ𝑈 †

𝑖 ) is not necessarily invariant
under 𝑈𝑖 ↔ −𝑈𝑖. Thus, with only a factor of two overhead in the number of unitaries, we
may satisfy the condition of Eq. (6.14), thereby eliminating the undesired cross-terms; as
such, Eq. (6.15) may effectively be taken as the definition of a controlled expander.

A concrete example of a controlled expander – and one of particular importance in
this chapter – is the controlled complete depolarizer. Throughout this chapter we use 𝒟 to
denote the complete depolarizing channel on a single qubit, which is normally defined to
apply a unitary from {1, 𝑋, 𝑌, 𝑍} with uniform probability 1/4. To ensure that Eq. (6.14)
is satisfied, we therefore define the effect of 𝒟 on a matrix 𝜎 to be

𝒟(𝜎) =
1

8

∑︁

𝑊

𝑊𝜎𝑊 = 1
Tr[𝜎]

2

where the sum is over 𝑊 ∈ {1, 𝑋, 𝑌, 𝑍,−1,−𝑋,−𝑌,−𝑍}. Consequently, the controlled
complete depolarizer, Λ𝒟, with a single-qubit target and (possibly multi-qubit) control pro-
jectors 𝑃 (indicating apply 𝒟) and 𝑄 (indicating do nothing), is the 8-regular superoperator
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control / •
target / F

Figure 6-3: A controlled expander, Λℱ

with operation elements

{Λ(1),Λ(𝑋),Λ(𝑌 ),Λ(𝑍),Λ(−1),Λ(−𝑋),Λ(−𝑌 ),Λ(−𝑍)}

having the effect

Λ𝒟(𝐴⊗ 𝜎) = 𝑃𝐴𝑃 ⊗ 1 Tr[𝜎]

2
+𝑄𝐴𝑄⊗ 𝜎. (6.16)

Although controlled expanders are not actually quantum gates, we will nevertheless
include them in circuit diagrams. If Λℱ(𝐵) = 1

𝐷

∑︀
𝑖(Λ𝑈𝑖 𝐵 Λ𝑈 †

𝑖 ), then the circuit in Fig. 6-
3 is to be interpreted as applying an element selected uniformly at random from the set
{Λ𝑈𝑖} (or equivalently, as applying to the target register a unitary selected uniformly at
random from the set {𝑈𝑖}, but only if the control register is in the appropriate state). As
a final remark, note that although a controlled expander is a unital map, it is not itself
a good expander (firstly, because depending on the control qubit, the operator might not
do anything at all, and secondly because even when the operator does act non-trivially,
it only expands on the subspace of the target, not the entire space). For example, note
that |0⟩⟨0| ⊗ |0⟩⟨0| is not contracted at all by the controlled complete depolarizer Λ𝒟, thus
indicating that Λ𝒟 is not a good expander.

6.5 Quantum non-expander is QMA-hard

6.5.1 Outline of the proof

Let 𝐿 be any language in QMA(23 ,
1
3). We show that the quantum non-expander problem

is QMA-hard by reducing 𝐿 to a quantum non-expander problem. Specifically, let 𝑥 be
an |𝑥|-bit problem instance whose inclusion in 𝐿, or lack-thereof, we wish to determine.
Because 𝐿 ∈ QMA we have access to a verifier circuit satisfying Eqs. (6.3) and (6.4) acting
on a witness space of 𝑛𝑤 = poly(|𝑥|) qubits and some ancilla space. For reasons that will
become apparent later, we now use QMA amplification to give that 𝐿 ∈ QMA(𝑎, 𝑏) for
polynomially separated 𝑎 and 𝑏 where

𝑎 > 0.99 and 𝑏 < (0.1)2−(𝑛𝑤+1). (6.17)

Note from Remark 6.2 that this can be done without increasing the size of the witness space
of the verifier. Let the resulting QMA(𝑎, 𝑏) verifier circuit be called 𝑉 , which acts on the
same witness space of 𝑛𝑤 = poly(|𝑥|) qubits and some ancilla space of 𝑛𝑎 = poly(|𝑥|) ancilla
qubits. Merlin can provide Arthur a valid (with high probability) witness if and only if
𝑥 ∈ 𝐿.

Let ℰ be an explicit 𝜅ℰ -contracting expander of degree 𝐷ℰ acting on 𝑛𝑤 + 𝑛𝑎 qubits,
where

𝜅ℰ 6 0.1
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witness /
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ancilla / • / /

indicator D D •

ancilla |←− witness −→| controlled E
verifier verifier

Figure 6-4: The map Φ constructed from the verifier circuit 𝑉 , the complete depolarizer 𝒟,
and the 𝜅ℰ -contractive expander ℰ . The first controlled depolarizer is applied only if the
ancillae are not all zero, and the second one only if the top output is zero. The controlled
ℰ-expander is applied only if the bottom qubit is one. Note that this figure is not a true
circuit because 𝒟 and ℰ are quantum expanders, not unitary gates.

and 𝐷ℰ is constant (independent of |𝑥|). Such expanders are known to exist, as we outline in
Appendix 6.A using Ref [18]. Using 𝑉 and ℰ , we create a quantum expander Φ that is bad if
𝑥 ∈ 𝐿 but good if 𝑥 /∈ 𝐿; indeed, we will present polynomially-separated (in fact, constant) 𝛼
and 𝛽 such that Φ is a 𝛽-contracting expander if 𝑥 /∈ 𝐿 but is not an 𝛼-contracting expander
if 𝑥 ∈ 𝐿. The ability to solve the quantum non-expander problem thereby allows us to
solve 𝐿. The circuit for Φ is shown in Fig. 6-4, which we now describe in detail.

The map Φ acts on three registers, which, from top to bottom, are the witness register
(of 𝑛𝑤 qubits), the ancilla register (of 𝑛𝑎 qubits), and an additional single-qubit register we
call the indicator qubit register. The circuit is realized by composing the following three
maps:

1. the ancilla verifier,

2. the witness verifier,

3. the controlled-ℰ .

The basic idea is that if 𝑥 ∈ 𝐿 then Merlin can provide a valid witness and properly
initialized ancillae that will pass the verifiers and not be mixed by the final controlled
expander (indicating that our quantum expander is bad); conversely, if 𝑥 /∈ 𝐿 then no matter
what witness and ancilla qubits Merlin provides, the indicator qubit will be depolarized and
consequently his state will be well-mixed by the final controlled expander (indicating our
expander to be good).

We now provide a detailed description of the three different maps and their purposes.

1. The ancilla verifier is the first operation in Fig. 6-4. It is the controlled expander
Λanc𝒟, which applies the complete depolarizer 𝒟 to the indicator qubit register only
if any of the ancilla bits are 1 (i.e. if they are not all 0). More technically, it is

Λanc𝒟(𝐵) =
1

8

∑︁

𝑊

Λanc𝑊 𝐵 Λanc𝑊
†
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witness

ancillae





indicator
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X • X
...
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Figure 6-5: The controlled expander verifying the ancillae. The unitary 𝑊 is selected from
{1, 𝑋, 𝑌, 𝑍,−1,−𝑋,−𝑌,−𝑍} uniformly at random.

(with 𝑊 ∈ {1, 𝑋, 𝑌, 𝑍,−1,−𝑋,−𝑌,−𝑍}), where Λanc𝑊 is the gate shown in Fig. 6-
5. Note that Λanc𝑊 requires a controlled-𝑊 † gate controlled by 𝑛𝑎 qubits, which
can be implemented with 𝑛𝑎2 gates using no extra work qubits [19]. (It is important
that the implementation not require work qubits because we demand that there are
no internal ancillae; our expander must be an expander on the entire space, not just a
subspace.) Intuitively, if the ancilla qubits are not initialized to be all 0’s, the verifier
will depolarize the indicator qubit, whence the term ancilla verifier.

2. The witness verifier consists of the next three operations in Fig. 6-4. First, 𝑉 operates
on the witness and ancilla registers, with its output on the top qubit (with |1⟩ signifying
that the witness is valid, |0⟩ signifying that it is invalid); the lower multi-qubit register
on 𝑛𝑤 + 𝑛𝑎 − 1 qubits contains the rest of 𝑉 ’s output (required by reversibility). A
controlled-depolarizer then acts on the indicator qubit, conditioned upon the top qubit
being |0⟩ (i.e. failing the witness verification). The effects of 𝑉 are then uncomputed
with 𝑉 †. At this point, intuitively, the indicator qubit has been depolarized if and
only if the input failed either the ancilla verifier or the witness verifier (or both).

3. Finally, the last gate, which is the controlled expander Λindℰ , acts, conditioned on
whether the indicator qubit is |1⟩. Intuitively, if the input was |𝜓⟩⊗ |0⟩⊗ |0⟩, with the
indicator qubit initialized to |0⟩, with the ancilla qubits initialized to |0⟩ = |00 . . . 0⟩,
and with |𝜓⟩ a valid witness (for 𝑥 ∈ 𝐿), then the indicator qubit will remain |0⟩
and nothing will happen; if, on the other hand, the witness/ancillae failed any of the
verifiers, thus depolarizing the indicator qubit to be 1

2 1 = 1
2 |0⟩⟨0| + 1

2 |1⟩⟨1|, then
ℰ will act on the top registers, resulting in a highly mixed output (across all three
registers).

Note that because ℰ is an explicit𝐷ℰ -regular expander (where𝐷ℰ is a constant), Φ, being
the composition of two explicit 8-regular superoperators and Λℰ , is manifestly explicit and
64𝐷ℰ -regular (i.e. of constant degree). We now proceed to show that Φ is indeed a good
expander if 𝑥 /∈ 𝐿 (the NO case) but not if 𝑥 ∈ 𝐿 (the YES case).
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6.5.2 Analysis of NO case

First, consider the case in which 𝑥 /∈ 𝐿. We wish to show that Φ is a good expander, and
therefore by Eq. (6.1), that it sufficiently decreases the Frobenius norm of any input traceless
matrix. As discussed earlier, we may therefore take the input matrix to be

∑︀3
𝑖=0𝐴𝑖⊗𝜎𝑖 for

some matrices 𝐴𝑖 with Tr[𝐴0] = 0, where 𝜎𝑖 are the Pauli matrices on the indicator qubit
register.

Both the witness and ancilla verifiers are controlled depolarizers, and we can analyse
each of them in the same way using projection operators that act on some subspace of
the system; specifically, we will use 𝑄 =

∑︀
𝜑 passes |𝜑⟩⟨𝜑| that projects onto the states that

pass the verifier and 𝑃 =
∑︀

𝜑 fails |𝜑⟩⟨𝜑| that projects onto the states that fail it. For
the ancilla verifier, these are 𝑄𝑎 = |00 . . . 0⟩⟨00 . . . 0|anc (more properly written as 𝑄𝑎 =
1wit⊗ |00 . . . 0⟩⟨00 . . . 0|anc ⊗ 1ind) and 𝑃𝑎 = 1−𝑄𝑎 =

∑︀
𝑧 ̸=00...0 |𝑧⟩⟨𝑧|anc. For the witness

verifier, 𝑄𝑤 = 𝑉 † |1⟩⟨1|top 𝑉 and 𝑃𝑤 = 𝑉 † |0⟩⟨0|top 𝑉 (so that 𝑃𝑤 + 𝑄𝑤 = 1). Here the
subscript 𝑡𝑜𝑝 is used to indicate the top qubit register output from 𝑉 .

Applying Eq. (6.16) and linearity, the effect of a verifier unit 𝐹 on the input matrix∑︀3
𝑖=0𝐴𝑖 ⊗ 𝜎𝑖 is therefore

𝐹

(︃
3∑︁

𝑖=0

𝐴𝑖 ⊗ 𝜎𝑖
)︃

=
3∑︁

𝑖=0

[︂
𝑃𝐴𝑖𝑃 ⊗ 1

Tr[𝜎𝑖]

2
+𝑄𝐴𝑖𝑄⊗ 𝜎𝑖

]︂

= 𝑃𝐴0𝑃 ⊗ 1+

3∑︁

𝑖=0

𝑄𝐴𝑖𝑄⊗ 𝜎𝑖.

By linearity, it is easy to see that the effect of two such verifier units – the ancilla verifier
with projectors {𝑃𝑎, 𝑄𝑎} and witness verifier with projectors {𝑃𝑤, 𝑄𝑤} – is

𝐹𝑤 ∘ 𝐹𝑎
(︃

3∑︁

𝑖=0

𝐴𝑖 ⊗ 𝜎𝑖
)︃

= 𝐹𝑤 (𝑃𝑎𝐴0𝑃𝑎 ⊗ 1) + 𝐹𝑤

(︃
3∑︁

𝑖=0

𝑄𝑎𝐴𝑖𝑄𝑎 ⊗ 𝜎𝑖
)︃

= (𝑃𝑤𝑃𝑎𝐴0𝑃𝑎𝑃𝑤 +𝑄𝑤𝑃𝑎𝐴0𝑃𝑎𝑄𝑤 + 𝑃𝑤𝑄𝑎𝐴0𝑄𝑎𝑃𝑤)⊗ 1+
3∑︁

𝑖=0

𝑄𝑤𝑄𝑎𝐴𝑖𝑄𝑎𝑄𝑤 ⊗ 𝜎𝑖

=
∑︁

𝑅

𝑅𝐴0𝑅
† ⊗ 1+

3∑︁

𝑖=1

𝑄𝑤𝑎𝐴𝑖𝑄
†
𝑤𝑎 ⊗ 𝜎𝑖,

where the first sum is over 𝑅 ∈ {𝑃𝑤𝑃𝑎, 𝑃𝑤𝑄𝑎, 𝑄𝑤𝑃𝑎, 𝑄𝑤𝑄𝑎} and where 𝑄𝑤𝑎 is the single
product

𝑄𝑤𝑎 = 𝑄𝑤𝑄𝑎

so 𝑄†
𝑤𝑎 = 𝑄𝑎𝑄𝑤. Notice that the 𝑖 = 0 term (involving 𝜎0 = 1) in the second sum has been

transferred to the first sum, thereby allowing the first sum to include all possible projection
combinations.
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We can rewrite this as

𝐹𝑤 ∘ 𝐹𝑎
(︃

3∑︁

𝑖=0

𝐴𝑖 ⊗ 𝜎𝑖
)︃

= 𝐶(𝐴0)⊗ 1+

3∑︁

𝑖=1

𝑄𝑤𝑎𝐴𝑖𝑄
†
𝑤𝑎 ⊗ 𝜎𝑖 (6.18)

where

𝐶(𝐴0) =
∑︁

𝑅

𝑅𝐴0𝑅
† =

∑︁

𝑅𝑤=𝑃𝑤,𝑄𝑤

𝑅𝑤

⎛
⎝ ∑︁

𝑅𝑎=𝑃𝑎,𝑄𝑎

𝑅𝑎𝐴0𝑅𝑎

⎞
⎠𝑅𝑤 = (𝐺𝑤 ∘𝐺𝑎)(𝐴0)

is the composition of the pinching operators 𝐺𝑗(𝐵) = 𝑃𝑗𝐵𝑃𝑗 +𝑄𝑗𝐵𝑄𝑗 applied to 𝐴0. Since
𝐶 is the composition of pinching operators, Eqs. (6.9) and (6.10), along with Eq. (6.8), tell
us that

Tr[𝐶(𝐴0)] = Tr[𝐴0] = 0 (6.19)

and

‖𝐶(𝐴0)‖F 6 ‖𝐴0‖F 6
1√
2

⃦⃦
⃦⃦
⃦
∑︁

𝑖

𝐴𝑖 ⊗ 𝜎𝑖
⃦⃦
⃦⃦
⃦
F

. (6.20)

We are now ready to apply the final controlled expander, which by Eq. (6.15), with
𝑃 = |1⟩⟨1| and 𝑄 = |0⟩⟨0|, has the effect

Λℰ (𝐵 ⊗ 𝑏) = ℰ(𝐵)⊗ |1⟩⟨1| 𝑏 |1⟩⟨1|+𝐵 ⊗ |0⟩⟨0| 𝑏 |0⟩⟨0| .

Applying this to the matrix Eq. (6.18), we conclude that the effect of the map in Fig. 6-4
on the initial traceless matrix

∑︀3
𝑖=0𝐴𝑖 ⊗ 𝜎𝑖 is

Φ

(︃
3∑︁

𝑖=0

𝐴𝑖 ⊗ 𝜎𝑖
)︃

= 𝐶(𝐴0)⊗ |0⟩⟨0| + ℰ (𝐶(𝐴0))⊗ |1⟩⟨1| (6.21)

+ 𝑄𝑤𝑎𝐴3𝑄
†
𝑤𝑎 ⊗ |0⟩⟨0| − ℰ(𝑄𝑤𝑎𝐴3𝑄

†
𝑤𝑎)⊗ |1⟩⟨1| .

To show that Φ is a good quantum expander, we must show that it sufficiently decreases
the Frobenius norm of its traceless input. Since ℰ is a 𝜅ℰ -contractive expander and 𝐶(𝐴0)
is traceless [see Eq. (6.19)] we are guaranteed that

‖ℰ (𝐶(𝐴0))‖F 6 𝜅ℰ ‖𝐶(𝐴0)‖F . (6.22)

Applying the triangle inequality to Eq. (6.21), and using Eqs. (6.22), (6.11), and (6.20), we
therefore have
⃦⃦
⃦⃦
⃦Φ

(︃
3∑︁

𝑖=0

𝐴𝑖 ⊗ 𝜎𝑖
)︃⃦⃦
⃦⃦
⃦
F

6 ‖𝐶(𝐴0)‖F + ‖ℰ (𝐶(𝐴0))‖F +
⃦⃦
⃦𝑄𝑤𝑎𝐴3𝑄

†
𝑤𝑎

⃦⃦
⃦
F

+
⃦⃦
⃦ℰ(𝑄𝑤𝑎𝐴3𝑄

†
𝑤𝑎)
⃦⃦
⃦
F

6 (1 + 𝜅ℰ) ‖𝐶(𝐴0)‖F + 2
⃦⃦
⃦𝑄𝑤𝑎𝐴3𝑄

†
𝑤𝑎

⃦⃦
⃦
F

6
1 + 𝜅ℰ√

2

⃦⃦
⃦⃦
⃦

3∑︁

𝑖=0

𝐴𝑖 ⊗ 𝜎𝑖
⃦⃦
⃦⃦
⃦
F

+ 2
⃦⃦
⃦𝑄𝑤𝑎𝐴3𝑄

†
𝑤𝑎

⃦⃦
⃦
F
. (6.23)

Note that we cannot make a claim similar to Eq. (6.22) for ℰ(𝑄𝑤𝑎𝐴3𝑄
†
𝑤𝑎) because𝑄𝑤𝑎𝐴3𝑄

†
𝑤𝑎
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need not be traceless.
In QMA(1, 0) we are guaranteed that provided the ancillae are initialized to be all 0’s,

no witness can pass the verifier (for a NO instance). Mathematically, this guarantee is
equivalent to saying that 𝑄𝑤𝑎 = 𝑄𝑤𝑄𝑎 ≡ 0. Consequently, the 𝑄𝑤𝑎𝐴3𝑄

†
𝑤𝑎 vanishes and

we are done. In QMA(𝑎, 𝑏), however, we must upper bound
⃦⃦
⃦𝑄𝑤𝑎𝐴3𝑄

†
𝑤𝑎

⃦⃦
⃦
F
, which we now

proceed to do.
Because 𝑥 /∈ 𝐿 ∈ QMA(𝑎, 𝑏), we are assured that for any purported witness |𝜓⟩,

‖𝑄𝑤|𝜓⟩|0⟩‖ 6
√
𝑏, (6.24)

since 𝑄𝑤 projects onto the states that pass the verifier. Because 𝑄𝑎 projects onto the |0⟩⟨0|
ancilla subspace, we may write

𝑄𝑎𝐴3𝑄𝑎 =
∑︁

𝜓1,𝜓2

𝑐(𝜓1, 𝜓2) |𝜓1⟩⟨𝜓2| ⊗ |0⟩⟨0|

where {|𝜓𝑖⟩} is any orthonormal basis of the witness subspace. Note that because the
witness register consists of 𝑛𝑤 qubits, 𝑐(𝜓1, 𝜓2) can be regarded as a matrix with dimension
𝑁 = 2𝑛𝑤 × 2𝑛𝑤 . Thus using the triangle inequality and Eqs. (6.7) and (6.24),

⃦⃦
⃦𝑄𝑤𝑎𝐴3𝑄

†
𝑤𝑎

⃦⃦
⃦
F

=

⃦⃦
⃦⃦
⃦⃦
∑︁

𝜓1,𝜓2

𝑐(𝜓1, 𝜓2)𝑄𝑤|𝜓1⟩|0⟩⟨𝜓2|⟨0|𝑄𝑤

⃦⃦
⃦⃦
⃦⃦
F

6
∑︁

𝜓1,𝜓2

|𝑐(𝜓1, 𝜓2)|
⃦⃦
⃦𝑄𝑤|𝜓1⟩|0⟩⟨𝜓2|⟨0|𝑄𝑤

⃦⃦
⃦
F

=
∑︁

𝜓1,𝜓2

|𝑐(𝜓1, 𝜓2)|
⃦⃦
⃦𝑄𝑤|𝜓1⟩|0⟩

⃦⃦
⃦
F

⃦⃦
⃦𝑄𝑤|𝜓2⟩|0⟩

⃦⃦
⃦
F

6
∑︁

𝜓1,𝜓2

|𝑐(𝜓1, 𝜓2)| 𝑏.

The matrix 𝑐 has (2𝑛𝑤)2 elements, so its 1-norm and 2-norm are related by

∑︁

𝜓1,𝜓2

|𝑐(𝜓1, 𝜓2)| 6 2𝑛𝑤

√︃∑︁

𝜓1,𝜓2

|𝑐(𝜓1, 𝜓2)|2 = 2𝑛𝑤

⃦⃦
⃦𝑄𝑎𝐴3𝑄

†
𝑎

⃦⃦
⃦
F
.

But by Eq. (6.12), and by the derivation of Eq. (6.8) applied to 𝐴3, we have
⃦⃦
⃦𝑄𝑎𝐴3𝑄

†
𝑎

⃦⃦
⃦
F
6

‖𝐴3‖F 6 1√
2

⃦⃦
⃦
∑︀3

𝑖=0𝐴𝑖 ⊗ 𝜎𝑖
⃦⃦
⃦
F
; thus we conclude,

⃦⃦
⃦𝑄𝑤𝑎𝐴3𝑄

†
𝑤𝑎

⃦⃦
⃦
F
6

2𝑛𝑤

√
2

⃦⃦
⃦⃦
⃦

3∑︁

𝑖=0

𝐴𝑖 ⊗ 𝜎𝑖
⃦⃦
⃦⃦
⃦
F

𝑏. (6.25)

Although 2𝑛𝑤 is exponential in 𝑛𝑤, recall that 𝑏 in Eq. (6.17) was chosen so that 2𝑛𝑤+1𝑏 6 0.1.
We conclude from Eqs. (6.23) and (6.25) that Φ is a 𝛽-contractive expander,

⃦⃦
⃦⃦
⃦Φ

(︃
3∑︁

𝑖=0

𝐴𝑖 ⊗ 𝜎𝑖
)︃⃦⃦
⃦⃦
⃦
F

6 𝛽

⃦⃦
⃦⃦
⃦

3∑︁

𝑖=0

𝐴𝑖 ⊗ 𝜎𝑖
⃦⃦
⃦⃦
⃦
F

, (6.26)
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with

𝛽 =
1 + 𝜅ℰ + 2𝑛𝑤+1𝑏√

2
< 0.85. (6.27)

6.5.3 Analysis of YES case

Now consider the case in which 𝑥 ∈ 𝐿. Since 𝐿 ∈ QMA(𝑎, 𝑏), there exists a valid witness
|𝜓⟩ such that

‖𝑄𝑤|𝜓⟩|0⟩‖2 > 𝑎. (6.28)

From this witness we construct the density matrix Ψ = |𝜓⟩⟨𝜓| ⊗ |0⟩⟨0| ⊗ |0⟩⟨0|. Because
Ψ passes the ancilla verifier unchanged and the witness verifier with very little change, Ψ
is almost a fixed point of our expander Φ (and indeed, for QMA(1, 0) it is a fixed point);
intuitively, therefore, Φ is a poor expander. The matrix 𝐼 = 1

2𝑛𝑤+𝑛𝑎+1 1 is certainly a fixed
point (for any unital map); therefore the traceless matrix

𝐴 = Ψ− 𝐼 = |𝜓⟩⟨𝜓| ⊗ |0⟩⟨0| ⊗ |0⟩⟨0| − 1

2𝑛𝑤+𝑛𝑎+1
1

is also expected to change very little under Φ. By showing this to be the case, we will show
that Φ is not an 𝛼-contractive expander for an 𝛼 that is polynomially separated from the 𝛽
found in the NO case.

Using an analysis similar to the previous case, it is easy to see that the effect of our
circuit on Ψ is

Ψ = |𝜓⟩⟨𝜓| ⊗ |0⟩⟨0| ⊗ |0⟩⟨0|
Ancilla verifier

−−−−−−−−−→ |𝜓⟩⟨𝜓| ⊗ |0⟩⟨0| ⊗ |0⟩⟨0|
Witness verifier

−−−−−−−−−→ 𝑃𝑤
(︀
|𝜓⟩⟨𝜓| ⊗ |0⟩⟨0|

)︀
𝑃𝑤 ⊗

1

2
+𝑄𝑤

(︀
|𝜓⟩⟨𝜓| ⊗ |0⟩⟨0|

)︀
𝑄𝑤 ⊗ |0⟩⟨0|

Controlled-ℰ
−−−−−−−−−→ 1

2
ℰ
[︁
𝑃𝑤
(︀
|𝜓⟩⟨𝜓| ⊗ |0⟩⟨0|

)︀
𝑃𝑤

]︁
⊗ |1⟩⟨1|

+
1

2
𝑃𝑤
(︀
|𝜓⟩⟨𝜓| ⊗ |0⟩⟨0|

)︀
𝑃𝑤 ⊗ |0⟩⟨0|

+𝑄𝑤
(︀
|𝜓⟩⟨𝜓| ⊗ |0⟩⟨0|

)︀
𝑄𝑤 ⊗ |0⟩⟨0| .

Note that the three final terms are mutually orthogonal because |0⟩⟨0|1⟩⟨1| = 0 and 𝑃𝑤𝑄𝑤 =
0. Consequently, we have

‖Φ(Ψ)‖2F =
1

4

⃦⃦
⃦ℰ
[︁
𝑃𝑤
(︀
|𝜓⟩⟨𝜓| ⊗ |0⟩⟨0|

)︀
𝑃𝑤

]︁⃦⃦
⃦
2

F

+
1

4

⃦⃦
𝑃𝑤
(︀
|𝜓⟩⟨𝜓| ⊗ |0⟩⟨0|

)︀
𝑃𝑤
⃦⃦2
F

+
⃦⃦
𝑄𝑤
(︀
|𝜓⟩⟨𝜓| ⊗ |0⟩⟨0|

)︀
𝑄𝑤
⃦⃦2
F

>
⃦⃦
𝑄𝑤
(︀
|𝜓⟩⟨𝜓| ⊗ |0⟩⟨0|

)︀
𝑄𝑤
⃦⃦2
F

= ‖𝑄𝑤|𝜓⟩|0⟩‖4

> 𝑎2 (6.29)

where we have used Eq. (6.7) and Eq. (6.28).
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Now, because Ψ is a pure state density matrix, we use Eq. (6.6) to see that

‖𝐴‖2F =
⃦⃦
⃦Ψ− 𝐼

⃦⃦
⃦
2

F
= Tr

[︀
Ψ2
]︀

+ Tr
[︁
𝐼2
]︁
− 2Tr

[︁
Ψ𝐼
]︁

= Tr[Ψ] +
Tr[1]

(2𝑛𝑤+𝑛𝑎+1)2
− 2

Tr[Ψ]

2𝑛𝑤+𝑛𝑎+1

= 1− 1

2𝑛𝑤+𝑛𝑎+1
. (6.30)

Thus, using that Φ is linear and trace-preserving, that Φ
(︀
𝐼
)︀

= 𝐼, and Eqs. (6.29) and (6.30),
we have

‖Φ(𝐴)‖2F =
⃦⃦
⃦Φ(Ψ)− Φ

(︀
𝐼
)︀⃦⃦
⃦
2

F

= Tr
[︁
Φ(Ψ)†Φ(Ψ)

]︁
+ Tr

[︁
𝐼2
]︁
− Tr

[︁
Φ(Ψ)𝐼

]︁
− Tr

[︁
Φ(Ψ)†𝐼

]︁

= ‖Φ(Ψ)‖2F + Tr
[︁
𝐼2
]︁
− 2Tr

[︁
Ψ𝐼
]︁

> 𝑎2 − 1

2𝑛𝑤+𝑛𝑎+1

= ‖𝐴‖2F − (1− 𝑎2)

>

[︂
1− 8

5
(1− 𝑎2)

]︂
‖𝐴‖2F

where in the last inequality we have used from Eq. (6.30) that for 𝑛𝑤 > 1 we have 5
8 <

3
4 6

‖𝐴‖2F 6 1. Thus we conclude that Φ is not an 𝛼-contractive expander,

‖Φ(𝐴)‖F > 𝛼 ‖𝐴‖F , (6.31)

with

𝛼 =

√︂
1− 8

5
(1− 𝑎2) > 0.98, (6.32)

the latter inequality coming from Eq. (6.17). Note that 𝛼 and 𝛽 are constants, and therefore
certainly polynomially separated.

6.6 Conclusion

We have presented a new computational problem, quantum non-expander, and proved
that it is QMA-complete. Consequently, the problem’s complement, namely the quantum
expander problem for estimating how good a quantum expander is, is co-QMA-complete.
This gives some insight into the computational complexity of estimating mixing rates of
quantum channels and open quantum systems.

In contrast to the plethora of natural NP-complete problems, very few problems have
been shown to be QMA-complete. We hope that it may be possible to find new QMA-
complete problems using reductions from the quantum non-expander problem.
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Chapter appendices

6.A Controlled expanders

In this appendix, we outline how we obtain the requisite controlled expander, Λℰ , needed for
section 6.5. We use the results of Ben-Aroya, Schwartz, and Ta-Shma [18], whose Theorem
4.3 and 4.6 give the following result.

Theorem 6.1. There exists an integer 𝐷0 such that for every 𝐷 > 𝐷0 and for every
integer 𝑡 > 0, there exists a explicit 𝜆𝑡-contractive expander of degree 𝐷2 on a space
of dimension 𝐷8𝑡, where 𝜆𝑡 6 𝜆+ 𝑐𝜆2 with 𝑐 a constant and 𝜆 = 4

√
𝐷−1
𝐷 .

We will additionally use the following result, which follows directly from the definition
of a quantum expander. Here we use the notation that ℱ𝑟 denotes the 𝑟-fold composition
of ℱ .

Proposition 6.2. If ℱ is a 𝜆-contractive expander of degree 𝐷 on a space of size 𝑁 , then
for any positive integer 𝑟, ℱ𝑟 is a 𝜆𝑟-contractive expander of degree 𝐷𝑟 on a space of
size 𝑁 .

In Sec. 6.5 we require a 𝜅ℰ -contractive expander ℰ with 𝜅ℰ 6 0.1 on a space of size
𝑁 = 2𝑛𝑤+𝑛𝑎 . Note that 𝑁 is actually allowed to exceed 2𝑛𝑤+𝑛𝑎 since we can always have
extra input ancillae (artificially increasing 𝑛𝑎) that do nothing but are acted upon by the
final controlled expander Λℰ . Fix 𝐷 to be any power of 2 larger than 𝐷0 and 15. Then 𝜆 =
4
√
𝐷−1
𝐷 < 1 is fixed. Let 𝑟 be such that (𝜆 + 𝑐𝜆2)𝑟 6 0.1. Let 𝑡 =

⌈︁
𝑛𝑤+𝑛𝑎
8 log2𝐷

⌉︁
= 𝑛𝑤+𝑛𝑎+𝑛extra

8 log2𝐷

for some 𝑛extra < 8 log2𝐷. Using the above theorem we are guaranteed the existence of a
𝜆𝑟𝑡 -contractive expander of degree 𝐷

2𝑟 on a space of size 𝐷8𝑡 = 2𝑛𝑤+𝑛𝑎+𝑛extra , where 𝐷 and
𝑟 are constants and 𝜆𝑟𝑡 6 0.1.
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Chapter 7

QMA-complete problems

In this chapter we give an overview of the quantum computational complexity class QMA
and a description of known QMA-complete problems. Such problems are believed to be
difficult to solve, even with a quantum computer, but have the property that if a purported
solution to the problem is given, a quantum computer would easily be able to verify whether
it is correct. An attempt has been made to make this chapter as self-contained as possible
so that it can be accessible to computer scientists, physicists, mathematicians, and quantum
chemists. Problems of interest to all of these professions can be found here.

This chapter is adapted from [5], which was published in 2014 and covers known QMA-
complete problems up until August 2013. Several interesting QMA-completeness results
have been made since that time. Although we do not categorize and discuss these recent
results along with the older results, we include references to them at the end, in Sec. 7.5.

7.1 Introduction

7.1.1 Background

The class QMA (Quantum Merlin-Arthur) is the natural extension of the classical class NP
(Nondeterministic Polynomial time) to the quantum computing setting. NP is an extremely
important class in classical complexity theory, containing (by definition) those problems that
have a short proof (or witness) that can be efficiently checked to verify that a valid solution
to the problem exists. The class NP is of great importance because many interesting and
important problems have this property – they may be difficult to solve, but given a solution,
it is easy to verify that the solution is correct.

The probabilistic extension of NP is the class MA, standing for “Merlin-Arthur”. Unlike
in NP where witnesses must be verifiable with certainty, in MA valid witnesses need only
be accepted with probability greater than 2/3 (and invalid witnesses rejected with prob-
ability greater than 2/3). MA can be thought of as the class of languages 𝐿 for which
a computationally-unbounded but untrustworthy prover, Merlin, can convince (with high
probability) a verifier, Arthur (who is limited to polynomial-time computation), that a par-
ticular instance 𝑥 is in 𝐿. Furthermore, when the instance 𝑥 is not in 𝐿, the probability of
Merlin successfully cheating must be low.

Because quantum computers are probabilistic by nature (as the outcome of a quantum
measurement can generally be predicted only probabilistically), the natural quantum ana-
logue of NP is actually the quantum analogue of MA, whence the quantum class QMA –
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Quantum Merlin-Arthur1. QMA, then, is the class of languages for which small quantum
witness states exist that enable one to prove, with high probability, whether a given string
belongs to the language by whether the witness state causes an efficient quantum verifier

circuit to output 1. It was first studied by Kitaev [34] and Knill [35]. A more precise
definition will be given later.

The history of QMA takes its lead from the history of NP. In complexity theory, one of
the most important results about NP was the first proof that it contains complete problems.
A problem is NP-hard if, given the ability to solve it, one can also efficiently (that is,
with only polynomial overhead) solve any other NP problem; in other words, a problem
is NP-hard if any NP problem can be reduced to it. If, in addition to being NP-hard, a
problem is itself in NP, it is called an NP-complete problem, and can be considered among
the hardest of all the problems in NP. Two simple examples of NP-complete problems are
Boolean satisfiability (sat) and circuit satisfiability (csat). The problem csat

is to determine, given a Boolean circuit, whether there exists an input that will be evaluated
by the circuit as true. The problem sat is to determine, given a set of clauses containing
Boolean variables, whether there is an assignment of those variables that will satisfy all of
the clauses. If the clauses are restricted to containing at most 𝑘 literals each, the problem
is called 𝑘-sat. One may also consider the problem max-sat, which is to determine, given
a set of clauses (of Boolean variables) and an integer 𝑚, whether at least 𝑚 clauses can be
simultaneously satisfied.

The fact that a complete problem exists for NP is actually trivial, as the problem of
deciding whether there exists a (small) input that will be accepted (in polynomial time) by a
given Turing machine is trivially NP-complete; rather, the importance of NP-completeness is
due to the existence of interesting NP-complete problems. The famous Cook-Levin theorem,
which pioneered the study of NP-completeness, states that sat is NP-complete. A common
way of proving this theorem is to first show that the above trivial NP-complete problem can
be reduced to csat, and to then show that csat can be reduced to sat.

The quantum analogue of csat is the quantum circuit satisfiability problem
(qcsat), which is trivially QMA-complete (since QMA is defined in terms of quantum
circuits). But QMA was found to have other, natural complete problems too. The most im-
portant of these, the 𝑘-local Hamiltonian problem, was defined by Kitaev [34], inspired
by Feynman’s ideas on Hamiltonian quantum computing [17]. This problem is a quantum
analogue of max-sat, in which Boolean variables are replaced by qubits and clauses are
replaced by local Hamiltonians (which may be viewed as local constraints on the qubits); it
is defined formally below in H-1. Just as the Cook-Levin theorem opened the study of NP-
completeness by showing that sat is NP-complete, so too the study of QMA-completeness
began by showing that 5-local Hamiltonian is QMA-complete.

However, unlike NP, for which thousands of complete problems are known, there are
currently relatively few known QMA-complete problems. In this chapter we will survey
many, if not all, of them. This chapter divides the QMA-complete problems into three main
groups and one subgroup:

∙ Quantum circuit/channel property verification (V)

∙ Hamiltonian ground state estimation (H)

– Quantum satisfiability (S)
1Initially QMA was referred to as BQNP [34]; the name QMA was coined in [50].
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∙ Density matrix consistency (C)

The letters in parentheses are used as labels to identify the group.

7.1.2 Formal definition of QMA

We now give a formal definition of QMA.

Definition 7.1. QMA is the set of all languages 𝐿 ⊂ {0, 1}* for which there exists a (uniform
family of) quantum polynomial-time verifier circuit 𝑉 such that for every 𝑥 ∈ {0, 1}* of
length 𝑛 = |𝑥|,

if 𝑥 ∈ 𝐿 then there exists a poly(𝑛)-qubit witness state |𝜓𝑥⟩ such that 𝑉
(︀
𝑥, |𝜓𝑥⟩

)︀

accepts with probability > 2/3

if 𝑥 ̸∈ 𝐿 then for every purported poly(𝑛)-qubit witness state |𝜓⟩, 𝑉
(︀
𝑥, |𝜓⟩

)︀
accepts

with probability 6 1/3.

Although the definition above used the numbers 2/3 and 1/3 (as is standard), we can
generally define the class QMA(𝑏, 𝑎): Given functions 𝑎, 𝑏 : N → (0, 1) with 𝑏(𝑛) − 𝑎(𝑛) >
1/poly(𝑛), a language is in QMA(𝑏, 𝑎) if 2/3 and 1/3 in the definition above are replaced
by 𝑏 and 𝑎, respectively. It is important to note that doing this does not change the class:
QMA(2/3, 1/3) = QMA(1 − 𝜖, 𝜖) provided that 𝜖 > 2−poly(𝑛). Moreover, in going from
QMA(2/3, 1/3) to QMA(1 − 𝜖, 𝜖), the amplification procedure can be carried out in such
a way that the same witness is used, i.e. Merlin need only ever send a single copy of the
witness state. [39]

When 𝑏 = 1, i.e. when the witness must be verifiable with no error, the class is called
QMA1; thus QMA1 = QMA(1, 1/3) = QMA(1, 𝜖). For the classical complexity class MA
it is known that MA = MA1, and also for the class QCMA, which is QMA restricted to
classical witnesses, it has been shown [29] that QCMA=QCMA1, but it is still an open
question whether QMA=QMA1. Several QMA1-complete problems are presented in this
chapter.

Furthermore, it should be noted that QMA actually consists of promise problems, mean-
ing that when considering whether Merlin can truthfully convince Arthur or trick Arthur,
we restrict our consideration to a subset of possible instances – we may assume that we are
promised that our instance of consideration falls in this subset. In physical problems, this
restriction could correspond to a limitation in the measurement precision available to us.
With the above remarks, we can write the definition of QMA in a style matching that of
the problem definitions provided later in this chapter.

Definition 7.2 (QMA). A promise problem 𝐿 = 𝐿yes ∪ 𝐿no ⊂ {0, 1}* is in QMA if there
exists a quantum polynomial-time verifier circuit 𝑉 such that for every 𝑥 ∈ {0, 1}* of length
𝑛 = |𝑥|,

(yes case) if 𝑥 ∈ 𝐿yes then ∃poly(𝑛)-qubit state |𝜓𝑥⟩ such that Pr
[︁
𝑉
(︀
𝑥, |𝜓𝑥⟩

)︀
accepts

]︁
> 𝑏

(no case) if 𝑥 ∈ 𝐿no then ∀poly(𝑛)-qubit states |𝜓⟩, Pr
[︁
𝑉
(︀
𝑥, |𝜓⟩

)︀
accepts

]︁
6 𝑎

promised that one of these is the case (i.e. either 𝑥 is in 𝐿yes or 𝐿no),
where 𝑏 − 𝑎 > 1/poly(𝑛) and 0 < 𝜖 < 𝑎 < 𝑏 < 1 − 𝜖, with 𝜖 > 2−poly(𝑛). If, instead, the
above is true with 𝑏 = 1, then 𝐿 is in the class QMA1.
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Except for a glossary at the end, which provides the definitions of several basic reoccur-
ring mathematical terms that appear in this work, the remainder of this chapter is devoted
to listing known QMA-complete problems, along with their description and sometimes a
brief discussion. When a problem is given matrices, vectors, or constants as inputs, it is
assumed that they are given to precision of poly(𝑛) bits. When a problem is given a unitary
or quantum circuit, 𝑈𝑥, it is assumed that the problem is actually given a classical descrip-
tion 𝑥 of the corresponding quantum circuit, which consists of poly(|𝑥|) elementary gates.
Likewise, quantum channels are specified by efficient classical descriptions. We denote the
identity matrix and identity channel by 1 and ℐ, respectively. For the advanced reader we
note that, to date, most of the hardness reductions used in QMA-completeness proofs have
been “Karp reductions”; several proofs, however, have relied on “Turing reductions”, and
when this is the case, we have endeavoured to note this accordingly.

This chapter has attempted to be as self-contained as possible, but for a more complete
description and motivation of a problem, the reader is invited to consult the references
provided. An attempt has been made to include as many currently known QMA-complete
and QMA1-complete problems as possible, but it is, of course, unlikely that this goal has been
accomplished in full. The reader is invited to share other proven QMA-complete problems
with the author for their inclusion in future versions of this work. Note that this chapter has
restricted itself to QMA-complete and QMA1-complete problems; it does not include other
QMA-inspired classes, such as QMA(2) (when there are multiple unentangled Merlins) or
QCMA (when the witness is classical).

7.2 Quantum circuit/channel property verification

V-1 QUANTUM CIRCUIT-SAT (QCSAT)

Problem: Given a quantum circuit 𝑉 on 𝑛 witness qubits and 𝑚 = poly(𝑛) ancilla
qubits,
determine whether:

(yes case) ∃ 𝑛-qubit state |𝜓⟩ such that 𝑉 (|𝜓⟩|0 . . . 0⟩) accepts with probability
> 𝑏, i.e. outputs a state with |1⟩ on the first qubit with amplitude-
squared > 𝑏

(no case) ∀ 𝑛-qubit state |𝜓⟩, 𝑉 (|𝜓⟩|0 . . . 0⟩) accepts with probability 6 𝑎,

promised one of these to be the case,
where 𝑏− 𝑎 > 1/poly(𝑛) and |0 . . . 0⟩ is the all-zero 𝑚-qubit ancilla state.

This problem is QMA-complete immediately from the definition of QMA.
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V-2 NON-IDENTITY CHECK

Problem: Given a unitary 𝑈 implemented by a quantum circuit on 𝑛 qubits, deter-
mine whether 𝑈 is not close to a trivial unitary (the identity times a phase), i.e.,
determine whether:

(yes case) ∀𝜑 ∈ [0, 2𝜋),
⃦⃦
𝑈 − 𝑒𝑖𝜑 1

⃦⃦
> 𝑏

(no case) ∃𝜑 ∈ [0, 2𝜋) such that
⃦⃦
𝑈 − 𝑒𝑖𝜑 1

⃦⃦
6 𝑎,

promised one of these to be the case,
where 𝑏− 𝑎 > 1/poly(𝑛).

Theorem: QMA-complete [proven by Janzing, Wocjan, and Beth [26]]
Theorem: QMA-complete even for small-depth quantum circuits [proven by Ji and
Wu [27]]
Hardness reduction from: qcsat (V-1)

V-3 NON-EQUIVALENCE CHECK

This problem, a generalization of non-identity check (V-2), is to determine whether
two quantum circuits (do not) define approximately the same unitary (up to phase)
on some chosen invariant subspace. The subspace could, of course, be chosen to be
the entire space, but in many cases one is interested in restricting their attention to a
proper subspace, e.g. one defined by a quantum error-correcting code.

Problem: Given two unitaries, 𝑈1 and 𝑈2, implemented by a quantum circuit on
𝑛 qubits, let 𝒱 be a common invariant subspace of (C2)⊗𝑛 specified by a quantum
circuit 𝑉 (that ascertains with certainty whether a given input is in 𝒱 or not). The
problem is to determine, given 𝑈1, 𝑈2, and 𝑉 , whether the restrictions of 𝑈1 and 𝑈2

to 𝒱 are not approximately equivalent, i.e.,
determine whether:

(yes case) ∃ |𝜓⟩ ∈ 𝒱 such that ∀𝜑 ∈ [0, 2𝜋),
⃦⃦
⃦(𝑈1𝑈

†
2 − 𝑒𝑖𝜑 1) |𝜓⟩

⃦⃦
⃦ > 𝑏

(no case) ∃ 𝜑 ∈ [0, 2𝜋) such that ∀|𝜓⟩ ∈ 𝒱,
⃦⃦
⃦(𝑈1𝑈

†
2 − 𝑒𝑖𝜑 1) |𝜓⟩

⃦⃦
⃦ 6 𝑎,

promised one of these to be the case,
where 𝑏− 𝑎 > 1/poly(𝑛).

Theorem: QMA-complete [proven by Janzing, Wocjan, and Beth [26]]
Hardness reduction from: non-identity check (V-2)

V-4 MIXED-STATE NON-IDENTITY CHECK

In this problem, either the given circuit acts like some unitary 𝑈 that is far from the
identity, or else it acts like the identity. This is very similar to non-identity check

(V-2), but allows mixed-state circuit inputs. The diamond norm used here is defined
in the glossary (Appendix 7.A).
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Problem: Given a quantum circuit 𝐶 on 𝑛-qubit density matrices,
determine whether:

(yes case) ‖𝐶 − ℐ‖♢ > 2 − 𝜖 and there is an efficiently implementable unitary
𝑈 and state |𝜓⟩ such that ‖𝐶(|𝜓⟩⟨𝜓|) − 𝑈 |𝜓⟩⟨𝜓|𝑈 †‖tr 6 𝜖 and
‖𝑈 |𝜓⟩⟨𝜓|𝑈 † − |𝜓⟩⟨𝜓| ‖tr > 2− 𝜖

(no case) ‖𝐶 − ℐ‖♢ 6 𝜖,

promised one of these to be the case,
where 1 > 𝜖 > 2−poly(𝑛).

Theorem: QMA-complete [proven by Rosgen [46]]
Hardness reduction from: Quantum circuit testing (see Appendix 7.B) (X-1)

V-5 NON-ISOMETRY TESTING

Preliminary information:
This problem tests to see if a quantum channel is not almost a linear isometry (given
a mixed-state quantum circuit description of the channel).

Definition 7.3 (isometry). A linear isometry is a linear map 𝑈 : ℋ1 → ℋ2 that
preserves inner products, i.e. 𝑈 †𝑈 = 1ℋ1 .

Note that this is more general than a unitary operator, as ℋ1 and ℋ2 may have
different sizes and 𝑈 need not be surjective. Practically speaking, isometries are the
operations involving unitaries that have access to fixed ancillae (say, ancillae starting
in the |0⟩ state). This problem asks how far from an isometry the input is, so it
requires a notion of approximate isometries. A characterizing property of isometries is
that they map pure states to pure states, even in the presence of a reference system;
therefore, the notion of an approximate isometry is defined in terms of how mixed the
output of a channel is in the presence of a reference system.

Definition 7.4 (𝜖-isometry). A quantum channel Φ that is a linear transformation
fromℋ1 toℋ2 is an 𝜖-isometry if ∀|𝜓⟩ ∈ ℋ1⊗ℋ1, we have ‖(Φ⊗ ℐℋ1)(|𝜓⟩⟨𝜓|)‖ > 1−𝜖.
i.e. it maps pure states (in a combined input and reference system) to almost-pure
states. The norm appearing in this definition is the operator norm2.

Problem: Given a quantum channel Φ that takes density matrices of ℋ1 to density
matrices of ℋ2,
determine whether:

(yes case) Φ is not an 𝜖-isometry, i.e. ∃|𝜓⟩ such that ‖(Φ⊗ ℐℋ1)(|𝜓⟩⟨𝜓|)‖ 6 𝜖

(no case) Φ is an 𝜖-isometry, i.e. ∀|𝜓⟩, ‖(Φ⊗ ℐℋ1)(|𝜓⟩⟨𝜓|)‖ > 1− 𝜖,
promised one of these to be the case.

Theorem: QMA-complete when 0 < 𝜖 < 1/19 [proven by Rosgen [45,46]]

Hardness reduction from: qcsat (V-1)

2definition provided in the glossary (Appendix 7.A)
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V-6 DETECTING INSECURE QUANTUM ENCRYPTION

In this problem, we wish to determine whether the given purported encryption channel
𝐸 is insecure on a large subspace (for any key), or is close to being perfectly secure.
The diamond norm used here is defined in the glossary (Appendix 7.A).

Preliminary information:
A private channel is a quantum channel with a classical key such that the input state
cannot be determined from the output state without the key. Formally, it is defined
as follows.

Definition 7.5 (𝜖-private channel). Suppose 𝐸 is a channel taking as input an
integer 𝑘 ∈ {1, . . . . ,𝐾} and a quantum state in space ℋ1, and producing a quantum
output in space ℋ2, with dim ℋ1 6 dim ℋ2. Let 𝐸𝑘 be the quantum channel where
the integer input is fixed as 𝑘. Let Ω be the completely depolarizing channel that
maps all density matrices to the maximally mixed state. 𝐸 is an 𝜖-private channel if
‖ 1
𝐾

∑︀
𝑘 𝐸𝑘 − Ω‖♢ 6 𝜖 (so if the key 𝑘 is not known, the output of 𝐸 gives almost no

information about the input) and there is a polysize decryption channel 𝐷 such that
∀𝑘, ‖𝐷𝑘 ∘ 𝐸𝑘 − ℐ‖♢ 6 𝜖 (i.e. if 𝑘 is known, the output can be reversed to obtain the
input).

Problem: Let 𝛿 ∈ (0, 1]. Given a circuit for 𝐸, which upon input 𝑘 implements
channel 𝐸𝑘 acting from space ℋ1 to ℋ2 (with dimℋ1 6 dimℋ2),
determine whether:

(yes case) ∃ subspace 𝑆, with dim𝑆 > (dimℋ1)
1−𝛿, such that for any 𝑘 and

any reference space ℛ, if 𝜌 is a density matrix on 𝑆 ⊗ ℛ then
‖(𝐸𝑘 ⊗ ℐ𝑅)(𝜌)− 𝜌‖tr 6 𝜖

(no case) 𝐸 is an 𝜖-private channel,

promised one of these to be the case,
where 1 > 𝜖 > 2−poly.

Theorem: QMA-complete for 0 < 𝜖 < 1/8 [proven by Rosgen [46]]
Hardness reduction from: Quantum circuit testing (see Appendix 7.B) (X-1)

Notes: In this problem, channels are given as mixed-state circuits.

V-7 QUANTUM CLIQUE

This is the quantum analogue of the NP-complete problem largest independent

set on a graph 𝐺, which asks for the size of the largest set of vertices in which no two
vertices are adjacent. According to the analogy, the graph 𝐺 becomes a channel, and
two inputs are ‘adjacent’ if they can be confused after passing through the channel, i.e.
if there is an output state that could have come from either of the two input states.
In this quantum QMA-complete problem, the channel is a quantum entanglement-
breaking channel Φ and the problem is to find the size of the largest set of input states
that cannot be confused after passing through the channel, that is, to determine if
there are 𝑘 inputs 𝜌1, . . . , 𝜌𝑘 such that Φ(𝜌1), . . . ,Φ(𝜌𝑘) are (almost) orthogonal under
the trace inner product. Regarding the name, note that the NP-complete problems
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largest independent set and largest clique (which asks for the largest set of
vertices, all of which are adjacent) are essentially the same: a set of vertices is an
independent set on a graph 𝐺 if and only if it is a clique on the complement of 𝐺.

Preliminary information:
Let 𝑆 be the swap gate, so 𝑆|𝜓⟩⊗|𝜑⟩ = |𝜑⟩⊗|𝜓⟩. Note that Tr(𝜎1𝜎2) = Tr(𝑆 𝜎1⊗𝜎2)
for all density matrices 𝜎1 and 𝜎2, so the right hand side can be used to evaluate the
trace inner product (and therefore determine orthogonality) of 𝜎1 with 𝜎2. For any
density matrix 𝜌 on 𝑘 registers, let 𝜌𝑖 denote the result of tracing out all but the 𝑖th
register of 𝜌. Similarly, define 𝜌𝑖,𝑗 = Tr{1,...𝑘}r{𝑖,𝑗}(𝜌).

Definition 7.6 (entanglement-breaking channel; q-c channel). A quantum
channel Φ is entanglement-breaking if there are POVM (Hermitian, positive-semidefinite
operators that sum to the identity) {𝑀𝑖} and states 𝜎𝑖 such that Φ(𝜒) =

∑︀
𝑖 Tr(𝑀𝑖𝜒)𝜎𝑖.

In this case it is a fact that Φ⊗2(𝜌1,2) is always a separable state. If the 𝜎𝑖 in the above
definition can be chosen to be 𝜎𝑖 = |𝑖⟩⟨𝑖|, where |𝑖⟩ are orthogonal states, then Φ is
called a quantum-classical channel (q-c channel).

Problem: Given an integer 𝑘 and a quantum entanglement-breaking channel Φ
acting on 𝑛-qubit states,
determine whether:

(yes case) ∃ 𝜌1 ⊗ · · · ⊗ 𝜌𝑘 such that
∑︀

𝑖,𝑗 Tr(𝑆Φ(𝜌𝑖)⊗ Φ(𝜌𝑗)) 6 𝑎

(no case) ∀ 𝑘-register state 𝜌, ∑︀𝑖,𝑗 Tr(𝑆Φ⊗2(𝜌𝑖,𝑗)) > 𝑏,

promised one of these to be the case,
where 𝑏 and 𝑎 are inverse-polynomially separated.

There are two theorems associated with this problem.

(a) Theorem: QMA-complete [proven by Beigi and Shor [3]]

(b) Theorem: QMA1-complete when 𝑎 = 0 and Φ is further restricted to q-c channels
[proven by Beigi and Shor [3]]

Hardness reduction from: 𝑘-local Hamiltonian (H-1)
Classical analogue: largest independent set is NP-complete.

V-8 QUANTUM NON-EXPANDER

A quantum expander is a superoperator that rapidly takes density matrices towards the
maximally mixed state. The quantum non-expander problem is to check whether a
given superoperator is not a good quantum expander. This problem uses the Frobenius
norm3.

Preliminary information:
A density matrix can always be written as 𝜌 = 𝐼 +𝐴, where 𝐼 is the maximally mixed
state and𝐴 is traceless. A quantum expander is linear (and unital), so Φ(𝜌) = 𝐼+Φ(𝐴),

3definition provided in the glossary (Appendix 7.A)
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which differs from 𝐼 by Φ(𝐴). Thus a good quantum expander rapidly kills traceless
matrices. We have the following formal definition.

Definition 7.7 (quantum expander). Let Φ be a superoperator acting on 𝑛-qubit
density matrices and obeying Φ(𝜌) = 1

𝐷

∑︀
𝑑 𝑈𝑑𝜌𝑈

†
𝑑 where {𝑈𝑑 : 𝑑 = 1, . . . 𝐷} is a collec-

tion of 𝐷 = poly(𝑛) efficiently-implementable unitary operators. Φ is a 𝜅-contractive
quantum expander if ∀ 2𝑛 × 2𝑛 traceless matrix 𝐴, ‖Φ(𝐴)‖𝐹 6 𝜅‖𝐴‖𝐹 .

Problem: Given a superoperator Φ that can be written in the form appearing in the
above definition,
determine whether:

(yes case) Φ is not a 𝑏-contractive quantum expander

(no case) Φ is an 𝑎-contractive quantum expander,

promised one of these to be the case,
where 𝑏− 𝑎 > 1/poly(𝑛).

Theorem: QMA-complete [proven by Bookatz, Jordan, Liu, and Wocjan [6]]
Hardness reduction from: qcsat (V-1)

7.3 Hamiltonian ground-state energy estimation

H-1 𝑘-LOCAL HAMILTONIAN

This is the problem of estimating the ground-state energy4 of a Hamiltonian in which
all interactions are 𝑘-local, that is, they only ever involve at most 𝑘 particles at a time.
Formally, 𝐻 is a 𝑘-local Hamiltonian if 𝐻 =

∑︀
𝑖𝐻𝑖 where each 𝐻𝑖 is a Hermitian

operator acting (non-trivially) on at most 𝑘 qubits. In addition to restricting the
locality of a Hamiltonian in terms of the number of qubits on which it acts, one can
also consider geometric restrictions on the Hamiltonian. Indeed, one can imagine a
2-local Hamiltonian in which interactions can only occur between neighbouring sites,
e.g. 𝐻 =

∑︀𝑛−1
𝑖=1 𝐻𝑖,𝑖+1 where each 𝐻𝑖,𝑖+1 acts non-trivially only on particles 𝑖 and 𝑖+1

arranged on a line. The results of these considerations will also be mentioned below.
Note that all these problems use the operator norm4.

Problem: Given a 𝑘-local Hamiltonian on 𝑛 qubits,𝐻 =
∑︀𝑟

𝑖=1𝐻𝑖, where 𝑟 = poly(𝑛)
and each 𝐻𝑖 acts non-trivially on at most 𝑘 qubits and has bounded operator norm
‖𝐻𝑖‖ 6 poly(𝑛),
determine whether:

(yes case) 𝐻 has an eigenvalue less than 𝑎

(no case) all of the eigenvalues of 𝐻 are larger than 𝑏,

promised one of these to be the case,
where 𝑏− 𝑎 > 1/poly(𝑛).

Theorem: QMA-complete for 𝑘 > 2 [proven by Kempe, Kitaev, and Regev [33]]
Hardness reduction from: qcsat (V-1)

4see the glossary (Appendix 7.A) for a very brief definition of these terms
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Additionally, it has been proved that it is:

(a) Theorem: QMA-complete when 𝑘 = 𝑂(log 𝑛) (still provided 𝑘 > 2) [proven by
Kitaev [34]]

(b) Theorem: QMA-complete even when 𝑘 = 3 with constant norms, i.e. ‖𝐻𝑖‖ =
𝑂(1) [proven by Nagaj [42]]

(c) Theorem: QMA-complete even when 2-local on a line of 8-dimensional qudits5,
i.e. when the qudits are arranged on a line and only nearest-neighbour interac-
tions are present [proven by Hallgren, Nagaj, and Narayanaswami6 [24]]

(d) Theorem: QMA-complete even when 2-local on a 2-D lattice [proven by Oliveira
and Terhal [43]]

(e) Theorem: QMA-complete even for interacting bosons under two-body interac-
tions [proven by Wei, Mosca, and Nayak [51]]

(f) Theorem: QMA-complete even for interacting fermions under two-body interac-
tions [proven by Whitfield, Love, and Aspuru-Guzik [52]]

(g) Theorem: QMA-complete even when restricted to real 2-local Hamiltonians [proven
by Biamonte and Love [4]]

(h) Theorem: QMA-complete even for stochastic5 Hamiltonians (i.e. symmetric
Markov matrices) when 𝑘 > 3 [proven by Jordan, Gosset, and Love [28]]

Notes: For 𝑘 = 1, the 1-local Hamiltonian is in P [33].
Many other simple modifications of 𝑘-local Hamiltonian are also QMA-
complete. For example7, QMA-completeness is not changed when restricting to
dense 𝑘-local Hamiltonians, i.e. for a negative-semidefinite Hamiltonian when
the ground energy is (in absolute value) Ω(𝑛𝑘).

Classical analogue: max-𝑘-sat is NP-complete for 𝑘 > 2.
This problem may easily be rephrased in terms of satisfying constraints imposed by
the 𝐻𝑖 terms. The “yes” case corresponds to the existence of a state that violates,
in expectation value, only fewer than 𝑎 weighted-constraints; the “no” case, to all
states violating, in expectation value, at least 𝑏 weighted-constraints. This problem
can therefore be viewed as estimating the largest number of simultaneously satisfiable
constraints, whence the analogy to max-sat.

5definition provided in the glossary (Appendix 7.A)
6improving the work by Aharonov, Gottesman, Irani, and Kempe [1] who showed this for 12-dimensional

qudits
7This result is from [18], who actually defined their problem for finding the highest energy of a positive-

semidefinite Hamiltonian. Their interest lay in finding approximation algorithms for this problem.
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H-2 EXCITED 𝑘-LOCAL HAMILTONIAN

We have seen that estimating the ground-state energy of a Hamiltonian is QMA-
complete. The current problem shows that estimating the low-lying excited energies
of a Hamiltonian is QMA-complete; specifically, estimating the 𝑐th energy eigenvalue
of a 𝑘-local Hamiltonian is QMA-complete when 𝑐 = 𝑂(1).

Problem: Given a 𝑘-local Hamiltonian 𝐻 on 𝑛 qubits,
determine whether:

(yes case) the 𝑐th eigenvalue of 𝐻 is 6 𝑎

(no case) the 𝑐th eigenvalue of 𝐻 is > 𝑏,

promised one of these to be the case,
where 𝑏− 𝑎 > 1/poly(𝑛).

Theorem: QMA-complete for 𝑐 = 𝑂(1) and 𝑘 > 3 [proven by Jordan, Gosset, and
Love [28]]
Hardness reduction from: 2-local Hamiltonian (H-1)

H-3 HIGHEST ENERGY OF A 𝑘-LOCAL STOQUASTIC HAMILTONIAN

Problem H-1h states that finding the lowest eigenvalue of a stochastic8 Hamiltonian
is QMA-complete. Since if 𝐻 is a stochastic Hamiltonian then −𝐻 is stoquastic8, we
also have QMA-completeness for the problem of estimating the largest energy of a
stoquastic Hamiltonian.

Problem: Given a 𝑘-local stoquastic Hamiltonian 𝐻 on 𝑛 qubits,
determine whether:

(yes case) 𝐻 has an eigenvalue greater than 𝑏

(no case) all of the eigenvalues of 𝐻 are less than 𝑎,

promised one of these to be the case,
where 𝑏− 𝑎 > 1/poly(𝑛).

Theorem: QMA-complete for 𝑘 > 3 [proven by Jordan, Gosset, and Love [28]]
Hardness reduction from: 𝑘-local stochastic Hamiltonian (H-1h) which itself is
from (H-5a)

Notes: 𝑘-local stoquastic Hamiltonian, i.e. finding the lowest energy rather
than the highest energy, is in AM. [8]

H-4 SEPARABLE 𝑘-LOCAL HAMILTONIAN

This problem is the 𝑘-local Hamiltonian problem with the extra restriction that
the quantum state of interest be a separable state, i.e. the question is whether there is
a separable state with energy less than 𝑎 (or greater than 𝑏). Separable, here, is with
respect to a given partition of the space into two sets, between which the state must
not be entangled.

8definition provided in the glossary (Appendix 7.A)

189



Problem: Given the same input as described in the 𝑘-local Hamiltonian problem,
as well as a partition of the qubits into disjoint sets 𝒜 and ℬ,
determine whether:

(yes case) ∃ |𝜓⟩ = |𝜓⟩𝐴⊗ |𝜓⟩𝐵, with |𝜓⟩𝐴 ∈ 𝒜 and |𝜓⟩𝐵 ∈ ℬ, such that
⟨𝜓|𝐻|𝜓⟩ 6 𝑎

(no case) ∀ |𝜓⟩ = |𝜓⟩𝐴⊗ |𝜓⟩𝐵, with |𝜓⟩𝐴 ∈ 𝒜 and |𝜓⟩𝐵 ∈ ℬ, ⟨𝜓|𝐻|𝜓⟩ > 𝑏,

promised one of these to be the case,
where 𝑏− 𝑎 > 1/poly(𝑛).

Theorem: QMA-complete [proven by Chailloux and Sattath [12]]
Hardness reduction from: 𝑘-local Hamiltonian (H-1)

Notes: Interestingly, although the QMA-hardness proof follows immediately from 𝑘-
local Hamiltonian, the “in QMA” proof is non-trivial and relies on the local
consistency problem (C-1).

H-5 PHYSICALLY RELEVANT HAMILTONIANS

2-local Hamiltonian is also QMA-complete when the Hamiltonian is restricted to
various physically-relevant forms. These Hamiltonians may serve as good models for
phenomena found in nature, or may be relatively easy to physically implement.

We will not explain all of the relevant physics and quantum chemistry here. However,
we use the following notations:

The Pauli matrices 𝑋, 𝑌 , and 𝑍 are denoted as

𝜎𝑥 = 𝑋, 𝜎𝑦 = 𝑌, 𝜎𝑧 = 𝑍, 𝜎 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧).

When particles are on a lattice, ⟨𝑖, 𝑗⟩ denotes nearest neighbours on the lattice. An
electron on a lattice is located at some lattice site 𝑖 and can be either spin-up (↑)
or spin-down (↓). The operators 𝑎†𝑖,𝑠 and 𝑎𝑖,𝑠 are the fermionic raising and lowering
operators, respectively; they create and annihilate an electron of spin 𝑠 ∈ {↑, ↓} at site
𝑖, respectively. The operator corresponding to the number of electrons of spin 𝑠 at site
𝑖 is 𝑛𝑖,𝑠 = 𝑎†𝑖,𝑠𝑎𝑖,𝑠.

Note that proving the QMA-completeness of physical Hamiltonians is related to the
goal of implementing adiabatic quantum computation: techniques used to prove that
a Hamiltonian is QMA-complete are often also used to prove that it is universal for
adiabatic quantum computation.

(a) The 2-local Hamiltonian

𝐻𝑍𝑍𝑋𝑋 =
∑︁

𝑖

ℎ𝑖𝜎
𝑧
𝑖 +

∑︁

𝑖

𝑑𝑖𝜎
𝑥
𝑖 +

∑︁

𝑖,𝑗

𝐽𝑖𝑗𝜎
𝑧
𝑖 𝜎

𝑧
𝑗 +

∑︁

𝑖,𝑗

𝐾𝑖𝑗𝜎
𝑥
𝑖 𝜎

𝑥
𝑗

where coefficients 𝑑𝑖, ℎ𝑖,𝐾𝑖𝑗 , 𝐽𝑖𝑗 are real numbers.
This Hamiltonian represents a 2-local Ising model with 1-local transverse field
and a tunable 2-local transverse 𝜎𝑥𝜎𝑥 coupling. The 𝜎𝑥𝜎𝑥 is realizable, e.g.,
using capacitive coupling of flux qubits or with polar molecules [4].
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Theorem: QMA-complete [proven by Biamonte and Love [4]]
Hardness reduction from: 2-local real Hamiltonian (H-1g)
Classical analogue: When when 𝐾𝑖𝑗 = 𝑑𝑖 = 0 we obtain the famous Ising (spin
glass) model with a magnetic field, which is NP-complete on a planar graph [2].

(b) The 2-local Hamiltonian

𝐻𝑍𝑋 =
∑︁

𝑖

ℎ𝑖𝜎
𝑧
𝑖 +

∑︁

𝑖

𝑑𝑖𝜎
𝑥
𝑖 +

∑︁

𝑖<𝑗

𝐽𝑖𝑗𝜎
𝑧
𝑖 𝜎

𝑥
𝑗 +

∑︁

𝑖<𝑗

𝐾𝑖𝑗𝜎
𝑥
𝑖 𝜎

𝑧
𝑗

where coefficients 𝑑𝑖, ℎ𝑖,𝐾𝑖𝑗 , 𝐽𝑖𝑗 are real numbers. The 𝜎𝑥𝜎𝑧 is realizable using
flux qubits [4].
Theorem: QMA-complete [proven by Biamonte and Love [4]]
Hardness reduction from: 2-local real Hamiltonian (H-1g)

(c) The 2D Heisenberg Hamiltonian with local magnetic fields
The 2D Heisenberg Hamiltonian is a model for spins on a 2-dimensional lattice
in a magnetic system, and is often used to study phase transitions. It takes the
form

𝐻Heis = 𝐽
∑︁

⟨𝑖,𝑗⟩
𝜎𝑖 · 𝜎𝑗 −

∑︁

𝑖

𝜎𝑖 ·𝐵𝑖.

Here, sums over 𝑖 range over all sites 𝑖 in the lattice, and ⟨𝑖, 𝑗⟩ range over nearest-
neighbouring sites. The local magnetic field at site 𝑖 is denoted by 𝐵𝑖, and the
coupling-constant 𝐽 is a real constant. Hamiltonians restricted to this form are
QMA-complete both for 𝐽 > 0 and for 𝐽 < 0.
Theorem: QMA-complete [proven by Schuch and Verstraete [48]]
Hardness reduction from: 2-local 2D-lattice Hamiltonian (H-1d)

(d) The 2D Hubbard Hamiltonian with local magnetic fields
The 2D Hubbard model describes a system of fermions on a 2-dimensional lattice
and is therefore used to model electrons in solid-state systems. It takes the form

𝐻Hubb = −𝑡
∑︁

⟨𝑖,𝑗⟩,𝑠
𝑎†𝑖,𝑠𝑎𝑗,𝑠 + 𝑈

∑︁

𝑖

𝑛𝑖,↑𝑛𝑖,↓ −
∑︁

𝑖

𝜎̄𝑖 ·𝐵𝑖 .

Here, sums over 𝑖 range over all sites 𝑖 in the lattice, ⟨𝑖, 𝑗⟩ range over nearest-
neighbouring sites, and 𝑠 ranges over spins {↑, ↓}. In this model, 𝜎̄𝑖 is the Pauli
matrices vector converted into orbital pair operators: 𝜎̄𝑖 = {𝜎̄𝑥𝑖 , 𝜎̄𝑦𝑖 , 𝜎̄𝑧𝑖 } with 𝜎̄𝛼𝑖 =∑︀

𝑠,𝑠′ 𝜎
𝛼
𝑠𝑠′𝑎

†
𝑖,𝑠𝑎𝑖,𝑠′ where 𝜎

𝛼
𝑠𝑠′ denotes the (𝑠, 𝑠′) element of Pauli matrix 𝜎𝛼. The

local magnetic field at site 𝑖 is denoted by 𝐵𝑖, and 𝑈 and 𝑡 are positive numbers
representing the electron-electron Coulomb repulsion and electron tunnelling rate,
respectively.
Theorem: QMA-complete [proven by Schuch and Verstraete [48]]
Hardness reduction from: Heisenberg Hamiltonian (H-5c)
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H-6 TRANSLATIONALLY INVARIANT 𝑘-LOCAL HAMILTONIAN

There has been some interest in studying the 𝑘-local Hamiltonian (H-1) problem
with the added restriction that the Hamiltonian be translationally invariant, i.e. that
the Hamiltonian be identical at each particle (qudit9) in the system. Such systems
are generally in a one-dimensional geometry with periodic boundary conditions. Some
problems additionally employ geometric locality (which we refer to here as being on a
line), such as constraining interactions to be between nearest-neighbouring particles, or
between nearby (but not necessarily nearest-neighbouring) particles; some problems do
not, however, have such geometric locality constraints. Current results are listed here.
These results are all built on Ref. [1]. Finally, note that there may be complications
in discussing QMA-completeness, since if a Hamiltonian is local and translationally
invariant, the only input that scales is the number of qudits, 𝑛; it may need to be
assumed that 𝑛 is given to the problem in unary to avoid these complications, but we
will not discuss this here.

The 𝑘-local Hamiltonian problem is:

(a) Theorem: QMA-complete even with a translationally invariant 3-local Hamilto-
nian with 22-state qudits, but where the interactions are not necessarily geomet-
rically local. [proven by Vollbrecht and Cirac [49]]

(b) Theorem: QMA-complete even for translationally invariant 2-local Hamiltonians
on poly(𝑛)-state qudits [proven by Kay [30]]

(c) Theorem: QMA-complete even for translationally invariant 𝑂(log 𝑛)-local Hamil-
tonians on 7-state qudits, where the interactions are geometrically local (albeit
not restricted to nearest-neighbours) [proven by Kay [30]]

(d) Theorem: QMA-complete even for 2-local Hamiltonians on a line of 49-state
qudits where all strictly-2-local Hamiltonian terms are translationally invariant,
although the 1-local terms can still be position-dependent [proven by Kay [31]]

Notes: Although not discussed here, similar results exist for rotationally invari-
ant Hamiltonians [32].
There exist translationally invariant 2-local Hamiltonian problems on con-
stant-dimensional qudits, where the interactions are only between nearest-
neighbours (and in which the only input is the size of the system, provided
in binary) that are QMAEXP-complete, where QMAEXP is the quantum
analogue of the classical complexity class NEXP; see [20].

H-7 UNIVERSAL FUNCTIONAL OF DFT

Preliminary information:
In quantum chemistry, density functional theory (DFT) is a method for approximating
the ground-state energy of an electron system (see [48] and the references therein). The

9definition provided in the glossary (Appendix 7.A)
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Hamiltonian for a system of 𝑁 electrons is 𝐻 = 𝑇 𝑒+𝑉 𝑒𝑒+𝑉 𝑒 where the kinetic energy,
electron-electron Coulomb potential, and local potential are given respectively by

𝑇 𝑒 = −1

2

𝑁∑︁

𝑖=1

∇2
𝑖

𝑉 𝑒𝑒 =
∑︁

16𝑖<𝑗6𝑁

𝛾

|𝑟𝑖 − 𝑟𝑗 |

𝑉 𝑒 =
𝑁∑︁

𝑖=1

𝑉 (𝑥𝑖)

where 𝛾 > 0, 𝑟𝑖 is the position of the 𝑖th electron, 𝑥𝑖 = (𝑟𝑖, 𝑠𝑖) is the position (𝑟𝑖) of
the 𝑖th electron together with its spin (𝑠𝑖), and ∇2 is the Laplacian operator.

The ground-state energy of a system of 𝑁 electrons can be found by minimizing the
energy over all 𝑁 -electron densities 𝜌(𝑁)(𝑥), but it can also be given by minimizing
over all single-electron probability distributions 𝑛(𝑥) as

𝐸0 = min
𝑛

(︁
Tr[𝑉 𝑒𝑛(𝑥)] + 𝐹 [𝑛(𝑥)]

)︁

where the universal functional of DFT is

𝐹 [𝑛(𝑥)] = min
𝜌(𝑁)→𝑛

Tr
[︁
(𝑇 𝑒 + 𝑉 𝑒𝑒)𝜌(𝑁)(𝑥)

]︁
.

In the universal functional, the minimization is over all 𝑁 -electron densities 𝜌(𝑁)(𝑥)
that give rise to the reduced-density 𝑛(𝑥); therefore 𝐹 [𝑛] gives the lowest energy of
𝑇 𝑒+𝑉 𝑒𝑒 consistent with 𝑛. The difficult part of DFT is approximating 𝐹 [𝑛(𝑥)], which
is independent of the external potential 𝑉 𝑒 and is therefore universal for all systems.

Problem: Given an integer 𝑁 , representing the number of electrons, and a one-
electron probability density 𝑛(𝑥),
determine whether:

(yes case) 𝐹 [𝑛(𝑥)] 6 𝑎

(no case) 𝐹 [𝑛(𝑥)] > 𝑏,

promised one of these to be the case,
where 𝑏−𝑎 > 1/poly(𝑁) and the strength of the Hamiltonian is bounded by poly(𝑁).

Theorem: QMA-complete [proven by Schuch and Verstraete [48,52]]
Hardness reduction from: Hubbard model (H-5d) [Turing reduction]

7.3.1 Quantum satisfiability

The quantum satisfiability problem, quantum 𝑘-sat, is really just the 𝑘-local Hamil-

tonian problem restricted to projection operators. Nonetheless, it is included here as a
subsection of its own due to its high level of interest and study. Note that occasionally peo-
ple speak of the problem max-quantum-𝑘-sat; this is just another name for the 𝑘-local
Hamiltonian problem (H-1), and is therefore QMA-complete for 𝑘 > 2. The problem
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quantum 𝑘-sat, however, is different.

S-1 QUANTUM 𝑘-SAT
Quantum 𝑘-sat is the quantum analogue of the classical problem 𝑘-sat. It is actually
simply the 𝑘-local Hamiltonian problem restricted to the case of 𝑘-local projector
Hamiltonians10. In classical 𝑘-sat, the objective is to determine whether there exists
a bit-string (so each character in the string can be either 0 or 1) that satisfies (all of)
a set of Boolean clauses, each of which only involves at most 𝑘 bits of the string. In
the quantum analogue, rather than Boolean clauses we have projection operators. A
quantum 𝑘-sat instance has a solution if there is a quantum state that passes (i.e.,
is a 0-eigenvalue of) each projection operator.

We provide two equivalent definitions of this problem here. The first emphasizes quan-
tum 𝑘-sat as a special case of 𝑘-local Hamiltonian, and the second emphasizes
the similarity to classical 𝑘-sat.

Problem: Given 𝑘-local projection operators {Π1, . . . ,Π𝑚} on 𝑛 qubits, where 𝑚 =
poly(𝑛), and letting 𝐻 =

∑︀𝑚
𝑖=1 Π𝑖,

determine whether:

(yes case) 𝐻 has an eigenvalue of precisely 0

(no case) all of the eigenvalues of 𝐻 are larger than 𝑏,

promised one of these to be the case,
where 𝑏 > 1/poly(𝑛).

Equivalently, we can define the problem as follows.
Problem: Given polynomially many 𝑘-local projection operators {Π𝑖},
determine whether:

(yes case) ∃ |𝜓⟩ such that Π𝑖|𝜓⟩ = 0 ∀𝑖
(no case) ∀ |𝜓⟩,∑︀𝑖 ⟨𝜓|Π𝑖|𝜓⟩ > 𝜖 (i.e. the expected number of “clause violations”

is > 𝜖),

promised one of these to be the case,
where 𝜖 > 1/poly(𝑛).

Theorem: QMA1-complete for 𝑘 > 3 [proven by Gosset and Nagaj11 [19]]
Hardness reduction from: qcsat (V-1)

Notes: Quantum 𝑘-sat is in P for 𝑘 = 2. [7]
Quantum 𝑘-sat is still QMA1-complete if instead of demanding that Π𝑖 be
projectors, we demand they be positive-semidefinite operators with zero ground-
state energies and constant norms [42].

Classical analogue: 𝑘-sat is NP-complete for 𝑘 > 3.

10definition provided in the glossary (Appendix 7.A)
11improving the results of Bravyi [7], which showed this for 𝑘 > 4
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S-2 QUANTUM (𝑑1, 𝑑2, . . . , 𝑑𝑘)-SAT
Quantum (𝑑1, 𝑑2, . . . , 𝑑𝑘)-sat is a quantum 𝑘-sat problem but with qudits rather
than qubits. Specifically, in a quantum (𝑑1, 𝑑2, . . . , 𝑑𝑘)-sat instance, the system con-
sists of 𝑛 qudits (of various dimension), and each projection operator acts non-trivially
on at most 𝑘 of these 𝑛 qudits, of the types specified, namely one 𝑑1-dimensional qudit,
one 𝑑2-dimensional qudit,. . . , and one 𝑑𝑘-dimensional qudit. Bear in mind that, e.g.,
if 𝑑1 > 𝑑2 then a 𝑑2-dimensional qudit is itself considered a type of 𝑑1-dimensional
qudit, so a projection operator that acts only on two 𝑑2-dimensional qudits is also
allowed. For example, an instance of quantum (5,3)-sat involves a system of 𝑛
qudits (3-dimensional qudits called qutrits and 5-dimensional qudits called cinquits)
such that each projection operator acts (non-trivially) on a single qudit, on one cinquit
and one qutrit, or on two qutrits (but not on two cinquits). For purposes of notation,
we assume that 𝑑1 > 𝑑2 > . . . > 𝑑𝑘.

For 𝑘 > 3, this class is trivial12: since quantum 3-sat is QMA1-complete for qubits,
it is certainly QMA1-complete for qudits. The cases of 𝑘 = 2 is not fully understood;
however, the following results are known.

(a) quantum (5,3)-sat, i.e. with a cinquit and a qutrit
Theorem: QMA1-complete for 𝑘 = 2 with 𝑑1 > 5, 𝑑2 > 3 [proven by Eldar and
Regev [16]]

(b) quantum (11,11)-sat on a (one-dimensional) line

Theorem: QMA1-complete [proven by Nagaj [41]]

Notes: Quantum (2,2)-sat, i.e. quantum 2-sat, is in P.
Quantum (𝑑1, 𝑑2)-sat when 𝑑1 < 5 or 𝑑2 = 2 are open questions. They are
known to be NP-hard (except for 𝑑1 = 𝑑2 = 2 which is in P). [16]

Classical analogue: even though classical 2-sat is in P, classical (3,2)-sat, where one
of the binary variables is replaced by a ternary variable, is NP-complete [16].

S-3 STOCHASTIC 𝑘-SAT
This problem is like quantum 𝑘-sat, except that instead of projection operators it
uses stochastic, Hermitian, positive-semidefinite operators (see glossary, Appendix 7.A,
for definitions).

Problem: Given polynomially many 𝑘-local stochastic, Hermitian, positive-
semidefinite operators {𝐻1, . . . ,𝐻𝑚} on 𝑛-qubits with norms bounded by poly(𝑛),
determine whether:

(yes case) the lowest eigenvalue of 𝐻 =
∑︀

𝑖𝐻𝑖 is 0

(no case) all eigenvalues of 𝐻 are > 𝑏,

promised one of these to be the case,
where 𝑏 > 1/poly(𝑛).

12Earlier work by Nagaj and Mozes [42] that quantum (3,2,2)-sat is QMA1-complete is now subsumed
by the result that quantum 3-sat is QMA1-complete.
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Theorem: QMA1-complete for 𝑘 = 6 [proven by Jordan, Gosset, and Love [28]]
Hardness reduction from: quantum 4-sat (S-1)

Notes: Stoquastic quantum 𝑘-sat, where the word ‘stochastic’ is replaced by ‘sto-
quastic’ above, is in MA and is MA-complete for 𝑘 > 6. [9] Note that stochas-
tic 𝑘-sat makes no mention of projection operators, and therefore is not really
a quantum 𝑘-sat problem. In stoquastic quantum 𝑘-sat, its MA-complete
cousin, however, the operators can be converted to equivalent operators that
are projectors, whence the relation to quantum 𝑘-sat. No connection to pro-
jectors is known in the stochastic case.

7.4 Density matrix consistency

C-1 𝑘-LOCAL DENSITY MATRIX CONSISTENCY

Given a set of density matrices on subsystems of a constant number of qubits, this
problem is to determine whether there is a global density matrix on the entire space
that is consistent with the subsystem density matrices.

Problem: Consider a system of 𝑛 qubits. Given 𝑚 = poly(𝑛) 𝑘-local density
matrices 𝜌1, . . . , 𝜌𝑚, so that each 𝜌𝑖 acts only on a subset 𝐶𝑖 ⊆ {1, . . . 𝑛} of qubits
with |𝐶𝑖| 6 𝑘,
determine whether:

(yes case) ∃ 𝑛-qubit density matrix 𝜎 such that ∀𝑖, ‖𝜌𝑖 − 𝜎̃𝑖‖tr = 0 where 𝜎̃𝑖 =
Tr{1,...,𝑛}r𝐶𝑖

(𝜎)

(no case) ∀ 𝑛-qubit density matrix 𝜎, ∃𝑖 such that ‖𝜌𝑖 − 𝜎̃𝑖‖tr > 𝑏 where 𝜎̃𝑖 =
Tr{1,...,𝑛}r𝐶𝑖

(𝜎),

promised one of these to be the case,
where 𝑏 > 1/poly(𝑛).

Theorem: QMA-complete even for 𝑘 = 2 [proven by Liu [37]]
Hardness reduction from: 𝑘-local Hamiltonian (H-1) [Turing reduction]

Classical analogue: consistency of marginal distributions is NP-hard.

C-2 𝑁-REPRESENTABILITY
This is the same problem as 2-local density matrix consistency (C-1), but
specialized to fermions (particles whose quantum state must be antisymmetric under
interchange of particles).
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Problem: Given a system of 𝑁 fermions and 𝑑 possible modes, with 𝑁 6 𝑑 6
poly(𝑁), and a 𝑑(𝑑−1)

2 × 𝑑(𝑑−1)
2 2-fermion density matrix 𝜌,

determine whether:

(yes case) ∃
(︀
𝑑
𝑁

)︀
×
(︀
𝑑
𝑁

)︀
𝑁 -fermion density matrix 𝜎 such that Tr{3,...,𝑁}(𝜎) = 𝜌

(no case) ∀ 𝑁 -fermion density matrices 𝜎, ‖𝜌− Tr{3,...,𝑁}(𝜎)‖tr > 𝑏,

promised one of these to be the case,
where 𝑏 > 1/poly(𝑁).

Theorem: QMA-complete [proven by Liu, Christandl, and Verstraete [38]]
Hardness reduction from: 2-local Hamiltonian (H-1) [Turing reduction]

C-3 BOSONIC 𝑁-REPRESENTABILITY
This is the same problem as 2-local density matrix consistency (C-1), but
specialized to bosons (particles whose quantum state must be symmetric under inter-
change of particles).

Problem: Given a system of 𝑁 bosons and 𝑑 possible modes, with 𝑑 > 𝑐𝑁 (for some
constant 𝑐 > 0), and a 𝑑(𝑑+1)

2 × 𝑑(𝑑+1)
2 2-boson density matrix 𝜌,

determine whether:

(yes case) ∃
(︀
𝑁+𝑑−1
𝑁

)︀
×
(︀
𝑁+𝑑−1
𝑁

)︀
𝑁 -boson density matrix 𝜎 such that

Tr{3,...,𝑁}(𝜎) = 𝜌

(no case) ∀ 𝑁 -boson density matrices 𝜎, ‖𝜌− Tr{3,...,𝑁}(𝜎)‖tr > 𝑏,

promised one of these to be the case,
where 𝑏 > 1/poly(𝑁).

Theorem: QMA-complete [proven by Wei, Mosca, and Nayak [51]]
Hardness reduction from: 2-local Hamiltonian (H-1) [Turing reduction]

7.5 Afterword

Since the publication of the original survey [5], several QMA-complete problems and results
have been discovered. We list these results here, albeit not in the same level as detail as the
problems above.

Of particular interest, [15] have characterized the complexity of the 𝑘-local Hamil-

tonian problem with restricted Hamiltonian forms, including a determination of which are
QMA-complete. This supplants much of H-5. Their result includes, for example, proofs
of QMA-completeness for XYZ, XXZ, XY, and general Heisenberg Hamiltonian models
(all without requiring the inclusion of 1-local terms). The work of [44] furthers some of
these results, proving QMA-completeness for some antiferromagnetic versions (in particu-
lar, the antiferromagnetic Heisenberg and antiferromagnetic XY models) and various ge-
ometries (square and triangle lattices). Also of importance, it has been proven [13] that the
Bose-Hubbard model is QMA-complete, even on simple graphs [14]. These two papers also
prove the QMA-completeness of the special case of 𝛼-Frustration-Free Bose-Hubbard
Hamiltonians (even on simple graphs) [14], the minimum graph eigenvalue problem
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(i.e. the task of computing the smallest eigenvalue of sparse, symmetric 0-1 matrices) [13],
and XY Hamiltonians (with different restrictions from that of [44] in terms of geometry,
uniformity, and disallowing 1-local magnetic fields) [14]. Similar to H-5d, another proof of
QMA-completeness for a two-dimensional interacting fermion model is provided in [10].

A number of QMA-complete problems have emerged related to the recent interest in
proving or disproving a quantum PCP theorem. The work [11] claims the QMA-completeness
of the 2-local Hamiltonian problem with 𝑂(1) terms and an 𝑂(1) promise gap, while [25]
proves QMA-completeness for 2D local Hamiltonians with the restriction that the ground
state satisfies an entanglement entropy area law, along with extensions to 3D cubic lattice
Heisenberg and Hubbard Hamiltonians (again, satisfying an area law). In [21], the problems
set local Hamiltonian and classical and restricted-entanglement swapping-

provers are defined and shown to be QMA-complete.
Several new QMA-complete problems that are not part of the 𝑘-local Hamiltonian

family have also been found, including estimating the maximum acceptance probability when
measuring stabilizer states [40], basis state check on subset states [22], the one-way
LOCC version of separable isometry output [23], and a variant of the close image

to totally mixed problem [36]. While the above progress was all for QMA-completeness,
the paper [47] considers a form of quantum 𝑘-sat that restricts the number of terms in
which each qubit appears and proves that it is QMA1-complete.
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Chapter appendices

7.A Glossary

The definitions given here are not necessarily the most general or precise possible, but they
suffice for the needs of this chapter.

𝑖th energy (level) of a Hamiltonian 𝐻 – the 𝑖th smallest eigenvalue of 𝐻.

ground-state energy of a Hamiltonian 𝐻 – the smallest eigenvalue of 𝐻.

Hamiltonian – the generator of time-evolution in a quantum system. Its eigenvalues cor-
respond to the allowable energies of the system. It also dictates what interactions are
present in a system. As a matrix, it is Hermitian.

Hermitian matrix – a square matrix 𝐻 that is equal to its own conjugate-transpose, i.e.
𝐻† = 𝐻.

norms of matrices – Several different matrix norms appear in this chapter. Given a ma-
trix 𝐴 with elements 𝑎𝑖𝑗 , the

operator norm of 𝐴 is ‖𝐴‖ = max {‖𝐴 |𝜓⟩ ‖2 : ‖ |𝜓⟩ ‖2 = 1}. For a square matrix,
it is also known as the spectral norm; it is the largest singular value of 𝐴, and if
𝐴 is normal, then it is the largest absolute value of the eigenvalues of 𝐴.

Frobenius norm of 𝐴 is ‖𝐴‖𝐹 =
√︀

Tr[𝐴†𝐴] =
√︁∑︀

𝑖,𝑗 |𝑎𝑖𝑗 |2.

trace norm of 𝐴 is ‖𝐴‖tr = Tr
[︁√

𝐴†𝐴
]︁
, which when 𝐴 is normal is the sum of the

absolute value of its eigenvalues. It is often written ‖𝐴‖tr = Tr|𝐴| where |𝐴|
denotes

√
𝐴†𝐴.

norms of quantum superoperators – Occasionally norms of superoperators are required
in this chapter.

diamond norm of a superoperator Φ that acts on density matrices that act on a
Hilbert space ℋ is ‖Φ‖♢ = sup𝑋 ‖(Φ ⊗ ℐ)(𝐴)‖tr/‖𝐴‖tr where the supremum is
taken over all linear operators 𝐴 : ℋ⊗ℋ → ℋ⊗ℋ.

positive-semidefinite matrix – a Hermitian matrix whose eigenvalues are all non-negative.

𝑘-local projector on 𝑛 qubits – a Hermitian matrix of the form Π = 1⊗(𝑛−𝑘)⊗∑︀𝑖 |𝜓⟩⟨𝜓|𝑖
where the |𝜓⟩𝑖 are orthonormal 𝑘-qubit states. It satisfies Π2 = Π.
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stochastic matrix – a square matrix of non-negative real numbers such that each row
sums to 1. If additionally each column sums to 1, it is called a doubly stochastic
matrix.

stoquastic Hamiltonian – a Hamiltonian in which the off-diagonal matrix elements are
non-positive real numbers in the standard basis.

qudit – generalization of a qubit: for some 𝑑, a 𝑑-state quantum-mechanical system, or
mathematically, a unit-normalized vector in C𝑑 (but where global phase is irrelevant).
When 𝑑 = 2 it is called a qubit, when 𝑑 = 3 it is called a qutrit. When 𝑑 = 5 it may
be called a cinquit [16], but to avoid headaches, I advise against trying to name the
𝑑 = 4 version.
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7.B QMA-hard theorems

This appendix contains a theorem that allows one to prove that several quantum circuit
verification problems are QMA-hard. Note that it does not prove QMA-completeness, only
QMA-hardness, so it is relegated to the appendix.

X-1 QUANTUM CIRCUIT TESTING

This problem involves testing the behaviour of a quantum circuit. Given an input
circuit 𝐶, one wishes to determine whether it acts like (on a large input space) a
circuit from a uniform circuit family C0, or acts like (for all inputs) a circuit from
uniform circuit family C1, promised that the two families are significantly different.

Problem: Let 𝛿 ∈ (0, 1] and let C0 and C1 be two uniform families of quantum
circuits. Given an input quantum circuit 𝐶 acting on an 𝑛-qubit input space ℋ, let
𝐶0 ∈ C0 and 𝐶1 ∈ C1 act on the same input space ℋ. The problem is,
determine whether:

(yes case) ∃ subspace 𝑆, with dim𝑆 > (dimℋ)1−𝛿, such that for any reference
space ℛ, if 𝜌 is a density matrix on 𝑆 ⊗ ℛ then ‖(𝐶 ⊗ ℐℛ)(𝜌) −
(𝐶0 ⊗ ℐℛ)(𝜌)‖tr 6 𝜖

(no case) for any reference space ℛ, if 𝜌 is a density matrix on the full space
ℋ⊗ℛ then ‖(𝐶 ⊗ ℐℛ)(𝜌)− (𝐶1 ⊗ ℐℛ)(𝜌)‖tr 6 𝜖,

promised one of these to be the case,
where 1 > 𝜖 > 2−poly(𝑛), and provided that @ subspace 𝑆 such that ‖(𝐶0 ⊗ ℐℛ)(𝜎)−
(𝐶1 ⊗ ℐℛ)(𝜎)‖tr 6 2𝜖 for all density matrices 𝜎 on 𝑆⊥ ⊗ℛ.

Theorem: QMA-hard for constant 𝛿 [proven by Rosgen [46]]
Hardness reduction from: qcsat (V-1)

Notes: leads to: mixed-state non-identity check (V-4), non-isometry testing
(V-5), Detecting insecure quantum encryption(V-6)
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7.C Diagram of QMA-complete problems

Figure 7-1: Schematic showing the QMA-complete problems listed in this chapter (up to
August 2013), according to their categories. Lines show hardness reductions.
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