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by
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Abstract

The optical properties of the spin-1/2 kagome lattice antiferromagnetic Herbertsmithite,
ZnCu3(OH)6Cl2, are studied by means of Terahertz Time-Domain Spectroscopy. Her-
bertsmithite is proposed to exhibit Quantum Spin Liquid behavior, in which electron
spins have strong antiferromagnetic interactions, but quantum fluctuations inhibit
magnetic order even at 0 K, instead giving way to a Resonating Valence Bond state.
Quantum Spin Liquids host exotic fractionalized excitations called spinons, which
carry spin 1/2 but no charge. The low-energy behavior of these excitations are pro-
posed to be governed by emergent gauge fields that depend on the quantum order of
the macroscopically entangled ground state wavefunction. The nature of the quan-
tum order of the ground state in Herbertsmithite has been the subject of great debate
in the past decade. While computational work has suggested that a gapped Z2 spin
liquid is realized in Herbertsmithite, experimental work has seen no evidence of a
spin gap, suggesting that a U(1) Dirac spin liquid might be realized instead. Re-
cent theory work has proposed that a signature of the quantum order of the ground
state of Herbertsmithite is manifested in its low-frequency optical conductivity as a
result of the coupling of the charge and spin degrees of freedom through an emergent
gauge field. In this dissertation, Terahertz Time-Domain Spectroscopy measurements
on single crystals of Herbertsmithite will be used to test these theories, and provide
evidence for the existence of a U(1) Dirac spin liquid state in Herbertsmithite.

Thesis Supervisor: Nuh Gedik
Title: Associate Professor
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Chapter 1

Frustrated Magnetism and Quantum

Spin Liquids

1.1 Introduction

The study of condensed matter physics is the study of the structural, electronic,

magnetic, and thermodynamic properties of systems of uncountably many particles,

usually arranged in periodic structures called crystals. Despite the complexity of such

systems, their electronic behavior can usually be understood by considering a single

electron experiencing a potential landscape whose properties are determined by the

symmetries that are either conserved or broken by the crystal, along with knowledge

of the constituent parts forming the crystal. This approach has led to the Band

Theory of Solids, which has been used to very effectively describe the behavior of

metals, insulators, and semimetals, among other systems [1, 2].

The single-particle band theory picture breaks down, however, in materials with

strong interactions, which often exhibit new and interesting electronic and magnetic

phases with collective excitations. These new phases can usually still be understood

in terms of phase transitions that break a certain symmetry, with an order param-

eter that characterizes the new phase. For example, electron-phonon interactions in

metals can lead to effective electron-electron attraction resulting in BCS supercon-

ductivity that breaks the electromagnetic gauge symmetry and is characterized by
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the superconducting gap order parameter [3] whose excitations are a direct analog to

the Higgs boson in particle physics [4]. Electron spin interactions can lead to ordered

magnetism, which can break the translational and rotational symmetries of the lattice

as well as spin-rotation or time-reversal symmetry, and is characterized by the magne-

tization order parameter [1,2] whose excitations behave as chargeless spin 1 particles

called magnons. The ubiquitousness of symmetry breaking in different phases of mat-

ter led Landau to develop the Landau Theory of Phase Transitions in the 1940’s, in

which phase transitions from one state of matter to another are characterized by an

order parameter resulting from the spontaneous breaking of a symmetry.

While the Landau Theory of Phase Transitions seems at first glance to be general,

it relies on the appearance of a classically observable order parameter to distinguish

between phases of matter. This picture broke down in the 1980’s with the discovery

of the Fractional Quantum Hall Liquid [5,6]. Such a system cannot be understood in

terms of classical symmetry breaking, but instead must be understood in terms of the

topological order of the electronic wavefunction. Another such example is the Quan-

tum Spin Liquid (QSL). In a QSL, the magnetic ground state breaks no symmetries,

but is instead characterized by the quantum order of the ground state wavefunction.

QSLs host exotic fractional quasiparticles, whose low-energy excitations are governed

by emergent gauge fields resulting from the specific type of quantum order realized.

It is the goal of the condensed matter physics community to develop new tools to un-

derstand these new kinds of phases of matter, and to experimentally characterize how

these phases are realized in real systems. In this thesis, I will present spectroscopic

studies of the QSL material Herbertsmithite, with an emphasis on experimentally

characterizing the nature of its low-energy excitations.

1.2 Magnetism in insulators

In systems with strong electron-electron interactions, the crossover from metallic to

insulating behavior can often be described by the Hubbard model [7], in which elec-

trons are assumed to be localized on crystallographic sites, but are allowed to hop

16



from site to site and repel other electrons on the same site. The Hubbard model is

given by the Hamiltonian

H𝐻𝑢𝑏𝑏𝑎𝑟𝑑 = −𝑡
∑︁
<𝑖,𝑗>

(𝑐†𝑖𝑐𝑗 + ℎ.𝑐.) + 𝑈
∑︁
𝑖

(𝑛𝑖↑𝑛𝑖↓), (1.1)

where <i,j> dictates summation over unrepeated pairs of lattice sites (sometimes

nearest neighbor only), t is the hopping term, U is the electron-electron repulsion

strength, 𝑐 and 𝑐† are the electron annihilation and creation operators, respectively,

h.c. is the hermitian conjugate, and 𝑛𝑖 is the electron occupancy on the ith site. In the

case of a half-filled band, in the limit of U much greater than the electronic bandwidth

W, a metal-insulator transition can occur [8], resulting in a Mott insulating state. In

this state, the Hubbard hamiltonian reduces to the Heisenberg spin hamiltonian

H𝐻𝑒𝑖𝑠𝑒𝑛𝑏𝑒𝑟𝑔 =
∑︁
<𝑖,𝑗>

𝐽𝑖𝑗�⃗�𝑖 · �⃗�𝑗, (1.2)

where 𝐽𝑖𝑗 is the site-to-site dependent exchange energy and �⃗� is the electron spin vec-

tor when treated classically, or the spin operator when treated quanum mechanically.

In the simplest case, where 𝐽𝑖𝑗 is isotropic with nearest-neighbor-only interactions,

the hamiltonian reduces to

H = 𝐽
∑︁
<𝑖,𝑗>

�⃗�𝑖 · �⃗�𝑗. (1.3)

When J is negative, the system is ferromagnetic, with minimum energy when all spins

point in the same direction. When J is positive, the system is antiferromagnetic, with

minimum energy when neighboring spins point in the opposite direction.

At high enough temperature, the spin system behaves as a system of weakly

interacting paramagnetic spins, or a spin gas (Figure 1.1). The magnetic susceptibility

of this state obeys a Curie-Weiss law [1,2]

𝜒𝑚 =
𝐶

𝑇 − Θ𝐶𝑊

, (1.4)

where 𝜒𝑚 is the magnetic susceptibility, C is the Curie constant, T is the temperature,
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Figure 1.1: The three qualitative types of spin systems. In a spin gas, spin are
randomly oriented and uncorrelated, behaving paramagnetically. In a spin liquid,
spins are correlated, but fluctuate and form no static order. In a spin solid, spins
align in a fixed pattern.

and Θ𝐶𝑊 is the Curie-Weiss temperature. In ferromagnetic systems, Θ𝐶𝑊 is positive,

and therefore the magnetic susceptibility diverges at 𝑇 = Θ𝐶𝑊 , resulting in a phase

transition to a ferromagnetically ordered state. In antiferromagnetic systems, Θ𝐶𝑊 is

negative, and a phase transition to an antiferromagnetically ordered state is expected

at temperatures comparable to |Θ𝐶𝑊 |. At intermediate temperatures, the spins be-

have as a Classical Spin Liquid (Figure 1.1), in which strong spin-spin correlations

exist, but no long-range spin order is present, resulting in a failure of the Curie-Weiss

behavior at temperatures below around 2|Θ𝐶𝑊 | [9]. Later in this chapter, we will dis-

cuss a state called a Quantum Spin Liquid (QSL), where quantum fluctuations result

in a highly degenerate, fluctuating magnetic ground state with strong correlations,

even at zero temperature.

1.3 Frustrated magnetism

A frustrated magnetic system is defined to be a magnetic system in which no spin

configuration can simultaneously satisfy all magnetic interactions [10]. Magnetic

frustration can arise from many different sources. First, competition between ferro-
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magnetic nearest-neighbor interactions and antiferromagnetic next-nearest-neighbor

interactions can lead to unusual magnetically ordered states, such as helical or screw-

type magnetic states [11, 12]. Lattice disorder can also lead to magnetic frustration,

such as in spin glasses [13,14]. Finally, magnetic frustration can arise from geometric

frustration, in which the geometry of the lattice does not allow all antiferromagnetic

interactions to be satisfied. In general, a geometrically frustrated lattice is a lattice

in which there exists more than two equidistant nearest neighbors in each lattice pla-

quette (Figure 1.2). We will focus on geometric frustration for the remainder of this

chapter.

1.3.1 Geometric frustration

Figure 1.2 shows examples of unfrustrated and frustrated lattices in two dimensions.

In the case of a simple square lattice with antiferromagnetic interactions (Figure 1.2a),

all spins can align opposite to their nearest neighbors, resulting in a minimized energy

of −𝐽𝑆2 per bond. In this case, the lattice is unfrustrated. The simplest frustrated

lattice in two dimensions is the triangular lattice, shown in Figure 1.2b,c. In the

case of antiferromagnetically interacting Ising spins on the triangular lattice (Figure

1.2b), the lowest energy configuration is that in which two pairs of spins satisfy the

antiferromagnetic condition, while the remaining pair of spins violates it [15]. This

results in an average binding energy of −1
3
𝐽𝑆2 per bond, three times lower than for

the unfrustrated case. This frustration can be partially lifted, however, by allowing

the spins to point in any direction (Heisenberg or XY model), in which case the

energy is minimized by each spin forming a 120∘ angle with its nearest neighbors

(Figure 1.2c). This configuration results in an average binding energy of −1
2
𝐽𝑆2 per

bond.

It is evident from Figure 1.2 that the antiferromagnetic Ising model on frustrated

lattices leads to an extremely large ground state degeneracy. On the triangular lattice

(Figure 2.3a), there are three choices of bonds where the antiferromagnetic condition

is broken for each triangular plaquette, with each case having the same energy. There-

fore, there is not a single ground state with a single arrangement of spins, but rather
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Figure 1.2: Geometric frustration on a crystal lattice. a) On a square lattice, all spins
can satisfy the antiferromagnetic condition, minimizing the energy. b) On a trian-
gular Ising lattice, only two of three pairs of spins can satisfy the antiferromagnetic
condition. c) Allowing the spins to rotate freely (Heisenberg model) partially relieves
the geometric frustration.

a massive number of degenerate ground states, whose number scales exponentially

with the system size. Such a system was studied by Wannier in 1950 [16], in which

he found there to be a ground state entropy of 0.323 𝑘𝐵 per spin, where k𝐵 is the

Boltzmann constant. Indeed such a macroscopic ground state degeneracy is a hall-

mark of geometrically frustrated systems. On the Ising kagome lattice (Figure 2.3b),

which is composed of corner sharing triangles, numerical studies found the ground

state entropy to be 0.5 𝑘𝐵 per spin [17].

Another property of geometrically frustrated antiferromagnetic systems is a re-
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Figure 1.3: Examples of frustrated lattices in two dimensions. a) The Ising triangular
lattice has ground state entropy 0.323Nk𝐵. b) The Ising kagome lattice (corner-
sharing triangles) is more frustrated with a ground state entropy of 0.5Nk𝐵.

duction in their ordering temperature (Néel temperature). While in unfrustrated

magnets it is expected that magnetic ordering will occur at temperatures compara-

ble to |Θ𝐶𝑊 |, geometric frustration can significantly lower this ordering temperature.

Because of this, Ramirez suggested to use a measure (𝑓) of this reduced ordering

temperature as a measure of frustration itself [10].

𝑓 ≡ |Θ𝐶𝑊 |
𝑇𝑁

, (1.5)

where 𝑇𝑁 is the Néel temperature. By convention, a material is considered highly

frustrated if 𝑓 > 10, but for some materials, 𝑓 can exceed a value of hundreds or

even thousands [18]. Furthermore, geometric frustration can result in paramagnetic

behavior persisting to much lower temperatures. In unfrustrated magnets, param-

agnetic behavior (1/𝜒𝑚 ∝ 𝑇 ) fails at around 2|Θ𝐶𝑊 | when the magnetic correlation

length becomes comparable to the spin separation distance and spin-spin interactions

become significant. In frustrated systems, however, paramagnetic behavior can per-

sist down to fractions of |Θ𝐶𝑊 |. This shows that, despite the presence of interactions

with energy scale much larger than the temperature, spins in frustrated systems can

act as effectively free spins.
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1.3.2 The effects of dimensionality

We have so far only discussed classical magnetic order, in which spins behave as

well-defined vectors. An alternative to classical antiferromagnetism, however, is the

formation of singlet dimers, in which pairs of spins form a superposition of | ↑↓>

and | ↓↑>, with a spin expectation value of 0 on each site. Consider the simplest

unfrustrated lattice in 1, 2 and 3 dimensions, i.e. the linear chain, square, and cubic

lattices. In the case of Néel order, the binding energy per pair of spins is given by

−𝐽𝑆2 times the number of nearest neighbors per spin. The binding energy per spin

is therefore half of this value. The binding energy per spin in these three cases is

−𝐽𝑆2, −2𝐽𝑆2 and −3𝐽𝑆2, respectively. The increased binding energy with higher

dimensionality can be intuitively understood by considering flipping one spin. In

higher dimension, one flipped spin results in more violations of the antiferromagnetic

condition than in lower dimension.

Now consider the formation of singlet dimers instead of Néel order. The per-bond

binding energy 𝐽�⃗�1 · �⃗�2 must be treated as a quantum mechanical operator instead

of a classical vector dot product. For a singlet,

𝐽�⃗�1 · �⃗�2 =
1

2
𝐽((𝑆1 + 𝑆2)

2 − 𝑆2
1 − 𝑆2

2) = −1

2
𝐽(𝑆2

1 + 𝑆2
2). (1.6)

When |𝑆1| = |𝑆2|, formula 1.6 reduces to−𝐽𝑆2, which has an eigenvalue of−𝐽𝑆(𝑆+1)

[19]. The binding energy per spin for a singlet is therefore −1
2
𝐽𝑆(𝑆+1). This value is

independent of dimensionality, since the expectation value of the spin on each site is 0,

and therefore there is no dipolar interaction between neighboring singlets, regardless

of how many there are. There is therefore a crossover between Néel order and singlet

formation as dimensionality is lowered, when 1
2
𝐽𝑆(𝑆 + 1) > 𝐷𝐽𝑆2, where D is the

dimensionality of the lattice. In the case of 𝐷 = 1 and 𝑆 = 1/2, singlet formation is

preferred with a binding energy of −3
8
𝐽 per spin, compared to −1

4
𝐽 per spin for Néel

order.

The 1D quantum mechanical spin 1/2 chain can be solved exactly and will prove to

be a very useful example for understanding Quantum Spin Liquids in two dimensions.
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Figure 1.4: Visual representation of spinons in a 1D chain. The system begins as a su-
perposition of singlet dimers (blue ovals) with all spins paired. Only one arrangement
of dimers is shown for simplicity. One singlet is excited to form two antialigned spins.
These two spins are free to move away from each other due to the fluctuating nature
of the singlet dimer pairings. Each of these two spins acts as a spin 1⁄2 excitation with
no charge.

This system was solved exactly by Hulthén in 1938 using a Bethe ansatz [20]. He found

that the ground state had a binding energy of −0.443𝐽 per spin, a value lower than

both −3
8
𝐽 for nearest neighbor singlet formation and −1

4
𝐽 for Néel order. Rather than

a fixed arrangment of singlet dimers, the ground state is a macroscopic superposition

of singlet pairings, with pairs not being limited to nearest neighbors. This state is

known as a one dimensional Quantum Spin Liquid (QSL), and hosts a variety of novel

properties. First, it breaks no additional symmetries, unlike Néel order, which breaks

the rotational and translational symmetry of the underlying lattice and spin rotation

symmetry. Second, it hosts exotic fractional quasiparticle excitations that carry 𝑠 =

1/2 but no charge, called spinons [21]. Figure 1.4 shows a schematic representation of

these spinons. They are created in pairs corresponding to the breaking of one singlet

into two anti-aligned spins, and are gapless in this case [22]. Each spinon behaves as

an independent excitation because they are free to dissociate from each other without

costing energy, due to the fluctuating nature of the ground state singlet distribution.
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1.4 Quantum Spin Liquids in two dimensions

While the one-dimensional unfrustrated spin 1/2 chain can be solved exactly, the two-

dimensional case will be quite different. From our naive estimates on the square

lattice, Néel order should be energetically favorable over singlet formation, with a

binding energy of −1
2
𝐽 and −3

8
𝐽 per spin, respectively. A more rigorous treatment,

however, known as the Mermin-Wagner theorem [23], has proven that neither ferro-

magnetic nor antiferromagnetic order is possible in two dimensions at finite tempera-

ture if the spin-spin correlations have finite length. The question remains, therefore,

whether two-dimensional systems, especially two-dimensional frustrated systems, can

host a 2D analog of the QSL found in 1D.

1.4.1 The Resonating Valence Bond State

While the Mermin-Wagner theorem suggests a ground state involving singlet dimers

over Néel order, there are still a large number of possible ground states. The sim-

plest example is called the Valence Bond Crystal (VBC) state [24–30]. In the VBC

state, each spin forms a singlet dimer with another spin, forming a static pattern of

singlets with periodic long range order, but only short-range spin-spin correlations.

Such a state is not a QSL, since the singlet periodicity breaks the underlying crystal

translational and rotational symmetries, and it does not host fractional excitations.

If you consider the excitation of a singlet to two anti-aligned spins, these spins are

not independently free to travel away from each other as in the 1D QSL case. In

order for these excited spins to move, more singlets must be broken, which requires

energy. Another possible ground state is the Valence Bond Glass (VBG) state [31].

In the VBG state, spins again form a static pattern of singlet dimers with short range

correlations, but this pattern has no long range periodicity or order.

An alternative to static dimer order called the Resonating Valence Bond (RVB)

state was proposed by Anderson [32, 33]. In the RVB state, rather than forming a

single arrangement of singlet dimers, the spins form a superposition of all possible

dimer pairings, weighted by the pairing’s relative probability depending on the sepa-
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Figure 1.5: a) An example of a Valence Bond Crystal (VBC) state on a triangular
lattice. All spins form a fixed arrangment of singlets (red lines). b) An example of a
Resonating Valence Bond (RVB) state. The spins form a superposition of all possible
singlet pairings. The properties of a specific RVB state depend on the relative weights
𝑐𝑖 of the superposition. Singlets formed by spins separated by any distance are in
general allowed.

ration distance-dependence of the spin-spin correlations. In all cases, the RVB state

supports fractional spinon excitations, since, as in one dimension, two spins formed

by a broken singlet are free to move through the fluctuating sea of dimers without

energy cost. If realized, the RVB state would be a true manifestation of a QSL in two

dimensions, since it breaks no local or global symmetries, has no local or global av-

erage magnetization, and hosts fractional excitations. Fractional spinon excitations

will be the experimental smoking gun of the RVB state, as will be discussed later

in this chapter as it pertains to kagome lattice Herbertsmithite. Since spinons are

created in pairs, energy and momentum conservation are satisfied by a continuum of

spinon energies and momenta, rather than a single dispersion relation. Deconfined

spinon excitations therefore give rise to a scattering continuum in neutron scattering

measurements, rather than well-defined peaks [34]. Figure 1.5 shows an example of

the RVB state versus the VBC state on the triangular lattice.

25



1.4.2 Plethora of RVB ground states

The low energy physics of the RVB state sensitively depends on the details of the

macroscopic superposition of singlet dimer patterns. The lowest energy excitations of

the RVB state are spin 0 excitations where a singlet is excited to form two antialigned

spins, and a spin 1 excitation where a singlet is excited to form a triplet. The

dispersion of these excitations will depend strongly on how the probability of a specific

dimer configuration depends on the dimer separation distance. For instance, in the

case where the probability of singlet formation falls off exponentionally with distance,

with length scale on the order of the nearest neighbor distance (Type I short-range

RVB), the ground state will be dominated by dimer patterns involving only nearest-

neighbor singlets. In this case, the singlet and triplet excitation spectra will be

gapped, with a gap energy comparable to the energy cost of exciting one nearest-

neighbor singlet [9]. In the case where spin correlations decay exponentionally with

a length scale that is large compared to the unit cell size (Type II short-range RVB),

the ground state will be composed of a greater number of singlet pairings that are far

apart. In this case, the singlet excitations will be gapless, but the triplet excitations

will be gapped [9]. Additionally, these short-range RVB states are predicted to host

certain kinds of topological order [35–38].

RVB spin correlations can have spatial dependence other than exponential, namely

algebraic (power law) dependence (long-range RVB). In this case, the ground state

can be heavily dominated by singlet dimers where the spins are separated by large

distances, and both the singlet and triplet excitations will be gapless [39]. In general,

the properties of a given QSL state are governed by the underlying gauge symmetry

of the ground state wavefunction. Some of these long-range RVB states, specifically

the U(1) Dirac spin liquid state, can host emergent gauge fields that govern the low

energy dissipation in the system [40,41].
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Figure 1.6: The crystal structure of Herbertsmithite. Herbertsmithite
(ZnCu3(OH)6Cl2) is a naturally occurring mineral, though natural samples are too
impure for the purposes of this work. Herbertsmithite has a trigonal structure com-
posed of kagome planes of 𝑆 = 1/2 Cu2+ ions separated by nonmagnetic Zn2+ ions.
Superexchange through the OH chains that link the Cu atoms within the kagome
planes is responsible for the antiferromagnetic interactions of the Cu atoms. [56]

1.5 Herbertsmithite

Up to this point, we have discussed the theoretical possibility of a QSL state on 1D

or 2D lattices. There are a number of real systems, however, that show promise in

the realization of QSL physics. Among these are the triangular-lattice organic salts

EtMe3Sb[Pd(dmit)2]2 [42, 43] and 𝜅-(BEDT-TTF)2Cu2(CN)3 [44–46], as well as the

kagome-lattice mineral ZnCu3(OH)6Cl2 (also called Herbertsmithite) [18, 34, 47–55].

In each of these systems, two-dimensional frustrated planes of atoms carrying spin-1/2

are separated by nonmagnetic atoms, resulting in an effectively two-dimensional spin

system. The focus of this dissertation will be on kagome-lattice Herbertsmithite.

Herbertsmithite is composed of planes of Cu2+ ions carrying spin-1/2 and forming

a kagome pattern, separated by nonmagnetic Zn atoms. The Cu atoms are connected

by OH chains that sit slightly out of the kagome plane. The crystal structure can be

seen in Figure 1.6. The trigonal symmetry of the crystal structure ensures that the

in-plane exchange interactions are isotropic, making Herbertsmithite a structurally

perfect kagome system [56]. Exchange between the copper atoms occurs via superex-

change through the OH chains, resulting in a strong antiferromagnetic interaction

with exchange energy 𝐽 ≈ 17 𝑚𝑒𝑉 , a Curie-Weiss temperature Θ𝐶𝑊 = −300 𝐾, and
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Figure 1.7: 𝜇SR phase diagram for the Zn-paratacamite family (Zn𝑥Cu4−𝑥(OH)6Cl2)
taken at 1 𝐾 from reference [56]. Magnetic order is not observed for sufficiently high
values of x. As x is decreased, the two-dimensionality of the spin system breaks down,
resulting in magnetic order below 𝑥 = 0.65. At 𝑥 = 0.3, a structural phase transition
occurs due to Jahn-Teller distortion.

a Dzyaloshinskii-Moriya (DM) interaction strength of ∼0.1𝐽 [18]. Herbertsmithite is

also a strong Mott insulator with charge gap ∼1 𝑒𝑉 .

Herbertsmithite is the end point in the Zn-paratacamite family of materials, given

by the chemical formula Zn𝑥Cu4−𝑥(OH)6Cl2, where x is the percentage of zinc (replac-

ing copper) at the interlayer sites [56]. The presence of magnetic Cu atoms in the Zn

sites breaks the two-dimensionality of the spin system, eventually leading to magnetic

order for 𝑥 < ∼0.65 and a structural phase transition driven by Jahn-Teller distortion

at 𝑥 ≈ 0.3. As will be discussed futher in chapter 4, the single-crystal growth of Her-

bertsmithite results in a deviation from 𝑥 = 1 by ∼15% [53], meaning 15% of the Zn

sites are replaced by magnetic copper atoms. This will have unfortunate consequences
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in thermodynamic and scattering measurements at low temperature and energy, but

the deviation is too small to result in magnetic order at low temperature, as can be

seen in the phase diagram from 𝜇SR data in Figure 1.7.

1.5.1 The ground state of Herbertsmithite

Other than the previously mentioned Cu substitution defects, Herbertsmithite is the

perfect system for the realization of a QSL state on the 2D kagome lattice. Thermo-

dynamic measurements (Figure 1.8) show no phase transitions, structural, magnetic,

or otherwise, below 30 𝐾, evidenced by the lack of peaks in the specific heat [18].

The magnetic susceptibility shows paramagnetic behavior above 100 𝐾, with devia-

tion from this behavior below 100 𝐾 due to the Cu defects, but no antiferromagnetic

or ferromagnetic ordering is observed down to at least 50 𝑚𝐾 [18]. This lack of

magnetic order down to 50 𝑚𝐾 corresponds to a frustration factor of 𝑓 > 6000.

Furthermore, inelastic neutron scattering measurements on powder samples of Her-

bertsmithite reveal a spectrum of low-energy spin excitations with no evidence of a

spin gap down to 0.1 𝑚𝑒𝑉 and with seemingly no dependence on the momentum

transfer |�⃗�|, consistent with a scattering continuum resulting from the two-particle

spinon creation process [18].

1.5.2 Neutron scattering measurements on single crystal Her-

bertsmithite

The smoking-gun experiment to confirm the RVB state and hence QSL behavior in

Herbertsmithite is the observation of the spinon scattering continuum. Such a scatter-

ing continuum is direct evidence for the fluctuating nature of the RVB ground state,

as opposed to any form of VBC involving static arrangements of singlets. While the

powder neutron scattering measurements are consistent with this scattering contin-

uum, the angle-integrated nature of these measurements makes it difficult to com-

pare with theory in a detailed manner. It was not until a recent breakthrough in

the growth of large sample-size single crystal Herbertsmithite [57] that single-crystal
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Figure 1.8: The inverse magnetic susceptiblity and heat capacity of Herbertsmithite.
The inverse susceptiblity shows paramagnetic behavior down to ∼100 𝐾 (paramag-
netic fit shown as red line), with no sign of magnetic ordering at any temperature.
The heat capacity shows no evidence of any type of phase transition below 30 𝐾 [9].

neutron scattering was possible.

Figure 1.9 shows the results of the inelastic neutron scattering measurements taken

by Han 𝑒𝑡 𝑎𝑙. [34] on single-crystal Herbertsmithite. They find in the dynamic struc-

ture factor a scattering continuum with featureless regions of scattering comparable in

size to the entire Brillouin zone. Such a scattering continuum is consistent with mag-

netic excitations based on the creation of two spinons with a gap no larger than 0.25

𝑚𝑒𝑉 . Figure 1.9d shows the structure factor integrated from 1 to 9 𝑚𝑒𝑉 to approxi-

mate the equal-time structure factor calculated by theory for a nearest-neighbor-only

RVB state (Figure 1.9e). The data and theory qualitatively match extremely well,

with both showing a hexagonal ring structure that spans multiple Brillouin zone ar-

eas in reciprocal space, with nearly constant scattering amplitude in the ring regions.

The data, however, is narrower in reciprocal space than the theory, indicating cor-

relations that extend beyond nearest neighbor spins. Furthermore, the data shows

no evidence of a gap down to 0.25 𝑚𝑒𝑉 where the contribution from the defect Cu

spins dominates the signal. This suggests that the ground state of Herbertsmithite is

a gapless long-range RVB with fully gapless spin excitatations, though a gap smaller

than the 0.1 𝑚𝑒𝑉 bound set by powder neutron scattering measurements [18] is not

ruled out.
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Figure 1.9: Inelastic neutron scattering measurements on single-crystal Herbert-
smithite taken from reference [34]. a)-c) Dynamic structure factor for energy transfer
ℎ̄𝜔 = 6 𝑚𝑒𝑉 , 2 𝑚𝑒𝑉 , and 0.75 𝑚𝑒𝑉 , respectively. A broad, featureless, scattering
continuum is observed. The energy-integrated structure factor (d) is compared to the-
oretical predictions for nearest-neighbor dimers (Type I short-range RVB) (e). The
data are narrower in reciprocal space than the theory, indicating spin-spin correlations
that extend beyond nearest-neighbors.

Neutron scattering measurements suggest that a gapless QSL state is realized in

Herbertsmithite, specifically the U(1) Dirac spin liquid suggested by theory [18, 58],

however there remains much controversy regarding this question. A recent computa-

tional study instead suggested that a fully gapped Z2 spin liquid is realized in Her-

bertsmithite [59], while other computational work suggests that a honeycomb VBC

with a large 36 site unit cell is the true ground state [24, 28]. Attempting to resolve

this issue will be the main focus of this dissertation, specifically in chapter 4. Instead

of scattering experiments that look directly for spin gaps, we will instead look for

signatures of the gauge symmetry of the ground state wavefunction in the dissipation

of low-frequency light.
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1.6 Optical conductivity of Quantum Spin Liquids

Experimental techniques that specifically probe the spin degrees of freedom seem, at

least a priori, to be the ideal choice for studying the physics of the magnetism in Her-

bertsmithite, however, the large percentage of defect Cu spins on the Zn sites often

dominates the signal at low energies, as in the neutron scattering work previously

mentioned. In order to determine the nature of the spinon excitations in Herbert-

smithite, that is, determine the existence of a spin gap, one must be able to perform

accurate measurements in the very low energy limit with these techniques. A more

direct probe of these emergent spinon excitations is therefore preferable. Despite

Herbertsmithite being a strong Mott insulator, it has been proposed that the low-

frequency optical conductivity could be used to determine the existence and nature

of emergent gauge fields that are specific to the type of QSL present [40, 41].

1.6.1 Gapless U(1) Dirac spin liquids

Two contributions to the optical conductivity are expected in U(1) Dirac spin liquids

due to the coupling of the usually well-insulating charge degree of freedom to the spin

degree of freedom through an emergent gapless U(1) gauge field [40, 41]. The first

contribution, which we will refer to as the Ioffe-Larkin conductance, arises because

the applied electric field of the light produces virtual charge fluctuations which give

rise to an emergent gauge electric field. The two fields then couple linearly, leading

to a contribution to the optical conductivity. The predicted conductance per kagome

layer is proportional to the square of the light frequency, and has the form [41]

𝜎𝐼𝐿 ≈ 48
√

3𝜋
𝑡2(ℎ̄𝜔)2

𝑈4

𝑒2

ℎ
, (1.7)

where 𝑡 is the hopping parameter estimated to be 0.1 𝑒𝑉 and 𝑈 is the on-site Coulomb

repulsion estimated to be 1 𝑒𝑉 . The conductance at 1 𝑇𝐻𝑧 is therefore expected to

be ∼10−5 𝑒2

ℎ
. While this conductance is quite small, this effect exists only in the low

frequency limit, where 𝜔 ≪ 𝐽 ≈ 4.5 𝑇𝐻𝑧, which is well below the Mott gap and well
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into the insulating regime. At frequencies below the lowest energy optical phonon,

this contribution is expected to be the dominant one.

The second mechanism also relies on the existence of a gapless U(1) gauge field,

and involves the modulation of the exchange interaction strength due to a deforma-

tion of the crystal lattice by the incident electric field, called magneto-elastic (ME)

coupling. This modulation gains a loss mechanism through the emergent U(1) gauge

field, resulting in a contribution to the optical conductivity [41]. The conductance

per kagome layer also has a power-law form [41]

𝜎𝑀𝐸 ≈
(︂

ℎ̄𝜔

𝐾𝐶𝑢𝑎2

)︂2
𝑒2

ℎ
, (1.8)

where𝐾𝐶𝑢 is the Cu-Cu bond spring constant and 𝑎 is the Cu-Cu separation distance.

𝐾𝐶𝑢𝑎
2 is estimated to be 1 𝑒𝑉 , giving a conductance at 1 THz of ∼10−5 𝑒2

ℎ
. This is

comparable to 𝜎𝐼𝐿 due to its large prefactor, but the ME contribution may dominate

depending on the detailed values of the 𝑡 and 𝑈 .

1.6.2 Gapped Z2 spin liquids

In a fully gapped Z2 spin liquid, the applied electric field cannot induce charge fluc-

tuations that lead to optical conductivity because those charge fluctuations are a

consequence of a gapless U(1) gauge field that is not present in the Z2 case [41]. For

the same reason, the modulation of the exchange coupling of the spins is not lossy in

a Z2 spin liquid. However, other mechanisms for optical conductivity arising from the

spin degree of freedom in Herbertsmithite exist in Z2 spin liquids as well as in U(1)

Dirac spin liquids, which must be considered when interpreting experimental data.

The primary contribution is from the modulation of the Dzyaloshinskii-Moriya (DM)

interaction by the electric field of the incident light.

Herbertsmithite has a modest DM interaction strength of ∼𝐽/10 due to the mod-

erate spin-orbit coupling strength in copper as well as the 120∘ angle of the Cu-O-Cu
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Figure 1.10: A representation of the DM interaction in Herbertsmithite arising from
the angled Cu-O-Cu bond, with Cu shown in blue and O in green. a) The unperturbed
lattice gives rise to a DM vector whose direction is perpendicular to the kagome planes
and is dependent on the specific Cu-O-Cu bond. b) The THz electric field perturbs
the lattice, modulating the magnitude of the DM vector in a bond-dependent way,
shown as + or -. This perturbation is lossy, resulting in a contribution to the optical
conductivity. Figured obtained from reference [41].

bonds [18]. The DM wavevector is defined by the DM contribution to the Hamiltonion

𝐻𝐷𝑀 =
∑︁
<𝑖,𝑗>

�⃗�𝑖𝑗 · (�⃗�𝑖 × �⃗�𝑗), (1.9)

where �⃗�𝑖𝑗 = �⃗� for the isotropic nearest-neighbor-only case, and is always perpen-

dicular to the kagome planes when the spins lie in the plane. Figure 1.10a shows

the structure of �⃗� within a kagome plaquette, the direction of which depends on the

location of the Cu-O-Cu bond in the plaquette. When an incident electric field is ap-

plied, the crystal structure is perturbed (Figure 1.10b), resulting in a site-dependent

modulation of �⃗�. It was recently shown that this modulation at finite frequencies

34



leads to energy loss (conductivity) [41]. The conductance takes the form [41]

𝜎𝐷𝑀 ≈ 𝜎𝑠

(︂
𝐷

𝐽

)︂2(︂
ℎ̄𝜔

𝐾𝑒𝑓𝑓𝑎2

)︂2
𝑒2

ℎ
, (1.10)

where 𝐾𝑒𝑓𝑓 =
(︁

1
𝐾𝑂𝑐𝑜𝑠(𝛼)

− 1
𝐾𝐶𝑢

)︁−1

is the effective spring constant, 𝛼 is the Cu-O-Cu

bond angle, 𝐷 is the magnitude of the DM vector, 𝐽 is the magnitude of the exchange

coupling, and 𝜎𝑠 is the spin conductivity, which is a constant of order 1 in a Dirac

spin liquid. This has a similar form to the ME contribution for a U(1) Dirac spin

liquid, except reduced by a factor of
(︀
𝐷
𝐽

)︀2, giving a conductance per layer of ∼10−7 𝑒2

ℎ
.

1.6.3 Experimental prospects

We have presented multiple aspects of the spin system in Herbertsmithite that con-

tribute to the low-frequency optical conductivity. All of these mechanisms result in

an optical conductivity that scales as 𝜔2, but the magnitude of the predicted conduc-

tivity is ∼100 times larger in the case of a U(1) Dirac spin liquid with an emergent

gapless U(1) gauge field than in a fully gapped Z2 spin liquid. In the rest of this dis-

sertation, we will present Terahertz Time-Domain Spectroscopy (THz-TDS), which

is an optical technique capable of measuring the complex conductivity of materials in

the few 𝑚𝑒𝑉 energy range. We will then present THz-TDS measurements performed

on single-crystals of Herbertsmithite, from which we will observe a contribution to

the optical conductivity that is consistent with a U(1) Dirac spin liquid state.
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Chapter 2

Terahertz Time-Domain Spectroscopy

A large number of spectroscopic techniques have previously been developed to probe

the electrodynamic response of materials spanning a wide range of photon energies,

from 𝜇𝑒𝑉 to 𝑒𝑉 [60, 61]. While many experimental techniques exist for most of this

energy range, there is a dearth of emitters, detectors, and optics that operate at

Terahertz (THz) frequencies (0.1 to 10 𝑇𝐻𝑧), often referred to as the "Terahertz

gap" [62,63]. This energy range is extremely relevant to the physics of a wide variety

of materials, including superconducting gaps in BCS and high 𝑇𝑐 superconductors

[64–67], scattering rates in metals and semiconductors [68–71], the opening of gaps in

the surface states of topological insulators [72–74], and, as discussed in chapter 1, the

finite-frequency conductivity of spin liquid systems [40, 41, 75, 76]. The development

and refinement of spectroscopic techniques in this frequency range is therefore of great

importance in the study of these, and many other, material systems.

In this chapter, we will discuss Terahertz Time-Domain Spectroscopy (THz-TDS),

a phase-coherent spectroscopic technique that operates in the THz range (0.2-2.5

𝑇𝐻𝑧) based on the generation and detection of broadband THz pulses using ultrafast

near-infrared lasers. Unlike similar techniques, such as Fourier Transform Infrared

Spectroscopy (FTIR), which measure the intensity of transmitted or reflected light,

THz-TDS probes the time-dependent electric field of THz pulses, allowing for the

measurement of complex material properties without the use of the Kramers-Kronig

relations, which require accurate interpolations to frequencies outside the measured
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range [77].

2.1 Terahertz generation and detection using non-

linear optics

For all of the measurements presented in this dissertation, we utilized non-linear optics

to generate and detect broad-band THz pulses. The THz pulses were generated by

frequency conversion of ultra-short (∼100𝑓𝑠) near-infrared laser pulses using a second-

order optical effect called optical rectification. The pulses were subsequently detected

via free-space electro-optic sampling using the Pockels effect.

2.1.1 Optical Rectification

In linear optics, the polarization 𝑃 induced in a material by an applied electric field

𝐸 can be written 𝑃 = 𝜖0𝜒𝐸, where 𝜖0 is the permittivity of free space, and 𝜒 is the

electric susceptibility of the material. From Maxwell’s equations, a generalized wave

equation can be derived [78,79],

𝜕2𝐸

𝜕𝑧2
− 1

𝑐2
𝜕2𝐸

𝜕𝑡2
=

1

𝜖0𝑐2
𝜕2𝑃

𝜕𝑡2
, (2.1)

which reduces to
𝜕2𝐸

𝜕𝑧2
− 𝑛2

𝑐2
𝜕2𝐸

𝜕𝑡2
= 0, (2.2)

where 𝑛 =
√

1 + 𝜒 is the index of refraction. This is simply the free-space wave

equation with a velocity modified by the index of refraction.

In non-linear optics, the polarization is allowed to depend generally on the electric

field, and can be written as 𝑃 = 𝜖0(𝜒1𝐸 + 𝜒2𝐸
2 + 𝜒3𝐸

3 + ...), with the higher

order terms becoming relevant when a strong electric field is present [80]. For all

further discussion on non-linear optics, we will restrict ourselves to the case where only

the first- and second-order terms are significant. For the case of a mono-chromatic

plane-wave 𝐸 = 𝐸0 cos (𝜔𝑡) in a non-linear medium, the electric polarization can be
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Figure 2.1: Simplified illustration of THz generation via optical rectification. A
generation pulse with Gaussian envelope 𝐸0 ∝ 𝑒𝑥𝑝(−𝑡2

𝜏2
) induces a slowly-varying

nonlinear polarization 𝑃 ∝ |𝐸0|2. Maxwell’s equations dictate that light will be
radiated with electric field 𝐸𝑇𝐻𝑧 ∝ 𝜕2𝑃

𝜕𝑡2
. Figure obtained from reference [81]

rewritten as 𝑃 = 𝜖0(𝜒1𝐸0 cos (𝜔𝑡) +𝜒2𝐸
2
0 cos2 (𝜔𝑡)), where the second order term can

be rewritten as 𝑃𝑆𝑂 = 1
2
𝜖0𝜒2𝐸

2
0(cos (2𝜔𝑡) + 1). The first term of 𝑃𝑆𝑂 will lead to

second-harmonic generation (which we will ignore), while the second term yields a

static polarization. Plugging this into equation 2.1 yields,

𝜕2𝐸

𝜕𝑧2
− 𝑛2

𝑐2
𝜕2𝐸

𝜕𝑡2
=

1

𝜖0𝑐2
𝜕2𝑃𝑆𝑂

𝜕𝑡2
=

𝜒2

2𝑐2
𝜕2(𝐸2

0)

𝜕𝑡2
, (2.3)

which will result in non-zero radiation if we allow 𝐸0 to vary with time.

Terahertz generation via optical rectification occurs if we instead consider the

nonlinear polarization induced by an ultra-short (∼100𝑓𝑠) laser pulse with a Gaussian

envelope 𝐸0(𝑡) ∝ 𝑒𝑥𝑝(−𝑡2

𝜏2
), where 𝜏 is the laser pulse width. Equation 2.3 now leads

to a radiated electric field 𝐸𝑇𝐻𝑧(𝑡) ∝ 𝜕2(𝐸2
0)

𝜕𝑡2
∝ 4

𝜏4
(𝑡2 − 𝜏2

2
)𝑒𝑥𝑝(−𝑡2

𝜏2
). A schematic of

this process can be found in Figure 2.1. Taking the Fourier transform of this radiated

electric field gives 𝐸𝑇𝐻𝑧(𝜔) ∝ (𝜔2𝜏)𝑒𝑥𝑝(−𝜔2𝜏2

4
). For a typical value of 𝜏 = 100 𝑓𝑠,

we obtain a radiated electric field with bandwidth of about 0-8 𝑇𝐻𝑧, with a peak at

about 3 𝑇𝐻𝑧.

It is important to note that this treatment of optical rectification is extremely

simplified, and does not take into account imperfect phase matching conditions, fre-

quency dependence of the nonlinear susceptibilities, or absorption in the nonlinear
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crystal, among other complications. These complications limit the generated THz

bandwidth to about 0.2-2 𝑇𝐻𝑧. Furthermore, The magnitude and polarization of

the generated THz pulse depends strongly on the orientation of the nonlinear crystal

as well as the relative orientation of the generation beam polarization to the crystal

axes [63, 82]. For all of the work on this dissertation, we used zinc telluride (ZnTe)

due to its large second-order susceptibility and good index-matching between 800 𝑛𝑚

and the THz range [63]. The ZnTe crystal was cut along the (110) direction and with

the [001] axis oriented at a 54.7∘ angle relative to the generation beam polarization to

achieve maximum THz generation with polarization parallel to the generation beam

polarization [63].

2.1.2 Free-space electro-optic sampling

The THz pulses are detected using a technique called free-space electro-optic sampling

[63]. This technique uses the Pockels effect (linear electro-optic effect) to rotate the

polarization of an 800 𝑛𝑚 detection pulse by an angle proportional to the THz electric

field. Similar to optical rectification, the Pockels effect is a second-order nonlinear

effect that arises from the same second-order electric susceptibility of a nonlinear

crystal, in this case ZnTe. To understand the Pockels effect, it is useful to consider

the second-order polarization in tensor form.

𝑃
𝑆𝑂,(𝜔1−𝜔2)
𝑖 = 𝜒

(𝜔1−𝜔2)
𝑖𝑗𝑘 𝐸

(𝜔1)
𝑗 𝐸

(𝜔2)
𝑘 (2.4)

We now treat the THz electric field as a DC electric field, and obtain

𝑃
𝑆𝑂,(𝜔1)
𝑖 = 𝜒

(𝜔1)
𝑖𝑗𝑘 𝐸

(𝜔1)
𝑗 𝐸𝑇𝐻𝑧,𝑘. (2.5)

This polarization has the same form as a the linear polarization 𝑃𝑖 = 𝜒𝑖𝑗𝐸𝑗, so we

now obtain a modified linear electric susceptibility given by

𝜒*
𝑖𝑗(𝜔) = 𝜒𝑖𝑗(𝜔) + 𝜒𝑖𝑗𝑘(𝜔)𝐸𝑇𝐻𝑧,𝑘. (2.6)
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Figure 2.2: A schematic of the electro-optic sampling setup. A ZnTe detection crystal
cut in to (110) direction is aligned such that the [001] crystal axis is along the �̂�
direction. The THz and detection polarizations 𝐸𝑇𝐻𝑧 and 𝐸0, respectively, are aligned
in the 𝑦 direction, and are incident upon the detection crystal at normal incidence.
The THz electric field induces a birefringence along the 𝑛+ and 𝑛− directions via
the Pockels effect, resulting in a phase shift of the detection polarization 𝜑 ∝ 𝐸𝑇𝐻𝑧.
Figured obtained from reference [81].

The result is a THz electric field-induced birefringence that depends on the point-

group symmetry and orientation of the electro-optic crystal, the polarization of the

THz pulses, and the polarization of the detection pulses.

In our experiments, we used a ZnTe crystal cut in the (110) direction, with

�⃗�𝑇𝐻𝑧‖�⃗�𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 and perpendicular to the [001] crystal axis, which is parallel to the

�̂�-axis of the lab frame. Figure 2.2 shows a schematic for this electro-optic sampling

geometry. In this geometry, a birefringence is induced with principal axes �̂� + 𝑦 and

�̂� − 𝑦 in the lab frame [83]. For small THz electric fields, the index of refraction for

detection pulse polarization parallel to �̂�+𝑦 becomes 𝑛− = 𝑛0− (1/2)𝑛3
0𝑟41𝐸𝑇𝐻𝑧, and
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for detection pulse polarization parallel to �̂�− 𝑦 becomes 𝑛+ = 𝑛0 + (1/2)𝑛3
0𝑟41𝐸𝑇𝐻𝑧,

where 𝑛0 is the isotropic index of refraction in the absence of THz, and 𝑟41 is the

electro-optic coefficient for the ZnTe crystal [83]. We consider an initial detection

pulse polarization �⃗�𝑑𝑒𝑡 = 𝐸0𝑦. It is convenient to rotate our frame of reference by

𝜋/4 to be aligned with the principal axes. In this frame, the polarization can be

written as,

�⃗�
′

𝑑𝑒𝑡 =
𝐸0√

2
(�̂� + 𝑦) =

𝐸0√
2

(︂
1

1

)︂
. (2.7)

Using the Jones matrix for propagation through a birefringent medium [84],

𝑃 =

⎛⎝ 𝑒𝑖𝑛−𝜔𝑑/𝑐 0

0 𝑒𝑖𝑛+𝜔𝑑/𝑐

⎞⎠ , (2.8)

where 𝜔 is the detection pulse frequency and d is the electro-optic crystal thickness,

we can obtain the polarization after the crystal by taking �⃗�
′

𝑑𝑒𝑡 → 𝑃�⃗�
′

𝑑𝑒𝑡, giving

�⃗�
′

𝑑𝑒𝑡 = 𝑒𝑖𝑛−𝜔𝑑/𝑐 𝐸0√
2

(︂
1

𝑒𝑖(𝑛+−𝑛−)𝜔𝑑/𝑐

)︂
, (2.9)

where 𝑛+ − 𝑛− = 𝑛3
0𝑟41𝐸𝑇𝐻𝑧. Progagating through the crystal, therefore, introduces

a phase shift 𝜑 = (𝑛+ − 𝑛−)𝜔𝑑/𝑐 ∝ 𝐸𝑇𝐻𝑧 between the components of the detection

polarization along the principle axes of the crystal.

In order to measure this phase shift, and hence the THz electric field, the detection

pulse is then sent through a 1⁄4-wave plate and a Wollaston prism before being detected

by a pair of photodiodes. The 1⁄4-wave plate introduces an additional phase shift of

𝜋/2, giving

�⃗�
′

𝑑𝑒𝑡 = 𝑒𝑖𝑛−𝜔𝑑/𝑐 𝐸0√
2

(︂
1

𝑒𝑖(𝜑+𝜋/2)

)︂
. (2.10)

After rotating back to the lab frame we obtain

�⃗�𝑑𝑒𝑡 = 𝑒𝑖𝑛−𝜔𝑑/𝑐𝐸0

2

(︂
1 + 𝑒𝑖(𝜑+𝜋/2)

1 − 𝑒𝑖(𝜑+𝜋/2)

)︂
. (2.11)

The Wollaston prism splits the x-polarized and y-polarized components of the de-
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Figure 2.3: a) A schematic of the THz generation and detection optics. The detection
beam is coupled collinearly with the THz beam using a pellicle beam splitter. b) An
example THz waveform measured by changing the time delay between the arrival of
the THz and detection pulses at the ZnTe detection crystal.

tection pulse, which are detected by a pair of photodiodes. The photodiode signal

is proportional to the magnitude of the Poynting vector 𝑆 = 1
2

√︁
𝜖0
𝜇0

(�⃗� · �⃗�*) [78, 79].

Plugging in equation 2.11 gives the measured photodiode signal

𝐼 = 𝐼0(1 ± sin𝜑) ≈ 𝐼0(1 ± 𝜑), (2.12)

where 𝐼0 is the photodiode signal when the THz pulses are absent. Taking the differ-

ence between the diode signals and normalizing by 𝐼0 gives

1

2

∆𝐼

𝐼0
= 𝜑 =

𝜔𝑑

𝑐
𝑛3
0𝑟41𝐸𝑇𝐻𝑧 ∝ 𝐸𝑇𝐻𝑧. (2.13)

We have now described an optical technique to measure the electric field of a

THz pulse that is temporally overlapped with a detection pulse in the ZnTe detection

crystal, under the assumption that the THz electric behaves as a static field over the

duration of the detection pulse. Since the detection and THz pulses have pulse widths
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100 𝑓𝑠 and ∼2 𝑝𝑠, respectively, this is a good approximation. In order to measure the

THz electric field waveform as a function of time, a mechanical delay stage is used

to change the path length of the detection beam relative to the generation beam.

When the detection beam path length is shorter than that of the generation beam,

no THz electric field is measured, corresponding to a measurement at a time prior

to the arrival of the THz pulse. Lengthening the detection beam path length by a

distance 𝑑 advances the measurement time by 𝑡 = 𝑑
𝑐
, corresponding to a time change

of ∼3.33 𝑝𝑠/𝑚𝑚. This allows us to sample the THz electric field at any point along

the THz pulse time axis. Figure 2.3 shows a schematic of this process along with an

example of a THz waveform measured as a function of delay stage time delay.

2.2 Extraction of material properties using Thz-TDS

In THz-TDS, one measures the time-dependent THz electric field waveform 𝐸(𝑡) in

order to extract the complex optical properties of a material. Since the recorded

signal is proportional to the electric field, as opposed to the intensity, it contains

magnitude and phase information about the transmission coefficient of the material

through which the THz field is transmitted. The time-dependent signal is Fourier

transformed to obtain �̃�(𝜔) ≡ |𝐸(𝜔)|𝑒𝑥𝑝(𝑖𝜑(𝜔)). In order to extract meaningful

properties of the material through which the THz was transmitted, �̃�(𝜔) must be

compared to the electric field incident upon the sample, �̃�𝑖(𝜔). To do this, one must

measure the THz waveform after it is transmitted through the sample, �̃�𝑠(𝜔), and

the THz waveform after it is transmitted instead through a reference material, �̃�𝑟(𝜔),

which is often a bare reference substrate or even vacuum.

2.2.1 Jones Matrix formalism

The Jones matrix formulation is a useful tool for analyzing the propagation of electro-

magnetic waves through multiple interfaces [84]. In this formalism, the electric field

of the light is represented as a two-component vector �⃗� = (𝐸𝑥, 𝐸𝑦). The electric field

evolves as it propagates through each optical interface until it is detected, resulting
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Figure 2.4: Transmission and reflection of light at an interface between vacuum and
a material with relative permittivity and permeability 𝜖 and 𝜇, respectively. Light
is incident upon the interface from the left with electric and magnetic fields 𝐸𝑖 and
𝐵𝑖, respectively, and wavevector 𝑘𝑖. Some of the light is reflected (𝐸𝑟, 𝐵𝑟, 𝑘𝑟) and
some is transmitted (𝐸𝑡, 𝐵𝑡, 𝑘𝑡). The relationship between these fields is governed by
boundary conditions at the interface determined by Maxwell’s equations.

in a final electric field vector �⃗�𝑓 . A 2 × 2 matrix M is associated with each interface.

The detected electric field can then be written as �⃗�𝑓 = 𝑀𝑁 ·𝑀𝑁−1...𝑀2 ·𝑀1�⃗�𝑖. In

the case where all optics and materials preserve the polarization of the THz, an intial

THz polarization can bet set, say �⃗�𝑖 = 𝐸𝑖�̂�, and all the matrices 𝑀𝑁 can be treated

as numbers. Since all the Jones matrices (which will now be treated as numbers) for

the two measured waveforms �̃�𝑠(𝜔) and �̃�𝑟(𝜔) are identical except for the matrices

describing the transmission through the sample or reference, 𝑀𝑠 and 𝑀𝑟 respectively,

the ratio �̃�𝑠(𝜔)

�̃�𝑟(𝜔)
divides out all but these two matrices, resulting in �̃�𝑠(𝜔)

�̃�𝑟(𝜔)
= 𝑀𝑠

𝑀𝑟
≡ 𝑇 .

2.2.2 Fresnel equations and boundary conditions

The Jones matrices 𝑀𝑠 and 𝑀𝑟 (which we will now refer to as transmission coef-

ficients) can be calculated using the Fresnel equations [78, 79], which consider the

propagation of plane-waves through a material interface under the constraints dic-

tated by Maxwell’s equations. Figure 2.4 shows a schematic for the transmission
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Figure 2.5: Example sample geometries. a) A flat, thick sample with permittivity and
permeability 𝜖 and 𝜇, respectively, and thickness 𝑑 ≫ 𝜆𝑇𝐻𝑧. This geometry is ideal
for transmission geometry experiments when the material conductivity 𝜎 is small. b)
A thin film sample with thickness 𝑑 ≪ 𝜆𝑇𝐻𝑧 and conductivity 𝜎 on a thick substrate
with thickness 𝑙𝑠 ≫ 𝜆𝑇𝐻𝑧 and index of refraction 𝑛𝑠. This geometry is ideal when
𝑍0𝜎𝑑 > 𝑛𝑠

of light through a material interface at normal incidence, with incident, reflected,

and transmitted electric and magnetic fields 𝐸𝑖, 𝐵𝑖, 𝐸𝑟, 𝐵𝑟, 𝐸𝑡, 𝐵𝑡, respectively. The

boundary conditions at this interface are

𝐸𝑖 + 𝐸𝑟 = 𝐸𝑡

𝐵𝑖 + 𝐵𝑟 = 𝐵𝑡 + 𝜇0𝑗𝑠,
(2.14)

where 𝑗𝑠 is the surface current density at the interface [78, 79].

We will consider two common sample geometries. The first is a smooth, flat

sample with uniform thickness 𝑑 ≫ 𝜆𝑇𝐻𝑧. Figure 2.5a shows a schematic of this

geometry. The transmission coefficient in this case is the product of three transmission

coefficients: transmission through the first interface, propagation through the bulk

of the sample, and transmission through the second interface. At both interfaces,

the surface current density 𝑗𝑠 is zero. Assuming a plane-wave form where 𝐵 =
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√︀
𝜖(𝜔)𝜖0𝜇(𝜔)𝜇0𝐸,where 𝜖(𝜔) and 𝜇(𝜔) are the relative permittivity and permeability

of the material, respectively, we obtain a transmission coefficient of

𝑇𝑠 =
4�̃�(𝜔)

(�̃�(𝜔) + 1)2
𝑒𝑥𝑝(𝑖�̃�(𝜔)𝜔𝑑/𝑐), (2.15)

where �̃�(𝜔) =
√︀

𝜖(𝜔)𝜇(𝜔) is the complex index of refraction of the material, 𝜔 is the

frequency of the light, and d is the sample thickness. For samples of this geometry, a

common reference is vacuum, with transmission coefficient

𝑇𝑟 = 𝑒𝑥𝑝(𝑖𝜔𝑑/𝑐). (2.16)

We can now obtain a formula relating the ratio of measured electric field waveforms

to the material optical properties.

�̃�𝑠(𝜔)

�̃�𝑟(𝜔)
= 𝑇 =

4�̃�(𝜔)

(�̃�(𝜔) + 1)2
𝑒𝑥𝑝(𝑖(�̃�(𝜔) − 1)𝜔𝑑/𝑐)). (2.17)

This equation can be numerically inverted using the method of Duvillaret et al. [85]

to obtain both the real and imaginary components of �̃�(𝜔) from the measured THz

waveforms. Additionally, this technique can be used to extract the sample thickness

𝑑 by including the first etalon of the THz signal in the scanned region [86].

The second sample geometry we will consider is a thin film sample (thickness

𝑑 ≪ 𝜆𝑇𝐻𝑧) on a thick substrate (thickness 𝑙𝑠 ≫ 𝜆𝑇𝐻𝑧) with known optical proper-

ties. Figure 2.5b shows a schematic of this geometry. Since the film is much thinner

than the THz wavelengths, it can be treated as a surface with surface current density

𝑗𝑠 = 𝜎𝑑𝐸 induced by the electric field at the interface, where 𝜎 is the conductivity of

the film material [78,79]. The transmission coefficient in this case is again a product of

three transmission coefficients. After making the same plane-wave assumptions as be-

fore, but taking into account 𝑗𝑠 according to formula 2.14, we obtain the transmission

coefficient

𝑇𝑠 =
4𝑛𝑠(𝜔)𝑒𝑥𝑝(𝑖𝑛𝑠(𝜔)𝜔𝑙𝑠/𝑐)

(𝑛𝑠(𝜔) + 1)(𝑛𝑠(𝜔) + 1 + 𝑍0𝜎(𝜔)𝑑)
, (2.18)
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where 𝑛𝑠(𝜔) is the known substrate index of refraction and 𝑍0 =
√︁

𝜇0

𝜖0
is the impedance

of free space. For samples of this geometry, a common reference is a bare substrate,

preferably identical to the sample substrate. Since substrate thicknesses can vary by

a few 𝜇𝑚, we will consider the reference substrate to have thickness 𝑙𝑟 = 𝑙𝑠 + 𝛿𝑙. The

reference transmission coefficient is then given by

𝑇𝑟 =
4𝑛𝑠(𝜔)

(𝑛𝑠(𝜔) + 1)2
𝑒𝑥𝑝(𝑖𝑛𝑠(𝜔)(𝑙𝑠 + 𝛿𝑙)/𝑐), (2.19)

and the ratio �̃�𝑠(𝜔)

�̃�𝑟(𝜔)
is given by

�̃�𝑠(𝜔)

�̃�𝑟(𝜔)
= 𝑇 =

𝑛𝑠(𝜔) + 1

𝑛𝑠(𝜔) + 1 + 𝑍0𝜎(𝜔)𝑑
𝑒𝑥𝑝(−𝑖𝑛𝑠(𝜔)𝛿𝑙/𝑐). (2.20)

Equation 2.20 can be directly inverted to solve for 𝜎(𝜔).

𝜎(𝜔) =
𝑛𝑠 + 1

𝑍0𝑑
(
𝑒𝑥𝑝(−𝑖𝑛𝑠(𝜔)𝛿𝑙/𝑐)

𝑇
− 1) (2.21)

We have therefore shown that is possible to directly measure the complex index

of refraction (for thick samples) and the complex conductivity (for thin films) of

materials using THz-TDS.

2.3 Implementation of THz-TDS in the Gedik lab

2.3.1 Laser source

Our experiments were performed using a Spectra-Physics Spitfire Pro titanium-doped

sapphire (Ti:sapph) amplified laser system, pumped by an Empower 30 Q-switched

Nd:YLF laser operating at 527 𝑛𝑚, and seeded by a Tsunami Ti:sapph oscillator

with 80 𝑀𝐻𝑧 repetition rate and 100 𝑓𝑠 pulse duration with a center wavelength of

800 𝑛𝑚. The amplifier produced pulses at 5 𝑘𝐻𝑧 repetition rate with 100 𝑓𝑠 pulse

duration, 800 𝑛𝑚 center wavelength (1.55 𝑒𝑉 photon energy), and ∼4 𝑊 average

power (800 𝜇𝐽 per pulse). The pulses were first split by an 80:20 beam splitter,
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Figure 2.6: Schematic of the THz optics in the Gedik lab. The 800 𝑛𝑚 generation and
detection beams are shown in red, while the THz beam is shown in grey. The entire
THz path is enclosed in a box that is purged with dry air to minimize absorption of
the THz by water.

with 80% being used as an excitation source for pump-probe experiments, which are

outside of the scope of this dissertation. The remaining 20% was subsequently split

by a pellicle beam splitter, with 92% being used for THz generation (the generation

beam), and the remaining ∼8% being used for THz detection (the probe beam). A

schematic of the optical setup can be seen in Figure 2.6.

2.3.2 Terahertz generation and propagation

The THz pulses were generated via optical rectification of the 1.55 𝑒𝑉 generation

beam in a 1 mm thick ZnTe crystal ((110) crystal orientation). A thin piece of black

HDPE (high density polyethylene) was used to block the subsequently transmitted

generation beam while transmitting most of the THz pulse [63]. We used four 90∘

off-axis parabolic mirrors (OAPMs) with 2 inch diameter in a confocal geometry to

collimate the THz beam, focus it through a sample, collimate the beam again, and
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finally focus it onto a ZnTe used for detection (more information on THz detection is

presented in the next section). A diagram of this optical setup can be seen in Figure

2.6. We chose OAPMs with focal lengths of 6 inches, 4 inches, 4 inches, and 3 inches,

respectively, resulting in the imaging of the initial THz spot size onto the sample with

a magnification ratio of 2/3. The shorter focal length of the last OAPM was chosen

in order to minimize the THz spot size on the detection crystal which increased the

dynamic range of THz detection.

The generation beam size and intensity were also chosen carefully to optimize the

propagation of the THz pulses through the setup, maximize the THz signal size, and

to minimize the THz peak noise. A small generation beam spot size corresponded to

a smaller THz spot size on the sample, but also resulted in greater loss on the first

OAPM due to the greater divergence of the THz pulses. A generation beam spot

size of ∼2𝑚𝑚 full-width at half maximum (FWHM) on the generation crystal was

found to be optimum for this setup. The average power of the generation beam was

controlled by a thin-film polarizer and half-wave plate combination, and was chosen

to be ∼220𝑚𝑊 (pulse energy 𝑢 = 44 𝜇𝐽), which maximized the generated THz power

while avoiding white light generation in the ZnTe generation crystal, which we found

to cause long term damage to the crystal.

We enclosed the entire THz optical path in a custom-built enclosure that was

purged with dry air to reduce the resonant absorption of parts of the THz bandwidth

due to water vapor [87]. Not only did it prevent the complete loss of THz signal at

certain frequencies, it also removed ringing in the time domain, effectively shortening

the THz pulses, which helped improve certain Fourier transform artifacts that would

otherwise appear (more detailed discussion on this can be found in the next section).

We used a commercial regenerative air dryer (DelTech WM-13N), which filtered and

dehumidified the compressed building air supply, providing an effectively unlimited

air supply with negligible humidity. The regenerative nature of this air drier made

this solution much more convenient and cost-effective than purging with nitrogen

gas. In our experiments, the dry air flow rate was minimized, to reduce noise in

the THz detection, while still maintaining a measured relative humidity of 0.1%.
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Additionally, we enclosed the entire optical setup in an enclosure built from black

anodized aluminum extrusions with black HDPE walls, and removable clear acrylic

lids (80-20, Inc.). The enclosure reduced noise in the detected THz signal by reducing

air currents in the optical path, which helped stabilize the laser power, pointing, and

mode at the THz generation and detection crystals.

2.3.3 Terahertz detection system

The THz pulses were measured using electro-optic sampling of 800 𝑛𝑚 detection

pulses in a 1 𝑚𝑚 thick ZnTe crystal. As discussed in previous sections, the 800 𝑛𝑚

detection pulses were coupled collinearly with the THz pulses using a pellicle beam

splitter before undergoing the Pockels effect in a ZnTe detection crystal. The de-

tection pulses were focused onto the detection crystal using a 2:1 telescope, which

ensured that the THz electric field experienced by the entire detection pulse was both

maximized and constant. The focusing of the detection pulses also made the THz

field measurements more stable to pointing fluctuations. After the detection crystal,

the detection pulses passed through a 1⁄4-wave plate before being split by a Wollas-

ton prism and finally were focused onto a pair of balanced photodiodes (Thorlabs

DET36A). The photodiode currents were then sent to a pair of current pre-amplifiers

(Stanford Research Systems SR570), whose outputs were then set to a data acquisi-

tion (DAQ) card (National Instruments PCI-6143) to digitally record the photodiode

signals.

To measure the THz electric field using the DAQ card, we used the method de-

scribed by Werley et al. [88]. Using a mechanical chopper (New Focus 3501), we

chopped the generation beam at half the laser repetition rate, 𝑓/2 = 2500 𝐻𝑧, such

that every other pulse was completely blocked. As a result, the THz pulses were

only present in the detection crystal for every other detection pulse, with the pulse

repetition phase locked to the chopper phase. To perform the measurement of the

THz electric field, four pulses were measured: A1, A2, B1, and B2, corresponding to

two consecutive pulses measured in photodiodes A and B, respectively. For pulses A1

and B1, the THz pulses were present, resulting in a photodiode intensity of 𝐼 + ∆𝐼
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and 𝐼 − ∆𝐼, respectively, where I is the photodiode signal intensity in the absence of

a THz pulse, and ∆𝐼 is the change in the photodiode signal due to the presence of a

THz pulse. The following mathematical operation was then performed to extract a

value proportional to the THz electric field:

1

2

(︂
𝐴1

𝐴2

− 𝐵1

𝐵2

)︂
=

1

2

(︂
𝐼 + ∆𝐼

𝐼
− 𝐼 − ∆𝐼

𝐼

)︂
=

∆𝐼

𝐼
∝ 𝐸𝑇𝐻𝑧. (2.22)

This operation was averaged over 250 consecutive pairs of pulses for each measurement

in the THz electric field in time. The path length of the detection pulses was then

varied using a delay stage (Newport ILS100PP) to change the timing of the overlap

of the detection pulses and the THz pulses, allowing for a measurement of the THz

electric field with time varying over the whole pulse duration.

In order to perform this operation with the DAQ card, the chopper was triggered

using a reference trigger from the laser, delayed in time by a digital delay generator

(DDG, Stanford Research Systems DG535). The chopper phase relative to the laser

trigger was set such that every pulse was either completely blocked or allowed to

completely pass through the chopper blades (60 slot wheel). To achieve this, the

chopper phase was changed until a dark line appeared in the generation beam profile,

resulting from the interference of the clipped edge of the generation beam on the

chopper wheel. After finding phase value where this line appeared in the center

of the beam profile, we changed the phase by 90∘, ensuring a phase value furthest

away from clipping. The DDG delay time was then set such that the 5 𝑘𝐻𝑧 laser

trigger corresponded in time with the peak of the photodiode signal measured by

the DAQ card. Both the chopper trigger and delayed laser trigger were sent to the

DAQ card. The chopper trigger was used as a trigger to begin the collection of data

points, which were each taken at the time corresponding to each subsequent laser

trigger, with values equal to the peak of each diode signal due to the DDG timing.

Starting the data collection after the chopper trigger ensured that the first diode

signal measured always corresponded to a pulse where the THz generation beam was

not blocked, allowing formula 2.22 to be accurately used to measure the THz electric
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Figure 2.7: The types of noise in a sample THz waveform. The peak noise (top) is
dominated by fluctuations of the laser power and pointing stability. The pre-noise
(bottom) depends primarily on the presence of any polarization non-conserving optics
and air currents in the detection beam path.

field for each pair of even and odd pulses after the chopper trigger.

2.3.4 Noise and artifact reduction

It was important to characterize and reduce multiple sources and types of noise and

artifacts in the measurement of the THz waveforms in order to obtain precise and

accurate measurements of the extracted material properties. Two metrics were used

to characterize signal quality: The noise at time delays prior to the THz signal (pre-

noise), and the ratio of the THz peak size and the noise at the THz peak time delay

(signal-to-noise ratio or SNR). An example of these two types of noise can be seen in

Figure 2.7.

The pre-noise corresponded to the noise of the detection system, and was inde-

pendent of the generated THz pulses. We employed a number of techniques to reduce

this noise down to a typical value of 1×10−5 of the photodiode signal peak. First, we

employed a balanced and chopped photodiode detection system, as shown in formula

2.22. Other possible detection schemes include balanced (unchopped) detection and
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chopped (unbalanced) detection.

1

2
(𝐴1 −𝐵1) =

1

2
((𝐼 + ∆𝐼) − (𝐼 − ∆𝐼)) = ∆𝐼 ∝ 𝐼 * 𝐸𝑇𝐻𝑧 (2.23)

𝐴1

𝐴2

− 1 =
𝐼 + ∆𝐼

𝐼
− 1 =

∆𝐼

𝐼
∝ 𝐸𝑇𝐻𝑧 (2.24)

The detection scheme for balanced detection can be seen in formula 2.23. While the

result is proportional to the THz electric field, it is also proportional to the laser

power, which can add significant noise to the measurement. Chopped detection (for-

mula 2.24) solves this problem by providing a measurement of the THz electric field

independent of laser power, except for power fluctuations at frequencies comparable

to the laser repetition rate, which were typically very small. Combining these two

detection schemes (formula 2.22) provided the best noise, as it provided two simulta-

neous measurements of the THz electric field for each pair of detected laser pulses.

A careful alignment of the detection beam through the detection optics was re-

quired to reach the desired pre-noise. Since our detection scheme was independent

of laser power, we found that the pre-noise was independent of the detection beam

alignment prior to the Glan laser polarizer (Figure 2.6), but depended strongly on

alignment after the polarizer. Depolarizing effects of beam clipping, or for example a

misaligned lens, were found to increase the pre-noise by up to an order of magnitude.

To solve this problem, we used a 2:1 telescope to reduce the detection beam size

(while also focusing onto the detection crystal) to avoid clipping (or near clipping)

on the 1/4-wave plate and Wollaston prism. We also mounted the detection crystal on

a height-adjustable post (Thorlabs TRT2) and a dual-axis translation stage, because

a fine adjustment of the crystal position relative to the detection beam was found to

improve the pre-noise by a factor of 5 or more.

The THz peak SNR corresponded largely to noise associated with the generation

and propagation of the THz pulses. While the pre-noise also contributed to the noise

on the THz peak, the THz peak noise was typically 10-100 times larger than the

pre-noise. The primary source of this noise was found to be the stability of the laser.

While the pre-noise did not depend on the power of each laser pulse, the measured

54



THz signal depended strongly on the power of the generation pulses, and therefore

fluctuated strongly with any generation beam power fluctuations. We were able to

reduce this noise in a number of ways to achieve an average SNR of about 500. First,

we increased the generation beam intensity to a value just below the long-term damage

threshold. While the peak THz electric field should normally scale with the power of

the generation beam, this behavior saturated at high generation beam power, such

that the THz peak electric field depended weakly on generation beam power, and

thus the THz peak value fluctuated weakly with generation beam power fluctuations.

Second, we prioritized ideal propagation of the THz pulses through the OAPM setup

over the collinearity of the THz and detection pulses in the detection ZnTe crystal.

This minimized the amount of clipping of the THz on the OAPMs, which we found

decreased the THz peak noise. To achieve this, we first aligned the generation beam

to the OAPM alignment irises, and then maximized the THz signal by adjusting the

fourth OAPM alignment to optimize the THz and detection beam overlap, rather

than optimizing the THz signal by adjusting the alignment of the generation beam

into the OAPM system. Finally, we minimized the effects of long term drifts of the

THz signal size by alternating between measurements of the sample and reference

between scans. This allowed us to normalize each sample scan by the reference scan

taken immediately after, eliminating the effects of laser power drifts that occurred

over time scales longer than ∼1 minute.

Other than statistical noise, it was important to reduce the effects of artifacts

that introduced systematic errors to the measurement of material properties. The

two largest sources of systematic errors were found to be insufficient isolation of the

sample and reference materials and the inclusion of etalons in the scanned region. The

sample and reference materials were typically mounted over identical holes separated

by some distance drilled into a copper sample holder. Because the clipping on the

OAPMs became severe at the lowest frequencies, the THz spot size on the sample

became large (≫1.5 𝑚𝑚) for the low-frequency end of the THz spectrum. If the

sample and reference were placed too closely together, there was inevitably some

leakage of THz through the reference hole, for instance, when the sample was being
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measured. This caused systematic issues at low frequency that depended strongly on

the precise sample alignment, and therefore did not divide out. To solve this issue, we

mounted the sample and reference materials at least 6 𝑚𝑚 apart, which was found

to be a sufficient distance.

Ordinarily, the THz signal we measured was the direct transmission of the THz

through the sample material. However, there also existed higher order internal re-

flections of the THz, called etalons, that appeared delayed in time. The first etalon,

for instance, resulted from the transmission through the front sample interface, the

reflection off the back interface, the reflection off the front interface, and finally the

transmission through the back interface. Other etalons were also present due to the

internal reflections of transmissive optics in the generation beam (appearing after the

THz pulse in time) and the detection beam (appearing before the THz pulse in time).

Including an etalon in the scanned region resulted in an oscillation in frequency space

that would be incorrectly associated with the sample material response. A simple

way to see this is to consider an etalon from the sample, which introduces a signal

delayed in time by ∆𝑡 and reduced in size by a factor 𝛼 on top of the desired signal

𝐸(𝑡).

F (𝐸(𝑡) + 𝛼𝐸(𝑡− ∆𝑡)) =

∫︁ ∞

−∞
𝑒2𝜋𝑖𝜔𝑡(𝐸(𝑡) + 𝛼𝐸(𝑡− ∆𝑡))𝑑𝑡

= 𝐸(𝜔)(1 + 𝛼𝑒−2𝜋𝑖𝜔Δ𝑡)

(2.25)

As can be seen in equation 2.25, the inclusion of an etalon separated by the main

THz signal by time ∆𝑡 introduces an oscillation in the frequency domain with period

1/∆𝑡. To eliminate this problem, we ensured that all transmissive optics, including

the sample, were thick enough (∆𝑡 large enough) to be able to entirely separate the

desired THz waveform from the etalons. This allowed us to eliminate the etalons

from the scanned region while still measuring the entirety of the THz waveform.
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2.4 Conclusions

We have presented an optical technique called Terahertz Time-Domain Spectroscopy

that enables the measurement of optical properties of materials at the 𝑚𝑒𝑉 energy

scale, which is typically inaccessible due to the dearth of emitters, optics, and de-

tectors in the THz energy range. THz-TDS uses second-order nonlinear processes to

generate and detect pulses of THz in a phase-coherent way, allowing for the measure-

ment of complex optical properties without the use of the Kramers-Kronig relations.

THz-TDS is therefore ideal for studying systems with 𝑚𝑒𝑉 energy scales, such as

superconductors, metals, gapped topological insulators, and spin liquid systems, as

well as for studying the quasi-DC properties of systems on which it is difficult or

impossible to make electrical contact. In chapter 4, we will apply THz-TDS to spin

liquid candidate Herbertsmithite and find a signature for the nature of the spin liquid

ground state in the THz conductivity.
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Chapter 3

Terahertz Polarization Modulation

Spectroscopy

In the previous chapter, we discussed THz TDS, with which polarization-preserving

processes in materials can be probed. In general, however, a material’s effect on in-

cident light can change its polarization. For example, a material can exhibit linear

dichroism (birefringence [79,89]), where different linear polarizations experience differ-

ent index of refraction, or circular dichroism (usually the Hall effect [79,89]), in which

different circular polarizations experience different index of refraction. In both these

cases, the input THz polarization is not preserved, allowing the transmitted THz pulse

to be, in general, elliptically polarized. Many systems of current scientific interest dis-

play this behavior, including systems displaying the Hall effect [90–93], quantum Hall

effect [94–96], and topological systems displaying the classical and quantum anoma-

lous Hall effect, such as topological insulators [97–99] and Weyl semimetals [100–102].

In order to study such systems, it is necessary to measure the time-resolved waveform

of both linear components of the transmitted THz polarization.

In this chapter, we will present a technique called Terahertz Polarization Modu-

lation Spectroscopy (TPMS), which will enable the measurement of both linear THz

components simultaneously. Unlike similar techniques, such as magneto-optical Kerr

measurements, which measure polarization angle by measuring the intensity of light

after passing through a polarizer [103, 104], this technique is sensitive to both mag-
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nitude and phase of the THz electric field, allowing for direct measurements of the

frequency-dependent complex polarization. The simultaneous nature of the measure-

ment allows for faster data collection with common-mode noise subtraction.

3.1 Optics at an interface with a Hall effect

In the previous chapter, we restricted ourselves to cases where the THz polarization is

preserved when the THz transmits through a material. In the case of thin films, this

restriction required the assumption that the surface current density �⃗�𝑠 is proportional

to the electric field driving it. In general, however, the conductivity can act as a

tensor, giving

�⃗�𝑠 =

⎛⎝ 𝜎𝑥𝑥 𝜎𝑦𝑥

𝜎𝑥𝑦 𝜎𝑦𝑦

⎞⎠(︂
𝐸𝑥

𝐸𝑦

)︂
, (3.1)

where 𝜎𝑥𝑥 is the longitudinal conductivity and 𝜎𝑥𝑦 is the transverse conductivity,

usually called the Hall conductivity [78, 79]. Since the polarization is not conserved,

the Jones matrix for the material is in general a matrix, giving

�⃗�𝑡 =

⎛⎝ 𝑇𝑥𝑥 𝑇𝑦𝑥

𝑇𝑥𝑦 𝑇𝑦𝑦

⎞⎠ �⃗�𝑖. (3.2)

As in the previous chapter, one must model the transmission matrix T as a function

of the physical material properties, and then perform sufficient measurements of the

THz waveforms through a sample and reference material to obtain a measurement of

these properties.

We will first discuss how to model the transmission coefficient. We will restrict

ourselves to the case of a thin film on a thick substrate with index of refraction 𝑛𝑠 and

thickness 𝑙𝑠, as in Figure 2.5b, and assume that the film and substrate are isotropic,

such that 𝜎𝑥𝑥 = 𝜎𝑦𝑦 and 𝜎𝑥𝑦 = −𝜎𝑦𝑥. We must consider the full vector form of the
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boundary conditions at the first interface:

�⃗�𝑖 + �⃗�𝑟 = �⃗�𝑡

�⃗�𝑖 + �⃗�𝑟 = �⃗�𝑡 + 𝜇0(�̂�× �⃗�𝑠),
(3.3)

where �̂� is the thin film surface normal vector, which we will take to be −𝑧. Assuming

a plane wave form where 𝑘×�⃗� = 𝑛
𝑐
�⃗�, and plugging formula 3.1 into formula 3.3 gives

�⃗�𝑖 + �⃗�𝑟 =�⃗�𝑡

�⃗�𝑖 − �⃗�𝑟 =𝑛𝑠�⃗�𝑡 + 𝑍0𝑑(𝜎𝑥𝑥𝐸𝑡𝑥 + 𝜎𝑦𝑥𝐸𝑡𝑦)�̂�+

𝑍0𝑑(−𝜎𝑦𝑥𝐸𝑡𝑥 + 𝜎𝑥𝑥𝐸𝑡𝑦)𝑦.

(3.4)

Taking the sum of these equations and assuming an incident polarization �⃗�𝑖 = 𝐸𝑖�̂�,

we get

0 = (1 + 𝑛𝑠 + 𝑍0𝑑𝜎𝑥𝑥)𝐸𝑡𝑦 − 𝑍0𝑑𝜎𝑦𝑥𝐸𝑡𝑥

2𝐸𝑖 = (1 + 𝑛𝑠 + 𝑍0𝑑𝜎𝑥𝑥)𝐸𝑡𝑥 + 𝑍0𝑑𝜎𝑦𝑥𝐸𝑡𝑦.
(3.5)

The first formula gives the output polarization angle Θ(𝜔):

𝑡𝑎𝑛(Θ(𝜔)) ≡ 𝐸𝑡𝑦

𝐸𝑡𝑥

=
𝑍0𝑑𝜎𝑦𝑥

1 + 𝑛𝑠 + 𝑍0𝑑𝜎𝑥𝑥

, (3.6)

while the second formula, after plugging in the first formula and accounting for the

propagation through the substrate and transmission through the back interface, gives

the transmission coefficients

𝑇𝑥𝑥,𝑠 =
𝐸𝑡𝑥

𝐸𝑖

=
4𝑛𝑠𝑒𝑥𝑝(𝑖𝑛𝑠𝜔𝑙𝑠/𝑐)

𝑛𝑠 + 1

(1 + 𝑛𝑠 + 𝑍0𝑑𝜎𝑥𝑥)

(1 + 𝑛𝑠 + 𝑍0𝑑𝜎𝑥𝑥)2 + (𝑍0𝑑𝜎𝑦𝑥)2

𝑇𝑦𝑥,𝑠 =𝑇𝑥𝑥,𝑠𝑡𝑎𝑛(Θ(𝜔)).

(3.7)

As in the previous chapter, we must normalize the transmission coefficient by a refer-

ence transmission coefficient to be able to equate the calculated coefficient to the ratio

of measured THz waveforms. In this case, we will use a bare substrate with thickness
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𝑙𝑟 = 𝑙𝑠 + 𝛿𝑙, which preserves the THz polarization. The transmission coefficient for

the reference is given by formula 2.19. We then arrive at the final result:

𝑇𝑥𝑥 =
𝐸𝑠,𝑥(𝜔)

𝐸𝑟(𝜔)
=

𝑇𝑥𝑥,𝑠

𝑇𝑟

=
𝑛𝑠 + 1

𝑒𝑥𝑝(𝑖𝑛𝑠𝜔𝛿𝑙𝑠/𝑐)

(1 + 𝑛𝑠 + 𝑍0𝑑𝜎𝑥𝑥)

(1 + 𝑛𝑠 + 𝑍0𝑑𝜎𝑥𝑥)2 + (𝑍0𝑑𝜎𝑦𝑥)2

𝑇𝑦𝑥 =
𝐸𝑠,𝑦(𝜔)

𝐸𝑟(𝜔)
= 𝑇𝑥𝑥𝑡𝑎𝑛(Θ(𝜔)),

(3.8)

where 𝐸𝑠,𝑥(𝜔), 𝐸𝑠,𝑦(𝜔), and 𝐸𝑟(𝜔) are the Fourier transforms of the measured THz

waveforms through the sample in the �̂� and 𝑦 directions and through the reference,

respectively. We have therefore shown that the measurement of both polarization

components of the THz waveform after transmission through a thin film sample, along

with the measurement of the THz waveform after transmission through a polariza-

tion conserving reference, provides a direct measurement of both the longitudinal

conductivity 𝜎𝑥𝑥 and the transverse (Hall) conductivity 𝜎𝑦𝑥 at THz frequencies.

3.2 Polarization measurements using a fast-rotating

polarizer

There are a number of techniques that could be used to measure both linear polariza-

tion components of the THz pulses after transmission through a sample. The simplest

method is to polarize the THz in, say, the �̂� direction before the sample, and then to

perform two experiments: polarize the THz again in the �̂� direction after the sample

to measure 𝑇𝑥𝑥, then polarize the THz in the 𝑦 direction after the sample to measure

𝑇𝑦𝑥. We will use the Jones matrix formalism to understand this setup. The Jones

matrix for a polarizer aligned at angle 𝜃 relative to the x-axis is [84]

𝑃 (𝜃) =

⎛⎝ 𝑐𝑜𝑠2(𝜃) 𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜃)

𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛2(𝜃)

⎞⎠ . (3.9)
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For a sample transmission coefficient T given by formula 3.2, the final THz polariza-

tion is given by

(︂
𝐸𝑓𝑥(𝜔)

𝐸𝑓𝑦(𝜔)

)︂
= 𝑃 (0) · 𝑇 · 𝑃 (0) ·

(︂
𝐸𝑖𝑥(𝜔)

𝐸𝑖𝑦(𝜔)

)︂
=

(︂
𝑇𝑥𝑥𝐸𝑖𝑥(𝜔)

0

)︂
(3.10)

or (︂
𝐸𝑓𝑥(𝜔)

𝐸𝑓𝑦(𝜔)

)︂
= 𝑃 (𝜋/2) · 𝑇 · 𝑃 (0) ·

(︂
𝐸𝑖𝑥(𝜔)

𝐸𝑖𝑦(𝜔)

)︂
=

(︂
0

𝑇𝑦𝑥𝐸𝑖𝑥(𝜔)

)︂
. (3.11)

While this method is sufficient to obtain the desired quantities, it has several down

sides. First, each measurement must be taken separately, allowing for errors due to

the drift of the THz signal with time. Additionally, common-mode noise subtraction

techniques cannot be utilized. Second, this technique relies on polarizers that have a

perfect extinction ratio. While commercially available wire-grid polarizers can achieve

extinction ratios of around 10−2 in the THz range, systematic errors become severe

when attempting to measure polarization angles around 10 𝑚𝑟𝑎𝑑. Finally, the mea-

sured THz polarization differs by 𝜋/2 between the two measurements. As discussed

in the previous chapter, the THz detection efficiency depends on the relative angle

between the THz polarization, the detection pulse polarization, and the detection

crystal orientation. In order to compare the results of these two measurements, a

constant detection efficiency must be maintained. To achieve this, both the detection

polarization and detection crystal must be rotated by 𝜋/2 when switching between

the two measurements. This invites further opportunity for error if the relative angles

are not repoduced exactly.

To resolve these issues, we have utilized the technique of C. M. Morris 𝑒𝑡 𝑎𝑙. [105],

in which a fast-rotating polarizer is placed directly after the sample (Figure 3.1).

We will refer to this technique as Terahertz Polarization Modulation Spectroscopy

(TPMS). The Jones matrix for a polarizer rotating at angular frequency Ω is

𝑃Ω(𝑡𝑟) =

⎛⎝ 𝑐𝑜𝑠2(Ω𝑡𝑟) 𝑐𝑜𝑠(Ω𝑡𝑟)𝑠𝑖𝑛(Ω𝑡𝑟)

𝑐𝑜𝑠(Ω𝑡𝑟)𝑠𝑖𝑛(Ω𝑡𝑟) 𝑠𝑖𝑛2(Ω𝑡𝑟)

⎞⎠ , (3.12)
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Figure 3.1: Desired optical setup for measuring 𝑇𝑥𝑥 and 𝑇𝑦𝑥 simultaneously. The THz
is polarized in the �̂� direction before transmitting through the sample. It then passes
through a polarizer rotating at angular frequency Ω before being polarized again in
the �̂� direction.

where 𝑡𝑟 is the time that determines the instantaneous phase of the rotating polarizer.

In this technique, we will fix both static polarizers in the �̂� direction, giving the final

THz polarization:(︂
𝐸𝑓𝑥(𝑡𝑟, 𝜔)

𝐸𝑓𝑦(𝑡𝑟, 𝑡)

)︂
= 𝑃 (0) · 𝑃Ω(𝑡𝑟) · 𝑇 · 𝑃 (0) ·

(︂
𝐸𝑖𝑥(𝜔)

𝐸𝑖𝑦(𝜔)

)︂
=

(︂
𝐸𝑖𝑥(𝜔)(𝑐𝑜𝑠2(Ω𝑡𝑟)𝑇𝑥𝑥 + 𝑠𝑖𝑛(Ω𝑡𝑟)𝑐𝑜𝑠(Ω𝑡𝑟)𝑇𝑦𝑥)

0

)︂
=

(︂𝐸𝑖𝑥(𝜔)
2

((𝑐𝑜𝑠(2Ω𝑡𝑟) + 1)𝑇𝑥𝑥 + 𝑠𝑖𝑛(2Ω𝑡𝑟)𝑇𝑦𝑥)

0

)︂
.

(3.13)

We have now obtained a final THz electric field that is modulated at frequency 2Ω

with two completely out-of-phase components that are proportional to 𝑇𝑥𝑥 and 𝑇𝑦𝑥,

respectively. To separate these two signals, the measured THz signal is typically sent

to a lock-in amplifier with a reference signal at 2Ω phase locked with the rotation of

the polarizer. In the next section, we will present a different way to separate the two

signals using a DAQ card. The 𝑥 and 𝑦 channels of the lock-in amplifier measure,
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respectively:

𝑆𝑥(𝑡) ∝ 1

𝜏

∫︁ 𝜏

0

𝐸𝑓𝑥(𝑡𝑟, 𝑡)𝑐𝑜𝑠(2Ω𝑡𝑟)𝑑𝑡𝑟 (3.14)

𝑆𝑦(𝑡) ∝
1

𝜏

∫︁ 𝜏

0

𝐸𝑓𝑥(𝑡𝑟, 𝑡)𝑠𝑖𝑛(2Ω𝑡𝑟)𝑑𝑡𝑟, (3.15)

where 𝜏 is the time constant of the lock-in, which is preferably chosen to be an

integer multiple of the period of the rotating polarizer. The proportionality takes

into account the proportionality of the detector response to the THz electric field,

which is the same for each channel. The Fourier transform of formula 3.14 gives:

𝑆𝑥(𝜔) ∝ 1

𝜏

∫︁ 𝜏

0

𝐸𝑓𝑥(𝑡𝑟, 𝜔)𝑐𝑜𝑠(2Ω𝑡𝑟)𝑑𝑡𝑟. (3.16)

Plugging formula 3.13 into formula 3.16 gives

𝑆𝑥(𝜔) ∝ 1

𝜏

∫︁ 𝜏

0

𝐸𝑖𝑥(𝜔)

2
((𝑐𝑜𝑠2(2Ω𝑡𝑟) + 𝑐𝑜𝑠(2Ω𝑡𝑟))𝑇𝑥𝑥 + 𝑠𝑖𝑛(2Ω𝑡𝑟)𝑐𝑜𝑠(2Ω𝑡𝑟)𝑇𝑦𝑥)𝑑𝑡𝑟.

(3.17)

If 𝜏 is a multiple of 𝜋/Ω, most of these terms integrate out, giving

𝑆𝑥(𝜔) =
𝑅(𝜔)

4
𝐸𝑖𝑥(𝜔)𝑇𝑥𝑥(𝜔), (3.18)

where 𝑅(𝜔) takes into account the detector response to the THz electric field. The

same treatment applied to formula 3.15 gives the 𝑦 channel response:

𝑆𝑦(𝜔) =
𝑅(𝜔)

4
𝐸𝑖𝑥(𝜔)𝑇𝑦𝑥(𝜔). (3.19)

When measuring these signals using a hardware lock-in amplifier, 𝜏 typically can only

be set to certain predefined values, which in general are not multiples of the rotating

polarizer period. In this case, the sinusoidal terms in formula 3.17 do not exactly

integrate out. They instead integrate to a term proportional to 1/(Ω𝜏) that oscillates

in time. This necessitates a large value of 𝜏 to reduce this unwanted signal, making

data collection slow. In the next section of this chapter, we will describe a method

using a DAQ card with software integration in place of a lock-in amplifier, allowing
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us to choose the precise value of 𝜏 to be a multiple of the polarizer period.

We have now shown that with a fast rotating polarizer, it is possible to mea-

sure a signal proportional to 𝑇𝑥𝑥 and 𝑇𝑦𝑥 simultaneously, with a fixed detected THz

polarization direction. The THz polarization angle 𝑡𝑎𝑛(Θ(𝜔)) = 𝑆𝑦(𝜔)/𝑆𝑥(𝜔) can

therefore be obtained with a single measurement, with the common noise of the two

signals being directly cancelled by the division. Additionally, this technique further

improves upon the previously mentioned geometry in that the extinction ratio of the

spinning polarizer has no effect on the measured polarization angle. To see this, we

consider the Jones matrix for a polarizer with extinction ratio 𝜖, defined to be the

ratio of transmitted electric field when the polarizer is parallel to, and perpendicular

to, the linear THz polarization [84].

𝑃𝜖(𝜃) =

⎛⎝ 𝑐𝑜𝑠2(𝜃) + 𝜖𝑠𝑖𝑛2(𝜃) (1 − 𝜖)𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜃)

(1 − 𝜖)𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜃) 𝜖𝑐𝑜𝑠2(𝜃) + 𝑠𝑖𝑛2(𝜃)

⎞⎠ (3.20)

Using this matrix for the spinning polarizer and following the same procedure as

before gives:

𝑆𝑥(𝜔) =
𝑅(𝜔)

4
(1 − 𝜖)𝐸𝑖𝑥(𝜔)𝑇𝑥𝑥(𝜔)

𝑆𝑦(𝜔) =
𝑅(𝜔)

4
(1 − 𝜖)𝐸𝑖𝑥(𝜔)𝑇𝑦𝑥(𝜔).

(3.21)

The measured lock-in signal is simply reduced by a factor of 1 − 𝜖 in both channels,

so the measured polarization angle 𝑡𝑎𝑛(Θ(𝜔)) = 𝑆𝑦(𝜔)/𝑆𝑥(𝜔) is preserved. Unfortu-

nately, imperfections in the fixed polarizers do indeed mix the 𝑇𝑥𝑥 and 𝑇𝑦𝑥 compo-

nents, resulting in a systematic error in the measured polarization angle, but as we

will show later in this chapter, this background signal can be subtracted out with a

reference polarization angle subtraction as long as the background angle is small.
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3.3 Implementation of TPMS in the Gedik lab

In this section, we will present details on the implementation of TPMS in the Gedik

lab. The primary challenges were the design and construction of the fast-rotating

polarizer, and the development of data acquisition and processing tools to enable

the implementation of a DAQ card-based measurement scheme. Our DAQ card im-

plementation provided a number of advantages over the lock-in amplifier-based im-

plementation of reference [105], including the precise control of the integration time

constant 𝜏 , as mentioned in the previous section, and the ability to easily extend the

technique to pump-probe experiments, allowing for the simultaneous measurement

of unpumped polarization angle and the change in the polarization angle due to an

optical excitation of a material. This will allow for the study of pump-induced linear

and circular dichroism.

3.3.1 Fast-rotating polarizer

The creation of a rotating polarizer that met the desired speed and stability re-

quirements posed a significant engineering challenge. We required a hollow spindle

capable of holding a 2 inch diameter wire-grid polarizer, with rotation frequency 2Ω =

50 𝐻𝑧 and frequency stability such that the instantaneous angle of the polarizer at

no point deviated from the desired instantaneous angle by more than 0.5 𝑚𝑟𝑎𝑑, as

will be discussed later in this section. We also required that the mechanical motion

of the spindle did not introduce too much noise into the THz generation and detec-

tion system, and that the centripetal forces on the wire-grid polarizer did not cause

damage. Furthermore, the spindle had to be constructed of sufficiently non-magnetic

materials, due to its proximity to a superconducting magnet used for Faraday effect

measurements. More information on the magnetic cryostat will be presented in the

next subsection. Finally, we required the spindle to have a compact size in order to

fit in our pre-existing THz optical setups.

The physical construction of such a spindle fell well outside the expertise of our

group. Instead, we worked with HPT Precision Spindles and Drives, Inc., to design
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Figure 3.2: A drawing of the final spindle design. A 2 inch inner diameter SM2
threaded tube was used to hold a 2 inch diameter wire-grid polarizer. One end fea-
tured a no-slip gear to couple the spindle to a programmable motor via a toothed
kevlar belt. The other end featured a radial through-hole. A CW laser was passed
through the through-hole and measured with a photodiode to directly obtain a mea-
surement of twice the spindle rotational frequency.

and build the spindle. A drawing of the final spindle design can be seen in Figure

3.2. The spindle was constructed entirely out of aluminum, wiht the exception of

the bearings, which were constructed out of weakly-magnetic steel. The central axis

of the spindle featured a 2 inch diameter SM2 threaded hole within which a 2 inch

diameter wire-grid polarizer could be mounted using two retaining rings. One end

of the spindle featured a ∼3 inch diameter no-slip gear, allowing the spindle to be

attached to a programmable motor via a toothed kevlar belt and an identical motor

gear. Since precise measurements of the spindle rotational frequency were required,

we devised a method for directly measuring twice the rotational frequency 2Ω, as

discussed in the previous section. A radial through-hole was drilled in other end of

the spindle. A CW laser was sent through this through-hole and measured with a

photodiode. While the spindle was spinning, the photodiode measured a signal twice
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Figure 3.3: A photograph of the rotating spindle setup next to the superconducting
magnetic cryostat. The spindle belt was tightened by turning a screw in the tightening
bracket, allowing the motor to slide along the parallel rails. The spindle rotational
frequency was measured by sending a CW laser through the radial through-holes on
the spindle and onto a photodiode.

per rotation of the spindle, allowing us to obtain a phase-sensitive measurement of

2Ω directly.

To drive the spindle, we used a Moog Animatics SM34505D smartmotor. This

motor was capable of providing 261 𝑜𝑧-𝑖𝑛 of continuous torque, and 711 𝑜𝑧-𝑖𝑛 of

peak torque, which proved to be sufficient for operating the spindle at 2Ω = 50 𝐻𝑧.

We machined a custom bracket to hold the motor and rigidly connect it to a pair

of parallel aluminum rails. The kevlar belt was attached to the spindle and motor

gears, and then the belt was tightened by sliding the motor along the parallel rails by

tightening a screw in a bracket next to the motor bracket. Sufficient tightening of the

spindle belt was found to be crucial in stabilizing the spindle frequency. If the belt
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was too loose, vibrations were launched in the belt, resulting in rotational frequency

noise that could not be stabilized with a PID loop. A photograph of the spindle and

motor in the THz setup can be seen in Figure 3.3.

The motor included its own hardware PID controls, with user customizable set-

tings to maximize the stability. We operated the motor in "velocity mode", which

compared the absolute position of the motor to the expected position assuming a con-

stant preset velocity and adjusted the instantaneous velocity appropriately to correct

any measured position errors. We calibrated the velocity-to-frequency ratio by com-

paring the motor read velocity to the frequency measured by the CW laser that passed

through the radial through-hole on the spindle. We then divided the 5 𝑘𝐻𝑧 amplifier

reference signal by a factor of 100 using a frequency divider circuit to obtain a 50

𝐻𝑧 signal that was phase-locked to the laser trigger. We adjusted the velocity set

point until the measured spindle frequency and 50 𝐻𝑧 laser reference were identical.

In this way, we were able to passively phase-lock the spindle rotation to the amplifier

repetition rate, the importance of which will be explained later in this section. This

passive phase-locking technique was required because there was no way to actively

trigger the spindle motor off of the laser trigger. The passive technique proved to be

sufficient, however, because the extreme stability of the spindle frequency allowed for

a constant phase difference between the spindle frequency signal and the 50 𝐻𝑧 laser

reference for many hours.

3.3.2 Experimental setup and alignment

We have primarily developed our TPMS setup around a superconducting magnet

cryostat in order to enable Hall or even quantum Hall measurements. While we can

also perform TPMS measurements in the THz setup described in the previous chapter,

such measurements are limited to probing static linear dichroism and pump-induced

dichroism. In this section, we will focus on the magnet setup. A diagram of the THz

setup built around the magnet can be seen in Figure 3.4. While this setup is similar to

the one described in the previous chapter, the large size of the magnet required longer

focal length OAPMs, specifically 9.5", 7.5", 7.5", and 7", respectively. Due to space
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Figure 3.4: A schematic of the TPMS setup built around a superconducting magnetic
cryostat. The spindle and 2nd fixed polarizer had to be placed after the 3rd OAPM,
which contributed a systematic polarization error.

constraints, we used a 45∘ OAPM for the first mirror. Unlike the ideal case shown

in Figure 3.1, the spindle and second fixed polarizer had to be placed in between the

3rd and 4th OAPM due to space constraints, which introduced systematic errors in

the measured THz polarization due to depolarizing effects of the 3rd OAPM, which

will be further discussed later in this section.

The THz setup was aligned on a breadboard which was mounted on a home-built

platform constructed from 2 inch black anodized aluminum extrusions (80-20, Inc.).

The platform height was designed such that the THz beam height matched the height

of the magnetic cryostat windows. The sturdy construction combined with the ability

to bolt the platform to the table in multiple places helped reduce the mechanical noise

introduced by the rotating spindle. Additionally, the platform made contact with the

breadboard along its entire perimeter, ensuring that the breadboard did not sag over

time. The entire THz beam path was enclosed in a box similar to the one described
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Figure 3.5: Alignment of the fixed wire-grid polarizers. A red CW laser is aligned
parallel to the optics table and is diffracted off the polarizer. The diffracted spots
form a line perpendicular to the polarizer wires. The polarizer is rotated until the
left- and right-most diffracted spot are the same height from the optics table. When
this is the case, the polarizer is aligned to transmit x-polarized THz, as desired.

in the previous chapter, which was purged with dry air to a relative humidity of 0.5%

to reduce water absorption effects.

It was crucial for the proper interpretation of data to align the two fixed wire-grid

polarizers such that their wires were precisely vertically aligned. Any relative angle

between the two fixed polarizers would result in an error in the measured THz po-

larization. Furthermore, an error in their absolute angle increased the depolarization

effects of the 3rd OAPM, because the two linear polarization components would no

longer be parallel or perpendicular to the optical plane. In order to achieve precise

alignment of the polarizers, we diffracted a red CW laser off of each polarizer, as

shown in Figure 3.5. The many diffraction orders coming from the polarizer spread

out in a direction perpendicular to the polarizer wires, regardless of the alignment of

the laser into the polarizer. We then rotated the polarizer until the line of diffracted

spots was parallel with the optical table, which we ensured by checking the height

of each diffracted spot with an iris. With this technique, we were able to align the

polarizers with sub 𝑚𝑟𝑎𝑑 resolution.

A wire-grid polarizer was mounted in the spindle with a pair of SM2 retaining
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rings, and the spindle was placed in the THz path between the 3rd and 4th OAPM

such that it did not clip the THz beam. A CW laser beam from a red laser diode was

aligned through the spindle through-holes and detected via a photodiode. The laser

passed through the holes twice per rotation of the spindle, resulting in a photodiode

signal at frequency 2Ω. The photodiode signal was then set to a lock-in amplifier

to convert the signal to a sinusoid that was phase locked to the input signal. This

sinusoidal signal, along with the 5 𝑘𝐻𝑧 laser trigger, was then sent to the computer

via the DAQ card.

3.3.3 Data acquisition

Earlier in this chapter, we showed that it was possible to measure both THz polariza-

tion components simultaneously using a rotating spindle and lock-in amplifier. The

use of the lock-in amplifier came with a few disadvantages, including the requirement

of a long time constant 𝜏 and the inability to perform chopped experiments as in

formula 2.22. To solve these issues, we used a DAQ card for data collection, similar

to the technique described in the previous chapter, with the ultimate goal of repro-

ducing the lock-in output given by formulas 3.14 and 3.15 using software discrete

math techniques.

In the previous chapter, we recorded the peak of each detection photodiode signal,

starting after the trigger from a synchronized optical chopper operating at half the

laser repetition rate. We were then able to record a signal proportional to the THz

electric field by using formula 2.22. Similarly in this technique, we recorded a series

of 500 detection diode signal peaks after the triggering of a 50 𝐻𝑧 reference signal

obtained by dividing the laser trigger frequency by a factor of 100 using a frequency

divider chip. In order to synchronize the spindle frequency with the 50 𝐻𝑧 laser

trigger, we recorded the signal from the spindle diode mentioned in the previous

subsection along with the THz detection diode signals, and adjusted the spindle

motor set velocity until the relative phase of the spindle diode signal and the 50

𝐻𝑧 laser trigger signal remained constant for many hours. We were able to achieve

this level of spindle frequency stability by operating the motor in "velocity mode"
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Figure 3.6: Simulated TPMS data taken over 1 period of the spindle rotation on one
of the detection photodiodes at a specific detection beam time delay. Each diode peak
signal was measured, with THz being present for every odd pulse. Subsequent even
and odd pulses were divided to divide out long term drift in the photodiode signal.
a) Example data for a THz pulse with instantaneous electric field in the �̂� direction.
b) Example data for a THz pulse with instantaneous electric field at an angle of 𝜋/3
relative to the �̂� direction.

and adjusting the motor PID settings to maximize velocity stability. Since "velocity

mode" compared the absolute position of the motor with the predicted position given

by the velocity set point and then adjusted the instantaneous velocity accordingly,

any noise in the instantaneous phase of the spindle was averaged out, rather than

compounded. In this way, as long as the velocity set point was optimized sufficiently,

the instantaneous spindle phase error did not grow with time. The THz generation

beam was also chopped at 2.5 𝑘𝐻𝑧, synchronized with the 5 𝑘𝐻𝑧 laser trigger.

After the trigger from the 50 𝐻𝑧 laser trigger, we recorded both detection photodi-

ode signals as well as the spindle photodiode signal at times corresponding to the next

500 trigger events from the 5 𝑘𝐻𝑧 laser trigger, delayed by the DDG to correspond

with the peaks of the THz detection photodiodes. These 500 pulses corresponded

to 5 periods of the spindle rotation. Since the spindle and chopper rotations were

locked with the laser repetition rate, the first pulse measured always corresponded to

a pulse where the generation beam was blocked, or unblocked. We then obtained the
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modulated THz signal by using a balanced and chopped scheme given by

1

2

(︂
𝐴1

𝐴2

− 𝐵1

𝐵2

)︂
=

1

2

(︂
𝐼 + ∆𝐼(𝑡𝑟)

𝐼
− 𝐼 − ∆𝐼(𝑡𝑟)

𝐼

)︂
=

∆𝐼(𝑡𝑟)

𝐼
∝ 𝐸𝑇𝐻𝑧(𝑡𝑟), (3.22)

where 𝐴1, 𝐴2, 𝐵1, and 𝐵2 correspond to the first and second pulses in each pair of

even and odd pulses measured by diode A and B, respectively, and 𝑡𝑟 is the time

corresponding to the rotation of the spindle. We therefore obtained a measurement

proportional to the component of the THz electric field along the spindle polarizer

orientation at time 𝑡𝑟 over 5 periods of the rotation of the spindle, with a starting

point corresponding to a specific orientation of the spindle polarizer. Figure 3.6 shows

a schematic of this measurement process. The synchronization of the spindle to the

50 𝐻𝑧 laser trigger was crucial for this step, since, due to the discrete nature of the

measured diode signals, there was no absolute time axis. If the first measured diode

peak did not occur the same amount of time after the 50 𝐻𝑧 laser trigger for each

set of 500 pulses measured, there would be a time uncertainty of up to 200 𝜇𝑠 in the

discrete time axis, corresponding to the period of the 5 𝑘𝐻𝑧 laser repetition rate.

This error corresponded to a spindle phase uncertainty of 10 𝑚𝑟𝑎𝑑, and hence an

uncertainty in the THz polarization angle by 10 𝑚𝑟𝑎𝑑. By synchronizing the spindle

to the laser, however, this uncertainty was eliminated.

Once we had obtained the modulated THz electric field measurements, we had to

separate the two polarization components by performing the lock-in integration given

by formulas 3.14 and 3.15. To perform this integral using discrete math techniques,

we took the Fourier transform of the modulated THz signal.

𝑆𝑥(𝑡, 𝜔𝑟) + 𝑖𝑆𝑦(𝑡, 𝜔𝑟) ∝
1

𝜏

∫︁ 𝜏

0

𝐸𝑇𝐻𝑧(𝑡𝑟, 𝑡)(𝑐𝑜𝑠(𝜔𝑟𝑡𝑟) + 𝑖𝑠𝑖𝑛(𝜔𝑟𝑡𝑟))𝑑𝑡𝑟

∝ F𝜔𝑟(𝐸𝑇𝐻𝑧(𝑡𝑟, 𝑡))

(3.23)

We then set 𝜔𝑟 equal to the spindle modulation frequency 2Ω by finding the value

of formula 3.23 at the frequency corresponding to the peak of the magnitude of the

Fourier transform of the spindle reference signal. Finally, the phase of the measured

signal was set relative to the spindle reference phase by subtracting the spindle refer-
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ence phase from the THz Fourier transform phase, and then adding a phase constant

that accounted for the orientation of the spindle polarizer relative to the through-

holes. Setting the phase this way ensured that any small change in the spindle

starting phase relative to the 50 𝐻𝑧 laser trigger would not result in a change in the

measured THz polarization. The real component of this signal was therefore equiva-

lent to the x-channel of a lock-in measurement, and the imaginary part was equivalent

to the y-channel. To calibrate this phase correction, we temporarily placed a fixed

wire-grid polarizer aligned to transmit x-polarized THz directly before the spindle,

ensuring that we were measuring a linearly polarized THz pulse. We then adjusted

the phase correction until the signal fell entirely in the x-channel. After this calibra-

tion, THz signal measured in the x-channel corresponded to the component of the

THz electric field along the �̂� direction, while signal in the y-channel corresponded to

the component of the THz electric field along the 𝑦 direction.

As in the previous chapter, the THz pulses were mapped out in time by vary-

ing the relative time delay of the THz and detection pulses in the ZnTe crystal.

The pulses measured in the two simulated lock-in channels were then Fourier trans-

formed to obtain 𝑆𝑥(𝜔) and 𝑆𝑦(𝜔), giving the frequency-dependent polarization angle

𝑡𝑎𝑛(Θ(𝜔)) = 𝑆𝑦(𝜔)

𝑆𝑥(𝜔)
. In general, real values of Θ corresponded to rotations of the prin-

ciple axis of the elliptical polarization relative to the x-axis, while imaginary values

corresponded to a relative phase shift between the two linear components. For exam-

ple, if Θ = 𝜋/2 + 0 * 𝑖, the polarization is linear along the y-axis. If 𝑡𝑎𝑛(Θ) = 𝑖, the

polarization is right-handed circular.

3.3.4 Noise and systematic errors

There were several sources of noise and systematic error that needed to be addressed

in order to properly understand the TPMS data. Typical measurements involved the

measurement of a small polarization rotation angle, making the dynamic range of the

𝑆𝑥(𝑡) signal the limiting noise factor. For a small angle Θ and a dynamic range of 𝐷

in the 𝑆𝑥 channel, the dynamic range of the 𝑆𝑦 channel is 𝐷𝑠𝑖𝑛(Θ) ≈ 𝐷Θ. Our goal

was to achieve accurate measurements of angles as small as 0.5 𝑚𝑟𝑎𝑑, which reduced
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the 𝑆𝑦 dynamic range by a factor of 2000 relative to 𝑆𝑥. It was critical, therefore,

to maximize the size of the measured THz signal in the 𝑆𝑥 channel and minimize

the pre-noise. To achieve this, we used the maximum generation beam intensity that

would not lead to damage of the ZnTe generation crystal. Additionally, we used a

shorter focal length for the 4th OAPM (𝑓 = 7"), which focused the THz pulse to

a tighter spot, resulting in a larger THz electric field at the center of its Gaussian

profile. We minimized the pre-noise using the techniques outlined in the previous

chapter.

Systematic errors were also significant, especially when measuring small polariza-

tion angles. Due to space limitations, we were forced to place the spindle and last

fixed polarizer between the 3rd and 4th OAPM, rather than directly after the sample.

This introduced a background polarization angle induced by depolarizing effects of

the 3rd OAPM. Additionally, when performing experiments on samples in a magnetic

field, additional polarization rotation was observed due to the induced Hall effect in

the magnetic cryostat windows. Techniques for subtracting out these systematic er-

rors had to be developed in order to be able to attribute any polarization rotation

to the sample itself. Since rotations of the THz polarization involve a rotation in the

2 dimensional plane perpendicular to the wavevector �⃗�, all Jones matrices leading to

polarization rotation commute, as long as the polarization rotation is independent

of initial THz polarization direction. This is a reasonable assumption in most cases,

since the dominant background angle was typically due to Faraday rotation in the

tranmissive optics, which inherently lead to a rotationally symmetric Jones matrix.

In this case, the background polarization angle could simply be subtracted out by

subtracting the measured polarization angle after transmitting through a reference

material from the angle measured after transmitting through the sample. The de-

polarizing effects of the 3rd OAPM, however, were in general anisotropic, but this

effect was small for small polarization rotations, since the THz polarization stayed

nearly x-polarized throughout the whole optical setup. While a reference subtraction

is sufficient to subtract out the background angle, it was also beneficial to perform

symmetrization techniques when performing magnetic field-dependent measurements.
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The polarization angle Θ(𝐵) was measured at positive and negative field values of the

same magnitute. The polarization rotation that depended linearly on B could then be

separated from the field-independent response by symmetrizing and antisymmetriz-

ing the data. The field-dependent contribution was given by 1
2
(Θ(𝐵)−Θ(−𝐵)) while

the field-independent contribution was given by 1
2
(Θ(𝐵) + Θ(−𝐵)). For best results,

we performed these data symmetrization operations after subtraction of a reference

angle.

3.4 Pump-probe polarization rotation measurements

The DAQ card implementation of TPMS provided additional benefits beyond noise

subtraction. In pump-probe experiments, it also enabled the possibility of simultane-

ously measuring the polarization rotation due to the static properties of a material,

and the change in the rotation after photoexcitation. This ability could prove quite

useful for studying Weyl semimetals, in which a photo-induced anomalous Hall ef-

fect is predicted [106], as well as in studying floquet effects in topological insulators

and graphene, in which an anomalous Hall effect is predicted to appear upon the

opening of a gap at the Dirac point [72, 107–110]. While pump-probe polarization

measurements are possible with the use of two lock-in amplifiers, such measurements

typically only provide the change in the rotated polarization, requiring the measure-

ment of static properties to be performed separately, which introduces the possibility

of errors due to signal drift.

In order to perform pump-probe experiments using our DAQ card technique, the

THz generation beam and pump beam must both be chopped synchronously with the

laser repetition rate. The THz generation beam is chopped at 2500 𝐻𝑧 using the 5

𝑘𝐻𝑧 laser reference as a trigger, as before, and the pump beam is chopped at 1250

𝐻𝑧 using the generation beam chopper reference output as a trigger. The generation

beam chopper is phased such that every laser pulse is either completely blocked

or unblocked. The pump beam chopper is then phased such that two consecutive

pulses are either both blocked or unblocked. To achieve this, we measured the pump

78



beam using a photodiode after the chopper to ensure that no pulses were clipped

by the chopper wheel. The THz detection diode peaks for the duration of 5 spindle

rotations are then recorded as previously discussed in this chapter. This chopping

scheme results in sets of 4 pulses where the THz is unblocked with the pump blocked,

the THz is blocked with the pump blocked, the THz is unblocked with the pump

unblocked, and the THz is blocked with the pump unblocked, respectively. These

4 pulses will be referred to as A1, A2, A3, and A4, for photodiode A, and B1, B2,

B3, and B4, for photodiode B. Since the pump beam has no effect on the measured

photodiode signals when the THz is blocked, A2 and A4 can be treated as identical

reference measurements, with the same holding for diode B.

After measuring all THz detection photodiode peaks for the duration of 5 spindle

rotations, the first and second pulses can be separated from the third and fourth pulses

using software. These two data sets can then be used as independent measurements

of static properties of the sample and the photoexcited properties of the sample,

respectively.

1

2

(︂
𝐴1

𝐴2

− 𝐵1

𝐵2

)︂
=

1

2

(︂
𝐼 + ∆𝐼𝑇 (𝑡𝑟)

𝐼
− 𝐼 − ∆𝐼𝑇 (𝑡𝑟)

𝐼

)︂
=

∆𝐼𝑇 (𝑡𝑟)

𝐼
∝ 𝐸𝑇𝐻𝑧(𝑡𝑟) (3.24)
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𝐼 + ∆𝐼𝑇 (𝑡𝑟 − 𝜑) + ∆𝐼𝑃 (𝑡𝑟 − 𝜑, 𝑡𝑝)

𝐼

)︂
−

1

2

(︂
𝐼 − ∆𝐼𝑇 (𝑡𝑟 − 𝜑) − ∆𝐼𝑃 (𝑡𝑟 − 𝜑, 𝑡𝑝)

𝐼

)︂
=

∆𝐼𝑇 (𝑡𝑟 − 𝜑) + ∆𝐼𝑃 (𝑡𝑟 − 𝜑, 𝑡𝑝)

𝐼

∝ 𝐸𝑇𝐻𝑧(𝑡𝑟 − 𝜑) + ∆𝐸𝑇𝐻𝑧(𝑡𝑟 − 𝜑, 𝑡𝑝),

(3.25)

where ∆𝐼𝑇 is the change in the photodiode signal due to the THz electric field probing

the static properties of the material, ∆𝐼𝑃 is the change in the photodiode signal due

to the pump-induced changed in the THz electric field, 𝑡𝑟 is the spindle phase time,

𝑡𝑝 is the pump-probe time delay, 𝜑 is the phase error due to the shift of two laser

repetition periods between the two measurements, and ∆𝐸𝑇𝐻𝑧 is the pump-induced

change in the THz electric field. These two modulated THz signals can then be

analyzed exactly as before, providing the polarization angle Θ due to the unpumped

system and the pumped system simultaneously.
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3.5 Test experiment: cyclotron resonance in a GaAs

2D electron gas

In order to test the capabilities of the TPMS system, we wished to study a well-

understood system with known properties. In this section we will present data on

the cyclotron resonance in a GaAs/AlGaAs 2D quantum well system, with a known

mass and mobility. It is beneficial, however, to first understand how a cyclotron

resonance in a metal leads to a Hall effect, and therefore polarization rotation, in the

THz frequency range.

3.5.1 Faraday effect in a 2D metal

The dynamics of a simple two-dimensional metal in the THz frequency range can be

well-understood by considering a system of free electrons that are driven by the THz

electric field in the x-direction (in-plane) in the presence of an externally applied per-

pendicular magnetic field in the z-direction (out-of-plane). The electrons are assumed

to interact only by scattering, which induces an effective drag force proportional to

the electron velocity.

𝑚 ˙⃗𝑣(𝑡) = 𝑞�⃗�(𝑡) + 𝑞�⃗� × �⃗� −𝑚𝛾�⃗�, (3.26)

where 𝑞 is the carrier charge, 𝑚 is the carrier mass, and 𝛾 is the electron scattering

rate. The current density can be written �⃗� = 𝑛𝑞�⃗�, where n is the carrier density.

Plugging this into formula 3.26 and assuming that �⃗� is oscillatory with frequency

equal to that of the THz electric field gives

(𝛾 − 𝑖𝜔)𝑗𝑥(𝜔) =
𝑛𝑞2

𝑚
𝐸(𝜔) + 𝜔𝑐𝑗𝑦(𝜔)

(𝛾 − 𝑖𝜔)𝑗𝑦(𝜔) = −𝜔𝑐𝑗𝑥(𝜔),

(3.27)

where 𝜔𝑐 ≡ 𝑞𝐵
𝑚

is the cyclotron frequency. Using the definition for conductivity

𝑗𝑥 ≡ 𝜎𝑥𝑥𝐸𝑥 and 𝑗𝑦 ≡ 𝜎𝑦𝑥𝐸𝑥, we obtain the formula for longitudinal and transverse
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Figure 3.7: Longitudinal and transverse conductivity for a 2D metal. In this example,
the carrier charge is negative and the scattering rate 𝛾 = 0.1𝜔𝑐.

conductivity of the 2D metal (Figure 3.7):

𝜎𝑥𝑥 =
𝑛𝑞2

𝑚

𝛾 − 𝑖𝜔

(𝛾 − 𝑖𝜔)2 + 𝜔2
𝑐 )

𝜎𝑦𝑥 =
𝑛𝑞2

𝑚

−𝜔𝑐

(𝛾 − 𝑖𝜔)2 + 𝜔2
𝑐 )
.

(3.28)

In a typical THz-TDS experiment, only the longitudinal conductivity 𝜎𝑥𝑥(𝜔) is

measured, typically in the absence of magnetic field. In this case, two properties can

be extracted, the spectral weight 𝜌 = 𝑛𝑞2

𝑚
and the scattering rate 𝛾. When a magnetic

field is applied, and the carrier mass is sufficiently low such that 𝜔𝑐 falls within the

THz range for sufficiently low magnetic fields, 𝜎𝑥𝑥(𝜔) also provides a measurement of

𝜔𝑐, and therefore a measurement of the carrier mass 𝑚.

When studying materials such as semimetals or semiconductor quantum well sys-

tems, it is important to be sensitive to the sign of the charge carriers. Measurements

of 𝜎𝑥𝑥 alone are insufficient to extract the sign of 𝑞, since all quantities depend on 𝑞2.

Measurements of 𝜎𝑦𝑥, however, depend on the sign of the cyclotron frequency, and

therefore the sign of 𝑞. Furthermore, measurements of the Faraday rotation angle

given by formula 3.6 also provide a measurement of the sign of 𝑞. In the case of a

film with thickness 𝑑 on a substrate with index of refraction 𝑛𝑠, when 𝑍0𝑑𝜎𝑥𝑥 ≪ 1,
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the polarization rotation angle is given by

𝑡𝑎𝑛(Θ) =
𝑍0𝑑𝜎𝑦𝑥

1 + 𝑛𝑠

, (3.29)

and when 𝑍0𝑑𝜎𝑥𝑥 ≫ 1, the polarization rotation angle is given by

𝑡𝑎𝑛(Θ) =
𝜎𝑦𝑥

𝜎𝑥𝑥

=
−𝜔𝑐

𝛾 − 𝑖𝜔
. (3.30)

In both limits, the polarization rotation angle depends on the sign of the carrier

charge, making Faraday rotation measurements, and hence TPMS measurements, a

good probe for studying the properties of charge carriers in semimetals and semicon-

ductors.

3.5.2 TPMS measurements of the cyclotron resonance in a

GaAs/AlGaAs quantum well

As a test experiment, we performed Faraday rotation measurements on a GaAs/Al0.3Ga0.7As

quantum well system. The samples were obtained from Sandia National Lab [91,92].

This system behaved as a 2D electron gas (2DEG) with electron-like carriers with an

effective mass of 0.069 𝑚𝑒, a density of ∼3 × 1011 𝑐𝑚−2, and a mobility of ∼250,000

𝑐𝑚2/𝑉/𝑠. This system served as an ideal test material because it displayed a strong

and sharp cyclotron resonance in the THz range at reasonable values of magnetic

field, due to its low carrier mass and high mobility.

While TPMS was technically capable of measuring 𝜎𝑥𝑥 and 𝜎𝑦𝑥, we found it prefer-

able to instead independently measure 𝜎𝑥𝑥 and the polarization rotation angle Θ. The

reason for this was three-fold. First, measurements of Θ are intrinsic to the material,

and do not require division of a reference signal. These measurements, therefore,

were immune to instability in the laser power or pointing. Second, background polar-

izaton errors could be subtracted out using a reference scan, while removal of these

errors was difficult when considering 𝐸𝑥(𝜔) and 𝐸𝑦(𝜔) directly. Finally, 𝜎𝑥𝑥 could be

measured using standard THz-TDS techniques, which are unaffected by background
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Figure 3.8: a) Logitudinal and b) transverse conductivity in a GaAs 2DEG measured
by THz-TDS and TPMS. Dots correspond to the real part of the conductivity, while
circles correspond to the imaginary part. The red lines denote fits to the theoretical
form for the cyclotron resonance in a 2D metal (formula 3.28).

polarization errors to second order, and provide a measurement of 𝜎𝑥𝑥 with less noise.

After measuring 𝜎𝑥𝑥 and Θ independently, we then extracted 𝜎𝑦𝑥 using formula 3.6.

Due to the extremely low scattering rate of the 2DEG, its conductivity in the

THz range could not be measured in the absence of magnetic field, since nearly all

of the spectral weight fell below 0.2 𝑇𝐻𝑧. It was therefore ideal to use the 2DEG

sample in the absence of a magnetic field as a reference, but this proved infeasible

due to the large amount of time it took to change the magnetic field. Any change in

the generated THz pulses during this wait time would have contributed systematic

error to the measurement. To solve this problem, we normalized the sample scans by

a vacuum reference scan before changing the field, then used these two normalized

scans as sample and reference scans, respectively. Mathematically, this did not affect

the extraction of 𝜎𝑥𝑥, but it did serve to cancel the aforementioned systematic error.

We performed THz-TDS measurements at 2 𝑇 and -2 𝑇 , normalized by a vacuum

reference, then normalized by the same measurements at 0 T, to extract 𝜎𝑥𝑥(𝜔,𝐵 =

2𝑇 ) (Figure 3.8a).

To measure Θ, we performed TPMS measurements at 2 𝑇 and -2 𝑇 , using vac-

uum as a reference. To subtract out any systematic polarization angle errors, we

83



Figure 3.9: a) Subtraction of 𝐸(𝑡, 2𝑇 ) and 𝐸(𝑡, 0𝑇 ) after an appropriate scaling, mea-
sured by THz-TDS. The oscillation was fit to a decaying sinusoid 𝑆 = 𝑒−𝛾𝑡𝑠𝑖𝑛(𝜔𝑐𝑡+𝛿)
(red curve), with an extracted scattering rate 𝛾 of 134 𝐺𝐻𝑧 and a cyclotron frequency
𝜔𝑐 of 0.787 𝑇𝐻𝑧. b) Three dimensional plot of the electric field subtraction measured
by TPMS. The circularly polarized component induced by the cyclotron resonance
can be clearly seen.

subtracted the reference scan polarization angle from the sample scan angle, and

then performed the antisymmetrization operation Θ𝑎𝑛𝑡𝑖 = 1
2
(Θ(2𝑇 ) − Θ(−2𝑇 )). The

antisymmetrization operation ensured that the measured polarization angle was in-

duced by the magnetic field. The transverse conductivity 𝜎𝑦𝑥 was then calculated by

plugging the measured Θ into formula 3.6, and can be seen in Figure 3.8b. The data

were fit simultaneously using formula 3.28 to extract the charge carrier properties.

The fits can also be seen in Figure 3.8. From the fits, we found a carrier density

of 3.5 × 1011 𝑐𝑚−2, a carrier charge of −𝑒, a carrier mass of 0.071 𝑚𝑒 given by the

cyclotron frequency of 0.788 𝑇𝐻𝑧, a scattering rate of 97 − 137 𝐺𝐻𝑧, and hence a

mobility of 255,000 𝑐𝑚2/𝑉 𝑠. The carrier mass agreed well with the accepted value

of 0.069 𝑚𝑒 [92], with the discrepancy possibly being explained by a 3% error in the

applied magnetic field.

While the frequency-domain results provided very reasonable results, issues in the

time-domain led to unavoidable Fourier transform artifacts that could have skewed

some of the fit parameters. The sharpness of the cyclotron resonance resulted in a
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very long-lived oscillation in the time-domain, with a life-time of about 7 𝑝𝑠. This

oscillation made it impossible to fully temporally separate the main THz pulse from

the sample and ZnTe etalons, as discussed in the previous chapter. We found that

it was instead useful to analyze the data in the time-domain. Since the cyclotron

resonance led to a long-lived oscillation in time, while otherwise only altering the

main THz peaks by a scale factor to good approximation, we directly subtracted 𝐸(𝑡)

at 0 𝑇 from 𝐸(𝑇 ) at 2 𝑇 after rescaling the electric field traces to have equal peak

sizes. This subtraction effectively isolated the oscillating component. The result of

this subtraction using the THz-TDS data can be seen in Figure 3.9a, along with a fit

to a decaying exponential 𝑆 = 𝑒−𝛾𝑡𝑠𝑖𝑛(𝜔𝑐𝑡+𝛿). From this fit we extracted a scattering

rate of 137 𝐺𝐻𝑧 and a cyclotron frequency of 0.787 𝑇𝐻𝑧. We performed the same

subtraction using 𝐸𝑥(𝑡) and 𝐸𝑦(𝑡) measured using TPMS to obtain the circularly

polarized component of the THz electric field that was induced by the cyclotron

resonance in the 2DEG. This circular component can be clearly seen in Figure 3.9b.

3.6 Conclusions

We have presented a technique called Terahertz Polarization Modulation Spectroscpoy

(TPMS), which enabled measurements of the complex THz polarization after trans-

mission through a sample. A fast-rotating polarizer was used to modulate the trans-

mitted THz polarization, and the modulated THz electric field was recording using

free-space electro-optic sampling with the DAQ card implementation described in the

previous chapter. The modulated THz electric field was compared to the measured

polarizer rotation, enabling the measurement of both components of the THz polar-

ization simultaneously with common-noise subtraction. To test this technique, we

performed Faraday rotation measurements on a GaAs/AlGaAs 2DEG and found a

clear cyclotron resonance in both the longitudinal and transverse conductivities. The

sign of the charge carriers, as well as their mass, density, and scattering rate was

extracted, matching results from transport measurements. The DAQ card implemen-

tation of this technique further enables pump-probe polarization rotation measure-
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ments in which the polarization angle and the pump-induced change in the angle are

simultaneously measured.
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Chapter 4

Spin-Induced Optical Conductivity in

the Spin Liquid Candidate

Herbertsmithite

A quantum spin liquid (QSL) is a state of matter in which antiferromagnetic spins

interact strongly, but quantum fluctuations inhibit long-range magnetic order even

at zero temperature. The QSL concept was first conceived of by Anderson in 1973

[32] and later suggested as a possible explanation for high temperature supercon-

ductivity in the cuprates [111, 112]. The proposed ground state of a QSL, the

so-called Resonating Valence Bond (RVB) state, hosts exotic excitations through

spin-charge separation, giving rise to chargeless spin 1/2 spinons, in contrast to the

conventional spin-wave excitations (magnons with spin 1) in ordered Mott insula-

tors [39, 58, 113, 114]. While QSLs have been a theoretical construct for decades,

recent experiments provided compelling evidence that the long-sought QSL system

can be realized in the kagome-lattice antiferromagnet ZnCu3(OH)6Cl2 (also called

Herbertsmithite) [18, 34, 47–55] (Figure 4.1), as well as the triangular organic salts

EtMe3Sb[Pd(dmit)2]2 [42, 43] and 𝜅-(BEDT-TTF)2Cu2(CN)3 [44–46]. In particular,

Herbertsmithite exhibits no magnetic order down to T = 50 𝑚𝐾 in thermodynamic

measurements [18], and exhibits a scattering continuum that is consistent with spinon

excitations in the inelastic neutron scattering measurements [34].
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4.1 Open question: the existence of a spin excitation

gap in Herbertsmithite

Despite these experimental works, there are still a number of open questions on the

nature of the ground state in Herbertsmithite, specifically the gauge group of the spin

liquid state and the character of the low-energy spin excitations. A recent compu-

tational study proposed the existence of a Z2 spin liquid with a sizable spin gap in

Herbertsmithite [59]. Thermodynamic and inelastic neutron scattering results, how-

ever, showed no sign of a spin gap down to 0.1 𝑚𝑒𝑉 [18,34], suggesting the existence

of a gapless U(1) spin liquid state in Herbertsmithite. Optical studies have proved

difficult due to the chargeless nature of the spinon excitations and the relatively low

energy scale in the spin system. Recent theoretical studies have, however, proposed

that spin-charge interactions through an emergent gauge field in a U(1) Dirac spin

liquid can give rise to a contribution to the real part of the low-frequency optical

conductivity [40, 41]. In particular, a power-law dependence of the conductivity (𝜎)

on the photon frequency (𝜔), i.e. 𝜎∼𝜔𝛽, with an exponent 𝛽 = 2, is expected at

frequencies far below the charge gap. Direct measurement of such power-law optical

conductivity is therefore a great step toward elucidating the nature of the QSL ground

state and the structure of the low-energy excitations in Herbertsmithite.

The theory of Ng and Lee [40] has previously been tested in the organic compound

𝜅-(BEDT-TTF)2Cu2(CN)3 using a variety of optical techniques [76]. Power-law be-

havior is indeed observed in the real part of the in-plane optical conductivity over a

wide range of frequencies and temperatures, though the value and temperature de-

pendence of the power-law exponent seem to contradict the theoretical predictions.

In addition, the power-law behavior unexpectedly persists at temperatures and fre-

quencies much higher than the exchange coupling J, calling into question whether

spinon physics is responsible for the observed behavior. The question still remains,

however, whether the theory of Ng and Lee will be realized in Herbertsmithite.

In this chapter, we report a direct observation of the spin-induced low-frequency

optical conductivity in Herbertsmithite (all conductivities reported are the real com-
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ponent). This experiment is made possible for the first time by the recent success-

ful growth of large-area single crystals of Herbertsmithite [57]. By using Terahertz

Time-Domain Spectroscopy (THz-TDS), which was discussed previously in this dis-

sertation, we have measured the optical conductivity of Herbertsmithite as a function

of temperature and magnetic field in the spectral range of 0.6 to 2.2 𝑇𝐻𝑧. Remark-

ably, the in-plane conductivity 𝜎𝑎𝑏(𝜔), which is associated with the spin liquid state

in the kagome (ab) planes of Herbertsmithite, was found to depend on frequency as

𝜎𝑎𝑏(𝜔)∼𝜔𝛽 with 𝛽 ≈ 1.4, a result compatible with the theoretical predictions [40,41].

The observed power-law conductivity also exhibited the opposite temperature de-

pendence expected for an insulator, and was absent in the out-of-plane direction, as

expected for a two-dimensional gapless spin liquid state. Our findings are consistent

with the predicted low-frequency absorption arising from an emergent gauge field in

a gapless U(1) Dirac spin liquid.

4.2 Sample structure and alignment

In our experiment, we investigated a large single-crystal sample of Herbertsmithite

with dimensions 3 x 6 x 0.8 𝑚𝑚. The sample was characterized by neutron diffrac-

tion, anomalous x-ray diffraction, and thermodynamic measurements, with results

compatible with those of powder samples [57]. As shown in Figure 4.1, Herbert-

smithite has a layered structure, with planes of spin-1/2 copper atoms in a kagome

pattern separated by nonmagnetic zinc atoms. This material exhibits strong in-plane

(ab) antiferromagnetic interactions with Curie-Weiss temperature Θ𝐶𝑊 = -300 𝐾, a

charge gap of ∼2 𝑒𝑉 and a spinon gap of less than 0.1 𝑚𝑒𝑉 , as well as an exchange

energy J ≈ 17 𝑚𝑒𝑉 (200 𝐾) as described by a Heisenberg model, with negligible

out-of-plane (c) interactions [18]. Despite the strong interactions in this material,

geometric frustration prevents the formation of any magnetic order down to T = 50

𝑚𝐾 [18].

The sample of Herbertsmithite was grown by the group of Prof. Young Lee at

MIT, who developed a technique to grow the first large single-crystals of Herbert-
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Figure 4.1: a) The crystal structure of Herbertsmithite (with oxygen, chlorine, and
hydrogen atoms omitted). The crystal is composed of layers of copper atoms carrying
a spin-1/2 moment arranged in a kagome pattern. These layers are separated by
nonmagnetic zinc atoms. b) The orientation of the sample used in our experiment.
The kagome (ab) planes are aligned vertically and make a 67∘ angle with the surface.
�⃗�𝑜, �⃗�𝑒, and �⃗� denote, respectively, the ordinary and extraordinary optical axes of the
crystal and the wave vector of the incident terahertz beam.

smithite [57]. While the sample we obtained was approximately 3 x 6 x 0.8 𝑚𝑚 in

size, polarized microscope images showed the existance of multiple crystallographic

orientations within the sample. Figure 4.2a shows a polarized microscope image of the

sample. The light-colored regions correspond to regions of different crystallographic

orientation, while the darker regions corresponded to the orientation of interest. The

2 𝑚𝑚 diameter circled region was therefore chosen to minimize the contribution of

the other crystal orientation. The chipped edge at the top of the image (denoted by

a line) shows the orientation of the kagome planes within the sample. This line was

aligned vertically, such that vertically polarized light fell entirely within the kagome

planes. The sample was then mounted on a copper sample-holder using conducting

silver epoxy, with the circled region on top of a 2 𝑚𝑚 through hole (Figure 4.2). A

second identical hole was used for the reference scans.
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Figure 4.2: a) A polarized microscope image of the Herbertsmithite sample. Light-
colored regions correspond to a different crystallographic orientation than the darker
regions. The 2 𝑚𝑚 diameter circled region was chosen to minimize the contribution
of the other cyrstal orientations. b) The sample mounted on the copper sample-holder
used in the experiment. The sample was aligned such that the vertical direction was
parallel to the kagome planes. The sample was then mounted on a copper plate using
conducting silver epoxy, with the circled region in a) on top of a 2 𝑚𝑚 through-hole.
An identical through-hole was drilled next to the sample to be used as a reference.

4.3 Extraction of optical properties of a birefringent

material

In chapter 2, we discussed how to extract the optical properties of an isotropic thick

slab using THz-TDS. In this case, however, the sample is uniaxially anisotropic, with

the optical properties in the direction parallel to the kagome planes being different

than in the direction perpendicular to the kagome planes. It is important, therefore, to

understand how light transmits through such a material in order to make meaningful

measurements of its optical properties.

In a uniaxial crystal, the index of refraction experienced by light depends on the

angle the polarization of the light makes with the ordinary and extraordinary axes of

the crystal [115]. In this case, the kagome planes serve as the ordinary axis, with the

extraordinary axis perpendicular to the planes. Let us consider the kagome planes to
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Figure 4.3: The index ellipsoid for a uniaxial crystal. When the polarization of light
make an angle 𝜃 with the extraordinary axis of a crystal, the index of refraction
experienced is equal to the length of the line intersecting the ellipsoid and the origin
at angle 𝜃.

be parallel to the y-axis, and perpendicular to the x-axis. The index of refraction is

then given by the index ellipsoid [115]

𝑥2

𝑛2
𝑒

+
𝑦2

𝑛2
𝑜

= 1, (4.1)

where 𝑛𝑒 is the index of refraction along the extraordinary axis, and 𝑛𝑜 is the index

of refraction along the ordinary axis. The index of refraction at some angle 𝜃 relative

to the extraordinary axis is given by the length of the line that intersects the origin

at angle 𝜃 and the ellipsoid. A schematic of this index ellipsoid can be seen in Figure

4.3. For an angle 𝜃 that intersects the ellipsoid at point (𝑥, 𝑦) = (𝑛𝑐𝑜𝑠(𝜃), 𝑛𝑠𝑖𝑛(𝜃),

formula 4.1 can be rewritten as

1

𝑛2
=

𝑐𝑜𝑠2(𝜃)

𝑛2
𝑒

+
𝑠𝑖𝑛2(𝜃)

𝑛2
𝑜

. (4.2)
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For Herbertsmithite, 𝑛𝑒 = 𝑛𝑐 and 𝑛𝑜 = 𝑛𝑎𝑏, giving the equation

1

𝑛2
=

𝑐𝑜𝑠2(𝜃)

𝑛2
𝑐

+
𝑠𝑖𝑛2(𝜃)

𝑛2
𝑎𝑏

, (4.3)

where n is the measured index of refraction when the incident polarization makes an

angle 𝜃 with the c-axis of the crystal. The index of refraction can be extracted as

before using the thick slab trasmission coefficient

𝑇 =
4𝑛𝑒𝑖𝑛𝜔𝑑/𝑐

(𝑛 + 1)2
(4.4)

where d is the sample thickness, and the conductivity can be extracted using the

equation

𝜎 = 2𝜖0𝜔𝑅𝑒(𝑛)𝐼𝑚(𝑛). (4.5)

The indices of refraction 𝑛𝑎𝑏 and 𝑛𝑐 can be separately determined by performing

two measurements. First, the THz polarization is aligned vertically such that it lies

within the kagome planes. In this case, 𝜃 = 90∘, giving 𝑛 = 𝑛𝑎𝑏. Second, the THz

polarization is rotated by 90∘ such that it makes a 23∘ angle with the c-axis of the

crystal. In this case, the transmission coefficient depends on the optical properties

in both the in-plane and out-of-plane directions. In order to isolate the contribution

from the out-of-plane direction, the previously measured 𝑛𝑎𝑏 along with the measured

𝑛 can be inserted into formula 4.3 to solve for 𝑛𝑐 and hence 𝜎𝑐. We also note that in

the measurement of the out-of-plane conductivity, the terahertz pulse travels inside

the sample with a group velocity slightly deviated from its wave vector due to the

anisotropy of the crystal. However, we estimate that the deviation angle is rather

small (∼3∘) and the resultant error in the transmission measurement is negligible

(∼0.3%)
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4.4 THz conductivity measurements in single-crystal

Herbertsmithite

We measured the THz in-plane conductivity 𝜎𝑎𝑏(𝜔) that is associated with the spin

liquid state in the Herbertsmithite crystal by THz-TDS (this work was published in

PRL in 2013 [75]). The experiment was performed using a mode-locked Ti:Sapphire

amplified laser system, which generated pulses with 800 𝑛𝑚 central wavelength, 100

𝑓𝑠 pulse duration and 5 𝑘𝐻𝑧 repetition rate. The THz radiation was generated

via optical rectification in a <110>-oriented ZnTe crystal, focused onto the sample

using off-axis parabolic mirrors, and subsequently detected via free space electro-

optic sampling in a second ZnTe crystal. The THz radiation was polarized along

the kagome (ab) planes using wire-grid polarizers. We recorded the THz electric

field transmitted through the Herbertsmithite sample, and as a reference, the THz

field transmitted through vacuum. From the Fourier transformed frequency-domain

fields for the sample and reference, we extracted the frequency-dependent optical

conductivity, taking into account the sample geometry.

Figure 4.4a displays the in-plane optical conductivity spectra 𝜎𝑎𝑏(𝜔) in the fre-

quency range of 0.6 - 2.2 𝑇𝐻𝑧 at temperatures from 4 𝐾 to 150 𝐾. The conductivity

spectra can be described by two components. The higher-frequency component, which

is significant for frequencies > 1.4 𝑇𝐻𝑧, can be attributed to the phonon absorption

with a resonance at ∼3 𝑇𝐻𝑧, as will be discussed later in this chapter. Here we focus

on the lower-frequency component, which dominates the absorption at frequencies <

1.4 𝑇𝐻𝑧. This component can be described by a power law with a small exponent

𝜎𝑎𝑏∼𝜔
𝛽, where 𝛽 ≈ 1.4. (We note that, due to the limited frequency range in our

measurement, an exponent 𝛽 between 1 and 2 is still compatible with the data. This

will be discussed further later in this chapter) Such an absorption behavior is distinct

from that expected in ordered Mott insulators, which typically exhibit 𝜔4 frequency-

dependent conductivity at low frequencies arising from the spin-wave excitations [40].

In the following discussion, we will provide evidence that the 𝜔𝛽 absorption arises

from the spin excitations in Herbertsmithite.
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Figure 4.4: a) The in-plane optical conductivity 𝜎𝑎𝑏 in the spectral range of 0.6 -
2.2 𝑇𝐻𝑧 at temperatures T = 4, 50 and 150 𝐾. The spectra consist of a higher-
frequency component, arising from a phonon resonance at ∼3 𝑇𝐻𝑧, and a lower-
frequency component that exhibits a power-law dependence on frequency as 𝜎𝑎𝑏∼𝜔

𝛽

with 𝛽 ≈ 1.4 (dotted line). The data are plotted in log-log scale to highlight this
power-law behavior. b) The integrated values of the in-plane conductivity 𝜎𝑎𝑏 from
(a) and of the out-of-plane conductivity 𝜎𝑐 from Figure 4.5 from 0.6 to 1.4 𝑇𝐻𝑧 for
temperatures T = 4 - 160 𝐾. 𝜎𝑎𝑏 is found to decrease as the temperature increases
up to T ≈ 60 𝐾, where it remains constant. In contrast, 𝜎𝑐 increases monotonically
with temperature. Dashed lines are guides to the eye.

First, we observed a noticeable enhancement of the 𝜔𝛽 absorption component as

the temperature decreased from 150 𝐾 to 4 𝐾 (Figure 4.4b). The increase of ab-

sorption at lower temperature, we remark, is a rather anomalous phenomenon for

insulating materials, where light absorption far below the band gap typically de-

creases at low temperature due to the freezing of phonons and doped charges. The

observed unusual temperature dependence immediately indicates that the underlying

absorption mechanism must be of exotic origin. Indeed, the temperature dependence

of 𝜎𝑎𝑏(𝜔) is reminiscent of that of metals, suggesting that 𝜎𝑎𝑏(𝜔) is associated with

a gapless or nearly-gapless spin system in Herbertsmithite. Our results are consis-

tent with a similar phenomenon in the Raman scattering of Herbertsmithite, where

a continuum of Raman signal due to spinon excitations is found to increase with

decreasing temperature at T < 50 𝐾 [52]. From the lower bound of our measured
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Figure 4.5: Out-of-plane optical conductivity of Herbertsmithite (𝜎𝑐) (blue line),
measured in the spectral range of 0.6 - 2.2 𝑇𝐻𝑧 at T = 4 𝐾, in comparison with the
in-plane conductivity 𝜎𝑎𝑏 (green line). The inset displays the 𝜎𝑐 spectra at T = 4, 30,
80 and 160 𝐾. The magnitude of 𝜎𝑐 is found to increase with the temperature.

frequency range, we estimate that the spin gap in Herbertsmithite, if it exists, should

not be larger than 0.6 𝑇𝐻𝑧 (∼2 𝑚𝑒𝑉 ). This value is consistent with the upper bound

of the spin gap (∼0.1 𝑚𝑒𝑉 ) estimated by other experimental studies [18,34].

Second, we found that the 𝜔𝛽 absorption component disappears in the direction

perpendicular to the kagome planes. We have measured the out-of-plane conductivity

𝜎𝑐(𝜔) along the c-axis of the Herbertsmithite crystal at different temperatures. The

𝜎𝑐(𝜔) spectra resemble the tail of a phonon resonance at >3 𝑇𝐻𝑧 (Figure 4.5). In

particular, 𝜎𝑐(𝜔) at T = 4 𝐾 is found to drop rapidly to zero at frequencies lower than

1 𝑇𝐻𝑧, in contrast to the 𝜔𝛽 behavior observed in the in-plane conductivity 𝜎𝑎𝑏(𝜔).

In addition, the magnitude of 𝜎𝑐(𝜔) is found to drop as the temperature decreases

(Figures 4.4b and 4.5), a typical behavior of phonon absorption. The absence of the
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Figure 4.6: In-plane conductivity of Herbertsmithite (𝜎𝑎𝑏) measured in the spectral
range of 0.6 - 2.2 𝑇𝐻𝑧 at magnetic fields of 0, 3, 5, and 7 𝑇 and T = 6 𝐾. No
systematic magnetic-field dependence is observed. The small variation between mea-
surements is attributed to experimental nonrepeatability due to the difficulty of the
measurements in the magnetic cryostat.

𝜔𝛽 absorption component in the out-of-plane direction indicates that it is adherent to

the in-plane properties of the sample. Due to the quasi-two-dimensional nature of the

spin system in Herbertsmithite, where the spin excitations are confined to move only

in the kagome planes, our result strongly suggests that the 𝜔𝛽 absorption found only

within the planes is associated with the spin degree of freedom in Herbertsmithite.

Third, the 𝜔𝛽 absorption is unaffected by the presence of a strong magnetic field.

According to previous x-ray scattering studies [53], a 5% excess of copper atoms

were found between the kagome planes in our Herbertsmithite sample. Although

these additional copper atoms leave the geometric frustration intact, they can act as

random paramagnetic spins to induce a Curie tail in magnetic susceptibility [18, 51].

In respect to our experiment, these spin impurities may contribute to the optical
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conductivity in the low frequency range, and hence obscure the interpretation of our

experimental data. An investigation of the magnetic field dependence should be able

to rule out their effect. In the presence of magnetic field, the conductivity due to

the excess copper atoms is expected to disappear at low frequency due to the Pauli

Exclusion Principle as the defect spins are aligned to the magnetic field. In contrast,

the spin liquid state cannot be magnetically aligned except at fields greater than 12 𝑇

or at temperatures below 1 𝐾, where a phase transition from spin liquid to spin solid

may occur [116,117]. In our experiment, we have measured the in-plane conductivity

𝜎𝑎𝑏(𝜔) in the spectral range of 0.6 - 2.2 𝑇𝐻𝑧 under magnetic fields from 0 𝑇 to 7 𝑇 at T

= 6 𝐾 (Figure 4.6). We did not observe any systematic dependence of the absorption

on the magnetic field. In particular, the exponent of the power-law fit to the data is

essentially unchanged with the magnetic field. The slight change of the absorption

magnitude is within our experimental errors, including the possible clipping of the

incident beam on the sample holder and the imperfect alignment of the optics within

the chamber of the superconducting magnet. Indeed, the result is consistent with the

expected behavior of the spinon excitations in a QSL, which generally exhibits a field-

independent energy spectrum except in extreme conditions (such as in B > 12 𝑇 or

T < 0.5 𝐾, where a phase transition may occur.) [116,117]. From this result, we can

safely exclude magnetic disorder as a source of the low-frequency optical conductivity

in our experiment.

Finally, the observed frequency dependence and magnitude of 𝜎𝑎𝑏 agree well with

those predicted for the spin-induced absorption in a QSL. In particular, recent theory

showed that in a gapless U(1) Dirac spin liquid a power-law optical conductivity 𝜎∼𝜔𝛽

with 𝛽 = 2 can arise from the spin-charge interactions through an internal gauge

field, and the calculated absorption magnitude is compatible with our experimental

data [40, 41]. Similar power-law absorption is also suggested for a gapped Z2 spin

liquid [41] due to modulation of the Dzyaloshinkii-Moriya (DM) interaction, but the

predicted absorption magnitude is three orders of magnitude too small to match our

data. Our results therefore favor the existence of a U(1) spin liquid state with an

emergent gauge field in Herbertsmithite.
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Figure 4.7: In-plane THz conductivity 𝜎𝑎𝑏 plotted against power-law fits 𝜔𝛽 for various
values of 𝛽. The fit corresponding to 𝛽 = 4 results in errors too large to be explained
by systematic experimental errors. Fits with 𝛽 = 1− 2 provide reasonable fits within
the estimated systematic error of 3%.

4.4.1 Power-law exponent errors

The measured in-plane optical conductivity exhibits a power-law behavior at low

frequency. Power-law fits to the data reveal an exponent of 1.4 ± 0.06, however, the

limited available frequency range must also be taken into account. Small systematic

errors or artifacts in the data can have a reasonably large effect on the extracted

exponent when the frequency range is small. We expect small systematic errors,

especially at low frequency, due to the small size of the sample and the difficulty

in focusing long-wavelength light to a small diameter. Because of this issue, one can

reasonably expect an error of a few percent in the measured transmitted electric field.

Figure 4.7 shows the in-plane optical conductivity at 4 𝐾, with power-law fits 𝜔𝛽,

where 𝛽 = 1, 1.4, 2, and 4, respectively, with 𝛽 = 1.4 being the best fit. In the

case of 𝛽 = 1 or 2, the maximum error is 0.005 Ω−1𝑐𝑚−1, corresponding to an error
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in the measured transmitted electric field of 3%. For 𝛽 = 4, the maximum error is

0.015 Ω−1𝑐𝑚−1, or an error in the transmitted electric field of 10%. We can conclude

that the power-law exponent is less than 4, and can therefore rule out any spin-wave

contribution to the conductivity in Herbertsmithite. We claim that a 3% error in the

transmitted electric field is reasonable for the constraints of the experimental setup,

and therefore a power-law exponent of 1-2 is in agreement with our data.

4.5 Fourier Transform Infrared Spectroscopy mea-

surements on Herbertsmithite

As shown in Figure 4.4a, we observed in the in-plane conductivity spectra 𝜎𝑎𝑏(𝜔) a

higher-frequency component that was distinct from the expected 𝜎𝑎𝑏∼𝜔
𝛽 behavior,

which is significant at frequencies above 1.4 𝑇𝐻𝑧. We ascribe this component to

phonon absorption, distinct from the spin-induced absorption that dominates at fre-

quencies below 1.4 𝑇𝐻𝑧. In order to elucidate the nature of the higher-frequency ab-

sorption component, we have investigated the optical response of the Herbertsmithite

crystal at frequencies well above 1.4 𝑇𝐻𝑧. In particular, we measured the reflectance

of the sample in the spectral range of 3 - 16 𝑇𝐻𝑧 by means of Fourier transform

infrared (FTIR) spectroscopy. The measurements were performed at room temper-

ature and ambient conditions in the lab of Prof. Willie Padilla at Boston College,

using a THz FTIR microscope, which enabled us to collect reliable reflectivity data

over a wide frequency range (3-16 𝑇𝐻𝑧) with a focal spot of ∼0.5 𝑚𝑚. Such a tight

focal spotted ensured that we probed only the single-crystal portion of interest in the

sample. The polarization of the incident infrared beam was aligned along either the

ordinary or extraordinary axis of the crystal for the measurement of the in-plane and

out-of-plane reflectance, respectively, and then the reflected THz power was measured

using a liquid helium-cooled bolometer.

Figure 4.8a displays the in-plane reflectance of Herbertsmithite at frequencies

above 3 𝑇𝐻𝑧. The spectrum exhibits four peaks, which we attribute to four phonon
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Figure 4.8: a) FTIR reflectance measurements on single-crystal Herbertsmithite at
room temperature, with polarization aligned parallel to the kagome planes (blue).
The data was fit to four Lorentzians in the electric permittivity (red), providing
an extrapolated conductivity in the frequency range of interest (0.5-2.2 𝑇𝐻𝑧). b)
The extrapolated conductivity from the FTIR fits in the frequency range relevant to
THz-TDS (blue), compared with the measured in-plane conductivity 𝜎𝑎𝑏 measured
by THz-TDS (red). The extrapolation agrees quite well with the THz-TDS data up
to a small multiplicative error.

absorption resonances. We can describe the experimental data adequately by con-

sidering reflection arising from four Lorentzian oscillators with a small constant re-

flection background in the electric permittivity 𝜖 of the sample (red line in Figure

4.8a). The reflectance can then be modeled by calculating the resultant index of

refraction 𝑛 =
√
𝜖 and the reflection coefficient 𝑅 =

(︀
1−𝑛
1+𝑛

)︀2 corresponding to these

Lorentzian oscillators. While the light source was CW, it was reasonable to assume

that etalons did not affect the measured reflectance, due to the extremely low trans-

mission coefficient in this frequency range. The lowest-frequency resonance in the fit

was at 3.4 𝑇𝐻𝑧. From the reflectance fit, we have extracted the optical conductivity

given by 𝜎 = 𝜖0𝜔 × 𝐼𝑚(𝜖) and extrapolated it to frequencies below 2 THz in order

to make comparison with the conductivity data obtained by terahertz time-domain

spectroscopy. As shown in Figure 4.8b, the extrapolated conductivity agrees reason-

ably well with the terahertz data for both the absorption magnitude and spectral

shape, except for a small multiplicative error. This error could easily result from a
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slight deviation from Lorentzian behavior, which was assumed to persist to the fre-

quency range measured by THz-TDS. Therefore, our analysis strongly suggests that

the higher-frequency component observed in the terahertz in-plane conductivity is a

tail of a phonon resonance at ∼3 𝑇𝐻𝑧. This phonon, however, cannot explain the

𝜎𝑎𝑏∼𝜔
𝛽 term in the low temperature THz-TDS data due to its anomalous temperature

dependence.

4.6 Conclusions

In conclusion, we have performed THz-TDS measurements on a large single crystal

of Herbertsmithite and observed a power-law component 𝜔𝛽 with 𝛽 ≈ 1 − 2 in the

low-frequency in-plane THz conductivity. Detailed analysis showed that the absorp-

tion arises from spin excitations. Our results agree with theoretical predictions based

on the spin-charge coupling through an emergent gauge field in a gapless Dirac spin

liquid, and put an upper bound of 2 𝑚𝑒𝑉 on the size of the spin gap. This discovery

hints at the existence of a gauge field in a spin liquid, which is of profound signifi-

cance in the field of spin liquid research. More generally, our research demonstrated

THz-TDS to be an effective probe to study quantum spin liquids. Conductivity mea-

surements have the potential to extend to the GHz and MHz frequency range via

electronic methods, which, combined with sub-Kelvin cooling, may allow us to probe

the extremely low-energy excitations in the spin liquid and provide a definite answer

on the nature of the ground state in Herbertsmithite.
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Chapter 5

Afterword

In this dissertation, I have presented Terahertz spectroscopy studies of a novel phase

of magnetism in Herbertsmithite called the Quantum Spin Liquid (QSL) state. The

QSL state breaks the typical rules that condensed matter physicists use to understand

the phases of matter. More specifically, it is a distinct phase of matter that breaks

no symmetries, resulting in exotic behavior such as fractionalized spin excitations

and macroscopic quantum entanglement. The use of symmetry breaking as a tool

to classify and understand phases of matter is nearly ubiquitous, so new tools must

be created to understand and classify the phases of matter that break no symme-

tries. Rather than classifying QSL states by which symmetries are broken, theorists

instead classify the types of QSL state by the gauge transformations that preserve the

properties of the macroscopically entangled ground state wavefunction. Certain types

of gauge transformations can result in the emergence of gauge fields that affect the

behavior of low-energy excitations in the system. Such effects can therefore be used

to distinguish between the different types of QSL states as they are realized in real

systems. In this dissertation, I have presented evidence for the existence of a U(1)

Dirac spin liquid state in Herbertsmithite. Specifically, I have observed a power-law

contribution to the in-plane THz conductivity resulting from the effects of a gapless

U(1) gauge field.

While Herbertsmithite is perhaps the best candidate for QSL physics, many other

candidates exist, most notably the triangular organic salts EtMe3Sb[Pd(dmit)2]2 and
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𝜅-(BEDT-TTF)2Cu2(CN)3. Power-law conductivity in these systems has also been

theoretically predicted [40], with exponent differing from 2. Indeed, power-law be-

havior has been observed in the optical conductivity of 𝜅-(BEDT-TTF)2Cu2(CN)3 at

mid-infrared frequencies [76], however, such frequencies are well above the exchange

energy, and it is unclear how well the theoretical predictions hold in this region. Fur-

ther THz spectroscopy studies on these systems are necessary to reach a conclusion

about the properties of their spin liquid ground states.

Despite the work presented in this dissertation, the ground state in Herbert-

smithite is still under debate. The presence of a significant fraction of copper defects

in single-crystal samples serves to obscure the behavior of low-energy excitations,

which may even fundamentally differ from the behavior of excitations in pure Her-

bertsmithite. It is therefore of significant interest to grow pure single crystals of

Herbertsmithite, though this poses a significant materials science challenge. In the

mean time, experiments that are insensitive to the copper defects serve as the best

tools to study the low-energy behavior of QSL candidates. Recently, a site-specific

NMR study found evidence for a spin gap in the intrinsic spin susceptibility of Her-

bertsmithite, with a zero-field gap value of ∼1 𝑚𝑒𝑉 [118]. This gap value, however,

contradicts the upper bound of 0.1 𝑚𝑒𝑉 placed on the spin gap by neutron powder

diffraction, as well as the existence of power-law conductivity as shown in this the-

sis. Further theoretical and experimental work is therefore required to reconcile these

contradictions.
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Appendix A

Optical Measurements on

Herbertsmithite in the Near-Infrared

Through the Ultraviolet

There has been very little work studying the optical properties of Herbertsmithite

in the visible spectrum. While the relevant energy scales for spin liquid physics lie

in the far-infrared, the Mott gap in Herbertsmithite is expected to be approximately

1 eV. Accurate measurements of this gap are critical in order to obtain accurate

theoretical predictions about the THz conductivity in Herbertsmithite, as seen in

chapter 4. Furthermore, it is important to know which wavelengths are absorbed by

Herbertsmithite to enable future pump-probe measurements.

We have performed ultraviolet-visible spectrophotometry (UV-Vis) measurements

on single-crystal Herbertsmithite at the MIT Center for Materials Science and Engi-

neering user facilities. Broad-band incoherent light is produced by a halogen lamp.

After selecting the wavelength using various optical filters, the light is split using a

50:50 beam splitter, with each half transmitting through either the sample or a ref-

erence. In this way, the transmission coefficient of Herbertsmithite can be measured

at wavelengths between 200 𝑛𝑚 and 1600 𝑛𝑚.

The measurements were performed at room temperature with the incident light

polarization along the kagome planes. Figure A.1 shows the measured transmission
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Figure A.1: The transmission coefficient of Herbertsmithite from the near-infrared
through the ultraviolet versus wavelength (a) and photon energy (b). A clear optical
gap is seen at 1 eV, while a window of transmission appears at around 500 nm,
resulting in Herbertsmithite’s distinct blue color.

coefficient versus wavelength and photon energy. At photon energies below 1 𝑒𝑉 , a

significant fraction of the incident light transmitted through the sample, indicating

the existance of an optical gap of ∼1 𝑒𝑉 . A transmission window between 450 𝑛𝑚

and 550 𝑛𝑚 was also observed, consistent with Herbertsmithite’s distinct blue color.

Due to the thickness of the sample, very low conductivity was required to allow for

the transmission of a measurable amount of light. Because of this, the transmission

coefficient at all other measured wavelengths was 0%.

An optical gap of 1 𝑒𝑉 was observed, however, the optical gap and Mott gap are

not necessarily equal. In Mott insulators whose Hubbard bands are of a single orbital

character, direct optical transitions across the Mott gap are forbidden. The optical

gap edge in such systems is therefore a result of transitions from the lower Hubbard

band into a separate band either between the two Hubbard bands or above the upper

Hubbard band. If the Hubbard bands are of mixed orbital character, then direct

transitions are allowed and the optical gap edge is a result of direct transitions from

the lower Hubbard band to the upper Hubbard band. Since the antiferromagnetism

in Herbertsmithite is the result of super-exchange through the Cu-O-Cu bonds, it is

likely that the Hubbard bands are the result of hybridization between the oxygen 2p
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and copper 3d bands. In this case, the optical and Mott gaps would be the same,

making the Mott gap ∼1 𝑒𝑉 . Further detailed calculations of the band structure of

Herbertsmithite are required to verify this claim.

As a final note, these measurements show that the color of Herbertsmithite is not

a result of the Mott gap, as is sometimes claimed. While it may seem natural to

assume that the blue color of Herbertsmithite is the result of a gap of ∼2 𝑒𝑉 , this is

not the case. A ∼0.5 𝑒𝑉 wide window of transmission around 2.5 𝑒𝑉 is responsible

for the color.
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