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Abstract

M-TEST, an electrostatic pull-in approach for the in-situ mechanical property measure-
ments of microelectromechanical systems (MEMS), is used to extract the Young’s modulus
and residual stress in polysilicon surface micromachined devices. Its high sensitivity to
geometry is also used for process monitoring of device thickness and gap values. Canti-
levers and fixed-fixed beams are designed, simulated, and tested for use with M-TEST.

M-TEST models for estimating pull-in voltages are developed from two-dimensional
finite-difference and energy-method electromechanical calculations and three-dimensional
finite-element mechanical simulations. They include transition of Young’s modulus to
plate modulus in thin and wide beams, stress-stiffening in fixed-fixed beams, compliant
supports, and curling in cantilevers due to stress-gradients.

An optical microscope and standard electronic test equipment are used to observe and
measure the pull-in voltages. Dektak surface-profilometry, capacitance measurements, and
a calibrated translation stage are used to measure structural thickness, gap and length, and
an optical tip deflection measurement is used to estimate cantilever curvature.

Combining knowledge of geometry with the bending and stress process parameters
extracted from M-TEST allows mechanical property extraction. M-TEST is applied to
2 um-thick polysilicon. Residual modeling errors are estimated to be 3%. The intrinsic
precision in determining the average bending parameter from a set of 24 samples is 2%. At
present, calibration uncertainties in measuring geometry limit the absolute accuracy of the
extracted modulus to about 20%.
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CHAPTER 1

introduction

With the commercialization of microelectromechanical systems (MEMS) for mechanical
sensors, such as pressure sensors [1-5], accelerometers [6-8], gyroscopes [9-10], shear-
stress sensors [11-13], and thermomechanical infrared sensors [14], and for mechanical
actuators, such as projection displays [15-16], relays [17-18], and high-quality filters [19],
there is an increasing need for an automatable method to routinely assess the uniformity and
repeatability of a MEMS manufacturing process, and to extract critical performance param-
eters, such as process-sensitive thin film geometries and mechanical properties, for
successful design and modeling of sensors and actuators [20]. One such method, which
relies on wafer-level probing of electrostatic pull-in test structures, is called M-TEST
[21-24]. This approach allows easy measurement, uses simply designed test structures that
can be microfabricated in-situ alongside other sensors or actuators, and is tractable to well-

developed models.

This thesis develops M-TEST for a recently commercialized MEMS foundry based on
polysilicon surface-micromachining [25-27]. In previous work, prototype M-TEST
models were successfully applied to well characterized low-stress single-crystal silicon
microstructures with idealized geometries made by wafer-bonding [22-23, 28]. The
extension of the M-TEST models to polysilicon surface micromachining presents a signif-
icant challenge because of large processing variations in thin film properties, stress-
dependent structural geometries and complex three-dimensional electromechanical
behavior [21].




1.1 Thesis Outline

The goals of this work are discussed by way of the thesis outline. This chapter along with
providing the motivation and the reason for choosing M-TEST, discusses alternate methods
for MEMS mechanical property extraction, and outlines the M-TEST strategy.

Chapter 2 begins with a simple explanation of electrostatic pull-in and a review of the
ideal two-dimensional M-TEST models. Higher-order M-TEST models are developed for
complex test structure geometry. Guidelines for implementing M-TEST are discussed in
Chapter 3, and include practical design rules for test structures, equipment requirements,
and an error sensitivity analysis for measured data. In Chapter 4, experimental results
highlight the use of M-TEST to assess process integrity, to extract polysilicon mechanical
properties, and to monitor inter-run and intra-run process and mechanical property varia-
tions in polysilicon surface micromachining. Chapter 5 compares the M-TEST extracted
polysilicon mechanical properties to expected values and to those determined by other
researchers. It concludes with suggestions for future work and a thesis summary.

1.2 Previous Work on Mechanical Property Extraction

Methods for in-situ characterization of the Young’s modulus or the residual stress from
microelectromechanical systems {(MEMS) have involved the measurement of resonant
frequencies from beams [29-35] and comb-drives |36-39], the observation of stress relax-
ation in buckling or rotating structures [40-42], the capacitance-voltage measurement of a
fixed-fixed beam bridge [43], the displacement measurement of a cantilever tip with the
application of a known mechanical force [44], and the measurement of electrostatic pull-in
test structures [21-24, 29, 31, 40, 45]. Ex-situ techniques, which test specially designed
large area devices, include the measurement of membrane deflection due to an applied
pressure [46], and the measurement of tensile strain in centimeter-long hourglass structures

axially-loaded by a piezoelectric translator [47].

A recent survey by Schweitz showed that there is general disagreement, by up to £30%
around known mechanical property values, using some of these methods [44]. Although,
ex-situ techniques have shown better repeatability than in-situ techniques, the lack of either
precise modeling, accurate representations of geometry, sound error reduction techniques,

or adequate assumptions have made these measurement techniques prone to error.

1.1 Thesis Outline 7



Moreover, because ex-situ techniques do net allow integration with other sensors, they are

of limited use for routine manufacturing quality control.

M-TEST, an in-situ technique based on electrostatic pull-in of beams (cantilevers and
fixed-fixed beams) and diaphragms, allows integraiion and wafer-level probing using
standard electronic test equipment. A fit of the measured pull-in voltages to analytical
models based on two- and three-dimensional coupled electromechanical models and
accurate measurements of geometry, enables simultaneous extraction of Young’s modulus,
residual stress and Poisson’s ratio. M-TEST has demonstrated that the orientational-
dependent Young’s modulus in crystalline silicon can be measured to within 3% of known

literature values [48].

Confidence in M-TEST suggests that it will work with other materials where the
mechanical properties are initially unknown. Previously developed analytical models for
ideal geometries developed by Osterberg in [22-24] are inappropriate for stress-dependent
structures such as surface-micromachined MEMS devices, and hence, the M-TEST
approach requires revised models which work in highly compressive, tensile or thickness-
varying stress conditions, and with structures having compliant built-up supports. These
issues and others will be addressed in this thesis. An M-TEST methodology will be
developed, from these revised models and from the practical aporoach to device
measurement, to extend M-TEST as a generally applicable tool for in-situ mechanical

property extraction.

1.3 The M-TEST Approach

Figure 1.1 outlines the M-TEST approach. By itself, the pull-in voltage from a simple
beam acts as a monitor for quality control. When multiple fixed-fixed beam lengths or
diaphragm radii are tested and modeled, their pull-in voltage sensitivity to modulus and
stress emerge separately, as the bending- and stress- parameters, B and S, respectively. B
and S, which are a product of a mechanical property (stress or modulus) and high powers
of geometry, enable a simple assessment of process uniformity across chip-to-chip, wafer-
to-wafer and run-to-run. Specific examples are shown from the MIT silicon wafer-bonded

MEMS process and a polysilicon surface-micromachined MEMS process.

Combining carefully measured thickness and gap geometry with B and S, the biaxial
residual stress o, and the plate modulus E/{/-v?) can be extracted from diaphragms, the
axial residual stress 0,(/-v) and Young's modulus E, from fixed-fixed beams, and E, from

1.3 The M-TEST Approach 8



cantilevers. The measurement of all three test structures enables, through simple algebra,
independent extraction of E, 0,, and v. In this thesis, only fixed-fixed beams and cantilevers
are tested, and, hence, only 0,(/-v) and E are obtained. Furthermore, since v is typically
0.23 for polysilicon with random grain orientation [47, Appendix A], the biaxial residual

stress can still be approximated from the axial residual stress.

Quality Control monitor

_] mechanical and geometric uniformity

Pull-in
Voltages Plasma-overetch monitoring
T (Gupta, et al. Transducers’ 95)
| .
M-TEST B Mechanical —
H 0-0
Models S Properties \
v

[E] for crystalline silicon

geometry data Osterberg, MIT Ph.D. 1995

E and o,(1-v) for polysilicon
Gupta, MIT Ph.D. 1997

Figure 1.1: Outline of the M-TEST approach. Pull-in results from beams and circular diaphragms enable
M-TEST to be used for quality control, and for extracting the Young’s modulus E, the biaxial residual
stress 0, and the Poisson’s ratio v. In this thesis, polysilicon surface-micromachined beams will be used
to extract Eand g (/-v).
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CHAPTER 2

Theory and Simulations

In this chapter, previously developed analytical M-TEST pull-in models based on two-
dimensional simulation will be revised to reflect three-dimensional mechanical effects
found in thin nonplanar MEMS geometries fabricated by a conformal deposition processes,

like polysilicen surface-micromachining.

This chapter begins with a short description of electrostatic pull-in for a lumped one-
dimensional model. It follows with a review of the ideal two-dimensional M-TEST electro-
mechanical model used to calculate the static pull-in voltage. Analytical models fit to these
calculations for automated mechanical property extraction have been presented in previous
research, and are repeated here for reference. Later chapter sections quantify perturbations
of the ideal two-dimensional models for three-dimensional geometries to include:
(1) transition from Young’s modulus to plate modulus for wide beams, (2) nonlinear
geometric deformation, (3) compliance of built-up supports, and (4) curling of cantilever
beams due to stress-gradients through the film thickness.

Two-dimensional finite-difference equations and energy methods, and three-dimen-
sional mechanical sirnulations are used to investigate the four cases above, and their results

are incorporated into revised analytical M-TEST models.

2.1 The One-dimensional Model

The one-dimensional model is shown in Figure 2.1. It is electrostatically actuated by an
applied DC voltage across rigid parallel plates, where one plate is fixed and the other is

2.1 The One-dimensional Model 10
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+ kx

Figure 2.1: Schematic of one-dimen-
1 5% v £, V2A sional electrostatic pull-in model.
9o —_— 2(g,xP The parallel plates are held apart
. by a spring force, and the electro-

S5/ S Electrical static force pulls them together.

Force P & ’

attached to a spring. The displacement versus voltage characteristic for this geometry is
shown in Figure 2.2. The coupled electromechanical system becomes unstable at the static
pull-in voltage V,,, = (8kg, /27¢,A)"?, a point a which the movable plate is displaced one-
third of the original gap g,. In this equation, k is the spring constant, and £, is the permit-
tivity of air. Note, this simple expression shows that V,, scales with the square root of
stiffness and a 3/2 power of the original gap.

AO - - -
2 sl T
) 0.8 |- .
s | N
& 06/ ]
® ]
N L 4
s 04f x=g/3 B
E [ 1
o
2 020 i
0 [ . 1 N 1 i . 1
0 0.2 04 0.6 0.8 1

Normalized voltage (V/V, )

Figure 2.2: Gap versus voltage for the one-dimensional model, showing the pull-in
instability at a displacement of one-third the original gap.
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2.2 M-TEST Models for Ideal Two-dimensional Geometries

A schematic of the three types of M-TEST structures are shown in Figure 2.3. They are the
cantilever beam (n = 1), the fixed-fixed beam (n = 2) and the clamped circular diaphragm
(n = 3), where n is an index for structure type which is frequently used in the subscripts of
the bending- and stress-parameter B, and §,. These structures are electrostatically actuated
over an initial ideally uniform gap of g  to a position dependent gap g, by an increasing DC
bias voltage between the fixed-ground conductor and the conducting movable structure
supported by ideally fixed ends. A two-dimensional model is used to calculate the
mechanics of the test structures and includes the effects of in-plane biaxial residual stress.
The static pull-in voitage is determined by coupling the mechanics to a nonlinear voltage-
dependent electrostatic pressure term and finding the lowest voltage at which the system is

unstable.

2.2.1 The Two-Dimensional Model

The two-dimensional Bernoulli-Euler beam bending theory is used to model the test
structure mechanics. The theory assumes: (1) small deflections for which the radius of
curvature equals the inverse of the second-derivative of deilection, (2) no shear deformation

from transverse loading, and (3) no in-plane (longitudinal, width-wise, or radial) curvature

dielectric thickness = g,

thickness =t

W ~ width=w

cantilever fixed substrate
(n=1)

fixed-fixed beam
(n=2)

circular diaphragm (cut-away)
(n=13)

Figure 2.3: Idecal M-TEST structures having planar geometry, nearly fixed ends, uniform
gap and dielectric isolation. Electrostatic voltage is applied between the conducting
beam or diaphragm and substrate.

2.2 M-TEST Models for ldeal Two-dimensional Geometries 12



adjustments due to transverse (vertical) extension or compression of the thickness from a
transverse (vertical) load. These assumptions are valid for typical vertically-actuated
MEMS geometries which have large in-plane dimensions compared to their thicknesses
and gaps. To model the ideal M-TEST structures, we additionally assume that: (4) the
supports are ideally fixed, (5) the gap is uniformly g  in the unloaded state, (6) membrane
effects from stress-stiffening are negligible, and (7) anticlastic curvature along a beam’s
width w is geometrically insignificant, but the plate-like changes in stiffness as w increases

can be modeled by adjusting the effective modulus E.

The coupled electromechanical equation is shown in general form for the three test
structure types in equation (2.1). The electrostatic pressure (right-hand side) is derived
from a parallel-plate approximation with an applied voltage V, and has a fringing-field
correction f, equal to 0.65 g/w for beams with a small gap to width ratio [50-51].

. _ e V?
EIVig - TV?g = -2 2(I+f ) .1
2g s

For beams which are narrow relative to their thickness and length, E is the Young’s
modulus £. For beams, which are wide relative to their thickness and length, and for
circular diaphragms, E is the plate modulus E/(/-v?), where v is Poisson’s ratio [52]. T
equals +7/12, where t is the film thickness. T equals or, where the thickness-averaged &
is positive in tension. G equals the biaxial residual stress o, for circular diaphragms, and
the uniaxial residual stress g, (/-v) after the Poisson relaxation for fixed-fixed beams. For
cantilevers, which are stress-free, T equals zero. In general, the product £ T is calculated

by an integral. This is necessary for multilayered structures [53].

Because of lateral symmetry in beams and radial symmetry in circular diaphragms,
equation (2.1) is two-dimensional - in length L or radius R, and in gap g. This is shown in
detail in equation (2.2) for beams, where the x-axis is parallel to the beam length, and in
equation (2.3) for circular diaphragms, where the r-axis is in polar coordinates and radiates

from the center of the diaphragm.

2
. d* _d°’ e,V
N e
dx dx Zg d
2
gild8,2d°e 1 d’ del| gld’e adel &Y 0
dr? rdr’ r?dr* rpldr dr? rdr 2g° |
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By algebra, equation (2.1) can be written as equation (2.4), where, B and § are the
bending- and stress-parameter, as defined in [23, 54], and equal E ’g2 and o1g3, respec-
tively. The non-dimensionalized gap g, equals g/g,. From this form, we observe that V),
is primarily dependent on the variables B, S, and L or R, and that there is a small adjustment

for fringing-fields in beams which is dependent on g Av.

ev?

1 4 ~ 2 ~ o
—~ BV - SV = - (1 ) 24
12BV'E - SVIE = -1, (2.4)

I VPI, IDEAL I

Bending-Dominated Stress-Domirated
General
(SLY/B - 0) (SLY/B -> =, S > 0)
Y,S | 4y,B Y,S
g g g
2 o 4.2 [4 2 0
\enL D(yz’k’L)[I+73_,,,_J \/eaL 72[1+737J eoL (1+737)
where,
2{I1—cosh kL -
D=1+ { (72 )}, k= ﬁ, S=6‘tg3, ‘B=Et3gf
Y2k Lsinh(y,k L) B

Table 2.1: Closed-form M-TEST models for ideal test structures [23].
(Note, L = R for circular diaphragms.)

| Numerical Cantilever Fixed-fixed Beam Circular Diaphragm
Constarts (n=1) (n=2) (n=3)
| " 0.07 2.79 2.96 1.55

% 1.00 0.97 1.00° 1.64 I
I % 0.42 0.42 0 I

Table 2.2: Numerical constants used in Table 2.1. Entries without asterisks are
from [23]. Asterisk(*)-labelled constants are new and are based on revised

M-TEST models for better accuracy in compressive stress conditions.

2.2 M-TEST Models for Ideal Two-dimensional Geometries 14



Numerical finite-difference MATLAB scripts [54-55] and Rayleigh-Ritz energy
methods [31] have been used for evaluating the pull-in voltage from equation (2.4). For the
ideal test structure (geometrically linear) the V,,’s from the finite-difference scripts were
reproduced accurately using full three-dimensional MEMCAD simulations [54], and were
approximated to analytical forms, as summarized in Table 2.1-2.2. These analytical forms
were originally derived for tensile or low stress cases, where SL%/B is greater than zero. In
the case of fixed-fixed beams and diaphragms, some constants, as indicated, are updated
based on recent M-TEST model calculations for the compressive stress cases.

2.2.2 Numerical Finite-Difference Method

The finite-difference scripts solve for V,, in either of two ways. Both increment the
applied voltage until pull-in occurs and rely on a discretized nodal array. However, at a
given voltage, the first approach {the relaxation method) iterates between separate calcula-
tions of the deformation and of the electrostatic pressure until they are mutually consistent.
The second approach (Newton’s method) starts from a given deflection and assumes that
the actual deflection is a small § away. Expansion of the differential equation by Taylor
series about the given deflection separates the & from the known constants. The & is solved
by matrix operation. The & is added to the initial deflection, and the procedure is iterated

with the new deflection until § converges within a specified tolerance.

2.2.3 Rayleigh-Ritz Energy Method

The Rayleigh-Ritz energy method uses a deflection approximation m(x), obeying
suitable boundary conditions, to estimate an upper bound for V,, and to calculate the gener-
alized coordinate (deflection amplitude) A at this voltage. An upper bound close to V,,
relies on a good guess for m(x). The system’s total potential energy Uy, due to electro-
static deflection is evaluated at an applied voltage V and an amplitude-scaled version of m.
U or is shown below in equation (2.5) for the beam example of equation (2.2), where j} is
set to zero for simplicity.

- —— ¢ dx  (2.35)
dx? dx g —Am

([ ofa7(am))  fo(am))’ ev?
. m m
w J 7 Rty °
10T 2
The equilibrium solution (U,,,/dA = 0) becomes unstable (9°U,,,/dA* = 0) at the pull-

in voltage. Based on these two conditions, the maximum value of A and V =V, are
obtained simultaneously.

2.2 M-TEST Models jor Ideal Two-dimensional Geometries 15




Using m(x) equal to g, X [I-cos(2mx/L)] for fixed-fixed beams, an analytic solution for
A and V,, can be obtained. The results are summarized below in equations (2.6).

2 2
T°w 2 2 2 E,WwV L
U = — ("B, +3S,L° |A® -
TOT 3g0L3( 2 2 ) 22, 1-2A

(2.6)

2 (403 B 3s.,L?
Vo =2 /5 2(1+ :

L’y 25 & n’B,
Because this deflection shape is the first Euler-buckling mode for fixed-fixed beams and
closely resembles the electrostatic deflection profile, as determined by two-dimensional
finite-difference simulations, for highly compressive, but unbuckled fixed-fixed beams,
excellent agreement is found between pull-in voltages from the numerical calculations and
the energy-method in this regime. In contrast, in the high-tensioned stress-dominated
regime, where the bending-energy term is negligible, a parabolic-like deflection shape for

the fixed-fixed beam, gives more accurate results.

2.3 M-TEST Models for Three-Dimensional Geometries

General applicability of M-TEST requires that models accurately handle complex three-
dimensional or nonlinear mechanics wherever the analytical models developed for ideal
test structures become inaccurate. This is the case for thin structures with built-up supports

Figure 2.4: MEMBUILDER-created geometry in [-DEAS of 40 pm wide surface microma-
chined cantilevers of varying lengths from 100 um to 500 pm. Vertical dimensions, of the
2 um gap, the 2 um thickness and the built-up supports, are exaggerated for clarity.

2.3 M-TEST Models for Three-Dimensional Geometries 16




fixed-fixed beam Figure 2.5: A simplified schematic

of a fixed-fixed beam on (spring-

o / o like) torsionally-compliant built-

up supports shows the defor-

z z mation of the beam due to
curved substrate compressive residual stress and a

deformed substrate.

and stress-dependent geometry made, for example, by the conformal polysilicon deposition
process of surface-micromachining. (See Figure 2.4) Wide beams, which are short and thin
and have fixed ends, exhibit plate-like behavior from transverse loading which increase
their stiffness. Thin structures supported at opposite ends exhibit membrane stiffness when
deformed more than their thickness [52]. Furthermore, built-up supports increase struc-
tural compliance [26, 56-58], and rotate in the presence of residual stress compromising the
constant gap assumption for ideal structures under zero electrostatic load. (See Figure 2.5)
Cantilevers will curl out of plane due to residual stress-gradients in the film thickness [59].
(See Figure 2.6) In combination, these effects can cause significant shifts in the pull-in
voltage, and hence, if not modeled or understood properly, they will undermine the
accuracy of extracted mechanical properties using M-TEST.

In this section, many of the effects mentioned above will be simulated using a combi-
nation of two- and three-dimensional models. Analytical M-TEST models will be revised
based on the simulation results.

2.3.1 Plate Effects

Plate effects, which increase beam stiffness and arise in beams with fixed ends that are
wide relative to their thickness and length, are modeled using I-DEAS FEM. An array of
varying length and width cantilevers and fixed-fixed beams of unit thickness, are loaded by

bulit-up support L

polysilicon cantilever Mo free space gap Figure 2.6: Cross-section of a

polysilicon caniilever with a

1\ built-up support anchored

5 nitride . . .

on a nitride layer, dielectri-

cally isolating it from the

Vo radius of silicon substrate. The stress
_— curvature (R;) gradient is modeled as a

bending moment M, applied
to the initially flat cantilever
causing a curling radius R .
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a uniform transverse (vertical) pressure to simulate electrostatic pressure leading. The
pressure is equally divided between the top and bottom surfaces of the beam to avoid
thickness extension, and, hence, small cl:anges in in-plane curvatures, due to electrostatic
loading which appears only on the bottom surface. The deformation is solved using linear
statics. By symmetry, only a half of the cantilever and a quarter of the fixed-fixed beam are
meshed. A 60 x 15 x 5 parabolic-brick mesh is used along the length, width and thickness,
respectively. The Young’s modulus E and Poisson’s ratio v are chosen to be 162 GPa and
0.23, respectively, based on the crystalline average of silicon, to represent polysilicon with
random grain orientation ([60, 61], Appendix A).

The width-averaged tip deflection 3,,-,, of a cantilever and center deflection S‘.e,.,e, of a
fixed-fixed beam are taken from the deformed FEM mesh, and then normalized by division
to the analytical results, §. and &

up center’

from the narrow beam limit where the plate effect is
negligible. Under a uniform pressure load of g, the analytical results are given by equations
(2.7) and (2.8), for the cantilever and fixed-fixed beam, respectively.

3qL*

s =214 . @7
" 2Ft
L“

5 . =q—3- (28)
center 32Et

— . ey ——
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0.96  test structures re o \ <~ -
© (WA = 40 um/2 um) P s & ]
: \ s & “ ]
= 097" o 7
2 " Y 7 / Thickness (T) = 1 ]
e g s , - v=023 |
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b 1/ 4 /
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1 - : . L . . ]
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Figure 2.7: FEM simulation (data points) of width-averaged cantilever tip deflections 3,;,. normalized to
the analytical solution 6",, for varying beam geometry. Dashed lines are curve fits to equation (2.11).

Note, the ratio approaches (/-v?), which equals 0.947 for v =0.23.
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Figure 2.8: FEM simulation (data points) of width-averaged fixed-fixed beam center deflections 5",,,,,
normalized to the analytical solution §_,,,, for varying beam geometry. Dashed lines are curve fits to
equation (2.12). Note, the ratio approaches (/-v?), which equals 0.947 for v = 0.23.

The graphs from the normalized calculations are shown in Figures 2.7-2.8. As expected,
for wider and thinner beams the ratio approaches the Young’s modulus divided by the plate
modulus, which is (/ -VZ) and equals 0.947 for v=0.23, and is independent of E.

To model the effects of arbitrary v, a two-dimensional beam is conceptually divided into
two regions of differing stiffnesses. As shown in Figure 2.9, the first region extends a
length of Lp,m
The second region constitutes the remaining beam length, and its bending is determined by

from each fixed end, and its bending is determined by the plate modulus.

the Young’s modulus. The ratio L, /L determines the relative influence of the plate-like
behavior and generally increases with w, or with a reduction in L or in t. Using two-dimen-

sional Bernoulli-Euler mechanics, analytical solutions for the cantilever tip defiection 5,,-,,

and for the fixed-fixed beam center deflection Sce,,,,, are obtained as a function of Lp,a,e/L.
They are shown in equations (2.9) and (2.10).
3oL 3 4
S _ q I - v 2 i plate _ 1 plate (2.9)
Y 3 L 3 L
3 4
- L 2L te
Ky =95 ) 2| | e | _ | ___Plate (2.10)
cenler 32 Et 3 L L
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-model used for calculating effective moduli for various
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Figure 2.9: The L,
beam geometries and arbitrary v.

Equations (2.9) and (2.10) separate the influence of v from L This enables analytical

‘plare’
fits of the bracketed terms, containing only constants and Lp,‘” /L, to FEM simulations for

5,,-,, and 5,.‘,,,,‘,, as a function of L, w, and ¢, for arbitrary v. These simulations use v =0.23
and E = 162 GPa, as a point of reference. Based on the fits shown in equations (2.11) and

(2.12), the effective modulus E can be expressed as a product of E and the ratio 6/ 5.

- 098 (L -0.056
£ 5"_p , (w/L)l.n b (1)
—- = = J—-v 137 (21 l)
E 9o, 05+(w/L)"

- -0.061

s L e 1.77(%)
E — center ~ I _ vZ (W/ ) (212)
E center 0.18+(w/L) |

The above values of E, which have the proper adjustment for plate effects, is used in the
ideal M-TEST models of Table 2.1. These results indicate that E is primarily dependent
on w/L and weakly dependent on L/¢, as seen in the graphs of 5,,-,, and 3“,,,,(, in Figure 2.10.
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Figure 2.10: The two graphs show that FEM data points for normalized average cantilever tip

deflection &,i,/8,, and fixed-fixed beam center deflection Scenter/B. .., have a strong sensi-

tivity to w/L, and weak dependence on L/t.

Note, because E is derived for uniform pressure loading, it will not be accurate in place of
E for other types of loading situations found, for example, in point loading of beams or in
microbeam resonance.

2.3.2 Membrane Stiffness

Membrane effects due to stress-stiffening are present in structures having non-trans-
latable supports on opposite sides. This increases structural stiffness significantly when the
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maximum deflection is on the order of the thickness in the direction of the deflection, due
to an increasing nonlinear 7' term which is a function of structural deformation.

An energy-based approach which can used to determine the effect of membrane
stiffness on V,,, is useful in developing intuition, but is not as accurate as finite-difference
simulations. Nevertheless, to see how such an approach can be developed is instructive.
It’s results also help to formulate analytical curve fit solutions for the finite-difference

simulations.

An added potential energy term is required for the increased in-plane tension as the
structure deforms. For an ideal fixed-fixed beam with a membrane term, the potential

energy added to the Uy, from equation (2.5), is shown in equation (2.13) [62].

L
- A 4
v o+ ¥ EL(‘?( "’)] dx (2.13)

TOT, NL T0T 2 4 ox

If a sinusoidal deflection shape m(x) equal to g, X [I-cos(2mx/L)], obeying the fixed-
boundary conditions at x = 0 and x = L, is used in combination with the definitions for B,
and S,, U,y y, Can be fully integrated. U, », is shown as Uror.ni in equation (2.14),

after factoring out constants.

. — et
L s %/’ 4
10' L equation {2.15) ———» — |
: P
10° | zZ |
equation (2.16) ———/ ;
«® 10" : energy method / E
102 | /"’ finite-difference calculations g
10'3 / ! NPT e N | M
102 10" 10° 10’ 102

C,/E

Figure 2.11: Stress-stiffening calculations for f,, the ratio of V,,,’s from the nonlinear-
geometric case, which includes membrane effects, to the ideal linear-geometric
case. The curve fits of equations (2.15) and (2.16) to the finiie-difference calcula-
tions (small points) are shown as dashed lines.
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In equation (2.14), C, equals az(g"/t)z. The stress-relaxation factor a,, from the support
compliance, equals one for ideal fixed-fixed beams, and is discussed in the next section. C,
enters only in the membrane stiffness term of equation (2.14), which, as expected, for small
g,/t can be neglected. Furthermore, when SZLZ/BZ approaches -n*/3, the Euler buckling
limit for fixed-fixed beams, membrane effects can significantly influence the mechanics.
From scaling arguments, the ratio f, of the pull-in voltage from the stress-stiffened case to
the pull-in voltage from the ideal case is found to be dependent solely on C,/¢.

Finite-difference simulations for calculating V,, of stress-stiffened fixed-fixed beams
are based on the relaxation method using a MATLAB script [55]. As the structure deflects,
the increase in the membrane stress is modeled as a uniform increase in 7 based on the
beam’s total elongation. Simulations are performed on a range of values for £ and C,, for
both, the geometrically-nonlinear stress-stiffened case, and the ideal geometrically-linear
case. Fringing-field effects are neglected for simplicity. The ratio f_ is determined from
these calculations and curve fit for C,/€ < 3, in equation (2.15), and for C,/£ > 5, in
equation (2.16).

R

C 1.047
fo =1+ azzz(—éi) (2.15)

~
It

C 0.579
I+ a499[—éi] (2.16)

ss

The finite-difference results are compared to energy-method calculations as shown in
Figure 2.11. As expected, the energy-method over-estimates f,, but its general trend is very

similar to the finite-difference results.

2.3.3 Support Compliance

Built-up supports found in conformal deposition processes of MEMS fabrication, as
shown in Figure 2.4, increase not only structure compliance, but also rotate in the presence
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of external moments from built-in residual stress, causing stress relief and changing the

three-dimensional profiles of ideally uniform gap structures supported on opposite sides.

Modeling effects of support compliance require three-dimensional FEM simulation.
The I-DEAS MEMBUILDER script [54, 63] is used to construct the three-dimensional
support geometry from the two-dimensional masks used for actual device fabrication. The
meshed geometry created in I-DEAS is passed for mechanical simulation into I-DEAS’
own FEM solver or into ABAQUS.

I-DEAS FEM simulations are used to calculate tip deflections of uniformly pressure-

loaded cantilevers for various mask-drawn lengths L . to determine bending compliance

mask
changes due to built-up supports. As an example, cantilevers fabricated by the MUMPs
process are considered. They are given an E = 162 GPa, a v = 0.23, a nominal thickness of
2 um and a support height, obtained from the thickness of the sacrificial oxide layer, of
2 um. The support thickness also has the same thickness as the beam in an ideal LPCVD
process. Schematically, the beam geometries, as constructed from MEMBUILDER, are
shown in Figure 2.4. The beams are simuiated using parabolic tetrahedral elements with
near unity aspect ratios and lateral dimensions equal to the beam thickness. Tip deflections
from the simulations are plotted on a log-log scale and fit to the analytical form of
equation (2.7) with a constant additive offset AL for length. As shown in Figure 2.12,a AL

of 5.85 um gives an excellent fit.

vvvvv
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2 10 Thickness = 2 uym . -
= Support height = 2 pm -

w -
c > ]
-.9.. - ]
] -~ 4
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Drawn Mask Length, L (um)
Figure 2.12: FEM simulations of uniformly loaded cantilevers with nomiral

gu y

thickness, gap and built-up support dimensions obtained from the MUMPs surface-
micromachined polysilicon process, indicate that the built-up support compliance
can be adjusted by a AL.
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Simulations indicate, that in general when AL « L support bending compliances can

‘mask>®

be modeled accurately by an offset in length. Similar conclusions can be drawn for fixed-
fixed beams and circular diaphragms. Based on these FEM’s, L=L_  + AL is used in the

ideal M-TEST models in Table 2.1.

‘muask

Residual stresses in fixed-fixed beams and circular diaphragms cause support rotations
from shear loading. This affects the equilibrium stress state, and can significantly alter
structural geometry in the case of compressive stress. Fixed-fixed beams with built-up
supports and an initial tensile biaxial residual stress o, are meshed similarly to the canti-
levers above, and solved in ABAQUS. After the beams deform from the initial stress load,
the structures are individually assigned a stress-relaxation factor o, equal to 6°/6, where
G’ is the final stress state and & equals o,(I-v). For the MUMPs process, a, very nearly
equals one for all of the fabricated lengths. However, when g */(Lt?) is larger than 0.1, ¢,
can become smaller than 0.9. Furthermore, addition of another conformal step along the
beam length away from the support, for example, due to a patterned underlying conductor
as shown in Figure 2.13, can also affect a,. After the correct geometry is modeled and c,
is determined, o is redefined to equal o,0,(1/-v) for use in the ideal fixed-fixed beam
M-TEST mode! of Table 2.1. A similar analysis, if necessary, can be made for the stress
relaxation factor «;, of clamped circular diaphragms. Note, based on linearly geometric
elastics, o is no different for the compressive stress case than for the tensile case, unless the
structure becomes highly deformed as explained below.

Support rotations cause pre-buckled bending in fixed-fixed beams and in circular
diaphragms with high compressive residual stress below the buckling limit, as shown in
Figure 2.5. Since this deformation can be large and its mechanics, geometrically nonlinear,
the ideal M-TEST models designed for uniform gap will be invalid. Furthermore, due to
the sensitivity of pre-buckled bending to boundary conditions and to stress-gradients,
modeling this effect for the M-TEST models is inappropriate. Unfortunately, the design of
ideal fixed ends is impossible, and therefore, M-TEST structures should be fabricated with
lateral dimensions small encugh such that pre-buckled bending is negligible.

conformal
step — . underlying
contact \ polysilicon conductor Figure 2.13: Polysilicon surface
fixed-tixed beam micromachined  fixed-fixed

beam with built-up supports

and conformal steps along

SILICON

e beam length due to an under-
nitride ——/ lying conductor.
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Figure 2.14: Cantilevers curled out-

of-plane due to stress-gradients are
4 modeled (in the limit of geometri-
cally-linear elasticity) for 2D
finite-difference calculations as
being flat with a fixed curved

substrate.

/

fixed substrate conductcr
radius of curvature = R,

2.3.4 Stress-Gradients Through Film Thickness
Nonuniform stresses in the film thickness create built-in moments, which in released
cantilevers cause them to curl out of plane, and in fixed-fixed beam with compliant supports
and net compressive residual stress, to bow, as mentioned earlier. Because of the large
possible deflections in gap from these structures, the electrostatic pressure is significantly
modified from the corresponding uniformly flat case and the pull-in voltages can be signif-
icantly shifted.
M-TEST models for curled cantilevers are based on the two-dimensional Bernoulli-
Euler beam theory, and neglect fringing fields and plate effects for simplicity. Models for
the bowed fixed-fixed beams are not developed for the reasons mentioned in section 2.3.3.
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3 $ . .
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Figure 2.15: 2D finite-difference simulations of cantilever pull-in voltages calculated
for various lengths L, gaps g, and radii of curvature R , are divided by the pull-in

voltage from the uniformly flat case (R, = =) to get the normalized V.
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Because the stress-gradient is assumed to be uniform in-plane, the cantilever experiences a
constant bending moment along its length when it is flat and has a constant radius of
curvature R _after it is released. Due to linearity for small deflections, the cantilever beam
is modeled as initially flat with a curved fixed ground electrode, as shown in Figure 2.14.
The pull-in voltages, from the curved geometry are calculated using finite-difference
scripts, and then divided by the pull-in voltages from the ideal uniformly flat case. Selected
results from the calculation of this ratio f, are graphed in Figure 2.15. In terms of the non-

dimensionalized term L’/ g,R ). f is expressed as equation (2.17).

¢ 4 g

o c o c

2 2 )2
f =1+ 0.5096[ "R J+ 0.0006347[ LR J @2.17)

2.3.5 Revised M-TEST Models

Revised analytical M-TEST models based on the simulation results of this chapter are
summarized in Table 2.3. Note, , and AL are determined from FEM’s.

| VPI

Curled Cantilevers: Ver =1 Ver, ear see equation (2.17)

see equations (2.15)

Stress-stiffened Fixed-Fixed Beams: Ver =L Ver ipeaL and (2.16)

Definition of Extracted Mechanical Properties

11 v (wp)"” 098(’/)0056
E E_T[0.5+(W/L)”7

Cantilevers:

v,[ (w/i) mu/)

r_ 1 v PR
Fixed-fixed Beams: E E E 0.18+(w/L)

g = o,0,(1-v)

Adjusted Geometry for Compliant Supports

Cantilevers: L=L,.,+AL

Fixed-fixed Beams: L=L,,, +2AL

Table 2.3: Summary of revised M-TEST models [64].
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CHAPTER 3

Guidelines for Using M-TEST

Based on the theory developed in the previous chapter and the equipment requirements for
M-TEST stated herein, the practical limits for designing and testing ideal test structures,
and the guidelines for using M-TEST structures and for quantifying error bounds based on
measured results are established ir this chapter.

3.1 Equipment Requirements for M-TEST

Wafer-level probing of M-TEST structures is simple. Electrostatic measurements of the
static pull-in voltage are made under an optical microscope (Nikon Measurescope UM-2)
with long (> 5 mm) working length objectives. Magnetic micromanipulator probes (Quater
Research & Development XYZ 300TL&R), a DC voltage supply (HP E3612A) and a
voltmeter (HP 34401A) are needed for application and measurement of the pull-in voltage.
The microscope is placed on a vibration-free platform and has a tilt-adjust stage for use
with a differential interference objective. The stage is made from steel for the magnetic
probers. For reference, the tilt-adjust stage blueprint is shown in Appendix B.

3.1.1 Puli-in Voltage Measurements

Three methods are used for observing pull-in. In one approach, a traditional normal-
incident reflecting microscope, with either a Nomarski (Nikon BD Plan 5x DIC) or a differ-
ential interference (Nikon M Plan 10x DI) objective is used. This makes the sudden
collapse after pull-in easy to observe, as shown in Figure 3.1.
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Figure 3.1: Nomarski DIC image of an
electrostatically pulled-in  aluminum
diaphragm (top left) with initial gap g,
of 1.5um. (Devices courtesy of Phil
Congdon at Texas Instruments.)

If the structures are thin and slightly transmissive at optical frequencies, an inexpensive
multicoated wavelength (A) filter in the light path shows changes in surface reflectivity of
the structure as it deflects. Fringes appear between vertical distances on the surface greater
than A/2, as shown in Figure 3.2. As with the first approach, the sudden transition to pull-
in is easy to observe as long as the displacement is more than A/2. If required, these optical
techniques can also be used to nuantify deflections.

Since pull-in is also a switch closure if the structure collapses directly onto its opposing
conductor, a simple circuit can be used to measure its change to a conducting state. A
current-limiting resistor or a clipping current source is useful to avoid damaging the device.
Alternatively, an HP 4145B Semiconductor Parametric Analyzer, if available, can be used.
(Note, if this closed circuit is perfectly conducting, the device may lose all its stored charge
and pop back up. However, because the short is typically resistive, a small voltage drop
appears across the switch. Enough of an electrostatic force is developed across the narrow
gap to keep the switch closed.)

As a rule of thumb, devices should be tested from the longest to the smallest, such that
measured pull-in voltages go from low to high. This speeds up measurement since the
previous measured pull-in voltage sets a practical lower limit for the next shortest length
tested. More importantly, residual surface charges which can be left on an underlying
dielectric layer under the structure after pull-in, scale with the applied voltage [65-66].
These charges propagate to adjacent structures and adversely affect the electrostatic force
seen by them. At a given charge density, stiffer, shorter length structures are less affected
than the longer. Obviously, less charge deposition is desired, and starting at lower voltages
is one way to minimize the overall error that charging contributes to the measured pull-in
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free standing
cantilever

cantilevers stuck
to nitride beyond
a certain iength.

 cantilever tips stuck
to underlying
nitride layer.

Fagure 3.2: A-tilter (A = 650 nm £:10 nim bandwidth) in the optical path of a microscope is used to
observe vertical deflecttons in 2 pm-thick polysilicon cantilevers. Adjacent black-to-black fringes

indicate a vertical distance of A/2. Note. cantilevers are stuck down due to stiction problems.

voltages. These charges will eventuaily decay. but their time constant can be on the order
of minutes or longer in atmosphere. Undocumented sources report that the decay can be

accelerated by putting the devices under radiation [67].

3.1.2 Metrology Measurements

Accurate thickness, gap and length measurements are essential for reliable mechanical
property extraction from almost any mechanical characterization method. For this purpose,

three different metrological tools are used in M-TEST.

A properly calibrated Sloan Dektak IIA surface profilometer enables the measurement
of the free-space gap under the structure and its thickness to a precision better than 1/1000th
of a um. The accuracy is limited by a scaling factor A determined from the measurement
or a thickness calibration standard with a stated accuracy of £ 5%. Examples of how the
Dektak is used are shown in the nexi chapter. (See Figures 4.4 and 4.10) Capacitance
measurements made on an HP 4280A are needed if the test structure is actuated over a gap
that partly consists of a uniform dielectric separation layer. (For example, see Figure 4.9)
The capacitance measurement estimates the dielectric thickness, i.c. the physical thickness
of the tilm divided by its relative permittivity. The dielectric thickness is added to the free-

spuce gap g, under the structure to estimate the total gap g,. Lateral dimensional measure-
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ments of length, width, and radius are made under an optical microscope using a calibrat=d
Metronics Quadrachek II to accuracies of + 0.5 pm.

3.2 Designing M-TEST Structures

As an in-situ monttor, M-TEST structures inherit gap and structural dimensions from the
process used to fabricate the working sensors or actuators alongside. Two-dimensional
layout control over lengths or radii allow tailoring their sensitivity to the mechanical
properties of interest. In general, an a priori knowledge of the expected mechanical
properties is useful to maximize sensitivity, but not necessary to extract mechanical
properties. In the case where the properties are initially unknown, a single iteration with
widely ranging M-TEST geometries, which accommodates large variations in mechanical
properties, will reveal a reasonable bound on the expected mechanical properties for the
subsequent iteration.

3.2.1 Selecting Layout Dimensions in Limiting Cases

In either the bending dominated limit (SnLZ/B" -> 0), or the stress dominated limit
(S,L%/B, -» =), where only S, or B, are desired, the selection of lengths for the M-TEST
structures is simple. The equations in lable 2.1 can be used to approximate the required
length or radius for a desired pull-in voltage based on expected mechanical property values
and the specified gap and thickness.

The primary constraint in picking the appropriate voltage is the maximum limit of the
DC voltage source and its observable resolution. Typical voltage sources supply up to
100V, and good voltmeters accurately resolve 1 V. Manual control of the voltage source
dial, however, limits its repeatable accuracy to approximately 0.05% of full scale, which in
the case for a 100 V scale is 0.05 V. Since the pull-in voltage scales as the square root of
the stiffness, obtaining a 1% resolution in stiffness requires a 1/2% accuracy in voltage.
This indicates that to obtain a 1% resolution in stiffness from a single pull-in device
requires that its smallest pull-in voltage be above 10V, if a 100 V source is used.

To avoid problems of stiction in the wet-etch release of longer length devices, shorter,
higher pull-in voltage structures should be designed. The desire for smaller length devices
is offset by the layout tolerance of the finest lithographic feature (typically | pm for surface
micromachining) and the increasing influence of the support compliance. As a rule of
thumb, structures 100 X longer than the smallest lithographic feature minimize geometry
errors and allow approximating the offset in length correction (AL) for the support
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compliance. If support compliance becomes a problem, i.e. AL ~ L, clever layout
techniques can be used to reduce it further [68].

To detect correlated errors and to minimize random errors, several lengths should be
tested. Typically, the total number of distributed lengths should equal five times the number
of parameters sought. For example, if only the Young’s modulus is sought, five different
lengths are adequate. The lengths should yield V,,’s which are evenly spaced, where the
maximum is several times the minimum. Note, in the bending dominated case, V,,, is
quadratic with L, and in the stress dominated case, Vp, is linear. Beam widths w should be
at least 10x the gap, so that the fringing field correction is valid. Furthermore, the L/w ratio
should be chosen so thai the effective modulus is constant or is very close to the Young’s
modulus. (Sec Figure 2.10, and equations (2.11) and (2.12))

3.2.2 Selecting Layout Dimensions for the General Case

Whenever two or more quantities are desired frem the curve-fit of the M-TEST pull-in
voltages, a centered design approach should be used [54].

If both the modulus and stress are desired from fixed-fixed beams or diaphragms, the
center length or radius should be chosen so that S, L, _*/B, approximately equals /3. In

center

the compressive stress case, where S, is negative, the center length or radius should be
chosen far enough away from the buckling limit so that §,L

center

"/B, approximately equals
-n*/12. Furthermore the maximum length or radius L

max 11 the COMpressive stress case

S"L,MIZ/B,, should not be less than -%/6, because of the susceptibility to pre-buckled
bending in the presence of compliant supports.

If both the modulus and its curling radius R, are desired from cantilevers, a center
length should be chosen such that the cantilever tip deflects only half of the nominal gap.
This occurs when L, is (g IR 1)". Note, if R_ is negative, due to cantilevers curling

toward the bottom electrode, an L greater than L,...=(2gJR]I )!”_ causes the tip to touch the

bottom.

Careful selection of lengths will be based on the many of the practical considerations
discussed in section 3.2.1. In the case of simultaneous modulus and stress extraction, L

should be chosen to vary linearly for lengths greater than L

center®

and to vary quadratically
for lengths, smaller, so that the measured pull-in voltages will be evenly spaced. In the case

of curled cantilevers, L should vary quadratically below L

cemer» AN linearly above.
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3.3 Mechanical Property Extraction using M-TEST

Although a single pull-in voltage measurement alone suffices in detecting chip-to-chip
nonuniformity, extraction of the bending and stress parameters, B and S, respectively, from
the pull-in voltage measurement versus several device lengths enables a quantification of
device variations due to geometry and to mechanical properties, separates the effect of the

bending and stress compliances, and reduces error.

Assuming ideal test structure geometry, a curve fit of the measured pull-in voltage
versus length to the models in Tables 2.1 and 2.2, allows immediate extraction of B and S.
Howeuver, if the structures have compliant supports, curl out of plane due to stress-gradients
in cantilevers, or bow significantly due to compressive stress in diaphragms or fixed-fixed
beams, finite-element models, careful measurement of geometry, or appropriate selection
of data will be necessary before curve fitting to the revised models in Table 2.3, as

explained in Chapter 2.

Once B and S are obtained and after the gap and thickness measurement, as directed in
section 2.1, the mechanical properties can be extracted. The effective modulus £ is
obtained by dividing B by g,’t”, and effective stress & is obtained by dividing S by g,¢°.
Note that E and & are structure dependent. To obtain E, we make use of equations (2.11)
and (2.12), for cantilevers and fixed-fixed beams, respectively, and for circular diaphragms
by multiplying E by (/-v?). The biaxial residual stress o, equals o for diaphragms, and
equals & divided by (/-v), for fixed-fixed beams. Note, S and & are zero for cantilevers
which are free of residual stress. If unknown, v can be obtained by algebra from either
measuring the plate modulus from diaphragms and the Young’s modulus from narrow
beams or measuring the biaxial stress in diaphragms and the axial stress in fixed-fixed

beams. For polysilicon, v equal to 0.23 is a good approximation (Appendix A).

Note, the form of V,, for a curved cantilever, as indicated in Table 2.3 and mentioned in
section 3.2.2, allows simultaneous extraction of B and its curling radius R_. Fixing either
the known value of B or a very accurately measured value of R, can allow even better

extraction accuracy of the other after curve fitting the measured pull-in voltages.

3.4 Estimating Error Bounds on Extracted Properties

Systematic and random errors in the measured quantities Ve L, R, 1, and g, lead to errors
in the extracted process parameters B and S, and mechanical properties E and &.
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Systematic errors result from scaling or offset errors or from modelling errors, and manifest
themselves in a well behaved manner across many tested samples. Random errors due to
measurement imprecision obey gaussian distributions around expected values.

In the context of the revised M-TEST models, the goal of this section is to quantify the
bounds of uncertainty on the extracted values of B, S, E and 0, as a result of systematic
and randomerrors in V,,, L, R, t,and g .

3.4.1 Reducing Systematic Errors

Any systematic modeling errors must be eliminated before a meaningful error sensi-
tivity analysis can made. Systematic errors, due to the neglect of the support compliance
and the cantilever curvature in the ideal M-TEST models, are eliminated in the revised
M-TEST models of Chapter 2. Similarly, the inclusion of piate effects for beams reduces
systematic errors in varying width beams with tae same thickness and length, and the

inclusion of stress-stiffening due to variations in thickness and/or gap.

Systematic errors also occur from process-sensitive geormetry or from scaling and offset
measurement errors. For example, the length of a fabricated device may differ from the
mask design either due to overetching a sacrificial layer that is part of a suppeort, or due to
lithographic offsets. These errors can be eliminated after a post-process measurement of
geometry. Unfortunately, geometry and voltage measurements are also prone o systematic

errors from offset or scaling problems in the measuring apparatus.

3.4.2 Equations from Statistics Theory

Two basic equations result from statistics theory which relate the errors in the measured
parameters to propagated errors in an extracted quantity [49]. They are given in equations
(3.1) and (3.2), for systematic errors and random errors, respectively, where the extracted
quantity Q is a function of the independent parameters a, b, c, etc.

_ 20 0 20
00 = 2 da + T ob + % c @a3.n
: _ (90Y 90\ . (90
Op = ( aa) o, + 2 o, + 3o o, (3.2)

The &'s in equation (3.1) represent systematic errors in the measured parameters a, b, c, etc.
and in the extracted quantity Q. Likewise, the 0’s in equation (3.2) represent the standard
deviations of the random errors.
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Random errors are averaged out when multiple beam lengths or diaphragm radii are
tested. The standard deviation —6'Q of the extracted quantity after i measurements, is given

in equation (3.3).

I 1
-7 Z c (3.3)
Q i o

i

3.4.3 Error Analysis for Revised M-TEST Models in the Limiting Cases

The basic statistical equations arc applied to pull-in voltage expressions derived from
energy method calculations, neglecting fringing fields. The pull-in voltage expressions for
cantilevers and diaphragms are functionally similar to equation (3.4) derived for a fixed-
fixed beam, and are used to determine the effects on B, S, E and &, from errors in Vo, L,
R,t,and g, .

B, S, L’
Ve = femm \/L_J(c:m + B, ] (3.4)
The functional dependencies in equation (3.4) portray the more precise finite-difference
calculation on which the revised M-TEST models are based, but are simpler to analyze.
Note, B and S, and the constants ¢, and c, are structure dependent. frepresents the effects
of stress-stiffening f, in fixed-fixed beams, or the effects due to cantilever curling f,.

For cantilevers (n=1), which are stress-free, c,, equals 1.78 x 10° V/N'?, and c,, is one.
For fixed-fixed beams (n=2), c,, equals 1.17 x 108 V/N', and c,, is ©*/3. For circular
diaphragms (n=3), L is the radius, and c,, equals 5.10 x 10° V/N'?, and c,, is 1.2235.

In the bending dominated case, where V,, o< f (B/L*)"?, and in the stress dominated case,
where V,, o< f (S/L?)"”?, the application of equations (3.1) and (3.2) is simple [54]. For fixed-
fixed beams and diaphragms in the bending dominated regime, the functional dependency
of £, in comparison to other parameters of interest is weak, since C/£ will be small (see
equation (2.15)). Similarly, for cantilevers, when LA g,R.) is small, f, can be neglected. In
these limits, equations (3.5) and (3.6) are derived.

oV
5B = B(Z L4 45L]

3.5)

+ 4= - 3— - 3

SE =
VPI L t 8,

P [zav,,, SL &t g, J

3.4 Estimating Error Bounds on Extracted Properties a5



2 2
Oy (o]
6, = B |4| =" | + 16| L
g \/ (VPI ) ( L )
! 2 2 2 2
- o, G O‘ G
o, = E 4] 22| + 16(——"—) + 9(;) + 9| £

Equations (3.7) and (3.8) are similarly derived for the stress dominated limit where f_ is

3.6)

negligible.
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3.4.4 Error Analysis for Revised M-TEST Models in the General Case

Ignoring the effects of £, in the general case for fixed-fixed beams and diaphragms, the
errors in B and in § due to systematic errors are found to be coupled, as shown in
equations (3.9).

( 4 4 2 53
2V, L 4V, L 2SL 2
SB = | M sy, +| AT ]5L-(f—)as
2

U

\ "1202 ) \ "'12"2 €2 (3.9)

(2v, L% ) (2VEL 2c,B c, |
88 = | = |oVpy +| —I—=+ 22— |6L-| -2 |5B

\ €I J \ €I L L

Equations (3.9) can be algebraically solved for errors in B and S, simultaneously. All other
variables will be known. The errors 8E and 83 can be determined by adding a
-3E(8u/t + 8g,/g,) term, and -G (&t/t + 38g,/g,) term to the rights of the equations for 6B
and 88, respectively.
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The random errors in B and S for fixed-fixed beamns and diaphragms are also coupled,

as shown in equations (3.10).

2

2
(2V, L) (4L’v,, 2SL) L2 )’
2 PI 2 Pl 2 2
\ €1€2 ) \ €;€: 2 2
(3.10)
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The final case which is considered is that of curled cantilevers, where B is extracted
based on a measured value of R_and g, and f, is approximated from equation (2.17) to be
(L+12L7g R).

1 -2 4V2 -3
2 R,

¢z \L? 2g,R. 2\ L2 2g, Gn
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As the former equations indicate, the complexity greatly increases when multiple param-
eters are added to a curve fit. For other general cases, equation (3.4) can be used in combi-
nation with equations (3.1) and (3.2) to obtain the desired sensitivity parameters.
Fortunately, most of the terms are either constants or are measured structural geometry. The
0’s and o’s, remain to be approximated. This will be shown by example in the following

section.

3.4.5 A Numerical Error Sensitivity Example

Since M-TEST usually requires measurements of multiple beam lengths or diaphragm
radii, random errors in B, S, E and &, which affect the precision of the extracted quantities,
will be averaged out, as shown by equation (3.3), and will be negligible compared to
systematic errors, which affect the accuracy, and result from inaccurate measurements of
the geometry or the pull-in voltage.
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Systematic variations in the measured thickness t can be represented as (l+At)/1,tN,
where 1, is the nominal thickness, Ar is the actual thickness minus the nominal thickness
plus measurement offsets divided by the actual thickness, and A, is the measurement scaling
error in thickness. Similarly, the measured gap g, pull-in voltage V,,, and length L are
represented by (1+Ag")/1ﬂq~. (1+AV,)Ap Yy, and (1+AL)A, L, respectively.

As a numerical example, consider a polysilicon cantilever (E = 163 GPa) nominally
250 pm long, 2 pm thick, and with a 2 pm gap, having an estimated pull-in voltage of
9.20 V. Assume that all A’s are zero, since they can be casily detected and corrected, and
only measurement scaling errors (A’s) exist, where 2 and 4, are 0.99 and 4,, and 4, are
1.01. Based on these errors, 6B/B will be (l-/l,,,z/l,f), which from equation (3.5) is approx-
imately 6%, and 0E/E will be (1-A,2,*A 74, 7), which is approximately 13%.

These calculations indicate a very strong sensitivity to geometry, which can be a
limiting factor in using M-TEST for mechanical property extraction. Nevertheless, if a user
of M-TEST is more interested in fabricatior problems in geometry this limitation becomes
an advantage, as illustrated by a practical example in section 4.1.

Often it is useful to compare the nominal values B, and S, to extracted values of B and
S after removing fabrication variations in geometry. For this purpose, B, and S, are

defined as follows. They equal B/A(1+Ag,)’(1+At)’) and S/(1+A4g,)’(1+At)), respectively.
These definitions will be used in section 4.3.
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CHAPTER 4

Experimental Resuits

Revised M-TEST models developed in the previous chapter will be used to demonstrate:
(1) assessment of process integrity in silicon wafer-bonded MEMS devices by determining
the bending- and stress- process parameters, B and S, (2) mechanical property extraction
from B and S for polysilicon surface-micromachined MEMS test structures, following
careful measurement of device geometry, ard (3) monitoring inter-run and intra-run
variation of B and S, and of mechanical and geometrical properties for polysilicon MEMS.

4.1 M-TEST Assessment of MEMS Process Integrity

The dependence of B and § to cubic or quadric powers of thickness t, gap g, and length L,
makes them a sensitive monitor of variation in geometry when mechanical properties are
structure-independent. This is the case when monitoring gap variations in single-crystal
silicon wafer-bonded test structures released by plasma over-etching. Parallel and adjacent,
narrow and wide fixed-fixed beams yield two very different B,’s. While the B, from the
wide beams confirms expected Young’s modulus value of single-crystal silicon, the B, from
the narrow beams with the same modulus, acts a monitor for plasma over-etching [22].

4.1.1 Process Description

Fixed-fixed beam test structures designed for 2 nominal thickness of 14.5 um and a gap of
1.0 um are fabricated with their length axis in the [110] direction of <100> single-crystal
silicon using MIT’s sealed-cavity wafer-bonded technology [28]. Since the structures are
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thick in comparison to their gap and have a planar geometry, ideal two-dimensional
M-TEST models are applicable. Also, because these wafer-bonded structures have
relatively low residual stress [23], the stress parameter S, is small and does not contribute
to mechanical stiffness. In this limit, the bending-dominated analytic form for the pull-in
voltage V,,,, which is found in Table 2.1 and repeated below in equation (4.1), is used.

Voo [ 1186B,
P \/ 7
e, L7 (1+042g,/w)

4.1

4.1.2 Measvrements of Pull-in Voltage and Geometry

Figure 4.1 shows the measured pull-in voltage versus length for two sets of parallel and
adjacent fixed-fixed beams fabricated by this process with nominal widths of 10 um and
50 um. When the data are fit to equation (4.1), the B,’s can be determined to better than
10%. For the 50 pm-wide beams, B, equals 5.6 x 107 Pa-m® and is close to the nominal
value of 5.2 X 10" Pa-m® based on the nominal geometry and an E of 169 GPa in the [110]
direction of single crystal silicon [48]. B, equal to 10.0 X 10%* Pa-m® for the 10 um-wide
beams is twice as large. This discrepancy suggests a problem with the geometry for the

10 pm-wide beam.
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Figure 4.1: Experimental pull-in voltages (points) vs. fixed-fixed beam iength. Fitted
lines are obtained from closed-form expressions for ideal test structures. Nominal B,
value is 5.2 x 10 Pa-m®.
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Figure 4.2: [Illustration shown in

lateral cross-section, of plasma
attack.ag the underside a
narruw (nominally, 10 pm-wide
and 14.5 pm-thick)  wafer-
bonded beam during its relcase.
Etch profiles and dimensions
are exaggerated for clanty.

GOne possible explanation is an over-etch resulting from a prolonged anisotropic

CCl,/SF, plasina-eich release of the microstructures. This idea is illustrated in Figure 4.2,

where etched dimensions are magnified for clarity. The over-etch is expected to have a

limited encroachment under the beam. Therefore, the overall gap under narrow beams will

be more affected than the gap for wide beams. This is shown in SEM cross-sections of a

10 um- and 50 um-wide cantilever in Figure 4.3. Both beams are positioned above

substrate landing pads. Although there is an observable over-etch of the p-silicon substrate

pads, the n-silicon beam undersides remain unaffected and are relatively flat.

magnified

3x

beam

substrate

Figure 4.3: SEM cross-sections of 50 um- (left) and 10 pm-wide (right) cantilevers over corresponding
substrate landing pads. The width of 10 pm-wide beam underside is 17 pm. Its substrate landing pad
width is approximately 15 pm. The rounding of the 15 um-wide pad is approximated by a radius of
curvature of 60 um. Note the relative flatness of the beam undersides in comparison to the substrate.
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Figure 4.4: Dcktak surface profilometry measurements of p-substrate contacts of a 50 pm (left) and
10 um (right) fixed-fixed beam. The dotted lines align vertical height differences of the center of the
pads to the top of the exposed oxide. This difference, the minimum gap, is 1.08 pum and 1.21 pum,
respectively. (Vertical scale is in A with + 10A accuracy, and horizontal in pm.)

Figure 4.4 shows Dektak surface profile measurements using a 12.5 pm diamond radius
tip across a 10 pm- and a 50 pm-wide beam substrate pad and trench regions. The dotted
lines align differences in height between the top of the oxide and the center of the substrate
pads, to a vertical resolution of 10 A. This distance is the minimum gap between the bottom
of the beam and center of the pad, and is 1.08 pm for the 50 pum-wide beam and 1.21 um
for the 10 pm-wide beam. They show only a 50 A variation along the beam length. Profilo-
meter measurements also indicate a uniform thickness of 14.37 um of the mechanical layer

across the wafer.

The SEM photos in Figure 4.3 are used to obtain an effective radius of curvature R_of
the pad regions along the beam width. R_is 60 um (+ 5%) for the 10 pm-wide beam. There
is significantly less curvature for the wider beam, and hince the gap g, is assumed to be
uniformly 1.08 pum. From the SEM, the 10 pm-wide beam has a 10 um width w, on the top
and a 17 pm width w, on the bottom. For the analyses to follow, the 10 pm-wide beams are

assumed to have a trapezoidal cross-section based on w, and w,, as shown in Figure 4.5.

4.1.3 Analysis of Results

Because of the well-defined geometry of the 50 pm-wide beams, pull-in results from
these beams have been used to corfirm that an E of 169 GPa can be determined from the
M-TEST models [23, 54]. Based on B,, g,, and ¢, reported above, M-TEST results yield

E = 173 GPa, with a * 13 GPa error bound determined primarily by the scatter of the
measured data. For the beam geometries tested, the extracted E is expected to be within
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0.5% of E, based on equation (2.12) and Figure 2.8. An upper bound determined for the
residual stress, g,(1-v) < 10 MPa, is based on the tolerance of the curve fitting routine [54].

The electrostatic and mechanical forces in the M-TEST models are adjusted for the
rounded gap and the approximate trapezoidal cross-section of the 10 im-wide beams to
show that B, is correctly determined from their geometry and known Young’s modulus.
Because the electrostatic force is proportional to the inverse of the gap squared, an effective
uniform gap g, is estimated for pull-in geometries across any parallel deforming cross-
sections, using equation (4.2), where the x- and y-axes are in the plane of the chip.

~1/2

1 dx dy
g =+ — 4.2)
o “‘J‘,.go(x,y)2

Based on a 15 pm-wide rounded substrate pad with R_ = 60 pm, a g, equal to 1.39 pm is
calculated. This effective gap is inserted into the equation for B, in place of g, The
compliance of the beams’ trapezoidal cross-section and the electrostatic force on the
bottom face of the beam are included by scaling B, by the ratio of the moment of areas
between the beams’ trapezoidal cross-section to an equivalent rectangular beam whose
width is given by w,. (See Figure 4.5) The equation for B, is then updated as shown in
equation (4.3).

wilsdww +w 2
(b b

(4.3)

L ped 3
Bz—Et geff

3wb (w‘ tw, )

Using an E of 169 GPa, equation (4.3) gives a B, equal to 10.5 x 10> Pa-m®, which is very
close to the measured value of 10.0 x 10%* Pa-m®. When this calculated value of B, is used
in equation (4.1), the pull-in voltage can be predicted. As a test case, consider the 10 um-
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wide and 1000 pm-long fixed-fixed beam. Based on the calculated value of B,, V,, is
estimated to be 36.6 V, which is close to the measured value of 359 V.

4.1.4 Accurate Modeling in Two- and Three-Dimensiens

Due to potentially small errors in overlap between the fit of equation (4.1) fo results
derived from the numerical two-dimensional (2D) simulation of ideal test structures, and to
the approximation in gap for the beam geometry allowing the use of equation (4.1), better
pull-in voltage predictions are expected by more precise numerical techniques. Therefore,
as an example, pull-in behavior of the 10 pm-wide and 1000 um-long fixed-fixed beam is
analyzed using a 2D finite-difference model with fringing-field correction, where the gap
under zero bias is assumed to be uniformly g eff Full three-dimensional (3D) simulations
are also performed using CoSolve-EM [69], and have a carefully rendered rounded
substrate pad. A minimum gap of 1.21 pm together with a radius of curvature of 60 pm are

used for the substrate pad geometry, as shown in Figure 4.6.

The calculated pull-in voltages are 36.5 V and 36.3 V from the 2D and 3D models,
respectively, and agree closely with each other, and with the experimental value of 35.9 V.
For the 3D simulation, a mesh-convergence study showed that the mechanical stiffness of
the meshed beam and the electrostatic forces are calculated within about 5% error, and
since the pull-in voltage goes approximately as the square root of the stiffness, pull-in errors
resulting from the mesh are of order 2.5%. A similar analysis showed that the 2D meshed
errors are less than 1%. Figure 4.7 shows the calculated deflection at the beamn center as a
function of voltage.

The small remaining discrepancy between simulation and experiment may result from

assuming a trapezoidal cross-section and ideal fixed-ends, both of which will result in

Figure 4.6: A deformed geometry of a nominal 10 pm-wide fixed-fixed beam under clectro-
static loading using MEMCAD. The beam is 14.37 pm-thick, and it is 10 pm-wide on the
top and 17 um-wide at the bottom. The radius of curvature of the rounded ground plane is
60 um. The axis along the 1000 pm beam length is scaled 1/10 for better viewing.
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Figure 4.7: Comparison of 2D and 3D coupled electromechanical simulation for pull-in of
1000 pm-long narrow beam example. Note, deflections are coincident between the uniform
gap structure in 2D and rounded-gap structure in 3D.

slightly stiffer structures and higher pull-in voltages than the actual devices. Nevertheless,
B, from narrow beams quantitatively determines effective changes in geometry reasonably
well, and is consistent with results from the analytical M-TEST models.

4.2 M-TEST Mechanical Property Extraction from Polysilicon

Revised M-TEST models in Table 2.3 are used in combination with techniques for accurate
geometric measurement of thickness and gap to demonstrate mechanical property
extraction from relatively thin surface-micromachined polysilicon test structures. Pull-in
voltages from cantilevers (n = 1) and fixed-fixed beams (n = 2) determine both the Young’s
Modulus E and the uniaxial residual stress o,(/-v) from B,, S , t, and g . (In principle, B,
and S, from circular diaphragms (n = 3) allow independent extraction of E, o,, and v.
However, the practice of placing sacrificial release etch holes in surface-micromachined
circular diaphragms modifies structural properties, and requires complex modeling beyond
the scope of this thesis. Nevertheless, such modeling is currently in progress [70].) The
sensitivity of M-TEST to residual stress is also demonstrated by observing that the simple
placement of the MEMS test chip on the vacuum chuck of a probe station can significantly
affect the pull-in voliage.
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4.2.1 Test Structure Fabrication

Cantilever and fixed-fixed beam test structures of 40 im widths and of varying lengths
are fabricated on a 1 cm? chip from conformally-deposited fine-grain polysilicon (LPVCD
at 580 °C) using the surface-micromachining technology of the Multi-User MEMS
Processes (MUMPs) at the Microelectronics Center of North Carolina (MCNC) [27].
Fabricated devices from MUMPs 5 are shown photographed in Figure 4.8. They have a
nominal 2 pm thickness f and a free-space gap g, which is created from a nominal 2 pm-
thick sacrificial oxide release. Released cantilever structures are shown schematically, as
ideally uncurled, in 3D in Figure 2.4, and in a 2D cross-section in Figure 4.9. The nitride
layer, which has a nominal thickness as deposited of 7, = 0.5 pm, is used to dielectrically

isolate the substrate from the anchor of the mechanical devices.

Surface profilometry reveals the actual thickness and free-space gap of the MUMPs 5
test chip. In Figure 4.10, a calibrated Dektak 8000 measurement made by a 9 pg-force
contact scanning across the length of a released cantilever measures a r of 2.10 pm, and a
g;; of 2.34 um, with less than + 0.03 pm surface variation. A capacitance measurement
between a base polysilicon layer directly on top of an unetched nitride region and the
silicon substrate (see Figure 4.9) yields a dielectric thickness, tg,, /€y, €equal to 670 A,
where &g, is the relative nitride permittivity at | MHz. Based on a nominal thickness

0.5 um for 1, £, is determined to be 7.

Figure 4.8: Photographs showing arrayed fixed-fixed
(left) and cantilever (above) beam test structures fabri-
cated by polysilicon surface-micromachining. Fixed-
fixed beam lengths range from 300 um to 1000 um,
and cantilevers, from 100 pm to 500 pm.
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Figure 4.9: Schematic cross-section of polysilicon surface-micromachined cantilever, showing nominal
thickness and gap geometries. Note the over-etch of the nitride dielectric isolation layer due to
plasma over-etching of removed base polysilicon and oxide layers. The polysilicon via for the
contact is an artifact of the processing and is structurally insignificant. Vertical dimension are
exaggerated for clarity.

Since the nitride layer also acts as an etch-stop, it becomes over-etched in the process
of ensuring complete removal of any patterned overlaying polysilicon or oxide layers.
Under the movable part of the beam, the nitride is over-etched by Atg,,, by a Cl,-based
reactive ion eich (RIE) to remove the base polysilicon layer. Under the anchor region of
the beum, the nitride is over-etched by Ar,,, + Atg,,,. from the removal of both the base
polysilicon layer and the first sacrificial oxide layer, where Atg,,, results from the oxide
over-etch by a F,-based RIE. As shown in Figure 4.10, Atg,,,, is determined to be 0.11 pm
from the difference in height between the tops of the polysilicon anchor region and of the
pushed-down beam. Since there is no direct way to measure At,,, using profilometry, the
foundry specified value of Atg,,, stated to be less than 100 ;\, is used [27].

Finally, the electrostatic gap g, for use in M-TEST, is calculated as the sum of g, and
(tgn - Aty /€, and equals 2.40 pm. The mask-drawn length of the devices are modified
by the addition a AL/support to account for the bending compliance of the support. For
nominal values of thickness and free-space gap, AL is determined to be 5.85 pm from FEM

simulations, as discussed in section 2.3.3.

Cantilevers curl out of plane due to stress-gradients through the polysilicon film
thickness. A optical tip deflection measurement is used to determine the curling radius R,
of 40 mm % 0.3 mm from the 500 pm-long cantilever. This value of R, is consistent with
the curling radii of other cantilevers made from the same polysilicon layer, based on

assuming a non-varying in-plane stress profile in the film.

4.2.2 Pull-in Voltage Measurements

Pull-in voltage measurements are taken from curled cantilevers for mask-drawn lengths
of 100 um to 500 um. For comparison, the theoretically determined pull-in voltage for
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Figure 4.10: Dektak surface profilometry of a cantilever similar to the one shown in the
inset, reveals the polysilicon and spacer-oxide thicknesses. An ~9 ug force is applied at
the tip of the scanning probe, pushing the cantilever down until it touches the nitride layer.
The nitride over-etch due to the oxide over-etch creating the beam anchor is Afg,,,.

similar dimensioned, but uncurled, cantilevers are plotted alongside the measured data, as
shown in Figure 4.11. As expected, the measured and theoretical values deviate for larger
values of length where the gap becomes significantly non-uniform. However, with a
measured value of R, t, and g , and with a curve fit of the measured data to the revised
M-TEST model including AL, an E of 153 GPa is obtained. Results from equation (2.11)
and Figure 2.7 indicate that E is within 1% of E for all of the lengths tested with v = 0.23,
so that E = E. Using this value of E, a linearly-varying approximation of the stress-gradient
needed in the unreleased cantilevers to obtain an R, equal to 40 mm, equals E/R_, or
4 MPa/pum.

Pull-in voltage measurements from fixed-fixed beams for mask-drawn lengths of
300 pum to 700 pm, are shown in Figure 4.12. Fixed-fixed beams longer than 700 pum bow
away from the substrate due to pre-buckled bending. For very large beam lengths, beyond
the ideal fixed-fixed beam Euler-buckling limit (SZLZ/B2 < -m*/3), the center deflection can
be many times the nominal gap. Because this highly nonlinear behavior found in beams
longer than 700 pm is difficult to predict and model, these beams are not tested. The V),’s
of smaller length beams, however, are used to extract mechanical properties. Revised
M-TEST models for the tested beam geometries indicate that E = E equals 157 GPa, based
on equation (2.12) and Figure 2.8, and that ¢ = a,0,(I-v) = -3.8 MPa, which approxi-
mately equals o,(/-v), since o, = 1 based on FEM’s as discussed in section 2.3.3.
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Figure 4.11: Theoretical and measured V,,’s for uncurled (dashed line) and curled cantilevers (data

points), compared. Data points fit to revised M-TEST models (solid line), based on a measured R .

Additional compressive stress from substrate deformation on a vacuum probe station as
schematically illustrated in Figure 4.13, decreases the critical length for the onset of pre-
buckled bending. Its effect on the pull-in voltage can be seen alongside the previous “no-
vacuum” data in Figure 4.12. In beams 500 pm and longer, large bowing is observed, and
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Figure 4.12: Measured V,,’s (circles) from fixed-fixed bean structures fit to revised M-TEST models
(solid-line). A fit (dashed-line) of measured V,,’s (diamonds) after vacuum application on wafer-chuck
reveals more than a doubling in stress. Beams 500 um and longer are bowed or buckled, and are not
included in the dashed-line fit. See Figure 4.13 for a schematic interpretation.
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Figure 4.13: Schematic illustrating substrate deformation and its effects on stress in
fixed-fixed structures. L =450 jum shows a tri-state behavior as explained in the text.

the pull-in voltage is discontinuous from that at 450 pm. For the 450 pm-long beam, a
tristate behavior is observed. At voltages below pull-in, the beam which begins slightly
bowed up, pulls-through to a second state in which it is slightly bowed down, and then
continuously deforms until it pulls-in. In beams longer than 450 um, the pull-through
voltage is synonymous with the pull-in voltage, and at shorter lengths the pull-through
voltage is not observed. Taking pull-in data from beams shorter than 500 pm, the new axial
stress state can be determined. With an E determined earlier of 157 GPa, & is found to be
more than twice its no-vacuum value, and approximately equals 9 MPa.

4.3 M-TEST Monitoring of Inter-Run and Intra-Run Variations

M-TEST data taken from several MUMPs die from within a specific fabrication run and
across different runs allows a comparison of processing variations due to mechanical

properties and geometry.

4.3.1 Data from Cantilevers and Fixed-fixed Beams

A semilog scatter plot of the extracied B, and //R_ from the MUMPs cantilevers is
shown in Figure 4.14. The measured values of //R_, which are at best accurate to +0.8 m’'
from the optical tip deflection measurement of a 500 um-long cantilever using a A-filter at
650 nm, agree to within £1 m™ of the extracted I/R ’s, whose accuracy scales linearly with
the accuracy in L? and inversely with the accuracy in g, Lis known to better than 1%, and
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Figure 4.14: Semilog scatter plot of I/R_ versus B, for M-TEST cantilever data taken from each die
(individual points) across several MUMPs process runs, labelled by number. The gap g, is assumed to
be 2.07 um. The extracted //R, is accurate to within £ 1 mm’!, by a comparison to optical cantilever tip
deflection measurements.

8, is assumed to be the nominal value of 2.07 um from a g, of 2 pm and nitride dielectric
thickness of ~700 A. Dektak measurements indicate that 8, can vary by up to 10% around
the nominal value. Obviously, the accuracy of //R, is limited more by g, than by L, can be

scaled appropriately to the actual value once g, is measured.

A similar log-log scatter plot of the extracted S, and B, from the MUMPs fixed-fixed
beams is shown in Figure 4.15. The negative values of S, indicate that all the beams are

fabricated in compressive residual stress.

4.3.2 A Comparison of the Results

A comparison of B, and B, in Figure 4.16 indicates excellent agreement for almost all
dies. This agreement from two very different structures indicates that the precision in B,
and B, is very good and lends credibility to the M-TEST models. The small average ratio
<B,/B > of 1.03, suggests a residual modeling error, which is possibly due to the neglect of
fringing fields at the tip of the cantilever. The extracted B’s vary widely, and are on average
(B, =9.4x 10 Pa-m® £ o of 2.6 x 10 Pa-m®) below the nominal expected value B,, of
1.16 x 10 Pa-m®, where g, is 2.07 um, ¢ is 2 um and E is 163 GPa.

The variations in the extracted B should be reduced significantly if correlated variations
in geometry are eliminated. (Note that E is not expected to vary more than 10% around its
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Figure 4.15: Log-log scatter plot of §, versus B, for M-TEST fixed-fixed beam data taken from each die
(individual points) across several MUMPs process runs, labelled by number. Note, the ’g * and rg *
dependency of B, and §, can be scen through the mechanical property variations in E and g (/-v), and
indicates that the geometric variations in g, and f have a strong effect on B, and S,. The x’ and x"*
curves represent the expected variation in §, versus B,, when either the gap or the thickness varies,
respectively, while the other is constant.

nominal polysilicon value of 163 GPa, even in the presence of strong out-of-plane texture
[Appendix A].) Dektak IIA and nitride capacitance measurements are used to calculate
B, .. and S, . for the fixed-fixed beams, following the procedure in section 3.4. A log-
log scatter plot, having the same vertical and horizontal dynamic range as Figure 4.15, is
shown in Figure 4.17. As expected, a much tighter distribution in B, ,, as ccmpared to B,,
is found. The average value Ez_mw over the 24 samples is 1.27 £ 0.10 x 10 Pa-m®, with a
probable error of the mean (0,_,,) of +0.02 x 10%* Pa-m®, or 1.7%. Using B, ,,, an E of
178 £ 3 GPa is determined. This value appears large. See Chapter 5 for a discussion and

comparison with other reported results.

The variationin S, . is quite broad indicating a large inter-run residual stress variation,
but a much smaller intra-run varjation. This suggests that the fabrication process very
noticeably changes the stress conditions in the polysilicon from run to run (typically spaced
apart by four months), but that within a run this variation is small, as would be expected
from variations in anneal conditions and doping levels. The average intra-run standard
deviation in S, . is less than 10%. However, the average S, .. from each run varies from
-3.27 x 10"'” Pa-m* for MUMPs 15 to -1.05 x 10°'6 Pa-m* for MUMPs 16, indicating an

equivalent residual stress ¢,(/-v) variation from -1.8 MPa 10 -5.9 MPa, respectively.
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Figure 4.16: Tabulated B, and B, values of MUMPs cantilevers and fixed-fixed beams on the same die for
various dies show excellent agreement. The large differences in the nominal B and measured B’s
reflects variations in geometry, where, for example, the MUMPs 5 D2 die has a r X g, product which is
approximately 20% higher than the nominal value of g, equal to 2.00 x 2.07 um?, based on a constant
E. The systematic difference in B, and B, suggests a residual modeling error.
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distribution in the new B, values. The systematically larger value of the new B, values compared to the
nominal value suggests a small scaling problem in the measured geometry.
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CHAPTER 5

Discussion and Conclusions

The dependence of crystalline silicon’s Young’s modulus with orientation is well-known
(Appendix A). It varies from a minimum of 130 GPa in the [100] direction to 188 GPa in
the [111] direction. In the presence of strong texture normal to a random in-plane grain

orientation, the effective in-plane modulus can vary from approximately 147 GPa for

<160> out-of-plane textured polysilicon to 169 GPa for <111> textured polysilicon.

Figure 5.1: Theta-2Theta X-ray crystallographic data of 2 um thick polysilicon layer from
MUMPs 16. The large <400> peak is due to the silicon substrate. Relative peak intensities
can be compared to expected values from a silicon powder diffraction standard in Table 5.1.
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Completely untextured polysilicon has an effective isotropic modulus of approximately
163 GPa.

X-ray 0-26 and pole figure crystallographic data from a recent MUMPs test wafer
reveal no strong texture in the highly columnar polysilicon grains, either normal to the film,
or in-plane [71]. The x-ray 6-26 data is shown in Figure 5.1. For comparison, the 6-20
silicon powder diffraction peak distribution, which is representative of untextured

polysilicon, is listed in Table 5.1.

Silicon Powder Diffraction Standard (5-0565A)
CuKol (A =1.5405 A)

-

d(A) % Relative | s | 26 (degrees)
Intensity
3.1380 100 111 28.41791
1.9200 60 220 47.30292
1.6380 35 311 56.09951
1.3570 8 400 69.16779
I 1.2460 13 331 76.36643 |
I 1.1083 17 422 88.05177 I
1.0450 9 511 94.96676
0.9599 5 440 106.7251 I
0.9178 11 531 114.1189 I
0.8586 9 620 127.5589
0.8281 5 533 136.9137

Bragg condition: nA=2dsinf,n=1,2,3...

Table 5.1: Power diffraction standard representative of untextured polysilicon [72].

The theoretical calculations and x-ray data for polysilicon serve as a reference in
comparing extracted polysilicon modulus values from various reported mechanical
measurements, including M-TEST. These values are compiled in Table 5.2. The M-TEST
results for both the MUMPs 5 and the averaged data from multiple MUMPs runs lie within
10% of the untextured polycrystalline modulus average of silicon.
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I Method Property Value Composition Reference I
155+10GPa’ |  PSG-doped Gupta, [21] I
M-TEST E
178+3GPa** | S80CLPCVD | Gupta, Ph.D. I
Tensile Strength E we | PSG-doped Sharpe, [47)
ensile Stren + arpe
gt 169 + 6 GPa 580C LPCVD pe,
in-situ P-doped
143 + 7 GPa
560-610C
Beibl, [39]
Resonant PSG-doped
E 168 + 7 GPa
Comb-Drives 610C LPCVD
PSG-doped
150 £ 20 GPa Tang, [36]
665C LPCVD
Membrane undoped Maier-
: E/1-v}) | 162%3*GPa )
Deflection 620C LPCVD Schneider, [46]
B-implanted
166 + 3* GPa Tilmans, [31]
Vertical Beam E 590C LPCVD
Resonance undoped
175+ 21 GPa Guckel, [30]
580C LPCVD

Table 5.2: Polysilicon mechanical properties reported in current literature.
*Data taken from a single MUMPs 5 die using a Dektak 8000.
** Data reported in thesis averaged over MUMPs 5, 9, 14, 15, and 16 using a Dektak IIA.
***Data averaged over MUMPs 6, 8, 10, 11, and 12.

The M-TEST modulus data in Table 5.1 was determined using two different Dektak
machines. While the Dektak 8000 was calibrated and shown to behave consistently from
day to day, the other Dektak ITA showed interna! drift which could not b~ .. . 10ved and
varied in measurements by up to + 5% from day to day. Therefore, while the precision of
the data (B) is accurate to less than 2% for the multiple-run M-TEST data, the absolute
accuracy of the conversion from B to E is limited by Dektak calibration drifts, which for the
single MUMPs 5 measurement was less than + 7%, but in the multiple-run measurement
was about + 20%. Similarly, the conversion error in S to o,(/-v) for the multiple-run

measurements is accurate to + 13%.

Note, Sharpe reports on average a systematically higher modulus value than the
163 GPa polycrystalline average for the same polysilicon fabrication process tested with
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M-TEST. Although Sharpe’s tensile strength data are sensitive to only the first power in the

film thickness, his results do not include an independent measurement of geometry from
run to run [76]. Instead, nominal values statec . / the fabrication facility are assumed, and
correlated errors due to geometry are not removed. Figures 4.15 and 4.16 suggests that the
relative variztion of the polysilicon thickness and gap is as large as 20%. Such variation
also places a large error on the absolute accuracy of Sharpe’s data. Clearly, for both
M-TEST and tensile strength measurements unknown geometry is a big problem.

5.1 Future Work and Applications

M-TEST can be improved in four areas. First, a better understanding of charging dielec-
trics, for example, the silicon nitride used in the MUMPs process, will reduce errors in the
electrostatic force associated in the effective gap approximation derived from summing the
free space gap to the dielectric thickness, and will improve M-TEST models. Secondly, an
electrostatic fringing-field correction for the added force at the tip of cantilevers will help
to reduce the systematic discrepancy between extracted values of B; and B,. Thirdly, for
routine thickness and gap measurements, either optical interference techniques or better
calibration of the Dektak surface profilometer will be needed. And finally, understanding
electromechanical behavior in the presence of etch holes, used in the release of surface-
micromachined circular diaphragms, will allow Poisson’s ratio extraction. Research in the
last area is currently under progress using a Texas Instruments process, where aluminum
diaphragms are fabricated with a timed-etch release, as shown in Figure 3.1 [70].

M-TEST structures also show potential for use as in-situ packaging strain sensors, as
illustrated by their sensitivity to externally applied stress in Figure 4.12. Recent work has
also shown that dynamic actuation of these devices can be used for in-situ leak monitoring

of hermetically-sealed sensors or IC’s [1].

5.2 Conclusions

The general M-TEST methodology is presented. Its sources of error are identified and then
quantified wherever possible. Examples demonstrating M-TEST for use as a quality
control monitor for geometry and for mechanical property extraction in the presence of

residual stress are reported. Techniques for reducing M-TEST to practice are discussed.
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As shown in this thesis, M-TEST’s high sensitivity to geometry can be a limitation if
the user is interested in mechanical property extraction, or an advantage if he is interested
in process monitoring of geometry. Except for the tensile strength test, all other mechanical
property extraction techniques including M-TEST in Table 5.2 require bending, and,
therefore, are highly sensitive to errors in thickness measurements. M-TEST additioaally
requires a measurement of gap, whose error sensitivity scales similarly to the error in
thickness. So while the modeling errors are small (~ 3% based on agreement between
measured cantilevers and fixed-fixed beams) and the precision of the extracted B and S from
measured pull-in voltages are also small (~ 2%), the absolute accuracy of the M-TEST
extracted mechanical properties E and o,(/-v) is large (~ 20%), because of its vulnerability
to the errors in the existing techniques for measuring geometry. Fixing this last issue is a

new area of investigation.

Nevertheless, M-TEST is found to be a powerful technique because it allows in-situ
measurements of mechanical properties and monitoring of geometry, by using simple test
structures which can be part of almost any MEMS fabrication process and is very easy to
instrument. In these regards, M-TEST is unique from all the other techniques mentioned
in Table 5.2.
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APPENDIX A

Silicon Mechanical Properties

The stiffeness matrix [S] and compliance matrix [C] for a cubic crystal such as silicon are
shown in equations (A.1) and (A.2). The principle stresses o, and the principle strains g

are along the crystal’s three axes of symmetry, and o;; and ¢; for i # j are the shear stresses
and shear strains, respectively [73].
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The stiffness coefficients S and compliance coefficients ¢, obtained from McSkimin [48],

if?
for crystal silicon are listed below.

s = 07681 s _ = -02138 s = 1.2559 (x107" pa') (A.3)
11 12 44

¢c = 16578 ¢ _ = 06394 ¢ = 0.7962 (x10" Pa) (A.4)
11 12 44

For an arbitrary crystallographic direction, E can be calculated as shown in equation (A.5).
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where, the I’s are the direction cosines referred to the [100] direction. For example, ! ;
equals sin(6) cos(¢), 1, equals sin(6) sin(¢), and I, equals cos(6), in a right-handed spherical
coordinate system, where @1is the angle between the vector and the z-axis, and ¢ is the angle
in the x-y plane between the in-plane vector components and the x-axis. A three dimen-
sional contour of E in the arbitrary crystalline directions of silicon is shown in Figure A.1.
Silicon’s Young’s moduusi in selected orientations is given below.

min = Euoo] = 130.2 GPa E“ 0= 169.2 GPa E”m‘r = E””’ = 187.9 GPa (A.6)

Note, for all directions in the <111> plane, E is isotropic, and equals 169.2 GPa. The
Poisson’s ratio in a direction m orthogonal to /, is given below [74].

s +|s -5 -4 (llzmlz+lzzm§+l;mj)
vV = — (A7)

44 2,2 242 2,2
s ~2ls —-s —--*% (1112+1113+1213)

foo1]

l

[100)° "~ (010}

Figure A.1: Exaggerated spherical contour plot showing crystalline

silicon’s Young’s modulus as a function of vector direction.
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Note, the denominator term of equation (A.7) equals I/E. Also, observe that v, like E, is
isotropic in the <111> plane, and that F/(]-v) is isotropic in the <100> plane, even though
E and v are not, and equals I/s,,+s,,) [14].

The Reuss-Voight-Hill [60] theory calculates lower and upper bounds, based on random
grain orientations in either uniform stress (Reuss) or uniform strain (Voight), for the
effective isotropic modulus of randomly oriented grains of an aniostropic material. Reuss’
method effectively averages the s;s, and Voight’s, the ¢;’s. For polycrystalline silicon, i.e.
polysilicon, the results are summarized from [61], where E, equals 159.6 GPa and E,,
equals 165.9 GPa. The Poisson’s ratic in these limits, v, and v,,, equal 0.217 and 0.228.
Reference [61] further lists tighter lower and upper bounds based on an improved theory
[75] to give 162.6 GPa and 163.1 GPa, respectively.

An estimate of the effective in-plane isotropic modulus for a specific out-of-plane grain
orientation, but a random, in-plane orientation, is determined from the average of the orien-
tational dependent value of either E or I/E from equation (A.5). This average is also calcu-
lated for the Poisson’s ratio from equation (A.7). Averaged values for selected planes are
shown in Table A.l, below.

‘ 3
Plane f
. Ave. age Modulus :  Average Modulus | Average In-Plane
Orientation i
In-Plane from [E] ' In-Plane from [I/E] | Poisson’s Ratio v
<hkI> |
<100> 147.1 GPa | 148.4 GPa 0.177
<110> 163.1 GPa 165.5 GPa 0.239
<111> 169.2 GPa 0.262
<210> 157.C GPa 158.6 GPa 0.214
211> 163.1 GPa 163.9 GPa 0.238
<310> 152.5 GPa 153.8 GPa 0.197
<311> 156.8 GPa 157.8 GPa 0.214
<321> 163.1 GPa 164.3 GPa 0.238

Table A.1: Average silicon modulus and Poisson’s ratio calculated for select
plane cross sections centered at the origin o: Figure A.1.
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APPENDIX B

Microscope Stage Design
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