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Abstract

Network optimization has widely been studied in the literature for a variety of design
and operational problems. This has resulted in the development of computational al-
gorithms for the study of classical operations research problems such as the maximum
flow problem, the shortest path problem, and the network interdiction problem. How-
ever, in environments where network components are subject to adversarial failures,
the network operator needs to strategically allocate at least some of her resources
(e.g., link capacities, network flows, etc.) while accounting for the presence of a
strategic adversary. This motivates the study of network security games. This thesis
considers a class of network security games on flow networks, and focuses on utiliz-
ing well-known results in network optimization toward the characterization of Nash
equilibria of this class of games.

Specifically, we consider a 2-player strategic game for network routing under link
disruptions. Player 1 (defender) routes flow through a network to maximize her value
of effective flow while facing transportation costs. Player 2 (attacker) simultaneously
disrupts one or more links to maximize her value of lost flow but also faces cost of
disrupting links. Linear programming duality and the Max-Flow Min-Cut Theorem
are applied to obtain properties that are satisfied in any Nash equilibrium. Using
graph theoretic arguments, we give a characterization of the support of the equilibrium
strategies. Finally, we study the conditions under which these results extend to a
revised version of the game where both players face budget constraints. Thus, our
contribution can be viewed as a generalization of the classical minimum cost maximum
flow problem and the minimum cut problem to adversarial environments.

Thesis Supervisor: Saurabh Amin
Title: Assistant Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Overview of the Problem

In this thesis, we study network flow routing in the wake of disruptions caused by

strategic adversaries. Our work is motivated by the need of improving the operational

resilience of transportation networks and other flow networks under strategic disrup-

tions. Our goal in this thesis is to give a realistic model of an attacker-defender game

played on a network and investigate the physical properties of the game in equilib-

rium. More particularly, we relate the structure of the players’ equilibrium strategies

to the solutions of classical routing problems.

We study a two-player non-cooperative game over a directed network in which

Player 1 (defender or operator) chooses a flow to be routed from a source node to a

destination node, and Player 2 (attacker or interdictor) chooses to disrupt one or more

edges. In our model, we account the value of the effective flow and the transportation

cost for the defender, and the value of the lost flow and the cost of attack for the

attacker. Specifically, Player 1’s payoff linearly increases in the amount of effective

flow that reaches the destination node, but decreases with the cost of transporting

the initial flow chosen by her. Player 2’s payoff linearly increases in the amount of

lost flow as a result of an attack and decreases with the attacking cost. This two-

player game is not a zero-sum game and the payoff structures are motivated by the

previous formulations in both network interdiction problems (see Wood and Kevin

13



[25], Cormican et al. [10], Bertsimas et al. [9], Avenhaus and Canty [4]) and network

security games (see Gueye et al. [17], Szeto [24], Baykal-Gürsoy et al. [6], Dahan and

Amin [11]).

1.2 Related Work

Network interdiction problems have already been widely studied, but our focus is to

extend these formulations to simultaneous game settings. Related to our approach

is the article by Washburn and Wood [3]. The authors model a sequential game,

where the defender (leader) chooses one 𝑠− 𝑡 path and then the interdictor (follower)

inspects one edge. The objective of this sequential game model is to maximize the

probability with which the operator is detected by the interdictor. Our game differs

from the model by Washburn and Wood [3] in that we model a simultaneous game,

which captures each player’s strategic uncertainty about her opponent. Secondly,

we allow both players to have a much larger set of actions (feasible flow that may

contain many 𝑠 − 𝑡 paths and loops, and attacks that can simultaneously disrupt

several edges). Finally, we account for the attacker’s cost of attack as well as the

defender’s cost of transporting flow through the network.

The work by Avenhaus and Canty [4] presents several models of inspection games.

One of them considers a two-player game between a passenger of a subway system and

the local transit authority. Simultaneously, the passenger chooses whether she pays

the ticket or not, and the transit authority decides whether to inspect the passenger

or not. This model was motivated by the fact that inspecting all the time is either

too costly or not worthwhile. Actually, this model is analogous to our game played

on a single link (where the transit authority is an interdictor). By adjusting the

parameters, we find that these models are strategically equivalent and our results

applied to a graph composed of a single link coincide. Thus, our model can be viewed

as a generalization of their inspection game to a network setting where the interdictor

chooses the probability of inspecting specific links on the network.

Another related line of work in network interdiction games is by Bertsimas et al.

14



[8]. In this sequential game, the operator first chooses a feasible flow, and then the

interdictor disrupts a fixed number of edges. The goal is to minimize the largest

amount of flow that reaches the destination node. The authors consider two different

models for the disruption: an arc-based formulation where the flow can be rerouted

when there is an attack, and a path-based formulation where the flow carried by

a disrupted edge is lost. Our formulation is related to the path-based formulation.

Since we model a simultaneous game, it is reasonable to assume that the flow through

disrupted edges is lost and cannot be re-routed. Although, in [8], the interdictor can

disrupt several edges at the same time, she must always disrupt the same number of

edges for every action, which is still a restriction of the set of actions we considered

for our interdictor.

Our model is also related to the work of Hong and Wooders [18] and Gueye

et al. [17] (also see [20]). In these papers the authors model simultaneous attacker-

defender games, where the defender (operator) chooses a feasible flow and the attacker

(interdictor) disrupts edges of the network, preventing the flow from reaching the

destination node. The major differences with Gueye et al. [17] is that their attacker

can only disrupt one edge, and they consider an uncapacitated graph with given

supplies and demands, while we consider a capacitated graph with no constraint on

the supplies and demands.

We note that Goyal and Vigier [16], and Acemoglu et al. [1] studied network

security as well, but from another perspective. Indeed, in their models, the attacker

targets the nodes of a network previously chosen by the defender. The latter chooses

the network and the allocation of defense resources in order to minimize the cascading

effect due to the attack. In our model, we decided that the flow that was supposed

to take an edge that is disrupted is simply lost, so there is no contagion.

1.3 Main Contributions

For the sake of simplicity, we restrict the class of graphs we study in this thesis

(even though our study applies to a much larger class of graphs). This enables us

15



to develop a rather complete characterization of the equilibria of our game. Our

first result is that, given the different characteristics of the graph (attacking and

transportation cost), we give a tractable formulation of one Nash equilibrium that is

based on minimum cost maximum flows for Player 1 and on minimum cut sets for

Player 2, extending the results of Avenhaus and Canty [4] and of Hong and Wooders

[18].

We also present theoretical properties satisfied by all the Nash equilibria of our

game. The most interesting property is that each player has a unique payoff value

in all equilibria, and we were able to analytically compute the values of effective and

lost flow and the costs of transportation and attack in terms of the parameters of the

game. The interest comes from the fact that these characteristics, that are common

for all equilibria, need not full enumeration of the equilibria; they can be derived

using a combination of game theoretic and network optimization ideas, one of them

being the Max-Flow Min-Cut Theorem.

We show that the support of the strategies that can be potentially Nash equilibria

can be restricted using graph theoretic properties of the network. We know that

computing a Nash equilibrium is hard. While Daskalakis et al. [12] showed that

the computation of a Nash equilibrium is PPAD-complete for a general two-player

game, Von Neumann [21] showed that, for a zero-sum two-player game, finding Nash

equilibria is equivalent to solving a linear programming problem. We show that

our game is equivalent to a zero-sum game, thus we can use linear programming

techniques to compute a Nash equilibrium efficiently. By restricting the support of

the strategies that can potentially be Nash equilibria, we decrease the number of

variables and constraints of the linear problems, thus speeding the computation of

Nash equilibria. We also give an alternative to computing a Nash equilibrium. Indeed,

we computed in closed form an equilibrium based on a minimum cost maximum flow

for the defender and on a minimum cut set for the attacker. Thus, in order to find one

Nash equilibrium, one only need to compute a minimum cost maximum flow and a

minimum cut set of a network, which can be done efficiently by viewing the minimum

cost maximum flow problem as a minimum cost circulation problem (see Goldberg

16



and Tarjan [15]). This shows how we can use and extend classical routing problems

to adversarial environments.

Lastly, we study a generalization of the game where both players face budget

constraints. Specifically, we view the transportation cost of a flow (resp. cost of an

attack) as a resource that needs to be available to the defender (resp. attacker) in

order to send the flow (resp. lead the attack). We compute the minimum budget that

players must have to ensure that the equilibrium properties derived for the previous

game still hold for the new game. Using the infiniteness of the defender’s set of

actions, we give a tight lower bound for the defender’s budget for transporting flows.

However, the attacker’s set of action is discrete and we cannot derive an analogous

lower bound for the budget needed by the attacker to conduct attacks. We restrict our

attention to a subset of the attacker’s equilibrium strategies: we compute in closed

form equilibrium strategies for the attacker that are constructed from the partitions

of the minimum cut sets. Then we find the equilibrium strategies in this subset that

require the lowest budget. It turns out that we can formulate this problem as an

integer programming problem whose optimal solution gives a bound (maybe not the

best one) on the attacker’s budget for which our analysis holds.

The rest of the thesis is organized as follows: in Chapter 2 we discuss the main

assumptions and present our game model. Chapter 3 presents our main results on

the characterization of Nash equilibria of the game and their relations with classical

routing problems. Then in Chapter 4 we extend our results to a budget-constrained

game. Lastly, the implications of relaxing some of the modeling assumptions are

discussed in Chapter 5, before briefly discussing how to extend the game settings in

Chapter 6.
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Chapter 2

Game Theoretic Model

In this chapter, we recall some standard definitions and results in game theory and

network optimization such as the Minimax Theorem for zero-sum games and the

Max-Flow Min-Cut Theorem for directed graphs. Then we set up the game theoretic

model that we solve in this thesis, involving a defender and an attacker playing on a

flow network. Finally, we present an assumption on the class of graphs we focus on

for this thesis.

2.1 Preliminaries

Consider a capacitated directed graph 𝒢 = (𝒱 , ℰ) where 𝒱 (resp. ℰ) represents the

set of nodes (resp. the set of edges) of 𝒢. For each edge (𝑖, 𝑗) ∈ ℰ , let 𝑐𝑖𝑗 ∈ R+ denote

its capacity. Let 𝑠 ∈ 𝒱 denote a source node and 𝑡 ∈ 𝒱 a destination node. A flow,

defined by the function 𝑥 : ℰ → R+, can only enter the network from 𝑠 and leave

from 𝑡. There is no demand or supply at other nodes. A flow 𝑥 is said to be feasible

if it satisfies flow conservation at each node and if the flow through each edge does

not exceed its capacity:

∀𝑖 ∈ 𝒱∖{𝑠, 𝑡},
∑︁

(𝑗,𝑖)∈ℰ

𝑥(𝑗, 𝑖) =
∑︁

(𝑖,𝑗)∈ℰ

𝑥(𝑖, 𝑗)

∀(𝑖, 𝑗) ∈ ℰ , 0 ≤ 𝑥(𝑖, 𝑗) ≤ 𝑐𝑖𝑗.
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Let ℱ denote the set of feasible flows, and Λ the set containing all the loops

and source-destination 𝑠 − 𝑡 paths of the network. Let 𝑥𝑖𝑗 := 𝑥(𝑖, 𝑗) denote the flow

through edge (𝑖, 𝑗), and 𝑥𝜆 the quantity of flow of 𝑥 sent through 𝜆 ∈ Λ. The edge

flows 𝑥𝑖𝑗 and loop/path flows 𝑥𝜆 satisfy:

∀(𝑖, 𝑗) ∈ ℰ , 𝑥𝑖𝑗 =
∑︁

{𝜆∈Λ | (𝑖,𝑗)∈𝜆}

𝑥𝜆. (2.1)

An 𝑠 − 𝑡 cut is a partition {𝑆, 𝑇} of 𝒱 , such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 . The cut-set

of {𝑆, 𝑇} and its capacity are defined as 𝐸({𝑆, 𝑇}) = {(𝑖, 𝑗) ∈ ℰ | 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑇} and

𝐶({𝑆, 𝑇}) =
∑︀

(𝑖,𝑗)∈𝐸({𝑆,𝑇}) 𝑐𝑖𝑗. Let F (𝑥) =
∑︀

{𝑖∈𝒱 | (𝑖,𝑡)∈ℰ} 𝑥𝑖𝑡 denote the amount of

flow passing from the source 𝑠 to the sink 𝑡. We recall the max-flow problem:

(𝒫1) maximize F (𝑥)

subject to 𝑥 ∈ ℱ .

The well-known Max-Flow Min-Cut Theorem by Ford and Fulkerson [14] states

that the optimal value of the maximum flow problem is equal to the minimum capacity

over all 𝑠− 𝑡 cuts. We call min-cut set, the cut-set of a minimum capacity 𝑠− 𝑡 cut.

We also state the minimum cost maximum flow problem by Edmonds and Karp [13]:

(𝒫2) minimize
∑︁

(𝑖,𝑗)∈ℰ

𝑏𝑖𝑗𝑥𝑖𝑗

subject to 𝑥 ∈ ℱ

F (𝑥) ≥ F (𝑥′) , ∀𝑥′ ∈ ℱ ,

where for every edge (𝑖, 𝑗) ∈ ℰ , 𝑏𝑖𝑗 ∈ R+ denotes the cost of transporting a unit flow

through (𝑖, 𝑗).

We use Θ1 (resp. Ω1) to denote the optimal value (resp. optimal solution set) of

the max-flow problem (𝒫1). Similarly, we denote the optimal value (resp. the set of

optimal solutions) of problem (𝒫2) by Θ2 (resp. Ω2).
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2.2 The Game

We focus on a simultaneous, semi-infinite, two-player strategic game denoted Γ :=

⟨{1, 2}, (ℱ ,𝒜), (𝑢1, 𝑢2)⟩ defined as follows: player 1 (P1) is the defender (operator)

who chooses to route a flow 𝑥 ∈ ℱ through the network, and player 2 (P2) is the

attacker (interdictor) who chooses an attack 𝜇 to disrupt a subset of edges of the

graph 𝒢. The action set for P1 (resp. P2) is given by ℱ (resp. 𝒜 := {0, 1}ℰ).

An attack 𝜇 is a function from ℰ to {0, 1} defined as follows:

𝜇𝑖𝑗 := 𝜇(𝑖, 𝑗) =

⎧⎨⎩ 1 if (𝑖, 𝑗) is disrupted,

0 otherwise.
(2.2)

Note that P2 can disrupt multiple edges of the network by choosing a single attack

𝜇.

We use the following notation to describe certain specific player actions: 𝑥0 the

action of not sending flow in the network, 𝑥* an optimal solution of (𝒫2) i.e., a min-

cost max-flow, 𝜇0 the action of not attacking any edge of the network, and 𝜇𝑚𝑖𝑛 the

action that disrupts all the edges of a min-cut set of the network.

Since Γ is a simultaneous game, it is reasonable to assume that after an edge is

disrupted, the flow that was supposed to cross this edge (if there were no attack) is

lost and it is not re-routed. For the sake of simplicity, we do not consider attacks

that can only result in partially disrupted edges and might still permit some flow to

pass through the attacked edges. Thus, the effective flow, denoted 𝑥𝜇, when a flow 𝑥

is chosen by P1 and an attack 𝜇 is chosen by P2 can be expressed as follows:

∀(𝑖, 𝑗) ∈ ℰ , 𝑥𝜇𝑖𝑗 =
∑︁
𝜆∈Λ𝜇

𝑖𝑗

𝑥𝜆,

where Λ𝜇
𝑖𝑗 := {𝜆 ∈ Λ | (𝑖, 𝑗) ∈ 𝜆 and ∀(𝑖′, 𝑗′) ∈ 𝜆, 𝜇𝑖′𝑗′ = 0}. That is, the effective flow

through an edge (𝑖, 𝑗) is the sum of all the initial path flows through edge (𝑖, 𝑗) that

do not contain any attacked edge. The effective flow 𝑥𝜇 can be viewed as a feasible

flow in ℱ that succesfully carries the amount of flow from 𝑥 that is not lost due to
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the attack 𝜇.

In this model, the payoff of P1 is defined as the value of effective flow assessed

by P1 net the cost of transporting the initial flow:

𝑢1(𝑥, 𝜇) = 𝑝1 F (𝑥𝜇)⏟  ⏞  
value of effective flow

− C1 (𝑥)⏟  ⏞  
transportation cost

(2.3)

where 𝑝1 ∈ R+ is the marginal value of the flow for P1, and C1 (𝑥) :=
∑︀

(𝑖,𝑗)∈ℰ 𝑏𝑖𝑗𝑥𝑖𝑗

is the cost of transporting the initial flow 𝑥. Thus, when one additional unit of

flow reaches 𝑡, P1’s payoff increases by 𝑝1 and at the same time decreases by its

transportation cost.

Similarly, the payoff of P2 is defined as the value of lost flow assessed by P2 net

the cost of executing the attack:

𝑢2(𝑥, 𝜇) = 𝑝2 F (𝑥− 𝑥𝜇)⏟  ⏞  
value of lost flow

− C2 (𝜇)⏟  ⏞  
cost of attack

(2.4)

where 𝑝2 ∈ R+ is the marginal value of the lost flow for P2 (in general, 𝑝1 ̸= 𝑝2),

and C2 (𝜇) :=
∑︀

(𝑖,𝑗)∈ℰ 𝑐𝑖𝑗𝜇𝑖𝑗 is the cost of the attack 𝜇. Thus, if the disruption of an

edge induces the loss of one unit of flow, the payoff of P2 increases by 𝑝2, and at the

same time decreases by the cost of attack. In this model, we suppose that the cost

of attacking an edge is proportional to its capacity. After rescaling P2’s payoff, we

assume without loss of generality that the cost of attacking an edge is equal to its

capacity.

Notice that in this model, F and C1 are “linear forms” on ℱ (i.e., ℱ is not a vector

space). Similarly, C2 is a “linear form” on 𝒜 (i.e., 𝒜 is not a vector space).

We allow both players to randomize over their set of pure actions. Let ∆(ℱ) and

∆(𝒜) denote the mixed extensions of P1’s and P2’s pure strategies, respectively, i.e.:

∆(ℱ) =

{︃
𝜎1 ∈ [0, 1]ℱ

⃒⃒⃒ ∑︁
𝑥∈ℱ

𝜎1(𝑥) = 1

}︃
, ∆(𝒜) =

{︃
𝜎2 ∈ [0, 1]𝒜

⃒⃒⃒ ∑︁
𝜇∈𝒜

𝜎2(𝜇) = 1

}︃
.

For notational simplicity, we define 𝜎1
𝑥 := 𝜎1(𝑥) and 𝜎2

𝜇 := 𝜎2(𝜇). Given any function
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𝜙 : ℱ × 𝒜 −→ R and a strategy profile 𝜎 = (𝜎1, 𝜎2) ∈ ∆(ℱ) × ∆(𝒜), we denote

E𝜎 [𝜙(𝑥, 𝜇)] :=
∑︀

𝑥∈ℱ 𝜎
1
𝑥

∑︀
𝜇∈𝒜 𝜎

2
𝜇 𝜙(𝑥, 𝜇) the expectation of 𝜙 with respect to 𝜎.

Given a strategy profile 𝜎 = (𝜎1, 𝜎2) ∈ ∆(ℱ) × ∆(𝒜), the respective player

expected payoffs can be expressed as:

𝑈1(𝜎
1, 𝜎2) = 𝑝1E𝜎 [F (𝑥𝜇)] − E𝜎 [C1 (𝑥)] (2.5)

𝑈2(𝜎
1, 𝜎2) = 𝑝2 (E𝜎 [F (𝑥)] − E𝜎 [F (𝑥𝜇)]) − E𝜎 [C2 (𝜇)] . (2.6)

We will use the notation 𝑈𝑖(𝑥, 𝜎
2) = 𝑈𝑖(1{𝑥}, 𝜎

2) and 𝑈𝑖(𝜎
1, 𝜇) = 𝑈𝑖(𝜎

1,1{𝜇}) for

𝑖 ∈ {1, 2}. The mixed extension of game Γ is given by ⟨{1, 2}, (∆(ℱ),∆(𝒜)), (𝑈1, 𝑈2)⟩.

Let us illustrate this model through an example.

Example 1. Consider the network shown in Fig. 2-1. The edge labels give the

capacities and transportation costs.

s

1

2

t

2,1

1,1

2,11,1

1,1

Figure 2-1: Example graph.

Both players play one shot of the game according to Fig. 2-2a.

s

1

2

t

𝑥𝑠1 = 2
𝜇𝑠1 = 0

𝑥12 = 1
𝜇12 = 0

𝑥2𝑡 = 2
𝜇2𝑡 = 0

𝑥𝑠2 = 1
𝜇𝑠2 = 1

𝑥1𝑡 = 1
𝜇1𝑡 = 1

(a) Initial flow and attack

s

1

2

t

𝑥𝜇𝑠2 = 0

𝑥𝜇1𝑡 = 0𝑥𝜇𝑠1 = 1

𝑥𝜇12 = 1

𝑥𝜇2𝑡 = 1

(b) Resulting effective flow

Figure 2-2: One shot of game Γ played on a given graph.
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In this example, P1 sends one unit of flow through each of the 𝑠 − 𝑡 paths

{𝑠, 1, 𝑡}, {𝑠, 1, 2, 𝑡} and {𝑠, 2, 𝑡}, and P2 disrupts edges (1, 𝑡) and (𝑠, 2). Therefore,

the flows through paths {𝑠, 1, 𝑡} and {𝑠, 2, 𝑡} are lost and the effective flow, shown in

Fig 2-2b, consists of the unit flow through the path {𝑠, 1, 2, 𝑡}, i.e., F (𝑥𝜇) = 1. Since

each edge (𝑖, 𝑗) has a transportation cost 𝑏𝑖𝑗 = 1, the cost of transporting the initial

flow 𝑥 is C1 (𝑥) = 7. Thus, P1’s payoff is 𝑢1(𝑥, 𝜇) = 𝑝1 − 7.

The amount of lost flow F (𝑥− 𝑥𝜇) that results from the attack 𝜇 is equal to 2.

Since P2 disrupted 2 edges of capacity 1 each, the cost of attack C2 (𝜇) = 2. Thus,

P2’s payoff is 𝑢2(𝑥, 𝜇) = 2𝑝2 − 2.

2.3 Standard Definitions and Main Assumption

Let us recall the following standard definitions:

A mixed strategy profile (𝜎1*, 𝜎2*) ∈ ∆(ℱ)×∆(𝒜) is a Nash Equilibrium (NE) if

and only if:

∀𝜎1 ∈ ∆(ℱ), 𝑈1(𝜎
1*, 𝜎2*) ≥ 𝑈1(𝜎

1, 𝜎2*), (2.7)

∀𝜎2 ∈ ∆(𝒜), 𝑈2(𝜎
1*, 𝜎2*) ≥ 𝑈2(𝜎

1*, 𝜎2). (2.8)

We denote 𝒮Γ the set of NE of the game Γ. Equivalently, at a NE (𝜎1* , 𝜎2*), 𝜎1*

(resp. 𝜎2*) is a Best Response (BR) to 𝜎2* (resp. 𝜎1*). The support of 𝜎1 (resp. 𝜎2)

is supp(𝜎1) = {𝑥 ∈ ℱ | 𝜎1
𝑥 > 0} (resp. supp(𝜎2) = {𝜇 ∈ 𝒜 | 𝜎2

𝜇 > 0}).

A two-player game is a strictly competitive game (SCG) if, when both players

change their mixed strategies, either the expected payoffs remain the same or one of

the expected payoffs strictly increases and the other strictly decreases. In particular,

a zero-sum game (i.e., 𝑢1 = −𝑢2) is an SCG. Adler et al. [2] define SCG using the

notion of affine variance: 𝑢1 is an affine variant of −𝑢2 if and only if ∃ (𝜆, 𝛽) ∈

R*
+ ×R | ∀(𝑥, 𝜇) ∈ ℱ ×𝒜, 𝑢1(𝑥, 𝜇) = −𝜆𝑢2(𝑥, 𝜇) + 𝛽. The game Γ is an SCG if and

only if 𝑢1 is an affine variant of −𝑢2. Besides, recall that the Minimax Theorem by
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Von Neumann [21] for a zero-sum game ̃︀Γ = ⟨{1, 2}, (ℱ ,𝒜), (̃︀𝑢1,−̃︀𝑢1)⟩ states that:

max
𝜎1∈Δ(ℱ)

min
𝜎2∈Δ(𝒜)

̃︀𝑈1(𝜎
1, 𝜎2) = min

𝜎2∈Δ(𝒜)
max

𝜎1∈Δ(ℱ)

̃︀𝑈1(𝜎
1, 𝜎2)

and:

(𝜎1* , 𝜎2*) ∈ 𝒮̃︀Γ ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
𝜎1* ∈ arg max

𝜎1∈Δ(ℱ)
min

𝜎2∈Δ(𝒜)

̃︀𝑈1(𝜎
1, 𝜎2),

𝜎2* ∈ arg min
𝜎2∈Δ(𝒜)

max
𝜎1∈Δ(ℱ)

̃︀𝑈1(𝜎
1, 𝜎2).

Consider two games Γ = ⟨{1, 2}, (ℱ ,𝒜), (𝑢1, 𝑢2)⟩, ̃︀Γ = ⟨{1, 2}, (ℱ ,𝒜), (̃︀𝑢1, ̃︀𝑢2)⟩
with:

̃︀𝑢1(𝑥, 𝜇) = 𝑎1𝑢1(𝑥, 𝜇) + 𝑔(𝜇)

̃︀𝑢2(𝑥, 𝜇) = 𝑎2𝑢2(𝑥, 𝜇) + ℎ(𝑥)

where (𝑎1, 𝑎2) ∈ (R*
+)2, 𝑔 : 𝒜 → R and ℎ : ℱ → R. Then, Γ and ̃︀Γ are strategically

equivalent (i.e., they have the same set of equilibria).

In this thesis, we restrict the class of graphs that we study. This enables us to

develop a rather complete characterization of the equilibria of game Γ and helps us

relate them to the solutions of classical routing problems. Specifically, we consider

the graphs that satisfy the following assumption:

Assumption 1. Let 𝛼 := min𝜆∈Λ𝑝𝑎𝑡ℎ

∑︀
(𝑖,𝑗)∈𝜆 𝑏𝑖𝑗. There exists an optimal solution of

(𝒫2), 𝑥* ∈ Ω2, that takes 𝑠− 𝑡 paths with marginal transportation cost equal to 𝛼, i.e.,

∃𝑥* ∈ Ω2 s.t. ∀𝜆 ∈ Λ𝑝𝑎𝑡ℎ : 𝑥𝜆 > 0 =⇒
∑︁

(𝑖,𝑗)∈𝜆

𝑏𝑖𝑗 = 𝛼,

where Λ𝑝𝑎𝑡ℎ is the set containing all the 𝑠− 𝑡 paths of the network.

This assumption, noted (A1), implies that if 𝑥* ∈ Ω2 denotes a min-cost max-flow,

the cost of transporting a unit flow through each 𝑠− 𝑡 path taken by 𝑥* is identically

equal to 𝛼. By definition of 𝛼, every other path in the network cannot have a smaller

marginal transportation cost. Notice that if such an 𝑥* exists, then (A1) will be
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satisfied for any optimal solution of (𝒫2). The case when every 𝑠− 𝑡 has an identical

marginal transportation cost is a special case of this assumption. In Section 5.1, we

will discuss the implications of relaxing (A1). We illustrate (A1) with the following

example:

Example 2. Consider the network flow problem in Fig. 2-3. There is a unique min-

cost max-flow 𝑥*, which carries 1 unit of flow through paths {𝑠, 2, 4, 𝑡}, {𝑠, 2, 3, 𝑡} and

{𝑠, 1, 𝑡}. Thus, the total amount of flow is equal to 3 units. In this network, 𝛼 = 3,

and each path taken by 𝑥* has a marginal transportation cost equal to 3. Thus, the

cost of transporting 𝑥* is equal to 9. The remaining paths that are not taken by 𝑥*

are {𝑠, 4, 𝑡} with a transportation cost 4, and {𝑠, 1, 3, 𝑡} with a transportation cost 3.

Thus, (A1) is satisfied.

s

1

2 3

4

t

0,1,3

0,1,1
1,1,1

2,2,1
1,1,1
1,1,1 1,1,1

1,1,1

1,1,2

Figure 2-3: Min-cost max-flow (drawn in blue) in a graph satisfying (A1). The
labels of each edge correspond to the flow it carries (blue), its capacity (red) and its
transportation cost (green).

Remark 1. (A1) implies that for all 𝑥 ∈ ℱ , C1 (𝑥) ≥ 𝛼F (𝑥) and Θ2 = 𝛼Θ1. To show

this, we note 𝑏𝜆 the cost of transporting one unit of flow through path 𝜆 ∈ Λ𝑝𝑎𝑡ℎ, then

we obtain:

∀𝑥 ∈ ℱ , C1 (𝑥) =
∑︁
𝜆∈Λ

𝑏𝜆𝑥𝜆 ≥
∑︁

𝜆∈Λ𝑝𝑎𝑡ℎ

𝑏𝜆𝑥𝜆
(A1)

≥ 𝛼
∑︁

𝜆∈Λ𝑝𝑎𝑡ℎ

𝑥𝜆 = 𝛼F (𝑥) , (2.9)
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and

Θ2 = C1 (𝑥*) =
∑︁

𝜆∈Λ𝑝𝑎𝑡ℎ

𝑏𝜆𝑥
*
𝜆

(A1)
= 𝛼

∑︁
𝜆∈Λ𝑝𝑎𝑡ℎ

𝑥*𝜆 = 𝛼F (𝑥*) = 𝛼Θ1, (2.10)

where we used the fact that any min-cost max-flow does not send flow in any loop.

Note that our setup can be easily extended to networks with multiple sources and

multiple destination nodes, but still satisfying (A1). For such a network, one needs to

add an extra source (resp. destination) node and connect it to every existing source

(resp. destination) node with an uncapacitated edge of cost of transportation equal

to 0. This modification gives a new network with single source and single destination.

The NE of the game defined for the original network remain the same as that of the

game defined for the new network.

Now that the game is set up, the objective of this thesis is to solve Γ in closed form

and characterize its NE. We want to give structural insights on the set of NE and

relate these equilibria to classical network routing problems. More particularly, our

objective is to utilize the equilibrium properties to relate the support of equilibrium

strategies of P1 (resp. P2) with the solutions of (𝒫2) (resp. min-cut sets).
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Chapter 3

Characterization of Nash Equilibria

In this chapter, we present theoretical properties satisfied by the NE of the game Γ.

Given 𝑝1 and 𝑝2, we give one NE of Γ that is based on min-cost max-flows for P1

and on min-cut sets for P2. Then we focus on the main region, 𝑝1 > 𝛼, 𝑝2 > 1,

and we compute in closed form certain physical quantities of interest at any NE

using a combination of game theoretic arguments and network optimization results.

Specifically, we prove that each player has a unique payoff value in all NE and we

characterize the value of effective (resp. lost) flow and the cost of transportation

(resp. cost of attack) in terms of the parameters of Γ: 𝑝1, 𝑝2, the maximum amount

of flow in the network Θ1 and the smallest transportation cost of the max-flows Θ2.

Finally, we relate the mixed strategy NE of Γ to the solutions of the minimum cost

maximum flow problem (𝒫2) and to the minimum cut sets, and we show how we can

restrict the support of the strategies that can be NE using graph theoretic properties

of the network.

3.1 Preliminary Results

The following lemma states that even though Γ is not a zero-sum game, one can

specify a zero-sum game, ̃︀Γ, that is strategically equivalent to Γ.

Lemma 1. Γ is not a zero-sum game, but is strategically equivalent to the zero-sum
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game ̃︀Γ := ⟨{1, 2}, (ℱ ,𝒜), (̃︀𝑢1,−̃︀𝑢1)⟩ where:

∀(𝑥, 𝜇) ∈ ℱ ×𝒜, ̃︀𝑢1(𝑥, 𝜇) = F (𝑥𝜇) − 1

𝑝1
C1 (𝑥) +

1

𝑝2
C2 (𝜇) (3.1)

Therefore, the NE of Γ can be obtained by solving the following two linear programming

problems:

(LP1) maximize 𝑧

subject to ̃︀𝑈1(𝜎
1, 𝜇) ≥ 𝑧, ∀𝜇 ∈ 𝒜

𝜎1 ∈ ∆(ℱ)

(LP2) maximize 𝑧′

subject to ̃︀𝑈2(𝑥, 𝜎
2) ≥ 𝑧′, ∀𝑥 ∈ ℱ

𝜎2 ∈ ∆(𝒜)

If (𝜎1*, 𝜎2*) ∈ 𝒮Γ and (𝜎1†, 𝜎2†) ∈ 𝒮Γ, then (𝜎1*, 𝜎2†) ∈ 𝒮Γ and (𝜎1†, 𝜎2*) ∈ 𝒮Γ

(interchangeability). Furthermore, 𝒮Γ is a convex set.

Proof of Lemma 1. 𝑢1 is not an affine variant of −𝑢2. Indeed, let us suppose the

contrary:

∃ (𝜆, 𝛽) ∈ R*
+ × R | ∀(𝑥, 𝜇) ∈ ℱ ×𝒜, 𝑢1(𝑥, 𝜇) = −𝜆𝑢2(𝑥, 𝜇) + 𝛽

Then we have the following contradiction:

0 = 𝑢1(𝑥
0, 𝜇0) + 𝜆𝑢2(𝑥

0, 𝜇0) = 𝛽 = 𝑢1(𝑥
*, 𝜇0) + 𝜆𝑢2(𝑥

*, 𝜇0) ̸= 0.

Therefore, 𝑢1 is not an affine variant of −𝑢2 and Γ is not an SCG (and a fortiori

not a zero-sum game either).
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However, the following transformations preserve the set of NE:

1

𝑝1
𝑢1(𝑥, 𝜇) +

1

𝑝2
C2 (𝜇) = F (𝑥𝜇) − 1

𝑝1
C1 (𝑥) +

1

𝑝2
C2 (𝜇) = ̃︀𝑢1 (3.2)

1

𝑝2
𝑢2(𝑥, 𝜇) − F (𝑥) +

1

𝑝1
C1 (𝑥) = −F (𝑥𝜇) +

1

𝑝1
C1 (𝑥) − 1

𝑝2
C2 (𝜇) = −̃︀𝑢1 (3.3)

So Γ is strategically equivalent to a zero-sum game ̃︀Γ and 𝒮Γ = 𝒮̃︀Γ.

The following lemma states that P1’s all strategies containing loops are strictly

dominated.

Lemma 2. Any flow containing loops is not a BR for P1.

Proof of Lemma 2. Suppose that P1 chooses a flow 𝑥 containing a loop 𝑙, i.e., the

flow 𝑥𝑙 > 0 stays in the loop and never reaches 𝑡. Therefore 𝑥𝑙 induces a disutility

because of its transportation cost, and for any attack 𝜇, 𝑢1(𝑥, 𝜇) < 𝑢1(𝑥 − 𝑥𝑙, 𝜇),

where 𝑥 − 𝑥𝑙 is the flow resulting from removing the part of 𝑥 that goes through 𝑙.

Thus, any flow containing loops is strictly dominated.

The intuition behind this result is that if P1 sends flow in a loop, then she will

pay an extra cost without increasing the amount of flow that can reach the terminal

node. Therefore P1 has no incentive to send flow in any loop. Then, Λ in (2.1) can

be restricted to the set of 𝑠 − 𝑡 paths and ℱ can be restricted to the set of feasible

flows that do not take any loop.

Props. 1–3 below provide that, for given 𝑝1, 𝑝2 and 𝛼, the game Γ admits qual-

itatively different equilibria in regions 0 < 𝑝1 < 𝛼 and 𝑝2 > 0 (Region I), 𝑝1 > 𝛼

and 0 < 𝑝2 < 1 (Region II), and 𝑝1 > 𝛼 and 𝑝2 > 1 (Region III). These regions are

illustrated in Fig. 3-1.

The following result states that no flow and no attack is the unique NE of Γ in

Region I:

Proposition 1 (Region I). If 𝑝1 < 𝛼, then 𝒮Γ = {(𝑥0, 𝜇0)}, with 𝑢1(𝑥0, 𝜇0) = 0 and

𝑢2(𝑥
0, 𝜇0) = 0.
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𝑝10 𝛼

𝑝2

1
supp(𝜎1*) = {𝑥0}

supp(𝜎2*) = {𝜇0}
supp(𝜎1*) = {𝑥*}

supp(𝜎2*) = {𝜇0}

supp(𝜎1*) = {𝑥0, 𝑥*}

supp(𝜎2*) = {𝜇0, 𝜇𝑚𝑖𝑛}

I

II

III

Figure 3-1: Support of equilibrium strategies in Regions I-III.

Proof of Proposition 1. First, note that 𝑢1(𝑥0, 𝜇0) = 0. Second,

∀𝑥 ∈ ℱ , 𝑢1(𝑥, 𝜇0) = 𝑝1 F
(︁
𝑥𝜇

0
)︁
− C1 (𝑥) = 𝑝1 F (𝑥) − C1 (𝑥)

(2.9)
≤ (𝑝1 − 𝛼) F (𝑥) ≤ 0.

So 𝑥0 is a BR for P1.

Similarly, 𝑢2(𝑥0, 𝜇0) = 𝑝2 F
(︁
𝑥0 − (𝑥0)𝜇

0
)︁
− C2 (𝜇0) = 0, and ∀𝜇 ∈ 𝒜, 𝑢2(𝑥0, 𝜇) =

−C2 (𝜇) ≤ 0. Therefore 𝜇0 is a BR for P2. Thus, (𝑥0, 𝜇0) is a NE.

Lastly, let us argue that this NE is unique using the iterated elimination of strictly

dominated strategies.

∀(𝑥, 𝜇) ∈ ℱ ×𝒜, 𝑢1(𝑥, 𝜇) = 𝑝1 F (𝑥𝜇) − C1 (𝑥)
(2.9)
≤ 𝑝1 F (𝑥𝜇) − 𝛼F (𝑥)

≤ (𝑝1 − 𝛼) F (𝑥) ≤ 0.

If 𝑥 ̸= 𝑥0, then ∀𝜇 ∈ 𝒜, 𝑢1(𝑥, 𝜇) < 0 = 𝑢1(𝑥
0, 𝜇). Therefore 𝑥 ̸= 𝑥0 is strictly

dominated and cannot be in the support of any NE.

Since ∀𝜇 ∈ 𝒜, 𝑢2(𝑥0, 𝜇) = −C2 (𝜇), then, ∀𝜇 ∈ 𝒜∖{𝜇0}, 𝑢2(𝑥0, 𝜇) = −C2 (𝜇) <

0 = 𝑢2(𝑥
0, 𝜇0). Hence, 𝜇 ̸= 𝜇0 is now strictly dominated and cannot be in the support

of any NE. Thus, (𝑥0, 𝜇0) is the unique NE when 𝑝1 < 𝛼.

Intuitively, when 0 < 𝑝1 < 𝛼, the marginal value of effective flow that reaches the

destination node 𝑡 is less than the marginal transportation cost for every s-t path.
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Therefore, P1 will face negative utility if she sends flow through the network. Thus,

in this case, her BR is not to route any flow. Since no flow is sent by P1, P2’s BR is

not to attack, otherwise she faces the cost of attack without gaining any value from

lost flow.

Next, for Region II, we obtain that min-cost max-flow and no attack is a pure

NE.

Proposition 2 (Region II). If 𝑝1 > 𝛼 and 𝑝2 < 1, then ∀𝑥* ∈ Ω2, {𝑥*, 𝜇0} ∈ 𝒮Γ.

The equilibrium payoffs are 𝑢1(𝑥*, 𝜇0) = (𝑝1 − 𝛼)Θ1 and 𝑢2(𝑥*, 𝜇0) = 0.

Proof of Proposition 2. First, 𝑢1(𝑥*, 𝜇0) = 𝑝1 F
(︁

(𝑥*)𝜇
0
)︁
− C1 (𝑥*)

(2.10)
= (𝑝1 − 𝛼)Θ1.

Second, ∀𝑥 ∈ ℱ , 𝑢1(𝑥, 𝜇0) = 𝑝1 F
(︁
𝑥𝜇

0
)︁
− C1 (𝑥)

(2.9)
≤ (𝑝1 − 𝛼) F (𝑥) ≤ (𝑝1 − 𝛼)Θ1.

So 𝑥* is a BR for P1.

Similarly, 𝑢2(𝑥*, 𝜇0) = 𝑝2 F
(︁
𝑥* − (𝑥*)𝜇

0
)︁
− C2 (𝜇0) = 0 because (𝑥*)𝜇

0
= 𝑥*.

Besides,

∀𝜇 ∈ 𝒜, 𝑢2(𝑥*, 𝜇) = 𝑝2 F (𝑥* − (𝑥*)𝜇) − C2 (𝜇) ≤ F (𝑥* − (𝑥*)𝜇) − C2 (𝜇)

since 𝑝2 ≤ 1. F (𝑥* − (𝑥*)𝜇) is the loss induced by the attack 𝜇 when 𝑥* is in the net-

work, and C2 (𝜇) is the cost of the attack 𝜇 which can also be viewed as the maximum

amount of flow that can be lost because of the attack. Thus: ∀𝜇 ∈ 𝒜, 𝑢2(𝑥*, 𝜇) ≤ 0

and 𝜇0 is a BR for P2.

Therefore ∀𝑥* ∈ Ω2, (𝑥*, 𝜇0) is a NE.

This result can be explained as follows: on one hand, since P2’s valuation of lost

flow is small (𝑝2 < 1), for any attack, the utility gained from the lost flow is always

lower than the cost of attack. Therefore, P2’s BR is not to attack any edge. On the

other hand, P1’s valuation of effective flow reaching 𝑡 is higher than the disutility it

faces in transportation costs (𝑝1 > 𝛼). Since P2 does not disrupt any edge, every

flow sent through the network reaches 𝑡; thus, P1’s BR is to send a maximum flow.

Among the different maximum flows, a min-cost max-flow maximizes P1’s equilibrium
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payoff. Note that if 𝑝1 = 𝛼 and 𝑝2 < 1, then both (𝑥0, 𝜇0) and (𝑥*, 𝜇0) are NE. The

equilibrium payoffs are still (0, 0).

The following Proposition 3 focuses on Region III. It shows that given 𝑝1 > 𝛼,

𝑝2 > 1, and a graph 𝒢 satisfying (A1), Γ admits a NE whose support is based on a

min-cost max-flow for P1, and on a min-cut set for P2.

Proposition 3 (Region III). If 𝑝1 > 𝛼 and 𝑝2 > 1, then Γ has no pure NE.

Furthermore, ∃ �̃� = (�̃�1, �̃�2) ∈ 𝒮Γ such that 𝑈1(�̃�
1, �̃�2) = 𝑈2(�̃�

1, �̃�2) = 0, and

supp(�̃�1) = {𝑥0, 𝑥*} and supp(�̃�2) = {𝜇0, 𝜇𝑚𝑖𝑛}. The corresponding probabilities

are given by:

�̃�1
𝑥0 = 1 − 1

𝑝2
, �̃�1

𝑥* =
1

𝑝2
, (3.4)

�̃�2
𝜇0 =

𝛼

𝑝1
, �̃�2

𝜇𝑚𝑖𝑛 = 1 − 𝛼

𝑝1
. (3.5)

Proof of Proposition 3.

– First, let us show that any pure strategy is not a NE.

Let us suppose that P2 chooses an attack 𝜇 that disrupts 𝑚 edges 𝑒1, . . . , 𝑒𝑚

of 𝒢 (𝑚 can be equal to 0). Now, let us suppose that P1 chooses a flow 𝑥 that

crosses one of the attacked edges, for instance 𝑒1. If we note 𝑥𝑝 the part of 𝑥

that goes through 𝑒1, then 𝑥𝑝 will be lost because of the attack so the value of

effective flow obtained by routing 𝑥 is the same as if 𝑥 − 𝑥𝑝 had been routed.

However, the transportation cost of 𝑥 is strictly greater than the transportation

cost of 𝑥− 𝑥𝑝. Therefore 𝑢1(𝑥, 𝜇) < 𝑢1(𝑥− 𝑥𝑝, 𝜇).

Thus, a BR for P1 does not take paths containing at least one attacked edge.

Now, let us suppose that P1 chooses only such flows, the utility becomes

𝑢1(𝑥, 𝜇) = 𝑝1 F (𝑥) − C1 (𝑥). Let us note 𝒢𝜇 = (𝒱 , ℰ∖{𝑒1, . . . , 𝑒𝑚}). Due to

the latest comment, P1’s BR is a feasible flow in 𝒢𝜇. Now there are two cases:

Case 1: there is no path in 𝒢𝜇 with marginal transportation cost less than 𝑝1.

Then, P1’s BR is 𝑥0 (no flow). However, if P1 chooses 𝑥0, then it’s easy to see

that P2’s BR is 𝜇0 (no attack), which means that the initial 𝜇 is not a BR for
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P2 in this case. Remark that if the initial 𝜇 is 𝜇0, then Case 1 is not satisfied

(there are paths in 𝒢 of marginal transportation cost less than 𝑝1, because of

the definition of 𝛼).

Case 2: there exists at least one path in 𝒢𝜇 with marginal transportation cost

less than 𝑝1. Then, P1’s BR is to send as much flow as she can along the paths

with maginal transportation cost less than 𝑝1 (if there are different such flows

with the same value, then P1’s BR is the one with least transportation cost).

However, if P1 chooses this BR, then the initial attack 𝜇 does not induce any

loss, and P2 will have an incentive to disrupt some edges of 𝒢𝜇 instead (for

instance we can prove that at least one edge is saturated by P1’s BR so P2 will

gain utility by attacking that edge since 𝑝2 > 1). Thus, P2’s BR is different

from 𝜇.

Therefore, every pure strategy is not a NE.

– Now let us prove that �̃� is a NE.

∀𝜎1 ∈ ∆(ℱ), 𝑈1(𝜎
1, �̃�2)

(2.5)
= 𝑝1

𝛼

𝑝1
E𝜎 [F (𝑥)] − E𝜎 [C1 (𝑥)]

(2.9)
≤ 𝛼E𝜎 [F (𝑥)] − 𝛼E𝜎 [F (𝑥)] = 0

Besides: 𝑈1(�̃�
1, �̃�2) = 𝛼

1

𝑝2
F (𝑥*) − 1

𝑝2
C1 (𝑥*)

(2.10)
=

𝛼

𝑝2
F (𝑥*) − 𝛼

𝑝2
F (𝑥*) = 0

Similarly:

∀𝜎2 ∈ ∆(𝒜), 𝑈2(�̃�
1, 𝜎2)

(2.6)
= F (𝑥*) − E𝜎 [F ((𝑥*)𝜇)] − E𝜎 [C2 (𝜇)]

= E𝜎 [F (𝑥* − (𝑥*)𝜇) − C2 (𝜇)] ≤ 0

where the inequality follows from the fact that for any attack 𝜇, F (𝑥* − (𝑥*)𝜇)

is the loss induced by 𝜇 when 𝑥* is in the network, and C2 (𝜇) is the cost of

𝜇 which can also be viewed as the maximum amount of flow that can be lost

because of the attack.
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Besides: 𝑈2(�̃�
1, �̃�2) = F (𝑥*) − 𝛼

𝑝1
F (𝑥*) −

(︂
1 − 𝛼

𝑝1

)︂
C2 (𝜇𝑚𝑖𝑛) = 0 thanks to

the Max-Flow Min-Cut Theorem. Thus, (�̃�1, �̃�2) is a NE.

We can make a few useful observations from this result. First, in contrast to

Props. 1 and 2, in Region III, both players randomize their actions in any equilibrium.

Indeed, if P1’s pure strategy is to route some flow 𝑥 in the network, then P2’s BR is

to disrupt some edges taken by 𝑥 in order to induce the maximum loss. Then P1 has

an incentive to change her strategy and route another flow that takes other paths not

disrupted by P2. Therefore, for every pure action profile, at least one of the players

has an incentive to deviate, preventing them from reaching an equilibrium.

Second, the mixed equilibrium (�̃�1, �̃�2), as defined by (3.4) and (3.5), can be

obtained from a solution of problem (𝒫2) and a min-cut set of the graph 𝒢. Note that

(�̃�1, �̃�2) has a particularly simple structure, i.e., P1 either sends a whole min-cost

max-flow, or does not send any flow in the network. Similarly, P2 either disrupts all

the edges of a min-cut set, or does not attack any edge of the network.

Finally, Prop. 3 provides a game-theoretic intuition: P1’s equilibrium strategy �̃�1

is characterized by 𝑝2, and similarly, P2’s equilibrium strategy �̃�2 is characterized

by 𝑝1 and 𝛼 (given and fixed under (A1)). This can be explained as follows: as 𝑝2

increases, �̃�1
𝑥* decreases while �̃�1

𝑥0 increases. When P2’s valuation of lost flow is large,

she has more incentive to attack, so any flow sent by P1 will be more likely to be

lost. Thus, P1 chooses not to send any flow with higher probability than sending

𝑥*. Likewise, as 𝑝1 increases, �̃�2
𝜇𝑚𝑖𝑛 increases while �̃�2

𝜇0 decreases. Again, when the

marginal valuation of effective flow is large, P1 will prefer to send as much flow as

she can. Thus, P2 will be more likely to attack a min-cut set.

The following example applies the results of Props. 1-3:

Example 3. Consider the graph in Fig. 3-2. We can see that 𝛼 = 3, and that the

min-cost max-flow sends 1 unit of flow through {𝑠, 1, 3, 𝑡}, {𝑠, 2, 3, 𝑡} and {𝑠, 2, 4, 𝑡},

and only takes paths with transportation cost equal to 3. Thus, (A1) is satisfied.
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The min-cut set is given by {(1, 3), (2, 3), (2, 4)}. The NE described in Props. 1-3 are

illustrated in Fig. 3-3.

s

1

2

3

4

t1,1 1,1

2,1

1,1

3,1

1,1

1,1

3,1

2,1

Figure 3-2: Example network. Edge capacities and transportation costs are labeled
in red and green colors respectively.

Thanks to Props. 1-3, P1 (or P2) has a strategy which achieves a stable outcome

for any 𝑝1 and 𝑝2, and any graph satisfying (A1). However, P1 may be interested

in an equilibrium strategy that maximizes the expected amount of effective flow that

successfully crosses the network after attack. Similarly, the interdictor may be inter-

ested in an equilibrium strategy that maximizes the expected amount of flow that

is lost. To solve this problem, we need to further analyze the set of NE. Although

Regions I and II do not require further study, Region III hosts many nice proper-

ties that will be used in our subsequent analysis of equilibria in budget-constrained

environments. We now present the main results focusing on NE in Region III.

3.2 Main Theorem

We now present our main result focusing on NE in Region III.

Theorem 1. If 𝑝1 > 𝛼, 𝑝2 > 1, and under (A1), then for any 𝜎* ∈ 𝒮Γ:

(i) Both players’ equilibrium payoffs are equal to 0, i.e.:

𝑈1(𝜎
1*, 𝜎2*) ≡ 0 (3.6)

𝑈2(𝜎
1*, 𝜎2*) ≡ 0 (3.7)
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�̃�2
𝜇𝑚𝑖𝑛 = 1− 3

𝑝1

�̃�1
𝑥* =

1

𝑝2

0 < 𝑝1 < 𝛼
0 < 𝑝2

𝛼 < 𝑝1
0 < 𝑝2 < 1

𝛼 < 𝑝1
1 < 𝑝2

I

II

III

Figure 3-3: NE described in Props. 1, 2 and 3. The min-cost max-flow (resp. min-cut
set attack) is in bold blue (resp. dotted red).
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(ii) The expected amount of flow sent in the network is given by:

E𝜎* [F (𝑥)] ≡ 1

𝑝2
Θ1 (3.8)

and the expected transportation cost is given by:

E𝜎* [C1 (𝑥)] ≡ 1

𝑝2
Θ2 (3.9)

(iii) The expected cost of attack is given by:

E𝜎* [C2 (𝜇)] ≡ Θ1 −
1

𝑝1
Θ2 (3.10)

(iv) The expected amount of effective flow (that reaches 𝑡) is given by:

E𝜎* [F (𝑥𝜇)] ≡ 1

𝑝1𝑝2
Θ2. (3.11)

We derive two proofs of Thm. 1, by combining the Max-Flow Min-Cut Theorem

with best response inequalities (in the first proof), and with linear programming

duality (in the second proof). In order to prove Thm. 1, we first need the following

lemma:

Lemma 3.

∀(𝜎1*, 𝜎2*) ∈ 𝒮Γ, E𝜎* [F ((𝑥*)𝜇)] = F (𝑥*) − E𝜎* [C2 (𝜇)] . (3.12)

Proof of Lemma 3. We can find a link between both players’ expected payoffs that

we can write in two different ways:

𝑈1(𝜎
1, 𝜎2) = 𝑝1E𝜎 [F (𝑥)] − E𝜎 [C1 (𝑥)] − 𝑝1

𝑝2
E𝜎 [C2 (𝜇)] − 𝑝1

𝑝2
𝑈2(𝜎

1, 𝜎2) (3.13)

𝑈2(𝜎
1, 𝜎2) = −E𝜎 [C2 (𝜇)] + 𝑝2E𝜎 [F (𝑥)] − 𝑝2

𝑝1
E𝜎 [C1 (𝑥)] − 𝑝2

𝑝1
𝑈1(𝜎

1, 𝜎2) (3.14)
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Let 𝜎* = (𝜎1*, 𝜎2*) ∈ 𝒮Γ. Since (�̃�1, �̃�2) ∈ 𝒮Γ (Prop. 3), we have:

0 = 𝑈2(�̃�
1, �̃�2)

(2.8)

≥ 𝑈2(�̃�
1, 𝜎2*)

(2.6)
= F (𝑥*) − E𝜎* [F ((𝑥*)𝜇)] − E𝜎* [C2 (𝜇)]

So we get the first inequality:

E𝜎* [F ((𝑥*)𝜇)] ≥ F (𝑥*) − E𝜎* [C2 (𝜇)] (3.15)

Now, since (𝜎1*, 𝜎2*) ∈ 𝒮Γ:

𝑈1(𝜎
1*, 𝜎2*)

(2.7)

≥ 𝑈1(�̃�
1, 𝜎2*)

(2.5)
=

𝑝1
𝑝2
E𝜎* [F ((𝑥*)𝜇)] − 1

𝑝2
C1 (𝑥*)

(2.10)
=

𝑝1
𝑝2
E𝜎* [F ((𝑥*)𝜇)] − 𝛼

𝑝2
F (𝑥*) (3.16)

By combining (3.13) and (2.8), using �̃�2, we get:

𝑈1(𝜎
1*, 𝜎2*)

(3.13)
= 𝑝1E𝜎* [F (𝑥)] − E𝜎* [C1 (𝑥)] − 𝑝1

𝑝2
E𝜎* [C2 (𝜇)] − 𝑝1

𝑝2
𝑈2(𝜎

1*, 𝜎2*)

(2.9)
≤ (𝑝1 − 𝛼)E𝜎* [F (𝑥)] − 𝑝1

𝑝2
E𝜎* [C2 (𝜇)] − 𝑝1

𝑝2
𝑈2(𝜎

1*, 𝜎2*)

(2.8)

≤ (𝑝1 − 𝛼)E𝜎* [F (𝑥)] − 𝑝1
𝑝2
E𝜎* [C2 (𝜇)] − 𝑝1

𝑝2
𝑈2(𝜎

1*, �̃�2)

(2.6)
= (𝑝1 − 𝛼)E𝜎* [F (𝑥)] − 𝑝1

𝑝2
E𝜎* [C2 (𝜇)] − 𝑝1E𝜎* [F (𝑥)]

+ 𝛼E𝜎* [F (𝑥)] +

(︂
1 − 𝛼

𝑝1

)︂
𝑝1
𝑝2

C2

(︀
𝜇𝑚𝑖𝑛

)︀
Therefore:

𝑈1(𝜎
1*, 𝜎2*) ≤ 𝑝1

𝑝2

(︀
C2

(︀
𝜇𝑚𝑖𝑛

)︀
− E𝜎* [C2 (𝜇)]

)︀
− 𝛼

𝑝2
C2

(︀
𝜇𝑚𝑖𝑛

)︀
(3.17)

By combining (3.16) and (3.17), and using the Max-Flow Min-Cut Theorem, we

obtain:

E𝜎* [F ((𝑥*)𝜇)] ≤ F (𝑥*) − E𝜎* [C2 (𝜇)] (3.18)
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Equations (3.15) and (3.18) lead to:

E𝜎* [F ((𝑥*)𝜇)] = F (𝑥*) − E𝜎* [C2 (𝜇)]

thus proving Lemma 3.

Now we can prove Thm. 1:

First Proof of Theorem 1. Let 𝜎* = (𝜎1*, 𝜎2*) ∈ 𝒮Γ. Let us start by showing (iii),

but we will need a few intermediate equations before.

First, let us prove that 𝑈1(𝜎
1*, 𝜎2*) ≥ 0:

𝑈1(𝜎
1*, 𝜎2*)

(2.7)

≥ 𝑈1(𝑥
0, 𝜎2*) = 0 (3.19)

By combining (3.19) and (3.17), we obtain:

E𝜎* [C2 (𝜇)] ≤
(︂

1 − 𝛼

𝑝1

)︂
C2

(︀
𝜇𝑚𝑖𝑛

)︀
(3.20)

In order to get the reverse inequality, let us consider the strategy 𝜎1
𝜖 defined by

𝜎1
𝑥* =

1 + 𝜖

𝑝2
and 𝜎1

𝑥0 = 1 − 1 + 𝜖

𝑝2
for an 𝜖 small enough (we can find such an 𝜖 and

still have a probability distribution since 𝑝2 > 1):

𝑈1(𝜎
1*, 𝜎2*)

(2.7)

≥ 𝑈1(𝜎
1
𝜖 , 𝜎

2*)
(2.5)
=

𝑝1(1 + 𝜖)

𝑝2
E𝜎* [F ((𝑥*)𝜇)] − 1 + 𝜖

𝑝2
C1 (𝑥*)

(2.10)
=

𝑝1(1 + 𝜖)

𝑝2
E𝜎* [F ((𝑥*)𝜇)] − 𝛼(1 + 𝜖)

𝑝2
F (𝑥*)

Equation (3.12) gives us:

𝑈1(𝜎
1*, 𝜎2*) ≥ 𝑝1(1 + 𝜖)

𝑝2
(F (𝑥*) − E𝜎* [C2 (𝜇)]) − 𝛼(1 + 𝜖)

𝑝2
F (𝑥*) (3.21)

We just have to combine (3.17) and (3.21) in order to get:

𝑝1𝜖

𝑝2
F (𝑥*) − 𝑝1𝜖

𝑝2
E𝜎* [C2 (𝜇)] − 𝛼𝜖

𝑝2
F (𝑥*) ≤ 0
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which is equivalent to:

E𝜎* [C2 (𝜇)] ≥
(︂

1 − 𝛼

𝑝1

)︂
F (𝑥*) (3.22)

Equations (3.20), (3.22) and the Max-Flow Min-Cut Theorem give us (iii):

E𝜎* [C2 (𝜇)] =

(︂
1 − 𝛼

𝑝1

)︂
C2

(︀
𝜇𝑚𝑖𝑛

)︀
=

(︂
1 − 𝛼

𝑝1

)︂
Θ1

(2.10)
= Θ1 −

1

𝑝1
Θ2 (3.23)

We can now use this equation in order to prove that P1’s payoff is equal to 0 at

equilibrium: by combining (3.23) and (3.17), we obtain:

𝑈1(𝜎
1*, 𝜎2*) ≤ 0 (3.24)

Therefore, (3.24) and (3.19) give:

𝑈1(𝜎
1*, 𝜎2*) = 0 (3.25)

Let us now prove (3.8) from (ii). Similarly, let us first prove that 𝑈2(𝜎
1*, 𝜎2*) ≥ 0:

𝑈2(𝜎
1*, 𝜎2*)

(2.8)

≥ 𝑈2(𝜎
1*, 𝜇0) = 0 (3.26)

We can use previous results:

𝑈2(𝜎
1*, 𝜎2*)

(3.14)
= − E𝜎* [C2 (𝜇)] + 𝑝2E𝜎* [F (𝑥)] − 𝑝2

𝑝1
E𝜎* [C1 (𝑥)] − 𝑝2

𝑝1
𝑈1(𝜎

1*, 𝜎2*)

(3.25)
= − E𝜎* [C2 (𝜇)] + 𝑝2E𝜎* [F (𝑥)] − 𝑝2

𝑝1
E𝜎* [C1 (𝑥)]

(2.9)
≤ − E𝜎* [C2 (𝜇)] + 𝑝2

(︂
1 − 𝛼

𝑝1

)︂
E𝜎* [F (𝑥)]

(3.23)
=

(︂
1 − 𝛼

𝑝1

)︂(︀
𝑝2E𝜎* [F (𝑥)] − C2

(︀
𝜇𝑚𝑖𝑛

)︀)︀
(3.27)
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By combining (3.27) and (3.26), we obtain:

E𝜎* [F (𝑥)] ≥ 1

𝑝2
C2

(︀
𝜇𝑚𝑖𝑛

)︀
(3.28)

In order to get the reverse inequality, let us consider the strategy 𝜎2
𝜖 defined by

𝜎2
𝜇0 =

𝛼− 𝜖

𝑝1
and 𝜎2

𝜇𝑚𝑖𝑛 = 1− 𝛼− 𝜖

𝑝1
, for an 𝜖 small enough (we can find such an 𝜖 and

still have a probability distribution since 𝑝1 > 𝛼):

𝑈1(𝜎
1*, 𝜎2*)

(3.13)
= 𝑝1E𝜎* [F (𝑥)] − E𝜎* [C1 (𝑥)] − 𝑝1

𝑝2
E𝜎* [C2 (𝜇)] − 𝑝1

𝑝2
𝑈2(𝜎

1*, 𝜎2*)

(2.9)
≤ (𝑝1 − 𝛼)E𝜎* [F (𝑥)] − 𝑝1

𝑝2
E𝜎* [C2 (𝜇)] − 𝑝1

𝑝2
𝑈2(𝜎

1*, 𝜎2*)

(2.8)

≤ (𝑝1 − 𝛼)E𝜎* [F (𝑥)] − 𝑝1
𝑝2
E𝜎* [C2 (𝜇)] − 𝑝1

𝑝2
𝑈2(𝜎

1*, 𝜎2
𝜖 )

(2.6)
= (𝑝1 − 𝛼)E𝜎* [F (𝑥)] − 𝑝1

𝑝2
E𝜎* [C2 (𝜇)] − 𝑝1E𝜎* [F (𝑥)]

+ (𝛼− 𝜖)E𝜎* [F (𝑥)] +

(︂
1 − 𝛼− 𝜖

𝑝1

)︂
𝑝1
𝑝2

C2

(︀
𝜇𝑚𝑖𝑛

)︀
=
𝑝1
𝑝2

(︀
C2

(︀
𝜇𝑚𝑖𝑛

)︀
− E𝜎* [C2 (𝜇)]

)︀
− 𝛼− 𝜖

𝑝2
C2

(︀
𝜇𝑚𝑖𝑛

)︀
− 𝜖E𝜎* [F (𝑥)]

(3.23)
=

(︂
𝑝1
𝑝2

− 𝑝1
𝑝2

(︂
1 − 𝛼

𝑝1

)︂
− 𝛼− 𝜖

𝑝2

)︂
C2

(︀
𝜇𝑚𝑖𝑛

)︀
− 𝜖E𝜎* [F (𝑥)]

=
𝜖

𝑝2
C2

(︀
𝜇𝑚𝑖𝑛

)︀
− 𝜖E𝜎* [F (𝑥)] (3.29)

Equations (3.29) and (3.19) give us:

0 ≤ 𝜖

𝑝2
C2

(︀
𝜇𝑚𝑖𝑛

)︀
− 𝜖E𝜎* [F (𝑥)]

Thus:

E𝜎* [F (𝑥)] ≤ 1

𝑝2
C2

(︀
𝜇𝑚𝑖𝑛

)︀
(3.30)

Equations (3.28), (3.30) and the Max-Flow Min-Cut Theorem give us:

E𝜎* [F (𝑥)] =
1

𝑝2
F (𝑥*) =

1

𝑝2
Θ1 (3.31)
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Likewise, by combining (3.31) and (3.27), we get:

𝑈2(𝜎
1*, 𝜎2*) ≤ 0 (3.32)

Equations (3.32) and (3.26) give us:

𝑈2(𝜎
1*, 𝜎1*) = 0 (3.33)

thus proving (i).

Now, by combining (2.6), (3.31), (3.23) and (3.33), we can prove (iv):

E𝜎* [F (𝑥𝜇)] =
1

𝑝2
Θ1 −

1

𝑝2

(︂
1 − 𝛼

𝑝1

)︂
Θ1 =

𝛼

𝑝1𝑝2
Θ1

(2.10)
=

1

𝑝1𝑝2
Θ2 (3.34)

Lastly, by combining (2.5), (3.34) and (3.25), we can finish proving (ii):

E𝜎* [C1 (𝑥)] = 𝑝1
𝛼

𝑝1𝑝2
Θ1 =

𝛼

𝑝2
Θ1

(2.10)
=

1

𝑝2
Θ2 (3.35)

thus ending the first proof of Thm. 1.

Second Proof of Theorem 1. Let us now derive a second proof using the strategically

equivalent zero-sum game ̃︀Γ (recall that 𝒮Γ = 𝒮̃︀Γ).

We know that in a zero-sum game, each player’s payoff is constant for any NE.

Prop. 3 tells us that �̃� ∈ 𝒮̃︀Γ. Therefore:

∀(𝜎1*, 𝜎2*) ∈ 𝒮̃︀Γ, ̃︀𝑈1(𝜎
1*, 𝜎2*) = ̃︀𝑈1(�̃�

1, �̃�2)

(3.1)
=

1

𝑝2

𝛼

𝑝1
F (𝑥*) − 1

𝑝1

1

𝑝2
C1 (𝑥𝑚𝑎𝑥) +

1

𝑝2

(︂
1 − 𝛼

𝑝1

)︂
C2

(︀
𝜇𝑚𝑖𝑛

)︀
=

1

𝑝2

(︂
1 − 𝛼

𝑝1

)︂
Θ1 (3.36)

and this quantity is the optimal value of (LP1).

Let 𝜎* = (𝜎1*, 𝜎2*) ∈ 𝒮Γ. First, let us prove again (3.12) from Lemma 3:
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By interchangeability, since �̃� ∈ 𝒮̃︀Γ, then:

1

𝑝2

(︂
1 − 𝛼

𝑝1

)︂
Θ1

(3.36)
= ̃︀𝑈1(�̃�

1, �̃�2) = ̃︀𝑈1(�̃�
1, 𝜎2*)

=
1

𝑝2
E𝜎* [F ((𝑥*)𝜇)] − 𝛼

𝑝1𝑝2
F (𝑥*) +

1

𝑝2
E𝜎* [C2 (𝜇)]

which directly gives the result.

Now, we prove the equalities thanks to complementary slackness: recall that (LP2)

is the dual of (LP1) (and vice-versa), which means that ∀𝜇 ∈ 𝒜, 𝜎2
𝜇 is the dual

variable associated with the constraint ̃︀𝑈1(𝜎
1, 𝜇) ≥ 𝑧. Similarly, ∀𝑥 ∈ ℱ , 𝜎1

𝑥 is the

dual variable associated with the constraint ̃︀𝑈2(𝑥, 𝜎
2) ≥ 𝑧′. We know that the optimal

value of (LP1) (resp. (LP2)) is 1
𝑝2

(︁
1 − 𝛼

𝑝1

)︁
Θ1 (resp. − 1

𝑝2

(︁
1 − 𝛼

𝑝1

)︁
Θ1). Therefore,

since NE are the optimal solutions of these LPs, complementary slackness gives us,

∀(𝜎1*, 𝜎2*) ∈ 𝒮̃︀Γ:

∀𝑥 ∈ ℱ , 𝜎1
𝑥
*
(︂̃︀𝑈2(𝑥, 𝜎

2*) +
1

𝑝2

(︂
1 − 𝛼

𝑝1

)︂
Θ1

)︂
= 0 (3.37)

∀𝜇 ∈ 𝒜, 𝜎2
𝜇
*
(︂̃︀𝑈1(𝜎

1*, 𝜇) − 1

𝑝2

(︂
1 − 𝛼

𝑝1

)︂
Θ1

)︂
= 0 (3.38)

Prop. 3 tells us that 𝜇𝑚𝑖𝑛 ∈ supp(�̃�2) (or equivalently �̃�2
𝜇𝑚𝑖𝑛 > 0), therefore,

complementary slackness gives us:

1

𝑝2

(︂
1 − 𝛼

𝑝1

)︂
Θ1

(3.38)
= ̃︀𝑈1(𝜎

1*, 𝜇𝑚𝑖𝑛)
(3.1)
= − 1

𝑝1
E𝜎* [C1 (𝑥)] +

1

𝑝2
Θ1

⇐⇒E𝜎* [C1 (𝑥)] =
𝛼

𝑝2
Θ1

(2.10)
=

1

𝑝2
Θ2 (3.39)

Likewise, 𝜇0 ∈ supp(�̃�2) therefore we can prove (ii):

1

𝑝2

(︂
1 − 𝛼

𝑝1

)︂
Θ1

(3.38)
= ̃︀𝑈1(𝜎

1*, 𝜇0)
(3.1)
= E𝜎* [F (𝑥)] − 1

𝑝1
E𝜎* [C1 (𝑥)]

⇐⇒E𝜎* [F (𝑥)]
(3.39)
=

1

𝑝2

(︂
1 − 𝛼

𝑝1

)︂
Θ1 +

𝛼

𝑝1𝑝2
Θ1 =

1

𝑝2
Θ1 (3.40)

Similarly, 𝑥* ∈ supp(�̃�1) (or equivalently �̃�1
𝑥* > 0), therefore, complementary
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slackness gives us:

− 1

𝑝2

(︂
1 − 𝛼

𝑝1

)︂
Θ1

(3.37)
= ̃︀𝑈2(𝑥

*, 𝜎2*) = −̃︀𝑈1(𝑥
*, 𝜎2*)

(3.1)
= − E𝜎* [F ((𝑥*)𝜇)] +

1

𝑝1
C1 (𝑥*) − 1

𝑝2
E𝜎* [C2 (𝜇)]

(L3)
= − (Θ1 − E𝜎* [C2 (𝜇)]) +

𝛼

𝑝1
Θ1 −

1

𝑝2
E𝜎* [C2 (𝜇)]

which is equivalent to:

(︂
1 − 1

𝑝2

)︂
E𝜎* [C2 (𝜇)] =

(︂
1 − 𝛼

𝑝1

)︂
Θ1 −

1

𝑝2

(︂
1 − 𝛼

𝑝1

)︂
Θ1 =

(︂
1 − 1

𝑝2

)︂(︂
1 − 𝛼

𝑝1

)︂
Θ1

Therefore, we obtain (iii) again:

E𝜎* [C2 (𝜇)] =

(︂
1 − 𝛼

𝑝1

)︂
Θ1

(2.10)
= Θ1 −

1

𝑝1
Θ2 (3.41)

We can now deduce (iv):

E𝜎* [F (𝑥𝜇)]
(2.10)
= ̃︀𝑈1(𝜎

1*, 𝜎2*) +
1

𝑝1
E𝜎* [C1 (𝑥)] − 1

𝑝2
E𝜎* [C2 (𝜇)]

(3.36),(3.39),(3.41)
=

1

𝑝2

(︂
1 − 𝛼

𝑝1

)︂
Θ1 +

1

𝑝1

𝛼

𝑝2
Θ1 −

1

𝑝2

(︂
1 − 𝛼

𝑝1

)︂
Θ1

=
𝛼

𝑝1𝑝2
Θ1

(2.10)
=

1

𝑝1𝑝2
Θ2

Lastly, let us derive (i):

𝑈1(𝜎
1*, 𝜎2*)

(3.2)
= 𝑝1 ̃︀𝑈1(𝜎

1*, 𝜎2*) − 𝑝1
𝑝2
E𝜎* [C2 (𝜇)]

(3.41),(3.36)
=

𝑝1
𝑝2

(︂
1 − 𝛼

𝑝1

)︂
Θ1 −

𝑝1
𝑝2

(︂
1 − 𝛼

𝑝1

)︂
Θ1 = 0

𝑈2(𝜎
1*, 𝜎2*)

(3.3)
= 𝑝2 ̃︀𝑈2(𝜎

1*, 𝜎2*) + 𝑝2E𝜎* [F (𝑥)] − 𝑝2
𝑝1
E𝜎* [C1 (𝑥)]

(3.40),(3.39),(3.36)
= −

(︂
1 − 𝛼

𝑝1

)︂
Θ1 + Θ1 −

𝛼

𝑝1
Θ1 = 0
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From Thm. 1 we observe that, in any equilibrium for Region III, the expected

amount of initial and effective flow, and expected transportation cost to P1 and the

expected cost of attack to P2, can be computed in closed form using the parameters

𝑝1, 𝑝2, the optimal values Θ1 (the maximum amount of flow in the network), and

Θ2 (the smallest transportation cost among the max-flows). It is easy to check that

Thm. 1 is satisfied by (�̃�1, �̃�2) defined by (3.4) and (3.5).

Interestingly, the payoffs of both players are zero for any NE (ref. (3.6) and (3.7)).

Note that in general, a game that is strategically equivalent to a zero-sum game has

different NE that lead to different payoffs. To get oneself convinced, consider the

following example:

Example 4. Consider the following zero-sum game:

P1 ∖ P2 𝐿 𝑅
𝑈 1,−1 2,−2
𝐷 1,−1 3,−3

Table 3.1: Players’ payoffs of a zero-sum game.

In the game presented in Table 3.1, P1’s (resp. P2’s) pure actions are 𝑈 and 𝐷

(resp. 𝐿 and 𝑅). In each cell, the first number corresponds to P1’s payoff and the

second number corresponds to P2’s payoff. In this game, it is easy to see that 𝑅 is

strictly dominated by 𝐿 so P2’s BR is 𝐿 (no matter what P1 chooses). One can see

that (𝑈,𝐿) and (𝐷,𝐿) are NE, and they give a payoff of 1 (resp. −1) to P1 (resp.

P2). Now, consider the following game.

P1 ∖ P2 𝐿 𝑅
𝑈 1, 0 2,−1
𝐷 1,−1 3,−3

Table 3.2: Players’ payoffs of a game strategically equivalent to the zero-sum game
presented in Table 3.1.

The game presented in Table 3.2 is strategically equivalent to the zero-sum game

presented in Table 3.1 (we added 1{𝑈} to P2’s payoff, which is a function that only
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depends on P1). Therefore, (𝑈,𝐿) and (𝐷,𝐿) are NE of this new game (one can

easily check it from Table 3.2). However, P2’s payoff in equilibrium (𝑈,𝐿) is 0, and

her payoff in equilibrium (𝐷,𝐿) is −1. So this game has different NE that lead to

different payoffs.

Thus, (i) cannot be entirely derived from the equivalent zero-sum game ̃︀Γ and

requires other results such as the Max-Flow Min-Cut Theorem (see the proof of

Thm. 1). Below we further explain (3.8)-(3.11).

Following (3.8) (resp. (3.9)), the expected amount of initial flow (resp. the ex-

pected cost of transportation) at equilibrium is equal to some fraction of the value

(resp. transporting cost) of the min-cost max-flows, and these expectations decrease

with 𝑝2.

Following (3.10), the expected cost of attack at any NE is a constant. In fact,

under (A1), we know that Θ2 = 𝛼Θ1 (see (2.10)). Therefore, the expected cost of

attack at equilibrium becomes (1− 𝛼
𝑝1

)Θ1. Applying the Max-Flow Min-Cut Theorem,

we obtain that the expected cost of attack is equal to some fraction of the cost of

attacking a min-cut set, and this fraction increases with 𝑝1.

Following (3.11), the expected amount of effective flow is again a constant at

equilibrium. Under (A1), this quantity becomes 𝛼
𝑝1𝑝2

Θ1. Although the amount of

effective flow depends on both players’ strategies, in any NE, its expectation is always

equal to some fraction of the amount of max-flow. Since 𝛼
𝑝1𝑝2

< 1
𝑝2

, this flow is always

smaller than the expected amount of initial flow. Interestingly, the expected amount

of effective flow decreases when 𝑝1 and/or 𝑝2 increase. This result can be explained

by noting that when 𝑝1 increases, the disruption caused by P2 increases, so there is

more lost flow and the expected effective flow decreases.

Thm. 1 enables estimation of the expected amount of lost flow and the yield of P1

in any NE. We define yield as the ratio of the expected amount of effective flow and

the expected amount of initial flow in the network. We have the following corollary:
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Corollary 1. The expected amount of lost flow is given by:

E𝜎* [F (𝑥− 𝑥𝜇)] ≡ 1

𝑝2

(︂
Θ1 −

1

𝑝1
Θ2

)︂
(2.10)
=

1

𝑝2

(︂
1 − 1

𝑝1

)︂
Θ1, (3.42)

and the yield is given by:

E𝜎* [F (𝑥𝜇)]

E𝜎* [F (𝑥)]
≡ Θ2

𝑝1Θ1

(2.10)
=

𝛼

𝑝1
. (3.43)

From (3.42), in any equilibrium, the expected amount of lost flow is equal to

some fraction of the amount of max-flow. The corresponding coefficient increases

with 𝑝1, because when 𝑝1 is large, P1 sends more flow and P2 disrupts more edges.

However, the coefficient decreases when 𝑝2 increases, because when 𝑝2 is large, P2

causes more disruption and P1 sends less flow in the network. Finally, from (3.43),

in any equilibrium, the yield decreases in the ratio 𝑝1
𝛼

, but it does not depend on 𝑝2

or the maximum amount of flow Θ1. When 𝑝1
𝛼

is large, P1 has more incentive to send

flow in the network and P2 will attack more frequently, resulting in a lower yield of

the network.

Thus, Thm. 1 provides many properties that are satisfied by any NE in Region

III. Next, we study the support of NE and relate it to optimal solutions of (𝒫2) and

the min-cut sets.

3.3 Necessary Conditions

Recall the NE in Prop. 3 which has a support based on a min-cost max-flow (for P1)

and on a min-cut set (for P2). We now investigate the generality of this result to

other NE. This leads to additional properties satisfied by all NE, and also eases the

computation of NE.

Let us present a result regarding the paths taken by the flows in the support of

P1’s strategy at equilibrium.

Lemma 4. Every flow in the support of a NE only takes paths whose marginal trans-
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portation cost is 𝛼.

∀(𝜎1*, 𝜎2*) ∈ 𝒮Γ,∀𝑥 ∈ supp(𝜎1*), ∀𝜆 ∈ Λ, 𝑥𝜆 > 0 =⇒
∑︁

(𝑖,𝑗)∈𝜆

𝑏𝑖𝑗 = 𝛼. (3.44)

Proof of Lemma 4. Let us consider 𝜎* = (𝜎1*, 𝜎2*) a NE . Since (�̃�1, �̃�2) is also a NE

(Prop. 3), then, by interchangeability, (𝜎1*, �̃�2) is a NE as well. So, thanks to Thm. 1,

we have ∀𝑥 ∈ supp(𝜎1*), 0 = 𝑈1(𝑥, �̃�
2) = 𝛼F (𝑥) − C1 (𝑥) where the first equality

follows from (3.6). Therefore, ∀𝑥 ∈ supp(𝜎1*), C1 (𝑥) = 𝛼F (𝑥). Since every path has

a marginal transportation cost at least equal to 𝛼, then the last equality entails that

any flow in the support of a NE takes paths that induce a marginal transportation

cost equal to 𝛼.

In other words, the paths that induce a transportation cost strictly greater than 𝛼

are not chosen in equilibrium. Notice that this lemma implies that any max-flow that

is not a min-cost max-flow is not in the support of any NE. This lemma is useful for

constructing P1’s equilibrium strategies when the network has only a small number of

paths of marginal transportation cost 𝛼. In the case when the only paths of marginal

transportation cost equal to 𝛼 are the ones taken by the min-cost max-flow 𝑥*, we

can deduce that all the equilibrium strategies of P1 can be constructed from 𝑥* (or

sub-flows of 𝑥*). This lemma is of limited use if most of the paths of the network

have the same smallest transportation cost.

The following result characterizes the support of P2’s equilibrium strategies.

Proposition 4. Every attack in the support of a NE has a cost at most equal to the

cost of attacking a min-cut set, and disrupts edges that are saturated by every min-cost

max-flow:

∀(𝜎1*, 𝜎2*) ∈ 𝒮Γ, ∀𝜇 ∈ supp(𝜎2*) : C2 (𝜇) ≤ C2

(︀
𝜇𝑚𝑖𝑛

)︀
= Θ1 (3.45)

∀(𝑖, 𝑗) ∈ ℰ , 𝜇𝑖𝑗 = 1 =⇒ ∀𝑥* ∈ Ω2, 𝑥
*
𝑖𝑗 = 𝑐𝑖𝑗.

Proof of Proposition 4. Let us consider (𝜎1*, 𝜎2*) ∈ 𝒮Γ. We know that (�̃�1, 𝜎2*) ∈ 𝒮Γ

too (where �̃�1 is defined by (3.4)). Then we can deduce that ∀𝜇 ∈ supp(𝜎2*), 0 =
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𝑈2(�̃�
1, 𝜇) = F (𝑥* − (𝑥*)𝜇)−C2 (𝜇), where the first equality is a consequence of (3.7).

Therefore, the Max-Flow Min-Cut Theorem gives us: ∀𝜇 ∈ supp(𝜎2*), C2 (𝜇) =

F (𝑥* − (𝑥*)𝜇) ≤ F (𝑥*) = C2 (𝜇𝑚𝑖𝑛).

Besides, since ∀𝜇 ∈ supp(𝜎2*), C2 (𝜇) = F (𝑥* − (𝑥*)𝜇), then this means that

the cost of conducting an attack that is in the support of a NE is equal to the loss

it induces to any min-cost max-flow. Since the loss induced by an attack is never

greater than the cost of the latter, it means that each edge disrupted by an attack in

the support of a NE is saturated by every min-cost max-flow.

This result tells us that the attacks that require a cost that is strictly greater than

the cost of disrupting a min-cut set are not chosen in any equilibrium. Further, if

an edge is not saturated by at least one min-cost max-flow, then it is not disrupted

in equilibrium. Recall that P2’s set of action is isomorphic to the power set of ℰ ,

that has 2|ℰ| elements which can be huge. Therefore, Prop. 4 enables us to drastically

restrict P2’s set of actions that can be potentially chosen in equilibrium.

However, since the edges that are part of a min-cut set are saturated by every (min-

cost) max-flow, we cannot restrict the set of edges that can be potentially disrupted

in equilibrium beyond the min-cut sets. Nevertheless, one can find NE where edges

that are not part of any min-cut set are disrupted with positive probability. To get

oneself convinced, one can consider the following example:

Example 5. Consider the graph in Fig. 3-4:

s

1

2

3

t

1,1

1,2

1,2

1,2

2,1

2,1

1,1

Figure 3-4: Example network containing edges outside a min-cut set that are dis-
rupted in equilibrium.
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We can see that 𝛼 = 3, and the min-cost max-flow sends one unit of flow through

{𝑠, 2, 𝑡}, {𝑠, 3, 2, 𝑡} and {𝑠, 3, 𝑡}, and only takes paths with transportation cost equal

to 3. Thus, (A1) is satisfied. In this graph, there is a unique min-cut set given by

{(2, 𝑡), (3, 𝑡)}. Let 𝜇′ = 1{(𝑠,2),(𝑠,3)} the attack that disrupts edges (𝑠, 2) and (𝑠, 3). In

the case when 3 < 𝑝1 < 4 and 𝑝2 > 1, one can see that there exists an equilibrium

strategy 𝜎2* for P2 defined by 𝜎2*

𝜇0 = 𝛼
𝑝1

and 𝜎2*

𝜇′ = 1 − 𝛼
𝑝1

. However, (𝑠, 2) and (𝑠, 3)

are not part of the min-cut set.

Finally, since there are equilibrium strategies that disrupt at least one min-cut

set (see e.g. Prop. 3), it is useful to estimate the amount of lost flow for each edge

that is attacked in a min-cut set. Similarly, the probability with which each edge of

a min-cut set will be disrupted is also of interest because it can be interpreted as the

probability with which the flow routed by P1 is lost when P2’s equilibrium strategy

only involves edges belonging to a min-cut set. The following proposition answers

these questions.

Proposition 5. Consider a min-cut set 𝐸({𝑆, 𝑇}), then:

∀(𝜎1*, 𝜎2*) ∈ 𝒮Γ, ∀(𝑖, 𝑗) ∈ 𝐸({𝑆, 𝑇}), E𝜎* [𝑥𝑖𝑗] =
𝑐𝑖𝑗
𝑝2
. (3.46)

Furthermore, for any NE whose support only contains attacks that disrupt edges

of 𝐸({𝑆, 𝑇}) we have:

∀(𝑖, 𝑗) ∈ 𝐸({𝑆, 𝑇}), P ((𝑖, 𝑗) is disrupted) = 1 − 𝛼

𝑝1
. (3.47)

Proof of Proposition 5. Consider a min-cut set 𝐸({𝑆, 𝑇}). Given 𝑝1 > 𝛼 and 𝑝2 > 1,

one can find a NE (𝜎1†, 𝜎2†) such that ∀(𝑖, 𝑗) ∈ 𝐸({𝑆, 𝑇}), 1{(𝑖,𝑗)} ∈ supp(𝜎2†) (for a

full characterization of such strategy, refer to Chapter 4).

Consider a NE (𝜎1*, 𝜎2*), we know by interchangeability that (𝜎1*, 𝜎2†) is also a
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NE. Therefore:

∀(𝑖, 𝑗) ∈ 𝐸({𝑆, 𝑇}), 𝑈2(𝜎
1*,1{(𝑖,𝑗)})

(3.7)
= 0

⇐⇒ 𝑝2E𝜎*
[︀
F
(︀
𝑥− 𝑥1{(𝑖,𝑗)}

)︀]︀
− C2

(︀
1{(𝑖,𝑗)}

)︀
= 0

⇐⇒ E𝜎*
[︀
F
(︀
𝑥− 𝑥1{(𝑖,𝑗)}

)︀]︀
=
𝑐𝑖𝑗
𝑝2

⇐⇒ E𝜎* [𝑥𝑖𝑗] =
𝑐𝑖𝑗
𝑝2

Now, suppose that 𝜎2* does not contain attacks that disrupt edges outside of

𝐸({𝑆, 𝑇}). First, notice that an edge 𝑒 is disrupted if and only if it is attacked by at

least one attack. Therefore:

P ({𝑒 is disrupted}) =
∑︁
𝜇∈𝒜

𝜎2*

𝜇 1{𝜇𝑒=1} =
∑︁

{𝜇∈𝒜 |𝜇𝑒=1}

𝜎2*

𝜇

Similarly, one can find a NE (𝜎1′, 𝜎2′) such that ∀𝑒 ∈ 𝐸({𝑆, 𝑇}), there is a flow

𝑥𝑒 ∈ supp(𝜎1*) that crosses 𝐸({𝑆, 𝑇}) only at edge 𝑒 and that takes paths of marginal

transportation cost equal to 𝛼. We know by interchangeability that (𝜎1′, 𝜎2*) is also

a NE. Therefore:

∀𝑒 ∈ 𝐸({𝑆, 𝑇}), 𝑈1(𝑥
𝑒, 𝜎2*)

(3.6)
= 0

⇐⇒ 𝑝1E𝜎* [F ((𝑥𝑒)𝜇)] − 𝛼F (𝑥𝑒) = 0

⇐⇒
∑︁
𝜇∈𝒜

𝜎2
𝜇
*

F ((𝑥𝑒)𝜇) =
𝛼

𝑝1
F (𝑥𝑒)

⇐⇒
∑︁

{𝜇∈𝒜 |𝜇𝑒=1}

𝜎2
𝜇
*
F ((𝑥𝑒)𝜇)⏟  ⏞  

=0

+
∑︁

{𝜇∈𝒜 |𝜇𝑒=0}

𝜎2
𝜇
*
F ((𝑥𝑒)𝜇)⏟  ⏞  

=F(𝑥𝑒)

=
𝛼

𝑝1
F (𝑥𝑒)

⇐⇒ F (𝑥𝑒)
∑︁

{𝜇∈𝒜 |𝜇𝑒=0}

𝜎2
𝜇
*

=
𝛼

𝑝1
F (𝑥𝑒)

⇐⇒ 𝛼

𝑝1
=

∑︁
{𝜇∈𝒜 |𝜇𝑒=0}

𝜎2
𝜇
*

= 1 −
∑︁

{𝜇∈𝒜 |𝜇𝑒=1}

𝜎2
𝜇
*

⇐⇒ 1 − 𝛼

𝑝1
=

∑︁
{𝜇∈𝒜 |𝜇𝑒=1}

𝜎2
𝜇
*

= P({𝑒 is disrupted})
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From (3.46), at any NE, the expected amount of flow that goes through any edge

of a min-cut set is always equal to a constant fraction of its capacity. And from

(3.47), if P2’s equilibrium strategy only disrupts edges of one min-cut set, then the

probability with which an edge is disrupted is constant for all the edges of that min-

cut set, irrespective of the capacities of these edges. We can deduce the following

corollary that directly follows from Prop. 5:

Corollary 2.

∀(𝜎1*, 𝜎2*) ∈ 𝒮Γ, ∀ min-cut set 𝐸({𝑆, 𝑇}), ∀(𝑖, 𝑗) ∈ 𝐸({𝑆, 𝑇}) :

∃𝑥 ∈ supp(𝜎1*) s.t. 𝑥𝑖𝑗 > 0.

That is, for any NE and for any edge of a min-cut set, there exists a flow chosen

with non-zero probability that passes through that edge.

We apply the previous results to the following example.

Example 6. Consider the network in Fig. 3-2. The only min-cost max-flow is the

flow 𝑥* that sends 1 unit of flow through {𝑠, 1, 3, 𝑡}, {𝑠, 2, 3, 𝑡} and {𝑠, 2, 4, 𝑡}, and

the only min-cut set is {(1, 2), (2, 3), (2, 4)}; see Fig. 3-5.

s

1

2

3

4

t0,1,1 0,1,1

1,2,1
1,1,1

2,3,1

1,1,1

1,1,1

2,3,1

1,2,1

Figure 3-5: Min-cost max-flow (bold blue) and min-cut set attack (dotted red). The
labels in the boxes represent the edges that are saturated by the min-cost max-flow.

In this example, the 𝑠− 𝑡 paths that induce the smallest transportation cost are

the ones taken by 𝑥*; thus (A1) is satisfied. Lemma 4 tells us that the flows sent with

positive probability in equilibrium only take paths taken by 𝑥*. By combining this
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fact with Prop. 5, we conclude that in any equilibrium, the expected amount of flow

in each of the paths {𝑠, 1, 3, 𝑡}, {𝑠, 2, 3, 𝑡} and {𝑠, 2, 4, 𝑡} is 1
𝑝2

.

Besides, the only edges that are saturated by 𝑥* are edges (1, 3), (2, 3) and (2, 4).

From Prop. 4, we obtain that only these three edges can be disrupted with nonzero

probability in equilibrium. Hence, any P2’s equilibrium strategy 𝜎2* is supported

over at most 23 = 8 pure actions instead of 29 = 512 initial pure actions. These edges

are exactly the min-cut set of the graph in Fig. 3-5. Therefore, from Prop. 5, each of

these edges is disrupted with probability 1 − 3
𝑝1

.

In this example, we showed that the necessary conditions derived above help us

restrict the pure actions that support equilibrium strategies to a significant extent.

These properties also enable us to derive the following bounds on the probabilities

with which certain actions are chosen at equilibrium.

Proposition 6. Consider (𝜎1*, 𝜎2*) ∈ 𝒮Γ. Then we have the following bounds:

(i) If 𝑥0 ∈ supp(𝜎1*), then 𝜎1*

𝑥0 ≤ 1 − 1

𝑝2

(ii) If 𝑥* ∈ supp(𝜎1*), then 𝜎1*
𝑥* ≤

1

𝑝2

(iii) If 𝜇𝑚𝑖𝑛 ∈ supp(𝜎2*), then 𝜎2*

𝜇𝑚𝑖𝑛 ≤ 1 − 𝛼

𝑝1

(iv) If 𝜇0 ∈ supp(𝜎2*), then 𝜎2*

𝜇0 ≤
𝛼

𝑝1

Proof of Proposition 6. First, let us derive the bound for 𝑥0:

1

𝑝2
F (𝑥*)

(3.8)
= E𝜎* [F (𝑥)] =

∑︁
𝑥∈ℱ∖{𝑥0}

𝜎1
𝑥
*

F (𝑥) ≤ F (𝑥*)
∑︁

𝑥∈ℱ∖{𝑥0}

𝜎1
𝑥
*

=
(︀
1 − 𝜎1*

𝑥0

)︀
F (𝑥*)

Therefore, 𝜎1*

𝑥0 ≤ 1 − 1

𝑝2
.

Then, let us derive the bound for any min-cost max-flow 𝑥*:

1

𝑝2
F (𝑥*)

(3.8)
= E𝜎* [F (𝑥)] = 𝜎1*

𝑥* F (𝑥*) +
∑︁

𝑥∈ℱ∖{𝑥*}

𝜎1
𝑥
*

F (𝑥) ≥ 𝜎1*

𝑥* F (𝑥*)

Therefore, 𝜎1*
𝑥* ≤

1

𝑝2
.
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Similarly, for any min-cut set attack 𝜇𝑚𝑖𝑛, we have:

(︂
1 − 𝛼

𝑝1

)︂
C2

(︀
𝜇𝑚𝑖𝑛

)︀ (3.10)
= E𝜎* [C2 (𝜇)] = 𝜎2*

𝜇𝑚𝑖𝑛 C2

(︀
𝜇𝑚𝑖𝑛

)︀
+

∑︁
𝜇∈𝒜∖{𝜇𝑚𝑖𝑛}

𝜎2
𝜇
*

C2 (𝜇)

⏟  ⏞  
≥0

Therefore, 𝜎2*

𝜇𝑚𝑖𝑛 ≤ 1 − 𝛼

𝑝1
.

Finally, we can derive the same type of bound for 𝜇0:

(︂
1 − 𝛼

𝑝1

)︂
C2

(︀
𝜇𝑚𝑖𝑛

)︀ (3.10)
= E𝜎* [C2 (𝜇)] =

∑︁
𝜇∈𝒜∖{𝜇0}

𝜎2
𝜇
*

C2 (𝜇)

(3.45)
≤ C2

(︀
𝜇𝑚𝑖𝑛

)︀ ∑︁
𝜇∈𝒜∖{𝜇0}

𝜎2
𝜇
*

= (1 − 𝜎2*

𝜇0) C2

(︀
𝜇𝑚𝑖𝑛

)︀

Therefore, 𝜎2*

𝜇0 ≤
𝛼

𝑝1
.

This proposition gives upper bounds on the probability with which 𝑥0, 𝑥*, 𝜇0, 𝜇𝑚𝑖𝑛

can be chosen in equilibrium. The NE (�̃�1, �̃�2) derived in Prop. 3 attains these bounds.

From these upper bounds, we see that when 𝑝2 is close to 1, the probability with which

𝑥0 can be chosen is very small. In contrast, when 𝑝2 is large, 𝑥* can be chosen only

with small probability. Similarly, when 𝑝1 is close to 𝛼, 𝜇𝑚𝑖𝑛 can be chosen only with

small probability, and when 𝑝1 is large, 𝜇0 can be chosen only with a small probability.

Lastly, we present a result analogous to the Minimax Theorem by Von Neumann

[21] for zero-sum games. Recall that the Minimax Theorem is generally not true for

games that are strategically equivalent to a zero-sum game; however, Γ satisfies some

features of the Minimax Theorem.

Proposition 7. Each player’s payoffs for both maximinimizing and minimaximizing

strategies are equal to the payoff at NE, i.e.,

max
𝜎1∈Δ(ℱ)

min
𝜎2∈Δ(𝒜)

𝑈1(𝜎
1, 𝜎2) = 0 = min

𝜎2∈Δ(𝒜)
max

𝜎1∈Δ(ℱ)
𝑈1(𝜎

1, 𝜎2)

max
𝜎2∈Δ(𝒜)

min
𝜎1∈Δ(ℱ)

𝑈2(𝜎
1, 𝜎2) = 0 = min

𝜎1∈Δ(ℱ)
max

𝜎2∈Δ(𝒜)
𝑈2(𝜎

1, 𝜎2)
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Furthermore, the set of minimaximizers is a superset of 𝒮Γ, i.e., any NE is a mini-

maximizer.

Proof of Proposition 7. First, let us prove that max𝜎1 min𝜎2 𝑈1(𝜎
1, 𝜎2) = 0 by directly

exhibiting a maximinimizer.

– First, let us prove that ∀𝜎1 ∈ ∆(ℱ), min𝜎2∈Δ(𝒜) 𝑈1(𝜎
1, 𝜎2) = −E𝜎 [C1 (𝑥)].

∀(𝜎1, 𝜎2) ∈ ∆(ℱ) × ∆(𝒜), 𝑈1(𝜎
1, 𝜎2)

(2.5)
= 𝑝1E𝜎 [F (𝑥𝜇)]⏟  ⏞  

≥0

− E𝜎 [C1 (𝑥)]

≥ −E𝜎 [C1 (𝑥)]

which is independent of 𝜎2. Therefore: ∀𝜎1 ∈ ∆(ℱ), min𝜎2∈Δ(𝒜) 𝑈1(𝜎
1, 𝜎2) ≥

−E𝜎 [C1 (𝑥)].

Besides ∀𝜎1 ∈ ∆(ℱ), 𝑈1(𝜎
1, 𝜇𝑚𝑖𝑛) = −E𝜎 [C1 (𝑥)]. Therefore:

∀𝜎1 ∈ ∆(ℱ), min
𝜎2∈Δ(𝒜)

𝑈1(𝜎
1, 𝜎2) = −E𝜎 [C1 (𝑥)] ≤ 0.

This inequality tells us that max𝜎1∈Δ(ℱ) min𝜎2∈Δ(𝒜) 𝑈1(𝜎
1, 𝜎2) ≤ 0. Now it is

easy to see that 𝑥0 is a maximinimizer of 𝑈1:

max
𝜎1∈Δ(ℱ)

min
𝜎2∈Δ(𝒜)

𝑈1(𝜎
1, 𝜎2) = min

𝜎2∈Δ(𝒜)
𝑈1(𝑥

0, 𝜎2) = 0 (3.48)

– Now, let us prove that min𝜎2 max𝜎1 𝑈1(𝜎
1, 𝜎2) ≤ 0 using the definition of a NE:

let (𝜎1*, 𝜎2*) ∈ 𝒮Γ, then: ∀𝜎1 ∈ ∆(ℱ), 0 = 𝑈1(𝜎
1*, 𝜎2*) ≥ 𝑈1(𝜎

1, 𝜎2*) where

the equality follows from (3.6) and the inequality follows from (2.7). Therefore,

max𝜎1∈Δ(ℱ) 𝑈1(𝜎
1, 𝜎2*) = 0. Then:

min
𝜎2∈Δ(𝒜)

max
𝜎1∈Δ(ℱ)

𝑈1(𝜎
1, 𝜎2) ≤ max

𝜎1∈Δ(ℱ)
𝑈1(𝜎

1, 𝜎2*) = 0 (3.49)

– Now, we can get the reverse inequality thanks to the following inequality:

max𝜎1 min𝜎2 𝑈1(𝜎
1, 𝜎2) ≤ min𝜎2 max𝜎1 𝑈1(𝜎

1, 𝜎2) (inequality that is true for any
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function of two variables):

0
(3.48)
= max

𝜎1∈Δ(ℱ)
min

𝜎2∈Δ(𝒜)
𝑈1(𝜎

1, 𝜎2) ≤ min
𝜎2∈Δ(𝒜)

max
𝜎1∈Δ(ℱ)

𝑈1(𝜎
1, 𝜎2) (3.50)

Therefore, (3.49) and (3.50) lead to:

min
𝜎2∈Δ(𝒜)

max
𝜎1∈Δ(ℱ)

𝑈1(𝜎
1, 𝜎2) = 0 (3.51)

– The proof for 𝑈2 is similar, but in this case 𝜇0 is the maximinimizer of 𝑈2.

– Let us prove that any NE of Γ is a minimaximizer: let (𝜎1*, 𝜎2*) ∈ 𝒮Γ, then:

0
(3.51)
= min

𝜎2∈Δ(𝒜)
max

𝜎1∈Δ(ℱ)
𝑈1(𝜎

1, 𝜎2) ≤ max
𝜎1∈Δ(ℱ)

𝑈1(𝜎
1, 𝜎2*)

(2.7)
= 𝑈1(𝜎

1*, 𝜎2*)
(3.6)
= 0

Therefore, min𝜎2 max𝜎1 𝑈1(𝜎
1, 𝜎2) = max𝜎1 𝑈1(𝜎

1, 𝜎2*), i.e., 𝜎2* is a minimaxi-

mizer of 𝑈1.

A similar proof tells us that 𝜎1* is a minimaximizer of 𝑈2.

As in the Minimax Theorem, maximinimizing or minimaximizing each player’s

payoff gives the value of the game at equilibrium. In addition, Prop. 7 tells us that

NE are minimaximizers. Interestingly, however, one can find minimaximizers that

are not NE, which differs from the Minimax Theorem. Finally the proof of this

proposition also implies that NE are not maximinimizers.

In this chapter, we gave a rather full characterization of the NE of game Γ and

we saw how they are related to classical network optimization problems such as the

minimum cost maximum flow problem and the minimum cut problem. However, in

our model, we supposed that P1 could send any feasible flow in the network and P2

could disrupt any subset of edges of the network. What if they cannot? In the next

chapter, we focus on a more general model where P1 (resp. P2) cannot send every

feasible flow (resp. attack any subset of edges) due to budget constraints, and we
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study the cases where we can still apply the results derived in this chapter to the

budget-constrained game.
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Chapter 4

Budget-Constrained Game

From Thm. 1, we obtain that the expected cost of transportation (for P1) and the

expected cost of attack (for P2) are constant in any NE. However, NE might differ

from each other in the maximum cost of the actions chosen with positive probability.

In this chapter, we view these costs as “budget expenditures” of the respective players.

Recall the NE (�̃�1, �̃�2) in Prop. 3, in which P1 randomizes between 𝑥0 and 𝑥*, and

in which P2 randomizes between 𝜇0 and 𝜇𝑚𝑖𝑛 in Region III. To play the strategy �̃�1

(resp. �̃�2) in (3.4) (resp. (3.5)), P1 (resp. P2) needs a budget of Θ2 (resp. Θ1) for

sending a min-cost max-flow (resp. attacking a min-cut set). In this chapter, we study

the implications of the players not having a budget high enough to perform (�̃�1, �̃�2),

and more particularly we characterize the budgets for which the results derived in

Sections 3.2 and 3.3 still hold (with minor changes).

For P1, we use the infiniteness of her set of actions to find the lowest budget for

which we can apply the results in Sections 3.2 and 3.3. However, P2’s set of action

is discrete and we cannot derive the same bound. We restrict our attention to a

subset of P2’s equilibrium strategies; in particular, we consider NE we can construct

from partitioning the min-cut sets. Prop. 9 below provides our explicit construction of

such NE. Next, for this subset of NE, we formulate a problem for computing minimum

budget equilibrium strategies as an integer programming problem.
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4.1 Revised Model

From now on, let us assume that both players face budget constraints, noted 𝑏1 and

𝑏2 respectively: P1 (resp. P2) can only send flows with transportation cost less than

or equal to 𝑏1 (resp. choose an attack with cost less than or equal to 𝑏2). We revise

the action sets in game Γ to include the budget constraints 𝑏1 and 𝑏2 as follows:

ℱ𝑏1 = {𝑥 ∈ ℱ | C1 (𝑥) ≤ 𝑏1} , 𝒜𝑏2 = {𝜇 ∈ 𝒜 | C2 (𝜇) ≤ 𝑏2} .

Thus, we consider a more general game Γ𝑏1,𝑏2 = {{1, 2}, (ℱ𝑏1 ,𝒜𝑏2), (𝑢1, 𝑢2)} where

𝑢1 (resp. 𝑢2) is given by (2.3) (resp. (2.4)). As previously, we denote ∆(ℱ𝑏1) and

∆(𝒜𝑏2) the set of probability distributions over ℱ𝑏1 and 𝒜𝑏2 .

The purpose of this chapter is to find the minimum budgets 𝑏*1 and 𝑏*2 for which

the results derived in Sections 3.2 and 3.3 for Γ can still be applicable to Γ𝑏*1,𝑏
*
2

under

(A1).

One way to tackle this problem is, given 𝑏1 and 𝑏2, to find a NE of game Γ that

satisfies the budget constraints. Indeed, note that ℱ𝑏1 ⊆ ℱ and 𝒜𝑏2 ⊆ 𝒜. Therefore,

if 𝜎* ∈ 𝒮Γ ∩ (∆(ℱ𝑏1) × ∆(𝒜𝑏2)), then 𝜎* ∈ 𝒮Γ𝑏1,𝑏2
(follows from (2.7) and (2.8)). In

other words, a NE of game Γ that satisfies the budget constraints 𝑏1 and 𝑏2 is a NE of

game Γ𝑏1,𝑏2 and all the results derived in Sections 3.2 and 3.3 are applicable to Γ𝑏1,𝑏2 .

Note that for the case when 𝑏1 and 𝑏2 are large enough so both players can send

any flow in the network and attack any subset of edges (the budget constraints are

not binding), ℱ𝑏1 = ℱ and 𝒜𝑏2 = 𝒜, so Γ𝑏1,𝑏2 = Γ and all the results derived so far

are applicable.

We now focus on the more interesting case where the budget constraints are bind-

ing (ℱ𝑏1 ( ℱ and 𝒜𝑏2 ( 𝒜). Because of the interchangeability of the NE, we can

investigate each player’s case independently while assuming that the other player’s

budget constraint is not binding.

62



4.2 P1’s Budget

In this section, we are looking for the lowest budget for P1, 𝑏*1, such that the results

presented in Sections 3.2 and 3.3 hold for the budget-constrained game. Because of

the interchangeability of the NE, we can investigate P1’s case while assuming that

𝑏2 ≥ Θ1. This ensures that �̃�2 from (3.5) is an equilibrium strategy for P2 in Γ𝑏*1,𝑏2
.

First of all, note that 𝑏*1 ≥ 1
𝑝2

Θ2. Indeed, if there existed a NE (𝜎1*, 𝜎2*) ∈ 𝒮Γ𝑏1,𝑏2

with 𝑏1 < 1
𝑝2

Θ2, then we would have:

E𝜎* [C1 (𝑥)] =
∑︁
𝑥∈ℱ𝑏1

𝜎1*

𝑥 C1 (𝑥) <
1

𝑝2
Θ2

∑︁
𝑥∈ℱ𝑏1

𝜎1*

𝑥 =
1

𝑝2
Θ2,

which contradicts (3.9) in Thm. 1. Therefore 𝑏*1 ≥ 1
𝑝2

Θ2.

Now, given any 𝑏1 ≥ 1
𝑝2

Θ2, we find an equilibrium strategy of Γ for P1 that assigns

positive probability on flows with transportation cost no greater than 𝑏1. This will

ensure that 𝑏*1 ≤ 1
𝑝2

Θ2.

When 𝑏1 ≥ Θ2, 𝑥* ∈ ℱ𝑏1 so �̃� from Prop. 3 is a NE of Γ𝑏1,𝑏2 . When 1
𝑝2

Θ2 ≤ 𝑏1 ≤ Θ2,

then 𝑥† := 𝑏1
Θ2
𝑥* ∈ ℱ𝑏1 and the following proposition gives a NE of Γ𝑏1,𝑏2 .

Proposition 8. If 𝑝1 > 𝛼, 𝑝2 > 1, Θ2

𝑝2
≤ 𝑏1 ≤ Θ2, 𝑏2 ≥ Θ1, and under (A1), then

∃𝜎* = (𝜎1* , 𝜎2*) ∈ 𝒮Γ𝑏1,𝑏2
such that 𝑈1(𝜎

1* , 𝜎2*) = 𝑈2(𝜎
1* , 𝜎2*) = 0, and supp(𝜎1*) =

{𝑥0, 𝑥†} and supp(𝜎2*) = {𝜇0, 𝜇𝑚𝑖𝑛}. The corresponding probabilities are given by:

- 𝜎1*

𝑥0 = 1 − Θ2

𝑝2𝑏1
, 𝜎1*

𝑥† =
Θ2

𝑝2𝑏1

- 𝜎2*

𝜇0 =
𝛼

𝑝1
, 𝜎2*

𝜇𝑚𝑖𝑛 = 1 − 𝛼

𝑝1
.

Proof of Proposition 8. Suppose that 𝑝1 > 𝛼, 𝑝2 > 1,
Θ2

𝑝2
≤ 𝑏1 ≤ Θ2, and 𝑏2 ≥ Θ1.

Let us show that 𝜎* is a NE.

∀𝜎1 ∈ ∆(ℱ𝑏1), 𝑈1(𝜎
1, 𝜎2*)

(2.5)
= 𝑝1

𝛼

𝑝1
E𝜎 [F (𝑥)] − E𝜎 [C1 (𝑥)]

(2.9)
≤ 𝛼E𝜎 [F (𝑥)] − 𝛼E𝜎 [F (𝑥)] = 0
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Besides: 𝑈1(𝜎
1* , 𝜎2*) = 𝛼

Θ2

𝑝2𝑏1
F

(︂
𝑏1
Θ2

𝑥*
)︂

− Θ2

𝑝2𝑏1
C1

(︂
𝑏1
Θ2

𝑥*
)︂

(2.10)
=

𝛼

𝑝2
F (𝑥*) −

𝛼

𝑝2
F (𝑥*) = 0

Similarly:

∀𝜎2 ∈ ∆(𝒜𝑏2), 𝑈2(𝜎
1* , 𝜎2)

(2.6)
=

Θ2

𝑏1
F

(︂
𝑏1
Θ2

𝑥*
)︂
− Θ2

𝑏1
E𝜎

[︂
F

(︂(︂
𝑏1
Θ2

𝑥*
)︂𝜇)︂]︂

− E𝜎 [C2 (𝜇)]

= E𝜎 [F (𝑥* − (𝑥*)𝜇) − C2 (𝜇)] ≤ 0

where the last inequality follows from the fact that for any attack 𝜇, F (𝑥* − (𝑥*)𝜇)

is the loss induced by 𝜇 when 𝑥* is in the network, and C2 (𝜇) is the cost of 𝜇 which

can also be viewed as the maximum amount of flow that can be lost because of the

attack.

Besides: 𝑈2(𝜎
1* , 𝜎2*) = F (𝑥*)− 𝛼

𝑝1
F (𝑥*)−

(︂
1 − 𝛼

𝑝1

)︂
C2 (𝜇𝑚𝑖𝑛) = 0 thanks to the

Max-Flow Min-Cut Theorem. Thus, (𝜎1* , 𝜎2*) is a NE.

The difference between Prop. 8 and Prop. 3 is that since 𝑥* is too costly to send,

P1 sends only a fraction of 𝑥* but more frequently (so (3.8) is still satisfied). This is

possible because P1 has a continuous set of actions.

Thus, if one follows the proofs of the results given in Sections 3.2 and 3.3, it can

be seen that Prop. 8 ensures that they still hold when P1’s budget is greater than or

equal to Θ2

𝑝2
. Therefore 𝑏*1 = Θ2

𝑝2
.

Let us illustrate Prop. 8 with an example.

Example 7. Consider the graph given in Fig. 3-2 and suppose that 𝑝1 > 3 = 𝛼,

𝑝2 = 4 and 𝑏1 = 4.5. Since C1 (𝑥*) = 9 > 𝑏1, then 𝑥* /∈ ℱ𝑏1 and �̃�1 defined in (3.4) is

not an equilibrium strategy anymore. However, Prop. 8 gives us a new equilibrium

strategy that satisfies the budget constraint. It is illustrated in Fig. 4-1.
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Figure 4-1: Equilibrium strategy described in Prop. 8 when 𝑝1 > 3, 𝑝2 = 4 and
𝑏1 = 4.5. 𝑥† is drawn in blue.

4.3 P2’s Budget

Similarly, we are looking for the lowest attack budget for P2, 𝑏*2, such that the struc-

tural results in Sections 3.2 and 3.3 hold for the budget-constrained game. Analo-

gously to Section 4.2, we investigate P2’s case while assuming that 𝑏1 ≥ Θ2. This

ensures that �̃�1 from (3.4) is an equilibrium strategy for P1 in Γ𝑏1,𝑏*2
.

Note that 𝑏*2 ≥ Θ1 − 1
𝑝1

Θ2. Indeed, if there existed a NE (𝜎1*, 𝜎2*) ∈ 𝒮Γ𝑏1,𝑏2
with

𝑏2 < Θ1 − 1
𝑝1

Θ2, then we would have:

E𝜎* [C2 (𝜇)] =
∑︁

𝜇∈𝒜𝑏2

𝜎2*

𝜇 C2 (𝜇) <

(︂
Θ1 −

1

𝑝1
Θ2

)︂ ∑︁
𝜇∈𝒜𝑏2

𝜎2*

𝜇 = Θ1 −
1

𝑝1
Θ2,

which contradicts (3.10). Therefore 𝑏*2 ≥ Θ1 − 1
𝑝1

Θ2 = (1 − 𝛼
𝑝1

)Θ1.

Unfortunately, this bound is seldom tight due to the finiteness of P2’s set of

actions. For example, consider the graph given in Fig. 3-2. We can notice that

attacking any edge incurs a cost of at least 1. Thus, if 𝑏2 = (1 − 𝛼
𝑝1

)Θ1 < 1, then

𝒜𝑏2 = {𝜇0} (P2 cannot attack) and we cannot apply any of the structural results in

Sections 3.2 and 3.3.

So far, we know that 𝑏*2 ≤ Θ1 thanks to Prop. 3 (for any budget 𝑏2 ≥ Θ1, �̃�2 is an

equilibrium strategy for P2). We focus on computing a better upper bound on 𝑏*2 by

first considering a large subset of P2’s equilibrium strategies based on the partitions

of the min-cut sets. Then we find, in this subset of equilibrium strategies, the ones

with the lowest attack budget.
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4.3.1 Partition-Based Equilibrium Strategies

Throughout this subsection, we consider a min-cut set 𝐸({𝑆, 𝑇}). Let {𝑒1, . . . , 𝑒𝑁}

denote the edges that constitute the min-cut set, where 𝑁 is the number of edges in

𝐸({𝑆, 𝑇}). Recall that 𝜇𝑚𝑖𝑛 is the attack that disrupts all the edges of 𝐸({𝑆, 𝑇}).

A partition of {𝑒1, . . . , 𝑒𝑁} of size 𝑛 is a set {𝑇1, . . . , 𝑇𝑛} such that:

∀(𝑖, 𝑗) ∈ J1, 𝑛K2 | 𝑖 ̸= 𝑗 : 𝑇𝑖 ∩ 𝑇𝑗 = ∅, and
⋃︁

𝑘∈J1,𝑛K

𝑇𝑘 = {𝑒1, . . . , 𝑒𝑁}.

Definition 1. We say that {𝜇1, . . . , 𝜇𝑛} is a partition of 𝜇𝑚𝑖𝑛 if there exists a partition

{𝑇1, . . . , 𝑇𝑛} of the min-cut set {𝑒1, . . . , 𝑒𝑁} of size 𝑛 such that ∀𝑘 ∈ J1, 𝑛K, 𝜇𝑘 = 1𝑇𝑘

is the attack that disrupts the edges of 𝑇𝑘, i.e.:

∀𝑘 ∈ J1, 𝑛K, 𝜇𝑘
𝑖𝑗 =

⎧⎪⎨⎪⎩1 if (𝑖, 𝑗) ∈ 𝑇𝑘,

0 otherwise.

Note that
∑︀𝑛

𝑘=1 𝜇
𝑘 = 𝜇𝑚𝑖𝑛. The following proposition computes NE based on the

partitions of 𝜇𝑚𝑖𝑛.

Proposition 9. If 𝑝1 > 𝛼, 𝑝2 > 1, and under (A1), then for any partition {𝜇1, . . . , 𝜇𝑛}

of 𝜇𝑚𝑖𝑛 of size 𝑛, there exists a NE with support illustrated in Fig. 4-2, and with cor-

responding probabilities defined according to the following two regions:

Case (i) Region III.a: if 𝛼 < 𝑝1 <
𝑛𝛼

𝑛− 1
and 𝑝2 > 1, then:

- 𝜎1*

𝑥0 = 1 − 1

𝑝2
, 𝜎1*

𝑥* =
1

𝑝2

- ∀𝑘 ∈ J1, 𝑛K, 𝜎2*

𝜇𝑘 = 1 − 𝛼

𝑝1
, 𝜎2*

𝜇0 = 1 − 𝑛

(︂
1 − 𝛼

𝑝1

)︂
Case (ii) Region III.b: if 𝑝1 >

𝑛𝛼

𝑛− 1
and 𝑝2 > 1, then:

- 𝜎1*

𝑥0 = 1 − 1

𝑝2
, 𝜎1*

𝑥* =
1

𝑝2

- ∀𝑘 ∈ J1, 𝑛K, 𝜎2*

𝜇𝑘 =
𝛼

𝑝1(𝑛− 1)
, 𝜎2*

𝜇𝑚𝑖𝑛 = 1 − 𝑛𝛼

𝑝1(𝑛− 1)
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𝑝10 𝛼 𝑛𝛼

𝑛− 1

𝑝2

1

supp(𝜎1*) = {𝑥0}

supp(𝜎2*) = {𝜇0}
supp(𝜎1*) = {𝑥*}

supp(𝜎2*) = {𝜇0}

supp(𝜎1*) = {𝑥0, 𝑥*}

supp(𝜎2*) = {𝜇1, . . . , 𝜇𝑛} ∪ {𝜇0}

supp(𝜎1*) = {𝑥0, 𝑥*}

supp(𝜎2*) = {𝜇1, . . . , 𝜇𝑛} ∪ {𝜇𝑚𝑖𝑛}

III.a III.bI

II

Figure 4-2: Support of partition-based equilibrium strategies in Regions I-III.
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𝜎2
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𝛼 𝑛𝛼

𝑛− 1

1

𝑛

1

1 − 𝛼

𝑝1

𝛼

𝑝1(𝑛− 1)

1 − 𝑛𝛼

𝑝1(𝑛− 1)

1 − 𝑛

(︂
1 − 𝛼

𝑝1

)︂ 𝜎2
𝜇𝑚𝑖𝑛

𝜎2
𝜇𝑘

𝜎2
𝜇0

Figure 4-3: Probability distribution of P2’s partition based equilibrium strategies.
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The probability distributions evolve as in Fig. 4-3.

Proof of Proposition 9.

Case (i): If 𝛼 < 𝑝1 <
𝑛𝛼

𝑛− 1
and 𝑝2 > 1 (region III.a), then let us prove that

({𝑥0, 𝑥*}, {𝜇0, 𝜇1, . . . , 𝜇𝑛}) is the support of a NE (𝜎1* , 𝜎2*) where:

- 𝜎1*

𝑥0 = 1 − 1

𝑝2
, 𝜎1*

𝑥* =
1

𝑝2

- ∀𝑘 ∈ J1, 𝑛K, 𝜎2*

𝜇𝑘 = 1 − 𝛼

𝑝1
, 𝜎2*

𝜇0 = 1 − 𝑛

(︂
1 − 𝛼

𝑝1

)︂
Let us first prove (i) that 𝜎1* and 𝜎2* are probability distributions. Then let us

prove (ii) 𝑈1(𝑥
0, 𝜎2*) = 𝑈1(𝑥

*, 𝜎2*) = 0 and (iii) ∀𝑥 ∈ ℱ , 𝑈1(𝑥, 𝜎
2*) ≤ 0. Similarly

we prove (iv) 𝑈2(𝜎
1* , 𝜇0) = 𝑈2(𝜎

1* , 𝜇1) = · · · = 𝑈2(𝜎
1* , 𝜇𝑛) = 0 and (v) ∀𝜇 ∈

𝒜, 𝑈2(𝜎
1* , 𝜇) ≤ 0.

(i) Let us prove that 𝜎1* and 𝜎2* are probability distributions:

𝜎1* is clearly a probability distribution since 𝑝2 > 1.

- 𝑝1 > 𝛼 so 𝜎2*

𝜇𝑘 = 1 − 𝛼

𝑝1
≥ 0

- 𝜎2*

𝜇0 = 1 − 𝑛

(︂
1 − 𝛼

𝑝1

)︂
=
𝑝1 − 𝑛𝑝1 + 𝑛𝛼

𝑝1
=

(𝑛− 1)( 𝑛𝛼
𝑛−1

− 𝑝1)

𝑝1
≥ 0 because

𝑝1 ≤
𝑛𝛼

𝑛− 1

-
∑︁
𝜇∈𝒜

𝜎2*

𝜇 = 1

So 𝜎2* is a probability distribution.

(ii) Let us show that 𝑈1(𝑥
0, 𝜎2*) = 0.

Since ∀𝜇 ∈ 𝒜, 𝑢1(𝑥0, 𝜇) = 0, then 𝑈1(𝑥
0, 𝜎2*) = 0.

Now, let us prove that 𝑈1(𝑥
*, 𝜎2*) = 0.
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𝑈1(𝑥
*, 𝜎2*) =

𝑛∑︁
𝑘=1

(︂
1 − 𝛼

𝑝1

)︂(︁
𝑝1 F

(︁
(𝑥*)𝜇

𝑘
)︁
− C1 (𝑥*)

)︁
+

(︂
1 − 𝑛

(︂
1 − 𝛼

𝑝1

)︂)︂(︁
𝑝1 F

(︁
(𝑥*)𝜇

0
)︁
− C1 (𝑥*)

)︁
(2.10)
= (𝑝1 − 𝛼)

𝑛∑︁
𝑘=1

F
(︁

(𝑥*)𝜇
𝑘
)︁

+ (𝑝1 − 𝑛(𝑝1 − 𝛼)) F (𝑥*) − 𝛼F (𝑥*)

We can decompose 𝑥* into {𝑥1, . . . , 𝑥𝑁} where each 𝑥𝑙 is the part of 𝑥* that

goes through 𝑒𝑙 of the min-cut set 𝐸({𝑆, 𝑇}):

∀𝑙 ∈ J1, 𝑁K, ∀(𝑖, 𝑗) ∈ ℰ , 𝑥𝑙𝑖𝑗 =
∑︁
𝜆∈Λ𝑒𝑙

𝑖𝑗

𝑥*𝜆

where Λ𝑒𝑙
𝑖𝑗 = {𝜆 ∈ Λ | (𝑖, 𝑗) ∈ 𝜆 and 𝑒𝑙 ∈ 𝜆} is the set of paths that go through

(𝑖, 𝑗) and 𝑒𝑙.

Therefore:

𝑛∑︁
𝑘=1

F
(︁

(𝑥*)𝜇
𝑘
)︁

=
𝑛∑︁

𝑘=1

𝑁∑︁
𝑙=1

F
(︁(︀
𝑥𝑙
)︀𝜇𝑘

)︁

Moreover, only one of the 𝜇𝑘 affects 𝑥𝑙. Therefore we get:

𝑛∑︁
𝑘=1

F
(︁(︀
𝑥𝑙
)︀𝜇𝑘

)︁
= (𝑛− 1) F

(︀
𝑥𝑙
)︀

If we sum over 𝑙, we get:

𝑛∑︁
𝑘=1

F
(︁

(𝑥*)𝜇
𝑘
)︁

=
𝑁∑︁
𝑙=1

𝑛∑︁
𝑘=1

F
(︁(︀
𝑥𝑙
)︀𝜇𝑘

)︁
= (𝑛− 1)

𝑁∑︁
𝑙=1

F
(︀
𝑥𝑙
)︀

= (𝑛− 1) F (𝑥*)

which leads to:

𝑈1(𝑥
*, 𝜎2*) = (𝑝1 − 𝛼)(𝑛− 1) F (𝑥*) + (𝑝1 − 𝑛(𝑝1 − 𝛼)) F (𝑥*) − 𝛼F (𝑥*) = 0
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(iii) Now, let us show that ∀𝑥 ∈ ℱ , 𝑈1(𝑥, 𝜎
2*) ≤ 0.

∀𝑥 ∈ ℱ , 𝑈1(𝑥, 𝜎
2*) =

𝑛∑︁
𝑘=1

(︂
1 − 𝛼

𝑝1

)︂(︁
𝑝1 F

(︁
𝑥𝜇

𝑘
)︁
− C1 (𝑥)

)︁
+

(︂
1 − 𝑛

(︂
1 − 𝛼

𝑝1

)︂)︂(︁
𝑝1 F

(︁
𝑥𝜇

0
)︁
− C1 (𝑥)

)︁
= (𝑝1 − 𝛼)

𝑛∑︁
𝑘=1

F
(︁
𝑥𝜇

𝑘
)︁

+ (𝑝1 − 𝑛(𝑝1 − 𝛼)) F (𝑥) − C1 (𝑥)

(2.9)
≤ (𝑝1 − 𝛼)

𝑛∑︁
𝑘=1

F
(︁
𝑥𝜇

𝑘
)︁

+ (𝑝1 − 𝑛(𝑝1 − 𝛼)) F (𝑥) − 𝛼F (𝑥)

Likewise:
𝑛∑︁

𝑘=1

F
(︁
𝑥𝜇

𝑘
)︁

= (𝑛− 1) F (𝑥). Therefore:

𝑈1(𝑥, 𝜎
2*) ≤ ((𝑝1 − 𝛼)(𝑛− 1) + (𝑝1 − 𝑛(𝑝1 − 𝛼)) − 𝛼) F (𝑥) = 0

So 𝜎1* is a BR for P1.

(iv) Similarly, let us show that 𝑈2(𝜎
1*, 𝜇0) = 0.

Since ∀𝑥 ∈ ℱ , 𝑢2(𝑥, 𝜇0) = 𝑝2 F
(︁
𝑥− 𝑥𝜇

0
)︁
− C2 (𝜇0) = 0 then 𝑈2(𝜎

1* , 𝜇0) = 0.

Now, let us prove that ∀𝑘 ∈ J1, 𝑛K, 𝑈2(𝜎
1* , 𝜇𝑘) = 0.

∀𝑘 ∈ J1, 𝑛K, 𝑈2(𝜎
1* , 𝜇𝑘) =

(︂
1 − 1

𝑝2

)︂(︀
𝑝2 × 0 − C2

(︀
𝜇𝑘

)︀)︀
+

1

𝑝2

(︁
𝑝2 F

(︁
𝑥* − (𝑥*)𝜇

𝑘
)︁
− C2

(︀
𝜇𝑘

)︀)︁
= F

(︁
𝑥* − (𝑥*)𝜇

𝑘
)︁
− C2

(︀
𝜇𝑘

)︀
The loss induced to 𝑥* by attacking edges of the min-cut set is exactly equal

to the capacity of the attack: F
(︁

(𝑥*)𝜇
𝑘
)︁

= F (𝑥*) − C2

(︀
𝜇𝑘

)︀
. Therefore: ∀𝑘 ∈

J1, 𝑛K, 𝑈2(𝜎
1* , 𝜇𝑘) = 0.
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(v) Lastly, let us prove that ∀𝜇 ∈ 𝒜, 𝑈2(𝜎
1*, 𝜇) ≤ 0.

∀𝜇 ∈ 𝒜, 𝑈2(𝜎
1* , 𝜇) = F (𝑥* − (𝑥*)𝜇) − C2 (𝜇)

The first term is the loss induced by the attack 𝜇 when 𝑥* is in the network,

and the second term is the cost of the attack which can also be viewed as

the maximum amount of flow that can be lost because of the attack. Thus:

∀𝜇 ∈ 𝒜, 𝑈2(𝜎
1* , 𝜇) ≤ 0 and 𝜎2* is a BR for P2.

Therefore, (𝜎1*, 𝜎2*) ∈ 𝒮Γ.

Case (ii): Now, we consider the case when 𝑝1 >
𝑛𝛼

𝑛− 1
and 𝑝2 > 1 (Region III.b).

Then we prove that ({𝑥0, 𝑥*}, {𝜇1, . . . , 𝜇𝑛, 𝜇𝑚𝑖𝑛}) is the support of a NE (𝜎1* , 𝜎2*)

where:

- 𝜎1*

𝑥0 = 1 − 1

𝑝2
, 𝜎1*

𝑥* =
1

𝑝2

- 𝜎2*

𝜇𝑘 =
𝛼

𝑝1(𝑛− 1)
∀𝑘 ∈ J1, 𝑛K, 𝜎2*

𝜇𝑚𝑖𝑛 = 1 − 𝑛𝛼

𝑝1(𝑛− 1)

Let us first prove (i) that 𝜎1* and 𝜎2* are probability distributions. Then let

us prove (ii) 𝑈1(𝑥
0, 𝜎2*) = 𝑈1(𝑥

*, 𝜎2*) = 0 and (iii) ∀𝑥 ∈ ℱ , 𝑈1(𝑥, 𝜎
2*) ≤ 0. Sim-

ilarly we prove (iv) 𝑈2(𝜎
1* , 𝜇1) = · · · = 𝑈2(𝜎

1* , 𝜇𝑛) = 𝑈2(𝜎
1* , 𝜇𝑚𝑖𝑛) = 0 and (v)

∀𝜇 ∈ 𝒜, 𝑈2(𝜎
1* , 𝜇) ≤ 0.

(i) First, let us prove that 𝜎1* and 𝜎2* are probability distributions:

𝜎1* is clearly a probability distribution since 𝑝2 > 1.

- 𝜎2*

𝜇𝑘 =
𝛼

𝑝1(𝑛− 1)
≥ 0

- 𝜎2*

𝜇𝑚𝑖𝑛 = 1 − 𝑛𝛼

𝑝1(𝑛− 1)
=

1

𝑝1

(︂
𝑝1 −

𝑛𝛼

𝑛− 1

)︂
≥ 0 because 𝑝1 ≥

𝑛𝛼

𝑛− 1

-
∑︁
𝜇∈𝒜

𝜎2*

𝜇 = 1
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So 𝜎2* is a probability distribution.

(ii) Let us prove that 𝑈1(𝑥
0, 𝜎2*) = 0.

Since ∀𝜇 ∈ 𝒜, 𝑢1(𝑥0, 𝜇) = 0, then 𝑈1(𝑥
0, 𝜎2*) = 0.

Now let us prove that 𝑈1(𝑥
*, 𝜎2*) = 0.

𝑈1(𝑥
*, 𝜎2*) =

𝑛∑︁
𝑘=1

𝛼

𝑝1(𝑛− 1)

(︁
𝑝1 F

(︁
(𝑥*)𝜇

𝑘
)︁
− C1 (𝑥*)

)︁

+

(︂
1 − 𝛼𝑛

𝑝1(𝑛− 1)

)︂⎛⎜⎝𝑝1F(︁
(𝑥*)𝜇

𝑚𝑖𝑛
)︁

⏟  ⏞  
=0

− C1 (𝑥*)

⎞⎟⎠
(2.10)
=

𝛼

𝑛− 1

𝑛∑︁
𝑘=1

F
(︁

(𝑥*)𝜇
𝑘
)︁
− 𝛼F (𝑥*)

As previously, one can show that
∑︀𝑛

𝑘=1 F
(︁

(𝑥*)𝜇
𝑘
)︁

= (𝑛−1) F (𝑥*), which leads

to:

𝑈1(𝑥
*, 𝜎2*) =

𝛼

𝑛− 1
(𝑛− 1) F (𝑥*) − 𝛼F (𝑥*) = 0

(iii) Now let us show that ∀𝑥 ∈ ℱ , 𝑈1(𝑥, 𝜎
2*) ≤ 0.

𝑈1(𝑥, 𝜎
2*) =

𝑛∑︁
𝑘=1

𝛼

𝑝1(𝑛− 1)

(︁
𝑝1 F

(︁
𝑥𝜇

𝑘
)︁
− C1 (𝑥)

)︁

+

(︂
1 − 𝛼𝑛

𝑝1(𝑛− 1)

)︂⎛⎜⎝𝑝1F(︁
𝑥𝜇

𝑚𝑖𝑛
)︁

⏟  ⏞  
=0

− C1 (𝑥)

⎞⎟⎠
=

𝛼

𝑛− 1

𝑛∑︁
𝑘=1

F
(︁
𝑥𝜇

𝑘
)︁
− C1 (𝑥)

Likewise:
𝑛∑︁

𝑘=1

F
(︁
𝑥𝜇

𝑘
)︁

= (𝑛− 1) F (𝑥).
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Therefore:

𝑈1(𝑥, 𝜎
2*)

(2.9)
≤ 𝛼

𝑛− 1
(𝑛− 1) F (𝑥) − 𝛼F (𝑥) = 0

So 𝜎1* is a BR for P1.

(iv) Similarly, let us show that 𝑈2(𝜎
1*, 𝜇𝑚𝑖𝑛) = 0.

𝑈2(𝜎
1* , 𝜇𝑚𝑖𝑛) =

(︂
1 − 1

𝑝2

)︂(︀
𝑝2 × 0 − C2

(︀
𝜇𝑚𝑖𝑛

)︀)︀
+

1

𝑝2

(︁
𝑝2 F

(︁
𝑥* − (𝑥*)𝜇

𝑚𝑖𝑛
)︁
− C2

(︀
𝜇𝑚𝑖𝑛

)︀)︁
= F (𝑥*) − C2

(︀
𝜇𝑚𝑖𝑛

)︀
= 0

where the last equality follows from the Max-Flow Min-Cut Theorem.

Now, let us prove that ∀𝑘 ∈ J1, 𝑛K, 𝑈2(𝜎
1*, 𝜇𝑘) = 0

∀𝑘 ∈ J1, 𝑛K, 𝑈2(𝜎
1* , 𝜇𝑘) =

(︂
1 − 1

𝑝2

)︂(︀
𝑝2 × 0 − C2

(︀
𝜇𝑘

)︀)︀
+

1

𝑝2

(︁
𝑝2 F

(︁
𝑥* − (𝑥*)𝜇

𝑘
)︁
− C2

(︀
𝜇𝑘

)︀)︁
= F

(︁
𝑥* − (𝑥*)𝜇

𝑘
)︁
− C2

(︀
𝜇𝑘

)︀
The loss induced to 𝑥* by attacking edges of the min-cut set is exactly equal

to the capacity of the attack: F
(︁

(𝑥*)𝜇
𝑘
)︁

= F (𝑥*) − C2

(︀
𝜇𝑘

)︀
. Therefore: ∀𝑘 ∈

J1, 𝑛K, 𝑈2(𝜎
1* , 𝜇𝑘) = 0

(v) We already proved in Region III.a that: ∀𝜇 ∈ 𝒜, 𝑈2(𝜎
1* , 𝜇) ≤ 0. Thus 𝜎2* is

a BR for P2.

Therefore, (𝜎1*, 𝜎2*) ∈ 𝒮Γ.

Given 𝑝1 > 𝛼 and 𝑛 ∈ J1, 𝑁K, let us note 𝒮𝑛
𝑝1

the set of P2’s equilibrium strategies

described by Prop. 9 whose support has a size equal to 𝑛 + 1 (the support is based
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on a partition of 𝜇𝑚𝑖𝑛 of size 𝑛 and, depending on 𝑝1, whether includes 𝜇0 or 𝜇𝑚𝑖𝑛

according to Prop. 9). We denote the set of P2’s equilibrium strategies described by

Prop. 9 (for a fixed 𝑝1) as:

𝒮𝑝1 :=
⋃︁

𝑛∈J1,𝑁K

𝒮𝑛
𝑝1

(4.1)

Prop. 9 enables us to have an analytical expression of a large number of P2’s

equilibrium strategies. Indeed, given any partition of a min-cut set, we can find a

corresponding partition-based equilibrium strategy for P2 thanks to Prop. 9. Since

there are 2𝑁 − 1 such partitions, then 𝒮𝑝1 contains 2𝑁 − 1 equilibrium strategies for

P2.

In Fig. 4-2, we find again Regions I and II outlined in Props. 1 and 2. For

𝒮𝑝1 , Prop. 9 splits Region III into two subregions, where each region considers the

partitions of 𝜇𝑚𝑖𝑛 in a specific manner. For Case 1 ( 𝑛𝛼
𝑛−1

> 𝑝1), an equilibrium strat-

egy for P2 randomizes over the partition {𝜇1, . . . , 𝜇𝑛} and 𝜇0. However, for Case 2

( 𝑛𝛼
𝑛−1

< 𝑝1), an equilibrium strategy for P2 randomizes over the same partition and

𝜇𝑚𝑖𝑛. Intuitively, if P2 partitions 𝜇𝑚𝑖𝑛 in too many components (i.e., 𝑛𝛼
𝑛−1

decreases),

then she assigns positive probability to the min-cut set attack. However, if she par-

titions 𝜇𝑚𝑖𝑛 in fewer components, then she chooses no attack action with a nonzero

probability.

Remark 2. The case 𝑛 = 1 corresponds to attacking the whole min-cut set (it’s a

partition of size 1). When 𝑛 tends to 1 from above, 𝑛𝛼
𝑛−1

−→ +∞. Therefore, if we

draw Fig. 4-2 in the case 𝑛 = 1, we find again Fig. 3-1 (Region III.a expands); thus,

Prop. 3 is a particular case of Prop. 9.

Example 8. Let us illustrate Prop. 9 with the example in Fig. 3-2. Recall that the

only min-cut set is {(1, 3), (2, 3), (2, 4)} and the only min-cost max-flow sends one

unit of flow through each of the paths {𝑠, 1, 3, 𝑡}, {𝑠, 2, 3, 𝑡} and {𝑠, 2, 4, 𝑡}.

Let us consider one partition {{(1, 3), (2, 3)}{(2, 4)}} of the min-cut set. From

this partition, we construct the corresponding attacks 𝜇1 that disrupts edges (1, 3)

and (2, 3), and 𝜇2 that disrupts edge (2, 4). Thus, {𝜇1, 𝜇2} is a partition of 𝜇𝑚𝑖𝑛. The
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results obtained by applying Prop. 9 to this example are presented in Fig. 4-4.

s

1

2

3

4

t0,1,1 0,1,1

1,2,1

1,1,1

2,3,1

1,1,1

1,1,1

2,3,1

1,2,1

𝜎2*

𝜇2 = 1− 3

𝑝1

𝜎2*

𝜇1 = 1− 3

𝑝1

𝜎1*
𝑥* =

1

𝑝2

s

1

2

3

4

t0,1,1 0,1,1

1,2,1

1,1,1

2,3,1

1,1,1

1,1,1

2,3,1

1,2,1

𝜎2*

𝜇2 =
3

𝑝1

𝜎2*

𝜇1 =
3

𝑝1

𝜎2*

𝜇𝑚𝑖𝑛 = 1− 6

𝑝1

𝜎1*
𝑥* =

1

𝑝2

III.a III.b

𝑝1 <
𝑛𝛼

𝑛− 1
, 𝑝2 > 1 𝑝1 >

𝑛𝛼

𝑛− 1
, 𝑝2 > 1

Figure 4-4: NE described in Prop. 9 based on the partition {𝜇1, 𝜇2}.

Now that we can analytically compute many more NE, we can try to find the

equilibrium strategies among 𝒮𝑝1 that require the lowest budget.

4.3.2 Optimization Problem

In the previous subsection, we saw that any partition of 𝜇𝑚𝑖𝑛 (along with 𝜇0, 𝜇𝑚𝑖𝑛) can

be used to explicitly construct a subset of equilibrium strategies for P2. Specifically,

an equilibrium based on such a partition can be mapped into one of the two regions

(III.a-b) illustrated in Fig. 4-2.

Without loss of generality, let us consider a unique min-cut set (𝑒1, . . . , 𝑒𝑁) con-

sisting of 𝑁 edges. With a slight abuse of notation, let us denote 𝑐𝑘 the capacity of

edge 𝑒𝑘 (for all 𝑘 ∈ J1, 𝑁K).

First, note the following:

𝜎2 ∈ ∆(𝒜𝑏2) ⇐⇒ ∀𝜇 ∈ supp(𝜎2), C2 (𝜇) ≤ 𝑏2 ⇐⇒ max
𝜇∈supp(𝜎2)

C2 (𝜇) ≤ 𝑏2.

That is, a strategy satisfies the budget constraint if and only if the maximum cost

of conducting an attack chosen with positive probability is no greater than the budget
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constraint.

Therefore, in order to get a better upper bound on the minimum budget 𝑏*2 for

which the results in Sections 3.2 and 3.3 still hold, we want to find a strategy in 𝒮𝑝1

(defined by (4.1)) that minimizes the maximum cost of conducting an attack chosen

with a positive probability, i.e.:

arg min
𝜎2*∈𝒮𝑝1

max
𝜇∈supp(𝜎2*)

C2 (𝜇)

The following proposition gives the answer.

Proposition 10. Among the NE listed in Prop. 9, a strategy that minimizes the

budget needed is based on a partition of 𝜇𝑚𝑖𝑛 of size 𝑛* := min
{︁⌊︁

𝑝1
𝑝1−𝛼

⌋︁
, 𝑁

}︁
, and is

obtained by solving the following integer programming problem:

(𝐼𝑃 ) minimize 𝑧

subject to 𝑧 ≥
𝑁∑︁
𝑙=1

𝑐𝑙 𝑦𝑙𝑘, ∀𝑘 ∈ J1, 𝑛*K

𝑛*∑︁
𝑘=1

𝑦𝑙𝑘 = 1, ∀𝑙 ∈ J1, 𝑁K

𝑦𝑙𝑘 ∈ {0, 1}, ∀(𝑙, 𝑘) ∈ J1, 𝑁K × J1, 𝑛*K.

Proof of Proposition 10. We want to solve the following problem:

min
𝜎2*∈𝒮𝑝1

max
𝜇∈supp(𝜎2*)

C2 (𝜇) = min
𝑛∈J1,𝑁K

min
𝜎2*∈𝒮𝑛

𝑝1

max
𝜇∈supp(𝜎2*)

C2 (𝜇) . (4.2)

First, let us start by finding 𝑛* ∈ arg min𝑛∈J1,𝑁K min𝜎2*∈𝒮𝑛
𝑝1

max𝜇∈supp(𝜎2*) C2 (𝜇).

There are two cases to consider:

– Case 1: If
𝑛𝛼

𝑛− 1
< 𝑝1, then ∀𝜎2* ∈ 𝒮𝑛

𝑝1
, supp(𝜎2*) = {𝜇1, . . . , 𝜇𝑛} ∪ {𝜇𝑚𝑖𝑛} so:

∀𝜎2* ∈ 𝒮𝑛
𝑝1
, max

𝜇∈supp(𝜎2*)
C2 (𝜇) = C2

(︀
𝜇𝑚𝑖𝑛

)︀
= Θ1.

Therefore, if
𝑛𝛼

𝑛− 1
< 𝑝1, then min

𝜎2*∈𝒮𝑛
𝑝1

max
𝜇∈supp(𝜎2*)

C2 (𝜇) = Θ1.
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– Case 2: If
𝑛𝛼

𝑛− 1
≥ 𝑝1, then ∀𝜎2* ∈ 𝒮𝑛

𝑝1
, supp(𝜎2*) = {𝜇1, . . . , 𝜇𝑛} ∪ {𝜇0} so:

∀𝜎2* ∈ 𝒮𝑛
𝑝1
, max

𝜇∈supp(𝜎2*)
C2 (𝜇) = max

𝑘∈J1,𝑛K
C2

(︀
𝜇𝑘

)︀
.

For any partition {𝜇1, . . . , 𝜇𝑛} of 𝜇𝑚𝑖𝑛, we note {𝑇1, . . . , 𝑇𝑛} the corresponding

partition of the min-cut set {𝑒1, . . . , 𝑒𝑁} of capacities 𝑐1, . . . , 𝑐𝑁 . Then the cost

of each 𝜇𝑘 is equal to the sum of the capacities of the edges it disrupts, i.e.:

∀𝑘 ∈ J1, 𝑛K, C2

(︀
𝜇𝑘

)︀
=

∑︁
𝑒𝑙∈𝑇𝑘

𝑐𝑙

Therefore:

∀𝜎2* ∈ 𝒮𝑛
𝑝1
, max

𝜇∈supp(𝜎2*)
C2 (𝜇) = max

𝑘∈J1,𝑛K

∑︁
𝑒𝑙∈𝑇𝑘

𝑐𝑙.

One can see that the problem is equivalent to finding a partition {𝑇1, . . . , 𝑇𝑛}

of the min-cut set such that the maximum sum of the capacities of the edges

constituting each element of the partition is minimized. 𝑛 still being fixed, we

want to solve the following bilevel optimization problem:

𝜓(𝑛) := min
{𝑇1,...,𝑇𝑛}

max
𝑘∈J1,𝑛K

∑︁
𝑒𝑙∈𝑇𝑘

𝑐𝑙

Now, let us argue that the optimal value of the previous bilevel problem, 𝜓(𝑛),

does not increase when partitioning the min-cut set into more pieces, i.e., if

𝑛′ > 𝑛, then 𝜓(𝑛′) ≤ 𝜓(𝑛).

Indeed, let us consider 𝑛 ≤ 𝑁 − 1, and let us note {𝑇 *
1 , . . . , 𝑇

*
𝑛} an optimal

partitioning of the min-cut set of size 𝑛: 𝜓(𝑛) = max𝑘∈J1,𝑛K
∑︀

𝑒𝑙∈𝑇 *
𝑘
𝑐𝑙.

Since 𝑛 ≤ 𝑁 − 1, then at least one of the 𝑇 *
𝑘 contains at least two edges

(Dirichlet’s principle). Without loss of generality, let us assume that 𝑇 *
𝑛 contains

at least two edges. Let us denote 𝑒𝑘0 one of the edges of 𝑇 *
𝑛 .

77



Now, let us consider {𝑇1, . . . , 𝑇𝑛+1} a partition of the min-cut set of size 𝑛 + 1

such that ∀𝑘 ∈ J1, 𝑛− 1K, 𝑇𝑘 = 𝑇 *
𝑘 , 𝑇𝑛 = 𝑇 *

𝑛∖{𝑒𝑘0} and 𝑇𝑛+1 = {𝑒𝑘0}.

Notice that 𝑐𝑘0 ≤
∑︀

𝑒𝑙∈𝑇 *
𝑛
𝑐𝑙 and

∑︀
𝑒𝑙∈𝑇𝑛

𝑐𝑙 ≤
∑︀

𝑒𝑙∈𝑇 *
𝑛
𝑐𝑙.

Thus, we constructed a partition of the min-cut set of size 𝑛+ 1, such that:

𝜓(𝑛+ 1) ≤ max
𝑘∈J1,𝑛+1K

∑︁
𝑒𝑙∈𝑇𝑘

𝑐𝑙 ≤ max
𝑘∈J1,𝑛K

∑︁
𝑒𝑙∈𝑇 *

𝑘

𝑐𝑙 = 𝜓(𝑛)

Therefore, 𝜓 is a non-increasing function, which means that in (4.2), we need

to increase 𝑛 as much as possible. However, let us not forget that we are in the

case where
𝑛𝛼

𝑛− 1
≥ 𝑝1.

Thus, the optimal partitioning size in this case is the largest integer 𝑛* such that
𝑛𝛼

𝑛− 1
≥ 𝑝1, i.e., 𝑛* = max

{︂
𝑛 ∈ J1, 𝑁K | 𝑛𝛼

𝑛− 1
≥ 𝑝1

}︂
= min

{︂⌊︂
𝑝1

𝑝1 − 𝛼

⌋︂
, 𝑁

}︂
.

Finally, notice that for any partition {𝑇1, . . . , 𝑇𝑛}, we have

∀𝑘 ∈ J1, 𝑛K,
∑︁
𝑒𝑙∈𝑇𝑘

𝑐𝑙 ≤
𝑁∑︁
𝑙=1

𝑐𝑙 = Θ1.

This implies that 𝜓(𝑛*) ≤ Θ1, which is the optimal value of the original problem in

Case 1. Therefore 𝑛* is the optimal partitioning size.

Now that we know 𝑛*, we can derive an integer programming problem that pro-

vides us with an optimal partition of 𝜇𝑚𝑖𝑛:

minimize 𝑧

subject to 𝑧 ≥
𝑁∑︁
𝑙=1

𝑐𝑙 𝑦𝑙𝑘, ∀𝑘 ∈ J1, 𝑛*K

𝑛*∑︁
𝑘=1

𝑦𝑙𝑘 = 1, ∀𝑙 ∈ J1, 𝑁K

𝑦𝑙𝑘 ∈ {0, 1}, ∀(𝑙, 𝑘) ∈ J1, 𝑁K × J1, 𝑛*K.

One can see that this integer programming problem gives the optimal value 𝜓(𝑛*)

and an optimal way of partitioning the min-cut set thanks to the 𝑦𝑙𝑘. Indeed, for
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every edge 𝑒𝑙, and any set 𝑇𝑘, 𝑦𝑙𝑘 = 1 means that edge 𝑒𝑙 goes in set 𝑇𝑘. Thanks to

the constraint
∑︀𝑛*

𝑘=1 𝑦𝑙𝑘 = 1, ∀𝑙 ∈ J1, 𝑁K, each edge 𝑒𝑙 goes in exactly one set 𝑇𝑘, thus

creating a partition of the min-cut set.

Then, from this partition of the min-cut set, one can partition 𝜇min accordingly,

and use Prop. 9 in order to derive the corresponding probabilities.

Given a partition {𝜇1, . . . , 𝜇𝑛} of 𝜇𝑚𝑖𝑛, the support of the corresponding strategy

in 𝒮𝑝1 is this partition along with 𝜇𝑚𝑖𝑛 or 𝜇0 depending on 𝑝1. Let us note {𝑇1, . . . , 𝑇𝑛}

the corresponding partition of the min-cut set. For every 𝑘 ∈ J1, 𝑛K, one may notice

the following:

C2

(︀
𝜇𝑘

)︀
=

∑︁
(𝑖,𝑗)∈𝑇𝑘

𝑐𝑖𝑗 =
𝑁∑︁
𝑙=1

𝑐𝑙𝜇
𝑘
𝑒𝑙

(4.3)

The cost of conducting attack 𝜇𝑘 is equal to the sum of the capacities of the edges

of the min-cut set that 𝜇𝑘 disrupts. Therefore, the more P2 partitions 𝜇𝑚𝑖𝑛, the less

number of edges of the min-cut set each 𝜇𝑘 disrupts. In Prop. 9, we saw that when
𝑛𝛼
𝑛−1

> 𝑝1, P2 randomizes over the partition and no attack, so the maximum attacking

cost is induced by one of the elements of the partition. Thus, P2 needs to increase

𝑛. However, when 𝑛 increases, 𝑛𝛼
𝑛−1

decreases and we saw that when 𝑛𝛼
𝑛−1

< 𝑝1, then

𝜇𝑚𝑖𝑛 enters the support and the budget that is needed is Θ1 (the capacity of the min-

cut). Therefore, P2 needs to increase 𝑛 until 𝑛* = max
{︀
𝑛 ∈ J1, 𝑁K | 𝑛𝛼

𝑛−1
≥ 𝑝1

}︀
=

min
{︁⌊︁

𝑝1
𝑝1−𝛼

⌋︁
, 𝑁

}︁
.

Knowing the optimal size of the partition of 𝜇𝑚𝑖𝑛, we can find a partition of size

𝑛* that minimizes the maximum attacking cost. Thanks to (4.3), one can see that

this is equivalent to assigning 𝑁 objects (the edges of the min-cut set) of value 𝑐𝑙

each, into 𝑛* bags such that the maximum value of the bags is minimized. This is

the purpose of (IP).

The optimal value of (IP), 𝑧*, gives a new upper bound on 𝑏*2 (we are certain

that the results in Sections 3.2 and 3.3 hold when 𝑏2 ≥ 𝑧* ≥ 𝑏*2). Depending on the

min-cut set, 𝑧* may be much smaller than Θ1, which was the previous upper bound
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on 𝑏*2 deduced from Prop. 3. In addition, the optimal solution of (IP), 𝑦*𝑙𝑘, gives us the

corresponding way of partitioning 𝜇𝑚𝑖𝑛 (𝑦*𝑙𝑘 = 1 if and only if edge 𝑒𝑙 is disrupted by

𝜇𝑘), and Prop. 9 derives the corresponding probabilities to construct an equilibrium

strategy.

Let us illustrate Prop. 10 with an example.

Example 9. Once again, consider the graph given in Fig. 3-2 and assume that 𝑝1 = 5.

First, let us enumerate all the equilibrium strategies of 𝒮𝑝1 in Fig. 4-5.

Fig. 4-5a shows that the NE of 𝒮1
𝑝1

contains an attack that induces a cost of 3,

while Figs. 4-5b, 4-5c, and 4-5d show that the NE of 𝒮2
𝑝1

contain attacks that induce

at most a cost of 2. However, Fig. 4-5e shows that the NE of 𝒮3
𝑝1

contains an attack

that also has a cost of 3. Therefore, P2’s equilibrium strategies of 𝒮𝑝1 that require the

lowest budget are based on a partition of size 2, which corresponds to min
{︀⌊︀

5
5−3

⌋︀
, 3
}︀
.

Thus, we are sure for this example that the results in Sections 3.2 and 3.3 hold when

𝑏2 ≥ 2 = 𝑧*.

Thus, combining Props. 9 and 10 computes a new upper bound on the lowest

attack budget for P2 to which we can apply the structural results presented in Sec-

tions 3.2 and 3.3.
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Figure 4-5: Enumeration of the equilibrium strategies in 𝒮𝑝1 .
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Chapter 5

Some Extensions

Finally, we discuss the implications of relaxing some assumptions of our model. First,

we consider a network that does not satisfy (A1). We use this example to see under

which circumstances our results can still be applied. Then, we present a weaker as-

sumption than (A1) for which the results derived in Chapter 3 hold as well. Following,

we further discuss our assumption regarding the cost of attack: in the model studied

in this thesis, we supposed that the cost of attacking an edge was proportional to its

capacity. We now present a network with a general cost of attack and we see how

some of the results derived in this thesis apply to such networks.

5.1 Relaxing Assumption 1

We now study the implications of relaxing (A1) by way of an example. Consider the

graph given in Fig. 5-1 and consider the game Γ.

s

1

2

t1,1

1,1

1,4

1,4

1,1

Figure 5-1: Initial graph.
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The unique min-cost max-flow sends one unit of flow through each of the paths

{𝑠, 1, 𝑡} and {𝑠, 2, 𝑡} whose marginal transportation cost is equal to 5. However,

{𝑠, 1, 2, 𝑡} has a marginal transportation cost equal to 3 so (A1) does not hold. Let

us assume that 𝑝1 = 𝑝2 = 6. Then, we can show that �̃� defined by (3.4) and (3.5) is

not a NE anymore. Let us note 𝑥′ the flow that sends 1 unit through path {𝑠, 1, 2, 𝑡},

𝜇1 = 1(𝑠,1), 𝜇2 = 1(1,2) and 𝜇3 = 1(2,𝑡). Then, one can show that there exists an

equilibrium where P1’s strategy 𝜎1* is defined by 𝜎1*

𝑥′ = 1
6

and 𝜎1*

𝑥0 = 5
6
, and P2’s

strategy 𝜎2* is defined by 𝜎2*

𝜇1 = 𝜎2*

𝜇2 = 𝜎2*

𝜇3 = 1
6

and 𝜎2*

𝜇0 = 1
2
. We can see that this

strategy does not rely on the min-cost max-flow and the min-cut set anymore. This

NE is illustrated in Fig. 5-2.
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𝜎2*

𝜇2 =
1

6

𝜎2*

𝜇1 =
1

6

𝜎1*
𝑥′ =

1

6

Figure 5-2: NE in the case 𝑝1 = 𝑝2 = 6.

However, if we suppose instead that 3 < 𝑝1 < 5 and 𝑝2 > 1, then we can prove

that (𝜎1*, 𝜎2*) defined by 𝜎1*

𝑥0 = 1 − 1
𝑝2

, 𝜎1*

𝑥′ = 1
𝑝2

, and 𝜎2*

𝜇0 = 3
𝑝1

, 𝜎2*

𝜇2 = 1 − 3
𝑝1

is a

NE. This result looks similar to the one we derived in Prop. 3. Actually, they are

related: when 3 < 𝑝1 < 5, the marginal transportation costs of paths {𝑠, 1, 𝑡} and

{𝑠, 2, 𝑡} are higher than the marginal value of effective flow, so P1 has no incentive to

send any flow along these paths. If we remove these paths from the graph (as in the

elimination of strictly dominated strategies), we obtain the subgraph in Fig. 5-3a.

It turns out this subgraph satisfies (A1) (it’s only a path). Therefore, we can apply

all our results to this subgraph, and the elimination of strictly dominated strategies

tells us that they will hold for the original graph (the equilibrium we found is exactly

�̃� from Prop. 3 applied to this subgraph). The NE is illustrated in Fig. 5-3b.

Thanks to this example, we see that we can relax (A1) and extend all the results

84



s

1

2

t

1,1

1,1
1,1

(a) Subgraph

s

1

2

t

1,1

1,1
1,1

𝜎2*

𝜇2 = 1− 3

𝑝1

𝜎1*
𝑥′ =

1

𝑝2

(b) NE in the case 3 < 𝑝1 < 5 and 𝑝2 > 1

Figure 5-3: Removal of paths that are too costly for P1.

we derived in this thesis to the graphs whose subgraph, obtained by removing the

paths that are too costly, satisfies (A1).

5.2 Transportation Cost

In this thesis, we solved game Γ for a restricted class of graphs (the ones satisfying

(A1)). It turns out the characterization of the NE we gave in Chapter 3 is also valid

for a larger class of graphs satisfying the following weaker assumption:

Assumption 2. There exists an optimal solution of (𝒫2) denoted 𝑥* ∈ Ω2, and there

exists a min-cut set (𝑒1, . . . , 𝑒𝑁) with 𝛼𝑘 := min{𝜆∈Λ | 𝑒𝑘∈𝜆}
∑︀

(𝑖,𝑗)∈𝜆 𝑏𝑖𝑗, ∀𝑘 ∈ J1, 𝑁K,

then for every 𝑘 ∈ J1, 𝑁K, all 𝑠− 𝑡 paths taken by 𝑥* that go through 𝑒𝑘 have identical

marginal transportation cost 𝛼𝑘, i.e.,

∃𝑥* ∈ Ω2, ∃min-cut set (𝑒1, . . . , 𝑒𝑁) | ∀𝑘 ∈ J1, 𝑁K, ∀𝜆 ∈ Λ | 𝑒𝑘 ∈ 𝜆 :

𝑥*𝜆 > 0 =⇒
∑︁

(𝑖,𝑗)∈𝜆

𝑏𝑖𝑗 = 𝛼𝑘.

In contrast to (A1), this assumption considers a class of graphs whose min-cost

max-flow takes paths that have different marginal transportation cost. Note that in

(A2), when 𝛼1 = · · · = 𝛼𝑁 ≡ 𝛼, we find again (A1). Below is an instance of a graph

that does not satisfy (A1) but satisfies (A2).

Example 10. Consider the network flow problem in Fig. 5-4. There is a unique min-
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cost max-flow 𝑥*, which carries 1 unit of flow through paths {𝑠, 2, 4, 𝑡}, {𝑠, 2, 3, 𝑡} and

{𝑠, 1, 𝑡}. Thus, the total amount of flow is equal to 3 units. However, these paths

induce different transportation costs, therefore (A1) is not satisfied.

Let us note 𝑒1 = (𝑠, 1), 𝑒2 = (2, 3) and 𝑒3 = (4, 𝑡), then (𝑒1, 𝑒2, 𝑒3) is a min-cut

set. One can check that 𝛼1 = 2, 𝛼2 = 3 and 𝛼3 = 4. For 𝑘 ∈ {1, 2, 3}, the paths

taken by 𝑥* that go through 𝑒𝑘 induce a transportation cost equal to 𝛼𝑘. Thus, (A2)

is satisfied and one can check that the results presented in Chapter 3 also apply to

the game Γ defined on this network.
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0,1,3

0,1,11,1,1

2,2,1
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1,1,1 1,1,1

1,1,2

1,1,1

Figure 5-4: Min-cost max-flow (bold blue) and min-cut set (dotted red) of a graph
satisfying (A2).

5.3 Cost of Attack

One of the main assumptions of the model is that the cost of attacking an edge

is proportional to its capacity (ref. (2.4)). In this section, we want to investigate

through an example the implications of considering the case of a more general cost of

attack. Let us consider the graph given by Fig. 5-5.

Once again, one can show that �̃� from (3.4) and (3.5) is not a NE anymore.

Let 𝑥1 be the flow that sends 1 unit through path {𝑠, 1, 𝑡}, 𝑥2 be the flow that

sends 1 unit through path {𝑠, 2, 𝑡}, and 𝜇′ = 1{(1,𝑡),(2,𝑡)} be the attack that disrupts

edges (1, 𝑡) and (2, 𝑡). Then, one can show that when 𝑝1 > 2 and 𝑝2 > 3, (𝜎1*, 𝜎2*)

defined by 𝜎1*

𝑥0 = 1 − 3
𝑝2

, 𝜎1*

𝑥1 = 1
𝑝2

, 𝜎1*

𝑥2 = 2
𝑝2

and 𝜎2*

𝜇0 = 2
𝑝1

, 𝜎2*

𝜇′ = 1 − 2
𝑝1

is a NE. This

NE is illustrated in Fig. 5-6.
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Figure 5-5: Graph with general cost of attack. Edge capacities, transportation cost
and cost of attack are denoted in red, green and orange colored labels respectively.
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Figure 5-6: NE in the case 𝑝1 > 2 and 𝑝2 > 3 for a graph with general cost of attack.

In this case, one may notice that {(1, 𝑡), (2, 𝑡)} is the cut-set of the graph that

induces the smallest cost of attack. Hence, according to this NE, we conjecture that

in the general cost of attack case, the notion that generalizes the min-cut set is the

cut-set that induces the smallest attacking cost. Indeed, in our model, since the

attacking cost was proportional to the edge capacity, then the min-cut sets were the

cut-sets that induced the smallest cost of attack.

Regarding P1’s strategy, we can see that in this case, she routes 𝑥2 twice as

frequently as 𝑥1, most likely because the cost of attacking (2, 𝑡) is twice as the cost

of attacking (1, 𝑡). This result differs from the NE we found in our model: each

path taken by the min-cost max-flow was taken with the same probability, 1
𝑝2

, at

equilibrium.
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Chapter 6

Conclusion

6.1 Summary of the Results

In this thesis, we considered a simultaneous network flow game between a defender

and an attacker. Using linear programming duality for zero-sum games and network

optimization ideas such as the Max-Flow Min-Cut Theorem, we gave structural in-

sights on the set of Nash equilibria and we computed in closed form certain physical

quantities of interest in equilibrium. Specifically, we showed that each player has a

unique payoff value in all Nash equilibria and we analytically computed the value

of effective (resp. lost) flow and the cost of transportation (resp. cost of attack) in

terms of the parameters of the game. Then, we used graph theoretic properties of the

network to provide a characterization of the support of the equilibria and relate it to

the solutions of two classical network optimization problems that are the minimum

cost maximum flow problem and the minimum cut problem.

Lastly, we studied a generalization of the game where both players face bud-

get constraints and we looked for the minimum budget that players must have so

the structural results we presented in the unconstrained case extend to the budget-

constrained game. Using the infiniteness of the defender’s set of actions, we computed

a tight lower bound for the defender’s budget for transporting flows. Unfortunately,

an analogous lower bound could not be derived for the attacker’s budget due to the

finiteness of her set of actions. Therefore, we computed in closed form a large number

89



of equilibrium strategies for the attacker in the unconstrained game (based on the

partitions of the minimum cut sets). Then, using an integer programming problem,

we found the partition-based equilibrium strategies that require the lowest budget,

thus providing a bound on the attacker’s budget for which the analysis in the uncon-

strained case holds for the budget-constrained game.

6.2 Future Work

In this thesis, we assumed that the value of effective flow was linear in the amount

of effective flow and the edge transportation cost was linear in the amount of edge

flow (see (2.3)). However, many network flow problems have more complex losses

[5, 7, 22, 23]. Thus, it would be interesting to extend our model to the case where

the edge transportation cost is 𝑏𝑖𝑗𝑥𝛾𝑖𝑗 with 𝛾 > 0.

Another extension of our work is to take into account the reliability failures of

the edges. Using a stochastic modeling of the edge capacities [19], we could model

an attacker-defender game on a network subject to reliability failures. It would also

be interesting to analyze how the equilibria depend on the distribution of reliability

failures.

Finally, we could use the model derived in this thesis and study it in a repeated

setting with imperfect information, i.e., one player has more information of the state

than the other. While playing the game repeatedly, the uninformed player could

study the strategy of the informed player in order to learn the hidden information.
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