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Abstract

Understanding the profiles of information acquisition during DNA sequencing exper-
iments is critical to the design and implementation of large-scale studies in medical
and population genetics. One known technical challenge and cost driver in next-
generation sequencing data is the occurrence of non-independent observations that
are created from sequencing artifacts and duplication events from polymerase chain re-
action (PCR). The current study demonstrates improved return on investment (ROI)
modeling strategies to better anticipate the impact of non-independent observations
in multiple forms of next-generation sequencing data. Here, a physical modeling
approach based on P61ya urn was evaluated using both multi-point estimation and
duplicate set occupancy vectors. The results of this study can be used to reduce se-
quencing costs by improving aspects of experimental design including sample pooling
strategies, top-up events, and termination of non-informative samples.
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Chapter 1

Introduction

Strategies for high-throughput DNA sequencing were first developed in the 1990s and

have continued to evolve, creating invaluable tools for population genetics, medical

research, and experimental biology. Many of the most popular and cost-effective se-

quencing strategies available today have evolved from so-called "shotgun sequencing"

technologies [1]. In such approaches, DNA is extracted from tissue or cell samples and

then cleaved or sheered into small fragments called "inserts" or "templates" which

are often only a few hundred base pairs. By reading these small segments of DNA,

current sequencing technology enables the parallel reading of hundreds of millions of

inserts. This strategy relies on algorithms for de novo genome assembly or mapping

the small read segments to a reference genome.

Sequencing procedures for many technologies and sample types require DNA am-

plification steps before processing. Such amplification steps increase the total volume

of DNA for reading either across the genome or, as in the case for exome sequencing,

amplify the sequences of genomic regions of interest. The term sequencing library is

commonly used to refer to a DNA sample which has been sheered, amplified and pro-

cessed in preparation for sequencing. Polymerase chain reaction (PCR) is the most

popular amplification procedure and aims to duplicate each DNA fragment many

times during a series of heating and cooling reactions. The term library complex-

ity is used in this thesis as a generic term to describe both the number of unique

molecules that undergo an amplification protocol as well as the final concentration of
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each molecule after library construction.

In practice, the true complexity of a library can be difficult to anticipate a priori

due to variations in sample quality, PCR efficiency, and the physical properties of

DNA inserts that affect the duplication rate. The library complexity of a given

sample can have a substantial influence on the trajectory of a sequencing experiment.

In a whole genome sequencing (WGS) experiment, for example, a DNA library would

ideally contain many unique and overlapping DNA segments distributed evenly across

the genome. Often, the genomic coverage (the average number of bases aligned to a

given region) is quite variable for a given sample. Variations in genomic coverage are

largely due to random sampling along regions of the starting DNA. Additionally, the

amplified properties of a sequencing library can further impact observed coverage. In

the case where a small number of DNA fragments have been duplicated at a very

high rate, these can 'obscure' the occurrences of less-amplified fragments. Similarly,

starting with low-quality or formaldehyde modified tissue may yield a smaller number

of starting fragment before amplification.

Library complexity affects the rate of information acquisition during a sequencing

study. During the earliest phase of sequencing a particular library, nearly every

observed DNA insert is unique. At a later stage of the study, when more inserts

have been read by the machine, new observations will have a higher probability of

being repeats. For this reason, the overall fraction of duplicates increases as more

DNA fragments are read by the sequencer. Duplicates are typically identified and

excluded from variant calling and down-stream analysis because they represent non-

independent observations of the underlying genomic information being recorded. The

motivation for such exclusion is twofold. First, an error in PCR amplification might

cause the appearance of a variant in a large number of observed reads even though

this change in DNA is not present in the sample of interest. Second, amplification

biases may skew estimates of the copy number or underlying genotype of a given

sample.

14



m samples

Library
-r-b Amplification

N

variable definition M

N - number of unique seeds in the starting library
k- nutmber of the ith seed in the library

M - total number of molecules in the amplified library, sumn of all ki
rn - numiber of samples o)bservedl froi sequencing libirary

Figure 1-1: Schematic of the library construction and sampling variables used often

in this study. Each unique DNA insert is mnarked with a separate letter. The left side

depicts a set of DNA inserts after DNA sheering. The right side depicts the library

generated after sequence amplification.

1.1 Poisson-based models of PCR and library com-

plexity

Figure 1-1 is a pictorial representation of somne of the library properties mnodeled in

the current study. Ini this text, the total number of distinct DNA iniserts after DNA

sheering is N. The termn "molecule" and "DNA insert" are use interchangeably. Ini

PCR, these unique starting molecules undergo a series of amplification rounds to

generate a library with M total molecules. In this larger library, the counts k can

be expressed for each molecule i where (i 1. N). The distribution of k's is

unknown. The experimenter only observes a subset of DNA molecules in a sample of

size m which have been recorded by the DNA sequencer.

An ibrary comple ty cu e describes the change in the unique observed molecules

to the total observed nolecules throughout a sequencing experiment. In 2010, Li

described a model to predict the library complexity curve for a given sample using

a simple set of closed forum equations f1s This modeling strategy for sequence du-
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plication assumes that counts of duplication events are drawn from a fixed Poisson

distribution. Li showed the following estimation of duplication

d ~ N (1 - e-m/N)
m

where N is the number of unique molecules in the library and is m is the number of

molecules observed. Conveniently, the Poisson parameter A drops out of the during

the derivation of this formula. This allows for estimation based only on the library

total number of molecules observed at a given in time and the fraction of those

molecules that are unique. Here the assumption that m -> oo is required as Li

employs the common definition of exponential when modeling library sampling.

1.2 Motivations for an improved modeling strategy

This project is motivated by a desire to improve library complexity estimates for the

Genome Analysis Tool Kit (GATK) best practices. The Genome Analysis Tool Kit is

a suite of tools used for variant discovery in high-high throughput DNA sequencing. A

companion to GATK is the Picard suite of pre-processing tools. Picard is designed to

perform many supporting functions for variant analysis including manipulation of se-

quencing filetypes, reporting quality metrics, and various sorting procedures. Included

in Picard is the "MarkDuplicates" tool which iterates through single- or paired-end

sequencing data to mark duplicate reads according to the Sequence Alignment-Map

(SAM) format specifications. The MarkDuplicates tool tracks different forms of read

duplication and calculates a return-on-investment (ROI) metric to predict library

complexity. This returned ROI estimate is expressed as a multiple of additional

unique molecules that would be observed if same sample was sequenced further. The

current study aims improve the ROI modeling strategy by improving the handling of

sequencer-based duplicates and by improving the physical model of the PCR process.

A further goal of the current study is to explore approaches to physical model-

ing in the prediction of library complexity. Recent studies [2] [3] have demonstrated

16



predictive approaches based on extrapolating the shape of complexity curve at an

early phase of a sequencing experiment. These approaches do not fully account for

the physical processes through which duplication events arise. Recent discussions

in statistical literature have drawn distinction between predictive and explanatory

approaches in describing experimental phenomena f41. Explanatory models are ad-

vantageous because they produce predictions by using components with an explicit

physical interpretation. This approach has two main advantages. The first is that ex-

planatory approach can help us to reason about the likely performance of predictions

outside of the scale and regime of the data being used to parameterize the model.

Second, we can have a better intuition about the performance or reliability of the

predictions as sequencing technology changes (e.g. changes to sequencing approach,

library preparation methods, hybrid selection, etc).

It should be stated that different forms of experimental data are often required

to fully vet an explanatory model describing a physical processes. In DNA sequenc-

ing, examples of data sets that might build confidence in a physical model of library

complexity could include: 1) sequencing samples with the library size known a priori,

2) samples with the same DNA extract, but various rounds of PCR sequencing 3)

libraries without biological duplication events, or 4) sequencing of the same library

with and without technologies impacted by optical duplication events. Such experi-

ments are beyond the scope of the current study, but could be performed in future to

bolster evidence for physical models explored here.

Interestingly, such controlled experiments are not always necessary for a predictive

approach. As discussed by Shmueli, "Whereas for causal explanation experimental

data are greatly preferred, subject to availability and resource constraints, in predic-

tion sometimes observational data are preferable to 'overly clean' experimental data,

if they better represent the realistic context of prediction in terms of the uncontrolled

factors, the noise, the measured response, etc." [4]. This leads to interesting tradeoffs

between physical and predictive modeling. In what circumstances, for instance, is

it worth sacrificing some predictive power in order to utilize an explanatory model

which is more physically interpretable and better generalizes to future sequencing

17



technology? This and related ideas are explored qualitatively in this text.
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Chapter 2

Sequencer- and library-based sources

of duplication

2.1 Complexity curves from read groups sets

In order to evaluate the complexity curve for a given input, sequence files were seg-

mented and grouped into a series of files based on read group. Current Illumina

sequencing technology relies on flow cell chips which contain billions of nano wells,

each of which are designed to bind and amplify sequence from a single DNA template

molecule. Flow cells are divided into 8 equally spaced lanes and data collected on a

separate lane is called a read group. All data was read according to the Sequence

Alignment/Map Format Specification (SAM and BAM files). Individual read groups

were randomly selected and placed into an expanding set. During each addition of a

random read group, a new file was generated using the updated set of read groups.

For a starting input with n read groups, this resulted in n separate BAM files of in-

creasing size. Read groups were then used as the basis to analyze complexity curves

and return-on-investment calculations. This was done to minimize bias related to

read location and pair orientation that can arise when randomly sampling records in

BAM file. Because read groups occur on different lanes or flow cells of a sequenc-

ing study, they are taken here to represent a more independent measurements of a

sequencing library.
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Data:
n samples BAMs files
for sample = 1 to n do

extract m read groups names from sample BAM
for j = 1 to m do

samtools view -b -h sample.bam -R jth-read-group -h chrm2l.bed -o
jth-read-group.bam
rgSet = {1, ... j}
MarkDuplicates I=lst-read-group.bam, ... I=jth-read-group.bam
OUTPUT=rgSet.bam OPT_ DUPPIXELDISTANCE=2500

end
remove lst-read-group.bam, ... jth-read-group.bam

end
Output:
m read group set BAMs for each samples BAM file

Algorithm 1: Read group set generation and Mark Duplicates

Once files were generated for the increasing read group sets, MarkDuplicates was

run on each set file. The parameter for defining location-based duplication events

was set to 2500 pixels which is the default parameter commonly used for the Illumina

HiSeq X Ten System which was used to generate data analyzed in this study. De-

tails regarding this distance parameter are discussed further in Section 2.4. Counts

reported in the MarkDuplicates metrics file were used as the basis for complexity

curves. These metrics included the number of read pairs observed for the read group

set, the number of unique read pairs, and the count of optical duplicates. Algorithm

1 was proposed to organize and pre-processes read groups into a series of increasing

sets in order to evaluate ROI methods.

2.2 Optical duplicate events

Separate sources of duplication may differentially impact a sample depending on the

stage of a sequencing study. For this reason, the current study handles sequencer-

based duplication, referred to in this text as 'optical duplication', separately from

PCR duplication when modeling complexity curves. The term optical duplication

comes from instances when a single cluster of molecules of the same DNA insert is

counted two or more times at the same location on a flow cell. Optical duplication can

20
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0,05 ---- 0.20

0.06 u 0.15

0.04 /00

0.02 0.05

0 1 2 3 4 5 1 8 9 0 1 2 3 4 5 6 / 8 "
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Figure 2-1: Rates of optical (left) and non-optical (right) duplication as more read

groups are added to a sequencing study. Each line represents one of 50 separate

exome samples.

also refer to 'pad-hopping' events where a single DNA-insert is copied and migrates

to multiple adjacent wells on a patterned flow cell. Here, optical duplication events

are identified as duplicates that occur within close proximity (as defined by a fixed

pixel distance in the x and y direction) of the same sequencing tile. Figure 2.2 shows

the rate of duplication for optical vs. non-optical duplicates as a sequencing study

proceeds.

As the rate of optical duplication is largely constant throughout ail experiment,

they are modeled separately from estimates of PCR-based duplication where up is

the fraction of unique molecules measured under the Poisson-based model. From Li

2010, the library size Np under the Poisson model can be estimated as follows:

c = 1 - cmp/Np (2.1)
Np

Here, the optical duplicates d, are subtracted from the total observed read counts

m = m - d, and c is the count of unique read pairs observed. Using the library

size estimate, the fraction of unique molecules up can be calculated under the Poisson

model for any sequencing multiple x:

N
Ux " (1 - -mPx/N(2.2)

xm,

21
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The final fraction of unique read pairs u can then be expressed in terms of the the

Poisson model above multiplied by a linear term representing the fraction of molecules

that are non-optical duplicates:

Ut(X) ( in 0 _- (2.3)
m0  UpX

Where m0 and d, are the total read count and optical duplication count at the ex-

trapolation point respectively. This strategy is compared to the optical duplication

handling that currently takes place in the Picard ROI estimation tool. This program

subtracts off optical duplicates from the total reads observed when calculating the

library size, but leaves in optical duplication events when applying the ROI equation.

The result is that the Picard ROI tool systematically over estimates the fraction of

unique molecules that are expected under the Poisson-based model. This is because

subtracting off optical duplicates results in a larger estimated library size, but then

uniqueness term expressed by (1 - e-h) is not lowered when optical duplicates con-

tribute to the total count n that is modeled. Furthermore, the prediction is not

valid at the extrapolation point. Figure B-1 depicts a simulation comparing the cur-

rent Picard approach to that listed in equation 2.3. In this simulation, a complexity

curve was generated by sampling items drawn from distribution of counts populated

by Poisson(A) (to simulate PCR duplication) with an additional linear source of re-

peats (to simulate optical duplication). Modeling the Poisson distribution without

accounting for the linear component resulted in an overestimation of duplicates while

the Picard ROI approach resulted in a systematic underestimation of duplications.

Equation 2.3 best captured the complexity curve in the simulation. The Picard ROI

method used as a comparison approach multiple times in this text and is often labeled

"Picard ROIcurrent".
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Figure 2-2: The graph on the left shows prediction for the library complexity curve

using slope offset fron equation 2.4 (red). Results are compared to observed data

(black) as well as two Poisson-based models without slope offset. The graph on the

right shows the least squares penalty for the paranieterization of library size and slope

offset.

2.3 Multi-point parameterization and slope offset

Alone, the Poisson-based model imposes that the first, portion of a complexity curve

will have a slope close to one. This does not, allow for scenarios where the complexity

curve is largely linear but offset froin y x axis. This has been observed in niamv

exome and WGS samples coveredl at depths conmmoi in production data at the Broad

Institute. Such a scenario could be indicative of an unknown source of optical or

sequencer-based duplication. To explore this possibility further, the Poisson model

was modified to allow for a free linear term. A least, squares objective was used to

minimize the difference between the observed unique fraction and the uniqueness rate

estimated from equation 2.2 modified with a new slope offset parameter s. The sum

of the squared difference was calculated for read group sets 1 through Al which nake

up the extrapolation points:

j-( - en/N

1

Figure 2-2 shows and prediction results for a. single nexome sample using four out, of

twelve read group sets for extrapolation.

23

_______________~~~ ____________ __



library complexity predictions for
sample NexPond-359781

1 2 3 4 5 6
read pairs sequenced

7 8 9
le5

-+- observed readpairs model contribution

PicardRO Icurrent optical duplication

- - slopeoffsetprojection slope offset

* extrapolation point Poisson model

Figure 2-3: Prediction for the library complexity curve using slope offset from equa-
tion 2.4 (red). Shown in the shaded regions are the relative contributions of the
Poisson model, optical duplications, and slope offset to the final predictions.

It is helpful to examine the relative contributions of the Poisson model, optical

duplications, and slope offset to the final predictions. This can be described by the

following equation for the total fraction of unique molecules ut given x sequencing

multiples:

Ut (X) (o= s m- (x) (2.5)
MO

Where m0 and d, are the total read count and optical duplication count at the extrap-

olation point respectively. The relative contribution of the three model components

can be visualized in Figure 2-4

2.4 Effect of optical duplicate pixel distance

To examine the effect of sequencer-based duplications, the distance threshold defining

optical duplication events was manipulated. After grouping read pairs into duplicate

sets, MarkDuplicates uses read niames retrieve the coordinate location of clusters

24
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extrapolated from rgset4 read groups
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01

0

Figure 2-4: Results for the slope-offset model where examined across many WGS

samples.

observed by the sequencer. If both the x and y distances are within the OPTICAL

DUPLICATE PIXEL DISTANCE for any given pair in the set, a read is marked as

an optical duplicate. This parameter, 'OPTICAL DUPLICATE PIXEL DISTANCE',

was varied across a number of pixel distances. Figure 2-5 shows that the fraction of

optical duplicates to total pairs observed increases as the parameter is increased in

MarkDuplicates. The lowest distance threshold tested effectively only marks two read

pairs as optical duplicates if are found in adjacent wells on a patterned flow cell. At

the largest value tested, an arbitrarily high pixel distance, the threshold effectively

represents the scenario where any two read pair duplicates are marked as optical if

they appear on the same tile segment of the flow cell. A variety of values were tested

in-between these two extremes. Currently, the default value for this parameter in the

production of study-quality data is 2500 pixels for data collected on patterned flow

cells.

Figure 2-5 shows the fraction of optical duplicates tails off around 4489 pixels.

The right hand figure shows a reduction in error from the model Poisson-based nodel

froum equation 2.3. Although there appears to be a predictive benefit from setting

25
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Figure 2-5: The fraction of optical duplicates recorded (left) and the model error

Poisson-based model.

this parameter to the max, further analysis would be needed to assess the impact of

false positive marking of optical duplicates. Interestingly, a more frequent marking of

optical duplication on a tile reduces the contribution of the slope-offset parameter s in

equation 2.4. Figure B-3 shows that as the pixel distance increases, the slope-offset

moves closer to 1 in exome samples, suggesting that the impact of linear offset is

largely related to optical duplication. The fact that the linear offset term does not

reach 1, even at the highest distance threshold, could be taken as evidence for missing

optical duplication.

2.5 Modeling insert features affecting duplication

One approach taken in this study was to incorporate features of DNA inserts when

calculating duplication projections. In the following analysis, two features of genomic

library inserts were chosen for modeling: the insert length and guanine-cytosine (GC)

content of reads. It was hypothesized that these two features would be especially

informative as they can influence PCR. reaction efficiency. Both the length of a

DNA insert as well as its GC content can effect nelting temperature during the

heating cooling cycles of PCR, leading to differences in molecular concentration in

the resulting library. The empirical duplication count was examined for each feature
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as well as in combination.

Reads were counted and binned according to their range of insert features. For

the insert length and GC analysis, this resulted in a matrix M E 2 "xn where 7n is the

number of length bins and n is the number of evenly spaced GC bins. In the analysis

shown, im=:50 and n=30. The inferred insert size was based on location of paired

end reads that were mapped to a reference genome using BWA alignment1 . The GC

content of the insert was inferred using the reference sequence. First a cumulative GC

count was calculated for each contig. An array was initialized matching the length

of contig and each entry contained the cumulative count of G and C bases up to its

corresponding index in the reference. For each read pair that mapped to the contig of

interest, the number of GC bases in the insert was calculated with the cumulative GC

array. The entry in the cumulative GC array corresponding to the starting mapped

position of the read pair was subtracted from entry corresponding to the terminal

mapped position of the read pair. This gave an estimated count of G and C bases in

the DNA insert and this was normalized by the insert length to estimate the percent

GC for each DNA insert. This calculation of insert GC relies on the assumption that

the occurrence of single-nucleotide-polymorphism (SNP) or insertion-deletion events

does not have a large impact on the overall GC content of a DNA insert. Unmapped

reads were excluded from the analysis. Figure B-4 shows the observed differences in

duplication rate that vary with GC content and insert size. Higher rates of duplication

were observed with DNA inserts of length 200 b.p. and 10% GC. DNA inserts with

these features, however, represent a small fraction of total read pairs examined.

1In this approach the best alignment of a read is used.
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Data:
Unique molecule counts: C E Z"", m Length bins, n GC bins
Total molecule counts: M E Z", m Length bins, n GC bins
Optical duplication rate: d,
initialization;
L <- (m x n) matrix to contain library size estimates
MP <- (m x n) matrix M - d, M
U +- (k x m x n) matrix to contain unique molecules modeled
for i - 1 to m do

for j 1 to n do
c C[ij]
M, =_ MP[i,j]
L[i,j] Solve for N, in 1 - e-mp/N

for x = 1 to k do
U[x,i,jI = g (1 - e-m/Np)

end
end

end
Algorithn 2: ROI exponential mixture model

A mixture of exponential models was employed to incorporate the features ex-

tracted from the DNA inserts. For each entry in the insert length-GC count matrix,

a separate exponential model was generated. Library size was estimated using the

number of unique and total molecules in a given length-GC bin. A projection of

unique molecules was calculated using Li's method. The projetions across all length-

GC entries were combined proportional to the count of read pairs observed in a given

bin. Additionally, the matrix of projections was masked for bins that contained less

that 1% of the read pairs observed. For entries with counts below this threshold, the

estimated fraction of unique molecules was set to the global estimate calculated with

all read pairs combined. Pseudocode for the algorithm with the masking procedure

procedure is listed in Appendix A.

This approach was first evaluated with a simulation. A matrix P G Rmx was

populated with positive, real values representing A parameters for multiple different

Poisson processes. Two additional matrices, M and C, were initialized to represent

the total counts and unique counts respectively where each entry represents the m

and c from equation 2.3. Matrix M was populated with random integers, but half
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of the A entries in P were inflated, creating a contrasts in the fraction of unique

counts observed in C. For each entry of M, the library size was estimated along with

the fraction of unique molecules using Algorithm 2. The ROI predictions from the

cumulative counts (using the sum all entries of the M and C matrices) were compared

to the estimates obtained by mixing exponential models entry wise as shown in Figure

2-6. The results of the simulation demonstrate how a model that handles reads with

specific features and different duplication rates can give different results relative to

an aggregated prediction with the same model.

In observed data, this approach showed little benefit in terms of explanatory

power. Figure 2-7 shows results from the exponential mixture approach of Algorithm

2 applied to exome data. The results for all samples examined were nearly identical to

the predictions obtained using the simple Poisson-model based on aggregated counts

from all reads. It was concluded that these features do not have strong predictive

power for return on investment calculations.
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Chapter 3

Physical models of PCR duplication

3.1 Library sampling

Physical models of library complexity begin by first accounting for the sampling pro-

cess that occurs in a sequencing study. During the processing of a sample in prepara-

tion for sequencing, DNA inserts are often size selected and then amplified as part of

the library construction. To the experimenter, both the total number of DNA inserts

and their full distribution of counts in the library is unknown. The experimenter only

observes a sample of size m from the larger library with M total molecules. Figure

1-1 depicts how observed reads are only a subset of unique information from the total

library. This section outlines three approaches to capturing this sampling process.

The first is a sampling without replacement with a hypergeometric distribution. The

second is the standard binomial approach to sampling without replacement. The third

is another approach used in the Li method which makes an additional assumption

around relative size of m and M.

3.1.1 Sampling without replacement from a library

One would expect the highest fidelity from an approach that models sampling without

replacement. This is because a DNA insert that has been observed on the sequencer

does not return back to the library for further recording. Given a single molecule with
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k occurrences in a library of size M, the probability of c counts of the same molecule

from m samples can be described by the hypergeometric distribution [3]

p(Mm) - k M-k M
kc c m-c m

This can be used in estimating the occurrence of a given seed during sampling. If

ci is the count of the ith seed from the library and observed in m samples, we can

estimate the probability that a given molecule is observed at least once or P(ci > 1).

If ki is known

P(ci > 1) P(Mm (1 - P(Mm) (3.2)
ki,ci>1 - k k,ci=O)

If k, is not known, then this can be approximated by using a generic probability mass

function (PMF)

P(ci 1) Z Pk (1 - P(M M)) (3.3)
k=1

Where Pk is the probability of a unique molecule having count k in the larger library.

Equation 3.3 is only an approximation because as the sampling proceeds, the sampled

values are not independent. This can yield nonzero covariance between sample values.

The influence of this is minimized in scenarios where m < M.

3.1.2 Sampling with replacement from a library

A binomial distribution is often used to model sampling with replacement. Although

the process of sequencing does not involve replacement, for large populations of DNA

inserts, the covariance between any two draws from the library is approximately zero.

The handling of binomial sampling is common and can follow analogous logic to

equations 3.2 through 3.3. Alternatively, from Li [5], we can model sampling with

replacement by evaluating the occurrence of a unique seed i in m samples from library

of size M where

X 1 ifseed i occurs at least once

0, otherwise

32



if we assume m < M and the procedure follows sampling with replacement then

P(X 1)= 1- 1- - ~ (1- e ) (3.4)
M)

This relies on the definition of the exponential and thus assumes that m -+ oc. From

this it follows that the duplication rate is

d = I - (3.5)
m

d ~ 1 - (1 e )Pk (3.6)
k=O

where P is the probability of count k in the sequence library before sampling.

The three sampling approaches (hypergeometric, binomial, and exponential) were

simulated across values k = 1 ... 30. Figure 3-1 (left) depicts a scenario where with a

sample size of m = 10' and library size N = 10', the exponential sampling estimation

separates, yielding different expected occupancies. In most sequencing experiments,

however the sample and library size are much larger. Figure 3-1 (right) depicts the

scenario where the sample and library size are larger than m = 106 and N = 107

respectively. For the sample sizes seen in typical high-throughput sequencing studies,

the three approaches are concluded to be largely equivalent.

3.2 P6lya urn modeling

Although it is analytically convenient to assume that the count of molecules in the

sequencing library is Poisson distributed, the author of the present study has not yet

encountered direct evidence for this in the literature. Figure B-5 shows that there is

weak evidence for the samples examined in the current study. Here, an effort is made

to explore alternative models and distributions starting by first examining branching

events that occur during PCR.

Given a set of starting seeds i 1 ... N, we can express the count of each unique

seed Aj after j rounds of duplication. If every seed was duplicated once during each
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Figure 3-1: Simulation showing the effect of various sampling methods (left) that as-
sume sampling without replacement (hypergeometric distribution) sampling without
replacement (binomial) and large sample size (exponential sampling). These three
approaches are largely equivalent at the scale of library size and sampling observed
in exome sequencing studies (right).

round the count would be expressed as Ai = 2A-1. Thus a starting seed of count 1

would yield a final count of 2 k after k rounds of duplication.

In the case where there is a non-zero chance of of seed i failing to duplicate during

the jth round of PCR, one can express duplication in terms of a fixed probability ai

unique to the seed.

A' = A - + Bin(A--1 , aj) (3.7)

Formula 3.7 shows that during the jth duplication round, a series of A' 1 Bernoulli

trials can be modeled, each with the probability of ai of success. Similarly, if each ai

is drawn from a beta distribution, the counts for each seed as described by equation

3.7 are equivalent to
j-1

A =f( A , e)
k=1

(3.8)

where f(k n, a, 3) is the beta-binomial distribution with the shape parameters a and

,3 controlling the duplication rate of all seeds. Since the exact sequence of A0 , A 1 ... A3

is unknown, the final counts of the library can be simulated as a long series of long
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beta-binomial events. Here, the number of trials n = Y~ Ak is unknown and can

be treated as a parameter of the data.

The beta-binomial process is often described in terms as draws from a P61ya urn

model. During each draw, a molecule is selected from an existing library and placed

back into the library along with c duplicate copies of the same molecule. Given a

library with only two types of molecules, red and black, let a represent the starting

count of red molecules and b represent the starting count of black molecules. Let

Xi represent the outcome for a single trial i where Xi = 1 represents a draw and

duplication of a red molecule and Xi = 0 otherwise. We wish to describe a sequence

of such events with length n in the form (x1, xW, .. ., xn) c {0, 1}. It can be shown

that for the c = 1 case, the finite dimensional distribution of such a sequence is

equivalent to the a beta-Bernoulli process j6]. For the Bernoulli trial sequence X

with parameter p, the probability of a specific outcome is

P(X1 = x1, X2 = x2 , .Xn Xn), X = a (3.9)
(a + b) [n]

where k = x, + - -- + xn and mW represents the ascending power

rm(m + 1)(m + 2) ... (m + j - 1.). Similarly, the success of the first n trials can be

represented as Y = En Xi with the beta binomial probability mass function

a a[k]bin-kj
P(Y=k)= (n) (3.10)

k (a +b) [n]

Which can be equivalently represented using the beta distribution B(a, 13)

P(Y - k) =(n) B(k + a,n-k+b) (3.11)
k B(a, b)

If the P6lya urn process is applied to a single molecule, the model can be simplified

further, with a starting library of size N, we can label a = 1 and b = N - 1 and the
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PMF for k amplification events for a single seed becomes:

P(Yn = k) - (a)(N )[A] (3.12)

and the probability that a given seed i will have a final count ki = k in a library

becomes

P(ki = k~n, N) (k = (N (3.13)
k -1(N)[n]

Figure B-6 verifies equation 3.13 by plotting the pridicted counts from equation 3.13

with a simulated sequencing library generated by a P6lya urn processes.

To relate this model to the observed data, the total number of molecules M in

the library must be approximated

0k(n) (N - 1)ln-kl~
M=N1 + k k (N)[n] =I N+n (3.14)

k=0

Given this equation for M, along with the sampling approach described in equation

refeq:ztpDup, the duplication rate is estimated as follows:

N 0) ( 1)" (N - 1)[n-k-1]

m 1k - 1 (N)[n]

The results of this P6lya approach appear in Figure 3-2. The P61ya urn modeled

showed a median error rate of -0.8% when trained using three read groups from each

of 48 different exome samples. This compares to an error rate of -1.1% observed in the

Picard ROI approach. Importantly, there was a reduction in the variance of model

error for the P6lya model with a standard deviation of 2.7% as compared to 5.4%

with the Poisson-based model. To improve physical interoperability, future analytical

work could relate the number of P6lya draws and library size to the number of rounds

of PCR and reaction efficiency for amplification.

Coincidentally, the biased, underestimation of optical duplicates that was reported
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from the Poisson-based model (as discussed in Section 2.2) actually helped to lower

error rates for the Picard ROI approach. This handling could have been employed

with the P61ya model as a heuristic, but was avoided due to its arbitrariness and lack

of physical meaning.

3.3 PMF based on the expectation of binomial branch-

ing

The expectation of samples observed after n cycles of PCR has been derived based

on branching [7]. Given seed i starting with Mo molecules, its expected count in the

sequencing library after n rounds of duplication:

E[ki], = MO(1 + p)n (3.16)

This was incorporated into an objective function to parameterize the unknown library

size N and the estimated number of duplication rounds n:

min --- Ep(kn,,a,/3)(1 - P m ) (3.17)
(Xi Mik=1 

c=

Where the probability mass function p(k n, a, 3) comes from

p(kfn, a, 0) = (1 + B(kla, b)"/ Z(1 + B(cla, b)n (3.18)
C=1

Where M0 is assumed to be 1 for molecules 1 ... N and the parameters to the beta

function determine the success of duplication for a given insert during each round of

duplication and are assumed to result in a high PCR yield (e.g. a = 5 and / = 5).

The total count of molecules in the library is estimated using the mean probability of

success from the beta distribution M = N(1 + I). This approach is not expected

to capture the variance of count as distributed in the library since the model is only

capturing the mean count across duplication rates sampled from the beta distribution.
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Figure B-8 shows the results of a simulation of branching process. The left shows how

equation 3.18 maps well onto a simulated branching event when the duplication rate

is low (the ratio of a :3 is low), while the estimation deviates when the ratio a : 3

grows larger.

3.4 Occupancy-based estimates

Given a sampling approach, one way to estimate library properties is based on the

size of duplicate sets. Beyond the aggregate count of duplicates (as used in the Li

method), the distribution of duplicate set sizes at a given point in a sequencing study

can give additional information to predict the future changes in library complexity.

The observed occupancy vector is defined as the number of DNA inserts with count

k in a sequencing study. This idea has been used in recent studies [3] and is applied

here to the P61ya urn modeling.

To enable predictions based oi duplicate occupancy, a new method was added

to the MarkDuplicates tool. In the MarkDuplicates tool a sorted, paired-end read

list is first build, storing features of a SAM record relevant for duplicate marking.

These include the read pairs indices as mapped onto the reference, pair orientation,

read group information and xy coordinates on the sequencing tile. The collection of

features for each record is then grouped into sets of paired-end reads that share same

start and end reference indices. The MarkDuplicates tool was modified here to return

back the size of these duplicate sets as the tool traverses all of the records in a SAM

file. Optical duplication events are defined as those records in a duplicate set that

occur on the same tile and within a fixed distance in the x or y direction. Optical

duplicates must have the same strand orientation. The MarkDuplicates tool was also

modified to return the set size of optical duplicates. After evaluating all records of

the input data, the tool was modified to return a histogram of counts for duplicate

set sizes for an input SAM or BAM file.

Once an occupancy vector is obtained from a sample, this data can be used to

parameterize a model of sequence duplication. Let Om(k) be the count of duplicate
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sets of size k after m DNA inserts have been sequenced from a library. Once param-

eterized, our model will estimate the function OM(k), the number of duplicate sets

of size k in the larger sequencing library containing M total molecules. To estimate

OM (k) we seek parameters for our model so as to minimize the distance between

the observed and expected sampled occupancy vector. The expected occupancy vec-

tor is calculated by enumerating all possible cases in which a unique molecule with

OM(k) = j and Om(k) = 1 where j > 1. Each of such cases is weighted by multiplying

the probability of count j in the large library by the probability of being observed 1

times in a sample of size m.

E [Om(1)] = N Zp(j IN, n)bin (lm, )
j=1

The difference between this expectation and the observed counts is minimized with

a least squares approach across all observed values of 1. Algorithm 3 depicts using a

least squares approach to estimate the parameters for the library size and the number

of P61ya draws needed for the model.

Data:
n sample BAMs files
for sample = 1 to i do

Estimate Library size N and number of polya draws n

)2mint (Om(k) -NE'I 1 p(jjN, n)biri(k~mj)

Calculate number of amplicons
M = E1 kOM(k)
for x = 1 to max-multiple do

u(x) =1 - - ZEZ Oxm(k)(k - 1)
end

end
Output:
u(x) is the estimated fraction of unique molecules at x multiples of sequencing

Algorithm 3: P6lya urn projections based on occupancy vector

Error rates for this approach are depicted in Figure 3-2. At present, P6lya urn

projection based on a single occupancy vector under performs relative to training the

same model with multiple points along the complexity curve using Equation 3.15.

Figure B-9. shows the observed occupancy for multiple read groups based on the
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Figure 3-2: Error rates for the occupancy-based estimates are compared to multi-point
P6lya estimates as well as Poisson-based models for exorie samples. The graph on
the right depicts results obtained from training the models on the three read groups.
The left depicts a graph based only on one read group.

occupancy projections from the P61ya urn model. These are plotted with the projec-

tions fitted to the observed occupancy based on the P61ya urn model. Considerable

error exists in this fit and future work will aim to address this issue by 1) modifying

the objective function to penalize according to the log difference in entries of the ob-

served minus expected occupancy and 2) improving the strategy for parameterization

by trying a gradient decent or a log-grid search with local refinernent.
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Chapter 4

Parallel duplicate marking with Julia

Factors affecting computer language design and selection in computational biology

have been discussed at length in recent years [8] [9]. Historically, the field's most

frequently used and computationally demanding tools, including algorithms for DNA

alignment and sequence similarity queries, have been implemented in low-level lan-

guages such as C, C++, or Fortran. The ability to compile such tools into highly

efficient machine code has provided obvious performance benefits, but more recent

scientific and computational demands in biology have transitioned, motivating many

scientists to begin using high-level and dynamically typed computer languages. This

transition has been driven, in part, by the flexibility offered by high-level languages in

response to fast-paced changes in data collection and data structures that arise with

new experimental techniques from molecular biology. Rapid development of new tools

and data types have put a heavy emphasis on prototyping, ease of development cy-

cles, and code maintainability [9]. For example, the Perl computer language gained

popularity in bioinformatics during the 1990s for its syntactic brevity, handling of

regular expressions, and support of both procedural and object-oriented programing.

More recently, computational biologist have relied heavily on high-level languages in-

cluding R and python to carry out cycles of analysis and processing. The community

of researchers developing new bioinformatics capabilities in dynamic programing lan-

guages often place emphasis on functionality that increases the ease of data handling

and statistical modeling. The Julia language, with strength in numeric computing,
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is poised to build on the best parts of other high-level languages by extending per-

formance and code interpretability when working with very large data sets observed

in DNA sequencing studies. A few of Julia's most important design features include

the use of multiple dispatch, just-in-time compilation, and metaprogramming.

New models to predict the impact of sequencing duplicates have recently been de-

scribed in the literature [2] and in the current study, but the technical infrastructure

to run these computations at scale are currently lacking. Julia's library of mathemati-

cal packages, its speed in numeric computing, and functionality to support operations

performed in parallel are likely suited to many challenges in genomic processing and

analysis. To test this hypothesis, Julia was used to implement an existing modeling

strategy to predict a commonly observed sequencing artifact [2] in order to improve

performance for return on investment calculations. Here, new Julia functionality is in-

troduced in order to launch and manage duplicate marking events in sequencing files.

A Julia wrapper was created to manage existing C code [21 for predicting return on

investment using methods based on the Good Toulmin model. Because the approach

of the Daley method is predictive in nature, rather than explicitly modeling the mul-

tiple physical sources of duplication, the results from this section are not formally

compared to the modeling approaches from the work of the current study. Instead,

we focus on the infrastructure for managing an alternative MarkDuplicates strategy.

Results in this chapter represent exploratory work that was completed for the MIT

course 15.337 during the fall semester of 2015 in collaboration with Mukarram Tahir

and Andres Hasfura.

Benchmarking was performed using existing preseq C++ code [2] that marks

duplicates and computes a complexity curve for a series of aligned data in BAM

format. This was applied to 50 exome sequencing samples, allowing us to perform

timing profiles and identify bottlenecks. Through a combination of profiling efforts,

we mapped the procedure through which preseq generates the complexity curve for a

given BAM file input. First, POS and FLAG entries are extracted for each read from

the binary BAM file, which respectively correspond to the position of a read on the

reference genome and an integer value from which read properties (such as whether it
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Figure 4-1: Overview of the processing and modeling strategy used by preseq. WN'e

identified read filtering using FLAG and read counting using POS as the bottleneck

best suited for optimization and parallelization in Julia.

is a primary read or if it is mapped to the reference) can be deduced through bitwise

operations. Preseq then filters the reads based on their FLAG values, and then

proceeds to identify duplicates among these reads. Two reads are classified by preseq

as duplicate if their position on the reference genome (signified by POS) are identical

and a count of these records is maintained. These so-called read counts are then used

for calculating the coiplexity curve, which is the output of the code. This procedure

is summnarized in the schematic shown in Figure 4-1. Of these steps, we deteriiiined

that, approximately 95(% of all compute tinme was expended in loading, filtering, and

counting duplicate reads iii the BAM sequencing file. Given the near enbarrassingly

parallel nature of these tasks, we recognized the opportunity to re-implement them

in Julia and attempt to achieve speedup through its parallel computing capabilities.

Once the read conmits are calculated, the C preseq code can be called with these

pre-calculated counts (rather than the original BAM file) for the final complexity

curve calculation.

The product, of our efforts to parallelize the presecl.cpp code was a -Julia wrapper

prese.jl, which handles all parts of the computation except the final calculation

of complexity from read counts. The input to preseq.jl is a binary BAM file, but

unlike preseq.cpp, this canmot be directly read for FLAG and POS values as there

is currently no Julia library for interfacing with BAM alignment files. We therefore

utilize an external executable known as santools for converting the binary BAM file

to a plaintext SAM file, which is then read into a DistributedArray object. When

worker nodes are spawned in Julia, each node then has access to only a portion of the
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Figure 4-2: Schematic of the preseq.jl, a Julia wrapper that, we implemented for

complexity curve calculation fron a BAM file input. Julia worker nodes perforim the

filtering and read count calculations in parallel, and the result is offloaded to the

existing preseq.cpp code for the final complexity calculation.

SAM entries for further processing. These worker nodes proceed to extracting POS

and FLAG fields fron their given set of SAM entries, and then apply filters based

on FLAG in a manner that is identical to the original C I - code. The filtered reads

are then examined for duplicates, and a count of duplicates is maintained at each

worker node. Given that a duplicate may be present across multiple worker nodes,

the individual count arrays fron the worker nodes are examined for overlap once they

are returned to the master node. The final counts are then written to a, temporary file

on disk, and preseq.cpp is called with this count, file (rather than the BAM file) for a

much faster complexity curve calculation. The overall implementation is summarized

in Figure 4-2.

From our earlier benclunarking of the serial preseq.cpp code, we determined exe-

cution times of approximately 5, 7, and 12 seconds respectively for 35 Mb, 67 Mh, and

135 Mb BAM files. For comparison, we ran our Julia wrapper prese(Ijl on these three

input file sizes, and varied the number of cores to determine reduction in execution

time as the number of cores is increased. Figure 4-3 shows a plot of these execution

times, and indicates a. substantial speedup as the first few cores are added. A plateau

in speedup is quickly reached, but the plateau varied according to file size. Given that

production BAM files are of nuch larger sizes, we expect efficient consumption of a
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large number of cores before such a point of diminishing returns is reached. It is con-

cerning though, that the execution time at which these curves level off is still higher

than the execution time of the serial preseq.cpp code for the corresponding input file

size. To investigate this, we visualized the various components of the execution time

for the 135 Mb input file, as shown in Figure 4-3 (lower). We notice immediately that

filtering and counting reads, which were subject to parallelization, contribute to the

majority of the speedup as the number of cores is increased. However, there appears

to be a constant and substantial overhead associated with reading the BAM files in

preseq.jl that is absent in the preseq.cpp code. Unlike the preseq.cpp code, which is

able to directly access POS and FLAG fields for all entries using a C++--4 API that

interfaces with BAM files, our preseq.jl code uses an external executable (samtools)

to first convert the binary BAM file to a plaintext SAM file, and then extract POS

and FLAG fields from each plaintext entry. This leads to a massive performance loss

in our Julia wrapper (compared to the original serial code). This is not especially

concerning, however, since a Julia library for interfacing with BAM files currently

appears to be under development, and future iterations of this code could utilize this

work to eliminate this bottleneck associated with reading BAM files.

Here, the use of the Julia language is demonstrated for extracting and analyzing

frequency information from raw DNA sequencing data. Our results provide insight

into Julia's suitability for genomic analysis including rapid prototyping, error anal-

ysis with C++ code, and an exploratory parallel algorithm for the identification of

duplicate sequencing reads.
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Figure 4-3: Execution time of preseq.jl as a function of the number of parallel cores for

three input BAM file sizes (upper). For comparison, the execution time of the serial

presel.cpp code is shown in parenthesis in the legend. (Breakdown of the execution

time for the 135 Mb BAM file lower), demonstrating excellent perforiance improve-

ment in read count calculation as the number of cores is increased, but significant

overhead incurred from reading the BAM file to a plaintext SAM file in memory.
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Chapter 5

Conclusion

This study demonstrates modest improvements in library complexity prediction by

physically modeling phenomena that contribute to duplication rates in next gener-

ation sequencing data. The approach of modeling PCR with a P6lya urn model

and handling optical duplication events as a constant source of duplication reduced

the overestimates of PCR duplication relative to predictions from a commonly used

Poisson-based model. The P6lya urn modeled showed a median error rate of -0.8%

when trained using three read groups from each of 48 different exome samples. This

compares to an error rate of -1.1% observed in the Picard ROI approach. Impor-

tantly, there was a reduction in the variance of model error for this model with a

standard deviation of 2.7% as compared to 5.4% with the Poisson-based model. As

the prediction gains were modest in physical modeling, the improved interpretability

of the P6lya urn model is highlighted as a benefit of the current approach. Such inter-

pretability is important as sequencing technology continues to evolve along with new

library construction techniques. Better understanding the factors that contribute to

library complexity will play a role in identifying, predicting, and eventually reducing

duplication events through through informed technology development.

In extending the work of the current study, future efforts may further compare

predictive vs. explanatory models of library complexity. The slope-offset method re-

viewed in this study, as well as more sophisticated curve-fitting approaches performed

in other studies, could play an important predictive role despite lacking model com-

47



ponents with a physical interpretation. Lastly, the results herein show the promise of

using complexity curve estimates based on the observed occupancy vector of duplicate

sets. This approach is advantageous because it allow for ROI predictions based on

aggregated counts from a single read group. Error rates observed from this approach

are not yet favorable with the naive implementation demonstrated in this work. A

number of adjustments have been proposed to improve this approach, specifically

around improving the objective function and strategies for parameter optimization.
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Appendix A

Algorithms

Data:
Unique molecule counts: C E Z"xn, m Length bins, n GC bins
Total molecule counts: M E Z"xn, m Length bins, n GC bins
Optical duplication rate: d,
Result: expected fraction of unique molecules for after x sequencing multiples
initialization;
matrix to contain library size estimates
L +- (m x n) matrix of zeros
matrix to contain molecule counts modeled under Poisson distribution
MP +- (?n x n) matrix M - dr M
matrix to contain unique molecules modeled under Poisson distribution
U +- (k x m x n) matrix of zeros
for i = 1 to rn do

for j =1 to n do
c = C[i,j]
MP =_ M,[ij]
L[ij] Solve for Np in - = 1 - -mP/NPNp
for x 1 to k do

if mp < minCount then
Ufx,ij] = Np (1 - enp /Np)

else
I Ufx,i,j] = global unique estimate

end
end

end
end

Algorithm 4: ROI exponential mixture model
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Appendix B

Figures
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read pairs simulated
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1e6

Figure B-1: Simulation of read pairs drawn from a Poisson-based process (black).
These results are plotted with the revised optical duplicate model (green), the current

Picard B01 equation (red), and the consistent Picard equation (blue).
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Figure B-2: Results for a whole genorne sequencing sample showing predictions with
and without incorporating DNA insert length and GC content)
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Nexome -effect of optical pixel distance in MarkDuplicates
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Figure B-3: The fraction of optical duplicates recorded (left) and the model error

Poisson-based model.
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duplication rate and insert length
for sample CS3452591.2 e6
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Figure B-4: Changes in raw count, normalized count, and duplication rate according

to DNA insert length (top). The bottom shows changes in the same count features

according to GC content.
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Figure B-5: Observed counts for duplication sets from EstimateLibraryCoinplexity

for representative WGS (left) and exome (right) samples. Observed results (red) are

plotted with expected counts drawn from a zero-truncated Poission distribution.
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Figure B-6: Simulation of Polya urn drawing events plotted with expectation fron

Equation 3.18
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Polya urn model - vary library size
c=1, n-draws=10^4.0
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Figure B-7: Simulation showing the expected distribution of counts after varying the

library size (top) and number of Polya draws (bottom).
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Binomial branching - expectation vs. simulation
duplication rounds=8, N=10^5.0, a=2, b=8
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Figure B-8: Result of binomial branching simulation compared to expectation

described in equation 3.18

Expected Polya occupancy vectors vs. observed occupancy
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Figure B-9: Changes in observed occupancy as more read groups are added (red).
The blue curves depict expected occupancy.
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loll

observed rgSetl expected rgSet6 * observed rgSet12

expected rgSetl observed rgSet7 expected rgSet12
observed rgSet2 expected rgSet7 - observed rgSet13

expected rgSet2 - observed rgSet8 expected rgSet13
observed rgSet3 expected rgSet8 + observed rgSet14
expected rgSet3 observed rgSet9 expected rgSet14
observed rgSet4 expected rgSet9 + observed rgSet15
expected rgSet4 . observed rgSet1O expected rgSet15

observed rgSet5 expected rgSet1O + observed rgSet16

expected rgSet5 * observed rgSet1l - expected rgSet16

observed rgSet6 - expected rgSetll
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