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Abstract

This thesis consists of two parts. In part one of this thesis, we study the relationship

between the Artin conductor and the minimal discriminant of a hyperelliptic curve defined

over the fraction field K of a discrete valuation ring. The Artin conductor and the minimal

discriminant are two measures of degeneracy of the singular fiber in a family of hyperelliptic

curves. In the case of elliptic curves, the Ogg-Saito formula shows that (the negative of) the

Artin conductor equals the minimal discriminant. In the case of genus 2 curves, Liu showed

that equality no longer holds in general, but the two invariants are related by an inequality.

We extend Liu's inequality to hyperelliptic curves of arbitrary genus, assuming rationality

of the Weierstrass points over K.

In part two of this thesis, we compute the sizes of component groups and Tamagawa

numbers of Neron models of Jacobians using matrix tree theorems from combinatorics. Ray-

naud gave a description of the component group of the special fiber of the N6ron model of

a Jacobian, in terms of the multiplicities and intersection numbers of components in the

special fiber of a regular model of the underlying curve. Bosch and Liu used this description,
along with some Galois cohomology computations to provide similar descriptions of Tama-

gawa numbers. We use various versions of the matrix tree theorem to make Raynaud's and

Bosch and Liu's descriptions more explicit in terms of the combinatorics of the dual graph

and the action of the absolute Galois group of the residue field on it. We then derive some

consequences of these explicit descriptions. First, we use the explicit formula to provide a

new geometric condition on the curve for obtaining a uniform bound on the size of the com-

ponent group of its Jacobian. Then we prove a certain periodicity property of the component

group of a Jacobian under contraction of connecting chains of specified lengths in the dual

graph. As a third application, we obtain an alternate proof of one of the key steps in Halle

and Nicaise's proof of the rationality of the N6ron component series for Jacobians.

Thesis Supervisor: Bjorn Poonen

Title: Claude Shannon Professor of Mathematics
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Chapter 1

Introduction

Let R be a discrete valuation ring with fraction field K and residue field k. Let X be a nice

(smooth, projective and geometrically integral) K-variety. The variety X is said to have

good reduction if there exists a smooth and proper R-scheme X whose generic fiber K is

isomorphic to X. In his 1967 paper [Ogg67, Ogg proved that an elliptic curve E (a nice

group variety of dimension 1) defined over K has good reduction if and only if the natural

action of the inertia group IK on the f-adic Tate module of E is trivial. This criterion (the

Ndron-Ogg-Shafarevich criterion) was later generalized by Serre and Tate [ST68] to abelian

varieties of arbitrary dimension. The nontriviality of the inertia action on the Tate module

of an abelian variety is captured by the nonvanishing of a certain numerical invariant, called

(the exponent of) the conductor of the abelian variety (see Section 2.3 for the definition).

For an abelian variety defined over a number field, the local conductors at various primes

appear in the conjectured functional equation for the L-function of the abelian variety.

Elliptic curves occupy a special place in the study of nice varieties, since they straddle the

worlds of algebraic curves (nice varieties of dimension 1) and abelian varieties (nice group

varieties). One can ask if the N6ron-Ogg-Shafarevich criterion extends to curves of arbitrary

genus, with H1 (Xy, Qe) in place of the the e-adic Tate module, but this turns out to be

false [Oda95, Theorem 3.2] 1. The correct generalization of the conductor also takes into

account the dimensions of the cohomology groups of the special fiber of the minimal proper

'For an explicit example, see http://mathoverflow.net/questions/91909/

a-curve-with-bad-reduction-for-which-the-jacobian-has-good-reduction.

9



regular model of the algebraic curve, and this is encoded in another numerical invariant

called the Artin conductor (see Section 2.3 for the definition). For curves of genus g > 2,

the Artin conductor vanishes exactly when the minimal proper regular model of the curve is

smooth over R. For a nice curve defined over a number field, the Artin conductors at various

primes appear in the conjectured functional equation for the L-function associated to a global

proper regular model of X over the ring of integers of the number field [Blo87, Proposition

1.1]. The (negative of the) Artin conductor is an upper bound for the conductor of the

1K-representation H1 (XK, Qe), and the difference of the two conductors is one less than the

number of the components in the special fiber of the minimal proper regular model of X

(Lemma 2.3.3).

Elliptic curves over K also have integral Weierstrass equations over R. An integral Weier-

strass equation is an equation of the form

F(x, y, z) = y2z + a1xyz + a3 yz2 + X3 + a2 x2 z + a4xz 2 + arz3

that cuts out the elliptic curve in P2 , with {a1,a2 ,.. . ,a6 } c R. Any such equation has

an associated (valuation of) discriminant 2 [Sil09, p.42, Section III.1], which is a nonnegative

integer that measures how far the corresponding closed subscheme of P2 is from being smooth

over R. An integral Weierstrass equation that minimizes the value of the discriminant

is called a minimal Weierstrass equation, and the corresponding discriminant is called the

minimal discriminant. It can be shown that an elliptic curve over K has good reduction if and

only if it has an integral Weierstrass equation with discriminant 0 (Proposition 2.1.5(c)).

Since elliptic curves have these two measures of failure of good reduction, namely the

Artin conductor and the minimal discriminant, it is quite natural to ask how these two

invariants are related. In [Ogg67J, Ogg showed that the minimal discriminant of an elliptic

curve over K equals the (negative) of the Artin conductor. He attributes this to a result of

Tate from 1960 in the case when char k $ 2, 3, and remarks that the results in his paper are

2For an elliptic curve over a global field, one can also define a global conductor and a global discriminant;

our definitions of the discriminant and the conductor equal the valuation of the global discriminant and
conductor; the definitions that we use are better suited to our situation since we are interested in studying

the local behaviour at a single prime.

10



essentially about filling in the two remaining cases. However, the arguments in his paper fall

short of handling the mixed characteristic 2 case, i.e., when char K = 0 and char k = 2. The

gap in his proof was finally filled in 20 years later by Saito in [Sai88]. The proof given by

Ogg proceeds by a lengthy case by case analysis, and uses the Kodaira-N6ron classification

of the possible special fibers of proper regular models of elliptic curves. Saito's result, on the

other hand, is far more general, and holds for proper regular models of arbitrary curves, not

just elliptic curves.

To describe Saito's result, we first need to recall some earlier results of Mumford and

Deligne. For any integer g ;> 1, let Mg be the Deligne-Mumford compactification of the

moduli space of smooth genus g curves. In [Mum77, Theorem 5.10], Mumford established

relations between certain natural classes of line bundles in Pic M 9 . Deligne used one of

Mumford's relations as a template for defining a discriminant for an arbitrary proper regular

model X over Spec R (see Section 2.4 for the definition). Saito proved that the (negative

of) the Artin conductor of a proper regular model X equals the discriminant that Deligne

defined. This new discriminant, which we call the Deligne discriminant, coincides with the

minimal discriminant in the case when X is the minimal proper regular model of an elliptic

curve. In the case of genus 2 curves, Saito relates his result to an explicit formula given by

Ueno for the Deligne discriminant when char k = 0 or when char k > 6. Ueno's formula is in

terms of yet another notion of discriminant that is special to genus 2 curves, and it uses data

pertaining to the geometry of the special fiber of a minimal proper regular model for a genus

2 curve [Uen88I. The explicit classification that Ueno used for special fibers of proper regular

models of genus 2 curves already has over 120 different types! For higher genus curves, the

Deligne discriminant is very hard to explicitly compute in practice.

For a genus g hyperelliptic curve, Liu defined a minimal discriminant that is analogous

to the minimal discriminant for elliptic curves (see Section 2.1.3 for the definition). In

[Liu94J, Liu proved that for a genus 2 hyperelliptic curve, the minimal discriminant is an

upper bound for the (negative of the) Artin conductor. For genus 2 curves, unlike elliptic

curves, the minimal discriminant and the (negative of the) Artin conductor are sometimes

different. In his paper, Liu gives an exact formula for the difference. When char k # 2,

this difference can be computed quite explicitly in terms of the aforementioned classification

11



of fibers of genus 2 curves. When the hyperelliptic curve has semistable reduction over K,

Kausz [Kau99j (when char k # 2) and Maugeais [Mau03I (for all residue characteristics)

prove theorems that relate the Deligne discriminant to yet another discriminant. We are not

sure if Liu's minimal discriminant coincides with the discriminant that is used by Kausz and

Maugeais. One of the main results in this thesis is the following.

Theorem 1.0.1. Let R be a discrete valuation ring with perfect residue field k. Assume that

char k 4 2. Let K be the fraction field of R. Let Ksh denote the fraction field of the strict

henselization of R. Let C be a hyperelliptic curve over K of genus g. Let v: K --+ Z U {oo}

be the discrete valuation on K. Assume that the Weierstrass points of C are Ksh-rational.

Let S = Spec R and let X -+ S be the minimal proper regular model of C. Let v(A) denote

the minimal discriminant of C. Then

- Art(X/S) < v(A).

Our method of proof is different from Liu's method for genus 2 curves. Liu compares

the Deligne discriminant of the minimal proper regular model and the minimal discriminant

by comparing both of them to a third discriminant that he defines, following a definition

given by Ueno [Liu94, Definition 1, Th6oreme 1 and Th6oreme 21. This third discriminant

is specific to genus 2 curves.

We instead proceed by constructing an explicit proper regular model for C (Section 3.1).

We can immediately reduce to the case where R is a henselian discrete valuation ring with

algebraically closed residue field. We may then choose a minimal Weierstrass equation of

the form, y2 - f(x) where f is a monic polynomial in R[x] that splits completely. If the

Weierstrass points of C specialize to distinct points of the special fiber, then the polynomial

Y- f(x), suitably homogenized, defines a smooth proper model of C in a weighted projective

space over R (see Section 2.1.3 for the definition). If not, we iteratively blow up P1 until the

Weierstrass points have distinct specializations. After a few additional blow-ups, we take

the normalization of the resulting scheme in the function field of C. This gives us a (not

necessarily minimal) proper regular model for C (Theorem 3.1.4).

We have the relation - Art(X/S) = n(X,) - 1 + f for a proper regular model X of C,

12



where n(X,) is the number of components of the special fiber of X and f is an integer that

depends only on C and not on the particular proper regular model chosen. This tells us that

to bound - Art(X/S) for the minimal proper regular model from above, it suffices to bound

- Art(X/S) for some proper regular model for the curve.

In Section 3.2, we give an explicit formula for the Deligne discriminant for the model

we have constructed. After a brief interlude on dual graphs in Section 3.3, we restate the

formula for the Deligne discriminant using dual graphs. This formula tells us that the

Deligne discriminant decomposes as a sum of terms, indexed by the vertices of the dual

graph of the special fiber of the proper regular model we constructed (Section 3.4). In

Section 3.5, we give a description of the rest of the strategy to prove the main theorem

using this formula. The additional ingredients that are necessary are a decomposition of

the minimal discriminant into a sum of terms depending on the local geometry of the graph

(Section 3.6) and explicit formulae for the local terms in the Deligne discriminant in terms of

dual graphs (Section 3.7). In Section 3.8, we show how to compare the Deligne discriminant

and the minimal discriminant locally. To finish the proof, we sum the local inequalities to

obtain - Art(X/S) < v(A).

One application of Theorem 1.0.1 is to give upper bounds on the number of components in

the special fiber of the minimal proper regular model (Corollary 3.8.8). This has applications

to Chabauty's method of finding rational points on curves of genus at least 2 [PS14].

It might be possible to adapt the same strategy to extend Theorem 1.0.1 to the case of

nonrational Weierstrass points. The main difficulties in making this approach work are in

understanding the right analogues of the results in Sections 3.6 and 3.7.

In the second half of this thesis, we study the component group scheme attached to the

special fiber of the N6ron model of a Jacobian. The N6ron model of an abelian variety A

defined over K is in a certain sense the best possible extension of A to a smooth, commutative

group scheme A over R (See Section 2.7 for a precise definition). The Nron model A is

proper over S if and only if the abelian variety has good reduction. In general, the special

fiber of the N6ron model might not be proper, or even connected. The special fiber of the

13



N6ron model A, fits in an exact sequence

0-+ A' -+ A., -+ <D -+ 0,

where AO is a connected group scheme and <b is a finite 6tale group scheme, called the

component group scheme. Let k be an algebraic closure of k. The component group is <(k),

and the Tamagawa number is the order of the group <b(k).

Computing the orders of component groups and Tamagawa numbers have arithmetic

applications. For an abelian variety A over a number field K, bounds on the order of the

component group at a prime is one of the inputs for giving bounds on the order of the

torsion subgroup of A(K). Mazur used this fact in his paper [Maz77} to prove that for an

elliptic curve E over Q, the order of the torsion subgroup of E(Q) is bounded above by 16.

The local Tamagawa numbers appear in the statement of the full Birch and Swinnerton-

Dyer conjecture; explicit verification of the full BSD conjecture for a specific abelian variety

requires explicit computation of Tamagawa numbers.

In the special case where the abelian variety is the Jacobian J of a nice K-curve X, there

are multiple approaches for constructing the N6ron model. Under relatively mild hypotheses,

one can construct the N6ron model of J by using the theory of the relative Picard scheme

of a proper regular model of X over Spec R [BLR90, Chapter 9, Section 5, Theorem 4j.

This method also leads to a description of the component group of the special fiber of the

N6ron model [BLR90, Chapter 9, Section 6, Theorem 11: the component group is the middle

homology group of a three term complex of free abelian groups, where the maps between

the groups in the complex are given in terms of multiplicities and intersection numbers of

the components in the special fiber of a proper regular model of X x Ksh (see Section 2.8 for

details). The free abelian groups in this complex also admit natural actions of the absolute

Galois group G of k that commute with the maps in the complex; Bosch and Liu used

this action to give a description of <b(k) similar to the description of the component group

(Theorem 2.8.14), assuming that G is procyclic.

The multiplicities and the intersection numbers of components in the special fiber of a

proper regular model can be encoded in a weighted graph, called the dual graph of the special

14



fiber (See Section 4.1.1 for the definition). In Theorem 4.1.5, we give an explicit formula for

the order of the component group that can be expressed in terms of the combinatorics of this

dual graph, using the matrix-tree theorem (2.6.2). Formulas of this type for the component

group are not new, and special cases are well-known; when the proper regular model is

semistable, the order of the component group equals the number of spanning trees in the

dual graph, and when the dual graph is a tree, the order of the component group equals the

product of the multiplicities of the components raised to certain exponents; each exponent

depends on the number of neighbours of the corresponding vertex in the dual graph. The

formula in Theorem 4.1.5 can be viewed as a hybrid of the formula in these two special

cases, where each spanning tree in the dual graph is assigned a weight, and the expression

for the weight is formally similar to the expression for the order of the component group in

the case when the dual graph is a tree. A version of this formula is implicit in the proof of

[Lor89, Corollary 3.51. Using a weighted version of the matrix-tree theorem (Theorem 2.6.1),

we obtain a similar formula for Tamagawa numbers expressed in terms of the combinatorics

of a certain quotient graph.

For an elliptic curve having good or additive reduction the order of the component group

is atmost 4. Using our explicit formula in Theorem 4.1.5, we prove an analogue of this fact for

curves of higher genus (Theorem 4.1.11). The condition of having good or additive reduction

in genus 1 is replaced by a certain geometric condition on the -2 curves in the minimal proper

regular model in higher genus. To explain the nature of this geometric condition, we first

recall that any connected commutative algebraic group over a perfect field admits a three

step filtration, where the quotients are an abelian variety, a torus, and a unipotent group.

The dimensions of the corresponding groups for the special fiber A2 of the N6ron model of

any abelian variety, are called the abelian rank, toric rank and unipotent rank respectively.

The condition of having good or additive reduction for an elliptic curve is equivalent to the

elliptic curve having toric rank 0. When the abelian variety is a Jacobian, the unipotent,

abelian and toric ranks can be computed from the geometry of the special fiber of a proper

regular model of the curve [Lor90, p.1481. The toric rank equals the first Betti number of

the dual graph of the special fiber of a proper regular model. In [Lor90}, Lorenzini shows

that there is a uniform bound on the order of component groups of Jacobians having toric

15



rank 0. The condition that we impose is strictly weaker than requiring that A have toric

rank 0, since we only disallow cycles of -2 curves, and not cycles of curves where at least

one of the curves in the cycle has geometric genus > 1.

Even though the order of the component group for a Jacobian is well-understood, the

structure of the group remains quite mysterious. There are very few cases where the group

structure is explicitly known; the only exceptions are genus 1 curves where one can use

the Kodaira-N6ron classification and a certain subset of Jacobians having potentially good

reduction as described in lLor92, Theorem 2.11 . We prove a periodicity property of the com-

ponent group under partial contraction of connecting chains (Theorem 4.1.14), generalizing

[BN07, Corollary 4.71 from the case of unweighted graphs.

The formation of the N6ron model of an abelian variety does not commute with ramified

base change: if (R', K') is a ramified extension of (R, K), the N6ron model of A x K K' might

not be equal to A XR R'. The Neron component series defined by Halle and Nicaise (see

Section 2.11 for the definition) simultaneously records the changes in the order of the com-

ponent group under all tamely ramified extensions of the base in a power series. This power

series is known to be rational in the following three cases: (i) when A acquires semistable

reduction after a tame extension of the base, (ii) when the toric rank equals the dimension

of A after a base extension, and (iii) when A is a Jacobian. It is believed to be rational in

general. Using our explicit formula (Theorem 4.1.5), we provide an alternate proof of the

key step in Halle and Nicaise's proof in case (iii), without having to resort to a reduction to

the mixed characteristic case (Theorem 4.1.16).

16



Chapter 2

Background and Definitions

Let R be a henselian discrete valuation ring with algebraically closed residue field k. Let

p = char k > 0. (The hypotheses on R and k hold for the rest of this thesis, unless explicitly

stated otherwise.) Let K be the fraction field of R. Let K denote a separable closure of

K. Let v: K -+ Z U {oo} denote the discrete valuation on K. A K-variety is a separated

scheme of finite type over K. A nice K-curve C is a smooth, projective, geometrically integral

K-variety of dimension 1. Let S = Spec R. In this thesis, a hyperelliptic curve defined over

K will be a nice positive-genus K-curve which admits a degree 2 map to P1 that is defined

over K.

Remark 2.0.2. The most general definition for a hyperelliptic curve would be a nice K-

curve X that admits a degree 2 map X -* C, where C is a nice genus 0 curve (that may

or may not have rational points). However, we restrict our attention to those hyperelliptic

curves for which C has a K-point.

2.1 Weierstrass models and minimal discriminants

Let A be a commutative ring. Let g be a positive integer > 1. Let A[x, y, z] be the weighted

polynomial ring over A which assigns weight 1 to the variables x and z, and weight g + 1 to the

variable y. Let PA = Proj A[x, y, z]. Given a polynomial f(x, y) E A[x, y], its homogenization

F(x, y, z) is given by F(x, y, z) = zegff(x/z, y/zg+1 ), where deg f is the degree of f in the

17



weighted polynomial ring A[x, y, z].

Definition 2.1.1. An integral Weierstrass equation for a hyperelliptic K-curve C of genus g

is an equation f(x, y) = y 2 + q(x)y - p(x) = 0, where q(x) E R[x] is of degree < g + 1 and

p(x) E R[xI is of degree < 2g + 2, such that the locus cut out by the homogenization of f in

PK is isomorphic to C.

Let A = Z[Po,Pi,. .. P2+2, o, qj, ... , qg+i] and let B = Spec A. Let P(x, z) = Eg piXiZ
2 g+

2 -i

and let Q(x, z) = E+ 1 q xizg+ 1-i. Let F(x, y, z) = y2 + Q(x, z)y - P(x, z). The universal

family of hyperelliptic curves in Weierstrass form 7r: / -+ B is the hypersurface cut out by

F in PA. Standard arguments show that the image (under 7r) of the non-smooth locus of 7r

is a closed irreducible hypersurface in B, and hence is cut out by a single polynomial A C A,

determined uniquely up to sign. Over B x z Z[1/2], this hypersurface is the vanishing locus

of the polynomial A' := disc(4P(x, z) +Q(x, z)2). Hence A = uA' for some unit u in A[1/2],

i.e., u = 2 a for some a E Z. To compute a, we can use the fact A is a 2-adic unit when

evaluated at any hyperelliptic curve over Z that has good reduction at 2 (for example, the

hyperelliptic curve given by y2 + z+ 1 y = x2 9+1 z); this yields a = -4(g + 1).

Definition 2.1.2. The discriminant of the hyperelliptic equation f (x, y) = y 2 +q(x)y-p(x) =

0 equals v(A(f)), where A(f) equals A evaluated at the coefficients of the homogenization

of f.

Definition 2.1.3. fLiu96, Definition 3, Remarque 41 A minimal Weierstrass equation for a

hyperelliptic K-curve C is an integral Weierstrass equation for C whose discriminant is

minimal amongst all integral Weierstrass equations of C. The discriminant of a minimal

Weierstrass equation is called the minimal discriminant.

Proposition 2.1.4. Let C be a hyperelliptic K-curve of genus g.

(a) The curve C has an integral Weierstrass equation.

(b) If the degree 2 morphism C -+ P1 has a K-rational branch point, then we can find

a minimal Weierstrass equation of the form y 2 + q(x)y = p(x), where deg q < g and

degp < 2g + 1.
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(c) If char k 7 2, the curve C has a minimal Weierstrass equation of the form y 2  p(x).

Proof.

(a) We first prove that there exists an integral Weierstrass equation for C. Let 7r: C -+ PK

be the canonical morphism. Let D = r*((oo)). Using the Riemann-Roch theorem and

the fact that C is hyperelliptic, we can pick elements x, y E K(C) such that {1, x} is

a basis for H0 (C, D) and {1, x, .. , Xg+1, y} is a basis for H0 (C, (g + 1)D). Since

S{1, x,. . . ,x 2 g+1, y, yx, .. . , yx9} is a basis for H0 (C, (2g + 1)D),

S{1, x,..., x 2g+2 , y, yx,. .. , yXg+l, y 2} span H(C, (2g + 2)D),

" dim H0 (C, (2g + 2)D) = 3g + 5, and,

* y V K(x) n HO(C, (g + 1)D),

there has to be a nontrivial relation

y2 + (box+1 + bixg + + bg+)y = a0 X2+2 + a1 x29+l + . .. + a 2g+2

for some set {bo, b1, .... , bg+, ao, a1 , a2g+2} c K. Replacing x by ux replaces bo by

ug+1bo and ao by u29+2ao, so by making u sufficiently divisible by the uniformizer,

we get a nontrivial relation where bo, aO E R. Now if we simultaneously replace x

by u-1 x and y by u-(9+)y, we get a relation where each bi is replaced by u'b and

each ai is replaced by uiai. By making u sufficiently divisible by the uniformizer of

R, we can make all the bi and all the ai integral. Let C' be the K-curve defined

by the corresponding weighted homogeneous equation. The complete linear system

H0 (C, (2g + 2)D) induces a rational map C -- + C' that factors via the normalization

C' of C'. The curve C' has arithmetic genus g(C). Therefore the genus of C' is less

than or equal to g(C), and equality holds only when C' is smooth. Since C and C'

are both smooth, projective curves, the rational map C -- + C' is in fact a morphism.

Since there are no morphisms from C to a curve of strictly smaller genus, it follows

from the Riemann-Hurwitz formula that C' is smooth, and the morphism C -+ C' is

an isomorphism. This gives us an integral Weierstrass equation.
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(b) Start with a minimal Weierstrass equation y2 + Q(x, z)y = P(x, z). Since PGL 2 (R)

acts transitively on P1 (K), we first make an R-linear change of variables that sends

,r(P) to oo (i.e., the point with homogeneous (x : z) coordinates [1 : 0]). Then we make

the change of coordinates y '-* y + P2g+2xg+l. These two operations gives us a new

Weierstrass equation, which we continue to denote by y 2 +Q(x, z)y = P(x, z). The new

equation has the same discrimnant as the original Weierstrass equation, and therefore

is also minimal. By our choice of change of coordinates, it follows that P2g+2 = 0. Since

P is a Weierstrass point, the quadratic equation y 2 +qg+1y = y 2 +Q(1, 0)y - P(1, 0) = 0

has a unique solution, which implies that qg+i = 0. This proves (c).

(c) If char k # 2, and y 2 - q(x)y = p(x) is a minimal Weierstrass equation for C, one can

check that y'2  
- q())2 = 4-1(4p(x) + q(x) 2 ) is also a minimal Weierstrass equation

for C. This proves (d).

Proposition 2.1.5. A hyperelliptic K-curve C has good reduction if and only if its minimal

discriminant is 0.

Proof. If C has a minimal Weierstrass equation with discriminant 0, then the subscheme

defined by the corresponding homogenized equation in PR is smooth and proper over S and

has generic fiber C. This proves one direction of the implication.

For the other direction, let C be a smooth, proper S-scheme with generic fiber C. Let

7r: C -+ P1 be the canonical morphism. Let D = 7r*((oo)) and let V denote the flat closure

of D in C. We repeat the argument in Theorem 2.1.4(a) with V in place of D. We have to

be slightly careful, since the global sections of multiples of 5 are now R-modules, and not

K-vector spaces. However, all the R-modules involved are free - they are torsion-free from

being subsheaves of the function field of C, and are free since R is a discrete valuation ring.

So all the arguments in Theorem 2.1.4[(a)] go through, as long as we carefully choose free

R-module generators in place of K-bases. The relation y 2 + q(x)y = p(x) that we obtain

can be used to define a closed subscheme C' of PR. By our choice of module generators, the

special fiber C' is isomorphic to C, and is therefore smooth over Spec k. By the definition of

A, its image in k must be nonzero when evaluated at the coefficients of the defining equation

for C'. Therefore the discriminant of the corresponding Weierstrass equation must be 0. E
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2.2 Regular models

Definition 2.2.1. A regular model for a nice curve C is a proper, flat, regular S-scheme X,

whose generic fiber is isomorphic to C. A regular S-curve X is an S-scheme that is a regular

model for its generic fiber.

For a regular S-curve X, let X: X XR k denote its special fiber, let X := X XR K

denote its generic fiber and let X : X X RK denote its geometric generic fiber. For a

scheme X, let Xred denote the associated reduced subscheme.

Definition 2.2.2. A regular model X is a simple normal crossings (snc) model if the irre-

ducible components of (Xs)rj are smooth, and (X,)red has at worst nodal singularities.

Let C be a nice K-curve of genus g > 1. Given any two regular models X' and X of C,

the identity map C -+ C can be viewed as a rational map X' -- + X.

Definition 2.2.3. The minimal proper regular model of C is a regular model such that for

every regular model X', the rational map X' -- + X is a morphism.

The minimal proper regular model of C exists and is unique up to unique isomorphism;

any other regular model can be obtained from the minimal proper regular model by a se-

quence of blow-ups [Lic68, Theorem 4.4].

2.3 Artin conductor

Let G := Gal(K/K) be the absolute Galois group of K. Equip G with the profinite topology.

The group G admits a filtration G = Go D G1 D G2 D ... where G1 is the maximal pro-

p subgroup of G, called the wild inertia subgroup and Gi is the ith ramification subgroup

(in the lower numbering). Fix a prime f , p. Let p: G -- Aut(V) be a continuous finite

dimensional Qe-representation of G, where Aut(V) has the f-adic topology. For a E G, let

Tr(p(o-)) denote the trace of p(a). The restriction of p to G1 factors via a finite quotient

q: G1 -+ G' (essentially because every continuous homomorphism from a pro-p group to a

pro-f group is trivial). Let L D K be a finite Galois extension such that Gi n Gal(K/L) acts
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trivially on V. Then L is also a discretely valued field; let 7r be a generator for the maximal

ideal of the ring of integers of L and let VL: L -+ ZU{oo} be the associated discrete valuation.

Define a function SWL/K: Gal(L/K) -+ Z as follows (see [KSO4, Section 6.1] for details):

sWL/K(U) = 1 - ((7r) - 7 ) ifa 1

EZr (VL(T(7r) - 7r) - 1) if U = 1.

Let P = G 1 /(G 1 n Gal(K/L)). For any subspace W C V, let codim W denote the codimen-

sion of W in V. For any i > 0, let VGi denote the subspace of V consisting of elements fixed

pointwise by every element of Gi. The definition of the Swan conductor below is independent

of the choice of L by [KS04, Lemma 6.1.1.11. The tame conductor E of the representation V

is defined by

f = codim VG

and the Swan conductor 6 of V is defined by

6= swL/K(Y) Tr(p(o))-
[L K]CEP

The conductor f of the representation V is given by

f=E+J.

For a finite set S, let ISI denote the cardinality of S.

Remark 2.3.1. [Ser, Section 19.3] If the image of G under p is finite, then

6 = I |p(Go)I codim VGi
>1

Let X be a regular S-curve. Fix f / p. For any curve C over an algebraically closed field
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of char =A f, the f-adic Euler-Poincar6 characteristic x(C) of C is given by

x(C) = Z(-1)'dim Ht(C, Qe).
i=O

Since X,, is defined over K, the group G acts on H, (XV, Qt) by functoriality. Let 6 be the

Swan conductor of this representation.

Definition 2.3.2. The Artin conductor Art(X) of the regular model X is defined by

- Art(X) = x(X.) - x(Xjj) +6.

Lemma 2.3.3. [Liu94, Proposition 11 Let f be the conductor of the G-representation H' (XV, Qe).

Let n(X,) be the number of irreducible components of the special fiber of X,. Then

- Art(X/S) = n(X,) - 1+ f.

Definition 2.3.4. Let C be a nice curve of genus g > 1 and let X be its minimal proper

regular model. The Artin conductor Art(C) of C is defined to be Art(X).

2.4 Deligne discriminant

In [Mum77, Theorem 5.10], Mumford established various relations amongst line bundles

on the coarse moduli space M, of smooth curves of genus g (in fact, he even proved an

extension of these relations to the Deligne-Mumford compactification M.). Pulling back one

of Mumford's relations along an arbitrary morphism T -+ Mg gives rise1 to the following

proposition.

Theorem 2.4.1. [Del85, Proposition] Let f : Y -+ T be a proper smooth morphism over an

arbitrary base T, all of whose fibers are nice curves. Let WY1T denote the relative dualizing

'What we actually need is a similar relation on the moduli stack, and this is proved in an unpublished
letter of Deligne IDel85, Proposition]. In his letter, Deligne comments that this makes a difference only in

genus < 2, since the Picard group of the moduli stack has no torsion when g > 3.
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sheaf of the morphism f. Then there exists a canonical isomorphism (unique up to sign) of

sheaves

A: det(Rf*(w"T)) - det(Rf.wy/T) .

Using the above proposition, we can attach an integer discriminant to an arbitrary regular

S-curve as follows. Let X be a regular S-curve, and let WX/S be the relative dualizing sheaf

of f : X -+ S. The canonical isomorphism in Theorem 2.4.1 gives rise to a canonical nonzero

rational section A = Ax/s of the invertible Os-module (equivalently R-module)

Homos (det(Rf (wi )), det (Rf*wx 1s)*13 ).

Given an invertible Os-module M and a rational section m E M OR K, the order of vanishing

of m of is the unique integer s such that Rm = 7rsM, where 7r is a uniformizer of R.

Definition 2.4.2. The Deligne discriminant ord Ax of X/S is the order of vanishing of the

canonical rational section A of Homos (det(Rf, (w 5s)), det(Rfwx1 s)*0 3 ).

2.5 Relation between the Deligne discriminant and the

Artin conductor

Theorem 2.5.1. [Sai88, Theorem 11 Let X be a regular S-curve. Then

- Art(X/S) = ord Ax.

2.6 Some graph theory

A directed weighted multigraph G is a quadruple (V(G), E(G), p, w), where

" V(G) is a finite set called the vertices of G,

" E(G) is a finite set called the directed edges of G,

" p: E(G) -+ V(G) x V(G) is a map of sets, and,
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0 w: E(G) -- N is a nonnegative integer valued function called the weight function.

For e E E(G), define the head e+ and the tail e- by (e-, e+) = p(e). Let a, b E V(G).

A directed path in G from a to b is an ordered set of vertices {vo,... ,v} and an ordered

set of directed edges ei,...,ek such that vo = a,Vk = b and ei = vi 1,et = vi for all

i C [1, k]. If v E V(G), we will also use v to denote the corresponding basis element of

ZV(G). Let v E V(G). A spanning tree directed into v is a directed weighted multigraph

T = (V(T), E(T), p', w') such that

* V(T) =V(G),

E E(T) c E(G), and p'(e) = p(e), w'(e) = w(e) for every e E E(T), and,

* for every u E V(T), there is a unique directed path in T from u to v.

The weight of a spanning tree equals the product of the weights of all the directed edges

in the spanning tree. The vertex v is called a sink if there is a directed path in G from u

to v for every vertex u E V(G). Assume that v is a sink, let W = V(G) - {v} and let

Ared: Zw - 2 W be the linear map defined by

u w(e) u - w (e) t
tEWV

eEE(G) eEE(G)
e-=u /\e+=t,e-=u

for every u E W. The map Ared is called the reduced Laplacian of G with respect to the sink

V.

We recall the statement of the Matrix-Tree theorem for directed weighted multigraphs.

Theorem 2.6.1. [PPW13, Theorem 2.51 The determinant of the reduced Laplacian of G is

equal to the sum of the weights of all its directed spanning trees into the sink.

For any set V, the symmetric group on two letters S2 acts on V x V by interchanging the

two factors, and we denote by 7rv: V x V -+ (V x V)/S 2 the corresponding map from V x V

to the space of orbits of V x V under this action. A graph is a quadruple (V(G), E(G), p, w),

where

25



o V(G) is a finite set, called the set of vertices of G,

" E(G) is a finite set, called the set of edges of G,

" p: E(G) -+ (V(G) x V(G))/S 2 is a map of sets, and,

" w: E(G) -+ N is a nonnegative integer valued function called the weight function.

Given a graph G = (V, E,p, w), we define the associated unweighted graph to be the triple

(V, E, p). Every graph G = (V, E, p, w) also has an associated directed weighted multigraph

G = (1, F, p,0 ) uniquely characterized (up to isomorphism) by the following properties:

* there exists a map -r: E -+ E such that the following diagrams commute

E >VxV E - - N

Fr ,rv r IdN

E P - (V X V)/S2 E N,

S#i-1 (e) = 2 for every e E E, and,

* if *- 1 (e) = {ei, e2 }, then e- = e+ and e = e.

The set of endpoints of an edge e, denoted D(e), is the set {e+, e-} for any ei E -(e)

(this set is well-defined by the last condition listed above). A subgraph of a graph G

(V(G),E(G),p,wG) is a graph H = (V(H), E(H), pH, WH) such that V(H) C V(G), E(H) c

E(G),PH = PIE(H) and WGIE(H) = WH. A spanning tree T of a graph G is a subgraph of G

such that V(T) = V(G), and E(T) = -R(E(T')), where T' is a spanning tree directed into

some vertex v for the associated directed weighted multigraph G. For a graph G, let S(G)

denote the set of spanning trees of G. For a vertex v in a graph G, let NG(v) denote the set

of neighbours of v in G, that is, the set of vertices v' such that there exists an edge e E E(G)
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whose set of endpoints D(e) equals {v, v'}. Let A: ZV(G) _ ZV(G) be the linear map defined

by

U - ( w(e))u - ( w(e))t
eEE(G),uED(e) tEV(G) eEE(G),D(e)={t,u}

for every u E V(G). Let L denote the matrix of A with respect to the standard basis of

Zv(G). The map A is called the Laplacian of G. For a vertex v E V(G), let L, denote

the absolute value of the minor of the element Lv, of L. We recall the statement of the

Matrix-Tree theorem for graphs.

Theorem 2.6.2. [CS97, Theorem 11 For any vertex v, the number L, equals the sum of the

weights of all the spanning trees of the graph G.

A subgraph C of a graph G is called a cycle if #V(C) = #E(C) > 1 and if there

exists an ordering (v 1 , v 2 , ... , vk) of V(C), and an ordering (ei, e2 , .. . , ek) of E(C) such that

D(ej) = {vj,vj 1} if 1 < i < k and D(ek) = {V1, vk}. We say that a vertex v belongs to a

cycle C if v E V(C); similarly, we say that an edge e belongs to a cycle C if e E E(C). A

subgraph C of a graph G is called a chain if #V(C) = #E(C) + 1 > 1 and if there exists

an ordering (vo, v1 , v2 ,. . . , Vk) of V(C), and an ordering (ei, e2 ,. . . , ek) of E(C) such that

D(ej) = {vi-1, vi} for all i; the length of the chain is k. An edge e in a graph G is called a

connecting edge if there exists a partition {V, V2} of the set V(G) such that the only edge

with one endpoint in V and another endpoint in V2 is e. A connecting chain is a chain C

such that every edge of C is a connecting edge. Contracting a connecting chain C in a graph

G = (V, E, p, w) gives rise to another graph G' = (V', E', p', w') defined as follows. Let ~ be

the equivalence relation on V that identifies all the vertices in V(C), and let V/ ~ denote

the equivalence classes. Let V' := V/ ~, let E' := E - E(C), let w' = wIE' and let p' be the

composition of p with the natural quotient map from (V x V)/S 2 to (V' x V')/S2 .

Let v, w be two distinct vertices in an unweighted graph G = (V, E, p) and let [v, w]

denote the corresponding class in (V x V)/S 2 . Let ae,, := #p 1 [v, w]). Let #: ZV -+ Z be

a linear map such that for every v E V, we have that 3(v) divides # /(w)a,.. We

call such a pair (G,#8) a graph equipped with a multiplicity function. For every v e V, let a

be the unique integer defined by the relation EZv O(w)a,2, = 0. Let a: ZV - ZV denote
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the linear map corresponding to the matrix (aj,,). Then by the definition of a, we have

im a c ker /. The component group <D(G) of the pair (G, #) is defined by <b(G) := ker /3/ im a.

Lemma 2.6.3. Suppose that (G,/3) is a graph equipped with a multiplicity function, and

suppose that C is a connecting chain in G such that / 1\v(C) is constant. Let G' (V', E', p')

be the contraction of C in G. Define 0': Zv' -* Z so that the composition Zv _ Zv' i" Z

is 3. Then (G',3') is a graph equipped with a multiplicity function, and gives rise to a

component group <b(G').

Proof. For a pair of distinct vertices v','w' in V(G'), let a',,,,, = #p' 11 ([v', w']). Choose

an ordering (vo, vi,. .. , vk) of V(C) as in the definition of a connecting chain, and let v'

denote the common image of these vertices in V(G'). Since E, /3(w)a7 , = 0 and

EV /3(w)av,,w = 0, adding these together tells us that 0'(v') divides E.,O, /'( ')a' ,,/.

This finishes the proof.

2.7 Neron models

In this section, we relax the hypothesis and let R be any discrete valuation ring with perfect

residue field. Let K be the fraction field of R. Let S = Spec R. Let A be the N6ron model of

an abelian variety A defined over K. It is characterized by the following universal property:

it is the unique smooth S-group scheme such that for every smooth S-scheme T, we have a

natural isomorphism A(T) ~ A(T xs K) that is functorial in T. Much of the book [BLR90

is devoted to the construction of the N6ron model.

The N6ron model A is proper over S if and only if the abelian variety A has good

reduction. In general, the special fiber of Ak might not be proper, or even connected. The

special fiber A, fits in the following exact sequence

--+ AO - As -+ <b - 0,

where AO is a connected group scheme and <D is a finite 6tale group scheme, called the

component group scheme. The component group is the set of points of the component group

scheme over an algebraic closure, and the Tamagawa number is the order of the group <1(k).
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The connected group scheme A' has a Chevalley decomposition:

---U x T -+ AO -+ B -+ 0.

In the exact sequence above, U is a unipotent algebraic group, T is a torus and B is an

abelian variety. The dimensions of these groups are called the unipotent rank, toric rank

and abelian rank respectively.

2.8 Component groups and Tamagawa numbers of Jaco-

bians

2.8.1 The Artin-Winters type of a regular S-curve

Let X be a regular S-curve. Let X, = EZc, rjEj. Here the Ej are the (reduced) irreducible

components of X, and ri is the multiplicity of Ej in X, for every i E I. Let K be a relative

canonical divisor for X -+ S.

Definition 2.8.2. [AW71, Definition 1.21 The type T of X consists of the integers

#I; (Ei.Ej); (Ei.K); ri for all ij E I.

The genus g of X, satisfies 2g - 2 = X,.K = r jE.K.

Definition 2.8.3. A collection of integers

n; ni; ki; ri i,j = 1,..., n

is called a type if

o n 2 1,

Sri > 1 for every i,

0 Mij = mTji 0 if i # j, and for every i, we have Ej rrmij = 0, and,
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* for every i, we have mei + ki E {-2, 0, 2, 4,. .. }.

Definition 2.8.4. The genus of a type T equals 1 + - E rik.

Definition 2.8.5. An exceptional curve in a type T is an index i such that ki = -1 and

mii = -1.

Let T be a type containing three indices, say i = 1, 2, n having the following properties:

ri r2 =rn

kr = 0

1 if i = 1,2

nni = -2 if i = n

0 if i {1, 2, n}.

The contraction of n in the type T is the new type T' obtained by omitting the index n,

increasing M 12 and M 2 1 by 1, and leaving all the other data unchanged (one can easily check

that T' is a type, i.e., it satisfies the conditions above). Conversely, given the type T', we can

build a new type T by reversing the process above; we say that the type T is a decontraction

of T'.

Definition 2.8.6. Two types T1 and T2 are similar if one can be obtained from the other

by a series of contractions and decontractions.

Theorem 2.8.7. IAW71, Theorem 1.61 Let g > 2 be an integer. There are finitely many

similarity classes of types T of genus g without exceptional curves.

Theorem 2.8.8. [Win74, Corollary 4.31 Let T = (n; mij; ks; ri) be a type. Let k be an

algebraically closed field. Assume that char k does not divide any ri. Then there exists

a proper map f : X -+ Y from a nice k-surface onto a nice k-curve with a closed fiber

Z = E'_, rjEj having this type, having nonsingular components Ej having normal crossings.
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2.8.9 Component groups

The description of the component group given in [BLR90, Section 9.6] holds in generality

slightly greater than what we assume later in this thesis. In this section, we state the more

general results. We relax the assumption on R and assume that it is a strictly henselian

discrete valuation ring (which implies only that the residue field k is separably closed, and

not necessarily algebraically closed). Let X be a proper, flat, regular curve over S whose

generic fiber is geometrically irreducible. Let k be an algebraic closure of the residue field k

of R. Let (Xi)iEI be the (reduced) irreducible components of Xk. For each i E I, let Ii be

the generic point corresponding to Xi. Let Xk Xk Xk k and let Xi Xi Xk k. For each

i, let T E Xk be the unique point lying over r.

Definition 2.8.10. The multiplicity di of Xi in Xk is the length of the Artinian local ring

Ox,,,,. The geometric multiplicity 6i of Xi in X is the length of the Artinian local ring O- .

The geometric multiplicity ei of Xi is the length of the Artinian local ring O-,,.

If k is algebraically closed, then ei = 1 for all i E I.

Let J be the Jacobian of XK and let J be its N6ron model.

Theorem 2.8.11. fBLR90, Section 9.6, Theorem 11 Assume either that k is algebraically

closed, or that X admits a section. Consider the homomorphisms

where a is given by the modified intersection matrix (ei1Xi.X4)ijji and /((ai)iEI) := 6.

Then im a C ker 3. The component group of J, is canonically isomorphic to the quotient

ker 0/ im a.

Corollary 2.8.12. [BLR90, Section 9.6, Corollary 4] Assume that all the ej are equal to 1.

Let #I = r and let d = gcd(di: i E I). Let M be the r x r matrix corresponding to the

intersection pairing, i.e., the matrix with entries (Xi.Xj)ijEI. Fix i and j. Let at* be the

(r - 1) x (r - 1) minor corresponding to the index (i, j). Then

d 2

didj;
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2.8.13 Tamagawa numbers

In this section, we do not assume that the residue field k is separably closed. Assume that k

is perfect and let k denote an algebraic closure of k. Let Rst denote the strict henselization

of R. Let X be a regular S-curve. Let 4) denote the component group scheme of the N6ron

model of the Jacobian of XK. The main objective of this section is to recall the description

of <b(k) given by Bosch and Liu in [BL991.

Let Xst = X X R Rst. Let V denote the set of (reduced) irreducible components of Xst

and let V denote the set of (reduced) irreducible components of X,. The set V can also

naturally be identified with the space of orbits for the natural action of Gal(k/k) on V. This

gives rise to a quotient map -r: V -+ V, where we map v E V to the corresponding orbit.

For every i5 E V, let lb I denote the size of the orbit corresponding to f and let mi denote the

multiplicity of ' in X,. Let m, denote the multiplicity of v in X'. Consider the complex

where the maps a and # are defined as follows.

For any V, W E V, let v.w denote the intersection number of the components v and w

in Xst. In order to define a, we need to fix some w E 'r- 1(ld) for every tb E V. The map

below is well-defined, independent of this choice, since the Galois action permutes the various

w E 7r'( ) and preserves intersection numbers.

c= t Eir-(vl) fvi

a( ((b(b )jf1 = Zbbmi I I

Using the following two facts, one can check that the composition of the two maps above is

zero: (i) for any ' E f and for any v E 7r- 1 (), we have m, = m&, and, (ii) the intersection

number of any vertical divisor of Xst with the special fiber X' t is 0.

Theorem 2.8.14. [BL99, Theorem 1.17, Corollary 1.171 Assume that k is perfect and that
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Gal(k/k) is procyclic. Let X be a regular S-curve. Let g be the genus of XK. Let m =

gcd(mf | ~j c YV) and let 'i- = gcd(m.I,\f 'b E V). Let 4b denote the 6tale k-group scheme

corresponding to the component group of the Niron model of the Jacobian of XK over S. Let

q = 1 if inzIg - 1 and q = 2 otherwise. Then qm divides fi and there exists an exact sequence

0 -+ ker 3/im a -+ <(k) -+ (qmZ)/diZ -+ 0. (2.1)

Remark 2.8.15. The theorem above follows from an analysis of the long exact sequence in

Galois cohomology associated to the short exact sequence of Gal(1/k)-modules

0 -+ im a-+ ker 3 -+ <D(k) -+ 0,

where the maps T and 3 are the a and / that appear in Theorem 2.8.11.

2.9 Hirzebruch-Jung continued fractions

Let n and r be positive integers, such that

Jung continued fraction expansion [bi, b2 ,..

n
- =b -

0 < r < n and gcd(r, n) = 1. The Hirzebruch-

. , bHJ of n/r is given by

1

1

where A and bi are positive integers with bi > 2.

Let m 1 , m2 be positive integers such that gcd(mi, n) = gcd(m 2 , n) = 1 and rm2 + mi =

0 mod n. If A = 1, let [p1 = (Mi + m2)/n. Otherwise, let pi be the unique solution to the
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system of equations

b1  -1 pi M2

-1 b2  -1 P2 0

-1 b3  -1

-1 bA_1 -1 PA-1 0

-1 bA pA MA

We call (Pi, [12, ... , pA) the multiplicity vector associated to the tuple (n, r, M 2 , Mi). For the

proof of existence and uniqueness, see [CESO3, Corollary 2.4.31.

Lemma 2.9.1.
n 1 1 1 1n+ +..+ +

m1 mn 2  Tm 2[l P1/2 p 1A[pA pAmi

Proof. We will prove this by induction on the length A of the continued fraction expansion

of n/r. Since gcd(n, r) = 1, if A = 1, it follows that r = 1, b1 = n and [ti= (M1 + m 2 )/n, so

1 1 MI+M2 n

m 2 P1 piM1  p 1 m1 m 2  rMIm2

Now assume A > 1. Let n = bir - r'. We have rM 2 + Mi = n[i by [CES03, Corollary 2.4.31.

One can then check that the continued fraction expansion of r/r' is given by [b2 ,... , bA]HJ-

We also have

mi + r'p1 = mi + (bir - n)p,

= mi + birp, - np1

= mi + birpi - m1 1 - rM2

= r(bip1 - M 2 )

= r p 2 .

One can check (using the uniqueness statement in Section 2.9) that the multiplicity vector

associated to the tuple (r, r', p, mi) equals (p2,..., px). The induction hypothesis applied
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to the tuple (r, r', P, mi) (in place of the original (n, r, M 2 , mi)) then tells us that

r 1 1 1

mnip P/1p2 P1pA1A PAml

Now,

n m1 + rM2

'm1rn2 plmIM2
1 r

- I

1 +1 1 1

fli2 /11  Pl1/2 ttA-I/lA /lAinlI

Lemma 2.9.2. gcd(mi, M 2 ) gcd(m1 , pi, 12, / -l7  , M2)..

Proof. We prove this by induction on A. First let A = 1. Then t1 = (m, + m2)/n. Since

gcd(mi, n) = gcd(m 2 , n) = 1, it follows that gcd(rni, [ii, in 2 ) = gcd(m, ,inM + m 2 , M 2 ) =

gcd(m, M 2 ). Now let A > 1. With the same notation as in the proof of Lemma 2.9.1,

the induction hypothesis will imply that gcd(p1 ,min) = gcd(min 1 , p2,..., ). Therefore

gcd(p1, M 1 , M2 ) = gcd(mi, pi, p2, - - . , M2). Since gcd(mi, n) = gcd(m 2, n) = 1, it follows

that gcd(pi, M1, m 2 ) = gcd(rM2 + mi, ml,M2)= gcd(m1 ,Tm 2 ). E

2.10 Behaviour of regular models under tame extensions

Let R and K be as in the beginning of this chapter. Let X be a snc model of a nice K-curve

of genus g > 1. Let N' be the set of positive integers not divisible by the characteristic of

k. For d e N', let K(d) denote the unique tamely ramified extension of K of degree d and

let R(d) denote its ring of integers. Let S(d) = Spec R(d). Let Xd denote the normalization

of X xs S(d). Let X(d) denote the minimal desingularization of Xd. In [HN12, Chapter

31, Halle and Nicaise prove that X(d) is again a snc model and describe its special fiber in

terms of the special fiber of X. In this section, we recall the necessary results from their

book that we will need in Chapter 4.

Let X, = EiEj NjEj, where the Ej are the (reduced) irreducible components of X, and
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N is the multiplicity of Ej in X.. For each i E I, let E? = Ej - Ujj Ej. For any subset

S c Xs, we let S denote its Zariski closure in X,.

Proposition 2.10.1. [HN12, Chapter 3, Proposition 1.3.21 Let d E N'.

(i) For each irreducible component E, of Xs, the scheme Fj := Xd x x E is a disjoint union

of smooth irreducible curves Fij. The multiplicity N| of each component Fi3 in (Xd)S

is given by N' = Ni gcd(d, Ni), and the morphism Xd xx E -+ E is a Galois cover

of degree gcd(d, Ni).

(ii) If Ej is a rational curve such that the set-theoretic intersection E n (X, - Ej) consists

of precisely one (respectively two) point(s), i.e., Ej_ Ej.E, E {1, 2}, then each F3

is a rational curve such that Fi3 n ((Xd),- Fi.) consists of precisely one (respectively

two) point(s). In both cases, the number of connected components of F is equal to

ni := gcd(Ni, Na, d) where a is any element of I - {i} such that Ea intersects E. In

particular, the gcd does not depend on the choice of a.

(iii) Each nonregular point of Xd is an intersection point of two distinct irreducible compo-

nents of the special fiber. Let x E (Xd), be a point that belongs to the intersection of

two distinct irreducible components F and F' which dominate irreducible components

E and E' of X, respectively. Let N and N' be the multiplicities of E and E' in X.,

respectively. Then the special fiber of the minimal desingularization Z of the local germ

Spec (Xd, is a divisor with strict normal crossings whose combinatorial data (i.e. mul-

tiplicities of components and their intersection numbers; see Proposition 2.10.2 below)

depend only on N, N' and d. Moreover, each exceptional component of Z, is a rational

curve that meets the other irreducible components of Z, in precisely two points.

In particular, the S(d)-scheme X(d) is a snc model of X XK K(d).

Proposition 2.10.2. [HN12, Chapter 3, Proposition 4.2.51 Retain the notation in Propo-

sition 2.10.1(iii). The special fiber of the minimal desingularization Z of the local germ

Spec 0 x,,x consists of a chain of (-2) curves that connect the strict transforms of F and

F'. The multiplicities of the (-2) curves in the chain can be computed by the following pro-

cedure. Let g = ged(N,N',d),h = gcd(N,d),h' = gcd(N',d),n = N/h,n' = N'/h',d' =
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(dg)/hh'. Let r be the unique solution to the equation rn + n' = 0 mod d' such that

0 < r < d'. Let [b 1 , b2 ,... , bA]Hj be the Hirzebruch-Jung continued fraction expansion of

d'/r. Let (PI1,. .. , PA) be the multiplicity vector associated to the tuple (d', r, n, n'). Then

there are A components in the chain joining the strict transform of F and the strict trans-

form of F' in C(d),. Their multiplicities in order are {[P1, P2, ... ,Apx}

Definition 2.10.3. [HN12, Chapter 3, Definition 2.2.21 A component F of X" is principal if

" either the genus of F is nonzero, or,

" F - F contains at least 3 points.

Since we assumed that the genus of X,7 is nonzero, it follows that there exists a minimal

snc model Xmin of X, [Liu02, Chapter 9, Proposition 3.36].

Definition 2.10.4. [HN12, Chapter 3, Definition 2.2.31 Let I denote the set of principal

components of X. The stabilization index e(X) of X is defined by

e(X) := lcm mr.
rEI

Also, the stabilization index e(X,,) of X,, is defined by

e(X,,) := e(Xmin).

Lemma 2.10.5. [HN12, Chapter 3, Lemma 2.3.21 Assume either that the genus of X, is

> 2, or that X, is a genus 1 curve with a rational point, or that X,7 is a genus 1 curve whose

Jacobian has additive or good reduction. Let d G N' be an element that is prime to e(X).

(i) Then for every (reduced) irreducible component Ej of X,, the k-scheme F = Xd xx Ej

is smooth and irreducible.

(ii) Let N| be the multiplicity of Fj in (Xd),. Then N| = Ni gcd(d, N), and Fj -+ Ej is a

ramified tame Galois cover of degree gcd(d, Ni).

(iii) If Ej is principal, or E is a rational curve such that E. Ejj Ej = 1, then F -+ Ej is

an isomorphism and N' = Ni.
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(iv) If Ej is a rational curve such that Ej. Ij Ej = 2, then F ~ P' and F -+ Ej is either

an isomorphism, or ramified over the two points of Ej - Ei.

(v) Moreover, if i and j are distinct elements of I, then over any point of E n E lies

exactly one point of Fj n Fj.

2.11 Neron component series

Let X be a regular S-curve. Let A denote the N6ron model of the Jacobian of XK. For

d e N', let A(d) denote the N6ron model of the Jacobian of X x KK(d). Since the construction

of the N6ron model does not commute with base extension, it is natural to ask how much

A x R R(d) and A(d) differ. The behaviour of the order of the component group under tame

extensions is recorded in a precise fashion by the Nron component series

S J(A(d))ITd.
dEN'

One of the key results in [HN12] is a proof of the rationality of the N6ron component series

[HN12, Chapter 3, Theorem 3.1.51. The main ingredient in the proof of this result is the

following theorem.

Theorem 2.11.1. [HN12, Chapter 3, Proposition 3.1.1] Let t denote the toric rank of A.

Let K'/K be a finite tame extension of K whose degree d is prime to e(X,7 ). Then

|<( (A x K K')| = dt|<D( A}|.

The proof given by Halle and Nicaise involves a reduction to the equicharacteristic case.

We provide an alternate proof of this result in Section 4.1.9.
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Chapter 3

Comparing conductors and discriminants

The invariants - Art(X/S) and v(A) are unchanged when we extend scalars to the strict

henselization. So from the very beginning, we let R be a henselian discrete valuation ring

with separably closed residue field k. Assume that char k = 2. Let t be a uniformizer of R,

i.e., v(t) = 1. Let C be a hyperelliptic curve over K with K-rational Weierstrass points and

genus g > 2.

We first show that we can find a minimal Weierstrass equation such that f is a monic,

separable polynomial of degree 2g + 2 in R[x] that splits completely; f(x) = (x - bi)(x -

b2 ) ... (x - b29+ 2 ) in R[x]. Let y 2 - h(x) be any minimal Weierstrass equation for C. Let

H(x, z) = z2g+ 2 g(x/z). Choose a point P E Pl(k) that is not a zero of H and let P E P1 (R)

be a lift of P; P mod t = P. Since GL 2 (R) acts transitively on P1 (R), we can find p E

GL2(R) that sends P to [1 : 0] E P1. Then if F(x, z) =p H(x, z), then F(x, 1) is of degree

2g + 2 and u := F(1,0) E R is a unit. Let f(x) = u-1 F(x, 1). Since char k $ 2 and R is

henselian with algebraically closed residue field, we can find a u' E R such that u'2 = u. This

tells us that by scaling y by u', we obtain a Weierstrass equation y 2 - f(x) for C such that

f (x) is monic and separable of degree 2g + 2. Since det V is a unit in R, and the discriminant

of f differs from the discriminant of h by a power of det p, it follows that y 2 - f(x) is a

minimal Weierstrass equation for C. Fix such an equation.

We will denote the fraction field of an integral scheme Z by K(Z), the local ring at a

point z of a scheme Z by OZ,z and the unique maximal ideal in Oz,Z by mz,z. The reduced
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scheme attached to a scheme Z will be denoted Zred.

3.1 Construction of the regular model

We first prove a lemma that gives sufficient conditions for the normalization of a regular

2-dimensional scheme in a degree 2 extension of its function field to be regular.

Lemma 3.1.1. Let Y be a regular integral 2-dimensional scheme and let f be a rational

function on Y that is not a square. Assume that the residue field at any closed point of Y

is not of characteristic 2. (Weil divisors make sense on Y.) Let (f) = miri. Assume

that

(a) Any two Fj for which mi is odd do not intersect.

(b) Any F,, for which mi is odd is regular.

Then.the normalization of Y in K(Y)(Vi) is regular.

Proof. We will sketch the details of the proof. The construction of the normalization is

local on the base. Therefore, it suffices to check that for every closed point y of Y, the

normalization of the corresponding local ring Oy, in K(Y)(VIJ) is regular. There are two

cases to consider.

The first case is when mi is even for every Fr that contains y. In this case, since Oy,,, is a

regular and hence a unique factorization domain, we can write f = (cI/c 2 ) 2 U for some c1 , c2 E

Oy,y - {O} and a unit u E Oy,,. Using the fact that 2 is a unit in Oyy for every y, a standard

computation then shows that the normalization of Oyy, in K(Y)(VJ) is OyY[z]/(z 2 _ U).

From this presentation, we conclude that the normalization is 6tale over OYy, and hence

regular by [BLR90, Proposition 91.

The second case is when exactly one of the mi is odd for the Fj that contain y. Let a be

an irreducible element of the unique factorization domain Oy,., corresponding to the unique

Fj for which mi is odd. In this case, f = (c1 /c 2 ) 2au, where ci, c2 E Oy,, - {O} and u is a

unit in Oyy as before. One can then check that the normalization of Oy, in K(Y)(VIJ) is

Oy,Y[z]/(z 2 - au). Since Fj is regular at y, we can find an element b c Oy,, such that a and
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b generate the maximal ideal of Oyy. One can then check that z and b generate the unique

maximal ideal of Oy,[z]/(z2 - au). This implies that OyY[z]/(z 2 - an) is regular. 0

Remark 3.1.2. The construction of a regular model in Lemma 3.1.1 as the normalization

of a regular scheme in a degree 2 extension of the function field, is special to hyperelliptic

curves. A similar construction exists for tricyclic covers of the projective line, but it does

not extend to other Galois covers [LL99].

In our example, Y = P1 and the rational function f is (x - b1)(x - b2 ) ... (x - b2g2).

The divisor of f is just the sum of the irreducible principal horizontal divisors (x - bi),

all appearing with multiplicity 1 in (f), and the divisor at oo (the closure of the point at

oo on the generic fiber), with multiplicity -(2g + 2). If the bi belong to distinct residue

classes modulo t, then the condition in the lemma is satisfied and we get the regular scheme

Proj R x,y,(z If some of the bi belong to the same residue class, then the corresponding

horizontal divisors would intersect at the closed point on the special fiber given by this

residue class and we cannot apply the lemma directly with Y = P1. We will instead apply

the lemma to the divisor of f on an iterated blow-up of P1 . The generic fiber of this new Y

is still PK, so the regular scheme that we obtain will still be a relative S-curve with generic

fiber the hyperelliptic curve we started with.

We will need another lemma to show that we can resolve the issue discussed above by

replacing P1 by an iterated blow-up of P'. The following lemma is a minor modification

of [LL99, Lemma 1.41, where we consider irreducible divisors appearing in the divisor of an

arbitrary rational function on a model (instead of the rational function t) and the order of

vanishing of f along these divisors instead. We recover [LL99, Lemma 1.41 by taking f to

be t.

Lemma 3.1.3. Let Y/R be a regular model of a curve Y,/1K. Let f be a rational function

on Y. Let C and D be irreducible divisors of Y that appear in the divisor of f, and let the

order of vanishing of f along C and D be rc and rD respectively. Let y E Y be a closed

point, and let Y' denote the model of Yr1 obtained by blowing up Y at y. Let E c Y' denote

the exceptional divisor.
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(a) If y is a regular point of C that does not belong to any other irreducible divisor appearing

in (f), then the order of vanishing of f along E equals rc.

(b) If y c C n D and does not belong to any other divisors appearing in (f), and if C and

D intersect transversally at y, then the order of vanishing of f along E is rc + rD-

Proof. Omitted. This can be seen using explicit equations of the blow-up in a neighbourhood

of y.

We are now ready to construct the regular model X of C. A very similar construction

already appears in [Kau99} under some additional simplifying hypotheses. The model that

is obtained there turns out to be semistable. The regular model X that is constructed below

is not necessarily semistable.

Let Di be the irreducible principal horizontal divisor (x - bi) on P1. First blow-up P1

at those closed points on the special fiber where any two of the Di intersect to obtain a new

scheme B11 (P1). On this scheme, the strict transforms of any two divisors Di and Dj for

which the bi agree mod t and not mod t2 will no longer intersect. If some of the bi agree

mod t2 as well, then continue to blow-up (that is, now blow up B11 (P) at the closed points

on the special fiber of B11 (P1) where any two of the strict transforms of the divisors (x - bi)

intersect, and call the result B12 (PN)). Since the bi are pairwise distinct, we will eventually

end up with a scheme Bl,(P) where no two of the irreducible horizontal divisors occuring

in (f) intersect. We may hope to set Y equal to BI, (P1), but the divisor of the rational

function f might now vanish along some irreducible components of the special fiber.

Lemma 3.1.3 now tells us that a single blow-up of Bl(P1 ) based at a finite set of closed

points will ensure that no two components where f vanishes to odd order intersect. Do this

as well and call the resulting scheme Y. Call an irreducible component of the special fiber

of Y even if the order of vanishing of f along this component is even. Similarly define odd

component. Similarly define odd and even components of Bln(PR).

Recall the notion of a good model as defined in [LL99, 1.81. A regular model Y/OK Of

Y,/K is good if it satisfies the following two conditions:

(a) The (reduced) irreducible components of Y are smooth.
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(b) Each singular point of (Y)red belongs to exactly two irreducible components of (Y)rd

and these components intersect transversally.

The blow-up of a good model at a closed point is again a good model.

The model Y we have constructed is a good model of P1 as it is obtained using a sequence

of blow-ups starting from the good model PI of P1 . The model Bl.,(P1) is the model we

would get using [LL99, Lemma 1.91 if we start with the model P1 and the divisor (f) on it.

Set X to be equal to the normalization of Y in K(Y)(Vf).

Theorem 3.1.4. The scheme X/S is regular.

Proof. The components of Y, are smooth and the divisor (f) satisfies the conditions in the

statement of Lemma 3.1.1. It follows that X is regular. L

We will now prove that X is a good model of C and compute the multiplicities of the

components of the special fiber of X. Let the divisor of t on X be Z mrnjF; here the sum

runs over all irreducible components of the special fiber X, and the Fj are integral divisors

on X. Let 0 denote the map X -+ Bl,(P1)

Lemma 3.1.5.

(a) The scheme X is a good model of C.

(b) Each mi is 1 or 2. Furthermore, mi = 2 if and only if either

(i) 0(Fi) is an odd component of (Bl,(P )),, or,

(ii) p(Fi) = F n F' for two distinct odd components F and F' of (Bl((PN))' .

Proof.

(a) Let S be the set of odd components of Y, and let B be the divisor Eres F + j {bi}

where {bi} is the horizontal divisor that is the closure of the point bi on the generic fiber

PK. Since the map X -÷ Y is finite of degree 2, the image of an irreducible component of

X, is an irreducible component of Y,, and there are at most two irreducible components

of X, mapping down to an irreducible component of Y,. All the irreducible components
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of Y are isomorphic to P'. There are two irreducible components of X, mapping down

to a given component of Y only when the component of Y is an even component that

does not intersect any of the irreducible divisors appearing in B. In this case the two

components in X, that map down to the given component of Y, do not intersect, and are

isomorphic to P'. In all other cases there is a unique component of X, mapping down

to a component of Y,.

Since at most two irreducible components of Y, pass through any given point of Y,,

we see that this implies that at most two irreducible components of X, pass through

any given point of X,. The intersection point x of two irreducible components of X,

has to map to the intersection point y of two irreducible components of Y. If y is the

intersection of two even components, then the map 0 is etale at x, so the intersection

is still transverse. If y is the intersection of an even and odd component, because the

intersection of these components is transverse, we can pick the function g in the proof of

Lemma 3.1.1 to be a uniformizer for the even component. This shows that 6tale locally,

the two components that intersect at x are given by the vanishing of \/tu and g and

as these two elements generate the maximal ideal at x 6tale locally, the intersection is

transverse once again. For a closed point x on X, lying on exactly one component F of

X,, the same argument shows that we can choose a system of parameters at the point

such that one of them cuts out the component F of X,,. This shows that the irreducible

components of X, are smooth.

(b) A repeated application of [LL99, Lemma 1.41 tells us that the multiplicity of every

irreducible component of (Bl,(Pl)), is 1. The same lemma tells us that Y has a few

additional components of multiplicity either 1 or 2 - If we blow up the closed point that

is the intersection of an odd component of the special fiber of Bl (P1) with a horizontal

divisor appearing in (f), then we get a component of multiplicity 1 in the special fiber

and if we blow up the intersection of two odd components of the special fiber, we get

a component of multiplicity 2. Since f vanishes to an even order along components of

multiplicity 2 in Y4, each mi is either 1 or 2 - It is 1 if Fj maps down to an even component

of Y, and its image in (Bl,,(PI)), does not equal the intersection point of two components
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of the special fiber and it is 2 otherwise. This is because Oy,(4((r)) -+ Ox,4(r) is an

extension of discrete valuation rings (here r(C) for an integral curve C denotes its generic

point), and the corresponding extension of fraction fields is of degree 2. t is a uniformizer

in OY,,((ir)), so its valuation above is either 1 or 2 depending on whether the extension

is ramified at (t) or not. The extension is not ramified if the image of Fj in Y is an even

component. E

3.2 An explicit formula for the Deligne discriminant

The Deligne discriminant of the model X is - Art(X/S) := -x(Xq)+x(X,,)+, where 6 is the

Swan conductor associated to the i-adic representation Gal (K/K) -+ AutQ" (H,(Xg, Q,))

(f # char k) (Section 2.3).

Lemma 3.2.1.

- Art(X/S) = -x(XV) + X(XS) = ((1 - m)y(Fi) + E(mj - 1)P4.L )

Proof. Since all irreducible components of X, have multiplicity either 1 or 2

fiber and char k # 2, [Sai87, Theorem 3] implies that 6 = 0.

+ E ri.ri.
i<j

in the special

Using the intersection theory for regular arithmetic surfaces, for a canonical divisor K
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on X, we have

-x(Xy) = 2Pa(XTI) - 2

= 2Pa (Xs) - 2

= XS.(Xs + K)

= X,.K (because X, is a complete fiber, X,.X, = 0)

= ~3miFs.K

S mi(-x(Fi) - FiXi) (by the adjunction formula applied to the divisor Pi)

(-mix(Fi) + Ermnri.i

The last equality is obtained from X,8 .Fi = 0.

Let A: U Fi -+ (Xs)red be the natural map which is just the inclusion of each Fi into

(Xs)re. Since the Ti are smooth, [Lor90, Theorem 2.61 tells us that x(X,) = X((X,)red) =

- 6 x8 + E x(Fi) where 6x, = EPE(XS)red(I I- (P)I - 1). In our case 6 , is just the number of

points where two components of X, meet. Since the intersections in X, are all transverse,

6k, = E ZSx -YE i~j - Er~j
i<j i z~i i<j

Putting all this together, we can rewrite X(X,) in the following form

x(X)=e ex(so) - +t h i..
i ji / i<j

This expression, together with the formula above for -X(Xyj) gives

- Art(X/S) = ((1 - mi)X(i) + E(m - 1)Pi.Fj +
i \ j#i /

1:1E .F3 .
i<j
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Remark 3.2.2. The formula

-x(Xg) + x(X8) = >3(1 - mi)X(Fz) + >(mn3 - i)i~.F 3) + Fi.F3
j#ii<j

holds for any regular S curve X with smooth, projective, geometrically integral generic

fiber and whose special fiber is a strict simple normal crossings divisor (i.e., the components

themselves might have multliplicities bigger than 1, but each of the components is smooth,

and the reduced special fiber has at worst nodal singularities). We also recover the result

that if X/S is regular and semistable, then - Art(X/S) = E Fi.rj, since in this case

mi = 1 for all i and 6 = 0 by [Sai87, Theorem 3].

3.3 Dual graphs

By the construction of X we have a sequence of maps X -+ Y -+ Bl,1(P) -+ P1. Let Tx

be the dual graph of X, i.e., the graph with vertices the irreducible components of X, and

an edge between two vertices if the corresponding irreducible components intersect. (In this

chapter, it is not necessary for graphs to have a weight function, so we refrain from defining

one.) Let Ty be the dual graph of Y, and TB the dual graph of (Bl"(P1)). For a vertex v

of any of the graphs Tx, Ty or TB, the irreducible component corresponding to the vertex in

the respective dual graph will be denoted F,. Let 01 denote the map X -+ Y and let 4'2 the

map Y -+ Bl,(Pl). Let 4 = 2

We will denote the vertices of a graph G by V(G). For any v E V(G), let N(v) (for

neighbours of v) denote the set of vertices w for which there is an edge between v and w. If

G is a directed graph and v E V(G), let C(v) (for children of v) denote the set of vertices w

for which there is an edge pointing from v to w.

The graph TB naturally has the structure of a rooted tree (remembering the sequence

of blow-ups, i.e., whether the component was obtained as a result of a blow-up at a closed

point of the other component). The graph Ty is obtained from the graph of TB by attaching

some additional vertices between two pre-existing vertices connected by an edge and some

additional leaves, so Ty is also a tree. By virtue of being rooted trees, the edges of TB and
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Ty can be given a direction (and we choose the direction that points away from the root).

There is a natural surjective map p1 : V(Tx) -+ V(Ty): if the image of an irreducible

component Fr,, of X, under $1 is an irreducible component F, of Y, then let p1(v") = V'.

If two vertices of Tx are connected by an edge, so are their images in Ty. We can use this

surjection to transfer the direction on the edges of Ty to the edges of Tx; this makes Tx

a directed graph. Call a vertex of TB odd (respectively even) if the order of vanishing of

f along the corresponding component is odd (respectively even). Similarly define odd and

even vertices of Ty. This definition is consistent with the earlier definition of odd and even

components of Y and Bl,(P).

3.4 Deligne discriminant and dual graphs

The last term E , Fi.Fy in the Deligne discriminant can be thought of as the sum

V" EV(Tx) W"EC(V") F

We use this observation to decompose the Deligne discriminant as a sum over the vertices

of the graph Tx. Let mn, be the multiplicity of P,, in X,. We then have

- Art(X/S) = (1 - mV") x(F,") + ('nM/ - 1)FV/f.FW// + Ft,".1Fuj"

V"EV(Tx) w"EN(W") w" EC(V")/

3.5 Description of the strategy

To compare the discriminant df of the polynomial f with the valuation of the Deligne

discriminant of the model X, it would be useful if we could decompose df as a sum of local

terms. In the next section, we will show that there is a way to decompose the minimal

discriminant as a sum over the vertices of TB. There is a simple relation between the

irreducible components of X, and those of (BI, (P1)), (which we will describe below), so we

will be able to compare the two discriminants using this decomposition, by first comparing
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them locally.

The image of an irreducible component of Y, under 42 is either an irreducible component

of (Bl,(Pl)), or a point that lies on exactly one of the irreducible components of (Bl"(P1)), or

the intersection point of two irreducible components of (Bl (P )),. This induces a surjective

map W2 : V(Ty) -+ V(TB) where the vertex corresponding to an irreducible component of Y,

is mapped either to the vertex corresponding to the unique irreducible component that its

image is contained in or to the smaller of the two vertices (by which we mean the vertex closer

to the root) corresponding to the two irreducible components that its image is contained in.

Let 'p = VO 'p2.

We have written the Deligne discriminant as Ev"EV(Tx) - and we can rewrite this sum

as vEV(TB)(Zv"EV(Tx),<p(v")=v ), so the Deligne discriminant can be regarded as a sum

over the vertices of TB-

The discussion above implies the following lemma, which will be useful later on in an

explicit computation of the Deligne discriminant.

Lemma 3.5.1. Let v" E V(Tx).

(a) If w" E C(v"), then p1(w") E C(p1 (v")). In particular, if w" E N(v"), then 'p1 (w") E

N(p1 (v")).

(b) Let w" E C(v"). If 4(I~,) is a point, then p(w") = p(v") and 'p(v") is an odd vertex.

Otherwise, 'p(w") E C('p(v")).

3.6 A decomposition of the minimal discriminant

To each vertex v of TB, we want to associate an integer d(v) such that the minimal dis-

criminant equals EZEV(TB) d(v). We will now define d(v) by inducting on the vertices of

TB.

For the base case, note that if the bi belong to distinct residue classes modulo t, then

Bl,(P1) = P1 and TB is the graph with a single vertex v. The minimal discriminant is 0, so

we set d(v) = 0.
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The scheme Bl,(P) was obtained as an iterated blow-up of P' while trying to separate

the horizontal divisors (x - bi) corresponding to the linear factors of f. This can be done

for any separable polynomial g E R[x] that splits completely - let Bl(g) denote the iterative

blow up of P that one obtains while trying to separate the divisors corresponding to the

linear factors of g. With this notation Bl(f) equals the scheme B.,(Pl) we had above.

Let A be the set of residues of the bi modulo t. For a residue a c A, let the weight of the

residue a ( := wta), be the number of bi belonging to the residue class of a. Observe that the

subtrees of the root of TB are in natural bijection with the residues of weight strictly larger

than 1.

The minimal discriminant v(A) (= v(df)) can be decomposed as follows:

v(df) = E v (f (bi - bj)
aEA bi mod t = a

Wta>1 bj mod t = a

S twta(Wta -1) (
aEA bi mod t = a

wta>l bm mod t = a

'#3
wta(Wta -1) + E V f t

aEA aEA bi mod t = a
Wta>l bj mod t = a

Set d(root of TB) ZaEA wta(wta -1). Pick an element bi belong to the residue class a E

A of weight strictly bigger than 1. The subtree corresponding to the residue a can naturally

be identified with the dual graph of Bl(ga), for the polynomial ga = J (x - ba-bi

b. mod t = a

Let da denote the discriminant of ga. Then

v(d) = Ewta(wta -1)+ v (da).
aEA aEA,wt(a)>1

Now recursively decompose v(da) as a sum over the vertices of the dual graph of Bl(ga)s.

50



Identifying the dual graph of Bl(ga), with the corresponding subtree in TB, this gives us a

way to decompose the minimal discriminant as a sum over the vertices of TB.

We will now prescribe a way to attach weights to the vertices of TB and give an explicit

formula for d(v) in terms of these weights.

3.6.1 Weight of a vertex

Suppose v E V(TB). Let T, be the complete subtree of TB with root v. The complete subtree

of TB with root v has as its set of vertices all those vertices of TB whose path to the root

crosses v. There is an edge between two vertices in this subtree if there is an edge between

them when considered as vertices of TB.

For each vertex v of TB, define the weight of the vertex wt, as follows: Let J be the set

of all irreducible components of (BlPIF), corresponding to the vertices that are in T,. Let

wt, equal the total number of irreducible horizontal divisors that occur in the divisor (f)

in Bl ,(P), not counting the divisor {oo}, that intersect any of the irreducible components

in J. Thus, if I', was obtained as the exceptional divisor in the blow-up of an intermediate

iterated blow-up Z between Bl.(P ) and P1 at a smooth closed point of the special fiber

z E Zs, then wt, is exactly the number of irreducible horizontal divisors that occur in (f)

that intersect Z, at z. This in turn implies the following:

Lemma 3.6.2. If v E V(TB), then wt, > 2.

3.6.3 Local contribution and weights

Lemma 3.6.4. For any vertex v of TB,

d(v) = wt,(wt, -1).
wIEC(v)

Proof. This will once again proceed through an induction on the number of vertices of the

tree. For the base case, note that the tree TB has only one vertex if and only if all the roots

of the polynomial f belong to distinct residue classes modt and in this case d(v) = 0. Now

for the general case. It is clear that the equality holds for the root - for a residue class
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a E A such that wta > 1, the weight of the residue class as in the definition is just the weight

of the subtree corresponding to the residue class. For any vertex v at depth 1 (by which we

mean one of the nearest neighbours of the root) corresponding to a residue class a such that

wta > 1, we first observe that the set of roots of the polynomial g, 171 (x - b:ib)

bj mod t = a

corresponding to the residue class a is in natural bijection with a subset of the horizontal

divisors of (f) - namely the ones corresponding to the strict transforms of the divisors

(x - b.) on P1 for bj mod t = a. These are the divisors that intersect the special fiber at

one of the irreducible components corresponding to the vertices in this subtree with root v.

These horizontal divisors are also in bijection with the horizontal divisors of the function

ga different from {oo} on Bl(ga). The identification of horizontal divisors of Bl(ga) and a

subset of the horizontal divisors of Bl(f) is compatible with the identification of the subtree

of TB with the dual graph of Bl(ga),. By this we mean that the set of horizontal divisors

intersecting the irreducible component corresponding to any given vertex match up. This

tells us that the weight of a vertex of the dual graph of Bl(ga), equals the weight of the

corresponding vertex in TB. Since the lemma holds for the complete subtree at vertex v

by induction (where the weights to the vertices of Bl(ga), are assigned using the horizontal

divisors of Bl(ga)), we are done. 0

3.7 A combinatorial description of the local terms in the

Deligne discriminant

The goal of this section is to obtain explicit formulae (Theorem 3.7.22) for the local terms

appearing in the Deligne discriminant in terms of the combinatorics of the tree TB (Defini-

tion 3.7). This involves a careful analysis of the special fiber of X which we present as a

series of lemmas.

Lemma 3.7.1.

(a) The branch locus of the double cover V) : X -+ Y is the set of all odd components of Y,

along with the strict transforms of the horizontal divisors (x - bi) on P1.
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(b) If F is an even component of Y, and F' is an irreducible component of the branch locus

that intersects F, then 1.1' = 1.

Proof.

(a) This is clear from the construction of X as outlined in Lemma 3.1.1.

(b) From (a), it follows that F does not belong to the branch locus and F' is either an odd

component of Y, or the strict transform of the horizontal divisor (x - bi) on P1 for some

bi.

Suppose F' is an odd component of Y,. It follows from the construction of Y that if any

two irreducible components of Y, intersect, then they intersect transversally and there

is at most one point in the intersection. This implies that F.F' = 1.

Suppose F' is the strict transform of the horizontal divisor (x - bi) on P1 for some bi.

Let 7r : Y -+ P1 be the iterated blow-up map that we obtain from the construction of

Y. Since 7r is an iterated blow-up morphism, Pic P' is a direct summand of Pic Y, with

a canonical projection map 7r, : Pic Y -+ Pic P1. Let Bi denote the Weil divisor (x - bi)

on P1. Then 7rF' = Bi.

0 < F.F' < Y.F' = -r*(P ),.F = (P1)8.(,r.F') = (P1),.Bi = 1.

This implies that F.F' = 1.

Lemma 3.7.2. Let v E V(TB) and w E C(v). Then w(f) = v(f) + wt,. (Here v(f)

and w(f) denote the valuation of f in the discrete valuation rings corrresponding to the

irreducible divisors F, and F, of Bln(P )). In particular, if v is even, then w is odd if and

only if wt, is odd; if v is odd, then w is odd if and only if wt, is even.

Proof. The scheme Bl.n(Pl ) was constructed as an iterated blow-up of P1. There exist

intermediate iterated blow-ups Z' and Z of P1 with iterated blow-up maps Bl(Pl) -+ Z',

Z' -+ Z and Z -+ P1 such that

(a) The scheme Z' is the blow-up of Z at a smooth closed point z of the special fiber Z,.
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(b) The divisor F,, C Bl,.(Ph) is the strict transform of a vertical divisor D on Z under the

morphism Bl,(PI) -+ Z.

(c) z E D.

(d) The divisor F, c Bl,,(P) is the strict transform of E under the morphism Bl"(P1) -+ Z',

where E denotes the exceptional divisor of Z' -+ Z.

The valuation of f along E equals the multiplicity lz (f) (that is, the largest integer m such

that f E - mgt1 ). There are wt, distinct irreducible horizontal divisors of (f) that

intersect Z, at z, and z is a smooth point on each of these divisors. This in particular implies

that a uniformizer for each of the corresponding discrete valuation rings is in mz,z - mz,z-

From the factorization of f and the fact that OZ,z is a regular local ring (in particular, a

unique factorization domain), one can deduce that w(f) =pz(f) = v(f) + wt,. This implies

that w(f) and wtw have the same parity if v(f) is even and have opposite parity if v(f) is

odd. 0

Definition. Suppose v E V(TB). Let r, be the total number of children of v of odd weight,

and let sv be the total number of children of v of even weight. Let l', equal the number of

horizontal divisors of (f) different from {oo} passing through F, and let 1, = l' + rv. For a

vertex v of TB (or of Ty) not equal to the root, let p, denote the parent of v.

Since Bln (P1) was obtained by iteratively blowing up a regular scheme at smooth rational

points on the special fiber, all the components of its special fiber are isomorphic to P' and

X, is reduced. Similarly, all the components of the special fiber of Y are also isomorphic to

Pi, though Y may no longer be reduced.

Lemma 3.7.3. Let v E V(TB) be an even vertex. Then 1, is odd if and only if v has an odd

parent. In particular, if v is the root, then l4 is even.

Proof. Suppose v E V(TB) is even. Then 021 (F,) is a single irreducible component F of

Y and 'b 2 is an isomorphism above a neighbourhood of Fv. Using Lemma 3.7.1(b) and the

Riemann-Hurwitz formula, we see that the branch locus of $1 has to intersect F at an even

number of points. Since v is even, Lemma 3.7.1(a) and Lemma 3.7.2 imply that F intersects

the branch locus at 1, + 1 points if v has an odd parent, and at l4 points otherwise. 0
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Lemma 3.7.4. A component of Y, is odd if and only if it is the strict transform of an odd

component of (Bl(P')),.

Proof. The exceptional divisors that arise when we blow up Bln(P ) to obtain Y are all even

by Lemma 3.1.3, as every point that is blown up in Bl,(Pl) is at the intersection of two odd

components. L

Lemma 3.7.5.

(a) Let v' E V(Ty). Then #WoL'(v') = 1 if 'F, intersects the branch locus of 41, and

(v') = 2 otherwise. If #Wi 1 (v') 2, then both irreducible components of X,

corresponding to vertices in Wo-(v') are isomorphic to Pk'.

(b) Suppose v E V(TB) is an even vertex. Then #-1(v) is either 1 or 2. It is 1 if and

only if 4'2 (Ft,) intersects the branch locus of 41. If #pW (v) = 2, then both irreducible

components of X, corresponding to vertices in s -1 (v) are isomorphic to Pkl.

(c) Suppose v c V(TB) is odd. Let v' E V(Ty) be the vertex corresponding to the strict

transform of IF, in Y. Let

TO = {V'},

T1 = {u' E j 1 (v) I o2 (.u') = Pv n J'u for some odd u E C(v)}, and,

T ' 02 (F') = , n H for some irreducible horizontal divisor

H 1 5 appearing in the divisor of (f).

Let So = Wi '(To), Si =Wi (Ti) and S2 = oi 1(T2). Then

(i) The sets To,T1 and T2 form a partition of (p-1 (v). Hence {So, S1, S2} is a partition

of W- 1(v).

(ii) We have that #S 0 = #To = 1. Suppose So = {i>}. Then v' is odd, mi, = 2, and

So = {v" E W -(v) I 0(]Fv,,) is not a point}.
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(iii) We have that #S1 = #T1 = s,. If v" E S1 , then mn, = 2. If u' E T1 , then u' is

not a leaf in Ty.

(iv) We have that #S 2 = #T2= 1'. If v" E S2, then m = 1.

(v) We have that

T2= {u' E pV(v) u u' is an even leaf of Ty}.

(vi) The map W, induces an isomorphism of graphs between W21(v) and p-(v).

(vii) The graph op1(v) is a tree with root v' and the graph p-1 (v) is a tree with root

(viii) If 'v" E p-(v), then Fv," & Ph.

Proof.

(a) All the components of Y are isomorphic to P1. Let v' C V(Ty). The vertices in W-1(v')

are the irreducible components of V, 1 l(Fe'). If v' is even, then Lemma 3.7.1(b) tells us

that if F, intersects the branch locus at all, it intersects it transversally. Since ramified

double covers of P1 are irreducible, 4'jE(7,') is irreducible if 17., intersects the branch

locus. If Fl does not intersect the branch locus, as P1 has no connected unramified

double covers, we see that l'(Iv,) has two irreducible components, both of which are

isomorphic to P1. This implies that #W-l(v') is 1 if P., intersects the branch locus of

41 and is 2 otherwise.

(b) Suppose v E V(TB) is even. Then 4' (F,) is a single irreducible component F of Y,

and '2 is an isomorphism above a neighbourhood of Fv. Let v' E V(Ty) be such that

Fe = F. Then p'l(v) = {v'} and y- 1 (v) = i 1 (v'). Apply (a) to v'.

(c) (i) The component F1, of Y, satisfies V 2(F19) = , and it is the only component of Y

with this property. It follows that 02(v') = v. The other components IF,, of Y,

satisfying W 2 (u') = v are the exceptional divisors of 02 : Y -+ Bln(P1) that get

mapped to a point of F, that does not also lie on Fpv. Since Y is the blow-up of

Bl, (Px) at the finite set of points consistsing of the intersection of any two odd

components of the special fiber and the intersection of an odd component of the
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special fiber with an irreducible horizontal divisor H = ~o appearing in (f), it

follows that {To, T1, T2} is a partition of W2j 1 (v). Since p1(v) = pi1 (W2 1 (v)), it

follows that {So, Si, S2} is a partition of -1 (v).

(ii) Lemma 3.7.4 tells us Fv, is odd, and Lemma 3.7.1(a) tells us that 4'i is ramified

over F, and therefore o-1 (F,,) is irreducible, and isomorphic to P1. It follows that

#So = #To = 1. Since b(L,) =4'2(v,) = r, and v is odd, Lemma 3.1.5(b) tells

us that mj = 2.

Since 4'(If7) = rv, it follows that 4(rf,) is not a point. Conversely, suppose v" E

p-1(v) and ,(F,,) is not a point. Since {To, T1 , T2 } is a partition of V2
1 (v) by (a)

and 4'2 (IF.W) is a point for u' c T1 U T2 , it follows that v" E p 1 (T) = So.

(iii) For every odd u E C(v), there exists a unique exceptional curve E of the blow-

up Y -+ Bl,,(P) such that if u' E V(Ty) is the vertex such that F = E, then

U' E p2(v) and ' 2 (Fu,) = r, f Fu. This shows that

#T1 = #odd children of v = s, (by Lemma 3.7.2 since v is odd).

Suppose u' E T1 . Let w E C(v) be an odd vertex such that 01 (Fu,) = F, n F .

Let w' E V(Ty) be the vertex corresponding to the strict transform of F, in Y.

Then u' E C(v') and w' E C(u'). In particular, u' is not a leaf. Since v' is odd,

Lemma 3.7.1(a) and part (a) applied to u' imply that #pi'(u') = 1. This tells us

that #S1 = #T = sv.

Suppose v" E S1 . Since v is odd and Wj(v") E T1, Lemma 3.1.5(b) implies that

mn= 2.

(iv) For every irreducible horizontal divisor H # 55 appearing in the divisor of (f) on

Bl,,(Pl), there exists a unique exceptional curve E of the blow-up Y -+ Bl(P')

such that if u' E V(Ty) is the vertex such that F, = E, then u' E 0' (v) and

2(ru,)= F, n H. This shows that

irreducible horizontal divisors H = oo appearing in{ (f) on Bl, (Ph) that intersect F,
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Suppose u' E T2 . Then u' E C(v'). Since v' is odd, Lemma 3.7.1(a) and part (a)

applied to u' imply that #p-(u') 1. This tells us that #S 2 = #T2 = l'.

Suppose v" E S2. Then ( 1 (v") c T2 . This implies that 4'(Fv") is a point lying on

a unique odd component of (Bl(1(P1)),, namely r,. Lemma 3.1.5(b) implies that

m = 1.

(v) We already observed that v' is the unique vertex of To and that it is odd (by

Lemma 3.7.4). If u' c T1 , then (iii) implies that u' is not a leaf. This shows

{u' E p 1 (v) I u' is an even leaf of Ty} C T2 .

If u' E T2 , then Lemma 3.7.4 implies that u' is even. Since F, is the exceptional

curve that is obtained by blowing up the point of intersection of an odd component

and a horizontal divisor, u' is a leaf. This shows the opposite inclusion.

(vi) Parts (ii),(iii),(iv) imply that #So = #To, #S1 #T and #S2 = #T2 . Since W,

is a surjection and {TO, T1 , T2 } is a partition of p- 1 (v), it follows that W, induces a

bijection between p-1 (v) and o1 (v).

If u' E T, U T2 , let u" E p-1 (v) be the unique vertex such that p1(U") = u'. Let

{i} = So. If u' c T, U T2 , then u' E C(v').

If u' E T U T2, then Fr, Fa" = ?/1-1(Fr n fr) # 0. This implies that " E N(P)

for any u" E S1 U S2 . If ij E C(u") for some " E S1 U S 2 , then Lemma 3.5.1(a)

would imply v' E C(u'). Since u' E C(v'), it follows that u" E C(i').

If U, 72 E T U T2 , then ru n F = 0. It now follows from Lemma 3.5.1(a) and

the fact that W 1 (u1), 1 1(2u') E T U T 2 that if 0, u' E S1 U S2, then F n A Fu2 = 0.

Combining the previous three paragraphs, we get that W, induces an isomorphism

of graphs between W-1 (v) and 2 1 (v).

(vii) The proof of (vi) shows that if a' E T, U T2 , then u' E C(v') and that if u', u' E

T1 U T2, then ru and Fu do not intersect. It follows that ep'(v) is a tree with

root v'. Since (vi) shows V, induces an isomorphism of graphs between p'(v) and

p2 1 (v), it follows that W--1 (v) is a tree with root @p (Fo').
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(viii) We already observed in the proof of (ii) that if {i} = So, then FE, P'.

Suppose u" E S 1 . Let u' = p1 (u"). Then u' C Ti. Let w E C(v) be an odd

vertex such that 42 (ru') = F, n Fw,. Let w' be the vertex corresponding to the

strict transform of r, in Y. Then from the construction of Y, it follows that

N(u') = {v', w'}, u' E C(v') and ' E C(u'). Lemma 3.7.4 implies that v' and w' are

odd and u' is even. Since FI, ' P1 and l., intersects the branch locus transversally

at two points (the points of intersection with I',, and 1F7,) by Lemma 3.7.1(a,b),

the Riemann-Hurwitz formula implies that F,, =4-l(Fe,) P.

Suppose u" E S2 and u' = p1(u"). Then u' E T2 . Like in the previous paragraph,

we can argue that Fu, intersects the branch locus at exactly two points, corre-

sponding to the point of intersection of Fr, with its odd parent FI, and the point of

intersection of Fu, with an irreducible horizontal divisor H / 50 appearing in the

divisor of (f), and that these intersections are transverse. The Riemann-Hurwitz

formula would once again imply Fu P1. Since (vi) implies that {So, S1, S2 } is a

partition of p- (v), this completes the proof. El

We have the following restatement of Lemma 3.1.5(b) using p and W1.

Lemma 3.7.6. Suppose v" E V(Tx). Then m,,, = 2 if and only if 'p(v") is odd and 'p1 (v")

is not an even leaf. In particular, if 'p(v") is even, then m,, = 1.

Proof. Lemma 3.1.5(b) tells us that m," = 2 if and only if i(Fo") is an odd component,

or, if O(r,,) = Fv A F, for two odd vertices v, w E V(TB). Let v = p(v"). If either of

the conditions above hold, it follows from the definition of p that the vertex v is odd. So

now assume v is odd. Let {So, S1, S2} be the partition of p-1 (v) as in Lemma 3.7.5(c).

Lemma 3.7.5(c)(ii,iii,iv) imply that mnv" = 2 if and only if v" S2. Lemma 3.7.5(c)(v) then

tells us that v" V S2 if and only if 'p1 (v") is not an even leaf.

Putting all this together, we get that mrn = 2 if and only if 'p(v") is odd and 'p(v") is

not an even leaf. E

Lemma 3.7.7.

(a) Suppose u" E V(Tx) and '/(Fun) is a point.
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(i) We have that #N(u") = 1 if'i(1F7) belongs to a unique odd component of (Bln(PR'))s,

and #N(u") = 2 otherwise.

(ii) If #N(u") = 1, then #C(u") = 0. If #N(u") = 2, then #C(u") = 1.

(iii) If w" E N(u"), then so(w") is an odd vertex.

(iv) If w" E N(u"), then mm = 2.

(b) Suppose u" E V(Tx), w" E N(u"), so(u") is odd and y(w") is even. Then O(run) is not

a point, and the component uu, is the inverse image under 01 of the strict transform of

Proof.

(a) Let v = p(u"). Since 4(J',") is a point, v is odd. Construct the partition So, Si, S2 of

p-1(v) as in Lemma 3.7.5(c). Since V(F") is a point, Lemma 3.7.5(c)(ii) implies that

U" E S1 U S2.

If u" E S1, then i(F") = Fr n r,., for an odd vertex w E V(TB). Let v', w' be the

vertices in Ty corresponding to the strict transforms of r, and r, respectively. Since v

and w are odd, Lemma 3.7.4 tells us that v' and w' are odd. Then N( 1 (u")) = {v', w'}.

By Lemma 3.7.5(a), the vertices v', W1 (u"), w' of Ty each have exactly one preimage

under under W1. Let v", w" E V(Tx) such that V1(v") = V' and p1 (w") = w'. The

unique point Ft, n FO1 (u") has exactly one preimage under ?P1 and therefore lies on

both 1 ,,o and 11,. Similarly, ru," n F is nonempty. Lemma 3.5.1(a) now tells us that

N(u") = {v", w"}. This implies that #N(u") = 2 and #C(u") = 1. We also have

p(v") = v and p(w") = w, and both v and w are odd vertices. Since W(v") is odd

and p1 (v") = v' is odd, Lemma 3.7.6 tells us that mn = 2. Similarly, we can show

mwi, = 2.

If u" E S2, then Lemma 3.7.5(c)(v) implies that u' : P(u") is an even leaf of

Ty. Lemma 3.7.5(c)(vii) shows u' has a parent. Let v' = pj(u"t) and v = V2(V').

Lemma 3.7.5(c)(ii,vii) imply that v' is an odd vertex corresponding to the strict trans-

form of r,, in Y, and #p 1 (v') = 1. Let v" E V(Tx) be such that Wo1(v") = v'. Then
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the unique point in F,, n IF., has exactly one preimage under V'i and this preimage is

contained in r,, n rJ. Lemma 3.5.1 now tells us that #N(u") = 1 and #C(u") = 0.

Lemma 3.7.4 implies that W(v") = W 2 (v') = v is odd. Since p(v") = v is odd and

p1(v") = v' is also odd, Lemma 3.7.6 implies that m," = 2.

The definitions of T1, T2 , S1, S2 in Lemma 3.7.5(c) show that the vertices in S1 are

exactly the ones corresponding to irreducible components of X, whose images under 4'

are contained in two odd components of (B1,(P)), and the vertices in S2 are the ones

corresponding to irreducible components of XS whose images under V) are contained in

exactly one odd component.

(b) Suppose u" E V(Tx), w" E N(u"), (u") is odd and W(w") is even. Then part (a) of

this lemma tells us that ip(]Fu,) is not a point. If So, S1, 52 is the partition of W- 1 (W(u"))

as in Lemma 3.7.5(c), then Lemma 3.7.5(c)(ii) implies that u" E So since '(Fu") is not

a point. As So has a unique vertex, and this vertex corresponds to the inverse image

under 4 '1 of the strict transform of FW(U), we are done.

Lemma 3.7.8. Let v",w" c V(Tx). Then F,n. Fw, E {0, 1,2}. Let v = W(v"),w =

p(w"), v' = p1(v") and w' = p1 (w"). Then J,".F,~ 2 if and only if

(i) both v and w are even,

(ii) the vertices v and w are neighbours of each other, and,

(iii) both F,, and FW, intersect the branch locus of V1.

Proof. Lemma 3.1.5(b) tells us that all intersections in Xs are transverse, so the the number

of points in the intersection of any two irreducible components in X, equals their intersection

number.

Let v", w" E V(Tx). Then Fv, n Fe C 4'TI(Fv, n Fm,). Since 01 is finite of degree 2, any

point of Y has at most two preimages under V11 and therefore #4'-1 (F,, n F",) <; 2#Fvt nru.

The set IF,, n F, has at most one point since the dual graph Ty of Y, is a tree. This implies
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that #L,, n IF& < 1. Putting these together, we get

Fl.F.w = #F/ n rW

<2 #L,, n ww

<2.

It follows that L,".Lw" e {0, 1, 2}.

Suppose that the three conditions in the lemma hold. Then conditions (i) and (ii) imply

that Fr n Lw is nonempty and consists of a single point, say b. Then the strict transforms

of L, and Fr are r,, and r, respectively and the map V2 is an isomorphism above a

neighbourhood of Lv U Lw. Let y be the unique point in rv, n Lw,. As Ty is a tree, the point

y does not lie on any other component of Y, except r, and Li,. Lemma 3.7.4 tells us that v'

and w' are even. Lemma 3.7.1(a) now tells us that the point y has two preimages under 01.

Since L,, and rL intersect the branch locus, their inverse images under V11 are irreducible.

This tells us ru = 4' 1 (v,,) and r,, = 4j(rL). Then '4l(r, n Lw,) = Lu" A Lw..

r l.r./ = #r,/ n I-i

(, n Lw,)

= #4'l(y)

=2.

Now assume Lvy'.L,- = 2. Since the intersections in X, are transverse, the set La" n Lw"

has two points, say x1 and x2 . Then V 1 (x1 ) and 4i1 (x 2) must lie in Lv, n Lw,. Since any two

components of Y cannot intersect at more than one point, this tells us that 4'1 (x1 ) = 1(2).

Call this point of intersection y. Since y has two preimages under 41 , it cannot lie on the

branch locus of V$1 . Lemma 3.7.1(a) tells us that v' and w' must both be even. Since

(qvn) = F, it follows that 0(Fvi) is not a point. Similarly ?(Lw") = F is not a point.

Either w" E C(v") or v" c C(w"), and Lemma 3.5.1(b) tells us that in both cases v and w
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are neighbours of each other. If F,, did not intersect the branch locus, then Lemma 3.7.5(a)

implies that 4,-l(F,,) must have two disjoint irreducible components, one of which is the F,,

we started with. Let V" C V(Tx) be the other. Then there is exactly one point of V54 1 (y) in

each F,, and Fjn. This contradicts the fact that 1,, has both points of @b 1(y). A similar

argument shows that F, intersects the branch locus.

We now make some definitions motivated by Sections 6 and 7. For v" E V(Tx), define

6(v") = (1 - m,') X(Fv") + E (mW" - 1)Frv.Jwlt + E n.Fen.
W" EN(L") wIEC(v")

Let v E V(TB). Define

D (v) = 6(v").

3.7.9 Computation of D(v) for an even vertex v

Suppose V E V(TB) is an even vertex. We define Do(v), Di(v), D2 (v) as follows.

Do(v) = E (1 - mn") X(rff).
/Elp-1(v)

Di(v)

D2 (v)

Then D(v) = Do(v) + Di(v)

terms of l, r, and si,.

= E (rntu - 1)Fv11.FWl1.
v"&p'-(v) '"EN(v")

+ D2 (v). We will now compute Di(v) for each i E {0, 1, 2} in

Lemma 3.7.10. Suppose v E V(TB) is even. Then Do(v) = 0.

Proof. Suppose v is an even vertex. Lemma 3.7.6 implies that mr" = 1 for every v" E Wp~1(v)

and therefore,

Do(v) = E (1 - men) X(Pr") = 0.
v"EW-'(v)
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Lemma 3.7.11. Suppose v E V(TB) is even. Let v" c p-(v) and w" c N(v"). Let

V'- i (v"),w' = p1 (w") and w = (w").

(a) The vertex v' is even and W2 1(v) = {v'}.

(b) The multiplicity mm" = 2 if and only if w is odd.

(c) If v" E C(w"), then v E C(w). If w" E C(v"), then w E C(v). In particular, w E N(v).

(d) If rv = 0 and lv is even, then every neighbour of v is even.

(e) The branch locus of $1 intersects IX, at l4 + (1, mod 2) points, and all these intersections

are transverse.

(f) If l = 0, then rv, does not intersect the branch locus of 41' and #p- 1(v) = 2.

(g) If l, # 0, then Fv, intersects the branch locus of *1, #V 1 (v) = 1 and V- 1 (v) = {v"}.

(h) If w is odd, then Fv".J'w" = 1.

(i) Suppose u E N(v) is odd. Then there exists a unique u" E p- 1 (u) such that u" E N(v").

If u E C(v), then u" E C(v"). If v E C(u), then v" E C(u").

(j) Suppose l, # 0, w" E C(v") and w is even. Then #cp (w) E {1, 2}. If # 1 (w) = 1,

then IXn.Fw" = 2. If #cp- 1 (w) = 2, then 17,".rv,= 1.

(k) Suppose l = 0 and u E C(v) is even. If u" E W 1 (u), then u" c C(v").

(1) If l, = 0, then F -F." = 1.

(m) Suppose lv = 0 and u E C(v) is even. If p 1 (u) = {u"}, then u" C C(v"). If W- 1 (u) =

{u'1', u'2}, then, after possibly interchanging u' and u', we have that u' E C(v") and

IFVI.Fu = 0.

Proof.

(a) Since p 2 (v') = W(v") = v and v is even, Lemma 3.7.4 tells us that v' is even.
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(b) First assume Tw is odd. Since v' is even, Lemma 3.7.7(b) implies that F., is the preimage

under 4
'1 of the strict transform of F, in Y. In particular, Lemma 3.7.4 tells us that

w' is odd, and therefore not an even leaf. Lemma 3.7.6 applied to w" then implies that

mw,~ = 2.

Conversely, assume mn" = 2. Lemma 3.7.6 applied to w" implies that w is odd.

(c) If w is odd, since v is even, Lemma 3.7.7(b) tells us that 4(F.") is not a point. If

w is even, then 4(F.") is not a point. Since v is even, 4(F,") is not a point. Since

Tw" e N(v"), either v" E C(w") or w" E C(v"). Since both O(F,) and '(F,,,) are not

points, Lemma 3.5.1(b) tells us that in the first case v E C(w) and in the second case

V E C(v). Both of these imply TV c N(v).

(d) Suppose r, = 0 and 1, is even. Since v is even and r, = 0, Lemma 3.7.2 implies that

every child of v is even. Since 1, is even, Lemma 3.7.3 implies that v does not have an

odd parent. Therefore every neighbour of v is even.

(e) Lemma 3.7.1(a) and Lemma 3.7.4 tell us that LV, does not belong to the branch locus

since 02 (v') = v, which is even. Lemma 3.7.1(b) tells us that any component of the

branch locus that intersects 1,, intersects it transversally.

" Lemma 3.7.1(a) tells us that the components of the branch locus are the odd com-

ponents of Y, and the irreducible horizontal divisors appearing in (f) different from

00.

" Lemma 3.7.4 tells us that the odd components of Y, are the strict transforms of

odd components of (Bl,(Pl)),.

" Since v is even, the map 02 induces an isomorphism above a neighbourhood of LP.

Therefore, the number of components of the branch locus intersecting FT, is the number

of odd neighbours of v added to the number of horizontal divisors different from 00

appearing in the divisor of (f) that intersect Fv. The latter number is 1'. Since v is even,

Lemma 3.7.2 tells us that the number of odd children of v is rv. Lemma 3.7.3 tells us that
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the number of odd parents of v is (l, mod 2). Since l' + r, + (1, mod 2) =, + (l, mod 2),

the branch locus intersects Fv at l + (l mod 2) points.

(f) Suppose 1, = 0. Then 1, + (1, mod 2) = 0. Part (e) tell us that F, does not intersect

the branch locus of 01. Since v is even, Lemma 3.7.5(b) implies that #W- 1 (v) = 2.

(g) Suppose 1v $ 0. Then l, + (1, mod 2) # 0. Part (e) tells us that Fv intersects the

branch locus of 01. Lemma 3.7.5(b) then implies that #W- 1 (v) = 1. It follows that

= {v"}.

(h) Suppose w is odd. Since w is odd, Lemma 3.7.8 tells us that Fv,.Fw~ < 2. On the other

hand, since w" e N(v"), it follows that F,.F_" > 1.

(i) Suppose u c N(v) is odd. Let u' be the vertex corresponding to the strict transform of

Fu in Y. As u E N(v) and 02 is an isomorphism above a neighbourhood of Irv, it follows

that u' E N(v'). In fact, this shows that if u C C(v), then u' E C(v'); if v E C(u), then

v' E C(u').

Lemma 3.7.4 shows that u' is odd. Lemma 3.7.1(a) and Lemma 3.7.5(a) applied to u'

show that there is a unique u" in V(Tx) such that W1 (u") = u'. Part (a) tells us that

V' is even and W 1 (v) = {v'}. Since Fv, intersects l7u, and u' is odd, Lemma 3.7.1(a)

and Lemma 3.7.5(a) applied to the even vertex v' tell us that p- 1 (v) = p-(v') = {v"}.

Since ol l(ru,) = ru~ and 0l(Fv,) = Fv, it follows that F,l n F" = V) 1 (Fu' f n 1F7).

Since 41i is surjective and Fu n F,, is nonempty, it follows that u" C N(v"). We also have

(U") = (P2(U') = u. This proves the existence of u" c z'(u) such that u" E N(v").

Suppose that we are given u" E W- 1 (u) such that u" c N(v"). Since v is even and u is

odd, Lemma 3.7.7(b) forces u" to be the inverse image under $1 of the strict transform

of Fu in Y. This proves uniqueness.

Lemma 3.5.1(a) tells us that if v" E C(u"), then v' E C (u'). If u E 0(v), then u' E C(v')

and therefore u" C C(v"). Similarly, one can show that if v E C(u), then v" E C(u").

(j) Part (g) tells us that Fr, intersects the branch locus of ,1. Since w is even, Lemma 3.7.5(b)

implies that #W-1(w) c {1, 2}. Since v and w are even, #0- 1 (Fv n l7u) = 2. Since
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w" E C(v"), Lemma 3.7.8 tells us that 1 < Ft,".Fw' < 2. We have that v and w are

even, w E C(v) (by (c)) and that FV, intersects the branch locus; thus, Lemma 3.7.8 im-

plies that r,>.Fw, = 2 if F1, intersects the branch locus, and F .IUg = 1 if it does not.

Lemma 3.7.5(b) applied to w tells us that this can be restated as follows: If #W 1 (w) = 1,

then = 2; if #p- 1 (w) = 2, then F,u.Fw,1  = 1.

(k) Let u' E V(Ty) be the vertex corresponding to the strict transform of F,, in Y. Let

u" E ~'(u).

e Part (g) tells us that F,, intersects the branch locus of V11 and W-1(v) = {v"}.

Therefore 'i- (Fr,) = F,..

* Since V2 is an isomorphism above a neighbourhood of F,, we have that i' E C(v').

In particular, F,, n F,, / 0.

* The map 01 restricts to a surjection F, -+ 17,.

These three facts together imply that I,? n f is not empty. In particular, u" E

N(v"). If v" E C(u"), then Lemma 3.5.1(a) would imply v' E C(u'). Since u' E C(v'),

Lemma 3.5.1(a) implies that u" E C(v").

(1) Suppose l = 0. Part (f) tells us that F,, does not intersect the branch locus. Lemma 3.7.8

applied to the pair v", w" tells us v,,.r,, < 2. On the other hand, since w" E N(V")

we have that F,".F," > 1. Therefore, F,,.F." = 1.

(m) Let u' E V(Ty) be the vertex corresponding to the strict transform of Fu in Y. Since V72

is an isomorphism above a neighbourhood of F,, we get that u' E C(v').

Suppose p-1(u) = {u"}. Since 47 1(F',) = FP~ and ?1 restricts to a surjection Fv, -+ Fr,

an appropriate modification of the argument in part(j) tells us that u" E C(v").

Suppose W- (u) = {u', '2'}. Then Lemma 3.7.5(a) implies that Fu, does not intersect

the branch locus. Part (f) implies that F,,' does not intersect the branch locus. This

implies that the map 01 is 6tale above a neighbourhood of F,' U Fu,. Since P1 has no

connected 6tale covers, this implies that 01 (F,, U Fu,) has two connected components,

each of which maps isomorphically on to F, U Fu, via V71. This finishes the proof. L
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Lemma 3.7.12. Suppose v E V(TB) is even. Then Di(v) = (1, mod 2) + r,.

subsequently l, mod 2 is an integer in {0, 1}. It is 0 if 4, is even and 1 if Iv is odd.)

Proof. Suppose v E V(TB) is even. We break up the computation of D1(v) into two cases:

Case 1: 1, = 0

In this case,

D1(v) = E (mwl/ - 1)F17 .Fw/
.,,/Ew-1(v) W"'N(v")

-S 5 (mwf/ - 1)Pv,.]Fw (by Lemma 3.7.11(d) since rv = 1v = 0)
V" E p1(v) w"l E Nve)

W(w") even

= E E (1 - 1)re1.Fw
v" E -'(V) Ww"N(v")

W(w") even

(by Lemma 3.7.11(b))

= 0

= (l, mod 2) + rv (since l' and rv are nonnegative, rv = 0).

Case 2: 1, -$ 0
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In this case, Lemma 3.7.11(g) implies that #p 1 (v) = 1. Let sp- 1 (v) = {v"}. Then

D1(v) = S E (mW/t - 1)Pb/.FW1
S"E- 1(v) W"EN(-")

E (mw" -N)Fov."W)
W" E N(V"I)

E 5 (mWy - 1)FP '.FWi +
w" EN(v")
<p(w") odd

- 1)F'I/.FW// + E (1 - 1)F /.F

w" ElN(v")
p(w") even

(by Lemma 3.7.11(b))

(by Lemma 3.7.11(h))

1 (by Lemma 3.7.11(c))

)=W

(by Lemma 3.7.11(i) with u = w)

1+ 1
wEC(V)
w odd

E1
wEC(v)
w odd

(1, mod 2) + r,

if v has an odd parent

otherwise

(by Lemma 3.7.3 and Lemma 3.7.2 since v is even).

Lemma 3.7.13. Suppose v e V(TB) is even. Then D2 (v) = r, + 2sv.

Proof. We break up the computation of D2 (v) into two cases:

Case 1: 1v = 0

In this case, Lemma 3.7.11(f) tells us that #p-'(v) = 2. Since l', and rv are nonnegative,

rv = 0. Then
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w" EN(v")
p(zv") even

E(2
w"EN(v")
<(w") odd

w"EN(v")
Wp(w") odd

wEN(v) W"E1
w odd <(w

wEN(v)
w odd
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D 2 (v) = E >3 rv.Fw

.t"/E-'(V) W"ECQV")

wEC(v)v"E p-1 (v) w"EC(v")
w even p(W")=w

(since Lemma 3.7.11(c,d) imply that p(w") E C(v) and is even)

= 32
wEC(v)
w even

(by Lemma 3.7.11(1,m) since Lemma 3.7.5(b) implies that # W (w) E {1, 2})

= r, + 2s, (by Lemma 3.7.2 since v is even and rv = 0).

Case 2: 1, # 0

In this case, Lemma 3.7.11(g) implies that #- 1(v) = 1. Let {v"} p-1(v). Then

D2 (v) = > FrV,.w/f
w"EC(v")

1 +
= EQ

w"eC(v")
p(w") odd

> J'rfn.F/u (by Lemma 3.7.11(h))
w"EC(v")
p(w") even

wEC(v) w"EC(v")
w odd w(w")=w

1 + E3 > ". (by Lemma 3.7.11(c))
wEC(v) w"CC(v")
w even V(W")=W

= 31+ E> 2
wEC(v) wEC(v)
w odd w even

(by Lemma 3.7.11(i), (k) with i = w and Lemma 3.7.11(j))

rv + 2sv (by Lemma 3.7.2 since v is even).

Lemma 3.7.14. Suppose v E V(TB) is even. Then

D(v) = (lv mod 2) + 2rv + 2sv.
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Proof. Combine Lemmas 3.7.10, 3.7.12 and 3.7.13.

3.7.15 Computation of D(v) for an odd vertex v

Suppose v E V(TB) is odd.

in Lemma 3.7.5(c).

Lemma 3.7.16. Suppose

w = O(w").

(a) The component FP, is

is not a point.

Let So(v), S1(v), S2 (v) denote the partition of p- 1 (v) constructed

v c V(TB) is odd. Let v" E So(v),w" E N(v"),v' = p1(v") and

the strict transform of F, in Y and v' is odd. The image i(Pv')

(b) We have that

{w" C(v") I muj = 2} = S1(v).

We also have that #S1(v) = s,.

(c) If v" E C(w") and m," = 2, then w = p, and w is odd.

(d) If pv is odd, there exists a unique u" c p- 1 (p,) such that v" E C(u").

(e) The map p induces a bijection between the sets {w" E C(v") - S2 (v) mw, = 1} and

{w C(v) | w is even}.

(f) We have that FIVI.f = 1.

Proof.

(a) Since v" c So(v) and v' = p(v"), it follows from Lemma 3.7.5(c)(ii) that FJ, is the

strict transform of F, in Y. Since p1 (v") = v', it follows that 4(F") = ' 2 (Fv') = Fv-

Therefore i(Fo") is not a point. Lemma 3.7.5(c)(ii) also implies that v' is odd.

(b) Suppose w" E C(v") and mm" = 2. Let w' = WI(w"). Since w" E C(v"), Lemma 3.5.1(a)

implies that w' E C(v'). Since odd components of Y do not intersect and (a) implies

that v' is odd, w' is even. Since mu = 2, Lemma 3.7.6 tells us that w is odd and w' is

not an even leaf of Ty. Let To, T1, T2 be the partition of (p21 (w) as in Lemma 3.7.5(c).
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Since w' is even, Lemma 3.7.4 tells us that w' V To. Since w' is not an even leaf of

Ty, the displayed equation in the proof of Lemma 3.7.6 shows that w' E T1 . Since

w' E T1 , Lemma 3.7.5(c)(vii) shows that p,, E To. Since w' E C(v'), it follows that

V' = PE' E To and therefore p2 (v') E 02 (To) = {w}, which implies that v = w. Finally,

W" E W ) 9 0 (T1) = Si(v).

Conversely, suppose w" E S1 (v). Since v" E So(v), Lemma 3.7.5(c)(i,vii) show that

w" E C(v") and mm" = 2. Lemma 3.7.5(c)(iii) implies that #S(v) = s,.

(c) Suppose v" E C(w") and mw,, 2. Since v" E C(w") and '(J',) is not a point by (a),

Lemma 3.5.1(b) tells us that v c C(w). Since m," = 2, Lemma 3.7.6 tells us that w is

odd.

(d) Suppose p, is odd. Let u = p,. Let To, T1 , T2 be the partition of W-
1 (u) as in Lemma 3.7.5(c).

Let i' E T be the unique vertex such that 02(Fu') = 17 n F,. Since (a) implies that

Fe, is the strict transform of r, in Y, the proof of Lemma 3.7.5(c)(iii) in the case of the

odd vertex u shows that v' E C(u'). Lemma 3.7.5(c) applied to the odd vertex I tells us

that W1 induces a bijection between p-1(u) and W2 (u). This shows that there exists a

unique u" E V(Tx) such that p 1 (u") = u'. Since v' is odd by (a), Lemma 3.7.5(a) and

Lemma 3.7.1(a) then imply that 'V- 1(P,) = F,,. Since Wpj(u') = {u"}, it follows that

*-(0P,) = Frn. Therefore, [Fu n Un = 'l(Fu, n F,,) $ 0. This implies that either

U" E C(v"), or v" E C(u"). Since v' E C(u'), Lemma 3.5.1(a) implies that v" E C(u").

This proves the existence of u".

Suppose u" c WY 1 (u) be such that such that v" E C(u"). Then Lemma 3.5.1(a) implies

that p1 (u") = pv,. Since v' is odd (by (a)) and F,,, intersects F,,, Lemma 3.7.1(a) and

Lemma 3.7.5(a) imply that #i-1(p,,) = 1. This proves uniqueness of u" E p 1 (u) such

that v" E C(u").

(e) Suppose w" E C(v") - S2 (v) and 7n.," = 1. We will first show 4(Pwn) is not a point.

Suppose 4(Fw,) is a point. Since w" E C(v"), Lemma 3.5.1(b) implies that w = p(w") =

W(v") = v. Since mm" = 1, Lemma 3.7.5(c)(i,ii,iii) then imply that w" E S2 (v), which

is a contradiction. Therefore, o(r,') is not a point. Lemma 3.5.1(a) then implies that
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w G C(v).

Suppose w is odd. Let w'= p1 (w"). Since 0 (F,,) is not a point, w" C So(w). Part (a)

applied to w" implies that w' is odd. Part (a) implies that v' is odd. Since w" E C(v"),

Lemma 3.5.1(a) implies that w' E C(v'). This is a contradiction since odd components

of Y cannot intersect. Therefore w is even. This shows one inclusion.

Now suppose u E C(v) is even. Let u' E V(Ty) be the vertex corresponding to the

strict transform of F, in Y. Part (a) implies that v' is the vertex corresponding to

the strict transform of F, and v' is odd. Lemma 3.7.4 implies that u' is even. This

in turn implies that 'i 2 is an isomorphism above a neighbourhood of Fu, and therefore

U' E C(v'). Since v' is odd and u' E C(v'), Lemma 3.7.5(b) applied to u implies that

#W-'(u) = 1. Let -1 (u) = j 1 (u') ={u"}. Since V1 1(',,) = F, and 4I1 (IFU) = ru,

it follows that J,' n F,, = ,1fl Fn,) is not empty. In particular, u" E N(v"). Since

W1(U") = u' E C(v') = C(W1(v")), Lemma 3.5.1(a) implies that u" E C(v"). This shows

the opposite inclusion.

(f) Since p(v") = v is odd, Lemma 3.7.8 tells us that F".F." < 2. On the other hand, since

Wv" E N(v"), we have that Fvff.F", > 1. E

We will now compute EZves()M 6(v") for each i G {0, 1, 2}, in terms of l, rv and s,.

Lemma 3.7.17. Suppose v c V(TB) is odd. Then

S 11) = 2+-2 l1+ 2sv if pv is even

vE"So(v) -1 + lv + 2sv if p, is odd.

Proof. Let So = So(v), S1 = S1 (v) and S2 = S2 (v). Lemma 3.7.5(c)(ii) implies that #SO = 1.

Let b E So. Since So consists of a single vertex D,

5 3(v") = 6(p) = (1 - mF) X(Ff) + (m,, - 1)PF-.F, + 5 D.0.
W "ewl W"peN(c) W"epC(r)

We will compute each of the three terms in this sum separately.
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By Lemma 3.7.5(c)(ii),

(1 - me) x()) = (1--m,) x(P) (1 - 2)(2) = -2.

Now

(by Lemma 3.7.16(f))
w"EN()

E (2-1)+
W"E S1 W",

S
EC(F)-Si

(1-1)+
w" EV(Tx)
i'EC(w")

(mwf - 1)

(by Lemma 3.7.16(b))

=8 + > (Mw-)
w" EV(Tx )
iiEC(w")

(by Lemma 3.7.16(b))

> (mw' - 1) (by Lemma 3.7.16(c))

ZEC(w")
<p(w") is odd

if p, is even

if p, is odd

(by Lemma 3.7.16(d)).

wlI: (D= S I
w"EC(f3)

(by Lemma 3.7.16(f))

= E1+ E+
w"EC(i5)
lmn,,/=2

S 1
w"ES2 w"EC(i)-S2

mu =1

= se+l', +
w"

=sV + l', + rt'

S
EC( )-S2
m tef=1

(by Lemmas 3.1.5(b), 3.7.5(c)(i,iv,vii))

1 (by Lemma 3.7.16(b) and Lemma 3.7.5(c)(iv))

(by Lemma 3.7.2 since v is odd, and by Lemma 3.7.16(e))

= S 1 + iv.
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Adding the three previous equalities gives us

S -2 + 1, + 2s, if p,0 is even

v"ESo(v) -1 + 1v + 2s, if p, is odd.

Lemma 3.7.18. Suppose v E V(TB) is odd. Then

6(3 " =8V
v"ESi (v)

Proof. Let S1 = S1(v). Let f; be the unique element of So(v). Suppose v" E S1. Lemma 3.7.5(c)(iii,viii)

tells us that r, '- P1, v" c C(G), in, = 2 and Vi(Pv") = r, n fr,, for an odd u E C(v).

Since ?/(Fvn) is a point that belongs to two odd components of (Bl,(P1)),, Lemma 3.7.7(a)(i,ii)

tell us that #N(v") = 2 and #C(v") = 1. Suppose w" E N(v"). Lemma 3.7.7(a)(iii,iv) tell

us that p(w") is odd and m,, = 2. Since o(w") is odd, Lemma 3.7.8 tells us that L',".17," < 2.

On the other hand, since w" E N(v"), we have that Pv".w" > 1. This implies that

6(v") =(1 - m") x(F") + E (m.n - 1)F1 ,.'Wf + E n.L
W"EN(v") W"EC(v/)

= (1 -2)2 + (2 - 1)1 + (2 - 1)1 + 1

= 1.

Therefore

5: 6(v") = 1 = sv (since Lemma 3.7.5(c)(iii) implies that #Sj = s,). L

VI'ES1(V) V'IES1(v)

Lemma 3.7.19. Suppose v E V(TB) is odd. Then

5 6(v") = 1v - rv.
v"ES2 (v)

Proof. Let S2 = S2 (v) and So(v) = {}. Suppose v" C S 2 . Lemma 3.7.5(c)(iv,viii) tells us

that FPr L P1, v" c C(b), mv," = 1 and '(F") = Pv n H where H is an irreducible horizontal
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divisor occuring in (f) on Bl,(P').

Since 4'(F,") is a point that belongs to a unique odd component of (BI,(P')),, Lemma 3.7.7(a)(i,ii)

tell us that #N(v") = 1 and #C(v") = 0. Since v" c C(;), we have that N(v")

Lemma 3.7.5(c)(ii) implies that mT = 2. Since i3 E N(v") and p(b) (= v) is odd, Lemma 3.7.8

applied to the pair v", i tells us that Fe".Fw" < 2. On the other hand, since i E N(v"), we

have that Fu".F_ > 1. This implies that

J(V") = (1 - me") x(]Fv ) + E (Tnflt - 1)71 7 ".FXU7 + (i: C.rW/
W"GEN(0") W/EC(V"/)

= (1 - 1)2 + (2 - 1)1 + 0

=1.

Therefore

6(v") = 1 = 1', = l - rv (since

v"ES2 (v) v"ES2 (v)

Lemma 3.7.5(c)(iv) implies that #S2 = l'.

El

Lemma 3.7.20. Suppose v E V(TB) is odd (in particular, v is not the root). Then

D(v) =
-2 - r., + 3s, + 2lv

-1 - r. + 3s, + 2lv

if v is

if v is

odd and pv

odd and p,'

is even

is odd.

Proof. Combine Lemmas 3.7.17,3.7.18,3.7.19.

3.7.21 Formula for D(v)

Theorem 3.7.22. Let v E V(TB). Then

(lv mod 2) + 2r, + 2s,

-2 - r, + 3s, + 21v

-1 - r, + 3s + 2l1v

if v is even

if v is odd and p, is even

if v is odd and p, is odd.

Proof. This follows directly from Lemma 3.7.14 and Lemma 3.7.20.
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3.8 Comparison of the two discriminants

One might hope that the inequality D(v) <; d(v) holds for every vertex v E V(TB), but this

is not true. It is however true after a slight alteration of the function D.

3.8.1 A new decomposition of the Deligne discriminant

Define a new function E on V(TB) as follows:

-(1, mod 2) - E 1)) if v is even

V'EC(v)
v' odd

rv + s, + 2 - wtv(wtv -1) -

r., + sv + 1 - wt,(wtU -1) -

1:(2 - wtvf(wtv, -1))
V'EC(v)
v' odd

E(2 - wt.,/(wtv, - 1))
V'EC(v)
v' odd

if v is odd, pv even

if v and p, are odd.

For v E V(TB), set D'(v) := D(v) + E(v).

Using Lemma 3.7.2, we get

2 2sv if v is odd

v'EC(V) 2rv if v is even
V' odd

We can use this, along with Theorem 3.7.22 to simplify the expression of D'.

D'(v) =
2s, + Ev'ec(v) wtv'(wte, -1)

V' odd

2(l + sv) - wt,(wtv -1) + Ev'EC(v) wtv'(wtv ' -1)
V' odd

if v is even

if v is odd
(3.1)

Lemma 3.8.2. The following equalities hold.

S E-
VeV(TB) v'EC(v)

v even V' odd

(2 - wtv,(wtv, -1))+ 1:
VEV(TB)

v odd (2 - wtv(wtv -1) -

E (2 - wtv, (wt,, -1)) =0.
v'EC(v)
V' odd
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S
VEV(TB)

v even

-(lv mod 2) + r. = 0.
VEV(TB)

v odd

5 -1 + s: = 0.
VEV(TB) VEV(TB)
v odd v odd

pv is odd

Proof. The first equality can be rewritten as

vEV(TB) v'EC(v)
V' odd

- (2 - wtv, (wtv, -1)) +
VEV(TB)

v odd

(2 - wtv(wtv -1)) = 0.

Since the root is an even vertex, every odd vertex has a parent. This implies that

1z E - (2 - wtv,(wtv, -1)) = -

vFV(TB) v'EC(v)
v' odd

VEV(TB)
v odd

(2 - wtv(wtv -1)) .

We have that

-(lv mod 2) = E
vEV(TB)

v even
v has an odd parent

-1 (by Lemma 3.7.3)

WEV(TB) vC(w)
w odd w even

-rw (by Lemma 3.7.2).
WEV(TB)

w odd

We have that

-1= E5E-1
WEV(TB) vEC(w)

w odd w odd

-I5 -Sw (by Lemma 3.7.2).
WEV(TB)

w odd
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v even

VEV(TB)
v odd

p, is odd
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Lemma 3.8.3.

E(v) = 0.
VEV(TB)

Proof. The sum of the left hand sides of the three equalities in Lemma 3.8.2 equals EXV 7 (TB) E(v),

which is therefore 0.

For an odd v E V(TB) such that wt, > 2, let L, = {w c 0(v) I wt, = 2}. Define a new

function D" on V(TB) as follows:

D'(v) - 2 if v is an odd leaf and wt, = 2

D11"('V) D'(v) if v is odd, not a leaf, and wt, = 2

D'(v) + 2#Lv if v is odd, and wtv > 2

D'(v) if v is even.

Lemma 3.8.4.

( D"(v) = D(v).
VEV(TB) VEV(TB)

Proof. For an odd leaf v c V(TB) such that wt, = 2, let qv denote the least ancestor of v

such that wtq() > 3 (here least ancestor means the ancestor farthest away from the root);

such an ancestor exists as the root has weight 2g + 2 > 3. If v E V(TB) is odd and wtv = 2,

then pv must also be odd by Lemma 3.7.2. A repeated application of this fact tells us that

if v is an odd leaf such that wt, = 2, then qv is odd.

For any vertex v E V(TB), let T, denote the complete subtree of TB with root v (see

section 8 for the definition of complete subtree). Suppose v is an odd vertex such that

wt, > 2. We will now prove the following three claims.

* If w E L, and u C T.,, then u is odd and wt, = 2.

* If w E L, then T, is a chain (that is, every vertex in T, has at most one child).

* If v' C V(TB) is an odd leaf such that wt,' = 2 and q,, = v, then there exists a unique

w E L, such that v' E V(T,.).
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Suppose iv E L, and u E Tw. Since u E T,, the definition of the function wt tells us that

wt < wtv = 2. On the other hand, Lemma 3.6.2 tells us that wt_ > 2. Therefore, wt. = 2.

A repeated application of Lemma 3.7.2 along the path from v to u tells us that u is odd.

This proves the first claim.

Suppose w E L, and u E Tw. Suppose u1 , u2 E C(u) are distinct. The first claim shows

wtu1 = wtu2 = 2. The definition of wt then tells us that wt,, wtU > wt.1 + wta2. Since

wt, = 2 and wtul + wtU2 = 4, this is a contradiction. Therefore every vertex in T, has at

most one child, and this proves the second claim.

Suppose v' E V(TB) is an odd leaf such that wt,, = 2 and q,, = v. Let w be the greatest

ancestor of v' such that wt,, = 2 (here greatest ancestor means the ancestor closest to the

root). Then wt,, > 2. The definition of q then implies pw = q,,= v. This implies that

w E L,. If Wi, W2 E L,, then T,, and T 2 have no vertices in common. This proves that

every v' E M, can belong to V(T,) for at most one w E L,. This finishes the proof of the

third claim.

Let M, = {v' E V(TB) I v' is an odd leaf, wtv, = 2, q,, = v}. We will now use the claims

above to show that there is a bijection r: L, -+ M,. Let w E L,. Let v' be the unique leaf

in the chain T. Then v' is an odd leaf and wtv, = 2. Furthermore, w is an ancestor of v'

such that wtw = 2 and wt, = wtPW > 2, which shows q,,, = v. Set K(w) = v'. The third

claim shows that K is a bijection. Therefore #Ah, = #Lv.

This implies that

2 = 2 = 5 2 #M= 2#L.
v' is an odd leaf v odd v'EM, v odd v odd

This tells us that

(D"(v) - D'(v)) = 5 -2 + 5 2#L, = 0. L
vEV(TB) vEV(TB) VEV(TB)

v odd leaf v odd

Lemma 3.8.5.
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(a) If v z V(TB), then

wtv > l' + 3rt, + 2s, > Iv + 2sv.

(b) If rv = s, = 0, then wtv = l'.

Proof.

(a) Suppose u E C(v). Lemma 3.6.2 tells us that wt,, 2. If u is of odd weight, then

wt, > 3. Therefore

wt,= l' + wt, (by the definitions of l' and wt)

UEC(V)

>1/+ S 3+ 5 2
uEC(v) uEC(v)

wtu is odd wt,, is even

> l', + 3rv + 2s,

= l, + 2r, + 2sv

> Iv + 2sv.

(b) If r, = s, = 0, then C(v) = 0 and therefore wtv = l' + EC(t) wt= l'(v). E

We are now ready to compare the two discriminants. We first compare the local contri-

butions.

Lemma 3.8.6. If v E V(TB), then D"(v) ; d(v). If v is even, then D"(v) = d(v) if and

only if every even child of v has weight 2. If v is odd, then D"(v) = d(v) if and only if either

wt, = 2 or wt, = 3 -and v has no even children.
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Proof. If v E V(TB) is even, then

D"(v) - d(v) = D'(v) - d(v)

= 2s, + E wt"r (wtV1 - 1) - E wt" (wt,,, - 1)
t7'EcQ) VEC(V)
v' odd

(by Lemma 3.6.4 and Equation 3.1)

(2 - wt,,(wte, -1)) (by Lemma 3.7.2)
v'. C(V)

t even

< 0 (by Lemma 3.6.2).

From this, it follows that if v is even, then D"(v) = d(v) if and only if the inequality

above is actually an equality, that is, if and only if every even child of v has weight 2.

From now on assume v E V(TB) is odd. Then

D'(v) - d(v) = 2(lv + sv) - wt (wt, -1) + E wte'(wtV' -1) - wtv,(wte, -1)
V'EC(v) v'EC(v)
v' odd

(3.2)

= 2(l + sv) - wt (wt, -1) - wtv, (wtv -1),
V'EC(v)
, even

where the first equality follows from Lemma 3.6.4 and Equation 3.1. Lemma 3.6.2 tells us

that wtv > 2. We will handle vertices with wt, = 2 and with wtv 3 separately.

Suppose wtv = 2. Lemma 3.8.5(a) implies that l' + 3r, + 2s, < wtv = 2. This implies

that rv = 0. Lemma 3.8.5(b) implies that either

(i) l, = 2 and sv = 0, or,

(ii) 1', = 0 and sv = 1.

In both cases, since rv = 0 and v is odd, Lemma 3.7.2 tells us that

E wtv,(wt, -1) = 0.
V EC(V)

Veven
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In case (i), we have that v is an odd leaf of weight 2 and

D"(v) - d(v) = D'(v) - d(v) - 2

= 2(1, + s+o) - wtj,(wt, -1) - E wt",(wtv, -1) - 2
v'eC(v)

oeven

= 2(2 + 0) - 2(2 - 1) + 0 - 2

=0.

In case (ii), we have that v is not a leaf and wtv = 2 and

D"(v) - d(v) = D'(v) - d(v)

= 2(l + sv) - wtv(wt, -1) - E wtv ,(wtv,-)
V'EC(v)
V' even

=2(0 + 1) - 2(2 - 1) - 0

=0.

Now suppose wt, > 3. By definition, #Lv < sv.

2#Lv + 2(lv + sv) - wtv(wt, -1) < 2(l + 2sv) - wtv(wtv -1)

< 2 wt, - wtv(wt, -1) (by Lemma 3.8.5(a))

= wtv(3 - wt.)

< 0.
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This implies that

D"(v) - d(v) D'(v) - d(v) + 2#L,

2(1, + sov) - wt,(wt, -1) - wto,(wtv, -1) + 2#L

V' even

(by Equation 3.2)

* - S wtv, (wtv, -1) (by Equation 3.3)
v' E(v)
V' even

* 0 (by Lemma 3.6.2).

If v is odd and D"(v) = d(v), then either wt, = 2 or wt, = 3 and r, = 0 and #L, sv.

By Lemma 3.7.2, r, = 0 if and only if v has no even children. Since every child of v has weight

aleast 2 and has weight bounded above by wt, = 3, Lemma 3.7.2 tells us that #L, = s,. L

We are now ready to prove the main theorem.

Proof of Theorem 1.0.1. Construct the proper regular model X as above. Let n(X) denote

the number of irreducible components of the special fiber of X and let n be the number of

components of the special fiber of the minimal proper regular model X of C .

To prove - Art(X/S) < v(A), sum the inequality of Lemma 3.8.6 over all vertices of TB

and use Lemmas 3.8.3 3.8.4.

We have the equalities

- Art(X/S) = n(X) - 1+ f

- Art(X/S) = n - 1+ f

where f is the conductor of the -adic representation Gal(K/K) -* AutQe (Hei(Xi, Qe))

[Liu94, Proposition 11. The minimal proper regular model can be obtained by blowing

down some subset (possibly empty) of irreducible components of the special fiber of X", so

n < n(X).
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Putting everything together, we get

- Art(X/S) < - Art(X/S) v(A).

Remark 3.8.7. Lemma 3.8.6 and the proof of Theorem 1.0.1 tell us that - Art(X/S) =

v(A) if and only if the model X is already minimal and the tree TB satisfies certain strict

conditions. Call a subset S of vertices of TB a connecting chain if

* for any v E V(TB), if v lies in the path between two vertices of S, then v E S, and,

* every vertex in S has exactly two neighbours in TB.

If - Art(X/S) = v(A), then the conditions on the tree TB tell us that if we replace every

connecting chain of 3 or more vertices with a chain of 2 vertices (or equivalently, disregard

the length of the chains in TB and just consider the underlying topological space of TB),

then the tree TB has height at most 2 (that is, the path from any vertex to the root has at

most one other vertex), and all children of the root have at most 3 neighbours. The model

X is not minimal if and only if it has contractible -1 curves, and this happens if and only

if the tree TB has an odd vertex v such that l' = 0, v has an even parent, and v has exactly

one child, and that child is even.

Corollary 3.8.8. Let n be the number of components of the special fiber of the minimal

proper regular model of C over R. Then

n < v(A) + 1.

Proof. Since the conductor f is a nonnegative integer, n - 1 < n - 1 + f v(A). l

Remark 3.8.9. The equality n = v(A) + 1 holds if and only if f = 0 in addition to all the

conditions for - Art(X/S) = v(A) to hold. By the N6ron-Ogg-Shafarevich criterion, f= 0

if and only if the Jacobian of C has good reduction.
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Chapter 4

Computing orders of component groups

and Tamagawa numbers of Jacobians

4.1 Explicit computation of the orders of component groups

4.1.1 The weighted dual graph

Let C be a nice K-curve and let X be a proper regular model of the curve C over R. The

weighted dual graph G of X, is defined as follows. The vertices of G are the irreducible

components of X,. For each vertex v of G, let IF, denote the corresponding irreducible

component of X, and let m, denote the multiplicity of F, in X,. The number of edges

between two distinct vertices v and u; equals Fv.F,,. There are no edges connecting a vertex

to itself. For every edge e between the vertices v and w, the weight of e, denoted wt(e), is

defined to be mvmn,.

Remark 4.1.2. This is the graph obtained by deleting all the loops (i.e., the edges that

connect a vertex to itself) in the usual dual graph associated to X, that is used in algebraic

geometry. Including the loops will not alter the proof below, since a graph and the associated

loopless graph have the same Laplacian operator.

Let 4D denote the component group scheme of the N6ron model of the Jacobian of C.

Remark 4.1.3. Let / be the map defined in Theorem 2.8.11. The component group asso-
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ciated to the pair (G, 3) (as defined in Section 2.6) coincides with D(k). In fact, the map a

in Section 2.6 coincides with the map a in Theorem 2.8.11.

In this section, we give a formula for D(k) in terms of the graph G. Special cases of this

formula already appear in [Lor93]; see, for instance, Proposition 4.19 therein. A version of

this formula is also implicit in the proof of [Lor89, Corollary 3.5].

4.1.4 The formula

Theorem 4.1.5. Let m = gcd(m, I v c V(G)). Let 4D denote the component group scheme

of the Niron model of the Jacobian of C. Then

#D(k) = m2 ( f m#NT()-2)

TES(G) vV (T)

Proof. Let r = #V(G). As in the statement of Corollary 2.8.12, let M be the r x r matrix

corresponding to the intersection pairing. Let a, denote the absolute value of the (r - 1) x

(r - 1) minor that we get from M by deleting the row and column corresponding to the

vertex v. Corollary 2.8.12 shows that if v E V(G), then the order of the component group

is equal to ( 7n) 2a,. Let (No,;v) be the r x r matrix defined by Nv, = mvm,I,,, for every

V, V' c V(G). Fix a vertex f7 of G. Let b denote the absolute value of the (r - 1) x (r - 1)

minor that we get from N by deleting the row and column corresponding to the vertex b.
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Then

M 2 b

(M~vEV(G) mV)2

M ) 2 b (by Theorem 2.6.2)JL)EV(G "-,v) wt (e)
(HveV(G) m TGES(G) eEE(T)

M 2171 rn#NT(Vt)

)2 (( m1 Mf~V)
GIVEV(G)'m T ES(G) V EV(T )

= mt2 M # mNT(v)-2

(T CS(G) vC-V(T )

since V(T) V(G) for any spanning tree T of G.

Remark 4.1.6. The formula also holds under the assumption that R is merely strictly

henselian, provided we also assume that all the ej are equal to 1 and that X admits a

section.

Remark 4.1.7. If the dual graph G is a tree, the formula simplifies to

=M2 I m NG(v)-
2

VEV(G)

Remark 4.1.8. Specializing to the case where C is an elliptic curve, we recover the correct

orders of the component groups for each of the Kodaira types.

4.1.9 Applications of the formula

Criterion for uniform bounds on the orders of component groups

In the case of elliptic curves, the order of the component group is bounded above by 4 if we

exclude curves of reduction type I,. In the theorem below, we provide a generalization of

this fact for higher genus curves. We begin by proving a lemma in graph theory.
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Lemma 4.1.10. A vertex v of a graph G belongs to some cycle of G if and only if there

exists a spanning tree T of G and an edge e G E(G) such that v E D(e) and e V E(T).

Sketch of proof. The 'if' direction follows from the fact that adding any edge of E(G) - E(T)

to a spanning tree produces a graph that contains a cycle. The 'only if' direction follows

from the fact that any spanning tree of (V(G), E(G) - {e}, w) is a spanning tree of G, where

e is an edge in a cycle having v as an endpoint.

Theorem 4.1.11. Assume that X/S is the minimal proper regular model of the curve C/K

and that the genus g of C satisfies g 2. Let G be the dual graph of X,. Assume further

that if v E V(G) corresponds to a (-2)-curve (that is, a P. of self-intersection -2), then v

does not belong to any cycle of G. Then there exists an integer n(g), depending only on the

genus g of C, such that the order of the component group of the special fiber of the NMron

model of the Jacobian of C is bounded above by n(g).

Proof. Lemma 4.1.10 and the assumption on (-2)-curves in the theorem imply that the

edges in any chain of (-2)-curves belong to every spanning tree. In other words, every chain

of (-2)-curves is a connecting chain. Contracting all chains of (-2)-curves produces a graph

G'. [Win74, Corollary 4.31 implies that G' is the dual graph of the special fiber of a regular

S-curve X'. Since a vertex v that is part of a connecting chain has exactly two neighbours

in every spanning tree, the exponent NT(v) - 2 equals 0 for every spanning tree T for every

such vertex. It follows that such a vertex does not contribute to the order of the component

group by formula (4.1). This implies that the order of the component group of G' equals the

order of the component group of G. Since we also assumed that X is minimal and g 2,

Theorem 2.8.7 implies that there are only finitely many possibilities for the weighted dual

graph of X', if we fix the genus g of X'. For a fixed g, we can compute the order of the

component group of the special fiber of the N6ron model of the Jacobian for each of these

finitely many weighted dual graphs and take the maximum of these numbers to be n(g). l

Remark 4.1.12. The condition in the theorem above is strictly weaker than requiring the

toric rank of C be 0. The toric rank 0 condition would imply that the graph G has no cycles.
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Remark 4.1.13. A naive bound for n(g) that one gets by examining the Artin-Winters

argument is n(g) ~O((2g - 2 )8(2g-2) 2 ). It might be possible to improve this bound by

analyzing the combinatorics of these graphs more carefully.

Structure of the component group: periodicity

We will now prove an analogue of [BN07, Corollary 4.7]. The key step in the proof of

Theorem 4.1.11 is the fact that contracting connecting chains in the dual graph does not

alter the order of the component group. The structure of the group, however, does depend

on the length of the chain. For example, the Kodaira types I,* all have component groups

of order 4, but the component group is either Z/2Z x Z/2Z or Z/4Z depending on whether

n is even or odd. In this example, the structure of the component group only depends on

the length of the connecting chain modulo 2. This suggests that if we have a family of dual

graphs which only differ in the length of a single connecting chain, and if all the vertices

in the connecting chain have multiplicity m, then the structure of the component group

should be m-periodic, i.e., it should depend only on the length of the chain modulo m. More

precisely:

Theorem 4.1.14. Let (G, 8) be a graph equipped with a multiplicity function. Let L be

a length m connecting chain in G such that 13(v) = m for all v c V(L). Define oZ as in

Section 2.6. Assume that a, = -2 for every v E V(L). Let (G',/3') be the pair obtained by

contracting the chain L. Then the component group of (G', 3') is isomorphic to the component

group of (G,/3).
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Pr-oof. Let P(G) =ker,/3/ im a and let 4(G') =ker./'/ im a' as in Section 2.6. Choose all

ordering (vo,v 01.... m of V(L) as in the definition of a chain, and let {01 be the image

of V(L) in V(G'). Let fo: 1,,(G') -- V(JG) be the section of the natural quotient mnap

V(G) -+- V(G') that satisfies fo(i, ) = vo. Let f: ZV(G') + V(G) be the linear mnap defined

by ft) oil the corresponding basis elements. We will now define another miap h such that the

ma-ps in the following diagramn commute.

ZV7(G') >ZV(G') 3 ,

h /

S(G) a V(G) 13

Then f will induce a homiomiorphism from the homology (G' ) of the top row to the hoimology

oP(G) of the bottom row.

We will describe h by giving its value on each ' E V(G'). In order to define h, for eery

by E V(G'), it suffices to find v E Z(G) (depending on ti') such that a(a) = fuchtt we

can then define h(v') =v.

Case 1: )' {v'} U f-'(NGV(o-
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In this case, let h(v') := fo(v'). Since the edges emanating from z' are in bijection with the

edges emanating from fo(v'), it follows that a(fo(v')) = f

Case 2: v' c f& 1 (NG(vrm)) - {v'}.

In this case f(a'(v')) a(fo(v')) + Fr,.F(Vm - vo). It therefore suffices to find ti E ZV(G)

such that a(ti) = '.Fvg(vm - vo), since we can then define h(v') = fo(v') + ti.

Let V(G) - V(L) = Do U Dm, where Do (respectively Dm) consists of the vertices of G

having a path to L meeting L only at vo (respectively v,). Let t = m +m + EwEDm 1(w).

If V Dm U {vrn-, Vim}, then the vertex v has no neighbours in Dm U {Vr}, so the coefficient

of v in a(t) is 0. For any vertex v, we have a(v) = a.,,v + EwENG(v) aIvyw; it follows that

if v E Din, then the coefficient of v in a(t) equals the coefficient of v in a(EWEV(G) NW))

The latter is 0 since EWEV(G) 3(w)cW, = 0 for every w' E V(G). By a similar argument,

the coefficient of vr in a(t + #(vr-1)vm-1) is 0 since it equals the coefficient of Vm in

a(EweV(G) f('w)w). The same type of argument also shows that the coefficient of vm-1 in

a(t - mvm) is 0. Since /(vrm-) = f(vr) = m, we conclude that a(t) = mom- 1 - mvm-

Fix j such that 0 j <m-1. Let xj = Ej__ iv. Since c(vj) = 'J_ - 2vy , an

inductive argument shows that a(xj) = vo - (j +1)vj + jvj+i. Let t1 = -Fpr.F,;(Xm-1+ t).

It follows that a(ti) = r.F(o- vo).

Case 3: v' = v'.

We have f(a'(v')) = a(vo + v) - vi - vm-1 + 2 vn. It therefore suffices to find t2 E ZV(G)

such that a(t2 ) = 2vr - vi - vmi-. We may then define h(v') = vO + vm + t2 .

Let t be defined as in Case 2. For 1 < j K m - 1, let yj = Ej_ 1 (i - 1)vi. Once again an

inductive argument as in Case 2 shows that a(yj) = v1 -jvj+ (j - 1) vj+1. Let t 2 Y- 1-t.

Then a(t2 ) = 2vm - vi - vo-1.

We have now proved that f induces a well-defined map from 4(G') to 4(G). We want

to prove that this map is an isomorphism. Since I4(G')I = k4(G)I (by the proof of Theo-

rem 4.1.11), it suffices to prove that it is a surjection. Let u E ker f. We will inductively

construct a sequence of elements uo, u1 , .. , Ur such that

" uo =u and u, E imf,

" For every i satisfying 0 < i < m - 1, we have uj+1 - ui c im c C ker 3.
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* For every i satisfying 1 i < m, and for every j E {'m - i + 1, m - i + 2, ... , m}, the

coefficient of 'v in ui is 0.

For the inductive step, suppose that 1 < i < m - 2 and ui -avv, where a, E Z. Let

-ui+ ='uj + a(a.,,vm~ivr_1) = ui + avn, (Vm-i-2 - 2 Vrni_1 + Vmri).

From the equation above, it follows that for j E {m-i+2,n- 27 . .. , m} the coefficient of vj

in uj+1 is the same as that in ui, and that the coefficient of Vmvi in ui+1 is -avi + av_, = 0.

The induction hypothesis implies that a., = 0 for j E {m - i + 1, m - i + 2, ... , m}. This

finishes the induction. So to finish the construction, it now suffices to prove that urn E im f.

Let T = V(G) - {V1, V2 ,... , vm}. By the definition of the map f, it maps ZV(G') iso-

morphically on to the subset of elements of ZV(G) supported on T. This isomorphism maps

ker 0' isomorphically to the set of elements of ker / supported on T. Since urn E ker # and is

supported on T, this shows that urn E im f. Since un - uo E im a, this completes the proof

of surjectivity of f on to <b(G). L

Remark 4.1.15. Fix g. If char k = 0, then it is possible to list all the groups that can arise

as the component group of the Jacobian of a nice curve of genus g by combining the theorem

above with Theorem 2.8.7 and Theorem 2.8.8.

The Neron component series for Jacobians

In this section, we provide an alternate proof of [HN12, Chapter 3, Proposition 3.1.1], that

works in both the equal characteristic and mixed characteristic cases. For the proof, we

use the explicit formula in Theorem 4.1.5 and the behaviour of sne models under tame

extensions, as described in Section 2.10.

Proposition 4.1.16. [HN12, Chapter 3, Proposition 3.1.1] Let X be the minimal snc model

of a nice K-curve of genus g> 1. Let d c N' be an integer prime to e(X). Let A denote the

Neron model of the Jacobian of Xn and let A(d) denote the Niron model of the Jacobian of
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X X K K(d). Let t denote the toric rank of A. Then

1<b(A(d))l = dIb(A)I.

Proof. Let X(d) be the minimal desingularization of the normalization Xd of X xR R(d).

Let G be the dual graph of X, and let G' be the dual graph of X(d),. As mentioned before

Proposition 2.10.1, X(d) is a snc model. Let J be the Jacobian of X.

Case 1: J is an elliptic curve with multiplicative reduction.

In this case, [LLR04, Theorem 6.6] tells us that the minimal snc model and the minimal

regular model coincide, and X, is also a cycle of rational curves, where the rational curves

in the cycle all have the same multiplicity, say m. Since the number of spanning trees of

G equals the number of vertices in the cycle, and for each spanning tree T, the product

HvEV(T) m equals 1/m2 , the explicit formula in Theorem 4.1.5 implies that the order

of the component group of the N6ron model of J equals the number of vertices in the cycle

G.

We will first show that X(d), is also a cycle of rational curves, and then compute the

number of rational curves in the cycle. Formula 4.1 would once again imply that the order

of the component group equals the number of vertices in the cycle G'.

Proposition 2.10.1(ii) implies that every component of (Xd), intersects exactly two other

components. Since (Xd), is connected by Zariski's connectedness principle, we conclude that

it is a cycle of rational curves. Proposition 2.10.1(iii) tells us that in order to obtain X(d),

from (Xd)8 , we have to replace each node in the cycle of rational curves by a chain of rational

curves of appropriate length. This implies that (Xd), is also a cycle of rational curves. Now,

" Proposition 2.10.1(ii) implies that the number of irreducible components of (Xd), equals

gcd(d, m) times the number of irreducible components of X,,.

" Proposition2.10.1(iii) and Proposition 2.10.2 imply that the preimage of each singular

point of (Xd), is a chain of rational curves, where the number of rational curves in the

chain equals d/ gcd(d, m).

" The number of singular points of (Xd), equals the number of irreducible components
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of (Xd)S.

Combining the arguments above, we conclude that the number of irreducible components of

X(d), is d times the number of irreducible components of X., and this finishes the proof in

this case, since the toric rank t equals 1.

Case 2: J is not an elliptic curve with multiplicative reduction.

Then either g > 2, or J is an elliptic curve with good or additive reduction. Lemma 2.10.5

implies that X, and (Xd), have the same dual graph. Proposition 2.10.1(iii) implies that G'

is a subdivision of G. Let ir: E(G') -+ E(G) be the surjective map that maps an edge of G'

to the unique edge in G that it is a subdivision of. Let v and w be neighbouring vertices of

G. In this case, the proof of [HN12, Lemma 2.3.21 tells us that gcd(d, m,, mi) = 1. Let

" h= gcd(d,m ,),

" h= gcd(d, m),

" mv hvi' ,

*nm = hm',, and,

" d = hvhd'.

Then dm'im', = d'men.. Let v' and w' be the corresponding vertices of G' and let

U1 , U2 , -- , UA be the intermediate vertices. Then Lemma 2.10.5(ii) tells us that mv, =n'

and mi', m'. Let r be the unique solution to rm,, + m', = 0 mod d'. Let (Pi, p1 2 ,..., AA)

be the multiplicity vector associated to the tuple (d', r, mn,, m',). By Proposition 2.10.2

?n, = pi. By Lemma 2.9.1,

d __ d' 1 1 1 1
m - m m+ -+ + I + 1 (4.2)

mVm m'Y' m'A1 pA2 AA-1PA P AM'1

Let H be a connected graph. Let S(H) be the collection of spanning trees of H. The first

Betti number t(H) of a connected graph H equals IV(H) I - IE(H) + 1. Let T C S(H). Since

IV(H)I = IV(T)I, and the first Betti number of a tree equals 2, it follows that #(E(H) -

E(T)) = t(H). For a spanning tree T of a dual graph H, let W(T) = jv(H)7 nr( )-2. Fix
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a dual graph H. Let 6: E(H) -+ N be the map defined by 6(e) := mm1 , where v and w are

the endpoints of e, and mr, and 7n are the multiplicities of the corresponding irreducible

components in the special fiber.

Fix T' E S(G'). Let T be the subgraph of G such that V(T) = V(G) and such that

E(T) = {e E E(T) I 7r 1 (e) c E(T')}. Since G' is a subdivision of G, it follows that

T is a spanning tree of G. The construction T' -+ T defines a map T: S(G') -+ S(G).

Let T' E S(B') and let T(T') = T. Let B' = E(G') - E(T') and let B = E(G) - E(T).

Let rT be the restriction of 7r to 7r- 1 (B). Let E: 7r- 1 (B) -+ QX be the map defined by

c(e) = 6(7r(e))/6(e). Since G' is a subdivision of G, it follows that

0 t(G') = t(G), and,

o there is a multiplicity-preserving bijection between the vertices of T' of degree > 3 and

those of T of degree > 3.

The two facts above imply that

<p(T')<p(T ) = J E(e).
eEB'

Since G' is a subdivision of G, it follows that there exists a bijection

{T" E S(G') I T(T") = T} +-+ Sections a: B -+ 7r 1 (B) of WrT.

Let s denote the set of sections of IrT. Since t(G) = t(G'), and the toric rank t equals

the first Betti number of the graphs G and G' (by [BLR90, 9.2.5,9.2.81), it follows that
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#B = #B'= t. Now

T'E (p(T')
T'ET-

1 (T) pT
E f11C(o-(e))
cEs eGB

=f 5 c(e')
eEB e'Er-1 (e)

=11 6(e)
Y- (e')

eEB e'Er-'(e)

= f 6(e) - (by Equation (4.2))

= d#B - dt.

Now

S p(T')= p(T') = dt  (T).
T'ES(G') TES(G) T'Er-(T) TCS(G)

To finish the proof, it suffices to prove that ged(m, I v c V(G)) = gcd(m,' I v' C V(G')) by

the formula in Theorem 4.1.5. Lemma 2.9.2 implies that the gcd of the multiplicities of the

components of Xd and the gcd of the multiplicities of the components of X(d) are equal. This

implies that it now suffices to prove ged(m, I v E V(G)) = gcd(m,/ gcd(m,, d) I v E V(G)).

The right hand side divides the left hand side. To prove the other divisibility, we use the

fact that G is connected, and the fact that if v and w are any pair of neighbouring vertices

in G, then gcd(m,, m,, d) = 1 (this follows from the proof of Lemma 2.10.5 in [HN12I). This

concludes the proof.

4.2 Explicit computation of Tamagawa numbers

In this section, we will show that we can use a version of the matrix-tree theorem for directed

weighted multigraphs to compute Tamagawa numbers. The notation used in this section is

consistent with the notation in Section 2.8.13.
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4.2.1 The quotient graph G

Let Xst = X X R Rst. Let G denote the dual graph of X't, and let V = V(G). We now define

a directed weighted multigraph G, which we call the quotient graph. The set of vertices

of G, which we denote V, is the the set of irreducible components of X,. The set V can

also naturally be identified with the set of orbits of V under the natural action of Gal(k/k).

This identification gives rise to a quotient map r: V -+ V where we map a vertex v to

the corresponding orbit. For any two vertices ii7 and i in V, the number of directed edges

with tail & and head b, which we denote abj, is defined as follows. Fix any w E 71 (r).

Then ag7 = j-1 FV.F.. Since the Galois action transitively permutes the vertices

w E 7r-4 (,i!) and preserves intersection numbers, the sum is independent of the choice of

w E T
1 (6). This defines the vertices and directed edges of C.

We now define a weight function on d. For every 0 E V, let If) denote the size of the orbit

corresponding to b. For any i) E , let F, denote the corresponding irreducible component

of X, and let mf denote the multiplicity of F, in the special fiber X,. For any directed edge

e with tail tD and head b, the weight of the edge e, denoted wt(e) is defined to be mes-r|@II.

4.2.2 Explicit computation of Tamagawa numbers

In this section, we will show how to combine Theorem 2.8.14 and Theorem 2.6.1 to explicitly

compute Tamagawa numbers. In the rest of this section, we will assume that Gal(k/k) is

procyclic in order to be able to apply Theorem 2.8.14.

Remark 4.2.3. The order of the component group can also be computed using using The-

orem 2.6.1 (this corresponds to the special case where k = k). The formula that we obtain

for the component group using Theorem 2.6.1 can be checked to be equal to the formula ob-

tained in Theorem 4.1.5. We included the proof in Section 4.1 since the graph that appears

in Section 4.1 is more closely related to the dual graph that appears in algebraic geometry.

Let a and /3 be as in Section 2.8.13. We now show that if we make the appropriate

modifications to a and f, we can use Theorem 2.6.1 to compute Tamagawa numbers. Define
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maps 61 ,6 2 , a,/31 , 3 2 as follows:

J1: ZV Z

(bj) (bemji>|}j

52: Z -+Z

(bob) (bbemT)

a= 61 o a o62

#31: ZE - Z

(be) b fb

/32: Z Z-+

b F4 (b, b,...b).

We have /1 5 , = 3, so 01a, = 316 1a62 = a62 = 0. This implies that im(ai) C ker3 1 .

We now prove a lemma in linear algebra that allows us to compare the orders of the finite

groups ker(01)/ im(ai) and ker(3)/ im(a).

Lemma 4.2.4. Let n be a nonnegative integer. Let D, D': Zn -+ Z"' be two rank n linear

operators whose matrices are diagonal. Let A: Zn --+ Zn be a rank n - 1 linear operator. Let

S: 27 -+ Z denote the linear operator which takes a vector to the sum of its coordinates, and

let A: Z -+ Zn denote the diagonal embedding. Assume SDA = 0 and AD'A = 0. Let d, d'

be positive integers such that dZ = im (SD) and d'Z = im (SD') respectively. Then

ker(SD) d ker S dd' ker S

imA I det DI im(DA) I det Dl Idet D'I im(DAD')

Proof. The integer d is the gcd of the diagonal entries of D. Thus ID E M,(Z). Similarly

D'E M,(Z). Replacing D by !D and replacing D' by ID' multiplies the five ratios in

Equation (4.3) by 1, d", d-", (dd')- 1 and (dd')'-~ respectively. Therefore we may assume

d = d' = 1 without any loss of generality.
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We now prove the first equality. For this, we show that the following sequence is exact.

ker(SD) D ker S zn
-*a -40.

imA im(DA) im D

The exactness at the left follows because D is an injection, and therefore restricts to an

injection from ker(SD) to ker S, and also implies that D1 (im(DA)) = im A. The exactness

at the middle follows because D(ker(SD)) ker S n im D. For the exactness on the right,

it suffices to show that Z'/(ker S + im D) = 0. This follows because Z"/(ker S + im D) ~

im S/ im(SD) = Z/dZ 0, since d = 1. Since all the groups in the above exact sequence

are finite and # ( ) = det DI, we get

ker(SD) ker___
# IdetDI=# kerS

im A im(DA)

This finishes the proof of the first equality.

Let A' = DA. For the second equality, we show that the following sequence is exact.

Z A A ker S ker S
0 -+ - -+ -+*0.

imD' im(A'D') im A'

First, since SA' = SDA = 0, the map on the left is well-defined. Since d' = 1, it follows

that im D'A is a rank 1 lattice generated by a primitive vector, and therefore is a saturated

submodule of Z". On the other hand, we have im D'A C ker A' (since A'D'A = DAD'A =

0), and ker A' is also a rank 1 lattice (since D' is injective and A has rank n - 1). Therefore

we must have im D'A = ker A', which implies that ker A' C im D'. This in turn implies that

A'- 1 (im A'D') = im D' + ker A' = im D'. This proves exactness on the left of the sequence

above. The exactness at the other two positions is immediate.

Lemma 4.2.5. Let m and iin be as defined as in Theorem 2.8.14.

(ker3# mm (ker/3 1 )
im a 2#, mijI iMai

Proof. This follows directly from Lemma 4.2.4 with A = a, D = 61 and D' = 62. 
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We will now show how we can use Theorem 2.6.1 to compute #(ker 131/ im a,). Recall

the definition of the graph C as defined in the beginning of this section.

Lemma 4.2.6. Fix a vertex i> of the directed weighted multigraph C. Let S'(G) be the set

of directed spanning trees into the vertex f). Then

# ker #1 = E r wt (e).
im a,

TGS,(G)eEE(T)

Proof. We observe that #(") is equal to the absolute value of the determinant of the

reduced Laplacian operator on G, with the fixed vertex 'i as the sink (since X, is connected,

every vertex of G is a sink). The determinant can then by computed using Theorem 2.6.1. 0

Theorem 4.2.7. Let q, m and i be defined as in Theorem 2.8.14.

~ 2

#<h(k) = ( H wt(e))
E V (TEsa,(d)eEE(T)

Proof. Combine Theorem 2.8.14, Lemma 4.2.5 and Lemma 4.2.6.
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