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Abstract

In this thesis we explore the role of the large-scale ocean circulation in the North
Atlantic and the Southern Ocean (SO) in setting the regional and globally averaged
sea surface temperature (SST) response to atmospheric forcing. We focus on the im-
pact of anthropogenic greenhouse gases (AGHGs) and the Antarctic ozone hole and
use output from general circulation models (GCMs) to estimate the corresponding
climate response functions (CRFs). We show that the strength and the vertical ex-
tent of the time-mean Atlantic Meridional Overturning Circulation (AMOC) set the
effective heat capacity of the World Ocean and affect the global CRF to greenhouse
gas (GHG) forcing. A large fraction of the anomalous surface heat uptake induced
by GHGs takes place over the North Atlantic.

However, the SO also plays a significant role in removing excess heat from the
atmosphere. Compared to the rest of the World Ocean, the SO warms at a much
slower rate under GHG forcing. In this region the background Meridional Overturning
Circulation (MOC) upwells unmodified deep water masses to the surface where they
take up atmospheric heat. The modified water masses are then advected northward
and subducted in the mid-latitudes. This geographical imprint of the MOC is reflected
in the regional CRFs to GHGs, as seen in idealized numerical experiments with GCMs.

However, GHGs are not the only major source of anthropogenic forcing on the SO.
Stratospheric ozone depletion around Antarctica gives rise to an atmospheric pattern
similar to the positive phase of the Southern Annular Mode (SAM): a strengthening
and a southward shift of the westerlies. This poleward intensification of the winds
changes the ocean circulation and gives rise to an SST response. We examine the
SO CRF to a SAM pattern that arises either in the form of natural variability in
unforced control experiments or as a result of imposed ozone perturbations. We
analyze the SO SST response to SAM on multiple timescales and across an ensemble
of GCMs from the Climate Modeling Intercomparison Project phase 5 (CMIP5). We
show that the corresponding SO CRF is governed by the anomalous wind-driven MOC
redistributing the background heat reservoir. The intermodel diversity in the fast and
slow SST responses to SAM is partly explained by differences in the climatological
thermal stratification across the ensemble of GCMs. Furthermore, we demonstrate

3



that the sea ice response to SAM in models is very well correlated with the geographic
pattern of the SST anomalies.

Finally, we convolve our estimated CRFs with timeseries of historical forcing to
recover the SO SST trends in numerical simulations and in observations. We contrast
the multidecadal SO cooling trends against the SST warming rate in the Northern
Hemisphere high latitudes. Our results imply that the recent cooling in the SO may
be explained by the Antarctic ozone hole projecting on a positive SAM trend. We fur-
thermore attempt to understand why CMIP5 models have been unable to reproduce
the observed negative SST trends in the SO and instead predict regional warming.
Many GCM simulations underestimate the historical SAM evolution. Another subset
of CMIP5 models have biases in their climatological SO stratification, which affects
their SO CRFs to SAM.

The successful application of the CRF framework in the context of observed and
simulated SST trends validates the results of our analysis. We are thus able to
interpret the CRFs as inherent characteristics of the climate system and elucidate the
importance of the high latitude oceans in transient climate change.

Thesis Supervisor: John Marshall
Title: Cecil and Ida Green Professor of Oceanography
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Chapter 1

Introduction

The ocean, with its slow circulation and large thermal inertia, plays an essential

role in setting the pace of climate response to external forcing and at the same time

constitutes a major source of low frequency natural variability. The high latitude

oceans provide an important conduit connecting the sea surface to intermediate, deep,

and bottom waters. This thesis studies the particular role of the North Atlantic and

the Southern Ocean for the uptake, transport, and storage of heat. The accumulation

and redistribution of thermal energy affect surface climate on multiple timescales.

1.1 The role of high latitude oceans for the climate

response to greenhouse gas forcing

1

Forced with greenhouse gases (GHGs), the climate system adjusts towards a new

equilibrium on various timescales: ultrafast responses in the stratosphere and tropo-

sphere (days and weeks), fast responses of the land-surface and the ocean's mixed

layer (months and years), and a long-term adjustment of the deeper ocean (decades

to millennia) (Gregory, 2000, Stouffer, 2004, Gregory and Webb, 2008, Held et al.,

2010, Andrews et al., 2012). Continental ice sheets and terrestrial ecosystems respond

'This section has borrowed extensively from an article originally published in Geophysical Re-
search Letters (Kostov et al., 2014).
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on even slower multi-millennial timescales (Pagani et al., 2010, Previdi et al., 2013).

The mechanisms of ocean heat storage are particularly important in the context of

historical anthropogenic global warming. Ocean warming accounts for roughly 93%

of the anomalous energy accumulation in the climate system between 1971 and 2010

(Rhein et al., 2013, 2013).

The ocean response timescales depend not only on the rate at which energy is

absorbed at the sea surface (the net ocean heat uptake), but also on the efficiency

with which that energy is transported away from the surface and into the ocean

interior (Hansen et al., 1985). While early ocean models represented the downward

propagation of the warming signal as a diffusive (Hansen et al., 1985) or an upwelling-

diffusive process (Hoffert et al., 1980, Wigley and Raper, 1987, Raper and Cubasch,

1996), modern general circulation models (GCMs) reveal a variety of important ver-

tical heat transport processes at work, such as stirring along sloped isopycnals and

advection by the mean ocean circulation (Gregory, 2000). Moreover, analyses sug-

gest that differences in ocean heat uptake may play an important role for the large

inter-model spread in simulated warming (Raper et al., 2002, Boi et al., 2009, Hansen

et al., 2011, Kuhlbrodt and Gregory, 2012, Geoffroy et al., 2013a,b). Xie and Vallis

(2011), Winton et al. (2013), Rugenstein et al. (2013), and Winton et al. (2014) have

found that the AMOC impacts the depth of heat penetration under transient climate

change. They emphasize that the forced weakening of the overturning circulation

affects the rate of surface warming through the redistribution of the background heat

content. On the other hand, Marshall et al. (2014) and Marshall et al. (2015) sug-

gest that the AMOC regulates the climate response to GHG forcing by advecting the

anthropogenic heat anomaly in the ocean similarly to a passive tracer.

Thus, key questions are, what physical processes regulate the depth of ocean heat

storage, and to what extent do they influence the surface climate response to GHG

forcing? We focus on the high latitude regions, the North Atlantic and the Southern

Ocean, where the rate of anomalous ocean heat uptake is greatest (Marshall et al.,

2015). Chapter 2 explores the importance of the Atlantic Meridional Overturning Cir-

culation for setting the pace of the global climate response to top-of-the-atmosphere
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radiative forcing. Chapter 4 considers regional responses to greenhouse gas forcing

and the Southern Ocean response to ozone forcing. The latter induces a pattern of

atmospheric anomalies similar to the Southern Annular Mode of natural variability.

1.2 Response of the Southern Ocean to the Southern

Annular Mode

2

In contrast to the strong historical global warming trend induced by greenhouse

gas forcing, the Southern Ocean (SO) has exhibited a gradual decrease in sea surface

temperatures (SSTs) over recent decades (Figure 1-1, (Fan et al., 2014, Armour et

al., 2015)). The large-scale geographic patterns of delayed and accelerated warming

are related to the climatological background ocean circulation (Marshall et al., 2014,

2015, Armour et al., 2015, Hutchinson et al., 2013, 2015). The high latitudes of

the SO constitute an open zonal channel, where the lack of geostrophic meridional

flow acts to thermally isolate the Antarctic region and limit poleward heat transport

into the SO (Hutchinson et al., 2013, 2015). Moreover, in this region deep waters,

unmodified by greenhouse gas forcing, are upwelled at the surface where they take

up heat as the mean wind-driven circulation -- partially opposed (compensated) by

the eddy circulation - transports them northward (Marshall et al., 2015, Armour et

al., 2015). The background circulation can therefore slow down the rate of surface

warming in the SO relative to the rest of the World Ocean. However, this mechanism

of passive heat transport can only dampen the positive surface temperature anomalies

and is not sufficient to explain the persistent cooling trends around Antarctica.

Some studies interpret the pattern of observed Southern Hemisphere SST trends

as a response to a poleward shift and strengthening of the westerlies. These recent

tendencies in the atmospheric circulation resemble the positive phase of the Southern

Annular Mode (SAM) of natural variability, but they may in fact be a forced response

2This section has borrowed extensively from an article submitted for publication and under review
in Climate Dynamics (Kostov et al., 2016).
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Figure 1-1: Shown in black is the 1982-2014 timeseries of SST 10C1 averaged between

55'S and 70'S based on the NOAA Reynolds Optimum Interpolation (Reynolds et al.,
2002). The 1980-2014 timeseries of the annual-mean SAM index based on the ERA

Interim reanalysis (Dee et al., 2011) is superimposed in gray. The index is defined

as the first principal component of SLP variability south of 20'S and is normalized

by its standard deviation. Solid lines indicate linear trends fitted to each timeseries.

Note the reversed scale for the SAM timeseries shown on the right.

(Thomas et al., 2015), the result of ozone depletion (Thompson and Solomon, 2002,

Gillett and Thompson, 2003, Sigmond et al., 2011, Thompson et al., 2011, Wang

et al., 2014). Figure 1-1 illustrates the synchronous evolution of observed SST and

SAM anomalies over the SO. The SST averaged between 550S to 70'S is negatively

correlated to the SAM index with R = -0.65 at a lag of 1 year. Multiple mechanisms

have been proposed to explain the relationship between SST trends around Antarctica

and poleward intensification of the westerlies.

Many studies conclude that a poleward intensification of the westerlies impacts SO

SSTs by changing the ocean circulation (Hall and Visbeck, 2002, Oke and England,

2004, Russell et al., 2006, Fyfe et al., 2007, Ciasto and Thompson, 2008, Bitz and

Polvani, 2012, Marshall et al., 2014, Purich et al., 2016). The recent circulation

changes have been confirmed by measurements of dissolved passive tracers (Waugh

et al., 2013, Waugh, 2014). A positive SAM induces anomalous northward Ekman

transport in the high latitude region of the Southern Hemisphere (Hall and Visbeeck,

2002). This gives rise to surface cooling poleward of 50'S. Ciasto and Thompson
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(2008) and Sen Gupta and England (2006) propose that the aforementioned oceanic

mechanism complements SAM induced changes in the surface heat fluxes, and that

both processes act in concert to set the spatial distribution of temperature anomalies

around Antarctica.

Unlike Ciasto and Thompson (2008), Bitz and Polvani (2012) demonstrate that in

the coupled CCSM3.5 GCM, an ozone-driven poleward intensification of the wester-

lies leads to an increase in SSTs throughout the SO. This result implies that changes

in the winds cannot account for the observed cooling around Antarctica and may even

have the opposite effect. Bitz and Polvani (2012) explain that poleward intensifica-

tion by itself can lead to a positive SST response via anomalous Ekman upwelling of

warmer water in the salinity-stratified circumpolar region. This highlights an appar-

ent divergence in literature about the sign of the SO SST anomalies associated with

a SAM-like pattern. A similar lack of consensus also carries over to studies which

explore the connection between the westerly winds and SO sea ice. Hall and Vis-

beck (2002) suggest that a positive SAM causes sea ice expansion, while Sigmond and

Fyfe (2014) demonstrate that poleward intensification (forced by ozone depletion) is

associated with a decrease in marine ice extent.

Ferreira et al. (2015) propose a theoretical framework that can resolve this os-

tensible disagreement about the sign of the SST anomaly associated with a poleward

intensification of the westerlies. They use two different coupled GCMs to demonstrate

that the SO response to winds in forced ozone depletion simulations is timescale-

dependent. An atmospheric pattern similar to a positive SAM triggers short-term

cooling followed by slow warming around Antarctica. The fast response is dominated

by horizontal Ekman drift advecting colder water northward, while the slow response

is sustained by Ekman upwelling of warmer water. Ferreira et al. (2015) show that

the transition between the cooling and warming regime differs between two coupled

GCMs and therefore can be highly model-dependent.

In Chapter 3 we analyze the SO climate response functions (CRFs) to SAM in a

large set of state-of-the-art CMIP5 models. We explore mechanisms which affect the

SST response on fast and slow timescales. In Chapter 4 we contrast these CRFs to
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SAM with the SO SST step-response to GHG forcing. Finally, we use these model-

based CRFs to understand the contribution of GHG forcing and SAM anomalies to

the historical SST trends in CMIP5 simulations and in observations.
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Chapter 2

Impact of the Atlantic Meridional

Overturning Circulation on Ocean

Heat Storage and Transient Climate

Change

3

In this chapter we investigate how ocean heat uptake affects the climate response

to greenhouse gases within the suite of state-of-the-art GCMs participating in the

Coupled Model Intercomparison Project phase 5 (CMIP5) (Taylor et al., 2012). In

particular, we analyze standardized simulations in which the atmospheric concen-

tration of CO 2 is instantaneously quadrupled (4x CO 2 ) from its initial preindustrial

value and then held fixed, providing a source of constant forcing for the climate sys-

tem. In response to this idealized GHG perturbation, heat is taken up by the World

Ocean. Part of the excess thermal energy remains in the topmost (-100 m deep)

mixed layer of the ocean, and sea-surface temperatures (SSTs) rise (Figure 2-la). A

substantial amount of heat also penetrates well below the mixed layer, but the vertical

distribution of warming differs considerably across models (Figure 2-1b).

3This chapter is an adapted version of an article originally published in Geophysical Research
Letters (Kostov et al., 2014).
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Here we focus on the role of the upper cell of the Atlantic Meridional Overturning

Circulation (AMOC) for heat transport under GHG forcing. This interhemispheric

cell is associated with warm upper ocean waters that flow northward within the top

1 kilometer of the Atlantic basin. They sink at mid-depth in the North Atlantic

contributing to the formation of North Atlantic Deep Water (NADW), which then

returns southward at approximately 1.5-4.5 kilometers below the surface (Marshall

and Speer, 2012). We propose that the upper AMOC cell is central to transporting

and redistributing thermal energy to depth, thus regulating the effective heat capacity

of the ocean under global warming. Moreover, we show that CMIP5 models differ

substantially in their representation of the strength and depth of the AMOC, and

that this diversity largely accounts for the variability in the vertical distribution of

ocean heat storage shown in Figure 2-1b.

To assess the influence of the effective ocean heat capacity on the surface climate

response to forcing, we introduce a two-layer energy balance model (EBM), similar in

form to that developed in Gregory (2000) and Held et al. (2010). In our framework

the first EBM layer corresponds to the ocean's shallow mixed layer and the second

represents the deep ocean interior. Such models have successfully reproduced the

global temperature response in a wide range of GCMs (e.g., Gregory, 2000, Held et

al., 2010, Li et al., 2012, Geoffroy et al., 2012, 2013a,b). We similarly fit our two-

layer model to global SSTs from 4xCO 2 simulations, but we extend our analysis to

interpret the model parameters in terms of physical processes. In particular, we find

that the calibrated ocean heat capacity and rate of heat sequestration into the ocean

interior are strongly correlated with the depth of heat penetration within the coupled

GCMs, which, in turn, appears to be regulated by the vertical extent and strength

of the AMOC cell. Finally, we use the two-layer ocean model to quantify the relative

contributions of effective ocean heat capacity and climate feedbacks to the inter-model

spread in SST response to forcing. Our results suggest that the inter-model spread in

SSTs due to variations in the ocean's effective heat capacity is significant, but smaller

than the spread due to climate feedbacks.
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2.1 AMOC and ocean heat storage

In order to evaluate the ocean's role in transient climate change, we analyze the rela-

tionship between warming at the sea surface and the distribution of stored heat with

depth. We compute the area-averaged SST (= T) and sea-surface heat flux (= N")

anomalies over the global ocean by subtracting the linear trend of the preindustrial

control from each corresponding 4 x CO 2 simulation. This eliminates unforced drift

without adding noise (Andrews et al., 2012). Figure 2-la shows the notable spread

in transient SST responses across the ensemble of GCMs.

The rate of net ocean heat uptake N, is defined as positive into the ocean and

includes net shortwave and longwave radiation, as well as latent and sensible heat

fluxes at the air-sea interface. Following CO2 quadrupling, N, is initially on the

order of 10 Wmn- 2 (Table 2.1) and decreases as the climate evolves toward a new

equilibrium. The heat anomaly is initially concentrated in the ocean mixed layer but,

over time, penetrates to ever increasing depth. A century after CO 2 quadrupling,

warming can be seen at depths of several kilometers (Figure 2-2), but there exists

a substantial inter-model spread. Indeed, Figure 2-1b shows that a large fraction

of global ocean warming occurs below 1 km in some models (e.g., about 40% for

NorESM1-M) while relatively little warming occurs below this depth in others (e.g.,

about 10% for CNRM-CM5). We define a metric for heat penetration, Dso%, as the

depth above which 80% of the total global heat content anomaly is contained after one

century. Dso% varies considerably across models (horizontal magenta lines in Figure

2-2), with NorESM1-M (Dso% = 1.8 km) and CNRM-CM5 (Dso% = 0.8 km) as end

members.

Various heat transport processes contribute to the distribution of heat storage

with depth (e.g., Gregory, 2000). Here we propose that the inter-model spread can

be largely understood in terms of the different representations of AMOC among the

GCMs. The overturning circulation affects vertical heat storage via two main mech-

anisms: ventilation of the ocean to depth of several km; and redistribution of the

background heat content as the AMOC itself changes in response to surface wind and
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buoyancy forcing (Xie and Vallis, 2011, Winton et al., 2013, Rugenstein et al., 2013,

e.g.,).

To assess the overall impact of the AMOC, we consider its temporal average over

the course of the 4x CO 2 simulations. The volume overturning streamfunctions in the

Atlantic-Arctic basin of each model are shown in Figure 2-2. We define a metric for the

vertical extent of the upper AMOC cell (- DAMOC) as the average depth of the 5 and

10 Sv streamlines in the Atlantic Ocean north of the 350S parallel (horizontal green

lines in Figure 2-2). DAMOC varies from 0.5 km (CNRM-CM5) to 1.8 km (NorESMI-

M) and is highly correlated (R=0.93) with the depth of heat penetration Dso% across

the models (Figures 2-2 and 2-3a). DAMOC also scales with the maximum of the

streamfunction (= MAMOC; Figure 2-3b). This result suggests that the propagation

of the heat anomaly at depth are linked both to the vertical extent and to the rate of

overturning of the upper AMOC cell. The correlation between DAMOC and MAMOC

themselves implies that stronger cells also tend to ventilate greater depths, but we

acknowledge that this relationship may be intrinsic to our definition of DAMOC. Note

that these results are robust with respect to different definitions of DAMOC and D80%.

The important role of AMOC in setting the depth of ocean heat storage becomes

clear when we consider the model-mean pattern of the net surface heat flux anomaly

(Figure 2-4a). Surface heat uptake between 35N and 70N in the North Atlantic ac-

counts for almost half of the net uptake by the World Ocean. Moreover, the horizontal

pattern of anomalous heat distribution at intermediate depths suggests advection of

heat along the AMOC cell. We see that 100 years after the step perturbation in GHG

forcing, the temperature anomaly at a depth of 1 km is particularly large along the

Western Boundary of the Atlantic Ocean and appears to propagate from north to

south over time along the lower limb of the upper AMOC cell (Figure 2-4b and c). In

contrast, the Pacific and Indian oceans do not show large mid-depth heat anomalies

on the same multi-decadal timescales.

These results suggest that the AMOC plays a large role in setting the transient

vertical distribution of the global ocean heat anomaly. We next assess the extent

to which AMOC accounts for inter-model variability in the ocean's effective heat
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capacity as diagnosed from the transient SST response to forcing.

2.2 Ocean heat storage and SST response

2.2.1 Representing ocean heat storage in a simple energy bal-

ance model

We fit an idealized two-layer ocean energy balance model (EBM) to the SST and the

sea-surface heat flux anomalies from each CMIP5 GCM. The two layers in the EBM

broadly represent the mixed layer and deeper ocean, with respective temperature

anomalies T, and '7. Similar two-layer models have been studied extensively and

shown to successfully capture the response of coupled GCMs (e.g., Gregory, 2000, Held

et al., 2010, Geoffroy et al., 2012, 2013a,b). However, unlike previous applications of

this EBM, we attempt to understand the idealized model in terms of key oceanic

processes and mechanisms that affect the transient climate response. We thus treat

land and the atmosphere as external to our system, and formulate the model as

follows.
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We are interested in the net heat flux at the ocean surface N, which is a combined

result of the top-of-the-atmosphere radiative flux anomaly NTOA and the anomalous

horizontal exchange of heat with the land domain HLO [Watts/m 2

No = NTOA + HL-O. (2.1)

In contrast, previous calibrations of the two-layer EBM to the output of complex

models (e.g., Held et al., 2010, Geoffroy et al., 2012, 2013a,b) have not isolated the

ocean domain, and have therefore considered only NTOA of the form:

NTOA FTOA - ATOATGlobalAir - (e - 1)Ho, (2.2)

where FTOA is a globally uniform top-of-the-atmosphere (TOA) CO 2 forcing, TGlobalAir

is the globally averaged anomaly in the near-surface air temperature, and 'TOA is

a globally representative linear feedback parameter. To a good approximation, the

forcing FTOA in abrupt quadrupling experiments can be represented as a step function.

The last term in (2.2), (e - 1)Ho, denotes a contribution to the global energy

budget that arises from the so-called "efficacy" e of ocean heat uptake ( Winton et al.,

2010, 2013, Held et al., 2010, Geoffroy et al., 2013b). This concept is analogous to

the efficacy of climate forcings discussed by Hansen et al. (2005), who point out that

different greenhouse gases and aerosols can give rise to the same globally averaged

TOA forcing but different globally averaged temperature responses. In our case we

also assume that the efficacy factor e is constant, but HO is not. The product (6 -

1)Ho represents the change in the globally averaged climate feedbacks over time

as the correlation between the geographical pattern of ocean heat uptake and the

geographical pattern of local surface feedbacks evolves (Winton et al., 2010, 2013,

Armour et al., 2013, Rose et al., 2014). Within the GCMs sea-surface heat uptake

is not spatially uniform (e.g., Figure 2-4a) and evolves in time as the ocean warms.

Moreover, the climate feedbacks, which set the SST damping rate, are sensitive to

the pattern of ocean heat uptake, and thus a different set of regional feedbacks are

in operation at various stages of the climate response to forcing ( Winton et al., 2010,
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Armour et al., 2013, Rose et al., 2014). The nondimensional "efficacy" factor e ~ 0(1)

in equation (2.2) accounts for this effect within our idealized, global ocean model.

When e > 1 (e < 1), we have a time decrease (increase) in the rate at which the

globally averaged climate feedbacks dampen surface warming. If c = 1, the net

globally averaged feedbacks do not evolve temporally as the rate of ocean heat uptake

changes. In our two-layer EBM framework, the horizontal pattern of heat uptake is

not resolved and is assumed to evolve similarly to the vertical ocean heat transport.

The latter is in turn proportional to the temperature difference between the layers:

HO = q(T1 - T2 ), (2.3)

where q is our constant exchange rate [Watts/K]. Therefore, we can rewrite (2.2) as

NTOA = FTOA - ATOATGlobalAir - ( - 1)q(T - T2 ). (2.4)

We consider the anomalous heat transport from the land to the ocean domain as a

function of the SST anomaly T and the anomaly in the near-surface air temperature

above land TLandAir. Neglecting any nonlinearities, we express HL+O as:

HL+o = aTandAir - bT1 , (2.5)

where a and b are positive constants (see also Dommenget (2009)).

We can simplify (2.5) because we find a strong linear relationship between TLandAi,

and T across all AOGCMs in the ensemble, as illustrated in Figure 2-5. This linearity

allows us to express TLandAi, in terms of T as:

TLandAir = c1 T1 + c2 , (2.6)

where ci > 1, c2 > 0 are constants in each model. By analogy to (2.6), we can extend

the same approach to the globally averaged near-surface air temperature, TGlobalAir,
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and describe the latter as a function of SST alone:

TGlobalAir = c3 T1 + C4 , (2.7)

Combining (2.4) through (2.7) gives us the net heat flux at the ocean surface:

No = Fo - AoT1 - (E - 1)q(T - T2), (2.8)

with Fo = FTOA - ATOAc4 + ac2 as an effective step forcing at the ocean surface and

the constant AO = ATOAC3 - ac, + b as an effective SST damping rate.

The temperature anomalies in the two ocean layers, T and T2 , evolve according

to:

dT1c poh1i = -- - AT1 - eq(TI - T2), (2.9)
dt

dT2cwpoh2 dT2= q(T1 - T2), (2.10)
dt

where c, and po are the specific heat and the reference density of sea water, respec-

tively; h, and h2 are the thicknesses of the two ocean layers; AO [units: W m- 2 K-11

is a climate feedback parameter relating the surface heat flux to the SST; and the

term q(T - T2 ) [units: W m-2I represents the rate of heat exchange between the

mixed layer and deep ocean; parameter e represents the efficacy of heat uptake as

in (2.2). When atmospheric CO 2 is abruptly quadrupled, the upper ocean layer is

forced with an energy flux F(t) approximated as a step-function [units: W m-2  
0

includes a contribution from heat exchange between the land and the ocean domain

and therefore should be interpreted as an effective forcing on the ocean surface. A

time-invariant e is able to capture much of the nonlinear relationship between the

surface heat flux and the SST found in the GCMs. Hence, we interpret A, as a time-

invariant feedback that represents the relationship between equilibrium warming and

forcing: Teq = Fo/A o .

The net sea-surface heat flux N, is equal to the total heat content change in the
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ture anomaly of near-surface air above land, TLandAir, in the abrupt quadrupling

experiment. Comparison across CMIP5 models: a) ACCESS1-0; b) CCSM4; c)

CNRM-CM5; d) GFDL-ESM2M; e) GFDL-CM3; f) MPI-ESM-LR; g) MRI-CGCM3;
h) NorESM1-M.
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two ocean layers (the sum of equations (2.9) and (2.10)):

No = FO - AOT1 - (e - l)q(T1 - T2 ) (2.11)

This budget provides a constraint for calibrating the idealized two-layer system to

the GCMs. For simplicity, we prescribe a mixed layer depth of hi = 100m. We thus

have five free model parameters to fit: F, A,, e, q, and h2 . Finally, the total EBM

depth scale is the sum of the two layer thicknesses: H = h1 + h2.

We then define the rescaled variables q' = eq and h' = eh2 to Simplify equations

(2.9) and (2.10) as follows:

cpoh 1 dT F - AT1 - q'(T - T2) (2.12)c~o1 dt

dT2
c dpoh2  = q'(T1 - T2). (2.13)c~o~dt

This new system of equations has an analytical solution for the evolution of the SST

anomaly T in response to step forcing:

TI(t) = Teq - TFe--1t _ (Teq - TF)e (2.14)

The SST anomaly approaches the equilibrium value Teq = FT/A, on two exponential

timescales: a fast (1/o-1) and a slow (1/o2) timescale of response (Held et al., 2010).

We can expand the rates o- and O-2 in terms of a nondimensional ratio of layer

thicknesses, r = h1h' hi/(6h2 ) < 1 to express:

O-1  = + 1 + r + O(r 2)

C1 Ao Ao(Ao + q')

AO + q'
~~ (2.15)
Cl

O-2 = r(+ O(r2j , (2.16)
clI (Ao + ql' c1 A,, + q'

where ci = cpohi is the constant heat capacity of the upper ocean layer. The fast

SST response T F is the fraction of the temperature anomaly that the ocean surface
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reaches on a timescale 1/a- and can be expressed as

TF ' A 2Aq' 2 - + 0 +q- (2.17)
Ao .AO + q' (q' + Ao)3 I-AO +q'

Beyond the fast response, the equilibrium warming Tq is approached much more

slowly because h2 is typically an order of magnitude larger than hi.

2.2.2 Calibrating the Two-Layer EBM to Results from CMIP5

AOGCMs

We calibrate the EBM parameters iteratively in a manner similar to the tuning proce-

dure outlined by Geoffroy et al. (2013b). We fit the analytical solution for the upper

layer temperature (2.19) to the area-averaged SST anomaly T, in each GCM, and we

constrain equation (2.18) with the sea-surface heat flux anomaly No. This allows us

to calibrate our five free parameters. Convergence is achieved after a small number of

iterations, and we are able to accurately reproduce the response of each GCM with

the EBM.

In the first iteration we impose E = 1 and regress the surface heat flux anomaly

N against the SST anomaly T to obtain an initial estimate for AO and FO:

No = Fo - AoT1. (2.18)

We then fit the full analytical solution for the upper layer temperature

T1(t) = Teq - TFe-1t - (Teq - T -)e-2t. (2.19)

to the SST anomaly Ti to calculate parameters q and h2 . For subsequent iterations,

we proceed as follows. In iteration number i, we use the value of q(i-1) from the

previous iteration (i - 1) to perform a nonlinear regression of No against the surface
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temperature anomaly T and obtain P0, AW, and EW

No =Fo() - A( T1 - (5i-) - 1) - q(-' (T1 - T2 ), (2.20)

At the end of the ith iteration, we update the values q(') and h2( by fitting the

analytical solution (2.19) to the SST anomaly T using the estimated, F, Ai)

and E('). The EBM parameters converge after a small number of iterations, and we

reproduce very well the results of the original CMIP5 models (Figure 2-6). The results

of calibrating the two-layer model to each AOGCM are listed in Table 2.1, and the

correlations among the parameters are available in Table 2.2.

Our estimate for the depth scale H across the calibrated two-layer EBMs is of

the correct magnitude and correlates strongly (R=0.79) with the depth of heat pen-

etration Dso% as diagnosed within the CMIP5 models (Figure 2-7a). As could be

anticipated from the close relationship between D80% and the AMOC depth metric

DAMOC identified previously (Figure 2-3a), H is also strongly correlated (R=0.87)

with DAMOC (Figure 2-7b). We previously pointed out (Figure 2-3b) a strong con-

nection between DAMOC and the AMOC streamfunction maximum, MAMOC, which

regulates the rate of heat transport from the mixed layer into the ocean interior.

Likewise, the analogous parameter in the two-layer EBM, q, is found to be strongly

correlated with both H (R= 0.89) and MAMOC (R= 0.84); see Figures 2-7c,d and

Table 2.2. Our parameter correlations are not sensitive to the choice of h, = 100m,

and are reproduced if we allow h, to vary across models. Remarkably, this simple

two-layer ocean model, constrained only by SST and surface heat fluxes, captures es-

sential features of the inter-model spread in ocean circulation and heat storage found

within the ensemble of coupled GCMs.

In agreement with Geoffroy et al. (2013b), who perform a similar EBM calibration, we

see that most of the spread in the equilibrium temperature Teq comes from inter-model
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Table 2.1: Parameter values for each calibration of the EBM to a CMIP5 model:
projected SST equilibrium Tq [units: KJ, forcing at the time of CO 2 quadrupling
F(t) [units: W m-2], climate feedback parameter A, [units: W m-2 K- 1 ], efficacy
of ocean heat uptake E (nondimensional), rate of heat exchange between the ocean
layers q [units: W m- 2 K-'], thickness of the lower EBM layer h2 [units: m], total
thickness of the two EBM layers [units: mi. The table lists parameter values from
the best fits the corresponding standard errors calculated from iterative linear
regression. The calibrations were done using an iterative least-squares algorithm. The
rows correspond to different models: a) ACCESS1-0; b) CCSM4; c) CNRM-CM5; d)
GFDL-ESM2M; e) GFDL-CM3; f) MPI-ESM-LR; g) MRI-CGCM3; h) NorESM1-M;
/t is the ensemble mean of the models; a is the intermodel standard deviation. The
ensemble mean and the intermodel standard deviation were computed with respect
to the results from the best fits.

Model Teq F = N(t -, 0) Ao q h2 H
[K] [W/m 2 ] [W/m2 /K] [W/m 2 /K] [m] [mI

a) 5.31 9.99 0.40 1.88 0.07 1.59 0.08 1.68 0.05 923 20 1023 20
b) 4.34 10.99 0.43 2.53 0.10 1.49 0.08 1.79 0.05 1007 22 1107 22
c) 4.24 9.88 0.34 2.33 0.08 1.02 0.06 1.17 0.03 592 14 692 14
d) 3.51 9.69 0.52 2.76 0.15 1.29 0.10 1.91 0.06 1474 49 1574 49
e) 6.26 8.77 0.33 1.40 0.05 1.34 0.07 1.61 0.03 862 14 962 14
f) 5.65 11.80 0.47 2.09 0.08 1.32 0.08 1.56 0.03 1167 28 1267 28

g) 3.85 9.78 0.35 2.54 0.09 1.34 0.07 1.60 0.06 916 28 1016 28
h) 4.38 10.85 0.47 2.48 0.11 1.71 0.09 2.10 0.07 1661 64 1761 64

A 4.69 10.22 2.25 1.39 1.68 1075 1175
a 0.95 0.94 0.44 0.21 0.28 347 347

Table 2.2: Correlations among the calibrated EBM parameters: projected SST equi-

librium Teq in 'C, forcing at the time of CO 2 quadrupling TF(t) [units: W m-2,
climate feedback parameter A, [units: W m- 2 K-], efficacy of ocean heat uptake E

(nondimensional), rate of heat exchange between the ocean layers q [units: W m-2

K-], thickness of the lower EBM layer h2 [units: ml. The highlighted correlations

are significant at the 95% confidence level.

Teq Fo A0  E q h2

Teq 1 -0.04 -0.94 0.12 -0.20 -0.27
Fo 1 0.34 0.28 0.19 0.36
A0  1 -0.02 0.30 0.43

1 0.81 0.59
q 1 0.89
h2 1
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variability in the feedbacks A,, as opposed to F,, (Figure 2-7e). However, in contrast

to our results, Geoffroy et al. (2013b) find a small negative correlation between H and

q. We suggest that this is due to methodological differences. In particular, Geoffroy

et al. (2013b) include the ocean mixed layer, the atmosphere, and the land domain in

the upper layer of the EBM, while here we have focused on the ocean domain. We also

note that we find a significant correlation (R= 0.81) between e and q (Figure 2-7f),

which may reflect the complex relationship between efficacy and the ocean circulation

that sets the evolving pattern of surface heat uptake.

We take the remarkable consistencies between coupled GCMs and calibrated

EBMs as evidence that the two-layer parameters can be understood in terms of ocean

properties (i.e., strength and depth of the AMOC). This further implies that the

two-layer calibration produces results that are physically meaningful. We can thus

use the EBM to gain insight into the role of AMOC in transient climate change on

multi-decadal timescales. For example, a deep and strong AMOC results in a deep

penetration of the temperature signal. Within the two-layer EBM, this is represented

by a thick layer h2 and a high rate of heat exchange between the mixed layer and

the deep ocean, setting a large effective ocean heat capacity and delaying the SST

response to forcing. Such is the case for NorESM1-M, which has the thickest h 2 and

the largest q (Table 2.1) and exhibits very slow warming following CO2 quadrupling

(Figure 2-la).

We can also apply the two-layer EBM to quantify the relative roles of ocean

processes and climate feedbacks in setting the inter-model spread in climate response.

We separate the parameters into two groups: those related to the ocean circulation

(q, h2 , and e) and those related only to the equilibrium warming (A, and T,). We

point out that e cannot be described simply as an ocean parameter because it depends

on the interaction between regional ocean circulations and atmospheric feedbacks

(Armour et al., 2013, Winton et al., 2010, Rose et al., 2014). However, q, h2 , and e

are strongly correlated with each other but not significantly correlated with A, and

F, (Table 2.2). Hence, in the context of inter-model spread, we treat e as a parameter

linked to the ocean circulation. We run the two-layer EBM once again, with F and
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A, specified to the values we diagnosed from each individual GCM calibration, but

with q, h 2, and e, fixed to ensemble-mean values (Figure 2-1c). Together, variations

in A, and ., appear to account for a substantial portion of the inter-model spread

in SST response seen in Figure 2-la, consistent with the findings of Geoffroy et al.

(2012).

Nevertheless, variations in q, h2, and e must be taken into account to obtain the full

spread of climate responses in CMIP5. The role of the ocean is particularly important

within models that exhibit notably shallow or deep penetration of heat. For exam-

ple, comparing Figures 2-1a and 2-1c, we see that the SST responses of CNRM-CM5

(weakest AMOC and shallowest heat storage) and NorESM1-M (strongest AMOC

and deepest heat storage) are not well reproduced by the EBM under variations

in feedbacks alone: SST is underestimated for CNRM-CM5 and overestimated for

NorESM1-M. Running the two-layer EBM with GCM-specific q, h2 and e, but with

ensemble-mean A, and T, shows that ocean processes are indeed essential to under-

standing the behavior of individual models (Figure 2-1d) and that variations can yield

an SST range of order ~ 1C after several decades. However, this spread is smaller

than the spread due to feedbacks and forcing (Figure 2-1c), and also smaller than the

inter-model differences in the CMIP5 responses (Figure 2-ia).

These results suggest that although feedbacks A, set much of the inter-model

variability in the SST response, the ocean circulation plays an important role as well.

That is, even if each GCM was governed by the same climate feedback, differences

in ocean processes would still yield a notable range of SST responses. Within the

two-layer EMB framework, these ocean differences can be understood in terms of

an effective ocean heat capacity (set by h2 and q) and an efficacy of heat uptake

e. Within the ensemble of GCMs, differences in the effective heat capacity can be

understood in terms of variations in the depth of heat storage, which in turn reflects

the depth and strength of the AMOC.
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Table 2.3: Alternative metrics for the depth of heat penetration
Metric Metric R p
DsO%(110) DAMOC 0.94 <0.001
Dso%(120) DAMOC 0.94 <0.001
D8o%(130) DAMOC 0.93 <0.001
D65%(100) DAMOC 0.89 <0.003
D50%(100) DAMOC 0.95 <0.001
Dso%(110) H 0.82 <0.02
Dso%(120) H 0.84 <0.001
D8o%(130) H 0.86 <0.006
D65%(100) H 0.73 <0.05
D5o%(100) H 0.85 <0.01

2.2.3 Results with Alternative Definitions of the Temperature

and AMOC Metrics.

We have presented analysis where we define the depth of heat penetration in the

GCMs as the level D80% above which 80% of the total heat anomaly is stored. We

use a 30-year time mean centered on the year 100 of the abrupt 4xCO 2 experi-

ment to calculate temperature anomalies relative to the preindustrial control run.

Here we show similar correlations where we calculate 30-year time means D8o%(110),

Dso%(120), Dso%(130) centered on the years 110, 120, and 130, respectively. We also

reproduce our analysis using similarly defined depths of heat penetration D5o%(100)

and D65 %(100) taken as 30-year time means centered on the year 100. The correlation

coefficients R and p-values are listed in Table 2.3. Other metrics in the table (DAMOC

and H) are defined as in the previous section.

In the previous subsection we define the vertical extent of the AMOC cell DAMOC

as the average depth of the 5 and 10Sv AMOC streamlines. We use a 150-year

time mean AMOC over the course of the abrupt 4xCO 2 experiment. Here we show

results using alternative ways to define the AMOC depth. We define DAMOC( 4 , 9) as

the average depth of the 4 and 9Sv streamlines, once again taking a 150-year time

mean. Similarly, we introduce DAMOC( 6 , 11) for the average depth of the 6 and 10Sv
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Table 2.4: Alternative metrics for the vertical extent and strength of the AMOC
Metric Metric R p
DAMoC( 4 , 9) D80 % 0.92 <0.002
DA roc( 6 , 11) D80 % 0.93 <0.001
DAM OC(4,9) H 0.86 <0.007
DAMOc(6, 11) H 0.90 <0.003

Table 2.5: Alternative
experiment

definitions of the time-mean AMOC in the abrupt 4xCO 2

Metric Metric R p
DAMOC(100) Dso% 0.92 <0.002
DAMOc(100) H 0.85 <0.01
MAMOC(100) q 0.83 <0.02

streamlines. We reproduce correlations similar to the ones found with the AMOC

depth metric used in the previous section with correlation coefficients R and p-values

listed in Table 2.4.

We also consider a different time-mean to define a new metric for the AMOC ver-

tical extent. We denote the time average depth of the 5 and 1OSv AMOC streamlines

between the years 1 and 100 of the abrupt 4x CO 2 experiment DAMoc(100). We define

MAmoc(0oo) as the maximum of the 100-year time mean AMOC in the abrupt qua-

drupling run. We find that DAMoc(100) is strongly correlated with the depth of heat

penetration D80% and with the layer thickness H of the calibrated EBM (See Table

2.2.3). The AMOC strength MAmoc(loo) is in turn correlated with q, the calibrated

coefficient of vertical heat transport in the EBM.

The correlations we found using Dso%(110), Dso%(120), Ds%(130), D6 5 (100),

D50 %(100), DAMoC( 4, 9), DAMOC( 6 , 11), DAMoc(100), and MAMoc(loo) demonstrate

that the results of our EBM calibration are robust with respect to our choice of

temperature and AMOC metrics.
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Figure 2-8: Evolution of the annual average AMOC maximum in the abrupt 4x CO 2

runs of CMIP5 GCMs.

2.3 Time Evolution of the AMOC: Weakening and

Shoaling of the Circulation in the Abrupt 4 x CO 2

Experiment

AMOC in the abrupt quadrupling experiment weakens, and its vertical extent de-

creases substantially across all GCMs included in our ensemble. The time evolution

of the AMOC is shown in Figure 2-8. We have explored the relationship between the

control state of the overturning circulation and the circulation in the 4 x CO 2 run. We

have also considered the impact of the AMOC adjustment on the intermodel spread in

ocean heat storage. We define an AMOC anomaly cell as the difference between the

150-year mean 4x CO 2 streamfunction and the preindustrial control streamfunction.

In our ensemble we find a positive but not significant correlation between the

control AMOC strength and the 150 year time-average magnitude of the weakening
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(p=0.20). Note that, as shown in Figure 2-8, the AMOC in some models partially

recovers after a large transient decrease. Thus, the minimum AMOC strength (i.e.,

the maximum weakening) is reached before the end of the 150-year abrupt quadru-

pling run. Thus, we also examine the relationship between the preindustrial control

AMOC strength and the value of the maximum weakening, but we do not find a

significant correlation (p=0.20) between the two metrics. We find a small correlation

(R<0.21) between the vertical extent of the control AMOC and the vertical extent

of the anomaly cell.

In contrast, the correlation between the control AMOC strength MAMOC,Control

and the AMOC strength in the 4xCO2 experiment is large (R=0.86) and significant

(p<0.01). Similarly, the correlation between the vertical extent of the AMOC in the

quadrupling run, DAMOC, and the vertical extent in the control run, DAMOC,Control

is strong (R=0.88) and significant (p<0.004). Thus, we infer that the depth and

strength of the AMOC in the perturbed experiment depend largely on the properties

of the control circulation.

Table 2.6 compares the correlations of heat storage metrics q, H, and D80% with

the properties of the control AMOC, the 4xCO 2 AMOC, and the AMOC anomaly.

The results summarized in Table 2.6 suggest that the AMOC weakening does not

contribute significantly to the intermodel spread in ocean heat storage. The corre-

lations of q, H, and D8 0% with the control properties of the circulation are strong

but weaker than the corresponding correlations with the 4xCO 2 AMOC. Thus we

propose that the control AMOC contributes to the intermodel spread in heat storage

by affecting the properties of the 4 x CO 2 overturning cell. The ventilation rate set by

the 4xCO 2 AMOC appears to be the largest source of intermodel variability in the

ocean's effective heat capacity and the rate of vertical heat transport.
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Table 2.6: Correlations between heat storage metrics D80% and H and properties of
the control AMOC, the AMOC anomaly, and the 4xCO 2 AMOC. The highlighted
correlations are significant at the 95% confidence level.
Heat Storage Metric Control AMOC Depth Depth of the 4xCO 2 AMOC Depth

AMOC Anomaly Cell

D80% 0.83 0.46 0.93
H 0.73 0.42 0.87

Heat Storage Metric Control AMOC Strength of the 4xCO 2 AMOC
Strength Anomaly Cell Strength

q 0.81 0.05 0.84

2.4 Discussion and Interpretation of the Results.

We have identified an important role of the upper AMOC cell for regulating heat

storage in the World Ocean as represented in an ensemble of state-of-the-art models.

Our analysis of CMIP5 GCMs reveals that the AMOC is a major source of inter-

model variability in the ocean's effective heat capacity and in the rate at which the

heat anomaly is exported from the mixed layer downward (see Medhaug et al. (2011)

for AMOC variability across CMIP3 models). Models with a deeper and stronger

overturning circulation store more heat at intermediate depths, which delays the

surface temperature response on multi-decadal timescales.

We note the possibility that other vertical heat transport processes could be cor-

related with the strength and depth of the AMOC and thus would be neglected in

our analysis. However, we have found that a substantial portion of the global ocean

heat uptake occurs within a relatively small region in the North Atlantic and that

anomalous heat is advected to depth along the upper AMOC cell 2-4. The AMOC

can thus be expected to strongly influence the depth of global heat penetration. Sev-

eral studies [e.g., Xie and Vallis, 2011; Winton et al., 2013; Rugenstein et al., 2013]

have found that weakening of the AMOC can also substantially affect the depth of

heat penetration through the redistribution of the background heat content. While

changes in AMOC do occur within the CMIP5 GCMs under 4 x CO2 forcing, we find

no significant correlations between the magnitudes of the AMOC weakening or shoal-

ing and the depth of heat storage across the ensemble. Thus, the diversity of AMOC
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strengths and depths across models appears to be the larger source of inter-model

spread in the depth of heat penetration.

To quantify the relative influence of ocean processes versus climate feedbacks in

setting the spread of CMIP5 temperature responses, we have employed a simple two-

layer ocean model calibrated to each GCM. While much of the inter-model spread

is attributed to feedback variations, ocean parameters are found to be important as

well, and critical to the response of those models with very deep (or shallow) AMOC

cells.

Our results have implications for understanding the climate response to greenhouse

forcing and for improving the long-term prognostic power of models. Our findings

suggest that a good representation of the AMOC is essential for accurately simulating

ocean heat storage and transient warming. These conclusions point to the value of

measuring and studying AMOC properties as the circulation evolves under global

warming conditions.

This analysis emphasizes the significance of the North Atlantic for setting the pace

of transient climate response under greenhouse gas forcing. In the following chapters

we consider another high latitude region which plays an important role in ocean heat

uptake on a global scale: the Southern Ocean (Marshall et al., 2015). In Chapter 3

we examine the Southern Ocean response to a poleward intensification of the westerly

winds, and in Chapter 4 we consider the combined effects of winds and greenhouse

gas forcing on the ocean.
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Chapter 3

Fast and slow responses of Southern

Ocean sea surface temperature to

SAM in coupled climate models

4

In this chapter we focus on the Southern Ocean (SO) and examine how sea sur-

face temperatures (SSTs) around Antarctica respond to the Southern Annular Mode

(SAM) on multiple timescales. To that end we examine the relationship between SAM

and SST within unforced preindustrial control simulations of coupled general circula-

tion models (GCMs) included in the Climate Modeling Intercomparison Project phase

5 (CMIP5) (Taylor et al., 2012). We develop a technique to extract the response of the

Southern Ocean (55oS-70'S) SST to a hypothetical step increase in the SAM index.

By analyzing the GCMs' control simulations, we are able to study the relationship

between SAM and SO SST anomalies even in models which have not performed wind

override experiments or targeted ozone depletion simulations. We demonstrate that

in many GCMs, the expected SST step response function is nonmonotonic in time.

Following a shift to a positive SAM anomaly, an initial cooling regime can transition

into surface warming around Antarctica. However, there are large differences across

4This chapter is an adapted version of an article submitted to Climate Dynamics and returned
for minor revisions (Kostov et al., 2016).
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the CMIP5 ensemble. In some models the step response function never changes sign

and cooling persists, while in other GCMs the SST anomaly crosses over from nega-

tive to positive values only three years after a step increase in the SAM. In agreement

with Ferreira et al. (2015), our findings suggest that anomalous Ekman transport may

affect the SO response to SAM on interannual and decadal timescales. Furthermore,

we interpret the diversity in the fast and slow responses across the CMIP5 ensemble

in terms of the models' time-mean SO stratification. Finally, we use observational

data for the ocean temperature climatology to constrain the real SO response to SAM

on fast and slow timescales.

3.1 Data and methods

The GCMs used in this study have made their experimental results publicly available

through the CMIP5 initiative (Taylor et al., 2012). In our ensemble we include 23

models that have archived their output of ocean potential temperature, SST, and

sea level pressure (SLP). We examine data from the CMIP5 preindustrial control

simulations (piControl), which do not have any sources of external forcing. Thus all

climate anomalies that we observe in these experiments can be attributed to internal

variability. Moreover, the control simulations are hundreds of years long allowing us to

perform statistical analysis with large samples of data. Table 3.1 provides additional

information about the length of individual CMIP5 simulations. In order to conduct

our analysis consistently across the ensemble, we convert all model output fields to

the same regular latitude-longitude grid (0.50 x 10).

We define an annual-mean index for the SAM in each model as the first principal

component of variability in SLP south of 20 S. Positive values of this index correspond

to a poleward intensification of the westerly winds. In order to remove the secular

drift, we linearly detrend the SAM timeseries.

We calculate an area-weighted average of the annual-mean SST anomalies between

550S and 70'S. We have chosen this latitude range because the anomalous westerlies

associated with SAM induce northward transport and upwelling in this zonal band.
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Table 3.1: List of CMIP5 Control Simulations
Model Name

ACCESS1-0

ACCESS1-3

BCC-CSM1

CanESM2

CCSM4

CESM-CAM5

CMCC-CM

CNRM-CM5

GFDL CM3

GFDL-ESM2G

GFDL-ESM2M

GISS-E2-H

GISS-E2-R,

IPSL-CM5A-LR

IPSL-CM5A-MR

IPSL-CM5B-LR

MIROC5

MIROC-ESM

MPI-ESM-LR

MPI-ESM-MR

MRI-CGCM3

NorESM1-M

NorESMI-ME

-I-
T

I
I

I
I
I
I
I
I
I
I
I

Control Run
Length [Years]

500

500

500

996

1051

319

330

850

500

500

500

540

550

1000

300

300

670

630

1000

1000

500

501

252
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Figure 3-1: Timeseries from the control simulation of model CCSM4: the SAM index

in gray and the Southern Ocean (SO) SST anomaly averaged between 55'S to 70'S

in black. Each index is detrended and rescaled by its standard deviation. The SST

scale is shown on the left vertical axis, and the reversed scale for the SAM index is

shown on the right. The SO SST is negatively correlated to the SAM index with

R= -0.37 at a lag of 1 year.

Further north, the wind anomaly gives rise to downwelling. As with the SAM index,

we detrend the SST timeseries to eliminate the long-term drift. A comparison of the

SO SST anomalies against the SAM index in CMIP5 models shows negative correla-

tions at short lags (Figure 3-1). This is reminiscent of the synchronous evolution of

westerly winds and SO SST seen in observations (Figure 1-1).

For each GCM, we estimate the impulse response function G (a quasi-Green's

function) of SO SST (55'S to 70'S) with respect to the SAM index. Following Has-

seimann et al. (1993), we assume that the temperature timeseries can be represented

as a convolution of G with a previous history of the SAM forcing:

-+Co
SST(t) J G(r)SAM(t - T)dT + E

~ G(T)SAM(t - -)dr + c, (3.1)

where SAM(t) is the SAM index normalized by its standard deviation USAM, T is the

time lag in steps of years, arma is an imposed maximum cutoff lag, and E is residual
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noise. We discretize equation (3.1) to obtain

I

SST(t) ~ : G(ri)SAM(t - ri)Ar + e, with rj = Trax, (3.2)
i=o

where coefficients G(ri) represent the response at different time steps after an impulse

perturbation of magnitude USAM. Each time interval Ar is equal to 1 year.

We then use a multiple linear least-squares regression of the SO SST signal against

the lagged SAM index to estimate G(ri) for i = 0, .. , Tmax. When performing the

regression, we divide the annual SAM timeseries into overlapping segments, each of

length Tmax.

In our intercomparison we take into account differences in the magnitude of SAM

variability across the set of 23 models. We calculate USAMEnS, the ensemble mean of

the index standard deviations USAM. We then rescale the estimated impulse response

functions for each GCM, where we multiply G(i) by the corresponding nondimensional

ratio USAM/Ens SAM-

By selecting multiple shorter SST and SAM timeseries from the full control simula-

tion and by varying the cutoff lag rmax, we obtain a spread of estimates for the impulse

response function G(r) in a given model. Table 3.2 lists our fitting parameters and

their values. We use the residuals e to quantify the uncertainty uImpulseFit(t) on each

of these least squares regressions. Figure 3-3a shows examples of impulse response

estimates for three CMIP5 models, rescaled by USAMEns/JSAM. Multiple fits span

envelopes of uncertainty, while vertical bars denote the error margins gImpulseFit(t)

on each fit. Note that in our analysis we use annual-mean SST. Hence the estimated

Year 0 response is not zero, as it represents an average of the SST anomaly over the

first months after a positive SAM impulse.

We integrate the impulse response function fits to obtain a spread of estimates for

the SO step response function:

t t
SSTStep(t) = G(T)dr ~E G(r)Ar, (3.3)
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Table 3.2: Fitting Parameters. We vary the maximum cutoff lag Trax [Years]. Note
that we use only Tmax = 50 years and Tmax = 75 years for models whose control
simulation is shorter than 350 years. We use four different values of Tmax = 50 where
longer simulations are available. We also select shorter SST timeseries from the full
control simulations by removing a certain percent of time steps from the beginning
and the end of each model run.
Fitting Parameter Parameter Space

rmax [Years] 50, 75, 100, 150

Offset from the beginning
of the full tirneseries 0, 2.5, 5, 7.5, 10, 15,
[% of simulation length] 20, 25, 30, 35, 40

Offset from the end
of the full tiieseries 0, 2.5, 5, 7.5, 10, 15,
[% of simulation length] 20, 25, 30

where t < Ta and Ar 1 year.

Each of the estimates corresponds to a different combination of start and end

times for the timeseries, as well as different choices of Tmax. We calculate the mean

SSTstep(t) and the standard deviation USpread(t) which characterize our envelope of

step response functions for a given model. We furthermore use the UImpulseFit (t) values

to constrain the margin of error UStepFit(t) oneach individual estimate in our spread.

We then combine astepiit(t) and OSpread(t) in quadrature in order to quantify the total

uncertainty USSTstep(t) on the mean SSTstep(t) for a given GCM.

Figure 3-3b shows example step response functions calculated for the three models

presented in Figure 3-3a. For each of the GCMs, we have shown only 100 different

estimates, illustrating envelopes of uncertainty. In comparison, in our full analysis we

perform more than 350 fits per model by selecting shorter timeseries from the control

simulation and by specifying different values for rnax. The vertical bars in Figure 3-3

indicate the error margins 0 StepFit(t) based on the residuals of each regression.

The step response results are integral quantities, and hence they are smoother

than the corresponding impulse response functions. However, a drawback is that the

integrated errors grow larger in time. Nevertheless, Figure 3-3b demonstrates that

even with generous envelopes of uncertainty and large error bars on the individual
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fits, we can still distinguish the estimated step response functions of different CMIP5

models.

We use synthetic noisy signals and artificially constructed systems with known step

responses in order to test our methodology. The verification procedure is described

and illustrated in detail in the following section.

3.2 Verification of the Methodology

We test our methodology from Section 5.1 in order to ascertain its reliability. Our

verification procedure involves applying the regression algorithm to systems with a

known prescribed step response function. The latter is convolved with a randomly

generated order 1 autoregressive timeseries (AR(1)) that is 1000 years long and resem-

bles a SAM forcing. The result of the convolution is our synthetic SST response, which

is strongly diluted with a different AR(1) process characterized by longer memory.

We choose parameters for the AR(1) models such that their autocorrelations resem-

ble those of SAM and SO SST timeseries in the CMIP5 GCMs (for instance, Figure

3-2a and c). We conduct multiple verification tests with different choices of AR(1)

parameters. We also vary the signal to noise ratio in our synthetic SST. Figure 3-2b

and d show examples from two different tests.

Within every test we generate an ensemble of multiple synthetic SAM and SST

signals with the same statistical properties but different random values. We apply

our algorithm separately to each realization in the same fashion as our analysis of

CMIP5 control simulations. The verification tests confirm the validity of our method

for estimating step response functions.

3.3 Results

Our estimated step response functions suggest notable intermodel differences in the

SO SST response to SAM across the CMIP5 ensemble (Figure 3-4). Although all

GCMs show initial cooling, many of them transition into a regime of gradual warm-
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Figure 3-2: Application of the regression algorithm to systems with a known pre-

scribed step response function. On the top row we show a test case where we assume

long memory in our SAM and SST signals. The SST signal is diluted such that 60%

of the variance is noise. In panel a) on the left, we show the lagged autocorrelations

of SAM and SST in CCSM4 (gray dashed curves) and our synthetic artificially gen-

erated signals (solid black curves). In panel b) we show applications of the regression

algorithm. The thick black curve is the true prescribed step response function. The

thin gray curves and the vertical bars denote the estimated step response function

SS Jsqjep(t) and the uncertainties -sstep(t) produced by applying our regression al-

gorithmn. The two gray curves in panel b) result from analyzing separate realizations

in which we use the same prescribed step response and AR. timeseries with the same

statistical properties (illustrated in a)) but different random values. On the bottom

row we show a test case where we assume shorter memory in the SAM and SST

signals, but the SST signal is diluted with more noise, such that the forced response

contributes only 20% of the total variance. Panels c) and d) are analogous to panels

a) and b).
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Figure 3-3: Annual-mean response of the Southern Ocean SST anomaly 10C to: a) a
positive impulse perturbation in the SAM index of magnitude equal to -SAAI Ens; b)
a positive step increase in the SAM index of magnitude equal to -sAAI"". Different
colors are used to distinguish the response functions in the three CMIP5 models
shown: CCSM4, MPI-ESM-MR, and CNRM-CM5. For each model we show 100 fits
that outline an envelope of uncertainty. Vertical error bars denote the margin of error
for each fit.

ing. If forced with a positive step increase in the SAM, a number of CMIP5 models

- such as CanESM2, CCSM4, and CESM-CAM5 are expected to show positive

SST anomalies in the SO within a few years. In contrast, other ensemble members,

including CNRM-CM5 and GFDL-ESM2M, do not exhibit such nonmonotonic re-

sponse to a poleward intensification of the westerlies and instead maintain negative

temperature anomalies persisting for longer than a decade. What sets this intermodel

diversity in the way the SO reacts to SAM on short and long timescales?
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Figure 3-4: Annual-mean responses of the Southern Ocean SST [ C1 to a step increase

in the SAM index of magnitude o4-i Ens comparison across the CMIP5 ensemble.

For each model we have shown only the mean estimate SSTst,P(t).

Following Ferreira et al. (2015), we examine whether the fast cooling regime is

related to northward wind-driven transport, advecting colder water up the climato-

logical SO SST gradient. The anomalous horizontal heat flux Qho, [W/m 2 ] in the SO

Ekmnan layer of depth ZPEk scales as

Q8rn. N C, f k9[SST], (3.4)

where C, ~ 4 x 10' J/kg/K is the specific heat of water, [ ] is the zonally aver-

aged zonal component of the anomalous surface wind-stress associated with SAM,

f is the Coriolis parameter, and 8.,[SST] is the meridional gradient of the zonally

averaged climatological SST. As in Ferreira et al. (2015), we have assumed that eddy

compensation in the thin Eknian layer is much smaller than the anomalous north-

ward wind-driven transport. Since we have rescaled each SST response function by

-sA5:rA/O-SAM, we have eliminated some of the intermodel differences due to [7 ].

When we perform a weighted least squares linear regression of the estimated Year

1 cooling anomalies from our step responses against D, [SST] averaged between 550

and 70S, we see a strong anticorrelation with a Pearson's R = -0.72 (Figure 3-5a).

This result is significant at the 5% level with p < 0.01 and highlights the importance
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of horizontal Ekman transport for the fast cooling regime during a positive phase of

the SAM.

We also consider the role of Ekman upwelling for influencing the long-term re-

sponse to a step increase in the SAM index. We assume that the anomalous vertical

heat flux Qvert [W/m2 ] in a subsurface layer of thickness Zsub can be approximated

as

Qve_ AzL[ (-5
Qvert Oc -&YC, ( , (3.5)

where AZ[91 in 'C is the inversion (i.e., the maximum vertical contrast) in the time-

mean ocean potential temperature within the layer, and -y (unitless) denotes the

efficiency with which the subsurface warming signal is communicated into the mixed

layer. Parameter 6 is a nondimensional factor 0 < 6 < 1 that indicates whether we

have full (6 = 0), partial (0 < 6 < 1), or no (6 = 1) compensation of the anomalous

Ekman upwelling by the eddy-induced circulation.

If the slow response is indeed governed by upwelling of warmer water below the

mixed layer, the bolus circulation cannot be neglected (Ferreira et al., 2015). As

discussed by Ferreira et al. (2015), local eddy compensation at depths of hundred

meters may be much larger than in the thin Ekman layer. Moreover, the fraction of

eddy compensation (1 - 6) is model dependent. The representation of mixed layer

entrainment processes also differs across the CMIP5 ensemble. We therefore expect

that both 6 and -y may contribute to the intermodel spread in the slow SST response,

along with the climatological SO temperature inversion A. [0].

Using Equation 3.5 as an Ansatz, we test the importance of the background ther-

mal stratification A,[O for contributing to differences in the slow response among

CMIP5 GCMs. We calculate the average slope A [C/year] of the step response func-

tions between Year 1 and Year 7 after a step increase in the SAM and the standard

error (SE) for each model estimate. In many models this slope is predicted to be

positive, corresponding to a slow warming. We compare A against the vertical tem-

perature inversion Ah[] for the area-averaged water column between 550 and 70*S
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and between depths of 67 in and 510 m by performing a weighted least-squares linear

regression. We have chosen a vertical range which roughly encompasses the summer

minimum and the winter maximum SO mixed layer depths of CMIP5 models (Salled

et al., 2013). We find that the slow response rates A across models are positively

correlated with A-.[0, with R = +0.45 (Figure 3-5b. This result is statistically signif-

icant with p < 0.05. It emphasizes that Ekman upwelling acting on the background

temperature gradients contributes substantially to the intermodel spread in the slow

SST responses to SAM.

The correlation between the rate A and the vertical temperature inversion A,9]

is not as strong as our result linking the rapid cooling response to the meridional SST

gradients. We propose that the slow regime is more complicated than the fast one

due in part to air-sea heat exchange (Ferreira et al., 2015) but also due to multiple

diverse processes within the ocean domain such as eddy compensation and mixed

layer entrainment represented by coefficients 6 and 7 in Equation 3.5.

We acknowledge that the data points in our intermodel correlation analysis of

the fast and slow response (Figures 3-5a and 3-5b) do not necessarily represent in-

dependent samples. Some CMIP5 ensemble members are in fact multiple versions of

the same GCM with a different horizontal resolution (e.g., MPI-ESM-LR and MPI-

ESM-MR). Other ensemble members are developed by the same institution (e.g.,

GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M) or belong to the same family of

models and hence share common code or parameterizations (Knutti et al., 2013).

Thus it is possible that we are inflating our sample size by redundantly including

interdependent GCMs. On the other hand, we cannot know a priori which models

may exhibit similarities or differences solely on the basis of their common genealogy.

For instance, models MIROC-ESM and MIROC5 are related, but their predicted fast

SST responses to SAM are statistically different (Figure 3-5a).
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3.4 Connecting Our Model-Based Results to the Real

Southern Ocean

While acknowledging the limitations of this regression analysis, we attempt to extend

our CMIP5 results to the real SO and place an observational constraint on the SST

response to SAM. We calculate the climatological meridional SST gradients 9[SST]

using data from the Reynolds Optimum Interpolation (Reynolds et al., 2002) and

compute a metric for time-mean vertical contrast in potential temperature AZ[9] using

the Hadley Centre EN4 product (Good et al., 2013). We use these observationally

based climatological SO temperature gradients and the linear relationships found

among CMIP5 models (Figure 3-5) to estimate the fast and slow responses in the real

SO (denoted with stars in Figures 3-5a and 3-5b). Our results suggest an expected

cooling of -0.13'C with a standard error of 0.01'C one year after a step increase in

the SAM index. This is likely to be followed by a gradual reduction in the negative

SST anomaly at a rate of 0.014oC/year with a standard error of 0.003'C/year.

We then calculate a range of model-based estimates for the real SO response. We

quantify the bias that each model exhibits with respect to the observed 8,[SST] and

A[] in the SO. Then following the bias-correction methodology of DeAngelis et al.

(2015), we use the relationships from Figure 3-5 to quantify how a deviation from

the observed ay[SST] or A44] introduces an expected bias in the models' fast and

slow responses, respectively. We then subtract these biases from the estimated fast

and slow responses of each ensemble member (Figure 3-6a),b)). We assume that the

uncertainty in our initial model-specific estimates is not affected by this linear bias-

correction. We calculate weighted means and weighted standard deviations of the

bias-corrected model spreads in the fast and slow responses, where we rescale each

data point in our sample by the inverse of the SE squared. Note that the weighted

bias-corrected ensemble means reproduce the same estimates for the real SO response

as the linear relationships in Figure 3-5: a fast cooling of -0.13'C followed by slow

warming at a rate of 0.014 C/year. Finally, we use our results to constrain an envelope

of uncertainty on the step response of the real SO to SAM (See schematic Figure 3-
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6c). Our bias-corrected analysis for the real SO suggest that the expected Year 1

cooling of -0.13*C has an ensemble standard deviation (SD) of 0.027'C, while the

estimated slow response rate of 0.014*C/year has an SD of 0.0130 C/year.

3.5 Discussion and Interpretation of the Results

In this study we have analyzed CMIP5 preindustrial control simulations and exam-

ined how SAM forces SO SSTs. In many GCMs the SST exhibits a two-timescale

response to SAM: initial cooling followed by slow warming. As in Ferreira et al.

(2015), we interpret the evolution of these temperature anomalies in terms of the

wind-driven circulation redistributing the background heat reservoir. We show ev-

idence that anomalous equatorward transport of colder water is related to the fast

cooling response south of 500S. Our results also suggest that the slow warming regime

found in many GCMs is sustained by Ekman upwelling of warmer water in the haline

stratified SO.

Across the CMIP5 ensemble, we find a notable intermodel spread in the SO SST

response to poleward intensification of the westerlies. We relate part of the diversity

of step response functions to differences in the background thermal stratification

among the models. GCMs that have small meridional and large vertical temperature

gradients in their SO climatology tend to transition faster between the initial cooling

and the slow warming regime. Our results imply that a realistic ocean climatology

is one of the important prerequisites for successfully simulating the SST response to

SAM.

The model-specific results of our analysis have implications for attribution stud-

ies which evaluate the effects of greenhouse gas forcing and ozone depletion on the

SO. For example, Sigmond and Fyfe (2014) analyze CMIP3 and CMIP5 output to

determine the impact of the ozone hole on SO sea ice. Similarly, Solomon et al.

(2015) design and conduct numerical experiments with CESM1(WACCM) to study

how ozone depletion affects the circulation and sea water properties of the SO. Such

in-depth attribution studies often employ a limited set of GCMs - for instance, only
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a few CMIP5 modeling groups provide output from ozone-only simulations (Sigmond

and Fyfe, 2014). However, individual GCMs have various biases in their mean ocean

climatology [e.g., Meijers et al., 2014; Salle6 et al., 2013]. Thus, we emphasize that

the outcome of attribution experiments can be sensitive to the choice of models used.

Realistic background temperature gradients are a prerequisite for simulating success-

fully the response of the SO to a poleward intensification of the westerlies, as the one

seen in numerical experiments with ozone depletion.

Our results also identify criteria for constraining and critically assessing future

projections of the Southern Hemisphere SST anomalies. Under scenarios with ex-

tended greenhouse gas emissions and gradual ozone recovery, CMIP5 models predict

a significant and lasting poleward intensification of the westerlies throughout the 21st

century (Wang et al., 2014). Based on our analysis, we suggest that those models

which have smaller biases in their climatological stratification provide better estimates

of future SST anomalies in the SO.

We point out that in our analysis we have neglected seasonal variations in ocean

stratification and their impact on the SO SST response to wind changes. Purich et

al. (2016) emphasize that in the summer a warm surface lens caps the colder subsur-

face winter water. Therefore, during this season, anomalous Ekman upwelling may

complement rather than counteract the cooling effect of northward Ekman transport.

Our study has further limitations in its ability to account for the multiple diverse

processes that take place in the SO. For example, de Lavergne et al. (2014) show

that there are large differences among the CMIP5 models in their representation of

deep convection around Antarctica. It is possible that certain GCMs which do not

have strong SO convection, such as BCC-CSM1 and CNRM-CM5 (de Lavergne et al.,

2014), may not be able to efficiently communicate a subsurface temperature signal

into the mixed layer. This in turn may affect the slow warming response to SAM in

these models. The recurrence of convective and nonconvective periods in GCMs can

also modify the variability of SO stratification about its mean climatology and affect

the transition between the fast and slow SST responses (Seviour et al., 2016).

Another potential deficiency in our work pertains to our treatment of atmosphere-
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ocean coupling. We have not explored any possible intermodel differences in the

response of SO surface heat fluxes to SAM. In our linear response function analysis,

we have also assumed that the SAM wind pattern forces the SST but not vice versa.

However, Sen Gupta and England (2007) suggest that SO SST anomalies may feed

back on the atmospheric circulation and increase the persistence of SAM. We treat

such mechanisms as a source of error contributing to the uncertainty on our estimates

of the step response functions.

It is also important to note that the CMIP5 ensemble members used in our analysis

do not resolve eddies and rely on parameterizations. Therefore, these GCMs may be

missing an important element of the ocean's response to winds. Bdning et al. (2008)

present observational evidence indicating that isopycnal slopes in the SO have not

changed over the last few decades despite trends in the SAM. The B6ning et al.

(2008) results are consistent with the eddy-compensation phenomenon and support

the possibility that unresolved eddy processes can strongly modulate anomalies in

the wind-driven circulation. Despite this shortcoming of our study, we reiterate that

it is important to understand how poleward intensifying westerlies impact the SO in

the very same models that are widely used to analyze historical climate change and

make authoritative future projections.

Finally, our analysis can be used to make a qualitative estimate for the SST

response to SAM in the real SO. Our results suggest that during a sustained positive

phase of the SAM, SO SSTs can exhibit a non-monotonic evolution. A strong and

rapid transient cooling may be followed by a gradual recovery. However, our results

do not suggest a high warming rate during the slow response to SAM.

Our results have implications for surface heat uptake in the real SO and for the

persistent expansion of the sea ice cover around Antarctica. The positive SAM trend

over the last decades may have allowed a cooler SO to absorb more excess heat

from the atmosphere in a warming world. Furthermore, SAM-induced negative SST

anomalies may have contributed to the observed increase in SO sea ice extent [Holland

et al., 2016; Kostov et al., 2016a]. However, if the real SO exhibits a two-timescale

response to SAM, the observed SST trends may reverse sign. Hence a sustained
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poleward intensification of the westerly winds - due to ozone and greenhouse gas

forcing - can eventually contribute to a surface warming of the SO, a decreased rate

of heat uptake, and a reduction in sea ice concentration. It is therefore important

to constrain both the short-term and the long-term SO SST response to SAM. In

the following chapter we use the CMIP5 step response functions to SAM in order to

understand the historical SO climate change in observations and GCM simulations.
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Figure 3-5: a) Relationship between the models' climatological meridional SST gra-

dients D.,[SST] I 0C 100 km ] in the Southern Ocean (55'-70'S) and the Year 1 SST

response SSTse(t 1) ['C1 to a step perturbation in the SAM index. The vertical

error bars correspond to --j,,j,,p(t = 1). b) Relationship between the climatological

temperature inversion A,[01 I 0C I in the Southern Ocean (depth levels 65 m to 550

m) and the SST warming rate A 10C // year] which characterizes the slow response to

a step increase in the SAM index. Legend: both a) and b) use the same color code

and alphabetical order as in Figure 3-4 to distinguish the CMIP5 models analyzed.

Straight lines indicate linear fits to the scatter where each data point in the regres-

sion analysis is weighted by the inverse of the SE squared. The yellow stars denote

estimates for the response of the real Sou+ern Ocean based on observed climatolog-

ical meridional SST gradients between 550S and 70'S (NOAA Reynolds Optimum

Interpolation Reynolds et al. (2002)) and the climatological 4 0L0] inversion (Hadley

Centre EN4 dataset, Good et al. (2013)).
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Chapter 4

Southern Ocean cooling and sea ice

expansion in a warming world

5

In this chapter we investigate why historical simulations with state-of-the-art CMIP5

global climate models do not reproduce the observed 1979-2014 Southern Ocean cool-

ing trend and, instead, predict slow but steady warming throughout the region and

continuous sea ice loss (Figure 4-1). We attempt to explain both the behavior of

GCMs and the possible physical mechanisms behind the observed trends around

Antarctica. We use the Southern Ocean(SO) response functions to SAM (South-

ern Annular Mode) from Chapter 3 lKostov et al., 20161 and we combine them with

regional climate response functions (CRFs) to greenhouse gases (GHGs) based on the

same suite of CMIP5 models. We convolve the two sets of CRFs with the respective

SAM and GHG forcing trends simulated in the CMIP5 historical experiments. This

allows us to reconstruct the 1979-2014 historical simulations of Southern Ocean SST.

The successful application of the CRF framework shows that we can break down the

5This chapter forms the basis for two articles, Kostov et al. (2016a) and Kostov et al. (2016b),
that will be submitted for publication.
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simulated Southern Ocean SST trends into a contribution due to GHGs, a contribu-

tion due to the SAM, and natural variability not already accounted for by the SAM

index. We also estimate how each of the aforementioned factors affects the intermodel

spread of SO trends across the CMIP5 ensemble. We offer additional verification of

this methodology by using the SAM CRFs to reproduce the sea surface temperature

(SST) trends from selected 30-year periods of the CMIP5 control runs marked by

strong SAM tendencies. Moreover, we examine the contemporaneous trends in sea

surface salinity (SSS), ocean heat distribution, and sea ice concentration (SIC). We

point out that the composited SIC responses reflect very closely the spatial pattern of

SAM induced SST anomalies. Finally, we show that if we convolve a plausible com-

bination of CMIP5 GHG and SAM response functions with the respective timeseries

of radiative forcing and the SAM index, we obtain Southern Ocean cooling similar to

the one seen in observations. We then perform a similar analysis using a combination

of GHG and ozone response functions to recover the observed cooling.

Section 4.1 analyzes the effect of multidecadal SAM trends on the SO and relates

these results to the CRFs from Chapter 3. Section 4.2 discusses the regional CRFs

to greenhouse gas forcing estimated from abrupt CO2 quadrupling experiments with

CMIP5 models. Section 4.3 demonstrates that we can use the SO CRFs to SAM

and GHGs to reconstruct the Southern Ocean SST trends from CMIP5 historical

simulations. We then extend this linear response framework to the real SO in an

attempt to understand the observed cooling around Antarctica in Section 4.4. Finally,

in Section 4.5 we produce a similar analysis of the historical Southern Ocean trends

but using CRFs to GHGs and ozone rather than SAM.

4.1 The Southern Ocean response to multidecadal

SAM trends

We consider the preindustrial control experiments of CMIP5 models. As in Chapter

3, we regrid all GCM output to the same regular latitude-longitude grid. For each
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control run, we calculate an index SLPidex [Pa] of the Southern Annular Mode (SAM)

as the zonally-averaged contrast in sea-level pressure (SLP) between 45*S and 60'S.

Positive values of this index correspond to poleward intensification of the westerly

winds. We also consider an alternative definition of the SAM as the first principal

component (PC1) of sea-level pressure variability south of 206S as in Chapter 3. The

two approaches for calculating the amplitude of the Southern Annular Mode pattern

produce very similar timeseries as illustrated with an example in Figure 4-2a).

Moreover, we define an index for the strength of the Southern Hemisphere surface

westerlies in the control run of each model included in our ensemble. For this purpose,

we compute a timeseries for the maximum of the annually averaged zonal mean zonal

wind near the surface in m/s (See an example in Figure 4-2b)). However, several

ensemble members (e.g., CCSM4 and CESM-CAM5) have not output the strength of

the westerlies evaluated at 10 meters. For these models, we have defined a timeseries

of the zonal mean zonal wind at 925 hPa (since the surface pressure in the Southern

Hemisphere high latitudes is climatologically smaller than the standard sea-level value

of 1013 hPa).

We compute all thirty-year linear trends in the SAM index and in the timeseries

for the strength of the Southern Hemisphere westerlies. We have chosen a thirty-

year length in order to relate our results to the real world, where tendencies of polar

amplification have been observed continuously over the past few decades. In our

analysis we consider nonoverlapping and overlapping periods alike, as this provides

us with a larger sample.

Figure 4-2d) shows an example timeseries for the magnitudes of all thirty-year

trends in the westerlies and a similar timeseries for the SAM index trends in one of

our ensemble members, model ACCESS1-0. Across all CMIP5 GCMs we find that the

multidecadal tendencies in the Southern Hemisphere near-surface zonal wind track

very closely the tendencies in the annular mode. Hence, on these timescales, the

strengthening of the surface westerlies in the control runs can be interpreted as a

manifestation of the SAM. In all models included in our ensemble, the wind and the

SAM tendencies have normal distributions (Figure 4-2c).
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In our study we select multidecadal periods characterized by the strongest positive

and negative tendencies in the SAM index: the 2o- tails in the distribution of all

thirty-year trends within each model. We then perform a high-minus-low composite

of the contemporaneous trends in Southern Ocean SST, surface salinity, potential

temperature of water, surface heat fluxes, ocean heat content (OHC), and the near-

surface zonal mean zonal wind. Figure 4-3 shows the composited zonal mean zonal

wind trends from CMIP5 models and the historical 1980-2010 trend based on the ER.A

Interim reanalysis [Dee et al., 2011]. We compare our SAM-based composites with

observational data from the 1979-2014 period, which is marked by a strong positive

SAM trend. Drawing parallels between our CMIP5 analysis and the observational

record allows us to look for the signature of SAM in the patterns of historical Southern

Ocean climate change.

Across all models, the composited SST trends show a distinctive dipole pattern

(Figure 4-5) in the Southern Hemisphere with warming at midlatitudes and cooling

poleward of 50'S (Figure 4-4). The trends in sea-ice concentration around Antarctica

are spatially correlated with the SST treads (Figure 4-6). We find sea ice growth in

the regions of surface cooling and sea ice contraction in the regions which warm.

In contrast to the SST trends, the composited near-surface salinity trends (Figure

4-4) show no dipole pattern. We find small but widespread salinification south of

30'S. While the SST dipole in the SAM-based composites is reminiscent of the 1982-

2014 Southern Hemisphere trends, the composited salinity trends show disagreement

with observations. The last few decades are a period marked by strong Southern

Ocean freshening, but our composites exhibit salinification. Thus our results imply

that the historical temperature trends around Antarctica are consistent with an ocean

response to a positive SAM, but the negative 1982-2014 salinity trends may not be

induced by poleward intensification of the westerlies.

We then consider the zonally averaged sections of the composited potential tem-

perature anomalies at depth. The ensemble-mean of the latter demonstrates a close

connection between the anomalous wind forcing associated with SAM and the redis-

tribution of the background heat reservoir in the ocean (Figure 4-7) during the com-
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posited 30-year periods. The observed 1979-2014 trends in zonally-averaged ocean

potential temperature exhibit a similar pattern of cooling of the upper Southern

Ocean and buildup of ocean heat in the Southern Hemisphere midlatitudes.

Nevertheless, the composited SST trends indicate notable differences in the South-

ern Ocean response to SAM across the CMIP5 ensemble even after we rescale each

composite by the ensemble mean SAM trend. For example, models CanESM2,

CCSM4, and CESM-CAM5 show weak cooling around Antarctica during multidecadal

periods of increase in the SAM index. In contrast, models CNRM-CM5 and MRI ex-

hibit a very strong decrease in SO SSTs in the 30-year composites. We attempt to

interpret this intermodel diversity in terms of the SO step-response functions to SAM

derived in Chapter 3.

Following Marshall et al. [2014], we convolve the SST step response functions to

SAM SSTStepSAM from Chapter 3 with the mean timeseries of SAM (SAM1Cmpo,)

from the composited 30-year periods. This convolution recovers an estimated time-

series for the composited SST anomalies SSTcompos:

(t - dSAMc 
(4.1SSTcompos (t) ~ SSTStepSAMIt - t') dt

Comparing the composited SST trends (SSTcom 0p,) with the estimates SSTCOmpOS

from step-response convolutions allows us to test the validity of Eq. 4.1 in each

CMIP5 model. Figure 4-8 shows that this approximation is applicable to modeling

the Southern Ocean response to SAM in this set of coupled GCMs. Moreover, we

are able to interpret the SST response to a multidecadal SAM trend as an integral

quantity which smooths over the inherent fast and slow responses described in Chapter

3.

We can thus place the CRF results in the context of the observed 1979-2014

SAM trend and its impact on the spatial pattern of Southern Ocean climate change.

However, in order to fully understand the historical trends in the Southern Ocean, we

need to take into account the anthropogenic GHG forcing. The next section discusses

a range of possible regional CRFs to greenhouse gas forcing based on experiments
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with the CMIP5 coupled models. We focus on the response of the Southern Ocean

to global changes in the radiative forcing.

4.2 Regional CRFs to greenhouse gas forcing

The Southern Ocean CRFs to GHG forcing play a major role in our reconstruction

of CMIP5 historical simulations and our analysis of the intermodel spread across the

ensemble. In Marshall et al. [20141, we discuss the different regional responses to

greenhouse gas forcing and focus on the asymmetry between the Antarctic and the

Arctic. We have considered CMIP5 experiments where CO 2 is abruptly quadrupled

relative to preindustrial values. We can think of the output from these idealized

experiments as representing a range of plausible climate response functions to a step-

increase in GHG forcing.

The accelerated warming in the Northern Hemisphere high latitude oceans in-

duced by the CO 2 perturbation stands in stark contrast to the slow warming rate

in the Southern Ocean (Figure 4-9). The observed historical SST trends feature an

Antarctic-Arctic asymmetry similar to the one simulated in the abrupt quadrupling

experiments [Marshall et al., 20141. Therefore, these idealized experiments provide

useful insights into the processes which set the large scale pattern of climate response

to greenhouse gas forcing. In Marshall et al. [2014] we interpret the Antarctic-Arctic

warming asymmetry in terms of the time-mean meridional overturning circulation

advecting the heat anomaly in the upper ocean northward like a passive tracer. In

comparison, the Southern Ocean is a region where the background circulation up-

wells deep water masses unmodified by greenhouse gas forcing [Marshall et al., 2013;

Armour et al., 2016].

In Marshall et al. [2013] we consider the CRFs of 15 CMIP5 models where we

select the two regions of the ocean: north of 50'N and south of 50'S (Figure 4-9). Here

we extend our analysis to encompass a set of 20 CMIP5 models, the same set of GCMs

as in Chapter 3. Note that models CESM-CAM5, CMCC-CM, and NorESM1-ME

have not made available any abrupt CO 2 quadrupling simulations.

82

11 |111111111111 in g iil |It l ll iill I || ii I 1 ll l il fl|R m lIllll~ ll[lpr ipi ll li i r I I I, ',, , r , ,II I 1 ,



In order to be consistent with the Southern Ocean CRFs to SAM derived in

Chapter 3, we now consider SST response to GHG forcing averaged over the latitude

band between 55'S and 70'S denoted by CRFGHG (Figure 4-10). In the following

section we use the CRFs to SAM and the CRFs to GHG to recover the Southern

Ocean SST trends from CMIP5 historical simulations. The TOA radiative forcing

in these experiments is dominated by GHG and the SAM trends are influenced by

stratospheric ozone depletion.

4.3 Understanding the Southern Ocean SST trends

in CMIP5 historical simulations

In order to understand why CMIP5 GCMs are generally unable to simulate the 1979-

2014 Southern Ocean cooling trends, we analyze the forced response mechanisms in

the models' historical simulations extended until 2014 under the RCP8.5 scenario. We

take into account both the trend in the TOA radiative forcing and the model-specific

SAM trends. We consider the separate and combined effects that both sources of

forcing exert on the Southern Ocean.

We first analyze the contribution of SAM to the simulated 1979-2014 Southern

Ocean SST trends. For each of the CMIP5 historical simulations and preindustrial

control experiments, we calculate an annual mean SAM index SLPinde, defined as the

zonally-averaged sea level pressure (SLP) difference [Pa] between 45'S and 60*S. This

definition of the SAM allows for an easy comparison between the 1979-2014 SAM

trends in simulations and observations or reanalysis. Moreover, across all models

in our ensemble, the 45OS-60OS SLP difference SLPindex tracks very well the first

principal component (PC1) of SLP variability south of 20'S (the definition of SAM

used in Chapter 3).

In fact, if we compare how SLPindex projects onto PC1 in the long preindustrial

control experiments, we find that the ratios

TSAM - SLFidex (4.2)
PCi
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are very similar across CMIP5 models. We rescale the CRFs from Chapter 3, which

were computed as the response CRFp0 l to the ensemble-mean of the PCI standard

deviations GPC1Ens, to obtain

CRFSLPindex - CRFpc (4.3)
JPC1E SAM'

where CRFSiPindex [ 0C/Pa] is now the expected Southern Ocean SST response to

a step-increase in the SLP difference SLPindex between 45'S and 60'S. Figure 4-11

shows CRFSLPindex, the rescaled SO SST CRFs to SAM in each CMIP5 model.

We then convolve the 1979-2014 linear trend in the SLPindex from each CMIP5 his-

torical simulation with the corresponding model-specific response function CRFSLPindex

similarly to Eq. 4.1 to obtain estimates for the SAM-induced SO SST anomaly

SSTSAM (t) in each historical simulation. We denote the 1979-2014 trends in SSTSAM(t)

by SSTTrendSAM [C/decadel.

We compare the estimates for the SAM-induced SST trends in the models SSTTrendSAM

with the actual simulated SO trends for the 1979-2014 period (4-12a)). We see that

SAM can explain a large part of the intermodel spread in the SO climate change across

the CMIP5 historical experiments. However, the trends in SSTSAM(t) consistently

underestimate the simulated SO SST anomalies. The ensemble mean SSTTrendSAM

trend is negatively offset with respect to the ensemble mean SO SST trends between

1979 and 2014. This should not come as a surprise, as the SAM is not the only source

of forcing on the SO in the historical simulations. Perturbations in the top-of-the-

atmosphere radiative forcing play an important role in driving regional and global

climate change as modeled in the CMIP5 GCMs.

Since the industrial revolution, the top-of-the-atmosphere radiative forcing has

been overwhelmingly dominated by anthropogenic greenhouse gas emissions. Major

volcanic eruptions have exerted only an episodic short-lived cooling effect superim-

posed on the long-term warming trend. However, anthropogenic aerosols and changes

in land use have also contributed to the total globally averaged radiative forcing rep-

resented in the models' historical simulations.
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The local effect of aerosols and land use is expected to be larger over the Northern

Hemisphere, where most of the earth's continental cover, most of the human popula-

tion, and most sources of industrial pollution are concentrated. The non-local effect

of anthropogenic aerosols and land use on Southern Ocean climate is therefore unclear

and its representation may be very model dependent. Here we neglect these contribu-

tions to the TOA forcing whose effect on the Antarctic region may be more limited.

We also neglect the local TOA radiative forcing due to stratospheric ozone depletion

(we separately consider the SAM-like effect of the ozone hole on atmospheric and

ocean dynamics). We focus instead on the radiative impact of well-mixed greenhouse

gases. As a simplification, we assume that the concentration of anthropogenic GHGs

in the CMIP5 historical simulations grows exponentially from a 280 ppm to a 480

ppm C0 2-equivalent between 1855 and 2014 (160 years). This corresponds to a linear

increase in radiative forcing, as the latter varies logarithmically with the CO 2 con-

centration. We treat model-specific deviations from this trend as error terms in our

analysis.

To obtain an estimate of the SO SST anomalies SSTRAD induced by the ideal-

ized trend in GHG-induced TOA radiative forcing, we convolve the latter with the

Southern Ocean CRFs to GHG from Section 3. These SST step response functions

are based on CMIP5 numerical experiments where the preindustrial CO 2 concentra-

tion of 280 ppm is abruptly increased to 4x280 ppm. Thus before we perform our

convolution analysis, we rescale the historical radiative forcing trend by the forcing

which corresponds to abrupt CO 2 quadrupling:

1( xi(480) - ln(280 ) ) 1FGHGtrend - l4x28)-l(8)16yer(4.4)

ln(480/280) 1
ln(4) 160years

~ 2.43 x 10-3
years

where FGHGtrend [1/years] is the rescaled idealized trend in TOA radiative forcing.
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Thus SSTRAD [ 0C] can be approximated as

t
SSTRAD(t) x FGHGtrend CRFGHG(t - t')dt' (4.5)

We compare the 1979-2014 linear trends in SSTRAD(t), SSTTrendRAD IC/decade]

against the SO SST trends in the actual historical simulations (4-12b)). We see a

smaller intermodel spread in the SSTRAD than in the SSTAM trends (Figure 4-12a)

and b)). Even though GHG forcing alone reproduces the ensemble mean, our SSTRAD

convolutions by themselves cannot explain well the large differences in the 1979-2014

SO SST trends across the CMIP5 historical simulations.

This motivates us to combine the results of the SAM and GHG convolutions and

simultaneously account for both of these major sources of forcing on the Southern

Ocean. However, part of the trend in the SAM index is itself driven by GHG forcing

[Solomon et al., 20151. That is why we cannot sum the SAM and GHG convolu-

tions linearly without subtracting an interaction term representing the SST anomaly

induced by the component of the SAM trend that is attributable to GHG forcing.

We turn to the CMIP5 abrupt CO2 quadrupling experiments to estimate the

effect of GHG forcing on the SAM. For each quadrupling experiment we calculate

SAM4 xco 2 (t) [Pal, the anomaly in SLPinde, relative to the corresponding preindus-

trial control run (Figure 4-13). The SAM4 xco2 indices constitute CRFs of SAM to

GHG forcing. We convolve these CRFs with the idealized trends in GHG TOA ra-

diative forcing to obtain estimates for the GHG-induced anomaly in the SAM index

(SAMGI!G [Pal) of each CMIP5 historical simulation:

t
SAMGHG(t) I FHG trend11 SAM4xco 2(t - t')dt' (4.6)

and we further estimate the linear trend in SAMGHG(t) over the 1979-2014 period:

SAMrendGHG [Pa/year]. The trend SAMTrendGHG is in turn expected to induce an

SO SST anomaly ['C],

SSTinter(t) ~ SAMITrendGHG CRFSLPindex(t - 4-7)
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and we denote the corresponding 1979-2014 trend in SSTinter by SSTTrendlnter [0 C/yearj.

Finally, we combine SSTTrendSAM and SSTTrendRAD, and we subtract the trend in

the GHG-SAM interaction term SSTTrendlnter to obtain estimates for the anomalous

1979-2014 SO SST trend due to the combined effect of SAM and GHG forcing in the

historical simulations:

SST TrendCombined = SSTTrendSAM + SSTTrendRAD - SSTTrendInter, (4.8)

where SSTTrendCombined is our estimate in 'C/decade. Taking into account both the

SAM and GHG forcing allows us to better reproduce the SO climate change in each

CMIP5 model (4-12c)). We see that our SSTTrendCombined estimates recover very

well both the ensemble mean response, the responses of individual GCMs, and the

intermodel variability.

Our reconstruction allows us to break down the simulated multidecadal SO SST

trends into GHG and SAM contributions (Figure 4-12). As expected, in all models

the TOA radiative forcing contributes to warming around Antarctica. On the other

hand, the sign of the SAM contribution to the SST trends differs across models. In

most GCMs positive 1979-2014 SAM tendencies induce SO cooling anomalies.

However, the CMIP5 models also differ among each other in the simulated histori-

cal evolution of the SAM itself. In the following section we emphasize that reproducing

the historical SAM anomalies is an essential prerequisite for the successful simulation

of the 1979-2011 SO SST trends.

4.4 Interpreting the observed Southern Ocean SST

trends using SAM and GHG CRFs

So far we have focused our analysis on understanding the SO SST trends in the

historical simulations and explaining the differences across the ensemble of GCMs.

We now attempt to find why most CMIP5 models do not reproduce the observed

1979-2014 SO cooling and instead predict much weaker trends or warming (Figure
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4-14. We seek to identify the main source of bias responsible for this discrepancy.

We compare the 1979-2014 trend of the SAM index (SLPindex [Pa]) in the CMIP5

simulations, in the ERA Interim reanalysis, and in the HadSLP2r observational

dataset (Allan and Ansell, 2006). We point out that there is large disagreement

among the SAM trends simulated by models. There are also large differences be-

tween the CMIP5 models and the observationally constrained products. However, it

is noteworthy that the HadSLP2r gridded observations and the ERA Interim reanal-

ysis do not agree with each other on the magnitude of the SLPindex anomalies. The

HadSLP2r dataset suggests a SAM trend which is 3 times larger than the trend in

the ERA Interim output.

The HadSLP2r dataset is considered a more reliable record of historical changes in

Southern Hemisphere extratropical sea-level pressure than reanalysis products [Swart

et al., 2015]. Hence we use the gridded observations to evaluate how biased the

CMIP5 historical SAM anomalies are. We note that relative to HadSLP2r almost all

GCM simulations underestimate the 1979-2014 positive SAM trend.

We then evaluate the impact of this SAM bias on the ability of CMIP5 models to

reproduce the SO SST trends. We convolve each CRFLPindX with the SAM trend

based on the HadSLP2r observations to obtain a range of estimates for the compo-

nent of the SO SST trend induced by the observed SAM anomalies, SSTTrendObsSAM

[*C/decade]. We then perform a calculation similar to Eq. 4.8:

SST TrendSO SYI'TrendObsSAM + SSTTrendRAD - SSTTrendInter, (4.9)

where SSTrendSo [ 0C/decade] is now an estimate of how the CMIP5 SO SSTs would

evolve if the models simulated a more realistic SAM between 1979 and 2014. We

compare SSTrendSO against the SO SST trends in the CMIP5 experiments and

against our reconstructions SSTTrendCombined (Figure 4-15). We estimate that more

than half of the models in our ensemble would exhibit stronger SO cooling under

a realistic evolution of the SAM. Using SLPndex based on the HadSLP2r dataset

produces an ensemble mean response much closer to the observed SO SST trend than
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the ensemble mean of the original historical simulations. However, several models,

such as CanESM2 and CCSM4, are expected to show stronger SO warming under

realistic SAM. The different behavior of these GCMs is discussed in Chapter 3 and

may have to do with biases in their climatology of the mean SO thermal stratification.

Notwithstanding these notable exceptions, our results demonstrate that the SAM in

the historical simulations may explain a large fraction of the SO warming bias seen

in most CMIP5 models.

4.5 Interpreting the observed Southern Ocean SST

trends using ozone and GHG CRFs

We have demonstrated that convolving a plausible combination of SAM and GHG

CRFs with the observed SAM and GHG trends allows us to better reproduce the

Southern Ocean cooling observed since 1979. The historical timeseries of the SAM

index includes both unforced variability and an anthropogenically forced signal due to

ozone depletion. Changes in stratospheric ozone concentration trigger an atmospheric

response which projects on the SAM pattern. However, the Antarctic ozone hole

exhibits strong seasonality with maximum depletion in the early austral spring. This

seasonality has not been taken into account in our CRFs based on the annual-mean

SAM. We seek to estimate the contribution of two anthropogenic factors: seasonally

variable stratospheric ozone loss and GHG forcing, to the historical Southern Ocean

SST trends. That is why in Marshall et al. [2014] we consider a Southern Ocean

CRF to ozone depletion rather than a CR.F to SAM.

Model-based CRFs to stratospheric ozone depletion are available from Ferreira et

al. [20151 and are derived from an ensemble of numerical experiments in which an ide-

alized abrupt depletion of ozone is applied to the coupled MITgcm and CCSM3.5 mod-

els. The MITgcm is used in an aquaplanet configuration with simplified bathymetry:

two meridional land strips extend from the north pole to 35'S and delimitate a small

Atlantic-Arctic-like basin and a large Indo-Pacific-like basin connected with each other
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via a circumpolar ocean in the Southern Hemisphere. The ozone forcing in the MIT-

gcm is represented as a perturbation in the stratospheric shortwave absorption. In

order to mimic the seasonality of the real ozone hole, the idealized ozone depletion

in the MITgcm is introduced as a negative step function whose amplitude varies with

a 12 month period. CCSM3.5, on the other hand, is a fully coupled model which

computes stratospheric ozone and has realistic ocean bathymetry. The GCM shares

a similar genealogy to the more recent CCSM4 model whose SAM CRF is analyzed

in Chapter 3. The abrupt ozone depletion in CCSM3.5 is represented explicitly and

its magnitude is comparable with historical ozone changes.

In Marshall et al. [2014] we have also considered an abrupt SAM perturbation

experiment with an ocean-only version of the MITgcm which has realistic bathymetry.

The forcing in this case is applied as a surface wind-stress anomaly. The perturbation

has a SAM-like spatial pattern whose magnitude varies seasonally between zero and

1- SAM mimicking the seasonality of the ozone-induced wind stress anomalies.

Since the idealized ozone depletion gives rise to a SAM-like atmospheric pattern,

we expect that the corresponding Southern Ocean SST response will be similar to

the SAM CRFs discussed in Chapter 3. Indeed we see a two-timescale response in

both CCSM3.5 and the MITgcm (Figure 4-16). The models show initial cooling of

the Southern Ocean followed by warming. However, both the magnitude of the fast

cooling response and the slow warming rate differ between the two GCMs. These

intermodel differences are analyzed in Ferreira et al. [2014 and can be attributed in

part to the models' climatological stratification but also to air-sea heat fluxes.

We have constructed a range of plausible idealized ozone CRFs which span the

curves based on the MITgcm and CCSM3.5. Each of these idealized constructed

CRFs can be expressed as a sum of two exponential terms: a fast decaying negative

term and a slowly decaying positive term reflecting the two-timescale nature of the

response [Marshall et al., 2014].

The historical timeseries of ozone forcing itself also shows a nonmonotonic evo-

lution over recent decades (Figure 4-17a)). Stratospheric ozone concentration [DU]

declines rapidly after the 1970s due to CFC emissions and has been gradually recov-
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ering since the end of the 1990s as a result of international regulations designed to

protect the ozone layer [Douglas et al., 2014]. Thus, when we convolve the Southern

Ocean CRF to ozone with the historical forcing (analogously to Eq. 4.1), we obtain

an estimate for the ozone-induced SST anomaly which evolves in a nontrivial fashion.

The convolution is characterized by a cooling trend that spans the last few decades

of the 20th century. This is followed by a gradual warming. The projected partial

recovery of ozone is expected to give rise to a Southern Ocean cooling trend, once

again, beyond the year 2060.

The estimated evolution of the ozone-induced Southern Ocean SST anomalies

can be contrasted against the response to the top-of-the-atmosphere (TOA) radiative

forcing. The historical timeseries of radiative forcing has been dominated by the

continuous increase of anthropogenic greenhouse gas emissions (Figure 4-17b)). Only

volcanic eruptions cause sporadic negative excursions in the TOA forcing signal. Thus

the convolution of the regional CRFs to GHG (4-9) with the timeseries of TOA forcing

yields estimated warming responses which grow persistently throughout the 20th and

21st centuries and beyond.

It is important to note that the estimated Southern Ocean response to TOA radia-

tive forcing is much more gradual compared to the fast warming rate in the Northern

Hemisphere high latitude oceans. On the other hand, the Northern Hemisphere re-

sponse is marked by more rapid fluctuations due to major volcanic eruptions, while

the Southern Ocean SST anomalies evolve more smoothly and integrate over such

short-lived radiative perturbations.

We assume that the Northern Hemisphere high latitude region is subjected to the

TOA radiative forcing, while the Southern Ocean is exposed to an additional source

of forcing due to ozone depletion and recovery. Hence we combine the estimated

ozone-induced SST anomalies with the SST anomalies due to TOA radiative forcing

to obtain a more comprehensive timeseries of anthropogenic Southern Ocean climate

change (Figure 4-17b)). Our combined estimates recover qualitatively both the his-

torical warming trend in the Northern Hemisphere and the observed transient cooling

trends around Antarctica.
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Motivated by these convolution results, we suggest that a large part of the South-

ern Ocean cooling trends over the past few decades may be attributed to stratospheric

ozone forcing which gives rise to a SAM-like atmospheric pattern. However, we project

that this anomalous SST decrease is transient. According to our results, we expect

to see stronger Southern Ocean warming trends in the 21st century.
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Figure 4-1: a) Observed SST trends [ 0C/decade] for the 1982-2014 period based on
the NOAA Reynolds Optimum Interpolation Dataset [Reynolds et al., 20021, which
begins in 1982; b) Numerical simulations of the SST trends [oC/decade for the 1979-
2014 period: an ensemble mean of CMIP5 historical experiments extended under
the rcp8.5 scenario; c) Same as a) but for 1982-2014 trends in sea ice concentration
[%/decade] from Reynolds et al. [20021; d) Same as b) but showing sea ice trends
[%/decade]; e) Observed trends in the sea surface salinity (SSS) [psu/decade for the
1979-2013 period based on the HadEN4 Dataset |Good et al., 20131; f) Same as b)
and d) but showing sea surface salinity (YS) trends Ipsu/decade].
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Figure 4-2: Example timeseries and trends in the westerly winds and SAM indices

from the control run of model ACCESS1-0: a) Timeseries for the Southern Hemi-

sphere maximum of the annually averaged zonal mean zonal wind near the surface

I m/s]. The red lines show examples of thirty-year linear trends in the wind speed over

two different periods. For comparison, the inset green line shows the slope of the last

historical thirty-year trend from the ERA Interim reanalysis; b) Comparison of the

thirty-year trends in the wind index from [a)] (timneseries II) and two SAM indices:

index I is defined as the first principal component of sea level pressure south of 20'S,
and index III is defined as the contrast in sea level pressure between 450S and 60'S.

Each index is normalized by its standard deviation; c) Timeseries for the annually

averaged SST anomaly between 550 and 70 S. The red lines show the linear trends in

SST over the same thirty-year periods as the ones highlighted with red lines in panel

a) above; d) Distribution of all thirty-year westerly wind trends [in/s/year] based on

the timneseries shown in 1a)].
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Figure 4-3: Composited 30-year trends in zonally-averaged zonal wind at the surface

[in/s/decade] from periods of 2o- SAM trends in the CMIP5 control runs. The result

for each ensemble member is rescaled by a ratio between the amplitude of the zonally

averaged 1980-2010 westerly wind trend from ERA-Interim and the amplitude of the

westerly wind trend in each CMIP5 model composite.
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Figure 4-4: Ensemble mean of 23 models. The results for each ensemble member

are rescaled by a ratio between the amplitude of the zonally averaged 1980-2010
westerly wind trend from ERA-Interim and the amplitude of the westerly wind trend
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salinity trends Ipsu/decadel.

96

0.05

-0.1

-0.15
(dCd

decade)

c)

0



b) c)

\ tie

f)

n)

g)

d)

h)

k) , > I)

p)

b
,1

r) s)

V) w)

( C/ decade)

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Figure 4-5: Composited 30-year SST trends [C /decade from periods of 2- SAM
trends in the CMIP5 control runs of models: a) ACCESS1-0; b) ACCESS1-3; c)
BCC-CSM1; d) CanESM2; e) CCSM4; f) CESM-CAM5; g) CMCC-CM; h) CNRM-
CM5; i) GFDL CM3; j) GFDL-ESM2G; k) GFDL-ESM2M; 1) GISS-E2-H; in) GISS-
E2-R.; n) IPSL-CM5A-LR; o) IPSL-CM5A-MR; p) IPSL-CM5B-LR; q) MIROC5; r)
MIROC-ESM; s) MPI-ESM-LR.; t) MPI-ESM-MR; u) MRI-CGCM3; v) NorESMI-
M; w) NorESM1-ME. The result for each ensemble member is rescaled by a ratio
between the amplitude of the zonally averaged 1980-2010 westerly wind trend from
ERA-Interim and the amplitude of the Wsterly wind trend in each CMIP5 model
composite. We have shown only trends that are significant at the 95% confidence
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under the RCP8.5 scenario; b) Vertical bars denote the 1979-2014 SO SST trends

SC /decadel in our reconstructions of each CMIP5 simulation; c) Vertical bars denote

the 1979-2014 SO SST trends loC/decadel we obtain after we convolve the GHG and

SAM CRFs with observationally-based forcing trends. The SAM forcing trend used

for this reconstruction is based on the HadSLP2r dataset.
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Figure 4-16: Regional CRFs to ozone from Marshall et al. 120141. The green curve
is the ensemble mean SO SST response (50S to 70S) from abrupt ozone depletion
experiments with the coupled MITgcin. The red curve is the ensemble-Imean evolu-
tion of the SO SST cooling forced by abrupt ozone depletion in the CCSM3.5 NCAR
model. The yellow curve is the SO SST response (50S to 70S) from an abrupt SAM
perturbation experiment with an ocean-only version of the MITgcm. We have con-
sidered a range of plausible idealized CR.Fs which span the model-based curves. The
thick blue curve indicates the ensemble mean of our idealized CRFs. The shaded blue
envelope indicates two standard deviations in the spread of our idealized CREs, and
the vertical hashed lines indicate one standard deviation in the spread. Layout to be
modified.
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Figure 4-17: a) Historical net TOA radiative forcing I W/m 2 from Hansen et al. pro-

jected into the future assuming that the forcing increases smoothly to 4.5 1 W1 m2J ill

2100, consistent with the CMIP5 RCP4.5 scenario; b) Observed ozone concentration

IDUj over the Antarctic region. The timeseries is extended using projections from the

WACCM model; c) Individual convolutions of the GHG and the ozone-hole forcing

shown in the top panels with the respective GHG and ozone-hole CRFs from Figure

4-16, yielding timeseries of the SST anomalies in the Arctic north of 50'N (red) and

the Southern Ocean 50'S to 70 0 S (green due to GHGs and blue due to stratospheric

ozone). Shaded envelopes span 1 standard deviation of the convolution ensemble;

d) Combined SST responses to GHG and ozone forcing. The Arctic north of 50'N

is shown in red. The Southern Ocean 50'S to 70'S is shown in blue. The SO SST

evolution is the sum of the green and blue curves in c). Fron Marshall et al. 120141,

layout to he nodified.
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Chapter 5

Conclusion

5.1 Summary

In this thesis we have explored the ocean's response to atmospheric forcing with a

focus on two high-latitude regions: the North Atlantic and the Southern Ocean. We

have estimated regional and global climate response functions (CRFs) and demon-

strated their application to understanding the transient evolution of surface tempera-

ture. Analyzing the global and regional CRFs provides insights into the main oceanic

processes which affect climate change.

In Chapter 2 we have examined model-based CRFs to GHG forcing obtained

from CMIP5 experiments in which the atmospheric concentration of CO 2 is abruptly

quadrupled relative to preindustrial control values. We show that most of the inter-

model spread in these CRFs can be related to climate feedbacks. Nevertheless, we

find that the ocean circulation, and the AMOC in particular, also play an important

role for regulating the pace of global warming under GHG forcing. A notable fraction

of the anomalous surface heat uptake takes place in the North Atlantic. This heat

is then transported downward to intermediate depths and along the Deep Western

Boundary Current, thereby slowing down the rate of surface temperature increase.

Under GHG forcing, GCMs with a stronger or deeper AMOC store a larger fraction

of the heat anomaly at depth, a physical mechanism which delays the rate of sur-

face temperature increase. We thus find that differences in the strength and vertical
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extent of the time-mean AMOC constitute a notable source of intermodel spread in

the CRFs among the coupled models included in CMIP5. Therefore, representing

the North Atlantic and the AMOC in GCMs is important for simulating the global

response to GHG forcing.

Analysis of the abrupt CO 2 quadrupling experiments reveals that the Southern

Ocean is another high latitude region, which takes up a large amount of atmospheric

heat under GHG forcing. We have shown that the rate of GHG-induced surface

warming around Antarctica is much slower than in other parts of the World Ocean.

The contrast among the regional CRFs to GHGs can be interpreted in terms of the

background MOC transporting the anthropogenic heat anomaly. As discussed in

Chapter 4, upwelling of unmodified deep waters to the surface of the Southern Ocean

dampens the local warming rate. In comparison, the northern high latitudes warm

at a more accelerated pace because the background MOC advects the heat anomaly

northward similarly to a passive tracer.

However, GHGs are not the only source of historical forcing on the Southern

Ocean. Over Antarctica, stratospheric ozone depletion induces an atmospheric pat-

tern similar to the positive phase of the Southern Annular Mode (SAM) of natural

variability. This pattern is characterized by a poleward intensification of the westerly

winds: an increase in their magnitude and a southward shift relative to their climato-

logical position. In turn, changes in surface wind stress modify the Southern Ocean

overturning cell and give rise to an SST response.

That is why in Chapter 3 we have considered the SO CRF to a SAM atmospheric

pattern. However, instead of using the output of forward perturbation experiments to

deduce the relationship between SAM and SST, we have performed an analysis of the

CMIP5 preindustrial control simulations under the assumption that linear response

theory is a valid approximation. We estimate how the SO in each GCM is expected

to respond to a hypothetical step-increase in the SAM index. We explain the SST

evolution on different timescales in terms of the anomalous wind-driven circulation

redistributing the background heat reservoir. Many CMIP5 models are expected to

show a rapid cooling response to SAM followed by a gradual warming and a transition
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to a positive SST anomaly. We relate the fast surface cooling to anomalous horizontal

Ekman transport advecting colder water northward. We have also shown that Ekman

upwelling of warmer water in the salt-stratified SO affects the slow SST response to

poleward intensification of the westerlies. We can thus propose that the nonmonotonic

temporal evolution of the SO CRF to SAM in some GCMs is a consequence of these

competing processes.

We furthermore relate the CMIP5 intermodel spread in the SO SST response

to SAM to the models' climatological horizontal and vertical SO stratification. In

Chapter 3 we show that differences in the climatological meridional SST gradients

contribute to the diversity of fast responses across the ensemble. On the other hand,

we find a correlation between the background potential temperature inversion in the

SO and the SST response to SAM on longer timescales. We then use these rela-

tionships along with observational data for the SO horizontal and vertical thermal

stratification to constrain a range of estimates for the response of the real ocean to

SAM.

In Chapter 4 we have demonstrated that we can convolve our regional CRFs with

timeseries of atmospheric forcing to successfully recover the SST trends in numeri-

cal simulations. We have considered the preindustrial control experiments of CMIP5

models and performed a high-minus-low composite of 30-year periods marked by ex-

treme multidecadal SAM trends. We are able to recover the composited SST trends

by using our SAM step response functions from Chapter 3. We can think of the 30-

year SST trends as a superposition of multiple fast and slow responses to SAM. We

furthermore put the composited SO SST trends in the context of a large-scale dipole

pattern of SST anomalies induced by SAM: warming 30'S-50'S and cooling south of

50 S. We interpret this surface pattern in terms of the wind-driven circulation redis-

tributing horizontally and vertically the background ocean heat reservoir. Moreover,

we show that the composited SO SST trends are strongly negatively correlated with

the contemporaneous trends in sea ice concentration around Antarctica.

We have applied a similar approach to reconstruct the regional SST anomalies

in historical CMIP5 simulations. In this case we have considered a combination of
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different sources of forcing on the ocean. Since the Industrial Revolution, multidecadal

climate change in the Northern Hemisphere has been dominated by TOA radiative

forcing. On the other hand, the Southern Ocean is forced both by well-mixed GHGs

and by ozone depletion - projecting onto a SAM atmospheric pattern. That is why,

when reconstructing historical simulations of the SO in Chapter 4, we consider a

combination of GHG and SAM forcing on the ocean convolved with the respective

step response functions derived in this thesis. The step response functions to GHG

forcing are based on the CMIP5 abrupt quadrupling experiments studied in Chapter

2, while the response functions to SAM are the statistical estimates computed in

Chapter 3. When combining the SAM and GHG convolutions, we have to take into

consideration the fact that part of the anomalous SAM trend can be attributed to

historical GHG forcing. The latter complements the strong impact of stratospheric

ozone depletion on the Southern Hemisphere westerly winds. Taking into account

GHG forcing, SAM trends, as well as their interplay, allows us to reconstruct very

well the CMIP5 historical simulations of the 1979-2014 SO SST trends.

The successful application of the CRF framework in Chapter 4 has also provided us

the opportunity to identify major sources of SO warming bias in the CMIP5 historical

simulations. When compared with the HadSLP2r observational dataset (Allan and

Ansell, 2006), many GCMs underestimate the historical SAM trend (part of which

can be attributed to stratospheric ozone depletion). Another subset of CMIP5 models

have biases in their SO climatological temperature gradients, which affect the ocean's

response to poleward intensification of the westerly winds.

In Chapter 4 we have also examined SO CRFs with respect to a stratospheric

ozone depletion rather than natural variability in the SAM in order to showcase a

similar two-timescale response of the SSTs around Antarctica: fast cooling, followed

by gradual warming. An important aspect of this analysis is the advantage that the

imposed perturbation in the models' stratosphere has a seasonal cycle analogous to

the real ozone hole, which is associated with a maximum depletion in the early austral

spring. We convolve our ozone and GHG CRFs with the respective forcing timeseries

to simulate historical SO cooling trends. In addition, model-based estimates for
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the expected recovery of the ozone layer combined with scenarios of possible GHG

concentration pathways allow us to make projections for the future evolution of the

SO SST. Our results suggest that in the 21st century the SO cooling will transition

into anomalous warming. However, similarly to the SO response to SAM, the CRFs to

stratospheric ozone concentration are model-dependent. Differences in the crossover

between the inherent fast cooling regime and the slow warming regime affect our

range of projections for the future SO SST. It is therefore important to understand

what contributes to these intermodel differences in the SO CRFs.

The results presented in this thesis suggest that both the time-mean meridional

overturning circulation (MOC) and the background ocean stratification play a role in

setting the inherent ocean CRFs to atmospheric forcing. A realistic representation of

the high latitude ocean climatology in GCMs is therefore an important prerequisite

for simulating historical climate change and for extending model projections into the

future under different forcing scenarios.

5.2 Unresolved Questions and Outlook

Although this thesis has outlined several major features of the high-latitude oceans

that govern the CRFs to atmospheric forcing, there are additional factors that have

not been thoroughly explored here. Our analysis is based on GCMs that do not

resolve ocean eddies and hence may misrepresent the bolus transport of heat. The

eddy-induced circulation partially compensates the wind-driven component of the

MOC and may play a very important role in modulating the regional and global SST

response to GHG forcing, as well as the SO response to stratospheric ozone depletion.

Thus numerical experiments with eddy-resolving models may provide more insights

into the role of the residual MOC in setting the transient climate response.

In addition, both the climatological MOC and the background temperature gra-

dients change seasonally. This important aspect of the high latitude oceans has not

been fully explored in the thesis which focuses on annual-mean features. Seasonal-

ity may be particularly important for the SO response to the Antarctic ozone hole,
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whose impact on the surface westerlies is strongest in the austral summer, Decem-

ber through February (See for example Purich et al. (2016)). A future extension of

this work should consider the response of the SO SST to changes in the DJF SAM

and contrast them against the CRF to a June-July-August (JJA) SAM perturbation.

A complementary study, Holland et al. (2016), uses the methodology developed in

Chapter 3 to address a closely related problem: the seasonality of the SO sea ice

response to SAM.

Another limitation of this thesis is that our analysis has focused on the North

Atlantic and the Southern Ocean without discussing the interaction between these

regions and the rest of the World Ocean through the MOC and via atmospheric

teleconnections. Taking into account heat transport in the Tropical Atlantic, the

Arctic, and the Indo-Pacific basins can provide a more comprehensive picture of the

ocean's role in setting the transient climate response on a global scale.

Despite its limitations, this thesis has outlined a framework that can be used

to predict how the ocean in GCMs would respond to atmospheric forcing without

performing forward perturbation experiments. We have elucidated the role of the

climatological mean ocean circulation and the background temperature gradients for

the transient SST anomaly. Moreover, we have demonstrated that an analysis of

a model's unperturbed control run may reveal how its forced response would evolve

temporally. In a related study (Holland et al., 2016), we use the same methodology to

estimate the SO sea ice response to SAM on fast and slow timescales. Other potential

applications of this framework include important problems in historical climate change

such as sea level rise and carbon uptake by the ocean under anthropogenic forcing.
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