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Abstract

Because many invariants and properties of elliptic curves are difficult to understand
directly, the study of arithmetic statistics instead looks at what happens "on average",
using heights to make this notion rigorous. Previous work has primarily used the naive
height, which can be calculated easily but is not defined intrinsically.

We give an asymptotic formula for the number of elliptic curves over Q with

bounded Faltings height. Silverman [341 has shown that the Faltings height for elliptic
curves over number fields can be expressed in terms of the minimal discriminant and
period of the elliptic curve. We use this to recast the problem as one of counting
lattice points in an unbounded region in R2 defined by transcendental equations, and

understand this region well enough to give a formula for the number of these lattice
points.
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Chapter 1

Introduction

Let S be the set of isomorphism classes of elliptic curves over Q. There are many

difficult open questions and conjectures about invariants of elliptic curves (such as

the rank of the rational points of an elliptic curve or the size of its n-Selmer group).

One approach to understanding these invariants better is to consider what value these

take "on average".

We use different heights to make sense of what is meant by average here. A height

is a function

H : .6 -+ R

such that the set

H<x = {E E E I H (E) < X}

is finite. For a given invariant i, it then makes sense to talk about the average value

of i over elements of SH<X; we can define the average value of i to be the limit

avg(i) = lim ZEEEH<x i(E)
x-+00 #EH<X

if this limit exists. To use heights to measure the invariants, we first need to under-

stand just how quickly #SH<x grows.

Commonly used is the naive height HN. Every elliptic curve E over Q is isomorphic

to an elliptic curve of the form y2 =3 + Ax + B with A, B c Z. If we require that
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there is no prime p with p4 I A and p6 I B, this is still true and (A, B) is unique. The

naive height of E is then

HN(E) = max(27B 2, 41A1 3).

It is a standard result that

#EHN<X = 42/ 3 3-- 3/2((1O)- 1X 5/6 + O(XI/ 2 )

We have included a proof of this in Section 2.1 (Brumer [131 has also written out a

proof; Bekyel 131 has done some related calculations over number fields). The key

idea is to use the following standard result (see Section 8 of [261 Vol 2 for a proof).

Theorem 1.1. Let S C R 2 be a region with a boundary that is a rectifiable curve.

Let L be the length of the boundary of S. Then

I#(S n Z2) - Area(S) < 4(L + 1).

In particular,

#(S n Z2) = Area(S) + O(L).

The region where naive height is less than X is a rectangle of length 2 - (X/4)1/3

and height 2 - (X/27) 1 / 2 , which has area 42/ 3 3-3/ 2X 5/6 and boundary length O(XI/ 2 )

(the ((10) corrects for overcounting isomorphic curves).

Approximating the number of lattice points by the area works better in situations

where S is "round looking", where there are no parts of the region that are long and

skinny, like tentacles (since then the length of the boundary becomes large relative to

the area). This is the difficulty one runs into when trying to apply such an argument

when counting elliptic curves using discriminant as a height: the points with large

A, B and small discriminant form a tentacle-like region that is not easily controlled

(this is discussed further in Sections 2.2 and 2.3). Similar tentacles show up for

counting number fields by discriminant, discussed further in Section 2.4, although

10



unlike the equations we will deal with for the Faltings height, these are defined by

algebraic equations.

Brumer and McGuinness [141 have given a heuristic for the number of elliptic

curves with positive (respectively negative) discriminant up to a bound, and Watkins

[39] has used this to give heuristics for the average rank counted this way, as well as

heuristics for elliptic curves of bounded conductor. It is generally believed that the

average rank should be the same for each of these heights. However, no proof has

been given of these conjectures.

We will focus on using the Faltings height hF, first introduced by Faltings [22] in

the proof of the famous Mordell conjecture; Chapter 3 discusses the Faltings height

more thoroughly. Silverman [171 reformulated the Faltings height over elliptic curves

in terms of fundamental constants of an elliptic curve, and this formulation is the one

we use. Let R denote the complex upper half plane. For T E R,

00

A(T) = (27r) 12 q ]J (1 - q') 24 where q,= e=2 iT.
n=1

If E is an elliptic curve over Q, let

Amj" be the minimal discriminant of E, and

TE E R be a period of E, so that E(C) ' C/(Z + TEZ).

Note that there are three values used in this thesis which have a delta in their nota-

tion but are slightly different: A '0 (the minimal discriminant), A(T) (the modular

discriminant), and AA,B (the polynomial discriminant, defined in the next section).

Silverman's reformulation says that

hF(E) = (log IA"'I - log IA(TE) Im(TE)6t).
12 E

Silverman also proved that for any e > 0,

1
hF(E) + 0(1) < - log(HN(E)) < (1 + e)hF(E) + O(1). (1.1)

12
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To simplify the notation, we instead study HF(E) = e12hF(E). The main result of this

thesis, summarized below and proved in Chapter 4, counts #EH,<X.

1.1 Summary of the main result

For T in the complex upper half plane R, let j(T) denote its j-invariant, and let A(T)

be the modular discriminant as defined previously. For t E R not equal to -27/4,

let rt be a period for the elliptic curve given by the equation y 2 = X3 + tx + t. Note

then j(Tt) = 6912t/(4t + 27); this Tt is determined modulo the action of SL 2 (Z), so

A(Tt) Im(Tt) is a well-defined function of t.

The main result in this thesis, proved in Chapter 4, is:

Theorem 1.2. Let

2/ (T ) Im(T ) G 5/6

5 16(4t + 27)

(the indefinite integral converges even though the integrand tends to oc as t approaches

-27/4 or 0). Then

#SHF<x = 12((10) -aX'/6 + O(XI/ 2 (logX) 3 ).

When the integral defining o is evaluated, we get approximately o-~ 29089, which

means the constant of the leading term is approximately 348716.

This estimate does not follow from Silverman's result given by (1.1), since HF

is not simply bounded below by a constant times HN. To prove Theorem 1.2, we

identify isomorphism classes of elliptic curves of Faltings height less than X with

lattice points (satisfying certain congruence conditions) in a region Rx in the real

(A, B)-plane (defined below), and (with some difficulty) apply Theorem 1.1.

For (A, B) E R2, let AA,B = -16(4A 3 + 27B 2), and if AA,B # 0, let TA,B be a

period corresponding to the elliptic curve given by the equation y 2 = X 3 + Ax + B.

Then let
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Rx {(A,B) cR 2  IAA,B X6 .
IA(TA,B) Im(TA,B) 6

The lattice points in Rx do not quite correspond to the set SHF<X that we want

to count. For one thing, we want to count only one lattice point per isomorphism

class; as in the naive height case, ((10)-1 corrects for this. Furthermore, AAB iS nOt

the exact minimal discriminant; it can differ by a factor having to do with behavior

at the special fibers for p = 2 and p = 3 (this is discussed in Section 2.2). However,

we can correct it with a constant that depends on A, B mod 66, which is where the

12 in Theorem 1.2 comes from; these can be calculated with Tate's algorithm, the

summary of which is in Section 4.4.

We want to use Theorem 1.1 to say that the number of lattice points in Rx is

its area O-X 5/6 plus an error from the boundary, but there are some difficulties in the

proof. As in the analogue where the discriminant is used as a height, this region has

unbounded tentacles asymptotic to the curve 4A3 + 27B2 = 0. A key argument in the

proof is to show that all of the points being counted lie in a particular rectangle R,

which importantly does not have too large a perimeter (this gets done in Section 4.3).

Once that has been proved, we show in Section 4.5 that Theorem 1.1 can actually be

applied to Rx n R and the error, which comes from the boundary, is not too large.

Section 4.6 pulls everything together to conclude the proof.

1.2 Further questions

There are natural questions to consider once one has this result. In particular, it

should be simple to apply the same methods to count elliptic curves over function

fields by the Faltings height (as defined and discussed in [2J).

Bhargava and Shankar [8] [91 using the naive height have proved a number of

results including bounds on the average values of the 2-Selmer group and 3-Selmer

group, which imply a bound on the average value of the rank (see [331 for a expository

description of these results, [10] [11] for a generalization to all global fields). These

methods combined with the work in this thesis might result in similar bounds for the
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Faltings height, and give evidence for (or against) the hypothesis that the different

heights should give the same averages. At the moment, there are still unresolved

difficulties with combining these methods.

Harron and Snowden [24] also recently determined how often each of the possible

torsion subgroups prescribed by Mazur's theorem occurs for elliptic curves over Q

with bounded naive height. One should also be able to using the Faltings height to

study this.

14



Chapter 2

Heights and arithmetic statistics

In this chapter, we discuss background on heights. Section 2.1 gives an introduc-

tion to the naive height, and explains how to count elliptic curves with bounded

naive height. Section 2.2 introduces the minimal discriminant and discusses how one

might attempt to count elliptic curves with bounded minimal discriminant, while Sec-

tion 2.3 discusses what the abc conjecture gives us (and why it is still not enough).

In Section 2.4, we mention work on counting number fields by discriminants, in which

tentacles are successfully controlled, although the methods are not ones that apply

to the case of the Faltings height.

2.1 The naive height

If (A, B) E Z2, then call that point weakly minimal provided that there is no prime

p such that p4 I A and p6 I B. Note that any elliptic curve over Q is isomorphic to a

unique curve EA,B of the form y2 x3 + Ax + B with weakly minimal (A, B) E .

The naive height of an elliptic curve E is defined to be

HN(E) = max(41A1 3, 271B1 2)

for weakly minimal (A, B) E Z such that E is isomorphic to EA,B-

15



Theorem 2.1.

#EHN<X = 42/ 33- 3/2((10)- 1X5/ 6 + O(Xl/ 2 )

Proof. There is a bijection between

{weakly minimal (A, B) E Z2 4A3+27B 2 # 0, Al < (X/4) 1/3, and IBI < (X/27)1/2

and EHN<X given by (A, B) -+ isomorphism class of EA,B- So we can simply count the

former. In fact, we can ignore the condition that 4A 3 + 27B2 # 0, since there are at

most O(X1 / 2 ) points that satisfy this condition in the rectangle (in fact, parametriz-

ing, we can even show that it is O(X1 /6 )). Let

SHN<X = (A, B) E Z2  4A <(X 1/3 , and IBI < (X/27)1/2

so we want to count the weakly minimal points in SHN<X.

Recall the statement of Theorem 1.1: given a region S C R2 with rectifiable

boundary of length L, the number of lattice points contained in it is Area(S) +O(L).

So it follows that

#SHN<X~ 42/ 3 3-3/ 2X 5/6 + 0(X1 / 2) (2.1)

since SHN<X is just the lattice points in a rectangle with sides of lengths 2(X/4) 1/ 3

and 2(X/27) 1/2 . Furthermore, for fixed d, there is a bijection between

(A, B) E SHN<X d 4 Ad 6 | B

and

(a, b) E Z2 IaI < (X/4)1/ 3 d- 4,lb < (X/27)1/2d-}

given by (A, B) (d-4A, d~6 B). We count the second set using Theorem 1.1 and

conclude that for d < X1/12,

# (A, B) ( SHN<X d4 1 A, 6 1 B} 42/ 33-3/ 2d- 10 X5 /6 Og-6X1/2

16



We will use a M6bius inversion argument to complete the proof. Note that if p is

the classical Mbbius function, then for (A, B) E Z2 ,

p(d) = 1 if (A, B) weakly minimal

d4
IA,d6

IB 0 otherwise,

so the number of weakly minimal (A, B) E SHN<X is

p p(d)= S
(A,B)ESHN<X d4IA d<X/27)1/12

d6 |B

d<(X/27)1/12

p(d) E 1
(A,B)ESHN<X

d4 A,d6IB

p (d) (4 2/ 33- 3/ 2 d- 10X 5/ 6 + O(d- 6 X 1/ 2))

S4 2/3 3- 3/ 2X5 / 6  E p(d)d +0 X1/2

d<(X/27)1/12
E p(d)d6)

d<(X/27) 1/12

S42/33 - 3/ 2( (10)X5/6 + O(X1/2)

The last step is a consequence of the statement

Y

I: p(d)d- 10 = ((10)- + O(Y- 9)
d=1

which can be proved using the integral test since Itp(d) < 1 for all d. 0

Counting by naive height has been a building block of many results about the

distribution of invariants of elliptic curves, including the results of Bhargava and

Shankar [8], and Harron and Snowden [24] mentioned in Section 1.2.

2.2 Using the minimal discriminant as a height

A natural height to use to count elliptic curves over Q is the minimal discriminant

AT". In this section we will give some background on what the minimal discriminant

17



is, and the difficulties encountered when counting elliptic curves by it. Section 2.3

will discuss why the abc conjecture is relevant but does not help much.

Given a Weierstrass equation of an elliptic curve E/Q, there is a value called the

discriminant D that is an algebraic function of the coefficients (see Section III.1 of

[361). For a fixed prime p, we say that a Weierstrass equation for E is a minimal

(Weierstrass) equation for E at p if the valuation valp(D) of the discriminant is

minimal over all Weierstrass equations with coefficients in Z.

The minimal discriminant A"' E Z>o is the product of pvap(D) over all primes p

where D is the discriminant of a minimal equation at p. Similarly, for an elliptic curve

E over a number field K, one can define AK" as an integral OK-ideal. Every elliptic

curve over Q has a Weierstrass equation that is minimal at all primes p, but this fails

for general number fields. (See Sections VII.1 and VIII.8 of [361 for an introduction

to the minimal discriminant.)

Proposition 2.2. Let E A,B be an elliptic curve over Q of the form y 2 + Ax + B,

where (A, B) G Z 2 is weakly minimal. Let

AA,B = -16(4A 3 + 27B 2 ).

The minimal discriminant of E A,B/Q is then

mn=AA A,B

for some A E {1, 2-12, 3-12 6-12}. The value of A depends only on A mod 66 and B

mod 66.

Proof. Note that AA,B = -16(4A 3 + 27B 2 ) is the polynomial discriminant for the

equation y2 x3 + Ax + B. Remark 1.1 in [361 Chapter VII tell us that for prime p,

if either p4 j -48A or p12 f AA,B then valp(AA,B) = valE(Ami)

If p 7 2,3, p4 I -48A and p12 I AA,B together imply that p4 I A and p6 I B, so

this would mean that (A, B) is not weakly minimal. For p = 2,3, if we start with a

minimal Weierstrass equation not in the form of y 2
= X 3 + Ax + B, then completing

18



the square and cube requires dividing by 2 and 3, potentially resulting in non-integer

coefficients. To correct this, scale x by u2 and y by u3 , where u is the minimal value of

1, 2,3,6 that will make coefficients integral. Completing the square and cube doesn't

change the discriminant, but scaling does, multiplying the discriminant by u 1 2.

To see that the value of A is determined by A mod 66 and B mod 66, use Tate's

algorithm (as described in Chapter IV Section 9 of 1351). 0

So given Proposition 2.2, here is an approach to counting the isomorphism classes

of elliptic curves with minimal discriminant less than X (these are the same steps we

will use in Chapter 4 to prove Theorem 1.2):

1. Fix residue classes AO mod 66 and BO mod 66 (excluding those such that the

pair would not be weakly minimal with respect to 2 or 3). Note that there is a

well defined A E {1,2-12,3-12,6-12} that depends only on A0 , BO.

2. Count the number of weakly minimal (A, B) E Z2 such that 4A 3 + 27B 2 / 0,

1614A3 + 27B 21 < X/A and A = AO mod 66, B = BO mod 66.

3. Sum this count over all the possible residue classes that could have been chosen

in the first step.

The key step is to understand how to count lattice points such that 4A 3 +27B 2 / 0

in the region

RA<x = (A, B) E R2 1614A3 + 27B 21 < X

(restricting to weakly minimal points and particular residue classes will change the

answer only by a constant).

We would like to apply Theorem 1.1 to get the area of RA<x. Note that

RA<x = {(X 1/3A, X 112B) E R2 1 (AB) E RA<l},

so Area(RA<x) = Area(RA<l)X5 /6 .

Unfortunately, we cannot just apply Theorem 1.1 directly, since the boundary

cannot possibly have finite length. (The region RA<x is an open neighborhood of the

19
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Figure 2-1: The region 16 4A 3 + 27B2 1 < 1 in blue, with the curve 4A 3 + 27B 2  0
in red.

unbounded cubic 4A 3 + 27B 2 = 0 - it has tentacles - -- so the boundary will clearly

not have finite length. See Figure 2-1.) In the next section, we will show how the abc

conjecture helps us restate the question in terms of a region with boundary that has

finite length (it helps us cut off the tentacles), but this still will not help enough -

we still will not be able to show that the length of the boundary is less than O(X 3),

which overwhelms the presumptive leading term of the area.

(For the Faltings height, we will have a similar region, but the tentacles will get

narrower more quickly, and we will be able to cut them off at a point that allows us

to more easily control what the length of their boundaries are.)

2.3 The abc conjecture

We begin by recalling the statement of the abc conjecture. For any nonzero m C Z,

let

rad(m) = P.

Conjecture 2.3 (abc conjecture). Fix E > 0. Then there exists a positive K. such

that for all nonzero integers a, b, c such that gcd(a, b, c) = 1 and a + b = c,

rad(hbC) > t eno mal l t iC i.

This means that there is a limit to how small the radical of abc (,an be relative to

20
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the largest of a, b, c. We will apply to this conclude that the discriminant cannot be

too small compared to the naive height, and hence not to small relative to A and B.

Let a = 4A3 , b = 27B2 , and c = -AA,B/16; then a + b = c. To make the argument

simpler, assume gcd(a, b, c) = 1.

Recall that the naive height HN(EA,B) is defined as max(4A 1 3, 27B 2 ). We have

problems only where the discriminant is small, so if we restrict our attention to that

situation, the naive height is max(lal, Ibl, Ic). So the abc conjecture tells us that for

any e there is a n, such that

rad((4A 3 + 27B 2) 4A 3 -27B 2 ) > KeHN(EA,B) 1 -

Furthermore, note

rad((4A 3 + 27B2 ) -4A 3 - 27B2) = rad(3AA,BAB)

<31AA,BIJIB

< 3|AA,BIHN(EAB) 51 6

Putting the previous two equations together, we conclude that

1
|A A,BJ >eKHN(E A,B 16-

3

In particular, this tells us that AA,B cannot get too small relative to A, B. More

concretely, if IAA,BI < X, then (up to some constants) JAl < X2+"' and IBI < X 3+e"

(the E', E" are not the same E, but related small quantities). This tells us we can bound

the region we need to consider, but counting the rest of the points in the "tentacles"

is an open problem.

2.4 Counting number fields by discriminant

We will consider in this section some prominent results where lattice counting was

successful despite tentacles. One fundamental invariant of a number field K is its

21



discriminant Disc(K). A fundamental theorem of Minkowski states that (up to iso-

morphism) there are only finitely many number fields of discriminant D. So it becomes

natural to consider the distribution of number fields with respect to discriminants.

This question then gets refined further to consider each degree and Galois group

separately.

A degree n number field K is called an Sr-number field if its Galois closure has

Galois group S,. Let N,(X) denote the number of Sn-number fields of degree n

having absolute discriminant at most X. If n = 1, N,(X) = 1 since Q is the only

degree 1 number field. If n = 2,

lim N,.(X) _ 6
X-+0 X 7r2

(because being a S2-number field is equivalent to a square-free condition). These

results led in the 1960s to the following conjecture (the origin of which is unknown,

according to [51).

Conjecture 2.4. The limit

Cn = lim
X-+o X

exists and is positive for n > 2.

Davenport and Heilbronn [201 calculated c3 for cubic fields in 1970, while Bhargava

calculated c4 and c5 (in [41, [71 respectively). Inspired by these results and heuristics

of Serre, Bhargava [6] has also conjectured an explicit formula for c.,,, in terms of

partitions and the structure of S,. Bhargava has also written a helpful expository

summary of these results [51.

The method for calculating c3 , c4 , and c5 is similar: counting number fields here is

equivalent to counting orders, and these are then parametrized by appropriate forms

and matrices, which correspond to lattice points in carefully defined regions in R".

(This summary is a vast simplification of the hard work that goes into these proofs!)

In each of these cases, the relevant region has unbounded tentacles and the lattice

points in the tentacles need to be properly controlled. One key element in each of

22



these proofs is a lemma of Davenport [18] [191 that relies on the fact that the region

is a semialgebraic set. While these are remarkable proofs, the methods cannot be

applied to the situation we will study regarding the Faltings height; in our situation,

the region will be defined by transcendental inequalities.
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Chapter 3

Faltings height

In this chapter we give the historical definition of the Faltings height in Section 3.1,

discuss some of the research on it, and then describe the reformulation given by

Silverman in Section 3.3, which will be used in the rest of the thesis.

3.1 Faltings' original formulation

When proving the Mordell conjecture, Faltings introduced a notion of height of a

semiabelian variety over a number field K (see [17] for a longer overview, or the

original paper [22]).

Let OK denote the ring of integers of K. For each infinite place v, let K, denote

the completion of K at v. A metrized line bundle is a projective OK-module P of rank

1, together with norms on P 0 OK Kr,. The degree of the metrized line bundle is

defined to be

deg(P, (11 |Iv)v) = log(#(P/pOK)) - &-, log Ilpik,
v infinite

where p is any nonzero element of P and E, = 1, 2 according to whether v is real or

complex.

For an abelian variety A of dimension g over K, take the metrized line bundle

25



given by the dualizing sheaf WA/oK and the norms

||a||f, = - a /\d
2 fAKT.-

for a - WA/K D Kr,. Then the Faltings height is defined as

1
hF(A/K) = Q deg(WA/oK)'[K : Q]

Faltings used this to prove the Shafarevich conjecture, which says that there are

only finitely many isomorphism classes of abelian varieties over a fixed number field

of a fixed dimension, with polarization of a fixed degree and good reduction outside

of some given finite set of places.

The stable Faltings height of an abelian variety A is the Faltings height of A over

any field extension over which A acquires semistable reduction. Some authors mean

the stable Faltings height when they refer to the Faltings height.

Faltings [221, Silverman [341, and Deligne [211 all use different normalizations of the

Faltings height on elliptic curves; in this thesis we consistently use the normalization

that Faltings uses.

3.2 Review of research on the Faltings height

In this section we will briefly mention some existing results regarding the Faltings

height.

Faltings' original proof of the Shafarevich conjecture gave a formula for the rela-

tionship between the Faltings height of isogenous semiabelian varieties. Szpiro and

Ullmo [381 made this formula more explicit for elliptic curves without complex mul-

tiplication.

Colmez [15] [161 has conjectured a formula for the Faltings height of a CM abelian

variety in terms of the logarithmic derivatives at s = 0 of Artin L-functions, referred

to as the Colmez conjecture. He also put forward a motivic interpretation of this

conjecture as a "product formula" for periods of CM abelian varieties, and proved it
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in special cases. Other special cases have been shown in Obus [32] and Yang [40] [411.

Both Yuan and Zhang [421 (using [431 as a basis) and Andreatta, Goren, Howard, and

Madapusi Pera [1J recently proved an averaged version.

A number of results bound the Faltings height from below. Some of these results

are corollaries of the partial results towards the Colmez conjecture. Colmez [16 gave

one of these bounds for elliptic curves with complex multiplication (a new proof of this

is also in [25]). Bost [121 bounded general abelian varieties in terms of the dimension.

Deligne [211 calculated the minimal value of the stable Faltings height of elliptic

curves, and L6brich [271 showed that while the Faltings height has no gap above this,

the stable Faltings height does. L6brich's paper also contains a nice introduction to

the Faltings height.

Masser and Wiistholz [28] [29] [301 [311 have published a series of papers in which

they work towards techniques giving an effective bound in Faltings' theorem. In the

first paper, their approach is to study the isogenies between elliptic curve, and one

of their results bounds the degree of an isogeny between two elliptic curves in terms

of the Faltings height. The second and third papers then discuss applications and

generalize to abelian varieties of arbitrary dimension.

3.3 Silverman's reformulation

Silverman [341 has showed that the Faltings height of an elliptic curve can be written

in terms of other invariants of elliptic curves. We will use this in Chapter 4 to prove

Theorem 1.2.

If hF(E) denotes the original Faltings height for an elliptic curve E defined over

a number field K, let HF(E) - el2hF(E). Recall that W denotes the complex upper

half plane, and that for T E W,

00

A(T) - (21r)q, f( - T.)2,

n=1

where q, e2 *i. As before, let ArfI denote the minimal discriminant. If v is an

27



infinite place of K, define

1 if v is real

2 if v is complex

and choose r,, E 7- such that E(K,) e C/(Z + rZ).

Theorem 3.1 (Silverman [341 Proposition 1.1).

HF(E) = eIK:Q ENK Q6ei
HVI |A(r,)1-C (Im rv)Se

Since A(T) is a modular form of weight 12 for SL 2 (Z), IA(-r)I(Imr) 6 is an in-

variant of the action of SL2(Z) on W. Theorem 3.1 is normalized differently than

in Silverman: we define A(r) with a leading term of (27r) 12 , which agrees with the

normalization of Faltings.

In the case where K = Q, Theorem 3.1 simplifies to

min

HF(E)= E
I A(r) Im r)"'

which is the formula for the Faltings height that we will be using in this thesis.

Silverman uses Theorem 3.1 to prove

Theorem 3.2. For all e > 0, there exist C1, C2(E) > 0 such that for all elliptic curves

E over Q,

C1HF(E) < HN(E) < C2(E)HF(E)l+e.

This inequality relates the Faltings height to the naive height, but does not show

that it is within a bounded factor of the naive height. So counting elliptic curves by

naive height does not give good bounds for counting curves by Faltings height.
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Chapter 4

Counting elliptic curves bounded by

the Faltings height

In this chapter we will give the proof of Theorem 1.2. It will bear similarities to parts

of Chapter 2, in particular the proof counting the naive height and the discussion of

using the minimal discriminant as a height.

Recall that we call (A, B) E Z2 weakly minimal provided that there is no prime

p such that p4 { A or p6 { B. Every elliptic curve over Q is isomorphic to a unique

elliptic curve E4,B given by the equation y2 =X + Ax + B where (A, B) E Z2 are

weakly minimal.

There is a bijection between the set

SNy {weakly minimal (A, B) E Z2 14A3 + 27B 2 5 0, HF(EA,B) < X}

and SH,<x, given by (A, B) i-+ EA,B. So in this chapter we will prove

#Sx 12 (10)- 1UX51/6 + O(X1/ 2(log X)3 ),

which will suffice to prove Theorem 1.2.
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Recall that

TA,B E W such that EA,B(C) e C/(Z + TA,BZ)

AA,B = -16(4A 3 + 27B 2)

and let

AA,B = ABI
IAA,BK

We will assume without loss of generality that ITA,B _1 and- <Re7TA,B <.

Note that the first two of these make sense for A., B E R, while the last requires

A, B E Q. Furthermore, recall from Proposition 2.2 that AA,B is in {1, 2-12, 312, 6-12

and depends on A mod 66 and B mod 66. In Section 4.4, we will count the number

of residue classes giving rise to each possible A-value.

By the definition of AA,B, Theorem 3.1 is equivalent to

HF(EA,B)= AA,B IAA,BI 6'
1|A TA,B) IM i(TA,B)

This motivates us to define the function

f (A, B)= A(TA,B) IM(TA,B 6 1/2

for (A, B) E R2 such that AAB $ 0, so that

HF(EA,B) _ AA,B
f(A, B)2

(We inverted and took a square root when defining f only to make later calculations

easier.) So for each A E {1, 2-12, 3-12, 6-12} and each residue class with that A-value,

we want to count the weakly minimal integer points in the residue class that satisfy

AA,B : 0 and Af(A, B)- 2 < X. Therefore define

Rx,,={ A, B) E R2 AAB # 0, f( A B) 2 <X U (A, B) E R2 1AA,B 0-
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Note that since RxA = Rx/,\,1, we may as well just study Rx = Rx,1 . Replacing

(A, B) by (X1 / 3 A, X 1/ 2 B) does not change TA,B, so

f(X1 /3A, X1/ 2 B) = X-1/ 2 f(A, B).

So Rx is R1 scaled by X 1/ 3 in the A-direction and X1/ 2 in the B-direction, and its

area is just the area of R1 times X/ 6 .

Section 4.1 calculates the area of R1 (the value denoted a), while the rest of the

chapter is focused on setting up the proof of Theorem 1.2. In particular:

* Section 4.2 formalizes what we claimed earlier about the minimal discriminant:

that outside of a suitable rectangle, the points of Rx are close to the cubic given

by 4A3 + 27B 2 (the "tentacles" of the region).

* In Section 4.3, we show that any lattice point in Rx with large enough A, B

satisfies 4A 3 + 27B2 = 0. That is, we need only consider the intersection of Rx

with a particular rectangle R - we cut the tentacles short.

& Section 4.4 counts the residue classes for A mod 66 and B mod 66 that give the

various A.

* Section 4.5 counts for each fixed residue class, the corresponding lattice points

in Rx n R. This is done by applying Theorem 1.1, and showing the length of

the boundary of Rx n R cannot be longer than perimeter of R.

* Section 4.6 uses a Mdbius inversion argument as in the proof of Theorem 2.1 to

bring this together and conclude the proof of Theorem 1.2.
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4.1 Area of R1

To better calculate the area of R1 , we do a change of variables to the parameter
A 3

t = B2. Define a function

A(Tt) Im(Tt)
6 1/2

16(4t + 27)

where Tt is in the fundamental domain such that j(Tt) 6912t/(4t + 27). Then R1 is

by definition the area where
B2

-< 1
f (t)2

or alternatively, where -f(t) < B < f(t). So with a change of variables we get that

Area(R1 )= dA dB

/ (0 W t-2/3B 2/3 dB dt
-oo -f(t)

= - t-2/3 ( B5/3 dt
3 _-:30 (5 _ -f

2 
~ t- 2/3f (t)5/3dt.

Using a computer to evaluate, we conclude that Area(RI) 29089. We will denote

o- = Area(R1 ), and note that Area(Rx) = X 51 6 . This is the same o that appears

in Theorem 1.2. Note that in the tentacles, near AA,B = 0, we have t ~ -27/4, and

both Tt and f grow large.

(If we wish to have a somewhat cleaner integral we can also rewrite it as follows:

Use j(z) = 6912t/ (4t + 27) to do a change of variables to a complex number z over an

appropriate curve. Rearranging and applying that A(z) = (27r) 6  j'(z) 2 thej(z)4 (j(z)-1728)
3 1

integral is

j JA(z)j Im(z)' j'(z) dz
j (z)

where -y consists of all z c F such that j(z) is real, where F is a fundamental domain

for SL2 (Z) acting on Xi.)
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Figure 4-1: The region R1 in blue, with the cubic 4A3 + 27B 2 in red

4.2 The rough shape of Rx

Lemma 4.1. The function |A(T) Im(T) 61 is bounded on the complex upper half-plane.

Proof. Since A(7) Im(7) 6 is invariant under the action of SL 2 (Z), assume that T is in

the standard fundamental domain. so that rT > 1 and I Re(T)I < 1/2. By definition

00

A(T) = (27)1 2q 1J(1 - q")24

where q = e 2 riT. So as Im(T) -+ oc, q - 0. and IA(T)l =O(q) =O(e 27r II>(T)). Thus,

as Im(r) grows large, A(T)| Iin(r)"' tends to zero. So for any constant bo > 0, there

is a constant b1 > 0 such that if Im(T) > bi, then 1A(T) Im(T)I < bo. Since the set of

T such that 1111(7) < bi is a compact set, there is a bound on that domain as well. E

Corollary 4.1.1. Let C be a positive constant such that |A(T) Im(T) 6 < C for all

T C '. If (A. B) E Rx then |A4,| < CX.

The above follows innnediately from Lemma 4.1. The following lemma will show

that points in Rx are either sInall comnpared to X or close to the curve given by

AB = 0.
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Lemma 4.2. Let (A, B) E Rx. If |B12 < CX/27, then |Al3 < CX/2. Otherwise,

A = -cB 21 3 + eXB 4 /3 for some let < C and c = (27/4)1/3.

Proof. Suppose 1B1 2 < CX/27 and 1A13 > CX/2, then

IAA,BI= 1614A 3 + 27B2 1

> 16(41A 31 - 271B12)

> 16(2CX -CX)

= 16CX > CX,

and thus (A, B) g Rx.

Let B $ 0 and A = -cB 2/3 + EXB-4/3 with let > C. Then

IAA,BI = 64|elX(3c 2 - 3ceXB- 2 + e2X 2 B~ 4 ).

Well the polynomial x2 - 3cx + 3c2 > 1 for all x E R and by assumptions let > C, so

IAA,BI > 64CX > CX. This implies (A, B) 0 Rx. E

Note that this tells us only in a very rough sense that points in Rx are close to

the cubic given by AA,B = 0. In the next section, we will give a stronger version of

this statement which holds less generally. (And while Lemma 4.2 could also be shown

when using the minimal discriminant as a height, the analogue in the next section

will not.)

4.3 Bounding the size of lattice points

In this section we will show that all large enough integral (A, B) E Rx have AA,B = 0-

This is done in two steps: first, we quantify how close a point has to be to curve

AA,B = 0 to have the property IAA,B < 1. Then we show that, for large enough A,

a point farther from the curve cannot be in Rx.
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Lemma 4.3. Assume B ,7 0. Let E0 be the positive real root of 64x(3C2 + x
2 ) - 3/4,

recalling that c = (27/4)1/3 (this root is approximately 0.0011). For all sE| < Eo, if

A = -cB2/ 3 + EB-4/ 3 then IAA,BI < 1-

Proof. Under the assumptions, we have that

IAA,BI = 64JE113c2 - 3cEB- 2 + E 2 B-41

K 641EI(3c2 + 3cElIB 2 -+ 62 B~ 4 )

< 64s(3c 2 + E2) 192s~c

= 3/4 + 192Esc

< 1

since 192s-c is much smaller than 1/4. l

The following lemma is a strong version of Lemma 4.2 that only holds for large

enough X and A.

Lemma 4.4. There exist positive constants M, N such that for all X > M, if

JAI > NX 1/3(log X) 2 , where A = -cB2/ 3 + EB-4/13 and je| > Eo, then (A, B) ' Rx.

Proof. Note that

(A --2 A A,BI
IA(TA,B)I Im(TA,B) 6

172814A 13

IA(TrA,B)IIj(TA,B)I Im(rA,B)6

Recall that TAB in the usual fundamental domain, so that I Re(TA,B) I< 1/2 and

IrA,BI 1. Since IA(TA,B)j3(TAB)I -+1 as T -+ ioo, there is some positive constant

bounding IA(TA,B)I1jI from above, so

1A13f(A,B)- 2 > cI
Im(TA,B) 6

for some constant c1 > 0.

35



If Im(r) <_ 1, this means f(A, B)- 2 > c1IA 3 > c1N3X(logX)6 . So as long as

M is large enough so c1N3 (log M)6 > 1, this tells us that f(A, B)- 2 > X and thus

(A, B) Rx. (We will need to be careful to make sure this is compatible with how

we choose N.)

Assume Im(T) > 1. Note that

IAA,BI = 64IE||3c2 - 3ceB 2 + F2B-41.

The polynomial x2 - 3cx + 3c2 is positive for all real numbers, with a minimal value

of f(3c/2) > 2, which implies that IAA,BI ! 128E0 > 0.1. Since j 1728(4A) 3 A-1

this means that 1ii < c2 IAI 3 for some positive constant c 2 -

But since IqJ = 7 e2,m(), and for Im(T) > 1, 1log(1j1) - log(q 1)1 is bounded, it

follows that

Im(r) < C3 log(JAI) + c4

for some positive constants c 3 , c4 .

So

f (A, B)- 2 > Ci1
Im(TA,B) 6

> Ci A1

- (c3 log(IA) + c4) 6

If we take N such that 3c1 N3 > 2c3 , then there is some constant c5 such that if

X > c5 and JAI > NX 1/3(logX) 2 ,

ci1 > X.
C1 (c3 log(IA1) + C4)6

This means that (A, B) ' Rx.

So we can take any N such that 3c1 N3 > 2c3 and Al such that c1 N3 (log M) 6 > 1

and M > c5 , and the lemma holds for these.

Together Lemmas 4.3 and 4.4 tell us that for X > M, if JAI > NX 1/ 3 (log X) 2,

then either IAA,BI < 1 or (A, B) Rx. Thus, the only integer points in Rx where
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JAl > NXi/ 3(log X)2 are those where AA,B - 0.

4.4 Weakly minimal curves not minimal at 2 or 3

Recall that we defined Rx so that HF(EA,B) < X is equivalent to (A, B) E Rx/,A.

In this section, we more carefully examine AA,B-

Recall that we defined AA,B so that it relates the minimal and polynomial discrim-

inants:

A min A,B I AA,B-

Since we are requiring that (A, B) be weakly minimal, it follows from Proposition 2.2

that AA,B is 1, 22, 3-12, or 612, depending respectively on whether the model EA,B

is minimal everywhere, fails to be minimal only at 2, fails only at 3, or fails at both

2 and 3.

Proposition 4.5. Let E4,B be the elliptic curve given by the equation

y2 X3 + Ax + B. (4.1)

The equation

(A, B) mod 26 is

(13,14)

(21, 38)

(4.1) fails

one of

(45, 46)

(53,6)

to be a minimal equation for EA,B at 2 if and only if

(29,30)

(0,16)

(61,62)

(32,16)

(5,22)

(16, 16)

(37, 54)

(48,16).

The equation (4.1) fails to be a minimal equation

33 1 A, 33 1 B, and (A/33 mod 32, B/3 3 mod 33) is

(8,2) (8,25) (5,11) (2,7)

for EA,B at 3 if and only if

(5,16) (2, 20).

(Note we reduced A/3 3 only mod 32.)

In particular, there are 12 (resp. 18) classes of (A, B) mod 26 (resp. 36) for which
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equation (4.1) fails to be a minimal equation at 2 (resp. 3).

Noting that the situations for p = 2, 3 are independent, this is just an application

of Tate's algorithm, as described in [351 (which we supplemented with sage [371).

Let CIA be the set of residue classes (Ao, BO) E (Z/66Z)2 such that if (A, B) E Z2

reduces (Ao, BO then (A, B) is weakly minimal at 2 and 3, and AA,B = A. Proposi-

tion 4.5 tells us what # ClA is for each A.

Model is... Factor A [Size of ClA

Minimal everywhere 1 (212 - 12 - 22)(312 - 18 - 32)

Minimal except at 2 2-12 12 x (312 - 18 - 32)

Minimal except at 3 3-12 (212 - 12 - 22) x 18

Minimal except at 2 and 3 612 12 x 18

Fix (A0, Bo) E CIA. For weakly minimal (A, B) reducing to (AO, BO) mod 66,

H(EA,B) < X is actually equivalent to (A, B) E RX/A (this is a consequence of

Proposition 2.2). If we calculate

#{(A, B) E Z2 I (A, B) = (AO, BO) mod 66, (A, B) weakly minimal, (A, B) E Rx/A},

and sum over all (AO, BO) E CIA and A, this will give the number of elliptic curves of

Faltings height less than X up to isomorphism. This is done in the next two sections.

4.5 Counting weakly minimal lattice points of a fixed

residue class

Proposition 4.6. Fix two residue classes AO, BO mod 66 such that (AO, Bo) is weakly

minimal with respect to 2 and 3. Then there is a constant M such that the number

of lattice points in Rx reducing mod 66 to (AO, BO) and AA,B # 0 is

6-1 2oX 5/ 6 + O(Xl 2 (logXM)3),
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where Xm = max(X, M) and o- = Area(R 1).

Proof. Since we are counting lattice points, we want to apply Theorem 1.1. Since

the error term is dependent on the length of the boundary, we will need to use a

region that has finite boundary and keep track of that boundary. (In the end, we will

be doing this to the region scaled by 6-6 since counting all integral points in that

rescaled region will be approximately the same as counting the points that satisfy the

particular congruence. For simplicity, we ignore the rescaling for now.)

Let XA = max(M, X). Let

R'= (A,B) E Rx IAI <NXJ(log X)2},

where N, M are from Lemma 4.4. If X > M, then Lemmas 4.3 and 4.4 tells us that

the lattice points (A, B) E Rx \ R'y satisfy AAB 0. If X < M, then Rx g RM, so

Rx \ R'y g RA \ R' , and so also AA,B = 0-

Recall that C is the bound on IA(r) Im(T) 6 1 from Lemma 4.1, and c = (27/4)1/3.

Using Lemma 4.2, there is a 00 > 0 such that if AI < NX 13(log X M )2 and (A, B) E

Rx, IBI < OoN3/2X 2 (log XM) 3 . Thus, we can think of R' as the intersection of Rx

with a rectangle. The boundary of R's is contained in the union of the boundary of

that rectangle (and thus no worse than O(Xl 2 (log Xm) 3 )) and the boundary of Rx

(that is, the boundary of the closure of Rx). So we need only show that the curve given

by the boundary of Rx inside that rectangle has length less than O(XN2 (log XM) 3 ).

The lemmas that follow establish this.

Lemma 4.7. For any positive a, / (E R, the boundary of Rx in the rectangle |Al

aX 1/3 and JBJ < /3X1 / 2 is O(XI/2 ).

Proof. Since Rx is R1 scaled by X 1/ 3 in the A-axis and X 1 / 2 in the B-axis, it suffices

to show that the boundary of R1 in any rectangle is bounded. Since the scaling cannot

make the boundary longer than the scaling itself, it will follow that the boundary in

Rx is O(X 1/ 2 ).
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The boundary of R1 is given by the zeros of

| AA,BI - IA(TA,B) Im(TA,B) 6

This function is real analytic off AA,B = 0 (where it is not defined), and thus in any

compact set, its zero set is rectifiable (see [231 3.4.10). l

Note that [231 3.4.10 even implies that the boundary of Rx in any rectangle is

finite, but since we want to know how big our error is, we want to calculate it more

carefully.

We must then consider the boundary in the region aXI/3 < JAI or /3X1/ 2 < JBI

(noting that we can fix a, # as we like). We will first consider R, and then generalize.

For (A, B) such that AA,B 4 0, if we choose TA,B in the standard fundamental domain,

then q is real valued, and so is A(rA,B). In fact, it shares the same sign as AA,B. So

F(A, B) = AA,B - 'A(T4,B) Im(rA,B)6  (4.2)

is a real-valued function the zero set of which is the boundary of R1. We will show

that there is a 3 such that for all B > J3, each partial of F on the boundary of R, has

a constant sign, and the same hold for all B < -3. First, this implies that since F is

defined everywhere but where AA,B = 0, there can be at most two components of the

boundary (one for each connected region separated by the cubic). Second, it tells us

that where IBI > /, a connected curve given by the zero set of F (and thus also the

corresponding boundary of Rx) is such that its length in any rectangle is less than or

equal to the length of the boundary of the rectangle. (This follows from the triangle

inequality. This controls how much a curve can change direction and thus bounds its

length.)

Lemma 4.8. There is a 3 > 0 such that if (A, B) E R2 such that F(A, B) = 0 and

|BI > /, then the gradient VF at (A, B) is in the third quadrant if B > 0 and in the

second quadrant if B < 0.

Proof. We calculate the partial derivatives of F on the curve where F = 0. The choice
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of TA,B implies that qAB = e2x iTB is real valued, so we can write F and A(T4,B) in

terms of qAB using 27r Im(TA,B) log IqA,B I in (4.2).

Note that Lemma 4.1.1 bounds the second term in the definition of F by C (since

we currently considering R1 ), so IAA,BI is bounded on F(A, B) = 0, and thus as BI

grows large we have 4A3  27B2 . So A 3 grows large and thus also j(EA,B), from

which it follows that qA,B -* 0-

Define

J(TB) 1 1 + B2

(EA,B) 1728 256A3

By the chain rule,

OF _ OAA, 1 d(A(q)(log[ql))6 ) dq) (J)
OA A (27r)6 k dq ) dJJ OA '

Since q can be written as a convergent power series in J- = J with leading term J,

it follows that - = 1+ O(J) = 1+0(q). Similarly, since A(q) is a convergent power

series in q with leading term q, we also have ( = 1+O(q). Using that q is real,

we get that

dA (q) (log I q 1)6
dA~q)o q)= (1 + 0(q))(log |qI) 6 + 6(1 + 0(q))(log IqI)'
dq

= (log Iql) 6 + O((log IqI)')

Lastly, A and are straightforward calculations. Putting this together, we

obtain
OF 1 ( 3B2  +
(A - 192 A (27r) 6  256A4) (1+o(1))

and a similar calculation gives

OF 1 __B

OB = -864B ()6 (lo IqAB 1)6 2A3) (1 + 0(1)).

We want to know the value of these partial derivatives where F(A, B) = 0, which

means that

AA,B = A(qA,B)(og qABl)'. (4.3)
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Additionally, for small q, A(q) = q(1 + o(1)) = 1/j(1 + o(1)); substituting this into

(4.3) yields

(log IqD) = iAB(l + o(1)) = -1728(4A) 3(1 + o(1)).

Lastly, it follow from Lemma 4.2 (for R1 ), that B 2 /A 3 approaches -4/27. We put

these two estimates into (4.2) to conclude that

OF = -A 2 192- 4(1 + o(1))

and
F = -B 864- 27 (1 +o(1)))

By Lemma 4.2, we can chose a such that if (A, B) E Rx and BI )3X1 / 2 then

JAl < aX"/3. Thus, for points where IBI < 3X1/ 2 , Lemma 4.7 applies, and for

those where IBI > 3X1 / 2 , the above argument applies, and applying it with the two

rectangles where /3X 1/ 2 < IBI < #oN 3/ 2 Xl/ 2 (log X)3 and JAI < NX 1/ 3 (log X) 2 , the

boundary of Rx in that region is O(X 1/ 2 (log X) 3 ).

Having shown that the boundary of R' is O(X1 2 (log XA )3 ), we turn now to the

lattice points of R' . If we wanted all lattice points, we could just apply Theorem 1.1,

which tells us there should be Area(R'.)+O(Xl2 (log XM) 3). The area of Rx is O-X5 / 6,

and this differs from the area of R'y by the region where IBI > 13oN3/2XI/2(log XM) 3 .

Lemma 4.4 tells us that for a fixed B in that region, the width of the region is

O(B- 4 / 3 ). So the area of the difference between Rx and R's (including both negative

and positive B) must be bounded by

2 1 poN3/2X(/2gX O(B-4/3 )dB = 0(XM-1/6 (log X,)

so the area of R' is oX5/6+0(X1 (log XX)-l). We conclude that the total number

of lattice points in R'. is OX 5/ 6 + O(XI/ 2 (log XM) 3).

Lastly, we want to apply the entirety of the above argument after rescaling in

both directions. The number of lattice points of a particular residue class mod m in
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a region is the number of all lattice points in the same region scaled by 1/m in both

directions and translated appropriately. So scaling the region will scale area by 6-12

and length by 6-6. Translating will change the number of lattice points by at most

the boundary, so the final result must be 6- 12o-X5 / 6 + O(X12 (log XM) 3).

4.6 Concluding the proof of the main result

Recall that Rx was defined so that what we want to count for Theorem 1.2 was

Sx = {weakly minimal (A, B) E Z2 AA,B 7 0, (A, B) c RxAAB}.

Let

SX,A {(A, B) E Sx I AA,R = A}

= {weakly minimal (A, B) E Z2 n Rx/A I AA,B 5 0, AA,B A

so that Sx is a disjoint union of Sx,1, Sx,2-12, Sx,3-12, and SX,6-12.

We now go about calculating #Sx,A. Recall from Section 4.4 that CIA is the set

of residue classes mod 66 such that if (A, B) reduces to a class in CIA, then (A, B) is

weakly minimal at 2 and 3 and AA,B = A. A Mdbius inversion argument shows that

Ztp(d) = 1 if (A, B) is weakly minimal

d 4 A 0 otherwise,
d 6lB

so

#SxA =Z((d).
(A,B)EZ 2fnRx/A d4 JA

(A,B) mod 66EC1 d 6 B
AAB#0

We want to switch the sums so that we end up summing over d first. To be able to

describe the inner sum, let d*ClA be the set of residue classes (d, I) E (Z/66 Z) 2 such

that (d4 , d6b) E ClA; note that #d*CA = # ClA. Note that if (A, B) mod 66 E ClI,
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it is also true that 2 f d, 3 f d.

If X > M, there are no (A, B) E Z 2 fnRx/ such that JAI > N(X/A)1/ 3(log(X/A)) 2

(proved in Lemmas 4.3 and 4.4), so d < N1/4(X/A)1/ 12 (log(X/A)) 1/ 2 . There is a

bijection between

{(A, B, d) E Z3 I (A, B) E Rx/x, (A, B) mod 66 E CIA, AA,B $ 0, d' I A, d6 I BI

and

{(a, b, d) E Z3 (a, b) c Rd-12x/A, (a, b) mod 66 E d*ClJ, Aa,b # 0,

d < N114 (X/A)1/ 12 (log(X/A)) 1/2 , 2 { d, 3 { d}

given by (A, B, d) " (Ad- 4 , Bd--6, d).

So

E
d<N 1/4(_X/,X)1/12 (log(X/A)) 1/2

2fd, f3d

d<N/
4 (X/A)1/1

2
(log(X/,\))1/

2

2fd, 3fd

p(d) E
(a,b)EZ

2 nR d-12X/X

(a,b) mod 6
6 Ed*ClI

Aa,b#o

0 (max(M, d- 12X/A)1 / 2 log(max(M, d- 12 X/A)) 3)

by Proposition 4.6. As in the proof of Theorem 2.1, it can be shown that

E p(d)d- 10  (1 - 2-( - + O(Y-9)
d<Y 210)(1 - 3-10)

2td,3fd

so applying this to the leading term we get

#SXA - # ClA 0)-10 5/6
A5/66 12 (1 - 2-10)(1 - 10)
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)

(4.4)

p(d) 6 12 o-(d-12X/ Ajo/6



with an error of

p(d) max(M, d 12 X/A) 1/2 log(max(M, d-12 X/A)) 3

d<N /
4 (X/A)1

/
12 (log(X/A))1/ 2

2fd, 3{d

(which dominates the error coming from applying Equation 4.4). With some algebraic

manipulation and another application of Equation 4.4, it can be shown that this error

is

0(X 1/2 (log X)3

Summing over the four possible values of A using the calculations of # CIA from

Section 4.4, this gives us

#SX = 12((1)-10-X5/6 + O(Xl/ 2 (log X)3),

as desired.
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