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Abstract

This thesis gives an analogue to the classical Schur-Weyl duality in the setting of Deligne
categories. Given a finite-dimensional unital vector space V (i.e. a vector space V with
a distinguished non-zero vector 1) we give a definition of a complex tensor power of V.
This is an Ind-object of the Deligne category Rep(St) equipped with a natural action of
g(V).

This construction allows us to describe a duality between the abelian envelope of the
category Rep(St) and a localization of the category OP (the parabolic category 0 for
gf(V) associated with the pair (V, 1)).

In particular, we obtain an exact contravariant functor SWt from the category
Repab(St) (the abelian envelope of the category Rep(St)) to a certain quotient of the

category Op. This quotient, denoted by 0 , is obtained by taking the full subcate-
gory of Op consisting of modules of degree t, and localizing by the subcategory of finite
dimensional modules.

It turns out that the contravariant functor SWt makes Ot',y a Serre quotient of the

category Repab(St)OP, and the kernel of SWt can be explicitly described.
In the second part of this thesis, we consider the case when V = C . We define

the appropriate version of the parabolic category 0 and its localization, and show that
the latter is equivalent to a "restricted" inverse limit of categories Ot1CN with N tending

to infinity. The Schur-Weyl functors SWt,CN then give an anti-equivalence between the

category O1go and the category Rep'b(Se).

This duality provides an unexpected tensor structure on the category PO"..

Thesis Supervisor: Pavel Etingof
Title: Professor of Mathematics
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A mathematician is bothered that

his field of research is very abstract,

and resolves to switch to some

practical area of mathematics. He

goes to the department bulletin

board to find an upcoming lecture

about something practical. Luckily,

a talk is scheduled that afternoon

on "The Theory of Gears". Excited

that he has finally found a

down-to-earth area of mathematics,

he arrives to hear the lecture. Then,

the speaker stands up and begins:

"While the theory of gears with an

integer number of teeth is well

understood, a gear with a complex

number of teeth..."

A mathematical anecdote
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Chapter 1

Introduction

1.1 Overview of the results

The study of representations in complex rank involves defining and studying families of

abelian categories depending on a parameter t which are polynomial interpolations of the

categories of representations of objects such as finite groups, Lie groups, Lie algebras and

more. This was done by P. Deligne in [D2] for finite dimensional representations of the gen-

eral linear group GLn, the orthogonal and symplectic groups O, SP2n and the symmetric

group S,. Deligne defined Karoubian tensor categories Rep(GLt), Rep(OSpt), Rep(St),

t c C, which at points n = t C Z+ allow an essentially surjective additive functor onto

the standard categories Rep(GLn), Rep(OSpn), Rep(Sn). The category Rep(St) was sub-

sequently studied by himself and others (e.g. by V. Ostrik, J. Comes in [CO], [CO2I).

This thesis gives an analogue to the classical Schur-Weyl duality in the setting of

Deligne categories. In order to do this, we define the "complex tensor power" of a finite-

dimensional split unital complex vector space (i.e. a vector space V with a distinguished

non-zero vector 1 and a splitting V C11 D U). This "complex tensor power" of V is an

Ind-object in the category Rep(St), and comes with an action of gl(V) on it. Furthermore,

it can be shown that this object does not depend on the choice of splitting, but only on

the pair (V, 11).

11



The "t-th tensor power" of V is defined for any t E C; for n = t E Z+, the functor

Rep(St=n) -+ Rep(Sn) takes this Ind-object of Rep(St=n) to the usual tensor power V*O

in Rep(Sn). Moreover, the action of gl(V) on the former object corresponds to the action

of g[(V) on Von.

This allows us to define an additive contravariant functor, called the Schur-Weyl func-

tor,

SWt,v : Rep"b(St) 4 0?

Here Repab(St) is the abelian envelope of the category Rep(St) (this envelope was described

in [D2, Chapter 81, [CO21) and the category O is the parabolic category 0 for g(V)

associated with the pair (V, 1).

It turns out that SWt,v induces an anti-equivalence of abelian categories between a

Serre quotient of Repab(St) and a localization of O. The latter quotient is obtained

by taking the full subcategory of 0' consisting of "polynomial" modules of degree t (i.e.

modules on which Idv E End(V) acts by the scalar t, and on which the group GL(V/Cl)

acts by polynomial maps), and localizing by the Serre subcategory of finite dimensional

modules. This quotient is denoted by Ot'V

Thus for any unital finite-dimensional space (V, 1) and for any t G C, the category

Oly is a Serre quotient of Rep' (St)OP.

Next, we consider the categories OlCNN for N E Z+, and the corresponding Schur-Weyl

functors. Defining appropriate restriction functors

R tN tN N-1
Rest,N : QP"N OtCN1

tC

we can consider the inverse limit of the system ((O N)N 0, (Rest,N)N 1) and a contravari-

ant functor

ab(St) M PNN

NEZ+

induced by the Schur-Weyl functors SWt,CN.

We then define a a full subcategory of Urn PN called "the restricted inverse limit"

12



of the system ((5NN)N , ( tRes,N)N1). Intuitively, one can describe the "the restricted

inverse limit" as follows:

By definition, the objects in PNEZ+ N are sequences (MN)NEZ+ such that MN C

OtCN, together with isomorphisms Rest,N(MN) -+ MN-1. The objects in the restricted

inverse limit are those sequences (MN)NcZ+ for which the integer sequence {f(MN)})NEZ+

stabilizes (f(MN) is the length of the Ot"N-Object MN).

We then define the complex tensor power of the unital vector space (c 1 1 := ei), and

the corresponding Schur-Weyl contravariant functor SWt,co. As in the finite-dimensional

case, this functor induces an exact contravariant functor SWt,c., and we have the fol-

lowing commutative diagram:

Repab(St)OP r'm e 4 CnSW . Pn2, restr ,t"SWt,iim

bPOC
t,coo

The contravariant functors SWt,co, SWt,im turn out to be anti-equivalences induced

by the Schur-Weyl functors SWc.-

The anti-equivalences SWt,co, SWt,im induce an unexpected structure of a rigid sym-

metric monoidal category on

0,ocJ - m Ot c

n>1, restr

We obtain an interesting corollary: the duality in this category given by the tensor struc-

ture will coincide with the one arising from the usual notion of duality in BGG category

0.

The Schur-Weyl functor described above can also be used to extend other classical

dualities to complex rank. Namely, one can consider categories which are constructed "on

the basis of Rep(St)". A method for constructing such categories was suggested in lEt1],
and was used in [Ell, [Mat] to study representations of degenerate affine Hecke algebras

and of rational Cherednik algebras in complex rank. One can then try to generalize

13



the classical Schur-Weyl dualities for these new categories: for example, one can use the

notion of a complex tensor power to construct a Schur-Weyl functor between the category

of representations of the degenerate affine Hecke algebra of type A of complex rank, and

the category of parabolic-type representations of the Yangian Y(DN) for N E Z+. We

plan to study these dualities in detail in the future.

1.2 Summary of results

Recall that the classical Schur-Weyl duality describes the relation between the actions of

gl(V), Sd on V d (here V is a finite-dimensional complex vector space, d is a non-negative

integer, and Sd is the symmetric group).

In particular, it says that the actions of g(V), Sd on V~d commute with each other,

and we have a decomposition of C[Sd] ®c U(g (V))-modules

V dX SAV
A is a Young diagram

I=d

We would like to extend this duality to the Deligne category Rep(St), by constructing

an object V*D in Rep(St), together with the action of g[(V) on it, which is an analogue

(a polynomial interpolation) of the module V~d for C[Sd] Oc U(g[(V)).

It turns out that this can be done in the following setting:

* The space V is required to be unital, that is, we fix a distinguished non-zero vector

1 in V. We then choose any splitting V a C1 D U. It can be shown that V** does

not depend on the choice of the splitting, but only on the choice of the distinguished

vector n.

For t Z+, one can actually give a definition without choosing a splitting, as it is

done by P. Etingof in [Et1] (see Section 4.5).

" The object VD is not finite-dimensional (unlike Vod), but is an Ind-object (a count-

able direct sum) of objects from Rep(St).

14



The intuition for working in the above setting is as follows (proposed by P. Etingof in

[Etli): let t E C, and let x be a formal variable. The expression x' is not polynomial in

t, and has no algebraic meaning, but if we present x as x := 1+ y, we can write:

xt = (1+y)tk yk

kEZ+

The function (') is polynomial in t, so the expression EkEz (t)yk is just a formal power

series with polynomial coefficients. This explains why it is convenient to work with unital

vector spaces.

Notice that for t Z+, the above sum is infinite, which also explains why the object

V-t can be expected to be an Ind-object of Rep(St) (Rep(St) has only finite direct sums).

To define the object V -t for a unital vector space (V, 1), we use the following notation:

Notation 1.2.0.1.

" We denote by p(vc1) C gf(V) the parabolic Lie subalgebra which consists of all the

endomorphisms # : V -+ V for which 0(11) E C1. We will write p := p (vc1) for

short.

" P1 denotes the mirabolic subgroup corresponding to 11, i.e. the group of auto-

morphisms 4D : V -+ V such that <D(I) = 1, and PC, c p denotes the algebra of

endomorphisms #: V -+ V for which 0(n) = 0 (thus pc1 = Lie(31 )).

" it1 denotes the subgroup of q3 1 of automorphisms <D : V -* V for which Im(<D -

Idv) C Cn, and u+ C Pci denotes the algebra of endomorphisms # : V -+ V for

which Imq$ C C I C Ker # (thus u+ = Lie(i 1 )).

Fix a splitting V = Ci D U.

Recall that we have a splitting g[(V) 2 p ( u-, where u- U. This gives us an

analogue of triangular decomposition:

gI(V) C Idv eu- e u+ e gI(U)

15



with U*.

The definition of V*D is essentially an analogue of the isomorphism of

C[Sd] ®c U(g1(V))-modules

V d 0D (U k O CInj({1, ... ,k},{1, ... , d}))Sk
k=O,...,d

Here the action of gl(V) on the right hand side (viewed as a Z+-graded space) is given as

follows: IdV acts by the scalar t, gl(U) acts on each summand though its action on the

spaces U k, and u-, u+ act by operators of degrees 1, -1 respectively.

The group Sd acts on each summand through its action on the set

Inj({1, ... , k}, {1, ... , d}) of injective maps from {1, ... , k} to {1, ... , d}.

In the Deligne category Rep(St), we have objects Ak which are analogues of the Sk x Sd

representation CInj({1, ... , k}, {1, ... , d}). The objects Ak carry an action of Sk, therefore

we can define a Z+-graded Ind-object of Rep(St):

Vg := (U wk 0 Ak)k
k>O

Next, one can define the action of g[(V) on VD- so that IdV acts by scalar t, g[(U)

acts naturally on each summand (U*k ® Ak)Ik, and u-, u+ act by operators of degrees

1, -1 respectively.

In fact, it can be shown that the object V*D does not depend on the choice of the

splitting, but only on the choice of the distinguished vector 1.

We also show that for t = n E Z+, the functor Rep(St=n) -+ Rep(Sn) takes VD=" to

the usual tensor power V®n in Rep(Sn), and the action of gf(V) on VD=' corresponds to

the action of 91(V) on V*".

Remark 1.2.0.2. The Hilbert series of VD! corresponding to the grading gro(V) := C11,

gri(V) := U would be (1 + y)t.

Remark 1.2.0.3. Given any symmetric monoidal category C with unit object 1 and a fixed

object X E C, one can similarly define the object (1 e X)t of Ind - (Rep(St) M C).

16



We now proceed to the second part of the Schur-Weyl duality. Recall that in the

classical Schur-Weyl duality for gl(V), Sd, the module V d over C[Sd] OcU(gr(V)) defines

a contravariant functor

SWd,V Rep(Sd) -+ Modu(t(v)),poly

SWd,V Homsd (., V d)

Here

" The category Rep(Sd) is the semisimple abelian category of finite-dimensional rep-

resentations of Sd.

" The category Modu(((v)),poly is the semisimple abelian category of polynomial repre-

sentations of g[(V) ("polynomial" meaning that these are direct summands of finite

direct sums of tensor powers of V; alternatively, one can define these as finite-

dimensional representations GL(V) -+ Aut(W) which can be extended to an alge-

braic map End(V) -+ End(W)).

This functor takes the simple representation of Sd corresponding to the Young diagram

A either to zero, or to the simple representation SAV of gf(V). Notice that the image of

functor SWd,V lies in the full additive subcategory Modu(g[(v)),poly,d of Modu([(v)),poly whose

objects are gf(V)-modules on which Idv acts by the scalar d.

It is then easy to see that the contravariant functor SWd,V : Rep(Sd) -+ MOdu(1(v)),poly,d

is full and essentially surjective.

Considering these dualities for a fixed finite-dimensional vector space V and every

d E Z+, we can construct a full, essentially surjective, additive contravariant functor

SWv : Rep(Sd) -+ Modu(g[(v)),poly L ® MOdu(ofv)),poly,d
deZ+ dEZ+

17



between semisimple abelian categories.

The simple objects in (dez+ Rep(Sd) which SWy sends to zero are (up to isomorphism)

exactly those parametrized by Young diagrams A such that A has more than dim V rows.

Thus the contravariant functor SWV induces an anti-equivalence of abelian categories

between a Serre quotient of the semisimple abelian category dEZ+ Rep(Sd), and the

semisimple abelian category Modu(t(v)),po1y.

In our case, we would like to consider the Deligne category Rep(St) and a category of

representations of gf(V) related to the unital structure of V.

Unfortunately, the Deligne category Rep(St) is Karoubian but not necessarily abelian,

which would make it difficult to obtain an anti-equivalence of abelian categories. However,

it turns out that the Karoubian tensor category Rep(St) is abelian semisimple whenever

t 0 Z+. For t = d E Z+, this is not the case, but then Rep(St~d) can be embedded (as a

Karoubian tensor category) into a larger abelian tensor category, denoted by Rep"b(St=d).

The construction of this abelian envelope is discussed in detail in [D2, Section 8] and in

[CO21. We will denote by Repab(St) the abelian envelope of Rep(St) for any t E C, with

Repab(St) being just Rep(St) whenever t Z+.

The structure of Repab(St) as an abelian category is known, and described in [C02]

and in Section 3.2.4. In particular, it is a highest weight category (with infinitely many

weights), with simple objects parametrized by all Young diagrams.

It turns out that the correct categories to consider for the Schur-Weyl duality in com-

plex rank are the abelian category Repab(St) and the parabolic category 0 for g[(V)

corresponding to the pair (V, 1).

18



Consider the short exact sequence of groups

1- i 1 -+ -+ GL /C)

For any irreducible finite-dimensional algebraic representation p : 1 -+ Aut(E) of the

mirabolic subgroup, %t acts trivially on E, and thus p factors through GL (V/C i).

This allows us to say that p is a GL (V/C1)-polynomial representation of T, if

p : GL (V/C1) -+ Aut(E) is a polynomial representation (i.e. if p extends to an

algebraic map End (V/C1) -+ End(E)).

Now, for any finite-dimensional algebraic representation E of , we say that E is

GL (V/C]11)-polynomial if the Jordan-Holder components of E are GL (V/C1)-polynomial

representations of q31.

This allows us to give the following definition:

Definition 1.2.0.4. The category O0 is defined to be the full subcategory of Modu(g[(v))

whose objects M satisfy the following conditions:

* M is a Harish-Chandra module for the pair (g(V), P), i.e. the action of the Lie

subalgebra pC1 on M integrates to the action of the group q1.

Furthermore, we require that as a representation of , M be a filtered colimit of

GL (V/C 11)-polynomial representations, i.e.

Ml, G Ind - Rep(TI)GL(V/C1)-poly

" M is a finitely generated U(g[(V))-module.

* Idv E g[(V) acts by t IdM on M.

19



Remark 1.2.0.5. For any fixed splitting V = CI (e U, the first requirement can be replaced

by the requirement that M101(u) be a direct sum of polynomial simple U(91(U))-modules,

and that u+ act locally finitely on M.

The category OP is an Artinian abelian category, and is a Serre subcategory of the

usual category 0 for gf(V).

The gl(V)-action on the object V-J is a "Of-type" action, which allows us to define a

contravariant functor from Rep"a(St) to Of ':

SWt,y : Homgp ab (St) V

This contravariant functor is linear and additive, yet only left exact. To fix this

problem, we compose this functor with the quotient functor ft from OP to the category

the localization of OP by the Serre subcategory of finite-dimensional modules. We

denote the newly obtained functor by SWt,v.

One of the main results of this thesis is the following theorem (c.f. Theorem 5.0.0.42):

Theorem 1. The contravariant functor SWt,v : Repab(St) -4 Ofy is exact and essentially

surjective.

Moreover, the induced contravariant functor

Reab(St)/e(vy
IKer(S'Wt,y ) 4O

is an anti-equivalence of abelian categories, thus making O!,y a Serre quotient of

Repa(St)oP.

In the course of the proof of Theorem 1 we obtain a rather explicit description of

the Serre subcategory Ker(SWt,v) of Rep(St). This description shows that as n grows

large, the kernel becomes "smaller", thus allowing one to conjecture that in the "limit case"

when n tends to infinity, we would be able to obtain an anti-equivalence of categories. In

Chapter 7, we will show that in the correct "limit" setting, this is indeed the case. The

precise statement of this result is given below.
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Consider the infinite-dimensional vector space C' with a countable basis ei, e, e,.

and IL := el as the chosen vector. As before, we can construct an Ind-object of Rep(St)

which is the complex tensor power (Co)*t, and define an action of the Lie algebra gK

on it.

We define an appropriate analogue of the category 0 of Harish-Chandra modules for

the pair (gKo, 3P); this category will be denoted by Op-.

We then define the contravariant Schur-Weyl functor

SWt,c. : Repab(St) -s op- , SWt,c. := HomRcabst)(-, (C ))

Taking the localization of Op- by the Serre subcategory of the polynomial modules,

we obtain the category 5fg0, and a contravariant functor

SWt,c. : Rep"b(St) -+ Otpcco

We claim that this functor is an anti-equivalence of categories.

In order to do so, it is convenient to use the results of Theorem 1: namely, to deduce

the anti-equivalence in the infinite-dimensional case from the results obtained in the finite-

dimensional case by expressing OCg. as an inverse limit (in some sense) of the categories
t~tcn.

To understand in which sense the category Opg. is an inverse limit of the categories

Ot'- we recall the classical Schur-Weyl duality once again.

Given a sequence of categories {Ci}icz, and functors i : Ci - Ci_ 1 for every i > 1,

we consider (following [S], [WW]) the inverse limit category 4m C to be the category

whose objects are pairs ({Ci}iez , {#i-1,i}i>1) where Ci E Ci for each i E Z+ and #i,:

Ti1,i(Ci) 4 Ci_ 1 for any i > 1.

21



A morphism in * + Ci between objects ({Ci}iez,, { -. i,i}* 1) and

({Di}icz+, {4i-1,~ i) is a set of arrows {fi : Ci -+ Di}iz+ satisfying compatabil-

ity conditions.

In the setting of the classical Schur-Weyl duality, we can consider the restriction

functors

Mes-1, :Rep(glj),ly, -+ Rep(gln_1),oi,

defined by 9 esn1,n (-)En'n (for each representation pw : gln -+ End(W), we take the

space Ker(p(E,,))). Notice that SACn _ SACn- 1 for any A.

This allows us to consider the inverse limit category m Rep(gn) 01Y.

In Chapter 6, we show that Rep(g[co)po1 , is a full subcategory of MEZ Rep(g()Py,

and give an intrinsic description of this subcategory, which we will now describe in brief.

Let m > 1. We will consider the Lie subalgebra g(m C gLo which consists of matrices

A = (aij)ii,j for which aij = 0 whenever i > m or j > m. We will also denote by g(4,

the Lie subalgebra of l consisting of matrices A = (aij)i<i,j for which aij = 0 whenever

i < m or j < m.

We can then define the specialization functors

rn : Rep(g[00)pozy -- + Rep(gln)POlY, 1'n := (-)n

This gives a functor

lim : Rep(gloo)poiy -4 I' Rep(g[)J 01Y

One can easily see that this functor is fully faithful, and is an equivalence between the cat-

egory Rep(glo)po0 1 and a subcategory of m Rep(g[)P0 1Y called the restricted inverse

limit of the categories Rep(gB) 01 Y.
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The restricted inverse limit of categories {Ci}iez, and functors Fi : Ci -+ Ci- 1 is

defined in the following setting: the categories Ci are required to be finite-length abelian

categories, and the functors Fi are required to be exact. Furthermore, assume that the

functors Ti take simple objects to either simple objects or zero (that is, the functors i

do not increase the lengths of objects). Such functors are called "shortening".

Denote by ef(X) the length of the object X E Ci.

The category m Ci is then an abelian category as well, and we can consider its full

subcategory n z Ci consisting of all objects ({Ci}iEz+, {4_,i} i ) such that the

weakly-increasing integer sequence {ck(Ci)}iEZ+ is bounded (and thus stabilizing). This

subcategory is obviously a Serre subcategory, and a finite-length abelian category.

This category is universal in the following sense: given a finite-length abelian category

A and exact shortening functors A -+ Ci for each i, there is a functor A 4 z Cz s
iZ ,restr

Remark 1.2.0.6. It is worth mentioning that sometimes (as it happens in our exam-

ples), there is another description of the restricted inverse limit, which is occasion-

ally more convenient to work with. Assume that for each i, the category Ci "has an

object-wise filtration"; namely, that it is a direct limit of a sequence of Serre subcat-

egories (Filk(Ci))kEz+. Furthermore, assume that the functors i_,, induce functors

_F_1, : Filk(Cil) -+ Filk(Ci) for any k G Z+. One can then define the category

Ii Urn Filk(Ci)
kcZ+ icZ+

which we call the inverse limit of categories with filtrations. Under some reasonable

conditions, this category coincides with the restricted inverse limit , s Ci-

This approach is described in detail in Chapter 6. It is used to prove Theorem 2 below.

Returning to our motivating example, the system ((Rep(g U),0 ) , (9ic5_1,n),>1 )

satisfies the requirements given above, and it can be shown that the functor Flim factors
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through the restricted inverse limit m restr Rep(g() 0 1,, giving an equivalence

nEZ+, restr
T cnm : Rep(glO)oly--

The contravariant functors

SWen : @ Rep(Sd) -+ Rep(gl)
dc7z+

SW(- := (adSWd,cn

also factor through the category z rrn Rep(g[),0 1Y, and we obtain the following

commutative diagram:

SW~n

Rep(g ln)P01Y

Pr.

daJz+ Rep(Sd) P um n restr p(gl

SWuCoo 
Fi

Rep(glOO)poly

with the contravariant functors SWum, SWcto being anti-equivalences.

Inspired by the classical situation described above, we define restriction functors

aPn > f Pn-1

for each n > 1. These functors come from exact functors

9iSn_1,n : etCn t,cn-1 9,Sn_1,n := (-)En,n

The functors 9 iCSn-1,n take polynomial g1n-modules to polynomial grn_ 1 -modules, and
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therefore induce exact functors

9iCS _1,n : 5 t -+5;C;;_

The Schur-Weyl contravariant functors SWt,Cn turn out to be compatible with the

functors 9Gn-1,n. That is, for any n c Z>o, there exists a natural isomorphism

n : 9ieSn_1,n 0 SWtC- + SWt,cn-

From Theorem 1, we obtain the following result:

Theorem 2. The Schur- Weyl contravariant functors SWt,,c induce an anti-equivalence

of abelian categories, given by the contravariant functor

S~~un epab (St ) P g 5
nEZ+, restr

X f {SWt,Cn (X)}nEZ,, {#n(X)}n>1

(f : X -+ Y) ' {SWt,cn(f) : SWt,C(Y) -+ SWC-(X)}nEZ,

Furthermore, we prove that the category Ot,20 is equivalent the restricted inverse

limit of the system categories ( O 1n,9Cn_,n) when n tends to infinity. The projection

functors Fn: O1yOO -4 O,"Cn are isomorphic to the the functors induced by the invariants

functors r, = (-)gt : Q 0n.

We obtain the following commutative diagram:

t~nt (Cn

SWt,iimtn

Pr

Reab Om 5|Ic iRep~ ~ s (S)tlm Pn>1, restr ,'

ItC m

tOcoo
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Corollary 3. The contravariant functor SWt,coo is an anti-equivalence of abelian cate-

gories.

This anti-equivalence allows us to obtain an unexpected tensor structure on the cate-

gory

00 m QrLtc- - 1P tCn
n>1, restr

Namely, the equivalence from Theorem 2 implies that this is a rigid symmetric monoidal

category.

Finally, we show that the duality in Repab(St) (given by the tensor structure) corre-

sponds to the duality in the category Ot"y, i.e. that there is an isomorphism of (covariant)

functors

s^Wt,y ((-)*) ---+ -k(SW"Vy(-)v)

This gives a new interpretation to the notion of duality in the category Ot"V.

In particular, it turns out that the rigidity (duality) coming from the newly obtained

tensor structure on the O/g.. corresponds to the a priori unrelated notion of duality in

the BGG category 0.
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Chapter 2

Notation and definitions

The base field will be C.

2.0.1 Finite-length categories

Let C be an abelian category, and C be an object of C. A Jordan-Holder filtration for C

is a finite sequence of subobjects of C

O= C cC1 c ... C C = C

such that each subquotient Ci+1/Ci is simple.

The Jordan-Holder filtration might not be unique, but the simple factors Ci+1/Ci

are unique (up to re-ordering and isomorphisms). Consider the multiset of the simple

factors: each simple factor is considered as an isomorphism class of simple objects, and

its multiplicity is the multiplicity of its isomorphism class in the Jordan-Holder filtration

of C. This multiset is denoted by JH(C), and its elements are called the Jordan-Holder

components of C.

The length of the object C, denoted by &c(C), is defined to be the size of the finite

multiset JH(C).

Definition 2.0.1.1. An abelian category C is called a finite-length category if every object
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admits a Jordan-Holder filtration.

2.0.2 Tensor categories

The following standard notation will be used thoughout the thesis:

Notation 2.0.2.1. Let C be a rigid symmetric monoidal category. We denote by 1 the unit

object. Also, for any object M, we denote by M* the dual of M.

2.0.3 Karoubian categories

Definition 2.0.3.1 (Karoubian category). We will call a category A Karoubian if it is

an additive category, and every idempotent morphism is a projection onto a direct factor.

Definition 2.0.3.2 (Block of a Karoubian category). A block in an Karoubian category

is a full subcategory generated by an equivalence class of indecomposable objects, defined

by the minimal equivalence relation such that any two indecomposable objects with a

non-zero morphism between them are equivalent.

2.0.4 Serre subcategories and quotients

Definition 2.0.4.1 (Serre subcategory). A (nonempty) full subcategory C of an abelian

category A is called a Serre subcategory if for any exact sequence

0 -+ M'-+ M -+ M" -+ 0

M is in C iff M' and M" are in C.

Definition 2.0.4.2 (Serre quotient). Let A be an abelian category, and C be a Serre

subcategory.

1 Deligne calls such categories "pseudo-abelian" (c.f. [D2, 1.9]).
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We define the category A/C, called the Serre quotient of A by C, whose objects are

the objects of A and where the morphisms are defined by

HomA/C(X, Y):= HomA(X', Y/Y')
X'cXY'CY
X/X',Y'cC

The category A/C comes with a quotient functor, 7r : A -+ A/C, which takes X E A

to X c A/C, and f : X -+ Y in A to its image in lin x'cx,ycy HomA(X', Y/Y').
X/X',Y'EC

Remark 2.0.4.3. It is easy to see that the category A/C is abelian, and the functor 7:

A -+ A/C is exact.

Let A, B be abelian categories, and T : A -+ B an exact functor. Then we can consider

the full subcategory Ker(Y) of A whose objects are X E A for which F(X) = 0.

Then Ker(F) is a Serre subcategory, and the functor F factors through the functor

7: A -+ A/Ker(F): we have a functor

.F: A/Ker(F) -+ B such that F F o7r

One can easily check that the functor F: A/Ker(F) - B is exact and faithful.

Remark 2.0.4.4. Let A be an abelian category, and C be a Serre subcategory. Consider

the quotient functor, ir : A --+ A/C. Then Ker(7r) = C, and any exact functor F : A -* B

which takes all the objects of C to zero factors through r.

2.0.5 Ind-completion of categories

Let A be a small category.

Definition 2.0.5.1 (Ind-completion). The Ind-completion of A, denoted by Ind - A, is

the full subcategory of the category Fun(A"P, Set), whose objects are functors which are

filtered colimits of representable functors A"P -- Set.

29



Remark 2.0.5.2. The Yoneda lemma gives us a fully faithful functor j -+

Fun(A"P, Set) which restricts to a fully faithful functor t : A -+ Ind - A.

An easy consequence of the definition is the following Lemma:

Lemma 2.0.5.3. The objects of t(A) are compact objects in Ind - A.

Corollary 2.0.5.4. Given an object A C A and a collection of objects { Ai}iE 1 , Ai e A

(here I is a discrete set), we have:

HomIndA(A, (DA) ' ' HomA(A, Ai)
iCI iEl

We will also use the following property of the Ind-completion (c.f. [KS, Theorem 8.6.5,

Theorem 2.0.5.5. Assume the category A is abelian. Then the category Ind - A is

abelian as well, and the functor t is exact. Furthermore, the category Ind - A is a

Grothendieck category (in the sense of [KS, Definition 8.3.24, p.186]), and thus any func-

tor F : Ind - A -4 C commuting with small colimits admits a right adjoint.

2.0.6 Actions on tensor powers of a vector space

Let U be a vector space over C, and let k > 0.

Notation 2.0.6.1.

1. Let A E End(U). We denote the operator IdulIdu o... o A ® ... 0 Idu on Uok

(with A acting on the i-th factor of the tensor product) by A(.

The diagonal action of A on UOk would then be

E A(' = A (9 Idu 0... (9 Idu + Idu (&A (9.. Idu +... + Idu (..9 Idu (&A
1<i<n

and will sometimes be denoted by AIU(&k.
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2. Similarly, given a functional f E U*, we have an operator f(1) defined as

f(l) : Uok - U -

U1 0 ... 0 Uk f f(UUI (91 ... (9 Ut_1 (9 U1+1 0 ... (9 Uk

3. Finally, given u e U, we define the operator () as

(M : U~k _ Usk+1

U10.9 OUk F-4U1(9... (9U10 U 0U1 0... 0Uk

Notation 2.0.6.2. Let U be a finite-dimensional vector space, and let f E U*, u c U.

Denote by Tf,u E End(U) the rank one operator vi a f(vi)u (i.e. the image of f 0 u

under the isomorphism U* 0 U -+ End(U)).

Notation 2.0.6.3. Let A be a Young diagram. Denote by SA the Schur functor correspond-

ing to A (c.f. [FH, Chapter 61). When applied to a finite-dimensional vector space U, this

is either zero (iff l(A) > dim U), or an irreducible finite-dimensional representation of the

Lie algebra g[(U), which integrates to a representation of the group GL(U).

We will denote the full additive subcategory of Modu(g[(u)) generated by {SAU}A (A

running over all Young diagrams) by Modu(gt(u)),poly, and call its objects polynomial rep-

resentations of the Lie algebra g[(U) (or the algebraic group GL(U)).

The category Modu(gf(u)),'Ply is obviously a semisimple abelian category, and it contains

all the finite-dimensional representations of gl(U) which can be obtained as submodules

of a direct sum of tensor powers of the tautological representation U of g[(U).

Alternatively, one can describe these representations as finite-dimensional represen-

tations p : GL(U) -+ Aut(W) which can be extended to an algebraic map End(U) -4

End(W).
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2.0.7 Symmetric group and Young diagrams

Notation 2.0.7.1.

" S. will denote the symmetric group (n E Z+).

" The notation A will stand for a partition (weakly decreasing sequence of non-negative

integers), a Young diagram A, and the corresponding irreducible representation of Spi1 .

Here JAI is the sum of entries of the partition, or, equivalently, the number of cells in

the Young diagram A.

" All the Young diagrams will be considered in the English notation, i.e. the lengths of

the rows decrease from top to bottom.

" The length of the partition A, i.e. the number of rows of Young diagram A, will be

denoted by f (A).

" The i-th entry of a partition A, as well as the length of the i-th row of the corresponding

Young diagram, will be denoted by Ai (if i > f(A), then Ai := 0).

* f) (in context of representations of S,) will denote the permutation representation of Sn,

i.e. the n-dimensional representation C" with Sn acting by g.ej = eg(j) on the standard

basis e,.., en of Cn.

* For any Young diagram A and an integer n such that n > JAl + A 1 , we denote by A(n)

the Young diagram obtained by adding a row of length n - Al on top of A.

" Let I'n,+ denote the set of all Young diagrams obtained from A by adding m boxes,

no two in the same column, and I' denote the set of all Young diagrams obtained

from A by removing m boxes, no two in the same column. We will also denote: I+

Example 2.0.7.2. Consider the Young diagram A corresponding to the partition

(6, 5,4, 1):
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The length of A is 4, and JAI = 16. For n 23, we have:

AL(n)
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Chapter 3

Preliminaries

3.1 Classical Schur-Weyl duality

In this section we give a short overview of the classical Schur-Weyl duality.

Let V be a finite-dimensional vector space over C, and let E := Vod. Then Sd acts on

E by permuting the factors of the tensor product (the action is semisimple, by Mashke's

theorem):

O-.(vi 0 v 2 0 ... 0 Vd) := Vo-1(1) Vo,-1(2) 0 ... 0 Vo-1(d)

Denote by A the image of C[Sd] in Endc(E).

Since C[Sd] is semisimple by Mashke's theorem, we have the following corollary of the

Double Centralizer Theorem:

Proposition 3.1.0.3. Let B := EndA(E). Then

" B is semisimple.

" A= EndB(E).

" As an A oc B-module, E decomposes as

E =GV oWi
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where V are all the irreducible representations of A, and Wi are all the irreducible

representations of B. In particular, there is a bijection between the sets of non-

isomorphic irreducible representations of A and B.

Consider the diagonal action of the Lie algebra gl(V) on E (i.e. a E g[(V) acts on E

by alE = 1<i<d -)).

Then we have the following result, known as Schur-Weyl duality:

Theorem 3.1.0.4 (Schur-Weyl).

* B is the image of U(g[(V)) (the universal enveloping algebra of

and thus E is a semisimple gf(V)-module.

g((V)) in Endc(E),

9 The images of C[Sd] and U(g((V)) in Endc(E) are centralizers of each other.

* As C[Sd] 9c U(gr(V))-module,

E = A0 SV
A:IXl=d

We now define a contravariant functor

SWd,V : Rep(Sd) - Modu(9t(v)),Poly, SWd,V := Homsd(-, V~d)

The contravariant functor SWd,V is C-linear and additive, and sends a simple module

A of Sd to SAV.

Next, consider the contravariant functor

SWy : EDRep(Sd) -- ModuO[(v)),po0 y, SWy := DdSWd,V

dEZ+

(the category (dcZ Rep(Sd) is equivalent to the category of Schur functors, and is obvi-

ously semisimple). This functor SWy is clearly essentially surjective and full (this is easy

to see, since Modu(9(v)),po1y is a semisimple category with simple objects SAV ESW(A)).
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The kernel of the functor SWy is the full additive subcategory (direct factor) of

de7z+ Rep(Sd) generated by simple objects A such that f(A) > dim V; taking the quo-

tient, we see that SWy defines an equivalence of categories

SWV: (0 Rep(Sd) - Modutgv)),poly

dcZ+ ) length <dim V

where (edcZ+ Rep(Sd)) le ngth <dimV is the full additive subcategory (direct factor) of

Gdezd Rep(Sd) generated by simple objects A such that f(A) < dim V.
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3.2 Deligne category Rep(S.)

This section follows [CO, D2, Etl]. We will use the parameter v instead of the parameter

t used in Introduction.

3.2.1 General description

For any v C C, the category Rep(S,) is generated, as a C-linear Karoubian tensor category,

by one object, denoted j. This object is the analogue of the permutation representation

of Sn, and any object in Rep(S,) is a direct summand in a direct sum of tensor powers of

For v Z+, Rep(S,) is a semisimple abelian category.

Notation 3.2.1.1. We will denote Deligne's category for integer value n > 0 of v as

Rep(S,=,), to distinguish it from the classical category Rep(S") of representations of

the symmetric group S,. Similarly for other categories arising in this text.

If v is a non-negative integer, then the category Rep(S,) has a tensor ideal 3,, called

the ideal of negligible morphisms (this is the ideal of morphisms f : X -+ Y such that

tr(fu) = 0 for any morphism u : Y -+ X). In that case, the classical category Rep(S")

of finite-dimensional representations of the symmetric group for n := V is equivalent to

Rep(S,=,)/3, (equivalent as Karoubian rigid symmetric monoidal categories).

The full, essentially surjective functor Rep(S,=,) -+ Rep(Sn) defining this equivalence

will be denoted by S,.

Note that Sn, sends to the permutation representation of Sn.

Remark 3.2.1.2. Although Rep(S,) is not semisimple and not even abelian when v= n E

Z+, a weaker statement holds (see [D2, Proposition 5.1): consider the full subcategory

Rep(S,=n)(n/2 ) of Rep(S,) whose objects are directs summands of sums of ®m, 0 < m < a

This subcategory is abelian semisimple, and the restriction SnIe p(Sn)( n/2) is fully faithful.

The indecomposable objects of Rep(S,), regardless of the value of v, are parametrized
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(up to isomorphism) by all Young diagrams (of arbitrary size). We will denote the inde-

composable object in Rep(S,) corresponding to the Young diagram T by X,.

For non-negative integer v =: n, we have: the partitions A for which X, has a non-zero

image in the quotient Rep(Sv=n)/3=n - Rep(Sn) are exactly the A for which A,+IA < n.

If A, + JAI < n, then the image of A in Rep(Sn) is the irreducible representation of Sn

corresponding to the Young diagram A(n) (see notation in Chapter 2).

This allows one to intuitively treat the indecomposable objects of Rep(S,) as if they

were parametrized by "Young diagrams with a very long top row". The indecomposable

object X, would be treated as if it corresponded to A(v), i.e. a Young diagram obtained

by adding a very long top row ("of size v - A "). This point of view is useful to understand

how to extend constructions for S, involving Young diagrams to Rep(S,).

Example 3.2.1.3. The indecomposable object XA, where A = can be thought

of as a Young diagram with a "very long top row of length (v - 16)":

3.2.2 Lifting objects

We start with an equivalence relation on the set of all Young diagrams, defined in [CO,

Definition 5.1]:

Definition 3.2.2.1. Let A be any Young diagram, and set

PA(v) = (v - IA , - 1, A2 - 2, ... )

Given two Young diagrams A, A', denote II(V) =: (po, /i, ... ), pIA(V) =: (P, p', ...).

We put A ~.- A' if there exists a bijection f :Z+ -+ Z+ such that pi = /t' for any

i>0.

We will call a ~/-class trivial if it contains exactly one Young diagram.
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The following lemma is proved in [CO, Corollary 5.6, Proposition 5.81:

Lemma 3.2.2.2.

1. If v 0 Z+, then any Young diagram A lies in a trivial " -class.

2. The non-trivial "-classes are parametrized by all Young diagrams A such that A(v)

is a Young diagram (in particular, v G Z+), and are of the form {A(i)}, with

A - A(O)C V c A A( 2) C..

and A('+') \ A() = strip in row i + 1 of length Ai - Ai+ 1 + 1 for i > 0

and A ) \ A -0) - strip in row 1 of length v - AI - A, + 1

We now consider Deligne's category Rep(ST), where T is a formal variable (c.f. [CO,

Section 3.2]). This category is C((T - v))-linear, but otherwise it is very similar to

Deligne's category Rep(S,) for generic v. For instance, as a C((T - v))-linear Karoubian

tensor category, Rep(ST) is generated by one object, again denoted by j.

One can show that Rep(ST) is split semisimple and thus abelian, and its simple objects

are parametrized by Young diagrams of arbitrary size.

In [CO, Section 3.21, Comes and Ostrik defined a map

,if t' : {objects in Rep(S,)l _ f objects in Rep(ST)
up to isomorphism up to isomorphism

We will not give the precise definition of this map, but will list some of its useful

properties. It is defined to be additive (i.e. liftv(A e B) L liftv(A) ( liftv(B) for any

A, B c Rep(Sv)) and satisfies lift,( ) 2 [. Moreover, we have:

Proposition 3.2.2.3. Let A, B be two objects in Rep(Sv).

1. liftv(A & B) a liftv(A) 0 li ftv(B).

2. dimRep(S,) A = (dimRep(ST) lift(A))I T=v
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3. dimC HomRep(s)( A, B) = dimFrak(C[[T||) HomRep(S) (liftv(A) liftv (B)).

4. The map lift, is injective.

5. For any A, lift,(X\) = Xx for all but finitely many v E C.

Proof. C.f. [CO, Proposition 3.121. L

Remark 3.2.2.4. It was proved both in [D2, Section 7.2] and in [CO, Proposition 3.281

that the dimensions of the indecomposable objects X\ in Rep(ST) are polynomials in T

whose coefficients depend on A (given A, this polynomial can be written down explicitly).

Such polynomials are denoted by P\(T).

Furthermore, it was proved in [CO, Proposition 5.121 that given d E Z+ and a Young

diagram A, A belongs to a trivial -_class iff P\(d) = 0.

The following result is proved in [CO, Lemma 5.20], and is a stronger version of the

statement in Proposition 3.2.2.3(e):

Lemma 3.2.2.5 (Comes, Ostrik). Consider the ~ -equivalence relation on Young dia-

grams.

" Whenever A lies in a trivial r -class, lift (X\) = XA.

* For a non-trivial ~d-class { A(2)},

li ft (X\os)) = XA(o), liftv(XA(i)) = Xvi) E X9-0 Vi > 1

Based on Lemmas 3.2.2.2, 3.2.2.5, Comes and Ostrik prove the following theorem (c.f.

[CO, Theorem 5.3, Proposition 5.22, Theorems 6.4, 6.101, [C02, Proposition 2.7]):

Theorem 3.2.2.6. The indecomposable objects XX, XA' belong to the same block of

Rep(Sv) iff A ~ A'. The structure of the blocks of Rep(S,) is described below:
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* For a trivial ~ -class { A}, the object XA satisfies:

dim EndRp(S.) (Xx) = 1

and the block of Rep(S,) corresponding to {A} is equivalent to the category Vectc of

finite dimensional complex vector spaces (in particular, it is a semisimple abelian cate-

gory, so we will call these blocks semisimple).

* Let {(i)} be a non-trivial ~"-class, and let i > 1, j 0. Then the block corresponding

to {A()} is not an abelian category (in particular, not semisimple), and the objects

X,(i) satisfy:

dim HOmRep(s,) (X\(,), XA(i)) = 0 if Ij - ij I 2

dim HomRep(s,) (XAMj), XA)) = 1 if 1j - i = 1

dim EndRep(S,) (XA(i)) = 2 for i > 1

dim EndRep(S,) (XA(o)) = 1

This block has the following associated quiver:

ao Ci Ce2
00 01 02

with relations ao o #o = 0, fi o 0i_1 = 0, a o ai-1 = 0, /3 o ai = ai+1 o /i+1 for i > 0.

3.2.3 Objects Ak

In this subsection we define the objects Ak in the category Rep(S,), and list some of their

properties. These objects are defined for any k E Z+ and any v E C.

By definition, Ak is the image of an idempotent Xk E EndRep(s,)( )k) (the latter is

given explicitly in [CO2, Section 3.11), and satisfies:

Lemma 3.2.3.1. Sn(Ak) r CInj({1, ... , k}, {1, ... , n}) - Ind?_lxskxsk C.
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This is part of the definition of the functor S,, in [D2, Theorem 6.2].

Remark 3.2.3.2. The tensor functor S, takes Ok to CFun({1, ..., k}, {1, ..., n}) ([C0] uses

this as part of the definition).

Example 3.2.3.3. AO - 1 (unit object in monoidal category Rep(S,)), A1 .

Remark 3.2.3.4. Deligne in [D2] denotes the full subcategory of Rep(S,) whose objects

are {Ak}ko by Repo(S,). This subcategory is a tensor subcategory (with respect to

the tensor product in Rep(S,)), and it is used as the first step in defining the category

Rep(S,). Namely, one first describes the structure of Repo(S,) as a C-linear rigid sym-

metric monoidal category (see [D2, Section 2]) and then defines Rep(S,) as the Karoubi

envelope of Repo(S,).

Comes and Ostrik, on the other hand, consider the full subcategory (denoted by

Repo(S,)) of Rep(S,) whose objects are { k}k> 0 . This is also a tensor subcategory. They

start by defining the structure of Repo(S,) as a C-linear rigid symmetric monoidal category

(see [CO, Section 21) and then define Rep(S,) as the Karoubi envelope of Rep0 (S,).

In [D2, Section 8.21, Deligne showed that these two definitions are equivalent.

We now describe the Hom-spaces between the objects Ak. We start by introducing

the following notation (see [CO, Section 2]):

Notation 3.2.3.5.

" By a partition 7r of a set S we will denote a collection {7r}E1 , 7ri C S, such that

7ri n irj = 0 if i # j, and Uic1 7ri = S. The subsets 7ri will be called parts of 7r. The

number of parts of 7r will be denoted by 1(7r).

" Let P,,, be the set of all partitions of the set {1, ... , r, 1', ... , s'}; Po,, is then the set

of all partitions of {1', ... , s'}, PO is the set of all partitions of {1, ... , r}, Po,o

{empty partition}.

" Let P,,, be the subset of P,,, consisting of all the partitions 7r such that i, j do not lie

in the same part of 7r whenever i f j, and similarly for i', j'.
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* The following diagrammatic notation will be used for elements of Pr,, (resp. Pr,,): let

7r C Pr,s. We will represent 7r by any graph whose vertices are labeled 1, ... , r, 1', ... , SI,

and whose connected components partition the vertices into disjoint subsets correspond-

ing to parts of ir.

For our convenience, we will always present such graphs as graphs with two rows of

aligned vertices: the top row contains r vertices labeled by numbers 1, ... , r, and the

bottom row contains s vertices labeled by numbers 1', ... s'.

Remark 3.2.3.6. In this diagrammatic representation, partitions 7r E P,s are exactly

those which are represented by bipartite graphs with deg(v) < 1 for any vertex v. These

partitions have exactly one diagram which represents them.

Example 3.2.3.7.

1. Let 7r c P6 ,3 , 7r := {{1, 1', 3}, {2, 4, 5}, {2', 3'}, {6}}. The diagram representing 7r can

be drawn as:

1 2 3 4 5 6

1' 2' 3'

2. Let ir' E P, 3 , 7r' := {{1, 1'}, {2, 3'}, {2'}, {3}, {4}, {5}, {6}}. The diagram representing

7r' is:

1 2 3 4 5 6

1' 2' 3'

Notice that 7r P6 ,3 , but 7F' E P6,3 -

We now describe how to "glue" two diagrams together to obtain a new diagram.

Let 7r E Pr,s, p C P,t. We will denote the vertices in the top (resp. bottom) row of 7r

by 1, ... , r (resp. 1',.. ., s'),and the vertices in the top (resp. bottom) row of p by 1', ... ,

(resp.1"..,")
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We draw the diagram of 7r on top of the diagram of p, with the bottom row of 7r

(vertices 1', ... , s') identified with the top row of p. We will call the diagram obtained the

gluing of 7r, p, and will denote it by D,,p.

We next consider the diagram induced by D,,P on the vertices 1, ... , r, 1", ... , t" (by

"induced diagram" we mean the diagram in which two vertices lie in the same connected

component iff they were in the same connected component of D,,p). This diagram (and

the partition in P,,t it represents) will be denoted by p * 7r.

The second piece of information we want to retain from the diagram D,, is the number

of connected components lying entirely in the middle row. We will denote this number

by n(p, 7r). Thus

connected components of D,,, = l(D,,p) = n(p, 7r) + l(p * -r)

Example 3.2.3.8. Let 7r E P6 ,5 , 7r := {{1, 1', 3}, {2, 4, 5}, {2', 3'}, {4'}, {5'}, {6}},

p E P5,4, p = {{1', 2", 4' 4"}, {2', 3'}, {5'}, {1", 3"}}.

Then the diagrams of 7r, p can be drawn as:

7= 1 2 3 4 5 6

1' 2' 3' 4' 5'

p= 1' 2' 3' 4' 5'

1" 2 31 41
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Next, we draw the gluing of 7r, p, denoted by D ,,:

D.,= 1 2 3 4 5 6

1' 2' 3' 4' 5'

1" 2" 3/ 4

Then

p*w= 1 2 3 4 5 6

1" 2" 3/ 4/

i.e. p* 7r = {{1, 2",3, 4"},{1", 3"},{2,4,5}, {6}} (partition of the set {1, ... , 6, 1", ... , 4"}),

and n(p, 7r) = 2.

The following statement is used by Comes and Ostrik in [CO, Definition 2.111 as the

definition in the construction of Rep(S,); Deligne derives it in [D2, Proposition 8.3].

Definition 3.2.3.9. Let r, s > 1. The space HomRep(s,)(Or, Os) is defined to be CPr,,

and the composition of morphisms between tensor powers of fj is bilinear and given by

the following formula: for 7r E Pr,,, p E Ps,t,

p r := "(P'7 * 7r E CP,t

The following statement is used as a definition in [D2, Definition 3.121, and can easily

be derived from the definition of Ak (c.f. [C02, Section 3.1]) and from Definition 3.2.3.9.

Lemma 3.2.3.10. Let r, s > 1. The space HomRep(s,)(Ar,A s) is CP,,,, and the com-

position of morphisms between the objects Ak is given by the following formula: for

p Pr,=s ,, Ps,tC

PO = Z Pp,7 rJ (V)TF C Pr,t
TEPr,t:p*7rCr

where
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" For T E prt, p * 7F C T means that the diagram of r contains the diagram of p * 7r as a

subgraph (equivalently, T is a coarser partition of the set {1, ... ,r, 1", ... , t"} than p *7r),

" pp,,,, is the polynomial

Pp,,,, (X) = (X - l(T))(x - 1(T )... ( - l(T) - n(p, 7r) + 1)

3.2.3.11. Let 7r E5,5, P E P5,4 , 7

{{1, 1'}, {2, 3'}, {2', 4}, {3}, {4'}, {5}, {5'}},

p := {{1', 3"}, {1", 2'}, {2"}, {3', 4"}, {4'}, {5'}}. The diagrams representing 7r, p can

be drawn as:

1 2 3 4

1' 2' 3' 4'

p= 1' 2' 3'

1" 2" 31

5

5'

4' 5'

4"

Gluing 7r and p together, we get:

D, = 1 2 3 4 5

1' 2'

" "

'l r'
3 4 0

"-1 "l

p*'r = 1 2 3 4

1" 2" 3" 4"

5

i.e. p * 7r = {{1, 3"}, {1", 4}, {2"}, {2, 4"}, {3}, {5}} and n(p, 7r) = 2.

Next, we are looking for T E P5,4 such that the diagram of T contains p * 7r as a
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subgraph. There are three such partitions T:

S 1 = p*7r, in which case pp,,,ri(x) = (x - 6)(x - 7).

T2 = 1 2 3 4 5

1" 2" 3" 4/

in which case pp,,,, (x) (x - 5)(x - 6).

T3 = 1 2 3 4 5

1" 2" 3/ 411

in which case pp,,,, (x) (x - 5)(x - 6).

Thus po ir= (v - 6)(v - 7)T-F + (v - 5)(v - 6)- 2 + (v - 5)(v - 6)- 3 .

The following morphisms between the objects Ak will be used frequently.

Let r > 0, k > 1, 1 <1 < k.

Definition 3.2.3.12. Denote by res, the morphism Ak+1 -+ Ak given by the diagram

1 2 3 ... 1 - 1 I I + 1 1+2 ... k + 1

1 2 3 ... - 1 +1 ... k

By abuse of notation, we will also denote by resl the maps P,k+1 -+ Pr,k, CPr,k+1 

CP,,k given by ir - res, o 7r.

Notice that given 7r c Pr,k+1, a diagram describing the partition resl o 7r E Prk can

be obtained by removing a vertex (labeled 1') from position 1 of the bottom row of the

diagram of ir, and shifting the labels of the vertices lying to the right. If the vertex

removed was connected to another vertex by an edge, then the edge is removed as well,

but the second vertex stays.

48



Definition 3.2.3.13. Denote by res* the morphism Ak -+ Ak+1 given by the diagram

1 2 3

1 2

.. il-i1

.. l - 13

1 1 1

1 +1

k

1+2 k +1I

By abuse of notation, we will also denote by res* the maps Pr,k Pr,k+1, CP,k -

CPr,k+1 given by 7r -+ res* o 7r.

Notice that given 7r E Pr,k, a diagram describing the partition res* 0 7r E Pr,k+1 can be

obtained by inserting a solitary vertex (labeled ') in position 1 of the bottom row of the

diagram of 7r, and shifting the labels of the vertices lying to the right.

Remark 3.2.3.14. Let n E Z+. Fix k, 1 such that 1 < k < n - 1, 1 < 1 < k. Denote

res: Sn(resl) Clrnj({1, ... , k + 1}, {1, ... , n}) -+ CInj({1, ... , k}, {1, ... , n})

res, Sn(res*) :Clnj({1, ... , k}, {1, ... , n}) -+ CInj({1, ... , k + 1}, {1, ... , n})

Denote by t, the injection

{1, ... ,k} - {1, ... , k + 11, i F--
if i < 1

if i > 1

Then given g : {1, ... , k + 1} - {1,..., n}, we have res(g) = g o ti, and given f

{1,) ...,) k + 1} "- {1,) ... , n}, we have

res*(f) Eg
gEInj({1,...,k+1},{1,...,n}):

90=f
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Example 3.2.3.15. Let 7r E F 5,5 , 7r {{1, 1'}, {2'}, {2, 3'}, {3}, {4, 4'}, {5}, {5'}}, i.e.

?= =

Then

res*(7r)

1 2 3 4

1' 2' 3' 4'

1 2 3 4

1' 2' 3' 4'

1 2 3 4 5

1' 2' 3' 4'

Remark 3.2.3.16. One can define an endomorphism 4 E EndRep(S,) (k) similar to the

idempotent Xk, so that Im(xk) a lift,(Ak) for any v (this is a direct consequence of the

definition of lift,).

By abuse of notation, we will denote Im(tk) by Ak as well, and use the isomorphism

Ak l iftv( Ak) in Lemma 5.0.0.40.

3.2.4 Abelian envelope

This section follows [C02], [D2, Proposition 8.19].

As it was mentioned before, the category Rep(S,) is defined as a Karoubian category.

For v Z+, it is semisimple and thus abelian, but for v E Z+, it is not abelian. Fortu-

nately, it has been shown that Rep(S,) possesses an "abelian envelope", that is, that it

can be embedded in an abelian tensor category, and this abelian tensor category has a

universal mapping property.

The following result was conjectured by Deligne in [D2, 8.21.21, and proved by Comes

and Ostrik in C02, Theorem 1.2]:
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Theorem 3.2.4.1. Let n c Z+. There exists an abelian C-linear rigid symmetric

monoidal category Repab(Su=n), and an embedding (fully faithful tensor functor)

t : Rep(S,--n) -+ Repab(S,=n) which makes the pair (Repab(Sv=n), t) the "abelian en-

velope" of Rep(S,=n) in the following sense:

Let T be an abelian C-linear rigid symmetric monoidal category such that all Hom-

spaces are finite-dimensional and all objects have finite length; in addition, let there be a

tensor functor of Karoubian categories g : Rep(S,=,) - T. Then the functor g factors

through one of the following:

1. The functor S, : Rep(S,=n) -+ Rep(Sn) (this happens iff g(An+1 ) = 0).

2. The functor t : Rep(S,=n) -> Repab(S,=n) (this happens iff g(An+ 1 ) -/ 0).

For v Z+, we will put (Repab(S.), t) := (Rep(S,), IdRep(s)).

An explicit construction of the category Repab(S,=n) is given in [CO2J. We will only

list the results which will be used in this thesis.

Remark 3.2.4.2. The category Repab(S,) is a pre-Tannakian category (c.f. [C02, Section

2.1, Corollary 4.71). This means, in particular, that the objects in Repab(S,) have finite

length, and the Hom-spaces are finite-dimensional.

We start by introducing the category Cq of finite-dimensional representations of the

quantum SL(2). The category Cq is a C-linear abelian category, and has the structure of

a highest weight category (with infinitely many weights). When q is a root of unity, this

category can be non-semisimple, and this is the case which will be of interest to us.

This category has a structure very similar to the structure of the category Repab(S.);

moreover, the C-linear Karoubian category TL(q) of tilting modules in Cq (also known

to be equivalent to the Temperley-Lieb category) has a structure very similar to that of

Rep(S,). See [C02, Par. 1.4, 2.3, 4.3.31 for more details.

We will use the description of the structure of Cq given in [C02], [A], [APW]. The

main facts about Cq which will be used are concentrated in the following lemma.

Lemma 3.2.4.3.
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1. All the projective modules in Cq are injective and conversely. Thus all the projective

modules of Cq are tilting modules, i.e. lie in the category TL(q).

2. For q 4 k1 being a root of unity of even order, TL(q) has at least one non-semisimple

block (all of the non-semisimple blocks of TL(q) are equivalent as Karoubian cate-

gories); the isomorphism classes of indecomposable objects in this block can be labeled

Qo, Q1,.... Each Qi has a unique highest weight.

Denote by Li the simple module in Cq having the same highest weight as Qi, and

by Mi, M', Pi the corresponding standard, co-standard and indecomposable projective

modules in Cq. With these notations, we have:

" For any i > 0, there exists an injective map Mi -+ Qi. Moreover, [Qi : Li] = 1.

" The module Q0 is standard, co-standard and simple.

" The module Qi is a projective module iff i > 1. Furthermore, {QiJi>1 is the

complete set of isomorphism classes of indecomposable projective modules in the

corresponding block of Cq.

Proof. 1. This follows from [APW, Theorem 9.12], [A, 5.7].

2. For general information on non-semisimple blocks of TL(q) and the indecomposable

tilting modules, c.f. [C02, Lemma 2.11, Section 4.3.3], [A, Theorem 2.5, Corollary

2.6].

" Qi is a standardly filtered having the same highest weight as Li (by definition),

therefore there exists an injective map Mi -+ Qi (c.f. [H, Proposition 3.71). Also,

from [A, Theorem 2.5] we know that the highest weight of Qi occurs with multiplicity

1, therefore [Qi : Li] = 1.

* C.f. [A, Section 4].

" Let Stq be the Steinberg module (c.f. [A, Section 5], [C02, Section 4.3.3]).
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By [APW, Lemma 9.101, for any finite dimensional module E E Cq, the module

Stq0E is projective. Furthermore, [APW, Theorem 9.121 implies that any projective

module in Cq is a direct summand of Stqo E for some E.

Next, it is known that a module M C TL(q) has quantum dimension zero iff it is a

direct summand of Stqo E for some E E TL(q) (c.f. [C02, Section 4.3.3]). Thus a

module M c TL(q) has quantum dimension zero iff it is projective.

Finally, [C02, Lemma 2.11] tells us that Qi has quantum dimension zero iff i >

0. Thus Qi is a projective module iff i > 0. From Part (1) we deduce that any

indecomposable projective module in the corresponding block of Cq is isomorphic to

Qi for some i > 0.

We can now describe the blocks of the category Repab(Sv) (c.f. [C02, Proposition 2.9,

Section 4]).

Theorem 3.2.4.4. The blocks of the category Repab(Sv), just like the blocks of Rep(S,),

are parametrized by ~-equivalence classes. For each -- equivalence class C, the block

Repab(Sv)c corresponding to C contains t(Rep(S,)c) (the block of Rep(S,) corresponding

to C, namely, the indecomposable objects X such that A E C).

" For a trivial ~" -class C = { }, the block Repab(S,)c is equivalent to the category Vectc

of finite dimensional complex vector spaces (and is also equivalent to Rep(S,)c).

" For a non-trivial " -class C = { AQ} >0 , the block Repab(Sv)c is equivalent, as an abelian

category, to (any) non-semisimple block of the category Cq (such a block exists if q / 1

is a root of unity of even order). The indecomposable object Xx(i) corresponds to the

indecomposable tilting module Qi (using the notation of Lemma 3.2.4.3).

Using the theorem above, we can prove different properties of the category Rep"b(S.)

in the following way:

1. Reduce the proof to a block-by-block check;
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2. Prove the property for the semisimple blocks by checking that it holds for the

category Vectc.

3. Prove the property for the non-semisimple blocks by importing the relevant result

for the category Cq.

Using this approach, we prove that Rep6(S,) is a highest weight category (with in-

finitely many weights).

Proposition 3.2.4.5. The category Repab(S,) is a highest weight category corresponding

to the partially ordered set ({ Young diagrams}, >), where

S>piff A v p, A C p

(namely, A(') > A) if i < j).

Proof. As it was said before, this can be proved by checking each block separately. The

semisimple blocks obviously satisfy the requirement; for the non-semisimple blocks, the

theorem follows from the fact that Cq is a highest weight category and from Theorem

3.2.2.6. D

Proposition 3.2.4.6.

1. In the category Repab(Sv) all projective objects are injective and conversely.

2. All projective objects of Repab(S,) lie in Rep(S,).

Proof. The statement is obvious for semisimple blocks. For non-semisimple blocks, the

first part follows from [APW, Theorem 9.12].

To prove second part of the Proposition, we recall that the equivalence between non-

semisimple blocks of Repab(S,), Cq, by definition restricts to an equivalence between non-

semisimple blocks of Rep(S,), TL(q) (see [C021). Lemma 3.2.4.3 states that the corre-

sponding statement is true for Cq, TL(q), and we are done.
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We will use the following notation for simple, standard, co-standard, and indecompos-

able projective objects in Repab(Sv):

Notation 3.2.4.7. Let A be any Young diagram. We will denote the simple (resp. standard,

co-standard, indecomposable projective) object corresponding to A by L(A) (resp. M(A),

M(A)*, P(A)).

Remark 3.2.4.8. We will show in Corollary 3.2.4.12 that the co-standard object M(A)*

is the dual (in terms of the tensor structure of Repab(S,)) of the standard object M(A).

This justifies the notation M(A)*.

Remark 3.2.4.9. Notice that if A lies in a non-trivial "-class, the objects L(A(W), M(A(C)),

M(A(i))*, P(A(W) correspond to the modules Li, Mi, Mly, Pi E Cq, respectively.

Proposition 3.2.4.10.

1. Assume A lies in a trivial " -class. Then

XA 2-- P (A) M M(A)* M M(A) L L(A)

2. Let { A(W }>0 be a non-trivial " -class, and B\ the corresponding block of Repab(Sv).

Then

" XA(o) - L(A(0)) - M(A(O)) M(A(O)*.

" For any i > 0, P(A(')) - XA(i+).

" For any i > 0, we have short exact sequences

0 -9 M(A('+1)) -+ P(A(z)) -+ M(A()) - 0

0 -+ M(A(i))* -+ P(A(')) -+ M(A(i+l))* - 0

* The socle filtration of P(A(')) has successive quotients

L(A(')); L(A('+') E L(A('-)); L(A O))
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if i > 0, and successive quotients L(A(0)); L(A(')); L(A( 0)) if i = 0.

Proof.

Follows directly from Theorem 3.2.4.4, part (1).

2. From Lemma 3.2.4.3 and from the equivalence described in Theorem 3.2.4.4, we im-

mediately conclude that

X A o> _ L ( A(0) M M(A(03) M M(A ())

From Lemma 3.2.4.3, we know that {XA() }i>1 is the set of isomorphism classes of

indecomposable projective objects in the block BA. In other words, there exists a

bijective map f : Z+ -+ Z>o such that XA(fpi)) a P(A(i)) for any i > 0.

Lemma 3.2.4.3 also tells us that there exists an injective map 4'j : M(AU)) + XAW for

any j > 0.

Composing ?bf(i) with the map XA( >>i))) S P(A(f()) -+ M(A(f(2))), we get a non-zero

map Xgf(f(i))) -+ XxAf >. Using Theorem 3.2.2.6, we see that If (f (i)) - f (i)| I 1 for

any i > 0, i.e. If(i) - iI < 1 for any i > 1 (since f is surjective).

Notice that

dim HomRepab(S) (P (A( 0 )), M (A(0))) = dim HomRepab(s') (X(f (o>>, XA(o)) > 1

which means that f(0) = 1. Together with the condition: If(i) - il I 1 for any i > 1,

this implies that f (i) = i + 1 for any i > 1.

Thus we proved that for any i > 0, P(A(i)) a XX >. We now use the BGG reciprocity

for the highest weight category Repab(S.):

Sublemma 3.2.4.11.
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(a) For any M E Repab(Sv), we have:

dim HoMRepab(S)(P(A)), M) = [M:L(A('))]

for any j > 0.

(b)

for any i, j > 0 (the brackets in left hand side denote multiplicity in the standard

filtration).

Proof. The proof is standard (see e.g. [H, Theorem 3.9(c), Theorem 3.111).

D

Applying Sublemma 3.2.4.11(a) to M P(A(')) ' XX() and using Theorem 3.2.2.6,

we see that the composition factors of P(A(')) are

L(A(z)), L(A('+')), L(A(- 1 )), L(A(')) if i > 0

and

L(A 0)), L (A('), L(A 0)) if i = 0

(notice that the cosocle of P(A(')) is necessarily L(A(')) for any i > 0).

Fix i > 1. We have a map P(A(C)) -+> M(A(C)) and a map M(A()) 4 P(A(-i)).

Comparing the composition factors of P(A('), IP(A('+')), we conclude that one of the

following holds:

* M(A(C)) c L(A(O).

* The socle filtration of M(A(z)) has successive quotients L(A(-z)); L(A(')).
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Applying Sublemma 3.2.4.11(b) to j := i - 1, we see that

[M(A('):L(A(- 1))] = (P(A(1-)):M(A('))=

Thus we conclude that the socle filtration of M(A(')) has successive quotients

L(A(2-)); L(A(2)).

The socle filtration of the standard objects immediately implies that the following

sequence is exact:

0 -+ M(A('+)) % p(A(i)) -+ M(A()) -÷ 0

Next, the socle filtration of M(A(i))* can be obtained from the socle filtration of M(A(2)),

and it has successive quotients L(A(')); L(A(- 1 ).

Since P(A(-)) is projective, we get a map P : p(A(-)) - M(A(C))* such that the

following diagram is commutative:

P(A('-') M(A(C))*

The socle filtration of M(A())* then implies that the map # is surjective, and we get

an exact sequence

0 -+ M(A(G~))* -+ P(A(il)) -+ M(A())* -+ 0

Finally, the socle filtration of P(A(i)) can be deduced from the above exact sequences

and the socle filtrations of the standard and the co-standard objects.
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Corollary 3.2.4.12. The co-standard object M(A)* is the dual (in terms of the tensor

structure of Repab(S,)) of the standard object M(A).

Proof. By the construction of the Deligne category Rep(S,), all the objects in Rep(S,)

are automatically self-dual (c.f. [D2, Section 2.16], [CO, Section 2.2]). So Proposition

3.2.4.10 immediately implies that M(A)* is the dual of M(A) if whenever A lies in a trivial

"-class, or is minimal in its non-trivial ~-class.

It remains to check the case when A lies in a non-trivial ~-class {A()}i;>o, and A

A('), i > 0. Then we have an exact sequence

P(A(i+l)) _j P(A() -- + M(A(z)) -+ 0

Since the category Repab(S,) is pre-Tannakian, the duality functor X F X* is con-

travariant and exact, and we conclude that the dual of M(AW) is the kernel of the map

f* : P*(A()) a P*(A(+)). The autoduality of P(A(z-)), P(A()), together with Proposi-

tion 3.2.4.10 and the fact that f* / 0, immediately implies that the dual of M(A(z)) is

M(A()*, as wanted. LI
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3.3 Parabolic category 0

In this section, we present the results on the parabolic category 0 which we will use. The

material of this section is mostly based on [H, Chapter 9j.

We start with some definitions.

Definition 3.3.0.13. A unital vector space is a vector space V with a distinguished

non-zero vector R.

Fix a unital vector space (V, 1) with dimV < o.

We will use Notation 1.2.0.1 for the parabolic subalgebra P(vc1) of Of(V), as well as

the mirabolic subgroup , the mirabolic subalgebra Pcj, the unipotent group U1 and

the nilpotent subalgebra uj+.

Remark 3.3.0.14. Notice that p has a one-dimensional center (scalar endomorphisms of

V), and we have: p CIdv BPc.

We now want to talk about a subcategory of the category of finite-dimensional repre-

sentations of the mirabolic group q13. For this, we will use the following lemma:

Lemma 3.3.0.15. (a) There is a short exact sequence of groups

(b) For any irreducible finite-dimensional algebraic representation p : 1 -* Aut(E)

of the mirabolic subgroup, U1 acts trivially on E, and thus p factors through

GL (V/CIi).

Proof. In part (a), one only needs to check that this sequence is exact at q1. This is

obvious once we choose a splitting V = CIL e U; with a chosen splitting, this short exact

sequence splits and we get an isomorphism 1 2 GL(U) x U*.

In part (b), recall that the group It1 is unipotent (and even abelian), so there exists a

non-zero vector v C E which is fixed by U 1 .

60



Since E is an irreducible finite-dimensional representation of E1, E has a basis con-

sisting of vectors of the form p(x)v for some x C 913. On each such vector p(x)v, )A1 acts

trivially; thus it1 acts trivially on E.

We now consider the category Rep('13) of finite-dimensional algebraic representations

of q31. In this category, we define:

Definition 3.3.0.16.

" Let p : q31 - Aut(E) be an irreducible finite-dimensional algebraic representation of the

mirabolic subgroup. The above lemma states that p factors through GL (V/C1). We

say that p is a GL (V/C1)-polynomial representation of 1, if p : GL (V/Cl) -- Aut(E)

is a polynomial representation (c.f. Notation 2.0.6.1). Recall that the latter condition

is equivalent to saying that p extends to an algebraic map End (V/CR) -> End(E).

* The category of GL (V/C1)-polynomial representations of 913 is defined to be the Serre

subcategory of Rep(, 1 ) generated by the irreducible GL (V/C1L)-polynomial represen-

tations of 11.

That is, a finite-dimensional algebraic representation E of 11 is called GL (V/C1) -

polynomial if the Jordan-Holder components of E are GL (V/CI1)-polynomial represen-

tations of 11.

We denote the category of GL (V/C 11)-polynomial representations of 1 by

Rep(I1P)GL(V/C1)-poly-

We are now ready to give a definition of the parabolic category 0 which we are going

to consider:

Definition 3.3.0.17. We define the parabolic category 0 for (01(V), p), denoted by Or,,

to be the full subcategory of Modu(g(v)) whose objects M satisfy the following conditions:

* M is a Harish-Chandra module for the pair (gL(V),1), i.e. the action of the Lie

subalgebra pC1 on M integrates to the action of the mirabolic group 1l.
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Furthermore, we require that as a representation of 1, M be a filtered colimit of

GL (V/C1)-polynomial representations, i.e.

M~, E Ind - Rep(9 1)GL(V/C1)-po1y

M is a finitely generated U(g1(V))-module.

We will also use the notation Ind - 0' to denote the Ind-completion of O (i.e. full

subcategory of Modu(9[(v)) whose objects M satisfy the first of the above conditions).

When the space V is fixed, we will sometimes omit the subscript V and write OP for

short.

We now fix a splitting V = Ci ® U. The Lie algebra Pci can then be expressed as

Per a g((U) V U*, and we have: u, U, PC] e U (

Moreover, in that case we have a splitting gl(V) 2 p E u-, where u- U. This gives

us an analogue of the triangular decomposition:

g[(V) C Idv Eu- E u+ D g[(U)

We can now rewrite the above definition of the parabolic category 0 (compare with

the usual definition in [H, Section 9.3]):

Definition 3.3.0.18. We define the parabolic category 0 for (gL(V), p), denoted by Oy,

to be the full subcategory of Modu(gf(v)) whose objects M satisfy the following conditions:

* Viewed as a U(g[(U))-module, M is a direct sum of polynomial simple U(gr(U))-

modules (that is, M belongs to Ind - Modu(g[(u)),poly).

* M is locally finite over u+.

* M is a finitely generated U(g[(V))-module.

Remark 3.3.0.19. One can replace the requirement that u+ act locally finitely on M by

the requirement that U(u+) act locally nilpotently on M.

62



The next propositions are based on [H, Section 9.31 as well:

Proposition 3.3.0.20. The category O' (resp. Ind - O) is closed under taking direct

sums, submodules, quotients and extensions in Ogoqv), as well as tensoring with finite

dimensional gf(V)-modules.

Recall that in the category 0 we have the notion of a duality (c.f. [H, Section 3.21):

namely, given a gl(V)-module M with finite-dimensional weight spaces, we can consider

the twisted action of gf(V) on the dual space M*, given by A.f := f o AT, where AT

means the transpose of A E g((V). This gives us a g[(V)-module M*. We then take MV

to be the maximal submodule of M* lying in the category 0. The module Mv is called

the dual of M in 0, and we get an exact functor (.)V : 0 - , 0 p.

Proposition 3.3.0.21. The category O is closed under taking duals, and the duality

functor (-)v _4 (O)OP is an equivalence of categories.

Definition 3.3.0.22. A module M over the Lie algebra g[(V) will be said to be of degree

K E C if Idv c gf(V) acts by KIdM on M.

We will denote by 0'y the full subcategory of Oy whose objects are modules of degree

Note that for a fixed decomposition V = Ci D U, for a module M of O to be of

degree v is the same as to require that Idc, E gl(V) acts on each subspace SAU of M by

the scalar v - IA.

Definition 3.3.0.23. Let v E C. Define the functor deg, : Modu(l 1(v)) + Modu(Ot(v)) by

putting deg,(E) to be the maximal submodule of E of degree v (see Definition 3.3.0.22).

For a morphism f : E -+ E' of gt(V)-modules, we put degv(f) := fIdeg,(E)-

Let E E Modu(g(v)). The maximal submodule of E of degree v is well-defined: it is

the subspace of E consisting of all vectors on which IdV acts by the scalar v, and it is a

ol(V)-submodule since Idv lies in the center of gf(V).
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One can show that the functor deg, : Modu(gl(v)) -* Modu(gr(v)) is left-exact. More-

over, it is easy to show that the category WV is a direct summand of O, and the functor

deg, : O0 -+ 0,", is exact.

3.3.1 Structure of the category OP

In this subsection, we present some basic facts about the parabolic category 0 for

(gl(V), p) of degree v and the indecomposable objects inside it.

Fix v C C, and let (V, 1L) be a finite-dimensional unital vector space with a fixed

splitting V = C1 G U.

Definition 3.3.1.1. Let A be a Young diagram.

M,(v - Al , A) is defined to be the g[(V)-module

l2(g[(V)) OU(P) SA U

where g[(U) acts naturally on SAU, IdV C p acts on SAU by scalar v, and u+ acts on SAU

by zero.

Thus M(,(v - Al , A) is the parabolic Verma module for (g[(V), p) with highest weight

(v -I A , A) iff dim V - 1 > t(A), and zero otherwise.

We will sometimes refer to the parabolic Verma modules as "standard modules".

Definition 3.3.1.2. L(v --IAI , A) is defined to be zero (if dim V -1 < f(A)), or the simple

module for gI(V) of highest weight (v -| A , A) otherwise.

The following basic lemma will be very helpful:

Lemma 3.3.1.3. Let A such that f(A) < dimV - 1. We then have an isomorphism of

gr(U)-modules:

M(v -- AI, A) 2 SU 9 SA U

Proof. Follows directly from the definition of M,(v - IAl , A) and the PBW theorem for

C1(V). LI

64



Proposition 3.3.1.4.

1. Let p, T be two Young diagrams. Then

dim Homop (MP(v - uI pP),Mp (v - I ,T))= 0
V, V

if pt, T lie in different ~.-classes.

2. Fix a non-trivial ~ -class {A(i)}, A(O) C AM1 C A(2) C .... For any i, j E Z+, we have

dimHomop (MP, - IA(j)l, Ai)), Mp(v - A')j , A('))) = 0 if j / i,i + 1, and

dim Homo (M(v - A('+) I A(++'), Mp (v - I , A('))) = 1 if dim V - 1 > f(A(i+l))

3. For any Young diagram A such that dim V - 1 > .(A), we have:

dimEndo (MP(v- AKA))= 1

Proof. 1. Consider a g(V)-morphism M,(v - Apt, p) -- Mp(v - ITI , T), and assume it

is not zero. Then the weights (v - 1,1, I), (v - TI , T) are W-linked, i.e. there exists

an element w in the Weyl group such that w((v - I, A) + p) = (v - ITI , T) + p, where

p = (dim V, dim V - 1, dim V - 2, ... ) = dim V(1, 1, 1, ...) (1, 2, 3, ... ).

This is equivalent to saying that w(v-I , /1 - 1 , 2- 2 , ... ) (v -'rl , T -lT 2 - 2, ... ),

which means that A1, T lie in the same ~-class (in fact, we get that w = (1, 2, ... , k) E

Sdimv = Weyl(g[(V)) for some k > 1).

2. Consider a non-trivial ~/-class {A()}j, A(0) C A(M C A( 2 C ... (recall that this can

occur only if v E Z+). Let i, j > 0, and assume there is a non-zero gf(V)-morphism

Frobenius reciprocity then gives us a morphism of g[(U)-modules:

SA U --+ M (v - A(') I , A(')) Ig[(U)
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By Lemma 3.3.1.3, the g[(U)-module M,(iv- A() , A())6(U) is either zero (if dim(U)

dim V - 1 < e(A(i))), or isomorphic to

SU ® SA)U Q stiU

We immediately conclude that A(i) C A(W) (which means that i < j), and that A(j) E

I+0. In fact, Lemma 3.2.2.2 implies that j = i +1 in that case, since for j i+2, we

get: Af) = A( + 1 for any k = i + 2,..., j, contradicting A) E I>j).

It remains to check that

dim Homop (MA(v - A(+') I('+ 1)), MI(v - IA(i) , A(i))) = 1 if dim V-1 f(A(i+1))

We start by noticing that the same Frobenius reciprocity argument used above guar-

antees us that

dim Homo (M,(v - IA('+) A('+1), 1M (v - IA()I, A('))) < I

so we only need to check that if dim V - 1 > f(A(i+l)), then there exists a non-zero

morphism

MIPv A('+') A('+')) -4 A4 (v A(' A()

This statement can be proved by induction on i > 0.

Base: Assume dim V - 1 > f(A(M)). We need to check that M,(v - | 0), A( 0M ) is not

simple, i.e. isn't equal to L(v - I , AI ). But the latter is finite-dimensional (since

(v -IA( , Ao)) is an integral dominant weight), while M,(v - C, A ()) clearly isn't

finite-dimensional (due to Lemma 3.3.1.3, for example).

Step: Let i > 1, and assume dim V - 1 > f(A(z+l)). If there exists a non-zero morphism

MP(v - IAM I, AMi) - M(v - A('-) , A(i")), then this morphism is not injective (can

be seen from Lemma 3.3.1.3), therefore M,(v - IA( , iA) is not simple; so there exists
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a non-zero morphism Mp(v - A(i+) , A(i+')) -+ M,(v - I A(), A(M), as needed.

3. This statement follows immediately from Lemma 3.3.1.3, which gives us an isomor-

phism of of gL(U)-modules:

MP(v -JAI , A) c SU 0 SAU SVU

The previous proposition immediately implies:

Corollary 3.3.1.5. Let A lie in a trivial ~v -class. Then Mp(v - Al , A) is either zero (iff

dimV - 1 < f(A)), or a simple g[(V)-module. In particular, if v V Z+, this is true for

any Young diagram A.

Proof. Recall that since v Z+, each Young diagram A lies in a trivial ~i-class (see

Lemma 3.2.2.2). The result follows from Proposition 3.3.1.4. L

Remark 3.3.1.6. Note that Proposition 3.3.1.4 implies that the category OP decomposes

into blocks (each of the blocks is an abelian category in its own right). To each ~'-class of

Young diagrams corresponds a block of O"V (if for all Young diagrams A in this ~vi-class,

f(A) > dim V - 1, then the corresponding block is zero), and to each non-zero block of

OV,V corresponds a unique ~ -class.

Proposition 3.3.1.4 also implies that the block corresponding to a trivial ~-class is

either semisimple (i.e. equivalent to the category Vectc), or zero.

Now fix a non-trivial ~-class {A(M}, and i > 0 such that f(A('+ 1)) < dim V - 1.

Proposition 3.3.1.4 implies that the maximal non-trivial submodule of M,(v -

A(M IA(W) is L(v - IA('+ , A('+')). We conclude that

Corollary 3.3.1.7. Let {A(')} 2 be a non-trivial ~--class, and i > 0 be such that f(A(W) <

dim V - 1.
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Then there is a short exact sequence

0 -s L(v - A(i+Ol A(+')) -M(v - A(jl, A(')) -+ L(v - I , A() -+ 0

Corollary 3.3.1.8. The isomorphism classes of the generalized Verma modules and the

simple polynomial modules in Olc form a basis for the Grothendieck group of n

Remark 3.3.1.9. Notice that for i : max{i ;> 0 1 f(A()) < dim V - 1}, we have

MA,(v - A(') A(')) v(v -A(', A(')) L(v -A(), A()

We also obtain the BGG resolution in category 0', as an immediate corollary:

Corollary 3.3.1.10. Let {A(i)} be a non-trivial ~*-class. Then there is

sequence of g[(V)-modules (BGG resolution of L(v - A(|, A(')) by parabolic

ules)

a long exact

Verma mod-

... _+ (- ( - + Aii+1) -+ P,(v2 -(A A) , ANi)) -+

-+ L(v - JAWz, Ai+) -+ 0

Proof. Follows immediately from Corollary 3.3.1.7.

Remark 3.3.1.11. For i 0, such a resolution is a special case of BGG resolutions in

parabolic category 0 discussed in [H, Chapter 9, Par. 161.

We now consider the projective cover P,(v - AI , A) of L(v - AI , A) in O ,. The

existence of Pp(v/- AI , A) and some of its properties are listed in the following proposition:

Proposition 3.3.1.12.

(a) Category OP, has enough projectives; in particular, there exists a projective cover of

L(v -I A , A), which will be denoted by Pp(v -I A , A).
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(b) For any Young diagram A, the following equality holds:

dim Homo ,(PP (v - JAI, A), M) = [M: L(v - Al , A)]

(c) The projective module P,(v - A| , A) is indecomposable and standardly filtered (i.e.

has a filtration where all the successive quotients are parabolic Verma modules).

(d) (BGG reciprocity) The following equality holds for any Young diagrams A, M:

(Pp(v - JAI , A) : M,(v -- pl , p)) = [M(v - Ipl , t) : L(v - JAI, A)]

(the brackets in left hand side denote multiplicity in the standard filtration).

(e) The duality functor (.)v : O, -y (OPV) takes projective modules to injective

modules and vice versa. In particular, there are enough injectives in the category

OP, and the indecomposable injective modules are exactly Pv(v - A|, A) (which is

the injective hull of L(v - Al , A)).

(f) Whenever A is not the minimal Young diagram in a non-trivial ~ -class, the modules

PP(v-JA| , A) are self-dual and therefore injective. In these cases the following equality

holds:

dim Homo (M, Pp(v - JAI, A)) = [M : L(v - JA, A)]

Proof. The proofs of (a) - (e) can be found in [H, Chapter 9, Par. 8 and Chapter 3, Par.

9-11]; the proof of the first part of (f) is based on [H, Chapter 9, Par. 14] and on Corollary

3.3.1.7. The equality in (f) can then be proved in the same way as the equality in (b). El

We can now describe the standard filtration of the indecomposable projectives

P,(v - Al , A), and their other useful properties:

Proposition 3.3.1.13.

69



(a) Assume A lies in a trivial -'-class. Then

P4(v - JAI I ,A) Mp(v - JAI , A) =L(v - JAI , A)

(b) Let {A)} be a non-trivial ~ -class. Then

P,(v - IA() A(0)) ,( - A(0) ,(O))

(c) Let {A(')} be a non-trivial ~-class and let i > 1. Then for i such that f(A()) <

dim V - 1, we have short exact sequences

0 - M(V - A0-1) A(i- 1)) -+ P,(v - A(i) I, A(')) -+ M(- (1, , A(')) -+ 0

0 -+ M (v - A( I , A(') -+ Pp(v - I P), A(')) -+ Mv (v - IA('- 1) 1 P-A 1)) - C

and the socle filtration of PP(v - |A , A(')) has successive quotients

SA()); L(v - + A+ \+)) D L(v - I -I , A(')); L(v - A) I , A()

For i such that f(A(')) > dim V - 1,

p.(v -I ) = , A(')) = M (v- -A(') , A(') - MA (v- I A(')) = L(1v -A ) A(')) - 0
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(d) Let { AW } be a non-trivial ~"-class, and let i > 1, j > 0. Then

dim Homop, (PP(v - Vi, )),Pp(v -jANI

2

0

if i = j,

f(A(i)) < dim V - 1

if Ii - jj = 1,

f(A(')), e(Ai) < dim V - 1

else

Proof. Parts (a), (b) follow directly from the fact that P, (v - A) I , A(')) is standardly

filtered, the BGG reciprocity (see Proposition 3.3.1.12) and Proposition 3.3.1.4. The BGG

reciprocity also implies that for a non-trivial ~v-class, denoted by {AI}, we have the short

exact sequence

0 -+ M, (v - A , A(- 1 ) - Pp(v - I , AN) -+ Mp(v - A , AN) - 0

whenever i > 1. Taking duals in of the modules in this sequence, we obtain a short exact

sequence

0 - Mp \v W - ,p PA() , _ P '(v - , A\W) -÷ Myv(v - - SA(-')) 4 0

To compute the socle filtration, notice that

Soc(Pp(v - I, Ai)) A L(v - I , Ai)

since

dimHomop (L(v-- 1A0) , AW), PP(v- A , A))) = [L(v- Aj I , A)) : L(v- I , A ))] = 6,

(see Proposition 3.3.1.12(f)).
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The short exact sequences above then imply that

Soc2 (P,(v - IA(i) , A(i))) c L(v - IA('+') , A('+')) ( L(v - ,A('-') A('-'))

The socle filtration description then follows, and this proves Part (c).

The dimensions of the Hom-spaces between the indecomposable projectives can be

inferred from the socle filtration and Proposition 3.3.1.12(b, f), which proves Part (d). El
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Chapter 4

Complex tensor powers of a unital

object

In this chapter, we fix a finite-dimensional unital vector space (V, 1). The goal of this

chapter is to define an object V-" which will be an interpolation of the tensor powers

V®' for n E Z+ to arbitrary v E C.

4.1 Description of the setting

In this subsection we will describe the category Ind - (Repab(S') M 01y), which will be

used to define the complex tensor power of the vector space V.

The notation M stands for the Deligne tensor product of abelian categories (c.f. [D1,

Section 5]); in this subsection, we will explain that this category can also be described as

the category of Ind-objects of Repab(S,) carrying an "O ,y-type" action of g[(V).

Fix a splitting V = CIL U.

Definition 4.1.0.14. Let X C Ind - Repab(S'). We say that g[(V) acts on X if given a

homomorphism of C-algebras

px : U(g(V)) -+ EndInd Repab(S')(X)
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We say that this action is an O,-action if:

* g[(U) C gl(V) acts polynomially on X, i.e. X decomposes as a direct sum X r

Oc i 0 E in Ind - Repab(Sv), with

1. Yi G Ind - Repab(Sv),

2. Ei being polynomial gl(U)-modules,

and the following commutative diagram holds for any a G U(g[(U)):

X > - @+ ,Y 9 Ei

px(a) GialEi t

X -> G1 Y 0 Ei

e U(u+) acts locally finitely on X, i.e. for any Y E Repab(S,), f : Y -+ X, we have:

E (px (a) o f)(Y)

belongs to Rep"b(S,) (i.e. is a compact object).

9 Idv acts on X by the morphism v -Idx.

The category Ind - (Repab(S,) M Oy) is the category of pairs (X, px) where X E

Ind-Repab(S,) and px is an O',V-action on X. The morphisms in Ind-(Repab(S,) Z Ov )

are

Hom((X, px), (Y, py)) := {f E Homlnf-Repb(s, (X, Y) fopx(a) = py(a)of Va E U((V))}

Remark 4.1.0.15. Inside the category Ind -(R"(S,)M OPV) we have the full subcategory

Ind - (Rep(S,) Z OP,,) whose objects are (X, px) where X E Ind - Rep(S,) and px is

an O,V-action on X.

Now let v = n E Z+.
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By [KS, Corollary 6.3.21, there exists a unique (up to unique isomorphism) functor

S, : (Ind - Rep(S=n)) -+ Ind - Rep(Sn)

which commutes with (small) filtered colimits and satisfies

Sn 0 LRep(Sv)-+(Ind-Rep(S,)) - Sn

(the notation is the same as in Chapter 2 and Subsection 3.2.1).

Now consider the category Ind - (Rep(Sn) M Os y); it is the full subcategory of the

category of modules ModC[sn]&cu(g[(v)) whose objects M satisfy: as a C[Sn]-module, M is

a direct sum of finite dimensional simple modules, while as a U(g[(V))-module, M E OcV.

We can define the functor

Sn : Ind - (Rep(S,_n) E Ony) -+ Ind - (Rep(Sn) X OPv)

by setting $n(X,px) := Sn(X) (with action of g[(V) given by $n(px)). The above

description of Ind - (Rep(S,=n) Z Ony) guarantees that this functor is well-defined.

4.2 Definition of a complex tensor power: split unital

vector space

Fix v E C, and fix a splitting V = C11 (D U.

Definition 4.2.0.16 (Complex tensor power). Define the object VD-' of Ind -

(Repab(Sv) Z L,V) by setting

V = ED= (U1k 0 Ak )Sk

k>O

The action on gl(V) on V " is given as follows:
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U

(U9 2 ( A 2 )s2

gl(U)

U

(U* 3 0 A3 )s3
U*

Of(U)

" Idv E g[(V) acts by scalar v,

" u E U 2 u- acts by operator

(Ulk 0 Ak )Sk -% (U k+l ® Ak+1 )Sk*

0()( res*

Here res* : Ak -* Ak+1 as in Definition 3.2.3.13, u(' as in Notation 2.0.6.1 and k > 0.

* f E U* U acts by operator

(U k 0 A)sk Ef (U k 1 0 Ak_1Ssa_

Ef := () f(0 ®res

1<1<k

Here res, : -k + Ak-1 as in Definition 3.2.3.12, f(1) as in Notation 2.0.6.1 and k > 1.

The action of f on (U®0 0 1)So a 1 is zero.

" A E g[(U) C gf(V) acts on (U k 0 Ak)Sk by

E A(')| Uek 0 IdAk:
1<i<k

(U*k 0 k )Sk __ (U k 0 Ak)sk

Lemma 4.2.0.17. The action of gf(V) described in Definition 4.2.0.16 is well-defined.
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Proof. See Subsection 5.2.1.

Remark 4.2.0.18. The actions of the elements of up, uP are in fact uniquely determined

by the actions of Idv and gr(U).

To see this, note that the ideal in the Lie algebra g[(V) generated by the Lie subalgebra

C Idv &g((UN) is the entire gl(V). Given two gf(V)-modules M1, M2 and an isomorphism

M1 -+ M 2 which is equivariant with respect to the Lie subalgebra C IdV EDg[(U), the above

fact implies that this isomorphism is also gL(V)-equivariant.

In other words, if there exists a way to define an action of g[(V) whose restriction to

the the Lie subalgebra C Idv Dg[(U) is given by the formulas above, then such an action

of g[(V) is unique.

Remark 4.2.0.19. Notice that g[(U) acts semisimply on V ", U* U acts locally finitely

on V*-", thus making it an object of Ind - (Rep"b(S,) M Opy) (in fact, an object of the

category Ind - (ORep(S,_n)) XOnO ), since Akc Rep(S,) for any k E Z+).

Remark 4.2.0.20. The definition of V*" makes it a Z+-graded object in Ind - Rep(S,).

This grading corresponds to the natural grading on Von seen as a tensor power of the

graded object V = CI E U, gro(V) := C1, gri(V) := U.

Remark 4.2.0.21. In Subsection 4.4, we will show that the object V*" of Ind-(Rep"(S1)M

0 V) does not really depend on the splitting of V, but rather only on the pair (V, ).

In the case when v Z+, one can actually give an equivalent definition of V" without

using a splitting (c.f. [Etl] and Section 4.5).

The following technical lemma will be useful to us later on. The meaning of this lemma

is that the operator F acting on VD' is "almost injective".

Lemma 4.2.0.22. Let 1 < k, and consider a non-zero morphism in Rep(S.)

0: U ® Ag A _-+ Uok 0Ak

Let u E U u u-, u / 0. Then Fu o # #0, where Fu o k+1 Z1 l<k+1(u 0 res*) a $.

Proof. Will be proved in Section 5.2.2, Lemma 5.2.2.1. L
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4.3 Compatablility of the definitions of the complex

and the integer tensor powers

Finally, we prove that the definition of a complex tensor power of a split unital vector

space is compatible with the usual notion of a tensor power of a vector space.

We continue with a fixed splitting V = CI e U. Let V 4 be as in Definition 4.2.0.16.

Define the action of g((V) on the space (kO (U*k 0 Clnj({1, ..., k}, {1, ..., n})) k

via the decomposition

g[(V) 2 C Idv Eu e u+ E g((U)

by setting

" Idv acts by the scalar n,

" u E U 2 u- acts by operator

(U*9 0 CInj({1, ..., k}, {1, ..., n}))Sk -" (U 0 Clnj({1, ..., k + 1}, {1, ..., n}))Sk+l

Fu=k 1 Z
1kl+k+1

U res*

for any k > 0. Here res* is the map defined in Remark 3.2.3.14, 0) as in Notation

2.0.6.1.

* f E U* U, acts by operator

(U k 0 Clnj({ 1, ... k}{, ... , }))k 4 (U l- 1 0 CInj({1, ... , k - 1}, {1, ... , )sk1

Ef = E f (' resi
1<l<k

whenever k > 1. Here res, is the map defined in Remark 3.2.3.14, f(1) as in Notation

2.0.6.1.

The action of f on (U®0 0 C)SO a C is zero.

78



* g[(U) acts naturally on each summand (U*k 0 CInj({1, ..., k}, {1, ..., n}))sk.

A E gf(U) acts by

E A (') J o IdCInj({1,...,k},f1,...,n}:
1<i<k

(Uk 09 CInj({1, ..., k}, {1, ..., n}))Sk - (U®' 0 CInj({1, ... , k}, , n}))Sk

Notice that the space @k-.-n(U k0CInj({1, ..., k}, {1 ... , n}))Sk automatically pos-

sesses a structure of a C[S7 ] Oc U(g1(V))-module: the group Sn acts on each summand

CInj({1, ... , k}, {1, ... , n})) through its action on the set {1, ... , n}.

Lemma 4.3.0.23. There is an isomorphism of g[(V)-modules

<D : Von~- (U*k 0 CInj{,.. k} {, ... n})k

k=O,...,n

where 4(11 09 1 0 ... 0 1) = 1 (lies in degree zero of the right hand side).

Moreover, this isomorphism is an isomorphism of C[Sn] Oc U(g1(V))-modules.

Proof. Will be proved in Section 5.2.3, Lemma 5.2.3.3. E

Proposition 4.3.0.24. Consider the functor

$n : Ind - (Rep(Sv=n)N Oiv) -+ Ind - (Rep(Sn)O ,v)

(c.f. Subsection 4.1). Then Sn(V**) - Von.

Remark 4.3.0.25. Restricting the action of g[(V) to gf(U), it can be seen from the proof

we get an isomorphism of Z+-graded gf(U)-modules.

Proof. Recall from Lemma 3.2.3.1 that Sn(Ak) = CInj({1, ... , k}, {1, ... , n})

is zero if k > n). By definition of the action of gL(V) on EkO.(U k 0

79

(this



Clnj({1, ..., k}, {1, ... , n}))Sk given above, we have an isomorphism of C[Sn] Oc U(g[(V))-

modules

0 (U*k 0 CInj({1, ..., k}, {1, ..., n}))sk
k=O,...,n

Using Lemma 4.3.0.23 above, we obtain the desired result.

LI

Example 4.3.0.26. Let dim U = 1. In that case V can be viewed as the tautological

representation of g[ 2 , with standard basis vo, vi. The tensor power Von is then a span of

weight vectors of the form

Vil 0 Vi2 V40- il I1 ..., in E {0, 1}

(the weight of this vector is (n - Ej_ i 2,Ej_ 1  ij)). This allows us to establish an

isomorphism

V®"-+ ® C{S c {1, ... , n}| ISI k} 0 Crnj({1, ... , k}, {1, ... , n}
k=0,.. k=O,.,

vi1 0v i2 0i... v -- S := {j G {1,-..., n}|i 1}

The operators E E U* u P + F E U u. act onEkO. C{Sc{1,...,n}IS=k}

by

E(S)= 5
T:TCS,TI=k-1

T, F(S)= 1
k+ 1 S T

T:SCTC{1,.n},1T1=k+1

where S is a subset of {1,...,n} of size k. The operator Idu E End(V) acts on

e~k=O.C{S C {1, ... ,I n} SI = k} by S - IS| -S.

In particular, we immediately see that

$ k(V ) OSn((Ak)s ... ,I k}, {1 ... ,I n})>

T : $n(V -")|1,[ U)

k>0 k >O



4.4 Independence of Va" on the choice of splitting

In this subsection, we show that our definition of V9P does not depend on the choice of

splitting V = C1 U we made earlier, but rather only on the pair (V, 1).

Consider the following category Uni of unital vector spaces. The objects of this

category will be tuples (V, II, U), where V is a finite-dimensional vector space, 11 E V \0}

and U is a subspace of V such that V = C1 U.

The morphisms in this category are given by

MorUni ((V, l, U), (V', 1', U')) := {# E Homc(V, V') : 0(1) = 1'}

Remark 4.4.0.27. This category has a natural structure of a symmetric monoidal tensor

category, with

(V, n, U) 0 (V', 7 ', U') := (V 0 V', 1 V 7' U 0 C1'(D CIL 0 U'(D U 0 U')

We now construct a functor

: Uni - Ind - Rep(S,)

On objects of Uni, this is just (V1 'L, U) '-+ V"V(U* 0 As sk. On morphisms,

this functor is

-+ <1: ®(U*k ( AS), -+ (U'* 9 A0 )sk

k>O k>O

with the matrix coefficients DIk : (U*k 0 Ak)Sk - (U'®' 0 A,)Sl of <D coming from maps

U k 0 Ak -4 U'®9 0 A, which are defined by the formula

t)) { ,. .k}\Im()) (Ak r Al

strictly increasing
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Here

* The map #bu, : U -+ U' is the composition U V 4 V' -* U'.

The notation #5,'/(C)) means that we apply the map #Ouu only to the factors

t(1), t(2),..., t(l) of UOk.

* The map #uy : U -> C is defined so that the composition

U " V v' - C1'

is the map u -+ Oujv(u)1'. The notation ('.\ means that we apply the map

Oui' only to those factors i of U k for which i ( Im(t).

e The map res, is the map Ak --+ Al given by the diagram 7r E Pk,l with edges

Note that D is upper-triangular in terms of the matrix coefficients VI'*

Lemma 4.4.0.28. The functor ()®" : Uni --- + Ind - Rep(S,) is well-defined.

Proof. We only need to check that this functor preserves composition. Indeed, let

# : (V, 1, U) -+ (V', 1', U'), 4 : (V', 11', U') --+ (V", 1", U"), and denote by 4, T their

respective images under the functor (.)#v.

We have: (0 o qO)uu p = pp,, o quui, and (0 o #)u,i" = Ou'I" O#uu'p + #u'l .
Thus

(0 a o#)* : 0(Uok 0 Ak)Sk + (U"*(k 0 Ak)Sk
k>O k>O

is a map in Ind - Rep(S,), with matrix coefficients coming from the maps Uok 0 Ak -+

U"®' 0 A, given by

E (O"' 0~p O #yp)(IM(0)) 0 (Ou',f 0 OU'/ + #Uvy)({1,..,r}\ Al

t:{1,.l}-+{1,..,k}
strictly increasing
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Next,

U',U" ( O U')(IM()) U',1" o UU' + OU,1') ({1 ,...,k}\Im(t)) 0 (Ak r4s
t:{I 1,..,} 1 ,...,Ik}
strictly increasing

l<j<k L2:{1, ,j} L:{1.j}-{1,.,k}
str. incr. str. incr.

{1,...,k}\Im(ti)) kres A 3) 0

(PU',U" 0 OU,U)( (1Ot2)) (4U',1" 0 0UU')(1M(ti)\IM(iot2))

,jr2s A,

Thus the (1, k) matrix coefficient of (0 0 0)-' is Zl 0j<k X1 j 0 4Dj,k, as wanted.

Let (V, 1, U) E Uni. Then Autuni((V, 1, U)) =Tv,, (the mirabolic subgroup of

GL(V) preserving 1; c.f. Definition 1.2.0.1). Given two splittings V = CIL U, V =

CIL E W, we have a map Idv : (V, n, U) -+ (V, 1, W), and we get a commutative diagram

$v,1 = Autni((V I, U))d

AdIdV t

$v,i = Autoni ((V, n ,W )) >

AutInd-Rep(S,)(Ok>O(U k 0 Ak)Sk)

Ad (Id)v {
AutInd-Rep(S,) (k>O(Wok 0 Ak )Sk)

Consider the action

pu : gl(V) -+ EndIndRep(s,)( (U k 0 Ak)Sk)
k>O

given in Section 4.2.

Lemma 4.4.0.29. The action pulgt(U)Eu* integrates to the action of ']v, on (k>o(Uok0

Ak)Sk ) given above, i.e. we have a commutative diagram

Pv,c1 e gt(U) ® U*

exp {
PU ÷ EndInd-Rep(S,) (®k>o (Uok 0 Ak)Sk)

exp{

TV,1 = Autuni((V, n , U)) > AutInd-Rep(S,)(®k>O(U*k 0 Ak)Sk)
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Proof. Let 0 E Pvc1, and denote by 'I, the image of exp(so) (s C C) under the functor

(-)!". We want to show that A D = pu(O). Writing these expressions in terms of matrix

coefficients, we want to show that for any 1, k > 0, we have:

~1,k ? sp ) + o(s)

Id +spu () + o(s)

if 1 5 k

if 1 = k

Indeed,

.t 1.l}{1s,...,k}
strictly increasing

exp(s#)7JU') 0 exp(s#),k,... 0 (Ak r4 . 1 )

O(s))(1,...,k\m(t))0 (Ak(Idu +s#U,U + o(s))m() 0 (sOUi +
st: ly i {c ,...,k}
strictly increasing

s {,.,} 0 resi + o(s)

=du,&k 01k +S EiE{1,...,k} U,) 09 IdAk +o(s)

o(s)

We conclude that

1,k spu) + o(s)
S

Id +spu(0/) + o(s)

as wanted.

if 1 = k - 1

if 1 = k

else

if 1 # k

if = k

l

We obtained an action of the subalgebra fv,ci on the Ind-object V " of Rep(S,), and
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this action does not depend on the choice of splitting, in the sense that the diagram

g[(U) e U* > EndInd-Rep(s,)(Ek ko(U k S Ak )Sk)

Pv,c11

g(W) e W* :, EndInd-Rep(S,)(Dk>O (Wok 0 Ak)Sk)

is commutative for any two splittings V = C1 e U, V = Cn D W.

It remains to show the action of g[(V) on V*' does not depend on the choice of

splitting:

Lemma 4.4.0.30. The diagram

Pv,ci e U ( C Idv > EndInd-Rep(S)( k>o(Uok 0 Ak)Sk)

Ad WIdVkSv

vwcl 1 W (1 C Idv :E nd lnd-Reps,) ((kO(Wok (g As k )k

is commutative.

Proof. This follows directly from the definition of action of W (respectively,

k>O(Wok 0 Ak)Sk (respectively, k>O(U k 0 Ak)Sk El

Thus we conclude that

Corollary 4.4.0.31. The definition of the complex tensor power V -+ V-" as an object

in Ind - (Rep(Sun)) 0 OP,,) depends only on the distinguished non-zero vector 1, rather

than on the splitting V = C1 D U.

Remark 4.4.0.32. The functor (.)0- is a symmetric monoidal functor.
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Indeed, let (VI1, U), (V', l', U') E Uni. The canonical isomorphism of Sn representa-

tions

T , : Von & V' -+ (V & V')*o

and its inverse Tn' can be rewritten using the isomorphism in Lemma 4.3.0.23; these

interpolate easily to morphisms in Ind - Rep(S,):

_T , : V . D V'0/ --+ (V 0 V')OV

and

T, : (V 0 V'y " --n VD 0 V' "

so that T o T' = Id, T', 0 TV = Id.

Remark 4.4.0.33. We can now consider the category Uni' of finite-dimensional unital

vector spaces: that is, the objects in Uni' are pairs (V, ]1), with dim V < oo, Ill E V \ {0},

and the morphisms are

HomUni'((V, 1), (V', I')) := {$ E Homc(V, V') : 0(11) =1}

By definition, we have a forgetful functor Forget : Uni -4 Uni', and this functor is

an equivalence of categories.

This allows us to define a functor ()®" : Uni' - Ind - Rep(S,) for each choice of

functor Forget-- : Uni' -÷ Uni; the latter is defined up to isomorphism. We do not

currently have a definition of the functor ()®" : Uni' -+ Ind - Rep(S,) which does not

involve a choice of Forget-1 .
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4.5 Definition of a complex tensor power when v Z+

Let v E C \ Z+, and let (V, 11) be a finite-dimensional unital vector space. In this section

we discuss an alternative definition of the v-th tensor power of (V, 11), which does not use

a splitting of V, but is applicable only when v 0 Z+.

As before, we use Notation 1.2.0.1 for the parabolic subalgebra p, its "mirabolic"

subalgebra -CI and the nilpotent subalgebra u+.

We will also denote by po the subalgebra of p consisting of all the endomorphisms

q$: V -> V for which Im# c Cn (notice that u = po n -C,).

The quotient P / + is then a reductive Lie algebra which can be decomposed as a

direct sum of reductive Lie algebras 1 11 ( [2, where 1 := PO/U+ is a one-dimensional

Lie algebra, and 12 := PCI U +.

Notice that the Lie algebra p has a one-dimensional center (Z(p) = C Idv), and so does

[. In fact, we have a canonical splitting p a C Idv (ficI, and thus a canonical splitting

I Z(1) e 2-

Consider the quotient space U:= V/C1 . Since both V and CL are p-modules, U also

has the structure of a p-module. Moreover, po obviously acts trivially on U, so the action

of p on U factors through an action of 12 on U.

We now give the following definition of a parabolic Verma module for (g(V), p) (this

is actually the parabolic Verma module of highest weight (V - AI , A)):

Definition 4.5.0.34. Let A be a Young diagram.

If f(A) > dim V - 1, we define the parabolic Verma module Mp(v - A , A) to be zero.

Otherwise, consider the [2-module SAU (i.e. the Schur functor SA applied to the 12-

module U). We make SAU a [-module by requiring that Z(1) act on SAU by the scalar v,

and then lift the action of f on S'U to an action of p on SAU by requiring that u+ act

trivially on SAU.
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Finally, we define

M,(V - JAI , A) := l(g[(V)) Ou(P) S)'U

Remark 4.5.0.35. Recall that the g[(V)-module M,(v - AI, A) is irreducible, since v 0 Z+

(c.f. Proposition 3.3.1.4).

The following definition is proposed in [Et1] (we still assume that v V Z+).

Definition 4.5.0.36. Define the object V*DeIU of Id - (Repab(Sv) z

formula
V"Del':V® :

A is a Young diagram

Of,v) through the

Xx ® Mv(v - JAI, A)

Proposition 4.5.0.37. Fix a splitting V a CA ( U.

The object V®"el' defined in Definition 4.5.0.36 is isomorphic to the object V-' defined

in Definition 4.2.0.16.

Proof. Since we assumed v V Z+, the categories Rep(S,), O, are semisimple abelian

categories (see Sections 3.2, 3.3). In this case, any object A of Ind - (Repab(Sv) [ O,"V)

can be written as a direct sum with summands of the form L (v - IA , A) 0 X,, (A, M are

Young diagrams).

In the case of the object V-' of Ind - (Repab(S,) M OrPy), we get:

V-*" ® (DL(v - )AA) & X, 0 Mult,,
A,/'

(here Multx,,, is the multiplicity space of L(v -I AI, A) aX,, in V*-", not necessarily finite

dimensional).

Recall from Section 3.3 that for any Young diagram A, we have an isomorphism of

gf(V)-modules

L(v - A|, A) tor M(v -dAiI, A)

We now need to prove that dim Multx,, = o,,and we are done.
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To do this, consider

V "- ,( L(v - I A, A) 0 Xjz & Multx,/,

as an object of Ind - Rep(S,) with an action of g[(U). Using Lemmas 5.0.0.40, 3.3.1.3,

we get the following decompositions:

and

( L(v - JAl, A) 9 X,j 9 Mult,,, - ( ) SPU 0 X,, 0 Mult,,
Aqi A,/. peCI+

Thus for any Young diagram /p, we have

0D
pC7E,t

SPU M 0 spU 0 Mult,I
A PC:I'+

and we immediately conclude that dim Mult,,p = ,,, proving the statement of the

Elproposition.
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Chapter 5

Schur-Weyl duality in Deligne setting:

Repab ( S,) and 01'"Vv

We fix v C C, and a finite-dimensional unital vector space (V, 1) (so V ' is defined).

Definition 5.0.0.38. Define the Schur-Weyl functor

S W|,d : Ind - Repab(Sv) -+ Moduli((v))

by

SWnd : H omInd- Repabs )(-, V-V)

We will also consider the restriction of the functor SWind to the category Repab(Sv),

which will be denoted by SW,.

Remark 5.0.0.39. The functor SWin . Imd - Repab(Sv) -+ Modu(gt(v)) (as well as its

restriction SW) is a contravariant C-linear additive left-exact functor.

It turns out that the image of the functor SW Repab (S') -+ Modu(g[(v)) lies in vP',,

as we will prove in Lemma 5.0.0.41.

The following technical lemma will be used to perform most of the computations:

Lemma 5.0.0.40. Let T be a Young diagram, k E Z+ and p a partition of k.
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. Assume T lies in a trivial " -class. Then

dim HomRep(Sv,)Rep(sk) (XT 0p, A) {
0

if M C se

else

* Assume T lies in a non-trivial r" -class {A()} 2 , and let j be such that T = AU). Then

we have:

dim HomRep(s,)MRep(sk) (XA(o) 0A , Ak) =

and if j > 0, we have:

dim HomRep(sv)ZRep(s) (XX> OfP, Ak) =

2

1

0

0

is E (O)

else

if y Ez-i n -

if A (E (EA+() \ -TA _ - 1) J (I+t -1 \ +ty

else

Proof. The proof will use the lift, maps discussed in Subsection 3.2.2.

We know that

dim HomRep(Sv)ZRep(Sk)(X, 0 Y, Ak) = dim HomRep(sT)Rep(sk)(lift,(X,) 0 y, liftp(7 k))

= dim HomRep(sT)ERep(sk) (lif tv(X-) 0 P, Ak)

So it is enough to prove that

dim HomRep(sT)ZRep(sk) (X 0 P, Ak) -
if L C E

else

and the statement of the lemma will then follow from Lemma 3.2.2.5.
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To compute dim HomRep(sT)MRep(s,)(Xr 0 P, Ak), note that

dim HomRep(ST)ZRep(Sk) ( X, 0 A, Ak)= dim HomRep(s1=)sRep(sk) (XT 0 /, Ak)

dim Homs, Xsk (Sn(Xr) 0 P, Sn (Ak))

=dim Homs, Xs (-T(n) & /-, Clnj({ 1, ..., )k},1, ... , n}))

for n >> 0, n E Z (the first equality follows from Proposition 3.2.2.3, while the second

relies on the fact that Sn is fully faithful on Rep(Sv=n)(n/ 2 )).

But

CInj({1, ... , k},{1, ... , n}) ) ® 0 A p
p:pl=k AEp+,IAl=n

so

dim Homsn X s(;(n) 0 t, CInj({1, ... , k}, {1, ... , n})) =
1

0

if -(n) E c+

else

It remains to check that for n >> 0,

-T(n) C -E,+> <-E Ip

The first condition is equivalent to saying that

... < pi+1 I < T(n)j+ 1 < pi < <. T f(n)2<5 p, < i (n)i = n - IT I

which is equivalent to

... < i+1 < Ti < Pi < < T1 < I

(a reformulation of the condition p E -Th) provided that n >> 0.

Lemma 5.0.0.41. The image of the functor SW, : Repab(Sv) -+ Modugt(v)) lies in OP,,'

Proof. Fix a splitting V = C1 D U. We want to prove that for any M E Repab(Sv),

SWv(M) is a Noetherian U(g[(V))-module of degree v on which gL(U) acts polynomially
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(i.e. M|gt(u) E Ind - Modu(r(u)),poly) and u+ acts locally finitely.

Recall that for any M E Repa(Sv), SWv(M) = HomInd-Repab(S,)(M, V "), with the

action of g[(V) coming from its action on V*" (c.f. Definition 4.2.0.16). So

SWv(M)g(u) - HomInd-Repab s )( M, V-*"Igr(U) @ HOomRepab(s,)(M, (U k 9 Ak)Sk)

k>O

with gl(U) acting through its action on each (U*k 0 Ak)Sk. This immediately implies

that SW,(M) has degree v.

Next, (U~k ® Ak)Sk is an object of Repab(S,) Z Modu(q[(u)),POIy, so the spaces

HomRepab(s,)(M, (U*k 0 Ak)Sk) are polynomial g[(U)-modules. Thus Mlgq(U) C Ind -

Modu(gt(u)),poly.

The above gI(U)-decomposition of SW,(M) gives us a Z+-grading on SW,(M), with

each grade being finite-dimensional. Definition 4.2.0.16 tells us that u+ acts on this space

by operators of degree -1, so u+ acts locally finitely on SW,(M).

We now prove that for any M E Repab(S), SW,(M) is a Noetherian l1(g[(V))-module.

Recall that the functor SW, is a contravariant left-exact functor. Using this, together

with the fact that the category Repab(S,) has enough projectives, it is enough to prove

that for any indecomposable projective P G Repab(Sv), we have: SW,(P) is a Noetherian

U (g[(V))-module.

Next, recall that any indecomposable projective in Repab(Sv) is isomorphic to XA,

where A either lies in a trivial ~-class, or is not minimal in its non-trivial ~-class (c.f.

Proposition 3.2.4.10).

Lemma 5.0.0.40 tells us that if A lies in a trivial "-class, then

SW(XX)gu) _ HomInd-Rep-b(S) (XA, 0(Uok 0 Ak )k)

k>O

0 HomRep(s,)ZRep(Sk)(XA 0 pA Ak) 0 SA U 0 SPU
k>O c:ipl=k CE +
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If A lies in a non-trivial "-class, A = A(, i > 0, then

SWv(Xyo))|g(U) e H om1, p-ab(s')(X\(i), 0(Ulk ® Ak s
k>O

HomRep(S,)MRep(Sk)(XA(i) 09 P ,Ak) 0 SiU 0 S( U 0 S"U
k>O p:IpI=k pEI+ /E +

In both cases, we can consider SW,(Xx)1g9(u) as a Z+-graded space, with grade j being

the direct sum of those SU for which JpL = j. Then the non-zero elements of u+ act by

operators of degree -1 (see Definition 4.2.0.16).

Next, recall that in any case, the parabolic Verma module restricted to gl(U) decom-

poses as

MP(v - JA I, A)(Uf 0D S'U

and has H(gL(V))-length at most 2. Using the above property of the action of u+, we

see that SWv(X\) has a finite filtration where each quotient is the image of a parabolic

Verma module (therefore all the quotients have finite length).

LI

We can now define another Schur-Weyl functor which we will consider: it is the con-

travariant functor SW : Rep"b(S) + , where

v -- ' V :=VVModutgitv)),pojy,,

is the Serre quotient of O ,y by the Serre subcategory Modu([(v)),pojy,v of polynomial

gl(V)-modules of degree v. We will denote the quotient functor by

-k : 0 P 0-

and define

SW, := f o SW

95



The main goal of this section is to prove the following theorem:

Theorem 5.0.0.42. The contravariant functor SW, : Repab(Sv) - Oy is exact and

essentially surjective.

Moreover, the induced contravariant functor

Repab(Sv)Ke(V)
'S 'Ker(SW) -+ Vf

is an anti-equivalence of abelian categories, thus making 0> a Serre quotient of

Repab(Sv)op.

The exactness of SW, will be proved in Lemma 5.0.0.48.

The rest of the proof of Theorem 5.0.0.42 will be done by considering separately

semisimple and non-semisimple blocks in Repab(S,). The semisimple block case will be

discussed in Subsection 5.1.1, and the non-semisimple block case will be discussed in

Subsection 5.1.2 (specifically, Proposition 5.1.2.12 and Theorem 5.1.2.17).

In particular, we will obtain the following result, which will be used in Chapter 7:

Lemma 5.0.0.43. The functor SW,cn takes a simple object to either a simple object, or

zero. More specifically, we have:

* Let A be a Young diagram lying in a trivial ")-class. Then

SWV,cn(L(A)) -kr(LO(v - A I, A))

" Consider a non-trivial " -class {A(z)}>o. Then

SWVCn(L(A(O)) ' ft(L(v - A('+) A('+)))

whenever i > 0.
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We now introduce the following notation.

Definition 5.0.0.44. We will denote by SW*,id the contravariant functor

Modu(g0 (v)) -+ Ind - Repab(Sv)

which is right adjoint to SWind (such a functor exists by Theorem 2.0.5.5, since SWind

obviously commutes with small colimits).

We will also denote by SW,* the restriction of SWind to

Remark 5.0.0.45. The functors SW1, d, SW,* are contravariant, C-linear, additive and

left-exact (due to SW,*,ind being a right-adjoint).

We will use the following notation:

Notation 5.0.0.46. The unit natural transformations corresponding to the contravariant

adjoint functors SWjnd, SW*,nd will be denoted by

IdModu(gr(v)) -+ SW7da e SWind : IdIndRepab(s) - SW, " W

In particular, we have the restriction of the natural transformation 6:

e : Mepb(S)-In-Repab(S) -+ SW,* 0 SWV

These transformations satisfy the following conditions (see lMacL, Chapter 1, par. 1,

Theorem 1]):

Lemma 5.0.0.47.

VE E OI,, SW,*(rE) SW,*(E) = IdSW*,ind (E)

VX E Repab(S.), SW.(cx ) 0 rJSWV(X) Idsw,(x)

We can now demonstrate the exactness of SW,:
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Lemma 5.0.0.48. The functor SW, : Rep'b(Sv) -+ Op is exact.

Proof. Let M E Repab(Sv), and let i > 0. We want to show that the g[(V)-module

Extz(M, V") is finite dimensional.

Consider V . as an object in Rep(S,). As such, it is a direct sum ®A XX & VA, where

VX is the multiplicity space of XA (in fact, for a fixed splitting V = Cn e U, V has the

structure of a gl(U)-module).

We know from Proposition 3.2.4.10 that X\ are injective objects iff A(v) is not a Young

diagram. Furthermore, there are only finitely many Young diagrams A such that A(v) is

a Young diagram as well; for these A, the space V is finite dimensional and isomorphic

to SM(")V (by Proposition 4.3.0.24).

Finally, notice that Extz(M, Xx) is finite dimensional for any Young diagram A, since

all the Hom-spaces in Repab(S,) are finite-dimensional (c.f. Remark 3.2.4.2). We conclude

that

Exti(M, VEV) -' Ext (M, XX) 0 SA(")V
A:

A(,) is a Young diagram

is finite dimensional.

5.1 Proof of Theorem 5.0.0.42

5.1.1 Case of a semisimple block

In this subsection we consider a semisimple block in Repa6(Sv). We know that semisimple

blocks are parametrized by Young diagrams lying in a trivial "-class. Let us denote our

block by BA, A being the corresponding Young diagram.

The objects of such a block are finite direct sums of the simple object X), so the block

is equivalent to Vectc as an abelian category.

If f(A) < dim V - 1, then the block 9 3A corresponding to A in 0,0, is also semisimple,

and its objects are finite direct sums of the parabolic Verma module M.(V -I A, A) (which,

in this case, is simple and coincides with L.(v - Al , A)).
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Notice that M,(v-IA I , A) is infinite-dimensional and simple, so the functor -^ restricted

to 9, is an equivalence of abelian categories.

The proof of Theorem 5.0.0.42 for BA is then reduced to proving following proposition:

Proposition 5.1.1.1. Let A be a Young diagram which lies in a trivial " -class. Then

SW (X\) M p(v - I , A).

Remark 5.1.1.2. Recall that M,(v - A A) is zero if C(A) > dimV - 1, see Definition

3.3.1.1.

Proof. Fix a splitting V = CR E U. Based on Lemma 5.0.0.40, we see that as a gf(U)-

module, the space

SW (X,\) = HomIndRepab(S)(XA , V")

is isomorphic to

HomndRepab(ss)(XA, Q(U k 0 Ak)Sk)
k>O

0 PD HomRep(sv)MRep(sk)(XA /ti Ak) 0 S"U a
k>O p:|p|=k

6 SAU

Notice that this expression is zero if i(A) > dim(U) = dim V - 1. Recall that by definition

of Vp-", u+ acts on the graded space V®" = ()k>o(U*k 0 Ak)Sk by operators of degree

-1, therefore, it acts by zero on the subspace SAU of Homlnd-Repab(s')(XA, V ").

We conclude that if f(A) ; dim(U) = dimV-1, then M,(v-JAI , A) maps to SW,(XA)

inducing an identity map on the subspaces SAU. Now, Mp(v -I A , A) is simple, so this

map is injective, and since

SWv(Xx)I g t(u) S"U 2_- ( -(v A I)Ig, )

as g[(U)-modules, we conclude that the above map from M,(v -I A , A) to SW,(XN) is an

isomorphism. l
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Thus we proved that

Corollary 5.1.1.3. The functor SW, restricted to a semisimple block BX of Repab(S 1 ) is

either zero (iff f(A) > dim V - 1), or is an equivalence of abelian categories between Bx

and the block BA of O."V; furthermore, the functor SW, restricted to BA is either zero or

an equivalence of abelian categories between BA and the block ft( ) of 03,y.

Recall from Section 3.2 that for v 0 Z+, Rep(S,) is abelian semisimple and in par-

ticular Repa6(Sv) = Rep(S,). Denote by Rep(S,)(<dimV-1) the full semisimple abelian

subcategory of Rep(S.) generated by simple objects X\ where A runs over all the Young

diagrams of length at most dim V - 1.

Note that Rep(S.) (<dim V-1) is the Serre quotient of Rep(S,) by the full semisimple

abelian subcategory generated by simple objects X\ where A runs over all the Young

diagrams of length at least dim V.

Then we immediately get the following corollary:

Corollary 5.1.1.4. Assume v Z+. Then SW, : Rep(S, ) -+ Of', is a full, essentially

surjective, additive C-linear contravariant functor between semisimple abelian categories,

inducing an anti-equivalence of abelian categories between Rep(S ,)(dim v-1) and Of",y

Remark 5.1.1.5. If v 0 Z+, then OP a O' with r T Ido0  , so Corollary 5.1.1.4 is just

Theorem 5.0.0.42 in the case v 0 Z+.

5.1.2 Case of a non-semisimple block

Throughout this subsection, we will use the results from Sections 3.2 and 3.3, and we will

denote O', by OP for short.

Fix a splitting V = C11 E U.

In this subsection we consider a non-semisimple block in Repab(S, ). Recall that such

blocks occur only when v E Z+, so we will assume that this is the case.

We know that non-semisimple blocks are parametrized by Young diagrams A such that

A, + JAI < v; the projective objects in such a block correspond to the elements of the
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(non-trivial) v -class of A (see Proposition 3.2.4.10).

Let us denote our block by BA.

If f(A) < dim V-1, then the block Bx corresponding to A in OP is also non-semisimple.

We will continue with the blocks BA, 9x fixed, and insert some notation for the conve-

nience of the reader.

Notation 5.1.2.1. We will denote the simple objects, standard objects, co-standard and

indecomposable projective objects in BA by Li, Mi, M*, Pi (i E Z+) respectively, with Li

standing for L(A(z)) and similarly for Mi, M* and Pi. The structure of these objects is

discussed in Subsection 3.2.4.

Notice that Mo = M* = LO = XA(o), Pi = X,\() for i G Z+ (see Proposition 3.2.4.10).

Notation 5.1.2.2. We will denote the simple modules, the parabolic Verma modules, their

duals (the co-standard objects in OP) and the indecomposable parabolic projective mod-

ules in BA by Li, Mi, Miv, P (i E Z+) respectively, with Mi standing for M,(v - I , AM)

and similarly for Li, M1v and P.

The structure of the modules Li, Mi, Mv, P, (i E Z+) is discussed in Section 3.3 and

in [H, Chapter 91.

We put kA := min{k 0 1 t(A(k)) > dim V - 1}. Then P = Mi = M' = Li = 0

whenever i > k\.

The goal of this section is to prove Theorem 5.0.0.42 for the blocks BA, . In order

to do this, we will prove the following theorem:

Theorem 5.1.2.3. The functor SW, satisfies:

(a) SW,(Li) Li+1 whenever i > 1.

(b) SW,(Mi) e Mi whenever i > 0.

(c) SW,(M*) e Miv whenever i > 2.

(d) SW,(P) e Pi+1 whenever i > 0 and i < k, - 1 or i > kA (recall that in the latter

case Pi+1 - 0); SW,(Pk,_l) r Lk._1.
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(e) SW(Mo= M = L0 ) e Mo.

()SW,(M* ) Ker(P1 -w L1).

Proof. Statement (a) is proved in Proposition 5.1.2.8. Statements (b)-(d), (f) are proved

in Proposition 5.1.2.11. Statement (e) is proved in Lemma 5.1.2.10. El

We start by establishing some useful properties of the functor ^ and of the category

Proposition 5.1.2.4. *r(P), i > 0 are indecomposable injective and projective objects in

Recall that for i > 0, P is an indecomposable injective and projective module and has

no finite-dimensional submodules nor quotients (c.f. Proposition 3.3.1.13). So Proposition

5.1.2.4 is a special case of the following lemma:

Lemma 5.1.2.5. Let A be an abelian category where all objects have finite length, and

A' be a Serre subcategory of A. We consider the Serre quotient 7r : A -+ A/A'.

Let I E A (respectively, P G A) be an injective (respectively, projective) object, such

that I has no non-trivial subobject nor quotient lying in A'.

Then 7r(I) is an injective (respectively, projective) object in A/A'. Moreover, if I is

indecomposable, so is 7r(I).

Proof. We start by noticing that we have two functors R1, R 2 : A -+ A' which are adjoint

to the inclusion A' -÷ A on different sides: the first functor, R1 , takes an object A E A to

its maximal subobject lying in A', and the second, R 2, takes A to its maximal quotient

lying in A'.

These functors are defined since for any A E A, we can take its maximal (in terms of

length) subobject lying in A', and this subobject will be well-defined. Similarly for the

maximal quotient of A lying in A'.
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We need to prove that HomA/A,(.,7r(I)) is an exact functor. By definition, for any

E c A,

HomA/A(7r(E), 7r(I)) := HomA(Y, I/X) =
YCE,XcI
E/Y,XeA'

lin HomA(Y, I)
YCE

E/YcA'

(since I has no non-trivial subobjects lying in A').

The colimit is taken with respect to the direct system

{HomA(Y, I): Y C E,E/Y C A'},

arrows HomA(Y2 , I) -+ HomA(Y, I) whenever Y1 " Y2

Now, I is an injective object in A, so the arrows in this direct system are surjective:

{HomA(Y, I): Y C E,E/Y E A'},

arrows HomA(Y2, I) -* HomA(Y, I) whenever Y1  Y2

Then one easily sees that the colimit is HomA(YE, I), where YE Ker(E -* R2(E)).

Thus

HomA/A' (r(E), 7Tr(I)) := HomA(YE, I)

So we need to prove that given an exact sequence

0 -+ E' -+ E -÷ E" - 0

of objects in A, the sequence

0 -+ HomA(YE', I) -- + HomA(YE, I) -+ HomA(YE"1 1) -+ 0
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is also exact. Notice that since I is injective in A, we have an exact sequence

0 -+ HomA(R2 (E), I) -+ HomA(E, I) -+ HomA(YE, I) -4 0

and since I has no non-trivial subobjects in A', we get HomA(E, I) 2 HomA(YE, I). The

sequence

0 -+ HomA(E', I) -- HomA(E, I) -+ HomA(E", I) -+ 0

is exact (since I is injective in A), so the sequence

0 -+ HomA(YE', I) -- + HomA(YE, I) -+ HomA(YE', I) -4 0

is exact as well.

Thus we proved that HomA/A'(-, ir(I)) is an exact functor, so 7r(I) is an injective object

in A/A'.

The fact that r(P) is a projective object in A/A' is proved in the same way.

Now, assume 7r(I) is decomposable, -r(I) X1 e X2 in A/A', X1 , X 2 = 0. Then we

can find El, E2 E A such that El, E2 have no non-trivial subobject nor quotient lying in

A', and such that 7r(Ei) = Xi, i = 1, 2. Then one immediately sees that

HomA(I, Ei) = HomA/A'(ir(I), Xi), HomA(Ei, I) = HomA/A (Xi, 7r(I)),

HomA(Ei, Ej) = HomA/A'(Xi, Xi)

for i = 1, 2. In particular, since 7r is exact and I, El, E2 have no non-trivial subobject nor

quotient lying in A', we see that E, D E2 I. We conclude that if I is indecomposable,

so is ir(I). El

The following corollary will be useful when proving that the functor SW, is full and

essentially surjective:

Corollary 5.1.2.6. The image of the category 3
A under the functor r has enough injec-
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tives and enough projectives. Moreover, {f (P)}o<i<k,_1 is the full set of representatives of

isomorphism classes of indecomposable injective (respectively, projective) objects in fr(9x).

Proof. Let E E 9x. We know from Proposition 3.2.4.6 that the category 9 3 \ has enough

injective and enough projective modules. This means that there exist an injective module

I and a projective module P, together with an injective map E -a I and a surjective map

P -+ E.

Since the functor ft is exact, we get an injective map fr(E) -+ fr(I) and a surjective

map -k(P) - -k(E).

Next, recall that {Pi, 0 < i < k\ - 1} (respectively, {PiV, 0 < i < kA - 1}) is the full

set of representatives of isomorphism classes of indecomposable projective (respectively,

injective) modules in B\. For i > 0, the object fr(Pi ' Pi') was proved to be injective

and projective (c.f. Proposition 5.1.2.4), so it remains to check the following statement:

The object fr(PO) - fr(L1 ) 2 fr(Pov) is neither injective nor projective, and has a

projective cover and an injective hull in 9, which are direct sums of objects fr(Pi), i > 0.

To prove the latter claim, notice that the maps L1 " P1 , P -* L1 in 93A become

maps fr(L1 ) " ft(P1 ), fr(P) --* fr(L1) in r(9)) (since the functor fr is exact). Knowing

that fr(P) is an indecomposable injective and projective object, we conclude that *r(L1 )

is neither injective nor projective, and fr(P) is both its projective cover and its injective

hull. l

We now compute the decomposition into g[(U)-irreducibles of

SW ( Li ), SW ( Mi I, SWt (Pi ):
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Lemma 5.1.2.7. We have the following isomorphisms of gl(U)-modules:

P

SWv(Lo =MO = M*a X o))) 

oU
t ,(i)

(sP U

PS'MUe E
(@sI (D (

SMU

Vi> 1

Vi> 0

Vi> 2

AMU

Proof. Consider V*' as an object in Rep(S,

where V, is the multiplicity space of X,,.

,). As such, it is a direct sum D X 0, V,,

In fact, V, has the structure of Z+-graded

gf(U)-module, each grade being a polynomial gl(U)-module.

We now consider the full subcategory D of Bx whose objects are those which do not

have LO among their composition factors. Recall that Li E D for i > 0, and Mi, M*, Pi E

D whenever i > 2.

We will denote by F the following functor from D to the category Ind-Modu(r(u)),poly:

F:= SW(-)|g(u) = HomInd-Repb(s,)(*, VV)

Next, for any X C D, we have the following isomorphism of g[(U)-modules:

F(X) = HomInd-Repab(S) (X, V-v) Homnd-Repab(ss) (X, XX(i) 0 VAt ))
i>O

Since we know that XX(i) = Pi_ 1 is injective for i > 0 (see Proposition 3.2.4.10), we

immediately conclude that F is exact.

Now, one easily sees from the gI(U)-decomposition V*"|<() = k>O(U k 0 Ak) k
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together with Lemma 5.0.0.40, that for any i > 0,

SWv(Pi = X\(i+|))|g9(U) Hoin_ ab(s )(Xg+1), ®(Uk 0 Ak )Sk ) '
k>O

i 0 0@ HomRep(Sv)ZRep(Sk)(X +1) 0 /, Ak) 0 S"U M
k>O p:IpI=k

0 SMU E
LLEI+

(the k-th grade of SW,(Pi) is the direct sum of Sl'U such that [pt = k).

Fix i > 1. We can now apply F to the following long exact sequences in D (these

exact sequences exist due to Proposition 3.2.4.10):

... -+ Pi+3 - Pi+2 -+ Pi+1 -+ Mi+1 -+ 0

0 -M -+ Pi -+ Pi+2 -* Pi+3 -.

0 i L- - M i+ -÷ Mi+2 -÷ Mi+3 -

Using

.F(P) -- @ SAU

and the fact that F is exact, we conclude that

F(Mi+1 ) 0@ stU F(M+1 )

T(Lj) rl)v~~l . IICT+ flI+0 SAU

tt A,(i+l) nz(,)

It remains to check the gL(U)-structure of SW,(Lo Xato)|gr(u), SW(M)g (U).

Similarly to the decomposition of .F(P), we use the g[(U)-decomposition V-"'=

ek>O(U k 0 Ak)Sk, together with Lemma 5.0.0.40, to get the following isomorphisms of

107

SAU
Ie+

and



gl(U)-modules:

SWv(Xo))gIt(u) 2 HomInd-Repab(S)(X\(O), 0(U*' 0 Ak) S)
k>O

HOmRep(sV)NRep(sk) (XAo) 0 IL,
k>O p:/l=k

Ak) 0 SAU O@ s/l U
C E'(0

)

In particular, we have:

Recall that

(c.f. Proposition 4.3.0.24). Now, for any Young diagram pu, we have (c.f. the proof of

Lemma 5.0.0.40):

AM0)(v) E I+ <> [y E Y+,O) and pi + A v

On the other hand, the description of non-trivial "v-classes (c.f. Lemma 3.2.2.2) tells us

that AMC) C , and A( 1) \ A( 0) is a strip in row 1 of length v - AM I - A() +1. Thus

{p : A( 0 )(v) E -,+ _T+ )

and so Vil) E+n+ S"U. We have already seen that V+ A+ SM U

and we conclude that

SWv(M 1)Ig[(U) r Homfd-Repb(S,)(M 1 , V-*") = Homnd-Repab(sv (M1, O Xw 0) VXt)) 
i>O

Vgo e V (2)

yli+ n21+
x(0) x(l)

S"U 0
E,( 2 ) nA,(+)

SIU 0 SpU
/lE( 1
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(the last isomorphism can be inferred from Lemma 3.2.2.2).

Proposition 5.1.2.8. For a simple object Li in B,, i > 0, we have: SW,(Li) Li+1

(recall that the latter is defined to be zero if i > k,\ - 1).

Proof. Fix i > 0. By definition, SW,(Li) := Homlnd-Repab(s) ,(Li V-") with gf(V)-action

on this space induced from the action of g[(V) on V*-.

By Lemma 5.1.2.7, we have the following decomposition of SW,(Li) as a gl(U)-module:

SW((Li)i (U) A S+ U

If i > k, - 1, then f(p) > dimV - 1 for any it _+ + , so we get that

SWv(Li) = HomInd-Repab(s,)(Li, V*-") = 0 = Li+1 and we are done.

Otherwise, notice that HomInd-Repab(s )(Li, VD") is a Z+-graded g[(U)-module, with

the grading inherited from V-": S"U lies in grade lpl. The minimal grade is thus I+A(')

and it consists of the g[(U)-module SA ')U.

Recall that u+ acts on the graded space V*" a ®)go(U k 0 AS)Sk by operators of

degree -1, therefore it acts by zero on the subspace SA'(i 1) U of Homlnd-Repab(s,)(Li, VD/

So there must be a non-zero map Mi+1 -+ SW,(Li), and its image can be either Mi+1

itself or Li+,. From the decomposition of SW,(Li) as a gl(U)-module, we see that the

image is Li+1, and the induced map Li+1 -+ SW,(Li) is an isomorphism. El

The following lemma will be useful to us later:

Lemma 5.1.2.9.

HomIndRepab(s) (L 0, SW* (Lo)) = 0

Proof. Recall that by definition of the functor SW,*,

HomIndReab(s,) (Lo, SW,* (Lo)) = HomInd(Repab(Sv)Mo0v y(Lo 0 Lo, V-")
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Recall also that the space up acts on Lo 0 Lo by nilpotent operators, since Lo is finite-

dimensional and Z+-graded, and each non-zero element of up acts by operator of degree

1. Now let

#E HomInd-(Rep(s,)0 v) (Lo 0 Lo, V-v)

The map q is zero iff #|Lo0S(0)U 0.

Fix k Z+ so that we have an inclusion of Repab(S,)-objects:

q(Lo 0 v) C (Ak ® Uok)sk

where v is the highest weight vector in S(O U. Then we automatically get an inclusion of

Repab(S,)-objects

#(Lo 0 S"0 U) c (Ak 0 U k)sk

Let 1 : A(0)|. Since Lo = XA(o), it is a summand of Ai iff i > 1, so we immediately

see that k > 1.

Now, Lo0SAM "U is a direct summand of A, U0', so one can easily find b : AiU®I 

Ak 0 U*k such that #(Lo 0 SA( U) = m().

As we said before, up acts on Lo 0 Lo by nilpotent operators, so for any u C U r up-

(FU)N o# 0 for N >> 0.

On the other hand, we know that (Fe)N o7 $ 0 if 0 $ 0 (by applying Lemma 4.2.0.22

iteratively to b, Fu o 4, ... , (FU)N-l 0 0).

We conclude that

HomInd-(Reab(s,)ZO )(Lo 0 L0 , VD/) = 0

as needed. E

We now use Lemma 5.1.2.9 to compute the images of the "exceptional" objects in our

blocks BA, BA under the functors SW,, SW,*, respectively.

Lemma 5.1.2.10.
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(a) SW,(Lo = Mo = Xx(o)) e MO.

(b) SW,*( Lo) = 0.

Proof. (a) We will use an agrument similar to the one in the proof of Proposition 5.1.2.8.

Recall that from Lemma 5.1.2.7, we have the following isomorphism of Z-graded

gl(U)-modules:

SWv(Lo = Mo = X(o)) ospu
JIII(0)

(S"U lies in degree 1pl). Recall also that u+ acts on the right hand side by operators

of degree -1.

This implies that there is a non-zero map of g[(V)-modules

# : Mo = M (v - IA( A(0)) -- SW,(Lo)

From the gL(U)-decomposition of MO (c.f. Lemma 3.3.1.3), if this map # is injective,

then it is bijective as well.

So we only need to check that # is injective. Indeed, assume # is not injective. Since

# is not zero, # must factor through LO, so we have:

dim Homo; (Lo, SW,(Lo)) > 1

But from adjointness of SW, SW,*, together with Lemma 5.1.2.9, we have:

Hom o (Lo, SW,(Lo)) 2 HomndRepab )(LO, sw*(L0 )) 0

We obtained a contradiction, which means that # is injective.

(b) Recall that since SW,, SW,* are adjoint, for any Young diagram P we have

HomIndRep-b(s) (L(jp), SW,* (LO)) e Homop (Lo, SW, (L([t)))
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The latter is zero by Propositions 5.1.1.1, 5.1.2.8, and Lemma 5.1.2.9.

SW,*(Lo) =0.

We can now prove the following proposition:

Proposition 5.1.2.11.

(a) SW,(M) e Mi whenever i > 0.

(b) SW,(M*) e Mj' whenever i > 2.

(c) SW,(P) P+1 whenever i > 0, and i < kx - 1 or i > k, (recall that in the latter

case Pj+1 = 0); SW,(Pk,_l) ' Lk,_1.

(d) SW,(M*) 2 Ker(Pi -* L 1 ).

Proof. (a) For i 0, we have already proved (in Lemma 5.1.2.10) that SW,(MO) e Mo.

We now fix i E Z>o.

Recall from Lemma 5.1.2.7 that for i > 0, we have an isomorphism of gf(U)-modules:

S WV(Mi)g (U) 09 S/U

Similarly to the argument in the proofs of Propositions 5.1.1.1 and 5.1.2.8, we have

a Z+-grading on the space SW,(Mi), which is inherited from the grading on V*".

Grade j of SWv(Mi) is then @,+ S"U. The minimal grade is thus A()W,

and it consists of the gl(U)-module SAO U.

Recall that by definition of V -, u+ acts on the graded space V" ekO(U k 0

Ak)Sk by operators of degree -1, therefore, it acts by zero on the subspace SAN() U of

SW, (Mi) = HomRepab(S) (Mi, V-").

If i > kx, then SW,(Mi) = 0 = Mi, and we are done.
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Otherwise, Mi # 0, and there must be a non-zero map Mi -+ SW,(Mi); its image

can be either Mi itself or Li. In the first case, we get an isomorphism Mi a SW,(Mi)

(from the g[(U)-decomposition of both), and again, we are done.

We will now assume that we are in the second case, and there is a non-zero map

Li -+ SW,(Mi). Then the g((U)-decomposition of the quotient SWV(Mi) Li means

that this module is congruent to Li+1. Notice that at this point we can assume that

i < kA - 1 (otherwise Li+1 = 0, so Mi = Li a SW,(Mi)). We will prove that under

this assumption, we arrive to a contradiction.

Now, consider the short exact sequence

0 - Li_ 1 -- + Mi Li -- 0

Since the contravariant functor SW, is left-exact, we have (using Proposition 5.1.2.8

and Lemma 5.1.2.10, part (a))

swil~~~S~ 4) ,Li1 _!-L0 -- SW,(Li) ' Li+1 s SWV(M s) SW(L_ 1 ) L

So SW,(O) is an insertion of a direct summand, SW,(#) is a projection onto a direct

summand, and we get:

SWv(Mi) e Li ( Li+1

We now use the unit natural transformation E described in Notation 5.0.0.46. We

have a commutative diagram:

SW 1,*(SW(Li_1)) sw:(Sw,(0)) SW*(SW"(Mi)) sw;(sw'1M) > SW,*(SW(Li))

'Li_1 E Em fLi
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which can be rewritten as

SW* (Li)

ELi-
1

SW; (SW (M)>
SW* (Li+1)

fL 4

SW*(Li) M SW,*(Li+1)
Em I

Since the contravariant functor SW,* is additive, SW,*(SW,(#)) is an insertion of a

direct summand, and SW,*(SW,(O)) is a projection onto a direct summand.

Now, the relations in Lemma 5.0.0.47 imply that CL- 1 , 6 Mi, EL, are all non-zero as

long as SW,(Li_ 1 ), SW,(M), SW,(Li) are non-zero, which is guaranteed by the

assumption i < kA - 1.

This means that the image of Li_ 1 under SW,*(SW,(#)) 0 ELi_1 is Li- 1, and it lies

inside the direct summand SW,*(Li) of SW,*(SW,(Mi)). We then deduce that EM, is

injective (since it is not zero on the socle Li_ 1 of Mi), and that its image lies entirely

inside the direct summand SW,*(Li) of SW,*(SW,(Mi)) (since Mi is indecompos-

able).

But this clearly contradicts the right half of the above commutative diagram, since

it means that

SW,*(SW0 )) O6M = 0

while we have already established that ELi 0 'b # 0.

(b) The proof for SW,(M*) is very similar to the one given for SW,(Mk). Now fix i > 2.

Consider the short exact sequence

0 -+ Li --- + M *+ Li-, -+ 0

Since the contravariant functor SW, is left-exact, we have (using Proposition 5.1.2.8)

0 -+ SW , (Li_1) L' sw Li SW,(Mf l sw I) SW, (Li) _ Li+1
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Furthermore, Lemma 5.1.2.7 tells us that for i > 0, we have an isomorphism of

g[(U)-modules:

SW,(M)gO(u) e S4U

This decomposition, together with the gI(U)-decomposition of Li, Li+,, tell us that

the above exact sequence can be completed to a short exact sequence

SWV(O b) S
0 -+ SWv(Li_ 1) 2 L s SWU(M1) sW 4) SWv(Li) e Li+1 -+ 0

Applying the (exact) functor (.)v OP - (OP)P to the above exact sequence, we

conclude that SW,(M*)v is isomorphic to either Mi or Li D Li+1 . This implies that

SWv(M*) is isomorphic to either Mi' (which is what we want to show) or Li e Li+1.

We will now assume that we are in the case SW,(M) ' Li (D Li+1. Furthermore, we

will assume that i < kA - 1 (otherwise Li+1 = 0, so M' = Li ' SW,(M*)). We will

prove that under this assumption, we arrive to a contradiction. Since we assumed

that i < kA - 1, we have: Li, Li+1 # 0, which means that SW,(0), SW,() z 0 are

insertion of and projection onto direct summands, respectively.

We now construct the commutative diagram

SW,*(SWv (Li)) sw:(, (I > SW,*(SWJ(M*)) sw:(sw'("r SW,*(SWv(Li_1))

EL { EM'Li_1

Li M* L _1

which can be rewritten as

SW*(Li+1) s w:*(S w. M) SW*(Li+1) e SW,*(Li) sw:(,(II> SW*(Li)

EL{ ~ ~_

Ly M Li_

Exactly the same arguments as in part (a) now apply (we use the fact that M* is
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indecomposable), and we get a contradiction.

(c) Let i > 0. Consider the exact sequence

0 -4 Mj+1 -- + Pi -- + Mi -+ 0

Since the contravariant functor SW, is left-exact, we get an exact sequence

0 -+ SW,(Mi) Sw b) SW'(P') sw p)SWV(Mi+ 1)

and in particular (see part (a)): Mi 2 SW,(Mj) " SWA(Ps).

If i > kA - 1, then part (a) tells us that SWv(Mi+1 ) Mj+1 0. We conclude that

A SW(Mi) 2 SWv(Pi). In particular, SWv(Pi) = 0 if i > kA, and

SWv( MA-_1) SWv( Pkx_1) Mk,_1, 2 Ik,__1

From now on, we will assume that i < kx - 1, and thus Mi, Mj+1 $ 0.

Now, Pj+1 is the injective hull of Mi, so there is a map f : SWv(P) -+ P+1 such

that the following diagram is commutative:

0 > SWV(Mi) -÷ SWV(Pi)

1
0 AM

1

>Pi+1

From the g[(U)-decomposition of SWV(Mi), SWV(Pi), SWV(Mi+ 1)

5.1.2.7), we see that the map SW,(O) is surjective. This means that there is a

non-zero map f: SW,(Mi+1 ) -* M i+ so the diagram below is commutative:

0 > SW,(M) -A SWV(Pj) -4 SWV(Mi+ 1) > 0

I fI

0 - M - Pi+1 -s
i+

Mi 1 -> 0
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Since SW,(Mi+1) 2 Mi+1, we see that f is either an isomorphism, or zero. In the

former case, f is an isomorphism as well, and we are done.

So it remains to prove that f 4 0.

Assume f= 0. This means that the image of f is Mi c Pi+1, and thus SW,(Pi) =

A (9 Mi+1, with the maps SW,(O), SW,(#) being an insertion of a direct summand

and a projection onto a direct summand, respectively.

We now construct the commutative diagram

SW*(SWV(Pi))

Pi

SW: (SW.(sb))
SWM*(SWV(M))

em4

which can be rewritten as

SW*(Mi+1 )

CM4l I

SW1* (M)
EM {

S W*(Mi+ 1) E S W*(Mi)

Ep i I

Pi

The same type of argument as in part (a) now applies (we use the fact that Pi is

indecomposable), and we get a contradiction.

(d) Consider the short exact sequences

0 - L1-+M*--L 0  0

0 -+ Lo-Po-M* -+ 0

The contravariant functor SW, is left-exact, so we have (using part (a), Lemma

5.1.2.10(a) and Proposition 5.1.2.8)

0 -+ SW, (LO) Mo-SW, (M*)---+SW, (L 1) c L2
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0 -÷ SW,(M*)-+.SW,(Po) e P1 -÷SW,(Lo) Mo

The first of these two exact sequences implies that [SW,(M*) : L1] = 1, hence the

map SW,(M*) -s P in the second sequence is not an isomorphism. The second one

then means that SW,(M*) is the kernel of the unique non-zero map P -+ MO, which

factors through the canonical map P1 -4 L 1. Thus SW,(M*) 2 Ker(P - L1).
IL

Proposition 5.1.2.12. The contravariant functor SW, : B, -+ *(2A) is essentially

surjective.

Proof. We first prove a Sublemma:

Sublemma 5.1.2.13.

(a) Let I be an injective object in ir(9A). Then there exists a projective object P in Z3,x

such that SW,((P) = I.

(b) Consider the restriction of SW, to the full subcategory of B\ consisting of projective

objects. This restriction is a full contravariant functor to ir(jx).

Proof. Recall from Corollary 5.1.2.6 that the set of isomorphism classes of indecomposable

injective objects in fr(9A) is {fr(P)}o<i<k,. The set of isomorphism classes of indecom-

posable projective objects in BA is {Pi};>o (c.f. Section 3.2.4).

We know from Proposition 5.1.2.11 that fr(P) 2 SW,(Pi_ 1) for any 0 < i < k,\. This

immediately implies the first part of the sublemma.

We now consider the restriction of SW, to the full subcategory of BA consisting of

projective objects.

To see that this restriction is full, we need to check that for any i, j > 0, the map

SWV, ,pi : HomR ab(s,) (Pj, Pi) -+ Hom 6P(SW (Pi), SW, (Pj)) (5.1)

is surjective.
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We use the following observation (which follows from the definition of the Serre quo-

tient):

Observation 5.1.2.14. Let E, E' E O. Assume E has no finite-dimensional quotients and

E' has no finite-dimensional submodules. Then

Hombp (ft(E), 'fr(E')) = Homop (E, E')

In particular, this is true for E, E' being P, Mi, Mj>, Li (i > 1).

Recall from Theorem 3.2.2.6, Propositions 3.2.4.10 and 5.1.2.11 that if ji - jj > 1, or

if i > kA, or if j > kA, then the right hand side Hom-space in (5.1) is zero and there is

nothing to prove.

If either i = kA - 1 or j = kA - 1, we only need to check the cases

(i, j) = (kx -1,kA- 2), (kx- 2, kA -1), (kx -1,kA - 1).

In all three cases Hombp (SWv(Pi), SWv(Pj)) is one-dimensional, so we only need to

check that the above map SW,,P,,Pi is not zero. The case i = j = kA -1 is obvious. Since

SW, is contravariant and exact, the exact sequences

0 -* -+ Pk-2 --+ Pkx_1

and

Pk-1 - Px-2 - Mkx-2 -+ 0

become

*^r(Lkx_1) 4 f(Pk,_1) - f^(M ,_ 2 ) -÷ 0

and

0 - ^r(MkA-2) - f(PkA-1) _k(Lk,_1)

which proves that SW,,P,,P is not zero if (i, j) = (kA-1, kA-2) or (i, j) (kA-2, kA - 1).
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We can now assume that i, j < k\ - 1, and thus SW,(Pi) f ?r(Pi+1), SWV(Py)

-r(Pj+1).

If Ji - jJ = 1, then both Hom-spaces are at most one-dimensional and we only need

to check that the above map SW,,p,,p% is not zero. Assume j = i + 1 (the case j - 1

is proved in a similar way). Let #i+1 : Pi -+ Pi+1 be a non-zero morphism.

Then the kernel of #i+1 is M*, and since SW, is contravariant and exact, we get:

Coker (SW (#i+1)) 2 SW,(M*) f t(Mij) t r( Pi+1)

which means that SW,,(3+ 1 ) # 0. Similarly, given a non-zero morphism ai+1 : Pi+1 -

Pi, we have:

Ker(SW,(ai+1)) -_SW, (Coker (ai+1)) SW,(Mi) ft(mi) ? -k(Pi+1)

which means that SW,(a+1) # 0.

Finally, if i = j, then the space EndRpb (S') (Pi) is spanned by endomorphisms Idp,, yi

of Pi, where Im(yi) Li (-yi := ai+1 o Oi+1 in the above notation).

Since SW, is contravariant and exact, and (by assumption) i < k,\ - 1, we see that

SWI(ys) will be a non-zero endomorphism of fr(Pi+1 ) factoring though -r(Li+ 1). This

means that SW,,(Idp%), SW,(yi) span EndbP($r(Pi+1)).

This proves that for any i, j ;> 0, the map in (5.1) is surjective, and we are done. L

We now show that SW, is essentially surjective. Indeed, let E E fr(9A). Then E has

an injective resolution

0 -+ E -+ 10 4 I,

(10, i are injective objects in fr(9A)). From the Sublemma 5.1.2.13 above, we know that

there exist projective objects PO, P1 C BA and a morphism g : P --+ P0 such that

SW,(P ) = I0, SW( PI) = I SW,() = f
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Then E a Ker(f) ' SW , (Coker(g)) (since SW, is exact).

surjective.

Thus SW, is essentially

11

Remark 5.1.2.15. The functor SW, B - ir(8)) is not full. For example, consider

HoMnRepab(S,) (Pk,_1, Lk,-2) -4 Hombp (SW,(Lk,- 2 ), SW(Pk,_1))= Endb P(?r(Lk, _1))

The Hom-space in the left hand side is clearly zero, while the Hom-space in the right hand

side is one-dimensional.

We now consider the Serre subcategory Ker(SW, 3) of BA (this is a Serre subcategory

since SW, is exact). This subcategory is the Serre subcategory of BA generated by the

simple objects Li, i > k,\ - 1.

We define the quotient of BX by Ker(SW|L ):

T : B'\ --+ (BA)

By definition of Ker(SW1BA), the functor SW , factors through T and we get an exact

contravariant functor

SW , : (BA) -*+ F( )

such that

L3P SWI,

~(B,\) OP S V i 3A

Notice that all the functors in this commutative diagram except SW, are exact.

We now prove some properties of the functor - and the category _t(BA).

Lemma 5.1.2.16.

(a) The objects w(Pi) are indecomposable injective (and projective) objects in W(BA) for
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any i < kx - 2.

(b) The category W(BA) has enough injectives and enough projectives.

(c) Moreover, {T(Pi)}oisk,-2 is the full set of representatives of isomorphism classes

of indecomposable injective (respectively, projective) objects in W(BA).

Proof. To prove the first statement, we use Lemma 5.1.2.5 and the information on the

structure of Pi given in Proposition 3.2.4.10.

The proof of the last two statements mimics the proof of Corollary 5.1.2.6.

All we need to show is that the object T(Pk 1) is neither injective nor projective in

T(B), but has a projective cover and an injective hull in T(B\), both being direct sums

of objects T(Pi), i < kx - 2.

But T(Pk,__1) a T(Lk,-2) (c.f. Proposition 3.2.4.10), and we have a surjective map

T(PkA-2) -* T(Lk,-2) and an injective map T(Lk,-2) -+ T(Pk,-2). Since T(Pk,-2) is an

indecomposable injective and projective object in T(BA), we conclude that T(Pk,_1) is

neither injective nor projective in T(B), but T(PkA-2) is the projective cover and the

injective hull of T(Pk _1) in W(BX). D

Theorem 5.1.2.17. The functor SW, : T(BA) -4 f is an anti-equivalence of abelian

categories. That is, SWV : TBx) -+ -k(93) is an essentially surjective, fully faithful,

exact contravariant functor.

Proof.

" Proof that SW, is faithful: by definition, if SW, (X) = 0 for some X E f(BA), then

X = 0. Now, let f : X -+ Y in W(B), and assume SW , (f) = 0. Then SW , (Im(f))

0, i.e. Im(f) = 0, and thus f = 0.

* The fact that SW, is essentially surjective follows directly from the fact that SW is

essentially surjective, c.f. Proposition 5.1.2.12.
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* Proof that SW, is full:

We start with the following sublemma:

Sublemma 5.1.2.18. Let Projwi(,) be the full subcategory of projective objects in

T(BA), and Injf,()) be the full subcategory of injective objects in ft(93). Then SW,

induces an anti-equivalence of additive categories ProjiT(B,) -+ Inj*( B).

Proof. The first thing we need to check is that given a projective object in F(BA), SW

takes it to an injective object in ( By Lemma 5.1.2.16, it is enough to check this

for -(Pi) for i < kx - 2, in which case this follows straight from the definition of SW"

together with Proposition 5.1.2.11 and Corollary 5.1.2.6.

Now,

HomT(L) (F (Pi), (j)) = Hom3,(Pi, Pj), i, j < kx - 2

(since Pi, P3 have no non-trivial subobjects nor quotients lying in Ker(SWv)).

proof of Sublemma 5.1.2.13 then implies that the contravariant functor

SW, : ProjT(13,) 4 Ifl()3,)

The

is full and essentially surjective. We have already established that SW, is faithful,

which concludes the proof of the sublemma. El

Let X E W(BA). Since W(B.x) has enough projectives (which are also injectives), there

exists an exact sequence

0 -+ X - -+ IX

in T(BA), where I, I are injective (and thus projective as well).

Now let P E T(BA) be a projective object. Sublemma 5.1.2.18 then tells us that SW,(P)

is an injective object in -r(Ax). Together with the fact that SW, is exact, this gives us
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the following commutative diagram, whose rows are short exact sequences:

Hom(3,) (P, X)

Homf,(93,) (S ,(X),7 WV (P))

- Hom(3,)(P, IO)

-+ Hom*()(SW (IX), SW,(P))

- Hom(3,)(P, Ik)

SW,)I

-4 Homf*(,,) (SW, (Ix), SW,(P))

By Sublemma 5.1.2.18, the two rightmost vertical arrows are isomorphisms, which

means that the arrow

SW, : Hom(BA)(P, X) -+ Homf,(,A)(SW, (X), SW, (P))

is an isomorphism as well.

Now, let Y E T(BA). There exists an exact sequence

P" + P + Y - 0

in -f(BA), where Py, P are projective. We then get the following commutative diagram,

whose rows are short exact sequences:

HomT(BA)(Y, X) HomT(BA)(P, X) Hom(13,)(PY, X)

Hom* ) (SWV (X), SW, (Y)) -4 Home(B) (SW,(X), SWV(Pyu)) -+ Hom*z, (SW,(X), SW (P ))

We have already established that the two rightmost vertical arrows are isomorphisms,

which means that the left vertical arrow

SW, : Homw(z,)(Y, X) -+ Hom#(9,)( SW,, (X), SW,(Y))

is an isomorphism as well. Thus SW, is fully faithful.

11

124



5.2 Proofs of technical Lemmas

5.2.1 Action of gf(V) on a complex tensor power

Lemma 5.2.1.1. The action of g((V) described in Definition 4.2.0.16 is well-defined.

Proof. Let u, U 1 , u 2 E U ' up, f, fl, f2 E U* U ,+ A E gl(U). We have to check that

the morphisms in Rep(S,) by which u, f, A act are well-defined and satisfy the same

commutation relations as do u, f, A E gf(V).

The first claim is obvious for the actions of f and A and one only needs to check that

the image of (U k 9 Ak)Sk under k+1 Elk+1 ( 0 res* is Sk+1-invariant. For this, we

will prove

Lemma 5.2.1.2. Let o G Sk+1,1 E {1, ... , k + 1}. Then there exists pi(-) c Sk'such that

U o res* = res*() o pi(o), U- 0 UM1 = U(o()) 0 P (a)

Proof. We define the permutation p,(-) to be the diagram in Pk,k constructed as follows.

Consider the diagram U E Pk+1,k+1- Remove vertex 1 in its top row, vertex -(l) in the

bottom row, as well as the edge connecting these vertices. The obtained diagram will lie

in Pk,k and will have no solitary vertices; thus it represents a permutation in Sk.

The diagram obtained is the same we would get by considering the diagram for U o

res* E Pk,k+1, and removing the unique solitary vertex U(l) from the bottom row of

U- res*. From this construction we immediately get: U o res* = res* (1) 0 P1 (-). One then

easily sees that U o u() - U(0()) 0 pi(U) holds as well. El

We now see that for any U E Sk+1,

k 1 (U- 0 (1)) 0 (U o res*) = k (u(o()) o p( )) (res*(, o p(o))
1<l<k+1 1<1<k+1

125



Restricted to (U k 0 Ak)Sk, the latter morphism equals

k+1
1<l<k+1

u(0() 0 res*,.)
k 1 Z ) u 9 res*

1<<k+1

as wanted.

Moving on to the commutation relations, one only needs to check that the following

commutation relations between operators on (U*k 0 Ak)Sk hold (the rest are obvious):

(a)

1
(k + 1)(k +2) (U(12)ou(1))(res*2ores* )

1<li<k+1
1<_1 2 .k+2

(k + 1)(k + 2) (u(11 oU(12)) 0 (res* ores*2
1<12<k+1
1<l1< k+2

(f22) ff()) 0 (res 0 res1 )
1<l1<k

1:_12_k-1

1
(k +1) (f(2) 0 u(")) 0 (resi 2 o res*)

1<i,12 <k+1

(f11) f(12)) 0 (reS1  )
1<12<k

1<1<k-1

Z (01) 0 f( 1 2)) 0 (res* o resl,)+
1<i,12 <k

+ (v - k)f (u)Id(Uk kAk)sk -Tf,u|(Uk sAk)Sk

These identities are proved below.

(a) The claim follows immediately from the following easy computations (consequences

of Lemma 3.2.3.10):

* For 1 <11 < 12 < k + 2,

res*2 ores* = res* o res* 1
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as operators on Ak. We also have u(2) 0 - (1) 0 (12-1)2U1 1 U2

* For k + 1> 11 > 2 > 1,

res*2 o res* = res* MIres*

as operators on Ak. We also have u 2) U = l1+10 U (12)

(b) The claim follows immediately from the following easy computations (consequences

of Lemma 3.2.3.10):

" For 1 <_11 < 12 k - 1,

res12 a res11 = resi, o resi2 1

as operators on Ak. We also have f2) fIl1= f) o f1' 2 .

" For k > 11 > 12 > 1,

res1 2 o resi, = resl_1 a res12

as operators on Ak. We also have f(2) 0 f(l1) f11) 0 f(12)

(c) We have:

* For any 1 < 1 < k + 1, res, o res* (v - k) IdAk and thus

(f () a UM) 0 (resi o rest*) = (v - k)f(u) Id(UGk®Ass

* For 1 <11 < 1 12  k+1,

res12 o res* = res* o res12- 1 -- C(1,..,12-1)

as operators on Ak, where C1,. ,12-1) : Ak -+ Ak is the action of the cycle
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C(,...,1-1) E Sk on Ak. We also have

f(2) o U(11) _ U(11) 0 f( 1
2-1) = T o C( 11 ,.. 1)

Thus

(f( 12) 0 U(")) 0 (res12 o res*) = (U(1) 0 f(12)) D (res* o res12 )-

- (T(1) o C( ,.., 12-)) ( C(1,...,1_1)

as operators on U*k 0 Ak.

Finally, note that res* a res 1 2 1 a C- 1 res* oresi.11(11,-.12-1) o es .

e For k + 1 > 11 > 12 > 1, resI, o res* * 1 res12 _(12.1 as operators on

Ak, where C(1,.,11-1) : Ak - Ak is the action of the cycle C(12,.,,1-1) E Sk on Ak.

We also have

f(2) 0 (1) = U(1-1) 0 f(12) =Tf 1 .
,(12,...,11-1)

Thus

(f(
1
2) a U(h)) 0 (res o res*) = (u(1-1) a f(12)) 0 (res* 1 o rest2 )-

- (T71 0 C i ) 0 C-1
f'U (12,...,li-1 (1,2, .,-,1 -- 1)

as operators on Uok 0 Ak.

Finally, note that res* ao res12 a C(11 ,. ,12-1) = res 1 a res1 _1 .
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Together these imply the following identities of operators on (U k 0 Ak)Sk:

1

(k+ 1)
1<1,0 2<k+1

+

1

(k +1) X
1 l1<12~

(f( 1
2) 0 U(")) 0 (resi, o res*) (v - k)f(u) Id(UOk®Ak)sk +

(Uk1) a f( 1 2-1)) 0 (res) (T71) o C(11) . 1

(k+1

Iu a 0esg_ 1 ores) - (Tf"u 0 C(1
1)1<2<1<k+1

= (v - k)f(u) Jd(Uk ®Ak)sk -TfI (Un k OASk +

1
+ (k + 1)

I

(k 1)
1<l,1 2 <k

( f( 1 2)) 0 (res* a res 2 ) +
1<1 1 ,1 2 <k

1
(k +1)

1

(~a f1) (res a res12 ) + k(k + 1)

E (0 1  o f(1i)) 0 (res* o resil)
1<11<k+1

((11) 0 f(
1
2)) 0 (res* o re

1<li ,1 2 <k

k (U(11) a f(12)) & (res* a res12 ) + (v - k)f (u) Id(u(k®Akssk -Tf,u I(U9k®e s

1<11 ,12 <k

nI

5.2.2 Proof of Lemma 4.2.0.22

Lemma 5.2.2.1. Let 1 < k, and consider a non-zero morphism in Rep(S,)

0 : U1 D _A-+ Uok U Ak

Let u E U u u $0. Then Fu o @ 0, where Fu o # := Zl(<k+l(u 0 res*) 0.

Proof. Recall from Lemma 3.2.3.10 that

HomRep(s,) (A, Ak) CP,k

where P,k is the set of partitions of {1, .., 1, 1', ... , k'} into disjoint subsets such that i, j do

not lie in the same subset, and neither do i', j', for any i $ j, i' $ j'.
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So

HomRep(sv) (U01 0 A, , Uk 9 Ak) ~ CP,,k 0 Uok ® U*

We now study the map

Fu () CP,k 0 U k ® U**i -> CP,k+l 0 U lk+1 0U*0l

By definition of F., we know that

Fuo(xOu0...®ukOfO...Ofl) = k+1 S res*(x)0u0...0uS,_1u&us8 ... ®uk 9f10...0 f,
1<s<k+1

where x E P,k, UI, ... ,Uk E U, f 1i, ... , f U*.

As we said before, we can consider # as an element of CP,k 0 UDk 0 U*0I.

Let N := dim U, and choose a basis U1,..., N of U such that u1 = u. Then we can

write

eX, 1X 0 Uil 0 ... 0 Uik

XGPi,k,
.............ikC{ 1,.,N}

where I denotes the sequence (i1 , ... , ik) and ax,j E U**e

Now assume Fu o = 0, i.e.

s
1<s~k 1

E axires*(x) 0 u(& 0 ... 0 us_1 0 u 0 0 ... 0 u2 = 0

XEP,k,

So for any y E Pk+1, and any sequence J = (ii, ... , jk+1) (here ji, ., jk+1 {1, ... ,N)

we have

axI I
0

triples (x,I,s):
1 ssk+1, res* (x)=y, js=1, I=(ji i, + k+1)

We will now show that this implies that zx,1 = 0 for any x E Pl,k, I

(ii, ... , ik), ii, , ik E {1, ... , N}, which will mean that # = 0 and thus lead to a con-

tradiction.
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For our convenience, let us denote by Ins,(I) the sequence (i1 , ..., is1, 1, is, ..., ik) (1

inserted in the s-th place). We will also use the following notation:

" For x E Pk, consider the longest sequence of consecutive solitary vertices in the

bottom row of the diagram of x (if there are several such sequences of maximal

length, choose the first one).

Denote the length of this sequence by m(x). Let jx be such that jx + 1 is the first

element of this sequence (if this sequence is empty, then put jx := 1).

So this sequence of solitary vertices in x is {jx + 1, jx + 2, .. , +x + m()}.

* Let x E PI,k, I (i1 , ... , ik), i1 , -.. , ik E {1, ..., N}. Consider the sequence

(ijz+1, jz+2, .,jx+m(x)) and inside it the longest segment of consecutive occurrences

of 1 (if there are several such segments of maximal length, choose the first one).

Denote the length of this segment by M(I, x). Let ji,x be such that jI,x + 1 is the

position of the first element of this segment (if this segment is empty, i.e. M(I, x)

0, then put ji,x := jx).

We now rewrite the equality we obtained above: for any triple x, I, s where x E P,k,

I is a sequence of length k with entries in {1, ... , N}, and 1 <s < k + 1, we have:

triples (X',I',s'):
1<s'<k+1, res*, (x')=res* (x), Insa t(I')=Ins, (I)

We will now use two-fold descending induction on the values m(x), M(I, x) to prove that

zx,i = 0 for any X E P,k, and any sequence I of length k with entries in {1, ... , N}.

Base: Let x, I such that m(x) = k, M(I, x) = k. Then the bottom row of x consists

of solitary vertices, and I consists only of l's. Now choose any s E {1, ... , k + 1}. Then,

by definition, the bottom row of res*(x) consists of solitary vertices, and Ins8 (I) consists

only of l's.

Then for any triple (x', I', s') which satisfies res*,(x') = res*(x), Ins,,(I') = Inss(I),

we will have x' = x, I' = I. The above equality then implies that ox,i = 0.
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Step: Let 0 < M, m K k, and M + m < 2k. Assume a', 1 = 0 for any x, I such that

either m(x) > m, or m(x) = m, M(I, x) > M.

Let x, I be such that m(x) = m, M(I, x) = M. Set s := jI,x + 1.

All we have to do is prove the following Sublemma, and we are done.

Sublemma 5.2.2.2. Let (x', I', s') be a triple which satisfies ress,*(x')

res*(x), Ins,,(I') = Ins, (I). Then one of the following statements holds:

" m(x') > m(x),

" x' = x, M(i', x) > M(I, x),

* x' = x,I' =I.

Proof. By definition, res,*(x) has a sequence of m(x) + 1 consecutive solitary vertices. We

assumed that res*,(x') = res*(x), so x' is obtained by removal of the s'-th vertex from

the bottom row of res*(x). So either x' has a sequence of m(x) + 1 consecutive solitary

vertices, i.e. m(x') = m(x) + 1, or we are removing one of the m(x) + 1 consecutive

solitary vertices of res*(x), which means that x' = x.

Now, assume x' = x, and use a similar argument for I, I'. By definition, the sequence

Ins, (I) has a segment of M(I, x) + 1 consecutive occurrences of 1. Again, we assumed

that Ins,,(I') = Ins8 (I), so I' is obtained by removal of the s'-th element of the sequence

Ins,(I). So either I' has a segment of M(I, x) + 1 consecutive occurrences of 1, i.e.

M(I', x) = M(I, x) + 1, or I' = I. l

5.2.3 Proof of Lemma 4.3.0.23

Let V CI1 D U be a split unital finite-dimensional vector space. We will use the same

notations as in Section 4.3.

The following two technical lemmas will be used to prove Lemma 4.3.0.23.
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Lemma 5.2.3.1. Let k E {O ... , n - 1},jil < j2 < ... < k} C {1,...,n}, u E U,

v 1 ,vj2 , ... ,vk E U, and let fjl<2<...<jk be the map {1, ... ,k} -+ {1,...,n} taking i to ji.

Then

eSk+1 E
1<l<k+1 gEInj({1...k1},{1.

90'i=fj1<j2<---.<jk
g monotone increasing

(k +1)! (u (1) o )(vj 1 01<l<k+1 o-CSk

).(vj @v2 ... v) & j

vj2 ( ...(v,k) (res1 o-)(fjl<j 2 <...<jk)

Proof. We rewrite both sides of the identity we want to prove: the left hand side becomes

(C- u( ()).(v 1 0 v3 2 0 ... & vik) 0 S
gEInj({1,...,k+1},{1,...,n}):

goto=fj1<j2<---<jk
g monotone increasing

and the right hand side becomes

1
(k-+Hi)!SS

1<1' k+1 cr'ESk
(u (1) a ').(v 1 0 V,2 0 ... Ovjk) r

9g'e Inj({1,...k+1},{1,...,})
9'oti!=j1<i2<--<.k 0

We now define the following map:

p : Sk+ x {1, ... ,k+ 1} -- + Skx {1, ... ,k + 1}

(a-, 1) - (p (a-), 0-(0))

where p1(-) is defined in Lemma 5.2.1.2.

Then it is enough to check that for every (a', 1') C Sk x {1, ... , k + 1}, the following
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identity holds:

(0- 0 u ).(v 1 0 'Vg 0 ... 0 (gVk) 0

= (u() o -').(vh g V32 0 ... 0 vJk) 0&

E g o 1  --

gEInj({1..f 1,1..n)
gOtl=fjl<j 2 <---<jk

g monotone increasing

E
g'E Inj({1,...,k+1},{1,...,n}):

'Otf=fj1<j2< ... <jk Oa'-1

From Lemma 5.2.1.2, we know that c- o 0) = u') o -' for any (-, 1) E p- 1 (o-', l').

So we need to check that

E (g 0 or- 1 )
(o, Etp-1 (o',') gElnj({1,...,k+1},{1...,n}):

gmot=f1<n2<...<sk
g monotone increasing

9'

g'/Inj({1,...k+1},{1,..
g'oLI=fl<j2 < <jko0'--1

Notice that by definition of pu, - o t = t,,() o p1(-), i.e.

- a t = Q/ o -

Thus for any monotone increasing map g : {1, ... , k + 1} -4 {1, ... , n} such that g o ti

fil<j2<...<jk, the map g' := g o o- is an injective map {1, ... , k +1} -+ {1, ... , n} satisfying:

a 

/ Li, = fjl<3j...<j 0 0-1. It remains to check that the summands in the left hand side are pairwise different and

that both sides have the same number of summands.

The first of these statements is proved as follows: let g, oa--, g20T be two summands

in the left hand side. Assume they are equal. This means that gi, 92 have the same image,

and since they both are monotone increasing, we conclude that g1 = 92, which of course

means that o- = T, and we are done.

The second statement is proved as follows: the number of summands in the right hand
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side is obviously n - k. To show that this is also the number of summands in the left

hand side, we only need to check that the projection Sk+1 x {1, ... , k + 1} -+ {1, ... , k +1}

maps [L-1(9-, l') bijectively to {1, ... , k + 1}.

By the definition of /p and the construction described in Lemma 5.2.1.2, we see that

for every 1 E {1, ... , k + 1}, we can (uniquely) reconstruct - from the data (-', ', 1) so that

p(o-, 1) (o-', l'): we consider the diagram of a' E Pk,k, insert a vertex in the l-th position

in the top row, a vertex in the l'-th position in the bottom row and an edge connecting

the two. The obtained diagram will be -. This completes the proof of the lemma. E

Lemma 5.2.3.2. Let k E {O, ... , n - 1},{jil < j2 < .. < k+1} C {1,..., n}, A E U*,

vyi, vi2 , ... , Vjk+l C U, and let fal<2< ... <ak÷ be the map {1, ... , k + 1} -> {1, ... , n} taking i

to ji. Then

esk E A'). (vj 0 vi2 0D .. 0vJk+l) 0 res, (fi <j 2 < .<ik~l))

\1<1<k+1

k(A(') o )( )(vj, 0 vo
2 0 ... 0 vik+1) 0 (res, 0 (fi1<2<...<ik 1)

(k + 1<1<k+l -Sk+1

Proof. We rewrite the left hand of the identity we want to prove, and it becomes

1 (o-' o A(")).(vj1 0 v(& 0 ... 0 vik+1) 0 (U' o resl/) (fil<j2<...<jk 1)

-'CSk,
1<l'<k+1

We use the definition of the map p from the proof of Lemma 5.2.3.1, and define the

map

p:Sk+1 x {1I, ..., k + 1} -+ Sk x { 1, ...,) k + 1}

(o-, 1) F-- p(o--- 1)
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Then it is enough to check that for every (O-', l') E Sk x {1, ... , k + 1},

(a' o A(0) (Vl & vj2 0 ... 0 vijk1) 0 (-' oresip) (fj,<j2<...<jk+1 ) =

k I 1 (A') o a ) (v , 0 0& ... 0 Vik+) 0 (resi o -) (fjil<j2 <...<jk+l)
+ (0" 1) C--1(7'- 1 1,')

By definition of f, for every (-, 1) C z1(o-1, l'), we have: p(or 1 , 1) = (' 1 , l'), which

means that a4 a t= ta 0 -'7-1 (see the proof of Lemma 5.2.3.1), and so

a- o resi/ = resi o -

and similarly

0-' 0 A') - \(0 (.

Thus it only remains to check that the right hand side has k + 1 summands, i.e. that

A- 1('- 1 , ') has k + 1 elements. The latter can be easily deduced from the arguments in

the proof of Lemma 5.2.3.1.

Lemma 5.2.3.3. There is an isomorphism of g[(V)-modules

4D : Von -+ ® (U*k 0 CInj({1, ..., k}, {1, ..., n})) k

1:

k=O,...,n

where 4(1 0 11 0 ... 0 1) = 1 (lies in degree zero of the right hand side).

Moreover, this isomorphism is an isomorphism of C[Sn] Oc U(g[(V))-modules.

Proof. Fix a dual basis vector 1* E (C1)* such that 1*(1) = 1.

Given a subset J = {ji < j2 < ... < j} C {1, ... , n}, let

UOJ = CI1®i- 1 0 U & C1l®-9j- 1 0 U 0 ... 0 C1l®k~-k-1-1 0 U 0 Cjon"jk

(that is, the factors Ji, j2, etc. are U, and the rest are C11). Then Von -=DJC{n,} U*J.
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Let

4J: U {j1<j2< ... <ik} -+- (U*o Clnj({ 1, ...,7 k}, { 1, ... , n}) )Sk

v1 0 ... 0 v - esk (V 3 1  V 2 0 0. V 0D fal<j2<...<ik) - l *(vi)
iv/J

Here f := fi<2<...<ak E Inj({1, ... , k}, {1, ... , n}) is given by f(s) := j, and esk is the

projection

Uk 0 CInj({1, ..., k}, {1, ... , n}) -+ (U k 0 CInj({1, ... , k}, {1, ... , n})) S

Finally, set the map

JC{1,..,n}

UJ -+@

k=0,...,n

(U k 0 CInj({1, ... k}, {1, ... , n}))Sk

to be E n 4J.

Notice that J([ 01 0 ... 0 nl) = 0(10 110 ... 0 1) = 1.

We claim that D is a map of g((V)-modules. Again, we consider the decomposition

9r(V) ~ C Idv Eu- (D u+ D gI(U)

" IdV acts by the scalar n on both sides.

* Let u z U '- u-, and let vI 0 ... 0 vn E U®{il<i2<...<ik}

Then u acts on V®
7 1 by operator F, which satisfies:

Fu. (v1 ... 9Vn) = V1 9 ... 1* (Vi) U (9 ... Vn
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E E1<i<k+1 gElnj({1,.k+1},{1,.n}):
90Q=fi1<i2<---.<ik

\f f(-1)<g(I)<f (1)

Here ti is the injection

(esk(vl 0 vi2 (g
... Ov O fil<2 <.<ik) .. - i (Vi)

(k-i)! J 1*(vi)
ig J

E ( ) o o) (vi1 0 vi2

O-ESk

0 ... 0 vik) 0 (res* o o- <

We now use Lemma 5.2.3.1 to conclude that (D is a map of up-modules.

* Let A E U* u+ , k > 1, and vi D ... v E U1il2<< }.

Then A acts on V' by operator Ex which satisfies:

EX. (v1 (9 ... ( v,) = (v1 0 ... 0 A(vj) 0 ... OVn

jEJ

and thus

A('). 1 v, 2 ( ... & vjk) ® res, (fi<j2< <ik))TJ]*(Vi)
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and thus

Uohy ( Vi ... Vi (0 Vi) (& g - v
.fig J vz

Now,

fi

i+1

if i < 1

if i > 1

4D( Fu.-(V1 0... (Vn)) = sk

{1, ..., k} " {l, ..., 7k+ 1}, i F-

Fu.4)(v1 0 ... (9 v,) = F,.

\ 1<k+

((EA .(V10 ... (Vn)) = esk_1



Now,

EA.D(vl 0 ... (9vn) =E.. eskh1 vi O...OVk 0 f31 <j2<...<k) [ II(v)

= rl 1 *(vi)
k!i J

( ) ( o -)(vj, 0 v2 0 ... 0 vik 0 (resi o or) (ful<j 2<<jk)
\1<1<k O-GSk

We now use Lemma 5.2.3.2 to conclude that 4 is a map of u+-modules (note that the

action of A on (U* 0 0 C)so a C is zero, as is on Cn 2 UO0 ). This Lemma is proved at

the end of this section.

9 L(U) acts naturally on each summand U il<j2< ... } on the left and on each summand

(Uok OCInj({1, ... , k}, {1, ... , n}))Sk on the right, and this action gives us isomorphisms

of gl(U)-modules:

(Dj : U®{1<j2<...<k} _ U®9k 0 Cfjl<j2<...<jk

and

{jl<j2<...<jk}c{1,...,n}

U*k 0 Cfl<j 2 <...<jk (U*k 0 CInj({1, ... , k}, {1, ... , n}))s

Note that the last argument also shows that 4) is an isomorphism.

It remains to check that 1 is also a morphism of Sn-modules. Fix k C {o, ... , n}. It is

enough to check that

0Ikj: 0
Jc{1,.,} Jc{1,.,}

|J|=k |IJ =k

U(ji<j2< ... <j} -+ (Uok 0 CInj({1, ... , k}, {1, ... , n}))Sk

V1 (9 .. Vn - Csk (Vj1 (D Vj2 V@ .. &o fil<j2 <... <j 1 I(i )

ig J

is a morphism of Sn-modules (here J= {ji < j2 < ... < jk}).
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Fix u c S, and fix J {jl < j 2 < ... < kl C 1, ... ,'}. Let T Sk be such that

0-(jr-'(1)), O(jrl1(2 )), ... , 0(-(k)) is a monotone increasing sequence. We will denote this

sequence by o-(J).

We have:

or-(4) j (v 1 (9 ... 9 ,)) = esk(vjl (9v 2 O ... O Vik (o fjl< 2<...<jk)) l*(Vi)
ig J

On the other hand,

'),(J)(0(Vi 0 ... 0 V)) = 4o,(J) (Vu-1(1) --- 0 V-1(n))

esk (vl() 0D Vj-1(2 ... 0 Vi,_ 1(k) fi(T-1(1))< j-1(2))<...<o( -1(k)) . ]I* (vj*( -

esk (T.(v 1 0 ?Jj2 0 . v ) 0 (0 o fjl<j2<...<a 0 T)) - J 1*(v)
ivJ

es 1 V 0 ... Vk (D ('0 fjl<j2<...<j)) -
iv J

Thus

=( J<DJ ) 0-

JC{1,...,n},jJj=k

and we are done.

F1

140

o- 0 @ <bj

(JC{1,...,n},jJj=k



Chapter 6

Restricted inverse limits of categories

6.1 Overview of restricted inverse limits

In this chapter, we discuss the notion of an inverse limit of an inverse sequence of categories

and functors.

Given a system of categories Ci (with i running through the set Z+) and functors

.Fi_1, : Ci -+ Ci_ 1 for each i > 1, we define the inverse limit category 1 m C to be the

following category:

" The objects are pairs ({Ci}iEz+,{#i-1,i}i>1) where Ci c Ci for each i E Z+ and

#i-I,i : Fi_ 1,i(Ci) ~+ Ci- for any i > 1.

" A morphism f between two objects ({Ci}iez+, {i-1,i}<i1), ({Di}iz+, foi-1,5 0 is

a set of arrows {fi : Ci -+ Di}iz+ satisfying some compatability conditions.

This category is an inverse limit of the system ((Ci)iez+, (F- 1 ,i)i 1 ) in the (2, 1)-

category of categories with functors and natural isomorphisms. It is easily seen (see

Section 6.2) that if the original categories Ci were pre-additive (resp. additive, abelian),

and the functors Fi-,, were linear (resp. additive, exact), then the inverse limit is again

pre-additive (resp. additive, abelian).

One can also show that if the original categories Ci were monoidal (resp. symmetric
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monoidal, rigid symmetric monoidal) categories, and the functors Fi-1,, were, monoidal

(resp. symmetric monoidal functors), then the inverse limit is again a monoidal (resp.

symmetric monoidal, rigid symmetric monoidal) category.

6.1.1 Motivating example: rings

We now consider the motivating example.

First of all, consider the inverse system of rings of symmetric polynomials

... -+ Z[X1, ... , X']Sn -+ Z[X , .. dsX_,]-- --+ ... -+ Z[X1] -+ Z

with the homomorphisms given by p(x1, ..., X?) -+ p(x 1, ..., x_ 1 , 0).

We also consider the ring Az of symmetric functions in infinitely many variables. This

ring is defined as follows: first, consider the ring Z[x1 , x 2 , ...]UnIol- of all power series with

integer coefficients in infinitely many indeterminates x1 , x2 , ... which are invariant under

any permutation of indeterminates. The ring Az is defined to be the subring of all the

power series such that the degrees of all its monomials are bounded.

We would like to describe the ring Az as an inverse limit of the former inverse system.

1-st approach:

2-nd approach:

The following construction is described in [Macd, Chapter I. Take the inverse limit

I'm Z[x 1 , ... , Xn]Sn (this is, of course, a ring, isomorphic to Z[x1 , x 2 , ... ]Un>-oS"

and consider only those elements (pn)no> for which deg(pn) is a bounded sequence.

These elements form a subring of mn>0 Z[xI, ... , xn] Sn which is isomorphic to the

ring of symmetric functions in infinitely many variables.

Note that the notion of degree gives a Z+-grading on each ring Z[x 1 , ... , Xn]S", and

on the ring Az. The morphisms Z[x1, ... , xn]sn -+ Z[X1, .. , xn 1]Sn1 respect this

grading; furthermore, they do not send to zero any polynomial of degree n - 1 or

less, so they define an isomorphism between the i-th grades of Z[x1 , ... , x]S and

Z[X1, ... , xn-_]Sn1 for any i < n. One can then see that Az is an inverse limit of
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the rings Z[xi, ..., xf]s in the category of Z+-graded rings, and its n-th grade is

isomorphic to the n-th grade of Z[xi, ... , Xn]s.

6.1.2 Motivating example: categories

We now move on to the categorical version of the same result.

Let GL,(C) (denoted by GL, for short) be the general linear group over C. We have

an inclusion GL, C GLn+1 with the matrix A E GLn corresponding to a block matrix

A' E GLn+1 which has A as the upper left n x n-block, and 1 in the lower right corner

(the rest of the entries are zero). One can consider a similar inclusion of Lie algebras

0[n C g1n+1-
Next, we consider the polynomial representations of the algebraic group GLn (alter-

natively, the Lie algebra gn): these are the representations p : GL" -+ Aut(V) which

can be extended to an algebraic map Matx,(C) -+ End(V). These representations are

direct summands of finite sums of tensor powers of the tautological representation Cn of

GLn.

The category of polynomial representations of GLs, denoted by Rep(g1,)p,1y, is a

semisimple symmetric monoidal category, with simple objects indexed by integer par-

titions with at most n parts. The Grothendieck ring of this category is isomorphic to

Z[X1, ... , Xn]s-

We also have functors

9 iC~n-1,n ()nnRep(gn)P 0 1Y -+ e~~-pl

On the Grothendieck rings, these functors induce the homomorphisms

Z[Xi, ... , Xn]s"- [X ,-- Xn Is' ' P(X1, ... , Xn) - P(Xl, ... , Xn_1, 0)

discussed above.

Finally, we consider the infinite-dimensional group GL, = U, 0o GLn, and its Lie
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algebra gl = U,> 0 gtr. The category of polynomial representations of this group (resp.

Lie algebra) is denoted by Rep(g1o)p,0 y, and it is the free Karoubian symmetric monoidal

category generated by one object (the tautological representation C' of GLOO). It is also

known that this category is equivalent to the category of strict polynomial functors of

finite degree (c.f. [HYI), it is semisimple, and its Grothendieck ring is isomorphic to the

ring Az.

The category Rep(gl. )p,0 y possesses symmetric monoidal functors

F, : Rep(g[,,)p,0 1  - Rep(-g+P01Y

with the tautological representation of g(c, being sent to tautological representation of g1.

These functors are compatible with the functors 9 CSn_1,n (i.e. Fn_1 2 9eSn-,n o IF), and

the functor Un induces the homomorphism

Az -+ Z[Xi, ..., iXn] S" pXx1, ... , 1, Xnin+1, --- .. p(X, ...-, Xn, 0, 0,1...)

This gives us a fully faithful functor Fim Rep(glo)po1y -4 U Rep(gn)PO1Y.

Finding a description of the image of the functor Furm inspires the following two frame-

works for "special" inverse limits, which turn out to be useful in other cases as well.

6.1.3 Restricted inverse limit of categories

To define the restricted inverse limit, we work with categories Ci which are finite-length

categories; namely, abelian categories where each object has a (finite) Jordan-Holder

filtration. We require that the functors Fi_,, be "shortening": this means that these are

exact functors such that given an object C E Ci, we have

ecoi(d-1,(C)) fc(C)

In that case, it makes sense to consider the full subcategory of 1 ' m~ Ci whose objects
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are of the form ({Ci}iEz+, { i-1,i}i>1), with {C,(Cn)}no being a bounded sequence (the

condition on the functors implies that this sequence is weakly increasing).

This subcategory will be called the "restricted" inverse limit of categories Ci and will be

denoted by li C2. It is the inverse limit of the categories Ci in the (2,1)-category

of finite-length categories and shortening functors.

Considering the restricted inverse limit of the categories Rep(g[n)P0iY, we obtain a

functor

Flim : Rep(g[lO)pozy Umig Rep(g[lJ),1Y
n>O, restr

It is easy to see that Fiim is an equivalence. Note that in terms of Grothendieck rings,

this construction corresponds to the first approach described in Subsection 6.1.1.

6.1.4 Inverse limit of categories with filtrations

Another construction of the inverse limit is as follows: let K be a filtered poset, and

assume that our categories Ci have a K-filtration on objects; that is, we assume that

for each k E K, there is a full subcategory Filk(Ci), and the functors Ti-i respect this

filtration (note that if we consider abelian categories and exact functors, we should require

that the subcategories be Serre subcategories).

We can then define a full subcategory Uni Ci of m Ci whose objects are

of the form ({Ci}icz , { i-, i} ) such that there exists k E K for which Ci E Filk(Ci)

for any i > 0.

The category IiE Z,K-filtrCi is automatically a category with a K-filtration on ob-

jects. It is the inverse limit of the categories Ci in the (2,1)-category of categories with

K-filtrations on objects, and functors respecting these filtrations.

Remark 6.1.4.1. A more general way to describe this setting would be the following.

Assume that for each i, the category Ci is a direct limit of a system

145



Furthermore, assume that the functors i-,, induce functors ._1 , -+ C for any

k E Z+, and that the latter are compatible with the functors 9i-l'k One can then define

the category

4in kC
kGK iEZ+

which will be the "directed" inverse limit of the system. When Ck Filk(Ci) and gk-1'k

are inclusion functors, the directed inverse limit coincides with biEjZ+Kfltr C

All the statements in this thesis concerning inverse limits of categories with filtrations

can be translated to the language of directed inverse limits.

Considering appropriate Z+-filtrations on the objects of the categories Rep(gr ) 0 1,,

we obtain a functor

Flim : Rep(g[,)poly -4 m Rep(g[,)oly
n>O7,Z+-filtr

One can show that this is an equivalence. Note that in terms of Grothendieck rings, this

construction corresponds to the second approach described in Subsection 6.1.1 (in fact,

in this particular case one can use a grading instead of a filtration; however, this is not

the case in Chapter 7).

These two "special" inverse limits may coincide, as it happens in the case of the cat-

egories Rep(gl)oly, and in Chapter 7. We give a sufficient condition for this to happen.

In such case, each approach has its own advantages.

The restricted inverse limit approach does not involve defining additional structures

on the categories, and shows that the constructed inverse limit category does not depend

on the choice of filtration, as long as the filtration satisfies some relatively mild conditions.

Yet the object-filtered inverse limit approach is sometimes more convenient to work

with, as it happens in Chapter 7.
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6.2 Inverse limits of categories

In this section we discuss the notion of an inverse limit of categories, based on [WW,

Definition I], [S, Section 5]. This is the inverse limit in the (2, 1)-category of categories

with functors and natural isomorphisms.

6.2.1 Definition of inverse limits of categories

Consider the partially ordered set (Z+, <). We consider the following data ("system"):

1. Categories C for each i E Z+.

2. Functors i,, : Ci -+ Ci_ 1 for each i > 1.

Definition 6.2.1.1. Given the above data, we define the inverse limit category 1W m7 Ci

to be the following category:

" The objects are pairs ({Ci}izz, {#i-1,i}<i1) where Ci E C for each i E Z+ and

#i-1,i : Fi_ 1,i(Ci) ~4 Ci_1 for any i > 1.

" A morphism f between two objects ({Ci}iEz , {#5- 1,i}3 1), ({Di}iz , { i-1,i}<i1) is

a set of arrows {fi : C -+ Di}iEz such that for any i > 1, the following diagram is

commutative:

-i_-1, i(Ci) Ci_1

.Fi_1,i(Di) Di 1

Composition of morphisms is component-wise.

The definition of 1 m Ci implies that for each i E Z+, we can define functors

Pri : m C, - C,

C = ({C}iz, {#i-1,i}i 1)) a Ci

f = {fi : Ci -+ Diiz fi
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which satisfy the following property (this property follows directly from the definition of

Ip zz Ci):

Lemma 6.2.1.2. For any i > 1, Fi-, o Pri Pri_ 1, with a natural isomorphism given

by:

(i_,, o Pri)(C) Pri_1(C)

(here C = ({Ci}LEZ,, {i-1,i}j>1))).

Let A be a category, together with a set of functors 9i : A -* Ci which satisfy: for any

i > 1, there exists a natural isomorphism

Then lm Ci is universal among such categories; that is, we have a functor

S:A - mCi

A - ({gi(A)} ez+, {r 1,} ,; 1 )

(f : A1  A 2 ) {fi := 9i(f}iez+

and 9i Pri o g for every i E Z+.

Finally, we give the following simple lemma:

Lemma 6.2.1.3. Let N E Z+, and assume that for any i > N, Fi1,, is an equivalence.

Then Pri : Un C, -+ Ci is an equivalence for any i > N.

Proof. Set Tij := ajj+j o ... o Tj-,, for any i j (in particular, TFi := Idc).

Fix i > N. Let j > i; then Jij is an equivalence, i.e. we can find a functor

9. : Ci -> C3

such that .Fi, o gj Idc2 , and j o F Idc, (for j := i, we put !i := Idc).
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For any j > i, fix natural transformations

r/j-1,j : T 1,j 0 9j 9> j_

For any j < i, put g := Fji, and j-,j := Id.

Then the universal property of 1i C implies that there exists a functor

g: Ci -+ M C3
jcz+

such that Pr o g gj for any j. The functor g is given by

g : C DM C3

C ' ({gj(C)} ez, {j-1,j}j>i)

f : C -+ C' {f:= 9j(f)}jz'

In particular, we have: Pri o g Idc,. It remains to show that g o Pri

and this will prove that Pri is an equivalence of categories.

Id EEz+cj,

For any C e E C , C := ({Ci}jez+, {j-1,j}j>1), and for any 1 < j we define

isomorphisms 01j : Fj(Cj) -÷ C given by

01j :=1,1+1 0 F,1+1 (1+ 1,1+2 0 a+1,1+2(01+2,1+3 0 a.. 0 j-2J-1(Oj-1J)...

Define 0(C) := {0(C)j : Cj - Prj(9(Ci)) a gj(C)}3j, by setting

{gjCqjjj

if j < i

if j > i

Now, let C := ({C}jz+, {#j-1,j}j;1), D := ({Dj}jez+, {'j-1,j}j; 1) be objects in

m Cj, together with a morphism f : C - D, f := {f3 : Cj Djjcz+.
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Then the diagram

C j~) (g o Pri)(C)

ft (goPrj)(f)t

D >(G o Pri) (D)

is commutative, since for j < i, the diagrams

Ci " j Pr(G (Ci)) ag(s

fi gj (fi)

Dj "1 P Pr (9 (Dj)) 9jg (Dj)

are commutative, and for j > i, the diagrams

Ci Prj(g(Ci)) a g3 (Ci)

Dj Prj(G(Di)) 9 jy(Dj)

are commutative.

D

6.2.2 Inverse limits of pre-additive, additive and abelian cate-

gories

In this subsection, we give some more or less trivial properties of the inverse limit corre-

sponding to the system ((Ci)iEz+, (Ai-1,j)j 1) depending on the properties of the categories

Ci and the functors F_1,j.

Lemma 6.2.2.1. Assume the categories Ci are C-linear pre-additive categories (i.e. the

Hom-spaces in each C are complex vector spaces), and the functors Fi_,, are C-linear.

Then the category (m Ci is automatically a C-linear pre-additive category:

given f,g : C - D in Cj, where C = ({CjjjEz+, {#_1,jjj21), D =
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({Di}iez , {'l/i-,i}i2), f ={fi : Ci -+DiiEz, = {gji: Ci - DiiEz+, we have:

af + /3g :{(cxf + 3gi) : Ci -+ DiliEZ

where oz, E C.

The functors Pri are then C-linear.

Lemma 6.2.2.2. Assume the categories Ci are additive categories (i.e. each Ci is pre-

additive and has biproducts), and the functors F 1, are additive. Then the category

Ur Ci is automatically a additive category:

" The zero object in 1 m Ci is ({oci}iez I I} o -1)

" Given C, D in 4!~y+Ci, where C = ({Ci}iEz,{4-1,}i 1), D

({Di}bEz÷, {i-1,i}>), we have:

C E D := ({(Ci E Di}iez , {#j--,j e 4'j-i,i}ji;)

with obvious inclusion and projection maps.

The functors Pri are -then additive.

Proof. Let X, Y E m Ci, X = ({Xi}iez=, {[- 1 ,<}<1), Y ({Y}iEZ+, {Pi-1i}1),

and let fc: X -+ C, fD : X -+ D, go : C -+ Y, gD : D -+ Y (we denote the components

of the map fc by fc , of the map fD by fD,, etc.).

Denote by tCi, LDi, 7Tc,, 7
TDi the inclusion and projection maps between Ci, Di and Ci E

Di. By definition, tO := {tC }iCz+, LD :- {tDi iEZ+, 0 7{7TCri liEZ+, 7ID f 7{Di }iEz+ are

the inclusion and projection maps between C, D and C G D.

For each i, there exists a unique map fi : Xi-+ Ci D Di and a unique map gi

Ci E Di -+ Y such that

7rci 0 A = fC,,7rDi 0 A = fDi 9i C 9c , 9i 0 tDi = gDi
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for any i E Z+.

This means that we have a unique map f : X -> Ce D and a unique map g : CeD --

Y such that

7Tc of =fCTD Of =fD, g O LC gC, 9 o D=9D

(these are the maps f ={f9},g {gj}j).

Lemma 6.2.2.3. Let f : C -+ D in l m C., where C = ({Ci}iez+, {I-1,}>1), D

({Dj}EZ , { b-1 ,}j 1 ), f = {fi : Ci -+ Di}iez+.

Assume fi are isomorphisms for each i. Then f is an isomorphism.

Proof. Let g := fi-1 for each i E Z+ (this morphism exists since fi is an isomorphism,

and is unique). All we need is to show that g := {gi : Di -+ Ci} is a morphism from D

to C in p m Ci, i.e. that the following diagram is commutative for any i > 1:

-Fi_1 (C ) 'iil Ci_1I

Ti-1I, i(gi) Igi-1

.F_1,j(Dj) ii Di_1

The morphism gi-_ o Oi_1,i is inverse to 5- - o fi-1, and #i-1,i o Fi_1,i(gji) is inverse to

But V- o fh-i = F_ 1,j(fj) o 0- 1 '_, since f = {fi : Ci -+ Dj}jEz+ is a morphism

from C to D in m Ci. The uniqueness of the inverse morphism then implies that

gi-i a i = q5-i o Tj-1,j(gj), and we are done.

Proposition 6.2.2.4. Assume the categories Ci are abelian, and the functors Fi_ 1,, are

exact. Then the category m-j Ci is automatically abelian:

* Given f C -+ D in mrn Ci, where C = ({CjjjEz,,f{#-1;}<j1), D =

({Di}Ez+ , {i- 1 ,j} j 1), f = {fi : Ci -* Di} 7Ez,, f has a kernel and a cokernel:

Ker(f) := ({Ker(fj)}jc-z+, {pj-1,j}j21), Coker(f) := ({ Coker (fi)}Jjczz, {pzi--1,i}b>
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where pi-i,i, pi_1,i are the unique maps making the following diagram commutative:

> Ker(fi_1)

~ki-i-1

Di-1

>1 D _1

I
Coker (Fi-1,i (fi)) 2-- i 1,i (Coker (fi))

* Given f : C - D in m Ci, we have: Im(f)

Coker(Ker(f)) Coim(f).

I
Coker(fi-1 )

:= Ker(Coker(f)) r

Proof. The universal properties of Ker(f), Coker(f) hold automatically, as a consequence

of the universal properties of Ker(fi), Coker(fi).

Now, let f :C -+ D in i Ci, where C = ({Ci}iez+, {#i-1,i}<i1), D

({Di}izz, {Vi-1,i}>1), f = {fi : Ci -+ Di}iEz .

Consider the objects Im(f) := Ker(Coker(f)), Coim(f) Coker(Ker(f)) in

1 m C2. We have a canonical map f: Coim(f) -+ Im(f), such that f : C - D

is the composition

C -* Coim(f) -A+ Im(f) " D

Consider the maps fi for each i C Z+, where fi is the canonical map such that

fi : Ci -+ Di is the composition

Ci - Coim(fi) - Jm(fi) " Di

One then immediately sees that = {fi : Coim(fi) -+ Im(fi)}2 .

Since the category Ci is abelian for each i E Z+, the map fi is an isomorphism. Lemma

6.2.2.3 then implies that I is an isomorphism as well. l
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The following is a trivial corollary of the previous proposition:

Corollary 6.2.2.5. The functors Pri are exact.

This corollary, in turn, immediately implies the following statement:

Corollary 6.2.2.6. Let (Ci, Tij) be a system of pre-additive (respectively, additive,

abelian) categories, and linear (respectively, additive, exact) functors.

Let A be a pre-additive (respectively, additive, abelian) category, together with a set

of linear (respectively, additive, exact) functors 9i : A -* Ci which satisfy: for any i > 1,

there exists a natural isomorphism

rli-1,i : Ti-1,4 gi -+ g_ 1

Then Urn C is universal among such categories; that is, we have a linear (respec-

tively, additive, exact) functor

9 : A UmC,
icz+

A 4 ({9(A)}Ez+, {ri-1,i}iez )

f : A1 -+ A2 - {fi := 9i(f)}iEZ+

and gi a Pri o g for every i E Z+.

6.3 Restricted inverse limit of finite-length categories

We consider the case when the categories Ci are finite-length. We would like to give a

notion of an inverse limit of the system ((Ci)iEZ+, (Fi- 1,i)i 1 ) which would be a finite-length

category as well. In order to do this, we will define the notion of a "shortening" functor,

and define a "stable" inverse limit of a system of finite-length categories and shortening

functors.
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Definition 6.3.0.7. Let Al, A2 be finite-length categories. An exact functor F : A, -

A2 will be called shortening if for any object A E A,, we have:

f4(A) eA 2(F(A))

Since F is exact, this is equivalent to requiring that for any simple object L C A,, the

object F(L) is either simple or zero.

Definition 6.3.0.8. Let ((Ci)iEwz+, (Fi 1,ii;>1) be a system of finite-length categories and

shortening functors. We will denote by , C2 the full subcategory of m Ci

whose objects C := ({CjjEz+, { j_1,j}j>1) satisfy: the integer sequence {Cc,(C)};>O

stabilizes.

Note that the since the functors Ti_,, are shortening, the sequence {fci(C)}b o is

weakly increasing. Therefor, this sequence stabilizes iff it is bounded from above.

We now show that nIez s Ci is a finite-length category.

Lemma 6.3.0.9. The category C := Urn , et Ci is a Serre subcategory of 1 i C",

and its objects have finite length.

Moreover, given an object C := ({Ci}iz,, {b- 1,i}i>1) in C, we have:

fc(C) < max~fc (Ci)Ji > 0}

Proof. Let

C := ({C} }jeEZ, {j-1ij};J), C' := ({C }jz , {# _1,f } ;>1), C" := ({C '}jez, {'_ 1 , }I;>1)

be objects in 7m Ci, together with morphisms f : C' -+ C, g : C -+ C" such that the

sequence

0 s C' -f C -- + C" -+ 0

is exact.
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If C lies in the subcategory C, then the sequence {ec(Ci)}i>o is bounded from above,

and stabilizes. Denote its maximum by N. For each i, the sequence

0 -+ C" -A+* C, - - C"' -+ 0

is exact. Therefore, fc,(Cl), c,(Ci') - N for each i, and thus C', C" lie in C as well.

Vice versa, assuming C', C" lie in C, denote by N', N" the maximums of the sequences

{c, (C)} , {fc,(C')} respectively. Then c,(Ci) < N' + N" for any i > 0, and so C lies

in the subcategory C as well.

Thus C is a Serre subcategory of 1m Ci.

Next, let C lie in C. We would like to say that C has finite length. Denote by N

the maximum of the sequence {fc(Ci)};>o. It is easy to see that C has length at most

N; indeed, if {C', C",..., C(')} is a subset of JHc(C), then for some i >> 0, we have:

Pri(C(k)) 74 0 for any k = 1, 2, ... , n. Pri(C(k)) are distinct Jordan Holder components of

Ci, so n < &c,(C) < N. In particular, we see that

fc(C) N = max{fc.(Ci)1i > 0}

Notation 6.3.0.10. Denote by Irr(Ci) the set of isomorphism classes of irreducible objects

in Ci, and define the pointed set

Irr,(Ci) := Irr(C) Li {0}

The shortening functors Fi_,, then define maps of pointed sets

fi-1,, : Irr,(Ci) --- Irr,(Ci_1)

Similarly, we define Irr (_m , restr C) to be the set of isomorphism classes of irre-
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ducible objects in C, and define the pointed set

Irr,(C) : Irr(C) U {0}

Let C := ({Cj}jcz,, {Oj-1,j}yj1) be an object in C. We denote by JH(C) the multiset

of the Jordan-Holder components of Cj, and let

JH,(C) := JH(C) U {}

The corresponding set lies in Irr*(Cj), and we have maps of (pointed) multisets

fi_1,y : JH*(Cj) -÷ JH*(C_.1 )

Denote by m Irr*(Ci) the inverse limit of the system ({Irr*(Ci};>o, {fi-,ii};>I).

We will also denote by pr : 1 Irr*(C) -+ Irr*(Cj) the projection maps.

The elements of the set T m Irr*(Ci) are just sequences (Li)i>o such that Li E

Irr*(Ci), and fi_ 1,i(Li) ' Li_1.

The following lemma describes the simple objects in the category C := iE, restr C-

Lemma 6.3.0.11. Let C:= ({C}jE~Z+, {qj-ijjji) be an object in C :mcz, ,etrC

Then

C e Irr,(C) < Prj(C) = Cj E Irr*(Cj) Vj

In other words, C is a simple object (that is, C has exactly two distinct subobjects:

zero and itself) iff C $ 0, and for any j > 0, the component C is either a simple object

in Cj, or zero.

Proof. The direction - is obvious, so we will only prove the direction 4.

Let no be a position in which the maximum of the weakly-increasing integer sequence

{ci(Ci)}i>o is obtained. By definition of no, for j > no, the functors Yj-,, do not kill

any Jordan-Holder components of C,.
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Now, consider the socles of the objects Cj for j > no. For any j > 0, we have:

-F_1,j( socle(Cj) )socle(Cj-1)

and thus for j > no, we have

fcj ( socle(Cj)) =c- c_(Tj-1,,5( socle(Cj) )) < fcj-,( soCle(Cj_1))

Thus the sequence

{fCj( socle(Ci) )}j>nO

is a weakly decreasing sequence, and stabilizes. Denote its stable value by N. We conclude

that there exists ni > no so that

Fj-1,( socle(C3 ) ) 0 L socle(Cj_1)

is an isomorphism for every j > ni .

Now, denote:

and we put: D

DFi,, ( socle(C n))

socle(Cj)

if j < ni

if j > ni

:= ((Dj)j>o, (#j-1,)j;>1) (this is a subobject of C in the category

m Ci). Of course, fcj(Dj) < N for any j, so D is an object in the full subcate-

gory C of + Ci.

Furthermore, since C / 0, we have: for j >> 0, socle(Cj) # 0, and thus 0 # D c C.

D is a semisimple object C, with simple summands corresponding to the elements of

the inverse limit of the multisets Im' JH*(Dj)

We conclude that D = C, and that socle(Cj) Cj has length at most one for any

j > 0.

Remark 6.3.0.12. Note that the latter multiset is equivalent to the inverse limit of multisets
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JH,( socle(Cj) ), so D is, in fact, the socle of C.

Corollary 6.3.0.13. The set of isomorphism classes of simple objects in restrC

is in bijection with the set (m Irr*(Ci) \ {O}. That is, we have a natural bijection

Irr*(C) - Iim Irr*(Ci)
iEZ+

In particular, given an object C := ({Cj}jEz+, {#j-1,j}jI) in iCz+, restr C', we have:

JH*(C) = I m JH,(C) (an inverse limit of the system of multisets JH*(Cj) and maps

fi _1,j).-

It is now obvious that the projection functors Pri are shortening as well:

Corollary 6.3.0.14. The projection functors Pri are shortening, and define the maps

pri : Irr*(C) -+ Irr*(Ci).

Lemma 6.3.0.9 and Corollary 6.3.0.14 give us:

Corollary 6.3.0.15. Given an object C := ({Ciiez+, {qi1,i}i>1) in C, we have:

c(C) = max{ec, (Ci)Ii > 0}

It is now easy to see that the restricted inverse limit has the following universal prop-

erty:

Proposition 6.3.0.16. Let A be a finite-length category, together with a set of shortening

functors !; : A -+ Ci which satisfy: for any i > 1, there exists a natural isomorphism

Th-n : r -ia gi ta gi-1

Then Urnz. retCi is universal among such categories; that is, we have a shortening
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functor

9 : A -+ UM C,
iCZ+, restr

A -+ ({(A)}iEz+, {ri-1,i}i>1)

f : A1 -+ A 2 - {fi := i(f)}iEZ+

and gi a Pri o g for every i C Z+.

Proof. Consider the functor g : A -+ mipz Ci induced by the functors gi. We would

like to say that for any A c A, the object 9(A) lies in the subcategory iz, restrC, i.e.

that the sequence {c,(g(A))} is bounded from above.

Indeed, since gi are shortening functors, we have: fcI(gi(A)) < e(A). Thus the

sequence {c,(g(A))} is bounded from above by EA(A).

Now, using Corollary 6.3.0.15, we obtain:

ic(g(A)) = max{fcs(g(A))} Qx(A)

and we conclude that g is a shortening functor. El

6.4 Inverse limit of categories with a filtration

We now consider the case when the categories Ci have a filtration on the objects (we will

call these "filtered categories"), and the functors Fi-1,, respect this filtration. We will then

define a subcategory of the category 4m Ci which will be denoted by m C

and will be called the "inverse limit of filtered categories Ci".

Fix a directed partially ordered set (K, <) ("directed", means that for any k1 , k2 E K,

there exists k E K such that k1, k2 < k).

Definition 6.4.0.17 (K-filtered categories). We say that a category A is a K-filtered

category if for each k E K we have a full subcategory Ak of A, and these subcategories
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satisfy the following conditions:

1. Ak c A' whenever k < 1.

2. A is the union of Ak, k E K: that is, for any A E A, there exists k E K such that

A c Ak.

A functor F : A1 -+ A 2 between K-filtered categories A1 , A 2 is called a K-filtered

functor if for any k E K, F(A k) is a subcategory of A .

Remark 6.4.0.18. Let T: A1 -+ A 2 be a K-filtered functor between K-filtered categories

A 1 , A 2. Assume the restriction of F to each filtration component k is an equivalence of

categories Ak -+ Ak. Then F is obviously an equivalence of (K-filtered) categories.

Remark 6.4.0.19. The definition of a K-filtration on the objects of a category A clearly

makes A a direct limit of the subcategories Ak.

Definition 6.4.0.20. We say that the system ((Ci)icz,, (.F- 1 ,i)i>1) is K-filtered if for

each i E Z+, Ci is a category with a K-filtration, and the functors Fi-,, are K-filtered

functors.

Definition 6.4.0.21. Let ((Ci)ziEZ, (Fi-1 ,i)i;> 1 ) be a K-filtered system. We define the

inverse limit of this Z+-filtered system (denoted by im K-l Ci) to be the full sub-

category of 1 m Ci whose objects C satisfy: there exists kc E K such that Pri(C) E Ckc

for any i E Z+.

The following lemma is obvious:

Lemma 6.4.0.22. The category l!iGZ+,K filtrCi is automatically K-filtered: the fl-

tration component Filk( izK-fit Ci) can be defined to be the full subcategory of

SK-ftr Ci of objects C such that Pri(C) E Ck for any i E Z+.

This also makes the functors Pri : I'I Ci -+ Ci K-filtered functors.

161



Remark 6.4.0.23. Note that by definition, for any k E K

Filk l*m C( UM C'k
\iEZ+,K-filtr iEZ+

where the inverse limit is taken over the system ((C,)iEz+, (Fi-1,iCl)i>1). Thus

~k
l* Ci:=LiN Un Ci

iZ+,K-filtr kEK iEZ+

Lemma 6.4.0.24. Let ((Cj)jEz+, (j- 1 ,j)j 1 ) be a K-filtered system.

1. Assume the categories Ci are additive, the functors Ti,, are additive, and for any

k c K, Ck is an additive subcategory of Ci.

Then the category Ii , r Ci is an additive subcategory of U Ci, and all

its filtration components are additive subcategories.

2. Assume the categories Ci are abelian, the functors Fi1,i are exact, and for any

k e K, Cik is a Serre subcategory of Ci.

Then the category IiEZ ,K-fIlr Ci is abeliGn (and a Serre subcategory of m cj

and all its filtration components are Serre subcategories.

Proof. To prove the first part of the statement, we only need to check that

Fil ( ,Kfiltr Cj) is an additive subcategory of m Ci. This follows directly

from the construction of direct sums in m Cj: let C, D E Filk(iZ+K Ci) C
t iE+k iZ ,-filtr

1Vm Cs. Then Pri(C) c C1k, Pri(D) G Ck for any i E Z+. Since Ck is an additive

subcategory of Ci, we get: Pri(C D D) C Ck for any i E Z+ (the direct sum C @ D is

taken in 1Wm Ci).

Thus I'm K-t Ci is an additive subcategory of 1 Ci, and all its filtration

components are additive subcategories as well.

To prove the second part of the statement, it is again enough to check that

Fil( ZK Ir Cj) is a Serre subcategory of m Ci.
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Indeed, let

0 -+ C' -+ C -+ C" -+ 0

be a short exact sequence in m Cj. We want to show that C E Fil (CiEZ+,K-filtr)

iff C', C" E Fil (MiCZ+,K-filtr C)

The functors Pri are exact, so the sequence

0 -- C, -+ C, -4 C,' -+ 0

is exact for any i E Z+-

Since Ck is a Serre subcategory of Ci, we have: C, E Ck iff C', C" C C, and we are

done. F]

We now have the following universal property, whose proof is straight-forward:

Proposition 6.4.0.25. Let ((Ci)icz (.FTi,)i;>1) be a K-filtered system, and let A be a

category with a K-filtration, together with a set of K-filtered functors 9i : A -+ Ci which

satisfy: for any i > 1, there exists a natural isomorphism

7i-1,i : Ti-1,i o 9 -* gi- 1

Then Drizn,Kfiltr Ci is universal among such categories; that is, we have a functor

g: A - n Ci
iEZ+,K-f iltr

A - ({g(A)}iZ+, { ,>1)

f: A -+ A 2  fi := 9i(f)}iGZ

which is obviously K-filtered, and satisfies: 9i Pri o g for every i E Z+.

Next, consider the case when A, {9 }ijz+ satisfy the following "stabilization" condition:
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Condition 6.4.0.26. For every k E K, there exists ik E Z+ such that gj : Ak -+ C is

an equivalence of categories for any j > ik.

In this setting, the following proposition holds:

Proposition 6.4.0.27. The functor g : A -+ ieZ+,K-filtr Ci is an equivalence of (K-

filtered) categories.

Proof. To prove that g is an equivalence of (K-filtered) categories, we neeed to show that

g : Ak --+ Filk (M Ci
(iEZ+,K-filtr

is an equivalence of categories for any k E K. Recall that

Filk I'
(iEZ+,K-filtr

C
iEZ+

By Condition 6.4.0.26, for any i > iZ we have a commutative diagram where all arrows

are equivalences:

A k Gi :Ck

gikj 1

B-1

By Lemma 6.2.1.3, we then have: Pri : l m C -- + C is an equivalence of categories for

any i > ik, and thus g: Ak 3 Filk (I Z+,Kfilt Ci) is an equivalence of categories.

6.5 Restricted inverse limit and inverse limit of cate-

gories with a K-filtration

Let ((Ci)iEZ , (Ti- 1,i);>1) be a system of finite-length categories with K-filtrations and

shortening K-filtered functors, whose the filtration components are Serre subcategories.
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We would like to give a sufficient condition on the K-filtration for the inverse limit of

K-filtered categories to coincide with the restricted inverse limit of these categories.

Recall that since the functors Fi_,, are shortening, we have maps

fi_,, : Irr,(C ) -- + Irr,(Ci-1)

and we can consider the inverse limit IM Irr,(Ci) of the sequence of sets Irr,(Ci) and

maps fi-i,i; we will denote by prj : 1ie Irr,(Ci) -+ Irr,(Cj) the projection maps.

Notice that the sets Irr,(Ci) have a natural K-filtration, and the maps fi1,, are K-

filtered maps.

Proposition 6.5.0.28. Assume the following conditions hold:

1. There exists a K-filtration on the set I Irr,(Ci). That is, we require:

For each L in IM7Z+ Irr,(Ci), there exists k G K so that pri(L) E Filk(Irr,(Ci))

for any i > 0.

We would then say that such an object L belongs in the k-th filtration component of

UMz Irr, (Ci).

2. "Stabilization condition": for any k E K, there exists Nk > 0 such that the map

f_,,i : Filk(Irr*(Ci)) -+ Filk(Irr,(Ci_1)) be an injection for any i > Nk.

That is, for any k E K there exists Nk E Z+ such that the (exact) functor Yi1,i is

faithful for any i > Nk.

Then the two full subcategories U , rem+KCf, t Cm of lE7m + Ci coincide.

Proof. Let C := ({Cj},EzE,{q-1,j};j>1) be an object in z restr Ci. As before, we

denote by JH(C) the multiset of Jordan-Holder components of Cj, and let

JH,(C) := JH(C) U {0}.

The first condition is natural: giving a K-filtration on the objects of , s Ci is

equivalent to giving a K-filtration on the simple objects of iGez7 , restr Ci, i.e. on the set

Micz+ Irr* (Ci).

165



Assume C e restr Ci. Let no > 0 be such that ec (Cj) is constant for j > no.

Recall that we have (Corollary 6.3.0.13):

JH,(C) = 4m JH,(Cj)

Choose k such that all the elements of JH,(C) lie in the k-th filtration component of

1 m Irr,(Ci). This is possible due to the first condition.

Then for any Lj E JH(C), we have: Lj = prj(L) for some L E JH,(C), and thus

Lj c Filk(Irr.(Cj)). We conclude that C G Filk( -ieZ+,K-filtr Ci).

Thus we proved that the first condition of the Theorem holds iff li Ci is a
TiZrestr

full subcategory of 1i Ci.

Now, let C E K Ci, and let k E K be such that C E Fil ZK Ci).

We would like to show that ec,(Ci) is constant starting from some i.

Indeed, the second condition of the Theorem tells us that there exists Nk > 0 such

that the map

fi_1,, : Filk(Irr,(Ci)) -+ Filk(Irr,(Ci_1))

is an injection for any i > Nk.

We claim that for i > Nk, ec,(Ci) is constant. Indeed, if it weren't, then there would

be some i > Nk+1 and some Li E JH(Ci) such that fi_ 1,i(Li) = 0. But this is impossible,

due to the requirement above.

6.6 1... and the restricted inverse limit of representa-

tions of gln

In this section, we give a nice example of a restricted inverse limit of categories; namely,

we will show that the category of polynomial representations of the Lie algebra gL[ is a
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restricted inverse limit of the categories of polynomial representations of g[" for n > 0.

The representations of the Lie algebra gL. (or the group GL.) are discussed in detail

in [PS], [DPS], as well as [SS, Section 31.

6.6.1 The Lie algebra g[

Let Coo be a complex vector space with a countable basis {ei, e 2, e3, ... }.

Consider the Lie algebra g[, of infinite matrices A (aj)i,3;>1 with finitely many

non-zero entries. We have a natural action of g[c, on C G, with gL. . CO 0 C'. Here

Co = spanc(e*, e*, es, ...), where el is the linear functional dual to ei: e*(ey) = i.

We now insert more notation. Let N c Z+ U {oo}, and let m > 1. We will consider

the Lie subalgebra gin C 9[N consisting of matrices A = (aij)1 iJ N for which aij = 0

whenever i > m or j > m. We will also denote by gl[ the Lie subalgebra of g[N consisting

of matrices A = (aij)1 i,j<N for which aij = 0 whenever i Km or j m.

Remark 6.6.1.1. Note that 91n - glN-m for any N, m.

6.6.2 Categories of polynomial representations

In this subsection, N E Z+ U {oo}-

We will consider the symmetric monoidal category Rep(g[N)POly of polynomial repre-

sentations of gN'

As a tensor category, it is generated by the tautological representation CN of gN-

Namely, this is the category of g N-modules which are direct summands in finite direct

sums of tensor powers of CN, and g[N-equivariant morphisms between them.

This category is discussed in detail in [SS, Section 2.2].

It is easy to see that this is a semisimple abelian category, whose simple objects are

parametrized (up to isomorphism) by all Young diagrams of arbitrary sizes: the simple

object corresponding to A is LN SACN.
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Remark 6.6.2.1. Note that Rep(gIo),0 1 y is the free abelian symmetric monoidal category

generated by one object (c.f. [SS, (2.2.11)1). It has a equivalent definition as the category

of polynomial functors of bounded degree, which can be found in [HY], [Macd, Chapter

I], [SSJ.

Remark 6.6.2.2. For N E Z+, one can describe these representations as finite-dimensional

representations p : GLN -+ Aut(W) which can be extended to an algebraic map

End(GLN) -+ End(W).

6.6.3 Specialization functors

We now define specialization functors from the category of representations of g[o to the

categories of representations of g[ (c.f. [SS, Section 3]):

Definition 6.6.3.1.

rn : Rep(gloo)poly -+ Rep(gln)POlY, Ir = -)

Lemma 6.6.3.2. The functor Fn is well-defined.

Proof. First of all, notice that the subalgebras grI, gr9 C gl commute, and therefore the

subspace of gl1-invariants of a glro-module automatically carries an action of g[.

We need to check that given a polynomial g[,,-representation M of gin, the g[-

invariants of M form a polynomial respresentation of gin. It is enough to check that this

is true when M = (C')O'.

The latter statement is checked explicitly on basis elements of the form ei, 0ei2 0.--Oeir-

The subspace of g rI-invariants is spanned by the basis elements ei, 0 ei2 0... ei, for which

ii, ... , i <; n. Thus the grl-invariants of (C )*r form the g9[-representation (Cn)*r.

In particular, one proves in the same way that the g-L-invariants of (C,)Or form the

gin-representation (Cf)®r.

The following Lemmas are proved in [PSI, [SS, Section 31:
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Lemma 6.6.3.3. The functors F, are symmetric monoidal functors.

The functors r, : Rep(gloc)popy -+ Rep(g[) opy are additive functors between semisim-

ple categories, and their effect on simple objects is given by the following Lemma (a direct

consequence of Lemma 6.6.3.3):

Lemma 6.6.3.4. For any Young diagram A, r,(SA C) - SICn.

6.6.4 Restriction functors

Definition 6.6.4.1. Let n > 1. We define the functor

eSn_1,n : Rep({n)POlY a-+ Rep(gn- 1 )POy, 9ies-1, :=)

The proof that this functor is well-defined is exactly the same as that of Lemma 6.6.3.2.

Remark 6.6.4.2. Here is an alternative definition of the functors 9 ieSn1,n.

We say that a glr-module M is of degree d if Idc. E gn acts by dIdM on M. Also,

given any gr(-module M, we may consider the maximal submodule of M of degree d, and

denote it by degd(M). This defines an endo-functor degd of Rep(gn)PO1 Y.

Note that a simple module SACn is of degree IAl.

The notion of degree gives a decomposition

Rep(g1) pay @ ® Rep(gn)poay,d

deZ+

where Rep(g[)poay,d is the full subcategory of Rep(Orn)paoy consisting of all polynomial

gOl-modules of degree d.

Then

9iCSn-1,n edCZ+9 1 CS,n-1,n : Rep(gl )P0Ya Rep(g _),oly
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where

9 iesd,n_1,n : Rep(g-4 ly,d - Rep(gn_)poIy,d, 9CSd,n_1,n :- degda ORes (

where Res, is the usual restriction functor for the pair gln_1 C g(.

Again, 9 esn_1,n are additive functors between semisimple categories, so we are inter-

ested in checking the effect of these functors on simple modules:

Lemma 6.6.4.3. 9iCn_1,n(SAC) - SAC" 1 for any Young diagram A.

Proof. This is a simple corollary of the branching rues for glI, inI.

Next, we notice that these functors are compatible with the functors F defined before.

Lemma 6.6.4.4. For any n > 1, we have a commutative diagram:

Rep(gLojoi, ly -n Rep(g K)Poly

Rep(gln_1)poiy

That is, there is a natural isomorphism n-1 9 9CM-1, 0 En.

Proof. By definition of the functors En_1, 9 lesn1,n, E', we have a natural transforma-

tion 0 : En-i_+ 9iCSn-,n 0 Fn which is given by the injection OM : En-(M) "

(9ieSn_1,n 0 Fn) (M) for any M E Rep(gl)..)oly. We would like to say that OM are iso-

morphisms.

The categories in question are semisimple, so it is enough to check what happens to

the simple objects. Lemmas 6.6.3.4 and 6.6.4.3 then tell us that Os.9C is an isomorphism

for any Young diagram A, and we are done. El

Lemma 6.6.4.5. The functors 9 iCSn-1,n : Rep(gtn)Poiy -+ Rep(gfn_)poiy are symmetric

monoidal functors.
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Proof. The functor F, is full and essentially surjective, as well as a tensor functor. The

natural isomorphism from Lemma 6.6.4.4 then provides a monoidal structure on the func-

tor Mes"_1,n, and we can immediately see that it is symmetric as well. E

6.6.5 The restricted inverse limit of categories Rep(g[n)po0

This subsection describes the category Rep(gL,)poly as a "stable" inverse limit of categories

Rep(gfn)poly.

We now define a Z+-filtration on Rep(gln),0 y for each n E Z+.

Notation 6.6.5.1. For each k E Z+, let Rep(gn)PolY, length <k be the full additive subcate-

gory of Rep(gl ) 01 Y generated by SACn such that f(A) < k.

Clearly the subcategories Rep(g[)poly, length <k give us a 2+-filtration of the category

Rep(gln)poly, and by Lemma 6.6.4.3, the functors 9iCeI,n are Z+-filtered functors (see

Section 6.4).

This allows us to consider the inverse limit

Rep(g n)POlY
nEZ+,Z+-filtr

of Z+-filtered categories Rep(g(n)P0 lY. This inverse limit is an abelian category with a

Z+-filtration (by Lemma 6.4.0.24).

Note that by Lemma 6.6.4.3, the functors 91es_1,n are shortening functors (see Def-

inition 6.3.0.7); futhermore, the system ((Rep(g Ln)poy)nEZ+, (9iCen1,n)n>1) satisfies the

conditions in Proposition 6.5.0.28, and therefore the inverse limit of this Z+-filtered sys-

tem is also its restricted inverse limit (see Section 6.3).

Of course, since the functors 9e,6-1,n are symmetric monoidal functors, the above

restricted inverse limit is a symmetric monoidal category.

Proposition 6.6.5.2. We have an equivalence of symmetric monoidal abelian categories

1Fj, : Rep( g ... )poly -- 4 1 Rep(gn)POlY
nEZ+, restr
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induced by the symmetric monoidal functors

Fn = (-)"L : Rep(gl.),,,ly Rep(g~n),OlY

Proof. Define a Z+-filtration on the semisimple category Rep(g[,)poly by requiring the

simple object SAC* to lie in filtra f(A). Lemma 6.6.3.4 then tells us that for any k E Z+

and any n > k, the functor

Fn : Filk(Rep(g.)poiy) -+ Filk(Rep(g[n)poly) := Rep(gLn)poly, length <k

is an equivalence. Proposition 6.4.0.27 completes the proof. E

Remark 6.6.5.3. The same result has been proved in [HY]; the approach used there is

equivalent to that of inverse limits of Z+-filtered categories - namely, the authors give

a Z+-grading on the objects of each category Rep(gn)poy, with SACn lying in grade

JAI. The "stable" inverse limit of these graded categories, as defined in [HYI, is just the

inverse limit of the Z+-filtered categories Rep(gln)poly with the appropriate filtrations.

Note that by Proposition 6.5.0.28, this construction is equivalent to our construction of a

nEZ+, restr Rep(gn)poiy.
In this case, this is also equivalent to taking the compact subobjects inside

m Rep(gtn)poly.

Remark 6.6.5.4. The adjoint (on both sides) to functor Fim is the functor

F*m : I' Rep(grn)Poly -- + Rep(glrz
nEZ+, restr

defined below.

For any object ((Mn)n>O, (#n-1,n)n>1) of lgnC7Z,, restr Rep(g[n)Poly, the g(n_ 1-module

Mn_1 is isomorphic (via On-1,n) to a gln_ 1 -submodule of Mn.

This allows us to cosider a vector space M which is the direct limit of the vector spaces

Mn and the inclusions On-,n. On this vector space M we have a natural action of g[l:
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given A c gf, c g[,, and m E M, we have m E MN for N >> 0. In particular, we can

choose N > n, and then A acts on m through its action on MN.

We can easily check that the gl(o-module M is polynomial: indeed, due to the

equivalence in Proposition 6.6.5.2, there exists a polynomial gEOf-module M' such that

M_ r 1n(M') for every n, and qn_ 1 ,n are induced by the inclusions nF1 (M') C Fn(M').

By definition of M, we have a glo- equivariant map M -+ M', and it is easy to check

that it is an isomorphism.

We put F*m((Mn)n 0 , (#2_1,n)n21) := M, and require that the functor F* act on

morphisms accordingly. The above construction then gives us a natural isomorphism

iim 0 Fim - IdRep(g .)ply
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Chapter 7

Schur-Weyl duality in the limit case

7.1 Parabolic category 0 in infinite rank

In this section, we give a uniform definition for both the parabolic category 0 for gf,

and for gL, which we will use. This will be a slight modification of the original definition

to accomodate the case N - oc.

Let N c Z>1 U {oo}.

Consider a unital vector space (CN, It), where It : el. Put UN spanc(e2, e3, ...) C

CN, so that we have a splitting CN = CeiEUN. We will also denote UN,' := span(e*, e*, ...)

(so UN,* = Uk whenever N E Z).

The following notation will be used in this chapter:

Notation 7.1.0.5.

* We denote by PN C BIN the parabolic Lie subalgebra which consists of all the

endomorphisms q : CN _ UN for which 0(1) E CL. In terms of matrices this is

span{Ei,1, Ejjj > 1}.

* u+N C PN denotes the algebra of endomorphisms #5: CN C UN for which Im # c

C1 c Ker 0. In terms of matrices, u+N = span{E,5|j > I}.

175



We have a decomposition

g[N g(UN) E1 PN N

Of course, for any N, u-2N - UN; moreover, U+N a UN,*-

We will also use the isomorphisms g((UN ) 9-(-

Definition 7.1.0.6.

" Define the category Mod tN,g[(UN)-poly to be the category of O[N-modules whose restric-

tion to g[(UN) lies in Ind - Rep(g[Npoly; that is, grN-modules whose restriction to

g[(UN) is a (perhaps infinite) direct sum of Schur functors applied to UN.

The morphisms would be grN-equivariant maps.

" We say that an object M E ModrN,g((UN)-Po1y is of degree v (v E C) if on every summand

SAUNc M, the element E1,1 E g[N acts by (v - AI) IdsAUN.

* Let M E ModrN,gr(UN)poly. We have a commutative algebra Sym(UN) 2N (u-) (the

enveloping algebra of u- C [N). The action of g N on M gives M a structure of a

Sym(UN)-module.

We say that M is finitely generated over Sym(UN) if M is a quotient of a "free finitely-

generated Sym(UN)-module"; that is, as a Sym(UN)-module, M is a quotient (in Ind-

Rep(g[N)POIy) of Sym(UN) 0 E for some E E Rep(g1(UN))poly.

" Let M E ModrN,gl(UN)poly. We have a commutative algebra Sym(UN,*) NU(u ) (the

enveloping algebra of u+N N). The action of grN on M gives M a structure of a

Sym(UN,* )-module.
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We say that M is locally nilpotent over the algebra U(u+N) if for any v E M, there exists

m > 0 such that for any A E Symm (UN,*) we have: A.v = 0.

Recall the natural Z+-grading on the object of Ind - Rep(g(N)Poly-

For each M c Mod9[N,9[(UN)-Poly, the above definition implies: gr(UN) acts by operators

act by operators of degree zero, UN,, acts by operators of degree 1. We now define the

parabolic category 0 for gN which we will use in this chapter:

Definition 7.1.0.7. We define the category ONCN to be the full subcategory of

Mod [N,9g(UN)-Poly whose objects M satisfy the following requirements:

* M is of degree v.

" M is finitely generated over Sym(UN).

" M is locally nilpotent over the algebra U(u+N).

Of course, for a positive integer N, this is just the category ON we defined in the

beginning of this section.

We will also consider the localization of the category O NN by its Serre subcategory

of polynomial gN-modules of degree v; such modules exist iff v E Z+. This localization

will be denoted by

OPN Qt'N
FN : QCN ,CN

and will play an important role when we consider the Schur-Weyl duality in complex rank.

7.2 Restricted inverse limit of parabolic categories 0

7.2.1 Restriction functors

Definition 7.2.1.1. Let n > 1. Define the functor
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Again, the subalgebras g[n_ 1, gn-1 C gn commute, and therefore the subspace of

gL_ 1-invariants of a g(a-module automatically carries an action of gn_ 1.

We need to check that this functor is well-defined. In order to do so, consider the

functor 9 iCsn-1,n : ,"e -+ Modu(_ This functor is well-defined, and we will show

that the objects in the image lie in the full subcategory QPn-1 of Mod, .

Note that the functor 9ies_1,n can alternatively be defined as follows: for a module

M in O,Cn, we restrict the action of g(n to glo- 1, and then only take the vectors in M

attached to specific central characters. More specifically, we have:

Lemma 7.2.1.2. The functor 9iSn_1,n is naturally isomorphic to the composition deg, o

Res' n_ (the functor deg, was defined in Definition 3.3.0.23).

Proof. Let M E OCn. For any vector m E M, we know that IdCn .m (E1,1 +E 2,2 +... +

En,n).M = 1/m. Then the requirement that Id0 .- 1 .m = (E1,1 + E 2,2 + ... + En_1,,_1).m =

vm is equivalent to requiring that En,n-M = 0, namely that m E MOn-1.

We will now use this information to prove the following lemma:

Lemma 7.2.1.3. The functor 91i,_ 1,, : ICn - Q,"Cn-1 is well-defined.

Proof. Let M E Oln n, and consider the g[n_ 1-module 9ieCS 1 ,n(M). By definition, this is

a module of degree v. We will show that it lies in O n-1

First of all, consider the inclusion gI(Un_ 1)' D gI(Un- 1 ) c g((U.). This inclusion gives

us the restriction functor (see Definition 6.6.4.1)

91eiun,,un : Rep(g1(Un)),ly --- Rep(g[I(Un-1))polyI 91eUn-,_Un := (-)1I(Un-1)-

The latter is an additive functor between semisimple categories, and takes polynomial

representations of gf(Un) to polynomial representations of gr(Un_ 1).

Now, the restriction to g1(Un_ 1) of the g['_ 1-module 9ieS_1,n(M) is isomorphic to

9e~su,, M(M n)), and thus is a polynomial representation of g[(Un_ 1).
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Secondly, 91es_1 ,s(M) is locally nilpotent over U(u+_1 ), since M is locally nilpotent

over U +) and U(u+_) C

It remains to check that given M E On ,n, the module 9ies_1,n(M) is finitely generated

over Sym(Un_1). Indeed, we know that there exists a polynomial gI(Un)-module E and a

surjective g((Us)-equivariant morphism of Sym(Un)-modules Sym(Un) O E -* M. Taking

the g[(Un, 1 )'-invariants and using Lemma 6.6.4.5, we conclude that there is a surjective

g(Un- 1 )-equivariant morphism of Sym(U,_-)-modules

Sym(Un_1) E - -E CSeI-_,n(M)

Thus 9iCe_ 1 ,n(M) is finitely generated over Sym(Un_1).

Lemma 7.2.1.4. The functor ieSn-1,n : OJL -- + Oc-1 is exact.

Proof. We use Lemma 7.2.1.2. The functor deg, : Ofj-i - O)Cn-l is exact, so the functor

Resn_ 1 ,n is obviously exact as well.

Lemma 7.2.1.5. The functor 9 CeSn_1,n takes parabolic Verma modules to either parabolic

Verma modules or to zero:

9n_1,n(MPn(V -- A I, A))' Mp (v-- A, A)

(recall that the latter is a parabolic Verma module for gln_ 1 iff f (A) <; n - 2, and zero

otherwise).

Proof. Consider the parabolic Verma module Mp(v - A , A), where the Young diagram

A has length at most n - 1.

By definition of the parabolic Verma module Mpn(v - A| , A), we have:

- A ,A) U(g[,) ®U(pn) SAUn
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The branching rule for g[(Un_1 ) C g((Us) tells us that

(SAU)g9(,_ S'Un_1

the sum taken over the set of all Young diagrams obtained from A by removing several

boxes, no two in the same column.

So

Res" (M,,(v - IA , ( A)) )Mp_ - ,U

Here

* Mp 1 (V - JA|, A') is either a parabolic Verma module for g[n- 1 of highest weight

(v - AI , A') (note that it is of degree v - AI + A'J) or zero.

g gl(Un_1) acts trivially on the space U (u /). This space is isomorphic, as a

Z+-graded vector space, to C[t] (t standing for En,1 c g[n) and E1,1 acts on it by

derivations -t .

Thus Idn-1 E gin acts on the subspace M, (v - IA I, A') 0 tk c Mpn(v - IA , A) by

the scalar v - JAI + A'! - k.

We now apply the functor deg, to the module Resfn (Mpn(v - IA, A)).

To see which subspaces MPn 1 (v - IA' , A') 0 tk of Mpn(v - IA!, A) will survive after

applying degy, we require that JAI - A'! + k = 0. But we are only considering Young

diagrams A' such that A' C A, and non-negative integers k, which means that the only

relevant case is A' = A, k = 0.

We conclude that

9ie,5,n 1 ,n (Mr, (V/ I , A)) - M v A A! , A)
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Lemma 7.2.1.6. Given a simple g[,-module Ln(v - Al , A),

9,Sn- 1,n (L(v- ( Al , A)) - L_ - 1 A , A)

(recall that the latter is a simple g1n-1 -module iff t(A) < n - 2, and zero otherwise).

Proof. Note that the statement follows immediately from Lemma 7.2.1.5 when A lies in

a trivial ~/-class; for a non-trivial '-class {A(2)}j, we have short exact sequences (see

Corollary 3.3.1.7):

0 -+ Ln(V - A('+) A(+ 1)) -+ Mp (v - P A()) -+ Ln(v - ,A()) -+ 0

Using the exactness of 9eC5_1,n, we can prove the required statement for

Ln(v - IA() , A(W) by induction on i, provided the statement is true for i = 0.

So it remains to check that

s,_n 1,n (Ln (V A I, A)) - L_ 1(v -AI , A)

for the minimal Young diagram A in any non-trivial ~ -class.

Recall that in that case, Ln(v - A 1, A) = SA(")Cn is a finite-dimensional simple repre-

sentation of gI?.
The branching rule for g[n, g[n1 implies that

Res'[_ (S"(v)C") 0 SpC"-1

the sum taken over the set of all Young diagrams obtained from \(v) by removing several

boxes, no two in the same column.

Considering only the summands of degree v, we see that

9eSn_1,n(Ln(V - JAI, A)) ! S(v)C"- = Ln_1(v - JAI, A)
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The functor 9iCsnin : OVcn -+ O,'"n- clearly takes polynomial modules to polyno-

mial modules; together with Lemma 7.2.1.4, this means that 9iesIn factors through an

exact functor

9ies- 1 ,n : 5,"a- v'-n1

i.e. we have a commutative diagram

0,C vC'n' 00n-1VCn 'V,Cn-1

*n *n-11-

Pn uiCn P -1

(see Section 5 for the definition of the localizations -rn).

7.2.2 Specialization functors

Definition 7.2.2.1. Let n > 1. Define the functor

Fn : 0 --- + 0 n, F_ := (-)B

As before, the subalgebras gn, g(- C gC commute, and therefore the subspace of

gtL-invariants of a gL,-module automatically carries an action of grn.

Lemma 7.2.2.2. The functor Fn : OpOO -+ is well-defined.

Proof. The proof is essentially the same as in Lemma 7.2.1.3.

Next, we check that the functor En is exact:

Lemma 7.2.2.3. The functor Fn : Of- Op, is exact.
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Proof. The definition of F,, immediately implies that this functor is left-exact. Consider

the inclusion gl(U7,)eg((U , )I c g[(U,,). We then have an isomorphism of g((U ,)-modules

(M~st(U-)9t(uO)1 n 
M 919(vn)

The exactness of Fn then follows from the additivity of the functor

(.)O[(U)- : Rep(g[(Uco))pojy -+ Rep(g((U, )), 0jy, which is an additive functor between

semisimple categories. El

The functor F,, : 00O -+ , clearly takes polynomial glo-modules to polynomial

g( 7-modules; together with Lemma 7.2.2.3, this means that F, factors through an exact

functor

Ij7, :POn0 -c>

i.e. we have a commutative diagram

0 Poo r 0 0 Pn
V'C' V,Cn

'n {
'Coe )' > vCn

7.2.3 Restricted inverse limit of categories 0" and the category

t)OOvCo0

The restriction functors

9itsn_1,n : 0,"n O "pn-1, 9iC,5-1,n := H' n-1

descibed in Subsection 7.2.1 allow us to consider the inverse limit of the system

((OVln n)n>1, (9ies5-1,n)n;>2).

Similarly, we can consider the inverse limit of the system ((On cn)n>i (91 C , i, )n, 2).

Let n> 1.
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Notation 7.2.3.1. For each k E Z+, let Filk( On"c) (respectively, Filk(,"c"n)) be the Serre

subcategory of On,"> (respectively, 0 On ) generated by simple modules Ln(v - JAI , A)

(respectively, frn(L,(v -|A , A))), with f(A) < k.

This defines Z+-filtrations on the objects of O "n", 0,Pn"n i.e.L,,cfl,

OVP "C 1Fil,(O,),
kEZ+

Lemma 7.2.3.2. Let n > 1. The functors

NeSn_1,n : Of V, 4 Cn-1

and

are both shortening and Z+-filtered functors between finite-length categories with Z+-

filtrations on objects (see Chapter 6 for the relevant definitions).

Proof. These statements follow directly from Lemma 7.2.1.6, which tells us that

eSn_1,n(Ln(v - A| , A)) L _1 (v - AI, A). E

We can now consider the inverse limits of the Z+-filtered systems

and ((On5 c)n>1,(9i n-1,n)n;>2) By Section 6.5, these

limits are equivalent to the respective restricted invverse limits

Q n

n>1, restr n>1, restr

The functors Fr described above induce exact functors

Fim : 0 " -- + * ( /c"
n>1
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and

Flim : - 0 V Xc
n>1

We would like to show that this functor is an equivalence of categories:

Proposition 7.2.3.3. The functors Fn induce an equivalence

Fim : Of-Y -- +
Um

n>1, restr

0PnVCn

Proof. First of all, we need to check that this functor is well-defined. Namely, we need to

show that for any M E Of , the sequence { +U 1 (In+l(M))}n stabilizes. In fact, it is

enough to show that this sequence is bounded (since it is obviously increasing).

Recall that we have a surjective map of Sym(u- )-modules Sym(u-) 9 E -* M for

some E E Rep(g[(Uo))po0 1 . Since F7+ 1 is exact, it gives us a surjective map Sym(u- 1 ) ®

Fn+1 (E) -* ]7n+1(M) for any n > 0, with ]7,+ 1 (E) being a polynomial gf(Un+ 1 )-module.

Now,

The sequence {eu(O[(u, 1))(fn+1(E))}n>O is bounded by Proposition 6.6.5.2, and thus the

sequence {u'(0 1+)(Fn+1(M))}n is bounded as well.

We now show that lim is an equivalence.

A construction similar to the one appearing in Subsection 6.6.5 gives a left-adjoint to

the functor 1im; that is, we will define a functor

* : I's
n>1, restr

of -+ 0Poo
V"C VCO

Let ((Mn)n 1, (#n-1,n)n 2) be an object of Ii , restrOfCn

The isomorphisms Oni,n : 9ie-n_1,(Mn) + M- 1 define gIn1-equivariant inclusions
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M,- 1 -+ M. Consider the vector space

M:= U M
n>1

which has a natural action of g[, on it.

It is easy to see that the obtained g[,-module M is a direct sum of polynomial B[(U.)-

modules, and is locally nilpotent over the algebra

U(upo) a Sym(Uo,*)a U Sym(U*>
n>1

We now prove the following sublemma:

Sublemma 7.2.3.4. Let ((Mn);>1 , (qn-1,n)n>2) be an object of l_ 01p-,. Then

M := Un>1 Mn is a finitely generated module over Sym(Uo) 2 U(u-).

Proof. Recall from Section 6.3 that all the objects in the abelian category ,n1, restr n

have finite length, and that the simple objects in this category are exactly those of the

form ((L,(v - IAl , A))n> 1 , (#n-1,n)n;>2) for a fixed Young diagram A. So we only need to

check that applying the above construction to these simple objects gives rise to finitely

generated modules over Sym(U.) U U(u-).

Using Corollary 3.3.1.8 we now reduce the proof of the sublemma to proving the

following two statements:

" Let A be a fixed Young diagram and let ((Ln(v-Al, A));>1 , (q5_. 1 ,n)n>2 ) be a simple

object in Iimn>, restr O n in which Ln(v - A, A) is polynomial for every n (i.e. A

is minimal in its non-trivial Aviclass).

Then L := Un> 1 Ln(v -I A , A) is a polynomial g[,-module (in particular, a finitely

generated module over Sym(U.) 2 U(u-)).

" Let A be a fixed Young diagram and let ((M(v - JAI, A))n> 1 , (#n-1,n)n;> 2 ) be an

object of l restr C (this is a sequence of "compatible" parabolic Verma mod-
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ules). Then

M UM(U.) Al (v- -,A)

is a finitely generated module over Sym(U) .. U (u-)

The first statement follows immediately from Proposition 6.6.5.2 (cf. Subsection 6.6.5).

To prove the second statement, recall that

M,,(v - IA , A) a Sym(U,) 0 SA Un

(Lemma 3.3.1.3). So

M := Mp.(v - IAI, A) U Sym(Un) 0 SAU, a Sym(U.) 0 SAUU.
s e n

which is clearly a finitely generated module over Sym(U,,) U~u
PCE

This allows us to define the functor F* by setting

1i~um( (Mn);>1i, (<n-1,n)n>2) := U Mn
n>1

and requiring that it act on morphisms accordingly.

The definition of ri*im gives us a natural transformation

F*m o rlim -~-+ Id o.

Restricting the action of gLo to gf(Uo) and using Proposition 6.6.5.2, we conclude that

this natural transformation is an isomorphism.

Notice that the definition of *m implies that this functor is faithful. Thus we conclude

that the functor IFm is an equivalence of categories, and so is liim.

F-
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Proposition 7.2.3.5. The functors F7, induce an equivalence

1 Iim 6Poo0 0 ~

n>1, restr
VCn

Proof. Let M E O'. First of all, we need to check that the functor Fiim is well-defined;

that is, we need to show that the sequence {ft gr (*rn(Fn(M)))}, 1 is bounded from above.
V,Ca

Indeed,

,,Ven (-sUnM) <; n (17n(M))

But the sequence {On (Fn(M))} ;>1 is bounded from above by Lemma 7.2.3.3, so the

original sequence is bound from above as well.

Thus we obtain a commutative diagram

OO

ruim trFim

'> t r=1 m 7-r,

n>1, restr ol nkl, restr ,Cn fnPn
n21, restrC

where Rep(g[N)P0 ly,V is the Serre subcategory of O CN consisting of all polynomial modules

of degree v. The rows of this commutative diagram are "exact" (in the sense that OPOO

is the Serre quotient of the category O,% by the Serre subcategory Rep(g[1)jOY,., and

similarly for the bottom row).

The functors

>m
n>1, restr

and

Flim : 01--+QVoo

n>1, restr

are equivalences of categories (by Propositions 6.6.5.2 and 7.2.3.3), and thus the functor

Fiim is an equivalence as well.

F1
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7.3 Complex tensor powers of a unital vector space

Fix N c Z+ U {oo}. In this section we give a uniform construction of a complex tensor

power of the unital vector space CN with the chosen vector IL := el. This definition

coincides with the Definition 4.2.0.16 whenever N < oc.

Again, we denote UN sparnfe2, e3 , ... }, and UN, := spanfe e, .} C CN.

before, we have a decomposition:

BIN CJdCNEU 0 U+ rDO(TT

g N PN gtJN)

such that UN UpN, UN* UN, and if N is finite, we have U1v UN*.

Fix v E C.

As

Definition 7.3.0.6 (Complex tensor power). Define the object (CN)gv of Id -

(RPal(Sv) [ ONN) by setting

(CN)®/ := ®(UN1k Ak)Sk
k>O

The action on g(N on (CN) v is given as follows:

UN UN

1 UN 0 Al

UN* UN*
O[(N)

(U 2 ( A 2 )s2

g[(UN)

UN

UN*

(U 3 ( A3)S

O(UN)

" El,1 E gLN acts by scalar v - k on each summand (UOk & Ak)Sk.

* A E B(UN) C B[ Nacts on (UNk 0 Ak)Sk by
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E A(|) 0 Id Ak:
1<i<k

(UNOk Ak)Sk -+ (UNk 9 Ak) Sk

" u E UN upN acts by morphisms of degree 1, which are given explicitly in Section

4.2.

* f E UN*~ ~up acts by morphisms of degree -1, which are given explicitly in Section

4.2.

Remark 7.3.0.7. The proof that the object (CN)®v lies in the category

(Rep(S,)M OON is the same as in Section 4.3. In particular, it means that the action

of the mirabolic subalgebra Lie q1 on the complex tensor power (CN)@v integrates to an

action of the mirabolic subgroup , thus making (CN) _v a Harish-Chandra module in

Ind - Repab(Sv) for the pair (gN, 131).

The definition of the complex tensor power is compatible with the usual notion of a

tensor power of a unital vector space (see Section 4.3):

Proposition 7.3.0.8. Let d c Z+. Consider the functor

Sd : Ind - (Rep(S=d)XOIN N)--+ Id - (Rep(Sd)NO N)

induced by the functor

Sd : Rep(S,=d) -- + Rep(Sn)

described in Subsection 3.2.1. Then Sd((CN)) c- (CN)d

The construction of the complex tensor power is also compatible with the functors

91CSn,n+i and IF, defined in Definitions 7.2.1.1, 7.2.2.1. These properties can be seen as

special cases of the following statement (when N = n + 1 and N = oc, respectively):
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Proposition 7.3.0.9. Let n > 1, and let N > n, N E Z;>1 U {oo}. Recall that we have

an inclusion gl3 E gLa C gN, and consider the functor

H n : Ind - (eabv CN -+ Ind - (Repab(Sv) E Oz0?cn)

induced by the functor (-*)O[;L OcN +0 n-

(Cn)".

The functor (.)' then takes (CN to

Proof. The functor (-)I : N - QCn, induces an endofunctor of Ind-Repb(Sv). We

would like to say that we have an isomorphism of Ind- Repb(Sv)-objects

( ( )®V, and that the action of g[c g[N on ((CN) cv) corresponds to

the action of gl,( on (Cn)*v.

In order to do this, we first consider (CN)@v as an object in Ind - Repab(Sv) with an

action of gl(UN):

(CN) 0vk 0 U k)sk

k>O

If we consider only the actions of g[(UN),gl(Un), the functor I'r is induced by the

additive monoidal functor (-) 9[(Un) : Ind - Rep(gI(UN)) poy -~+ Ind - Rep(g[(UN))po1y.

This shows that we have an isomorphism of Ind-Repa6(Sv)-objects

((CN)®_v)91 g 0 Unk)sk u (Cfl)

k>O

and the actions of g[(U,) on both sides are compatible. From the definition of the complex

tensor power (Definition 7.3.0.6) one immediately sees that the actions of E1,1 on both

sides are compatible as well. Remark 4.2.0.18 now completes the proof.
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7.4 Schur-Weyl functor for the Deligne category

the Lie algebra g

The definition of the Schur-Weyl contravariant functor SW,,v given in Section 5 can be

naturally extended to the case when (V, IL) = (CO, ei): Fix v E C, and N E Z+ U {OCT.

Again, we consider the unital vector space CN with the chosen vector 1 := el

complement UN := spanme2, e 3, ---I

Definition 7.4.0.10. Define the Schur-Weyl contravariant functor

SW,: Repab(Sv) -- + Ind - Modu(gt()

by

SW, := HomRepab(S,,( - , (CN')v)

As before, the functor SW, is a contravariant C-linear additive left-exact functor, and

its image lies in O NCN (cf. Remark 7.3.0.7).

We can now define another Schur-Weyl functor which we will consider: it is the con-

travariant functor SWCN : ab -s N Recall from Section 7.1 that

'U N:O -- U+0 PN QPNNN V 
CN /I NRep(g[N)PO1y,v

is the Serre quotient of ON jN by the Serre subcategory of polynomial BIN-modules of

degree v. We then define

SWV,CN : N 0 SW,CN
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7.5 Classical Schur-Weyl duality and the restricted in-

verse limit

7.5.1 Classical Schur-Weyl duality: inverse limit

In this subsection, we prove that the classical Schur-Weyl functors SWrn give a duality

(anti-equivalence) between the category GdEZ+ Rep(Sd) and the category

Rep(g~cO)pOly 1 m Rep(grn)poly
nEZ+, restr

The contravariant functor SWCN sends the Young diagram A to the g[N-module SXCN.

Let n E Z+. We start by noticing that the functors 9 1esn,n+1 and the functors Fn

(defined in Subsection 6.6.3) are compatible with the classical Schur-Weyl functors SWCn:

Lemma 7.5.1.1. We have natural isomorphisms

95n,n+1 0 SWCn+i SWCn

and

Fn 0 SWcxo = SWCn

for any n > 0.

Proof. It is enough to check this on simple objects in ®deZ+ Rep(Sd), in which case the

statement follows directly from the definitions of 9iCSn,n+1, En together with the fact that

SWCN(A) ! SACN for any N E Z+ U fool. El
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The above Lemma implies that we have a commutative diagram

Rep(g[J)po1y
SWrn 

Prn

G deZ Rep(Sd) Pm >M restr Rep(gU) 0iY

swr,

Rep(g loo)poly

the functor Prim being an equivalence of categories (by Proposition 6.6.5.2), and Prn being

the canonical projection functor.

Proposition 7.5.1.2. The contravariant functors

swo' : Rep(Sd) -+ Rep(go)po0 y

and

SWum: 0 Rep(Sd) - 1* Rep(g )p,, 1
de7Z nEZ+, restr

are anti-equivalences of semisimple categories.

Proof. As it was said in Subsection 3.1, the functor SWN is full and essentially surjective

for any N. In this case, the functor SWco is also faithful, since the simple object A in

edEZ+ Rep(Sd) is taken by the functor SW,, to the simple object S'C' 74 0. This proves

that the contravariant functor SWoo is an anti-equivalence of categories. The commutative

diagram above then implies that the contravariant functor SWum is an anti-equivalence as

well. E

7.6 Repab(S,) and the inverse limit of categories W'N
VCN

In this section we are going to prove that the Schur-Weyl functors defined in Section 5

give us an equivalence of categories between Repab(S,) and the restricted inverse limit
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Q1PN

M-NEZ+, restr ,cN-

We fix v E C.

Proposition 7.6.0.3. The functor 91esn_,n satisfies: 9ies-_1,, o SWu,c SWu,c,-1, i. e.

there exists a natural isomorphism rn : 9 1CSni,n 0 SW,cn _- SW,cn-i.

Proof. Follows directly from Proposition 7.3.0.9. l

Corollary 7.6.0.4. We have 9MC9 -1,n 0 SW,,cn SW,,C"-1, i.e. there exists a natural

isomorphism sI : OSWa'ca -+ SW,(Cn-1.

Proof. By definition of 9s,_,,, SWuc,, together with Proposition 7.6.0.3,

commutative diagram

swcr_1

Rep ab (SI )OP ~opn

'sw,,cn
,\/

9iks, I,n
0 Pn-1

V,Cn-I

jrn -1

vC -- vCn-1
iCn >1,n

Since rnl o SWv,cn-1 : SWC-1, we get 9eSni1,n 0 SWV,Cn a SWV,Cn-1.

Notation 7.6.0.5. For each k E Z+, Filk(Repb(SV)) is defined to be the Serre subcategory

of Repab(Sv) generated by the simple objects L(A) such that the Young diagram A satisfies

either of the following conditions:

* A belongs to a trivial "'-class, and f(A) k.

* A belongs to a non-trivial "-class {AW };>o, A = A(, and f(A('+ 1 )) < k.

This defines a Z+-filtration on the objects of the category Repab(Sv). That is, we have:

Repab(Sv) a I'
kEZ+

Filk(Repab (SV))
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Lemma 7.6.0.6. The functors SWucn are Z+-filtered shortening functors (see Chapter

6 for the relevant definitions)

Proof. Follows from the fact that SWu,,C are exact, together with Lemma 5.0.0.43. 0

This Lemma, together with Corollary 7.6.0.4, gives us a contravariant (Z+-filtered

shortening) functor

SWii : Repab(Sv) + m pn
n>1, restr

X e {SWy,cn(X)}n>1,{f.(X)}n>2

(f: X -* Y) - {SW,C-(f) : SWV,cn(Y) -+ SWVC(X)}n21

This functor is given by the universal property of the restricted inverse limit described in

Chapter 6, and makes the diagram below commutative:

swv,cn Irn
Repab(S2OP

SWejm n 1, restr 0 ,C n

(here Prn is the canonical projection functor).

We now show that there is an equivalence of categories Repab(S,)oP and

n21, restr ,C

Theorem 7.6.0.7. The Schur-Weyl contravariant functors SWu,cn induce an anti-

equivalence of abelian categories, given by the (exact) contravariant functor

S W - , : Repab (Sv) - + 1n
n>1, restr

Proof. The functors SW,,C are exact for each n > 1, which means that the functor

SWv,iim is exact as well (see Subsection 6.2.2).
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To see that it is an anti-equivalence, we will use Proposition 6.4.0.27. All we need to

check is that the functors SW,,C satisfy the "stabilization condition" (Condition 6.4.0.26):

that is, for each k E Z+, there exists n G Z+ such that

SWv,cn : Filk(R ab(Sv)) - Filk(OVIc)

is an anti-equivalence of categories for any n > nk

Indeed, let k c Z+, and let n> k + 1.

The category Filk(Repab(Sv)) decomposes into blocks (corresponding to the blocks of

ab(Sv)), and the category Filk (VOe) decomposes into blocks corresponding to the

blocks of ,c.

The requirement n > k+ 1 together with Lemma 5.0.0.43 means that for any semisim-

ple block of Filk(Repab(Sv)), the simple object L(A) corresponding to this block is not sent

to zero under SWVC. This, in turn, implies that SW,Cn induces an anti-equivalence be-

tween each semisimple block of Filk(Repab(SV)) and the corresponding semisimple block

of Filk(Okca)-

Now, fix a non-semisimple block BA of Repab(Sv), and denote by Filk(BA) the corre-

sponding non-semisimple block of Filk(Repab(SV)). We denote by 9A,n the corresponding

block in OPne. The corresponding block of Filk(O,,n) will then be *(Fil( ,2).

We now check that the contravariant functor

SWu,cn|iFilk(13,) : Filk(13A) _ ft(Filk(93,an

is an anti-equivalence of categories when n > k + 1.

Since n > k+1, the Serre subcategories Filk(BA) and Ker(SWV,cn) of Repab(Sv) have

trivial intersection (see Lemma 5.0.0.43), which means that the restriction of SWu,Cn to

the Serre subcategory Fil(BA) is both faithful and full (the latter follows from Theorem

5.0.0.42).

It remains to establish that the functor SVWV,Cn1Filk(BA) is essentially surjective when
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n > k + 1. This can be done by checking that this functor induces a bijec-

tion between the sets of isomorphism classes of indecomposable projective objects in

Filk(BA), fr(Filk (X,n)) respectively. The latter fact follows from the proof of Theorem

5.1.2.3.

Thus SWucV : Filk(3A) -+ Filk(ir (x,n)) is an anti-equivalence of categories for

n > k + 1, and

SWc-u : Filk(Rep'(S)) 1 Fil ,c )

is an anti- equivalence of categories for n ;> k + 1, which completes the proof.

E

7.7 Schur-Weyl duality for Repab(S,) and g [0

Let C' be a complex vector space with a countable basis el, e 2, e3

U00 := spanrc(e2, e3, ... ).

Lemma 7.7.0.8. We have a commutative diagram

Fix I := el and

Rep abS(SV)OP - n;>l, restr

sw c'IIlt lim

OPOOb'oo

Namely, there is a natural isomorphism i :lim o SWvco SWVuim.

Proof. In order to prove this statement, we will show that for any n > 1, the following

diagram is commutative:

Repab(SV)OP >
SWv, C

~n

fin

SPCoo
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In fact, we will show that the diagram below is commutative

swv.,cn

WvCn

SW,,Coc

ab On Pnc

vCOCO) F P"C

sw ,coo

which will prove the required statement. The commutativity of this diagram follows

from the existence of a natural isomorphism Fn o SW,,coo -4 SW+ ,cn (due to Proposition

7.3.0.9) and a natural isomorphism]Fn 0 _ro -ka 0E (see proof of Proposition 7.2.3.5).

Thus we obtain a commutative diagram

opn
Pr,

Repb(Sv)"P n I" rs cn fn
Wvlim n>1, restr ,

tflim

Theorem 7.7.0.9. The contravariant functor SWV'co : Repab(Sv) -- 0O is an anti-

equivalence of abelian categories.

Proof. The functor Fim is an equivalence of categories (see Lemma 7.2.3.5), and the func-

tor SW,Iim is an anti-equivalence of categories (see Theorem 7.6.0.7). The commutative

diagram above implies that the contravariant functor SW,C is an anti-equivalence of

categories as well. 0
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Chapter 8

Schur-Weyl functors and duality

structures

In this section, we discuss the relation given by the Schur-Weyl functors between the

duality structures in the category Repab(Sv) (which is a rigid symmetric monoidal cate-

gory) and in the category O C. The latter is a subcategory of the BGG category 0 and

therefore inherits a duality functor.

8.1 Duality in category 0

A construction similar to the duality functor described in Section 3.3 can be made for

OQo. All modules M in O0. are weight modules with respect to the subalgebra

of diagonal matrices in gLc, and the weight spaces are finite-dimensional (due to the

polynomiality condition in the definition of OP-,,). This allows one to construct the

restricted twisted dual MV in the same way as before, and obtain an exact functor

Remark 8.1.0.10. It is obvious that for n E Z+, the functor (.)V (OQ jr)P -+ Op takes

finite-dimensional (polynomial) modules to finite-dimensional (polynomial) modules.
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In fact, one can easily check that the functor ()(-)voP - OgO takes polyno-

mial modules to polynomial modules as well.

We now describe the above functor in terms of the restricted inverse limit of categories

o Pn

Let n G- Z+-

The contravariant duality functors

( : ( " )OP -+ Qtln

takes polynomial modules to polynomial modules, and therefore descends to a contravari-

ant duality functor

Hn: ( "Cn7 -* ,Cn

It is a straightforward consequence of the definition of a dual of a module, that the

duality functors commute with the restriction functors 9eSn_1,n:

Lemma 8.1.0.11. For any n > 2, we have:

Th-s1 a llosuto1,n d efnnduai1,n f (-)nv

This allows us to define duality functors

n>1, restr

v

(n21, restr

and

op

OP ,)n nopn
vCnL

n>1, restr

n>1, restr

0 ,PnV',C

0 Pn

Under he eqivaleneOf -Pn>1, restr 0V established in Subsection 7.2.3, the
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functor (.)' corresponds to the duality functor

()v.: (Ooo )OP -+ 0

discussed in Subsection 8.1.

This functor takes polynomial g[O.-modules to polynomial g[,-modules, and therefore

descends to a contravariant duality functor

8.2 The Schur-Weyl functor and dualities in categories

Repab (Sv) QPv

As a consequence of Theorem 5.0.0.42, we establish a connection between the notions of

duality in the Deligne category Repab(S,) and the duality in the category O ,v.

Consider the contravariant functors

()* : Repb(Sv) -+ Rep"l(S,) and (-)v -+ 01,y

where (.)* is the duality functor on Repab(S,) (with respect to the tensor structure of

Repab(S,)), and (-)v is the usual duality in the category 0 (c.f. Section 3.3, or [H, Section

3.21). The Schur-Weyl functor SW,,v relates these two duality notions:

Proposition 8.2.0.12. For any v C C, there is an isomorphism of (covariant) functors

SWv,v((-)*) --+ r(SW,,VO-)

Proof. First of all, notice that both sides are exact functors. Indeed, the duality functor on

any abelian rigid monoidal category is exact, and SW, is a (contravariant) exact functor

by Lemma 5.0.0.48, which implies that SW,((.)*) is exact.
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On the other hand, (.)v is exact (c.f. [H, Section 3.21), so an argument similar to the

proof of Lemma 5.0.0.48 shows that -r(SW,(-)v) is exact as well.

Since any object in Rep"b(S,) has a projective resolution, it remains to establish a

natural isomorphism between the two functors when we restrict ourselves to the full

subcategory of projective objects in Rep"b(Sv).

We now use the fact that all projective objects in Repab(S,) are self-dual, since they

lie in Rep(S.) (c.f. Proposition 3.2.4.6). This allows us to construct the isomorphism

between the two functors block-by-block.

Fix a block BX of Repab(S'). If this block is semisimple, then by Proposition 5.1.1.1,

there is nothing to prove.

So we assume that the block BA is not semisimple, and use the same notation as in

Subsection 5.1.2 for simple, standard, co-standard and projective objects in both BA and

the corresponding block of 0,,V. We will also denote by Projx the full subcategory of

projective objects in BA.

For each i > 1, fix a non-zero morphism #i : Pi_ 1 - Pi; Proposition 3.2.4.10 tells us

that we have an exact sequence

0 - 1*_1 -+ Pi_1 4Pi

Recall from Theorem 3.2.2.6 that such a morphism fi is unique up to a non-zero scalar,

and that the morphisms {,3, 0i3}Ji1 generate all the morphisms in ProjA.

We construct isomorphisms

0i : SWV( P*;) -- SWV( Pi jv

iteratively (recall that such isomorphisms exist by Theorem 5.1.2.3).

We start by choosing any isomorphism 00 : SW,(P*) -+ SWv(Po)v; at the i-th step,

we have already constucted 00,..., Of-1, and we choose an isomorphism Oi so that the
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diagram below is commutative:

SWV (P 1) 07. SW,(Pi )v

SWv(X3){ SW (O3 )v

We now explain why it is possible to make such a choice of Oi.

Applying the left-exact (covariant) functors SW,(-)v, SW,((-)*) to the exact sequence

0 _ M_- P 2L P

and using Theorem 5.1.2.3, we see that the maps SW,(37), SW, (#) are either simulta-

neously zero or simultaneously not zero. Since the space

Homop (SWV(Pi_1), SWV(Pi) V

is at most one-dimensional (c.f. Theorem 5.1.2.3 and Proposition 3.3.1.13), we can take Oi

to be any isomorphism SW,(P*) -s SWv(Pi)v, and then multiply it by a non-zero scalar

to make the above diagram commutative.

We now claim that the isomorphisms Oi define a natural transformation. Since the

morphisms {3O, O3 * }i 1 generate all the morphisms in Proj\, we only need to check that

for any i > 1, the following diagram is commutative:

SW (PI)

SWv(13i)

oi > SWV(Pi)V

SW(I3flV 

The latter follows easily from the construction of Oj, together with the fact that Pi = P*

(for any i > 0) and Oi = 0,v. 1:

The above construction allows us to extend this connection to the infinite-dimensional
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case. Namely, the anti-equivalences in Theorems 7.6.0.7 and 7.7.0.9 imply the following

statement:

Corollary 8.2.0.13. Let N E Z+ U {oo}. For any v c C, there is an isomorphism of

(covariant) functors

SWV,cN 0 ON 0 SW,CN
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