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Abstract

This thesis gives an analogue to the classical Schur-Weyl duality in the setting of Deligne
categories. Given a finite-dimensional unital vector space V (i.e. a vector space V with
a distinguished non-zero vector 1) we give a definition of a complex tensor power of V.
This is an Ind-object of the Deligne category Rep(S;) equipped with a natural action of
gl(V).

This construction allows us to describe a duality between the abelian envelope of the
category Rep(S;) and a localization of the category OY, (the parabolic category O for
gl(V) associated with the pair (V,1)).

In particular, we obtain an exact contravariant functor 5/'V[\/t from the category
@“b(&) (the abelian envelope of the category Rep(S;)) to a certain quotient of the
category O},. This quotient, denoted by 5f v, is obtained by taking the full subcate-
gory of O, consisting of modules of degree ¢, and localizing by the subcategory of finite
dimensional modules. A R

It turns out that the contravariant functor SW, makes O}y a Serre quotient of the
category Rep®(S,)?, and the kernel of SW ¢ can be explicitly described.

In the second part of this thesis, we consider the case when V = C®. We define
the appropriate version of the parabolic category O and its localization, and show that
the latter is equivalent to a “restricted” inverse limit of categories Otp, cv With N tending

to infinity. The Schur-Weyl functors Sw ¢,c~ then give an anti-equivalence between the
category Ofg. and the category Rep™(Sy).
This duality provides an unexpected tensor structure on the category 02 Coo-
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A mathematician is bothered that
his field of research is very abstract,
and resolves to switch to some
practical area of mathematics. He
goes to the department bulletin
board to find an upcoming lecture
about something practical. Luckily,
a talk is scheduled that afternoon
on "The Theory of Gears". Excited
that he has finally found a
down-to-earth area of mathematics,
he arrives to hear the lecture. Then,
the speaker stands up and begins:
"While the theory of gears with an
integer number of teeth is well
understood, a gear with a complex

number of teeth..."

A mathematical anecdote
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Chapter 1

Introduction

1.1 Overview of the results

The study of representations in complex rank involves defining and studying families of
abelian categories depending on a parameter ¢ which are polynomial interpolations of the
categories of representations of objects such as finite groups, Lie groups, Lie algebras and
more. This was done by P. Deligne in [D2] for finite dimensional representations of the gen-
eral linear group GL,, the orthogonal and symplectic groups O,, Sps, and the symmetric

group S,. Deligne defined Karoubian tensor categories Rep(GL:), Rep(OSp;), Rep(Sy),

t € C, which at points n =t € Z, allow an essentially surjective additive functor onto
the standard categories Rep(GLy,), Rep(OSp,), Rep(Sy). The category Rep(S;) was sub-
sequently studied by himself and others (e.g. by V. Ostrik, J. Comes in [CO}, [CO2]).

This thesis gives an analogue to the classical Schur-Weyl duality in the setting of
Deligne categories. In order to do this, we define the “complex tensor power” of a finite-
dimensional split unital complex vector space (i.e. a vector space V with a distinguished
non-zero vector 1 and a splitting V = C1 @ U). This “complex tensor power” of V is an
Ind-object in the category Rep(S;), and comes with an action of gl(V') on it. Furthermore,
it can be shown that this object does not depend on the choice of splitting, but only on

the pair (V,1).
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The “¢-th tensor power” of V is defined for any ¢t € C; for n = t € Z,, the functor
Rep(Si=n) — Rep(Sy) takes this Ind-object of Rep(S;—n) to the usual tensor power V&
in Rep(S,). Moreover, the action of gl(V') on the former object corresponds to the action
of g{(V') on V&~

This allows us to define an additive contravariant functor, called the Schur-Weyl func-
tor,

SWyyv : Rep™(Sy) — OF

Here @“b(st) is the abelian envelope of the category Rep(S;) (this envelope was described
in [D2, Chapter 8], [CO2|) and the category O} is the parabolic category O for gl(V)
associated with the pair (V, 1).

It turns out that SW,y induces an anti-equivalence of abelian categories between a
Serre quotient of Rep®(S;) and a localization of Of. The latter quotient is obtained
by taking the full subcategory of O}, consisting of “polynomial” modules of degree ¢ (i.e.
modules on which Idy € End(V') acts by the scalar ¢, and on which the group GL(V/C1)
acts by polynomial maps), and localizing by the Serre subcategory of finite dimensional
modules. This quotient is denoted by @" v

Thus for any unital finite-dimensional space (V,1) and for any ¢t € C, the category
55 v is a Serre quotient of Rep®(S;)°.

Next, we consider the categories /O\tp on for N € Z, and the corresponding Schur-Weyl
functors. Defining appropriate restriction functors

Resiy : Oy — OPN3,
we can consider the inverse limit of the system ((Q”g N N0, (EZet, ~N)n>1) and a contravari-
ant functor

Rep™(S;) — lim O}y

Nez,
induced by the Schur-Weyl functors SW; c~.

We then define a a full subcategory of lim Nez., 5: Ny called “the restricted inverse limit”
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of the system ((O CN) N>0, (Rest ~)n>1)- Intuitively, one can describe the “the restricted

inverse limit” as follows:

By definition, the objects in L Nez., gN are sequences (My)nez, such that My €
Ot CN > together with isomorphisms Rest,N(M N) = Mp_1. The objects in the restricted
inverse limit are those sequences (My)nez, for which the integer sequence {¢(My)})nez,

stabilizes (£(My) is the length of the OtpgN—object Mpy).

We then define the complex tensor power of the unital vector space (C>, 1 := e;), and
the corresponding Schur-Weyl contravariant functor SW; ce. As in the finite-dimensional
case, this functor induces an exact contravariant functor SW tc, and we have the fol-

lowing commutative diagram:

ab op Pn
Rep (St) Wt lim 1Ln>1 restr Ot’cn
SW, coo I

Ot Coe

The contravariant functors SW £.Co0, SW ¢lim turn out to be anti-equivalences induced

by the Schur-Weyl functors SW,; c».

The anti-equivalences SW 1,0, SW +1im induce an unexpected structure of a rigid sym-
metric monoidal category on

~ .
Ot co = lim Ot cn
n>1, restr

We obtain an interesting corollary: the duality in this category given by the tensor struc-

ture will coincide with the one arising from the usual notion of duality in BGG category

0.

The Schur-Weyl functor described above can also be used to extend other classical
dualities to complex rank. Namely, one can consider categories which are constructed “on
the basis of Rep(S;)”. A method for constructing such categories was suggested in [Et1],
and was used in [E1], [Mat] to study representations of degenerate affine Hecke algebras

and of rational Cherednik algebras in complex rank. One can then try to generalize
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the classical Schur-Weyl dualities for these new categories: for example, one can use the
notion of a complex tensor power to construct a Schur-Weyl functor between the category
of representations of the degenerate affine Hecke algebra of type A of complex rank, and
the category of parabolic-type representations of the Yangian Y (gly) for N € Z,. We

plan to study these dualities in detail in the future.

1.2 Summary of results

Recall that the classical Schur-Weyl duality describes the relation between the actions of
gl(V), Sq on V®4 (here V is a finite-dimensional complex vector space, d is a non-negative
integer, and Sy is the symmetric group).

In particular, it says that the actions of gl(V), Sy on V®? commute with each other,

and we have a decomposition of C[Sy] ®c U(gl(V'))-modules

ved e P A® SV

A is a Young diagram
I\=d

We would like to extend this duality to the Deligne category Rep(S;), by constructing
an object V& in Rep(S;), together with the action of gl(V') on it, which is an analogue
(a polynomial interpolation) of the module V®? for C[S4] ®c U(gl(V)).

It turns out that this can be done in the following setting;:

e The space V is required to be unital, that is, we fix a distinguished non-zero vector
1 in V. We then choose any splitting V = C1 @ U. It can be shown that V& does
not depend on the choice of the splitting, but only on the choice of the distinguished

vector 1.

For t ¢ Z., one can actually give a definition without choosing a splitting, as it is

done by P. Etingof in [Et1] (see Section 4.5).

e The object V2! is not finite-dimensional (unlike V®%), but is an Ind-object (a count-

able direct sum) of objects from Rep(S;).
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The intuition for working in the above setting is as follows (proposed by P. Etingof in
[Et1]): let ¢ € C, and let = be a formal variable. The expression z* is not polynomial in

t, and has no algebraic meaning, but if we present x as x := 1 + y, we can write:

=1+ =) (,i)y’“
keZ
The function (;) is polynomial in ¢, so the expression Y, ., (;)v* is just a formal power
series with polynomial coefficients. This explains why it is convenient to work with unital
vector spaces.
Notice that for ¢ ¢ Z., the above sum is infinite, which also explains why the object
V& can be expected to be an Ind-object of Rep(S;) (Rep(S;) has only finite direct sums).

To define the object V& for a unital vector space (V, 1), we use the following notation:

Notation 1.2.0.1.

e We denote by py,c1y C gl(V') the parabolic Lie subalgebra which consists of all the
endomorphisms ¢ : V' — V for which ¢(1) € C1. We will write p := p(ycy) for
short.

e PB; denotes the mirabolic subgroup corresponding to 1, i.e. the group of auto-
morphisms ® : V' — V such that ®(1) = 1, and pc3 C p denotes the algebra of
endomorphisms ¢ : V — V for which ¢(1) = 0 (thus pcy = Lie(B1)).

e {l; denotes the subgroup of B; of automorphisms ® : V — V for which I'm(® —
Idy) C CI, and u C pca denotes the algebra of endomorphisms ¢ : V' — V for
which Im ¢ C C1 C Ker ¢ (thus u; = Lie(iy)).

Fix a splitting V =Cl @ U.

Recall that we have a splitting gl(V) = p @ u,, where uy = U. This gives us an

3
analogue of triangular decomposition:

gl(V) = Cldy @u, @ u} @ gl(U)
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with uf = U
The definition of V€ is essentially an analogue of the isomorphism of

C[S4] ®c U(gl(V))-modules

vele B (U@ CInj({1,...k}, {1, ..., d}))%
k=0,...,d

Here the action of gI(V') on the right hand side (viewed as a Z,-graded space) is given as
follows: Idy acts by the scalar ¢, gl(U) acts on each summand though its action on the

spaces U®*, and u., 1" act by operators of degrees 1, —1 respectively.
The group S; acts on each summand through its action on the set

Inj({1,...,k},{1,...,d}) of injective maps from {1,...,k} to {1,...,d}.
In the Deligne category Rep(S;), we have objects A which are analogues of the Sy x Sy
representation CInj({1,...,k},{1,...,d}). The objects A carry an action of Sk, therefore

we can define a Z-graded Ind-object of Rep(S;):

Vet . @(U@)k Q Ak)sk
k>0

Next, one can define the action of gl(V) on V& so that Idy acts by scalar ¢, gl(U)
acts naturally on each summand (U®* ® Ag)%, and u;,u act by operators of degrees
1, —1 respectively.

In fact, it can be shown that the object V& does not depend on the choice of the
splitting, but only on the choice of the distinguished vector 1.

We also show that for ¢t = n € Z,, the functor Rep(Si—,) — Rep(S,,) takes VE=" to
the usual tensor power V®™ in Rep(S,,), and the action of gl(V) on V&=" corresponds to

the action of gl(V) on V&

Remark 1.2.0.2. The Hilbert series of V& corresponding to the grading gro(V) := C1
gr1(V) := U would be (1 + y)*.

2

Remark 1.2.0.3. Given any symmetric monoidal category C with unit object 1 and a fixed

object X € C, one can similarly define the object (1 ® X)€" of Ind — (Rep(S;) ®C).
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We now proceed to the second part of the Schur-Weyl duality. Recall that in the
classical Schur-Weyl duality for gl(V), Sy, the module V®? over C[S;] ®cU(gl(V)) defines

a contravariant functor

Swd,v : Rep(Sd) e MOdZ,{(g[(V)),poly

Swd’v = Homsd(-, V®d)

Here

e The category Rep(Sy) is the semisimple abelian category of finite-dimensional rep-

resentations of Sy.

e The category Mody(gi(v))poly 1S the semisimple abelian category of polynomial repre-
sentations of gl(V') (“polynomial” meaning that these are direct summands of finite
direct sums of tensor powers of V; alternatively, one can define these as finite-
dimensional representations GL(V) — Aut(W) which can be extended to an alge-

braic map End(V) — End(W)).

This functor takes the simple representation of S; corresponding to the Young diagram
X either to zero, or to the simple representation S*V of gl(V'). Notice that the image of
functor SWy v lies in the full additive subcategory M ody(g1(v)),poly,a Of Mody(gi(v)),poly Whose
objects are gl(V)-modules on which Idy acts by the scalar d.

It is then easy to see that the contravariant functor SWgy : Rep(Sq) = Modygi(v)),poty,d
is full and essentially surjective.

Considering these dualities for a fixed finite-dimensional vector space V and every

d € Z, we can construct a full, essentially surjective, additive contravariant functor

SWy : @ Rep(Sa) — Modyguvy) poly = @ Modyg1(vy) poly,d
ez, deZy

17



between semisimple abelian categories.

The simple objects in € dez, 1ep(Sq) which SWy sends to zero are (up to isomorphism)

exactly those parametrized by Young diagrams A such that A has more than dim V' rows.

Thus the contravariant functor SWy induces an anti-equivalence of abelian categories
between a Serre quotient of the semisimple abelian category €D,cz, Rep(Sa), and the

semisimple abelian category M odyg(v)),poly-

In our case, we would like to consider the Deligne category Rep(S;) and a category of

representations of gl(V') related to the unital structure of V.

Unfortunately, the Deligne category Rep(S;) is Karoubian but not necessarily abelian,
which would make it difficult to obtain an anti-equivalence of abelian categories. However,
it turns out that the Karoubian tensor category Rep(S;) is abelian semisimple whenever
t¢ Z,. Fort = d € Z, this is not the case, but then Rep(S;—q) can be embedded (as a
Karoubian tensor category) into a larger abelian tensor category, denoted by @“b(&:d).
The construction of this abelian envelope is discussed in detail in [D2, Section 8] and in
[CO2]. We will denote by Rep®(S;) the abelian envelope of Rep(S;) for any t € C, with
Rep™(S;) being just Rep(S;) whenever t ¢ Z.,.

The structure of Rep®(S;) as an abelian category is known, and described in [COZ2]
and in Section 3.2.4. In particular, it is a highest weight category (with infinitely many

weights), with simple objects parametrized by all Young diagrams.

It turns out that the correct categories to consider for the Schur-Weyl duality in com-
plex rank are the abelian category Rep®(S;) and the parabolic category O for gl(V)
corresponding to the pair (V) 1).

18



Consider the short exact sequence of groups
1= — By ———>GL(V/(C]1> —1

For any irreducible finite-dimensional algebraic representation p : B — Aut(E) of the
mirabolic subgroup, U; acts trivially on E, and thus p factors through GL (V/C1).

This allows us to say that p is a GL (V/C1)-polynomial representation of By if

p: GL(V/C1) — Aut(E) is a polynomial representation (i.e. if p extends to an
algebraic map End (V/C1) — End(E)).

Now, for any finite-dimensional algebraic representation E of By, we say that E is
GL (V/C1)-polynomial if the Jordan-Holder components of E are GL (V/C1)-polynomial

representations of Py.

This allows us to give the following definition:

Definition 1.2.0.4. The category Of, v is defined to be the full subcategory of Mody vy

whose objects M satisfy the following conditions:

e M is a Harish-Chandra module for the pair (g{(V),%1), i.e. the action of the Lie
subalgebra pcy on M integrates to the action of the group Bi.

Furthermore, we require that as a representation of 31, M be a filtered colimit of

GL (V/C1)-polynomial representations, i.e.
Ml‘i‘] € Ind — Rep(@]l)GL(V/(C]l)—poly

e M is a finitely generated U(gl(V'))-module.

e Idy € gl(V) acts by tIdy on M.

19



Remark 1.2.0.5. For any fixed splitting V = C1@U, the first requirement can be replaced
by the requirement that M|y ) be a direct sum of polynomial simple U(gl(U))-modules,
and that w} act locally finitely on M.

The category 02 v is an Artinian abelian category, and is a Serre subcategory of the
usual category O for gl(V).
The gl(V)-action on the object V& is a “Of-type” action, which allows us to define a

contravariant functor from Rep®(S;) to Of
SWt,V = HOmB_e—pab(St)(', V@t)

This contravariant functor is linear and additive, yet only left exact. To fix this
problem, we compose this functor with the quotient functor o from Ot”’ v to the category
52 v+ the localization of Of, v by the Serre subcategory of finite-dimensional modules. We
denote the newly obtained functor by SW Ly

One of the main results of this thesis is the following theorem (c.f. Theorem 5.0.0.42):

Theorem 1. The contravariant functor SW sy« Rep™(Sy) — @’ v s exact and essentially
surjective.

Moreover, the induced contravariant functor

Re ab S o -~
Rep™ t)/ Ker(8W.y) = Ouv

is an anti-equivalence of abelian categories, thus making 5f v o Serre quotient of

Rep(S))”.

In the course of the proof of Theorem 1 we obtain a rather explicit description of
the Serre subcategory K er(gﬁ/ t,v) of Rep(S;). This description shows that as n grows
large, the kernel becomes “smaller”, thus allowing one to conjecture that in the “limit case”
when n tends to infinity, we would be able to obtain an anti-equivalence of categories. In
Chapter 7, we will show that in the correct “limit” setting, this is indeed the case. The

precise statement of this result is given below.
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Consider the infinite-dimensional vector space C*™ with a countable basis ey, €3, e, ...
and 1 := e; as the chosen vector. As before, we can construct an Ind-object of Rep(S;)
which is the complex tensor power (C*)&* and define an action of the Lie algebra gl
on it.

We define an appropriate analogue of the category O of Harish-Chandra modules for
the pair (gl.,,B1); this category will be denoted by Otp’ Coo -

We then define the contravariant Schur-Weyl functor
SWt,COO . @ab(St) — Of:?coeo, SWt’(Cco = Hom@ab(st)(-, ((COO)@t)

Taking the localization of OZ T by the Serre subcategory of the polynomial modules,

we obtain the category 6{ G0, and a contravariant functor
SWt’(Coo :Repab(St) — Otp,%ooo

We claim that this functor is an anti-equivalence of categories.

In order to do so, it is convenient to use the results of Theorem 1: namely, to deduce
the anti-equivalence in the infinite-dimensional case from the results obtained in the finite-
dimensional case by expressing Of’ oo @s an inverse limit (in some sense) of the categories
Oftn.

To understand in which sense the category Og G 1s an inverse limit of the categories

Otp, ©n, we recall the classical Schur-Weyl duality once again.

Given a sequence of categories {C;}icz, and functors F; : C; — C;—1 for every i > 1,
we consider (following [S], [WW]) the inverse limit category @ieh C; to be the category
whose objects are pairs ({C;}icz, , {@i-1,i}i>1) where C; € C; for each i € Z and ¢y :
Fi—1,4(C;) = Ci_q for any i > 1.

21



A morphism in g_nieh C; between objects ({Ci}iez,, {®i-1,i}i>1) and
({Di}iéz+,{¢i—1,i}izl) is a set of arrows {f; : C; = D,;}icz, satisfying compatabil-

ity conditions.

In the setting of the classical Schur-Weyl duality, we can consider the restriction

functors

mesn—l,n . Rep(g[n)poly — Rep(g[n—l)POly

defined by Res, 1, := (-)P» (for each representation pw : gl, — End(W), we take the
space Ker(p(E,,))). Notice that SAC™ — S*C"~! for any A.

This allows us to consider the inverse limit category @nem Rep(gl,)poty-

In Chapter 6, we show that Rep(gl.,)pol, is a full subcategory of @nem Rep(gl,)poly,

and give an intrinsic description of this subcategory, which we will now describe in brief.

Let m > 1. We will consider the Lie subalgebra gf,, C gl which consists of matrices
A = (aij)1<i; for which a;; = 0 whenever i > m or j > m. We will also denote by gkt
the Lie subalgebra of gl consisting of matrices A = (a;j)1<;,; for which a;; = 0 whenever
t<morj<m.

We can then define the specialization functors

T, : Rep(8loo)poty — Rep(al)potys T = ()97

This gives a functor

Flim : Rep(g[oo)poly — Lm Rep(g[n)POly

n€Z+

One can easily see that this functor is fully faithful, and is an equivalence between the cat-
egory Rep(gl,,)poly and a subcategory of QI—nnGZ+ Rep(gl,)poy called the restricted inverse
limit of the categories Rep(gl,,)poly-
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The restricted inverse limit of categories {C;}icz, and functors F; : C; — C;_q is
defined in the following setting: the categories C; are required to be finite-length abelian
categories, and the functors JF; are required to be exact. Furthermore, assume that the
functors JF; take simple objects to either simple objects or zero (that is, the functors F;

do not increase the lengths of objects). Such functors are called “shortening”.
Denote by Z¢,(X) the length of the object X € C,.

The category @nieh C; is then an abelian category as well, and we can consider its full

subcategory lim C; consisting of all objects ({C;}icz, , {®i-1,}i>1) such that the

1€Z 4, restr
weakly-increasing integer sequence {£c,(C;)}icz. is bounded (and thus stabilizing). This

subcategory is obviously a Serre subcategory, and a finite-length abelian category.

This category is universal in the following sense: given a finite-length abelian category

A and exact shortening functors A — C; for each i, there is a functor 4 — @iez osts Ci
+5 T

Remark 1.2.0.6. It is worth mentioning that sometimes (as it happens in our exam-
ples), there is another description of the restricted inverse limit, which is occasion-
ally more convenient to work with. Assume that for each ¢, the category C; “has an
object-wise filtration”; namely, that it is a direct limit of a sequence of Serre subcat-
egories (F'ily(C;))kez,. Furthermore, assume that the functors F;_;; induce functors

Jff_lyi : Fil(Ci—1) — Filg(C;) for any k € Zy. One can then define the category

l'ﬂg gﬂ_l Fili(C;)

k€L, i€Zy

which we call the inverse limit of categories with filtrations. Under some reasonable

conditions, this category coincides with the restricted inverse limit @iez i
+

restr

This approach is described in detail in Chapter 6. It is used to prove Theorem 2 below.

Returning to our motivating example, the system ((Rep(8l,)poly)n>or (ReSn-1,n),51)

satisfies the requirements given above, and it can be shown that the functor Iy, factors

23



through the restricted inverse limit @nem, ectr €P(81)poty, giving an equivalence

1_‘Iim : Rep(g[oo)poly “_N—) QI_II Rep(g[n>1701y

n€Z, restr

The contravariant functors

SWcr : €D Rep(Ss) — Rep(gl,)pory, SWer = @aSWacn
deZy

also factor through the category @neh restr Rep(gl,)poly, and we obtain the following

commutative diagram:

Rep(g [n)POZy

SWen
/ TPI‘n

Dacz, Rep(Sa)” ———lim . Rep(gl,)poly

Ty
SWgos T lim

Rep(g [oo)POI?J

with the contravariant functors SWy,, SWee being anti-equivalences.

Inspired by the classical situation described above, we define restriction functors
APn—1

— . /\pn
meﬁn_l,n . Ot,(Cn — t,C"‘l

for each n > 1. These functors come from exact functors

. Prn—1 — E.
Resn_1n 1 Oftn — Ofgnta Resp_10 := (-)7™"

The functors Res,_1 ,, take polynomial gl,-modules to polynomial gl,_,-modules, and
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therefore induce exact functors

—— . /\p Ap _1
Resn 101 O — OF1l

The Schur-Weyl contravariant functors SW ¢,c» turn out to be compatible with the

functors MRes,_1,. That is, for any n € Z, there exists a natural isomorphism
ﬁn : %esn—l,n (o] SWt,(C" e SWt)(Cn—l

From Theorem 1, we obtain the following result:

Theorem 2. The Schur-Weyl contravariant functors SW t,cn induce an anti-equivalence

of abelian categories, given by the contravariant functor

§‘\/Vt,lim : E@Bab(st) — @ /O\tpf:"

n€Zy, restr

X = ({8Woer (X ey, {n(X) bz

(f: X = Y) = {SWien(f) : SWion(Y) = SWoen(X) Inez,

Furthermore, we prove that the category 5{7500 is equivalent the restricted inverse
limit of the system categories (52’ fén,ﬂ/‘{e\sn_l,n) when n tends to infinity. The projection
functors T, : @’ Boo — 5tp & are isomorphic to the the functors induced by the invariants
functors T, = (-)9% : O} o = Ofn.

We obtain the following commutative diagram:
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Corollary 3. The contravariant functor SW tCo 18 an anti-equivalence of abelian cate-

gories.

This anti-equivalence allows us to obtain an unexpected tensor structure on the cate-
gory

oo ~ : Abn
Ot,<C°° = ££n Ot,(C"
n>1, restr

Namely, the equivalence from Theorem 2 implies that this is a rigid symmetric monoidal
category.

Finally, we show that the duality in I_%@“b(St) (given by the tensor structure) corre-
sponds to the duality in the category 5f v» 1.e. that there is an isomorphism of (covariant)
functors

SWov(()) — #(SWiy(-)")

This gives a new interpretation to the notion of duality in the category ap V-
In particular, it turns out that the rigidity (duality) coming from the newly obtained
tensor structure on the 6;’ T corresponds to the a priori unrelated notion of duality in

the BGG category O.
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Chapter 2

Notation and definitions

The base field will be C.

2.0.1 Finite-length categories

Let C be an abelian category, and C be an object of C. A Jordan-Holder filtration for C

is a finite sequence of subobjects of C'
0=CycCic..cC,=C

such that each subquotient C;.,/C; is simple.

The Jordan-Holder filtration might not be unique, but the simple factors C;.;/C;
are unique (up to re-ordering and isomorphisms). Consider the multiset of the simple
factors: each simple factor is considered as an isomorphism class of simple objects, and
its multiplicity is the multiplicity of its isomorphism class in the Jordan-Holder filtration
of C. This multiset is denoted by JH(C'), and its elements are called the Jordan-Holder
components of C.

The length of the object C, denoted by £¢(C), is defined to be the size of the finite
multiset JH(C).

Definition 2.0.1.1. An abelian category C is called a finite-length category if every object
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admits a Jordan-Holder filtration.

2.0.2 Tensor categories

The following standard notation will be used thoughout the thesis:

Notation 2.0.2.1. Let C be a rigid symmetric monoidal category. We denote by 1 the unit
object. Also, for any object M, we denote by M* the dual of M.

2.0.3 Karoubian categories

Definition 2.0.3.1 (Karoubian category). We will call a category A Karoubian! if it is

an additive category, and every idempotent morphism is a projection onto a direct factor.

Definition 2.0.3.2 (Block of a Karoubian category). A block in an Karoubian category
is a full subcategory generated by an equivalence class of indecomposable objects, defined
by the minimal equivalence relation such that any two indecomposable objects with a

non-zero morphism between them are equivalent.

2.0.4 Serre subcategories and quotients

Definition 2.0.4.1 (Serre subcategory). A (nonempty) full subcategory C of an abelian

category A is called a Serre subcategory if for any exact sequence
0O->M —->M-—->M =0

M isin C iff M’ and M" are in C.

Definition 2.0.4.2 (Serre quotient). Let A be an abelian category, and C be a Serre

subcategory.

'Deligne calls such categories "pseudo-abelian" (c.f. [D2, 1.9]).
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We define the category A/C, called the Serre quotient of A by C, whose objects are
the objects of A and where the morphisms are defined by

Homyuse(X,Y) = lim Hom4(X',Y/Y")

X'cX,Y'cy
X/X'\Y'eC

The category .A/C comes with a quotient functor, 7 : A — A/C, which takes X € A

to X € A/C,and f: X — Y in A to its image in li_ngxrcx,yfcy Hom4(X',Y/Y").
X/X'\)Y'eC

Remark 2.0.4.3. It is easy to see that the category A/C is abelian, and the functor = :
A — A/C is exact.

Let A, B be abelian categories, and F : A — B an exact functor. Then we can consider
the full subcategory Ker(F) of A whose objects are X € A for which F(X) = 0.

Then Ker(F) is a Serre subcategory, and the functor F factors through the functor
m: A— A/Ker(F): we have a functor

F:A/Ker(F)— B such that F = Form

One can easily check that the functor F : A/Ker(F) — B is exact and faithful.

Remark 2.0.4.4. Let A be an abelian category, and C be a Serre subcategory. Consider
the quotient functor, 7 : A — A/C. Then Ker(n) = C, and any exact functor F : 4 — B
which takes all the objects of C to zero factors through .

2.0.5 Ind-completion of categories

Let A be a small category.

Definition 2.0.5.1 (Ind-completion). The Ind-completion of A, denoted by Ind — A, is
the full subcategory of the category Fun(A,Set), whose objects are functors which are

filtered colimits of representable functors A% — Set.
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Remark 2.0.5.2. The Yoneda lemma gives us a fully faithful functor 3 : A —
Fun(A°, Set) which restricts to a fully faithful functor +: A — Ind — A.

An easy consequence of the definition is the following Lemma:
Lemma 2.0.5.3. The objects of L(A) are compact objects in Ind — A.

Corollary 2.0.5.4. Given an object A € A and a collection of objects {A;}ier, 4; € A

(here I is a discrete set), we have:
Hompna—a(A4, @ A;) = @ Hom (4, A;)
iel iel
We will also use the following property of the Ind-completion (c.f. [KS, Theorem 8.6.5,

p.194]):

Theorem 2.0.5.5. Assume the category A is abelian. Then the category Ind — A is
abelian as well, and the functor v is eract. Furthermore, the category Ind — A is a
Grothendieck category (in the sense of [KS, Definition 8.3.24, p.186]), and thus any func-

tor F: Ind — A — C commuting with small colimits admits a right adjoint.

2.0.6 Actions on tensor powers of a vector space

Let U be a vector space over C, and let k£ > 0.

Notation 2.0.6.1.

1. Let A € End(U). We denote the operator ldy ® ldy ®... ® A ® ... ® Idy on U®*
(with A acting on the i-th factor of the tensor product) by A®.

The diagonal action of A on U®* would then be

Z AD =A@ Iy R... Idy +Idy RA® ...  Idy +... + [dy ®... @ Idy ®A

1<i<n
and will sometimes be denoted by A|yer.
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2. Similarly, given a functional f € U*, we have an operator f() defined as

f(l) . U®k - U®k—1

U Q... 9 up — f(ul)ul Q.. Q0U_1 QU+ @ ... U

3. Finally, given u € U, we define the operator u® as

u(l) : U®k N U®k+1

U X ...QUL U X ... QU_1QURU K ... QU

Notation 2.0.6.2. Let U be a finite-dimensional vector space, and let f € U*, u € U.
Denote by Ty, € End(U) the rank one operator v; — f(v1)u (i.e. the image of f ® u
under the isomorphism U* ® U — End(U)).

Notation 2.0.6.3. Let X be a Young diagram. Denote by S* the Schur functor correspond-
ing to A (c.f. [FH, Chapter 6]). When applied to a finite-dimensional vector space U, this
is either zero (iff [(A) > dim U), or an irreducible finite-dimensional representation of the

Lie algebra gl(U), which integrates to a representation of the group GL(U).

We will denote the full additive subcategory of Mody vy generated by {S U}, (A
running over all Young diagrams) by M odygw)) poty, and call its objects polynomial rep-

resentations of the Lie algebra gl(U) (or the algebraic group GL(U)).

The category M ody g v)),poly is Obviously a semisimple abelian category, and it contains
all the finite-dimensional representations of gl(U) which can be obtained as submodules

of a direct sum of tensor powers of the tautological representation U of gl(U).

Alternatively, one can describe these representations as finite-dimensional represen-
tations p : GL(U) — Aut(W) which can be extended to an algebraic map End(U) —
End(W).
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2.0.7 Symmetric group and Young diagrams

Notation 2.0.7.1.

Sn, will denote the symmetric group (n € Z,).

The notation A will stand for a partition (weakly decreasing sequence of non-negative
integers), a Young diagram A, and the corresponding irreducible representation of Sial-
Here || is the sum of entries of the partition, or, equivalently, the number of cells in

the Young diagram A.

All the Young diagrams will be considered in the English notation, i.e. the lengths of

the rows decrease from top to bottom.

The length of the partition A, i.e. the number of rows of Young diagram A, will be
denoted by £(X).

The i-th entry of a partition A, as well as the length of the i-th row of the corresponding
Young diagram, will be denoted by A; (if i > £()), then A; := 0).

b (in context of representations of .S,,) will denote the permutation representation of S,,,
i.e. the n-dimensional representation C" with S, acting by g.e; = e4(;) on the standard

basis ey, .., e, of C™.

For any Young diagram ) and an integer n such that n > |A| + A1, we denote by A(n)
the Young diagram obtained by adding a row of length n — |A| on top of A.

Let If\””L denote the set of all Young diagrams obtained from X by adding m boxes,
no two in the same column, and Z{"~ denote the set of all Young diagrams obtained
from A by removing m boxes, no two in the same column. We will also denote: Zy :=

)+ - 7
Wm0y, Iy = Wocmen Iy -

Example 2.0.7.2. Consider the Young diagram A corresponding to the partition
(6,5,4,1):
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The length of A is 4, and |A| = 16. For n = 23, we have:

[ ]
|
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Chapter 3

Preliminaries

3.1 Classical Schur-Weyl duality

In this section we give a short overview of the classical Schur-Weyl duality.
Let V be a finite-dimensional vector space over C, and let £ := V®¢, Then S; acts on
E by permuting the factors of the tensor product (the action is semisimple, by Mashke’s

theorem):

o(V @V ® ... ®Vg) = Vo-1(1) ® Vs—1(2) D ... ® Up-1(q)

Denote by A the image of C[Sy| in End¢(E).
Since C[Sy] is semisimple by Mashke’s theorem, we have the following corollary of the

Double Centralizer Theorem:

Proposition 3.1.0.3. Let B := End4(E). Then
e B is semisimple.
e A=Endg(E).

e As an A ®c B-module, E decomposes as
E = @ V: @ W;
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where V; are all the irreducible representations of A, and W; are all the irreducible

representations of B. In particular, there is a bijection between the sets of non-

isomorphic irreducible representations of A and B.

Consider the diagonal action of the Lie algebra gl(V) on E (i.e. a € gl(V) acts on E
by algp = Z1gigd a(i))-

Then we have the following result, known as Schur-Weyl duality:
Theorem 3.1.0.4 (Schur-Weyl).

e B is the image of U(gl(V')) (the universal enveloping algebra of gl(V')) in Endc(E),
and thus E is a semisimple gl(V')-module.

e The images of C[S4] and U(gl(V')) in Endc(E) are centralizers of each other.

o As C[S;] ®c U(gl(V))-module,

E = @ A® SV

AJA|=d

We now define a contravariant functor

Swdyv : Rep(Sd) — Modu(g[(v))’poly, SWd,V = Homgd(-, V®d)

The contravariant functor SWgy is C-linear and additive, and sends a simple module
X of S; to SAV.

Next, consider the contravariant functor

SWy : @ Rep(Sd) — MOdL{(g[(V)),polyy SWy 1= @4SWq v
deZy

(the category @D ez, Rep(Sa) is equivalent to the category of Schur functors, and is obvi-
ously semisimple). This functor SWy is clearly essentially surjective and full (this is easy

to see, since Mody (gi(v))poly 1S @ semisimple category with simple objects SV su(N)).
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The kernel of the functor SWy is the full additive subcategory (direct factor) of
@dem Rep(S4) generated by simple objects A such that £(\) > dim V; taking the quo-

tient, we see that SWy defines an equivalence of categories

SWy : @ Rep(Sq) — MOdu(g[(V)),poly
deZ+ length <dim V/
where (@deh Rep(Sd))length cdimy is the full additive subcategory (direct factor) of

@dez+ Rep(S4) generated by simple objects A such that £(\) < dim V.
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3.2 Deligne category Rep(S,)

This section follows [CO, D2, Et1]. We will use the parameter v instead of the parameter

t used in Introduction.

3.2.1 General description

For any v € C, the category Rep(S,) is generated, as a C-linear Karoubian tensor category,
by one object, denoted h. This object is the analogue of the permutation representation
of Sn, and any object in Rep(S,) is a direct summand in a direct sum of tensor powers of
b.

For v ¢ Z,., Rep(S,) is a semisimple abelian category.

Notation 3.2.1.1. We will denote Deligne’s category for integer value n > 0 of v as
Rep(S,=n), to distinguish it from the classical category Rep(S,) of representations of

the symmetric group S,,. Similarly for other categories arising in this text.

If v is a non-negative integer, then the category Rep(S,) has a tensor ideal J,, called
the ideal of negligible morphisms (this is the ideal of morphisms f : X — Y such that
tr(fu) = 0 for any morphism » : Y — X). In that case, the classical category Rep(S,)
of finite-dimensional representations of the symmetric group for n := v is equivalent to
Rep(S,—n)/J, (equivalent as Karoubian rigid symmetric monoidal categories).

The full, essentially surjective functor Rep(S,=n) — Rep(S,) defining this equivalence
will be denoted by S,.

Note that S, sends § to the permutation representation of S,,.

Remark 3.2.1.2. Although Rep(S,) is not semisimple and not even abelian when v=n €
Z, a weaker statement holds (see [D2, Proposition 5.1]): consider the full subcategory
Rep(S,=n)™) of Rep(S,) whose objects are directs summands of sums of hp®™,0 < m < 2.

This subcategory is abelian semisimple, and the restriction Su|gep(s,_,.)m/2 is fully faithful.
The indecomposable objects of Rep(S, ), regardless of the value of v, are parametrized
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(up to isomorphism) by all Young diagrams (of arbitrary size). We will denote the inde-
composable object in Rep(S,) corresponding to the Young diagram 7 by X..

For non-negative integer v =: n, we have: the partitions A for which X has a non-zero
image in the quotient Rep(S,=n)/Jy=n = Rep(Sy) are exactly the X for which A; +|A| < n.

If A1 + |A| < n, then the image of A in Rep(S,) is the irreducible representation of Sy,
corresponding to the Young diagram A(n) (see notation in Chapter 2).

This allows one to intuitively treat the indecomposable objects of Rep(S,) as if they
were parametrized by “Young diagrams with a very long top row”. The indecomposable
object Xy would be treated as if it corresponded to A(v), i.e. a Young diagram obtained
by adding a very long top row (“of size v — |A|”). This point of view is useful to understand

how to extend constructions for S, involving Young diagrams to Rep(S,).

[]
Example 3.2.1.3. The indecomposable object X, where A = I can be thought

of as a Young diagram with a “very long top row of length (v — 16)™

IIIII[IJIIIIIIIIIIIIIIIIlIIlII

3.2.2 Lifting objects

We start with an equivalence relation on the set of all Young diagrams, defined in [CO,

Definition 5.1]:

Definition 3.2.2.1. Let A be any Young diagram, and set
},I,)\(V) = (V - |>\| ,)\1 - 1,)\2 - 2, )

Given two Young diagrams A, X', denote px(v) =: (po, f1, ---), i (v) =: (g, py, ---)-
We put A ~ X if there exists a bijection f : Z, — Z, such that y; = Wy for any
12> 0.

We will call a ~-class trivial if it contains exactly one Young diagram.
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The following lemma is proved in [CO, Corollary 5.6, Proposition 5.8]:

Lemma 3.2.2.2.
1. Ifv & Z,, then any Young diagram X lies in a trivial ~-class.

2. The non-trivial ~-classes are parametrized by all Young diagrams \ such that 5\(1/)

is a Young diagram (in particular, v € Z, ), and are of the form {\®};, with

A=X0c AW cA®c .,
and X&) \ A = strip in row i+ 1 of length \; — Aiv1+ 1 fori >0

and A\O\XO = strip in row 1 of length v — |A| — A\ + 1

We now consider Deligne’s category Rep(St), where T is a formal variable (c.f. [CO,
Section 3.2|). This category is C((T" — v))-linear, but otherwise it is very similar to
Deligne’s category Rep(S,) for generic v. For instance, as a C((T — v))-linear Karoubian
tensor category, Rep(Sr) is generated by one object, again denoted by b.

One can show that Rep(Sr) is split semisimple and thus abelian, and its simple objects
are parametrized by Young diagrams of arbitrary size.

In [CO, Section 3.2], Comes and Ostrik defined a map

lifty {3 e omorend — Lo o moriormsion )

We will not give the precise definition of this map, but will list some of its useful
properties. It is defined to be additive (i.e. lift,(A @ B) = lift,(A) @ lift,(B) for any
A, B € Rep(S,)) and satisfies lift,(h) = h. Moreover, we have:

Proposition 3.2.2.3. Let A, B be two objects in Rep(S,).
1. lift,(A® B) = lift,(A) ® lift,(B).

2. dimg@(s.,) A= (dim@(sﬂ lift,(A))|r=,.
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3. dimg HomR_ep‘(Su)(A, B) = dimpmk(C[[T]]) Hom@(sﬂ(lift,, (A),lift,(B)).
4. The map lift, is injective.
5. For any A, lift, (X)) = Xy for all but finitely many v € C.

Proof. C.f. [CO, Proposition 3.12]. O

Remark 3.2.2.4. It was proved both in [D2, Section 7.2] and in [CO, Proposition 3.28]
that the dimensions of the indecomposable objects X in Rep(Sr) are polynomials in T
whose coefficients depend on A (given A, this polynomial can be written down explicitly).
Such polynomials are denoted by Py(T).

Furthermore, it was proved in [CO, Proposition 5.12] that given d € Z, and a Young
diagram A, A belongs to a trivial 2-class iff Py(d) = 0.

The following result is proved in [CO, Lemma 5.20], and is a stronger version of the

statement in Proposition 3.2.2.3(e):

Lemma 3.2.2.5 (Comes, Ostrik). Consider the ~-equivalence relation on Young dia-

grams.
o Whenever X lies in a trivial ~-class, lift,(Xy) = X).
e For a non-trivial ~-class {\®};,

liftl,(X)\(o)) = Xy, Lft,(Xy0) = Xm ® Xye-nyVi>1

Based on Lemmas 3.2.2.2, 3.2.2.5, Comes and Ostrik prove the following theorem (c.f.
[CO, Theorem 5.3, Proposition 5.22, Theorems 6.4, 6.10}, [CO2, Proposition 2.7]):

Theorem 3.2.2.6. The indecomposable objects Xy, Xy belong to the same block of
Rep(S,) iff X~ X. The structure of the blocks of Rep(S,) is described below:
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o For a trivial <-class {)\}, the object X, satisfies:
dim EndBfB(SV)(XA) =1

and the block of Rep(S,) corresponding to {A} is equivalent to the category Vectc of
finite dimensional complex vector spaces (in particular, it is a semisimple abelian cate-

gory, so we will call these blocks semisimple).

o Let {\D}; be a non-trivial <~-class, and let i > 1,7 > 0. Then the block corresponding
to {\®D}; is not an abelian category (in particular, not semisimple), and the objects

Xy satisfy:

dim Hompgep(s,) (Xam, Xam) = 0 if | — i| > 2
dim Hom@(s,,) (Xo, Xpwm) =1if[j—il =1
dim Endpep(s,) (Xxw) =2 fori>1

dim End@(sy) (XA(O)) =1

This block has the following associated quiver:

X0 S X, 05X 05
sy = =
A0 Bo A(l)ﬁl A B2

with relations g © ,80 = 0, ,Bz o ﬁz’—l = 0, Q; O ;1 = O, ,Bz OQ; = Q41 © /Bi+1 fOT‘ 1 2 0.

3.2.3 Objects Ay

In this subsection we define the objects Ay in the category Rep(S,), and list some of their
properties. These objects are defined for any k € Z, and any v € C.

By definition, A is the image of an idempotent z; € End@(sy)(f)@") (the latter is
given explicitly in [CO2, Section 3.1]), and satisfies:

Lemma 3.2.3.1. S,(Ag) & CInj({1,...,k},{L,...,n}) 2 Indg>*%s o C.
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This is part of the definition of the functor S, in [D2, Theorem 6.2].

Remark 3.2.3.2. The tensor functor S, takes h®* to CFun({1, ..., k}, {1, ...,n}) ([CO] uses
this as part of the definition).

Example 3.2.3.3. A; = 1 (unit object in monoidal category Rep(S,)), A1 = b.

Remark 3.2.3.4. Deligne in [D2] denotes the full subcategory of Rep(S,) whose objects
are {Ag}r>o by Repo(S,). This subcategory is a tensor subcategory (with respect to
the tensor product in Rep(S,)), and it is used as the first step in defining the category
Rep(S,). Namely, one first describes the structure of Repy(S,) as a C-linear rigid sym-
metric monoidal category (see [D2, Section 2]) and then defines Rep(S,) as the Karoubi
envelope of Repy(S,).

Comes and Ostrik, on the other hand, consider the full subcategory (denoted by
Rep, (S.)) of Rep(S,) whose objects are {§®*}x>o. This is also a tensor subcategory. They
start by defining the structure of EEBO(SU) as a C-linear rigid symmetric monoidal category
(see [CO, Section 2]) and then define Rep(S,) as the Karoubi envelope of Rep, (S, ).

In [D2, Section 8.2], Deligne showed that these two definitions are equivalent.

We now describe the Hom-spaces between the objects Ag. We start by introducing

the following notation (see [CO, Section 2|):

Notation 3.2.3.5.

e By a partition 7 of a set S we will denote a collection {m;}icr,m; C S, such that
m;Nm; =0 if i # 7, and |J,.;m = S. The subsets m; will be called parts of w. The
number of parts of 7 will be denoted by ().

o Let P,, be the set of all partitions of the set {1,...,7,1',...;s'}; Pys is then the set
of all partitions of {1’,...,s'}, P.o is the set of all partitions of {1,...,r}, Po :=
{empty partition}.

o Let Pr,s be the subset of P, consisting of all the partitions m such that ¢,j do not lie

in the same part of 7 whenever ¢ # 7, and similarly for ', 5'.
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e The following diagrammatic notation will be used for elements of P, (resp. P, ,): let
m € P, 5. We will represent 7 by any graph whose vertices are labeled 1,...,r,1',..., ¢,
and whose connected components partition the vertices into disjoint subsets correspond-

ing to parts of 7.

For our convenience, we will always present such graphs as graphs with two rows of
aligned vertices: the top row contains r vertices labeled by numbers 1,...,7, and the

bottom row contains s vertices labeled by numbers 1, ..., s'.

Remark 3.2.3.6. In this diagrammatic representation, partitions m € Pr,s are exactly
those which are represented by bipartite graphs with deg(v) < 1 for any vertex v. These

partitions have exactly one diagram which represents them.
Example 3.2.3.7.

1. Let m € Pes,m := {{1,1,3},{2,4,5},{2,3'},{6}}. The diagram representing m can

be drawn as:

1/ 2/ 3/

2. Let ' € Bs3, " = {{1,1},{2,3'}, {2}, {3}, {4}, {5}, {6}}. The diagram representing

7' is:

Notice that m ¢ P 3, but ©' € Pp 3.

We now describe how to “glue” two diagrams together to obtain a new diagram.

Let m € P, p € P,;. We will denote the vertices in the top (resp. bottom) row of =
by 1,...,7 (resp. 1,...,s'),and the vertices in the top (resp. bottom) row of p by 1/, ..., s’
(resp. 17,...,t").
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We draw the diagram of 7 on top of the diagram of p, with the bottom row of =
(vertices 1/, ..., s') identified with the top row of p. We will call the diagram obtained the
gluing of m, p, and will denote it by Dy ,.

We next consider the diagram induced by D, , on the vertices 1,...,7,1",...,t" (by
“induced diagram” we mean the diagram in which two vertices lie in the same connected
component iff they were in the same connected component of Dy ,). This diagram (and
the partition in P, it represents) will be denoted by px 7.

The second piece of information we want to retain from the diagram D, , is the number

of connected components lying entirely in the middle row. We will denote this number

by n(p, 7). Thus

# connected components of D, , = (D, ,) = n(p,m) + l(p % )

Example 3.2.3.8. Let 7 € FPs5, 7 := {{1,1',3},{2,4,5},{2/,3'}, {4}, {5'}, {6}},

p E P5,4,p — {{11’2/1741’ 4//}’ {21’3/}, {5/}, {111,3/1}}.

Then the diagrams of 7, p can be drawn as:

p — 1/ 2/ - 3/ 4/ 5/



Next, we draw the gluing of , p, denoted by Dy ,:

D:p=1 2 3 4——-35
~_ > 7
‘ 7N
V 2 —3 4 5
\—//
Then
prxm= 1 2 4———-5

ie. pxm={{1,2",3,4"},{1”,3"},{2,4,5},{6}} (partition of the set {1,...,6,1”,...,4"}),

and n(p,m) = 2.

The following statement is used by Comes and Ostrik in [CO, Definition 2.11] as the

definition in the construction of Rep(S,); Deligne derives it

Definition 3.2.3.9. Let r,5 > 1. The space Hompgeys,)(h®", h®°) is defined to be CP,,

and the composition of morphisms between tensor powers of h is bilinear and given by

the following formula: for m € P, p € Py,

pom :=v¥Ppxr e CP,,

The following statement is used as a definition in [D2, Definition 3.12], and can easily

be derived from the definition of Ay (c.f. [CO2, Section 3.1]) and from Definition 3.2.3.9.

Lemma 3.2.3.10. Let 7,5 > 1. The space Hompey(s,)(Ar, As) is CP,;, and the com-

position of morphisms between the objects Ay is given by the following formula: for

WEPr,s,PGPs,t,

pom = Z Pprr(V)T € CPyy

Tepr,t:p*ﬂ*C'r

where
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e For v € P.;, pxm C 7 means that the diagram of T contains the diagram of p*m as a

subgraph (equivalently, T is a coarser partition of the set {1,...,r,1",...,t"} than p*m),
® Donr 1S the polynomial
Porr(x) = (z = U7))(z = U(7) = 1)...(z = U(7) — n(p,7) + 1)
Example 3.2.3.11. Let s € Pss,p € Py, =

{{1, 1}, {2,3}, {2, 4}, {3}, {4}, {5}, {&'}},
p = {{1,3"},{1",2'},{2"},{3,4"},{4'},{5'}}. The diagrams representing 7, p can

be drawn as:

=

5/

Gluing 7 and p together, we get:
Dy, = T 5

>/
TN
e

5/

Then

p*T =

ie. prm={{1,3"},{1”,4},{2"}, {2,4"},{3}, {5}} and n(p,7) = 2.

Next, we are looking for 7 € P54 such that the diagram of 7 contains p x 7 as a
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subgraph. There are three such partitions 7:

e 7, = p*, in which case p,, - (z) = (z —6)(x = 7).

®
o= 1 2 3 4 S
1//>2//%3u< 47

in which case p -, (x) = (z — 5)(z — 6).

3= 1 2 3 4 5

in which case p,rr(z) = (z — 5)(z — 6).
Thus pom = (v —6)(v—T)1 + (v — 5)(v — 6)12 + (v — B)(v — 6)73.

The following morphisms between the objects Ay will be used frequently.

Let r >0, k>1,1<[<k.

Definition 3.2.3.12. Denote by res; the morphism A ; — Ay given by the diagram

1 2 3 -1 [+1 [+2 k+1

R N A e

1 2 3 [-1

By abuse of notation, we will also denote by res; the maps Pr,kﬂ — Isr,k, (Cpr,kH —
CP, ), given by m > res; o .

Notice that given 7 € Pr,kﬂ, a diagram describing the partition res; o w € I—’T,k can
be obtained by removing a vertex (labeled !') from position [ of the bottom row of the
diagram of =, and shifting the labels of the vertices lying to the right. If the vertex
removed was connected to another vertex by an edge, then the edge is removed as well,

but the second vertex stays.
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Definition 3.2.3.13. Denote by res; the morphism Ay — Agyq given by the diagram

1 2 Z,i [-1 \l+1 \
1 2 3 [-1 I+1 kE+1

By abuse of notation, we will also denote by res; the maps P — Prji1, CPyx —

CPr k1 given by 7+ res} o .

Notice that given 7 € P, x, a diagram describing the partition resf o € P, x4 can be
obtained by inserting a solitary vertex (labeled ') in position [ of the bottom row of the

diagram of 7, and shifting the labels of the vertices lying to the right.

Remark 3.2.3.14. Let n € Z,. Fix k,l such that 1 <k <n—1,1 <[ < k. Denote
res; ;= Sy(resy) : CIng({1,...k+ 1}, {1,...,n}) = CInj({1,....k},{1,...,n})
res] := Sy(res)) : CInj({1,...,k},{1,...,n}) = CInj({1,...,k+1},{1,...,n})

Denote by ¢; the injection

7 if 4 <1
{1,..,k} =>4l . k+1}, i
14+1 fi>1

Then given g : {1,....,k + 1} — {1,...,n}, we have res;(g) = g oy, and given f :
{1,..,k+1} — {1,...,n}, we have

resi(f) = > g
gelnj({1,....k+1},{1,....n}):
gou=f

49



Example 3.2.3.15. Let 7 € Ps5,m:= {{1,1'},{2'},{2,3'}, {3}, {4, 4}, {5}, {5'}}, i.e.

=1 2 3 4 5

1" 2/ \ 3 l’ 5
Then
resy(m) = 1 2 3 4 5
1" 2’* 4'\ 5 6’
and
ress(m) = T 2 3 /4 5
v 2/ 3 4

Remark 3.2.3.16. One can define an endomorphism Zj € End@(sﬂ(b@k) similar to the
idempotent zx, so that Im(Zy) = lift,(Ax) for any v (this is a direct consequence of the
definition of lift,).

By abuse of notation, we will denote Im(Z;) by Ay as well, and use the isomorphism

A 2 lift,(Ag) in Lemma 5.0.0.40.

3.2.4 Abelian envelope

This section follows [COZ2], [D2, Proposition 8.19].

As it was mentioned before, the category Rep(S,) is defined as a Karoubian category.
For v ¢ Z., it is semisimple and thus abelian, but for v € Z,, it is not abelian. Fortu-
nately, it has been shown that Rep(S,) possesses an “abelian envelope”, that is, that it
can be embedded in an abelian tensor category, and this abelian tensor category has a
universal mapping property.

The following result was conjectured by Deligne in [D2, 8.21.2], and proved by Comes
and Ostrik in [CO2, Theorem 1.2]:
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Theorem 3.2.4.1. Let n € Zy. There exists an abelian C-linear rigid symmetric
monoidal category M“b(s,,zn), and an embedding (fully faithful tensor functor)

t: Rep(Sy—n) — @“b(&,:n) which makes the pair (&32"”(5,,:”), L) the “abelian en-
velope” of Rep(S,=n) in the following sense:

Let T be an abelian C-linear rigid symmetric monoidal category such that all Hom-
spaces are finite-dimensional and all objects have finite length; in addition, let there be a
tensor functor of Karoubian categories G : Rep(S,—,) — T. Then the functor G factors
through one of the following:

1. The functor S, : Rep(S,—n) — Rep(Sy) (this happens iff G(Apy1) = 0).
2. The functor v : Rep(S,—n) — @“b(S,,:n) (this happens iff G(Ani1) #0).

For v ¢ Z., we will put (Eg_)“b(s,,), L) := (Rep(Sy), IdRep(s.))-
An explicit construction of the category @a”(s,,:n) is given in [CO2]. We will only

list the results which will be used in this thesis.

Remark 3.2.4.2. The category @“b(s,,) is a pre-Tannakian category (c.f. [CO2, Section
2.1, Corollary 4.7]). This means, in particular, that the objects in Rep®(S,) have finite

length, and the Hom-spaces are finite-dimensional.

We start by introducing the category C, of finite-dimensional representations of the
quantum SL(2). The category C, is a C-linear abelian category, and has the structure of
a highest weight category (with infinitely many weights). When ¢ is a root of unity, this
category can be non-semisimple, and this is the case which will be of interest to us.

This category has a structure very similar to the structure of the category _Rﬁab(S,,);
moreover, the C-linear Karoubian category TL(g) of tilting modules in C, (also known
to be equivalent to the Temperley-Lieb category) has a structure very similar to that of
Rep(S,). See [CO2, Par. 1.4, 2.3, 4.3.3] for more details.

We will use the description of the structure of C, given in [CO2|, [A], [APW]. The

main facts about C, which will be used are concentrated in the following lemma.

Lemma 3.2.4.3.
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1. All the projective modules in Cq are injective and conversely. Thus all the projective

modules of Cq are tilting modules, i.e. lie in the category TL(q).

2. For q # %1 being a root of unity of even order, TL(q) has at least one non-semisimple
block (all of the non-semisimple blocks of TL(q) are equivalent as Karoubian cate-
gories); the isomorphism classes of indecomposable objects in this block can be labeled

Qo, Q1, -... Each Q; has a unique highest weight.

Denote by L; the simple module in C; having the same highest weight as Q;, and
by M;, My, P; the corresponding standard, co-standard and indecomposable projective

modules in Cq. With these notations, we have:

e For any i > 0, there exists an injective map M; — Q;. Moreover, [Q; : L;] = 1.
e The module Qg is standard, co-standard and simple.

o The module Q; is a projective module iff i > 1. Furthermore, {Q;}i>1 is the
complete set of isomorphism classes of indecomposable projective modules in the

corresponding block of C,.

Proof. 1. This follows from [APW, Theorem 9.12], [A, 5.7].

2. For general information on non-semisimple blocks of T'L(q) and the indecomposable
tilting modules, c¢.f. [CO2, Lemma 2.11, Section 4.3.3], [A, Theorem 2.5, Corollary
2.6].

e Q; is a standardly filtered having the same highest weight as L; (by definition),
therefore there exists an injective map M; — Q; (c.f. [H, Proposition 3.7]). Also,
from [A, Theorem 2.5] we know that the highest weight of Q; occurs with multiplicity
1, therefore [Q; : L;] = 1.

e C.f. [A, Section 4].
e Let St, be the Steinberg module (c.f. [A, Section 5], [CO2, Section 4.3.3)).
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By [APW, Lemma 9.10], for any finite dimensional module E € C,, the module
St,®F is projective. Furthermore, [APW, Theorem 9.12| implies that any projective
module in C, is a direct summand of St, ® E for some E.

Next, it is known that a module M € T'L(q) has quantum dimension zero iff it is a
direct summand of St, ® E for some E € TL(q) (c.f. [CO2, Section 4.3.3]). Thus a
module M € T'L(q) has quantum dimension zero iff it is projective.

Finally, [CO2, Lemma 2.11] tells us that Q; has quantum dimension zero iff i >
0. Thus Q; is a projective module iff ¢ > 0. From Part (1) we deduce that any
indecomposable projective module in the corresponding block of C, is isomorphic to

Q; for some 7 > 0.

O

We can now describe the blocks of the category Rep®(S,) (c.f. [CO2, Proposition 2.9,
Section 4]).

Theorem 3.2.4.4. The blocks of the category @“b(s,,), Jjust like the blocks of Rep(S,),
are parametrized by ~-equivalence classes. For each ~-equivalence class C, the block
Rep™(S,)c corresponding to C' contains L(Rep(S,)c) (the block of Rep(S,) corresponding
to C, namely, the indecomposable objects Xy such that A € C).

e For a trivial ~-class C = {)\}, the block @“b(&,)c is equivalent to the category Vectc

of finite dimensional complex vector spaces (and is also equivalent to Rep(S,)c).

e For a non-trivial ~-class C = {\®};5q, the block Rep™(S,)c is equivalent, as an abelian
category, to (any) non-semisimple block of the category C, (such a block ezists if ¢ # +1
is a root of unity of even order). The indecomposable object X, corresponds to the

indecomposable tilting module Q; (using the notation of Lemma 8.2.4.3).

Using the theorem above, we can prove different properties of the category Rep®(S,)

in the following way:
1. Reduce the proof to a block-by-block check;
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2. Prove the property for the semisimple blocks by checking that it holds for the

category Vectc.

3. Prove the property for the non-semisimple blocks by importing the relevant result

for the category C,.

Using this approach, we prove that Rep®(S,) is a highest weight category (with in-
finitely many weights).

Proposition 3.2.4.5. The category Rep“b(S,,) 15 a highest weight category corresponding
to the partially ordered set ({Young diagrams},>), where

A>piff A p, A Cop

(namely, X® > A0 fi < j).

Proof. As it was said before, this can be proved by checking each block separately. The
semisimple blocks obviously satisfy the requirement; for the non-semisimple blocks, the

theorem follows from the fact that C, is a highest weight category and from Theorem

3.2.2.6. (]
Proposition 3.2.4.6.

1. In the category Efg“b(s,,) all projective objects are injective and conversely.

2. All projective objects of Rep™(S,) lie in Rep(S,).

Proof. The statement is obvious for semisimple blocks. For non-semisimple blocks, the
first part follows from [APW, Theorem 9.12].

To prove second part of the Proposition, we recall that the equivalence between non-
semisimple blocks of @“b(SV),Cq, by definition restricts to an equivalence between non-
semisimple blocks of Rep(S,),TL(q) (see [CO2]). Lemma 3.2.4.3 states that the corre-

sponding statement is true for C,, T'L(q), and we are done. O
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We will use the following notation for simple, standard, co-standard, and indecompos-

able projective objects in @“b(&,}:

Notation 3.2.4.7. Let X be any Young diagram. We will denote the simple (resp. standard,
co-standard, indecomposable projective) object corresponding to A by L(A) (resp. M()),
M(\)*, P(N)).

Remark 3.2.4.8. We will show in Corollary 3.2.4.12 that the co-standard object M(\)*
is the dual (in terms of the tensor structure of @“b(s,,)) of the standard object M(A).
This justifies the notation M(\)*.

Remark 3.2.4.9. Notice that if A lies in a non-trivial ~-class, the objects L(A®), M(\®),
M(AD)* P(A®) correspond to the modules L;, M;, MY, P; € C,, respectively.

Proposition 3.2.4.10.

1. Assume X lies in a trivial ~-class. Then

Xy 2 P()) 2 M) = M) 2 L()\)

2. Let {A\®};50 be a non-trivial <-class, and By the corresponding block of Rep™(S,).
Then

o Xy = LAO) = MAO®) = M(A®)*,
e For any i > 0, P()\(i)) & X\ b

e For any i > 0, we have short exact sequences
0= MOAHDY 5 POD) 5 M(AD) -0
0= MOD)* = POAD) 5 M) 0
e The socle filtration of P(A) has successive quotients

LOORLACD) © L) LAY)
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if i > 0, and successive quotients L(A@); LOAW); L(A®) 4f i = 0.

Proof.
Follows directly from Theorem 3.2.4.4, part (1).

. From Lemma 3.2.4.3 and from the equivalence described in Theorem 3.2.4.4, we im-

mediately conclude that

X0 =2 LAY 2 MOA®) 2 M(A©®)*

From Lemma 3.2.4.3, we know that {X,@ }i>1 is the set of isomorphism classes of
indecomposable projective objects in the block B,. In other words, there exists a

bijective map f : Z, — Zsg such that X)) = P()\(i)) for any ¢ > 0.

Lemma 3.2.4.3 also tells us that there exists an injective map 9, : M(AY)) < X for
any j > 0.

Composing @) with the map Xy ooy = P(/\(f(i))) —» M()\(f(i))), we get a non-zero
map X,iuw) — X e . Using Theorem 3.2.2.6, we see that |f(f(¢)) — f(¢)] < 1 for

any i > 0, i.e. |f(i) —i| <1 for any ¢ > 1 (since f is surjective).

Notice that
dim Hom_Ripab(Su)(P(w)), M(A@)) = dim Hom Rept(5,) (Ko, Xa) = 1

which means that f(0) = 1. Together with the condition: |f(¢) —¢| < 1 for any ¢ > 1,
this implies that f(i) =i+ 1 for any ¢ > 1.

Thus we proved that for any i > 0, P(A®) 2 X,u11). We now use the BGG reciprocity
for the highest weight category @“b(&,):

Sublemma 3.2.4.11.
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(a) For any M € @“b(S,,), we have:
dim Hom g,y (P(AY), M) = [M:L(AD)]

for any 7 > 0.

(b)
(PAD):MOAD)) = [MAD)LAD)] = [MOAD) LA

for any i,j > 0 (the brackets in left hand side denote multiplicity in the standard
filtration,).

Proof. The proof is standard (see e.g. [H, Theorem 3.9(c), Theorem 3.11]).

Applying Sublemma 3.2.4.11(a) to M := P(A®) 2 X, ;1) and using Theorem 3.2.2.6,

we see that the composition factors of P(A®) are
LO®), LA, LAY, LOD) if i > 0
and
L), LOM), LOAO) ifi=0
(notice that the cosocle of P(A®) is necessarily L(A®) for any i > 0).
Fix i > 1. We have a map P(A®) - M(A®) and a map M(\®) Sat (A1),

Comparing the composition factors of P(A®), P(A(+1), we conclude that one of the
following holds:

e M(\®) =2 L(\®).
e The socle filtration of M(A®) has successive quotients L(AG1); L(A®).
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Applying Sublemma 3.2.4.11(b) to j := i — 1, we see that
[MOA®).LAEN] = (POED):MOD)) =1
Thus we conclude that the socle filtration of M(A®) has successive quotients
LACD) L), |
The socle filtration of the standard objects immediately implies that the following

sequence is exact:

0 — M(AGD) ¥4 p(\D) — M(A\D) = 0

Next, the socle filtration of M(A®)* can be obtained from the socle filtration of M(A®),
and it has successive quotients L(A®); L(A(-1).

Since P(ACD) is projective, we get a map ¢ : P(AC=1) — M(A®)* such that the

following diagram is commutative:

P(AG-D) 2 M(\D)*

T

L(A¢-D)

The socle filtration of M(A®)* then implies that the map ¢ is surjective, and we get

an exact sequence

0 — MDY 5 POAED) 5 MOAD)* - 0

Finally, the socle filtration of P(A®)) can be deduced from the above exact sequences

and the socle filtrations of the standard and the co-standard objects.
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Corollary 3.2.4.12. The co-standard object M(N)* is the dual (in terms of the tensor
structure of Rep™(S,)) of the standard object M(X).

Proof. By the construction of the Deligne category Rep(S,), all the objects in Rep(S,)
are automatically self-dual (c.f. [D2, Section 2.16], [CO, Section 2.2]). So Proposition
3.2.4.10 immediately implies that M())* is the dual of M() if whenever X lies in a trivial
X-class, or is minimal in its non-trivial ~-class.

It remains to check the case when X lies in a non-trivial ~-class {A®};5¢, and X =

A 4> 0. Then we have an exact sequence
POED) Ly pA®) — M(AD) — 0

Since the category @“b(&,) is pre-Tannakian, the duality functor X — X* is con-
travariant and exact, and we conclude that the dual of M(A®) is the kernel of the map
f*: P*(A®) — P*(A\6D), The autoduality of P(AG+D), P(A®), together with Proposi-
tion 3.2.4.10 and the fact that f* # 0, immediately implies that the dual of M(A®) is
M(A®)* as wanted. O
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3.3 Parabolic category O

In this section, we present the results on the parabolic category O which we will use. The
material of this section is mostly based on [H, Chapter 9].

We start with some definitions.

Definition 3.3.0.13. A unital vector space is a vector space V with a distinguished

non-zero vector 1.

Fix a unital vector space (V, 1) with dimV < oo.
We will use Notation 1.2.0.1 for the parabolic subalgebra py,c1y of gl(V), as well as
the mirabolic subgroup B;, the mirabolic subalgebra pcy, the unipotent group $l; and

the nilpotent subalgebra .

Remark 3.3.0.14. Notice that p has a one-dimensional center (scalar endomorphisms of

V), and we have: p = Cldy @pci.

We now want to talk about a subcategory of the category of finite-dimensional repre-

sentations of the mirabolic group $B;. For this, we will use the following lemma:

Lemma 3.3.0.15. (a) There is a short ezact sequence of groups

1— Y —>£]—31——>GL(V/C1) —1

(b) For any irreducible finite-dimensional algebraic representation p : B — Aut(E)
of the mirabolic subgroup, Uy acts trivially on E, and thus p factors through
GL (V/C1).

Proof. In part (a), one only needs to check that this sequence is exact at ;. This is
obvious once we choose a splitting V = C1 & U, with a chosen splitting, this short exact
sequence splits and we get an isomorphism §; = GL(U) x U*.

In part (b), recall that the group 4; is unipotent (and even abelian), so there exists a

non-zero vector v € E which is fixed by ;.
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Since E is an irreducible finite-dimensional representation of By, E has a basis con-
sisting of vectors of the form p(z)v for some x € Py. On each such vector p(z)v, i; acts
trivially; thus $l; acts trivially on E.

O

We now consider the category Rep("3;) of finite-dimensional algebraic representations

of P1. In this category, we define:
Definition 3.3.0.16.

o Let p: By — Aut(E) be an irreducible finite-dimensional algebraic representation of the
mirabolic subgroup. The above lemma states that p factors through GL (V/C1). We
say that p is a GL (V/C1)-polynomial representation of By if p : GL (V/C1) — Aut(E)
is a polynomial representation (c.f. Notation 2.0.6.1). Recall that the latter condition

is equivalent to saying that p extends to an algebraic map End (V/C1) — End(E).

e The category of GL (V/C1)-polynomial representations of B, is defined to be the Serre
subcategory of Rep("B;) generated by the irreducible GL (V/C1)-polynomial represen-
tations of ;.

That is, a finite-dimensional algebraic representation E of 9, is called GL (V/C1)-
polynomial if the Jordan-Holder components of E are GL (V/C1)-polynomial represen-
tations of 2]_31.

We denote the category of GL(V/Cl)-polynomial representations of B; by
Rep(‘«ig]l)GL(V/C]l)—poly-

We are now ready to give a definition of the parabolic category O which we are going

to consider:

Definition 3.3.0.17. We define the parabolic category O for (gl(V),p), denoted by Oy,
to be the full subcategory of Mody g (v)) whose objects M satisfy the following conditions:

e M is a Harish-Chandra module for the pair (gi(V),B1), i.e. the action of the Lie

subalgebra pcy on M integrates to the action of the mirabolic group ;.
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Furthermore, we require that as a representation of By, M be a filtered colimit of

GL (V/C1)-polynomial representations, i.e.
lem € Ind — Rep(@]t)GL(V/(C]l)—poly

e M is a finitely generated U(gl(V))-module.

We will also use the notation Ind — O}, to denote the Ind-completion of O} (i.e. full

subcategory of M odygvy) whose objects M satisfy the first of the above conditions).

When the space V is fixed, we will sometimes omit the subscript V and write O for
short.

We now fix a splitting V = C1 @ U. The Lie algebra pc; can then be expressed as
Per = gl(U) x U*, and we have: w} = U*, ey = ul @ gl(U).

Moreover, in that case we have a splitting gl(V') = p ® u,’, where u; = U. This gives

b
us an analogue of the triangular decomposition:

gl(V) = Cldy ou, ®u; @ gl(U)
We can now rewrite the above definition of the parabolic category O (compare with

the usual definition in [H, Section 9.3]):

Definition 3.3.0.18. We define the parabolic category O for (gl(V'),p), denoted by OY,
to be the full subcategory of Mody (g (vy) whose objects M satisfy the following conditions:

e Viewed as a U(gl(U))-module, M is a direct sum of polynomial simple U(gl(U))-
modules (that is, M belongs to Ind — Modygiuy) poly)-

e M is locally finite over u;.

e M is a finitely generated U(gl(V'))-module.

Remark 3.3.0.19. One can replace the requirement that u;,* act locally finitely on M by
the requirement that U (u"f ) act locally nilpotently on M.
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The next propositions are based on [H, Section 9.3| as well:

Proposition 3.3.0.20. The category O}, (resp. Ind — Of) is closed under taking direct
sums, submodules, quotients and extensions in Ogv), as well as tensoring with finite

dimensional gl(V')-modules.

Recall that in the category O we have the notion of a duality (c.f. [H, Section 3.2]):
namely, given a gl(V)-module M with finite-dimensional weight spaces, we can consider
the twisted action of gl(V) on the dual space M*, given by A.f := f o AT, where AT
means the transpose of A € gl(V'). This gives us a gl(V)-module M*. We then take MV
to be the maximal submodule of M* lying in the category O. The module MV is called

the dual of M in O, and we get an exact functor (-)¥ : O — O.

Proposition 3.3.0.21. The category O} is closed under taking duals, and the duality

functor (-)V : O — (OF)% is an equivalence of categories.

Definition 3.3.0.22. A module M over the Lie algebra gl(V') will be said to be of degree
K e Cifldy € gl(V) acts by K 1Idy on M.

We will denote by Oﬁyv the full subcategory of Of, whose objects are modules of degree

Note that for a fixed decomposition V = C1 @ U, for a module M of O} to be of
degree v is the same as to require that Idcy € gl(V) acts on each subspace S*U of M by

the scalar v — ||

Definition 3.3.0.23. Let v € C. Define the functor deg, : Modygvy) — Modygv)) by
putting deg, (F) to be the maximal submodule of E of degree v (see Definition 3.3.0.22).
For a morphism f : E — E’ of gl(V')-modules, we put deg,(f) := f|deq,(5)-

Let E € Mody g vy). The maximal submodule of E of degree v is well-defined: it is
the subspace of E consisting of all vectors on which Idy acts by the scalar v, and it is a

gl(V)-submodule since Idy lies in the center of gl(V).
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One can show that the functor deg, : Modygvy — Modyvy) is left-exact. More-
over, it is easy to show that the category O} is a direct summand of Oy, and the functor

deg, : O — OS,V is exact.

3.3.1 Structure of the category O},

In this subsection, we present some basic facts about the parabolic category O for
(gl(V'),p) of degree v and the indecomposable objects inside it.
Fix v € C, and let (V,1) be a finite-dimensional unital vector space with a fixed

splitting V =Cl1 & U.

Definition 3.3.1.1. Let A be a Young diagram.
M,(v — |\, \) is defined to be the gl(V)-module

U(GI(V)) ®uy ST

where gl(U) acts naturally on S*U, Idy € p acts on S*U by scalar v, and u acts on S U

by zero.
Thus M,(v — |A|,A) is the parabolic Verma module for (gl(V),p) with highest weight
(v — AL, A) iff dim V' — 1 > £()), and zero otherwise.

We will sometimes refer to the parabolic Verma modules as “standard modules”.

Definition 3.3.1.2. L(v—|\|, A) is defined to be zero (if dim V' —1 < £()\)), or the simple
module for gl(V) of highest weight (v — |A|,\) otherwise.

The following basic lemma will be very helpful:

Lemma 3.3.1.3. Let A\ such that £()\) < dimV — 1. We then have an isomorphism of
gl(U)-modules:
My(v — |\, \) = SU ® SAU

Proof. Follows directly from the definition of M,(v — |A|,A) and the PBW theorem for
gl(V). O
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Proposition 3.3.1.4.

1. Let p, T be two Young diagrams. Then
dimHomOS’v (My(v — |p|, p), My(v — |7|,7)) =0

if w, T lie in different ~-classes.

2. Fiz a non-trivial X-class {\D}, \@ c X c X®) ¢ ... For any i,j € Z,, we have

dim Hom e (M, (v — XD XD, My(v — |[AD| M) =0 if j #£4,i+1, and

dim Homosyv (Mp(z/ - |)\(¢+1)| ’)\(i+1)), M, (v — ‘)\(i)| 7)\(i))) =14 dimV —1> g()\(iﬂ))
3. For any Young diagram A such that dimV — 1 > £(\), we have:

dimEndgr (Mp(v — [A[, ) =1

Proof. 1. Consider a gl(V)-morphism M, (v — |u|,p) — M,(v — |7|,7), and assume it
is not zero. Then the weights (v — |u|,u), (v — |7|,7) are W-linked, i.e. there exists
an element w in the Weyl group such that w((v —|p|, u) +p) = (v —|7|,7) + p, where
p=(dimV,dmV - 1,dimV —2,..) =dimV(1,1,1,...) — (1,2,3,...).

This is equivalent to saying that w(v—|u|, u1—1, po—2,...) = (v—|7|, 71 —1,72-2,...),
which means that p, 7 lie in the same ~-class (in fact, we get that w = (1,2,...,k) €

Saimv = Weyl(gl(V)) for some k > 1).

2. Consider a non-trivial <-class {A®};,A0 c A® c A® < ... (recall that this can
occur only if v € Z,). Let 4,7 > 0, and assume there is a non-zero gl(V')-morphism

My(v — |AD| ) A0)) — M, (v — |A9],A®),.
Frobenius reciprocity then gives us a morphism of gl(U)-modules:
SXU — My(v — |AD], AD) o
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By Lemma 3.3.1.3, the gl{(U)-module M, (v— | X9 |, X9)| ;) is either zero (if dim(U) =
dimV — 1 < £(A®)), or isomorphic to

SU @ MU = P st

+
;«LEI)‘(i)

We immediately conclude that A®) C AU) (which means that i < 7), and that AY) €
I;r(i). In fact, Lemma 3.2.2.2 implies that 7 = ¢+ 1 in that case, since for j > i+ 2, we
get: /\53) = )\ff) +1 for any k =14+ 2, ..., j, contradicting \¥) € I;r(i).

It remains to check that
dim Homgs (M (v — ATV [, A60), My (v — AO[,AD)) = 1 if dim V—1 > £(ACHD)

We start by noticing that the same Frobenius reciprocity argument used above guar-

antees us that
dim HomOSV (Mp(u — |)\(i+1)' ,A(”l)),Mp(V _ I/\(i)l ,)\(i))) <1

so we only need to check that if dimV — 1 > £(A¢tD), then there exists a non-zero
morphism

My(v — [XED]XED) 5 M (v — [AD |, A0)

This statement can be proved by induction on i > 0.

Base: Assume dimV —1 > ¢(A®). We need to check that M,(v — [A®|,A9) is not
simple, i.e. isn't equal to L(v — [A®|, AX(?). But the latter is finite-dimensional (since
(v—|AO] ;X @) is an integral dominant weight), while M,(v — |A\®|, A®) clearly isn’t
finite-dimensional (due to Lemma 3.3.1.3, for example).

Step: Let 4 > 1, and assume dim V —1 > £(AG*D). If there exists a non-zero morphism
My(v—[AO|,A0) —s M (v—|AC=D|,AE=D) then this morphism is not injective (can

be seen from Lemma 3.3.1.3), therefore M,(v— |/\(i)| , A is not simple; so there exists
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a non-zero morphism M, (v — [ACHD| AETD) — M (v — |A®],AD), as needed.

3. This statement follows immediately from Lemma 3.3.1.3, which gives us an isomor-

phism of of gl(U)-modules:

My(v—|Al,\) 2 SU® S = € SHU

+
HELY

The previous proposition immediately implies:

Corollary 3.3.1.5. Let X lie in a trivial ~-class. Then My(v — |\, ) is either zero (iff
dimV — 1 < £(X)), or a simple gi(V')-module. In particular, if v ¢ Z., this is true for

any Young diagram .

Proof. Recall that since v ¢ Z,, each Young diagram X lies in a trivial ~-class (see

Lemma 3.2.2.2). The result follows from Proposition 3.3.1.4. |

Remark 3.3.1.6. Note that Proposition 3.3.1.4 implies that the category OE’V decomposes
into blocks (each of the blocks is an abelian category in its own right). To each <-class of
Young diagrams corresponds a block of O,f’v (if for all Young diagrams X in this ~-class,
2(\) > dimV — 1, then the corresponding block is zero), and to each non-zero block of
O}y corresponds a unique ~-class.

Proposition 3.3.1.4 also implies that the block corresponding to a trivial ~-class is

either semisimple (i.e. equivalent to the category Vectc), or zero.

Now fix a non-trivial ~-class {\®};, and i > 0 such that £(A\C+)) < dim V — 1.
Proposition 3.3.1.4 implies that the maximal non-trivial submodule of M,(v —

l)\(i)l AD) s Ly — |,\(i+1)| , A6 We conclude that

Corollary 3.3.1.7. Let {\®}, be a non-trivial ~-class, and i > 0 be such that £(A®¥) <
dimV — 1.
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Then there is a short exact sequence
0 — L{v — AV AT 5 My (v — [AD],0D) = Ly — |AD],09) - 0

Corollary 3.3.1.8. The isomorphism classes of the generalized Verma modules and the

stmple polynomial modules in Oﬁ?cn form a basis for the Grothendieck group of O,‘,’:ch.

Remark 3.3.1.9. Notice that for 4 := max{i > 0 | £(A®) < dimV — 1}, we have
My(v = | A9, A0y = My (v — AP, XDy = Ly — |A®D],AD)

We also obtain the BGG resolution in category OE’V as an immediate corollary:

Corollary 3.3.1.10. Let {\®}; be a non-trivial <-class. Then there is a long ezact
sequence of gl{V')-modules (BGG resolution of L(v — I)\(i)| , MDY by parabolic Verma mod-
ules)

o= My(v — | AEPD] N2 5 M (v — [ AEFDLAEDY o M (v — [AD]AG)

— L(v — |A®],A®) > 0
Proof. Follows immediately from Corollary 3.3.1.7. O

Remark 3.3.1.11. For ¢ = 0, such a resolution is a special case of BGG resolutions in
parabolic category O discussed in [H, Chapter 9, Par. 16].

We now consider the projective cover By(v — [X|,A) of L(v — |X|,A) in O}, The
existence of P,(v—|A|, A) and some of its properties are listed in the following proposition:
Proposition 3.3.1.12.

(a) Category OE,V has enough projectives; in particular, there exists a projective cover of
L(v — |\|, A), which will be denoted by P(v — |A], A).
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(b) For any Young diagram A, the following equality holds:

dimHomos’V(Pp(u — A, A), M) =[M : Lv — |\, \)]

(c) The projective module P,(v — ||, ) is indecomposable and standardly filtered (i.e.

has a filtration where all the successive quotients are parabolic Verma modules).

(d) (BGG reciprocity) The following equality holds for any Young diagrams A, p:

(Bo(v = AL A) = Mp(v — |l ) = [Mp(v — [l )« L(v — |A], A)]
(the brackets in left hand side denote multiplicity in the standard filtration).

(e) The duality functor ()" : Oby, — (O,’/”V)Op takes projective modules to injective
modules and vice versa. In particular, there are enough injectives in the category

O}y, and the indecomposable injective modules are ezactly By (v — |\, \) (which is

the injective hull of L(v — |A|, X))

(f) Whenever X is not the minimal Young diagram in a non-trivial ~-class, the modules
P,(v—|\|, A) are self-dual and therefore injective. In these cases the following equality
holds:

dim Hom ey (M, By (v — M|, ) = [M : L(v — [A|, )]

Proof. The proofs of (a) - (e) can be found in [H, Chapter 9, Par. 8 and Chapter 3, Par.
9-11]; the proof of the first part of (f) is based on [H, Chapter 9, Par. 14] and on Corollary
3.3.1.7. The equality in (f) can then be proved in the same way as the equality in (b). O

We can now describe the standard filtration of the indecomposable projectives

P,(v —|A|, A), and their other useful properties:

Proposition 3.3.1.13.
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(a) Assume X lies in a trivial ~-class. Then

By = ALA) = Mp(v — Al A) = L(v — |A], A)

(b) Let {\D}; be a non-trivial <~-class. Then

Py(v — A ) XO) 2 (v — [AO) Ay

(c) Let {\®}; be a non-trivial <-class and let i > 1. Then for i such that £(A®) <

dimV — 1, we have short exact sequences

0 = My(v — ]AED] AEDY o By(v — |AD],0D) - My (v — A9, 09) - 0

0= M, (v — | AP ,A9) = B(v — |AD],AD) = MY (v — [AED| 26Dy 5 0

and the socle filtration of Py(v — |A®D| X)) has successive quotients

Ly — AP, A0); Ly — |G| XD @ L(v — |ACD] XYY Ly — |AD |, A@)

For i such that £(A\®) > dimV — 1,

Py(v—|AD],00) = M, (v — | AD|,AD) = MY (v = | AP ,AD) = Ly - |AD] ,AD) = 0
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(d) Let {\@}; be a non-trivial ~-class, and let i > 1,5 > 0. Then

(

2 ifi=j,

(A <dimV —1
dimHompp  (Bp(v — [AP[, M), By — N[, A9)) = S0 ip 5 — | =1,
@), £(A0)) < dimV — 1

0 else

Proof. Parts (a), (b) follow directly from the fact that Py(v — [A®|,A®) is standardly
filtered, the BGG reciprocity (see Proposition 3.3.1.12) and Proposition 3.3.1.4. The BGG
reciprocity also implies that for a non-trivial ~-class, denoted by {A\(?},, we have the short

exact sequence
0 My(w = [\, AED) o By = ]\, A9) = My(o = [AO], A9 =5 0

whenever ¢ > 1. Taking duals in of the modules in this sequence, we obtain a short exact

sequence

0= My (v — [AD|,A0) = P(v — AP, A®) = MY (v — [AED] ) AED) — 0

To compute the socle filtration, notice that
Soc(Py(v — |AD|,AD)) 22 L(w — |AB] | X))
since
dim HomogyV(L(V—P\(j)l A9, Pp'(u—\x(">| ,AD)) = [L(v—|AD|,AD) : Lp—|AD|,A0)] = 6

(see Proposition 3.3.1.12(f)).
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The short exact sequences above then imply that
Soc*(Py(v — |AD|,A0)) 2 Ly — NI AED) @ Ly — [AED|,AED)

The socle filtration description then follows, and this proves Part (c).
The dimensions of the Hom-spaces between the indecomposable projectives can be

inferred from the socle filtration and Proposition 3.3.1.12(b, f), which proves Part (d). O

72



Chapter 4

Complex tensor powers of a unital

object

In this chapter, we fix a finite-dimensional unital vector space (V,1). The goal of this
chapter is to define an object V®” which will be an interpolation of the tensor powers

V®™ for n € Z, to arbitrary v € C.

4.1 Description of the setting

In this subsection we will describe the category Ind — (Rep®(S,) ® O} ), which will be
used to define the complex tensor power of the vector space V.

The notation X stands for the Deligne tensor product of abelian categories (c.f. |D1,
Section 5]); in this subsection, we will explain that this category can also be described as
the category of Ind-objects of @“b(s,,) carrying an O,f’v-type” action of gl(V).

Fix a splitting V =Cl & U.

Definition 4.1.0.14. Let X € Ind — Rep™(S,). We say that gl(V) acts on X if given a

homomorphism of C-algebras

px :U(GI(V)) = Endpng_pepers,) (X)
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We say that this action is an O -action if:

e gl(U) C gl(V) acts polynomially on X, i.e. X decomposes as a direct sum X =
@D.c; Y ® E; in Ind — Rep™(S,), with

1. Y; € Ind — Rep®™(S,),
2. E; being polynomial gl(U)-modules,
and the following commutative diagram holds for any a € U(gl(U)):

X — @161}/1,®Ez

px (a)l ®ialg, l

X — @iel Y;i® E;
o U(u}) acts locally finitely on X, i.e. for any Y € _}ie_pab(S,,), f:Y = X, we have:

> (px(a)o F)(Y)

aeu(u:)
belongs to Rep™(S,) (i.e. is a compact object).
e Idy acts on X by the morphism v - Idy.

The category Ind — (Rep®(S,) ® O} ) is the category of pairs (X, px) where X €
Ind—Rep®(S,) and px is an O} y-action on X. The morphisms in Ind— (@“b(&,)ﬁ@zv)

are

Hom((X, px), (Y, py)) := {f € Homy,y_pepers,y (X, Y) | fopx(a) = py(a)of Va € U(gl(V))}

Remark 4.1.0.15. Inside the category I nd—(@“b(SV)IXIOB)V) we have the full subcategory
Ind — (Rep(S,) R O} ;,) whose objects are (X, px) where X € Ind — Rep(S,) and px is

p .
an O -action on X.

Now let v =n € Z,..
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By |KS, Corollary 6.3.2], there exists a unique (up to unique isomorphism) functor

~

Sn o (Ind — Rep(Sy—n)) — Ind — Rep(S,)

which commutes with (small) filtered colimits and satisfies

~

Sn © L@(SV)—*(I"d_@(S")) = Sn

(the notation is the same as in Chapter 2 and Subsection 3.2.1).

Now consider the category Ind — (Rep(S,) X OE’V); it is the full subcategory of the
category of modules Modc(s,jecu(si(v)) Whose objects M satisfy: as a C[S,]-module, M is
a direct sum of finite dimensional simple modules, while as a U(gl(V'))-module, M € Oﬁ,v-

We can define the functor
S+ Ind — (Rep(S,—) B OF /) — Ind — (Rep(S,) ® O )

by setting Sn(X, px) = Sn(X) (with action of gl(V) given by S.(px)). The above
description of Ind — (Rep(S,—n) ® O} /) guarantees that this functor is well-defined.

4.2 Definition of a complex tensor power: split unital
vector space
Fix v € C, and fix a splitting V=CL1 ® U.

Definition 4.2.0.16 (Complex tensor power). Define the object V& of Ind —
(Rep™(S,) ® 0}y by setting

ver .— @(Ugik ® Ak)Sk

k>0
The action on gl(V) on V& is given as follows:
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1 U® A (U © A)* Ueel)”
~—
U* U U* U* u U*
gi(U) sl(U) al(U)

e Idy € gl(V) acts by scalar v,
e u€ U =u, acts by operator

(U®k ® Ak)sk _F*u> (U®k+1 ® Ak+1)5k+1

1 *
F, = 7€—+—1 Z v @ Tes;
1<i<k+1

Here res; : Ay — Ay, as in Definition 3.2.3.13, u as in Notation 2.0.6.1 and k > 0.
o f € U* = uf acts by operator

(UB* @ Ay)Sk ﬂ) (UB1 @ Ay_p)Se-1
Ey = Z Y ®@res

1<i<k

Here res; : Ay, — Ay_; as in Definition 3.2.3.12, f® as in Notation 2.0.6.1 and k > 1.

The action of f on (U®°® 1)% 21 is zero.

e Aegl(U) C gl(V) acts on (U®* ® Ag)"* by

Z A(i)lU@c ® Ida, : (U®k ® Ak)sk — (U®k &® Ak)sk

1<i<k

Lemma 4.2.0.17. The action of gl(V') described in Definition 4.2.0.16 is well-defined.
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Proof. See Subsection 5.2.1. O

Remark 4.2.0.18. The actions of the elements of w}, u" are in fact uniquely determined
by the actions of Idy and gl(U).

To see this, note that the ideal in the Lie algebra gl(V') generated by the Lie subalgebra
CIdy @gl(Uy) is the entire gl(V'). Given two gl(V')-modules My, M, and an isomorphism
M, — M, which is equivariant with respect to the Lie subalgebra CIdy &gl(U), the above
fact implies that this isomorphism is also gl(V')-equivariant.

In other words, if there exists a way to define an action of gl(V') whose restriction to
the the Lie subalgebra CIdy é@gl(U) is given by the formulas above, then such an action
of gl(V) is unique.
Remark 4.2.0.19. Notice that gl(U) acts semisimply on V&, U* = ul acts locally finitely
on V&, thus making it an object of Ind — (Rep®(S,) ® 0}y) (in fact, an object of the
category Ind — (Rep(S,—n)) X O}, /), since Ay € Rep(S,) for any k € Z).
Remark 4.2.0.20. The definition of V& makes it a Z,-graded object in Ind — Rep(S,).
This grading corresponds to the natural grading on V®™ seen as a tensor power of the
graded object V =CLl @ U, gro(V) :=Cl1,gr (V) :=U.
Remark 4.2.0.21. In Subsection 4.4, we will show that the object V& of Ind—(Rep®(S, )X
03,‘,) does not really depend on the splitting of V, but rather only on the pair (V,1).
In the case when v ¢ Z_, one can actually give an equivalent definition of V& without
using a splitting (c.f. [Et1] and Section 4.5).

The following technical lemma will be useful to us later on. The meaning of this lemma

is that the operator F, acting on V& is “almost injective”.

Lemma 4.2.0.22. Let | < k, and consider a non-zero morphism in Rep(S,)
6:UPA — UPkF @ A

Letu € U=uy,u#0. Then Fyo¢#0, where Fyo¢:= g5 > cppy (u? @ rest) 0 ¢.

Proof. Will be proved in Section 5.2.2, Lemma 5.2.2.1. [
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4.3 Compatablility of the definitions of the complex

and the integer tensor powers

Finally, we prove that the definition of a complex tensor power of a split unital vector
space is compatible with the usual notion of a tensor power of a vector space.
We continue with a fixed splitting V = C1 @ U. Let V&" be as in Definition 4.2.0.16.
Define the action of gl(V') on the space @,_, (U®*®CInj({1,...,k},{1,...,n}))%

via the decomposition

gl(V) = Cldy &u, & u @ gl(U)

by setting
e Idy acts by the scalar n,

e u €U = u, acts by operator

(U & CIng({1, .., k}, {1, .y n})% L2 (U @ CInG({1, o b + 1}, {1, ey n})) 01

1 *
Fu=1—73 ] > ul ®res;
1<I<k+1

for any k > 0. Here res; is the map defined in Remark 3.2.3.14, u(®) as in Notation
2.0.6.1.

o f € U*=u acts by operator

(U @ CInj({1, ...k}, {1, ..., n}))5 =L (UKL @ CInj({1, ...k — 1}, {1, ...,n}))5
Ey = z f(l) R res;

1<i<k

whenever k > 1. Here res; is the map defined in Remark 3.2.3.14, f® as in Notation

2.0.6.1.
The action of f on (U®° @ C)% = C is zero.
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e gl(U) acts naturally on each summand (U®* ® CInj({1,...,k}, {1,...,n}))%:

A € gl(U) acts by

Z AD|yer @ Idetng(1,khi1,m}) :

1<i<k

(U®F @ CInj({1, ..., k}, {1, ..., n}))%* — (U* @ CInj({1,...,k},{1,...,n}))%

Notice that the space @,_o (US*QCInj({1,...,k},{1,...,n}))% automatically pos-
sesses a structure of a C[S,] ®c U(gl(V))-module: the group S, acts on each summand

CInj({1,...,k},{1,...,n})) through its action on the set {1,...,n}.

Lemma 4.3.0.23. There is an isomorphism of gl(V')-modules

Ve P U @ CIng({1, ..., k}, {1, ...,n}))"%

k=0,...,n

where (1 ® 1 ® ... Q@ 1) =1 (lies in degree zero of the right hand side).
Moreover, this isomorphism is an isomorphism of C[S,] ®c U(gl(V'))-modules.

Proof. Will be proved in Section 5.2.3, Lemma 5.2.3.3. O

Proposition 4.3.0.24. Consider the functor
S o Ind — (Rep(Sy=n)R 0% /) — Ind — (Rep(S,)RO}. /)

(c.f. Subsection 4.1). Then S,(V&") = V&n,

Remark 4.3.0.25. Restricting the action of gl(V') to gl(U), it can be seen from the proof

we get an isomorphism of Z,-graded gl(U)-modules.

Proof. Recall from Lemma 3.2.3.1 that S,(Ax) = CInj({1,...,k},{1,...,n}) (this
is zero if k > n). By definition of the action of gl(V) on @,y ,.(U®* ®
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CInj({1,...,k},{1,...,n}))% given above, we have an isomorphism of C[S,] ®cU(gl(V))-

modules

v Sn(V@n)lgl(U) — @ (U®k ® CIn]({la ) k}a {17 "-an}))Sk
k=0,...,n
Using Lemma 4.3.0.23 above, we obtain the desired result.

a

Example 4.3.0.26. Let dimU = 1. In that case V can be viewed as the tautological
representation of gl,, with standard basis vy, v;. The tensor power V®" is then a span of

weight vectors of the form
Uiy @ Vip, @ ... Q@ Uiy 1y 00yt € {0, 1}

(the weight of this vector is (n —3_,_; 4,2 ,_; ,%)). This allows us to establish an

isomorphism

ver—» D c{Sc{l,..,n}lIS|=k}= P CInj{1,...k},{1,..,n})%

k=0,...,n k=0,...,n

Vi, ®’l}i2 ®..Q Vi, S = {] & {1, ,TL}IZj = ].}

The operators E € U* 2 uf, F € U 2 act on Py, ,C{S C {1,...,n}||S]| = k}
by

1
ES)= Y, T, FS)=— > T
T:TCS,|T|=k-1 + T:SCcTCc{1,..,n},|T|=k+1

where S is a subset of {1,...,n} of size k. The operator Idy € End(V) acts on
Di—o,..n LS {1, ...,n}[|S] = k} by S — [5] - S.

In particular, we immediately see that

Sa(VE™) = P Sal(AR)%) = @ CIng({L, ..., k}, {1, ..., n}) S = VO

k>0 k>0
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4.4 Independence of V¥ on the choice of splitting

In this subsection, we show that our definition of V&” does not depend on the choice of
splitting V = C1 @ U we made earlier, but rather only on the pair (V,1).

Consider the following category Uni of unital vector spaces. The objects of this
category will be tuples (V,1,U), where V is a finite-dimensional vector space, 1 € V'\ {0},
and U is a subspace of V such that V=C1 ® U.

The morphisms in this category are given by
Morun (V,1,0),(V',1,U")) := {¢ € Home(V, V') : ¢(1) = 1"}

Remark 4.4.0.27. This category has a natural structure of a symmetric monoidal tensor

category, with
V,,LU)(V, 1, U)=VeV, 11, UClaClU eU®U')
We now construct a functor
(-} : Uni — Ind — Rep(S,)

On objects of Uni, this is just (V,1,U) — V& := @kZO(U®k ® Ax)% . On morphisms,

this functor is
¢: (V,1,U) = (V,1,U) — &:@PU e A" - PU* @ Ay

k>0 k>0

with the matrix coefficients ®“F : (U®* @ A;)% — (U @ A;)St of & coming from maps

U®* @ A, — U® ® A; which are defined by the formula

Z g’fgl(b)) ® ¢§J{i,/...,k}\1ma)) ® ( A, S Al)

u{l,..1}—{1,... .k}
strictly increasing
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Here

e The map ¢y : U — U’ is the composition U — V Ly U

The notation ¢g’£},(b)) means that we apply the map ¢yys only to the factors

(1), ¢(2), ..., (1) of U®,

e The map ¢y - : U — C is defined so that the composition
UsvVSy »cr

is the map u — ¢y1/(u)l’. The notation d)&i’,’"’k}\lm(b)) means that we apply the map

¢u.1- only to those factors i of U®* for which i & Im(e).

e The map res, is the map Ay, — A; given by the diagram = € Py; with edges

{(u(8), ") h<it-
Note that ® is upper-triangular in terms of the matrix coefficients ®"*.
Lemma 4.4.0.28. The functor (-} : Uni — Ind — Rep(S,) is well-defined.

Proof. We only need to check that this functor preserves composition. Indeed, let
¢ : (V,1,U) - (V',1,U"), ¥ : (V',1',U") = (V",1”,U"), and denote by ®, ¥ their
respective images under the functor (-)&.

We have: (¢ o @)yuyr = Yuruy» o ¢y, and (Y o @)y = Yyr 17 © puy + dur-
Thus

(w o ¢)@u . @(U®k ® Ak)Sk - @(U”®k ® Ak)Sk

k>0 k>0
is a map in Ind — Rep(S,), with matrix coefficients coming from the maps U® ® A, —

U™ ® A, given by

> @uwr o dup) ™ ® (Yo 1 0 pur + dua) N g (Ak = Al)

e{1,...,01}—={1,...,k}
strictly increasing
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Next,

Z (Yo yn © ¢>U,U')(Im(b)) ® (Yur 17 0 puur + ¢U,n')({1""’k}\1m(L)) ® (Ak = Az) =

v{l,..,1}—={1,... .k}
strictly increasing

= E E E (o 0 G )™ @ (3hyr 0 0 ) N2 )
<5<k 12:{1,.. 1} > {1,....,5} ti:{1,....5 }—={1,... .k}
str. incr. str. incr.

¢({1 ..... EN\Im(e1)) ® (A Tfﬁl AJ) ° (A T63L2 Al)
Thus the (I, k) matrix coefficient of (¢ 0 )2 is 37, ¥»7 0 ®I*, as wanted. O

Let (V,1,U) € Uni. Then Autyn((V,1,U)) = Py1 (the mirabolic subgroup of
GL(V) preserving 1; c.f. Definition 1.2.0.1). Given two splittings V = C1 U, V =
Cl® W, we have a map Idy : (V,1,U) — (V,1,W), and we get a commutative diagram

mV]l = Autuni((V, 1,U)) —) AUtInd—ﬂg_p(S,,)(@kzo(Um ® Ak)s’“)

AdIdV l Ad(ldv)@” l

Py = Autun((V, 1, W) O At Rep(5,) (Do (WE* ® Ag)¥)

Consider the action

PU g[(V) — End]nd_@(su)(@((]®k X Ak)sk)

k>0

given in Section 4.2.

Lemma 4.4.0.29. The action py|guneu~ integrates to the action of By on Do (U ek

Ar)SF) given above, i.e. we have a commutative diagram

ﬁV,(C]L >~ g[(U) e U LA Endfnd_@(su)(@kzo(l]@k X Ak)sk)

ezpl erp J{

Py = Autuni((V, 1,U)) O, At Rep(5,) Bz (US* ® Ay)®¥)
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Proof. Let ¢ € pyci, and denote by d, the image of exp(s¢) (s € C) under the functor
(1)®”. We want to show that %55 = pu(¢). Writing these expressions in terms of matrix

coefficients, we want to show that for any I,k > 0, we have:

Gk 2 spu(@) + o(s) if | #k

| Id+spu(9) +o(s) ifl=k

Indeed,

> eap(so)p” @ eap(salffy Y @ (A A) =

{1, 0} —={1,... .k}
strictly increasing

= Y. (du+sduy +0(s))™ @ (s¢us + ofs)) VM) @ (Ak = A,) =

f{1,..,01}—={1,...k}
strictly increasing

r .
SZiE{l,‘..,k} ¢8,)1 ® res; + o(s) ifl=k—-1

,,,,

Lo(s) else

We conclude that
spu(9) + o(s) if | #k
Id+spy(g) +o(s) ifl=k

Bk _
®)F =

as wanted. O

We obtained an action of the subalgebra py,c1 on the Ind-object V& of Rep(S, ), and
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this action does not depend on the choice of splitting, in the sense that the diagram

gl(U) ® U* —— EndngRep(s,) By (U* @ Ar)%)

/

vl

™

gl(W) & W* —— Endrna—rep(s,) (Brzo (W @ Ag)™)

Ad(ldv)@"

is commutative for any two splittings V =Cl1 o U,V =Cl o W.
It remains to show the action of gl(V) on V& does not depend on the choice of

splitting:

Lemma 4.4.0.30. The diagram
pvc1 ® U @ Cldy —— Endrna-pep(s,) (@i (US* @ Ax)%)
gl(V) Ad 1,8

Pvc1 ® W & Cldy —> Endng—pep(s,) (Do (W @ Ay)5)
18 commutative.

Proof. This follows directly from the definition of action of W (respectively, U) on
@kzo(W@’k ® Ak)Sk (respectively, @kzo(U®k ® Ak>Sk)_ O

Thus we conclude that

Corollary 4.4.0.31. The definition of the complex tensor power V — V& as an object
in Ind — (Rep(S,=n)) X O} ;) depends only on the distinguished non-zero vector 1, rather
than on the splitting V =Cl & U.

Remark 4.4.0.32. The functor (-)2” is a symmetric monoidal functor.
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Indeed, let (V,1,U),(V’,1’,U’) € Uni. The canonical isomorphism of S,, representa-

tions

T, V@V — (V@ Ve

and its inverse T ! can be rewritten using the isomorphism in Lemma 4.3.0.23; these

interpolate easily to morphisms in Ind — Rep(S,):
T, :V®QVE — (Ve V)&

and

T, :(VeV)® — ve& gy
sothat Y, oYX, =1d, Y, oY, =1d.

Remark 4.4.0.33. We can now consider the category Uni’ of finite-dimensional unital
vector spaces: that is, the objects in Uni’ are pairs (V, 1), with dimV < oo, 1 € V'\ {0},

and the morphisms are
Homypy ((V, 1), (V', 1)) == {¢ € Home(V, V') : ¢(1) = 1'}

By definition, we have a forgetful functor Forget : Uni — Uni’, and this functor is
an equivalence of categories.

This allows us to define a functor ()2 : Uni’ — Ind — Rep(S,) for each choice of
functor Forget™! : Uni’ — Uni; the latter is defined up to isomorphism. We do not
currently have a definition of the functor (:)2 : Uni’ — Ind — Rep(S,) which does not

involve a choice of Forget™!.
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4.5 Definition of a complex tensor power when v ¢ Z,

Let v € C\ Z,, and let (V, 1) be a finite-dimensional unital vector space. In this section
we discuss an alternative definition of the v-th tensor power of (V, 1), which does not use
a splitting of V/, but is applicable only when v ¢ Z,..

As before, we use Notation 1.2.0.1 for the parabolic subalgebra p, its “mirabolic”

+

subalgebra pcy and the nilpotent subalgebra uy

We will also denote by pg the subalgebra of p consisting of all the endomorphisms

¢ :V — V for which Im¢ C C1 (notice that u} = po N pca).

The quotient [ := p / ut s then a reductive Lie algebra which can be decomposed as a
. .

direct sum of reductive Lie algebras [ = [} & [, where [; := Po / " is a one-dimensional
p

Lie algebra, and Iy := ﬁc“/u;r.
Notice that the Lie algebra p has a one-dimensional center (Z(p) = ClIdy), and so does
[. In fact, we have a canonical splitting p = CIdy ®pc1, and thus a canonical splitting
(2 Z{) & l,.
Consider the quotient space U := 4 / Cl Since both V and C1 are p-modules, U also
has the structure of a p-module. Moreover, py obviously acts trivially on U, so the action
of p on U factors through an action of [, on U.

We now give the following definition of a parabolic Verma module for (gl(V'),p) (this
is actually the parabolic Verma module of highest weight (v — |A], \)):

Definition 4.5.0.34. Let A be a Young diagram.
If £(\) > dim V — 1, we define the parabolic Verma module M,(v — |A|, ) to be zero.
Otherwise, consider the l;-module S*U (i.e. the Schur functor S* applied to the [5-
module U). We make S*U a [-module by requiring that Z(I) act on S*U by the scalar v,

and then lift the action of [ on S*U to an action of p on S*U by requiring that ul act
trivially on S*U.
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Finally, we define
My(v = |Al, X) =U(G(V)) ®ug) S*U

Remark 4.5.0.35. Recall that the gl(V)-module M,(v—|A|, ) is irreducible, since v ¢ Z,
(c.f. Proposition 3.3.1.4).

The following definition is proposed in [Et1] (we still assume that v ¢ Z.).

Definition 4.5.0.36. Define the object V&*¥ of Ind — (Rep™(S,) K O} ) through the

formula

yerdy GD X5 ® My(v— |\, )

A is a Young diagram

Proposition 4.5.0.37. Fiz a splitting V =2 Cl & U.

The object yery defined in Definition 4.5.0.86 is isomorphic to the object V& defined
in Definition 4.2.0.16.

Proof. Since we assumed v ¢ Z,, the categories Rep(S,), OB’V are semisimple abelian
categories (see Sections 3.2, 3.3). In this case, any object A of Ind — (Rep®(S,) ® Orv)
can be written as a direct sum with summands of the form L(v — |A|,X) ® X,, (A, are
Young diagrams).

In the case of the object V& of Ind — (_@“b(s,,) X O}y ), we get:

Ve 2 (B Ly — |A[,\) ® X, ® Mult,,

A

(here Multy , is the multiplicity space of L(v —|A|,A) ® X, in V&, not necessarily finite

dimensional).

Recall from Section 3.3 that for any Young diagram A, we have an isomorphism of
g!(V)-modules
L{v = A, A) = My(v — A, A)

We now need to prove that dim Multy, = 6, ,, and we are done.
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To do this, consider

Ve =B Lv— |\, ® X, ® Multy,

Ap

as an object of Ind — Rep(S,) with an action of gl(U). Using Lemmas 5.0.0.40, 3.3.1.3,

we get the following decompositions:

ver2Q P sUe X,

Ko peTf

and

P L -, N X, @ Multy, 2P P U ® X, @ Multy,

A b peTt

Thus for any Young diagram p, we have

@ SPU GB P S°U ® Muit,

pELT A pezf

and we immediately conclude that dim Multy, = 0),, proving the statement of the

proposition. O
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Chapter 5

Schur-Weyl duality in Deligne setting:
Rep™(S,) and O,

We fix v € C, and a finite-dimensional unital vector space (V1) (so V& is defined).

Definition 5.0.0.38. Define the Schur-Weyl functor

SW,fnd : Ind —_Riiﬁab(s,,) — Modu(g[(v))

SWan = HomInd_@ab(Su)(', V‘@U)

We will also consider the restriction of the functor SW to the category @“b(s,,),
which will be denoted by SW,,.

Remark 5.0.0.39. The functor SW : Ind — @“b(&,) — Modygvyy (as well as its

restriction SW,) is a contravariant C-linear additive left-exact functor.

It turns out that the image of the functor SW, : Rep®(S,) — M ody(gvy) lies in OS,V,
as we will prove in Lemma 5.0.0.41.

The following technical lemma will be used to perform most of the computations:
Lemma 5.0.0.40. Let 7 be a Young diagram, k € Z.. and p a partition of k.
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. . P 14
o Assume 7 lies in a trivial ~-class. Then

. 1 fueZf
dim Homgep(s, )mRep(sy) (X7 ® p, Ax) =
0 else

o Assume T lies in a non-trivial ~-class {\®},;, and let j be such that 7 = A\U). Then

we have:

| 1 ifueZf,
dim Homﬁe_p(s,,)xRep(sk)(X)\(O) ® p, Ag) = *
0 else

and if 7 > 0, we have:

(
2 ifuce /\mﬁIj\'(] 1

dimHOIH&E(SU)ERep(Sk)(X,\(J‘)®,u’Ak) :T 1 ifuc ( )\(])\ N 1)) ( N n\ /\(]))

0 else

Proof. The proof will use the lift, maps discussed in Subsection 3.2.2.

We know that

dim Hom@(Su)gRep(Sk)(X‘r Q U, Ak) = dim Homieg(ST)IZIRep(Sk)(liftv (XT) X i, l/"ftu(Ak)) =

= dim Hom pep(sr)®Rep(s,) (111, (Xr) ® p, Ag)

So it is enough to prove that

' 1 fpeZt
dim Homgep(srymprep(si) (Xr ® 1, Ak) =
0 else

and the statement of the lemma will then follow from Lemma 3.2.2.5.
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To compute dim Hom@(ST)gRep(sk)(Xf & K, Ak), note that

dim Hom rep(sy)@Rep(si) (X7 ® fy Ar) = dim Hompep(s, . 0Rep(sy) (X7 ® 1, Ag) =
= dim Homg, x5, (Sn(X7) ® 1, Sn(Ag)) =
= dim Homg, xs, (7(n) ® p, CInj({1, ..., k}, {1, ...,n}))

for n >> 0,n € Z (the first equality follows from Proposition 3.2.2.3, while the second
relies on the fact that S, is fully faithful on Rep(S,—,)™/?).
But

CInj({1,..k}{L,...o= P B r®p

pilpl=k AeZF | \=n

S0

1 if7(n) € L]
dim Homg, x5, (7(n) @ u, CIng({1,...,k},{1,...,n})) =

0 else

It remains to check that for n >> 0,
7(n)e L & pelf
The first condition is equivalent to saying that

e Sip1 KTM)ip1 S < . T ()2 <y £ 7(n)y =n —|7]

which is equivalent to

e S ST S S ST S

(a reformulation of the condition p € Z7) provided that n >> 0. O
Lemma 5.0.0.41. The image of the functor SW, : @“b(&,) — Modygivy) lies in OE,V.

Proof. Fix a splitting V = C1 & U. We want to prove that for any M € @“b(s,,),
SW, (M) is a Noetherian U(gl(V))-module of degree v on which gl(U) acts polynomially
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(i.e. M‘g[(U) € Ind — MOdL{(g[(U)),poly) and u;“ acts locally finitely.

Recall that for any M € Rep®(S,), SW, (M) = Homy,g peyer(s,) (M, VE), with the
action of gl(V') coming from its action on V& (c.f. Definition 4.2.0.16). So

SWo(M)|giwy = Homppg_gepos(s,) (M, VE |gwn) = @Hom@ab(sy)(f\/f’ (U®* ® Ak)™)
k>0
with gl(U) acting through its action on each (U®* ® Ay)%. This immediately implies
that SW, (M) has degree v.

Next, (U®F ® A;)% is an object of fl@“b(&,) K Mody(givy)poly, SO the spaces
Homp,es5,y (M, (U®* ® Ag)%) are polynomial gl(U)-modules. Thus M|gw) € Ind —

Mody gv)) poty-

The above gl(U)-decomposition of SW, (M) gives us a Z,-grading on SW, (M), with
each grade being finite-dimensional. Definition 4.2.0.16 tells us that u}‘f acts on this space

by operators of degree —1, so u acts locally finitely on SW,(M).

We now prove that for any M € Rep®(S,), SW, (M) is a Noetherian /(gl(V))-module.
Recall that the functor SW, is a contravariant left-exact functor. Using this, together
with the fact that the category Rep®(S,) has enough projectives, it is enough to prove

that for any indecomposable projective P & @“b(S,,), we have: SW,(P) is a Noetherian
U(gl(V))-module.

Next, recall that any indecomposable projective in Rep®(S,) is isomorphic to Xy,
where A either lies in a trivial ~-class, or is not minimal in its non-trivial ~-class (c.f.

Proposition 3.2.4.10).

Lemma 5.0.0.40 tells us that if X lies in a trivial ~-class, then

SWV(XA)|QI(U) = Homlnd_@ab(sy)(X,\, @(U@k R Ak)sk) o

k>0

=P P Hompey(s, mrep(si)(Xr @ 1, Ar) @ SHU = (P SHU

k>0 p:lpl=k ;/.EI;
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If X lies in a non-trivial ~-class, A = A(® 4 > 0, then

SW,(Xy@)lguwy = Homppg_ gepen(s,) (X, @(U®k ® Ay)%k) =
k>0

>~ @ @ Homl_%gg(sy)ﬁRep(Sk)(X)\(i) ®N;Ak) ®S‘U'U = @ S“U@ @ S‘U'U

k>0 u:|ul=k + +
20 p:|pl HET ;) IS S

In both cases, we can consider SW, (X))|gvy as a Z,.-graded space, with grade j being
the direct sum of those S*U for which || = j. Then the non-zero elements of u act by
operators of degree —1 (see Definition 4.2.0.16).

Next, recall that in any case, the parabolic Verma module restricted to gl(U) decom-

poses as

M, (v — Al A) g = @ S*U

peTy
and has U(gl(V))-length at most 2. Using the above property of the action of wu;, we
see that SW, (X)) has a finite filtration where each quotient is the image of a parabolic

Verma module (therefore all the quotients have finite length).

a

We can now define another Schur-Weyl functor which we will consider: it is the con-

travariant functor SW, : Rep®(S,) — /O\EV where

or. = 0 1% /
Ow =" [ M ody(gi(v')) poly,v

is the Serre quotient of O} by the Serre subcategory Mody(gi(v))poty,, Of Polynomial

gl(V)-modules of degree v. We will denote the quotient functor by

and define
SW, :=# o SW,
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The main goal of this section is to prove the following theorem:

Theorem 5.0.0.42. The contravariant functor SW, : Rep™(S,) — 55,V is ezact and
essentially surjective.

Moreover, the induced contravariant functor

~

Rep™(S, e
25 [ e or(5T,) = Obv

is an anti-equivalence of abelian categories, thus making 55,‘, a Serre quotient of

Rep™(S,)*.

The exactness of SW » will be proved in Lemma 5.0.0.48.

The rest of the proof of Theorem 5.0.0.42 will be done by considering separately
semisimple and non-semisimple blocks in R_e;z“b(S,,). The semisimple block case will be
discussed in Subsection 5.1.1, and the non-semisimple block case will be discussed in
Subsection 5.1.2 (specifically, Proposition 5.1.2.12 and Theorem 5.1.2.17).

In particular, we will obtain the following result, which will be used in Chapter 7:

Lemma 5.0.0.43. The functor :S"W’,,ch takes a simple object to either a simple object, or

zero. More specifically, we have:

e Let A be a Young diagram lying in a trivial ~-class. Then

SW ien(L(X)) = #(Ly, (v = AL, V)

e Consider a non-trivial ~-class {\®};5o. Then
§V\V,,,<cn (L(A\D)) = #(Ly, (v — l)\(z’+1)| ,AGHDY)

whenever 1 > 0.
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We now introduce the following notation.

Definition 5.0.0.44. We will denote by SW "¢ the contravariant functor
Mody vy — Ind — Rep™(S,)

which is right adjoint to SWi? (such a functor exists by Theorem 2.0.5.5, since SWind
obviously commutes with small colimits).

We will also denote by SW} the restriction of SWimd to Oy

Remark 5.0.0.45. The functors SW*™d SW* are contravariant, C-linear, additive and
left-exact (due to SW>™¢ being a right-adjoint).

We will use the following notation:

Notation 5.0.0.46. The unit natural transformations corresponding to the contravariant

adjoint functors SWind, SWm4 will be denoted by
1 WdMody gy = SW™ 0 SWS™, € 1d g pepers,) = SW™ o SW
In particular, we have the restriction of the natural transformation e:
€ © LRepab(S,)->Ind—Rep®(S,) SW, o SW,

These transformations satisfy the following conditions (see [MacL, Chapter 1, par. 1,

Theorem 1]):

Lemma 5.0.0.47.

VE € OE,V’ SW; (UE) O €swy(E) = IdSW:,ind( E)

We can now demonstrate the exactness of SW v
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Lemma 5.0.0.48. The functor SW, : Rep™(S,) — OF, is ezact.

Proof. Let M € @z_)“b(S,,), and let ¢ > 0. We want to show that the gl(V)-module
Ext'(M, V®) is finite dimensional.

Consider V€ as an object in Rep(S,). As such, it is a direct sum P, X) ® V), where
V) is the multiplicity space of X (in fact, for a fixed splitting V' = C1 @ U, V) has the
structure of a gl(U)-module).

We know from Proposition 3.2.4.10 that Xy are injective objects iff A(v) is not a Young
diagram. Furthermore, there are only finitely many Young diagrams A such that 5\(1/) is
a Young diagram as well; for these A, the space V) is finite dimensional and isomorphic
to SAMV (by Proposition 4.3.0.24).

Finally, notice that Ext?(M, X,) is finite dimensional for any Young diagram ), since

all the Hom-spaces in &q_}“b(Su) are finite-dimensional (c.f. Remark 3.2.4.2). We conclude

that
Extt(M, V) = & Ext(M, X,) ® SV
A(v) is a Yc:\u:ng diagram
is finite dimensional. a

5.1 Proof of Theorem 5.0.0.42

5.1.1 Case of a semisimple block

In this subsection we consider a semisimple block in _RLp“b(S,,). We know that semisimple
blocks are parametrized by Young diagrams lying in a trivial ~-class. Let us denote our
block by Bj, A being the corresponding Young diagram.

The objects of such a block are finite direct sums of the simple object X}, so the block
is equivalent to Vectc as an abelian category.

If £(\) < dimV — 1, then the block B corresponding to A in O}y, is also semisimple,
and its objects are finite direct sums of the parabolic Verma module M,(v—|A|, A) (which,

in this case, is simple and coincides with L,(v — |A|, X)).
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Notice that M,(v—|A|, A) is infinite-dimensional and simple, so the functor # restricted
to B, is an equivalence of abelian categories.

The proof of Theorem 5.0.0.42 for By, is then reduced to proving following proposition:

Proposition 5.1.1.1. Let X be a Young diagram which lies in a trivial ~o-class. Then

SW,(Xy) = M, (v — A, \).

Remark 5.1.1.2. Recall that M,(v — |A|, ) is zero if £(A) > dimV — 1, see Definition
3.3.1.1.

Proof. Fix a splitting V = C1 @ U. Based on Lemma 5.0.0.40, we see that as a gl(U)-
module, the space

SWV(X)\) - Homlnd_@ab(sv)(x-)n V@V)

is isomorphic to

HOM 14 pepeis,y (X0, DU @ A)*) = D €D Hompep(s, mrep(si) (Xn ® p, Ay) @ S*U =

| k20 K20 pilul=k
= @ sv

+
HETY

Notice that this expression is zero if £(A\) > dim(U) = dim V — 1. Recall that by definition
of V&, ut acts on the graded space V& = @, (U®* ® Ag)% by operators of degree
—1, therefore, it acts by zero on the subspace S*U of Hom;, ; @ab(su)(X x, V&),

We conclude that if £(\) < dim(U) = dim V —1, then M,(v—|A|, A) maps to SW,(X,)
inducing an identity map on the subspaces S*U. Now, M,(v — ||, \) is simple, so this

map is injective, and since

SW(X)lgr® D 8T = My(v — [\, Vo)

+
KELY

as gl(U)-modules, we conclude that the above map from M,(v —|A|, A) to SW, (X)) is an

isomorphism. .
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Thus we proved that

Corollary 5.1.1.3. The functor SW, restricted to a semisimple block By of Repab(S,,) is
either zero (iff £(A) > dimV — 1), or is an equivalence of abelian categories between By
and the block B of OB,vi furthermore, the functor S/VI\/,, restricted to By is either zero or

an equivalence of abelian categories between By and the block w(8,) of 5}3",.

Recall from Section 3.2 that for v ¢ Z,, Rep(S,) is abelian semisimple and in par-
ticular Rep™(S,) = Rep(S,). Denote by Rep(S,)<4mV=1 the full semisimple abelian
subcategory of Rep(S,) generated by simple objects Xy where A runs over all the Young
diagrams of length at most dim V" — 1.

Note that Rep(S,)S4mV=1 is the Serre quotient of Rep(S,) by the full semisimple
abelian subcategory generated by simple objects X, where A runs over all the Young
diagrams of length at least dim V.

Then we immediately get the following corollary:

Corollary 5.1.1.4. Assume v ¢ Z,. Then SW, : Rep(S,) — OE’V is a full, essentially
surjective, additive C-linear contravariant functor between semisimple abelian categories,

inducing an anti-equivalence of abelian categories between Rep(S,)SHmV-1) gnd Oly .

Remark 5.1.1.5. If v ¢ Z., then 5EV = 0f with 7 = Idge ,so Corollary 5.1.1.4 is just
Theorem 5.0.0.42 in the case v ¢ Z,.

5.1.2 Case of a non-semisimple block

Throughout this subsection, we will use the results from Sections 3.2 and 3.3, and we will
denote O}, by OF for short.

Fix a splitting V=Cl e U.

In this subsection we consider a non-semisimple block in R_ep_“b(S,,). Recall that such
blocks occur only when v € Z., so we will assume that this is the case.

We know that non-semisimple blocks are parametrized by Young diagrams A such that

A1 + |A| < v; the projective objects in such a block correspond to the elements of the
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(non-trivial) <-class of A (see Proposition 3.2.4.10).

Let us denote our block by Bi.

If £(A) < dim V —1, then the block B corresponding to A in O} is also non-semisimple.
We will continue with the blocks B,, B, fixed, and insert some notation for the conve-

nience of the reader.

Notation 5.1.2.1. We will denote the simple objects, standard objects, co-standard and
indecomposable projective objects in By by L;, M;, M}, P; (i € Z.) respectively, with L;
standing for L(A\®) and similarly for M;, M} and P;. The structure of these objects is
discussed in Subsection 3.2.4.

Notice that My = M = Ly = Xy, P; = X, @) for i € Z, (see Proposition 3.2.4.10).

Notation 5.1.2.2. We will denote the simple modules, the parabolic Verma modules, their
duals (the co-standard objects in OF) and the indecomposable parabolic projective mod-
ules in 9B by L;, M;, M, P; (i € Z..) respectively, with M; standing for M, (v—|A®?|,A®)
and similarly for L;, M}’ and P;. |

The structure of the modules L;, M;, M}/, P;, (i € Z,) is discussed in Section 3.3 and
in [H, Chapter 9].

We put ky := min{k > 0 | £A®) > dimV —1}. Then P, = M; = M = L; =0
whenever ¢ > k,.

The goal of this section is to prove Theorem 5.0.0.42 for the blocks By, B). In order

to do this, we will prove the following theorem:
Theorem 5.1.2.3. The functor SW, satisfies:
(a) SW,(L;) = L;+1 whenever i > 1.
(b) SW,(M;) = M; whenever i > 0.
(¢c) SW,(M}) = M, whenever i > 2.

1

(d) SW,(P;) = P,,; whenever i >0 and i < ky — 1 or i > ky (recall that in the latter
case -P’i+1 = O), SWV(Pk)\—l) >~ ka—l'
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(6) SWV(MO = MS = Lo) = Mg.
(f) SW,(M7) = Ker(P, — Ly).

Proof. Statement (a) is proved in Proposition 5.1.2.8. Statements (b)-(d), (f) are proved
in Proposition 5.1.2.11. Statement (e) is proved in Lemma 5.1.2.10. O

We start by establishing some useful properties of the functor 7 and of the category
7 (By)-

Proposition 5.1.2.4. #(P;),7 > 0 are indecomposable injective and projective objects in
Os.

Recall that for ¢ > 0, P; is an indecomposable injective and projective module and has
no finite-dimensional submodules nor quotients (c.f. Proposition 3.3.1.13). So Proposition

5.1.2.4 is a special case of the following lemma:

Lemma 5.1.2.5. Let A be an abelian category where all objects have finite length, and
A’ be a Serre subcategory of A. We consider the Serre quotient w: A — A/ A’

Let I € A (respectively, P € A) be an injective (respectively, projective) object, such
that I has no non-trivial subobject nor quotient lying in A'.

Then ©(I) is an injective (respectively, projective) object in AJA’. Moreover, if I is

indecomposable, so is w(I).

Proof. We start by noticing that we have two functors R;, Ry : A — A’ which are adjoint
to the inclusion A" — A on different sides: the first functor, R, takes an object A € A to
its maximal subobject lying in A’, and the second, Rj, takes A to its maximal quotient
lying in A’

These functors are defined since for any A € A, we can take its maximal (in terms of
length) subobject lying in A’, and this subobject will be well-defined. Similarly for the

maximal quotient of A lying in A’.
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We need to prove that Hom 4/ 4 (-,m(I)) is an exact functor. By definition, for any

E € A,

Hom /4 (7(E), (1)) := lim  Hom (Y, I/X) = lim  Homu(Y,I)
YCEXCI YCE
E/Y,XeA E/YeA

(since I has no non-trivial subobjects lying in A’).

The colimit is taken with respect to the direct system

{Homu(Y,I): Y C E,E]Y € A'},

arrows Hom4(Y2,I) - Homy4(Y1, 1) whenever Y7 — Y,

Now, I is an injective object in A, so the arrows in this direct system are surjective:

{Homu(Y,I): Y CE,E/]Y € A},

arrows Hom4(Y3,I) = Homy4(Y7, I) whenever Y} — Y,

Then one easily sees that the colimit is Homy(Yg, I), where Yg := Ker(E — Ry(E)).
Thus
Hom 4/ 4 (m(E), n(I)) := Hom4(Yg, I)

So we need to prove that given an exact sequence
0O—-EFE  —E—E">0
of objects in .A, the sequence

0— HOmA(YE/,I) — HomA(YE, I) — HOIIIA(YE//, I) —0
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is also exact. Notice that since I is injective in A, we have an exact sequence
0 — Homa(Ro(E),I) — Hom(E,I) = Homy(Yg,I) — 0

and since I has no non-trivial subobjects in A’, we get Homy(F, I) = Homy(Ye, I). The

sequernce

0 — Homy(E', I) — Hom(E,I) — Hom4(E",I) — 0

is exact (since I is injective in A), so the sequence
0 — Homu(Yg/,I) — Homu(Yg,I) — Homy(Yer,I) — 0

is exact as well.

Thus we proved that Hom 4,4/ (-, 7(I)) is an exact functor, so 7([I) is an injective object
in A/ A"

The fact that 7(P) is a projective object in A/ A’ is proved in the same way.

Now, assume 7([) is decomposable, w(I) =2 X; & X, in A/A’, X1, X5 # 0. Then we
can find Ey, E; € A such that Fy, E; have no non-trivial subobject nor quotient lying in
A’ and such that n(E;) = X;, ¢ = 1,2. Then one immediately sees that

HOm_A(I, Ez) = HOIHA/AI(’/T(I),Xi),HOI'nA(Ei, I) = HOmA/A/(X,,;,ﬂ'(I)),
HOIHA(E,;, EJ) = HOInA/A/(Xi,Xj)

for ¢ = 1,2. In particular, since 7 is exact and I, E4, E5 have no non-trivial subobject nor
quotient lying in A’, we see that E; & Ey = I. We conclude that if I is indecomposable,
so is w([). O

The following corollary will be useful when proving that the functor SW v is full and

essentially surjective:

Corollary 5.1.2.6. The image of the category By under the functor @ has enough injec-
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tives and enough projectives. Moreover, {7t(P;)}o<i<ky—1 1S the full set of representatives of

isomorphism classes of indecomposable injective (respectively, projective) objects in 7t(By).

Proof. Let E € B,. We know from Proposition 3.2.4.6 that the category B, has enough
injective and enough projective modules. This means that there exist an injective module

I and a projective module P, together with an injective map E — I and a surjective map

P— FE.

Since the functor 7 is exact, we get an injective map 7(E) — 7(I) and a surjective

map 7(P) — 7(E).

Next, recall that {P;,0 <14 < k) — 1} (respectively, {P),0 <i < ky — 1}) is the full
set, of representatives of isomorphism classes of indecomposable projective (respectively,
injective) modules in B,. For i > 0, the object #(P; = P,Y) was proved to be injective

and projective (c.f. Proposition 5.1.2.4), so it remains to check the following statement:

The object #(FPy) = #(Ly) = #(Fy) is neither injective nor projective, and has a

projective cover and an injective hull in 2B, which are direct sums of objects 7 (F;),z > 0.

To prove the latter claim, notice that the maps L; — P, P, —» L; in B, become
maps (L) — 7(P1), #(P) - 7(L1) in 7(B) (since the functor 7 is exact). Knowing
that #(P;) is an indecomposable injective and projective object, we conclude that 7 (L)
is neither injective nor projective, and 7 (P;) is both its projective cover and its injective

hull. ]

We  now  compute the decomposition into  gl{(U)-irreducibles  of

SWI/(LZ)’ SW,,(M,), SWV(Pz)
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Lemma 5.1.2.7. We have the following isomorphisms of gl(U)-modules:

W, (L) iy = @ SEU , SW,, (M) gy = GB SHU Vi>1

RETT T i) S
SW, (Lo = My = Mg = X,0)|gv) = @ S*U
HET o)
SW,(P; = Xye)lgwy = €D S*Ue @ S*U Vi >0
NS HET i)
SW,(M))lgwy 2 @ S*U Vi > 2
pel’

A (1)

Proof. Consider V& as an object in Rep(S,). As such, it is a direct sum D, X ®V,,
where V., is the multiplicity space of X,. In fact, V, has the structure of Z,-graded
gl(U)-module, each grade being a polynomial gl(U)-module.

We now consider the full subcategory D of B, whose objects are those which do not
have Ly among their composition factors. Recall that L; € D for ¢« > 0, and M,;, M}, P; €

D whenever i > 2.

We will denote by F the following functor from D to the category Ind— M ody i) poty:

F o= SWV(')IQ[(U) = HomInd—_Rc;p“b(Sy)(U V@U)

Next, for any X € D, we have the following isomorphism of gl{U)-modules:

]:(X) = Homlnd_@ab(su)(X, V@.y) s Homlnd_ﬁ_egab(su)(X, @ XA(I) ® VA(z))

i>0

Since we know that X,s = P;_; is injective for ¢ > 0 (see Proposition 3.2.4.10), we

immediately conclude that F is exact.

Now, one easily sees from the gi(U)-decomposition V&|yw) = @Pyso(UF @ Ag)Sx,
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together with Lemma 5.0.0.40, that for any 7 > 0,

SW,(Pi = Xyom)lgiw) = Hom g gepers,) (Xawrn, DU @ Ag)%) &
k>0

g@ @ Hom pep(s,)=Rep(si) (Xac+n ® p, Ag) ® SFU = GB SEU @ EB SEU

k>0 M :k + +
20 pifp ,uEI/\u) MEIA(HI)

(the k-th grade of SW,(P;) is the direct sum of S*U such that |u| = k).

Fix 1 > 1. We can now apply F to the following long exact sequences in D (these

exact sequences exist due to Proposition 3.2.4.10):
e = Pi+3 — Pi+2 —r P'L’+1 — Mi+1 — 0

0— M;(+1 — Pi+1 — Pi+2 — Pi+3 — ...

0— Lz — M'i+1 — M'H—Z — Mi+3 — ...

Using
FP)x @ svU

/‘EI:-(i) UI:(H-U
and the fact that F is exact, we conclude that

FMi) = @ SHU = F(M;,,

+
HET 1)

and

F(L;) = Vygrny = EB SEU

NS
It remains to check the gl(U)-structure of SW, (Lo = Xy )|guwy, SWo(Mi)|gw)-

Similarly to the decomposition of F(P;), we use the gl(U)-decomposition V& =
Drzo(U®* @ A)"*, together with Lemma 5.0.0.40, to get the following isomorphisms of

107



gl(U)-modules:

SW,(Xx0) gy = Hom g pepes(s,y (X, DU @ Ay)) =

k>0

=P P Hompes, mrens) (Xro @, Ar) @ SFU = @ SHU

k20 p:lpl=k peZ NG

In particular, we have:

Vo @ Viay = SW,(Xyo) gy = @ S*U

RET )

Recall that
Vioy & (SMO)(”)V)IgI(U) ~ @ SHU

) Vet
(c.f. Proposition 4.3.0.24). Now, for any Young diagram u, we have (c.f. the proof of
Lemma 5.0.0.40):

NOW) e T} & [u€ Ty and py + |AQ] < v

On the other hand, the description of non-trivial ~-classes (c.f. Lemma 3.2.2.2) tells us

that A® c MM, and A\ AO s a strip in row 1 of length v — [A©@| — A® 4 1. Thus
{p:2O0@) e I:} = I;_(O) \I;-(n

and so Vi) = P nr+  S*U. We have already seen that Vy@ = ®“€I+ az+  SHU,

HET 0T ) RO
and we conclude that

14

SW, (M) lgiwy = Homypy_ pepar(s,) (M1, VE) = Homypy_pepes s, ) (M, P X0 ® Vao)

i>0
*Vowoe @ svUe H s P s

TR — + +
EENUIENCY! HET T ) el iy
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(the last isomorphism can be inferred from Lemma 3.2.2.2).

g

Proposition 5.1.2.8. For a simple object L; in By, ¢ > 0, we have: SW,(L;) & L;4
(recall that the latter is defined to be zero if i > ky —1).

Proof. Fix i > 0. By definition, SW,(L;) := Homy,;_pepev(s,) (L, V) with gl(V)-action
on this space induced from the action of gl(V) on V&,

By Lemma 5.1.2.7, we have the following decomposition of SW,(L;) as a gl(U)-module:

SW,Li)lgwy = @ SMU

N
NGNS

If i > kx— 1, then £(u) > dimV — 1 for any p € T, NTJ,,

SW,(L;) = Homyp,y_pepevs,)(Li, V&) = 0 = Liy1 and we are done.

so we get that

Otherwise, notice that Homy,; p.e(s,)(Li, VE) is a Z-graded gl(U)-module, with
the grading inherited from V&": S“U_lies in grade |p|. The minimal grade is thus [A(C+D],
and it consists of the gl(U)-module S**"U.

Recall that w! acts on the graded space V' = @, (U®* ® A;)® by operators of
degree —1, therefore it acts by zero on the subspace S U of Hom,,;_ &Eab(su)(Li, vey),

So there must be a non-zero map M;.; — SW,(L;), and its image can be either M;,;
itself or L;;1. From the decomposition of SW,(L;) as a gl{(U)-module, we see that the

image is L;;1, and the induced map L;11 — SW,(L;) is an isomorphism. O
The following lemma will be useful to us later:

Lemma 5.1.2.9.
Homlnd_@ab(sy)(:[lg, SW:(LO)) = 0

Proof. Recall that by definition of the functor SW},

HomInd—@“b(S.,)(L(J’ SW:(LO)) - Homlnd_(@ab(su)gos’v)(LO ® LO, V@l/)
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Recall also that the space u; acts on Lo ® Lo by nilpotent operators, since Ly is finite-
dimensional and Z,-graded, and each non-zero element of u;" acts by operator of degree

1. Now let

¢ E Homlnd_(@ab(su)gosyv)(Lo ® LO, V@V)

The map ¢ is zero iff ¢|L0®S)‘(O)U =0.

Fix k € Z. so that we have an inclusion of @“b(S,,)-objects:
$(Lo ®v) C (Ap ® UPF)

where v is the highest weight vector in SA?U. Then we automatically get an inclusion of
Rep®(S,)-objects
#(Lo ® S*U) C (A ® USF)Sk

Let | := I)\(O)[. Since Ly = X0, it is a summand of A; iff ¢ > [, so we immediately
see that k > [.

Now, Lo®S*”U is a direct summand of A;@U®, s0 one can easily find 1 : A,QU® —
Ay, ® U®F such that ¢(Lo ® S U) = Im().

As we said before, u; acts on Lo ® Loy by nilpotent operators, so for any u € U & u,
(F,)N o¢ =0 for N >> 0.

On the other hand, we know that (F,)"N ot # 0 if ¢ # 0 (by applying Lemma 4.2.0.22
iteratively to v, F, 01, ..., (F,)N "1 o 9)).

We conclude that

HomInd_(@ab(sv)Eoﬁ,v)(Lo %Y I/O7 V@V) =0

as needed. O

We now use Lemma 5.1.2.9 to compute the images of the “exceptional” objects in our

blocks By, B, under the functors SW,, SW}, respectively.
Lemma 5.1.2.10.
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(0;) SWU(LO = MO = X)\(o)) =~ M().
(b) SW(Lo) = 0.

Proof. (a) We will use an agrument similar to the one in the proof of Proposition 5.1.2.8.
Recall that from Lemma 5.1.2.7, we have the following isomorphism of Z_-graded
gl(U)-modules:

SW,(Lo =My = X,0) = @ S*U

+
/LEI)\(O)

(S*U lies in degree |u|). Recall also that w! acts on the right hand side by operators
of degree —1.

This implies that there is a non-zero map of gl(V')-modules
¢ My = My(v — A, X0) — SW, (L)

From the gl(U)-decomposition of My (c.f. Lemma 3.3.1.3), if this map ¢ is injective,

then it is bijective as well.

So we only need to check that ¢ is injective. Indeed, assume ¢ is not injective. Since

¢ is not zero, ¢ must factor through Ly, so we have:
dim Hom gp (Lo, SW,,(Lo)) > 1
But from adjointness of SW,, SW;, together with Lemma 5.1.2.9, we have:
Hom g (Lo, SW, (L)) = Homlnd_@ab(sy)(Lo, SW; (L)) =0
We obtained a contradiction, which means that ¢ is injective.
(b) Recall that since SW,,, SW; are adjoint, for any Young diagram p we have

Hom g pepors,) (L(1), SW; (Lo)) = Hom gy (Lo, SW,, (L(1)))
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The latter is zero by Propositions 5.1.1.1, 5.1.2.8, and Lemma 5.1.2.9. Hence
SWi(Ly) = 0.

We can now prove the following proposition:
Proposition 5.1.2.11.
(a) SW,(M;) = M,; whenever i > 0.
(b) SW,(M}) = M, whenever i > 2.

(¢) SW,(P;) = P,y whenever i >0, and i < ky— 1 ori > ky (recall that in the latter
case Pz'+1 = 0), SWV(Pk)\_l) = LkA—l-

(d) SW,(M3) = Ker(P, — Ly).

Proof. (a) For i =0, we have already proved (in Lemma 5.1.2.10) that SW,(M,) = M,.
We now fix ¢ € Z+o.

Recall from Lemma 5.1.2.7 that for ¢ > 0, we have an isomorphism of gl(U)-modules:

SW, (ML) |giw) = @ SHU

yEI/\(I)

Similarly to the argument in the proofs of Propositions 5.1.1.1 and 5.1.2.8, we have
a Z,-grading on the space SW,(M;), which is inherited from the grading on V&,
Grade j of SW,(M,;) is then ®“€I+ =i
and it consists of the gl(U)-module S ’\()

S#U. The minimal grade is thus |/\(’)‘

Recall that by definition of V&, u, acts on the graded space V& = @, (U®F ®
Ay)5* by operators of degree —1, therefore, it acts by zero on the subspace S*”U of
SWV(Mz) == HOmRepab(Su)(Mi, V@V)

If ¢ > kj, then SW,(M;) = 0 = M;, and we are done.
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Otherwise, M; # 0, and there must be a non-zero map M; — SW,(M;); its image
can be either M; itself or L;. In the first case, we get an isomorphism M; = SW,(M;)

(from the gl(U)-decomposition of both), and again, we are done.

We will now assume that we are in the second case, and there is a non-zero map
L; — SW,(M;). Then the gl{U)-decomposition of the quotient SW, (M) / [, means
that this module is congruent to L;,;. Notice that at this point we can assume that
i < kx — 1 (otherwise L;1; =0, so M; = L; =2 SW,(M,;)). We will prove that under

this assumption, we arrive to a contradiction.
Now, consider the short exact sequence
¢ P
O—-L;1—M,—L;,—0

Since the contravariant functor SW, is left-exact, we have (using Proposition 5.1.2.8

and Lemma 5.1.2.10, part (a))
0= SW, (L) 2 Liys 2% sw,(M;) *28) sw, (L) = L,
So SW,(¢) is an insertion of a direct summand, SW,(¢) is a projection onto a direct

summand, and we get:

SW,(M;) = L; ® L

We now use the unit natural transformation € described in Notation 5.0.0.46. We

have a commutative diagram:

SWi(SW,(Li_y)) WO gy sw, (M) S gy (s, (L)
€L;_1 T M, T €L, T
| LA M; S AN L;



(b)

which can be rewritten as

SW; (8W.(¢))

SW; (L) SW3(Li) ® SWi(Liy) —ZE O owr(Liv)
€L; 1 T M T €L, T
L, > M vy, L

Since the contravariant functor SW; is additive, SW}(SW,(¢)) is an insertion of a

direct summand, and SW(SW,(v)) is a projection onto a direct summand.

Now, the relations in Lemma 5.0.0.47 imply that er, ,,em,,€r, are all non-zero as
long as SW,(L;_1), SW,(M,), SW,(L;) are non-zero, which is guaranteed by the

assumption i < ky — 1.

This means that the image of L;_y under SW}(SW,(¢)) o er,_, is L;_1, and it lies
inside the direct summand SW}(L;) of SW}(SW,(M;)). We then deduce that ey, is
injective (since it is not zero on the socle L;_; of M;), and that its image lies entirely
inside the direct summand SW}(L;) of SWi(SW,(M;)) (since M; is indecompos-
able).

But this clearly contradicts the right half of the above commutative diagram, since

it means that

SWy(SW,(¢))oem, =0

while we have already established that er, o9 # 0.

The proof for SW,,(M}) is very similar to the one given for SW,(My,). Now fix 7 > 2.

Consider the short exact sequence
@ x ¥
0—')L1——)M1 —)L«,;_1—>0
Since the contravariant functor SW, is left-exact, we have (using Proposition 5.1.2.8)

0 — SW,(Li_y) = L °28) sw,(v2) "2 sw,(L;) = Loy
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‘Furthermore, Lemma 5.1.2.7 tells us that for ¢ > 0, we have an isomorphism of
gl(U)-modules:
SW, (Mg = @ S*U
HeTls)
This decomposition, together with the gl(U)-decomposition of L;, L;, 1, tell us that

the above exact sequence can be completed to a short exact sequence

0 — SW,(Lisy) = L; °2% sw, () *¥Y sw, (L)) = Liyy — 0

Applying the (exact) functor (-)¥ : OF — (OF)” to the above exact sequence, we
conclude that SW,(M})Y is isomorphic to either M; or L; & L;;,. This implies that
SW, (M) is isomorphic to either M;” (which is what we want to show) or L; ® L.
We will now assume that we are in the case SW,(Mj) = L; & L;;;. Furthermore, we
will assume that 7 < ky — 1 (otherwise L;1; =0, so M) = L; & SW,(M})). We will
prove that under this assumption, we arrive to a contradiction. Since we assumed
that ¢ < kx — 1, we have: L;, L;y; # 0, which means that SW,(¢), SW,(¢) # 0 are

insertion of and projection onto direct summands, respectively.

We now construct the commutative diagram

SW(SW,(Ly) TZEO - gy (sw, (M) ZEEE, - gy (SW (Liy)
€L, T enmr T L T
L; L M; Yy L

which can be rewritten as

SW(SW,(¢)) SW (SW, (4))

SWy(Liv1) SW; (Liv1) & SW; (L) SW;(Ly)

€L, ]\ enmy T €L;_1 T

L; AN M; LA L,

(3

Exactly the same arguments as in part (a) now apply (we use the fact that M} is

115



indecomposable), and we get a contradiction.

Let 7 > 0. Consider the exact sequence
¢ P
0—->M;; —»P,—M,; -0

Since the contravariant functor SW, is left-exact, we get an exact sequence
0 — SW, (M) 2 sw,@;) “XY sw, (M)

and in particular (see part (a)): M; = SW,(M;) — SW,(P;).

If i > ky — 1, then part (a) tells us that SW,(M;;1) = M;;; = 0. We conclude that
M; = SW,(M;) = SW,(P;). In particular, SW,(P;) = 0 if i > ky, and

SWV(ka—l) C\':J SWV(PkA—l) % Mk)‘—l g Lk)‘—l

From now on, we will assume that ¢ < ky — 1, and thus M;, M;; # 0.

Now, P is the injective hull of M;, so there is a map f : SW,(P;) — P41 such

that the following diagram is commutative:

0 — SW,(M;) 229, sw,(p,)

| /|
0 —— M; —_— Py

From the gl(U)-decomposition of SW,(M;), SW,(P;), SW,(M;;1) (see Lemma
5.1.2.7), we see that the map SW,(¢) is surjective. This means that there is a

non-zero map f : SW,(M;+1) = M;11 so the diagram below is commutative:

0 — SW,(M:) 229 sw,p,) 2 sw, (M) —— 0

| /| /|

0 —— M; — P — M — 0
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Since SW,(M;;1) & M;,1, we see that f is either an isomorphism, or zero. In the

former case, f is an isomorphism as well, and we are done.
So it remains to prove that f # 0.

Assume f = 0. This means that the image of f is M; C Py, and thus SW,(P;) =
M,; & M, 1, with the maps SW,(v), SW,(¢) being an insertion of a direct summand

and a projection onto a direct summand, respectively.

We now construct the commutative diagram

SWi(SW, (Miyy)) O, gyye(sw, (Py)) SXEW - syye(sw, (M)
€M; 1 T ePiT eMiT
M1 L P; g —_— M;
which can be rewritten as
SWy(Miyr) 22O o (Migr) @ SWi(M) 25O gyye(ay)
€M, 4 T P, T GMiT
M, ¢——_‘—> P; £—> M;

The same type of argument as in part (a) now applies (we use the fact that P; is

indecomposable), and we get a contradiction.

Consider the short exact sequences

0 —»L;—M]—L;—0

0— Lo—)P()—)M; —0

The contravariant functor SW, is left-exact, so we have (using part (a), Lemma

5.1.2.10(a) and Proposition 5.1.2.8)

0— SWV(L()) = MO—>SW,,(M’{)—)SW,,(L1) =L,
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0 = SW,(M;)—SW,(Py) & PL—SW, (Lo) = M,

The first of these two exact sequences implies that [SW,(MJ) : L;] = 1, hence the
map SW,(M3) — P, in the second sequence is not an isomorphism. The second one
then means that SW, (MJ) is the kernel of the unique non-zero map P, — M), which
factors through the canonical map Py — Ly. Thus SW,(M3) & Ker(P, — Ly).

(]

Proposition 5.1.2.12. The contravariant functor .S/’V\V,, : By — #(B,) is essentially

surjective.

Proof. We first prove a Sublemma:

Sublemma 5.1.2.13.

(a) Let I be an injective object in 7t(B,). Then there exists a projective object P in By
such that W/V(P) =1.

(b) Consider the restriction of §WU to the full subcategory of By consisting of projective

objects. This restriction is a full contravariant functor to 7(B)).

Proof. Recall from Corollary 5.1.2.6 that the set of isomorphism classes of indecomposable
injective objects in 7#(*B,) is {#(F;)}o<i<k,- The set of isomorphism classes of indecom-
posable projective objects in By is {P;}i>0 (c.f. Section 3.2.4).

We know from Proposition 5.1.2.11 that #(FP;) & §W/,,(Pi_1) for any 0 < i < k). This
immediately implies the first part of the sublemma.

We now consider the restriction of SW » to the full subcategory of B, consisting of
projective objects.

To see that this restriction is full, we need to check that for any ¢, 7 > 0, the map
SW.p, p, : Hompgyes,) (P, Pi) — Homgy (SW,(P;), SW,,(P;)) (5.1)

is surjective.
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We use the following observation (which follows from the definition of the Serre quo-

tient):

Observation 5.1.2.14. Let E, E' € OF. Assume E has no finite-dimensional quotients and

E'’ has no finite-dimensional submodules. Then
Hom gy (#(E), #(E')) = Hom gy (B, EY)

In particular, this is true for E, E’ being P;, M;, M, L; (i > 1).

Recall from Theorem 3.2.2.6, Propositions 3.2.4.10 and 5.1.2.11 that if |¢ — j| > 1, or
if ¢ > ky, or if j > k,, then the right hand side Hom-space in (5.1) is zero and there is
nothing to prove.

If either : = ky — 1 or j = ky — 1, we only need to check the cases

(1,7) = (ka — L kx — 2), (kx — 2,kx — 1), (kx — 1, ky — 1).

In all three cases Homas(s/'—l/l\/ W (Ps), SW »(P;)) is one-dimensional, so we only need to
check that the above map SW v P;P; is not zero. The case ¢ = j = k) — 1 is obvious. Since

SW, is contravariant and exact, the exact sequences

0— M*’;A—Q — Pk)‘_z — Pk>\—1

and
Pr,1 = Prg = Mg, 20— 0
become
ﬁ‘(Lk}\_l) — 'ﬁ'(Pk)‘—l) - ﬁ(MIXA—2) —+0
and

0— ﬁ(Mk)‘_g) — ﬁ(PkA—l) — ﬁ'(Lk)‘_l)

which proves that S/'W,,’pj,pi is not zero if (¢,7) = (kx—1,kx—2) or (3,7) = (kx—2,kxr—1).
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We can now assume that 4,5 < k) — 1, and thus WV(PZ-) = fr(Pi+1),§W/l,(Pj) =
T(Pj41)-

If |i — j| = 1, then both Hom-spaces are at most one-dimensional and we only need
to check that the above map SW v,P; P; 18 not zero. Assume j =i+ 1 (the case j =i —1
is proved in a similar way). Let B;+; : P; — P,y be a non-zero morphism.

Then the kernel of 8;,, is M7, and since SW » is contravariant and exact, we get:
Coker(SW,(Bi1)) = SW, (M) = #(M') % #(Pi1)

which means that SW »(Bit1) # 0. Similarly, given a non-zero morphism a;y; @ Pipy —

P;, we have:
Ker(SW,(ais1)) = SW,(Coker(aus1)) & SW,(M;) & #(M;) % #(Piy1)

which means that ﬁ/,,(aiﬂ) # 0.

Finally, if 7« = j, then the space End @ab(su)(Pi) is spanned by endomorphisms Idp,, v;
of P;, where Im(~;) & L; (; := ;41 © Bi41 in the above notation).

Since SW, is contravariant and exact, and (by assumption) ¢ < kx — 1, we see that
SW »(vi) will be a non-zero endomorphism of #(P;;,) factoring though 7 (L;;1). This
means that SW,(Idp,), SW, (%) span Endg, (#(Pit1))-

This proves that for any 4, j > 0, the map in (5.1) is surjective, and we are done. 1

We now show that SW, is essentially surjective. Indeed, let E € #(8,). Then E has

an injective resolution

0 EoI*4hp

(I° I' are injective objects in #(B,)). From the Sublemma 5.1.2.13 above, we know that

there exist projective objects P°, P! € By and a morphism g : P! — P° such that

SW,(P°) = I°, SW,(P") = I',SW ,(g) = f

120



Then E & Ker(f) = W/V(Coker(g)) (since SW, is exact). Thus SW, is essentially

surjective. O

Remark 5.1.2.15. The functor SW, : By — 7 (2B) is not full. For example, consider
Hom gpee(s, ) (Piy -1, Ly -2) 2§ Homgy (SW, (L, —2), SW,(Piy—1)) = Endgp (7 (Liy 1))

The Hom-space in the left hand side is clearly zero, while the Hom-space in the right hand

side is one-dimensional.

We now consider the Serre subcategory K eT(S/'IX/ v|B,) of By (this is a Serre subcategory
since SW v is exact). This subcategory is the Serre subcategory of By generated by the
simple objects L;, ¢ > k) — 1.

We define the quotient of By by Ker(S/VT/,,|BA):

7By — W(BA)

By definition of K er(gﬁ/ v|B,), the functor SW, factors through 7 and we get an exact
contravariant functor

SW, : 7(By) —s #(B))

such that
SW,
B By
o W, -
7(By)P — > (B,

Notice that all the functors in this commutative diagram except SW,, are exact.

We now prove some properties of the functor 7 and the category 7(B,).
Lemma 5.1.2.16.
(a) The objects T(P;) are indecomposable injective (and projective) objects in T(By) for
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any 1 < ky — 2.
(b) The category T(By) has enough injectives and enough projectives.

(c) Moreover, {T(P;)}o<i<k,—2 is the full set of representatives of isomorphism classes

of indecomposable injective (respectively, projective) objects in T(By).

Proof. To prove the first statement, we use Lemma 5.1.2.5 and the information on the
structure of P; given in Proposition 3.2.4.10.

The proof of the last two statements mimics the proof of Corollary 5.1.2.6.

All we need to show is that the object 7(P,_1) is neither injective nor projective in
7(By), but has a projective cover and an injective hull in 7(B)), both being direct sums

of objects T(P;),i < kx — 2.

But 7(Pg,-1) = 7T(Lk,—2) (c.f. Proposition 3.2.4.10), and we have a surjective map
7T(Py,—2) = T(Lg,—2) and an injective map 7(Lg, —2) <> T(Pg,—2). Since T(Py,_2) is an
indecomposable injective and projective object in 7(B,), we conclude that 7(Pg, ;) is
neither injective nor projective in 7@(B,), but 7(Py,_2) is the projective cover and the

injective hull of W(Pg,_1) in 7(B)). O

Theorem 5.1.2.17. The functor SW, : @(By) — 7(B,) is an anti-equivalence of abelian
categories. That is, SW, : T(By) — #(B,) is an essentially surjective, fully faithful,

ezact contravariant functor.

Proof.

e Proof that ?I/—V_l, is faithful: by definition, if g/_\W,,(X ) = 0 for some X € 7(B,), then
X =0. Now, let f: X — Y in 7(B,), and assume SW,(f) = 0. Then SW,(Im(f)) =
0, i.e. Im(f) =0, and thus f =0.

e The fact that SW, is essentially surjective follows directly from the fact that SW, is

essentially surjective, c.f. Proposition 5.1.2.12.
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e Proof that —S/ﬁu is full:

We start with the following sublemma:

Sublemma 5.1.2.18. Let Projzp,) be the full subcategory of projective objects in
7T(By), and Injxzs,) be the full subcategory of injective objects in #(B,). Then SW,

induces an anti-equivalence of additive categories Projzs,y — Injz(s,)-

Proof. The first thing we need to check is that given a projective object in 7(B,), ﬁy
takes it to an injective object in 7(B,). By Lemma 5.1.2.16, it is enough to check this
for w(P;) for i < ky — 2, in which case this follows straight from the definition of ﬁy
together with Proposition 5.1.2.11 and Corollary 5.1.2.6.

Now,

Homgz,)(7(P;),7(P;)) = Homp, (P;,P;), 1,5 < ky—2
(since P;, P; have no non-trivial subobjects nor quotients lying in K er(gﬁ/ v)). The
proof of Sublemma 5.1.2.13 then implies that the contravariant functor

SW,, : PT‘Ojf(BA) — Inj,»,(ggl\)

is full and essentially surjective. We have already established that SW, is faithful,

which concludes the proof of the sublemma. O

Let X € 7(B,). Since 7(B,) has enough projectives (which are also injectives), there
exists an exact sequence
0= X = 1% — Iy

in 7(B,), where I%, I} are injective (and thus projective as well).

Now let P € 7(B) be a projective object. Sublemma 5.1.2.18 then tells us that SW,(P)

is an injective object in #(28,). Together with the fact that SW,, is exact, this gives us
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the following commutative diagram, whose rows are short exact sequences:

HOHI;(BA)(P, X) — Homf(gl\)(P, I%) — Homf(gx)(P, I)l()

Homis,) (SW,(X), SW,(P)) — Hotmsm,) (SW.(I%), SW,(P)) — Homas,) (SW,(Ik), SW,(P))

By Sublemma 5.1.2.18, the two rightmost vertical arrows are isomorphisms, which

means that the arrow

— e~

SW, : Hom(s, (P, X) — Homzm,) (SW,(X), SW,(P))

is an isomorphism as well.

Now, let Y € W(B)). There exists an exact sequence
P —-P)—=Y =0
in 7(B,), where PY, P} are projective. We then get the following commutative diagram,

whose rows are short exact sequences:

Homf(gx)(Y, X) — HOI’II,—T-(B)‘)(PQ, X) —> Homf(gk)(P)l,, X)

Homﬁ(gk)(WV(X),W,,(Y)) — Homﬁ(gA)(Wy(X),WV(PP/)) — Homﬁ(%k)(WV(X),SW,,(P{}))

We have already established that the two rightmost vertical arrows are isomorphisms,

which means that the left vertical arrow

——

SW, : Homa(s,)(Y; X) — Homg(s,)(SW,(X), SW,(Y))

is an isomorphism as well. Thus SW, is fully faithful.
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5.2 Proofs of technical Lemmas

5.2.1 Action of gl(V) on a complex tensor power

Lemma 5.2.1.1. The action of gl(V') described in Definition 4.2.0.16 is well-defined.

Proof. Let u,u;,us € U = u,, f, fi,fo € U* = uf, A € gl(U). We have to check that
the morphisms in Rep(S,) by which u, f, A act are well-defined and satisfy the same
commutation relations as do u, f, A € gl(V).

The first claim is obvious for the actions of f and A and one only needs to check that
the image of (U®* ® Ax)% under 15 Y i<i<k41 u) @ res; is Syyi-invariant. For this, we

will prove

Lemma 5.2.1.2. Let 0 € Si,1,1 € {1,....k + 1}. Then there exists pj(c) € Sy such that
o ores] =resyy o p(0),00 u = ue® o py(0)

Proof. We define the permutation p;(c) to be the diagram in Py, constructed as follows.
Consider the diagram o € Py 1. Remove vertex [ in its top row, vertex o (1) in the
bottom row, as well as the edge connecting these vertices. The obtained diagram will lie

in P and will have no solitary vertices; thus it represents a permutation in S.

The diagram obtained is the same we would get by considering the diagram for o o
res; € Pijri1, and removing the unique solitary vertex o(l) from the bottom row of
o ores}. From this construction we immediately get: o ores; =res; ;o pi(o). One then

easily sees that o o u) = u®®) o p;(c) holds as well. O

We now see that for any o € Sg1,

1 1

Prl Z (cou)® (cores}) = ) Z (w®D) o py(0) ® (resyqy o pi(o))
1<I<k+1 1<i<k+1
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Restricted to (U®* ® A;)S, the latter morphism equals

1
Pl Z u® @ TeSH 1) = Z u? @ res;

1<I<k+1 1<l<k+1

as wanted.
Moving on to the commutation relations, one only needs to check that the following

commutation relations between operators on (U®* ® Ay)S* hold (the rest are obvious):

(a)

1 (2) _ (1) ? 1 () (ta)
e g (us*’ ou; V)®(resy,oresy,) = ———r——0x E (u; Vouy”)®(res] oresy)
(k + 1)(k . 2) 1<l <k+1 ’ ' (k + 1)(k + 2) 1<l2<k+1 ' ’

1<lo<k+2 1<l; <k+2

?

(1) 0 1) ® (resy, o resy,) (f o f32) ® (resy, oresy,)

1< <k 1<l2<k
1<ip<k-1 1<l <k—-1
(©)
1 7 1
F1D) Z (f® o u™)) ® (res, ores;) < Z Z (ul o f2)) @ (res} oresy,)+
1<ly,la<k+1 1<ly,l2<k

+ (v — k) f(w)ldyerga,)se —Trulwerena,)s

These identities are proved below.

(a) The claim follows immediately from the following easy computations (consequences

of Lemma 3.2.3.10):

0FOI‘1§I1<Z2SI€+2,

Tes), o Tes;, = res; oresy, ;
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(2) ) {

la—1
as operators on Ag. We also have uy™ ou; '’ = ull) o uéz ),

® Fork+12l12l221,
Tesy, O Tes; = Tes| , oresy
(I2)

! li+1 !
as operators on Ay. We also have u§? o ul®) = ¢{1+1 o 4,{2),

(b) The claim follows immediately from the following easy computations (consequences

of Lemma 3.2.3.10):
e For 1<l <lhb<k-1,
TeSy, O TeS|, = TeSy, O Tesy i1

as operators on Ag. We also have f2(l2) o fl(ll) = fl(ll) o f2(l2+1).

.FOI'k,'Zl1>l221,

T€es|, O TeS], = resy, 1 O TeSy,

as operators on Ag. We also have fz(lz) o 1(11) = fl(ll_l) o 2(l2).
(c) We have:
e Forany 1 <! <k+1,resjores; = (v —k)Ida, and thus
(/9 0 u®) @ (resi o res}) = (v — k)£ (4) [ gorgag)ss
e For1<li<lh<k+1,
res;, ores; = res; ores,_1 — Cq, . 1,-1)

as operators on Ay, where Cq, . 1,-1) : Ar — A is the action of the cycle
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Cu,,..1o-1) € Sk on Ag. We also have
) oyt = 40 o fla=1) — T]Ef;) o Cy,..la—1)
Thus

(f®) o u) @ (resy, ores}) = (u o f2D) ® (resj oresy,_1)—

l
- (Tf(,zlc) o C(ll,,..,lg—l)) X C(ll,...,lz—l)

as operators on U®F ® Aj.

: * -1 _ *
Finally, note that resj, ores,—10Cy . ) =resj ores.

Fork+1>1; >0y > 1, res, ores], = Tesy,_; oTes; — C(—lgl,...,ll—l) as operators on
Ay, where Cy, .1,-1) : Ap — Ay is the action of the cycle Cy,,  1,—1) € Sk on Ag.
We also have

[ ou —ultio f) =T, oCpl

Thus

(F%) o u(ll)) ® (res;, oresy) = (uh=Y o f(l2)) ® (res;,_; o resy,)—
(h-1)  ~—1 -1
— (T 70Ch 1) ®Ch 1y

as operators on U®* ® Ay.

Finally, note that resj, _; ores;, o C,,. 1,1y = resj,_; ores;, 1.
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Together these imply the following identities of operators on (U®* @ A)S:

1 *
D Z (f® o u®)) @ (resy, o resy,) = (v — k) f(u) Idyerga, sk +

1<l ,le<k+1

1 _ * l
+ kT D) Z (u' o f=D) @ (res} oresy,_1) — (T]E,;) o Cuy,..1a-1)) ® Cay,. 1)+
1<l <la<k+1
1

Py 2, T e A @ et ores) = (17 0 Gl o) ® Oy =

= (v — k) f(u) ldyergayse —Trulwerea,)s:+

" (k i 1) lgéﬂ(u(ll) o f1)) ® (resj, oresy,) + ﬁ 1§h§c+1(um) 2SN @ (resiy oresn) =

= (v — k) f(v) ldwereayse —Trulwereay s+

+ C 41_ 1 1S§Sk(u(“) o f(lz)) ® (res;, oresy,) + ——k(k1+ 0 lsggk(u(h) o f) (resj oresy,) =
1

Z (U(ll) © f(l2)) & (7”65;1 oresy) + (v —k)f(u) Id(U@’C@Ak)Sk —Tf,ul(U®k®Ak)Sk

1<ly,l2<k

5.2.2 Proof of Lemma 4.2.0.22

Lemma 5.2.2.1. Let | < k, and consider a non-zero morphism in Rep(S,)

¢:U®I®Al—>U®k®Ak

Letue U=u;,u##0. Then F,0¢ # 0, where F,,0¢ := k—l—l 21§l§k+1(u(l) ®res;) o ¢.

Proof. Recall from Lemma 3.2.3.10 that

Hom@(gu)(Al, Ak) = (Cpl,k

where P, is the set of partitions of {1,..,1,1,...,k'} into disjoint subsets such that 7,5 do

not lie in the same subset, and neither do ¢/, j’, for any i # 7,1’ # j'.
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So
Hom pep(s, ) (U ® A, US* @ Ay) = CP @ U @ U

We now study the map
F,o(): (sz,k QU @ U*® sz,k+1 Q Ukt g U*®
By definition of F,, we know that

1
Fyo(3@m®..@u®[1®...8fi) = D resi (@) S.. Q1 QUBU®.. QU f1 ®...Bf)
+ 1<s<k+1
where x € E’k,ul, ot €U, f1,..., i€ U~
As we said before, we can consider ¢ as an element of (C]_’l,k R U® @ U*®!.
Let N := dim U, and choose a basis uy,...,uy of U such that u; = u. Then we can

write

o= E 0 1T Q@ Uy @ ... @ Uy,
xe}_)l,lw
il,...,’ike{l,...,N}
where I denotes the sequence (i1, ...,3;) and oy € U*®.

Now assume F, o0 ¢ =0, i.e.

E E 0 resy(Z) Quiy, @ ... Qu;,_, Quu;, ... Quy, =0
1<s<k+1 mEIE’l‘k,
i1yenig€{l,...,.N}

So for any y € P k41, and any sequence J = (ji, ..., jx+1) (here ji, .., jre1 € {1,..., N}),

we have
_;- az’I =0
triples (z,],s):
1SSSk+1a 7'83; (I):y:jsz:l, Iz(jl)"'aj8—13j3+17~~’jk+1)
We will now show that this implies that a,; = 0 for any z € E,k,l =

(21, ey Bk)y 81y -oos ik € {1,..., N}, which will mean that ¢ = 0 and thus lead to a con-

tradiction.
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For our convenience, let us denote by Ins,(I) the sequence (iy,...,25-1,1,%s,...,%) (1

inserted in the s-th place). We will also use the following notation:

e For z € Py, consider the longest sequence of consecutive solitary vertices in the
bottom row of the diagram of z (if there are several such sequences of maximal

length, choose the first one).

Denote the length of this sequence by m(z). Let j, be such that j, + 1 is the first

element of this sequence (if this sequence is empty, then put j, := 1).

So this sequence of solitary vertices in z is {jz + 1,Jz + 2, ..., j= + m(z)}.

e Let z € Py, I = (i1,...,0),51,..,% € {1,..,N}. Consider the sequence
(4jo+1) Ujp425 -» b, +m(z)) and inside it the longest segment of consecutive occurrences

of 1 (if there are several such segments of maximal length, choose the first one).

Denote the length of this segment by M(I,z). Let j;, be such that jr, + 1 is the
position of the first element of this segment (if this segment is empty, i.e. M(I,z) =

0, then put jr, := jy).

We now rewrite the equality we obtained above: for any triple z, I, s where x € Py,

I is a sequence of length k with entries in {1,..., N}, and 1 < s < k + 1, we have:

E Qg 1 = 0

triples (2',I’,s'):
1</ <k-+1, res?, (') =res? (z), Insy (I')=Inss (1)
We will now use two-fold descending induction on the values m(z), M(I,z) to prove that
o = 0 for any = € P4, and any sequence I of length k with entries in {1, ..., N}.
Base: Let z,I such that m(z) = k, M(I,z) = k. Then the bottom row of z consists
of solitary vertices, and I consists only of 1’s. Now choose any s € {1,...,k + 1}. Then,
by definition, the bottom row of res¥(z) consists of solitary vertices, and Inss(I) consists
only of 1’s.
Then for any triple (z/,I’,s’) which satisfies res¥ (z') = res(z), Insy(I') = Ins,(I),

we will have o’ = x, I' = I. The above equality then implies that o, ; = 0.
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Step: Let 0 < M,m <k, and M +m < 2k. Assume a,; = 0 for any z, I such that
either m(z) > m, or m(z) = m, M(I,z) > M.
Let z, I be such that m(z) =m, M(I,z) = M. Set s := jr, + L.

All we have to do is prove the following Sublemma, and we are done.

Sublemma 5.2.2.2. Let (z/,I',s') be a triple which satisfies rest(z') =
resi(x), Insy(I') = Inss(I). Then one of the following statements holds:

o m(z') > m(x),

e ' =z, I'=1.

Proof. By definition, res%(z) has a sequence of m(z)+ 1 consecutive solitary vertices. We
assumed that res’ (z') = resi(z), so 2’ is obtained by removal of the s'-th vertex from
the bottom row of resi(z). So either 2’ has a sequence of m(x) 4+ 1 consecutive solitary
vertices, i.e. m(z') = m(z) + 1, or we are removing one of the m(z) + 1 consecutive
solitary vertices of res*(x), which means that ¢’ = z.

Now, assume z’ = x, and use a similar argument for I, I’. By definition, the sequence
Inss(I) has a segment of M (I,z) + 1 consecutive occurrences of 1. Again, we assumed
that Insy(I') = Inss(I), so I’ is obtained by removal of the s'-th element of the sequence
Inss(I). So either I’ has a segment of M(I,z) + 1 consecutive occurrences of 1, i.e.

M(I',z)=M(I,z)+1,or I' =1. O

O

5.2.3 Proof of Lemma 4.3.0.23

Let V 2 C1 & U be a split unital finite-dimensional vector space. We will use the same
notations as in Section 4.3.

The following two technical lemmas will be used to prove Lemma, 4.3.0.23.
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Lemma 5.2.3.1. Let k € {0,...,n — 1}, {j1 < J2 < ... < jx} C {L,..,n}, u € U,
Vj1, Vjy, -, U, € U, and let fj <j<..<j be the map {1,....k} = {1,...,n} taking i to j;.
Then

€Skt1 Z Z u(l)'(vjl Rv; ®..QV;)Qg | =

1<I<k+1 geIni({1,....k+1},{1,...,n}):
gou=Jj1 <jo<...<jg
g monotone increasing

Z Z (u(l) °© U U]l v, & ... ® Ujk) X (resl* °© a)(fj1<j2<...<jk)

(k - 1 1<I<k+1 c€Sy,

Proof. We rewrite both sides of the identity we want to prove: the left hand side becomes

1

(k+ 1) Y (ooul) (v, ®v, ® ... ®v;) ® > goo™
. O‘esk+l’ g€1nj({1,...,k+1},{1,..,,n});
1sisk+ gou=1Fj <ja<...<jj

g monotone increasing

and the right hand side becomes

1 , , )
m Z Z(U(Z)OU).(Ujl(X)UjQ®...®'vjk)® Z g

T 1<U<k+1 0'ESy g'€Inj({1,...k+1},{1,...,n}):
. g,°Lz’=fj1<j2<...<jk°'7l_

We now define the following map:

B Sk X {L, .,k + 1} — S x {1,...,k+ 1}
(07 l) = (pl(O'),O'(l))
where p;(0) is defined in Lemma 5.2.1.2.

Then it is enough to check that for every (¢/,1') € Sk x {1,...,k + 1}, the following
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identity holds:

Z (couM).(v, ®v;, ® ... ® v;,) ® Z goo | =

(e)ep—1("l) g€Inj({1,...k+1},{1,...,n}):
gou=[j; <jo<...<jp
g monotone increasing

= W 00').(v;, ®V;, ® ... ® ;) ® > g
g €Inj({1,...k+1},{1,...,n}):

.‘]/‘3‘/[’:)‘.]'1<J’2<.-‘<J’kOUI_1
From Lemma 5.2.1.2, we know that o o u) = () 0 ¢’ for any (0,1) € p~(o’,1").

So we need to check that

> > (goo™h) = > g

(o,.l)ep=1(a’ l") geIni({1,....k+1},{1,...,n}): g'GInj({l,...,k+1},{l,...,n}l):

e . . ’ — ’—
9°Ll—f11<J?<»--<ch g'owr=fj <jo<...<j 00
g monotone increasing

Notice that by definition of u, 00y = (o) 0 pi(0), i.e.
coy =1 oo

Thus for any monotone increasing map ¢ : {1,...,k + 1} — {1,...,n} such that go( =
fir<ia<..<ju, the map ¢’ := goo™! is an injective map {1, ...,k + 1} — {1, ..., n} satisfying:
g ouw = ficj<.<j 00

It remains to check that the summands in the left hand side are pairwise different and
that both sides have the same number of summands.

The first of these statements is proved as follows: let gioo™!, gyo7™! be two summands
in the left hand side. Assume they are equal. This means that g;, g» have the same image,
and since they both are monotone increasing, we conclude that g; = g2, which of course

means that ¢ = 7, and we are done.

The second statement is proved as follows: the number of summands in the right hand
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side is obviously n — k. To show that this is also the number of summands in the left
hand side, we only need to check that the projection Sgy1 x {1,...,k+1} = {1,....,k+1}
maps p~ (o', ') bijectively to {1,...,k+ 1}.

By the definition of g and the construction described in Lemma 5.2.1.2, we see that
for every [ € {1, ..., k+ 1}, we can (uniquely) reconstruct o from the data (¢’,1’,1) so that
w(o,1) = (o',I'): we consider the diagram of o’ € Py, insert a vertex in the [-th position
in the top row, a vertex in the I’-th position in the bottom row and an edge connecting

the two. The obtained diagram will be o. This completes the proof of the lemma. O

Lemma 5.2.3.2. Let k € {0,....,n — 1}, {j1 < jo < ... < Jxp1} C {L,...,n}, X € U*,
Vj1s Ujgy ooy Ujiy € U, and let fj <joc. <o,y be the map {1,....k +1} = {1,...,n} taking i
to 3;. Then

1<l<k+1

( Z )\(l) Ugl ® UJ2 K...Q UJk+1) ® resl(f?l<]2< <J’°+1)> -

(k + 1 Z Z (l) ° 0 'l)]l ® Vs, ®.® U]k+1) ® (resl ° J)(fj1<j2<-..<jk+1)

1<l<k+1 Uesk+1

Proof. We rewrite the left hand of the identity we want to prove, and it becomes

Z (0’0 )‘(l (V) BV ® ... @ Vj,,,) ® (0" o Tesy) (fii<joc..<jnsn)

o eSk,
1<l <k+1

We use the definition of the map p from the proof of Lemma 5.2.3.1, and define the

map

B Sk X {1, .,k + 1} — Sp x {1,...,k+ 1}

(0,0) = u(e™!, 1)
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Then it is enough to check that for every (¢',!') € Sp x {1, ...,k + 1},

(OJ © )‘(ll))'(vjl ® Vjp ®.® Ujk+1) ® (OJ oresl/) (fjl<j2<-~<jk+1) =

1
= k +1 Z (/\(l) ° 0)(vj1 ® Ujy ®..® Ujk+1) ® (I‘eSl © 0) (fj1<j2<...<jk+1)

(o)ei—1(o’'~1,1")

By definition of fi, for every (o,1) € (0’1, 1'), we have: u(o™1,1) = (¢'~1,1'), which

means that 07! oy = ¢y 0 0’1 (see the proof of Lemma 5.2.3.1), and so
o' oresy =res;jo0
and similarly
o o A = )\O 5 &

Thus it only remains to check that the right hand side has k + 1 summands, i.e. that

g1 (o1, 1) has k + 1 elements. The latter can be easily deduced from the arguments in

the proof of Lemma 5.2.3.1. O

Lemma 5.2.3.3. There is an isomorphism of gl(V')-modules

o:ver = @ (U CIng({1, ..., k}L {1, ...,n})%

k=0,...,n

where ®(1® 1 Q®...Q 1) =1 (lies in degree zero of the right hand side).

Moreover, this isomorphism is an isomorphism of C[S,] ®c U(gl(V))-modules.

Proof. Fix a dual basis vector 1* € (C1)* such that 1*(1) = 1.

Given a subset J = {j1 < ja < ... <Jx} C {1,...,n}, let
U =C1®7'@U@CI®* " @U®.. C1¥ 71" U @ C1®" 7+

(that is, the factors ji, jo, etc. are U, and the rest are C1). Then V®" = Dici,m Ue’,
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Let

@y UP<n<-<i} 4 (U®* @ CInj({1,...,k},{1,...,n}))%

V1 @ ... @ Up > €5, (), ® Uy ® . ® V), ® fiicsuarcin) - || 1¥(v3)
igJ

Here f = fiicjoc..<jr € Ing({L, ...k}, {1,...,n}) is given by f(s) := js and eg, is the

projection

U @ CInj({1, ... k}, {1, ..,n}) = (U @ CInj({1, .., k}, {1, ...,n}))"

Finally, set the map

¢: Vo= P U — P UFSCInj({L,.. k} {1, ,n})%

Jc{1,..,n} k=0,...,n

to be X2 cq,..ny -

Notice that #(1®1®..01)=9(1®1Q..® 1) =1.

We claim that ® is a map of gl(V)-modules. Again, we consider the decomposition
gl(V) = Cldy @u, & u; & gl(U)

e Idy acts by the scalar n on both sides.

e LetucU=u,,andlet v, ®...Qv, € U®U1<s2<..<ix}

Then u acts on V®" by operator F, which satisfies:

Fo(y®..Qu,) = Zvl R.OAT WU ... R v,
i¢J
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and thus

O(Fy (1®..0v,)) =es,,, | Y > ul.(vj, ® vy, ® ... @ ;) @9 |- ][ 17 (w)

1<i<k+1 geng({1,....k+1},{1,....n}): i¢gJ
QOLL:fj1<j2<...<j,C

f-1)<g)<f@)

Here (; is the injection

i if7 <l
{1, .k} =>{1,..,k+1},i—
i+1 ife>1
Now,
F,. (v, ® ...Quv,) = F,. <65k (vj, ®Vj, @ ... ®Vj, ® fiicioc.<in) * H Il*(vi)> =
igJ
1 . x
=Gyl @0( > D (o0)(v; @, ® .. ® ;) ® (res] oa)(fj1<j2<...<jk)>
g

1<I<k+1 0€S)

We now use Lemma 5.2.3.1 to conclude that ® is a map of u;-modules.

Let \eU"=uf k>, and v ® ... ® v, € UBl1<ia<-<ji},

Then X acts on V®" by operator E) which satisfies:
Ex(n®..Quv,) = Zvl ®.OANY)®...0 v,
jeJ
and thus
O(Ex.(11®..Qun)) = es,_, ( DA (v, ©v;, ® .. ® ) ® reSl(fjl<jz<...<jk)> 1)
1<i<k itJ
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Now,

EA-(I)('Ul Q.. Un) = E). (esk (Ujl ® Vs, ®..0 Vs, ® fj1<j2<~.<.7‘k) ) H 1*(%)) =
idJ

= % H 1*(v;) ( Z Z ()\(l) 00)(vj, QUj, ® ... ®vj, ) @ (res; o U)(fj1<j2<m<jk)>

idJ 1<I<k o€S)

We now use Lemma 5.2.3.2 to conclude that @ is a map of uf-modules (note that the
action of A on (U®° ® C)% 22 C is zero, as is on C1 = U®?). This Lemma is proved at

the end of this section.

e gl(U) acts naturally on each summand U®U1<2<-<ik} on the left and on each summand
(U®*@CInj({1,...,k},{1,...,n}))% on the right, and this action gives us isomorphisms
of gl(U)-modules:

D, Uelr<n<-<i} , ok g Cfii<inz...<in

and

@ U®k ® (ijl<j2<...<jk = (U®k ® CITL]({]_, ERS) k}7 {L ceey n}))Sk

{i1<g2<... <G }A1,...,n}

Note that the last argument also shows that ® is an isomorphism.

It remains to check that ® is also a morphism of S,-modules. Fix & € {0,...,n}. It is

enough to check that

P @, @ vt (U@ CIng({1, ..., k}, {1, ..., n})%
Jc{1,...,n}, Jc{1,...,n},
|J|=k |J|=k
V1 ® . @ U e, (U BV, ® . B, ® ficie<s) - | [ 17(w)
igJ

is a morphism of S,-modules (here J = {j1 < j2 < ... < jg}).
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Fix 0 € Sy, and fix J = {j1 < jo < ... < jx} C {1,...,n}. Let 7 € Sk be such that
o(3r-1(1)), 0 (Jr-1(2)); -, 0 (Jr-1(ky) is @ monotone increasing sequence. We will denote this
sequence by a(J).

We have:

J(Q)J(Ul Q... ®Un)) = eSk(vjl U, ® ... Vs @ (U © fjl<j2<-~<jk)) ’ H ]1*(vi)
i¢J

On the other hand,

(I)U(J)(O'(’Ul ®..Q ’Un)) = (I)o(J)('Ua—l(l) ... 'Ua—l(n)) =

— . . . . . . . * . =
et eSk (vJT_l(l) ® UJT_]-(Z) ® e ® U]'r_l(k:) ® fja('r‘l(l))<a(]7'_l(2))<"'<U(‘7T"1(k))) H 1 (v’t) =
it

= €5, (T'(vjl ® Vs, ®..® Ujk) ® (O‘ © fj1<j2<...<jk © T_l)) ' H ]1*(’(},') =
i¢J

= €5, (Ujl RV, ®... 0 Vg, ® (U 0 fjl<j2<m<jk)) ’ H ]]-*(Ui)
i¢J

Thus

go @ ®;| = @ ;)00

JC{1,...n},|J|=k JC{1,...n}|J|=k

and we are done.
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Chapter 6

Restricted inverse limits of categories

6.1 Overview of restricted inverse limits

In this chapter, we discuss the notion of an inverse limit of an inverse sequence of categories
and functors.

Given a system of categories C; (with ¢ running through the set Z,) and functors
Fi—14 1 C; — Ci—y for each ¢ > 1, we define the inverse limit category 1&11,624r C; to be the

following category:

e The objects are pairs ({C;}icz,, {¢i-1,i}i>1) where C; € C; for each ¢ € Z; and
i1 : -7:1'_1,1(01) 3 C;_1 for any 7 > 1.

e A morphism f between two objects ({C;}tiez, , {@i-1,i}iz1), ({Ditiezy, {i-14}iz1) is

a set of arrows {f; : C; = D, }cz, satisfying some compatability conditions.

This category is an inverse limit of the system ((C;)iez,,(Fi-14)i>1) in the (2,1)-
category of categories with functors and natural isomorphisms. It is easily seen (see
Section 6.2) that if the original categories C; were pre-additive (resp. additive, abelian),
and the functors F;_;; were linear (resp. additive, exact), then the inverse limit is again
pre-additive (resp. additive, abelian).

One can also show that if the original categories C; were monoidal (resp. symmetric
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monoidal, rigid symmetric monoidal) categories, and the functors Fi—1; were, monoidal

(resp. symmetric monoidal functors), then the inverse limit is again a monoidal (resp.

symmetric monoidal, rigid symmetric monoidal) category.

6.1.1 Motivating example: rings

We now consider the motivating example.

First of all, consider the inverse system of rings of symmetric polynomials

e ™ Z[Q]l, ...,.’L‘n]Sn — Z[xl, ...,ﬂ?n_l]S"_l — .= Z[.’L‘l] — Z

with the homomorphisms given by p(z1, ..., z,) — p(x1, ..., Tn_1,0).

We also consider the ring Az of symmetric functions in infinitely many variables. This

ring is defined as follows: first, consider the ring Z[x, x, ...]Y»205" of all power series with

integer coefficients in infinitely many indeterminates z,, z, ... which are invariant under

any permutation of indeterminates. The ring Az is defined to be the subring of all the

power series such that the degrees of all its monomials are bounded.

We would like to describe the ring Az as an inverse limit of the former inverse system.

1-st approach:

2-nd approach:

The following construction is described in [Macd, Chapter I]. Take the inverse limit
lgglnzoZ[ml,...,xn]S" (this is, of course, a ring, isomorphic to Z[zy, Tz, ...] »205),
and consider only those elements (pn)n>o for which deg(p,) is a bounded sequence.
These elements form a subring of ng o Z[zy, ..., T, which is isomorphic to the

ring of symmetric functions in infinitely many variables.

Note that the notion of degree gives a Z-grading on each ring Z[z1, ..., z,]%", and
on the ring Az. The morphisms Z[z1, ..., z,)5* — Z[x1, ..., 2n_1]5" respect this
grading; furthermore, they do not send to zero any polynomial of degree n — 1 or
less, so they define an isomorphism between the i-th grades of Z[zy, ..., x,]%" and

Z[x1, ..., zp_1])%* for any i < n. One can then see that Az is an inverse limit of
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the rings Z[z1, ..., x,)" in the category of Z,-graded rings, and its n-th grade is

isomorphic to the n-th grade of Z[z1, ..., z,]%".

6.1.2 Motivating example: categories

We now move on to the categorical version of the same result.

Let GL,(C) (denoted by GL,, for short) be the general linear group over C. We have
an inclusion GL,, C GL,; with the matrix A € GL, corresponding to a block matrix
A’ € GL,,; which has A as the upper left n x n-block, and 1 in the lower right corner
(the rest of the entries are zero). Omne can consider a similar inclusion of Lie algebras
gl, Cal.,1.

Next, we consider the polynomial representations of the algebraic group GL, (alter-
natively, the Lie algebra gl,): these are the representations p : GL, — Aut(V) which
can be extended to an algebraic map Mat,x,(C) — End(V). These representations are
direct summands of finite sums of tensor powers of the tautological representation C" of
GL,.

The category of polynomial representations of GL,, denoted by Rep(gl,)pory, is a
semisimple symmetric monoidal category, with simple objects indexed by integer par-
titions with at most n parts. The Grothendieck ring of this category is isomorphic to
Z[zy, ..., Tp) 5.

We also have functors
Resn_1n = ()7 : Rep(gl,)poty = Rep(al,_1)poty
On the Grothendieck rings, these functors induce the homomorphisms
Zx1, .. 20 = Dz, oy 2] p(21, oy 20) = (21, .0, Tno1,0)

discussed above.

Finally, we consider the infinite-dimensional group GL,, = UnZO GL,, and its Lie
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algebra gl = UnZO gl,,. The category of polynomial representations of this group (resp.
Lie algebra) is denoted by Rep(gl.)poy, and it is the free Karoubian symmetric monoidal
category generated by one object (the tautological representation C*> of GL,). It is also
known that this category is equivalent to the category of strict polynomial functors of
finite degree (c.f. [HY]), it is semisimple, and its Grothendieck ring is isomorphic to the
ring Az.

The category Rep(gl.,)poly POssesses symmetric monoidal functors

Iy 2 Rep(gle)poty — Rep(8l,)poty

with the tautological representation of gl being sent to tautological representation of gl,,.
These functors are compatible with the functors Res,_; , (i.e. I'n_y = Res,_y ,0T,), and

the functor I',, induces the homomorphism
Az = Zlzy, oy 2™ p(T1y ey Ty Ty, ) > D(T1, o, 2, 0,0, 00

This gives us a fully faithful functor Tim : Rep(glo,)poty — fm Rep(gl,)poty-
Finding a description of the image of the functor ', inspires the following two frame-

works for “special” inverse limits, which turn out to be useful in other cases as well.

6.1.3 Restricted inverse limit of categories

To define the restricted inverse limit, we work with categories C; which are finite-length
categories; namely, abelian categories where each object has a (finite) Jordan-Holder
filtration. We require that the functors F;_;; be “shortening” this means that these are

exact functors such that given an object C' € C;, we have
be, (Fie1,:(C)) < 4, (C)

In that case, it makes sense to consider the full subcategory of Ligliez.,_ C; whose objects
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are of the form ({C;}icz, , {¢i-1,i}i>1), with {£¢,(Cr)}n>0 being a bounded sequence (the
condition on the functors implies that this sequence is weakly increasing).
This subcategory will be called the “restricted” inverse limit of categories C; and will be

denoted by I'&LGZ C;. It is the inverse limit of the categories C; in the (2, 1)-category
? +

restr
of finite-length categories and shortening functors.

Considering the restricted inverse limit of the categories Rep(gl,)pory, We obtain a

functor

Flim : Rep(g[oo)poly — Lll_n Rep(g [n)POly

n>0, restr
It is easy to see that I'j, is an equivalence. Note that in terms of Grothendieck rings,

this construction corresponds to the first approach described in Subsection 6.1.1.

6.1.4 Inverse limit of categories with filtrations

Another construction of the inverse limit is as follows: let K be a filtered poset, and
assume that our categories C; have a K-filtration on objects; that is, we assume that
for each k € K, there is a full subcategory F'il,(C;), and the functors F;_;; respect this
filtration (note that if we consider abelian categories and exact functors, we should require
that the subcategories be Serre subcategories).

We can then define a full subcategory @iem, K—filtr C; of @niem C; whose objects are
of the form ({Ci}iez,, {¢i-1,}i>1) such that there exists k € K for which C; € Fili(C;)
for any 7 > 0.

The category kiglieZ%K_ filtr C; is automatically a category with a K-filtration on ob-
jects. It is the inverse limit of the categories C; in the (2,1)-category of categories with

K-filtrations on objects, and functors respecting these filtrations.

Remark 6.1.4.1. A more general way to describe this setting would be the following.

Assume that for each ¢, the category C; is a direct limit of a system

((cf)keZ+, (g;“-““ LR cf))
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Furthermore, assume that the functors F;_;; induce functors FF_; : C¥, — Cf for any
k € Z,, and that the latter are compatible with the functors gf ~1* One can then define

the category
ling Jim C*
keK i€Zy

which will be the “directed” inverse limit of the system. When CF := Fili(C;) and GF~*

are inclusion functors, the directed inverse limit coincides with @ . C;.
1€Z 4, K—filtr

All the statements in this thesis concerning inverse limits of categories with filtrations

can be translated to the language of directed inverse limits.

Considering appropriate Z, -filtrations on the objects of the categories Rep(gl,)poly,

we obtain a functor

Flim : Rep(g[oo)POIy — kgl Rep(g [n)poly
n>0,Z4 — filtr

One can show that this is an equivalence. Note that in terms of Grothendieck rings, this
construction corresponds to the second approach described in Subsection 6.1.1 (in fact,
in this particular case one can use a grading instead of a filtration; however, this is not

the case in Chapter 7).

These two “special” inverse limits may coincide, as it happens in the case of the cat-
egories Rep(gl,)po1y, and in Chapter 7. We give a sufficient condition for this to happen.

In such case, each approach has its own advantages.

The restricted inverse limit approach does not involve defining additional structures
on the categories, and shows that the constructed inverse limit category does not depend

on the choice of filtration, as long as the filtration satisfies some relatively mild conditions.

Yet the object-filtered inverse limit approach is sometimes more convenient to work

with, as it happens in Chapter 7.
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6.2 Inverse limits of categories

In this section we discuss the notion of an inverse limit of categories, based on [WW,
Definition 1], [S, Section 5|. This is the inverse limit in the (2,1)-category of categories

with functors and natural isomorphisms.

6.2.1 Definition of inverse limits of categories
Consider the partially ordered set (Z4, <). We consider the following data (“system”):

1. Categories C; for each i € Z,.
2. Functors F;_1;: C; — C;_; for each 7 > 1.

Definition 6.2.1.1. Given the above data, we define the inverse limit category @z‘em C;
to be the following category:

e The objects are pairs ({C;}icz,, {¢i-1,}i>1) where C; € C; for each i € Z, and
bi—1i © Fie1,:(Ci) = Ci_y for any 4 > 1.

e A morphism f between two objects ({Ci}icz, , {@i-1,i}ix1), ({Ditiez,, {ti-1}iz1) is
a set of arrows {f; : C; = D;}iez, such that for any ¢ > 1, the following diagram is

commutative:

Fi1:(Cy) Rt Ci—1

1,2
fi—l,i(fi)l fi—lJ’

Fiori(Dy) 2% Diy

Composition of morphisms is component-wise.
The definition of lgliGZ C; implies that for each ¢ € Z,, we can define functors
+

Przl(inC,—%Cz

1€Z4

C= ({Cz}ieZJr, {Qbi—l,i}izl)) = C;
f=1{fi: Ci = Di}ticz, — fi
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which satisfy the following property (this property follows directly from the definition of
léir—nieh. CZ):

Lemma 6.2.1.2. For any i > 1, F;_1,; 0 Pr; 2 Pr,_;, with a natural isomorphism given
by:
(Fira 0 Pr)(C) "3 Pri_y(C)

(here C= ({Ci}i€Z+a {¢i—l,i}i21)))-
Let A be a category, together with a set of functors G; : A — C; which satisfy: for any
1 > 1, there exists a natural isomorphism
Mi—1,i * Fi-1:0 G — Gi1

Then limiez C; is universal among such categories; that is, we have a functor
+

G:A— @_lcz‘

€Ty

A ({Gi(A) tieze, {mi-1,iti>1)
(f : A1 = Ay) = {fi = Gi(f) }iez,

and G; 2 Pr;oG forevery i € Z,..

Finally, we give the following simple lemma:

Lemma 6.2.1.3. Let N € Z,, and assume that for any i > N, F;_1; is an equivalence.

Then Pr; : Li—rlljem C; — C; s an equivalence for any i > N.

Proof. Set F;j := F;i41 0 ...0 F;_1; for any i < j (in particular, F; := Idc,).

Fix 1 > N. Let j > 4; then J;; is an equivalence, i.e. we can find a functor
gj : Cl — C]‘

such that Fi; 0 G; = Ide,, and G; o Fy; = Ide; (for j := 14, we put G; := Idg,).
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For any j > 4, fix natural transformations
Mj-15  Fi-15 0G5 = Gj1

For any j < i, put G; := Fj;, and 7y ; := Id.
Then the universal property of ]'<iinjez+ C, implies that there exists a functor
G:C,— @1 C;
JEL+
such that Pr; o G = G; for any j. The functor G is given by

G:Ci— lim ¢

JEZ4

C = ({G;(O)}jezir Anj-1,5}iz1)
f:C—0Cw {fJ = gj(f)}jez+

In particular, we have: Pr; o G = Id¢,. It remains to show that G o Pr; = Idlﬁ ¢
JEL

and this will prove that Pr; is an equivalence of categories.

For any C € @jeh C;, C = ({C;}jez,,{#j-1,}j>1), and for any | < j we define
isomorphisms ¢;; : Fi;(C;) = C; given by

bi; = 41 © Frur1(drrsire © Froira(Brizir3 0 oo 0 Fi_oj1(@i-15)--))
Define 9(0) = {G(C)J : Cj — Pr,(g(C',)) = Qj(Ci)}jef by setting

i if j <i
6CL=9 "
Gi(di;) ifj>i

Now, let C := ({Cj}jez,r {#j-15}i21), D := ({Dj}ljez,r {¥j-15}521) be objects in
@jem C;, together with a morphism f : C — D, f:={f; : C; = D;}jez, -
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Then the diagram
¢ 22 (goPr)(C)

fl (goPri)(f)l

D 22 (G oPr)(D)

is commutative, since for j < ¢, the diagrams

-1

C; 2 Pry(G(C) = G5(C)

fal gj(fi)l

vy
D; —— Pr;(G(Dy)) = G;(Dy)
are commutative, and for j > i, the diagrams

c; 299 prig(cy) = g;(Cy)

fal gj(fi)l

D; 29 pr(g(Dy) = 6,(Dy)

are commutative.

6.2.2 Inverse limits of pre-additive, additive and abelian cate-

gories

In this subsection, we give some more or less trivial properties of the inverse limit corre-

sponding to the system ((C;)icz, , (Fi-1,i)i>1) depending on the properties of the categories
C; and the functors F;_1 .

Lemma 6.2.2.1. Assume the categories C; are C-linear pre-additive categories (i.e. the
Hom-spaces in each C; are complex vector spaces), and the functors F;_1; are C-linear.

Then the category Q@iem C; is automatically a C-linear pre-additive category:

gwen f.g : C — D in yLnEhci, where C = ({Citiez,, {¢i—1:}ti>1), D =
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({Di}icz,, {¥iz1,i}i>1), f ={fi: Ci = Di}icz,, 9 = {gi : Ci = D;}icz,, we have:
O(f + ﬂg = {(O{fl + 591) : Cz — Di}i€Z+

where o, 8 € C.

The functors Pr; are then C-linear.

Lemma 6.2.2.2. Assume the categories C; are additive categories (i.e. each C; is pre-
additive and has biproducts), and the functors F;_1; are additive. Then the category

lé'r__niEZ+ C; is automatically a additive category:
e The zero object in lim,_, C; is ({0c.}iez,, {0}iz1).

e Giwen C,D in yﬂi%c,- where C =  ({Citicz,, {#icritiz1), D =
({Ds}iczy, {%i-1,}iz1), we have:

C® D := ({(Ci® Di}icz,y {Pi-1, © Yi—1i}ix1)

with obvious inclusion and projection maps.

The functors Pr; are then additive.

Proof. Let X,Y € ]'(iLnieZ+ Ci, X = ({Xitiezs, {pic1i}iz1), Y = ({(Yiliezy, {pic1i}i>1),
andlet fo: X - C, fp: X > D, g9c:C =Y, gp: D —Y (we denote the components
of the map f¢ by f¢,, of the map fp by fp,, etc.).

Denote by t¢,, tp,, Tc;, Tp, the inclusion and projection maps between C;, D; and C; ®
D;. By definition, ¢ = {t¢; }icz, st = {tp, }icz., Tc = {7, iz, , 7D == {7D, }icz, are
the inclusion and projection maps between C, D and C' & D.

For each i, there exists a unique map f; : X; — C; & D; and a unique map g; :

C; ® D; — Y; such that

Tc; ofi = fCi’ﬂ-Di © fz = fDngi Otlc, = 9gc;, 9i © tp;, = 9p;
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forany i € Z,.
This means that we have a unique map f: X — C®D and a unique map g : C®D —
Y such that

mcof=fe,mpof=fp,goic=gc,90tp=9gp

(these are the maps f = {f;}:,9 = {g:}4)-

O
Lemma 6.2.2.3. Let f : C — D in &I—liem Ci, where C' = ({Cilicz,, {$i-1:}iz1), D =
({Di}iezJ,, {"pi—l,i}i?_l)y f= {fi 1 Gy — Di}i€Z+'

Assume f; are isomorphisms for each i. Then f is an isomorphism.

Proof. Let g; := fi’1 for each ¢ € Z, (this morphism exists since f; is an isomorphism,
and is unique). All we need is to show that g := {g; : D; = C;}; is a morphism from D

to C'in @ieh Ci, i.e. that the following diagram is commutative for any i > 1:

Fion(C) 22 o,

Fiq,i(gz‘)T gi-lT

Fir(Dy) 2% D,

The morphism g;_1 0 9;_1; is inverse to 1/1[_11,1. o fi—1, and ¢;_1; o F;_1,4(g;t) is inverse to
Fieri(fi) © ¢i1s

But 1pi__11,2. o fio1 = Fim14(fi) o i‘_lu, since f = {fi : C; = D,;}icz, is a morphism
from C to D in y—@iem C;. The uniqueness of the inverse morphism then implies that
Gi—10Yi—1; = ¢i—1,0 Fi—1:(g:), and we are done. O
Proposition 6.2.2.4. Assume the categories C; are abelian, and the functors F;_1,; are

exact. Then the category @iem C; is automatically abelian:

e Given f : C — D in g@iehci, where C = ({Ciliczy, {di-1,i}i>1), D =
({Di}iczs {(¥i-14}i>1), [ ={fi : Ci & Di}icz,, f has a kernel and a cokernel:

Ker(f) = ({Ke'r(fi)}ieZw {pi—l,i}izl)v Coker(f) := ({COkeT(fi>}z‘eZ+a {Mz'—l,z'}izl)
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where pi_1, i—1,; are the unique maps making the following diagram commutative:

Ke?"(ﬁ—u(fi)) = fi—l,i(KET(fi)) ﬁﬂ) Ke?‘(fz’—l)

~

bi—1,i
Fi—1,4:(Cy) o Ci—1
Fii (i) fiza
Yi—1,i
E—l,i(Di) - D’i—l

Coker(Fi—1,(fi)) = Fi—1,:(Coker(f;)) RN Coker(fi-1)

o Gwwen f : C — D in 9anth we have: Im(f) = Ker(Coker(f)) =
Coker(Ker(f)) =: Coim(f).

Proof. The universal properties of Ker(f), Coker(f) hold automatically, as a consequence
of the universal properties of Ker(f;),Coker(f;).

Now, let f : C — D in lim  C; where C = ({Cilicz,, {¢i-ri}iz1), D =
({Di}iczy, {¥ic1}tiz1), f=A{fi : Ci = Di}iez,.

Consider the objects Im(f) := Ker(Coker(f)),Coim(f) := Coker(Ker(f)) in
%j_n_liezJr C;. We have a canonical map f : Coim(f) — Im(f), such that f : C — D
is the composition

C — Coim(f) > Im(f) — D
Consider the maps f; for each i € Z., where f; is the canonical map such that
fi : C; = D; is the composition

One then immediately sees that f = {f; : Coim(f;) = Im(f)}..
Since the category C; is abelian for each 7 € Z,, the map f; is an isomorphism. Lemma

6.2.2.3 then implies that f is an isomorphism as well. (]
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The following is a trivial corollary of the previous proposition:
Corollary 6.2.2.5. The functors Pr; are ezact.
This corollary, in turn, immediately implies the following statement:

Corollary 6.2.2.6. Let (C;, Fi;) be a system of pre-additive (respectively, additive,
abelian) categories, and linear (respectively, additive, exact) functors.

Let A be a pre-additive (respectively, additive, abelian) category, together with a set
of linear (respectively, additive, ezact) functors G; : A — C; which satisfy: for any i > 1,

there exists a natural tsomorphism
Ni-i; : Fi-1,°Gi = Gi1

Then !jmz’em C; is universal among such categories; that is, we have a linear (respec-

tively, additive, ezact) functor

€2+

A ({Gi(A) Yyiezy s {Mi-1,i }icz.)
A= Ay = {fi = Gi(f) biez,

and G; = Pr; oG for every i € Z,..

6.3 Restricted inverse limit of finite-length categories

We consider the case when the categories C; are finite-length. We would like to give a
notion of an inverse limit of the system ((C;)scz, , (Fi—1,:)i>1) which would be a finite-length
category as well. In order to do this, we will define the notion of a “shortening” functor,
and define a “stable” inverse limit of a system of finite-length categories and shortening

functors.
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Definition 6.3.0.7. Let A;, A, be finite-length categories. An exact functor F : 4; —

A, will be called shortening if for any object A € A;, we have:
z./11 (A) > eAz('F(A))

Since F is exact, this is equivalent to requiring that for any simple object L € A;, the

object F(L) is either simple or zero.

Definition 6.3.0.8. Let ((Ci)icz, , (Fi-1,1)i>1) be a system of finite-length categories and

shortening functors. We will denote by @iem C; the full subcategory of @nieh C;

restr

whose objects C' = ({Cj}jez., {¢j-1,;}j>1) satisfy: the integer sequence {f¢,(C;)}izo

stabilizes.

Note that the since the functors F;_;; are shortening, the sequence {f¢,(C;)}izo is
weakly increasing. Therefor, this sequence stabilizes iff it is bounded from above.

We now show that I'Lmiem, C; is a finite-length category.

restr

Lemma 6.3.0.9. The category C := Q_rg C; is a Serre subcategory of Ll_rr_l

C.
i€Zy, restr i€Zy Y

and its objects have finite length.

Moreover, given an object C := ({Ci}icz,, {pi-1,}i>1) in C, we have:
Proof. Let

C:= ({Cj}jezs s {pi15}iz1), C = ({Cj}jenss {#i—15}i21), C" = ({Cf }iezss {1, i>1)

be objects in leiem C;, together with morphisms f : C' = C, g : C — C" such that the
sequence

00 L5 0" -0
is exact.
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If C lies in the subcategory C, then the sequence {/c,(C;)}i>o is bounded from above,

and stabilizes. Denote its maximum by N. For each 4, the sec.luence
0C L0200 -0

is exact. Therefore, 4c,(C}), €c,(C') < N for each 4, and thus C’, C” lie in C as well.

Vice versa, assuming C’, C” lie in C, denote by N’, N” the maximums of the sequences
{le,(CI)}i, {€e,(C!)}s respectively. Then £¢,(C;) < N+ N” for any i > 0, and so C lies
in the subcategory C as well.

Thus C is a Serre subcategory of y—@iem C;.

Next, let C lie in C. We would like to say that C has finite length. Denote by N
the maximum of the sequence {{c,(C;)}i>0. It is easy to see that C has length at most
N; indeed, if {C',C",...,C™} is a subset of JH¢(C), then for some i >> 0, we have:
Pr;(C®) £0 for any k = 1,2, ...,n. Pr;(C®) are distinct Jordan Holder components of
C;, so n < £e,(C;) < N. In particular, we see that

0e(C) < N = max{fe,(Cy)]i > 0}
O

Notation 6.3.0.10. Denote by Irr(C;) the set of isomorphism classes of irreducible objects
in C;, and define the pointed set

Irr.(C;) := Irr(C;) U {0}
The shortening functors F;_;; then define maps of pointed sets
fi—l,i : IT‘T‘*(Ci) — IT‘T’*(Ci_l)

Similarly, we define Irr (@iem ot C) to be the set of isomorphism classes of irre-
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ducible objects in C, and define the pointed set
Irr(C) := Irr(C) LU {0}

Let C := ({C}}jez,,{¢j-1,j};>1) be an object in C. We denote by JH(C;) the multiset

of the Jordan-Holder components of C;, and let
The corresponding set lies in Irr,(C;), and we have maps of (pointed) multisets

fj—l,j : JH*(C]) — JH*(Cjal)

Denote by @iem Irr,(C;) the inverse limit of the system ({Irr.(C;}iso0, {fi-1,i}i>1)
We will also denote by pr; : lé'r_nieh Irr,(C;) - Irr,(C;) the projection maps.

The elements of the set @1624. Irr.(C;) are just sequences (L;);>o such that L; €
Irr(C;), and fi—1:(L;) = Li_q.

The following lemma describes the simple objects in the category C := @.GZ ot C
1€Z 4., restr

7.

Lemma 6.3.0.11. Let C := ({Cj}jeZ+7 {¢j_1,j}j21) be an object inC:= m
Then

1€EZLy, restr

Celrr(C) < Pr;(C)=Cje€Irr(C;)Vj

In other words, C is a simple object (that is, C has exactly two distinct subobjects:
zero and itself) iff C # 0, and for any j > 0, the component C; is either a simple object

in C;, or zero.

Proof. The direction <= is obvious, so we will only prove the direction =-.
Let ng be a position in which the maximum of the weakly-increasing integer sequence
{€c,(C;)}iso is obtained. By definition of ng, for j > ng, the functors F;_;; do not kill

any Jordan-Holder components of Cj.
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Now, consider the socles of the objects C; for j > ngy. For any j > 0, we have:
Fyo1s( socle(C;) ) 37 socle(Cyy)
and thus for j > ng, we have
le,( socle(Cj) ) = le,_, (Fj-1,;( socle(Cy) ) < Le,_,( socle(Cj-1) )

Thus the sequence

{€e; ( socle(C5) )}izng

is a weakly decreasing sequence, and stabilizes. Denote its stable value by N. We conclude

that there exists ny > ng so that
Fi—1,;( socle(C;) )%i}j socle(Cj-1)

is an isomorphism for every j > n;.

Now, denote:

Fini( socle(Cy,) ) ifj<m
DJ‘ =

socle(C}) if 7 >ny
and we put: D := ((Dj);j>0,(¢j-1,5)j>1) (this is a subobject of C in the category
@nieh C;). Of course, £c,(D;) < N for any j, so D is an object in the full subcate-
gory C of lﬁliem Ci.
Furthermore, since C # 0, we have: for j >> 0, socle(C;) # 0, and thus 0 # D C C.
D is a semisimple object C, with simple summands corresponding to the elements of

the inverse limit of the multisets @jez+ JH.(D;).

We conclude that D = C, and that socle(C;) = C; has length at most one for any
Jj=0.

Remark 6.3.0.12. Note that the latter multiset is equivalent to the inverse limit of multisets

158



JH,( socle(C};) ), so D is, in fact, the socle of C.

O

i

Corollary 6.3.0.13. The set of isomorphism classes of simple objects in Ljiniez
+1

restr

is in bijection with the set l(iﬂlieZJr Irr(C;) \ {0}. That is, we have a natural bijection

Irr,(C) = Jim Irr,(C;)

1€L 4

In particular, given an object C := ({Cj} ez, , {#j-1,j};>1) in @z‘em sty Ci» We have:

JH,(C) = @iem JH,(C;) (an inverse limit of the system of multisets JH,(C;) and maps
fi-1;)-

It is now obvious that the projection functors Pr; are shortening as well:

Corollary 6.3.0.14. The projection functors Pr; are shortening, and define the maps
pri : Irr(C) — Irr.(C;)

Lemma 6.3.0.9 and Corollary 6.3.0.14 give us:

Corollary 6.3.0.15. Given an object C := ({C;}icz,, {Pi-1,i}i>1) in C, we have:
£e(C) = max{lc,(C;)|i > 0}

It is now easy to see that the restricted inverse limit has the following universal prop-

erty:

Proposition 6.3.0.16. Let A be a finite-length category, together with a set of shortening

functors G; : A — C; which satisfy: for any i > 1, there exists a natural isomorphism
Mi-14: Fi—1,,0Gi = Gi1

Then lg'miez remC,- s universal among such categories; that is, we have a shortening
+
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Sfunctor

t€Zy, restr

A ({Gi(A) Yiczy, {mic1}iz1)
AL = Ay {fi = Gi(f) hiez,

and G; = Pr; 0 G for every i € Z,.

Proof. Consider the functor G : A — ki_lgieh C; induced by the functors G;. We would
like to say that for any A € A, the object G(A) lies in the subcategory Hm
that the sequence {{,(G;(A))}; is bounded from above.

i€Z, restr Ci’ ie.
Indeed, since G; are shortening functors, we have: £¢ (G;(A)) < £4(A). Thus the
sequence {lc,(G;(A))}; is bounded from above by £4(A).

Now, using Corollary 6.3.0.15, we obtain:
£e(G(4)) = max{le, (Gi(4)} < Ea(4)

and we conclude that G is a shortening functor. O

6.4 Inverse limit of categories with a filtration

We now consider the case when the categories C; have a filtration on the objects (we will
call these “filtered categories”), and the functors F;_; ; respect this filtration. We will then

Ci

define a subcategory of the category @ieh C; which will be denoted by Li_r_niGZJr K—filtr

and will be called the “inverse limit of filtered categories C;”.
Fix a directed partially ordered set (K, <) (“directed”, means that for any ki, ks € K,
there exists k € K such that &k, ky < k).

Definition 6.4.0.17 (K-filtered categories). We say that a category A is a K-filtered

category if for each k € K we have a full subcategory A* of A, and these subcategories
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satisfy the following conditions:

1. A* ¢ A! whenever k <.

2. A is the union of A* k € K: that is, for any A € A, there exists k € K such that
Ac Ak

A functor F : A; — A, between K-filtered categories A, A, is called a K-filtered
functor if for any k € K, F(A¥) is a subcategory of A%.

Remark 6.4.0.18. Let F : A; — As be a K-filtered functor between K-filtered categories
A1, A>. Assume the restriction of F to each filtration component k is an equivalence of

categories A¥ — A% Then F is obviously an equivalence of (K-filtered) categories.

Remark 6.4.0.19. The definition of a K-filtration on the objects of a category A clearly

makes A a direct limit of the subcategories A*.

Definition 6.4.0.20. We say that the system ((C;)icz,, (Fi-1,)i>1) is K-filtered if for
each ¢ € Z,, C; is a category with a K-filtration, and the functors F;_;; are K-filtered

functors.

Definition 6.4.0.21. Let ((C;)icz,, (Fi-1,i)i>1) be a K-filtered system. We define the
inverse limit of this Z,-filtered system (denoted by @Eiem,x— Filtr Ci) to be the full sub-
category of @ieh C; whose objects C satisfy: there exists k¢ € K such that Pr;(C) € Cf ¢
for any i € Z,.

The following lemma is obvious:

Lemma 6.4.0.22. The category I'&nEZJﬂK_ filtr C; is automatically K-filtered: the fil-
tration component Filk(l'&niezhk,_ﬂm C:;) can be defined to be the full subcategory of
1<i_r_ni€Z+’K_ﬂltr C; of objects C such that Pry(C) € CF for any i € Z,.

This also makes the functors Pr; : l&nz C; — C; K-filtered functors.

€Z4 K~ filtr
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Remark 6.4.0.23. Note that by definition, for any k € K

Fil ( Jim Ci) = Jim cF

€2y K —filtr €L+

where the inverse limit is taken over the system ((Cf)icz,, (Fi-1,lck)i>1). Thus

im  C;:= lim lim C¥
{im limg }im

€Ty K filtr keK icZ,
Lemma 6.4.0.24. Let ((C)icz, , (Fi-1,)i>1) be a K-filtered system.

1. Assume the categories C; are additive, the functors F;_1,; are additive, and for any

k € K, CF is an additive subcategory of C;.

Then the category l.&niem, C; is an additive subcategory of @iem C;, and all

K— filtr
its filtration components are additive subcategories.

2. Assume the categories C; are abelian, the functors F;_1; are exact, and for any

k € K, CF is a Serre subcategory of C;.

Then the category lim . C; is abelian (and a Serre subcategory of lim Ci),
1€Zy,

K—filtr i€Zy ¢

and all its filtration components are Serre subcategories.

Proof. To prove the first part of the statement, we only need to check that
Filk(@ig@,}{- filtr C;) is an additive subcategory of %ir_nieh C;. This follows directly
from the construction of direct sums in Li_n_lieZ+ Ci: let C,D € Filﬂ@ieh, K—filtr C) C
lgni€Z+ C;. Then Pr;(C) € CF, Pry(D) € CF for any i € Z,. Since CF is an additive
subcategory of C;, we get: Pr;(C & D) € CF for any i € Z, (the direct sum C @ D is
taken in 1'&[1«£€Z+ Ci).

Thus kiLniGZ%K_ filtr C; is an additive subcategory of @z‘eh C;, and all its filtration
components are additive subcategories as well.

To prove the second part of the statement, it is again enough to check that

F ilk(@ieh, K- filtr C;) is a Serre subcategory of Liﬂ-liEZ.,. C.
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Indeed, let
0-C"-C—->C">0

be a short exact sequence in y—@iem C;. We want to show that C € Filk(@iem
: i " . :
iff ¢’,C" € de(@%h,

K—filtr Ci)
K—filtr Ci).
The functors Pr; are exact, so the sequence

0-C—-C,—C!'—0

is exact for any i € Z, .

Since Cf is a Serre subcategory of C;, we have: C; € CF iff C';,C"; € C¥, and we are

done. O

We now have the following universal property, whose proof is straight-forward:

Proposition 6.4.0.25. Let ((C;)icz, , (Fi—1,:)i>1) be a K-filtered system, and let A be a
category with a K-filtration, together with a set of K-filtered functors G; : A — C; which

satisfy: for any i > 1, there exists a natural isomorphism
Mic1i: Fic150Gs = Gioy
Then Ln—liezh K—filtr C; is universal among such categories; that is, we have a functor

i€Z4 K — filtr

A ({Gi(A) ez, {Mi-1,i}iz1)
A= A {fi= gi(f)}ieZ+

which is obviously K-filtered, and satisfies: G; = Pr; 0 G for every i € Z,.

Next, consider the case when A, {G; }icz, satisfy the following “stabilization” condition:
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Condition 6.4.0.26. For every k € K, there exists iy € Z, such that G; : AF — CJ”.C is

an equivalence of categories for any 7 > ig.
In this setting, the following proposition holds:

Proposition 6.4.0.27. The functor G : A — @1 C; is an equivalence of (K-

i€Zy K — filtr
filtered) categories.

Proof. To prove that G is an equivalence of (K-filtered) categories, we neeed to show that
Q:A’“—>Fz‘lk< lim cz)
i€Z4 K — filtr
is an equivalence of categories for any k& € K. Recall that
Filk< m G| = limCf
€24 ,K— filtr €74

By Condition 6.4.0.26, for any ¢ > i, we have a commutative diagram where all arrows
are equivalences:

Ak G,k

G;
A

k
Ci—l

By Lemma 6.2.1.3, we then have: Pr; : lim CF —» CF is an equivalence of categories for

any i > 4, and thus G : A* = Fil; (lim . C; ] is an equivalence of categories. [
s K—filtr g

6.5 Restricted inverse limit and inverse limit of cate-

gories with a K-filtration

Let ((C)iez,, (Fic1,4)i>1) be a system of finite-length categories with K-filtrations and

shortening K-filtered functors, whose the filtration components are Serre subcategories.
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We would like to give a sufficient condition on the K-filtration for the inverse limit of
K-filtered categories to coincide with the restricted inverse limit of these categories.

Recall that since the functors F;_;; are shortening, we have maps
f'i—l,i : I’T"T‘*(Ci) — ITT*(Cihl)

and we can consider the inverse limit lg—n'ez Irr.(C;) of the sequence of sets Irr,.(C;) and
1€l
maps f;_1,; we will denote by pr; : @ieh Irr.(C;) — Irr.(C;) the projection maps.
Notice that the sets Irr.(C;) have a natural K-filtration, and the maps f;_;, are K-

filtered maps.
Proposition 6.5.0.28. Assume the following conditions hold:

1. There exists a K-filtration on the set lgﬁliebr Irr.(C;). That is, we require:
For each L in lg_niezJr Irr.(C;), there exists k € K so that priy(L) € Filp(Irr.(C;))
for any i > 0.
We would then say that such an object L belongs in the k-th filtration component of
@ieh Irr. (C;).

2. “Stabilization condition” for any k € K, there exists Ny > 0 such that the map
fic1,i : Fil(Irro(C)) = Fili(Irr.(Ciz1)) be an injection for any i > Np.

That is, for any k € K there exists Ny € Z, such that the (exact) functor F;_1; is
faithful for any i > N.

Then the two full subcategories @ieh restr Ci0 @iem K—filtr Ci of @ieh C; coincide.

Proof. Let C := ({Cj}jez,,{¢j-1,};>1) be an object in Mmoo Cir As before, we

restr

denote by JH(C;) the multiset of Jordan-Holder components of C;, and let
JH.(C;) := JH(C;) u{0}.

The first condition is natural: giving a K-filtration on the objects of @z‘em C; is

restr

equivalent to giving a K-filtration on the simple objects of @ieh C;, i.e. on the set

@iem Irr.(C;).

restr
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Ci. Let ng > 0 be such that £¢,(Cj) is constant for j > ny.
Recall that we have (Corollary 6.3.0.13):

restr

Assume C € @iez+’

H.(C) = lim JHL(C))
€L
Choose k such that all the elements of JH,(C) lie in the k-th filtration component of
(]J;rilz,ez+ Irr,(C;). This is possible due to the first condition.
Then for any L; € JH(C;), we have: L; = pr;(L) for some L € JH,(C), and thus
L; € Fily(Irr.(C;)). We conclude that C' € Filk(@liezﬁk'*ﬁltr Ci).
Thus we proved that the first condition of the Theorem holds iff L&n

; 18
i€Zy, restr C’ a

full subcategory of 1&1_1@,62% K filtr C;.

Now, let C' € @ie@,l{— fittr

We would like to show that £¢,(C;) is constant starting from some 3.

C;, and let k € K be such that C € Filk(gg_lieh K—filtr Ci).

Indeed, the second condition of the Theorem tells us that there exists Nx > 0 such

that the map
fi—-l,i . F’le(I’r’f'*(C@)) — lek(Irr*(C,_l))
is an injection for any i > Ng.
We claim that for i > Ny, £c.(C;) is constant. Indeed, if it weren’t, then there would

be some i > Ni+1 and some L; € JH(C;) such that f;_; ;(L;) = 0. But this is impossible,

due to the requirement above.

a

6.6 gl and the restricted inverse limit of representa-

tions of gl,

In this section, we give a nice example of a restricted inverse limit of categories; namely,

we will show that the category of polynomial representations of the Lie algebra gl is a
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restricted inverse limit of the categories of polynomial representations of gl,, for n > 0.
The representations of the Lie algebra gl (or the group GL,,) are discussed in detail

in [PS], [DPS], as well as [SS, Section 3].

6.6.1 The Lie algebra gl

Let C* be a complex vector space with a countable basis {ey, s, €3, ...}.
Consider the Lie algebra gl of infinite matrices A = (a;;);j>1 with finitely many
non-zero entries. We have a natural action of gl on C*, with gl & C*® ® C. Here

C = spanc(e], e3, €3, ...), where €} is the linear functional dual to e;: ef(e;) = dy;.

We now insert more notation. Let N € Z, U {oo}, and let m > 1. We will consider
the Lie subalgebra gl,, C gly consisting of matrices A = (a;;)1<s;<n for which a;; = 0
whenever i > m or j > m. We will also denote by gl> the Lie subalgebra of gl consisting

of matrices A = (a;;)1<;;<n for which a;; = 0 whenever ¢ < m or j < m.

Remark 6.6.1.1. Note that gl = gly_,. for any N,m.

6.6.2 Categories of polynomial representations

In this subsection, N € Z, U {oc}.

We will consider the symmetric monoidal category Rep(gly)poy of polynomial repre-
sentations of gly.

As a tensor category, it is generated by the tautological representation CV of gly.
Namely, this is the category of gly-modules which are direct summands in finite direct
sums of tensor powers of CV, and gly-equivariant morphisms between them.

This category is discussed in detail in [SS, Section 2.2].

It is easy to see that this is a semisimple abelian category, whose simple objects are
parametrized (up to isomorphism) by all Young diagrams of arbitrary sizes: the simple

object corresponding to A is LY = SACV.
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Remark 6.6.2.1. Note that Rep(gl.)poly is the free abelian symmetric monoidal category
generated by one object (c.f. [SS, (2.2.11)]). It has a equivalent definition as the category
of polynomial functors of bounded degree, which can be found in [HY], [Macd, Chapter
1], [SS].

Remark 6.6.2.2. For N € Z,, one can describe these representations as finite-dimensional

representations p : GLy — Aut(W) which can be extended to an algebraic map
End(GLy) — End(W).

6.6.3 Specialization functors

We now define specialization functors from the category of representations of gl to the

categories of representations of gl,, (c.f. [SS, Section 3]):

Definition 6.6.3.1.

| Rep(g[oo)POIy - Rep(g[n)polya Ip:= (')g[#

Lemma 6.6.3.2. The functor I, is well-defined.

Proof. First of all, notice that the subalgebras gl,,, gl- C gl commute, and therefore the
subspace of gl--invariants of a gl -module automatically carries an action of gl,,.

We need to check that given a polynomial gl -representation M of gi,, the g[ﬁ-
invariants of M form a polynomial respresentation of gl,. It is enough to check that this
is true when M = (C*>)®".

The latter statement is checked explicitly on basis elements of the form e;, ®e;,®...Qe;, .
The subspace of g[,f-invariants is spanned by the basis elements e;, ®e;, ®...®e;, for which
i1, ..., 4 < n. Thus the gl -invariants of (C*)®" form the gl -representation (C")®".

|

In particular, one proves in the same way that the gl -invariants of (C*)®" form the
gl,-representation (C")®".

The following Lemmas are proved in [PS], [SS, Section 3]:
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Lemma 6.6.3.3. The functors Ty, are symmetric monoidal functors.

The functors I, : Rep(gly)poiy = Rep(gl,)pory are additive functors between semisim-
ple categories, and their effect on simple objects is given by the following Lemma (a direct

consequence of Lemma 6.6.3.3):

Lemma 6.6.3.4. For any Young diagram X\, [',(S*C>®) = SAC".

6.6.4 Restriction functors

Definition 6.6.4.1. Let n > 1. We define the functor
Resp_1p : Rep(gln)poly - Rep(gln—l)poly: Resn 1, := (')g[ﬁ_l

The proof that this functor is well-defined is exactly the same as that of Lemma 6.6.3.2.

Remark 6.6.4.2. Here is an alternative definition of the functors JRes,_1,.

We say that a gl,-module M is of degree d if Idcn € gl,, acts by dIdy; on M. Also,
given any gl,,-module M, we may consider the maximal submodule of M of degree d, and

denote it by dega(M). This defines an endo-functor degq of Rep(gl,,)pory-
Note that a simple module S*C™ is of degree |\|.

The notion of degree gives a decomposition

Rep(gl,,)poty = @ Rep(al,,) poty,d

deZy

where Rep(gl,)poly,a is the full subcategory of Rep(gl,)por, consisting of all polynomial
gl,,-modules of degree d.
Then

Resn—1,n = Dacz, Resan-1,n : Rep(gl,)pory — Rep(8l,_1)poty
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where
[
ReSqgn—1,n - Rep(g[n)poly,d - Rep(g[n—l)poly,da ReSqn—1,n = dega © Resg[:—l

where Resﬁi” is the usual restriction functor for the pair gl,,_; C gl,.

Again, Res,_;, are additive functors between semisimple categories, so we are inter-

ested in checking the effect of these functors on simple modules:

Lemma 6.6.4.3. Res,_1,(S*C") 2 SAC™! for any Young diagram .

Proof. This is a simple corollary of the branching rues for gl,, gl,_;. O
Next, we notice that these functors are compatible with the functors I',, defined before.

Lemma 6.6.4.4. For any n > 1, we have a commutative diagram:

I'n
Rep(g[oo)poly - ReP(g[n)POly

Resp—1,
Tnos l n n

Rep(gl,—1)poly
That is, there is a natural isomorphism I'p_; = Res,,_; , 0 Ty

Proof. By definition of the functors I',_1,%Res,_1,,[,, we have a natural transforma-
tion 8 : I'n_y — Pes,_1, o ', which is given by the injection 8y : 'y (M) —
(Resp_1,0T,) (M) for any M € Rep(gly,)pory- We would like to say that 6y are iso-
morphisms.

The categories in question are semisimple, so it is enough to check what happens to
the simple objects. Lemmas 6.6.3.4 and 6.6.4.3 then tell us that #grxc is an isomorphism

for any Young diagram A, and we are done. O

Lemma 6.6.4.5. The functors Res,_1, : Rep(gl,)poy — Rep(gl,_1)poty are symmetric

monoidal functors.
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Proof. The functor I', is full and essentially surjective, as well as a tensor functor. The
natural isomorphism from Lemma 6.6.4.4 then provides a monoidal structure on the func-

tor Res,_1,, and we can immediately see that it is symmetric as well. O

6.6.5 The restricted inverse limit of categories Rep(gl, )y

This subsection describes the category Rep(gl..)poiy as a “stable” inverse limit of categories
Rep(gl,,)poly-

We now define a Z,-filtration on Rep(gl,)poy for each n € Z,.
Notation 6.6.5.1. For each k € Z,, let Rep(gl,,)poly, length <& be the full additive subcate-
gory of Rep(gl,,)por, generated by S*C™ such that £()\) < k.

Clearly the subcategories Rep(gl, )poty, length <k give us a Z_-filtration of the category
Rep(gl,,)poly, and by Lemma 6.6.4.3, the functors Res,,_;, are Z,-filtered functors (see
Section 6.4).

This allows us to consider the inverse limit

nezjz%l— Filtr Rep(tu)pay
of Z,-filtered categories Rep(gl,)poy- This inverse limit is an abelian category with a
Z-filtration (by Lemma 6.4.0.24).

Note that by Lemma 6.6.4.3, the functors Res,_; ,, are shortening functors (see Def-
inition 6.3.0.7); futhermore, the system ((Rep(gl,)poty)nez,, (ReSn_1n)n>1) satisfies the
conditions in Proposition 6.5.0.28, and therefore the inverse limit of this Z  -filtered sys-
tem is also its restricted inverse limit (see Section 6.3).

Of course, since the functors Res, 1, are symmetric monoidal functors, the above

restricted inverse limit is a symmetric monoidal category.

Proposition 6.6.5.2. We have an equivalence of symmetric monoidal abelian categories

Flim : Rep(g[oo)poly — M Rep(g[n)lmly

n€Zy, restr
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induced by the symmetric monoidal functors

Fn = (.)g[,J{ : Rep(g[oo)POly — Rep(g[n)POly

Proof. Define a Z.-filtration on the semisimple category Rep(gl.,)poly by requiring the
simple object S*C* to lie in filtra £()\). Lemma 6.6.3.4 then tells us that for any k € Z,
and any n > k, the functor

I Filk(Rep(g[oo)poly) — Filk(Rep(g[n)poly) = Rep(g[n)poly, length <k

is an equivalence. Proposition 6.4.0.27 completes the proof. O

Remark 6.6.5.3. The same result has been proved in [HY]; the approach used there is
equivalent to that of inverse limits of Z_ -filtered categories - namely, the authors give
a Z;-grading on the objects of each category Rep(gl,)pory, with S*C™ lying in grade
|Al. The “stable” inverse limit of these graded categories, as defined in [HY], is just the
inverse limit of the Z,-filtered categories Rep(gl,)poy, With the appropriate filtrations.
Note that by Proposition 6.5.0.28, this construction is equivalent to our construction of a

Lir—nnEZ+, restr Rep(g[n)POly

In this case, this is also equivalent to taking the compact subobjects inside
@nez . Rep(gl,)poty-

Remark 6.6.5.4. The adjoint (on both sides) to functor 'y, is the functor

[im: Im  Rep(gly)poty — Rep(8le)poly

n€Zy, restr

defined below.

For any object ((Mp)n>0, (Pr—1,n)n>1) of lglllnEZJr,restr Rep(gl,)poiy, the gl,_;-module
M,,_1 is isomorphic (via ¢,_1,) to a gl,_,-submodule of M,,.
This allows us to cosider a vector space M which is the direct limit of the vector spaces

M,, and the inclusions ¢,_1,. On this vector space M we have a natural action of gl_.:
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given A € gl, C gl,, and m € M, we have m € My for N >> 0. In particular, we can
choose N > n, and then A acts on m through its action on My.

We can easily check that the gl -module M is polynomial: indeed, due to the
equivalence in Proposition 6.6.5.2, there exists a polynomial gl_-module M’ such that
M, = T,(M’) for every n, and ¢,_1, are induced by the inclusions I',_;(M’) C T',(M").
By definition of M, we have a gl - equivariant map M — M’, and it is easy to check
that it is an isomorphism.

We put [} ((Mn)nz0, (dn—1n)n>1) := M, and require that the functor T} act on
morphisms accordingly. The above construction then gives us a natural isomorphism

Fikim ° Flim ? IdRep(g[

oo)poly .
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Chapter 7

Schur-Weyl duality in the limit case

7.1 Parabolic category O in infinite rank

In this section, we give a uniform definition for both the parabolic category O for gl,,
and for gl which we will use. This will be a slight modification of the original definition
to accomodate the case N = oo.

Let N € Z>; U {oc0}.

Consider a unital vector space (CV, 1), where 1 := ;. Put Uy := spanc(ey, es,...) C
C¥, so that we have a splitting CV = Ce;®Uy. We will also denote Uy . := span(e}, €5, ...)
(so Uy« = Up, whenever N € Z).

The following notation will be used in this chapter:

Notation 7.1.0.5.

e We denote by py C gly the parabolic Lie subalgebra which consists of all the
endomorphisms ¢ : C¥ — C¥ for which ¢(1) € C1. In terms of matrices this is

span{El,l, EZ,JI] > ].}

e ul C py denotes the algebra of endomorphisms ¢ : C¥ — C¥ for which Im¢ C

C1 C Ker ¢. In terms of matrices, u} = span{E;|j > 1}.
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We have a decomposition
oly Egl(Un) D gl @ u;'N Duy,

Of course, for any N, u = Uy; moreover, w2 Uy,.

We will also use the isomorphisms gl(Uy) = gli- = gly_,.
Definition 7.1.0.6.

e Define the category Mody,, 51y )—poty t0 be the category of gly-modules whose restric-
tion to gl(Uy) lies in Ind — Rep(gly, )poyy; that is, gly-modules whose restriction to

gl(Uy) is a (perhaps infinite) direct sum of Schur functors applied to Uy.

The morphisms would be gly-equivariant maps.

e We say that an object M € Mody, g(uy)—poly is of degree v (v € C) if on every summand

SAUnC M, the element Ey; € gly acts by (v — |A]) Idgay, -

o Let M € Mody,, giuy)-poty- We have a commutative algebra Sym(Uy) = U(u, ) (the
enveloping algebra of u; C gly). The action of gly on M gives M a structure of a

Sym(Uy)-module.

We say that M is finitely generated over Sym(Uy) if M is a quotient of a “free finitely-
generated Sym(Uy)-module”; that is, as a Sym(Uy)-module, M is a quotient (in Ind—
Rep(gly)poly) of Sym(Un) ® E for some E € Rep(gl(Un))poiy-

o Let M € Mody, gi(uy)-poty- We have a commutative algebra Sym(Un.) = U(u) ) (the
enveloping algebra of uf. C gly). The action of gly on M gives M a structure of a

Sym(Upy «)-module.
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We say that M is locally nilpotent over the algebra U(w ) if for any v € M, there exists
m > 0 such that for any A € Sym™(Uy .) we have: A.v = 0.

Recall the natural Z,-grading on the object of Ind — Rep(gly)poly-
For each M € Mody,, g(uy)-poly, the above definition implies: gl(Uy) acts by operators
act by operators of degree zero, Uy . acts by operators of degree 1. We now define the

parabolic category O for gly which we will use in this chapter:

Definition 7.1.0.7. We define the category O}/”(‘I’:N to be the full subcategory of

Mody,, g Un)-poly Whose objects M satisfy the following requirements:

e M is of degree v.
e M is finitely generated over Sym(Uy).

e M is locally nilpotent over the algebra U (v ).

Of course, for a positive integer IV, this is just the category Oﬁi‘éN we defined in the

beginning of this section.

We will also consider the localization of the category Oﬁ’féN by its Serre subcategory
of polynomial gly-modules of degree v; such modules exist iff v € Z,. This localization

will be denoted by

and will play an important role when we consider the Schur-Weyl duality in complex rank.

7.2 Restricted inverse limit of parabolic categories O

7.2.1 Restriction functors

Definition 7.2.1.1. Let n > 1. Define the functor

s n Pn— R [J-_
me5n_1’n : Og,cn — OV,Cnl—ly mesn—l,n T (')Bn !
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Again, the subalgebras gl,_;,gl-_, C gl, commute, and therefore the subspace of

gl,_;-invariants of a gl,-module automatically carries an action of gl,_,.

We need to check that this functor is well-defined. In order to do so, consider the
functor MRes,_;, : S}:n —> Mody g, _,)- This functor is well-defined, and we will show
that the objects in the image lie in the full subcategory O,'j}:;l_l of Mody g, _,)-

Note that the functor $Res,_;, can alternatively be defined as follows: for a module
M in O,‘jfcn, we restrict the action of gl, to gl,_;, and then only take the vectors in M

attached to specific central characters. More specifically, we have:

Lemma 7.2.1.2. The functor Res,_1, is naturally isomorphic to the composition deg, o

Resﬁi:_l (the functor deg, was defined in Definition 8.3.0.23).

Proof. Let M € OE:}Cn. For any vector m € M, we know that Idcr .m = (E1 1+ E2p+...+
Enn).m = vm. Then the requirement that Idge-1.m = (Ey 1+ Eao+ ... + Ep_10_1).m =

vm is equivalent to requiring that E, ,.m = 0, namely that m € M ol O
We will now use this information to prove the following lemma:
Lemma 7.2.1.3. The functor Resp_1 : OE}'CH — O,’jf’c‘n_l s well-defined.

Proof. Let M € O}t.., and consider the gl,,_;-module Res,_1,(M). By definition, this is
a module of degree v. We will show that it lies in 05’&1_1.

First of all, consider the inclusion gl(U,_1)* ® gl(U,_1) C gl(U,,). This inclusion gives

us the restriction functor (see Definition 6.6.4.1)

Resy,,_, v, Rep(gl(Un))poly — Rep(g[(Un—l))polya Resy,_,u, = (')gl(Uﬂ_l)l

The latter is an additive functor between semisimple categories, and takes polynomial
representations of gl(U,) to polynomial representations of gl(U,_;).
Now, the restriction to gl(U,-1) of the gl,_;-module Res,_1,(M) is isomorphic to

Resy,_, v, (Mlgu,)), and thus is a polynomial representation of gl(U,,_1).
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Secondly, Res,,_1,,(M) is locally nilpotent over U(u} ), since M is locally nilpotent
over U(ul ) and U(u) ) CU(ut ).

It remains to check that given M € OE;{C,,, the module Res,,_; ,(M) is finitely generated
over Sym(U,_1). Indeed, we know that there exists a polynomial gl(U,)-module E and a
surjective gl(U,)-equivariant morphism of Sym(U,)-modules Sym(U,)® E — M. Taking
the gl(U,_1)*-invariants and using Lemma 6.6.4.5, we conclude that there is a surjective

gl(U,,—1)-equivariant morphism of Sym(U,_;)-modules
Sym(U,—1) ® EoUn-DT Res, 1., (M)

Thus Res,,_1,(M) is finitely generated over Sym(U,—_1).

Lemma 7.2.1.4. The functor Res,_1p : Op:(}:n — Of’&l_l 18 ezact.

v,

Proof. We use Lemma, 7.2.1.2. The functor deg, : Of:’,‘,:ll — OP"71 | is exact, so the functor

v,Crn—1

Res,,_1,, is obviously exact as well.

a

Lemma 7.2.1.5. The functor Res,_, , takes parabolic Verma modules to either parabolic

Verma modules or to zero:
meﬁn—l,n(MPn(V - |)‘| )/\)) = Mpn—l(l/ - l/\l a/\)

(recall that the latter is a parabolic Verma module for gl,  iff £(A) < n — 2, and zero

otherwise).

Proof. Consider the parabolic Verma module M, (v — |A|, ), where the Young diagram
A has length at most n — 1.
By definition of the parabolic Verma module M, (v — |A|, A), we have:

M,, (v —|A[,A) = U(gl,) Rupn) S*U,
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The branching rule for gl(U,—1) C gl(Uy) tells us that

(S U Ig[(Un 1) @S Un 1

the sum taken over the set of all Young diagrams obtained from A by removing several
boxes, no two in the same column.

So

Resg_, (My, (v = |1, ) %(@ *m,A')) ou (% /)

NCA Pt

Here

o M, (v —|[A]l,XN) is either a parabolic Verma module for gl,_; of highest weight
(v — |\, X) (note that it is of degree v — [A| + [X|) or zero.
e gl(U,-1) acts trivially on the space U (up—n / " ) This space is isomorphic, as a
Pn—1
Z.-graded vector space, to C[t] (¢ standing for E,, € gl,,) and E;; acts on it by

derivations —tc—‘f;.

Thus Idgn-1 € gl, acts on the subspace M, (v — [A\|,N)®tF C M, (v — |A\|,\) b
the scalar v — |A| + |N| — &

We now apply the functor deg, to the module Resgi:_l(Mpn (v — A, A).

To see which subspaces M,, (v — |[XN|,N) ® t*¥ of M, (v — |A|,\) will survive after
applying deg,, we require that |A\| — [N| + k& = 0. But we are only considering Young
diagrams X’ such that A’ C A, and non-negative integers k, which means that the only
relevant case is ' = A\, k = 0.

We conclude that

f)K{esn—l,n(]\/[lﬂzv (V - I)‘I 7>‘)) = Mpn-1(V - |)‘I ,A)
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Lemma 7.2.1.6. Given a simple gl,,-module L,(v — |A|, ),
Resn_1.0(Ln(V = |A],A)) = Ly_1(v — |A],A)

(recall that the latter is a simple gl,,_;-module iff {(X) < n — 2, and zero otherwise).

Proof. Note that the statement follows immediately from Lemma 7.2.1.5 when A lies in
a trivial <-class; for a non-trivial ~-class {A\®};, we have short exact sequences (see

Corollary 3.3.1.7):
0 = Ln(v — [ACTV][,AE) o M, (v — AP, A0) 5 Lo(v — X9 ) A0) = 0

Using the exactness of Res,,_;,, we can prove the required statement for

Ly (v — |A®|,A®) by induction on 4, provided the statement is true for i = 0.

So it remains to check that
m€5n_1,n(Ln(l/ — |)\| ,/\)) = Ln_l(l/ — I)\| ,)\)

for the minimal Young diagram X in any non-trivial ~-class.
Recall that in that case, L,(v — [A|,\) = SAMCn s a finite-dimensional simple repre-
sentation of gl,,.

The branching rule for gl,, gl,,_; implies that

Resi® (SACn) = @S“(C” !

the sum taken over the set of all Young diagrams obtained from A(v) by removing several
boxes, no two in the same column.

Considering only the summands of degree v, we see that

Resn_1n(La(v — |A|,A) 2 SXIC 1 2 L1 (v—|A|,\)
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O

The functor Res, 1, : Oﬁ,’&n — Ol'j’&l_l clearly takes polynomial modules to polyno-
mial modules; together with Lemma 7.2.1.4, this means that PRes,_1, factors through an

exact functor

Voo Y Apn—1
Resp_11 Ou,?cn — OV,'(’C,L_1

i.e. we have a commutative diagram

Resp—
Pn n—1,n Pn—-1
OV,C" OI/,?C"_I

| #ocs |

3 E7‘9\5n—1,n NP
OE;),C” 3 Pn—1

V,(Cn—l

(see Section 5 for the definition of the localizations 7).

7.2.2 Specialization functors

Definition 7.2.2.1. Let n > 1. Define the functor
Tn: 00 — Oftn, Tpi= ()0

As before, the subalgebras gl,,, g[rf C gl commute, and therefore the subspace of

g[i-invariants of a gl -module automatically carries an action of gl,,.

12

Lemma 7.2.2.2. The functor Ty, : Opjéoo — Oﬁ}:n is well-defined.

Proof. The proof is essentially the same as in Lemma 7.2.1.3.

Next, we check that the functor I',, is exact:

Lemma 7.2.2.3. The functor Iy : O)Ze — Ofcn is ezact.
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Proof. The definition of T, immediately implies that this functor is left-exact. Consider

the inclusion gl(U,) ®gl(U,)* C gl(Ux). We then have an isomorphism of gl(U,)-modules
(Un)t L
(M) = (M”[")lsrwn)

The exactness of I, then follows from the additivity of the functor

(.)gl(Un)L : Rep(8l(Uso))poty — Rep(gl(Un))poty, which is an additive functor between

semisimple categories. O

The functor T, : O)F< — Ot clearly takes polynomial gl,,-modules to polynomial
gl,-modules; together with Lemma 7.2.2.3, this means that I',, factors through an exact

functor
ry: Oﬁféoo — OB:(f:n

i.e. we have a commutative diagram

Oz — Ol
7.2.3 Restricted inverse limit of categories O,%n and the category
Poo
OJ/,(C°°
The restriction functors

. n Pn—1 — [l
%eﬁnﬁl,n : 5’([:77, — OV:(En—ly mzsn—l,n = ()gn !

descibed in Subsection 7.2.1 allow us to consider the inverse limit of the system
((Osfcn)nZIa (meﬁn—l,n)n22)-
Similarly, we can consider the inverse limit of the system ((6},’;&")“21, (@n_l,n)nzg).

Let n> 1.

183



Notation 7.2.3.1. For each k € Zy, let Fiily(O}%) (respectively, Fil,(OPr..)) be the Serre
subcategory of O,,Cn (respectively, Oucn) generated by simple modules Ln(v — |A|, \)
(respectively, 7, (Ln(v — |A|,N))), with £()\) < k.

This defines Z-filtrations on the objects of O"Cn, OV T,y 1€

Ofen & = lim Filg(Ofn), Ofgn & lim FZlk(Ou«:n)

ke€Z keZy

Lemma 7.2.3.2. Let n > 1. The functors

. Pn-1
meﬁn_l,n . S,?C" — OV::[:"_I

and

——— . Ap /\pn-l
Resp_1n : O,,”‘Cn — Oy,(cn_1

are both shortening and Z.-filtered functors between finite-length categories with Z. -

filtrations on objects (see Chapter 6 for the relevant definitions).

Proof. These statements follow directly from Lemma 7.2.1.6, which tells us that
Res,1n(Ln(V — [A], ) = Lp—1(v — |A], A). O

We can now consider the inverse limits of the Z,-filtered systems
((Ogrcn)nzl,(meﬁn_l’n)nzg) and ((O"Cn)n>1,(9‘{esn_1n)n>2) By Section 65, these

limits are equivalent to the respective restricted invverse limits

]'(E_n Ou Cn» @ OV Ccr
n2>1, restr n>1, restr

The functors T',, described above induce exact functors

Flim . OV(C°° —_— L OVC"

n>1
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and

T~ . Ap 3 Apn
Flim : Ollfé‘x’ — l&n Ou, n
n>1

We would like to show that this functor is an equivalence of categories:

Proposition 7.2.3.3. The functors ', induce an equivalence

. Poo 3 P
Lim : Ofec —  lim  Offn

v
n>1, restr

Proof. First of all, we need to check that this functor is well-defined. Namely, we need to
show that for any M € O)Z«, the sequence {fy, ,,)(Tns1(M))}n stabilizes. In fact, it is
enough to show that this sequence is bounded (since it is obviously increasing).

Recall that we have a surjective map of Sym(u,,_)-modules Sym(u, )® E — M for
some E € Rep(gl(Uso))pory- Since I'y 41 is exact, it gives us a surjective map Sym(u,, . )®

ny1(E) = Ty (M) for any n > 0, with 'y 1 (E) being a polynomial gl(U,1)-module.

Now,

Cuat ) Tnt1(M)) < by ) Tni1(M)) < lu(gins)) (Tria (B))

The sequence {£y(gi(v,11))Tnt+1(E))}nzo is bounded by Proposition 6.6.5.2, and thus the
sequence {€y(g,,,)(Tny1(M))}n is bounded as well.
We now show that I'}, is an equivalence.

A construction similar to the one appearing in Subsection 6.6.5 gives a left-adjoint to
the functor I'j;y,; that is, we will define a functor
" nE%;estr " "
Let ((Mp)n>1, (@n-1,)n>2) be an object of r&lnz1, st 03,7(:71-

The isomorphisms ¢n_1, : Res,_1,(M,) = M, _; define gl,_;-equivariant inclusions
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M,,_1 — M,,. Consider the vector space

M = U M,
n>1
which has a natural action of gl on it.

It is easy to see that the obtained gl -module M is a direct sum of polynomial gl(U)-

modules, and is locally nilpotent over the algebra

u(u;;o) = Sym(Usox )™ U Sym(Uy)

n>1
We now prove the following sublemma:

Sublemma 7.2.3.4. Let (My)n>1, (Pn-1,n)n>2) be an object of 1'£1n>1 rostr O,'ff}cn. Then
M =5, M, is a finitely generated module over Sym(Us) = U(u, ).

Proof. Recall from Section 6.3 that all the objects in the abelian category h&lnx, rost O,',’,"@n
have finite length, and that the simple objects in this category are exactly t_hose of the
form ((Ln(v — [A]; A))n>1, (@n—1,n)n>2) for a fixed Young diagram A. So we only need to
check that applying the above construction to these simple objects gives rise to finitely
generated modules over Sym(Us) = U(u, ).

Using Corollary 3.3.1.8 we now reduce the proof of the sublemma to proving the

following two statements:

e Let A be a fixed Young diagram and let ((L,(v—|A|, A))n>1, (Pn—1,)n>2) be a simple
object in Jim _ - O} in which Ly (v — |A|, ) is polynomial for every n (i.e. A

. L . . . . v
is minimal in its non-trivial ~-class).

Then L :=J,5; La(v — ||, A) is a polynomial gl -module (in particular, a finitely

generated module over Sym(Us) = U(u, ).

e Let X be a fixed Young diagram and let ((M,, (v — |Al,A\))n>1, (#n—1n)n>2) be an

object of l'£1n>1 et OE”fcn (this is a sequence of “compatible” parabolic Verma mod-
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ules). Then
M =My, (v~ AL, N)

is a finitely generated module over Sym(Us) = U(u, ).

The first statement follows immediately from Proposition 6.6.5.2 (cf. Subsection 6.6.5).

To prove the second statement, recall that
M, (v — |\, A) = Sym(U,) ® S*U,
(Lemma 3.3.1.3). So

M =M, (v — A, N USym ) ® SAU, = Sym(Us) ® S*Us

n

which is clearly a finitely generated module over Sym(Us) = U(u, ).

This allows us to define the functor I},

by setting

Fltm( (M )'n.>la (¢n 1'n n>2 U M

n>1

and requiring that it act on morphisms accordingly.

The definition of T}

lim gives us a natural transformation

* ~
Flim o Fhm — IdeI::()Cooo

Restricting the action of gl to gl(Us) and using Proposition 6.6.5.2, we conclude that
this natural transformation is an isomorphism.

Notice that the definition of I}, implies that this functor is faithful. Thus we conclude
that the functor I'f_ is an equivalence of categories, and so is [jy.

O
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Proposition 7.2.3.5. The functors fn induce an equivalence

Flim . OVEW !gm O,, Cn
n>1, restr

Proof. Let M € OV Coo- First of all, we need to check that the functor flim is well-defined;
that is, we need to show that the sequence {Eap% (Tn(Tn(M))) }n>1 is bounded from above.

Indeed,
Eapy, (An(Ta(M) < Copy, (Cal0)
But the sequence {€Op%n(Fn(M))}n21 is bounded from above by Lemma 7.2.3.3, so the
original sequence is bound from above as well.

Thus we obtain a commutative diagram

T oy
Rep(g[oo)POl'y,V ; 01/ C> = ; Oui(oloo
1-‘limJ/ Fliml f‘lim J(
. 1_ P Mim= L Tn
@nZl, restr Rep(g [n)poly,u &nZl, restr OV:Cn Ln>1 restr V (C"

where Rep(gly)poiy,» is the Serre subcategory of 5"” L~ consisting of all polynomial modules
of degree v. The rows of this commutative diagram are “exact” (in the sense that Ol, Coo

is the Serre quotient of the category O,'/”‘ﬁc"oo by the Serre subcategory Rep(gl.)poty,, and

similarly for the bottom row).
The functors

Flim : Rep(g[oo>1701y,l’ — @ Rep(g[n)POZyaV

n>1, restr

and

th . Ol/ Coe _> Em Ol/ Cn
n>1, restr

are equivalences of categories (by Propositions 6.6.5.2 and 7.2.3.3), and thus the functor

[im is an equivalence as well.
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7.3 Complex tensor powers of a unital vector space

Fix N € Z, U {co}. In this section we give a uniform construction of a complex tensor
power of the unital vector space CV with the chosen vector 1 := e;. This definition
coincides with the Definition 4.2.0.16 whenever N < oo.

Again, we denote Uy := span{ey,es,...}, and Un. := span{e},e},..} C CN. As

before, we have a decomposition:
gly = Cldey @u,,, S u,, ®gl(Uy)

such that Uy = u,, Uy, 27, and if N is finite, we have Uy, & U,

Fix v e C.

Definition 7.3.0.6 (Complex tensor power). Define the object (CM)2 of Ind —
(Rep®(S,) K O}%x) by setting

()2 = DU © 2™

k>0

The action on gl on (CN)®” is given as follows:

Un Un Un Un
T —_—
1 Un ® A U®2 ® A S2 U®3 ® A S3
UN* UN* UN* UN*
gl(Un) gi(Un) ol(Un)

e Ey, € gly acts by scalar v — k on each summand (USF ® A)5x.

e Acgl(Uy) C gly acts on (US* ® Ag)% by
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> Ao @ 1da, : (UFF ® Ag)% — (URF ® Ap)*

1<i<k

e u € Uy =u, acts by morphisms of degree 1, which are given explicitly in Section

4.2.

o feUp,= u+ acts by morphisms of degree —1, which are given explicitly in Section

4.2.

Remark 7.3.0.7. The proof that the object (CM)®” lies in the category Ind —
(Rep(S, )&Oy ¢~ is the same as in Section 4.3. In particular, it means that the action
of the mirabolic subalgebra LieB; on the complex tensor power (CV)®” integrates to an

action of the mirabolic subgroup By, thus making (CV)& a Harish-Chandra module in

Ind — E_e_;zab(S,,) for the pair (gly, B1).

The definition of the complex tensor power is compatible with the usual notion of a

tensor power of a unital vector space (see Section 4.3):

Proposition 7.3.0.8. Let d € Z.. Consider the functor

Sa: Ind — (Rep(Sy=a)RO%Y) — Ind — (Rep(S)ROY)

4,CcN

induced by the functor
Sd Rep(S ) — Rep(sn)

described in Subsection 8.2.1. Then Sy((CN)®9) = (CN)®4,

The construction of the complex tensor power is also compatible with the functors
Res, ni1 and I'y, defined in Definitions 7.2.1.1, 7.2.2.1. These properties can be seen as

special cases of the following statement (when N =n+1 and N = oo, respectively):
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Proposition 7.3.0.9. Letn > 1, and let N > n, N € Z3, U {o0}. Recall that we have

an inclusion gl, @ gl C gly, and consider the functor
%% : Ind — (Rep™(S,) ® 0%y ) — Ind — (Rep™(S,) B OP.
i 58 v,C Sl 3 v,C

induced by the functor (-)%% - Olin = Ofgn. The functor ()% then takes (CN)® to
ce.

Proof. The functor (-)% : OP¥.y — OPt,. induces an endofunctor of Ind—Rep®™(S,). We

vy

would like to say that we have an isomorphism of [ nd—_R_eB“b(Sy)-objects

?
CM)@)ehh = (C™)® and that the action of gl C gly on ((CN)®) corresponds to
n N

the action of gl, on (C™)&".

In order to do this, we first consider (CV)®” as an object in Ind — Rep®(S,) with an
action of gl(Uy):
(€)% = D) (Ar © U
k>0
If we consider only the actions of gl(Uy),gl(U,), the functor I',, is induced by the
additive monoidal functor (-)%U»)" : Ind — Rep(gl(Un))poty — Ind — Rep(gl(Un))poly-

This shows that we have an isomorphism of Ind—Rep™(S,)-objects

(CMy& )t = (P(Ag ® USH)5 == (C™)®

k>0

and the actions of gl(U,,) on both sides are compatible. From the definition of the complex
tensor power (Definition 7.3.0.6) one immediately sees that the actions of E;; on both

sides are compatible as well. Remark 4.2.0.18 now completes the proof.
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7.4 Schur-Weyl functor for the Deligne category and
the Lie algebra gl

The definition of the Schur-Weyl contravariant functor SW, y given in Section 5 can be
naturally extended to the case when (V,1) = (C*®,¢;): Fix v € C, and N € Z; U {oc}.
Again, we consider the unital vector space C with the chosen vector 1 := e; and the

complement Uy := span{es, es, ...}.

Definition 7.4.0.10. Define the Schur-Weyl contravariant functor

SW, : Rep™(S,) — Ind — Mody gy

SW, = HomMab(sv)( ., ((CN)@V)

As before, the functor SW, is a contravariant C-linear additive left-exact functor, and
its image lies in O%, (cf. Remark 7.3.0.7).

v,CN

We can now define another Schur-Weyl functor which we will consider: it is the con-

travariant functor SW yCN Rep™(8S,) — aﬁ’(":N. Recall from Section 7.1 that

fin s OPN _)apN = Oﬁ%”
N O e vCN = Y Rep(8ly ) poty,

is the Serre quotient of 03’(1‘[’:,\, by the Serre subcategory of polynomial gly-modules of
degree v. We then define
my,cN = ﬁ'N ©) SW,,,(CN
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7.5 Classical Schur-Weyl duality and the restricted in-

verse limit

7.5.1 Classical Schur-Weyl duality: inverse limit

In this subsection, we prove that the classical Schur-Weyl functors SWc» give a duality

(anti-equivalence) between the category EBdeh Rep(Sq) and the category

o~

Rep(al0) poty Um  Rep(gl,)poty

nE€Zy, restr

The contravariant functor SWe~ sends the Young diagram X to the gly-module S*CN.

Let n € Z,. We start by noticing that the functors Res, ,.; and the functors T,
(defined in Subsection 6.6.3) are compatible with the classical Schur-Weyl functors SWen:

Lemma 7.5.1.1. We have natural isomorphisms
Resy, 1 © SWen+1 = SWen

and

[';, 0 SWeeo = SWen

for any n > 0.

Proof. 1t is enough to check this on simple objects in ., Rep(Sa), in which case the
statement follows directly from the definitions of QRes,, »11, I's together with the fact that
SWen (A) =2 SACN for any N € Z, U {o}. O
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The above Lemma implies that we have a commutative diagram

Rep(g [n)POZy

SWen
/ TPrn

®d€Z+ Rep(Sd)"p SWiim @nZl, restr Rep(g[n)poly En

Ty
SWgoo T lim

Rep(g [oo )poly

the functor [, being an equivalence of categories (by Proposition 6.6.5.2), and Pr,, being

the canonical projection functor.

Proposition 7.5.1.2. The contravariant functors

SWoo : €D Rep(Ss) — Rep(gl.y)poty

d€Zy

and

SWim : @D Rep(Sa) = lim  Rep(gly)poty

dezZ. n€Zy, restr

are anti-equivalences of semisimple categories.

Proof. As it was said in Subsection 3.1, the functor SWy is full and essentially surjective
for any N. In this case, the functor SW,, is also faithful, since the simple object A in
D.cz, Rep(Sa) is taken by the functor SWy, to the simple object SAC™ # 0. This proves
that the contravariant functor SW., is an anti-equivalence of categories. The commutative
diagram above then implies that the contravariant functor SWy,, is an anti-equivalence as

well. O

7.6 @ab(&j) and the inverse limit of categories 53,%]\,

In this section we are going to prove that the Schur-Weyl functors defined in Section 5

give us an equivalence of categories between Rep™(S,) and the restricted inverse limit
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; npN
m .
LNEZ_{», restr OV,‘CN

We fix v € C.

Proposition 7.6.0.3. The functor Res,_1, satisfies: Res,_1,0SW, cn =2 SW,, cn—1, i.ec.

there exists a natural isomorphism ny, : Res,_1n, 0 SWy,cn — SW, cn1.
Proof. Follows directly from Proposition 7.3.0.9. Ol

Corollary 7.6.0.4. We have D/Q-e\sn_l)n o §V[\/,,,Cn = ﬁ\/‘/u,(:nvl, 1.e. there exists a natural

isomorphism 7y, : Resp_1 50 SWycn = SW, cn-1.

Proof. By definition of @n_l,n,ST-V\V »cn, together with Proposition 7.6.0.3, we have a

commutative diagram

SW,,’Cn—l

ab op /’pn\* Prn—1

Rep (SV) SW, cn O,,’(Cn Resn—1m > OI/,(C"_I

o Tn 7Arn—1

SW, ¢cn
apn — /\F'n—l_1
wen Resn—1,n wer
. ~ — — e — ———
Since fip_1 0 SW, cn1 =: SW, cn-1, we get Resp_1,n 0 SWycn = SW,, cn1. (]

Notation 7.6.0.5. For each k € Z, Filk(}_?,@“b(S,,)) is defined to be the Serre subcategory
of ﬁe_p“b(Sl,) generated by the simple objects L(A) such that the Young diagram \ satisfies

either of the following conditions:

e )\ belongs to a trivial X-class, and £(\) < k.
e )\ belongs to a non-trivial ~-class {A®};5, A = A and ¢(\D) < k.

This defines a Z -filtration on the objects of the category &:;p“b(S,,). That is, we have:

Rep™(S,) 2 lig Fily(Rep™(S,))

keZ,
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Lemma 7.6.0.6. The functors gﬁ/u,cn are 7., -filtered shortening functors (see Chapter
6 for the relevant definitions) .

Proof. Follows from the fact that SW vcn are exact, together with Lemma 5.0.0.43. O

This Lemma, together with Corollary 7.6.0.4, gives us a contravariant (Z.-filtered

shortening) functor

A§‘\/Vu,lim : 5_6_1_7_017(5!/) — @ ap::c"

v,
n>1, restr

X = ({SWocn(X) Yz, (X))

(f: X = Y) o5 {SWoen() - SWoen(Y) = SWoen (X) }ua

This functor is given by the universal property of the restricted inverse limit described in

Chapter 6, and makes the diagram below commutative:

b
OV,(C"

W, o
Pr,

ab op : Apn
@ (SU) SW, 1im E_H'I”ZL restr OV’Cn

(here Pr, is the canonical projection functor).

We now show that there is an equivalence of categories Rep®(S,)? and
. ANbn
@nZl, restr OV’C"'

Theorem 7.6.0.7. The Schur-Weyl contravariant functors SW vcn induce an anti-

equivalence of abelian categories, given by the (exact) contravariant functor

S/‘\/Vu,lim : Rep™(8,) — Jim 53}3“

n>1, restr

Proof. The functors SW vcn are exact for each n > 1, which means that the functor

SW vlim 1S exact as well (see Subsection 6.2.2).
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To see that it is an anti-equivalence, we will use Proposition 6.4.0.27. All we need to
check is that the functors SW v,cr satisfy the “stabilization condition” (Condition 6.4.0.26):
that is, for each k € Z., there exists ny € Z, such that

SWocn : Fil(Rep™(8,)) = Fili(0})z.)

is an anti-equivalence of categories for any n > ng.
Indeed, let k € Z,, and let n > k + 1.

The category Fily (ﬁﬁ}_)“b(S,,)) decomposes into blocks (corresponding to the blocks of
@Qab(&,)), and the category Filk(aﬁfcn) decomposes into blocks corresponding to the
blocks of O%f..

The requirement n > k+1 together with Lemma 5.0.0.43 means that for any semisim-
ple block of Flilj (E@“b(s,,)), the simple object L(A) corresponding to this block is not sent
to zero under SW vcn. This, in turn, implies that SW vcn induces an anti-equivalence be-
tween each semisimple block of Fil,(Rep®(S,)) and the corresponding semisimple block
of Fily(Ofn).

Now, fix a non-semisimple block B, of @“b(&,), and denote by Fili(B,) the corre-
sponding non-semisimple block of F ilk(@“b(&,)). We denote by B, ,, the corresponding
block in Of%... The corresponding block of Filk(aﬁ,’&:n) will then be #(Filp(Bxn)).

We now check that the contravariant functor
SWocnlpitsy) : Filk(By) = #(Fily(Ban))

is an anti-equivalence of categories when n > k + 1.

Since n > k+1, the Serre subcategories Fili(B,) and K er(g-w\/ vcn) of &;_)ab(S,,) have
trivial intersection (see Lemma 5.0.0.43), which means that the restriction of S/'VT/ ycn to
the Serre subcategory Fil,(B,) is both faithful and full (the latter follows from Theorem
5.0.0.42).

It remains to establish that the functor SW v, | Fity(8,) 18 essentially surjective when
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n > k + 1. This can be done by checking that this functor induces a bijec-
tion between the sets of isomorphism classes of indecomposable projective objects in
Fili(By), 7(Fily(Bx)) respectively. The latter fact follows from the proof of Theorem
5.1.2.3.

Thus SW ven : Filg(By) = Filg(7(Ba,)) is an anti-equivalence of categories for
n>k+1, and
SW ¢ : Fily(Rep™(S,)) = Fily(0%.)

is an anti-equivalence of categories for n > k + 1, which completes the proof.

7.7 Schur-Weyl duality for _I%ipab(SV) and gl

Let C* be a complex vector space with a countable basis e, es, e3,.... Fix 1 := e; and

Uy := spanc(es, €3, ...).

Lemma 7.7.0.8. We have a commutative diagram

ab op : Apn
Rep™(5)) SWo tim @@1, restr O

o Tflim
SW, coo
)Poo
OV,(C°°

Namely, there is a natural isomorphism 7 :flim o ﬁ/yycm — §‘\)Vv,lim-

Proof. In order to prove this statement, we will show that for any n > 1, the following

diagram is commutative:

ab Ap
Rep (Sy)op T‘ Ou,%n
v,C
~Te
SW,, coo
b
OV,C"O



In fact, we will show that the diagram below is commutative

§W,cn

SW, cn

Rep(,)”

which will prove the required statement. The commutativity of this diagram follows
from the existence of a natural isomorphism T', 0 SW, cec = SW, cn (due to Proposition
7.3.0.9) and a natural isomorphism fn 0 o = Ty 0 I, (see proof of Proposition 7.2.3.5).

a

Thus we obtain a commutative diagram

.
OV,(C”

S, cn
Pr,

ab op . Apn =
‘}z_ep‘ (S,,) SW.o tim y—llanL restr O",Cn In

o Tflim
SW”’COO
Poo
Ou,(C°°

Theorem 7.7.0.9. The contravariant functor SW yCo Rep™(S,) — 531?500 is an anti-

equivalence of abelian categories.

Proof. The functor flim is an equivalence of categories (see Lemma 7.2.3.5), and the func-
tor SW vlim 1S an anti-equivalence of categories (see Theorem 7.6.0.7). The commutative
diagram above implies that the contravariant functor SwW oo 1S an anti-equivalence of

categories as well. O
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Chapter 8

Schur-Weyl functors and duality

structures

In this section, we discuss the relation given by the Schur-Weyl functors between the
duality structures in the category Rep®(S,) (which is a rigid symmetric monoidal cate-
gory) and in the category OF2. The latter is a subcategory of the BGG category O and

therefore inherits a duality functor.

8.1 Duality in category O

A construction similar to the duality functor described in Section 3.3 can be made for
O}%w. All modules M in O)Z.. are weight modules with respect to the subalgebra
of diagonal matrices in gl., and the weight spaces are finite-dimensional (due to the
polynomiality condition in the definition of O}/’jéoo). This allows one to construct the

restricted twisted dual MV in the same way as before, and obtain an exact functor
()7 (0)%=)™ — Ol

Remark 8.1.0.10. It is obvious that for n € Z,, the functor (-)V : (OPZ)OP — O takes

finite-dimensional (polynomial) modules to finite-dimensional (polynomial) modules.
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In fact, one can easily check that the functor (-) : (0,, Cw) — O3 takes polyno-

mial modules to polynomial modules as well.

We now describe the above functor in terms of the restricted inverse limit of categories
Ou Cn-
Let n € Z,.

The contravariant duality functors

( ) (OI/C") OuCn

takes polynomial modules to polynomial modules, and therefore descends to a contravari-

ant duality functor

—V

() : (OI/C")O - OuCn

It is a straightforward consequence of the definition of a dual of a module, that the

duality functors commute with the restriction functors fRes,_; n:

Lemma 8.1.0.11. For any n > 2, we have:

()n 1Om€5n ln_meBn 10 © ()V

n

This allows us to define duality functors

(')l\i/m: ( @1 OuC”) - @ OVC"

n>1, restr n>1, restr

and op
aii/m : ( I&H Ol/ C”) - LILH OV cn

n>1, restr n>1, restr

Under the equivalence 0%, = lim O, established in Subsection 7.2.3, the
Yy n>1, restr ~ »C ’
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functor (-)){,, corresponds to the duality functor
()% (O5<)™ = Of2

discussed in Subsection 8.1.
This functor takes polynomial gl -modules to polynomial gl -modules, and therefore

descends to a contravariant duality functor

—~V —~ op —~
(ot (Ohz=) " = Ol

8.2 The Schur-Weyl functor and dualities in categories
Rep™(S,), O,f}v

As a consequence of Theorem 5.0.0.42, we establish a connection between the notions of
duality in the Deligne category Rep®(S,) and the duality in the category 05,v-

Consider the contravariant functors
()" : Rep™(S,) — Rep™(S,) and  (-)V: O}y — Ofy

where (-)* is the duality functor on @“b(s,,) (with respect to the tensor structure of
Rep™(S,)), and () is the usual duality in the category O (c.f. Section 3.3, or [H, Section
3.2]). The Schur-Weyl functor SW,,y relates these two duality notions:

Proposition 8.2.0.12. For any v € C, there is an isomorphism of (covariant) functors
SWV,V((')*) — ﬁ(SWV,V(')V)

Proof. First of all, notice that both sides are exact functors. Indeed, the duality functor on
any abelian rigid monoidal category is exact, and SW, is a (contravariant) exact functor

by Lemma 5.0.0.48, which implies that S/W'V(()*) is exact.
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On the other hand, () is exact (c.f. [H, Section 3.2]), so an argument similar to the

proof of Lemma 5.0.0.48 shows that 7#(SW,(-)¥) is exact as well.

Since any object in Rep®(S,) has a projective resolution, it remains to establish a
natural isomorphism between the two functors when we restrict ourselves to the full

subcategory of projective objects in Rep®(S,).

We now use the fact that all projective objects in Rep®(S,) are self-dual, since they
lie in Rep(S,) (c.f. Proposition 3.2.4.6). This allows us to construct the isomorphism

between the two functors block-by-block.

Fix a block By of @“b(&,). If this block is semisimple, then by Proposition 5.1.1.1,

there is nothing to prove.

So we assume that the block B, is not semisimple, and use the same notation as in
Subsection 5.1.2 for simple, standard, co-standard and projective objects in both B, and
the corresponding block of OS)V. We will also denote by Projy the full subcategory of

projective objects in By.

For each 7 > 1, fix a non-zero morphism g; : P;_; — P;; Proposition 3.2.4.10 tells us

that we have an exact sequence
0— M:—l — Pi—l ﬂ') Pz

Recall from Theorem 3.2.2.6 that such a morphism §; is unique up to a non-zero scalar,

and that the morphisms {3;, 8f }i>1 generate all the morphisms in Projy.

We construct isomorphisms

iteratively (recall that such isomorphisms exist by Theorem 5.1.2.3).

We start by choosing any isomorphism 6y : SW,(P§) — SW,(Py)Y; at the i-th step,

we have already constucted 6y, ...,0;_1, and we choose an isomorphism 6; so that the
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diagram below is commutative:

SW,(PY) —2s SW,(P;)V
SWu(ﬂ,")T SWV(Bi)VT

SW,(PE,) —2=% SW,(P;_y)

We now explain why it is possible to make such a choice of 6;.

Applying the left-exact (covariant) functors SW,(-)¥, SW,((-)*) to the exact sequence
0— M, — P, 25 P,

and using Theorem 5.1.2.3, we see that the maps SW,(8F), SW,(8;) are either simulta-

neously zero or simultaneously not zero. Since the space
Homojj,v (SW,(P;_,), SW,(Py)")

is at most one-dimensional (c.f. Theorem 5.1.2.3 and Proposition 3.3.1.13), we can take 6;
to be any isomorphism SW,(P}) — SW,(P;)V, and then multiply it by a non-zero scalar

to make the above diagram commutative.

We now claim that the isomorphisms 8; define a natural transformation. Since the
morphisms {8;, B; }i>1 generate all the morphisms in Projy, we only need to check that

for any 7 > 1, the following diagram is commutative:

SW,(P}) —2s SW,(P;)Y
swu(ﬁi)l SWU(BZ)VJ
SW,(Pr,) —=X SW,(Pi_1)"
The latter follows easily from the construction of 8;, together with the fact that P, = P}

(for any 7 > 0) and 6; = 6;'. O

The above construction allows us to extend this connection to the infinite-dimensional
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case. Namely, the anti-equivalences in Theorems 7.6.0.7 and 7.7.0.9 imply the following

statement:

Corollary 8.2.0.13. Let N € Z, U {oo}. For any v € C, there is an tsomorphism of

(covariant) functors

—

SWen 0 () — (Y © SWyew
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